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APPL I ED PHYS ICS

Noninvasive measurement of local stress inside soft
materials with programmed shear waves
Zhaoyi Zhang1, Guo-Yang Li2*, Yuxuan Jiang1, Yang Zheng1, Artur L. Gower3, Michel Destrade4,5,
Yanping Cao1*

Mechanical stresses across different length scales play a fundamental role in understanding biological systems’
functions and engineering soft machines and devices. However, it is challenging to noninvasively probe local
mechanical stresses in situ, particularly when the mechanical properties are unknown. We propose an acous-
toelastic imaging–based method to infer the local stresses in soft materials by measuring the speeds of shear
waves induced by custom-programmed acoustic radiation force. Using an ultrasound transducer to excite and
track the shear waves remotely, we demonstrate the application of themethod by imaging uniaxial and bending
stresses in an isotropic hydrogel and the passive uniaxial stress in a skeletal muscle. These measurements were
all done without the knowledge of the constitutive parameters of the materials. The experiments indicate that
our method will find broad applications, ranging from health monitoring of soft structures and machines to
diagnosing diseases that alter stresses in soft tissues.
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INTRODUCTION
Mechanical stresses are important in biological and artificial soft
materials across different length scales and play an essential role
in their functions. For instance, adherent animal cells generate me-
chanical stress to migrate, divide, sense their environment, and
communicate with other cells (1–4). At the tissue level, differential
and/or constrained growth generates mechanical stresses that may
trigger elastic instabilities and buckling patterns, leading to various
morphological changes observed in nature (5–7). Forces produced
by muscle contractions result in nearly all the movements in the
human body (8–10). In short, it is fair to say that all living tissues
are under mechanical stresses, even at rest, and understanding their
distribution and magnitude is critical for uncovering the biophysics
underpinning various life activities (2).

Stresses play a vital role also in artificial soft materials (11, 12),
which are used, for example, in designing soft machines and devel-
oping wearable and implantable soft bioelectronics. Residual and/or
applied mechanical stresses cannot be avoided in these applications
(10, 13, 14). Being able to probe the mechanical stress in situ is
needed for the optimal design of soft machines/instruments and
for the evaluation of their mechanical behavior, e.g., fatigue life
(15, 16).

To date, it remains a great challenge to probe the mechanical
stresses of soft materials in situ in a noninvasive manner, especially
when their mechanical properties are not known (2). Traditionally,
stresses can be inferred from measured deformations (10, 17), pro-
vided that the mechanical properties and the undeformed configu-
ration of the tested material are known. The hole drilling method

(18, 19) is such an example that enables the measurement of residual
stress destructively. Many nondestructive methods have been devel-
oped, including ones that use x-rays, neutron diffraction, and ultra-
sonic waves (19, 20), but these all require prior knowledge of the
material constants and the undeformed configurations of tested
materials, all of which are challenging to acquire. For example,
stress alters the speed of ultrasonic waves by the acoustoelastic
effect (19, 21–23). However, its interpretation requires knowledge
of the third-order elastic constants, and calibrating for these param-
eters is by no means trivial, even in controlled laboratory environ-
ments (21, 22, 24, 25).

Measuring the constitutive parameters of soft tissues in vivo or
of artificial soft materials in service represents an even greater chal-
lenge. Moreover, the mechanical properties of these materials may
vary with environment, time, and working state. Here, we propose a
nondestructive method based on acoustoelasticity to measure
stresses inside a soft material without invoking the prior knowledge
of these constitutive parameters.

The acoustoelastic effect has previously been reported in soft
materials; see, e.g., (9, 24, 26). Soft materials can undergo large
elastic deformations when subject to mechanical stresses, which
markedly alter the shear wave speeds (∼100%) but barely change
the speed of the longitudinal wave. That is because it only takes
stresses in the kilopascal to deform soft solids, and typically, the
latter speed (vL, say) is such that ρv2

L (where ρ is the mass density)
is in the order of gigapascal, while the former speed (vT, say) is such
that ρv2

T is in the order of kilopascal (27). Technically, the unaffected
longitudinal (ultrasound) waves travel ∼1000 times faster than shear
waves. They provide a unique way to excite (by acoustic beam focus-
ing) and visualize (by ultrasound imaging) shear waves remotely
and locally.

In this method, we create a supershear moving load that remote-
ly excites shear waves propagating along two orthogonal directions
and measure their speeds with a frame rate of 10 kHz. We validate
our method by successfully measuring uniaxial and bending stresses
in a hydrogel sample and tensile stress in a skeletal muscle (which is
intrinsically anisotropic due to the preferred direction of the aligned
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muscle fibers). In these measurements of mechanical stresses, we do
not need to know, or use, the constitutive parameters of the
materials.

RESULTS
Measuring mechanical stresses with shear waves
Consider a plane shear wave with mechanical displacement u =
u0eik(x1cosθ+x3sinθ−vt) propagating in an incompressible soft solid
subject to in-plane stresses σ1 and σ3 (see Fig. 1A), where u0 is the
amplitude that lies in the propagation plane, v is the phase speed, t is
the time, xi (i = 1,2, and 3) is the Cartesian coordinate system
aligned with the principal stress, and k is the wave number. The
wave vector is k = k[cosθ,0, sinθ]T, where k is the wave number
and θ denotes the angle between k and the x1 axis. The material
can have any form of anisotropy, such as due to initial stress (25,
28, 29) or fibers reinforcing the solid (30), as long as they are
aligned with the principal directions of the stress. In effect, for
many tissues, structural anisotropy is coaxial with the stress,
because collagen fibrils often act to optimize the load-bearing ca-
pacity (31–33). Inserting the plane wave form into the equations
of acoustoelasticity, we get (see notes S1 and S2)

ρv2 ¼ αcos4θþ 2βcos2θsin2θþ γsin4θ ð1Þ

where α ¼ A0
1313, 2β ¼ A0

1111 þA
0
3333 � 2A0

1133 � 2A0
3113,

γ ¼ A0
3131, and A0

piqj are the components of the Eulerian elastic
moduli tensor.

Now consider two shear waves, traveling in two perpendicular
directions θ = θ0 and θ = π/2 + θ0 with phase speeds vx and vz, re-
spectively, where x and z denote a Cartesian coordinate system
aligned with the main axes of the transducer (x, y, and z are the
lateral, elevational, and axial directions, respectively).

We find that ρðv2
x � v2

zÞ ¼ ðα � γÞcosð2θ0Þ according to Eq. 1
and that α − γ = σ1 − σ3, regardless of the constitutive model and
out-of-plane stress (see notes S1 and S2). Taking the two equations

together, we conclude that

σ1 � σ3 ¼ ρ
v2
x � v2

z
cos2θ0

ð2Þ

which is the foundation of our method to measure mechanical
stresses in soft materials. For the case of uniaxial stress (σ3 = 0),
Eq. 2 gives direct access to σ1. While Eq. 2 holds for any θ0, we
find that θ0 = 0 is the best choice for practical measurements.
First is because θ0 = 0 gives the best sensitivity to the stress when
the speeds are measured. Second is because it is simpler to
measure the group speed vg ≡ ∂(kv)/∂k with ultrasound shear
wave elastography (34) than the phase speed v in Eq. 2 and these
two speeds are the same along the principal directions (see fig.
S1), which is the case here when θ0 = 0 (Fig. 1B). See note S2 for
more details.

Generating shear waves propagating in perpendicular
directions with programmed acoustic radiation force
Our experimental setup to generate two shear waves propagating
perpendicularly to each other, shown in Fig. 2A, was based on a
medical ultrasound imaging system (see Materials and Methods).
The ultrasound transducer sent 7-MHz ultrasound waves that
were used to excite and detect shear waves in soft materials. In
effect, the absorption of the ultrasound waves leads to a transfer
of momentum to the soft materials, giving rise to the acoustic radi-
ation force (ARF). A focused ultrasound beam can deliver the ARF
locally, resulting in a Gaussian-shaped body force at the focus (see
fig. S2B). Micrometer amplitude shear waves traveling perpendicu-
lar to the ultrasound beam (x axis) are then generated by the ARF,
and measuring their speed enables what is called shear wave elastog-
raphy (35, 36). However, with a standard setup, shear waves travel-
ing along the beam direction (z axis) are not easily detectable,
because they are small and attenuate rapidly (see movies S1B and
S2B for simulation and experimental results, respectively) (37).

To excite the laterally and vertically propagated shear waves si-
multaneously, we present a previously unreported programming
method that successively focuses the ultrasound beam at six loca-
tions (the duration at each location is ∼43 μs), separated by a dis-
tance of d = 1 mm, along the lateral direction x, as shown in Fig. 2A.
These ARFs mimic a laterally moving load with a supershear wave
speed (the ratio of the moving speed and the shear wave speed, i.e.,
the Mach number, is ∼10). The shear waves generated by the
moving load mutually interfere following the Huygens-Fresnel
principle, which significantly enlarges the amplitude of the vertical
wave. The vertically propagated shear waves are primarily vertically
polarized. They are often called longitudinal shear waves, and have
been used in ultrasound elastography of the liver for example (38,
39). Approximately 0.3 ms after the wave excitation, unfocused ul-
trasound beams are sent by the same ultrasound transducer to
perform ultrafast ultrasound imaging (40), which records the
shear wave propagation in the region of interest (ROI) at a rate of
10,000 frames per second.

We tested our experimental setup on a polyvinyl alcohol (PVA)
hydrogel (mass density of ρ ∼ 1 g/cm 3 and initial shear modulus of
∼8.6 kPa; see Materials and Methods). The approximate size is
29 by 6 cm 2 cross section and 4 cm in depth (Fig. 2C). Figure 2D
depicts the snapshots of the shear wave propagation in the sample
and shows that the shear waves propagated in lateral and vertical

Fig. 1. Principle of acoustoelastic imaging of stresses. (A) Schematic showing
that the principal stresses σ1 and σ3 change the speed of the vertically polarized
shear waves. Here, an isotropic material subject to moderate stress is taken as an
example. (B) An ultrasonic transducer with the axial direction (z) aligned with the
principal direction x3 is used to measure the wave speeds vx and vz along the two
principal directions. The principal stresses are connected to the two shear
wave speeds.
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directions are generated simultaneously, in excellent agreement
with the finite element simulations (see Materials and Methods)
shown in Fig. 2E and movie S1A. For anisotropic materials, we
also performed three-dimensional (3D) finite element simulations
to confirm that vertically propagated shear waves are primarily
excited using our programmed ARFs and that the shear waves trav-
elling in lateral and vertical directions are generated simultaneously
(see fig. S3).

To measure the shear wave speeds, we extract the spatiotemporal
data along the lateral (x axis) and vertical (z axis) directions, respec-
tively. As shown in Fig. 2F, six shear waves propagate to the left and
to the right, with a linear wavefront that suggests that the wave speed
vx is constant. However, the vertically propagated waves gradually
decelerate from the near field to the far field (Fig. 2G), with the mea-
sured speed vz approximately following zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2þð2:5dÞ2
p v, where v is the

shear wave speed along θ ¼ tan� 1 z
2:5d

� �
. This is expected and is

likely due to the wave interference pattern depicted in Fig. 2B.
Note that for large enough z, we have zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2þð2:5dÞ2
p v ≏ v and v

should be the speed of the vertically propagated shear wave that
we want to measure. For this reason, we only use the data for z >
7 mm (the dashed square in Fig. 2G) in the subsequent analysis.

To derive the group velocities in a robust way, we apply the
Radon transformation (41) to the spatiotemporal data shown in
Fig. 2 (F and G) to compute vx and vz (for the lateral direction x,

a directional filter is performed to the spatiotemporal data before
the Radon transformation; see note S3 and fig. S4). In the absence
of mechanical stress, we get vx = 2.81 ± 0.05 m/s and vz = 2.82 ± 0.06
m/s, which agrees with the theoretical prediction that vx = vz in the
absence of mechanical stress. The initial shear modulus derived
from the shear wave speeds is μ = 8.46 ± 0.33 kPa, in agreement
with the mechanical characterization performed by indentation
tests (shear modulus 8.6 ± 0.3 kPa; see note S4).

Measuring stresses in hydrogel and muscle without the
knowledge of their constitutive parameters
For our first test, to demonstrate the usefulness of our theory and
method, we applied uniaxial stress to the hydrogel sample σ1 along
the x direction and then measured vx and vz. As shown in Fig. 3A,
the tensile/compressive stress increases/decreases vx but decreases/
increases vz. The identified stress shows a good agreement with the
applied stress, with a maximum error of ∼5% (Fig. 3B).

Furthermore, we measured the stress induced by the bending de-
formation of the hydrogel sample. As shown in Fig. 3C, we applied a
4-cm deflection to bend the sample, which resulted in an approxi-
mately linear stress field across the thickness of the sample (see the
simulation in Fig. 3C). We perform measurements within four
planes parallel to the neutral plane of zero stress, at y = −20,
−14.7,12.8, and 20 mm. Figure 3D shows the stresses measured at

Fig. 2. Acoustoelastic imaging using ultrasound shear wave elastography. (A) Schematic of the experimental setup. An ultrasound beam focuses successively from
left to right along the x axis at six locations inside the material separated by distance d = 1mm to excite multiple shear waves. Interference of the shear waves gives rise to
a strong vertically propagated shear wave (along the z axis). Wave propagation in the region of interest (ROI) is measured by planewave ultrasound imaging. (B) Schematic

showing the propagation of the interference at (2.5d, z), with a speed of z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ ð2:5dÞ2
q� �

v. (C) Photograph of the hydrogel sample at rest. (D) Snapshots showing the

shear wave propagation in the ROI. The maps depict the vertical particle velocity fields. Exp, experiment. (E) Finite element simulations of the shear wave propagation.
a.u., arbitrary units; Sim, simulation. (F andG) Spatiotemporal maps of the laterally (along x) and vertically propagated (along z) shear waves. (G) shows that the shear wave

speed is constant only when the shear wave propagates far away (z > 7mm, the dashed square), in linewith the theoretical prediction z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ ð2:5dÞ2
q� �

v ! vz for large

z. The shear wave speeds vx and vz are measured from (F) and (G), respectively, by the Radon transformations (see fig. S4).
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different locations, which agree with the theoretical values obtained
using finite element simulations.

We proceed to demonstrate the effectiveness of our method in
probing the mechanical stresses in anisotropic soft tissues. To this
end, we performed ex vivo measurements on a sample of porcine
skeletal muscle, as shown in Fig. 4A. The elastic deformation of
the skeletal muscle can be captured using a transversely isotropic
model reflecting the preferential orientation of the muscle fibers,
as shown by the ultrasound brightness mode (B-mode) image
(Fig. 4B). In this experiment, we applied tensile stress along the
muscle fibers using several weights (each weight is ∼500 g), mim-
icking a passive stretch of the skeletal muscle (42). Figure 4C shows
a representative snapshot (∼2.6 ms after the AFRs push) of the shear
wave propagation, when the applied stress is ∼3.6 kPa. The ARFs are
applied on the left side of the ROI, and then vx is measured for the
shear wave propagating from left to right. Compared with the hy-
drogel, it is apparent that the wavefronts are broader because of a
larger shear wave speed and that there is a stronger dissipation
(see note S5 for mechanical characterization of the skeletal muscle).

Figure 4D shows the velocities vx and vz obtained when the
muscle is subject to different levels of mechanical stresses. The mea-
surement uncertainties on thewave speeds are larger compared with
the measurements on the hydrogel sample due to the broader wave-
fronts. As expected, intuitively, the wave speed vx along the tension/
fiber direction increases with the tensile stress. Notably, the shear
wave speed vz in the skeletal muscle increases with tension along
x, in contrast to the isotropic hydrogel where vz decreases. This is

likely due to the nonlinear elastic response of the skeletal muscle,
which makes it stiffer when increasing the tension (43, 44). In the
analysis, we find that a phenomenological model incorporating ex-
ponentially stiffening effects (see note S5) fits the experimental data,
as shown in Fig. 4D.

The nontrivial acoustoelastic properties of the muscle again
highlight the key advantage of our acoustoelastic imaging method:
No acoustoelastic parameters of the materials were needed to
predict the stress. We simply derive the tensile stresses from the
shear wave speeds, as shown in Fig. 4E. The stress identified by
our method shows a good agreement (maximum error of ∼15%)
with the applied stress. We attribute the larger error to the viscoelas-
ticity of the biological sample.

DISCUSSION
On the basis of the acoustoelastic principle, we proposed a theory
and a method to probe mechanical stresses in soft materials without
prior knowledge of their constitutive parameters, in contrast to the
existing methods presented to date. A key step to realizing our
method was to program multiple ARFs to mimic a supershear
moving load, generating shear waves in two mutually perpendicular
directions. We were then able to obtain the speeds of both waves by
ultrasonic imaging, which, according to our theory, allowed us to
measure the mechanical stresses remotely. Hence, we successfully
measured the spatial variation of bending stress in a hydrogel and
of tensile stress in a passively stretched muscle, which is intrinsically
anisotropic. The stretched muscle test illustrates how our method

Fig. 3. Acoustoelastic imaging of a soft material. (A) Shear wave speeds mea-
sured in a hydrogel subject to a uniaxial stress. (B) Comparison of identified stress
with the applied stress. Dashed line represents the 45° line for visual guide. (C)
Photograph showing the sample under bending deformation and finite element
computation of the bending stress. US, ultrasonic transducer. (D) Bending stress is
measured by acoustoelastic imaging and in comparison with theory. Error bars
denote the SDs of five measurements. FEA, finite element analysis.

Fig. 4. Acoustoelastic imaging of a skeletal muscle. (A) Photograph of the skel-
etal muscle. (B) Grayscale B-mode image of the sample. In this view, the muscle
fibers (some are indicated by the arrows) and the applied stress are along the hor-
izontal direction. The acoustic radiation forces (ARFs) are applied along the red line.
Dashed square represents the ROI where the wave speeds are measured. (C) A rep-
resentative snapshot (∼2.6 ms after ARFs push) of the wave propagation when the
applied stress is ∼3.6 kPa. Scale bars, 1 cm (A to C). (D) Shear wave speeds mea-
sured at different levels of stress. Markers, experiment. Error bar denotes the SDs of
five measurements. Dashed lines represent theoretical curves that are obtained
using a phenomenological model (see note S5). (E) Comparison between
applied stress and identified stress. Dashed line represents the 45∘ line for
visual guide.
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works even in the presence of structural anisotropy when it is
aligned with the stress. Our method relies on the measurement of
vertically polarized shear waves in specific imaging orientations rel-
ative to the material axis of symmetry. When such an experimental
setup is not achievable in an in vivo measurement, further efforts
such as using 3D rotational imaging (45) or 3D ultrasonic transduc-
er are needed to ensure that these waves can be excited and mea-
sured to infer the mechanical stress.

The effect of the viscoelasticity of soft materials on the proposed
method deserves a careful discussion. As indicated by our experi-
ments on skeletal muscle, inaccuracies may appear when neglecting
viscosity. For high enough frequencies, biological tissues exhibit fre-
quency-dependent responses due to viscosity, which, in turn, may
affect the predictions of our method. To address this issue, we
invoke the quasi-linear viscoelasticity theory, which models the
stress relaxation with a Prony series,
μðtÞ ¼ μ0½1 �

Pn
i¼1gið1 � e� t=τiÞ�, where μ(t) is the relaxation

shear modulus in response to a step constant strain, μ0 is the instan-
taneous shear modulus, τi is a characteristic relaxation time, and gi is
a dimensionless relaxation modulus (i = 1,2, …, n). For simplicity,
we take n = 1 and find that this model fits well the viscoelastic dis-
persion of shear waves in skeletal muscle over the 100- to 500-Hz
range, with g1 = 0.79 and τ1 = 0.49 ms (see fig. S6E). We then use
this model to evaluate the effect of viscoelasticity on the identified
mechanical stresses based on a recently proposed acousto-viscoelas-
tic theory (46). The results show that, over a broad frequency range
(10 to 1000 Hz), the stress is underestimated when viscoelasticity
comes into play (see note S5 and fig. S7). However, in our
method, we use the group velocity of the shear waves (4-dB band-
width from 100 to 1000 Hz; see fig. S8), and the average error over
the frequency band is ∼16%, consistent with our measurements. For
soft materials where the extent of stress relaxation is less than ∼50%,
which covers a wide range of soft materials including most hydro-
gels and soft tissues, our analysis indicates that shear wave disper-
sion caused by viscosity has a negligible effect on mechanical
stresses measured with the reported acoustoelastic imaging
method (the maximum error is less than 10%).

Measuring the constitutive parameters of a soft material in situ is
challenging, because the parameters change with time, environ-
ment, and from one working state to another. By bypassing this dif-
ficulty, our constitutive parameter-free theory and method to probe
mechanical stresses in a nondestructive manner should find broad
applications across different disciplines including, but not limited
to, biomedical engineering, biology, medicine, materials science,
and soft matter physics.

MATERIALS AND METHODS
Ultrasound setup
Our ultrasound experimental system was built on the Vantage 64 LE
system (Verasonics Inc., Kirkland WA, USA). The central frequen-
cy, pitch, and element number of the ultrasound transducer (L9-4,
JiaRui Electronics Technology Co., Shenzhen, China) used in our
experiments were 7 MHz, 0.3 mm, and 128, respectively. The
imaging sequence of the ultrasound experiment is depicted in fig.
S2A. In the excitation stage, the focused ultrasound beams were
generated by 32 elements (with a voltage of ∼10 V, aperture size
of ∼10 mm, and uniform apodization). The focus was ∼13 mm

away from the transducer. In the imaging stage, while all the 128
elements (with a voltage of ∼10 V, aperture size of ∼40 mm, and
uniform apodization) were used to transmit unfocused ultrasound
beams, only the 64 elements at the center of the transducer were
used as receivers. The ultrasound in-phase and quadrature signals
during the wave propagation were acquired at a frame rate of 10
kHz. The plane wave imaging with delay and sum beamforming
was adopted to reconstruct each frame (47). The particle velocity
field was calculated offline based on the Loupas’ estimator (48)
using a kernel size of 5 by 2 (0.275 mm in x and 0.2 ms in t). A
spatial filter (mean filter) with a kernel size of 8 by 8 (0.87 mm in
x and 0.44 mm in z) was then used to reduce the noise of the particle
velocity. For all the experiments, 10 successive measurements (∼56
ms) were performed, and the average of the measurements was
taken to improve the signal-to-noise ratio.

Hydrogel phantom preparation
The hydrogel consisted of 10% PVA, 3% cellulose, and 87% deion-
ized water by weights. We dissolved the PVA powder (Sigma-
Aldrich, 341584, Shanghai, China) into 80°C water. We then
added cellulose powder (Sigma-Aldrich, S3504, Shanghai, China)
into the solution and fully stirred the solution to get a suspension
of the cellulose powder. The cellulose particles act as ultrasonic scat-
terers to enhance the imaging contrast. We poured the suspension
into a square plastic box (with a length of ∼30 cm, width of ∼7 cm,
and height of ∼4 cm) and then cooled the suspension to room tem-
perature (∼20∘C) before putting it into a −20∘C freezer. We froze the
sample for 12 hours and then thawed it at room temperature for
another 12 hours. The stiffness of the sample can be tuned by freez-
ing/thawing (F/W) cycles (49). The hydrogel sample used in this
study underwent two F/W cycles. We performed indentation tests
on the hydrogel and measured the dispersion relation of the Ray-
leigh surface waves to characterize its elastic and viscoelastic prop-
erties (see note S4 and fig. S5).

Finite element analysis
The finite element analyses (FEA) were performed using Abaqus
(Abaqus 6.14, Dassault Systèmes). We built a plane strain model
with Abaqus/Standard for the shear wave generation in isotropic
materials. The size of the model was 50 by 50 mm 2. The ARF
was modeled as a body force with a Gaussian shape of the form

f ¼ f 0exp �
½x � xðiÞ�2

2r2x
�
½z � zðiÞ�2

2r2z

( )

ð3Þ

where f0 is the magnitude of the force, with a direction parallel to the
ultrasound beam and magnitude small enough to generate small-
amplitude waves, and [x(i), z(i)] (i = 1,2, …,6) are the coordinates
of the six focal points. We took rx = 0.5 mm (see fig. S2, B and C)
and rz = 1.0 mm. We used a uniform mesh grid (element size of 0.1
mm) and the CPE8RH element (plane strain, eight-node biqua-
dratic, reduced integration, hybrid with linear pressure). Other pa-
rameters used in the simulations and the postanalyses were
consistent with our experimental setup.

To check that our programmed ARFs generates vertically prop-
agated waves, we built a 3D model with Abaqus/explicit. We used a
geometry that was similar to the plane model for isotropic materials
but extended the model thickness to 20 mm along the elevational
direction (y axis). The Gaussian radius of the ARF along the y
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axis is ry = rx. We used the C3D8 (eight-node linear brick, hybrid
with constant pressure) element in the simulation, and the average
mesh size for the 3D model was about 0.1 by 0.1 by 0.1 mm.

In the FEA of the bending stress, we built a plane stress model
that was 30 cm long and 4 cm wide. The size of the model was con-
sistent with our physical sample. We fixed the sample’s lower left
and right corners and prescribed the displacement (6 cm) at the
middle of the lower boundary. We used a uniform mesh (0.5 cm)
and the CPS8R element (plane stress, eight-node biquadratic,
reduced integration).
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