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A B S T R A C T

Industry 4.0 (I4.0) (or smart manufacturing) is a new era in the industrial
revolution that emphasises machine connectivity, automation, and data an-
alytics. This revolution has led to the creation of production lines that
produce machine-generated process data through sensors, leading to in-
creased efficiency and productivity. Ontologies have been used to integrate
the data from various formats into a single, unified form. However, most of
these ontologies have overstudied the essential concepts related to the I4.0
production line that are of key importance in building a knowledge graph
for smart manufacturing. This thesis aims to propose a framework that
can be adopted by any I4.0 production line with minimal modifications to
build its knowledge graph. The framework has been tested using realistic
data from two separate industrial use cases.

The existing ontologies in the manufacturing domain have limited depth
and expressiveness due to their scope and purpose mapping for applica-
tion specificity. As a result, this hinders the stakeholders in constructing
their knowledge graphs. The First Contribution of this thesis is to address
this challenge of application specificity. We provide Reference Generalized
Ontological Model (RGOM) based on the Reference Architecture Model for
I4.0.

The I4.0-based Knowledge Graphs, or Knowledge Graph (KG) have
been receiving significant attention over the past few years, and many re-
searchers are involved in building them in the form of manufacturing pro-
duction lines KG. However, most of the time, they have limitations when
applied to a specific use case. These use cases are based on two possibili-
ties: (1) if the researchers are using synthetic data, or (2) if the use case is
coming from an industry based on their private company data. The Sec-
ond Contribution of this thesis is to address this challenge related to data
being real or synthetic. We provide one of the first datasets based on the re-
alistic data collected from a football production line. We have proposed an
automated approach for mapping the data into RGOM to build a KG that is
made publicly available for experiments by the I4.0 community. Moreover,
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the dataset enables the demonstration of RGOM adaptability with minimal
modification in a manufacturing environment.

The current techniques used to build KGs focus on integrating data
from heterogeneous sources and often result in missing links between the
entities. As a consequence of the missing links within the KGs, they cannot
be exploited by the applications. We observe some missing links in the
developed football production line KG. The Third Contribution of this
thesis is to solve this challenge related to missing links. We address the
challenge of KG missing links by utilizing state-of-the-art KG embedding
models, namely ComplEx, DistMult, TransE, ConvKB, and ConvE, on football
manufacturing production line datasets.

The current ontologies are not publicly available and therefore cannot
be accessed by other users for reuse purposes. Such a lack of availabil-
ity often requires that users build their ontologies from scratch, is a time-
consuming task. The Fourth Contribution of this thesis is the employ-
ment of a use case from Bosch to determine how RGOM can serve as a do-
main manufacturing ontology, facilitating integration among various data
sources. In relation to this, we developed the Resistance Spot Welding Ontol-
ogy (RSWO) and align it with the RGOM.

This research has introduced the Reference Generalised Ontological
Model (RGOM) as a flexible framework for manufacturing production lines,
which can be applied to any production line with minimal modifications. It
can also be employed as a manufacturing domain-level ontology by align-
ing ontologies at the application level for enhanced interoperability. The
results on the benchmark dataset (I40KG) have demonstrated more effi-
cient production processes and improved overall performance. Further-
more, the process of predicting missing links in the I40KG indicated that
translational models demonstrated better performance on manufacturing-
based KGs compared to neural network models. This distinction can be
attributed to the hierarchical structure of the KGs.
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1 I N T R O D U C T I O N

Manufacturing has undergone a significant transition as a result of Indus-
try 4.0 (I4.0), which is characterised by the growth of smart manufactur-
ing [153]. This transition has opened up new opportunities for greater
efficiency, flexibility, and decision-making capabilities. Cutting-edge tech-
nologies like the Internet of Things (IoT) harnessed by Artificial Intelli-
gence (AI), and controlled by the Cyber-Physical Systems (CPS) are now
deeply interlinked with traditional manufacturing processes [153]. This
advancement has initiated a fundamental shift towards an interconnected,
intelligent ecosystem. Within this setting, the interactions between human-
machine and machine-machine have become increasingly commonplace,
largely due to the semantic web’s heavy reliance on ontologies [55]. How-
ever, the potential of this transformation has not yet been fully realised due
to the challenges in managing and leveraging the substantial amounts of
data generated by smart manufacturing systems [150]. The crucial issue
lies in integrating data of various formats emanating from diverse sources
and with an ultimate goal of inter-operation within a manufacturing en-
vironment for improved decision-making, proactive maintenance, quality
control, and resource optimisation, ensuring data availability for sharing
[170].
This thesis aims to explore the challenges of data integration, data interop-
erability, and knowledge discovery and propose solutions to build effective
semantic models and knowledge graphs for intelligent smart manufactur-
ing applications, ultimately enhancing our ability to understand, integrate,
and utilise data more universally in the manufacturing domain to realise
human-machine and machine-machine communication more concisely.
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1.1 background and motivation

Over the past decade, the manufacturing industry has been experiencing a
significant transformation driven by advancements in technology and the
widespread adoption of intelligent systems [37]. This transformation, com-
monly referred to as smart manufacturing or I4.0 has revolutionised tra-
ditional manufacturing processes by integrating their production facilities
with disruptive trends of cutting-edge technologies such as the Internet-of-
Things (IoT), artificial intelligence (AI), cloud computing and data analytics,
and autonomous and cyber-physical systems [77] throughout their opera-
tions. As a result, the manufacturing landscape has changed, offering new
opportunities for improved efficiency, enhanced quality control, increased
flexibility, and capabilities for better decision-making.

Smart manufacturing enables the digitisation and interconnection of
machine-machine, human-machine, and various components across the
manufacturing ecosystem, including processes, products, and supply chains
[52]. By harnessing the power of intelligent technologies, manufacturers
can optimise production processes, minimise downtime, and reduce costs.
Furthermore, they can deliver customised products and services to meet
the dynamic and ever-changing demands of the market by adapting to
user requirements that play an important role in the acceptance of emerg-
ing applications.

While smart manufacturing offers immense potential, it also brings
forth several challenges that need to be addressed for its fully functional
implementation [128]. One of the significant challenges lies in effectively
utilising the vast amounts of data generated by smart manufacturing sys-
tems consisting of sensors, machines, machine parts, processes, and other
interconnected devices for capturing valuable information about processes,
product quality, resource utilisation, and so on [26]. However, the chal-
lenge lies in the integration and interoperability of data sources of a hetero-
geneous nature within the manufacturing environment [59]. Data is gen-
erated and stored in various formats, structures, and locations across the
systems in a manufacturing production line, making it available for sharing
and transmission as semantic knowledge. Achieving seamless integration
and meaningful collaboration between these diverse data sources is essen-
tial for a comprehensive understanding of the manufacturing processes by
facilitating effective decision-making and enabling proactive maintenance,
quality control, and resource optimisation. Furthermore, the manufactur-
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ing domain lacks standardised models and frameworks to represent and
share knowledge effectively [95]. Existing ontologies in the manufactur-
ing domain are often limited in their scope and purpose and designed for
specific applications in the manufacturing domain [139]. This restricts the
stakeholders’ ability to construct comprehensive Knowledge Graphs (KG)
that can holistically capture and represent the manufacturing domains’ rich
semantics [1]. As a result, interoperability and information exchange in a
manufacturing production line between different systems become challeng-
ing, hindering the integration and utilisation of relevant information across
the system landscape.

To overcome these challenges, the application of semantic models and
KGs in smart manufacturing has gained great significance [176]. Seman-
tic models provide a structured representation of knowledge, enabling a
common understanding of concepts, relationships, and semantics across
different systems in a manufacturing production line. KGs capture and
connect knowledge elements in a graph-like structure, facilitating efficient
knowledge organisation and integration [79].

By leveraging semantic models and KGs, intelligent smart manufactur-
ing applications can be embedded with enhanced interoperability, knowl-
edge sharing, and decision-making capabilities. They enable a holistic and
realistically shared view of integrating information from diverse sources,
such as sensors, machines, and processes, to generate heterogeneous and
unstructured data. This, in turn, empowers manufacturers to gain valuable
insights, optimise processes, detect anomalies, predict maintenance needs,
and make informed decisions to promote operational efficiency, product
quality, and customer satisfaction.

Moreover, the existing semantic models developed for smart manufac-
turing face several challenges. Firstly, they suffer from limited semantic
expressiveness due to a lack of alignment with industry standards, hin-
dering stakeholders from constructing comprehensive KGs and integrating
relevant information. Within the manufacturing industry, there is a preva-
lent tendency to create new ontologies from scratch, disregarding the Reuse
principle of Linked Open Data (LOD) [69]. Next, due to the unavailability
of real-time industrial datasets, semantic models are yet to be evaluated,
thus restricting them to only proposals. Moreover, there are often missing
links in the KGs constructed from manufacturing production line data. The
missing links are the edges that are considered valid but are not included
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in the knowledge graph. Lastly, the ontologies are not aligned with the
domain-level ontologies and thus suffer from interoperability issues.

In this thesis, we aim to explore and address the challenges of con-
structing semantic models and knowledge graphs for intelligent, smart
manufacturing production lines. By developing novel methodologies and
leveraging State-Of-The-Art (SOTA) techniques [17], [106], [157], we strive
to enhance the level of understanding, integration, and utilisation of data
and knowledge in the field of manufacturing. Furthermore, our objective
is to demonstrate the practical application of the semantic model by utilis-
ing real-world data obtained directly from the manufacturing industry to
represent knowledge for subsequent extraction and relevant applications.

1.2 problem definition and challenges

The digitisation and automation of manufacturing processes characterise
I4.0. It is driven by disruptive trends because of potential human-machine
and machine-machine interactions, aiming to enhance production and re-

Figure 1.1: Overview of the challenges faced by production lines in the I4.0 land-
scape.
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lated services. A defining feature of I4.0 factories is the equipping of assets
and machinery with sensors for effective monitoring of production line
resources. This comprehensive monitoring allows for the early identifica-
tion of potential failures, affecting the performance, energy consumption,
and reliability of the manufacturing processes in a smart manufacturing
environment to produce products for intelligent applications such as dig-
ital twins, smart robotics, quality control systems, and predictive mainte-
nance. Proactive decisions can then be made to prevent production down-
time. However, interpreting the data collected by the sensors is a complex
task due to the need to integrate and process heterogeneous data from var-
ious sources, each produced in different formats. The building of semantic
models1 and knowledge graphs have emerged as a vital solution to this
problem [76]. Despite this, existing semantic models and KGs have the
following challenges:

Challenge I: Adherence to the Reuse of Existing Ontologies and Indus-
try Standards. Ontologies have become crucial tools in the realm of smart
manufacturing, playing a substantial role in the integration and interop-
erability of data acquired from production machinery, processes, sensors,
and others [26, 42]. These ontological models are composed of components
like classes and properties that together collectively establish a shared vo-
cabulary. However, while they are increasingly utilised, it is crucial to
examine these ontological models critically to identify potential areas for
improvement. The current ontologies in smart manufacturing have over-
looked some of the crucial concepts important to the domain. Additionally,
they are not reusing the existing vocabulary and are not tailored to indus-
trial standards for semantic representation, posing several challenges being
addressed by both the industrial and academic research communities. The
first challenge is that it lacks the re-usability of the existing vocabulary, and
it needs customised data for a specific use referred to at low-level applica-
tion specificity.

Challenge II: Real Industrial Data for Evaluating Manufacturing Ontolo-
gies. Ontology evaluation is an important component of ontology engi-
neering ensuring that ontology has the quality, relevance, and effectiveness
necessary to meet the domain’s use case requirements [22]. Unfortunately,
in smart manufacturing, many ontologies have not been thoroughly evalu-
ated and remain as mere proposals of academic pursuits lacking the prop-

1 Semantic models and ontology(ies) are alternatively used representing the same notion.
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erties of industrial implementation due to scarcity of data [30]. The few
that have been assessed typically are based on either synthetic data or pro-
prietary level industry data, which is not available for reuse purposes, and
hence shun the properties of broader applications.

Challenge III: Missing Links in the I40KG. Real-world knowledge graphs
have seen extensive use across a broad spectrum of applications, such as
question answering [16], recommender systems [180], and dialogue sys-
tems [98]. Despite their utility, a common challenge faced by most KGs is
their incompleteness, marked by missing links that limit their full potential
[36]. This challenge presents a compelling case for Knowledge Graph Com-
pletion (KGC), also known as link prediction, aimed at predicting these
missing links, which is a KG analysis task used to predict missing or fu-
ture connections between nodes in a target network [167]. In the context
of this thesis, the research has experienced this as a first-hand issue while
constructing the I4.0 Knowledge Graph (I40KG) using football production
data. The encountered missing links lead to an incomplete I40KG. This
incompleteness poses a hindrance to its full utilisation for the intended
intelligent applications [59, 164].

Challenge IV: Alignment of Application Ontologies to the Domain-Level
Ontologies. The terms within an ontology are defined to address a partic-
ular scope and purpose; for example, the authors in Ramirez-Duran et al.
have the knowledge represented at the ontology schema level through the
use of rdfs:subClassOf [126]. The lack of rdfs:subClassOf makes it impossi-
ble to express capability and represent hierarchical relationships between
classes, which limits its potential applications. More specifically, there is
a notable gap when the ontology is created without being aligned to the
domain-level ontology that helps to achieve modules’ level interoperability
for broader applications. A terminological alignment between the concepts
occurs when ontologies refer to the same real-world entity but use different
names (for example, in the welding domain, a product produced during
the manufacturing process can be represented as a "weld spot" or a "weld
nugget"). A semantic alignment is thus achieved only when relations and
axioms used in the ontologies are correlated with concepts in an alignment
extending to the domain level. Additionally, the methodology involved in
creating ontologies, particularly those associated with smart manufactur-
ing, is overlooked [30].
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1.3 research questions (rqs)

The following research questions are defined based on the discussion in
the previous sections:

RQ1: How can the limitations such as re-usability, missing concepts, and
missing re-adaptability of industry reference architecture of current ontol-
ogy be addressed to better understand and utilise the vast amounts of data
generated by resources in the manufacturing production line?

In response to RQ1, the RGOM ontology is proposed that represents the
generic components of a production line with adaptability for any manu-
facturing industry by identifying the terminology with the existing missing
vocabulary and making necessary modifications.

RQ2: Can the challenge of scarcity in realistic data for production lines be
addressed, and what are the implications of transforming a use-case dataset
using RGOM into a benchmark for applications that require production line
data?

To answer RQ2, we collaborated with production line supervisors and
engineers from the football industry. The aim was to obtain actual produc-
tion line data. We acquired a real data instance from the production line
in real-time, which served as a basis for generating synthetic data. The
engineers in charge of the real-time production line validated the gener-
ated data. The RGOMs was used to represent the generated data as a KG.
Thus implying the benefits of using ontologies and semantic annotations of
data to showcase how the I4.0 industry can benefit from KGs and semantic
datasets.

RQ3: What is the comparative performance of various knowledge graph
embedding models, including TransE, DistMult, ComplEx, ConvKB, and
ConvE, for the link prediction task in the football I4.0 KG?

To address this question, five SOTA KG embedding models are trained
and tested on the football manufacturing production line I40KG. The mod-
els are evaluated with the help of two metrics known as Mean Reciprocal
Rank (MRR) and Hits@N, which are widely used to evaluate KG embed-
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ding models [172].

RQ4: How can the generic semantic model (RGOM) and Knowledge Graphs
(KGs) for production lines be adapted and integrated across different do-
mains in the manufacturing industry?

RSWO ontology is proposed with the help of an ontology development
process that is functional for this precise production scenario (while simul-
taneously aligning with the RGOMs, a domain-level ontology), which is
publicly available for reuse purposes. The alignment encourages interop-
erability, facilitating seamless data exchanges and communication across
various systems within the domain.

1.4 main contributions

The major contributions of this thesis are outlined as claimed in Papers I
through IV, each of which corresponds to achieving objectives I through IV.
An overview of the contributions is presented as below:

1.4.1 Contribution I: Propose Reference Generalized Ontological Model
to Represent Manufacturing Production Line Domain

To address RQ1, the existing ontological models for I4.0 are comprehen-
sively reviewed to identify key limitations and room for improvement. The
current models, their uses, and their shortcomings are critically reviewed
and have formed the solid foundation for this research. Additionally, the
Reference Architectural Model Industrie 4.0 (RAMI4.0), an accepted stan-
dard for I4.0, is thoroughly analysed to understand the overall domain
knowledge of I4.0 [64]. This has enabled us to answer if any current ontolo-
gies follow RAMI4.0. Then, the Reference Generalized Ontological Model
(RGOM) is proposed which is intended to address these identified limi-
tations, offering a more extensive and reusable model for I4.0. RGOM is
designed while keeping the reuse principle of Linking Open Data (LOD)
in mind [100]. It does so by formalizing knowledge such as time, location,
and sensor data, along with a multitude of important-to-industry feature
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attributes like product creation, process management, machine operations,
and warehouse operations. The RGOMs leverage reusing existing vocabu-
laries to ensure seamless integration while incorporating missing concepts
to bridge the gaps identified in the study. This contribution aims to address
RQ1.

1.4.2 Contribution II: Benchmarking Dataset and an Automated Approach
to Populate its Instances into RGOM to Build I40 knowledge graph

To accomplish Research Question RQ2, RGOM’s adaptability is demon-
strated by benchmarking the dataset from the real data industry manufac-
turing production line. Like many other models, RGOM adaptability is
not demonstrated due to the unavailability of manufacturing data. In this
thesis, our goal is to benchmark a dataset to facilitate the generation of
knowledge graphs for I4.0 production lines. We further aim to highlight
the advantages of employing ontologies and semantic annotations of data,
illustrating how Industry 4.0 can benefit from the so-obtained knowledge
graphs and semantic datasets. This work was made possible through col-
laboration with production line managers, supervisors, and engineers in
the football industry, which enabled us to gather realistic production line
data. Furthermore, the data is automatically mapped and populated to the
classes and relationships of the RGOMs using a solution based on JenaAPI
[11], resulting in an I40KG. This KG comprises over 2.5 million axioms and
approximately 1 million instances. The creation of this extensive KG serves
to exhibit the adaptability and practicality of the RGOMs. This address the
contributions highlighted in RQ2.

1.4.3 Contribution III: Analysing the Effectiveness of SOTA KG Embed-
ding Models on I40KG

To achieve Research Question RQ3, this thesis addresses the challenge
of predicting missing links by applying SOTA KG models such as Com-
plEx [157], DistMult [177], TransE [17], ConvKB [106], and ConvE [41].
These models have been utilised on football manufacturing production line
datasets I40KG for predicting missing links on the unseen data. The per-
formance of these models has been critically assessed using two essential
metrics: Mean Reciprocal Rank (MRR), andHits@N (Hits@10, Hits@3, and
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Hits@1). Our analysis indicates that the TransE model demonstrates supe-
rior performance with an average accuracy of 0.91%, closely followed by
ComplEx and DistMult with an accuracy of 0.87% and 0.84% respectively.
On the contrary, the ConvKB and ConvE models have shown lower per-
formance levels, with an accuracy of 0.79% and 0.76% respectively. Ad-
ditionally, a remarkable variance in MRR values among the models has
been identified, with TransE yielding the highest mean MRR value, and
ConvE, the lowest. Significantly, this part of the study enriches both schol-
arly research and industrial methodologies by identifying the most efficient
KG embedding model for predicting missing links in the hierarchical KGs
within the field of manufacturing. The results analysed in this contribution
support RQ3.

1.4.4 Contribution IV: Propose Resistance Spot Welding Ontology (RSWO)
and aligned it with RGOM

For addressing Research Question RQ4, the RSWO is developed. This
ontology formally presents the resistance spot welding operations, equip-
ment, individual machine parts, and software systems. By integrating the
domain knowledge of RSWO and harmonising it with the ISO standards
(ISO-14327 and ISO-14373) and RGOM ensures that first-hand knowledge
terminology is strictly followed. The RSWO offers a comprehensive under-
standing of RSW welding concepts, extending beyond the narrow applica-
tion focus of existing ontologies. Next, this research illustrates a systematic
ontology development process based on a real-world industrial scenario
involving expert knowledge and data from a globally recognised indus-
trial partner. The process entails domain analysis for knowledge collection,
formalisation of concepts, and subsequent implementation, validation, and
publication including its maintenance. The ontology is practically imple-
mented in the first phase with authentic data from the Bosch welding pro-
duction line. Moreover, an evaluation of RSWO is carried out using the
O’FAIRe methodology to ensure it follows FAIR principles [6]. The OOPs!
tool has been employed to assess the structural and functional quality di-
mensions, such as clarity, completeness, consistency, and conciseness of
the proposed ontology [121]. Lastly, the OntoMetrics tool is used to mea-
sure the richness of RSWO’s attributes, ensuring it is well-populated with
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real data items from the production lines [87]. This contribution addresses
responding to RQ4.
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1.6 thesis outline

Chapter 1 presents the conceptual outline of the entire thesis, starting
with the background and motivation to identify the research challenges,
followed by defining the research questions and research objectives. Con-
tributions to address the solutions of the research questions as challenges
are then provided.

Chapter 2 presents the background knowledge and critical literature
review of semantic modelling approaches to look for grey areas. The rela-
tive insights are appropriately cited in support of the title under research
and are highlighted in order to develop a platform where research work is
ultimately launched.

Chapter 3 begins by laying out the steps for constructing the RGOM
with encoding concepts to develop the ontology in the domain of manu-
facturing. The ontological terminology i.e., concepts and their relations are
reused into RGOM from existing ontologies and RAMI4.0.

Chapter 4 discusses benchmarking the dataset and approach to build
an I40 knowledge graph to demonstrate the RGOMs adaptability through
competency questions provided by the production line engineers.

Chapter 5 explores the SOTA knowledge graphs incorporating model
performance on the I40 KG built from concepts defined for football datasets
and experimentally obtains model prediction results alongside statistical
results.

Chapter 6 presents the alignment of Resistance Spot Welding Ontology
(RSWO) to the RGOMs and the details of the ontology development pro-
cess. Moreover, the ontology evaluation is discussed from four different
dimensions.

Finally, Chapter 7 provides a conclusion and additional future direc-
tions for continuing research in exploring further avenues.





2 L I T E R AT U R E R E V I E W

This chapter presents a review of the technologies, manufacturing compa-
nies, and service systems that have been undergoing a transformation by
embodying disruptive concepts that cause a profound break with the ex-
isting concepts, leading to the creation of heterogeneous data with a wide
variety of data types and formats, followed by the introduction of the se-
mantic web as a platform for sharing knowledge and data modelling to
support applications built upon it.

This chapter provides an overview of the technologies, manufactur-
ing companies, and service systems experiencing transformation through
the adoption of disruptive concepts. These concepts significantly differ
from traditional practice, resulting in the generation of heterogeneous data
across a broad spectrum of types and formats. Additionally, the chap-
ter introduces the semantic web as a platform for knowledge sharing and
data modelling, which supports the development of applications upon it.
Furthermore, it presents ontologies as a structure for encoding knowledge
into well-defined relationships as knowledge graphs for I4.0 applications,
finally introducing the Reference Generalised Ontological Model (RGOM).

2.1 industry 4.0 and its reference architec-
tures

Industry 4.0 (I4.0) is one of the emerging topics coined by Germany [185].
Other manufacturing countries like Japan [107] and Korea [114] have also
been influenced by the concept of I4.0 by launching their related programs.
I4.0 refers to the fourth industrial revolution, which is characterised by the
digitization of manufacturing processes and the use of advanced technolo-
gies such as the Internet of Things (IoT), Cyber-Physical Systems (CPS),
Artificial Intelligence (AI), big data analytics, and cloud computing. It in-

35



36 literature review

volves the integration of physical and digital systems, resulting in smart
factories where machinery and equipment can improve processes through
automation and optimization for predictive maintenance, better quality
control, and self-adaptive process optimisation with quality monitoring.

The term reference architecture in the context of I4.0 refers to a blueprint
or a standard framework for orchestrating various components of an indus-
trial system. It provides guidelines and standards for developing and inte-
grating industrial systems. Reference architectures intend to solve several
issues in the overall production line including the predictive maintenance
[20] through sensor fusion used for the collection of data from multiple
sensors to create a more complete and accurate picture of a production
process in the industry environment, interoperability for system integra-
tion and system fine-tuning for the availability of data up and down the
domain [30], improve the production efficiencies [12], and provides effi-
cient scheduling services [159]. Table 2.1 shows reference architectures
developed by different countries.

Table 2.1: Reference architectures and their publishers
Reference Architecture Publisher

Reference Architecture Model for Industry 4.0 (RAMI4.0) [64] Deutsches Institut für Normung (DIN)

National Smart Manufacturing Standards Architecture [91] Ministry of Industry and Information Technology (MIIT)
and the Standardization Administration of China (SAC)

Smart Manufacturing Systems (SMS) [95] National Institute of Standards and Technology (NIST)

Industrial Internet Reference Architecture (IIRA) [94] Industrial Internet Consortium Architecture (IICA)

Reference architecture comprises standards and guidelines for system
development and solutions, and application architecture that are intended
to furnish a plan for the world-wide utilization of standards in I4.0. Several
industrial communities and enterprises such as platform I4.0 of Germany,
the industrial internet consortium (IIC), and advanced manufacturing part-
nership 2.0 of the American Government are working together to support
and develop standards to landscape reference architectures [7, 166].

2.1.1 Reference Architecture Model for Industry 4.0 (RAMI4.0)

RAMI4.0 stands for Reference Architecture Model Industries 4.0 [64], which
was formed by the German Electrical and Electronics Manufacturer Associ-
ation (ZVEI, VDMA, BITKOM) with the joint efforts of countries including
India, Japan, and China. It is published by Deutsches Institut für Nor-
mung (DIN) as the extended version of the Smart Grid Architecture Model
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(SGAM) that was designed to model the communication network entities
in the field of renewable energy. RAMI4.0 is gaining worldwide agreement
and is being adopted by many manufacturers to modernise their indus-
try. The focus of RAMI4.0 is on industrial production involving discrete
manufacturing to process industry as an application area.

RAMI4.0 provides a framework for companies to develop business mod-
els and future products. The main objective of RAMI4.0 is to ensure that
all members follow a common framework for understanding each other in
I4.0 activities and discussions. It combines I4.0 into a three-dimensional
model that shows how to systematically deliver I4.0 implementation.

Each dimension of RAMI4.0 is as illustrated in Figure 2.1 as a unique
part of these domains partitioned into distinct layers [117]. The correspond-
ing dimensions of the model are described below:

1 Hierarchy Level: The Factory – The right horizontal axis is built on a
standard IEC 62264 that represents four layers (from bottom to top) of
system control integration known as Control Device, Station, Work
Centers, and Enterprise. The two layers at the bottom are Product
(it considers the similarity of product and production resources with
their inter-dependencies during manufacturing), and Field Device
(operating machine or devices in intelligent operation plus their sen-
sors), and the Connect World at the top (partner factories collabo-
rating via service networks) are then added to support smart factory
[117]. This hierarchical structure allows for an organised approach
towards data management and control across an industrial organiza-
tion.

2 Life Cycle and Value Stream - The left horizontal axis represents the
life cycle of products and facilities. This axis is based on the IEC
62890 standard to manage the value life cycle management of com-
ponents such as orders, machines, products, and plants. It presents a
difference between Type and Instance. The design and prototyping
of the product are termed as a type while the completion of the type
becomes an instance and the product is manufactured.

3 Layers - The left vertical axis decomposes the physical and machine
assets to allow their virtual mapping. The entities in the Layers axis
represent physical assets/hardware, assets integration, communica-
tions behaviour, and functional descriptions. It describes the ICT
structure that demonstrates the I4.0.
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Figure 2.1: RAMI4.0 [64]

The interplay of these three axes in the RAMI4.0 model helps in devel-
oping and implementing flexible, effective I4.0 concepts. It allows the
classification of industrial components, enabling the migration from
traditional industrial practices to a digital, interconnected, and smart
manufacturing setup [117].

2.1.2 Intelligent Manufacturing System Architecture (IMSA)

Partially influenced by German I4.0 technology, China’s Ministry of Indus-
try and Information Technology published an article defining the architec-
ture of the National Smart Manufacturing Standards in collaboration with
the Standardization Administration of China (SAC) [91].

The Intelligent Manufacturing System Architecture (IMSA) describes a
3D model intended to define the extent and application of various intelli-
gent manufacturing technologies. The three dimensions [92], of this model
are:

• Life Cycle: This dimension covers the entire life span of a product,
from its conception and design, through its manufacturing and us-
age, to its eventual decommissioning and disposal.

• System Level: this dimension refers to the hierarchical levels within
a manufacturing organization, similar to the concept described in the
IEC 62264 standard. These levels can include field devices, control
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systems, manufacturing processes, and business planning systems.

• Intelligent Functions: This dimension covers the intelligent, auto-
mated functions that these technologies bring to the manufacturing
process.

The Intelligent Manufacturing System Architecture (IMSA) describes a 3D
model intended to define the extent and application of various intelligent
manufacturing technologies. The three dimensions of this model are: Life
Cycle: This dimension covers the entire life span of a product, from its
conception and design, through its manufacture and use, to its eventual
decommissioning and disposal. system level: This dimension refers to
the hierarchical levels within a manufacturing organization, similar to the
concept described in IEC 62264. These levels can include field devices,
control systems, manufacturing processes, and business planning systems.
intelligent functions: This dimension covers the intelligent and automated
functions that these technologies bring to the manufacturing process.

The IMSA has demonstrated an industrial robot as shown in Figure 2.2
and mentioned within the product life cycle manufacturing stage dimen-
sion, the equipment level of the system level, and is characterised by re-
source factors in Intelligent function.

The IMSA model includes an intelligent manufacturing standardization
architecture landscape to guide standard classifications. It identifies the
five basic types of standards required to support intelligent manufactur-
ing. This model is proposed in the "National Intelligent Manufacturing
Standards Architecture Construction Guidance," marking a crucial step in
the development of a comprehensive standardization process for intelligent
manufacturing. [178].

2.1.3 Smart Manufacturing Systems (SMS)

The National Institute of Standards and Technology (NIST) has defined a
landscape of standards based on the Smart Manufacturing Systems that
organise standards according to their functions [95]. NIST-SMS underlines
the manufacturing capabilities line up with the enterprise’s economic strat-
egy. These manufacturing capabilities are categorised into four groups
comprising agility, productivity, sustainability, and quality (discussed in
detail [80]).
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Figure 2.2: Intelligent Manufacturing Standards Architecture landscape. [92]

Figure 2.3: NIST Manufacturing Standards Landscape [95].

The Smart Manufacturing system arranged the standards into three di-
mensions product, production, and business lifecycle indicated in green,
blue, and orange in Figure 2.3, respectively. The standards in these dimen-
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sions are aligned with the levels of the manufacturing pyramid of ISA95 i.e.
Device to Enterprise [95].

2.1.4 Industrial Internet Reference Architecture

The Industrial Internet Reference Architecture (IIRA) is a comprehensive
framework for understanding and facilitating discussions about the differ-
ent components of an Industrial Internet of Things (IIoT) system [94]. The
IIRA is typically split into four viewpoints as shown in Figure 2.4.

Business Viewpoint: This focuses on the business aspects of the IIoT
system, including the business model, value proposition, objectives, and
KPIs. This is where the broad alignment of an IIoT solution with business
objectives is defined.

Usage Viewpoint: This deals with the functionality of the IIoT system,
including its use cases, scenarios, and user interactions. This is essentially
the operational aspect of the IIoT solutions.

Functional Viewpoint: This is where the logical architecture of the IIoT
system is designed, including the functional components and their interac-
tions. It includes design considerations for control, data communication,
and applications.

Implementation Viewpoint: This involves the physical aspects of the
IIoT system, including hardware, software, and network elements. This is
where the physical construction of an IIoT solution comes into play.

The life cycle process, on the other hand, often relates to the various
stages an IIoT solution goes through, from initial perception and design,
through requirements, implementation, operation, maintenance, and ul-
timately decommissioning. These stages typically interact with all four
viewpoints of the IIRA since business, usage, functional, and implementa-
tion considerations - all change and evolve over the life cycle of the system.

In terms of industrial sectors, the IIRA can be applied to any sector
where IIoT solutions are relevant. This could include manufacturing, trans-
portation, energy, healthcare, agriculture, and many others.

The specific details of the IIRA and its implementation will vary be-
tween sectors due to differences in business requirements, operational needs,
technical constraints, and regulatory considerations, among other factors.
However, the overall structure of the IIRA, with its four viewpoints and
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life cycle processes, remains consistent across sectors, providing a common
framework for understanding and implementing IIoT solutions.

Figure 2.4: The relationship amongst viewpoints of IIRA, process lifecycle of the
system, and System life cycle [94].

2.1.5 Analysis of Reference Architectures

A comparative analysis of RAMI4.0 with other emerging standard refer-
ence architectures such as IMSA, NIST-SMS, and IIRA for I4.0 is discussed
in this section.

The RAMI4.0 emphasises the cyber-physical system while not address-
ing several characteristics such as the location of Enterprise Resource Plan-
ning (ERP), Manufacturing Execution System (MES), and the absence of
digital agents and twins. However, each of the dimensions follows differ-
ent standards such as IEC, ISO, and VDMA etc.; therefore, the RAMI4.0 ap-
plication/implementation procedure is quite challenging1

4.0/Intelligent
Manufacturing System Architecture; German Federal Ministry of Economic
Affairs and Energy: Berlin, Germany, 2018

2.

1 German Federal Ministry of Economic Affairs and Energy. Alignment Report for Refer-
ence Architectural Model for Industry

2 https://www.dke.de/resource/blob/1711304/2e4d62811e90ee7aad10eeb6fdeb33d2/align
ment-report-for-reference-architectural-model-for-industrie-4-0-data.pdf.
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In general, both the IMSA and the RAMI4.0 models provide a com-
mon understanding of the structure of life-cycle, automation equipment
and product by folding them into smart production. However, technically
a strong differentiation between the life cycles of the two models exists.
As a result, the IMSA is a variant of RAMI4.0 and thus further explores
the type and instance sub-parts of life and value-stream phase by mapping
them into design, manufacturing, logistics and services respectively. Addi-
tionally, it introduces a new functional element called the market3. Consid-
ering the exploration of the hierarchy and layers dimensions of RAMI4.0
and at the life-cycle phase of IMSA, it can be concluded that the RAMI4.0
has been closely focusing on the manufacturing lines while the IMSA has
sharply dealt with life-cycle of the product.

Comparing NIST-SMS with RAMI4.0, the categorization of standards is
more general. The standard published report fails to address the details of
digital twins. In order to fill up the gap, the working group of ISO 23247 is
currently focusing on the implementation use-cases of digital twins [96].

The interoperability among the elements tackled by IIRA at the func-
tional level is different from RAMI4.0 [46]. In contrast to RAMI4.0, the
Digital twin is more influential in the IIRA model. RAMI4.0 business layer
emphasises handling the entire business life cycle, whereas the IIRA busi-
ness viewpoint describes the IIoT business systems as providing interaction
services among the various entities during the overall manufacturing pro-
cess. The RAMI4.0 assets could either be virtual (software, agents, etc.) or
physical (machines, materials, products, or personnel), which participate
in the business process to provide smart production. On the other hand,
the same term in IIRA refers to tangible objects of physical entities that are
only being observed and controlled.

The aforementioned discussion portrays the moldability and maturity
level of RAMI4.0 compared to other reference models. This model provides
a baseline framework and is well aligned with other references, thus sup-
porting the standardised protocol stacks solving the issues caused by the
divergence of data [118]. However, the current I4.0 reference architecture
is not able to provide enough information because it is dynamic and meets
all the requirements, so a bigger reference model is needed [102].

3 https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-
manufacturing.html
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2.2 disrupting trends in industry 4.0

Industry 4.0 supports the collection of real-time data, which offers valu-
able insights for making intelligent operational and strategic decisions [31].
The concept of Industry 4.0 is expected to revolutionise the conventional
machine-based industrial manufacturing process into a more adaptable
and digitally-driven production approach [82]. In the present day, which
is known as the information age, a vast quantity of data is being generated
to enhance our everyday existence [39]. Every day, an enormous amount
of data and communications, up to trillions, can be created and shared.
So, it takes a lot of computing power to find and understand the impor-
tant messages hidden in the data and service interactions made possible by
disruptive technologies [85]. Disruptive technologies, collectively known
as Industry 4.0, motivate innovation and enable us to transform our work
practices [85]. The underlying technologies in the era of Industry 4.0 pro-
vide competitive benefits in terms of cost reduction, improvement of prod-
uct quality, flexibility in operations, and better efficiency [158]. Various
emerging technologies, such as artificial intelligence (AI) [90], robotics [21],
blockchain [10], Big Data [49], and IoT [93], have been applied across var-
ious industries. These technologies and systems are promoting closer col-
laborations between humans and machines as well as machine-to-machine
interactions. Thus promoting a new era of intelligent, interconnected, and
dynamic industrial systems, as shown in Figure 2.5.

Figure 2.5: An illustration of the smart manufacturing technologies [155].
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The impact of these technologies extends beyond enhancing the pro-
duction capabilities of I4.0. They are redefining the very fundamentals
of industrial operations and manufacturing processes. The implementa-
tion and advancement of these technologies have led to the proliferation
of a multitude of field devices with diverse functionalities. These heteroge-
neous devices, capable of real-time communication, serve as vital nodes in
the data-rich landscape of I4.0. They play a critical role in generating valu-
able data during the manufacturing process, presenting an opportunity
to harness this data for optimising various aspects of industrial operations.
However, the data generated by these heterogeneous devices is often varied
in format, structure, and semantics. This presents a significant challenge
to its efficient integration and utilisation. On the other hand, when har-
nessed effectively, this data holds the potential to enhance product life cy-
cles, streamline on-time and on-demand productions, optimise resources,
customise products, maintain machines, and reform logistic styles [123].
This underlines the importance of developing effective strategies for data
integration and management that are capable of transforming this vast and
varied data into actionable insights. Hence, the disruptive trends in technol-
ogy are not only revolutionising the industrial landscape but also bringing
forth new challenges and opportunities.

2.3 heterogeneous and unstructured data

One of the main challenges introduced by a diverse field of devices in I4.0
is the generation of heterogeneous and unstructured data. Heterogeneous
data refers to the different types, formats, and structures of data that these
devices generate. For example, a sensor may generate numerical data re-
garding temperature or pressure, while an embedded system may produce
more complex data like performance logs o error messages, etc.

This diversity is further compounded by the unstructured nature of
much of the data. The unstructured data format does not follow a standard
format or a predefined model, making it difficult to analyze and interpret.
Examples can include text-based logs data generated by a motor of a man-
ufacturing plant in case of experiencing some sort of vibrations. The vast
amounts of heterogeneous and unstructured data generated by I4.0 tech-
nologies present a significant challenge for its effective utilization. Without
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proper management and interpretation, much of this valuable data can go
unused and unharnessed as it stays misinterpreted, leading to inefficient
operations and, accordingly, missed opportunities for optimization.

However, if effectively harnessed, this data has the potential to pro-
vide a wealth of insights into various aspects of industrial operations [150].
From enhancing product life cycles and enabling on-demand production
to optimizing resources, and fine-tuning maintaining machines, the data
generated in an I4.0 setup can provide actionable information. Thus, devel-
oping effective strategies for managing and analyzing this heterogeneous
and unstructured data is an essential task in realizing the full potential of
the I4.0 architecture.

2.4 overview of semantic web technologies

The semantic web has revolutionised the existing document-based web
into more intelligent systems by integrating data and web content into
a more structured web environment where software agents can perform
tasks more autonomously for users [129, 143].

It defines the information with metadata and semantic annotations,
which allows the intelligent applications to understand the content [115].
These applications can then carry out tasks more efficiently such as deci-
sion support and queries leading to smarter services. The main technolo-
gies of the semantic web are defined in the next sections.

2.4.1 Resource Description Framework (RDF)

The World Wide Web Consortium web (W3C)4 recommends the Resource
Description Framework (RDF) as a universal data model purposely devel-
oped for the exchange of data [99]. It characterises the data in the form
of triples, which consist of subjects, predicates, and objects. These triples
can be combined to conceive directed graphs wherein the vertices symbol-
ise subjects and objects, while the edges stand for predicates. The formal
definition of an RDF triple is as follows:

4 https://www.w3.org/RDF/
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Definition 2.1: RDF Triple. [8] Let I, B, L be disjoint infinite sets of
URIs, blank nodes, and literals, respectively. A triple (s, p, o) ∈ (I ∪ B) × I
× (I ∪ B ∪ L) is denominated an RDF triple, where s is called the subject, p
the predicate, and o the object.

Figure 2.6 presents an illustration of an RDF graph that signifies the
information about an RSW machine. Here, the resource RSWO:RSWMachine

is designated as a type of Welding machine, represented as the rdf:type
property that connects to relate two resources, that is, the RSWO:RSWMachine

acting as the subject, and the RSWO:WeldingMachine declared as the object.
Similarly, the rdf:type property also represents the resource RSWO:Electrode
as a type of RSWO:RSWElectrode. Furthermore, this RDF graph demon-
strates that the RSW machine comprises a part named as RSW Electrode.

Figure 2.6: Example of an RDF graph representing the information about a Resis-
tance Spot Welding (RSW) machine and its part Electrode.

Internationalised Resource Identifiers (IRIs) are employed to identify re-
sources with absolute certainty. Literals, encompassing either a string with
a language tag or a value with a datatype, delineate to describe specific data
values. The examples employ the notation prefix:element for description;
prefix pertains to the IRI’s identification and element can refer to the com-
ponents of RDF, namely, a subject, predicate or object. Formally, an RDF
graph G is defined as a consortium of triples: G ⊂ I × I × (I ∪ L), where I
signifies the set of IRIs and L represents the set of literals. Various formats
can serialise RDF, such as RDF/XML5, Turtle6, RDFa7, or JSON-LD8. Each
characteristic format possesses unique advantages and disadvantages, that
depends on the specific specific use case.

5 https://www.w3.org/TR/rdf-syntax-grammar/
6 https://www.w3.org/TR/turtle/
7 https://www.w3.org/TR/rdfa-syntax/
8 https://www.w3.org/TR/json-ld/
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@prefix RSWO: <http://www.rswo.org/muhyah/ontologies/2022/7/

rswo> .
@prefix rdf: <http://www.w3.org/1999/02/22rdfsyntaxns> .

@prefix dc: <http://purl.org/dc/terms/> .

RSWO:RSWMachine rdf:type RSWO:WeldingMachine .

RSWO:RSWMachine dc:hasPart RSWO:RSWElectrode .

RSWO:RSWElectrode rdf:type RSWO:Electrode .

Listing 2.1: Illustration of Turtle serialization of the RDF graph in Figure
2.6

2.4.2 Ontology, RDF Schema and Web Ontology Language

An ontology is a formal specification used to describe a set of concepts and
the relationships between them for a specific domain of interest [65]. It
involves conceptualization, which is the simplified and abstract represen-
tation of the world [55]. When any knowledge-based system represents
the world, it is committed to some conceptualization known as ontological
commitment [55]. This commitment refers to recognising specific things
and categories of entities that form the fundamental components of a con-
ceptual model [55]. An ontological logical theory is a formal framework
that uses logic to define and categorise the fundamental types of entities
and relationships [23]. It constitutes a specific area of reality or knowledge
and serves as a structured approach to understanding and representing
the underlying nature and structure of a domain. The semantic web is de-
veloped to make use of an ontology that represents the information in a
machine-processable structure [3]. An ontology can be defined as a struc-
tured and formal representation of a specific domain of knowledge, as
follows:



2.4 overview of semantic web technologies 49

Definition 2.2: Ontology. [62] Consider C to be a conceptualization and
L to be a logical language, equipped with a vocabulary V and ontological
commitment K. The corresponding ontology OK for conceptualization C
has been defined with vocabulary V and ontological commitment K. This
ontology OK is a logical theory that comprises a collection of L formulas.
The objective of this arrangement is to align the set of theoretical models
closely with the set of intended models of the logical language L, consistent
with the ontological commitment, K.

In practice, the development of an ontology requires a consideration of
the balance between the expressiveness and efficiency of language L. RDF
offers a versatile language for expressing knowledge, it doesn’t inherently
make assumptions or establish the semantics concerning a specific appli-
cation domain. The definition of domain semantics requires the use of
an RDF schema, specifically, RDFS [101]. RDFS enables the development
of standardised vocabulary for RDF data and defines the types of entities
to which these attributes can be assigned. The RDF Schema [38] expands
upon RDF by integrating constructs such as rdfs:Class, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain, rdfs:range, to name the most significant
ones. RDFS also introduces crucial annotation constructs, such as rdfs:label
and rdfs:comment.

Figure 2.7: Example of an RDF graph representing the information about a Resis-
tance Spot Welding (RSW) machine and its part Electrode.

For instance, the graph shown in Figure 2.6 can be further extended
with such constructs and annotations to provide meaning to the RDF data9.

9 https://www.w3.org/2000/01/rdf-schema
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Figure 2.7 elucidates to make clear the creation of new classes, such as
RSWO:WeldingMachine, which is a subclass of RGOM:Machine. This signifies
that in the domain the example is modelled, all instances of WeldingMachine
are regarded as machines. Similarly, the class RSWO:Electrode is a sub-
class of RGOM:MachinePart. The utilization of annotation properties such as
rdfs:label and rdfs:comment can also be discerned and recognised from
the figure. Moreover, the property dc:hasPart has the class RSWO:WeldingM-
achine as its domain (i.e., rdfs:domain) and the class RSWO:Electrode as
its range (i.e., rdfs:range).

Thus, an ontology consists of two key components: terminological com-
ponents (Tbox), which define concepts, and assertional components (Abox),
which indicate the instances of these concepts. Ontologies also offer an
automatic reasoning process that retrieves axioms that are not explicitly
incorporated into the knowledge graph.

2.4.3 Knowledge Graphs

The term Knowledge Graph (KG) has recently gained significant attention
through the tech industry such as Google, Facebook, Amazon, Netflix, and
others [67]. The term KG was first introduced by Google in 2012 [63] to
use semantic knowledge in web searching. It is also used to denote Se-
mantic Web knowledge bases, including DBpedia, Wikidata, and YAGO.
KGs make use of numerous knowledge representation styles, which span
beyond solely RDF to embrace abstract modelling languages and proba-
bilistic techniques [104]. In these graphs, the essence of the information
is stored along with the data, usually taking the form of ontologies. This
feature makes KGs self-explanatory, positioning them as a comprehensive
source for both locating and understanding data.

In KGs, the semantics of the data are explicit and comprise of formal
methods that assist in inferencing. KGs contain a large number of entities
and provide definitions of key concepts and relationships. They also sug-
gest ways to modify data to fit model specifications and provide the ability
to draw conclusions and discover new information from existing data [28].
Furthermore, KGs have shown their effectiveness in resolving semantic in-
teroperability challenges during the process of data integration in various
fields, including health [27], agriculture [171], banks [1] and many other
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areas. In factory environments, KGs are viewed as the cornerstone for the
next wave of enterprise information systems. A KG can be defined as:

Definition 2.3: Knowledge Graph. [62] A labelled directed graph repre-
sented the RDF data model. Let I and V be the sets of URIs that correspond
to the entities represented in the RDF documents and terms from ontologies,
respectively; and L be a set of entities representing Literals.

A knowledge graph thus acquires in order to integrate the information
into an ontology that enables a reasoner to derive new knowledge. The
knowledge graph is referred to as data organised by the following ontolo-
gies.

2.4.4 SPARQL Language

SPARQL, endorsed by the World Wide Web Consortium (W3C)10, serves as
a query language designed to retrieve and manipulate data encapsulated in
RDF. Drawing its foundation from the RDF Turtle serialization and graph
pattern matching, SPARQL queries data structured as RDF triples, incorpo-
rating variables for the subject, predicate, and object to form graph patterns.
A typical SPARQL query thus comprises triple patterns, conjunctions, dis-
junctions, and optional patterns. These triple patterns bear a resemblance
to RDF triples, where the subject, predicate, and object serve as variables
in the query.

PREFIX RSWO: <http://www.rswo.org/muhyah/ontologies/2022/

7/rswo>

PREFIX dc: <http://purl.org/dc/terms/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?machine ?part ?class

WHERE {
?machine dc:hasPart ?part .

?machine rdfs:subClassOf ?class . }

Listing 2.2: Example of a SPARQL Query 2.6

10 https://www.w3.org/TR/sparql11-query/
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Within the query, variables function as placeholders, which construct
the solutions when paired with RDF terms. Listing 2.2 showcases key as-
pects of the SPARQL language. The query utilises the prefixes to query a
dataset. The goal of the query is to fetch the information about machines,
their associated parts, and the class to which they belong. The SELECT

clause specifies three variables: ?machine, ?part, and ?class. In the WHERE

clause, the query matches triples where a machine is linked to its parts us-
ing the dc:hasPart property, and where a machine is a subclass of another
class using the rdfs:subClassOf property. The result set will include these
variables, providing details about machines, parts, and associated classes.

2.5 semantic modeling for integrating un-
structured data

The semantic web has been extensively employed to represent the domain
knowledge with an aim to address the semantic heterogeneity conflict in
I4.0. The problem of integrating data has been addressed by several re-
searchers. Ontology-Based Data Integration (OBDI) is a widely used tech-
nique for addressing this issue [38, 108]. OBDI methods are commonly
employed for integrating semantic data due to the semantic representation
provided by ontologies. The OBDI approach typically consists of three key
components: i) an ontology that represents the domain’s knowledge, ii) a
data source containing the domain’s data, and iii) mappings connecting
the two components [38]. Cruz et al. [35] explore different perspectives on
the use of ontologies for semantic data integration: i) the single ontology
approach, where all sources are directly linked to a shared global ontology;
ii) the multiple ontology approach, where each data source is described by
its local ontology separately; and iii) the hybrid ontology approach, which
combines the single ontology approach for describing each data source in
the domain with mappings to a generally shared ontology. Other studies
focus on the essential dimensions of mapping development. These dimen-
sions include: i) discovering mappings among ontologies; ii) representing
the mappings declaratively; and iii) reasoning with the mappings. Map-
pings play a crucial role in linking two ontologies that represent the same
domain and address semantic heterogeneity conflicts between them [108].
The authors proposed an approach called SODIM, which combines seman-
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tic data integration techniques with service-oriented principles [2]. SODIM
aims to improve the efficiency and effectiveness of data integration pro-
cesses by leveraging semantic annotations and automated mapping gener-
ation. Rahm [124] discusses the need for a comprehensive data integration
approach that can handle multiple sources, presenting six use cases where
holistic data integration is applied. LDIF [142] introduces a large-scale
framework for integrating Linked Data, using a mapping language and the
R2R framework [15] to translate data from different vocabularies to a local
target vocabulary. LDIF also utilises the SILK framework [68] to address
heterogeneity conflicts and provides data quality assessment. Collarana et
al. [33] propose MINTE, a framework that integrates data from diverse
sources into a knowledge graph. MINTE utilises RDF molecules to rep-
resent data meaning and fusion policies to resolve semantic heterogeneity
conflicts.

2.6 semantic modeling for i4.0 data integra-
tion

The manufacturing industry is transforming mechanization towards intel-
ligent and digital processes. This shift is driven by the integration of tech-
nologies such as the IoT, sensors, and Cyber-Physical Systems (CPS), all of
which are vertically integrated into a smart factory [88, 168]. Thus, these
resources and processes generate a huge amount of heterogeneous and
unconnected data which requires effort and time. Following sub-sections
report the literature work in this regard.

2.6.1 Semantic Representations of I4.0 Resources using Onotlogies

Semantic modelling of smart factories, manufacturing production lines,
and manufacturing systems interoperability is the crucial feature estab-
lished in the I4.0 production between tangible assets including systems,
devices, sensors, etc., connected to each other over the internet. In the
I4.0 context, stress has been placed on the alignment of manufacturing sys-
tems, processes, and reconfiguration of resources in the production line. In
the last decade, there have been numerous efforts to represent the domain
knowledge of I4.0 in the form of modular ontologies, that is, resource, de-
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vice ontology, process ontology, predictive maintenance ontology, etc., to
meet manufacturing production requirements [30, 53]. There have been
rigorous efforts to develop ontologies that aim to semantically model the
manufacturing production line very clearly. Buchgeher et al. conducted a
survey on the role of knowledge graphs in production and manufacturing
[24]. They have reported the biblio-metric facts, type of research, statics
and application scenarios of the knowledge graphs in manufacturing and
production.

I4.0 for pharmaceutical products in re-configurable form has been pro-
posed to adjust the increasing requirement of flexibility, agility, and low
cost in the health sector [162]. The re-configurable form of I4.0 is com-
prised of three layers, namely: 1) executing, 2) deployment, and 3) per-
ception layer. The knowledge graph as employed in the perception layer
is representing the semantics of manufacturing based on the MASON On-
tology responsible for scheduling the production plan. In the deployment
layer, IEC61499 standard is implemented for modelling functionality and
controlling machines. The feasibility of the proposed approach is validated
by taking a use case of drug packing based on demand. Kovalenko et al.
proposed AutomationML ontology to represent the semantic modelling of
cyber-physical systems covering data exchange in an I4.0 scenario [84]. The
semantic-based representation of I4.0 devices in the administration shell
provides the integration, identification, data availability, and so on, of the
devices [58, 57].

The Semantic Manufacturing ontology highlights the sequence of pro-
cesses and machines required for an ordered workpiece product [116], Tur-
tle file is available online11. Mazzola et al. proposed CDM-Core12 ontology
by re-using the existing domain and core ontologies [103]. The authors
claimed it to be the largest publicly available global ontology. However,
they have focused more on the service-oriented architecture and monitor-
ing of the manufacturing services. There is no explicit information regard-
ing the modelling of the manufacturing factory and the main concepts such
as type of processing, type of machine, etc., are missing.

Manufacturing systems should be able to incorporate and assist humans
(operators, technicians). Humans are participating in the environment of
automated systems and it is necessary to consider the role of the operator
in such an environment. Ferrer et al. proposed the addition of the skills

11 http://i40.semantic-interoperability.org/smo/smo.ttl
12 http://sourceforge.net/projects/cdm-core/
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and tasks performed by humans in manufacturing ontology that is using
the CPS knowledge repositories [48]. Their work presented a semantic
model that allows the operations modelling achieved by human operators.
However, they focused more on the service of orchestration during the pro-
duction plans. Ahmad et.al proposed the integration of manufacturing do-
main data such as Product, Process, and Resource (PPR) using the ontology
approach for matching the product requirements in assembly automation
[47]. The mapping information of PPR helps in deriving the processes and
resources required to manufacture the designed product.

The authors proposed an ontology by merging five ontologies which
are base, product, process, device, and parameter ontologies to represent
the manufacturing production process beginning from order to completion
of the product [30],. The ontology is built on top of the product, process,
device, and parameter ontologies to provide interaction with each other.
Additionally, the order concept is modelled as a separate ontology that is
linked with the product. Service-oriented architecture has been built on top
of this ontology model to discover, select, organise, and consume semantic
web services dynamically [29].

Seyedamir et al. utilised the concepts of manufacturing resource, pro-
cess, and product from the ISA-95 standard [144]. They adopted the ap-
proach of semantic rules to infer implicit knowledge to allow inspecting the
machines needed to produce product variants. Saeidlou, S. et al. designed
an ontology model for the manufacturing domain and developed a seman-
tic query algorithm to investigate the semantic richness of the queried key-
word return by the ontology model [134]. Kalaycı et. al proposed a Se-
mantic Integration of Bosch data (SIB) framework to integrate Bosch man-
ufacturing data to analyse the surface mounting process pipeline [76]. To
experiment with their framework, they have developed surface mounting
(SMT) to map the production line data.

Some of the most renowned ontologies in the manufacturing domain
are process specification language (PSL) [60], ONTOlogy for Product Data
Management (ONTO-PDM) [113], MAnufacturing Semantic ONtology (MA-
SON) [89], ADAptive holonic COntrol aRchitecture (ADACOR) [18], etc.,
ontology. MASON ontology has been developed to estimate the production
cost of mechanical components. The design of PSL ontology emphasises
enabling the exchange of process information in manufacturing systems
accurately and comprehensively. Panetto, H. el. al modelled the prod-
uct concepts based on two standards ISO-10303 and IEC-62264 to facilitate
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the interoperability between software applications exchanging product life
cycle information. PSL ontology represents the concepts of process mod-
elling, planning, scheduling, simulation, etc. in axioms of first-order logic
theories. ADACOR ontology has highlighted the knowledge related to
customer work orders, production plans, and model operations. These on-
tologies are helpful to recreate an ontology model to cover the notion of the
whole production line from customer order to the product life cycle. There
is a great amount of literature available for ontology-based agent systems
such as CORA [122], ROA Ontology [109], ORArch, and O4I4 Ontology
[86] that perform main tasks.

Overall, the current research lacks common desirable features for I4.0
manufacturing production line ontology. Firstly, they are tailored to rep-
resent a specific resource of the production line and lack comprehensive
coverage of the I4.0 reference architecture. This in turn limits the depth
and semantics of the manufacturing ontology to a specific use case. Sec-
ondly, they are typically developed without adherence to ontology design
methodologies as the best-used practices, such as incorporating design pat-
terns or reusing established vocabularies. Lastly, these ontologies are often
not readily accessible or available for comprehensive reuse. Thus, we note
here a room for improving semantic representations of manufacturing pro-
duction lines by proposing improvements using the Reference Generalized
Ontological Model (RGOM) framework as stated in the RQ1

2.6.2 Integrating Production Line Data into Knowledge Graphs: Data
Availability based Perspective

Ontology evaluation plays a crucial role in assessing the quality, usability,
and effectiveness of ontologies in achieving data integration and interop-
erability across different resources. Once an ontology is developed, the
data is populated within it to evaluate its performance and suitability for
the specific domain it was created for [4]. This evaluation helps ensure
that the ontology effectively represents and organises the data, enabling its
seamless integration and utilization.

Considering the domain of the I4.0 resources, Ramírez Durán et al.
developed a semantic model (ExtruOnt) to describe the knowledge of a
manufacturing machine known as an extruder machine that executes the
extrusion process [126]. Though the scope of ExtruOnt is confined to a spe-
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cific domain, and provides information about extruder components, three-
dimensional representations of components and spatial connections, fea-
tures, and sensors capturing data about machine performance. The authors
thanked Urola Solutions for providing them with real data to evaluate the
ontology. Grangel-González et. al concatenated domain ontologies on top
of SMT ontology to accomplish the interoperability issue in manufactur-
ing data [59]. The ontology developed is more focused on the mounting
process and is evaluated on data from Bosch.

The authors examine the standards landscape of I4.0 from a semantic
integration perspective and developed Standards Ontology (STO) [56]. It
focuses on the integration of standards within the context of I4.0 and ana-
lyzes their semantic interoperability. They provide insights into the current
state of standards and highlight the importance of semantic integration in
achieving interoperability in I4.0. No information is available about the
dataset used for their ontology evaluation.

Wan et al. proposed a resource configuration-based ontology describ-
ing the domain knowledge of the reconfiguration of sensible manufactur-
ing resources using Web Ontology Language (OWL) [163]. The objective
of their work is to integrate the CPS equipment through ontology-based
resource integration architecture. The generated data are stored as a rela-
tional database and are associated and mapped into the model instances
of the manufacturing ontology. The proposed ontology for resource recon-
figuration is examined using an intelligent manipulator as a use case that
verified its manufacturing feasibility. Manufacturing Resources Capability
ontology has been proposed to describe the capabilities of the production
system resources [71]. The ontology development process followed the
five stages of ontology engineering methodology that are feasibility study,
kick-off, refinement, evaluation, and usage and evolution. According to Jar-
venpaa et al. Manufacturing resource capability ontology (MaRCO) is used
by resource vendors to represent the capabilities of resources they are offer-
ing and publish it in the digital marketplaces or global resources list and
is browsed by production companies or systems integrators when recon-
figuring existing or designing new manufacturing systems [71]. MaRCO
aims to provide the matchmaking between the required capabilities of a
resource and the production requirements of a product.

Teslya et al. proposed an ontology-based approach to describe the in-
dustrial components merged from four different scenarios in order to form
upper-level ontology [152]. Such a union will enable change in the created
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Table 2.2: List of the ontologies with their research focus and datasets being used
for evaluations.

Paper Ontology Research Focus Dataset

[126] ExtruOnt

Describing extruder components,
3D representations, and spatial
connections, features, and sensors
capturing data.

Data were taken from the
extruder manufacturing factory.

[59] SMT ontology combined
with Domain ontologies To achieve interoperability in I4.0.

Data taken from Bosch, no
information available.

[56] Standard Ontology (STO)
Solving interoperability issues
between the analogous standards
used by reference architectures.

X

[163] Resource reconfiguration
ontology

Integration of intelligent manuf-
acturing equipment using resou-
rce configuration ontology.

Populated the ontology with the
data produced by the manipulator
using raspberry pi.

[71] Manufacturing Resource
Capability Ontology (MaRCO)

Development of resources ontolo-
gy to describe manufacturing reso-
urces capabilities.

Data were taken from the Indus-
trial laboratory Demonstration
setup

[13] Product, Process, Resource
Integration of Product, Process,
and Resource

Festo Modular System (a testbed
for an industrial test.)

[75] Process

Decomposed the sentences of
RAMI4.0 standards, architectures
, and models into concepts map to
integrate the processes of I4.0.

X

[152] Components of Socio-Cyber
Physical systems

Establishing a specific information
space to connect all the production
components.

X

[58] I4.0 components
Semantically represented the I4.0
devices in administration shell

\url{https://cdd.iec.ch/cdd/iec
61360/iec61360.nsf}

[29] I4.0 Demonstration
Production line

Modelled the I4.0 production
line X

[116] Semantic Manufacturing
Ontology (SMO) Modelling of Smart Factory X

[144] Modular Ontologies (ISA-95) Modelling Smart Factory
Data produced on FASTory
simulator \url{http://escop.rd.
tut.fi:3000/fmw}

[76] Surface Mounting Process
(SMT Ontology)

Integration of Bosch Manufacturing
Data for analysis

Data taken from Bosch, no
information available

business process to boost product customization for the customer and re-
duce the cost for its producers. The semantic-based representation of I4.0
devices in the administration shell provides the integration, identification,
data availability, etc., of the devices [58, 57]. Some other research works
such as [29, 116, 144, 13, 76] are mentioned in the Table 2.2 that provide
the information about their research focus and the dataset for ontology
evaluation.

The current research has assessed their ontologies using datasets that
are not publicly accessible for result reproduction or evaluation of other on-
tologies. These datasets are often specific to a particular use case, which is
typically either based on synthetic generated data by researchers or derived
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from private company data in an industrial context that is not available
online. Therefore, as defined in RQ2, a publicly available benchmark Resis-
tance Spot Welding Ontology (RSWO) dataset is capable of demonstrating
the adaptability and effectiveness of RGOM in real-world production data.

2.6.3 Alignment of Ontologies with Domain Level: Use-Case

The alignment of ontologies with the domain level is a crucial aspect when
addressing the challenges in the integration of Resistance Spot Welding
(RSW) data within the broader context of manufacturing or welding do-
mains. Among the RDF resources related to RSW, there exists a signifi-
cant variation in the vocabularies used and the underlying data models
applied. This variation poses a hindrance to achieving seamless interoper-
ability and effective integration of RSW data. However, this problem can
be effectively tackled through the process of alignment, specifically through
post-alignment techniques such as terminology mapping [136] or semantic
transformation between different data models [111].

In recent works, several ontologies have been proposed for addressing
the challenges in resistance spot welding (RSW) data integration and se-
mantic inconsistency. Sarkar et al. [138] developed an ontology based
on foundational concepts to characterise joining operations. Saha et al.
[135] introduced the Core Domain Ontology for Joining Processes (CD-
JOP) to categorise joining processes and tackle semantic inconsistency in
standardization documents. However, their work lacked input from do-
main experts, real industry implementation, and omitted important con-
cepts like squeeze time and spatter occurrence. Kim et al. [81] utilised
an automotive OEM dataset to extract decision rules and transform them
into SWRL rules for improved knowledge domain shareability. Neverthe-
less, their reliance solely on data-derived rules limited the interpretability
of semantics. Solano et al. [146] formalised welding process knowledge
through ontological modeling but focused on a limited scope of welding
categories and lacked representation of procedure details and machine set-
tings. Other works have explored machine learning models enhanced with
ontologies for predicting welding quality [148, 182, 149]. Dong et al. [43]
transformed online unstructured data into machine-interpretable data us-
ing the WeldGalaxy Ontology, although their ontology had insufficient ob-
ject properties and lacked proper class connections. Furthermore, none



60 literature review

of the work has demonstrated the development of their ontology with an
ontology development process.

In addition to the aforementioned works, it is important to highlight
the significance of aligning the proposed ontologies with the domain level.
Alignment with the broader domain ontology ensures interoperability and
effective integration of resistance spot welding (RSW) data within the con-
text of manufacturing. This alignment addresses the variation in vocabu-
laries and data models used among RSW-related RDF resources, enabling
seamless data exchange and knowledge representation. By aligning the
ontologies, a common understanding can be established between RSW-
specific concepts and the broader domain-level ontology, bridging semantic
gaps and facilitating effective data integration and interoperability within
the Industry 4.0 framework. Therefore, there is a need for the development
of RSW using an ontology development process. Additionally, the ontol-
ogy is required to be aligned with a domain-level manufacturing ontology
to the application-level ontology RSWO, utilizing the RGOM as defined in
RQ3.

2.6.4 I4.0 Based Knowledge Graphs Completion

Knowledge Graphs (KG) have attracted a lot of attention from the research
community over the past few years. They are currently being adopted in
many domains, such as question-answering systems, information retrieval
and recommendations in different domains, for instance, the supply chain
system [83], the automotive industry [125] and industries on the immedi-
ate list of industry 4.0. As reported in the literature, the current research
on I4.0-based KG is carried out in two dimensions: (i) techniques for build-
ing KGs [51], [40], and (ii) applications of KG [72], [179], [154]. To be
more specific, regarding the first dimension, the current techniques used
to build KG focus on integrating data from heterogeneous sources, but
most of the time, this results in imperceptible missing links between the
graph entities [59]. As a consequence of the missing links within the KGs,
it cannot be exploited for the aforementioned applications in conjunction
with other powerful tools such as predictive maintenance, the prediction
of the remaining useful life of complex systems, and product quality moni-
toring, among others. Moreover, the I4.0 data-based KGs are mostly prone
to missing links. Analyzing and predicting the missing links in such KG is
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nearly impossible with human heuristics, and is highly dependent on the
power of using relevant algorithms [97].

The term link prediction refers to determining the likelihood of identi-
fying pairs of nodes in a graph that will form a link or will not establish
a link in the future. Graph-based link prediction research has witnessed
a number of prediction models proposed using different architectures and
approaches [133]. The proposed models are based on learning the features
of KG to predict links better than the previous ones [167]. Moreover, ev-
ery model is built on different relational features such as relations, path
information, and substructure information for training to improve the link
prediction [165].

The first category among the link prediction models is the geometric-
based (aka translation) model. It uses a spatial transformation for relation
embeddings in the latent space. Provided a fact, a spatial transformation is
used to represent the head embeddings where the values of relation embed-
dings are parameterised. Distance functions such as the L1 norm and L2

norm are employed to compute an offset between the resulting head and
tail vectors. The additional constraints in spatial transformation make the
geometric models unique from those of Tensor decomposition. Some of the
examples of geometric models are TransE [17], CrossE [181], TorusE [44].
Deep learning models are the second category of link prediction models.
Deep learning models employ convolutional neural networks (CNN) to
learn features using weights and biases as estimators. These estimators are
then combined with the input facts to extract features of significant impor-
tance. There are several different deep learning architectures reported in
literature [61]. However, their fundamental components are very similar. A
neural network layer consists of three basic layers, namely, convolutional,
pooling, and fully connected layers. The input feature set is represented
in the convolutional layer that consists of a number of convolution kernels
that are used to calculate various feature maps. Each neuron in a feature
map is specifically linked to an area of nearby neurons in the layer under-
neath it. In the previous layer, this area is known as the neuron’s receptive
field. By first convolution, the input with a learnt kernel and then using the
convolutional results to apply an element-wise nonlinear activation func-
tion, the new feature map may be produced. The kernel is shared by all
spatial locations of the input to generate similarly produced feature maps.
Several different kernels are used to create the entire feature maps [61]. The
final feature map is passed through a fully connected layer to compute the
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fact score. ConvE [41], ConvKB [106], ConvR [73], CapsE [160] are some of
the deep learning models proposed on the aforementioned notion.

The design of industrial KGs is different from the benchmark datasets
that are commonly used. The industrial KGs are Hierarchical structures
and the nodes are densely connected with other. Therefore, as defined
in RQ4, there is a need to explore state-of-the-art link prediction models
such as TransE, DistMult, ComplEx, ConvKB, and ConvE on the KGs de-
veloped from the Benchmark dataset, in order to evaluate the effectiveness
of RGOM using heterogeneous and unstructured data by standard metrics
such as Mean Reciprocal Rank (MRR) and Hits@N.

2.7 research gaps

Digitalization when coupled with AI has been offering an amazing and un-
precedented acceptance almost in every domain of life. The digitalization
drive aims to connect humans and machines through the internet, result-
ing in generating huge amounts of data. Hence, data science is bound to
assume a position central to many of the research challenges today.

These challenges include improved methods of gathering valuable ma-
chine data from across sources of heterogeneous and unstructured kinds,
demanding implementation of advanced data analytic technologies and
methods, in order to provide the right information to the right person at
the right time by visualising data through associating it with relevant se-
mantics.

Our proposed approach is conducting a comparative study of the cur-
rent ontologies which existing vocabularies are being used before they are
reused with the additional concepts that were missing, making the whole
process performed in an iterative manner, self-adapting for adjusting to the
current requirements. Furthermore, it is observed that none of the ontol-
ogy is available that can be used as domain manufacturing ontology for
alignment purposes. Moreover, another issue is the lack of availability of
benchmarked manufacturing production line datasets that can be used to
validate these semantic models. Furthermore, how a specific ontology can
be aligned with RGOM in line with the ontology development process also
needs to be studied. Finally, the SOTA algorithms can complete the KGs
formed from industrial data that need to be investigated.
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2.8 summary

In this chapter, the aspects related to I4.0 within the scope of this thesis
and its reference architectures are presented. We have explored reference
architecture models of RAMI4.0, IMSA, SMS, and the IIRA, providing an
analysis of their key features. We then moved on to disruptive trends in
technology that uses AI, the Internet of Things and cloud computing, high-
lighting the challenges posed by heterogeneous and unstructured data. An
overview of semantic web technologies is presented, including RDF, on-
tologies, RDF Schema, Web Ontology Language, knowledge graphs, and
the SPARQL language. The application of semantic modelling as a vision
for linking data across web pages, applications and files for integrating
unstructured data, for I4.0 data integration has been discussed. This in-
cludes semantic representations of I4.0 resources using ontologies, integra-
tion of production line data into knowledge graphs from a data availability
perspective, alignment of ontologies with the domain level through a use
case, and completion of I4.0-based knowledge graphs. Finally, we have ad-
dressed the research gaps in the field, identifying grey areas that need to
be highlighted by requiring further exploration and investigation. The chal-
lenge of harnessing the vast amount of un-utilised data by proposing the
Reference Guide for Ontology Development (RGOM) is being addressed in
the next chapter.



3 R E F E R E N C E G E N E R A L I Z E D
O N TO LO G I C A L M O D E L ( R G O M )

This chapter provides details about the development of the Reference Gen-
eralized Ontological Model (RGOM). It includes the process of ontology
development and the use of RAMI architecture with a reference to explain-
ing the I4.0 concepts and the RGOM ontology itself.

3.1 steps towards building rgom

The methodology for the proposed Reference Generalized Ontological Model
(RGOM) is composed of the following steps (see 3.2).

• A detailed survey is conducted by analyzing recent literature for onto-
logical models of I4.0 major ontologies to identify and shortlist terms
related to the production line. The survey was conducted based on
three steps (bottom to top) including (i) planning and scope of the
review, (ii) filtering of the papers for review, and (iii) reporting the
review [156]. In the first stage of the methodology, the scope of the
review is set to determine the literature’s relevance to the semantic
web and knowledge graphs in I4.0. This stage involved the identifica-
tion of the most suitable keywords to select the articles. As a result,
this stage provided an initial step with searching different databases
such as ACM digital library, IEEE Explore, Science Direct, Google
Scholar and Scopus which resulted in almost 164 articles, in total.
These articles include academic as well as industry publications con-
taining conferences, workshops, letters, journals and peer-reviewed
books. In reporting the literature, we included only full-text work
based on an ontology proposal as well as the construction of a knowl-
edge graph for smart manufacturing. In the second stage, an ad-
vanced filtration was adopted by considering the different versions
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of the selected ontologies in conjunction with the combinations of
the titles and abstract which resulted in the selection of more specific
articles of 110. In line with the ontologies selected version the titles
and abstract of each research paper were studied to identify its rele-
vance for inclusion. The filtration process was carried out using the
following steps.

– The most relevant ontologies covering reference architectures,
manufacturing production line, predictive maintenance and sup-
ply chain concepts of I4.0 were captured.

– The study elaborated all versions of the chosen ontologies for
understanding their functional behaviour and its adaptation in
the study.

The third stage is reporting the review and is composed of two steps.
In the first step, a full-text reading approach was adopted to further
narrow the search and obtain 87 articles. This step excluded all those
papers summarizing the work on the Semantic Web or Knowledge
Graph in Smart Manufacturing. In the second step of reporting the
review, a total of 51 papers were found relevant to be included in the
study. Each round contains articles that were affirmed to be relevant
in the previous round. The overall survey methodology adopted in
this work is summarized in Figure 3.1.

Figure 3.1: An illustration of the methodology adopted for conducting the survey.

• I4.0 architecture, such as the reference architectural model Industry
4.0 (RAMI 4.0), has been studied to find out the requirements needed
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Figure 3.2: Steps towards building RGOM

for I4.0 production. Some of the RAMI requirements identified are
detailed as follows:

1. Connectivity and Networking: Industry 4.0 systems require
robust and reliable connectivity among machines, devices, and
systems. This includes technologies such as the Internet of
Things (IoT), wireless communication, and network infrastruc-
ture to enable seamless data and communication exchange.

2. Data Collection and Analytics: Industry 4.0 relies on the col-
lection of vast amounts of data from various sources within the
production environment. This data is analyzed using advanced
analytic techniques, including machine learning and artificial
intelligence, to derive actionable insights for process optimiza-
tion, predictive maintenance, and decision-making.

3. Interoperability and Integration: To achieve the vision of In-
dustry 4.0 in which systems and components must be inter-
operable, allowing seamless integration and communication across
different machines, devices, and software platforms, while not-
ing that Standards and protocols play a crucial role in ensuring
compatibility and interoperability.

• A comparative study is then conducted to find out the gaps between
the standards and the current state-of-the-art models. During this
step, it is identified that the current ontologies do not follow the re-
quirements of RAMI4.0 and are unable to follow the reuse principle
of linked open data.

• The existing vocabularies have been reused with the additional con-
cepts that are considered missing. The whole process has been per-
formed iteratively.
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3.2 rgom development process

The process to develop the RGOM is adopted from the Linked open term
methodology [120]. The reason to chose this methodology is due to its
ability to offer a step-by-step refinement process during the creation of the
ontology. This detailed refinement process is critical as it ensures that the
ontology accurately encapsulates the domain-specific concepts prevalent in
manufacturing industries. Figure 3.3 shows ontology development process
steps which are described below.

Figure 3.3: Ontology development process

3.2.1 Ontology Requirement Specification

It is the first step of the ontology development process. It is identified from
the literature survey that the current ontologies are unable cover important
concepts in a manufacturing industry as shown in Table 3.1

This limits the purpose and scope of existing onotlogies to specific use
than generic. For example, the knowledge such as machine consume power
can not be deduced [30, 56, 59]. Considering the scope of the RGOM, the
functional requirements are defined that must be answered by the ontology.
The natural language sentences are then transformed into related compe-
tency questions. Table 3.2 lists some of the competency questions.
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Table 3.1: Manufacturing production line concepts covered by different research
articles. The No and Yes in the rows indicate whether these concepts
are absent or present, respectively, in the referenced articles.

Article Sales Manufacturing Production Line
Device Operator Process Product Time Sensor Material

[56] No No No No No No No No
[57, 58] No Yes No No No No No No
[70] No Yes No Yes Yes No No No
[75] No No No Yes No No No No
[89] Yes Yes Yes Yes Yes No No Yes
[126] No Yes No Yes No Yes Yes No
[127] No Yes Yes Yes Yes No Yes Yes
[152] Yes Yes No Yes Yes No Yes Yes
[161] No Yes No Yes No No No No
[30] Yes Yes Yes Yes Yes No Yes No
[116] Yes No No No No No No No
[140] No No No No No No No No
[53] No Yes Yes Yes Yes Yes Yes No
[144] NO Yes NO Yes Yes Yes No Yes
[76] No Yes No Yes Yes Yes No No
[59] No Yes No Yes Yes No No Yes
RGOM Yes Yes Yes Yes Yes Yes Yes Yes

Table 3.2: List of competency questions

Serial No Competency Question
1 What are the different types of machines used in the manufacturing production line?
2 What are the tools hosted on a particular machine?
3 What is the status of a motor at a certain time?
4 what is the temperature on different machines?
5 How many processes are performed by machines and count the tools used by them?
6 Which processes are performed by assembling machines?
7 what are the operating hours for a specific machine?
8 Which staff members are involved in specific manufacturing processes?
9 How much power is consumed in different manufacturing processes?
10 What products are produced by different machines?
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3.2.2 Formalizing Concepts

The Formalizing Concepts step contains two sub-activities such as ontol-
ogy conceptualization and ontology encoding. In order to conceptualise
the knowledge of RGOM, the terminology is adopted from RAMI4.0 as it
provides the basic representation of the manufacturing domain otherwise
the terminology is reused from the existing ontologies that are relevant to
the manufacturing domain.

For example, concepts named Machine and Process have been created
to model a machine and the process it performs, with a property such as
performProcess that defines the relationship between the Machine and the
process. Upon formalizing this, it is implemented using the open-source
ontology editor of Protege1. The RGOM is encoded into Resource Descrip-
tion Framework/Web Ontology Language (RDF/OWL).

3.2.3 Ontology Validation

This section discuss the validation steps of the ontology development pro-
cess that is utilized to assess the RGOM through Competency Questions
(CQs), FAIR assessment and OOPs assessment tool. CQs are important for
the creation and verification of an ontology [14, 174]. These are questions
that an ontology needs to be able to answer, and they serve as require-
ments or use cases for the ontology. For the development of the RGOM,
the CQs in Table 3.2 are defined. Some of the CQs are demonstrated in
Chapter 4 Section 5.3.4. FAIR (Findability, Accessibility, Interoperability,
and Reusability) is assessed using O’FAIRe tool which stands for Ontology
FAIRness Evaluator [6]. It is a tool that enables automatic assessment of the
FAIRness of ontologies. The OOPS tools evaluate the structural, and func-
tional dimensions of the ontology to analyze its clarity, conciseness and
consistency. It has been widely used among researchers to identify flaws
and pitfalls in ontology design [121]. The missing domain and range in
the properties, creating unconnected elements in the ontologies are some
of the pitfall example cases that are checked by the OOPS.

1 http://protege.stanford.edu/
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3.2.4 Ontology Publication

The ontology is published on the industry portal2 and contains metadata
and information such as Uniform Resource Identifier (URI), license, and
title. It also contains information such as creator, contributor, endorser,
date of creation and others.

3.3 encoding rami4.0 concepts to rgom

Within the RAMI 4.0 framework, the hierarchy dimension plays a critical
role in shaping the organisational structure of a company, specifically con-
cerning how the various levels of the manufacturing system are meticu-
lously organised and structured. It represents the highest level in the hi-
erarchy and encompasses the entire physical manufacturing facility or site.
It includes all the resources, equipment, and infrastructure located within
the factory premises. This level focuses on the overall management and
coordination of the manufacturing operations that take place within the fa-
cility. The focus of RGOM is to consolidate the generated data in this axis
that can be reused with minimal effort into a single unified place. Figure
3.4 shows an illustration of encoding RAMI4.0 to RGOM.

Enterprise: The term Enterprise in RAMI4.0 refers to the highest
level of organizational structure within the manufacturing system.
It represents an entity that encompasses all other levels and entities
involved in the production process. The Enterprise level typically in-
cludes multiple production plants or facilities. RGOM uses the same
term Enterprise to represent it.

Work Center: In RAMI4.0 the Work Center represents a specific unit
or area within the manufacturing system where manufacturing ac-
tivities take place. It is a functional entity that consists of multiple
cells or workstations and is responsible for executing specific tasks.
RGOM represents the term Work Centers into ProductionLine which
then can contain many Cells.

2 https://industryportal.enit.fr/ontologies/RGOM
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Figure 3.4: Encoding of RAMI4.0 concepts to RGOM

Station: In RAMI4.0 the Station represents a specific location or unit
within a Work Center. It is a physical point where tasks or operations
are performed. Stations are typically equipped with specific tools,
equipment, or machinery required for carrying out the assigned
manufacturing activities. RGOM adopted the term WorkStation to
represent the Station.

Field Device: The term Field Device in RAMI4.0 refers to physical
devices or components that interact with the manufacturing system
at the operational level. This includes various devices such as ma-
chines, sensors, and other hardware elements. RGOM uses Machine,
MachinePart, and Sensor to represent the field devices.

Product: In RAMI4.0, Product refers to the end result or output of
the manufacturing process. It represents the tangible or intangible
item that is being produced or manufactured. RGOM use the term
Product to represent it.

RGOM provides a structured framework for organizing and understand-
ing the various entities and components involved in the manufacturing sys-
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Figure 3.5: An overview of Reference Generalized Ontological Model

tem like the RAMI4.0. This allows for a clear delineation of responsibilities,
control, and coordination of activities within the production environment.

3.4 developed ontology: rgom

We have proposed a Reference Generalized Ontology Model (RGOM) that
is developed by reusing the concepts of existing ontologies and defining
new concepts that have been overlooked based on the reference architec-
tural model Industry 4.0 (RAMI4.0). The proposed RGOM considers core
areas such as time, location, sensor, and different domain attributes such
as product, process, and machine along with the order, supply chain, ware-
house, etc., and explores all the concepts along with the relationships
among them.

This implies that the RGOM provides a detailed unified model that
takes the I4.0 domain knowledge from raw material to finished product
including supply to the customer as well as monitoring the different sit-
uations of machines and their processes. Machines and products are sep-
arated from the resource ontology to form a machine and product ontol-
ogy for accommodating more concepts and relationships. For instance, the
product ontology specifies the concepts such as product (production of
product) and service (maintenance usage) adopted from RAMI4.0 and the
identified concepts such as sales ontology are coupled. This helps to pro-
vide a full view that the order is placed for a service or the manufacturing
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of the product, depending on the order either the service or the resources
in the manufacturing production line will be reconfigured. RGOM has
reused the existing vocabulary, that is, the manufacturing facility machine
associated with the workstation by reusing the isPartOf property from the
Dublin Core vocabulary. The process(es) happening at different times and
locations are linked to the manufacturing resources by process ontology
using the performA property. It describes the basic taxonomy of all kinds
of processes taking from manufacturing to human process(es) and logistic
operations. Sales ontology defines customer order concepts for the prod-
uct. The order can have various concepts such as design, quantity, delivery
date, etc. The supply chain ontology can assist in monitoring the delivery
of the manufactured products to the customer. Thus, the context of the
core ontologies alone would not be able to answer why, where and what
type of questions, but the RGOM can infer all the contextual information
ranging from a particular entity situation to the complete production line.
Figure 3.5 depicts the concepts and relations reused from relevant exist-
ing ontologies (ssn:Sensor, ssn:Property, sosa:madeObservation, sosa:observes,
time:Time, time:hadTime, dc:isPartOf ), while there are several newly defined
concepts such as Power, Tool, Part, Service, etc. Furthermore, Table 3.3 pro-
vides an overview of RGOM with emphasis on key RGOM concepts and
relationships as well as other reused ontologies and their references.

Table 3.3: An overview of RGOM highlighting key concepts and relations, along
with references to other reused ontologies.

RGOM components Reused concepts (References) RGOM new concepts/relations
Manufacturing ontology [30],[71], [144], [53] Material, Container (Pellet), isProcessedby, isPlaceOn

Machine ontology [30], [126], [144], [53]
MachinePart, Tool, Capabilities, Current, Power,
consumesPower, hasInputMaterial, hasTool, useTool

Process ontology [30],[53]
ManualProcess, MeasurementProcess, ConveyorOpera-
tion, FeederOperation

Product ontology [53] Service, isGivenTo
CoreOntology [53], [112],[131], [34] X

Moreover, the main modules related to the RGOM ontology are dis-
cussed as follows.

3.4.1 Manufacturing Ontology

The objective of manufacturing ontology is to semantically describe the re-
sources in the manufacturing production line. The Staff concept represents
all the people participating in the production activities, that is, technicians,
operators, engineers, supervisors and managers. The ManufacturingFacility
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concepts characterize different physical entities and hardware modules in
the factory. The concepts of the production line are decomposed into Cell
is the combination of the workstation to perform a complex task; a line in-
cludes cells, and Workstations contains the physically integrated machines.
This decomposition presents a potential reconfigurable processing line. Ad-
ditionally, this taxonomy makes it possible to describe the manufacturing
facility context at various next levels such as the characterization of a line
or to illustrate the context of the cell that belongs to that line. The physi-
cal entities in the manufacturing facility are the resources linked to other
ontologies via related object properties.

3.4.2 Machine Ontology

The machine is the main resource to process raw or refined material into
semi or finished products on the production line. The machine performs
the process with the help of tools by itself or with intervention from the
human. It can be either a processing or assembly machine processing a
raw or refined material or assembling the refined parts. The machine is a
manufacturing facility that is part of the workstation.

3.4.3 Process Ontology

A set of tasks or operations completed by a resource is known as the Process.
The process(es) performed by a resource(s) can be known as controlled
operations as well as machining or assembly ones. The process ontology
represents the fundamental taxonomy of all the processes executed in the
manufacturing and is specified with contextual such as process happensIn
location, process appliesTo a product, machine performA process, etc.

3.4.4 Product Ontology

Product ontology covers the basic taxonomy related to products based on
RAMI4.0. The components are the parts assembled by an assembling ma-
chine into a finished product. The customers can place an order of one of
the two, that is, for service to the bought product or buying a new product.
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3.4.5 Core Ontologies

Creating the context for scientific manufacturing tasks is difficult and poses
a major problem in the industrial domain because it includes many varying
entities associated with time and locations. Time, Location, Process, Machine
and Resource are the primary concepts to semantically represent the man-
ufacturing knowledge in line with domain ontologies. In addition, the
terminology reused from the sensor ontology, that is, the SSN enhances the
semantic representation of the collected sensor data. The concepts for mea-
suring the sensor data are reused from the Ontology of units of Measure
(OM) [131]. Thus, the use of basic ontologies such as Time [112], Location
(adopted from [53]) and Sensor [34] with the domain ontologies present
useful information regarding various situations, that is, inquiring about
the status of the motor at a particular time.

The RGOM contains a total of 84 classes, 74 object properties and 48

data properties. In the context of RGOM, the extent of class reuse is as fol-
lows: OM2 (8.3%), Saref (4.76%), SSN/SOSA (2.3%), MSDL (7.1%), and Ex-
truont (1.19%). The namespaces used in the RGOM are given in Table 3.4.

Table 3.4: Namespace Prefixes and IRIs

Prefix IRI
rgom http://www.semanticweb.org/manufacturingproductionline#
extruont http://bdi.si.ehu.es/bdi/ontologies/ExtruOnt/components4ExtruOnt#
msdl http://infoneer.txstate.edu/ontology/
om2 http://www.ontology-of-units-of-measure.org/resource/om-2/
saref https://saref.etsi.org/core/
sosa http://www.w3.org/ns/sosa#
ssn http://purl.oclc.org/NET/ssnx/ssn#
tm http://www.w3.org/2006/time#
dc http://purl.org/dc/elements/1.1#
owl http://www.w3.org/2002/07/owl#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#

3.5 ontology evaluation

3.5.1 FAIR Tool Assessment

The FAIRness of RGOM is performed with O’FAIRe tool. It is integrated
within the industryportal ontology repository and assesses the FAIRness
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of semantic resources or ontologies based on the FAIR Principles. The
tool operates through a set of 61 questions/tests [6]. O’FAIRe provides
both comprehensive and detailed scores, normalized against the 15 FAIR
Principles, for individual ontologies or groups of semantic resources. These
results help in understanding how well a semantic resource or ontology
adheres to the FAIR Principles. Figure 3.6 shows an overview of the results
returned for an individual evaluation of the RGOM in industryportal.

Figure 3.6: Overview of O’FAIRe evaluation of RGOM in industryportal.

3.5.2 OOPs Tool Assessment

The Ontology Pitfall Scanner (OOPS) evaluates ontologies for common
flaws during their development. It identifies 41 potential pitfalls classified
as minor, important, or critical. In the assessment of the RGOM ontology
using OOPS, minor issues were found, such as unconnected elements, du-
plicated class labels, and missing domains or ranges. Figure 3.7 shows the
OOPS pitfall detection result. OOPS also checks for clarity, conciseness,
and consistency.

- Clarity: The ontological terms defined to represent the classes, con-
cepts, and relations of all the modules, contain unambiguous names,
and annotations. The annotations aid in the readability of humans
to avoid uncertainty and difficulty during the insertion of data ele-
ments.

- Conciseness: The industry knowledge represented by the ontology
that is gathered in line with the sources, particularly workstations,



3.6 summary 77

Figure 3.7: OOPs assessment shows RSWO does not contain any bad practice
detectable by OOPS!.

machines, tools, materials and processes, and enterprise and their
production lines.

- Consistency: The Hermit3 reasoner has been applied to find incon-
sistencies in the RGOM. Accordingly, the reasoner has not found any
inconsistencies in the developed ontology.

3.6 summary

In this chapter, the steps involved in constructing the RGOM are presented.
Moving on forward, the encoding of concepts from the Reference Archi-
tecture Model for Industry 4.0 (RAMI4.0) into RGOM has been focused.
Finally, we have presented the developed ontology RGOM. This ontology
serves as a comprehensive knowledge representation framework, captur-
ing the domain-specific concepts, relationships, and semantics required for
effective ontology development and its subsequent integration within the
Industry 4.0 context. In the next chapter, we will explain the ontology de-
velopment process for RSWO in line with RGOM using a Bosch resistance
spot welding use case.

3 http://www.hermit-reasoner.com/





4 R E S I S TA N C E S P OT W E L D I N G
O N TO LO GY I N L I N E W I T H R G O M

This chapter describes the alignment of RGOM as a domain-level ontol-
ogy to provide interoperability for the Resistance Spot Welding Ontology
(RSWO). Followed by the ontology development process, the main steps are
then discussed, which explain the ontology requirements gathered from
the domain experts and ISO welding documents, concepts formalization,
ontology validation and its publication and maintenance. Then, the do-
main knowledge encoded into the RSWO is presented. Finally, the ontol-
ogy is evaluated from four dimensions, (i) Industrial Use-Case: Quality
Monitoring in Resistance Spot Welding, (ii) Evaluation on Findable, Acces-
sible, Interoperable, Reusable (FAIR), (iii) OOPS! too and (iv) OntoMetrics.

4.1 alignment with the domain level ontol-
ogy (rgom)

The generation of data in various formats usually results in having associ-
ated with it the interoperability issue that hinders inter-communication. To
enable interoperability between Resistance Spot Welding (RSW) resources
the RSW ontology alignment with domain-level ontology is considered.
The domain-level ontology is very important as it provides semantic in-
teroperability across the domain. There exist several domain-level ontolo-
gies such as MASON [89], CDM-Core [103], RGOM [175] etc. RGOM is
selected as a domain-level ontology as it is built on re-using the manufac-
turing ontologies with the terms being introduced that are considered to be
overlooked in the previously existing vocabularies. In order to illustrate the
alignment of RSWO with the domain level ontology RGOM, consider Fig-
ure 4.1, which shows the alignment of RSWO shown in orange color) to the
RGOM ontology (shown in green color). For example, the class RSWMachine
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of RSWO is created as a subClass of Machine and the Electrode class in the
RSWO is created as a subClass of MachinePart of RGOM. The RSWMachine

class is linked to the Electrode class through the property hasPartElectrode
which is the subProperty of hasPart of the RGOM.

Figure 4.1: Alignment of the RSWO ontology with the domain level ontology.

4.2 ontology development process

Ontology development provides a step by step guidelines for designing
and developing ontology engineering by including the construction of classes,
and their relationships. There exists a number of methodologies for ontol-
ogy development in the literature. Some of the most popular ontology
development methodologies are METHONTOLOGY [45], Common-KADS
[141], and Linked Open Terms (LOT) [120]. In this work, the LOT method-
ology [120] is adopted which is a refined work based on the top for devel-
oping RSWO. The reason for selecting this methodology is that it provides
a gradual refinement process throughout the ontology creation. This refine-
ment ensures that the ontology captures the domain knowledge concepts
as well as the low-level manufacturing data. The ontology development
process is as shown in Figure 4.2.
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4.2.1 Ontology Requirement Specification

With the help of experts in the Bosch manufacturing company, it is iden-
tified why there is a need for an RSW ontology. This is specified with
the use case (Quality Monitoring in Resistance Spot Welding). In relation
to this, several documents have been provided including the ISO welding
standards, datasets description, and datasets itself. The aforementioned ac-
tivity has thus helped in the identification of the purpose and scope of the
RSW ontology (unified model for answering the questions related to RSW).
Considering the scope of the RSW ontology, the functional requirements
are collected in the natural language sentences (such as, Resistance spot weld-
ing operation consume power) from the Bosch welding experts, as they have
zero knowledge about ontologies. The natural language sentences are then
transformed into related competency questions. Some of the Competency
questions (CQs) are listed in Table 4.1. These CQs are provided by welding
experts. They are grouped into two categories:

(1) Data Inspection: (CQ1-CQ5) We have used RSWO-based Bosch weld-
ing process data to examine it from a variety of angles. We have
inspected the data during and after the welding operations for the
objectives of verification and quantification of welding quality.

(2) Diagnostics: (CQ6-CQ10) We have performed different diagnostic
tasks such as dressing required, spot repetition occurred, the occur-
rence of any spatters, and many others. Besides, the diagnostics

Figure 4.2: Steps used in the ontology development process
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enable the user to learn more about the surrounding irregularities
to comprehend what occurred nearby and identify potential root
causes.

Finally, when these functional requirements are successfully approved
we have moved on to the second activity of the ontology development.

Table 4.1: Competency questions provided by Bosch experts

Data Inspection CQ1 How much weld force, voltage, current and power is utilised in an operation?
CQ2 What machine parts are being used in a resistance spot welding operation?
CQ3 How much force is utilised in the squeeze, weld, and hold step of the operation?
CQ4 How much is the resistance between the bottom Electrode and bottom sheets?
CQ5 How many cycles of weld time is utilised in an operation?

Diagnostics CQ6

Find all those values of Q-Value higher than a threshold along with their
voltage and power in an operation.

CQ7 Is there any spatter that occurred during a particular time?
CQ8 Does the electrode require dressing?
CQ9 How many weld spots have spot repetition?
CQ10 How much force is utilised in the squeeze, weld and hold steps of the operation?

4.2.2 Formalizing Concepts

The Formalizing Concepts activity contains the first three sub-activities
such as ontology conceptualization, ontology reuse and ontology encod-
ing. In order to conceptualise the knowledge of RSW, the terminology is
adopted from the RGOM as it provides the basic representation of the man-
ufacturing domain otherwise the terminology is introduced from the ISO
welding documents that are relevant to the RSW domain.

For example, a concept named WeldingMachine has been created to
model a welding machine with a property such as dc:hasPart that defines
the relationship between WeldingMachine and the MachinePart. The Weld-

ingMachine is further linked via the performsA property with the Assembly-

Process concept, and it is then linked to the hasOperations relationship
with the concept RSWOperation. RSWOperation is shown to be linked
with the concept Assembly through hasRawProduct property. The isOp-
erationProductOf property is used to connect the conceptsWeldSpot and
RSWOperation.

Upon formalizing the concepts, it is implemented using the open-source
ontology editor of Protege1. The RSWO is encoded into Resource Descrip-
tion Framework/Web Ontology Language (RDF/OWL).

1 http://protege.stanford.edu/
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4.2.3 Ontology Validation

This section discusses the validation steps of the ontology development pro-
cess that is utilised to assess the RSWO through several metrics: Usecase-
based Competency Questions (CQs) answering, Findable, Accessible, In-
teroperable, Reusable (FAIR) principles, Ontology Pitfall Scanner! (OOPS)
and OntoMetrics. The Use-case-based CQs answering is performed on the
Bosch Production data to demonstrate the functionality and utilization of
the RSWO. The CQs have been provided by the Bosch experts. The CQs
have determined whether the RSWO ontology has captured the domain
knowledge, for example, the diameter of the weld spot produced in a cer-
tain welding operation, the weld force applied to workpieces, and the re-
sistance between the electrode and the workpiece.

Moreover, the O’FAIRe methodology assesses the FAIR principles, and
the OOPS tools evaluate the structural, and functional dimensions of the
ontology to analyze its clarity, completeness, conciseness and consistency.
It has been widely used among researchers to identify flaws and pitfalls
in ontology design [121]. The missing domain and range in the properties,
creating unconnected elements in the ontologies are some of the pitfall
example cases that are checked by the OOPS. Also, the ontology populated
with data instances is uploaded to OntoMetrics2 for advanced analytics.

4.2.4 Ontology Publication and Maintenance

The RSWO is available online3 and is accessible. The metadata is published
on the industry portal and contains information such as Uniform Resource
Identifier (URI), license, and title. It also contains information such as
creator, contributor, endorser, date of creation and others. Additionally, to
maintain the ontology, the bugs can be reported on the GitHub page4 that
can be tracked.

2 https://ontometrics.informatik.uni-rostock.de/ontologymetrics/
3 https://w3id.org/def/mo-rswo
4 https://github.com/nsai-uio/RSWO
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4.3 resistance spot welding ontology

The RSWO ontology description has been provided here that has been im-
plemented in OWL in the light of the aforementioned methodology. The
primary purpose of using OWL is to provide a widely accepted information-
sharing environment in order to improve RSW processes. Furthermore, we
have exemplified our ontology with simplified Description Logic (DL) syn-
tax in the following subsections. The developed RSWO ontology is com-
prised of the metrics listed in Table 4.2. Moreover, there are a total number
of 112 classes, 98 object properties and 71 data properties in the RSWO.

Table 4.2: Ontology metrics

Metric RSWO
Axioms 1164

Logical axioms count 469

Declaration axioms count 287

Class count 112

Object property count 98

Data property count 71

Individual count 0

4.3.1 Overview of RSW Process and the Ontology

Resistance Spot Welding (RSW) is frequently used in the automotive sector,
for example, in the manufacture of vehicle bodies. This process is con-
trolled by welding control systems that store weld configurations. In the
resistance spot welding process, the welding gun is equipped with elec-
trodes that end with caps to press two or three worksheets. Then, an elec-
tric current flows from one electrode, through the worksheets, to the other
electrode, generating a large amount of heat due to electrical resistance.
The material in a small area between the two worksheets, called the weld-
ing spot, thus melts, forming a solder mass that connects the worksheets.

In connection with the above description, the ontology of resistance
spot welding has been developed that provides the automotive welding
industries with a common knowledge architecture. Figure 4.3 depicts the
main classes and characteristics of the RSW ontology. The ontology has
reused the domain core concepts such as Machine and Operation to fa-
cilitate inter-domain data integration. The subclass of the Machine is the



84 resistance spot welding ontology in line with rgom

WeldingMachine that contains a number of machine parts. The figure repre-
sents the parts of the machine with the class MachinePart, which is linked
to the class Machine via the object property dc:hasPart. On the other hand,
RSWOperation is a subclass of the domain core concept Operation. Axioms
1 and 2 define the subclass constraints in the RSWO and axiom 3 shows the
constraints that every WeldingMachine performsA some RSWOperation in
Description logics (DL).

axiom 1: WeldingMachine ⊑ RGOM :Machine

axiom 2: RSWOperation ⊑ RGOM : Operation

axiom 3: RSWOperation ⊑ ∃performsA−.WeldingMachine

Figure 4.3: Overview of core concepts in the RSW ontology.

In the following subsections, we will go to the detailed modelling of
these concepts.

4.3.2 Resistance Spot Welding Operation

Resistance Spot Welding (RSW) is a complex task that is widely used in di-
verse applications such as vehicle body parts, railway tracks, turbine blades,
etc. [184]. It contains a number of activities that are performed to produce
welding processes. An operation is an atomic process that takes in the
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worksheets as raw products in order to produce a product output, namely
a welding spot.

RSW Operation modelling is as shown in Figure 4.4 that shows that
class RSWOperation is linked to the WorkPieceCombination class through
hasRawProduct object property. In the RSW operation, an assembly is the
raw product which is the subclass of the WorkPieceCombination. The class
Assembly has parts such as TopWorkSheet and BottomWorkSheet that are the
subclasses of the WorkPiece. The property dc:isPartOf connects WorkPiece
with Assembly.

Figure 4.4: RSW operation modelling. The rounded rectangle represents the
classes and the square rectangle represents the literals.

Furthermore, RSW operation has gotten an electrode that applies pres-
sure to the aligned workpiece point of interest. It can be observed from
the top of the figure that RSWOperation and Electrode classes are related
via hasElectrode property. In addition to this, the WeldForce class is linked
through the applyWeldForce relation to Electrode. After applying the pres-
sure, a constant current is applied through the electrodes into the Work-
Pieces. Based on this description, the right side of the figure illustrates
the welding conditions maintained during the RSW operation are that the
WeldCurrent and WeldTime has a constant WeldForce or the WeldCurrent

and WeldForce in the welding has a constant WeldTime. This brings out an
internal resistance in the worksheets and in results produces a weld spot
as its product. The WeldSpot and RSWOperation classes are linked through
isOperationProduct relation (left side of figure). The RSW operation has the
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Figure 4.5: An overview of Machine and Software modelling

date time on which the operation is executed, so the hasTime property from
the time vocabulary is reused to link the operation class to its date time
data instance.

We exemplify the operation part of the ontology with an example about
the weldspot as shown on the left side of 4.4 using DL. The weldspot diam-
eter is also an operation quality indicator. Axiom 4 represents the axiom
that for every RSWOperation there exists some WeldSpot and WeldSpot is the
(operation) product of RSWOperation. Axiom 5 specifies that a WeldSpot has
some value Q-Value5. Axiom 6 also specifies quality indicator (Diameter)
that a WeldSpot has exactly one diameter.

axiom 4: RSWOperation ⊑ ∃isOperationProductOf−.WeldSpot

axiom 5: WeldSpot ⊑ ∃hasQValue.QValue

axiom 6: WeldSpot ⊑= 1hasDiameter.Diameter

5 The Q-Value is a quality indicator that is used to quantify the welding quality. The Q-Value
is empirically developed by Bosch Rexroth in the Bosch labs with longtime experience and
engineering expertise. A Q-Value of 1 indicates perfect quality.
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4.3.3 Welding Machine and Software

The welding machine and its software are now shortly introduced. A weld-
ing machine performs an RSWOperation. The welding machine consists
of several parts such as a welding robot, welding gun, electrode, sensors
etc. that carry the commands of the software systems to carry out the re-
quired operation. The welding machine is controlled by a software system
to perform the desired designed welding operation.

The software system known as the RSW control system has three mod-
ules, each of which has a specific task, that is, the monitoring module moni-
tors the quality of the weldspot and operation, the control module provides
the setpoints and reference programs for operation, and the measurement
module collects voltage, energy, resistance, etc. and other observations.

An excerpt of the semantic representation of the welding machine and
software system is as shown in Figure 4.5. The WeldingRobot and Electrode

classes are the subclasses of MachinePart which is linked to the object
property dc:hasPart to the WeldingMachine class, (axiom 7). Moreover, the
WeldingRobot and Electrode are the disjoint classes. Furthermore, The
MachinePart is connected to RSWOperation through performsA relation. The
WeldingMachine and RSWControlSystem classes are linked via hasRSWCon-
trolSystem property.

axiom 7: WeldingMachine ⊑ ∃hasPart.MachinePart

MachinePart ⊑WeldingRobot⊔ Electrode

WeldingRobot ⊑ ¬Electrode

The welding machine hosts sensors to collect the power, energy, and
voltage reading observations for being recorded in the measurement mod-
ule. The WeldingMachine and Sensor classes are linked by the hosts rela-
tionship. In an operation of RSW, a summary of useful information can be
retrieved by using hasOperationWeldingProgram, hasOperationMeasurement-
module, and hasQValue relationships. The axioms 8a-8d represent that there
exists a MeasurementModule on the welding control systems to collect oper-
ation current property readings.

axiom 8a: WeldingMachine ⊑ ∃hasRSWControlSystem.RSWControlSystem

axiom 8b: RSWControlSystem ⊑ ∃hasMeasurementModule.Measurement-
Module
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axiom 8c: MeasurementModule ⊑ ∃hasOperationCurrent.OperationCurrent
axiom 8d: OperationCurrent ⊑ ∃hasProperty.Current

4.3.4 Electrode

The electrode is an important component of the welding machine used in the

RSWOperation because its condition as characterised by WearCount and DressCount)

has a significant influence on the welding quality. The object property hasElectrode

relates the RSWOperation with the electrode (Figure 4.6 and axiom 9(a,b)). The

electrode has two subclasses, namely: TopElectrode and BottomElectrode that

apply force to the workpiece and then pass current to produce resistance cre-

ating thus a welding spot. The workpiece has two subclasses of TopWorkSheet

and BottomWorkSheet that interact with TopElectrode and BottomElectrode, re-

spectively. The class PiecePieceInteraction is used to model interaction proper-

ties between the worksheets. For instance, between the two worksheets of RSW,

there exist interaction properties such as adhesive, thermal conductivity and elec-

trical conductivity. In this regard, such modelling provides useful information

in the operation by representing the PiecePiece Interaction and RSWOperation

through hasInteraction relation.

axiom 9a: Electrode ⊑MachinePart
axiom 9b: Electrode ⊑ ∃hasElectrode−.RSWOperation

Figure 4.6: An illustration of electrode modelling
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In the RSWOperation, the spot welding electrode cap wears and appears as

a mushroom, which passes insufficient current and results in inconsistent welds.

The electrode dressing procedure is used to restore the original shape of the elec-

trode cap. In order to capture this information, the welding caps have system

component status of WearCount and DressCount that are named as operation count

and maintenance count. The electrode comes with a variety of nose configurations

that are considered during the design phase of the welding. The electrode face is

exposed to extremely high temperatures for a short period of time during the

procedure. The electrode temperature is cooled down with water to prevent pre-

mature corrosion. The electrode has a water hole of a particular diameter that

allows water to flow through it.

4.4 ontology evaluation

The RSWO is evaluated in four dimensions: (1) the use-case use of the Bosch

resistance welding process to monitor quality, (2) analyzing for FAIR principles,

(3) structural and functional aspects of RSWO with OOPS, and (4) analyzing the

attributes richness with OntoMetrics.

4.4.1 Industrial Use-Case: Quality Monitoring in Resistance Spot Weld-
ing

This subsection demonstrates the use-case of a quality monitoring task performed

in the resistance spot welding process at Bosch in Germany. The purpose of the in-

dustrial use case is to assess the utility and function of RSWO in a truly intelligent

manufacturing environment. The remainder of this section gives a comprehensive

explanation of the Bosch welding experts, Bosch welding process, welding data

and quality monitoring using RSWO.

Evaluation by Bosch Welding and Ontology Experts

This subsection discusses the evaluation of RSWO by domain experts and ontol-

ogy Experts (OE). The ontology experts have specialised skills in creating and

refining ontologies. They have extensive knowledge in designing semantic mod-

els ensuring knowledge representation.An industrial use-case-based workshop is

carried out with the RSW domain experts. The domain experts lack the knowledge

about ontology generation and query and as per recommendation, they provided

the queries in natural language sentences (Section 4.2.1. The natural language

sentences are transformed into competency questions (CQs) that are asked via
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SPARQL query (Section 4.4.1). The CQs in terms of data inspection and diagnos-

tics demonstrated that the ontology developed can be used for the defined use

case.

We evaluated our ontology from ontology experts based on the criteria de-

fined by [151]. We provided the ontology file, and documents defining the scope

and functional requirements to the ontology experts. The experts gained RSW

knowledge from the provided documents. They responded to a series of ques-

tions (shown in Table 4.3). The questions given in the table define the quality

criteria related to clarity (1-4), accuracy (5-6), consistency (7), and completeness

(8-10) to assess ontology context coverage, level of detail, relevance and semantic

richness.

We received a score of 4 (Agree) from almost all the OEs. However, the OEs

have different views on the clarity of the ontology (questions 1 and 3) and pro-

vided a score of 3 (Neutral) which means that there is still some space for im-

provement. Furthermore, OE 3 think there is some inconsistency in the ontology

and gave some specific comments about ontology classes and proprieties (such

as has hasControlModule, hasMeasurementModule and hasMonitorModule can

be included as part of the RSW control system) and provided a score of 3. OE 2

strongly agreed with the completeness of the ontology and gave a score of 5.

Table 4.3: Ontology evaluation by ontology experts. OE indicate the ontology
experts. A scale of 1-5 is used to evaluate the ontology criteria where
1 shows strongly disagree, 2 disagree, 3 neutral, 4 agree and 5 strongly
agree.

Evaluation criteria OE 1 OE 2 OE 3

1. Are the annotations of classes sufficient? 3 4 3

2. Are the annotations of classes unambiguous? 4 4 4

3. Are the annotations of properties sufficient? 3 4 4

4. Are the annotations of properties unambiguous? 4 4 4

5. Are [owl:Class]s and [owl:Properties]s well-structured for an RSW domain ontology and
do they properly represent the entities? 4 4 4

6. Do the axioms adhere to annotations for the RSW domain? 4 4 4

7. Do the axioms employed convey the concepts intended meaning? 4 4 3

8. Does the ontology cover the necessary concepts required by RSW domain ontology? 4 4 4

9. Does the ontology align to domain-level ontology? 4 5 4

10. Does the ontology reuse term from other ontologies? 4 5 4

Bosch RSW Process Quality Monitoring

Bosch is one of the top world’s top manufacturers in the automotive industry.

Bosch uses the RSW process to join body parts to manufacture an automotive. In

the RSW operation, the surfaces of metal sheets are bonded by the heat gained

from the resistance generated by electric current. The body of a typical car can

have up to 6000 welding points [182], where metal pieces are connected. Bosch

offers a variety of welding solutions, including as software, service, development

support, and welding equipment. Other than the Bosch welding plant, these solu-
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Table 4.4: Examples of the dataset attributes, their datatype and short description

Data Attribute Data Type Description
WeldSpot_ID Integer Unique identifier of the weldspot
WeldSpot_Diameter Float It provide the diameter of the weldspot
WeldSpot_Repetition Boolean Indicates whether a weldspot is repeated or not
RSWOperation_ID Integer Unique identifier of the resistance spot welding operation
TimeStamp Date Timestamp of the date when the operation was performed
Machine_Name String Machine that performs the operation Machine_ID
Electrode1_WearCount Integer Wear count faced by an electrode during welding
Electrode1_DressCount Integer Count of dressing applied to an electrode
Electrode1_WeldForce Float Weld force applied by an electrode
Electrode1_SetPoint_Resistance Float Reference value of resistance set for Electrode 1

tions are also adopted by customers all over the world-wide such as BMW, Audi,

Ford, and Daimler.

Bosch resistance welding machine and its parts are a tried-and-true way to

quickly join hundreds of pieces every hour. To determine and ensure the weld

quality (essential to many facets of the vehicle’s performance and value) a Q-Value

(described in Section 4.3.3) test of the selected components is performed in all op-

erations. Usually, Q-Values are calculated using data collected from production

lines. Besides, other important process parameters are monitored to ensure weld-

ing quality. Furthermore, the characteristics of the welding robots and their parts

are monitored to avoid operation interruptions.

Currently, engineers in Bosch follow a human heuristic approach to monitor-

ing the quality of the welding process for weldspot quantification to avoid RSW

operation interruption. However, manually monitoring such a large number of

parameters is a complex task. This motivates us to use RSWO to provide access to

ontology-based data that facilitates the quality monitoring process for RSW. Using

the semantics and domain knowledge of modelling, reasoning and inference of

RSWO, the Bosch dataset enhances the quality monitoring process of RSW.

Bosch Welding Data

The datasets used in this use case are acquired from the resistance welding process

at Bosch. The datasets are comprised of many formats, such as CSV tables, SQL

databases, and text files and inconsistency in variable names and data formats.

These datasets contain the attributes that are important to monitor the quality

process. Additionally, the data is of two types: namely static and dynamic. As

listed in Table 4.4, for instance, Machine_Name, Machine_ID are static variable

its value remains the same in each operation while WeldSpotDiameter, TimeS-

tamp, WeldSpotRepatition and others continue to be dynamic variables and their

values change in each operation. The data attributes in Bosch datasets are not

interconnected but are co-related with each other semantically. To utilise the data

effectively for the monitoring of the welding quality, we have used RSWO to in-
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tegrate and access the data. The data to ontology was manually mapped using

the RSWO terms that integrated the data from different sources into uniform data

format [183, 173].

Answering the Competency Questions: Bosch Data-based Monitoring the
Welding Process

We now demonstrate several examples of using SPARQL queries to answer the

competency questions provided by the experts for quality monitoring.

Example 1. Provided the CQs in Table 4.1, we considered CQ1 from the data

inspection category to perform basic monitoring tasks for quality welding. This

demonstrates the efficiency and usefulness of the RSWO in monitoring and track-

ing the critical to process parameters of the production resources and processes.

The query retrieves the welding force, voltage, current and power values during

the particular operations upon successful execution as is shown in Figure 4.7.

Figure 4.7: Inspecting the critical to process parameters data CQ1.

Example 2. In the context of the monitoring welding process, the query (CQ 6)

from the diagnostics is adopted. The query mentioned in Figure 4.8 is executed

to reason about the Q-Values of the weld spot higher than the threshold in any

operation.

In Bosch weld production, the increase in the Q-Value is due to the increase

in the voltage and power that are considered critical to process parameters. This

alternatively raises the spatters occurrence on the near parts of the worksheets. In

this context, the query retrieved the critical to process parameters, and the results

returned are shown in Figure 4.8. The query has used the FILTER keyword to

monitor all the Q-Value of the RSW operations and :hasQValueActual greater than

1.20. The OPTIONAL keyword is binding in this query that enables us to query for

data but prevents the query from failing when the requested data is not there.
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Figure 4.8: Result returned by CQ6 to analyze Q-Value, voltage value and power
value.

After query processing, both optional and non-optional information is provided.

The keyword GROUP BY grouped the query results where its order sequence is

established by the clause ORDER BY.

The proposed query fetched three RSW operations that have a Q-Value greater

than the threshold. The voltage and power parameters can be analysed at the same

time and it can be observed from the returned results by 4.9 that as voltage and

power raises, the Q-Value also increases. A weldspot produced with such high

Figure 4.9: Retrieved results of spatters and its occurrence during particular time
by utilizing CQ7.
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values of critical-to-process parameters can halt the production line and thus can

badly affect the parts of the welding machine.

Example 3. Furthermore, in relation to monitoring the welding quality, the spatters

that occurred during the operation are usually observed. The occurrence of the

spatters badly affects the quality of welding. The spatters occurrence indicates

the production line engineers to adjust the critical to process parameters such as

weld force level, squeeze time, voltage, current, etc. We utilised CQ7 to find the

occurrence of spatters during a particular time. The query along with its result

is shown in Figure 4.9. The FILTER keyword narrowed down our search between

a given particular time. Thus, the above examples demonstrate the usability of

RSWO modelling for retrieving the integrated data and information within the

RSW domain.

4.4.2 Evaluation on Findable, Accessible, Interoperable, Reusable (FAIR)

We now discuss the evaluation of RSWO using the Findable, Accessible, Interoper-

able, and Reusable (FAIR) principles. FAIR principles are a set of guidelines [169]

that facilitate to build of a coherent and machine-friendly data environment. [5]

developed O’FAIRe6 methodology to encourage ontologies, vocabularies and se-

mantic artefacts compliance following the FAIR guiding principles. It includes fif-

teen foundational FAIR principles for ontologies and is harmonised with state-of-

the-art FAIRness assessment initiatives. The first term Findable in the FAIR makes

sure that ontology is described with sufficient metadata that can be searched in

a registered repository using a persistent and unique identifier. The second term

Accessible assesses that the ontology can be retrieved in an implementable protocol.

The third term of Interoperable evaluates the ontology that can be processed in a

standard way by other stakeholders. The final Reusable term assesses in terms of

explicit licences and usage information of the ontology for humans and machines.

The O’FAIRe methodology has assessed the RSWO using sixty-one FAIR questions.

We have adopted the O’FAIR methodology as it is being used by AgroPortal7 and

IndustryPortal8 to assess ontologies for FAIR score.

We have evaluated RSWO in line with the O’FAIRe methodology and thus

have obtained a total FAIR score of two hundred and seventy one (271) out of 478

which is 56.0%. The RSWO FAIR score against the 15 foundational FAIR principles

is as shown in Figure 4.10. Moreover, to make a comparison with other relevant

6 https://github.com/agroportal/fairness
7 http://agroportal.lirmm.fr/ontologies
8 Industry Portal (http://industryportal.enit.fr/) is an online portal for Industrial manu-

facturing ontologies. It is supported by the OntoCommons project that encourages the
researcher to deploy their ontologies designed for Industries especially manufacturing.
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ontologies, we have shortlisted all ontologies with FAIR scores greater than 230

from Industry Portal Table 4.5.

Table 4.5: FAIR score with the industry portal ontologies in descending order. The
results show our RSWO has relatively high scores compared to other
state-of-the-art ontologies.

Ontology Findable Accessible Interoperable Reusable TotalScore
EXTRUONT 64(56.63%) 92(81.41%) 63.13(57.91%) 53(37.06%) 272.13(56.0%)
Ours (RSWO) 75(66.37%) 92(81.41%) 54.00(49.54%) 50(34.96%) 271.00(56.0%)
SAREF4INMA 60(53.09%) 92(81.41%) 51.13(46.9%) 48(33.56%) 251.13(52.0%)
SCOR 58(51.32%) 90(79.64%) 45.13(41.4%) 48(33.56%) 241.13(50.0%)
FUNSTEP 54(47.78%) 92(81.41%) 42.00(38.53%) 53(37.06%) 241.00(50.0%)
IOF-MAIN. 51(45.13%) 90(79.64%) 48.00(44.03%) 46(32.16%) 235.00(49.0%)
IMAMO 58(51.32%) 92(81.41%) 41.00(37.61%) 43(30.06%) 234.00(48.0%)
SIMPM 56(49.55%) 92(81.41%) 45.75(41.97%) 39(27.27%) 232.75(48.0%)

It can be observed from the table that EXTRUONT [126] is the only ontology

that has a higher FAIR score (272.13) than RSWO (271.00). In comparison with

RSWO, the rest of the ontologies have got lower FAIR scores. The RSWO has a

high Findable principle score in contrast to other ontologies which is 75 out of

113 which is 66.37%. The Accessible principle score of RSWO is equal to other

ontologies. The EXTRUONT has a high Interoperable principle score of 63.13

out of 109 while RSWO has an acceptably low Interoperable principle score of

54 and comes second in the list for interoperability score. Other ontologies have

low Interoperable score than RSWO. The Reusable principle score of the RSWO

ontology is 50 which is acceptably low than EXTRUONT and FUNSTEP9. The

RSWO has a high Reusable principle score to that of SAREF4INMA [132] and

SCOR. The IOF-Maintenance (IOF-MAINT.) [66], IMAMO [78] and SIMPM has a

low score of Reusable principle in contrast to RSWO.

Due to the reason that the RSWO is not yet included in a specific community,

therefore, it received Score:0.0 for the FAIR principles question ( "R1.3Q2": Is the
ontology included in a specific community set or group?). The metadata of the RSWO

provides rich information that gives a higher score than other ontologies.

4.4.3 OOPS!

The Ontology Pitfall Scanner (OOPS) assesses the ontology in its creation process

by looking at the design imperfections from a list of 41 recurring flaws, which are

categorised as minor, important and critical. The OOPS can identify the majority

of them (33 out of 41 dangers) semi-automatically. The OOPS tool has been used

frequently to find minor, important, and critical changes.

9 http://www.funstep.org/ontology/
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Figure 4.10: FAIR result of RSWO

Figure 4.11: OOPs assessment shows RSWO does not contain any bad practice
detectable by OOPS!.

The RSWO assessment with OOPS yields some minor pitfalls that have no

bearing on the ontology reasoning, consistency or/and applications. The issue of

unconnected ontology elements, several classes with same labels, and missing domain and
range reported are mainly due to the inheritance of SSN ontology terms and rela-

tions. The assessment of the RSWO results by OOPS is as shown in Figure 4.11.

Furthermore, the OOPs tool assesses criteria such as clarity, completeness, concise-
ness and consistency. The criteria of how the RSWO applies them in line with an

explanation, are listed below.

- Clarity: The ontological terms defined to represent the classes, concepts,

and relations of all the modules, contain unambiguous names, and annota-
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tions. The annotations aid in the readability of humans to avoid uncertainty

and difficulty during the insertion of data elements.

- Completeness: The ontology is capable of answering all competency ques-

tions as defined by the industry experts, correctly describing the domain

for which the ontology has been created.

- Conciseness: The industry knowledge represented by the ontology that

is gathered in line with the sources, particularly those in the domains of

electrodes, welding materials and processes, and enterprise and their pro-

duction lines, thus eliminating the irrelevant information altogether.

- Consistency: The Fact++10 reasoners have been applied to find inconsisten-

cies in the RSWO. Accordingly, the reasoner has not found any inconsisten-

cies in the accordingly developed ontology.

4.4.4 OntoMetrics

The RSWO has been assessed with the OntoMetrics tool to reflect some notions

of ontology richness with five metrics. To the best of our knowledge, there is no

publicly available resistance spot welding ontology with which we can directly

compare the RSWO. However, we considered Library ontology [54] and EUCISE-

OWL [130] that have used Ontometrics. Table 4.6 contains the metrics computed

by OntoMetrics that highlight the ontology’s most intriguing domain-level fea-

tures.

Table 4.6: Evaluation of RSWO using OntoMetrics tool.

Metric Library Ontology EUCISE-OWL RSWO
Attribute richness 2.692308 1.694805 1.613929

Inheritance richness 0.923077 0.967532 0.973007

Relationship richness 0.2 0.464029 0.495000

Average population 0.615385 5.603896 4.981892

Class richness 0.692308 0.558442 0.830357

- Attribute richness: It calculates the average number of attributes (slots) per

class, indicating the quality of the ontology design and the quantity of

information that can be included in the instance data. The RSWO has an

attribute richness value of 1.613929 which is lower in comparison to Library

ontology and EUCISE-OWL.

- Inheritance richness: The term inheritance richness refers to the average num-

ber of sub-classes per class that describes the distribution of information

along the multiple levels of the ontology inheritance tree. The value of

0.973007 highlights that the RSWO covers a good range of concepts.

10 http://owl.man.ac.uk/factplusplus/
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- Relationship richness: It indicates the variety of relational types and is calcu-

lated as the ratio of non-inheritance relationships to all the relationships in

the ontology. OntoMetrics tool reported a value of 0.495000 for relationship

richness which is higher than Library ontology and EUCISE-OWL.

- Average population: It provides information about the quality of the ontology

population that corresponds to the ratio of instances to classes. The RSWO

has an average population value of 4.981892.

- Classes richness: It represents the distribution of instances among classes.

The overall number of classes is compared to the number of RSWO classes

that have instances providing an overview of how well the knowledge-base

uses the knowledge represented by the schema classes. The class richness

of the RSWO value is 0.830357.

4.5 summary

In Chapter 5, we have discussed the development of RSWO ontology in line with

the RGOM. Then we have highlighted the RSWO development process by outlin-

ing the steps covering the stages of ontology requirement specification, formal-

izing concepts, ontology validation, and ontology publication and maintenance.

The RSWO ontology representing the knowledge of RSW has then been discussed.

Moreover, the evaluation conducted from fours dimension is then provided. In

the next chapter, we conclude the overall thesis and highlight the directions for

this research in the future.



5 A DA P TA B I L I T Y O F R G O M O N
R E A L I S T I C DATA

This chapter presents the football manufacturing production line and its various

machines. The acquisition of the dataset values and mapping them to the RGOM

process are discussed. Through answering competency questions, we will evaluate

the effectiveness of the proposed approach in capturing the essential knowledge

required for understanding and managing the football manufacturing production

line. This evaluation will ultimately help assess the efficiency of RGOM, with a

focus on minimizing the need for extensive modifications.

5.1 football manufacturing production line

This section explains the data acquisition and dataset construction. The pro-

duction floor consists of several production lines, each consisting of nine ma-

chines with five operator personnel performing manual operations. A typical

football construction requires a Thermoplastic polyurethane (TPU) roll, football

cores, printing colours, glue, laser cutting machine, Oval Printing machine, high-

frequency machine, glue spraying machine, heat activating conveyor machine,

forming moulding machine, ball shaping machine, ball seam gluing machine, and

heat drying machine. During a single production process, these machines perform

different processes on different materials and produce four footballs as a finished

product. Figure 5.1 depicts the single-process flow of football production and

the flow of the sensor data in a manufacturing production line. The production

includes 9 machines that are explained in the following subsections.

5.1.1 Laser Cutting Machine

Laser Cutting Machine (LCM) is a manufacturing machine that performs the first

process in football production, known as the cutting TPU process. A laser-based

cutting tool is hosted by the LCM to convert TPU rolls into patches. The laser

99
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Figure 5.1: Flow of a single production process. The black arrows show the pro-
cess flow in the production line and the blue arrows show the data
flow from the sensors to the monitoring unit. 1⃝ In a single process,
the TPU roll is fed into laser cutting machine. 2⃝ laser cutting ma-
chine converted the TPU roll into patches. 3⃝ patches are printed via
squeegee by the oval printing machine. 4⃝ printed patches are cut into
panels. 5⃝ Back sides of panels and cores are sprayed with glue. 6⃝
glued panels and cores are passed by the heated conveyor to form a
moulding machine. 7⃝ cores and panels are moulded. 8⃝ Balling shap-
ing machine gives football shape to the moulded cores and panels. 9⃝
The gaps between the panels are sealed with glue via a Ball seam glue
machine. 10⃝ The glue is dried by the heat-activating conveyor and 4

footballs are produced.
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is rotated with the help of a motor. The LCM produces six patches in a single

process as a duplicate material, which is submitted as input to the Oval Printing

Machine (OPM).

5.1.2 Oval Printing Machine

The OPM hosts nine tools, that is three beds, three squeegees, and three heaters.

Each tool has a different function, for instance, the bed acts as a container to hold

the patch, each squeegee prints different colours (color 1, color 2 and color 3), and

the heater driers the printed patches with a temperature ranging from 55oC to

65oC. The squeegee has various attributes such as power consumption, pressure,

hardness, etc. The six patches produced by LCM are passed as input material to

the OPM. This machine performs a total of eight step-wise processes to print the

colours on the patches in a single production process. In the first process, patch

one is placed on the first bed, which is then forwarded to the squeegee for printing

colour one. The printed patch placed on bed one is dried in the heat of heater

one. In the second process performed by OPM, the same operation is repeated

by squeegee one and heater one on patch two placed on bed two. Squeegee two

prints colour two on patch one and heater two dry the printed patch. Now, the

patch contains two colours. In the third process by OPM, bed three contains patch

three, while bed two and bed one contain patch two and patch three, respectively.

At the end of the third process, beds one, two, and three contain patches one, two,

and three with printed colours one, one and two, one, two and three, respectively.

The rest of the eight processes are performed in the same flow to print the three

colours on the 4 to 6 patches. The output of the machine is passed to the High-

Frequency Cutting Machine (HFCM).

5.1.3 High-Frequency Cutting Machine

The dry-printed patches are transferred to the bed of an HFCM. A die-cutting tool

hosted by HFCM cuts off the printed patch into four panels. HFCM performs a

single process for each patch, a total of 6 processes are performed, and 24 panels

are produced in a single production process. An operator plucks the panels from

the HFCM and matches the panels for a single football which is passed to the next

machine known as the Glue Spraying Machine (GSM).
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5.1.4 Glue Spraying Machine

The GSM in the production line receives two input materials, i.e., 6 panels and a

rubber material inside the football known as the core. The glue is sprayed on the

backside of the 6 panels and core with the help of a needle (the diameter of the

needle is 0.5 millimetres) hosted on the GSM. The glue panels and core are sent to

heat activating conveyor machine.

5.1.5 Heat Activating Conveyor Machine

Heat Activating Conveyor (HAC) is a conveyor machine. It has a heating tool that

generates heat with a temperature ranging from 45 to 55 degrees Celsius. The

function of the HAC is to dry the glue on the backside of the core and panels. The

dried core and panels are sent to a ball-shaping machine.

5.1.6 Ball Shaping Machine

The panels attached to the core are provided as input to the ball-shaping machine.

The core and panels are placed inside the ball-shaping machine, where pressure

with a 60-degree Celsius temperature is applied to convert the panels on the core

into a round shape. This manufacturing process results in the production of a

semi-finished football. The semi-finished football is passed to the form moulding

machine.

5.1.7 Form Moulding Machine

A form moulding machine is an assembly machine. It is used to assemble the

panels on the core. It performs a total of 4 processes in a single production process.

This machine output is provided to the ball seam glue machine as an input.

5.1.8 Ball Seam Glue Machine

The ball seam glue machine performs a manufacturing process. The ball seam

glue machine hosts a needle with a diameter of 0.5 millimetres, aiming to fill the

gap between panels with the glue. The filled gap of the product is then sent to the

heat-drying conveyor machine.
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5.1.9 Heat Drying Conveyor Machine

This is the final machine in the football production process. The function of the

heat drying conveyor machine is similar to that of machine 5. The glue (wet)

football is then passed through a Heat drying conveyor to become dry. After the

process of machine 9, operators clean the ball, pack it in polybags, and then in the

carton.

5.2 data definition and data attributing

The sensors installed on the machines in the I4.0-based production line generate

data that are sent to the monitoring unit. In order to collect the first real in-

stance of the data, several meetings were held with production line managers and

engineers of Forward Group Limited regarding the operations of the machines,

resources, processes, and production. It generally involved recording the power

consumption, temperature, pressure, location, and type of process performed at a

given timestamp by the machines. Also, the working status and rotational speed

of the motor and other attributes were also recorded. Table 5.1 depicts the tools

and machines parameters which include machine name, timestamp, temperature,

pressure, power, laser die, bed, squeegee, heater, and high-frequency die and many

others.
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Initially, the collected data were stored in a file comprising two types of at-

tributes such as static attributes and variable attributes under the supervision of

production line engineers and managers. Static attributes contain those attributes

of the machine whose values remain the same in each process of manufacturing

e.g. Machine model, process location, motor ID etc. On the other hand, variable

attribute value changes in each process based on the performance condition of

the machine, e.g. temperature, pressure, diameter, etc. Using the minimum and

maximum values as well as the real value measured by the sensor, we are able to

obtain the realistic data with the help of uniform probability distribution in each

sub-processes. Uniform probability distribution takes input in a range bounded

between the possible minimum and maximum value describing the possible likeli-

hood and values of a variable [32]. The uniform probability distribution is utilised

to generate new instances of temperature values for machines in the production

line. For a given machine, say machine1, we compute a new temperature value

(Tempsynthetic) from the real or actual temperature value (Tempreal) using a value

generated by a uniform probability distribution within a specified range. The

range is defined by the minimum and maximum reference values (a and b), as

provided by production line supervisors and engineers.

The computation of Tempsynthetic for machine1 during a specific process like

the TPU roll-cutting process can be formally represented as:

Tempsynthetic = Tempreal +∆T , (5.1)

where ∆T is a variable temperature change determined by a uniform probabil-

ity distribution within the range [a,b]. The uniform distribution is defined as:

∆T =


0, if x < a

random.uniform[a,b], if a ⩽ x ⩽ b

0, if x > b

(5.2)

For instance, if the real temperature (Tempreal) of machine1 is 41◦C, and the

range for ∆T is set between 1 and 5 (with a = 1 and b = 5), then ∆T is a random

value obtained from the uniform distribution over the interval [1, 5]. This random

value reflects the variability in temperature readings. Adding this ∆T value to

Tempreal gives the synthetic temperature value (Tempsynthetic) for machine1. This

approach ensures the consistency and validity of the generated values, as veri-

fied by production line engineers. The same method is applied to other variable

attributes in the production line.
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5.3 an approach to data integration using
rgom

This section describes the approach to building I4.0KG from the football produc-

tion line data. As the acquired data becomes increasingly available in data storage,

it is stored disregarding their semantics and relations. This restricts the usability of

the data, e.g., querying information, data analysis, etc. Therefore, there is a press-

ing need to represent this data in a semantic representation, i.e., Linked Open

Data [119]. Semantically enriched representation of data or KGs adds meaning

and context to data through ontologies and vocabularies that make it more easily

understood and interpreted by humans and machines [110]. This leads to several

benefits including improved data integration, data understanding, data interoper-

ability, and faster discovery of knowledge via more powerful data querying and

analysis [50, 74, 137].

Figure 5.2 illustrates the workflow for constructing the KG which is comprised

of four layers, Layer 1: Unstructured Data Sources, Layer 2: Knowledge Graph

Construction, Layer 3: Football Production Line Knowledge Graph, and Layer 4:

Figure 5.2: An illustration of the approach to integrate data
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Users and Applications. The following subsection describes the layers and the

interaction of the different components.

5.3.1 Layer 1: Unstructured Data Sources

The tools and sensors hosted by machines generate a huge amount of data at

different timestamps in the manufacturing production line. The generated data

is usually unstructured and is usually stored in different formats (e.g., TXT, CSV,

XML, JSON, etc.) by the data storage. Accessing unstructured data in terms of

information requires a lot of pre-processing and manual efforts. It is difficult for

the production line staff to access information from unstructured data.

5.3.2 Layer 2: Knowledge Graph Construction

The goal of building an I4.0KG can be accomplished with the Reference General-

ized Ontological model (RGOM), to which the data from Layer 1 is mapped to

construct a KG. Figure 5.3 depicts the pipeline to construct I4.0KG. The RGOM

and data sources are given as input to the reader component. The reader com-

ponent read the ontology resources i.e., class, object and data properties from the

RGOM and parsed data records from the data sources. The data instances are

mapped with RGOM classes and properties by the mapping components.

Figure 5.3: Pipeline for knowledge graph construction.

Algorithm 1 presents the process of populating data, beginning with the ini-

tialization of the ontology classes and properties for the data population. Initially,

the algorithm eliminates any null or empty values. Subsequently, it checks each

record in the dataset, parsing the values in the data columns into their corre-

sponding datatypes. A resource individual of a specific class type is generated.

The datatype value is converted into a literal and linked to the resource individual

through a data property. This procedure is consistently applied to all the data.
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Utilising the semantics built in the ontology model, an object property is selected

to establish a triple that connects the subject and object individuals. For example,

as can be seen from Figure 2 in Layer 2 of the data population into ontology terms,

the algorithm gets the class type ManufacturingMachine and ManufacturingProcess
from the ontology file, and iterates over the data records in the data file. Similarly,

the columns machine1 and machine1_process from the spreadsheets are created as

a subject and object with the aforementioned class types, respectively in a single

iteration.

Consequently, data is successfully populated to RGOM. An example is pre-

sented in Figure 5.4, which shows machine_9 has individuals along with their fea-

tures i.e processMaterial, hasTools, consumesPower, performsProcess, isInLocation.

Figure 5.4: Illustration of machine 9 instances with their attributes instances.

5.3.3 Layer 3:Knowledge Graph

Layer 3 represents the KG generated from layer 2. It is often used to store in-

terlinked descriptions of entities – objects, events, situations, or abstract concepts.

Whilst the data is mapped into the ontology concepts and properties, it becomes

a KG1.

1 https://web.stanford.edu/class/cs520/
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Algorithm 1 mapping data to rgom
Input: ontologymodel, data
Output: ontologymodel.write()
namespace← IRI // Define the namespace IRI for the ontology model

resource ← ontologymodel.getResource(namespaces +“classtype”); // e.g., Ma-
chine, Process etc.
r1← Null ; // Initialize r1 to null, storing the first individual created
r2← Null ; // Initialize r2 to null, storing the second individual created
...
rn← Null ; //Initialize rn to null, storing the nth individual created
objectProperty = ontologymodel.getProperty(namespace + “objectproperty”); //
e.g., performProcess etc.
dataProperty = ontologymodel.getProperty(namespace + “dataproperty”); //
e.g., hasName, hasTime etc.

for each record in data do
if (record.column{1} != Null && record.column{1} != (“”)) // parse first column
(index) of data
then

dataType value1 = parseDatatype(record.column{1}); // parsing string to
datatype
r1 ← ontologymodel.createIndividual(namespace+"resource_name", re-
source);
r1.addProperty(dataProperty, model.createTypedLiteral(value1);

end
if (record.column{2} != Null && record.column{2} != (“”)) //parse second column
(index) of data
then

dataType value2 = parseDatatype(record.column{2}); // parsing string to
datatype
r2 ← ontologymodel.createIndividual(namespace+ "resource_name" ,re-
source);
r2.addProperty(dataProperty, model.createTypedLiteral(value2));
r2.addProperty(objectProperty, r1);

end
...
if (record.column{ith} != Null && record.column{ith} != (“”)) //parse ith column
(index) of data
then

dataType valuen = parseDatatype(record.column{ith}); //parsing string
to datatype
rn ← ontologymodel.createIndividual(namespace+ "resource_name", re-
source);
rn.addProperty(dataProperty, model.createTypedLiteral(valuen));
rn.addProperty(objectProperty, r2);
end

end
KG = ontologymodel.write(path); //store the KG on the provided path.
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In our case, the I4.0KG contains the football production line data that the en-

gineers use to analyze the machines and process CTP parameters on a daily basis.

The production process of a football contains nine machines and each performs dif-

ferent sub-processes. The data produced during this process contains the domain

knowledge of the machines, tools hosted on the machines, processes performed on

them, tools deployed on the machines, tool’s critical parameters, and contextual

data generated by the sensors hosted on the machines at some timestamp. The

approach presented in Section 4.3 is followed to semantically integrate the data.

At first, we gathered the data sources containing the data about all the machines

which are then analyzed in line with the RGOM classes and relations. Next, the

data is populated to the ontology terms, i.e., classes and relations with Jena API2.

Upon the population of data into ontology terms, an RDF triple store is obtained,

known as an I4.0KG.

To produce a single football, an average of 1730 triples, 1355 logical triples,

and 233 declaration triples are produced. In one hour of the production line, a

total of 9 main processes are executed, producing 36 footballs and 22150 triples on

average from 2903 individuals.

Besides, three I4.0 KG-based datasets are produced to provide the researcher’s

community to evaluate their tools and techniques. These datasets are comprised

of ten days, twenty days, and thirty days of data from a football production line.

The types of machines and their parameters are explained in Section 4.1. The

total number of axioms, logical axiom count, declaration axiom count, and indi-

vidual count in each KG are illustrated in Table 5.2. The number of classes, object

properties, and datatype properties are the same for each KG.

Table 5.2: Summary of the axioms in each Knowledge graph

KGs Total number of Axiom Logical Axiom Count Declaration axioms Count Individual Count
10 Days 525865 525503 225 166273

20 Days 1050535 1050173 225 332363

30 Days 1470280 1469918 225 465238

5.3.4 Layer 4: Users and Application Layer

After the construction of the KG, several queries are provided by the production

line engineers and supervisors to find the usefulness of the KG. The SPARQL

endpoint at the application layer of I4.0KG paves the way for users to access the

required information embedded in the KG. Given a production line where the job

at hand is to utilise the query drawn from listing 4.1 in order to access the type of

machines and their names involved.

2 https://jena.apache.org
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PREFIX smo: <http://www.semanticweb.org/manufacturingproductionline/>
SELECT *
WHERE

{{
?Machine a smo:ProcessingMachine;

}
UNION{

?Machine a smo:AssemblingMachine;
}

?Machine smo:hasName ?Name.
}

Listing 4.1. Query to retrieve the machines involved in the production line.

Figure 5.5 shows the results returned from the listing 4.1 query. It can be seen

from the figure that the production line consists of a single assembly line and eight

processing machines, each with their name.

Figure 5.5: Listing 4.1 query provides the number of machines involved in the
production line with their names.

Furthermore, the production line manager can utilise the Listing 2 query to

find the tools present on a machine. The result of the listing 4.2 query is shown

in Figure 5.6. It can be seen from the figure that machine 2 has a name and uses

different types of tools such as one motor, three beds, three heaters, and three

squeegees. The query fetches machine 2 name and different types of tools that

reside in the KG.

PREFIX smo: <http://www.semanticweb.org/manufacturingproductionline/>
PREFIX d: <http://www.semanticweb.org/manufacturingproductionline/data/>
SELECT ?machine ?tool
WHERE

{
d:Machine_2 smo:hasName ?machine;

smo:hasTool ?tool.
}

Listing 4.2. Query to retrieve the tools hosted on machine 2.

Similarly, an engineer from the maintenance department wants to query the

KG for CTP parameters to check the current observation of the sensor or the status

of the motor. For instance, a maintenance engineer can retrieve the status of a

motor at a particular period of time by using the query in Listing 4.3. The query

fetches the status of the motor at different timestamps as illustrated in Figure 5.7.
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Figure 5.6: Listing 4.2 query provides tools hosted by machine 2 (Oval Printing
Machine).

PREFIX smo: <http://www.semanticweb.org/manufacturingproductionline/>
PREFIX d: <http://www.semanticweb.org/manufacturingproductionline/data/>
PREFIX tm: <http://www.w3.org/2006/time#>
SELECT DISTINCT ?Motor_Name ?Status ?Start_time
WHERE

{
d:Machine_1 smo:hasTool ?motor.

?motor smo:hasName ?Motor_Name.
?motor smo:hasMotorState ?state.
?process tm:hasTime ?time.
?state smo:hasState ?Status.
?time tm:hasStartTime ?Start_time.

FILTER (?Start_time > "2021-06-01T 10:11:00Z"∧∧xsd:dateTime &&

?Start_time < "2021-06-01T 10:12:55Z"∧∧xsd:dateTime).
}

Listing 4.3: Query to retrieve the status of machine 2 motors at a certain time period.

Figure 5.7: Result returned by the query in listing 4.3

In order to retrieve the temperature (a CTP parameter) query in listing 4.4 is

utilised. The reuse principle of Linked Open Data has been followed by reusing

the SOSA vocabulary as depicted in listing 4.4. Figure 5.8 shows the fetched results

of the query in listing 4.4.

Furthermore, a query in Listing 4.5 is used to find the total number of pro-

cesses performed by a machine and the total number of tools that each machine

used during a given time. The query returns information about all the machines
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PREFIX smo: <http://www.semanticweb.org/manufacturingproductionline/>
PREFIX d: <http://www.semanticweb.org/manufacturingproductionline/data/>
PREFIX tm: <http://www.w3.org/2006/time#>
PREFIX sosa: <http://www.w3.org/ns/sosa#>
SELECT DISTINCT ?machine ?Start_time ?result
WHERE

{
?machine smo:hasTool ?tool.

?tool sosa:madeObservation ?observation.
?observation sosa:hasSimpleResult ?result.
?time tm:hasStartTime ?Start_time.
FILTER (?tool != d:M6_Folding_Mold_machine_Pressure_Sensor.)

}
Listing 4.4 Query to retrieve the CTP parameter (Temperature) with time.

Figure 5.8: Listing 4.4 query provides the retrieval of the temperature (a CTP pa-
rameter).

with the total number of processes they performed during a given time and the

total number of tools used by them, shown in Figure 5.9. For instance, in the list,

machine_1 has performed a total of 100 processes and used a total of three tools

during the time from 12:55:13 to 14:36:04.

PREFIX smo: <http://www.semanticweb.org/manufacturingproductionline/>
PREFIX d: <http://www.semanticweb.org/manufacturingproductionline/data/>
SELECT DISTINCT ?machine (count(distinct ?process) as ?process_count)
(count(distinct ?tool) as ?tool_count)
WHERE

{
?machine smo:performsProcess ?process.

?machine smo:hasTool ?tool.
?process sosa:hasTime ?time.

?time tm:hasStartTime ?start_time.
?time tm:hasFinishTime ?finish_time.
FILTER (?start_time > "2021-06-08T 12:55:13Z"∧∧xsd:dateTime &&
?finish_time < "2021-06-12T 14:36:04Z"∧∧xsd:dateTime}

GROUP BY ?machine order by ?machine

Listing 4.5 Query to retrieve the count of processes performed by machines and the count of tools
used by them during a time period.
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Figure 5.9: Listing 4.5 query provides the count of processes performed by ma-
chines and the count of tools used by them during a time period.

5.4 discussion

The current usecase showcases the potential of applying the RGOM to a larger

picture. The concepts introduced in RGOM can be utilised for the majority of

production lines which will facilitate a wider use of our approach for generating

KGs for different use cases. For example, this approach can be extended not only

to other similar manufacturing processes such as volleyball and rugby ball pro-

duction, but also to other more generic production lines that incorporate welding

processes. This can help other industries map their customised data into RGOM

and construct an industry-specific KG. Additionally, to build KGs for a different

manufacturing industry, one should adopt the RGOM framework to add defini-

tions of required classes and relations. Adopting a similar mechanism will help

digital transformation for those who have not set up a Linked Data-based produc-

tion line.

The I4.0 KG dataset can be utilised in predictive maintenance [25]. For exam-

ple, one useful use case of the I4.0 KG dataset is predicting the temperature of a

machine. In manufacturing factories, the temperature of the machine is of high sig-

nificance and critical. During the process execution, the tools are operating under

a set point. The increase in temperature can adversely affect the machine which

impacts the product quality. The assessment of the temperature information en-

ables the setting up of condition-based machine tool temperature monitoring and

prevents any impact on the quality of the end product. Furthermore, the I4.0 KG

can be used by deep learning models to carry out entity matching, node classifica-

tions, link prediction, and knowledge graph completion [72, 147, 167].
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5.5 summary

This chapter highlights the adaptability of the Reference Generalized Ontological

Model using a football manufacturing production line realistic data. The nine

machines deployed in the production line are then explained, including the laser

cutting machine, Oval Printing Machine, high-frequency cutting machine, glue

spraying machine, heat activating conveyor machine, ball shaping machine, form

moulding machine, ball seam glue machine, and heat drying conveyor machine.

After this, the data definition and attributing, explain the approach to data inte-

gration using RGOM are then highlighted. The integration process is composed of

four layers: Unstructured Data Sources, Knowledge Graph Construction, Knowl-

edge Graph, and Users and Application Layer. The upcoming chapters discuss the

impact of the SOTA embedding models on the knowledge graph developed from

the football dataset using the RGOM.





6 A P E R F O R M A N C E A N A LY S I S O F
E M B E D D I N G M O D E L S F O R L I N K
P R E D I C T I O N S I N I 4 0 KG

This chapter presents a performance analysis of various embedding models on the

constructed Knowledge Graph (KG) from the football dataset. It begins by high-

lighting the challenges associated with link prediction in I40KG and proceeds to

provide an analysis of the I40KG dataset. Additionally, different knowledge graph

embedding models, including TransE, DistMult, ComplEx, ConvKB, and ConvE,

are then discussed. The experiments conducted, the experimental setup, and the

obtained results are presented. Finally, the study’s findings are discussed, under-

scoring the importance of selecting appropriate embedding models for effective

link prediction in the I40KG.

6.1 the problem of link prediction in i40kg

In recent years, manufacturing industries have been moving towards adopting

KG to utilise their data [105]. A growing amount of research is being conducted

on building and implementing KGs for use in manufacturing production lines.

A manufacturing production line KG represents relationships between various

nodes, such as workstations and manufacturing machines, like the one shown in

Figure 6.1. Nodes in the KG correspond to machines, manufacturing processes,

materials, and their attributes, and edges connecting pairs of nodes represent

some facts or labels that capture the relationship, such as "WorkStation hasMa-
chine Machine". On this basis, a KG can be defined as a labelled directed graph G

= (Ve, E, T ), such that Ve, and E are a set of nodes and labels representing entities

and relations, and T represents the triples accordingly [187].
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Figure 6.1: The figure depicts a snippet of the football manufacturing production
line KG. The green arrow represents the semantics-based connectivity
between instances, while the blue arrow represents the connectivity
between ontology classes. The black arrows connect the instances to
classes.

6.2 i40kg: the data analysis

This section briefly explores the football production line KG and its dataset. This

study investigates the possibility of using a football manufacturing KG to predict

new facts. In the process of KG-based data integration, data from various sources

is integrated and harmonised into manufacturing settings. The example scenario

in Figure 5.1 demonstrates the elements necessary for semantic data integration

to create a KG. Although the integration of data offers significant benefits, the

KG also provides a means of discovering new relationships or links between data.

These links can be created automatically based on the semantics encoded in the

KG, allowing missing information to be completed or restored.

The I40KG has a hierarchical structure where the nodes at the top are loosely

connected. In state-of-the-art datasets, the nodes are somehow tightly connected

due to the node types. The size of the football manufacturing production line KG

is comprised of a total of 180701 entities and 35 relations that make 386905 triples.

Among these, 9955 nodes are pendants that represent entities that are not highly

connected in the KG. The KG has a density [186] of 2.369× 10−5 which represents

the connectivity of the KG and is calculated using Equation 6.1.

d =
m

n2
(6.1)

Where d represents the density, m is the number of edges, and n is the number

of nodes. This metric indicates the overall connectivity of the KG. Furthermore,

the KG has a mean degree centrality of 2.20× 10−5. The degree of centrality of

a node is defined as the number of edges it has in the graph, normalised by the

maximum possible number of edges. In addition to the KG’s degree of centrality,

the node Heat_conveyor_operation has a maximum degree of centrality, which is
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5.53× 10−6. This indicates that even the most connected node in the graph has

a relatively low number of connections, again in comparison to the maximum

possible. Moreover, the KG has a mean network eigenvector centrality of 0.143.

This number indicates the average influence of a node in the graph. Unlike degree

centrality, eigenvector centrality considers the significance of the nodes to which a

node is connected. A mean network eigenvector centrality of 0.143 indicates that,

on average, a node in the network holds a certain level of influence.

6.3 knowledge graph embedding models

This section explains the embedding models. To predict the missing links, we

choose the five well-known models, that is, ComplEx, DistMult, TransE, ConvKB,

and ConvE. About the aforementioned embedding models, we first start with the

working process of the TransE model followed by the rest.

6.3.1 TransE

TransE is one of the most popular state-of-the-art embedding models. The training

set S is made up of triplets (e1, r, e2), where e1, e2 ∈ E (the set of entities) and r ∈ L
(the set of relationships). TransE learns how to embed entities and relationships

into these triplets.These embeddings belong to Rk (k is a model hyperparameter)

and are represented by boldface letters. The main concept of TransE is that the

functional relation induced by the r-labeled edges corresponds to a translation of

the embeddings, that is, it desires e1 + r ≈ e2 when (e1, r, e2) holds (e2 should be

the nearest neighbour of e1+ r), and e1+ r should be distant from e2, appropriately.

Using an energy-based framework, the energy of a triplet equals d(e1 + r, e2) for

a dissimilarity measure d, which is chosen by TransE to be either the L1-norm or

L2-norm. To obtain embeddings, TransE utilises a margin-based ranking criterion

that is minimised over the training set, as given in Equation 6.2.

L =
∑

(e1,r,e2)∈S

∑
(e ′

1,r,e ′
2)∈S ′(e1,r,e2)

[
γ+ d (e1 + r, e2) − d

(
e ′
1 + r, e ′

2
)]

+
(6.2)

where [x]+ represents the positive features of x, γ > 0 is a margin hyperparam-

eter.

S ′ (h, r, t) = {
(
h ′, r, t

)
|h ′ ∈ E}∪ {

(
h, r, t ′

)
|t ′ ∈ E} (6.3)
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To construct a set of corrupted triplets according to Equation 6.3, each training

triplet is modified by replacing either the head or tail entity with a random entity,

but not both at the same time. This strategy is effective because the loss function

Equation 6.2 is designed to assign lower energy values to training triplets com-

pared to corrupted triplets. By doing so, the loss function encourages the model

to learn the embeddings that satisfy the intended criterion, and this happens nat-

urally during the training process. It is worth noting that the embedding vector

for a given entity is the same whether the entity appears as the head or the tail of

a triplet. The optimisation process is conducted using stochastic gradient descent

in minibatch mode over the possible e1, r, and e2 values.

6.3.2 DistMult

DistMult aims to learn the representations of entities and relations in a KG so

that valid triplets receive high scores. Given a KG that is represented as a list

of relation triplets (e1, r, e2) denoting a relationship r between entities e1 and e2.

In order to learn the embeddings, a two-layer neural network is used. The first

layer projects the input entities to low-dimensional vectors, and the second layer

combines these vectors using a scoring function with relation-specific parameters

to produce a scalar for comparison.

In relation to embedding learning, DistMult associates each input entity with

a high-dimensional vector that can be either a "one-hot" index vector or an "n-hot"

feature vector. The input vectors for entity e1 and e2 are denoted as xe1
and xe2

,

respectively. Additionally, the first layer projection matrix is denoted by W.

After passing the input vectors through the neural network, the model learned

entity representations ye1
and ye2

. These representations can be expressed through

Equation 6.4.

ye1
= f(Wxe1

), ye2
= f(Wxe2

) (6.4)

where f is a function that can be either linear or non-linear and is applied element-

wise to the result of the matrix multiplication between W and xe1
or xe2

.

Furthermore, DistMult utilises a basic bi-linear scoring function Equation 6.5.

gbr (ye1
,ye2

) = yTe1Mrye2
(6.5)

DistMult’s scoring function is a modified version of the Neural Tensor Network

(NTN) scoring function. The NTN scoring function typically involves a non-linear

layer and a linear operator. However, DistMult differs from NTN by removing

the aforementioned components and utilizing a 2-dimensional matrix operator

Mr ∈ Rn×n instead of a tensor operator. Moreover, other matrix factorization
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models have also utilised the bilinear formulation of DistMult’s scoring function,

along with various forms of regularisation. To simplify the model and reduce the

number of relation parameters, DistMult imposes a constraint on Mr such that it

must be a diagonal matrix. This straightforward approach has been shown to be

both simple and effective.

6.3.3 ComplEx

Let R and E denote the sets of relations and entities present in a KG. The ComplEx

model aims to recover the matrices of scores Xr for all relations r ∈ R. Given two

entities e1 and e2 ∈ E, the log-odds of the probability that the fact r(e1, e2) is true

can be expressed in Equation 6.6.

P(Yr,e1,e2
= 1) = σ(φ(r, e1, e2;Θ)) (6.6)

where φ is a scoring function and is based on observed relations factorization,

and Θ represents the corresponding model’s parameters. Although the entire

X matrix is unknown, it is assumed that there exists a set of partially observed

adjacency matrices for different relations, denoted as {Yre1e2
}r(e1,e2)∈Ω ∈ {−1, 1}.

These matrices consist of true and false facts for the observed triples in the KG,

whereΩ ⊆ R×E×E is the set of observed triples. The objective is to determine the

likelihood of whether entries Yr ′,e ′
1,e ′

2
are true or false, where the triples r ′(e ′1, e ′2)

are targeted and unobserved, i.e., r ′(e ′1, e ′2) /∈ Ω.

The scoring function adopted by the ComplEx model is given in Equation 6.7.

σ(φ(r, e1, e2;Θ)) = Re(⟨wr, e1, e2⟩) (6.7)

where wr ∈ CK and represents a complex vector. The function Re(⟨wr, e1, e2⟩)
in Equation 6.7 represents the real part of the complex dot product between the

relation r embedding and the embeddings of entities e1 and e2.

6.3.4 ConvKB

ConvKB represents the dimensionality of embeddings as k, such that each embed-

ding triple (ve1, vr, ve2) is seen as a matrix Ai ∈ Rk×3, with Ai ∈ R1×3 indicating

the i-th row of A. And utilise a filter ω ∈ R1×3 within the convolution layer. The

purpose of ω is not only to investigate the global relationships between identical

dimensional entries of the embedding triple (ve1, vr, ve2), but also to capture the

transitional features in transition-based models. We repeatedly apply ω over each
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row of A to ultimately produce a feature map v = [v1, v2, . . . , vk] ∈ Rk is given in

Equation 6.8.

vi = g(ω ·Ai + b) (6.8)

where b ∈ R represents a bias term, and g denotes an activation function, for

instance, the Rectified Linear Unit (ReLU).

ConvKB employs different filters ∈ R1×3 to produce distinct feature maps.

Denote the collection of filters as Ω and the total number of filters as τ, such that

τ = |Ω|. This leads to the generation of τ feature maps. These τ feature maps

are then merged into a single vector in Rτk×1, which is subsequently calculated

with a weight vector w ∈ Rτk×1 through a dot product, yielding a score for the

triple (e1, r, e2). Equation 6.9 presents the scoring function that has been adopted

by ConvKB.

f(e1, r, e2) = concat(g([ve1
, vr, ve2

] ∗Ω)) ·w (6.9)

where Ω and w represent shared parameters that are not dependent on e1, r,

or e2; the symbol ∗ signifies a convolution operator; and the term ’concat’ denotes

a concatenation operator. The ConvKB model training loss is minimised via us-

ing Adam optimiser with L2 regularization on the weight vector was shown in

Equation 6.10.

L =
∑

(e1,r,e2)∈{G∪G ′} log(1+ exp(l(e1, r, e2) · f(e1, r, e2))) + λ
2∥w∥

2
2

(6.10)

where l(e1, r, e2) is a function that assigns labels to triples, and G ′ represents a set

of invalid triples created by altering valid triples found in G.

6.3.5 ConvE

ConvE utilises a neural link prediction model that leverages convolutional and

fully-connected layers to model the interactions between input entities and the

relationships. The key feature of the ConvE model is that the score is established

through a convolution performed over embeddings shaped in 2D. ConvE defines

the scoring function as follows.

ψr(e1, e2) = f(vec(f([e1;rr] ∗ω)) ·W) · e2 (6.11)

where the relation parameter, rr ∈ Rk, in the Equation 6.11 depends on r. Ad-

ditionally, e1 and rr are subject to 2D reshaping, denoted as e1 and rr respectively.
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Specifically, if both e1 and rr are elements of Rk, then their reshaped forms e1 and

rr ∈ Rkw×kh , where k is equal to kw × kh.

During the feed-forward pass, the model conducts a row-vector lookup op-

eration on two embedding matrices: one for entities, represented as E|E|×k, and

another for relations, denoted as R|R|×k ′
. Here, k and k ′ are the dimensions of

entity and relation embeddings respectively, and |E| and |R| represent the number

of entities and relations respectively. The model concatenates e1 and rr and uses

the resulting vector as input to a 2D convolutional layer with filters ω. This layer

produces a feature map tensor T ∈ Rc×m×n, where c is the number of 2D feature

maps and m and n are their dimensions. The tensor T is then reshaped into a vec-

tor vec(T) ∈ Rcmn, which is subsequently projected into a k-dimensional space

via a linear transformation that is parameterised by the matrix W ∈ Rcmn×k. Fi-

nally, this projection is matched with the object embedding, eo, through an inner

product. It is important to note that the convolutional filter parameters and the

matrix W parameters are independent of the parameters used for the entities e1
and e2, as well as the relationship r. Equation 6.12 represents the binary cross

entropy function that is used to minimise the model loss.

L(p, t) = −
1

N

∑
i=1

(ti · log(pi) + (1− ti) · log(1− pi)) (6.12)

where t represents the label vector and pi represents the predicted probability.

6.4 experiments and results

6.4.1 Experimental setup

Dataset and Training

This section describes the dataset and the training procedure. 70% of the data is

used for training, and 30% is used for testing. Section 4.2 summarises the dataset

used in this research. The hypermeters are chosen by trying different values and

observing their impact on model performance. Additionally, a learning rate of

0.0001 and latent feature dimensions k of 200 are chosen to train the state-of-the-

art model. We set the number of negative triplets to five during training for each

positive triplet. With a batch count of 100, the models are trained over 50 epochs.

The loss function is minimised using the Adam algorithm.

The missing links are generated by creating corrupted triples, where either the

head or tail of a valid triple is replaced with a random entity, but not both at

the same time. During evaluation, for each test triple, the model computes and
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ranks the dissimilarities of these corrupted triples after replacing the head and

tail with each entity from the dictionary, in turn, to determine the rank of the

correct entity. The performance is then measured using metrics like mean rank

and Hits@N, which reflect the proportion of correct entities ranked in the top 10,

3 and 1 predictions. Moreover, the ranking method involves evaluating test triples

against all other candidate triples not present in the training, validation, or test

sets. This is achieved by substituting either the subject or the object of a test triple

with every entity in the knowledge graph, thereby generating candidate triples.

Evaluation Metrics

Here, we discuss the evaluation metrics employed to evaluate the accuracy of the

rankings generated by these models. We use two main assessment metrics: Mean

Reciprocal Rank (MRR) and Hits@N.

Mean Reciprocal Rank (MRR) calculates the average of the reciprocal ranks of

the true (or correct) triplets. The reciprocal rank is the multiplicative inverse of the

rank (that is, 1/rank) Equation 6.13.

MRR =
1

N

N∑
i=1

1

Ri
(6.13)

MRR is sensitive to how well the model ranks the highest-ranked true triplet,

and a higher MRR indicates better performance. MRR ranges from 0 to 1, with 1

being the best possible score.

Hits@N Equation 6.14 computes the percentage of true triplets that appear

within the top N positions in the ranked list. We have used Hits@1, Hits@3 and

Hits@10 for the model evaluation. A higher Hits@N value indicates better perfor-

mance, as it means a larger proportion of true triplets are ranked within the top

N positions.

Hits @ N =
1

Q

Q∑
i

δ(ranki ⩽ N) (6.14)

where Q is the count of positive and negative triples, ranki is the rank of

the positive triples within these triples, and δ is an indicator function that is 1 if

ranki ⩽ N, and 0 otherwise.

By comparing these metrics across different models, we can determine which

model performs better in ranking true triplets.
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Table 6.1: Comparative evaluation of KG embedding models ComplEx, DistMult,
TransE, ConvKB, and ConvE across five test scenarios using Mean Re-
ciprocal Rank (MRR), Hits@10, Hits@3, and Hits@1 as performance met-
rics.

Models Test 1 Test 2 Test 3

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

ComplEx 0.271 0.331 0.288 0.236 0.275 0.338 0.301 0.245 0.273 0.335 0.293 0.237

DistMult 0.255 0.311 0.274 0.221 0.252 0.307 0.271 0.218 0.258 0.312 0.276 0.225

TransE 0.289 0.348 0.322 0.249 0.292 0.354 0.320 0.253 0.291 0.352 0.325 0.250
ConvKB 0.240 0.321 0.268 0.193 0.238 0.322 0.266 0.191 0.227 0.320 0.265 0.170

ConvE 0.195 0.281 0.195 0.165 0.191 0.279 0.189 0.162 0.201 0.296 0.197 0.172

Test 4 Test 5

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

ComplEx 0.272 0.328 0.288 0.238 0.277 0.337 0.296 0.242

DistMult 0.254 0.311 0.272 0.220 0.243 0.308 0.266 0.203

TransE 0.295 0.350 0.323 0.258 0.300 0.354 0.325 0.264
ConvKB 0.238 0.322 0.271 0.188 0.239 0.323 0.270 0.191

ConvE 0.193 0.279 0.193 0.165 0.187 0.273 0.185 0.159

6.4.2 Results

Overall Results

Here, we discuss the overall results of the models on the unseen data. The effec-

tiveness of several KG embedding models, including ComplEx, DistMult, TransE,

ConvKB, and ConvE, is thoroughly assessed. We carried out the experiments five

times (named as five tests) and evaluated the models using the Mean Recipro-

cal Rank (MRR), Hits@10, Hits@3, and Hits@1 metrics shown in Table 6.1. It is

observed from the overall results that the TransE model outperforms the other

models for all test scenarios for football manufacturing production data in terms

of MRR, Hits@10, Hits@3, and Hits@1. Additionally, ConvKB showed competitive

outcomes, but none of the evaluation metrics saw it outperform TransE.

Model Prediction Results

We now discuss the prediction performance of state-of-the-art embedding mod-

els, trained on manufacturing football KG. These models are used to predict the

relationships between entities based on the known triples in the KG.

The prediction results (Figure 6.2) on unseen test data from the football manu-

facturing KG show that the models have achieved varying average accuracy levels

between 0 and 1. TransE outperforms the other models with an average accuracy

of 0.91, closely followed by ComplEx at 0.87 and DistMult at 0.84. The ConvKB

and ConvE models have lower accuracies, with 0.79 and 0.76, respectively. The bet-

ter performance of the TransE is due to its strategy of modelling the relationships

as translations in the entity embedding space. This approach works well for hi-

erarchical data, as entities in a hierarchical structure often have simple and direct

relationships. On the other hand, ConvKB and ConvE are based on convolutional

neural networks (CNNs), which are better suited for capturing complex and non-
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Table 6.2: Performance comparison of KG embedding models on example triples
from unseen data.

Triple ComplEx DistMult TransE ConKB ConvE
WorkStation_2 hasMachine Machine_4 0.87 0.84 0.92 0.81 0.78

Machine2_Motor_State_177 hasState working 0.89 0.89 0.90 0.83 0.81

Squeegee3_Pressure_Sensor madeObservation Observation_180 0.86 0.80 0.92 0.75 0.73

Machine1_motor1 hasSpeed Machine1_motor_Speed_232 0.85 0.82 0.91 0.79 0.76

Oval_Printning_Process_3 useTool Machine2_Bed3 0.88 0.85 0.90 0.77 0.72

linear patterns in the data. As the manufacturing production line KG has a simple

hierarchical structure, the convolutional layers in ConvKB and ConvE could not

provide significant results in this case. Table 6.2 shows the accuracy achieved by

five trained models, ComplEx, DistMult, TransE, ConvKB, and ConvE, for exam-

ple, triples of unseen data.

Statistical Results

Significance tests, such as the t-test, are fundamental tools in statistics used to

determine whether the differences observed between groups or models in an ex-

periment are statistically significant or merely due to random chance. The p-values

indicate the level of significance [145]. We performed pairwise t-tests between the

MRR values of all potential model pairs to statistically evaluate the performance

of these models. To evaluate the importance of the variations in MRR values be-

tween the models, the resulting p-values were computed from Table 6.1. Higher

p-values imply that the difference between the compared models is not statisti-

cally significant, whereas lower p-values show a statistically significant difference

between the compared models. Figure 6.3 represents the mean MRR values of

Figure 6.2: Performance comparison of five KG embedding models on unseen test
data from the football manufacturing KG.
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Figure 6.3: Comparison of Mean Reciprocal Rank (MRR) for link prediction mod-
els i.e., ComplEx, DistMult, TransE, ConvKB, and ConvE on a football
manufacturing dataset. The p-values from pairwise t-tests are anno-
tated above the bars.

the models, along with the pairwise p-values, highlighting the differences in their

performance. The chart reveals that TransE outperforms the other models, while

ConvE has the lowest mean MRR. Furthermore, the statistical analysis using t-tests

shows significant differences between several model pairs, as indicated by the low

p-values. Our research shows that the TransE model on the Hierarchical KGs such

as the manufacturing football dataset performs best in terms of MRR.

Training Time Analysis of the Models

This section presents the time analysis of training the models on the football KG

dataset. Our study has analysed the training times of five state-of-the-art KG em-

bedding models (ComplEx, DistMult, TransE, ConvKB, and ConvE) for 50 epochs.

The training times for each model have been recorded across five tests (see 6.4),

and the results have been converted to minutes for easier comparison. The hard-

ware used for experiments and implementation involved Nvidia GeForce GTX

1180 (8 GB of RAM) and Ubuntu 18.04.3 LTS (64-bit) operating system. We found

that the DistMult and TransE models had the shortest training times, taking an

average of 8 minutes and 26 seconds and 8 minutes and 25 seconds, respectively,

to complete 50 training epochs. On the other hand, the ConvE model requires the

longest training time, with an average of 70 minutes and 12 seconds, indicating



6.5 findings of the study 127

Figure 6.4: Training Time for Five Models (50 epochs) - Tests 1 to 5.

that it is the slowest model to train for the same number of epochs. The ComplEx

and ConvKB models had intermediate training times.

The analysis also revealed some variation in training times between the dif-

ferent tests, particularly for the ConvE model, which has shown significant dif-

ferences in training times between tests. Despite this variation, the DistMult and

TransE models consistently demonstrated the fastest training times throughout all

tests. Overall, the findings suggest that the DistMult and TransE models are the

most efficient models in terms of training times for KG embedding, whereas the

ConvE model is the slowest. These results could inform the choice of KG embed-

ding models in different settings, particularly those where fast training times are

crucial.

6.5 findings of the study

We now discuss the findings and analysis in this section. Experts with diverse

backgrounds are required to participate in the creation of a knowledge graph (KG),

including those in ontology development and data source mapping, which may

lead to errors that can directly affect the data’s quality. Even with a KG-based inte-

gration, there may be disconnections among data silos that can negatively impact

the data’s completeness and accuracy. Connecting data entities typically necessi-

tates manual intervention and expert knowledge to identify and create necessary

connections. However, the approach introduced in this study enables industry ex-

perts to assist in identifying potential data links based on their domain expertise.

Additionally, the KG’s semantics can be utilised to describe and link data silos
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critical to manufacturing and other industries. Moreover, the method enables the

discovery of patterns in the data, enhancing the process of linking different silos.

Table 5.1 presents the results for various KG embedding models, offering crit-

ical insights into their interaction within specific KG frameworks, especially in

manufacturing production lines. The varied performance among the models, es-

pecially the notable efficacy of translation-based models such as TransE compared

to neural network approaches like ConvE, highlights the crucial role of choosing

the right model based on the KG’s unique features, including its straightforward

structure and sparse inter-entity connections. These observations emphasise the

necessity for customised KG embedding strategies, indicating that models with

a more straightforward, direct approach may outperform others in environments

with less complex entity relationships. Moreover, these results require further

exploration into refining KG embedding techniques, stressing the need to match

model strengths with KG attributes to boost performance. This qualitative assess-

ment not only highlights the existing constraints of current models but also paves

the way for future research and the practical deployment of KG embeddings tai-

lored to specific domains.

6.6 summary

In this chapter, the problem of link prediction in Industry 4.0 Knowledge Graphs

(I40KG) has been thoroughly examined, and a performance analysis of various

embedding models has been conducted. The analysis has involved the evalua-

tion of TransE, DistMult, ComplEx, ConvKB, and ConvE models using the I40KG

dataset. The experimental setup, including the selection of evaluation metrics and

training parameters, has been explained in detail. The results obtained from the

experiments have been presented, highlighting the performance of each model in

terms of MRR and Hit@N measurement metrics. The study’s findings have empha-

sised the superior performance of the TransE model, indicating the significance of

considering transitional characteristics in manufacturing knowledge graphs. This

chapter has provided valuable insights for researchers and practitioners working

on link prediction in I40KG, contributing to the advancement of knowledge dis-

covery and decision-making processes in smart manufacturing industries. In the

next chapter, we will explain the ontology development process for RSWO in line

with RGOM using a Bosch resistance spot welding use case.





7 C O N C L U S I O N A N D F U T U R E
W O R K

7.1 conclusion of the thesis

This thesis addresses the challenges of integrating heterogeneous and unstruc-

tured data in the context of Industry 4.0 (I4.0) by leveraging semantic web and

knowledge graph technologies that can be efficiently used by intelligent smart

manufacturing applications. Through a comprehensive investigation, the follow-

ing key contributions and findings have been achieved:

To answer the first research question, we conducted a thorough literature re-

view analysing the latest developments in production line manufacturing semantic

models within the context of Industry 4.0. This analysis resulted in identifying the

gaps and areas lacking clarity in the current semantic models, particularly regard-

ing the integration of unstructured data. In response, we proposed employing

semantic web technologies as a solution to these identified challenges. A key ele-

ment of our research is the introduction of the Reference Generalized Ontological

Model (RGOM), which stands as a notable contribution. The RGOM uses concepts

from existing ontologies while introducing new concepts previously overlooked.

It leverages the hierarchical axis knowledge from the RAMI 4.0 reference architec-

ture to illustrate the organisational structure. This incorporation results in a struc-

tured ontological framework that accurately represents manufacturing resources,

machines, processes, and products. The establishment of RGOM significantly en-

hances data availability and interoperability within the manufacturing industry.

Consequently, this research successfully addresses the RQ1 by overcoming the

Challenge 1, fulfilling our first contribution.

Alongside the RGOM, this research introduced a domain-specific ontology cus-

tomised for Resistance Spot Welding (RSW), called the Resistance Spot Welding

Ontology (RSWO). This ontology carefully captures important domain-specific

knowledge related to welding processes, machinery, software, and electrode com-

ponents. The knowledge is gathered from industry experts and ISO documents

for RSW. Furthermore, to ensure the ontology’s quality and its usability, it went

through rigorous evaluation using established metrics, including the FAIR prin-

ciples and OntoMetrics for ontology assessment. By successfully developing and

129
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aligning the RSWO with RGOM and confirming its adherence to quality and us-

ability standards, this work has fulfilled Contribution 2. Thus, this thesis success-

fully addresses (RQ2) as Challenge 2.

To answer the RQ3, we demonstrated the adaptability and practicality of

RGOM. A realistic dataset from a football manufacturing production line has been

utilised. The first instance of the dataset has been directly acquired from the pro-

duction line engineers, and the remaining instances have been randomly produced.

The production line engineers validate the dataset to ensure its reliability. Through

the application of RGOM, unstructured data sources have been integrated into the

I4.0 Knowledge Graph (I40KG), enabling a holistic view of the production line.

This integration has improved data availability and interoperability, allowing for

more insights for users. Hence, this thesis fulfilled Contribution 3 as Challenge
3.

Finally, a comparative analysis of various knowledge graph embedding mod-

els, including TransE, DistMult, ComplEx, ConvKB, and ConvE is conducted, fo-

cusing on their utility for link prediction within Industry 4.0 Knowledge Graphs

(I40KG). This analysis was carried out using a dataset from a football manufactur-

ing production line. Each model is trained and tested on the I40KG and evaluated

using MRR and Hit@N metrics which are widely used for link prediction. By

assessing the capabilities of each embedding model, the research highlights the

important factors that influence their usage in the context of manufacturing KGs.

Consequently, this analysis has addressed RQ4, leading to Contribution 4.

To conclude, this research has contributed to the practical application of se-

mantic web and knowledge graph technologies in the manufacturing domain. The

proposed solutions, including RGOM, the RSWO, and the performance analysis of

KG embedding models, together have enhanced data integration, modelling, and

knowledge extraction in the context of Industry 4.0.

7.2 future work

This section highlights several key research directions for the future work.

7.2.1 Harmonization with Top level ontologies

As a future work, the RGOM can be aligned to top-level ontology such as BFO

[9] or DOLCE [19]. By aligning it to top-level ontology it can benefit in standard-

ization that can facilitate communication and interoperability between different
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domains. The alignment with top-level ontologies can ensure consistency between

them that will alternatively reduce ambiguity and confusion.

7.2.2 Extension to Other Production Lines

Furthermore, the approach of the concepts introduced in RGOM can be utilised for

the majority of production lines which will facilitate wider use of our approach

for generating KGs for different use cases. For example, this approach can be

extended not only to other similar manufacturing processes such as volleyball

and rugby ball production, but also to other more generic production lines. This

can help other industries map their customised data into RGOM and construct an

industry-specific KG.

7.2.3 Semantic Mapping of RSWO Terms

Additionally, the creation of semantic mapping of the RSWO terms to other similar

welding techniques such as flash welding, and projection welding can be investi-

gated as future work. Moreover, the embedding model features expressively, i.e.,

capture different relations (transitivity, symmetry, etc.) that can be analysed as

future direction.

7.2.4 Exploration of Diverse Research Topics

In general, there is a wide range of topics to be explored: (1) Commons for Industry
that includes a series of commonly agreed artefacts, methodologies, and best prac-

tices, such as a general and standardized ontology for all manufacturing processes,

frameworks for sharing data, procedures of cross-domain innovation and strategy

negotiation; (2) Industrial Feedback for Facilitating Research, the increased research,

development and deployment of ontologies and knowledge graphs of industry

problems will, in turn, inspire many impactful and challenging research questions

that boost research and its interaction with industry, ranging from semantics-based

data interoperability, metadata-based or content-based dataset search to neuro-

symbolic reasoning for graph data.
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