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Abstract

Facial analysis tasks are of pivotal importance in social interaction, thus gaining extensive
attention among the scientific community. With the increased popularity of deep learning
models and the availability of high-performance infrastructure, it has become the de-facto tool
for different facial analysis applications. However, when it comes to 3D facial analysis tasks
like 3D face alignment, face reconstruction, facial expression analysis, etc., the availability
of high-quality 3D face data is the biggest bottleneck. Particularly collecting accurate real
ground truth pose and depth information is very challenging because of the limitations of
real-world sensors. Furthermore, with the recent introduction of data privacy laws like GDPR
and their associated restrictions, collecting face datasets has become more challenging, as it
involves human subjects. With the advancement of computer graphics tools, domain-specific
data generation with accurate annotations has provided a feasible alternative to real data.
Though synthetic data can be a choice for deep learning training, the resulting domain gap
between synthetic and real environments is still a challenge for the trained model to perform
well in a real-world scenario. As a result, another type of approach has gained popularity:
unsupervised learning, where the model tries to learn the objective without any annotated
data.

In this dissertation, we address the issue of the unavailability of high-quality, accurate real-
face data by applying these two approaches. With the help of low-cost digital asset creation
software and an open-source computer graphics tool, we first build a pipeline to create a
large synthetic face dataset. We rendered around 300k synthetic face images with extensive
data diversity, such as different scene illuminations, backgrounds, facial expressions, etc.,
with their ground truth annotations like the 3D head pose and facial raw depth. We validate
the synthetic data with two different facial analysis tasks - head pose estimation and face
depth estimation. While learning the head pose from the synthetic images, we propose an
unsupervised domain adversarial learning methodology to reduce the domain gap between
the real and synthetic face images. We show that using our method, we can achieve near-state-
of-the-art (SOTA) results with unsupervised training compared to the supervised methods
that solely use real data to train their model.



viii

Furthermore, to solve the scarcity of 3D face data, we propose a weakly supervised
approach to extract the 3D face information from a single 2D face image. For this 3D
face reconstruction task, we use the popular vision transformer with hierarchical feature
fusion as the feature extractor module and train our network with a differential renderer in
an unsupervised fashion without any real 3D face scan data. Though this approach is able
to generate accurate 3D face shape from a single 2D face image, the model size is large
and requires high computational resources. This makes it unsuitable for low-cost consumer
electronic devices or processing at the edge. So in the last section of this thesis, we propose
a pipeline to build 3D facial dense landmarks with 520 key points that cover the entire
face as well as carry the information of the overall facial structure. To show that the data
generated by our proposed method is able to preserve the 3D information, we train a dense
face landmark predictor with this data. The trained model achieves comparable results to
other SOTA methods in the sparse 3D facial alignment task.
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Chapter 1

Introduction

1.1 Introduction

With the world population ever increasing, there is no doubt that with more than 7 billion
unique samples, human faces are one of the most complex data types in computer vision.
Though the base structure of human faces is similar to each other, the detailed character-
istics and deformation vary significantly with the variation of age, ethnicity, and gender.
Thus human faces are always a prevalent subject among computer vision researchers in
different tasks such as face detection [91], identity [145] and expression [94] recognition,
face re-enactments/swapping [42], random face generation [164, 144], face modeling or
reconstruction [99, 170] etc. These facial analysis tasks are extensively exploited in dif-
ferent applications, which include security [125, 119, 72, 74], human-computer interaction
[33, 124], animation [46, 149, 37] and even health [105, 154]. With the advancement of
deep neural networks (DNN), it is now possible to produce human-level performance in
different computer vision tasks, which makes it the obvious choice for facial analysis tasks
too [170, 146, 145, 94, 164]. Though the performance of these DNN models largely depends
on the massive amount of accurate ground truth training data. Due to the availability of
large-scale 2D face data, 2D facial analysis has been used widely for many years. But
because of the 3D nature of the human face, 2D images fail to accurately capture the complex
geometry, as its collapses into one dimension. Also, 3D imaging comes with a geometrical
representation invariant to pose and scene illumination, a significant drawback of 2D imaging.

These recent advancements have made 3D deep learning popular among researchers. But
it comes with its own price of the scarcity of the 3D ground truth data, which often limits its
scope. 3D facial data can be produced by 3D scanners, stereo-vision systems, or RGB-D
sensors (e.g., Microsoft Kinect). The first two methods can acquire high-quality 3D face data
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but require a controlled environment and expensive equipment. On the other hand, RGB-D
cameras are comparatively cheaper, but the captured data is of limited quality. Overall all
these methods have a significant issue of not covering all the variations across ethnicities
and age groups, as the data is mainly acquired in a controlled setup. Thus machine learning
models trained with these data fail to generalize enough to work in real-world industrial
use cases and limit the fairness of the model [60]. So instead of collecting and labeling
real data, which is an expensive task that can be subject to bias, an alternative solution, the
synthesizing of training data using computer graphics (CG) tools, has been introduced. With
synthetic data, we have complete control over the variations of the data, thus eliminating
biases. This also ensures perfect labels without any annotation noise, which is otherwise
impossible to label by hand. The computer vision community has studied synthetic data
in different tasks like scene understanding [114, 53, 36], eye tracking [150, 117, 22], hand
tracking [162, 141], object recognition [75], full body analysis [78, 73] and many others
[102]. Though advancements in generative deep learning models, GAN and diffusion models
can create high-quality and realistic 2D face data. However, very few previous works have
attempted to synthesize a full 3D human face due to the human face’s complexity. So there is
a significant gap in the current research on creating and utilizing synthetic 3D face databases
using the available CG toolchains.

With CG tools, we can generate pixel-perfect synthetic data for most computer vision
tasks that can be used to train deep learning models. But when it comes to the problem of
high-level computer vision tasks like object detection, object or scene segmentation, 3D
pose, viewpoint- and depth estimation, research has shown that the domain gap between
the synthetic and real data does not allow for achieving SOTA results by training only on
synthetic data. So researchers have tested hybrid datasets, a mix of real and synthetic data,
and achieved better results. Also, Movshovitz-Attias et al. [100], and Tsirikoglou et al.
[136] showed that making the synthetic data more realistic with advanced CG tools helped
to improve the results in tasks like viewpoint estimation and object detection. Particularly
when it comes to the problem of human facial analysis, photo-realism of synthetic data is a
major issue. This domain gap (or domain shift) between the real and synthetic data can be
eliminated by domain adaptation (DA) techniques. DA is a subcategory of transfer learning
where we try to make the model trained on one domain of data which we called the source
domain, so that the trained model will perform well on a different domain or the target
domain. Unlike other transfer learning methods here the feature space of both the domains
remains the same but the distribution of the data differs from each other. Synthetic 3D face
data can be a good candidate for DA as we can try to train the models with synthetic data and
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evaluate the performance against real face data. However, such direct transfer of knowledge
may not work well due to domain shift or dataset bias. Fine-tuning the pre-trained source
model with a small sample of the target labeled data can be a solution. But fine-tuning still
requires a considerable amount of target domain data, which is not available when it comes
to 3D facial analysis tasks. Additionally, almost all these domain adaptation methods are
studied for classification tasks where some classes do not exist in the target domain. But
most facial analysis tasks like head pose estimation or learning the 3D face data from the
depth queues fall under regression problems where the DA is not yet studied extensively.

The use of synthetic data for 3D facial analysis can solve some of the data scarcity issues.
However, still, it fails to replicate the distributions of the intrinsic characteristics of real
faces. On the other hand, capturing high-volume 3D scans is expensive and such datasets are
unavailable for model training. So an easy and feasible alternative to capturing a 3D scan
of a face is to estimate the face geometry from uncalibrated 2D face images. But due to the
complex nature of the human face, this approach of 3D-from-2D reconstruction is inherently
ill-posed, as we need to recover the facial geometry, head pose, and texture information
(including the color and illumination) from a single 2D face image. Also, a single 2D picture
can be generated from the different 3D models as long as the texture matches the 2D image,
so it generates ambiguities in these 2D-to-3D solutions. A well-agreeable solution is to add
prior knowledge to resolve these ambiguities. As the human face has a common base shape,
this can be used as prior knowledge for any face reconstruction task. So statistical 3D face
models are the most popular way to add this prior knowledge, as they have the ability to
encode geometric variations with appearance properties. The most commonly used statistical
face model is the 3D Morphable Model (3DMM) proposed by Blanz and Vetter [20], which
consists of the shape (geometry) and the albedo (texture or color) model constructed from
a set of high-quality 3D face scans using Principle Component Analysis (PCA). But in
order to train the model with 3DMM data, we need a set of ground truth images and their
corresponding 3DMM parameters, which is often not available.

So a new strategy has become popular: self-supervised training - at first, the 3DMM
parameters are predicted through a backbone network, then a 3D face model is built with the
help of those predicted 3DMM parameters and fed to a differential renderer layer that renders
the predicted 3D face model to the image plane. Finally, the rendered 2D image is compared
with the ground truth image. Most of these self-supervised networks trained a CNN backbone
to learn the 3DMM parameters. By its fundamental characteristics, convolutions are local
operations. Thus sometimes Convolution Neural Networks (CNN) fail to learn the global
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features, which is essential when it comes to face reconstruction tasks. To overcome this
shortcoming of CNN in the computer vision community, transformer-based architectures
have gained immense popularity due to their ability to capture long-term dependencies.
Though these vision transformers (ViTs) have achieved SOTA results in different computer
vision tasks like image classification [143, 97, 44, 147], object detection [160, 48], and image
segmentation [163, 43, 62], transformers are not studied in face reconstruction tasks. This
opens up a new area where the effectiveness of different vision transformer networks can be
studied to face reconstruction problems.

In the analysis-by-synthesis method, which is discussed above, the model is learned by
reducing the photometric error [65] between a generative 3D face model and a ground truth
image using differentiable rendering techniques. But to make this differentiable rendering
computationally feasible, it depends on a number of approximations. It assumes the human
face as a Lambertian object, and the reflectance model and the scene illumination as spherical
harmonics alone [151]. But in reality, the complexity of the human face can not be modeled
as a linear Lambertian object. Also, the illumination effects, such as shadows cast by the
nose or the ambient occlusion, can not be modeled by spherical harmonics. To alleviate these
limitations, either we have to rely on the fit-and-render strategy, where the face is fitted to
a 3DMM, or we need to train a more complex and large deep learning model. Both these
approaches make the model computationally expensive and inappropriate for edge and IoT
devices. An alternative to this is extracting the facial landmarks, which are the points of
correspondence across the faces. Almost all of the publicly available facial landmark datasets
have only 68 key points. But the overall facial expressions and identities can not be encoded
by only 68 sparse landmarks. When it comes to reconstructing the whole face, it is almost
impossible to get relevant information from those landmarks. But if we are able to predict
dense landmarks which cover the entire face, it will help to get the face shape. It will also
help to eliminate the dependence on statistical models like 3DMM and make the model size
reasonable to make it work in edge devices.

The major challenges in the 3D facial analysis that are identified and addressed in
this thesis are therefore: 1) lack of high-quality 3D face data with accurate ground truth
annotations like the head pose and face depth, 2) feasibility of synthetic face data as an
alternative of real data in popular computer vision tasks like head pose estimation and face
depth estimation, 3) photorealistic 3D face synthesis without ground truth 3D face scans,
4) limitations of the unsupervised or semi-supervised face reconstruction model due to its
computational complexity which limits them to run on the edge devices.
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1.2 Summary of Contributions

In this section, a short summary of the main contributions is presented. In the later chapters,
each of these contributions is discussed in more detail. Each chapter will start with an
introduction which will present the context of the research, followed by the motivation against
that section. This will lead to the main research question addressed in that chapter. Each
chapter will end with a contribution to that research question and discussion. Additionally,
for each work, a table is presented showing the contribution of the authors in that article.

1.2.1 Synthetic Data Generation for Facial Analysis

Chapter 2 contributes to a methodology for generating synthetic facial data. In the initial
research work [14], a methodology for building synthetic face data is presented. With the
help of commercially available synthetic asset-building software and an open-source CG tool,
a pipeline to build synthetic face data with their corresponding annotations, like the head
pose and face depth, is proposed. With the help of the proposed pipeline, a dataset has been
constructed and released for public use in the subsequent work [15]. The published dataset
has two sets of data consisting of ground truth head pose and depth map. The head-pose
dataset has more than 600k pairs of synthetic face images and their corresponding ground
truth head-pose annotations. The facial depth data set has more than 500k of synthetic face
data with their raw depth data.

1.2.2 Validation of Synthetic Facial Data through Computer Vision
Tasks

The synthetic data that was generated, as mentioned in Chapter 2, is then validated through
two different computer vision tasks. These methods of validating head pose and facial depth
are discussed in Chapter 3. In the first part of the study, the task of measuring the accurate
head pose from a single headshot image is considered. Though there are many studies on
head pose estimation using popular real datasets, these methods are highly biased on the
limited data available. There is minimal work on learning head pose from a synthetic dataset.
So in the initial work [16], a SOTA model has been trained solely with the new proposed
synthetic data. Near SOTA head pose estimation (HPE) results are achieved in compared
to the SOTA models which are trained on only real data. Also, a data-fusion-based transfer
learning approach is applied, where the model trained with the synthetic data is fine-tuned
with only 1k of real data. The result of the model surpasses the current SOTA results. This
initial work is further expanded by proposing an adversarial DA approach [12]. In this work,
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the model is trained simultaneously on the labeled synthetic data in supervised and unlabeled
real data in an unsupervised way. The model achieved significantly better results than the
model trained on synthetic data only.

In the next study, the validity of the raw depth data is studied through the facial depth
estimation task. An initial work [85, 84] is first presented on learning an accurate face
depth estimation model. A shallow autoencoder-based deep learning model is trained with
the synthetic face data and their corresponding ground truth raw depth data. The initial
experiments show promising results when the model is evaluated against the synthetic test
and evaluation dataset; a simple, less complex model does provide better results than the
dense feature extractor models. This work is further extended in [86] where a hybrid loss
function is proposed to learn the accurate depth from a single image training a light-weight
encoder-decoder based depth estimation model. A detailed ablation study is also conducted,
varying different backbones of the encoder network and changing the weights of the loss terms
to see the individual contribution of the different loss terms. Through multiple experiments,
it has been found that the proposed lightweight model is more computationally efficient than
the current SOTA depth estimation models and shows a performance equal to or better than
the SOTA when evaluated across four different public datasets.

1.2.3 Human Face Reconstruction from a Single Image with weak Su-
pervision

In chapter 3, we achieved a near SOTA result in learning facial depth training on synthetic
data. But still, due to a lack of real data, we are not able to validate the learned model
extensively. So in the next work, as presented in chapter 4, we propose a weakly supervised
learning framework for 3D face reconstruction from a single facial image. For 3D face
reconstruction, a statistical face model like 3DMM acts as a powerful prior. Recent works
proposed several methods that build on top of predicting the 3DMM parameters to form
the face mesh. When it comes to predicting a 3D face from a single face image, we need
to extract the features from that image. CNN has gained popularity as the de-facto feature
extractor for most computer vision tasks. It is efficient in learning local patterns. But it fails
to capture the long-range dependencies between patches, which is essential when it comes
to the face reconstruction task. So recently, transformer-based networks have been adopted
by the computer vision community for their ability to learn long-range dependencies. But
at the same time, these lack the ability to learn the local features compared to CNN. So in
this work, we propose a hierarchical feature aggregation module-based feature extractor with
the Swin Transformer as its backbone as the feature extractor. This architecture is able to
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learn multi-scale features in a coarse-to-fine manner with a reduced computational cost and
model size compared to vanilla transformers. To the best of our knowledge, this is the first
work that has studied the effectiveness of transformer networks with feature fusion in the
face reconstruction task. With the proposed architecture, we train the network in a weekly
supervised manner. We predict the 3DMM parameters from the single-face image, pass them
through a differential renderer, and compare the rendered image with the ground truth image
without any ground truth 3D face scans or facial depth cues.

1.2.4 Lightweight Dense Face Landmark Detection

Chapter 5 presents a new method for learning dense 3D landmarks from a monocular face
image. At first, a ground truth of dense face landmarks of 520 key points is obtained from
the UV map data that was originally developed in [49]. We then train a lightweight regressor
network to learn the key points from those ground truths. We have conducted a detailed
ablation study on the model performance and varying computational complexities.

1.2.5 Other Contributions

In chapter 6, we presented two of the secondary publications. The first section provided the
details about the work on Speech Driven Video Editing via an Audio-Conditioned Diffusion
Model. Facial video editing with audio cues is a very popular and complex facial analysis task.
The goal of this task is to re-synchronize the lip and jaw movement of a speaker in a video
based on a new speech input signal. Here, we presented an end-to-end method for speech-
driven video editing with a diffusion-based generative model. Though facial landmarks or
other facial reconstruction queue help as intermediate learning, we have not relied on them
because of a lack of ground truth. Instead, we propose an unstructured generation method
that directly generates the facial video conditioned by the audio signal. We have used a
U-Net-based denoising diffusion model based on Palette [118]. Our method impaints the
lower half region of the face, including the lip and jaw movements. We conditioned the
network with mel-spectogram features combined with the previously generated frames to
generate the next frame. This helps to add the audio signal as well as maintains temporal
stability.

In the next section, a work based on a review is presented. During the previous study of
facial depth estimation using synthetic data, we also reviewed the different loss functions
used as an objective for the depth estimation task and different datasets used for training.
The detailed review is published in this work [87].
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face-model reconstruction from a single image: A feature aggregation approach using
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9. Khan, Faisal, Shahid Hussain, Shubhajit Basak, Mohamed Moustafa, and Peter Corco-
ran. "A Review of Benchmark Datasets and Training Loss Functions in Neural Depth
Estimation." IEEE Access 9 (2021): 148479-148503.

1.4 Contribution Taxonomy

As this thesis is an article-based submission, the works included have been done with the
collaboration of multiple authors. In order to establish the primary authorship of the listed
papers, the CRediT [5] methodology has been adapted. CRediT is a popular taxonomy
followed by most of the reputed journals to specify the contribution of the authors. It is
measured based on 14 roles: Conceptualization, Data curation, Formal Analysis, Fund-
ing acquisition, Investigation, Methodology, Project administration, Resources, Software,
Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.

Though the works are done in collaboration, the majority of the work presented in this
thesis is done by me. In this thesis, the taxonomy is more simplified, and the contributions
are broadly categorized in the following -

• Ideation - This includes conceptualization and ideation of the main hypothesis.

• Experiments & Implementations - This includes methodology, investigation, data
curation, software development, validation, and visualization.

• Manuscript Preparation - This includes all aspects of writing the drafts, including
Writing – the original draft, Writing – review & editing.

• Background Work - This includes some aspects of literature review, formal analysis,
resourcing, project administration, and supervision to ensure that the methodology
used is typical of that used in the field publication area.

This simplification of CRediT ignores most aspects of project funding, project adminis-
tration, and overall supervision but otherwise encapsulates the main attributes of the primary
authorship as per CRediT. Each of the consecutive chapters is accompanied by a table in the
’Summary of Contribution’ section showing the contributions of each author to the aforemen-
tioned four criteria. Authors are listed by their initials where SB stands for Shubhajit Basak,
FK stands for Faisal Khan, HJ stands for Hossein Javidnia, PC stands for Peter Corcoran,
RM stands for Rachel McDonnell, MS stands for Michael Schukat, JL stands for Joseph
Lemley, DB stands for Dan Bigoi, and SH stands for Shahid Hussain. Contributions are
presented as a percentage (%) of work that falls under these four categories.





Chapter 2

Synthetic Facial Data Generation

2.1 Background

Recent advancements in CGI technology have improved the quality of synthetic data and
made it popular for deep learning training [103]. Particularly in low-level computer vision
tasks such as optical flow estimation (estimating the distribution of the apparent movement
of different objects, edges, and surfaces caused by the relative motion of the observer with
respect to the scene) or stereo image matching (finding correspondence between two points
in the same image captured from two different viewpoints), etc., synthetic data has been used
extensively, as these tasks can be approached with methods that do not require large real data
repositories or much learning in terms of deep learning methods. One of the recent works by
Mayer et al. [96] provides an overview of different synthetic datasets for low-level computer
vision tasks specifically for optical flow. Through extensive experimental results, they show
that the realism of the synthetic data is not a significant requirement for low-level tasks
explained above. Instead, combining the different synthetic datasets, which vary in situations
and domains, and adding real-life simulations like lens distortion, image blur, or Bayer
interpolation artifacts in the synthetic dataset, improves the result of the models significantly.
When it comes to high-level tasks like object detection or segmentation, the quality and
realism of the synthetic data play a significant role in model training and performance.

Particularly, synthetic models of the human face and human body are of immense interest
among the scientific community, as they have advantages over real-face datasets, which have
some major issues like:

• The real face datasets often contain biases regarding gender, race, and other parameters
[90, 80].
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• Labeling of face attributes like head pose, eye gaze, facial key points, or, more impor-
tantly, face shape is expensive and hard to achieve manually.

• Privacy and ethical issues and regulations like GDPR often restrict the usage of real-
face datasets [109].

In contrast, synthetic facial data comes with its own perks:

• With the help of CGI tools, we can generate a theoretically unlimited amount of face
data with control over different properties like head pose, eye gaze, gestures, etc. At
the same time, we can generate accurate ground truth labels like face segmentation,
facial key points, and joint locations, which is almost impossible to gather for real data.

• Synthetic data can be used to augment real datasets, reducing the bias of real datasets.
Generative models with domain adaptation approaches can make these synthetic data
more realistic.

In one of the earliest works on synthetic faces, Queiroz et al. [107] proposed a pipeline
to generate the ground truth of real faces with realistic textures extracted from real faces and
published the Virtual Human Faces Database (VHuF). Later Bak et al. [9] published the
Synthetic Data for person Re-Identification (SyRI) dataset generated with the help of Adobe
Fuse CC and Unreal Engine 4. They created the scene lighting based on HDR environment
maps. Hu et al. [71] proposed a pipeline to generate synthetic face datasets by combining
automatically detected facial parts like eyes, nose, mouth, etc., and used the data for face
recognition(FR) tasks. Their results showed that the resulting artifacts in the faces did not
affect the FR accuracy and, in some cases, improved the robustness of the model. Few other
recent works used 3DMM models to generate some parts of the face and used them in specific
tasks. For example, both Sugano et al. [127] and Wood et al. [153] used 3DMM-based eye
models for gaze estimation tasks. But due to the complexity of the full human face, very
few previous works have attempted to generate full-face synthesis with computer graphics
pipelines. The most recent and relevant work was published by Wood et al. [150], where they
generated a large face dataset through a pipeline by combining a parametric face model with
a large set of high-quality artists created CG assets like textures, hair, and clothing. Though
the dataset has annotations like dense landmarks, normal maps, depth, and face segmentation,
only the sparse landmarks and segmentation are made publicly available. None of these
datasets contains the 3D models and depth cues, which are the main attributes of 3D face
analysis.
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2.2 Research Objective

As stated in the previous section, there is a very limited amount of open-source synthetic
face data currently available online. Particularly when it comes to learning 3D cues, no such
dataset has 3D annotations. So our main objective of this study is to build a large synthetic
face dataset with ground truth annotations that can be used to learn 3D face shapes. With
the advancement of CG technology, currently, there are many open-source CG tools(like
Blender, Krita, Lunacy, Gimp, 3D-Max etc.) that are publicly available. With the help of
these software chains, we can build a pipeline to create a large-scale synthetic face dataset
and collect ground truth annotations. Though to build the face dataset, we need virtual human
models. A common option can be collecting 3D face scans. But they are expensive and
involve setting up complex environments. So to achieve our goal, we perform the following:

• Search through the available CG tools (like Maya, 3DS Max, Blender, Cinema 4D etc.)
and select the appropriate and useful one in terms of usability and ease of learning.

• Identify the 3D synthetic human models that are available in the online market and
cheap to buy and use.

• Provide enough variations in facial expressions and gestures as well as appearances.

• Build an automated pipeline using a programming language like python to generate
the ground truth face images with their annotations like the head pose and facial depth.
Also, to build the ability to provide control over head movement and background
scenes within the pipeline.

• Finally, using the pipeline, build a large dataset that can be used for deep learning
training.

2.3 Summary of Contributions

This main work is presented through the article - Basak, Shubhajit, Hossein Javidnia, Faisal
Khan, Rachel McDonnell, and Michael Schukat. "Methodology for building synthetic
datasets with virtual humans." at the 2020 31st Irish Signals and Systems Conference (ISSC)
[14]. The resulting dataset is presented in - Basak, Shubhajit, Faisal Khan, Hossein Javidnia,
Peter Corcoran, Rachel McDonnell, and Michael Schukat. "C3I-SynFace: A synthetic head
pose and facial depth dataset using seed virtual human models." Data in Brief (2023): 109087
[15]. A copy of the published papers are attached at the end of this chapter.
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Table 2.1 Author’s Contribution to [14, 15]

Contribution Criteria Contribution Percentage
Ideation SB 70%,HJ 20%,PC 10%

Experiments & Implementations SB 90%,FK 10%
Manuscript Preparation SB 90%,HJ 3%,FK 4%,RM 3%

Background Work SB 70%,MS 20%,PC 10%

The contributions of the authors for the above-mentioned research work [14, 15] as per
the four major criteria discussed in section 1.4 is presented in the table 2.1.

2.3.1 Generation of virtual Human Models

In order to achieve the research objective, the first step is to build the pipeline to create virtual
human models. We have chosen a commercially available digital asset creation software
called iClone 7 [3] and Character Creator [1] for creating the virtual models:

• Character Creator provides “Realistic Human 100” - which contains 100 virtual human
models with variation over ethnicity, race, gender, and age.

• The morphing shape or the mesh of different parts of the body can be adjusted to give
more variation over the shape.

• Additionally, different expressions like sad, angry, happy, scared, and neutral are added
to the models.

• These models are then exported to fbx (Filmbox) format, which has the mesh and
armature (bones) and can have facial expressions embedded as frames. So it can be
used to exchange both geometry and animation data.

2.3.2 Setup of virtual Scenes

As we have these models, we need to import these to the CG software to put them into
a scene and render them with ground truth annotations. We have chosen the open-source
CG software Blender [2], as it is comparatively simple and has Python support to automate
batch rendering. Also, Blender is released under the GNU General Public License (GPL, or
“free software”), which allows us to use and distribute it freely. We put the models in three
different scenes - 1. A scene with plain background with single color; 2. A scene with a
textured plane background, where we have used the textures provided by Abdelmounaime
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Fig. 2.1 Virtual Human Models from iClone : (a) Applying different model textures and
shapes to a base model (b) Changing facial morph to add variations (c) Applying facial
expressions on the facial models

and Dong-Chen [4]; 3. Two complex scenes (classroom and barbershop) were collected
from the Blender marketplace. We have used the Cycles Rendering Engine in Blender
to render the scene, as the Cycles engine offers ray-tracing capabilities for photo-realistic
rendering. The whole process, from importing the models in Blender to setting up the scene,
including adding scene illumination and camera and finally rendering the ground truth with
the annotations, is automated by Python scripts. The code is made publicly available through
a GitHub repository1.

2.3.3 Collecting facial Ground Truths

The fbx models imported in Blender are scaled and put into different scenes. The Blender
rendering camera field of view (FOV) and sensor size are set to 60 degrees and 36 millimeters,
respectively. The ground truth is collected by setting up the RGB and Z-pass output in the
Blender compositor layer for the RGB and raw depth data. Additionally, we also apply
continuous rotations on the shoulder bone to vary the head pose. To cover all the cross-
rotation angles similar to human head movements, we apply head rotations similar to the
ground truth of the popular real head pose dataset BIWI [47]. We have published two separate
datasets - one for the head pose, which contains around 300k ground truth RGB images and
their corresponding head pose annotations, and one for facial depth data, which contains
around 250k ground truth RGB images, their corresponding raw depth (in *.exr format) and

1https://github.com/shubhajitbasak/blenderDataGeneration

https://github.com/shubhajitbasak/blenderDataGeneration
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head pose annotations. The fbx models, face depth data, and head pose data are publicly
available in link12, link23, and link34, respectively.

Fig. 2.2 Samples from our dataset: first row and second row are the RGB and depth pair with
a simple background, the third and fourth rows are the RGB and depth pair with a textured
background, and the fifth and sixth row are the RGB and depth pair with complex scene
background.

2.4 Discussion on Contribution

This work provides a framework and an automatic pipeline to generate a large amount of
synthetic facial ground truth data using low-cost virtual human models. As we have released
the raw fbx synthetic models and the data generation scripts, one can generate a large amount

2https://drive.google.com/drive/folders/177Xem5rLg7GYRn6IDwWMwZtBgr57OrtB?
usp=share_link

3https://drive.google.com/drive/folders/1oleqLbR793xBmw8gF91JTi4TrBJQUMr2?
usp=share_link

4https://drive.google.com/drive/folders/10QNIb4Rp9D7SHMbdiK3ecbZFIL_bNOEY?
usp=share_link

https://drive.google.com/drive/folders/177Xem5rLg7GYRn6IDwWMwZtBgr57OrtB?usp=share_link
https://drive.google.com/drive/folders/177Xem5rLg7GYRn6IDwWMwZtBgr57OrtB?usp=share_link
https://drive.google.com/drive/folders/1oleqLbR793xBmw8gF91JTi4TrBJQUMr2?usp=share_link
https://drive.google.com/drive/folders/1oleqLbR793xBmw8gF91JTi4TrBJQUMr2?usp=share_link
https://drive.google.com/drive/folders/10QNIb4Rp9D7SHMbdiK3ecbZFIL_bNOEY?usp=share_link
https://drive.google.com/drive/folders/10QNIb4Rp9D7SHMbdiK3ecbZFIL_bNOEY?usp=share_link
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of data varying the head pose, background scene, scene illumination, etc. Also, as these
models are fully rigged, they can be animated using full-body mocap data to generate full-
body animation data as well. Figure 2.3 shows an example of a male and a female fbx model
with their armatures visible. Apart from the fbx models, we have also released the head pose
and the face depth data. While the head pose dataset can be used in 3D face alignment tasks,
the facial depth data can be helpful for 3D facial depth estimation and face reconstruction
tasks. In the following subsections, we will discuss the uniqueness of the head pose and
depth data in more detail.

Fig. 2.3 Samples of fully rigged male and female models in fbx format imported in Blender.

2.4.1 Synthetic Head Pose Data

A major challenge for learning-based head pose estimation methods is the requirement of
accurately labeled data. Accumulating real head pose data for model training is difficult
as it involves human subjects, which mostly raises ethical and data privacy issues. Also,
data acquisition measurements like depth sensing or IMU motion are prone to sensor errors.
The most popular head pose real datasets, like Biwi Kinect Head Pose Dataset [47] or
Pointing’04 [61], only contain around 15k and 4k data samples collected from 20 and 14
subjects, respectively, which makes them not suitable for deep learning-based model training.
The only large real dataset for head pose training available is 300W-LP [168], which is
synthesized by fitting a 3D face model to the image and profiling the image to a large pose.
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This dataset contains 61225 samples. Also, some of the datasets, like Bosphorus [120] and
Pointing’04 [61], are discrete and only contain specific head pose angles. The only synthetic
head poses dataset available is Synhead [63], which is rendered from high-quality face scans
of 10 subjects. This makes this less diverse and expensive to acquire. On the contrary, the
dataset produced by our work has more than 300k frames collected from 100 individual
models, which makes it robust and suitable for deep-learning training. Also, as we have
applied continuous rotations and applied the Biwi Head Pose sequence, it covers a wide
range to head poses. Figure 2.4 shows the distribution of yaw, pitch, and roll of our generated
data and the same distribution from the Biwi dataset.

Fig. 2.4 Distribution of Head Pose Data (Yaw, Pitch, and Roll): The top row shows the
distribution from our synthetic dataset, and the bottom row shows a similar distribution from
the Biwi dataset

2.4.2 Synthetic Facial Depth Data

Collecting monocular depth information from scenes mostly relies on depth sensors like
Kinect. But when it comes to facial depth data, it is very hard to acquire because of privacy
and ethical issues. Also, the output of these depth sensors is not accurate as the depth output
highly depends on the range and resolution of the sensor. For example, Dutta et al.[45] shows
that if the Kinect is placed within the ideal range (1m to 3m) and with proper FOV, it is
able to capture the 3D positions of a marker with very minimal error (< 1cm). Also, the
depth data is prone to sensor noise and missing depth (or missing hole) issues. In contrast,
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this work does not contain any of these issues, as we have collected the depth data with a
CG toolchain. The most popular real-depth datasets that contain facial samples, such as
Pandora [21], Biwi Kinect Head Pose [47], and Eurocom Kinect Face [98], have a limited
sample size (250k, 15k, and 50k respectively) with fewer variations of subjects (24, 20,
and 52 respectively). Also, it can be noted in particular that these datasets contain a very
small amount of dynamic objects, as most of these datasets are acquired in a constrained
environment with a plain background. So networks trained on these data with such a strong
bias often fail to generalize properly. On the contrary, our data is rendered with three different
backgrounds - plain, textured, and complex scenes with multiple objects, making it suitable
for robust deep learning training. Figure 2.5 shows an example from the Pandora [21], Biwi
Kinect Head Pose [47], and Eurocom Kinect Face [98] dataset. It can be observed all these
datasets mostly have plain backgrounds and also contain noise in the depth data due to the
limitation of the sensor.

Fig. 2.5 Sample depth data visualised from BIWI (face cropped) [47], Eurocom Kinect [98],
Pandora (face cropped) [21] and our dataset.
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Abstract— Recent advances in deep learning methods 

have increased the performance of face detection and 

recognition systems. The accuracy of these models relies 

on the range of variation provided in the training data. 

Creating a dataset that represents all variations of real-

world faces is not feasible as the control over the quality 

of the data decreases with the size of the dataset. 

Repeatability of data is another challenge as it is not 

possible to exactly recreate ‘real-world’ acquisition 

conditions outside of the laboratory. In this work, we 

explore a framework to synthetically generate facial data 

to be used as part of a toolchain to generate very large 

facial datasets with a high degree of control over facial 

and environmental variations. Such large datasets can be 

used for improved, targeted training of deep neural 

networks. In particular, we make use of a 3D morphable 

face model for the rendering of multiple 2D images across 

a dataset of 100 synthetic identities, providing full control 

over image variations such as pose, illumination, and 

background. 

Keywords— Synthetic Face, Face Dataset, Face Animation, 

3D Face. 

I. INTRODUCTION 

One of the main problems in modern artificial intelligence 
(AI) is insufficient reference data, as in many cases available 
datasets are too small to train Deep Neural Network (DNN) 
models. In some cases, where such data has been captured 
without a label, the manual labeling task is time-consuming, 
costly, and subject to human error. Producing synthetic data 
can be an easier approach to solving this problem. For image 
data, this can be achieved via three dimensional (3D) 
modeling tools. This approach provides the advantage of 
extraction of the ground truth information from 3D Computer 
Graphics (CG) scenes. While this process still requires some 
manual labor to create models, it is a one-time activity, and as 
a result, one can produce a potentially unlimited number of 2D 
pixel-perfect labeled data samples rendered from the 3D data 
model. The rendered data ranges from high-quality RGB 
images to object and class segmentation maps, accurate depth 
and stereo pairs from multiple camera viewpoints, point cloud 
data, and many more. 

Generating synthetic human models including face and the 
full human body is even more interesting and relevant, as 
gathering real human datasets is more challenging than any 
other kind of data, mainly due to the following limitations: 

• The labeling of the human face is especially 
complex. This includes proper head pose estimation, 
eye gaze detection, and facial key point detection. 

• In most cases, collecting real human data falls under 
data privacy issues including the General Data 
Protection Regulation (GDPR). 

• Generating 3D scans of the human body with 
accurate textures requires a complex and expensive 
full-body scanner and advanced image fusion 
software. 

• The existing real datasets are often biased towards 
ethnicity, gender, race, age, or other parameters. 

This synthetic data can be used for machine learning tasks 
in several ways: 

• Synthetically generated data can be used to train the 
model directly and subsequently applied the model to 
real-world data. 

• Generative models can apply domain adaptation to 
the synthetic data to further refine it. A common use 
case entails using adversarial learning to make 
synthetic data more realistic. 

• Synthetic data can be used to augment existing real-
world datasets, which reduces the bias in real data. 
Typically, the synthetic data will cover portions of the 
data distributions that are not adequately represented 
in a real dataset.  

 In this paper, we propose a pipeline using an open-source 
tool and a commercially available animation toolkit to 
generate photo-realistic human models and corresponding 
ground truths including RGB images and facial depth values. 
The proposed pipeline can be scaled to produce any number 
of labeled data samples by controlling the facial animations, 
body poses, scene illuminations, camera positions, and other 
scene parameters. 

 The rest of the paper is organized as follows: Section 
2 presents a brief literature review on synthetic virtual human 
datasets and the motivation against this work. Section 3 
explains the proposed framework. Section 4 presents some 
interesting results and discusses the advantages and future 
direction of the proposed framework. 



II. RELATED WORK 

 This section presents an overview of existing 3D 
virtual human datasets and their applications. It also describes 
their limitations, which are the main motivation of this work. 

Queiroz et al. [1] first introduced a pipeline to generate 
facial ground truth with synthetic faces using the FaceGen 
Modeller [2], which uses morphable models to get realistic 
face skin textures from real human photos. Their work 
resulted in a dataset called Virtual Human Faces Database 
(VHuF). VHuF does not contain the ground truth like depth, 
optical flow, scene illumination details, head pose, and it only 
contains head models that are not rigged and placed in front of 
an image as a background.  Similarly, Kortylewski et al. [3] 
proposed a pipeline to create synthetic faces based on the 3D 
Morphable Model (3DMM) and Basel Face Model (BFM-
2017). They only captured the head pose and facial depth by 
placing the head mesh in the 2D background. The models are 
not rigged as well. Wang et al. [4] introduced a rendering 
pipeline to synthesize head images and their corresponding 
head poses using FaceGen to create the head models and Unity 
3D to render images, but they only captured head pose as the 
ground truth and there is no background. Bak et al. [5] 
presented the dataset Synthetic Data for person Re-
Identification (SyRI), which uses Adobe Fuse CC for 3D 
scans of real humans and the Unreal Engine 4 for real-time 
rendering. They used the rendering engine to create different 
realistic illumination conditions including indoor and outdoor 
scenes and introduce a novel domain adaptation method that 
uses synthetic data.  

Another common use case of virtual human models is in 
human action recognition and pose estimation. Chen et al. [6] 
generated large-scale synthetic images from 3D models and 
transferred the clothing textures from real images, to predict 
pose with Convolution Neural Networks (CNN). It only 
captured the Body Pose as the ground truth.  Varol et al. [7] 
introduced the SURREAL (Synthetic hUmans foR REAL 
tasks) dataset with 6 million frames with ground truth pose, 
the depth map, and a segmentation map that showed 
promising results on accurate human depth estimation and 
human part segmentation in real RGB images. They used the 
SMPL [8] (Skinned Multi-Person Linear) body model trained 
on the CAESAR dataset [9], one of the largest commercially 
available data that has 3D scans of over 4500 American and 
European subjects, to learn the body shape and textures, CMU 

MoCap to learn the body pose, and Blender to render and 
accumulate ground truth with different lighting conditions and 
camera models. Though this is the closest work to this paper 
that can be found, the human models are not placed in the 3D 
background, instead, they are rendered using a background 
image. It also did not capture the Facial Ground Truths as it 
focused on the full-body pose and optical flow. Dsouza et al. 
[10] introduced a synthetic video dataset of virtual humans 
PHAV (Procedural Human Action Videos) that also uses a 
game engine to obtain the ground truth like RGB images, 
semantic and instance segmentation, the depth map, and 
optical flow, but it also does not capture Human Facial Ground 
truths. 

Though there are previous works on creating synthetic 
indoor-outdoor scenes and other 3D objects, there is limited 
work done on exploring the existing available open-source 
tools and other commercially available software to build a 
large dataset of synthetic human models. Also, another major 
concern is the realism of the data and per-pixel ground truth. 
The proposed method tries to fill that gap. It can generate 
realistic human face data with 3D background and capturing 
the ground truths like head pose, depth, optical flow, and other 
segmentation data. As these are fully rigged full-body models, 
body pose with the other ground truths can also be captured. 
A detailed featurewise comparison can be found in table 1. 

III. METHODOLOGY 

This section presents a detailed framework for generating 
the synthetic dataset including RGB images and the 
corresponding ground truth. 

A. 3D Virtual Humans and Facial Animations 

The iClone 7 [11] and the Character Creator [12] software 
is used to create virtual human models. The major advantages 
of using iClone and Character Creator are: 

• Character Creator provides “Realistic Human 100” 
models that reduce the bias over ethnicity, race, 
gender, and age. These pre-built templates can be 
applied to the base body template as shown in Fig. 1. 

• The morphing of different parts of the body can be 
adjusted to create more variations to the model. Fig. 
2 shows adjustment in cheek, forehead, skull, and 
chin bone. 

This work is funded by Science Foundation Ireland Centre for Research 

Training in Digitally Enhanced Reality (D-REAL) under grant 

18/CRT/6224. 

TABLE I.  REVIEW OF CURRENT SYNTHETIC VIRTUAL HUMAN DATASETS 

Dataset 
3D 

Model 
Rigged 

Full 

Body 
3D Background Ground Truth 

VHuF [1] Yes No No No Facial Key points, facial Images, No Depth Data 

Kortylewski et al. [3] Yes No No No 
Facial Depth, Facial Images (Only include frontal face with no 

Complex Background) 

Wang et al. [4] Yes No No No Facial Image, Head Pose, No depth data 

SyRI [5] Yes No Yes Yes Full Body Image, No Facial Images 

Chen et al. [6]  Yes No Yes No Body Pose with full body image, No Facial Images 

SURREAL [7] Yes Yes Yes No 
Body Pose with Image, Full Body Depth, Optical Flow, No Facial 

Images 

Dsouza et al. [10]  Yes No Yes Yes 
Body Pose with Image, Depth including background, Optical Flow, 
No Facial Images 

Ours Yes Yes Yes Yes Facial Images, Facial Depth including background, Head Pose 

 



• Different expressions including neutral, sad, angry, 
happy, and scared can be added to the models to 
create facial variations. Fig. 3 presents a sample 
render of these five expressions from iClone. 

• The models provide Physically Based Rendering 
(PBR) textures (Diffuse, Opacity, Metallic, 
Roughness) to render high-quality images. 

• Models can be exported in different formats (like obj, 
fbx, and alembic) which are supported by the most 
popular rendering engines.  

 Though iClone can render high-quality images, it does not 
provide the functionality to capture other ground truth data 
like exact camera locations, head pose, scene illumination 
details. Therefore, the models were exported from iClone and 
placed in a 3D scene in the popular free  and open-source 3D 
CG software toolset Blender [13] 

 

Fig. 1. Applying head template on a base female template in Character 

Creator 

 

Fig. 2. Adjust cheek, forehead, skull and chin bones in Character 

Creator 

B. Model Exporting from iClone 

The model created in iClone can be exported in different 
formats that are supported by the most popular 3D modeling 
software including Blender. Two of these formats are 
explored in this work including Alembic (.abc) and FBX 
(.fbx). 

 

Fig. 3. Sample images with different expression rendered from iClone 

In this research, the FBX format is used as it exports the 
model with proper rigging, which helps to add movements to 
different body parts including the head. A sample of a fully 
rigged model is shown in Fig. 4 after the model is loaded in 
Blender. 

 

Fig. 4. Sample of a fully rigged model imported in Blender from iClone 

C. Rendering 

The iClone models are imported to Blender 3D modeling 
software.  

The major components of Blender are Models, Textures, 
Lighting, Animations, Camera Control (including lens 
selection, image size, focal length, the field of view (FOV), 
movement, and tracking), and the rendering engine. The two 
most common and popular render engines supported by 
Blender are Cycles and Eevee. Cycles uses a method called 
path tracing, which follows the path of light and considers 
reflection, refraction, and absorption to get the realistic 
rendering, while Eevee uses a method called rasterization, 
which works with the pixel information instead of paths of 
light, which makes it fast but reduces the accuracy. A good 
comparison of these two rendering engines can be found in 
[14].  A sample workflow of the major components of Blender 
is described in Fig. 5.  

In the current work the following steps are taken to obtain 
the final output: 

• To replicate the process of capturing real data, the 
camera is placed at a fixed location in the scene and 
the relative distance from the model to the camera 
center is varied within a range of 700 mm to 1000 
mm to the human model as shown in Fig. 6. 



• Different illumination is added to the 3D scene 
which can be varied to create different realistic 
lighting which includes point, sun, spotlight, and 
area light. 

• Different render passes are set up in Blender to get 
the RGB and the corresponding depth images. 
Cycles rendering engine is used to get a realistic 
rendering. It has been observed during the rendering 
of the transparent materials that Cycles path tracing 
can cause noisy output. To reduce the noise, the 
branched path tracing is used. It splits the path of the 
ray as the ray hits the surface and takes into account 
the light from multiple directions and provide more 
control for different shaders. 

• As the model is rigged, the movement of most of the 
body parts can be controlled by selecting their bone 
structure. Here the shoulder and head bones are 
selected, and the head mesh is rotated with respect to 
those bones. 

Rotations of yaw (+30 degree to -30 degree), roll (+15 
degree to -15 degree), and pitch (+15 degree to -15 degree) are 
applied to the head and the keyframes are saved. Later these 
keyframes are used to capture the head pose. A sample setup 
in Blender is illustrated in Fig. 7. 

 

Fig. 5. Sample workflow in Blender 

Following the above three steps, the proposed framework 

works as follows: Using the Real 100 head models a set of 

virtual human models is created in Character Creator. The 

texture and morphology of the models are modified to 

introduce more variations. These models are then sent to 

iClone where five facial expressions are imposed. The final 

iClone models with the facial expressions are exported in 

FBX which consists of the mesh, textures, and animation 

keyframes. 

 

 

Fig. 6. Sample setup of camera and the model 

 

Fig. 7. Applying head movement (yaw, roll, and pitch) on the model in 

Blender to capture the head pose 

The FBX files are then imported and scaled in the Blender 

world coordinate system. Lights and cameras are added to the 

scene, whose properties are then adjusted to replicate the real 

environment. The near and far clip of the camera is set to 0.01 

meters and 5 meters respectively. The FOV and the camera 

sensor size are set to 60 degrees and 36 millimeters 

respectively. The RGB and Z-pass output of the render layer 

is then set up in the compositor to get the final result. To apply 

the rotation, the head and shoulder bone is identified in pose 

mode and the head mesh is rotated with respect to those 

bones, and the keyframes are saved. Finally the all the 

keyframes are rendered to get the RGB and the depth images 

and the respective head pose (yaw, pitch, and roll) is captured 

through the python plugin provided by Blender. The overall 

pipeline is described in Fig. 8. 

 

 

 

 



 

Fig. 8. Pipeline to produce a virtual human 

IV. RESULTS AND DISCUSSIONS 

Using the framework proposed in Section III, several virtual 
human models with their corresponding RGB and depth 
images have been rendered. 

The experiments and data generation is performed on an 
Intel Core i5-7400 3 GHz CPU with 32 GB of RAM equipped 
with an NVIDIA GeForce GTX TITAN X Graphical 
Processing Unit (GPU) having 12 GB of dedicated graphics 
memory. The RGB and depth images are rendered with a 
resolution of 640 X 480 pixels and their raw depth is saved in 
.exr format. The average rendering time for each frame is 57.6 
seconds.  The models are rendered in Blender using different 
parameters such as the positions of lights, camera parameters, 
keyframe values of the saved animations. The raw binary 
depth information and the head pose information are also 
captured as part of this dataset. Fig. 9 presents the RGB 
images and their corresponding ground truth depth images 
(scaled to visualize) with a different head pose. Fig. 10 shows 
the results with different illuminations. The models then 
imported to more complex 3D scenes and the ground truth 
data has been captured. Fig. 11 shows some samples and the 
corresponding depth with complex backgrounds. 

The proposed method allows the creation of potentially 
unlimited data samples with pixel-perfect ground truth data 
from the 3D models. Also, the 3D models can be placed in any 
3D scene and the data can be rendered within a different 
environment. Another advantage of using this pipeline of tools 
is that the positions of the camera and their intrinsic 
parameters and the scene lighting can be controlled to 
replicate a real environment. As these models have PBR 
shading and blender cycle rendering engine utilizes the path 
ray tracing and accurate bounce lighting the rendered images 
are more realistic than the previous datasets present. Table 2 
provides some samples from other datasets that capture facial 
synthetic data and shows the result from the proposed model 
is more realistic and robust than the previous ones. Although 

the proposed pipeline can generate a large amount of data 
more work has to be done in domain transfer and domain 
adaptation areas to make the images as realistic as possible. 

 

Fig. 9. Sample images of virtual human faces and their ground truth depth 

(scaled to visualize) with different head pose 

 

Fig. 10. Sample images of virtual human faces in different lighting 

condition 

 

Fig. 11. Sample images and their depth image (scaled to visualize) with 

more complex background 



V.  CONCLUSION 

In this work, a framework to synthetically generate a huge 
set of facial data with variations in environment and facial 
expressions using available toolchains is explored. This will 
help to train DNN models, as it covers more variations in 
expressions and identity. Previously generated synthetic 
human datasets [6], [7] mostly lack realism and per-pixel 
ground truth data. The proposed pipeline will help to 
overcome such limitations. The data generated through this 
framework can extensively be used for facial depth estimation 
problems. There are currently a few datasets available with 
real-world facial images and their corresponding depth 
[15],[16],[17],[18]. However, it is practically impossible to 
get pixel-perfect depth images of the human faces due to the 
limitation of the available sensors like Kinect. The proposed 
framework can bridge this gap with more accurate ground 
truth facial depth data. The models can also be used to build 
more advanced 3D scenes which will cover more complex 
computer vision tasks such as driver monitoring system, 3D 
aided face recognition, elderly care, and monitoring. 
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a b s t r a c t 

This article presents C3I-SynFace: a large-scale synthetic 

human face dataset with corresponding ground truth an- 

notations of head pose and face depth generated using the 

iClone 7 Character Creator “Realistic Human 100” toolkit 

with variations in ethnicity, gender, race, age, and clothing. 

The data is generated from 15 female and 15 male syn- 

thetic 3D human models extracted from iClone software 

in FBX format. Five facial expressions - neutral, angry, 

sad, happy, and scared are added to the face models to 

add further variations. With the help of these models, an 

open-source data generation pipeline in Python is proposed 

to import these models into the 3D computer graphics 

tool Blender and render the facial images along with the 

ground truth annotations of head pose and face depth in 

raw format. The datasets contain more than 100k ground 

truth samples with their annotations. With the help of 

virtual human models, the proposed framework can gen- 

erate extensive synthetic facial datasets (e.g., head pose 

or face depths datasets) with a high degree of control 

over facial and environmental variations such as pose, 

illumination, and background. Such large datasets can be 
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Specifications Table 

Subject Computer Science 

Specific subject area Computer Vision, Head Pose Estimation, Monocular Depth Estimation 

Type of data Images 

Annotations 

How the data were acquired The initial 3D virtual human models are collected from the low-cost commercially 

available software iClone [15] and Character Creator [16] . The data has been 

produced with a 3D graphics rendering pipeline using the open-source Computer 

Graphics (CG) software Blender [17] . The source of the 3D virtual models and the 

generating Python scripts are included in this paper. 

Data format Raw 

Description of data collection Rendering - The face images and the corresponding raw depths have been 

rendered with the following camera parameters - camera near and far the clip is 

set to 0.001 and 5.0 meters. Camera sensor size and field of view (FOV) are set to 

36 millimeters and 60 °, respectively. The yaw, pitch, and roll of a head are 

constrained to ±30 °. To render the face images and raw depths, the RGB and the 

Z-Pass compositor nodes of the Blender [17] are used with the cycle rendering 

engine. 

Background - For complex backgrounds, two scenes (Classroom and Barbershop) 

from the Blender [17] website have been used. 

Data source location Laboratory: C3Imaging, University of Galway 

Institution: School of Computer Science, University of Galway 

City/Town/Region: Galway 

Country: Ireland 

Data accessibility Direct URL to data: 

Synthetic Head Pose Datasets: 

https://data.mendeley.com/datasets/jd4jm3jpp2 [7] 

https://data.mendeley.com/datasets/mc9fzhkvwp [8] 

https://data.mendeley.com/datasets/vfrfb56sh4 [9] 

https://data.mendeley.com/datasets/pttvxjcmpd [10] 

Synthetic Face Depth Datasets: 

https://data.mendeley.com/datasets/z4454fyd8b 

[4] https://data.mendeley.com/datasets/yzjdjj5w39 

[5] https://data.mendeley.com/datasets/tbt46rs4y6 

[6] https://data.mendeley.com/datasets/33kjk7mj7y 

[1] https://data.mendeley.com/datasets/5wpj8nh2cv 

[2] https://data.mendeley.com/datasets/2c2r7998vs [3] 

Virtual Human Models: 

Due to licensing issues, we cannot release the virtual human models. But the 

models can be purchased from the Reallusion website from the following link. 

These models need to be extracted in fbx format and put in a folder structure as 

described in the ‘Experimental Design’ section. 

https://www.reallusion.com/contentstore/iClone/pack/Realistic _ Human _ 100/ 

default.html 

Code: https://github.com/shubhajitbasak/blenderDataGeneration 

Related research article S. Basak, P. Corcoran, F. Khan, R. Mcdonnell and M. Schukat, Learning 3D Head 

Pose From Synthetic Data: A Semi-Supervised Approach in IEEE Access, vol. 9, 

pp. 37557-37573, 2021, 

https://doi.org/10.1109/ACCESS.2021.3063884 [11] 
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Value of the Data 

• The data can be used to train and evaluate computer vision models for head pose estima- 

tion, face depth estimation, and face reconstruction. The different lighting conditions and 

camera positions make the data set robust and capable of generalizing the learning model. 

Finally, the large scale of the dataset makes it an ideal candidate for deep learning train- 

ing. For head pose estimation, only two datasets, 300WLP(real) [13] and Nvidia Synhead 

(synthetic) [14] , are available for training. There is no real large-scale dataset available for 

face depth estimation tasks. 

• As the dataset is generated synthetically, both the head pose distribution and the depth 

data cover a wide range of angles and a wide variation of background which can be chal- 

lenging to acquire in a constrained laboratory condition. 

• Both real head-pose and depth data are acquired by inertial measurement unit (IMU) sen- 

sors or depth sensors, which are both prone to sensor noise. For example, often, real depth 

data has missing depth values or holes in it. The most common head pose dataset, Biwi 

[12] , has an average error of 1 degree [14] . These errors in ground truth data eventually 

pass to the trained model and affect the model performance. On the contrary, the syn- 

thetic head pose and depth data generated by our pipeline are pixel-accurate and do not 

have any of these issues. 

• As both the acquisition of real head pose and face depth data required human subjects, 

they fall under different data protection and privacy regulations like GDPR, which makes 

them difficult to collect and use for research purposes. Synthetic data can does not fall 

under any of these rules, so they are easy to use and generate without any restrictions. 

• Apart from the raw data, we have also provided the source for synthetic human mod- 

els and open-sourced the data generation scripts. Using this code and the open-source 

CG software Blender [17] , one can generate an unlimited amount of pixel-perfect data by 

changing the camera parameters, scene illumination, and background scenes. 

1. Objective 

Recent advancement of deep learning makes it the de-facto choice for facial analysis tasks. 

But the human face has a complex structure and requires high-quality ground truth data to learn 

the features. Collecting real ground truth 3D face data either requires expensive 3D scanners or 

depth sensors, which are prone to noise. Also, as this data acquisition involves human subjects, 

they often fall under data privacy restrictions and other ethical regulations. So, creating synthetic 

face datasets can be an alternative that can provide the freedom to generate high-quality, large, 

and diverse face datasets without any such restrictions. A key element of face analysis is the 

face alignment information as well as the face depth to get the 3D cues. So, in this work, with 

the help of low-cost 3D human assets and an open-source CG tool, we have created a large 

face dataset with their corresponding head pose and raw depth annotations. Further, we used 

this dataset to train a model for head-pose estimation and face-depth estimation to validate the 

generated synthetic data. 

2. Data Description 

The data set contains two parts: The synthetic faces with their ground truth depth and an- 

other set of synthetic faces with their ground truth head pose annotations. The following section 

will describe those two parts in detail: 

• Face Depth dataset: 

Directory Structure - This part of the dataset contains all the rendered face images, their 

corresponding raw depth in 

∗.exr format, and the head poses data in 

∗.txt files. The root 
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folder contains two subfolders, ‘male’ and ‘female’, with all the identity folders with labels 

from ‘0 0 01’ to ‘0 045’. Each identity folder has a subfolder called ‘Complex’, which signifies 

the complex background of the rendered images. There are two different background scenes 

in two subfolders; the first folder contains the Barbershop scene, and the second folder has 

the Classroom scene. Each of these folders contains the ground truth files with five expres- 

sions - angry, happy, neutral, sad, and scared. For each expression, there are three different 

datasets based on the rendered settings. We have collected the ground truth for three differ- 

ent camera and head movements. The ‘CameraTran’ folder contains the ground truths when 

the virtual human models are at the origin of the scene, and a random translation motion 

is added to the camera. The ‘HeadCameraRotTran’ folder has all the ground truths where the 

models are in the scene origin, and a head rotation {-30 °, + 30 °} is applied to the head bone 

of the model, and a simultaneous rotation and translation are added to the camera. The last 

folder, ‘HeadRot,’ contains the ground truth, where the camera is placed in front of the face 

in a fixed location, and a rotation {-30 °, + 30 °} is applied to the head of the model. Fig. 1 a 

shows the directory structure, and 1b shows some examples of rendered ground truth face 

images and their corresponding raw normalized depth visualized in grayscale and plasma 

color maps. 

Fig. 1. (a) Folder structure for the facial depth data (b) Sample data rendered in Blender – 1 st column is the RGB image, 

2 nd and 3 rd are the normalized depth data ( ∗ .exr) visualized in colormap and grayscale. 
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Fig. 2. Sample annotation data consists of the camera position, head point location, camera rotation, and head rotation. 

Ground Truth Annotations - Each of these final folders contains three type of ground truth 

data –

I. rgb_ < id > .jpg - The rendered ground truth face image in RGB ( ∗.jpg) format. 

II. depthExr_ < id > .exr - The raw depth (distance of the face point from the camera cen- 

ter) values in 

∗.exr format. 

III. data_ < id > .txt - The ground truth annotations in 

∗.txt files. Each text file contains 

four ground truth annotations - camera location (x,y,z coordinates), head point loca- 

tion (x,y,z coordinates of the head bone), camera rotation (yaw, pitch, and roll of the 

camera) and head rotation (yaw, pitch, and roll of the head bone). Fig. 2 shows a sam- 

ple annotation text file. 

The depth dataset contains a total of 37670 sets of ground truth images and their correspond- 

ing annotations (.exr and .txt) with a total size of around 45 GB. 

• Head Pose Dataset: 

Directory Structure – This part of the dataset contains the ground truth face images with 

varying head pose and their corresponding head pose annotations. The root folder contains 

two subfolders, ‘male’ and ‘female’, with all the identity folders with labels from ‘0 0 01’ to 

‘0045’. Each of these folders contain ground truth RGB images and their corresponding head 

pose data annotations in a text file. Fig. 3 a shows the directory structure and 3b shows some 

samples of ground truth RGB images with varying head poses. 

Ground Truth Annotations - Each of these folders contains the ground truth data –

I. rgb_ < id > .jpg - The rendered ground truth face image in RGB ( ∗.jpg) format. 

II. data_ < id > .txt - The ground truth annotations in 

∗.txt files. Similar to the depth data 

each of these text file contains four ground truth annotations - camera location (x,y,z 

coordinates), head point location (x,y,z coordinates of the head bone), camera rotation 

(yaw, pitch, and roll of the camera) and head rotation (yaw, pitch, and roll of the head 

bone). Fig. 2 shows a sample annotation text file. 

This part of the dataset contains a total of 72060 pairs of ground truth images and their 

corresponding annotations (.txt) with a total size of around 32 GB. 
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Fig. 3. (a) Folder structure for the head pose data (b) Ground truth synthetic face data rendered in Blender with varying 

head pose. 

3. Experimental Design, Materials and Methods 

This section describes the methodology for generating the data set, including the details of 

the FBX models and the rendering pipeline. It also provides the details of the Python code that 

has been used to generate the ground truth data with the help of Blender [17] . 

• 3D Model Generation 

Though we are not able to release the virtual model publicly, here we provide the detailed 

methodology to create this part of the data. 

I. The models can be generated from the ‘Realistic Human 100’ package in iClone 

[15] software. It provides the functionality to add expressions to the face morphs. 

The models can be exported in FBX formats from the iClone Character Creator [16] . 

II. The iClone [15] tool provides a feature to add different facial expressions to a morph 

to enhance the facial mesh’s diversity. We have added random changes in the face 

morph and added different clothing to the model. Then we added four different 

expressions angry, happy, sad, and scared. The default model is the neutral one. 

III. Then we export the models in fbx format through the iClone Character Creator 

[16] export pipeline 1 . 

IV. The FBX files need to be structured in the following manner to run the python 

scripts provided to generate the ground truth data. The root folder contains the two 

subfolders, ‘male’ and ‘female,’ which have the male and female model files within 

them. In each of these folders, there are identity folders for female and male mod- 

els, starting from ‘0 0 01’ up to ‘0100’. Each identity folder has a subfolder called 

‘Simple’ with five subfolders containing the FBX model files with five different ex- 

pressions - angry, happy, neutral, sad, and scared. Each of these folders has the 

1 https://www.reallusion.com/character-creator/blender.html . 
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Fig. 4. (a) Folder structure for the virtual human model data (b) Samples of the synthetic human models in fbx format 

after exporting in Blender. 

texture (in textures and fbm folders) and other image files associated with the FBX 

models. Fig. 4 a shows the directory structure of this data set. 

V. These models are then imported into the existing Blender scene. We have used two 

different Blender scenes – Barbershop and Classroom collected from the Blender 

[17] free library. Fig. 4 b shows the sample models (in FBX format) imported into 

Blender [17] with their armatures (bones) and textures. The imported FBX models 

are rigged with armatures, later used to add head movements. 

• Rendering Ground Truth 

To render the ground truth, we followed the following steps. All these steps are performed 

in batch through python scripts that will be explained in the next section. 

I. A camera is added to the scene in perspective mode, and adequate illumination 

(e.g., area, sun, point, and spotlight) is added on top of the existing light in the 

Blender [17] scenes. 

II. To apply the head pose, the neck bone is selected. An empty object is added to the 

center of the two eyeballs, chosen as the center of the head. The camera’s optical 

axis is set as normal to the plane of the two eyeballs to select the initial head pose. 

The neck bone’s translation and rotation have been copied to the empty object, 

which adds constraints to the empty object to follow the neck bone. 

III. Once the initial setup is completed, a uniform rotation is applied to the neck bone 

in the sequence of PRY (pitch, roll, and yaw), and the keyframes are saved. 

IV. After the final design, the ground truth face RGB images with their correspond- 

ing raw depths and annotations are generated by a Python script with the help of 

Blender [17] . Blender’s [17] in-build Python support is used to run these scripts. De- 

tails about the rendering parameters used while generating the data are shown in 

Table 1 . 

V. We have also provided a separate dataset emphasizing head pose annotations only. 

We have not used virtual environments because we have not collected the depth 

information for this part of the data. Instead, we have set real images as the back- 

ground and put the virtual models in front of them to render the ground truths. 



8 S. Basak, F. Khan and H. Javidnia et al. / Data in Brief 48 (2023) 109087 

Table 1 

Rendering parameters used to generate the ground truth in Blender. 

Parameters Values 

Camera center and model head center distance 30 centimeters 

Camera Near Clip 0.001 meter 

Camera Far Clip 10.0 meters 

Camera Sensor Size 36 millimeters 

Camera Field of View (FOV) 60 degrees 

Blender Rendering Engine CYCLES 

Cycles Progression BRANCHED PATH 

Cycles AA samples 256 

Cycles Min transparent bounces 32 

Cycles Light sampling threshold 0 

Cycles Sample clamp indirect 0 

Cycles Max bounces 32 

Cycles Diffuse bounces 0 

Cycles Glossy bounces 0 

Cycles Transparent max bounces 16 

Cycles Transmission bounces 16 

Rendering Resolution X 640 

Rendering Resolution Y 480 

VI. We have added discrete head rotations to the models in an interval of 3 °. The yaw, 

pitch, and roll ranges are ±80 °, ±70 °, and ±55 °, respectively. Though these rotations 

cover an extensive range of angles, as these are discrete linear sequences, these do 

not cover some cross-rotation angles. So, to cover all the practical human head pose 

angles, we have also applied the rotations collected as the ground truth of a real 

dataset called Biwi [12] . 

VII. After applying the head rotation and saving the keyframes, we render each frame 

through the Blender [17] cycle rendering engine. 

• Explanation of Generating Code - 

The following section elaborates on the main components of the Python code to generate the 

ground truth data. The complete code for ground truth generation with complex background 

is attached to this paper as supplementary material. Also, additional codes for simple and tex- 

tured background generation can be found on the GitHub page mentioned in the specification 

table. 

importFbx.py: In the first step, the FBX models are imported to the Blender [17] scene (class- 

room.blend or barbershop.blend), and the imported model is scaled in proper scale to match the 

Blender [17] scene. 

importMisFileBlender.py: First, we set the blender properties. Next, a script is run to add 

missing texture files (if any) to the ∗. blend file. sceneSetup.py: In the next step, the Blender 

[17] scene with the model is set up and head movements are added. Also, the other rendering 

parameters, like camera properties, are set. In the next step, the midpoint of the two eyeballs 

is computed by setting empty objects in the eyeball positions and calculating the midpoint of 

those object locations in global coordinates. 
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After setting the midpoint of the eyeballs, which will be the center of the head, another 

empty object is placed at that point. It will provide the head pose ground truth data. Also, the 

camera is positioned perpendicular to this point as its initial position. 

Finally, the neck bone is chosen on which the head rotation is applied. The rotation is applied 

while inserting a keyframe to save the animation. The following shows a sample example of 

adding the animations: 
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compositorSetup.py: Using this script, the compositor nodes in Blender [17] are declared to 

set the output ground truth paths. It also sets the output data format (e.g., JPEG for RGB and 

EXR for raw depth data). Finally, the rendering parameters are established, as stated in Table 1 . 

Following is a code snippet where we set the Blender [17] scene properties. 
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captureWithGaze.py: Finally, the ground truth is rendered by running this script. As stated 

in 1.2, the ground truth is generated with three different camera and head rotation settings: 

- Head Rotation: In this scenario, the camera is placed in its initial location and applied to 

the frames saved during the above scene setup with the head rotation. 

- Camera Translation: In this scenario, the camera is placed in its initial location, and trans- 

lation is applied while keeping the head model stationary at its initial location. The sam- 

ple code to apply this translation is given below: 
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- Head Rotation and Camera Rotation & Translation: In this scenario, firstly, a virtual half 

sphere centering the empty object (center of the eyeballs) is constructed before randomly 

generating distributed points on that half sphere to where the camera is moved. In con- 

trast, the camera axis is pointed to the empty object. At the same time, the previously 

saved frames are applied to the head model to rotate the head linearly. The sample code 

to generate the points in a half sphere and apply them to the camera position is shown 

below: 
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renderFromCMD.py: To run correctly, we must execute these individual scripts within the 

Blender [8] python console. So, to generate the ground truth in batch, we pass these indi- 

vidual scripts as a command line argument to the Blender [17] executable while iterating 

through all the fbx files from the model root folder. We execute the scripts in the same 

order as discussed above - importFbx.py → importMisFileBlender.py → sceneSetup.py → 

compositorSetup.py → captureWithGaze.py. A sample execution (for importFbx.py) is shown in 

the following code snippet. 
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Chapter 3

Head Pose and Facial Depth Estimation
using synthetic Facial Data

3.1 Background

Recent computer graphics technology advancements have made synthetic data a popular
alternative to real data in any deep learning-based computer vision task. Specifically, when it
comes to facial analysis, collecting real-world data often suffers from privacy and ethical
concerns. Even though with the availability of virtual human models, we can create synthetic
human datasets, the realism of the synthetic data remains an issue when it comes to the
performance of the trained model. As the synthetic rendered face images do not look exactly
like the real human face, the domain gap between the real and synthetic faces reduces the
model accuracy in any facial analysis task. To reduce the domain gap between the synthetic
and real domains, the most popular approach is to apply for knowledge transfer from the
synthetic domain to the real domain. Nowruzi et al. [104] published a detailed study on the
application of synthetic data in object detection tasks and drew conclusions regarding the
best use of synthetic data in object detection tasks. They tested two different approaches for
transfer learning using hybrid datasets (mixing of real and synthetic data):

• Synthetic-real data mixing - where a small amount of real data is mixed with a large
synthetic dataset, and the model is trained on the hybrid dataset.

• Fine-tuning on real data - where we first train the model with only synthetic data and
then fine-tune the previously trained model on a small portion of real data.
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The main finding of [104] is that fine-tuning on real data performs significantly better
than mixing real and synthetic data.

Fig. 3.1 Applying domain adaptation to train a cross-domain classifier [123]

Though these data fusion-based transfer learning approaches make synthetic data more
popular in deep learning tasks, there is another set of approaches under transfer learning
known as domain adaptation, where the model is trained in one domain of data to work well
on a different target domain. Here the source and target domain both have the same feature
space but of different distribution in contrast to other transfer learning approaches where
the feature space of the target domain differs from the feature space of the source domain.
So domain adaptation methods are a natural fit for synthetic data, where we would like to
train a model in the source domain of synthetic data and expect the model to work well in
the target domain of real data. Specifically, feature-level or model-level domain adaptation
is more relevant while working with synthetic data. Here the method works in feature
space or model weights to train the network so that it simultaneously learns the common
features from both the real and synthetic domains while learning the actual objective. A
demonstration of the domain adaptation is presented in figure 3.1, where it is shown how the
domain gap is being reduced to align the label spaces of the source and target domain for a
classification problem. A major contribution towards model-level domain adaptation was
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made by Ganin, and Lempitsky [52], who introduced a generic framework for unsupervised
domain adaptation.

Fig. 3.2 Generic training framework for unsupervised domain adaptation introduced by Ganin
and Lempitsky [52]

The approach proposed by [52] consists of three components as shown in figure 3.2:

• The feature extractor (G f ) - is responsible for extracting the features from the visual
input.

• The label predictor (Gy) - performs the necessary task (e.g., classification). This will
be used during the inference.

• The domain classifier (Gd) - takes the same features extracted by the feature extractor
from the source and a target domain and tries to classify them.

They proposed a joint training strategy to train the label predictor for the main task
and simultaneously try to make the domain classifier perform as badly as possible. This is
achieved by adding a gradient reversal layer as shown in figure 3.2 in the back-propagation
path of the domain classifier by multiplying the gradient with a negative constant value which
acts as a weight. The value of this constant is selected by empirical study. This way, the
feature extractor learns in such a way that the labels of the source and target domain mix up
properly, as shown in figure 3.1, and improves the domain adaptation performance. In our
task here, the source domain is the synthetic data, and the target domain is the real data set.
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3.2 Research Objective

As stated in chapter 2, with the help of the CG toolchain, we have generated and published
a large synthetic face dataset and their corresponding ground truth, which consists of head
pose and facial depth annotations. So the main objective of this study is to validate the
effectiveness of the data generated by our proposed pipeline for deep learning tasks. We have
considered two computer vision tasks: head pose estimation (HPE) from a single headshot
image and monocular facial depth estimation. Though there are previous works on visual
tasks like object detection and semantic segmentation [104, 79, 135], which use synthetic
training data for data augmentation and other kinds of transfer learning methods, there are
only a very limited amount of studies available for HPE which utilize synthetic training data.
Also, as per our best knowledge, no previous work has studied depth estimation tasks of
human faces that use synthetic data. So to validate the synthetic data, we conducted the
following:

• We investigated the performance of the current SOTA HPE model when solely trained
on our synthetic head pose data and compared the performance with the other available
synthetic datasets.

• We applied the data fusion and fine-tuning-based transfer learning strategy of training
the model and investigating the model performance.

• We also examined the potential of the unsupervised synthetic-to-real domain adaptation
methods in HPE tasks with the help of our synthetic dataset and a small subset of the
Biwi datasets.

• Finally, we explored the potential of our synthetic face data and the captured raw depth
data in monocular facial depth estimation tasks.

3.3 Summary of Contribution

In order to accomplish the above-discussed objectives, we worked on the two main tasks
of HPE and facial monocular depth estimation. The following subsections will discuss the
contributions with respect to these two tasks.

3.3.1 Learning Head Pose from synthetic Data through Regression

This work is presented in the conference paper - Basak, Shubhajit, Faisal Khan, Rachel
McDonnell, and Michael Schukat. "Learning accurate head pose for consumer technology
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from 3D synthetic data." In 2021 IEEE International Conference on Consumer Electronics
(ICCE), pp. 1-6. IEEE, 2021. A copy of the paper is attached at the end of this chapter.

The contributions of the authors for the above-mentioned research work [16] as per the
four major criteria discussed in section 1.4 is presented in the table 3.1.

Table 3.1 Author’s Contribution to [16]

Contribution Criteria Contribution Percentage
Ideation SB 90%,FK 10%

Experiments & Implementations SB 90%,FK 10%
Manuscript Preparation SB 90%,RM 5%, MS 5%

Background Work SB 70%,MS 20%,RM 10%

As stated in the previous section, to validate the usage of the synthetic head pose generated
by our method, we trained the SOTA HPE model FSA-Net [158]. This model is based on
feature aggregation and soft stagewise regression, which employs a coarse-to-fine strategy
for classification followed by regression. We trained the model solely on our synthetic data
and tested it on the Biwi dataset. We use a popular face recognizer (FR) MTCNN to exclude
some of the frames of the Biwi dataset, which have extreme angles, where the FR is not able
to detect the face in it, to create the test dataset. We have also conducted a detailed ablation
study varying the training dataset’s yaw, pitch, and roll angles and presented the results in
the subsequent work [12]. The results show that training the network solely on our synthetic
data is able to achieve neat SOTA performance when tested on Biwi dataset. We further
filtered the Biwi on a narrower angle of Yaw(+60, -60), Pitch(+60, -60), and Roll(+10, -10);
the results are even better than the nearest comparable work, which used a mix of real and
synthetic data as their training set.

3.3.2 Learning Head Pose from synthetic Data through adversarial
Domain Adaptation

The previous work is further extended by applying the unsupervised domain adaptation and
is presented through the article - Basak, Shubhajit, Peter Corcoran, Faisal Khan, Rachel
Mcdonnell, and Michael Schukat. "Learning 3D head pose from synthetic data: A semi-
supervised approach." IEEE Access 9 (2021): 37557-37573. A copy of the paper is attached
at the end of this chapter.

The contributions of the authors for the above-mentioned research work [12] as per the
four major criteria discussed in section 1.4 is presented in the table 3.2.
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Table 3.2 Author’s Contribution to [12]

Contribution Criteria Contribution Percentage
Ideation SB 100%

Experiments & Implementations SB 90%,FK 10%
Manuscript Preparation SB 80%,PC 10%,RM 5%, MS 5%

Background Work SB 70%,MS 20%,PC 10%

The previous initial work on learning head pose solely from synthetic data is further
extended in this work. As found in the previous work, a SOTA model trained solely on our
synthetic data is able to outperform the nearest method that uses synthetic data in a narrower
range of head poses. So in this work, our goal is to improve the model performance further
while using synthetic data only. We proposed to introduce unsupervised domain adaptation
via adversarial learning to the HPE task. Almost all of the previous studies that follow [52]
and apply for domain adaptation work on classification tasks where they consider partially
shared label spaces. These assume identical or shared label spaces where for every sample
of the target data, there exists a source data with the same label class. However, in the
real world, this assumption does not fit as there exist only a very small amount of real data
(target domain) compared to synthetic data (source domain). So while training the domain
adaptation as per [52], the source and target labels are tried to align with each other, but as
the target label space is not matched with source labels, it causes a negative transfer. But
since HPE label spaces are continuous distributions, this proposed method cannot be applied
directly to the HPE problem. So we first introduced an adversarial learning module to a
SOTA regressor based on [52] and then proposed a specific training methodology, which was
able to sample out the nearest data from the target dataset to pass through the adversarial
training to reduce the negative transfer effect. More detailed description can be found in
section VII-B of the paper [12].

3.3.3 Monocular Facial Depth Estimation from synthetic Images

The initial work is presented in the conference paper - Khan, Faisal, Shubhajit Basak, and
Peter Corcoran. "Accurate 2D facial depth models derived from a 3D synthetic dataset." In
2021 IEEE International Conference on Consumer Electronics (ICCE), pp. 1-6. IEEE, 2021.
Subsequent detailed work is then presented in the article - Khan, Faisal, Shahid Hussain,
Shubhajit Basak, Joseph Lemley, and Peter Corcoran. "An efficient encoder–decoder model
for portrait depth estimation from single images trained on pixel-accurate synthetic data."
Neural Networks 142 (2021): 479-491. A copy of these papers are attached at the end of this
chapter 3.5.
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The contributions of the authors for the above-mentioned research work [84, 86] as per
the four major criteria discussed in section 1.4 is presented in table 3.3. Though the primary
work for these was carried out by Faisal Khan, my contribution to these work are:

• Preparing the training data generated by the methodology discussed in chapter 2.
Cleaning the data and preparing the data loader for the network.

• Proposing the basic structure of the lightweight U-Net architecture. More details can
be found in section 5.1 in [86].

• Proposing and implementing the hybrid loss function utilizing five subfunctions.

Table 3.3 Author’s Contribution to [84, 86]

Contribution Criteria Contribution Percentage
Ideation FK 70%,SB 20%,JL 10%

Experiments & Implementations FK 70%,SB 30%
Manuscript Preparation FK 70%,SH 20%,SB 10%

Background Work FK 70%,PC 30%

We used the facial ground truth depth data in the depth estimation task to accomplish
the final objective. In the initial work [85, 84], we proposed a shallow U-Net-based encoder-
decoder model with conventional loss functions. We divided our synthetic dataset into train
and test sets and evaluated our model. We also compared the results of replacing the encoder
network with other SOTA feature extractors like Resnet, EfficientNet, etc., and building the
decoder with a basic block of CNN layers concatenated by bilinear upsampling layers. In the
subsequent work [86], we have extended the previous works and presented a detailed study
of our synthetic data for facial depth estimation tasks. In this work, we proposed a hybrid
multi-task loss function that consists of point-wise loss, gradient loss, surface normal loss,
and structural similarity index measure (SSIM) loss. The influence of each loss term on the
overall loss performance is managed by adding weight to each of these terms. The weights of
each of these loss terms are set empirically through ablation study. We also used a lightweight
auto-encoder model, which incorporates a two-stage mechanism. The encoder consists of
a Mobilenet-based depthwise decomposition mechanism. In the decoder layer, the final
high-resolution output depth is predicted by five upsampling layers and a single pointwise
layer. The proposed model combined with the hybrid loss shows performance equal to, or
better than, current SOTA depth estimation networks while being more computationally
efficient than others.
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3.4 Discussion on Contribution

This work provides a solid understanding of how synthetic data can be used with a limited
amount or without real data in different complex high-level computer vision tasks like head
pose estimation and monocular depth estimation. Through a detailed review and experiments,
it is clear that the main bottleneck in most machine-learning solutions is the availability of
clean and accurately annotated data. Collecting accurate head pose and facial depth data
with enough variations is almost impossible as well as expensive because of the limitations
of sensors and other environmental and ethical constraints. Synthetic data generated from
open-source CG tools can be a viable solution.

As discussed in chapter 1, some of the previous works argue that the realism of the
synthetic data may not be very important for the performance of the deep learning model. But
specific to the facial analysis, we have shown that the realism and the background of the scene
play an important role in the model performance and accuracy. The data fusion-based transfer
learning method is expected to improve the model performance. But through experiments,
we have found that adding a very small amount of real data with our synthetic data gives
better results compared to the previous synthetic data-based HPE method. Specifically, the
previous method [148] used a set of 12k real data (from Biwi) and 208k of synthetic data,
while we have used only 1k of real data (from Biwi) and 300k or our synthetic data during
the model training. So while using a comparatively very small amount (only 8%) of real
data, we are able to achieve a better result by reducing the mean error from 4.76 to 4.62 in
yaw, from 5.48 to 4.537 in pitch and from 4.29 to 3.33 in the roll. We also trained on only
synthetic data while replacing the plain background with a mix of real and textured images,
which reduced the mean average error from 7.13 to 6.34. Through the proposed adversarial
domain adaptation training, the performance of the network is further improved by reducing
the mean average error from 6.34 to 5.13. Though the unsupervised domain adaptation from
synthetic to the real domain is very popular for classification tasks, the traditional pipeline is
difficult to apply in regression which has continuous values to predict. So we proposed an
alternative methodology for training where we split the target domain into bins without any
direct supervision and applying the adversarial training to the source (synthetic) and target
(real) domain keeping them in the same bin.

While experimenting with the synthetic depth data, we have shown that by selecting the
proper weighting scheme in a multi-loss function, a comparatively lightweight autoencoder
model can achieve an equal or better result than the current SOTA models. As there are no
previous methods available that train a monocular facial depth estimation model on synthetic
data, we have published a new benchmark for single-frame facial depth estimation from the
synthetic face. At 16.41 G-MACs per frame, this approach can enable real-time single-frame
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depth estimation. Though through the experimental results, we have found that the depth
estimation approach can estimate the average or mean shape of the face quite well, we are
not able to predict the detailed shape with high accuracy. This fact encouraged us to move to
predict the detailed face reconstruction from a single monocular real human face. We will
discuss this in the next chapter, where we have worked on estimating the face shape from a
single face image.

Overall, through this work, we have found that synthetic data gives promising results on
facial analysis tasks and can be a valuable alternative to real data. Particularly synthetic data
remains important for reducing the effect of dataset bias in real datasets, covering corner
cases, or taking care of a problem in different modalities like FR in the thermal or infrared
domain.
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ABSTRACT Accurate head pose estimation from 2D image data is an essential component of applications
such as driver monitoring systems, virtual reality technology, and human-computer interaction. It enables
a better determination of user engagement and attentiveness. The most accurate head pose estimators
are based on Deep Neural Networks that are trained with the supervised approach and rely primarily
on the accuracy of training data. The acquisition of real head pose data with a wide variation of yaw,
pitch and roll is a challenging task. Publicly available head pose datasets have limitations with respect to
size, resolution, annotation accuracy and diversity. In this work, a methodology is proposed to generate
pixel-perfect synthetic 2D headshot images rendered from high-quality 3D synthetic facial models with
accurate head pose annotations. A diverse range of variations in age, race, and gender are also provided. The
resulting dataset includes more than 300k pairs of RGB images with corresponding head pose annotations.
A wide range of variations in pose, illumination and background are included. The dataset is evaluated
by training a state-of-the-art head pose estimation model and testing against the popular evaluation-dataset
Biwi. The results show that training with purely synthetic data generated using the proposed methodology
achieves close to state-of-the-art results on head pose estimation which are originally trained on real human
facial datasets. As there is a domain gap between the synthetic images and real-world images in the feature
space, initial experimental results fall short of the current state-of-the-art. To reduce the domain gap, a semi-
supervised visual domain adaptation approach is proposed, which simultaneously trains with the labelled
synthetic data and the unlabeled real data. When domain adaptation is applied, a significant improvement in
model performance is achieved. Additionally, by applying a data fusion-based transfer learning approach,
better results are achieved than previously published work on this topic.

INDEX TERMS Head pose estimation, synthetic face, face dataset, visual domain adaptation.

I. INTRODUCTION
Head Pose Estimation (HPE) continues to be an active area of
research in the computer vision (CV) domain because of its
diverse application across a range of CV technologies. Highly
accurate HPE is a key element for many next-generation
consumer technologies which includes augmented and virtual
reality (AR/VR) based entertainment systems, human-
computer interaction technologies that engage human atten-
tiveness and behaviour analysis, immersive audio systems

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongqiang Zhao .

and driver monitoring systems (DMS). In human behaviour
analysis, HPE is used for estimating the human gaze and
refining face analysis and authentication to infer the inten-
tions, feelings, and desires of a user to personalize the asso-
ciated system or technology to meet their needs. For DMS,
HPE is important to monitor the driver’s attention level. For
AR/VR applications, HPE is used to predict the accurate field
of view (FOV). HPE information is also useful in producing
better face alignment for pose-robust facial authentication.

Head pose can be measured by the reading of sen-
sors embedded in head-mounted-devices which are costly
and awkward for users. Therefore, consumer-focused
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technologies have increasingly adopted computer vision-
based HPE that can estimate head pose with high accu-
racy and in real-time. Compared to wearable sensor-based
methods, computer vision-based HPE is technically more
challenging as it must handle variable factors such as facial
expressions, occlusions, illumination conditions, and lens
distortion in addition to the broad diversity of human facial
appearance.

Computer-vision based HPE transforms the captured
2D facial images into directional data in three-dimensional
space with three Euler angles: θx (Pitch), θy(Yaw) and
θz(Roll). Figure 1 [1] shows the head model as a rotated
object across the three different axes with the orientation of
yaw, pitch and roll. Normally, the HPE algorithms follow two
different approaches: geometry-based methods and learning-
based methods. Geometry based methods take the key facial
landmarks into consideration and estimate the pose through
geometrical calculation. On the other hand, learning-based
methods aim to extract features from the queried face images
and predict the pose with the support of face datasets and their
corresponding ground truth pose angles.

FIGURE 1. Head orientation with Pitch, Yaw and Roll [1].

These learning-based methods can be a regression or clas-
sification task. Regression approaches predict the head pose
by fitting a regression model on the training data and estimate
the yaw, pitch and roll in continuous angles, making these
models comparatively complex. On the other hand, classifi-
cation approaches mostly rely on putting the head pose into
a discrete bin. These methods are comparatively robust to
large pose variations but have a sparse solution space, e.g.
10 degrees intervals. for each bin.

Head pose estimation from a single image makes the
problem more challenging. It requires learning the mapping
between 2D and 3D spaces. Previously published works use
different modalities like depth information [2]–[5], inertial
measurement unit (IMU) [6] or video sequences [7] as a cue
to map the features extracted from the 2D image to the 3D
space. Thesemethods requiremore computation and different
sensors which are not always available. Therefore, because
of its low computational cost and easy setup, HPE from a

single image makes is a popular area in HPE research. Most
of these single image-based HPEmethods ([8]–[10]) leverage
the use of Convolution Neural Network (CNN) to extract
features from the 2D images and use those high-level features
to model 3D head pose regressors.

Though these DeepNeural Network (DNN) basedmethods
have given good results, a major drawback of such supervised
models is the requirement for accurately labelled data. Par-
ticularly for HPE tasks, it is challenging to obtain accurately
annotated head pose data with variations of appearances like
race, age, gender and other environmental factors like noise,
illumination and occlusion.

Additionally, the acquisition of new data from human
subjects now falls under different data protection and
privacy regulations such as the General Data Protec-
tion Regulation (GDPR) and is subject to ethical review
and increasingly stringent guidelines. Furthermore, some
data acquisition measurements such as depth sensing and
IMU motion are prone to sensor noise. Manually labelled
key point approaches are alsomostly giving inaccurate results
because of unknown 3D models and camera parameters.

The head-pose datasets available captured from real
subjects like Biwi Kinect Head Pose Dataset [2] and
Pointing’04 [11] only comprise around 15k and 4k data sam-
ples from 20 and 14 subjects respectively. Among these two
Biwi is most commonly used for benchmarking. But due to
the limited size, neither of these datasets are suitable to train
DNN based HPE models.

Generating synthetic facial images through Computer
Graphics (CG) Software provides an inexpensive and suffi-
cient amount of accurately labelled data with a comparatively
low effort and complexity as the head models, camera param-
eters and positions, scene illuminations and other constraints
can be controlled within the 3D environment.

Though this synthetic data can be perfectly annotated,
training solely with the synthetic data can lead to outcomes
that don’t match the current state-of-the-art. It is hypoth-
esized that this is due to the mismatch between the fea-
ture distribution of the synthetic (source) domain and the
real-world images (target domain). This is known as the
domain shift [12]. To address these challenges, there have
been many recent studies on visual domain adaptation (DA)
which is a particular variant of transfer learning. DA utilises
the labelled data from a source domain and the unlabeled
data from a target domain and learns how to reduce the gap
between the two domains. In this work, a similar approach is
used to learn the domain invariant features from the synthetic
and real data and thus improve the model performance.

The main contributions of this work are as follows:
• A methodology to build a synthetic head pose dataset
with the help of a commercially available 3D asset cre-
ation tool, iClone [13] and an open-source 3D computer
graphics software, Blender [14].

• Using the proposedmethodology, we propose a new syn-
thetic head pose dataset with the corresponding ground
truth head pose.
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• Experimental results show that training a state-of-the-art
HPE model solely with the new proposed dataset gives
near state-of-the-art HPE result. Also, applying data-
fusion-based transfer learning and fine-tuning the model
with only 1k of real data is able to produce a better result
than the previously published work.

• Finally, it is shown that by applying the visual adversar-
ial domain adaptation technique and training the model
with the labeled synthetic data and the unlabeled real
data, it is able to learn domain invariant features and
produce better results than training only with synthetic
data.

The paper is structured in the following way – Section II
reviews the recent work on HPE and visual DA along
with the descriptions of the datasets available for the HPE
task. Section III provides the foundation methods of head
pose measurement in a 3D environment. Section IV and V
describes the methodology of the synthetic data genera-
tion and dataset Details respectively. Section VI introduces
the theory behind the Synthetic to Real Domain Adapta-
tion. Section VII presents the model description and their
implementation details along with the training strategy and
experimental results. Finally, the paper concludes with a
discussion on the results and conclusion with future work
in section VIII and IX.

II. LITERATURE REVIEW
In this section, firstly, a review of recent research works
and the current state-of-art in HPE methods is provided.
Then, an overview of publicly available head pose datasets
is presented, followed by the recent relevant works in visual
domain adaptation.

A. HEAD POSE ESTIMATION METHODS
1) LEARNING FROM GEOMETRY
Geometry-based methods predict the head pose by geomet-
rical calculation with the help of facial feature points. These
methods take advantage of the geometric distribution of the
facial key points from the 2D image. Initial work by Gee and
Cipolla [15] considered the proportion between five facial
key points and the length of the nose with a fixed value to
calculate the head pose. Similarly, Nikolaidis and Pitas [16]
used the isosceles triangle formed by the mouth and the two
eyes to predict the yaw angle. To predict the yaw angle more
accurately, Narayanan et al. [17] proposed a more generic
geometric model with an ellipsoidal and cylindrical structure
to customize 12 different head models. This only predicts the
Yaw of the head. However, it is very difficult to estimate the
head pose accurately with these fixed geometric models as
the feature keypoint distributions of the human face vary a
lot with race, age, genders like factors.

To overcome these challenges, another set of approaches
have been proposed which aim to estimate the head-pose,
mapping the facial key points from the 2D image to a 3D
facial model. The head pose angles are then calculated from
the elements of the rotation matrix which can be derived from

the projectionmapping between the 2D face image and the 3D
head model. The rotation matrix solution was first proposed
by Fridman et al. [18] to estimate the head pose according
to a 3D facial model and the corresponding 2D facial feature
points directly.

A real-time 3D facial model had been used in previous
work by Martin et al. [5] for the HPE task which introduced
the iterative closest point algorithm (ICP) to find the best
matching pair of the 2D facial image and the 3D head model.
Meyer et al. [4] combined particle swarm optimization and
the ICP algorithm to estimate the head pose. All the above
methods used the depth cue of the facial image. In recent
work, Yuan et al. [19] proposed a 3D morphing method with
spherical parameterization which will deform an existing 3D
facial model with the help of four non-coplanar 2D facial
feature point along with all the three directions of yaw, pitch
and roll.

2) LEARNING FROM FACIAL FEATURES
Learning-based methods are trained to find the relation-
ship between the query images represented by the extracted
appearance feature distributions alongwith the head positions
and rotations. These methods are supported by a huge face
training dataset annotated with the corresponding yaw, pitch
and roll and uniformly distributed along with these label
spaces.

These learning-based methods are mathematically formu-
lated as a regression or classification problem to estimate
the head pose from the features learnt from the 2D images.
One of the initial works presented by Murphy-Chutorian and
Trivedi [20] uses support vector regression and Localized
Gradient Orientation histograms to predict the head orien-
tation in a driver monitoring system. Ba and Odobez [21]
improved the previous head tracking methods with Bayesian
formulation by introducing a silhouette likelihood term with
particle filtering.

A random forest model was used by Fanelli et al. [2] to
estimate the head pose by learning the 2D features from the
depth images. In this work, the leaf nodes with high training
variance are filtered out. Tan et al. [22] extend the approach
incorporating the 3D features and frame-by-frame tempo-
ral tracking through regression forest. The random forest-
based method was further combined with Hough voting by
Liang et al. [23] which varies the leaf weights with L0 regu-
larization and prune the unreliable leaf nodes of the decision
tree. Instead of segmenting the whole head, Riegler et al. [24]
used a classifier to segment image patches into foreground
and background and regression to cast vote in Hough space
for the foreground patches. The approach is similar to Hough
Forest but the RandomForest part was replacedwith a Convo-
lution Neural Network (CNN) and called it a HoughNetwork.

A transfer learning approach was used by
Rajagopal et al. [25] which deals with the HPE as a clas-
sification problem from multi-view surveillance images with
a small amount of target training data. Papazov et al. [26]
proposed a novel approach to extract a triangular surface
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patch (TSP) descriptor from a depth map and matched it with
the pre-computed synthetic head models with a fast-nearest
neighbour loop. The computed TSP is further used to estimate
the 3D head pose and facial landmarks. A video sequence of
synthetic facial images was used by Gu et al. [7] to learn the
head pose and facial landmarks via temporal shift, though the
video sequences require recurrent neural models with a high
computational cost.

The above-mentioned methods mostly deal with the HPE
as a classification task and used different modalities like
facial depth as additional cues which are difficult to acquire.
Therefore, deep learning-based HPE from a single facial
RGB image without a facial landmark has gained inter-
est among the research community in recent years. The
initial work on this was proposed by Ahn et al. [27]
which used CNN based models to regress the head pose
information. Patacchiola and Cangelosi [28] examined adap-
tive gradient methods with different CNN architectures
for HPE tasks. A ResNet based model was used by
Chang et al. [29] to predict the head pose and facial key
points jointly. To predict the head pose more accurately
Ruiz et al. [8] used the ResNet50 backbone architecture
and a multi-loss CNN (HopeNet) for feature extraction and
combined loss stream of regression and binned pose clas-
sification. A lightweight structure FSA-Net for head pose
feature regression, using the stage-wise regression model
SSR-Net [30] was proposed by Yang et al. [9].

Few of the above works use augmented synthetic facial
images with the ground truth head pose to train their models.
Ruiz et al. [8] and Yang et al. [9] use the synthetically
expanded dataset 300W-LP, which is created by augmenting
real images. Gu et al. [7] introduced a synthetically created
dataset SynHead, which has been rendered through a CG
tool from a very high-quality 3D scan obtained from [31].
Wang et al. [32] also introduced a synthetically rendered head
pose dataset from high-quality 3D scans and propose a fine to
a coarse deep neural network to predict accurate head pose.
However, the dataset is not publicly available for use. They
use a transfer learning approach and train the network with a
mix of synthetic data and real data which improves the model
accuracy with better generalization. The model was trained
with approximately 260k synthetic images from their dataset
and 15k real images from the Biwi dataset.

B. AVAILABLE HEAD POSE DATASETS
There are few datasets available that have been used for
monocular image-based HPE tasks.

1) 300W-LP & AFLW2000 3D
300W and AFLW2000 3D [33] databases were created and
released at the same time. uses multiple alignment real face
databases with 68 facial key points including LFPW, AFW,
IBUG, HELEN and XM2VTS. These images are collected
randomly from the web so there is no data available in terms
of identity or the total number of subjects. It uses 3D Dense
Face Alignment (3DDFA) in which a dense 3D Face model

is fitted to the images through a CNN and further synthesise
robust profile views through a face profiling algorithm that
align faces in large poses up to 90 degrees of yaw. The 300W
database contains around 61225 samples with large poses,
which is further expanded to 122450 samples by flipping.
The combined dataset is called 300W across Large Pose
(300W-LP). The AFLW2000-3D contains 2000 images in
the wild.

2) AFLW
AFLW [34] contains 21080 real faces in-the-wild col-
lected from the web with wide pose variations (yaw from
−90 degree to +90 degree). The head poses are extracted
with the help of the POSIT algorithm [35] and have been used
for coarse HPE. But as the images are annotated with up to
21 visible landmarks the face alignments have errors and the
model fitting accuracy is low [33].

3) BIWI
The Biwi Kinect Head Pose Dataset [2] contains approxi-
mately 15.7k images taken from 24 sequences of 20 subjects
(8 women and 12 men, 4 people wearing glasses). The data
was captured by a Kinect 1 depth sensor and the head ori-
entation is labelled by a state-of-the-art template-based head
tracker, where a generic template was deformed to match the
specific subjects and the 3D head location and rotations were
measured. Each sample has a resolution of 640× 480 pixels
with the faces containing 90×110 pixel on average. The head
pose ranges from ±75◦ yaw, ±60◦ pitch and ±50◦ roll.

4) POINTING’04
Pointing’04 [11] has captured 2.7k images from 14 subjects.
The head pose of the captured subjects is only represented
by the two angles yaw and pitch and both have fixed interval
of 15 degrees with 93 discrete poses. During the data acqui-
sition, the subjects were asked to stare at different markers
fixed in the room, which results in an error in the ground truth
head pose values for many samples. The pre-trained model
of the current state-of-the-art HPE FSA-Net gives a Mean
Absolute Error [MAE] of around 10 degrees when tested on
this dataset.

5) BOSPHORUS
The Bosphorus [36] dataset is captured by using a 3D
structured light system that contains 4666 images with
13 systematic head poses. To give the Yaw rotation subjects
were asked to align themselves in a rotating chair, while for
the pitch, subjects were required to look at the marks on the
wall. Because of the data accusation method, the ground truth
pose angles are prone to error. The dataset contains seven
yaw angles, four-pitch and two cross rotations. Apart from
the pose annotations it also has a variety of facial expressions
and occlusions like hand, hair and eyeglasses.

6) SASE
The SASE dataset [37] has captured different head poses
from 50 subjects (32 males and 18 females) via the Kinect 2.
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TABLE 1. A comparison of different head pose datasets.

Altogether the dataset consists of around 30k images with
600+ frames per subject. The head orientation has been
obtained by calculating the positions of five markers stuck
on each participant’s face and deriving the rotation matrix
between the initial and current vectors.

7) SynHead
NVIDIA SynHead [7] contains 510960 frames of 70 head
motion tracker rendered using 10 individual high-quality 3D
scan head models from [31]. It contains head motion tracks of
all 24 Biwi sequences, though it was rendered with a different
sequence of the rotation from that was followed by Biwi.

A comparison of the different features of these databases
is shown in Table 1. Out of these datasets, because of their
limitations of size, only the 300W-LP dataset is suitable
for DNN training. Even though the SynHead dataset has a
large number of synthetic head pose frames, it only contains
10 individual subjects from high-quality 3D scans, which
make it less diverse and expensive to acquire. On the contrary,
the dataset produced in this work has more than 300k frames
from 100 individual models.

C. VISUAL DOMAIN ADAPTATION
Visual domain adaptation (DA) tries to learn the domain
invariant features when there is a gap between the feature
distribution of the source data on which the network is being
trained and the target data on which the network is to be
evaluated. It tries to reduce the gap between these two domain
distributions. Almost all of the previous work on DA has been

proposed on classification tasks where the data distribution
has shared label spaces, in other words, the source and the
target data have a similar set of class labels. However, for
regression problems, this scenario is not valid as it has a
continuous label distribution.

The earliest andmost prominent work onDAwas proposed
by Ganin and Lempitsky [38] with the domain adversar-
ial neural network (DANN) which assumes identical labels
spaces where for every sample of the source data there exists
a target data with the same label class. However, in the real
world, this assumption does not stand as only a small amount
of target domain data exists. Therefore, while training the
DANN in such a scenario both source and target labels are
aligned with each other but as the target label space is not
matched with the source labels it causes negative transfer.
To solve this issue Cao et al. [39] introduced partial adver-
sarial domain adaptation (PADA) which tries to reduce the
negative transfer due to amismatch between source and target
domain labels by downweighing the source class data which
has a low probability of existence in the target data.

There are many subsequent works [40], [41] that refine
PADA by eliminating the source samples which are not
present in target data through different weighting schemes.
But all these approaches work on classification tasks where
they consider partially shared label spaces. For HPE the
label space is a continuous distribution, so these pro-
posed methods cannot be applied directly to the HPE prob-
lem. The only work that deals with domain adaptation on
the regression task, specifically on HPE, is proposed by
Kuhnke and Ostermann [42], which reduces the negative
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transfer from the source outliers through generating source
sampler weights during training and propose Partial Adver-
sarial Domain Adaptation for Continuous label spaces
(PADACO). This is the only work that trains only on synthetic
data rendered from a CG tool and tests on real data. In this
article, a similar but relatively straightforward sampling strat-
egy has been used to obtain data samples from the source
domain thus reducing negative transfer during adversarial
training.

III. HEAD POSE REPRESENTATION WITH 3D GEOMETRY
In this section, the 3D representation of the head pose is
discussed. As the head is rotated along with the X, Y and
Z axis, the head pose can be represented with the correspond-
ing Euler angles θx(Pitch), θy(Yaw) and θz(Roll) as shown
in figure 1.

When a point at (x, y, z) in 3D world coordinates is rotated
around the X-axis with an angle of θx the new co-ordinate of
the point will be –

(xxyxzx) = Rx · (xyz)T (1)

where

Rx =


1 0 0 0
0 cosθx −sinθx 0
0 sinθx cosθx 0
0 0 0 1

 (2)

In the same way, if the point rotates around Y and Z axis with
an angle of θy and θz respectively the modified coordinates of
the point will be -

(xyyyzy) = Ry · (x y z)T (3)

and

(xzyzzz) = Rz · (x y z)T (4)

where

Ry =


cosθy 0 sinθy 0
0 1 0 0

−sinθy 0 cosθy 0
0 0 0 1

 (5)

and

Rz =


cosθz −sinθz 0 0
sinθz cosθz 0 0
0 0 1 0
0 0 0 1

 (6)

So, combining (2, 5, 6) for a rotation of a point along all the
axes, the final coordinates of the point will be –

(xxyzyxyzzxyz)T = RxRyRz · (x y z)T = R · (x y z)T (7)

where,

R =


r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

 (8)

R is known as the rotation matrix and the Euler angles θx , θy
and θz can be calculated as –

θx = tan−1
r32
r33

θy = −tan−1
r31√

r232 + r
2
33

θz = tan−1
r21
r11

(9)

Additionally, the translation of any point in 3D space is
provided by the translation matrix as –

T (dx , dy, dz) =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

 (10)

where dx , dy, dz are the displacement of any point along the
x, y, z-axis respectively.

Blender provides the transformation matrix combining the
three rotation and translation matrix as TRxRyRz, so the indi-
vidual Euler rotation of yaw, pitch and roll can be calculated
with equation 9.

IV. DATA GENERATION METHODOLOGY
In this section, the detailed methodology of creating a syn-
thetic dataset is discussed. As outlined in section II-B of the
literature review most of the datasets currently available for
head pose estimation have a very limited amount of ground
truth image and label pairs which makes them unsuitable
for training deep learning models. Also, due to practical
limitations in data acquisition, most of the datasets’ ground
truths are prone to errors, especially in high concatenated-
rotation (combination of yaw, pitch and roll or combination
of any two) angles. Therefore, as an alternative to the real
data, this work presents this methodology using a commer-
cially available 3D asset creation software and an opensource
3D CG tool to generate synthetic facial images along with the
ground truth head pose.

A. 3D SCENE SETUP WITH VIRTUAL HUMAN MODELS
Previous works [7], [32], [42] with synthetic virtual humans
mostly used high-quality 3D scans to generate synthetic data
from 3D human models. But these 3D scans are expensive
and difficult to capture due to different data regulation laws
like GDPR, so there is a very limited number of variations in
the currently available synthetic head pose data. As an alter-
native to generating the virtual human models, this work uses
the low-cost commercially available software iClone 7 and
Character Creator [43]. The Character Creator comes with
a ‘‘Realistic Human 100’’ package consisting of 100 human
models of different age, race, gender, thus reducing the bias of
the dataset. A sample of thesemodels can be found in figure 2.
The iClone tools also provide a feature to add different facial
expressions and the facial morph can also be changed to add
variation in the 3D mesh as shown in figure 3.

As iClone cannot capture ground truth like facial depth,
head pose, camera location, scene illumination all the models
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FIGURE 2. Samples from the 100 Realistic Head Models with variation in
gender, race and age.

FIGURE 3. Applying change in the morph to add variations in the head
models in iClone [45].

need to be exported for further data capture. The models
can be exported in the commonly supported format by any
3D modelling software including alembic, FBX and obj.
In this work, all models are exported from iClone in FBX
format with Physically Based Rendering textures (Metallic,
Diffuse, Roughness, Opacity) to add realism.

These fully riggedmodels in FBX format are then imported
into Blender [14]. Blender is an opensource computer graph-
ics (CG) software with Python integration. To animate the
rigs, keyframes can be added with constraints and shape keys
commonly known as morph targets or blend shapes. Also,
the camera can be added to the scene which comes with
properties like FOV, a camera near and far clip value, sensor
size, depth of field and f-stop value which help to replicate
a real-world camera configuration. It also comes with the
realistic Cycle rendering engine which uses path tracing [44].
Path tracing tracks the path of light and considers refraction,
reflection and absorption to make the rendering realistic. The
full-featured workflow used in Blender is shown in figure 4.
The FBX models exported from iClone contain the fully
rigged armature with the mesh which can be used to add
motions to the head.

FIGURE 4. Workflow and different features of Blender [45].

A sample model is shown in figure 5. To vary the scene
light, different illuminations available in Blender were used
including area, sun, point, and spotlight. To render the ground
truth image, a camera model has been added to the scene in
perspective mode with the Cycle rendering engine selected.
The detailed methodology can be found in [45]. To add varia-
tions to the background, a combination of plain, textured, and
real images have been chosen.

FIGURE 5. Importing the fully rigged FBX models from iClone to
Blender [45].

B. APPLYING HEAD POSE TO 3D HUMAN MODELS
To generate the ground truth data, a sequence of head move-
ments need to be applied to the FBXmodels. As these models
are fully rigged, the neck bone is selected to provide the
rotation to the head mesh. An empty object has been added to
the centre of the two eyeballs which has been chosen as the
centre of the head and the camera optical axis will be normal
to this point to ensure the initial head position. Figure 6 shows
the neck bone and the empty axis object highlighted. The
translation and the rotation of the neck bone have been copied
to the empty object which constraint the empty object to
follow the neck bone.
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FIGURE 6. Neck bone highlighted in cyan on which the head rotation has
been applied and the empty object at the center of the two eyeballs
highlighted in orange.

As the head movement cannot be controlled mathemat-
ically in iClone when the default models are imported in
Blender, the head is not at its zero position (yaw, pitch and
roll at 0◦). To set the initial frame of the head where the yaw,
pitch and roll of the head are zero along with the Blender
world co-ordinate, the main neck bone was rotated in such
a way that the rotation of the empty object in blender local
co-ordinate becomes zero along the x, y and z-axis. This has
been achieved iteratively through a Python script minimizing
the delta of the rotation of the empty axis alongwith the three-
axis.

After the initial setup, uniform rotations have been applied
to the neck bone in the sequence of PRY (pitch, roll and
yaw) and all the frames have been saved. Blender provides
the rotation matrix for the empty object from which the exact
head pose in yaw, pitch and roll have been calculated with
the help of equation 9. A sample of applying the head pose is
shown in figure 7. Following most of the previous datasets’
range the yaw, pitch and roll have been varied in the range of
±80◦, ± 70◦ and ± 55◦, respectively in an interval of 3◦.

Though these rotations cover a wide range of angles,
as these are linear sequences, some of the cross-rotation
angles are not covered. As in Biwi the head pose angles are
captured tracking the real human subjects the ground truth
head pose sequences of the Biwi database has been collected
and applied to the head models similar to SynHead [7]. This
will also help to compare the evaluation result with the Biwi
dataset later. The head mesh vertices have different weights
with respect to the neck bone, so the rotation values of the
empty axis object and the neck bone are not equal. Also,
the 100 head models are rigged differently with different
mesh weights so the transformation relation between the neck
bone and the empty axis object is different for each of these
models. The transformation between these two objects for all
the 100 realistic virtual humans has been learnt individually
by training a shallow fully connected neural network from the
data collected in the previous step where a uniform rotation
has been given to the neck bone. After applying these learnt
models, the actual rotation of the neck bone for each Biwi

FIGURE 7. Applying head pose along the three axes with respect to the
neck bone highlighted.

ground truth sequence is calculated so that the rotation of the
empty axis matches with the Biwi sequences. After applying
the Euler angles learnt from 24 Biwi sequences, all the frames
have been recorded. However, as the rotations were applied to
the internal neck bone, the head mesh was not exactly aligned
with the Biwi sequences. The mean average error with Biwi
for these sequences is approx. 1◦ in Euler scale.

C. GENERATING GROUND TRUTHS
To collect the ground truth, the camera added to the scene
was set up in such a way that the camera optical axis is
aligned with the empty object axis as stated in the previ-
ous step. The camera is set at a distance of 30 centimetres
from the nose tip of the model and the background plane
is at a distance of 2 meters. Therefore, to cover the whole
scene the near and far clip of the camera is set to 0.001 and
5.0 meters, respectively. The camera sensor size and field of
view (FOV) are set at 36 millimetres and 60◦. To obtain the
final render, the RGB render pass was used in the Blender
compositor setup. As stated in the previous section, the back-
ground of the scene was varied to provide more variations
in order to improve model generalization. For the textured
background, the Brodatz-based colour images provided by
Abdelmounaime and Dong-Chen [46] are used. For the real
background, the images provided by the SynHead [7] dataset
in the background folder are selected.

The rotations recorded in the previous step are applied to
the model and the corresponding frames are rendered. For
each frame, the current translation and rotation (in Euler) of
the empty object has been captured through an automated
python script in Blender world co-ordinate. The rendering of
ground truth is carried out in an Intel Core i5-7400 3 GHz
CPU machine with 32 GB of RAM and an NVIDIA GeForce
GTXTITANXGraphical Processing Unit (GPU) with 12 GB
of dedicated graphics memory. The RGB ground truth head
pose images are rendered from the 3Dmodel with a resolution
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FIGURE 8. Samples from the generated synthetic data with different variation of head pose. The first three rows show the data with a
plain background, the fourth and fifth rows show data with textured backgrounds and the last two row shows data with real backgrounds.

of 640× 480 pixels in jpeg format. Each 2D image frame took
26.3 seconds on average to render using Cycle Rendering
Engine which is Blender’s physically-based path tracer for
production rendering.

V. DATASET DETAILS
Following the above-discussed methodology, the ground
truth RGB images and their corresponding ground truth mod-
els for 44 female and 56 male models have been generated.
As ground truth, different attributes like camera initial loca-
tion, camera initial rotation, camera post location, camera
post-rotation have been collected when the camera location
has been varied. Additionally, the initial location and rotation
of the empty object and the post-rotation and location of
the same has also been captured and saved in a text file for
each frame. Each subject has approx. 3.5k 2D image samples
which make the total dataset size to around 3,500k image
samples. The data is stored in an individual folder for the
100 head models. For each head model folder, the rendered
images and corresponding ground truth are stored in three
different paths for the three type of backgrounds – simple,
textured, and real. The zipped version of the total dataset
consumes around 60 GB of disk space. A sample of images
from the generated data with varying Pitch, Yaw and Roll
has been shown in figure 8. The dataset will be released and
can be accessed through the GitHub page.1 While training
a deep neural network, the generalization of the model is
highly dependent on the statistical data distribution of the
dataset. Thus, to check the label distribution, several identities
from the dataset has been selected and label distributions are
compared with those from the Biwi dataset. Figure 9 shows

1https://github.com/C3Imaging/SyntheticHeadPose

the two distributions which show the generated dataset is
more uniform across the value of yaw, pitch, and roll, whereas
the distribution of Biwi shows it is mainly concentrated on the
angles near the centre.

VI. SYNTHETIC TO REAL DOMAIN ADAPTATION
As stated in the introduction section, this synthetic data is
annotated perfectly without any error, but training any deep
learning model solely with synthetic data can lead to the poor
performance of the models because of the domain mismatch
between synthetic and real. Therefore, the visual domain
adaptation will help to reduce the feature gap between syn-
thetic and real domain data. In this section, the theory and
the common notation behind the domain adaptation will be
explained.

In any machine learning task, a domain D is made up of a
feature space X with a probability distribution P(X) where
X={x1, . . . ., xn}. For a specific domain, D = {X , P(X)}
a machine learning task T is trying to learn the objective
function f(·) from a feature space Y, which in another way can
be a probability distribution P(Y|X). In general, this P(Y|X)
can be learnt from the labelled data {xi, yi} where xi ∈ X
and yi ∈ Y .

However, a typical domain adaptation (DA) task consists
of two domains: a source domain DS = {XS ,P(X )S} with
the corresponding label yi ∈ YS and a target domain with
no labelled data DT = {XT ,P(X )T }. In this work, the source
domain data is the synthetic head pose data with the ground
truth head pose and the target domain is the real head images
where there is no labelled head pose associated with these
images. In traditional DA a common assumption is that the
source domain label space CS and the target label space CT
are shared. In partial domain adaptation (PDA) the target label
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FIGURE 9. The first row shows the label distribution of the generated
data across yaw, pitch and roll. The second row shows the similar
distribution of Biwi data.

space CT is a subset of the source domain label space CS , and
the rest of the labels in the source domain are seen as outliers.
As the DANN tries to align the source and target distribution
it will also align the label simultaneously. However, as there
are outliers in the target distribution, this causes negative
transfer during training. PADA overcomes these challenges
by down-weighting the contribution of the source data which
has a lower probability of existence in the target distribution.
This methodology works well for classification tasks as the
labels are fixed. But the same strategy cannot be applied to a
regression task (i.e. head pose estimation), as it has a contin-
uous label space. Therefore in this work, similar to [42] the
source data with the nearest match with the target predicted
distribution has been sampled during the Domain Adaptation
training phase.

A basic DANN [38] normally has three subnetworks:
A feature extractorGF , which learn the feature from the input
images, a network for the actual task, in this case, the head
pose regressorGY which regress the actual head pose from the
input image, and a domain classifier GD, which is trained to
differentiate the target domain from the source domain. The
main goal of the DA is to match the feature distribution of
the source and the target domain is achieved by a two-player
minimax game between GD and GF which tries to confuse
GD to learn the indistinguishable features from the source and
target domain.

To achieve the minimax goal during the training phase,
the parameters θD of the domain classifier GD are learnt by
minimizing the cross-entropy loss ofGD, at the same time the
parameters θF of the feature extractor GF tries to maximise
the loss GD to confuse it. Simultaneously the pose regressor
GY is trained to learn the parameters θY for the actual task,
in this case, the head pose estimation. So the overall objective
function can be expressed as –

J (θF , θY , θD) = LY
(
GY

(
GF

(
xSi
))
, yi
)
− µLD

×

(
GD

(
GF

(
xSi ∪ x

T
i

))
, lSi ∪ l

T
i

)
(11)

where LY is the main task loss (poss regressor loss) and
LD is the domain classifier loss. µis the hyperparameter to
make a trade-off between LY and LD. To train the domain
discriminator as a binary classifier, the source and target

domain data are labelled as 1 and 0 respectively which are
denoted as lSi and lTi in Eq. (11).

To obtain the desired saddle point of Eq. (11) in the
minimax optimization of the parameters of the network
(θ̂F , θ̂Y , θ̂D) is learned by converging –(

θ̂F , θ̂Y

)
= argmin

θF ,θY

J (θF , θY , θD),(
θ̂D

)
= argmin

θD

J (θF , θY , θD) (12)

The minimax optimization can be achieved through iterative
training using Generative Adversarial Networks (GAN) [47]
or the Gradient Reversal Layer (GRL) proposed in Ganin
and Lempitsky [38]. In this work, the GRL approach has
been used. The GRL has no trainable parameters except for
the hyperparameter µ. During the training of the network,
GRL produces an identity transform in the forward pass and
during backpropagation GRL takes the gradients from the
previous layer multiplied with the negative weight −µ, and
pass them to the preceding layer. This GRL layer is inserted
between the feature extractor GF and the domain classifier
GD. So effectively the partial derivative of the loss ∂LD

∂θF
is

replaced by −µ ∂LD
∂θF

which helps to reach the saddle point
during the minimax optimization.

VII. EVALUATION OF THE DATA
In this section, first, the details of the state-of-the-art model
that is used in this work to evaluate the effectiveness of the
generated synthetic data are discussed including the domain
adaptation module that is added to the existing model archi-
tecture. Next, the training strategy is presented, followed by
the experimental details and results.

A. DETAILS OF THE MODEL
To evaluate how useful the generated synthetic data is
for training HPE models, a recent state-of-the-art model
FSA-Net [9] is selected. In its original work, this model
has been trained on 300W-LP and Biwi and been validated
against Biwi. The FSA-Net model is based on feature aggre-
gation and a soft stagewise regression introduced in the work
of SSR-Net [30] which employs a coarse-to-fine strategy for
classification following the stage-wise regression. The soft
stagewise regression (SSR) function accepts N set of stage
parameters {Ep(n), Eη(n),1n}.

1) FEATURE AGGREGATION MODULE
FSA-Net employs a spatial grouping of features and passes
it to the aggregation module. The feature map Un for the
nth stage is a spatial grid that contains a k dimensional
feature representation of a particular spatial location. Then
to extract the pixel-level feature it computes an attention
map An through a scoring function. The original work
was based on three different scoring options (1) Uniform,
(2) 1× 1 convolution and (3) Variance. In this work the third
strategy is used, in which the features are selected through
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FIGURE 10. FSA-Net with the Domain Classifier and GRL layer for the adversarial learning.

Variance, which is differentiable but not learnable and com-
paratively less complex. After getting the feature map Un
and attention map An, a set of representative features Ũn is
extracted through Ũn = SnUn. Sn is a linear dimensionality
reduction transformation that has been learned from the atten-
tion map An. This representative feature Ũn is then fed to the
existing feature aggregation method capsule [48] to get the
representative features V.

2) SSR-NET MODULE
The SSR-Net employs a coarse-to-fine architecture for clas-
sification following the soft stage wise regression. The classi-
fication divides the task into several bins of head pose (yaw,
pitch and roll). A scale factor 1n defines the width of the
bin and a shift vector Eη(n) predict the center of each bin. The
SSR soft stagewise regression function takes N sets of stage
parameters {Ep(n), Eη(n),1n} as input, where Ep(n) is the proba-
bility distribution of the nth stage. These stage parameters are
obtained from the final set of feature vector V of the feature
aggregation module. The final regressor output of the head
pose then thus obtained by

y̌ =
∑N

n=1
Ep(n) · Eµ(n) (13)

where Eµ(n) is a vector for representative values of head pose
group and obtained from Eη(n) and 1n.

3) DOMAIN ADAPTATION MODULE
To apply the domain adaptation technique during the train-
ing phase a domain classifier and the GRL layer have been

added to the existing FSA-Net model. A very shallow fully
connected binary classifier network comprising of (Linear
−> BatchNorm−> Linear−> ReLU−> Linear) has been
designed for the domain classification task. The fine-grained
feature stream from the FSA-Net feature aggression layer
has been concatenated and send to the domain classifier
layer. The GRL layer has been injected between the feature
aggregation and the domain classifier layer to produce the
minimax optimization. The classifier and the GRL layer helps
the adversarial learning during backpropagation. The overall
model architecture is shown in figure 10.

4) LOSS FUNCTION
The end goal of the HPE task is to learn a representative
function F(x) which predicts the head pose y̌ for an input
image x. To find F(x) the most common loss function found
in HPE literature, the mean absolute error (MAE) between
the ground truth and predicted head poses has been used here
–

L(y, y̌) =
1
M

∑M

m=1
‖ỹm − ym‖ (14)

where ym is the corresponding ground truth and ỹm = F(xm)
is the predicted pose for the image xm.

For the domain classifier, the common cross-entropy loss
has been used –

Lcross−entropy(y, ŷ) = −
∑

i
yilog(ŷi) (15)

where y is the true label distribution and ŷ is the predicted
label distribution.
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B. TRAINING METHODOLOGY
The FSA-Net fine-grained feature aggregation learns the fea-
ture from the training images from both source synthetic
domain and target real images. The SSR-Net regression
module helps to learn the head pose estimation task. The
adversarial learning of the domain invariant features from
the source and target domain is achieved by training the
domain classifier and passing the backpropagation through
the gradient reversal layer. During this adversarial training to
reduce the negative transfer due to label mismatch from the
source to target domain data a similar strategy to the work of
Kuhnke and Ostermann [42] has been used to sample out the
nearest source samples in terms of head pose from the target
data. The overall training strategy is as follows –
• Inputs – Source Domain Synthetic images XS with
ground truth head pose Y S , and target domain real
images XT without any ground, truth head pose labels.

• Step 1 – Divide the training source domain data into two
sets. Train the FSA-Net which comprises of the feature
extractor GF and the head pose regressor GY with only
the first set of source domain data (XS ,Y S ) to learn
the parameters θ̂F and θ̂Y respectively and save the best
model.

• Step 2 – Predict the head pose for each sample from
the target domain with the model learnt from step 1 as
ŷti ← GY

(
GF

(
x ti
))
. Extract the nearest sample (image

and ground truth label pairs) from the second set of
source domain data for each target set image. The near-
est neighbour sample is identified by the shortest dis-
tance calculated with the mean square error between the
ground truth values from the source domain data and the
predicted label ŷti from the target domain.

• Step 3 – After extracting the nearest samples from the
source domain data the feature extractor GF , head pose
regressor GY and the domain classifier GD are trained
simultaneously with both source and target domain data.
GY is trained with the sampled source domain data
(XS ,Y S ), GD is trained through adversarial learning
with the source and target data (XS ,XT ) and their cor-
responding labels (lS , lT ). Finally the respective param-
eters θ̂F , θ̂Y and θ̂D are learnt.

C. EXPERIMENTAL DETAILS & RESULTS
Before running any experiments, the data is prepared by
processing all the generated synthetic images through a pop-
ular face detector MTCNN [49] to loosely crop the face.
To evaluate the data and to check if the data generated by
the methodology mentioned in this work is close enough to
the real-world data three different sets of experiments have
been carried out on the dataset. All the experiments have been
performed in an Intel I7 CPU and an Nvidia TITAN X GPU.

1) TRAIN ON SYNTHETIC DATA WITHOUT ANY TRANSFER
LEARNING OR DATA AUGMENTATION
First, the original FSA-Net model is trained without any
domain adaptation module and transfer learning methods

(i.e. only with the generated synthetic data) and tested on the
two real datasets Biwi and SASE.
To replicate the real-world data, random Gaussian noise is

added to the synthetic images during training, but no further
data augmentation strategy is applied. The training set con-
sists of 300k labelled synthetic images. The model is trained
for 90 epochs with the Adam optimizer. The initial learning
rate has been set to 0.0001, later the learning rate has been
reduced gradually after every 30 epochs by a factor of 0.1.
There is no previous work published that deals with the

HPE task training only on synthetic data and evaluating
it with real data. The nearest scenario can be training the
network with the synthesised 300W-LP data which was pro-
duced by augmenting the real data as discussed in section II-B
and validating the trained model on the Biwi dataset which
is a real dataset. Therefore, the results of the trained model
are compared against this scenario. Also, as the only true
synthetic data with head pose annotation that is currently
available is SynHead, the same FSA-Net model has been
trained with SynHead and has been evaluated against Biwi.
Table 2 shows the results of these scenarios. It includes

three state-of-the-art HPE models that are all trained on the
300W-LP dataset and tested on Biwi. FAN [50] is a landmark
detection method that produces multi-scale information and
merged the block features. The accurate head pose then can
be calculated from the detected landmarks. Hopenet [8] and
FSA-Net [9] are landmark free regression methods for HPE
task. The result shows training the FSA-Net with the synthetic
data generated from this work reaches near the state-of-the-
art results and perform quite well compared to the available
Synhead dataset. It is also able to beat the landmark-based
FAN result by more than 1◦ in MAE.
To analyse further and to understand the performance of

the trained model on particular head pose angles both the
FSA-Net models trained on the synthetic data produced by
this work and Synhead are evaluated against Biwi in narrower
angle ranges. Table 3 shows the result filtered yaw, pitch and
roll (stated as Y, P and R respectively) from Biwi. It can be
found that training solely with the synthetic data produced by
this work can reach the state-of-the-art result in most of the
narrow-filtered head pose angles. Also, it produces a better
result compared to the Synhead dataset.

2) TRANSFER LEARNING WITH DATA FUSION
In the second phase of the experiments, a data fusion based
transfer learning approach is applied during training where
the FSA-Net model is first trained with the synthetic data and
then the model is fine-tuned on a small set of real data from
Biwi and SASE. In this experiment, the FSA-Net model is
trained with around 70k of synthetic data and then the trained
model is fine-tuned with around 1k of Biwi data. A similar
experiment is conducted with SASE data as well.
The only similar work was done by Wang et al. [32] where

260k synthetic images and 15k of real images have been used.
Both the real and synthetic images were split into 80% for
training and 20% for testing. Experimental results are shown
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TABLE 2. Experimental result – a comparison with recent research works
with FSA-Net trained with the synthetic data.

TABLE 3. Comparative evaluation of our data against the synhead
dataset on the fsa-net model without any domain adaptation
and training only on synthetic data and testing on Biwi
varying the head pose along with one or two axis.

in Table 4 that include the results from this work and the
related previous work [32]. It shows that fine-tuning the pre-
trained model (trained only with synthetic data) with only 1k
of the real image and ground truth pairs from Biwi can beat
the previous work.

3) TRANSFER LEARNING WITH DOMAIN ADAPTATION
(SEMI-SUPERVISED APPROACH)
In the third and final experiment, the domain adaptation
approach with the training strategy discussed previously in
section VII-B was used. The FSA-Net model is first trained
with only the synthetic data for 70 epochs and the best model
is selected by testing on a held-out test set from the synthetic
dataset. Then the trained model is used to predict the pose
of the real data sequences from Biwi and with the predicted
result the nearest data is sampled from the synthetic data
for every sequence of real data. Afterwards, the FSA-Net
with the domain adaptation module is trained using those
sampled synthetic data and real data for another 30 epochs.
In this phase of the experiment both the real (Biwi) and the

TABLE 4. Mean error of yaw, pitch and roll on transfer learning approach
with data fusion.

synthetic data have been passed to the feature extractor mod-
ule. The MSE loss of the Head Pose Regressor module is cal-
culated against the labelled head pose synthetic data and the
classifier binary cross-entropy loss is measured against the
binary labelled synthetic and real data (Biwi). The same sec-
ond phase experiment is also conducted with the real dataset
SASE. The trained model is then evaluated against the Biwi
and SASE datasets.

Table 5 shows the comparative result with and without the
domain adaptation for the two real-world datasets. The result
shows that applying adversarial domain adaptation-based
training improves the result by 1◦ across yaw, pitch and roll.
Also, the predicted label and the ground truth label distribu-
tion is plotted in a scatter plot and shown in figure 11.

TABLE 5. Comparative result on Biwi and sase dataset with and without
domain adaptation.

VIII. DISCUSSION
The following section discusses the results presented in the
previous section.

• In the first set of experiments, the model is trained with
only the synthetic data and evaluated against Biwi. The
result shows that the trained model performs close to
the state-of-the-art. A similar result is found when the
model is evaluated against the narrow band of yaw,
pitch and roll as shown in table 2. Only for the high
concatenated rotation angles, the model fails to suffi-
ciently predict, and the errors are large. The first row
of figure 11 shows the distribution of the ground truth
labels and the predicted labels. From the distribution,
it can be seen that the trained model performs poorly on
either higher values of pitch and roll or higher values of
yaw and roll.
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FIGURE 11. Distribution of ground truth and predicted labels in blue and red color respectively. The first row shows the result without domain
adaptation and the second row shows with domain adaptation. The first column is Yaw versus Pitch, second column is Pitch versus Roll and the
third column shows Yaw versus Roll label distribution.

TABLE 6. Experimental results on varying the background of the synthetic
data and validating against Biwi.

• Though the model trained with the new synthetic data
performs poorly in some extreme angles when it is
compared with the previously available synthetic dataset
Synhead, it performs better and produces good results
overall as well in all the filtered angles as shown in
table 3. A possible reason may be the lack of variation
in the Synhead dataset, as it only contains 10 differ-
ent subjects, whereas the synthetic data produced in
this work has 100 subjects. Also, as the Synhead data
is produced from a head scan, there are artefacts in
some extreme angles compared to the proposed dataset
as in this work the images are rendered from fully
rigged full-body models. A few samples are shown
in appendix B.

• In the data augmentation and data fusion-based transfer
learning approach also the newly proposed synthetic
data produces a better result than the previous work [32],
where the model was trained on both real and syn-
thetic data and tested on a set of both synthetic and
real data. During the training, Wang et al. [32] have
used around 200k of synthetic data and 12k of real data
from the Biwi dataset, whereas using the synthetic data
produced by this work during the initial training and then

fine-tuning the trained model with only 1k of Biwi data
is able to beat the result of [32].

• In the final set of experiments where the adversarial
domain adaptation is applied, the model performs better
than the first phase where the network is trained only on
synthetic data. Therefore, we conclude that the domain
adaptation technique helps to learn the domain invari-
ant features from both the synthetic and real domain.
From figure 11 it can be found that after applying DA
the trainedmodel is able to predict the head pose in those
extreme angles (high yaw and roll or high pitch and roll)
as well where the model trained without the DA fails.

• Finally, as the data has been generated with three dif-
ferent backgrounds – plain, textured and real, it has
been observed that training with the data augmenting
with textured and real background images gives the best
result among the three. The detailed results are shown in
appendix A.

IX. CONCLUSION AND FUTURE WORK
In this article, a framework is presented to generate synthetic
head pose data with their ground truth using a low-cost open-
source toolchain, compared to previous works that gener-
ated synthetic datasets from expensive high-quality 3D scans.
By generating the data with enough variations and cover-
ing real data distributions, we can achieve near state-of-the-
art results training only with low-cost synthetic data. When
compared with the previously available synthetic datasets,
experimental results show that training a state-of-the-art HPE
model with the data produced by this work gives better results
in multiple scenarios. First, when the model is trained only
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FIGURE 12. Samples from SynHead [7] dataset with artefacts because of
large-concatenated rotation angles and samples from the dataset
produced from this work with similar head rotations.

with synthetic data it gives a better result than the previ-
ous available dataset SynHead [7]. In the second scenario
when the model is first trained on synthetic data and further
fine-tuned with a very small amount of real data through
transfer learning it produces a superior result than the pre-
vious work [32]. Further, it has been shown that applying the
synthetic to real domain adaptation technique with adversar-
ial training can reduce the gap between the synthetic and real
domain and enables to learn the domain invariant features
which further improve the result.

In future work, the proposed methodology can be used to
bring these fully rigged models to various synthetic com-
plex environments and build datasets for more specific tasks
like in-cabin driver monitoring systems. As the head pose
ground truth collected through this methodology is perfect
without any error, cross-validation with the existing real
head pose datasets can be performed by training the HPE
model with various real dataset and validating against the
synthetic data and vice-versa. The results can then be anal-
ysed to identify the errors in the ground truth of the real
head pose datasets, particularly for large-concatenated head
rotation angles. Additionally, as these full-body models are
fully rigged and all the body parts can be accessed, more
complex datasets can be created for human action sequences,
facial gestures and dynamic head-pose sequences. Finally,
the unsupervised domain adversarial learning is mostly used
for classification tasks and not widely examined for continu-
ous value prediction through regression, so theDomainAdap-
tation can further be examined for other regression tasks such
as single view depth estimation and surface normal prediction
while training on data from another domain (synthetic data).

APPENDIX A
Table 6 shows the comparative result of the FSA-Net trained
on data generated by the methodology proposed in this work
with three different backgrounds. The result shows combin-
ing the data with real and textured background produces the
best result.

APPENDIX B
Figure 12 shows some of the examples from the SynHead [7]
dataset with high vales of pitch and yaw. As these are gener-
ated from single head scans and contain single mesh without
any rigging there are some artefacts in those extreme angles.

In contrast in this work, a fully rigged full-body model is
used, so there are no similar artefacts after rendering the
models.
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Abstract— Accurate 3D head pose estimation from a 2D image 
frame is an essential component of modern consumer technology 
(CT). It enables a better determination of user attentiveness and 
engagement and can support immersive audio and AR 
experiences. While deep learning methods have improved the 
accuracy of head pose estimation models, these depend on the 
accurate annotation of training data. The acquisition of real-world 
head pose data with a large variation of yaw, pitch and roll is a 
very challenging task. Available head-pose datasets often have 
limitations in terms of the number of data samples, image 
resolution, annotation accuracy and sample diversity (gender, 
race, age). In this work, a rendering pipeline is proposed to 
generate pixel-perfect synthetic 2D headshot images from high-
quality 3D facial models with accurate pose angle annotations. A 
diverse range of variations in age, race, and gender are provided. 
The resulting dataset includes more than 300k pairs of RGB 
images with the corresponding head pose annotations. For every 
hundred 3D models there are multiple variations in pose, 
illumination and background. The dataset is evaluated by training 
a state-of-the-art head pose estimation model and testing against 
the popular evaluation dataset BIWI. The results show training 
with purely synthetic data produced by the proposed methodology 
can achieve close to state-of-the-art results on the head pose 
estimation task and is better generalized for age, gender and racial 
diversity than solutions trained on ‘real-world’ datasets.  

Keywords— Head Pose Estimation, Synthetic Face, Face 
Dataset 

I. INTRODUCTION 
Head pose estimation (HPE) has great potential to provide 

an enabling technology for many next-generation consumer 
technologies (CT)  including virtual reality (VR) and augmented 
reality (AR) based entertainment systems, human-computer 
interfaces (HCI) that employ human behaviour or attentiveness 
analysis, driver monitoring systems (DMS),  and immersive 
audio systems. In human behaviour analysis, HPE is used for 
estimating human gaze and body posture to infer the feelings, 
desires etc. of a human subject. Facial authentication software 
can use HPE to improve performance and robustness. In DMS a 
real-time HPE is important to monitor the driver attention level, 
cognitive state and track eye-movements and gaze direction. For 

AR/VR application HPE can be used to predict the accurate field 
of view (FOV) and is essential for foveated rendering in VR 
headsets. 
Computer-vision based HPE transforms the captured 2D facial 
images into high-level directional data in three-dimensional 
space with three Euler angles: 𝜃𝑥  (Pitch), 𝜃 (Yaw) and 
𝜃 (Roll).  Normally the HPE tasks follow two different 
approaches: classification and regression. Regression 
approaches predict the head pose by fitting a regression model 
on the training data and estimating the yaw, pitch and roll in 
continuous angles, making these models comparatively 
complex. On the other hand, classification approaches mostly 
rely on classifying the head pose into a discrete bin. These 
methods are comparatively robust to large pose variations but 
with sparse solution space e.g. 10 degrees intervals for each bin.  

Head pose estimation from a single image makes the 
problem more challenging. It requires learning the mapping 
between 3D and 2D spaces. Previous works use different 
modalities like depth information [1, 2, 3, 4], video sequences 
[6] or inertial measurement unit (IMU) [5]. An accurate depth 
map provides additional 3D cues that are missing in 2D images 
and requires expensive depth sensors. Most of this single image-
based HPE methods leverage the use of Convolution Neural 
Network (CNN), a variant of a Deep Neural Network (DNN) to 
extract features from the 2D images and use those high-level 
features to model 3D head pose regressors. The recent state of 
the art models [7, 8, 9] shows combining the robustness of the 
classifier with the sensitivity of the regressor networks through 
a fine-to-coarse approach that makes these models more 
accurate. 

Though these DNN based methods have given good results, 
a major drawback of these supervised models is their need for 
accurately labelled data. Particularly for HPE tasks, it will 
become more challenging to obtain annotated head pose data 
with variations of appearances like race, age, gender and other 
environmental factors like noise, illumination and occlusion. 
Also, obtaining real human data falls under different data 
protection and ethical guidelines like GDPR. Other modalities 
such as depth and IMU are prone to sensor noise. The head-pose 
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datasets available captured from real subjects like BIWI Kinect 
Head Pose Dataset [1] and Pointing’04 [10] only consists around 
15k and 4k images respectively. Among these two BIWI is most 
commonly used for benchmarking.  But because of the limited 
size, both these datasets are not suitable to train DNN based HPE 
models. Generating synthetic facial images using Computer 
Graphics (CG) software provides a powerful tool for building 
large datasets of accurately labelled 2D facial image samples.  

In this paper, we propose a methodology utilizing 
commercially available animation software and open-source CG 
tools to create photorealistic virtual human models and generate 
accurate RGB and corresponding ground truth Head Pose data. 
The data generated through this method is also been evaluated 
using the current state-of-the-art models. Training only on the 
synthetic dataset and testing on real dataset shows promising 
results except for some marginal areas of the data distribution. 

II. RELATED WORKS 
In this section, first deep learning-based HPE methods have 

been reviewed, before reviewing the currently available head 
pose datasets. 

A. Head Pose Estimation using Deep Learning 
Head Pose Estimation from visual information can be 

categorised into a few approaches. The first one is the facial 
geometric landmark-based method where these facial features 
have been used to fit appearance-based head models [12, 13] to 
calculate the accurate head pose. Different regression methods 
[14, 15] creates initial face models from the key points and 
incrementally align the created face with real ones by 
regressions. A comprehensive survey of these conventional 
methods can be found in [11]. As these landmark-based 
approaches require manual annotation of the landmarks in faces, 
it is often difficult to acquire such labels. In some cases, because 
of the low resolution of the images, accurately locating these 
landmarks is not possible. 

Other approaches take advantage of different modalities as 
well. Fanelli et al.[1] fits a regression random forest model to 
predict the head pose from the depth information. Meyer et al. 
[3] fits 3D morphable models to the depth images and regress 
the head pose from that. Gu et al.[6] propose the facial landmark 
features tracking by Recurrent Neural Network (RNN) using a 
sequence of  RGB images from facial video using temporal cues.  

Finally, there is another set of approaches which focuses on 
deep learning-based HPE from a single monocular RGB image. 
In this paper, we have used this approach to validate our data. 
The initial work on this was proposed by Anh et al. [16] which 
uses CNN based models to regress the head pose information. 
Cangelosi and Patacchiola [17] examine adaptive gradient 
methods with different CNN architectures for HPE tasks. Chang 
et al.[18] predicted the head pose and facial key points jointly 
using the ResNet model. Ruiz et al. [9] used ResNet50 backbone 
architecture for feature extraction and combined loss stream of 
regression and binned pose classification. Yang et al. [8] 
propose FSA-Net, a lightweight structure for head pose feature 
regression, using the stage-wise regression model SSR-Net [19]. 

Few of the above-mentioned works use synthetic facial 
images with the ground truth head pose to train their models. 
Ruiz et al. and Yang et al. use a synthetically expanded dataset 
300W-LP, which is created by augmenting real images. Gu et 
al.[6] introduced the synthetically created dataset SynHead, 
which has been rendered through a CG tool from a very high-
quality 3D scan obtained from [20]. They use a transfer learning 
approach and train the network on synthetic data and fine-tune 
with real data. Wang et al. [21] also introduce a synthetically 
rendered head pose dataset from high-quality 3D scans and 
propose a fine to a coarse network to predict accurate head pose. 
Though the data is not publicly available. They train their model 
with approx. 260k synthetic images from their dataset and 15k 
real images from the BIWI dataset. Kuhnke et al.[22] propose 
an Adversarial Synthetic to Real Domain Adaptation technique 
and uses the SynHead to train the network. This is the only work 

 
Figure 1. Sample Images from different datasets 
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which has trained on only synthetic data rendered from CG tool 
and tested on real data. 

B. Head Pose Datasets 
There are few datasets available which have been used for 

Monocular Image-based HPE tasks. Figure 1 shows the samples 
from these datasets. 

300W-LP: 300W [23] uses multiple alignment real face 
databases with 68 facial key points including LFPW, AFW, 
IBUG, HELEN and XM2VTS. It uses 3D Dense Face 
Alignment (3DDFA) in which a dense 3D Face model is fitted 
to the images through a CNN which align faces in large poses 
up to 90 degrees. It contains around 61225 samples with large 
poses, which is further expanded to 122450 samples by flipping. 
The combined dataset is called 300W across Large Pose (300W-
LP) 

AFLW: AFLW [23] contains 21080 real faces in the wild 
with wide pose variations (yaw from -90 degree to +90 degree). 

BIWI: Biwi Kinect Head Pose Dataset [1] contains 
approximately 15.7k images taken from 24 sequences of 20 
subjects (12 men and 6 women, 4 people wearing glasses). Each 
image has a resolution of 640X480 pixels with the faces 
containing 90X110 pixel on average. The head pose ranges from 
±75º yaw, ±60º pitch and ±50º roll. 

Pointing’04: Pointing’04 [10] has been captured from 14 
subjects containing 2.7k images. The head pose of the captured 
subjects is only represented by the two angles yaw and pitch and 

both have fixed interval of 15 degrees. In our investigating we 
have found that during data acquisition the subjects have been 
asked to stare to different markers fixed in the room, resulting in 
an error in the captured labelled head rotation values for many 
samples. The pre-trained model of the current state-of-the-art 
HPE FSA-Net gives a Mean Absolute Error [MAE] of around 
12 degrees while testing on this dataset. 

SynHead: NVIDIA SynHead [6] contains 510960 frames 
of 70 head motion tracker rendered using 10 individual high-
quality 3D scan head models from [20]. It contains head motion 
tracks of all 24 BIWI sequences. Though it was rendered with a 
different sequence of the rotation that was followed by BIWI. 

Out of these datasets, because of their limitations of size, 
only the 300W-LP dataset is suitable for DNN training. Even 
though the SynHead Dataset has a large number of synthetic 
head pose frames, it only contains 10 individual subjects from 
high-quality 3D scans, which make it less diverse expensive to 
acquire. On the contrary out dataset has more than 300k frames 
from 100 individual models. 

III. METHODOLOGY & DATASET DETAILS 
In this section, we discuss the detailed methodology of 

creating the synthetic dataset which includes the RGB images 
and the corresponding ground truth head pose. Later we provide 
dataset details and analysis on the generated dataset. 

 
Figure 2. Overall Pipeline to produce the synthetic Head Pose Data 

 
Figure 3. Samples from our dataset with plain and textured background and varying Yaw, Pitch, and Roll 
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A. 3D Model and Scene Setup 
To generate the virtual human models, we have used the 

commercially available software iClone 7 and Character Creator 
[24]. The Character Creator comes with a “Realistic Human 
100” package consisting of 100 human models with different 
age, race, gender, and ethnicity, thus reducing the bias of the 
dataset. Additionally, the facial morphs and expressions are also 
adjusted to provide more variations. All these models are 
exported from iClone in FBX formats with Physically Based 
Rendering (PBR) textures to add realism to them. These fully 
rigged models in FBX formats are then imported in open-source 
3D creation software Blender [25]. The FBX models contain the 
fully rigged armature with the mesh which can be used to add 
motions to the head. To vary the scene light, we have added 
different illuminations available in Blender, which includes 
point, area, sun, and spotlight. To render the actual image, a 
camera model has been added to the scene in perspective mode. 
We have chosen the Blender cycle rendering engine which 
provides the ray path tracing for realistic rendering. The detailed 
methodology can be found in [26]. To add variations to the 
background we have combined plain, textured, and real images. 
For the textured background, we have used the Brodatz-based 
colour images provided by [27]. For the real background, we 
have used the images provided by the SynHead [6] dataset in the 
background folder. 

B. Applying Head Pose & Collect Ground Truth 
 As these models are fully rigged, the shoulder bone has 

been selected to provide the rotation to the head mesh. An empty 
object has been added to the centre of the two eyeballs which we 
have chosen as the centre of the head. The translation and the 
rotation of the main head bone have been copied to the empty 
object which constraint the empty to follow the head. The 
rotation has been applied to the head bone in the sequence of 
PRY (pitch, roll and yaw) and all the frames have been saved. 
We have varied the Yaw, Pitch and Roll in the range of ±80º, ± 
70º and ± 55º, respectively in an interval of 3º. Additionally, we 
have also applied the Euler angles provided by the 24 Biwi 
sequences and recorded those frames as well. But as these 
models are rigged with the head mesh, for each frame the 
alignment is not exactly the same as Biwi. The mean average 
error with Biwi for these sequences is approx. 1º in Euler scale. 

To render the ground truth the camera near and far clip 
paremeters are set to 0.001 and 5.0 meters, respectively. The 
camera sensor size and field of view (FOV) are set at 60º and 36 
millimetres. To get the final render the RGB render pass has 
been used in the Blender compositor setup.  While rendering the 
frames saved previously the empty object’s current translation 
in Blender 3D world coordinate and rotation in Euler has been 
captured through an automated python script.  

The rendering of ground truth is carried out in an Intel Core 
i7-6800 3.4 GHz 6 core CPU machine with 32 GB of RAM and 
two NVIDIA TITAN X Pascal Graphical Processing Unit 
(GPU) with 32 GB of dedicated graphics memory. The ground 
truth head pose RGB images are rendered with a resolution of 
640 × 480 pixels in jpeg format. Each frame took 16.3 seconds 
in an average to render using Blender Ray path Tracing Cycle 
Rendering Engine. 

 The overall pipeline for generating the synthetic head pose 
has been shown in figure 2. 

C. Dataset Details 
Following the above-discussed methodology, we have 

generated the ground truth RGB images and their corresponding 
headpose (Pitch, Roll and Yaw) in Euler angle for 44 female and 
56 male models. Each subject has approx. 3.5k samples which 
make the total dataset size to around 3,500k. A sample of images 
from the generated data with varying Yaw, Pitch and Roll has 
been shown in figure 3. While training a deep neural network, 
the generalization of the model highly depends on the data 
distribution of the dataset. So, to check the label distribution we 
randomly select a few identities from our dataset and compare 
them with the Biwi dataset. Figure 4 shows the two distributions 
which show our dataset is more uniform across the value of yaw, 
pitch, and roll, whereas the distribution of Biwi shows it is 
mainly concentrated on the angles near the centre. 

 
Figure 4. The first row shows the data distribution of Yaw, Pitch 
and Roll in our synthetic dataset and the second row shows the 
same distribution from Biwi Test dataset 

IV. EVALUATION 
In this section, we will first discuss one of the current state-

of-the-art HPE models that we have used to evaluate our data. 
Later we will show the results of that model on our dataset. 

A. Model Details 
To evaluate our data, we have selected the recent state-of-

the-art models FSA-Net [8], which has been trained on 300W-
LP and Biwi in its original work and has been validated against 
Biwi. The FSA-Net model is based on feature aggregation and a 
soft stagewise regression based on previous work on SSR-Net 
[24] which employs a coarse-to-fine strategy for classification 
following the stage-wise regression. The soft stagewise 
regression (SSR) function accepts N set of stage parameters 
{𝑝(𝑛), 𝜂(𝑛), 𝛥𝑛}. 

1) Feature Aggregation Module: FSA-Net employs a 
spatial grouping of features and feeds it to the aggregation 
module. The feature map 𝑈𝑛 for the nth stage is a spatial grid 
containing the k dimensional feature representation of a 
particular spatial location. Then it computes an attention map 
𝐴𝑛  through a scoring function, which helps to get the pixel-
level feature. The original work deals with three different 
scoring options (1) Uniform, (2) 1 ×  1 convolution and (3) 
Variance. We have used the third option, in which the features 
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are selected through Variance, which is differentiable but not 
learnable. After getting the feature map 𝑈𝑛 and attention map 
𝐴𝑛 , a set of representative features 𝑈𝑛    has been extracted 
through  𝑈𝑛 = 𝑆𝑛𝑈𝑛.   𝑆𝑛 is a linear dimensionality reduction 
transformation which has been learned from the attention map 
𝐴𝑛. This representative features 𝑈𝑛 is then sent to the existing 
feature aggregation method capsule [31] to get the 
representative features V. 

2) SSR-Net Module: The SSR-Net employs a coarse-to-fine 
architecture for classification following the soft stage wise 
regression. The classification sets to divide the task into several 
bins of head pose (yaw, pitch and roll). A shift vector 𝜂(𝑛) 
predict the center of each bin and the scale factor 𝛥𝑛 defines the 
width of the bin. The SSR soft stagewise regression function 
accepts N set of stage parameters {𝑝(𝑛), 𝜂(𝑛), 𝛥𝑛} where 𝑝(𝑛) is 
the probability distribution of the nth stage. These stage 
parameters are obtained from the final set of feature vector V of 
the feature aggregation module. The final regressor output of the 
head pose then thus obtained by  

𝑦  =  p⃗( )

𝑛 = 1

⋅ 𝜇(𝑛) 

a) where 𝜇(𝑛) is a vector for representative values of head 
pose group and obtained from 𝜂(𝑛) 𝑎𝑛𝑑 𝛥𝑛. 

3) Loss function:  The ultimate goal of the HPE task is to 
find a representative function F(x) which predicts the head pose 
𝑦  for an input image x. To find F we have used the most 
common loss function found in HPE literature, the mean 
absolute error (MAE) between the ground truth and predicted 
head poses –  

𝐿(𝑦, 𝑦) =  
1
𝑀

 ‖𝑦  − 𝑦 ‖
𝑀

 =1

 

where 𝑦  =  𝐹(𝑥 ) is the predicted pose for the image 𝑥  and 
𝑦  is the corresponding ground truth. 

B. Experimental Details 
We have used Pytorch to implement the FSA-Net module. 

As the main objective is to evaluate the data generated by our 

method to check if the data is close enough to the real-world 
data, we trained the model only with our synthetic data and 
tested on the two different real datasets Biwi. We have not used 
any further data augmentation or transfer learning approach 
during our training. The training set consists of 200k labelled 
synthetic images. We trained the network for 90 epochs with the 
Adam optimizer. The initial learning rate has been set to 0.0001, 
later the learning rate has been reduced gradually after 30 epochs 
by 0.1. The experiments have been performed in an Intel I7 CPU 
and an Nvidia TitanX GPU. 

C. Results & Discussion 
During the evaluation, after training the FSA-Net model 

with our synthetic data, we have tested the trained model against 
BIWI dataset, which we think are closest to our data in terms of 
appearance. We have used the popular face recogniser MTCNN 
[28] to exclude some of the extreme angles where the face is out 
of the frame and loosely cropped the facial region to create the 
test dataset.  

Table I shows the experimental result with the current state-
of-the-art models. We have divided the results into two 
category intra-domains where both the training and testing data 
are real and from the same domain. In the case of inter-domain, 
the models are trained with synthetic or synthetic like (300W-
LP) or fusion of Real and Synthetic data. We have found the 
network trained only on our synthetic data gives state-of-the-art 
result for a low roll. But when there is a mix of high negative 
pitch and high roll the model got confused and give an 
ambiguous result. We believe this is mostly because of the hair 
particle textures for the synthetic data as the face is not visible 
properly in these frames. For high roll with little variation in 
yaw and pitch also it gives MAE of approx. 2º. 

V. CONCLUSION 
In this paper, we have presented a framework to generate 
synthetic head pose data with their ground truth using the 
available cheap and open-source toolchain. Previous works 
have used synthetic dataset which has been generated from 
high-quality 3D scans thus making them expensive. Also, either 
they have used transfer learning or data fusion approach to train 
their model or domain adaptation techniques to reduce the gap 

TABLE I.  EXPERIMENTAL RESULTS  

Experiment Model Training Set Test Set MAE Yaw Pitch Roll 

Intra Domain 
Gu [6] VGG16 [29] Biwi Biwi 3.66 3.91 4.03 3.03 

Ruiz [9] ResNet50 Biwi Biwi 3.23 3.29 3.39 3.00 
Yang [8] FSA-Net Fusion Biwi Biwi 3.6 2.89 4.29 3.6 

Inter Domain 
(300W-LP as 
Training Set) 

Ruiz [9] ResNet50 300W-LP Biwi 4.90 4.81 6.61 3.27 

Yang [8] FSA-Net Fusion 300W-LP Biwi 4.00 4.27 4.96 2.76 

Transfer 
Learning  

+ Data Fusion 

Wang 
[21] GoogleNet [30] Synthetic + 

Biwi Biwi 4.96 4.76 5.48 4.29 

Inter Domain 
Train only on 

our  
Synthetic Data 

Ours FSA-Net Capsule Our Syn Data Biwi 6.10 5.1 6.64 6.56 

Ours FSA-Net Capsule Our Syn Data 
Biwi 

Yaw (+60º, -60º) 
Pitch (+60º, -60º) 
Roll (+10, -10º) 

4.88 4.375 5.59 4.67 
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between synthetic and real domain. We have also shown that 
generating the data with enough variations and covering the real 
data distribution we can achieve near state-of-the-art result just 
by training with low-cost synthetic data. Though our model 
does not perform well on the boundary value of roll and pitch 
we believe it can be improved further on applying proper 
domain adaptation techniques. 
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Abstract—In this paper, we explore how synthetically 
generated 3D face models can be used to construct a high-
accuracy ground truth for depth. This allows us to train the 
Convolutional Neural Networks (CNN) to solve facial depth 
estimation problems. These models provide sophisticated 
controls over image variations including pose, illumination, 
facial expressions and camera position. 2D training samples can 
be rendered from these models, typically in RGB format, 
together with depth information. Using synthetic facial 
animations, a dynamic facial expression or facial action data can 
be rendered for a sequence of image frames together with 
ground truth depth and additional metadata such as head pose, 
light direction, etc.  The synthetic data is used to train a CNN-
based facial depth estimation system which is validated on both 
synthetic and real images. Potential fields of application include 
3D reconstruction, driver monitoring systems, robotic vision 
systems, and advanced scene understanding.       

Keywords—3D Facial models, Facial depth, Face attributes, 
Facial image dataset   

I. INTRODUCTION 

      Estimating human shape, pose, motion and depth from 
images are fundamental challenges for many multimedia 
applications and provide information that can be leveraged to 
enhance quality and immersion in advanced consumer use 
cases. Examples include scene analysis & understanding, 
human behaviour analysis, driver monitoring for semi-
autonomous driving, augmented reality systems and facial 
expression analysis and facial authentication. Today, state-of-
art systems for these use cases will rely on highly optimized 
convolutional neural networks designed to run on low-power 
embedded hardware. Such solutions require large, high-
quality training datasets.  

Facial images, in particular, are at the core of many 
consumer multimedia systems. They exhibit rich variations in 
pose, hairstyle, expression, structure and their 2D appearance 
is affected by external factors such as lighting and camera 
location. Many face variations can be synthesized using 
existing advanced 3D tools such as iClone [1] and Blender [2]. 
Using these tools, it is feasible to generate a large number of 
synthetic images required for training Convolutional Neural 
Network (CNN) models. Rendering synthetic facial images 
would be highly useful for numerous tasks as it can provide 
enough realism to create various ground truth in terms of 
occlusions, depth, motion, body-part segmentation, camera 
and light direction. 

      The current generation of deep learning models requires 
the datasets to contain various information and accurate data 
for the training and evaluation process. The existing human 
facial datasets do not have the accurate depth information that 
defines the actual position of each facial element. The depth 
information in these datasets requires the manual description 
of the scene, which is an error-prone and time-consuming task 
especially dealing with video [3]. In such type of facial 
dataset, they are not sufficiently large and varied enough to 
learn the CNN models, as a consequence, they come with a 
low performance which restricts real-world applications        
[4-5]. 
      Recently deep learning-based methodologies have 
significantly improved the performances of face recognition 
systems, Human-Computer Interaction (HCI), understanding 
of 3D scenes for autonomous driving and robotics. An 
accurate determination of depth within the 3D scene is an 
important element of these computer vision systems. New 
emerging applications such as 3D reconstruction, Driver 
Monitoring Systems (DMS), robotic vision systems for 
personal robots and advanced HCI modalities require further 
improvements in short-range depth analysis to better 
understand and engage with humans.  

In this work, we present a method for generating 
advanced facial models with synthetic data. A method is 
proposed to generate facial depth information using 3D virtual 
human and iClone [1] character modelling software. The 
proposed method can be scaled to produce any number of 
synthetic facial data by controlling the face animations, scene 
and camera position. 

The main contribution of this research is focused on 
facial image rendering with the corresponding ground truth 
depth information. Using the synthetically generated data, we 
can train CNNs to address the facial depth estimation problem. 
This approach can enrich the real-world facial datasets 
required for portrait depth estimation problem. 
       The rest of the paper is structured as follows: Section II 
discusses related work and Section III presents the facial 
models. The application of synthetic facial depth (evaluation) 
is studied in Section IV. Conclusion and further cautions are 
discussed in Section V.      

II. RELATED WORK 

Facial depth estimation is considered as one of the 
challenging issues in computer vision, human-computer 
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interaction and virtual reality. It is used in a wide range of 
applications which includes controlling 3D avatars, human 
object detection and human-robot interactions [6-11].  

     Synthetic human facial data is used frequently to augment 
real data for pose invariant face recognition.  By using the 3D 
morphable model and Basel face model [13, 14], a pipeline is 
proposed to create synthetic faces [15]. A synthetic dataset 
for person identification is studied in [16, 17]. The authors 
used Blender [2] rendering engine to create different realistic 
illumination conditions including indoor and outdoor scenes 
and introduce a novel domain adaptation method that uses the 
synthetic data. In [13], FaceGen Modeller is used for 
generating facial ground truth using morphable models. 
In [19], a large-scale synthetic dataset called (SURREAL) is 
introduced where the images are rendered from 3D sequences 
of MoCap data. In [18], synthetic bodies are obtained by 
utilizing the SMPL body model [18]. This dataset contains 
more than 6 million frames with ground truth depth, pose and 
segmentation masks [19].     

Very limited work is done on synthetic facial models to 
explore the field with the available 3D tools and other 
commercially available software. In this paper, we proposed a 
method that generates synthetic facial models with many 
variations in expressions. By controlling the facial animations, 
camera positions, light positions, body poses, scene 
illuminations and other scene parameters, the method can be 
scaled to generate any number of labelled data samples. 

III. FACIAL DEPTH GENERATOR MODEL 

Virtual human models are created using the “Realistic 
Human 100” models in iClone [1] software based on the 
following steps:  

A. The iClone Character Creation Process 

iClone character creator [1] is used to create the initial 
characters of the virtual human faces. The iClone character 
creator generates humanoid characters and offers a useful 3D 
rigging option. The facial animation-ready models can be 
customized with sculpting and morphs. The template of the 
“Realistic Human 100” models is applied to the base body in 
the character creator as shown in Fig. 1.   

 
Fig. 1. A sample from the iClone Character creator.  

B. Adding Facial Expressions to Character Models 

 The virtual human face models are imported from 
Character creator to iClone [1]. Further, different expressions 
are added to the face models to introduce variations such as 
neutral, angry, happy, sad and scared. Fig. 2, show an example 
of these expressions. 

 
Fig. 2. A sample rendered images of iClone with different expressions 
(neutral, angry, happy, sad and scared).  

C. Exporting Character Animations to Blender 

The created virtual human face models are exported from 
iClone [1] to Blender [2] in FBX format as it provides 
appropriate rigging. FBX is a popular 3D file format for 
exchanging the 3D information as used by many 3D tools 
including Blender [2]. A sample of an iClone facial model 
with base body loaded in Blender [2] is shown in Fig. 3. 

 
Fig. 3. iClone facial model with base body loaded in Blender.  

D. Rendering 2D Image Data with Ground Truth Depth 

 In this work, the following steps are taken to obtain the 
final output. The cameras and lights are placed in a fixed 
position and the corresponding distance of the models are 
changed in the range of 700-1000 mm. The focal length and 
sensor size are set to 60mm and 36mm respectively. The facial 
models are rotated in the virtual scenes. Fig. 4 shows a sample 
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of the camera and light position with respect to the facial 
models in Blender [2].   

 
Fig. 4. A sample of the camera and light position with respect to the 3D 
character. 

     To generate RGB and depth images of faces in an 
extensive range of positions, the near and far clip of the 
camera is set to 0.01 and 5 meters. The facial models are 
rendered with 480×640 resolution and on a static background 
image. Fig. 5 shows a few rendered images while the camera 
position is changed with respect to the facial models.

 
Fig. 5. A facial model with corresponding ground truth depth of a head 
model from different views. 

Fig. 6 illustrates facial models with the corresponding ground 
truth depth while the camera is positioned at different 
distances. 

 
Fig. 6. A facial model with ground truth depth captured at the different 
camera position. 

    Render passes are set up in Blender [2] to generate the 
synthetic facial RGB and the corresponding ground truth 
depth images. To reduce the noise produced during the 
rendering process, the branched path tracing method is 
employed. Fig. 7 presents an overview of the noise 
controlling method in Blender [2]. 
  

 
Fig. 7. An overview of the noise control system in Blender. 

Afterwards, the images are rendered using Cycles engine and 
in the perspective view to obtain the RGB images with 
corresponding facial depth. Fig. 8 demonstrates the workflow 
of the facial depth generation process, camera and light 
setting.           

 
Fig. 8. Rendering configuration in Blender. The left row shows the body 
shape, light and camera setting; the middle row shows the facial RGB and 
the last row illustrates the corresponding facial depth image. 

Fig. 9 shows a few numbers of synthetic male and female 
models with the corresponding ground truth depth.  

 
Fig. 9. A sample of the synthetic facial images with different expressions 
and their corresponding depth maps. 

IV. EVALUATION 

      In this section, we deliver details about the evaluation of 
the two-state of the art CNNs on facial depth estimation. 
The pre-trained monocular depth estimation models 
DepthDense [19] and MiDas [20] are tested on the rendered 
synthetic data. Fig. 10, presents a few random synthetic RGB 
images and the corresponding depth images predicted using 
DepthDense [19]. Similarly, Fig. 11, shows the synthetic 
RGB images, predicted depth using MiDas [20] and ground 
truth images. 

 
Fig. 10. Sample synthetic RGB images predicted depth maps by DepthDense 
[19] and corresponding ground truth. 
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Fig. 11. Sample synthetic RGB images, predicted depth maps by MiDas [20] 
and corresponding ground truth. 

The most common quantitative matrices for evaluating the 
performance of the pre-trained models including Absolute 
Relative difference (AbsRel), Root Mean Square Error 
(RMSE), log Root Mean Square Error (RMSE(log)) and 
Square Relative error (SqRel) are employed for evaluation 
purposes. Table 1, demonstrates the evaluation results of the 
DepthDense and MiDas models [19, 20]. 

To further evaluate the validity of the synthetic data 
generated in this paper, we re-trained a few recent CNN-
based depth estimation networks [21, 22] on the generated 
facial data and later fine-tuned the models on real datasets.   

A simple autoencoder with skip connection based on U-Net 
architecture has been trained using the data generated with a 
plain background as shown in Fig 12. 

 

Fig. 12. Ground Truth Depth and Predicted Depth before and applying the 
mask. 

Using the data generated with a plain background as shown 
in Fig 12, as a monocular depth estimation use case. There 
are around 40k training and 15k test images and their 
corresponding ground truth depth. The network has been 
initialized with random weight and trained with mean square 
error loss and Adam Optimiser. Further to evaluate the results 
only on a facial section of the image the depth has been 
masked within a range of 50 cm from the camera centre and 
the masked depth has been evaluated with the ground truth 
depth. Both the results have been shown in Table 1. 

 Furthermore, we will create additional variations and 
augmentations in the synthetic facial depth data to grow the 
final training dataset. It is expected that this will further 
increase the accuracy of these deep learning-based CNN 
networks when tested on real data. 

V. CONCLUSION AND FUTURE RESEARCH  

       In this research paper, we proposed an advanced 
synthetic facial data generation pipeline. The facial images 
are generated from 3D virtual human models by rendering 
different variations of face poses, head poses and lighting 
conditions. Blender [2] rendering engine is used to generate 
the output as it allows changing different parameters such as 
lights position, camera parameters and keyframe values. 
 
 
The proposed framework has the potential to generate a great 
number of synthetic facial images. The synthetic 3D models 
can be used in different 3D environments if scaled properly. 
This will allow simulating real-world scenarios by 
controlling the camera position, intrinsic parameters and 
lighting conditions. 
     The generated dataset can be used for training and 
validation of deep learning methods with the focus on natural 
face modelling, portrait 3D reconstruction and beautification. 
     In our future work, we will explore the potentials of the 
deep learning methods on direct facial 3D reconstruction 
using the synthetically generated data. 
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Abstract— As Consumer Technologies (CT) seeks to engage and 
interact more closely with the end-user it becomes important to 
observe and analyze a user’s interaction with CT devices and 
associated services. One of the most useful modes for monitoring 
a user is to analyze a real-time video stream of their face. Facial 
expressions, movements and biometrics all provide important 
information, but obtaining a calibrated input with 3D accuracy 
from a single camera requires accurate knowledge of the facial 
depth and distance of different features from the camera. In this 
paper, a method is proposed to generate synthetic high-
accuracy human facial depth from synthetic 3D face 
models. The generated synthetic human facial dataset is 
then used in Convolutional Neural Networks (CNN’s) for 
monocular depth facial estimation and the results of the 
experiments are presented. 

Keywords—3D Facial models, Facial Depth models, CNN's 

I. INTRODUCTION

Faces, with all their complications and an enormous 
number of degrees of freedom, allow us to connect and express 
ourselves through gestures, mimics and expressions. Depth 
information, pose, motion and shape are fundamental 
challenges in CT services and related devices. Examples 
include autonomous driving [1], license plate recognition [2], 
3D reconstruction [3], scene understanding [4], human detection 
& pose estimation [5], and medical image segmentation [6]. 
Facial movements, biometrics and expressions all provide 
important information but obtaining accurate facial depth and 
distance of different features from the camera requires 
knowledge of the calibrated input with 3D information from a 
single camera. Nowadays, state-of-the-art structures rely on 
highly improved CNN's based designed networks and large 
datasets require high-power machines.    

Progressively sophisticated camera hardware is 
becoming more reasonable at the consumer level, offering new 
possibilities. CT is now being combined with Machine 
Learning (ML) and Artificial Intelligence (AI) software to 
create new consumer-grade products. Luckily, recent advances 
in CT have taken to market numerous low-cost sensing 
solutions cameras can enable a range of useful CT applications 
including low-light facial recognition or object classification, 
business security and the world of home. Low-cost cameras can 
enable a range of useful CT applications including low-light 

facial recognition or object classification, business security and 
the world of home, facial biometrics to authenticate users, 
portrait photography, classification of facial expressions 
(determine user emotion/mood), 3D models from the 2D 
camera (map face response onto a virtual reality (VR) avatar in 
an online world), TV (that can adjust the size of screen text or 
subtitles based on user-distance and preferences, 3D lighting 
effects, and demine head pose position and distance to optimize 
airbag deployment. 

In particular, facial images are used in many CT 
structures. Facial images show various variations including 
expressions, 3D appearance, hairstyle and pose. The current 
advanced 3D tools such as Blender [7] and iClone [8] are used 
to synthesized many face variations. By using these 3D tools, 
large numbers of fake images can be created to train CNN's 
models. The generated images can be used for many 
applications having enough variations including depth, camera 
location and light direction and occlusions.       

Deep learning-based networks require datasets having 
more information and precise data to train and evaluate different 
use cases methods for CT applications. In the past, years, 
researchers have made remarkable progress on 3D modelling 
and synthesis. Synthesized datasets have been used for deep 
learning models training in many tasks, example includes 
human behaviour analysis, driver monitoring, scene analysis 
and understanding, augmented reality systems, facial 
authentication and facial expression. The existing human facial 
datasets (e.g. Biwi Kinect Head Pose Dataset [9] and Pandora 
[10]) have lots of missing information especially the depth and 
due to the restricted variation, the number of available samples 
makes datasets insufficient for training deep learning models. 
These datasets required manual explanation of the scene that is 
very hard and time-consuming work and error-prone in case of 
videos [11]. In such type of facial data, they are not sufficient to 
learn well from CNN’s model's limits many CT application [12-
13]. 

Although, current deep learning-based methods have 
shown good performance on many tasks including face 
recognition systems, object classification, business security and 
the world of home, 3D reconstructions, robotics and 
autonomous driving. Purpose of accurate depth information in 
the 3D reconstruction is a very important part of computer vision 
problems.  CT applications need more developments in short-
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range depth estimation to engage with humans for better 
understanding.     
 In this paper, we proposed a details methodology for 
generating synthetic facial models. During the generation 
process, iClone [7] software and the 3D virtual human models 
are used to generate facial depth information. In the proposed 
method, by putting various variations in synthetic facial data we 
can produce any number of images, which require a more 
complex and detailed structure than the generative models used 
in the previous works.       

II. LITERATURE REVIEW 

 Facial depth from monocular images as an ill-posed problem 
in computer vision, example includes virtual reality and human-
computer interaction. Facial depth estimation is used in many 
applications including human object detection, human-robot 
interactions and controlling 3D avatars [14-19]. 

Recently, deep learning-based methods received a great 
interest in facial depth estimation, serval works propose the use 
of RGB images with ground truth depth images to learn how to 
estimate depth [20-21]. The main issue is related to the available 
training datasets is limited size and overall low image quality 
[22-23].  

Facial data is used for face recognition by expanding the real 
data for pose variation. Basel face model and 3D morphable [24-
25] are used in many use cases applications to generate synthetic 
facial models [26]. A fake dataset is generated for person 
identification in [27]. (SURREAL) the dataset is proposed in 
[28], having a large number of synthetic images that are 
generated from 3D sequences of MoCap models. Fake human 
bodies are generated by using the SMPL model in [29] having a 
large number (6 million) frames with ground truth depth 
information, poses and mask segmentation. In this article, we 
present a methodology to create synthetic human facial models 
having various variations including camera location, light 
position, body-pose, facial animations and scene illuminations. 
The method can generate any number of images with ground 
truth depth information. 

III. ORGANIZATION OF THE METHOD 

In this section, we propose a complete pipeline for creating 
the synthetic human facial dataset with ground truth depth. 
Human facial models are generated by using the realistic human 
100 models in iClone [7] and Blender [8] software in the 
following steps:  

 The Initial human faces characters are generated by 
using the iClone character creator [7]. These animated 
facial models can be adapted with shaping and morphs 
in iClone character creator [7] which offers a useful 3D 
rigging option. An example of these models is shown 
in Fig 1.          

 The synthetic human facial models are imported to 
iClone [7] with various expressions (happy, neutral, 
angry, scared and sad) to create more variation to the 
human facial models. An example is shown in Fig. 2.  

 Synthetic human facial models have then exported to 
render high-quality images in different formats. The 

generated human facial models are exported to Blender 
[8] from iClone [7] in .fbx formate as it offers an 
appropriately rigging option. An example is given in 
Fig. 3.  

 The human facial models were exported from iClone 
[7] and placed in a 3D scene in the Blender [8].    

 The cameras and lights are placed in a fixed position 
and the relative distance of the model to the camera is 
changed within the range of 700-1000mm. The human 
facial model is rotated in the scenes and the sensor size 
is set between 36mm to 60mm. Fig. 4 show an example 
of the camera position and light location of the human 
facial models in Blender [8].  

 During the generation process of the human faces with 
ground truth depth information, the (near and far) clip 
is set between 0.01 to 5 meters. RGB and depth images 
are generated in 480 × 640 resolution and texture, 
colour and static backgrounds. A few samples of the 
generated human facial models are shown in Fig. 5 
while the camera location is varied to the 
corresponding human facial models.     

 The position is changed at different points of the 
camera to the human facial models with the 
corresponding ground truth depth, which can be seen 
in Fig. 6.   

  Blender [8] render passes are used to generate 
synthetic facial models. To reduce the noise, the 
branched path tracing method is utilized. An example 
is given in Fig. 7 of the noise controlling technique in 
Blender [8].      

  Cycles engine are used to render the RGB and depth 
images, An example of the pipeline is given in Fig. 7, 
which show the generation procedure, camera position 
and light location.    

  The generated synthetic human facial images with the 
ground-truth depth images are given in Fig. 9. 

 In the last step, all the keyframes are rendered to get 
the RGB and the depth images are captured through the 
python plugin provided by Blender [8]. 

The whole experiments and human facial depth dataset creation 
is done on Core i7 with 32 GB of RAM and with GeForce Ti 
GTX GPU with (11x2) GB of the graphics card. The images are 
saved in .jpg and. exr format. The rending average time for every 
frame is 52.5 seconds. The raw head pose and depth information 
are also taken as part of this human facial dataset. An example 
of the RGB and depth images with different head poses are 
presented in Fig 10. Different illuminations of the human facial 
dataset are shown in Fig 11. The more complex background is 
added to the human facial dataset and an example can be seen in 
Fig. 12. 
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Fig. 1. An example from the iClone Character creator.  

 
Fig. 2. An example of Different expressions (happy, sad, angry, neutral and 
scared) of iClone [7].  

 
Fig. 3. An example of iClone [7] facial model in Blender [8].   

 
Fig. 4. An example of the 3D character in Blender [8] shows the light location 
and camera position.  

 

Fig. 5. An example of the head model from various views of the facial model 
and the corresponding depth information.   

 
 

Fig. 6. Images of the synthetic human faces and corresponding ground truth 
depth in different camera location.   

 
Fig. 7. An overview of the noise reduction method.           

 
Fig. 8. A simple view of the rendering configuration in Blender [8].  

 
Fig. 9. Human facial images and ground truth depth images with various 
expressions.  

 
Fig. 10. An example of the facial images and their corresponding ground truth 

depth images with different head pose representation.  
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Fig. 11. An example of facial images with light variations. 

 

Fig. 12. An example of the complex background representation of the facial 
images with ground truth depth. 

IV. DEPTH ESTIMATION MODELS 

A. Network architecture: 

To check the data quality a shallow autoencoder 
(around 17 million parameters) with skip connection-based U-
Net architecture shown in Fig 13 is proposed. The encoder and 
decoder both consist of basic blocks of double convolution with 
the Batch norm and ReLU activation. Additionally, in the 
decoder, the convolutions are used on the concatenation of the 
bilinear up-sampling of the earlier block with the corresponding 
block from the encoder module. The network has been 
initialized with random weight and trained with Adam 
Optimiser.  

 
Fig. 13. An example of the proposed network architecture. 

B. Training losses: 

Loss function for monocular depth prediction from single 
image takes the difference among the ground truth g and the 
predicted depth map d. In this work, we have used SSIM loss, 
gradient loss and surface normal loss. These help to learn the 
correct depth of the scene as well as the 3D structure of the face. 
The loss L between g and d is defined as the weighted sum of 
the three different losses  

𝐿(𝑔, 𝑑) = 𝑤 𝐿 (𝑔, 𝑑) +  𝑤 𝐿 (𝑔, 𝑑)

+  𝑤 𝐿 (𝑔, 𝑑) 
The first loss term 𝐿  incorporates the structural similarity 
(SSIM). As the SSIM has an upper bound value of one 𝐿  
has been defined as follows  

𝐿 (𝑦, 𝑦) =  
1 −  𝐿 (𝑔, 𝑑)

𝑀𝑎𝑥 𝐷𝑒𝑝𝑡ℎ
 

The second loss term 𝐿  is the L1 loss calculated over the 
image gradient of the depth image: 

𝐿 (𝑔, 𝑑)  =  
1

𝑛
 ∇ (𝑒 )  +  ∇ (𝑒 ) 

Where 𝛻𝑥(𝑒 ) denotes the spatial derivative of the difference 
of ground truth and predicted depth for pth pixel 𝑒  which 
stands for (||𝑔  −  𝑑 ||) for the x-axis. The gradient of the 
depth maps has been obtained by the Sobel Filter and is 
sensitive to both x and y-axis. Though the gradient loss works 
well for strong edges it fails to penalise the small structural 
error like high-frequency undulation of a surface. 
Lastly, to overcome the small structural errors, we used the 
𝐿  the loss which estimates the normal to the surface 
of the predicted depth map. The surface normal of the ground-
truth and the predicted depth has been denoted as 𝑛  ≡

 [−𝛻 (𝑔 ), −𝛻 (𝑔 ), 1]   and 𝑛  ≡  [−𝛻 (𝑑 ), −𝛻 (𝑑 ), 1]  
and the loss has been calculated as the difference between the 
two surfaces normal: 

𝐿  =  
1

𝑛
 (1 −  

〈𝑛  , 𝑛 〉

|| 𝑛  || . || 𝑛  ||
 ) 

Where 〈 .  , . 〉 denotes the inner product of the vectors. 
Additionally, as the loss term is larger where the ground truth 
depths are bigger, we used the reciprocal of the depth [X, X]. If 
the ground truth depth is yorig we defined the target depth as 

𝑦 =  
 

 . 

We set the values of the weights 𝑤 , 𝑤 , 𝑤 , 𝑤  as 0.1, 0.1, 1 
respectively. 

C. Accuracy Measures: 

To evaluate the result a commonly accepted evaluation 
method has been used with five evaluation indicators: Root 
Mean Square Error (RMSE), log Root Mean Square Error 
(RMSE (log)), Absolute Relative difference (AbsRel), and 
Square Relative error (SqRel), Accuracies. These are 
formulated as follows: 

o RMSE = 
| |

Σ ∈ |𝑑 −  𝑔 |  

o Average Log10 Error =  
| |

Σ ∈ |𝑙𝑜𝑔(𝑑 ) −

𝑙𝑜𝑔(𝑔 )|  

o Abs Rel = 
| |

Σ ∈
| |

 

 

 

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on May 20,2021 at 20:55:40 UTC from IEEE Xplore.  Restrictions apply. 



 

TABLE. 1.  RESULTS OF THE DEPTH ESTIMATION MODELS, SIMPLY U-NET, DENSEDEPTH [32] WITH VARIOUS BASE MODELS. FC 
REFERS TO THE FACIAL CROP WHICH MEANS THE ERRORS ARE ESTIMATED ONLY ON THE FACIAL REGION. 

No. Methods AbsRel SqRel RMSE RMSElog 1.25   21.25   
31.25   

1. DenseDepth-161 [32] 0.0312 0.0121 0.0610 0.0169 0.9854 0.9876 0.9902 

2. DenseDepth-121 [32] 0.0320 0.0132 0.0712 0.0180 0.9732 0.9803 0.9880 

3. DenseDepth-169 [32] 0.0296 0.0096 0.0373 0.0129 0.9890 0.9920 0.9981 

4. DenseDepth-201 [32] 0.0375 0.0097 0.0304 0.0101 0.9920 0.9956 0.9969 

5 ResNet-101 [33] 0.0123 0.0210 0.0306 0.0089 0.9938 0.9965 0.9980 

6 ResNet-50 [33] 0.0232 0.0219 0.0445 0.0186 0.9919 0.9974 0.9984 

7 EfficientNet-B0 [34] 0.0145 0.0280 0.0360 0.0154 0.9912 0.9934 0.9978 

8 EfficientNet-B7 [34] 0.0132 0.0234 0.0353 0.0144 0.9880 0.9909 0.9965 

9 UNet-simple 0.0103 0.0207 0.0281 0.0089 0.9960 0.9976 0.9987 

10 UNet-simple (FC) 0.0098 0.0096 0.0143 0.0043 0.9982 0.9992 0.9996 

11 DenseDepth (FC)-169 [32] 0.0110 0.0074 0.0161 0.0034 0.9981 0.9990 0.9992 

12 ResNet (FC)-101 [32]  0.0132 0.0077 0.0170 0.0035 0.9980 0.9990 0.9992 

13 EfficientNet (FC)-B7 [34] 0.0112 0.0076 0.0166 0.0032 0.9887 0.9945 0.9989 
a. Results of the monocular depth estimation.

o Sq Rel = 
| |

Σ ∈
| |

 

o Accuracies = %  o𝑓 𝑑   𝑠. 𝑡.  𝑚𝑎𝑥 = 𝛿 < 𝑡ℎ𝑟 

Where gi is the ground truth and di is the predicted depth of 
the pixel i, N denotes the total number of pixels and thr 
denotes the threshold. 

D. Experimentations 

Table. 1 shows the experimental results of the trained 
models on our datasets. Also, the depth has been masked 
within a certain range of 50 centimetres from the camera to 
evaluate the results only on the facial region of the images. 
We also used our synthetic human facial dataset and retrained 
state-of-the-art monocular depth estimation method [30] 
which is constructed on the encoder-decoder network with 
skip connections. A pre-trained DenseNet-169 [31] is used in 
the encoder, while in the decoder, a basic block of CNNs 
layers concatenated by a bilinear upsampling layer is used. 
Table. 1, presents the results.  
       The encoder is replaced with several models while the 
decoder settings are unchanged. We tested with the technique 
using the synthetic human facial depth dataset, and provide 
the results in table 1.  

       In Table 1, the results of the simple U-Net based 
networks archive the best performance compared to the other 
networks on our generated synthetic human facial depth 
dataset. We study this as a result of the comparatively lower 
variance of the synthetic dataset as the models are only 
trained on a simple static background that leads to low-
performance with big networks such as Dense Net, Res Net 
and efficient Net in this experiment. Also, we noted that the 
simple U-Net network-based encoder-decoder model holds 

less than half the number of parameters and shows about two 
times faster compared to the other networks. 

E. Implementations 

        We trained the network using the PyTorch. For training 
the model, we use adam optimizer for 20 epochs with 0.001 
learning rate and batch size 6 on an NVIDIA 1080ti GPUs for 
all experiments. Fig. 14. Show the visual comparison of the 
methods presented in Table 1. 

 
Fig. 14. An example of the qualitative comparison of methods. From left 
to right: Input, Ground Truth, U-Net, DenseDepth, ResNet and 
EfficientNet images. 

V. CONCLUSION 

         In this article, we present a method to generate synthetic 
facial depth dataset. The presented technique has a potational 
to create a large dataset of fake human facial images with 
ground depth information. The created synthetic human facial 
images can be used in many applications including 3D 
environments that will allow simulating real-life problems. 
Deep learning-based monocular depth estimation models are 
trained on the created facial dataset to validate the initial 
experiments that will further be extended to CT based 
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application with the focus on robotics, 3D reconstruction, 
beautification, autonomous vehicles, natural face modelling 
and augmented reality. 

REFERENCES 
[1] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, A.M. Lopez, “The 

synthetic dataset: a large collection of synthetic images for semantic 
segmentation of urban scenes”. in CVPR, 2016, pp. 3234–3243. 

[2] T. Björklund, A. Fiandrotti, M. Annarumma, G. Francini, E. Magli, 
Robust license plate recognition using neural networks trained on 
synthetic images, Pattern Recognit. 93 (2019) 134–146. 

[3] H. Wang, J. Yang, W. Liang, X. Tong, Deep single-view 3d object 
reconstruction with visual hull embedding, in Proceedings of the 
AAAI, 2019.  

[4] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, R. Cipolla, 
Understanding real-world indoor scenes with synthetic data, in 
Proceedings of the CVPR, 2016, pp. 4077–4085. 

[5] L. Pishchulin, A. Jain, M. Andriluka, T. Thormählen, B. Schiele, 
Articulated people detection and pose estimation: Reshaping the future, 
in Proceedings of the CVPR, 2012, pp. 3178–3185.  

[6] I.K. Kallel, S. Almouahed, B. Solaiman, É. Bossé, An iterative 
possibilistic knowledge diffusion approach for blind medical image 
segmentation, Pattern Recognit. 78 (2018) 182–197. 

[7] 3D Animation Software: iClone: Reallusion. (n.d.). Retrieved from 
https://www.reallusion.com/iclone/. 

[8] Foundation, B. (n.d.). Home of the Blender project - Free and Open 3D 
Creation Software. Retrieved from https://www.blender.org/. 

[9] G. Fanelli, M. Dantone, J. Gall, A. Fossati, L. Van Gool, Random 
forests for real-time 3d face analysis, in Proceedings of the IJCV, 101, 
2013, pp. 437–458. 

[10] G. Borghi, M. Venturelli, R. Vezzani, and R. Cucchiara, “Poseidon: 
Face-from-depth for driver pose estimation,” in Proceedings of the 
IEEE conference on computer vision and pattern recognition, 2017, 
pp. 4661–4670. 

[11] T. List, J. Bins, J. Vazquez, & R. B. Fisher. Performance evaluating the 
evaluator. In 2005 IEEE International Workshop on Visual 
Surveillance and Performance Evaluation of Tracking and 
Surveillance. 2005, pp. 129-136. IEEE. 

[12] S. R. Musse, R. Rodrigues, M. Paravisi, J. C. S. Jacques. Junior, and C. 
R. Jung. “Using synthetic ground truth data to evaluate computer vision 
techniques”. In IEEE Workshop on Performance Evaluation of 
Tracking Systems (in conjunction with ICCV 07), pages 25–32, 2007. 

[13] G. R. Taylor, A. J. Chosak, and P. C. Brewer. Ovvv: “Using virtual 
worlds to design and evaluate surveillance systems”. In Computer 
Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference 
on, pages 1–8, 2007. 

[14] S.S. Mukherjee, N.M. Robertson, “Deep head pose: gaze-direction 
estimation in learning multimodal video”, in Proceedings of the TMM, 
17, 2015, pp. 2094–2107.  

[15] S. Qi, W. Wang, B. Jia, J. Shen, S.-C. Zhu, “Learning human-object 
interactions by graph parsing neural networks”, in Proceedings of the 
ECCV, 2018, pp. 401–417.  

[16] Y. Lang, W. Liang, F. Xu, Y. Zhao, L.-F. Yu, “Synthesizing 
personalized training programs for improving driving habits via virtual 
reality”, in Proceedings of the IEEE Conference on Virtual Reality, 
2018. 

[17] C. Li, W. Liang, C. Quigley, Y. Zhao, L.-F. Yu, “Earthquake safety 
training through virtual drills”, in Proceedings of the TVCG, 23(4), 
2017, pp. 1275–1284. 

[18] W. Liang, J. Liu, y. Lang, B. Ning, L.-F. Yu, “Functional workspace 
optimization via learning personal preferences from virtual 
experiences”, in Proceedings of the TVCG, 25(5), 2019, pp. 1836–
1845. 

[19] S. Sheikhi, J.-M. Odobez, “Combining dynamic head pose–gaze 
mapping with the robot conversational state for attention recognition in 
human-robot interactions”, Pattern Recognit. Lett. 66 (2015) 81–90. 

[20]  D. Eigen and R. Fergus. Predicting depth, surface normals and 
semantic labels with a common multi-scale convolutional architecture. 
In Proceedings of the IEEE International Conference on Computer 
Vision, pages 2650–2658, 2015. 

[21] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a 
single image using a multi-scale deep network. In Advances in neural 
information processing systems, pages 2366–2374, 2014. 

[22]  I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. 
Deeper depth prediction with fully convolutional residual networks. In 
3D Vision (3DV), 2016 Fourth International Conference on, pages 
239–248. IEEE, 2016. 

[23] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He. Depth and 
surface normal estimation from monocular images using regression on 
deep features and hierarchical crfs. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pages 1119–
1127, 2015. 

[24] T. Shrivastava, O. Pfister, J. Tuzel, W. Susskind, R. Wang, Webb. 
“Learning from simulated and unsupervised images through 
adversarial training”. In: CVPR 2017. 

[25]  A. Kortylewski, B. Egger, A. Schneider, T. Gerig, A. Morel-Forster 
and Vetter, T, “Analyzing and Reducing the Damage of Dataset Bias 
to Face Recognition With Synthetic Data”. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition Workshops 
pp. 0-0, 2019. 

[26] R. Queiroz, M. Cohen, J. L. Moreira, A. Braun, J. C. J. Júnior & S. R  
Musse. “Generating facial ground truth with synthetic faces”. In 2010 
23rd SIBGRAPI Conference on Graphics, Patterns and Images (pp. 25-
31). IEEE, 2010. 

[27] Y. Wang, W. Liang, J. Shen, Y. Jia & L. F  Yu. “A deep Coarse-to-
Fine network for head pose estimation from synthetic data”. Pattern 
Recognition, 94, 196-206, 2019. 

[28] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black, I. Laptev 
& C. Schmid. “Learning from synthetic humans. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition” (pp. 
109-117), 2017. 

[29] S. Bak, P. Carr, & J. F. Lalonde. “Domain adaptation through synthesis 
for unsupervised person re-identification”. In Proceedings of the 
European Conference on Computer Vision (ECCV) (pp. 189-205), 
2018. 

[30] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional 
networks for biomedical image segmentation. In Medical Image 
Computing and Computer-Assisted Intervention MICCAI 2015, pages 
234–241, Cham, 2015. Springer International Publishing. 

[31] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely 
connected convolutional networks. 2017 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pages 2261–2269, 
2017. 

[32] I. Alhashim, & P. Wonka. “High-Quality Monocular Depth Estimation 
via Transfer Learning”. 1812.11941, 2018. 

[33] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image 
recognition. In Proceedings of the IEEE conference on computer vision 
and pattern recognition, pages 770–778, 2016. 

[34] Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling 
for convolutional neural networks. arXiv preprint arXiv:190.

 

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on May 20,2021 at 20:55:40 UTC from IEEE Xplore.  Restrictions apply. View publication stats



Neural Networks 142 (2021) 479–491

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

An efficient encoder–decodermodel for portrait depth estimation
from single images trained on pixel-accurate synthetic data✩

Faisal Khan a,∗, Shahid Hussain b, Shubhajit Basak c, Joseph Lemley d, Peter Corcoran a

a Department of Electronic Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, H91 TK33, Ireland
b Data Science Institute, National University of Ireland Galway, Galway H91 TK33, Ireland
c School of Computer Science, National University of Ireland Galway, Galway H91 TK33, Ireland
d Xperi Corporation, Block 5 Parkmore East Business Park, Galway, H91V0TX, Ireland

a r t i c l e i n f o

Article history:
Received 11 April 2021
Received in revised form 13 June 2021
Accepted 5 July 2021
Available online 13 July 2021

Keywords:
Depth estimation
Facial depth
2.5D dataset
Hybrid loss function
Convolution neural network
Encoder–decoder architecture

a b s t r a c t

Depth estimation from a single image frame is a fundamental challenge in computer vision, with many
applications such as augmented reality, action recognition, image understanding, and autonomous
driving. Large and diverse training sets are required for accurate depth estimation from a single
image frame. Due to challenges in obtaining dense ground-truth depth, a new 3D pipeline of 100
synthetic virtual human models is presented to generate multiple 2D facial images and corresponding
ground truth depth data, allowing complete control over image variations. To validate the synthetic
facial depth data, we propose an evaluation of state-of-the-art depth estimation algorithms based
on single image frames on the generated synthetic dataset. Furthermore, an improved encoder–
decoder based neural network is presented. This network is computationally efficient and shows better
performance than current state-of-the-art when tested and evaluated across 4 public datasets. Our
training methodology relies on the use of synthetic data samples which provides a more reliable
ground truth for depth estimation. Additionally, using a combination of appropriate loss functions
leads to improved performance than the current state-of-the-art network performances. Our approach
clearly outperforms competing methods across different test datasets, setting a new state-of-the-art
for facial depth estimation from synthetic data.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The problem of estimating depth from the image data of a
scene is a fundamental task in computer vision. It is particularly
important in image understanding where it is desirable to deter-
mine the primary objects and regions within an imaged scene
and where their relative locations and orientations from frame-
to-frame can provide valuable information about scene activity.
While single frame object detection (Chang & Wetzstein, 2019)
and classification techniques (Athira & Khan, 2020) are quite
well advanced depth estimation is typically a more challenging
problem (Fan et al., 2021).

The classic approach to depth estimation is to employ a two-
camera, stereoscopic solution, mimicking the human visual sys-
tem, and using disparity between the two images to construct a
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depth map (Wenxian, 2010). When camera motion is available,
or when objects move from frame-to-frame it is possible to use
this data to reconstruct depth maps for individual image frames,
especially in mobile or handheld devices which incorporate mod-
ern inertial motion sensing (Schöps, Sattler, Häne, & Pollefeys,
2017). However there are applications where only a single camera
is used and exact motion sensing is not available and thus it
is desirable to estimate a depth map of an imaged scene from
single image frames. The current work is focused on this task,
and in particular in understanding if it is feasible to improve on
current state-of-the-art (SoA) while reducing the complexity of
the computational model.

Human faces are one of the most common objects found
in images and an important component of many image under-
standing problems. It is well-known from human anthropometry
that the eye-separation in a human face falls into a narrow
range (Ware, 2019) and thus given a knowledge of the field-
of-view of a camera it is possible to determine with reasonable
accuracy the distance-to-camera of a human subject from a single
image frame. This research work speculates that it should be
feasible to train a neural computer vision model to learn a more
accurate depth estimation by training it on data that includes

https://doi.org/10.1016/j.neunet.2021.07.007
0893-6080/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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human faces. With sufficient data and a pixel-accurate ground
truth (GT) the model should learn many nuances of human facial
features and structure that can improve depth estimation over
current SoA.

The main contribution of this work is an improved, deep
learning based encoder–decoder model for depth estimation from
single image frames. This model is more computationally efficient
than current SoA depth estimation models and shows perfor-
mance equal to, or better than SoA when evaluated across 4
public datasets. In part this improved performance is achieved
through our training methodology which relies on the use of
synthetic data samples that can provide a more accurate GT
for depth than is available from existing public datasets. Details
of this synthetic training dataset and the associated training
methodology provide a second significant contribution of this
work.

The rest of this paper is organized as follows. Section 2
presents a review of the related (depth estimation) literature
while the details of the synthetic human facial dataset used in our
training methodology are presented in Section 3. The evaluation
methodology of the compared methods is described in Section 4.
Section 5 provides details of the encoder–decoder model and
the associated loss functions used in the training process. A rich
synthetic human facial dataset is employed in the training process
as described and details of a series of experimental comparisons
of our model with current SoA models for depth estimation are
outlined in Section 6. Finally a discussion of the outcomes of this
research work is briefly discussed in Section 7 and the potential
for future refinement and improvements is provided in Section 8.

2. Related works

Depth estimation is the method of preserving 3D information
of a scene using 2D information captured by cameras. Monocular
depth estimation, also known as depth estimation from a single
image (DESI), is achieved by using only one image. These tech-
niques are designed to estimate distances between scene objects
from a single point of view. This necessitates using these methods
on low-cost embedded systems for performance estimation.

There has been a significant improvement in DESI methods
over the past couple of years (Basha, Avidan, Hornung, & Ma-
tusik, 2012; Javidnia & Corcoran, 2017; Laidlow, Czarnowski, &
Leutenegger, 2019; Ranftl, Lasinger, Hafner, Schindler, & Koltun,
2020; Tian & Hu, 2021). Most of the deep learning-based methods
involve a CNN trained on RGB images and the corresponding
depth maps. These methods can be categorized into
supervised, semi-supervised, and unsupervised. A brief litera-
ture review based on deep learning monocular depth estimation
methods can be found in Khan, Salahuddin, and Javidnia (2020).

Supervised DESI techniques use an input image and the cor-
responding depth maps for training. In such a case, the trained
network can directly output the depth predication (Yin, Liu, Shen,
& Yan, 2019). Supervised deep learning approaches have achieved
SoA performance in the DESI task (Andraghetti et al., 2019; Chen,
Zhao, Hu, & Peng, 2021; Fu, Gong, Wang, Batmanghelich, & Tao,
2018; Goldman, Hassner, & Avidan, 2019; Lee, Han, Ko, & Suh,
2019; dos Santos Rosa, Guizilini, & Grassi, 2019; Wang et al.,
2020). Despite the fact that these methods can predict accurate
depth maps when testing on the same or similar datasets, they do
not generalize well to scenes beyond the original dataset (Ranftl
et al., 2020). Also, the performance of these supervised methods
required a large amount of high-quality depth data and thereby
are unable to generalize to all use cases.

To overcome the need for high-quality depth estimation as
seed data, many methods have been employed to train the depth
estimation network in a semi-supervised manner. Numerous

semi-supervised methods are proposed, which require smaller
amount of labeled data and large amount of unlabeled data
for training (Bazrafkan, Hossein, Joseph, & Corcoran, 2017; Choi
et al., 2020; Lei, Wang, Li, & Yang, 2021; Yue, Fu, Wu, & Wang,
2020; Yusiong & Naval, 2020; Zhao, Jin, Wang, & Wang, 2020).
Semi-supervised methods, on the other hand, suffer from their
biases with more information is required, such as sensor data and
camera focal length (Xian et al., 2020).

To train the networks for depth estimation, self-supervised
methods only require a small number of unlabeled images (Yu-
siong & Naval, 2020). Many tasks have been studied using self-
supervised methods, including 3D reconstruction (Wang, Yang,
Liang, & Tong, 2019), human detection and pose estimation in
DESI (Guizilini, Ambrus, Pillai, Raventos, & Gaidon, 2020; John-
ston & Carneiro, 2020; Klingner, Termöhlen, Mikolajczyk, & Fin-
gscheidt, 2020; Li et al., 2021; Poggi, Aleotti, Tosi, & Mattoccia,
2020; Spencer, Bowden, & Hadfield, 2020; Widya et al., 2021).
These methods automatically obtain depth information by corre-
lating various image input modalities. However, self-supervised
methods suffer from generalization issues. The models can only
perform on a very limited set of scenarios with distributions
similar to the training set.

We argue that high-quality deep learning-based DESI methods
can in principle operate on a fairly wide and unconstrained range
of scenes. What limits their performance is the lack of large-
scale, dense GT that spans such a wide range of conditions (Ranftl
et al., 2020). Several of the existing benchmark datasets: Pan-
dora (Borghi, Venturelli, Vezzani, & Cucchiara, 2017); Eurecom
Kinect Face (Min, Kose, & Dugelay, 2014); Biwi Kinect Head
Pose (Fanelli, Weise, Gall, & Van Gool, 2011) have been tested
with limited sample sizes (250k, 50k and 15k) and fewer vari-
ations to estimate around 24, 52, and 20 subjects. It can be noted
in particular that these datasets show only a small number of dy-
namic objects. Networks that are trained on data with such strong
biases are prone to fail in less constrained environments (Xian
et al., 2020).

Despite their capacity to provide the depth layout without any
domain knowledge, deep learning-based techniques still struggle
with inconsistencies at the depth boundary. Existing approaches,
in particular, rely on characteristics taken from well-known en-
coders. The decoding mechanism in the symmetric design simply
upsamples these latent features to their original size, and then
converts them into the depth map. Because this translation proce-
dure struggles to incorporate object depth boundaries at multiple
scale levels, it is likely to produce inaccurate depth values be-
tween object boundaries. A unique yet simple method for monoc-
ular depth estimation was developed to address the shortcomings
of prior approaches. The suggested method’s main idea is to use
the Laplacian pyramid-based decoder architecture to correctly
interpret the relationship between encoded characteristics and
the final output for monocular depth estimation (Song, Lim and
Kim, 2021).

A new method called dense prediction transformer (DPT) is
introduced. It is a dense prediction architecture based on an
encoder–decoder design that uses a transformer as the encoder’s
primary computational building block. It also has a global re-
ceptive field at every level, demonstrating that these qualities
are particularly beneficial for dense prediction problems because
they naturally result in fine-grained and globally coherent pre-
dictions (Ranftl, Bochkovskiy, & Koltun, 2021). An investigation
of a method in which the network learns to focus adaptively on
depth range regions that are more likely to occur in the scene of
the input image for depth estimation (Bhat, Alhashim, & Wonka,
2020). To create per-pixel depth maps with sharper bounds and
richer depth features, a novel framework called MLDA-Net is pro-
posed. A multi-level feature extraction (MLFE) technique that can
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learn rich hierarchical representation and to amplify the obtained
features both worldwide and locally, a dual-attention technique
combining global and structure attention is developed, resulting
in better depth maps with sharper borders (Song et al., 2021).

CoMoDA is a new self-supervised Continuous Monocular Depth
Adaptation approach that adapts the pretrained model on the
fly on a test video. Rather than using isolated frame triplets as
in conventional test-time refinement methods, they choose for
continuous adaptation, which relies on earlier experience from
the same scene (Kuznietsov, Proesmans, & Van Gool, 2021). To
reduce inaccurate inference of depth details and the loss of spatial
information. a new detail-preserving network (DPNet), which
is a dual-branch network architecture that fully overcomes the
aforesaid issues and makes depth map inference easier (Ye, Chen,
& Xu, 2021).

To improve the training efficiency of deep neural networks,
more accurate labeled synthetic human facial image datasets
could be used. The synthetic datasets can be created by a camera
using sensing technologies or by using available software tools,
which are less expensive, require less effort, and produce bet-
ter face models that resemble a realistic 3D environment (Koo
& Lam, 2008; Roy-Chowdhury & Chellappa, 2005). During the
training process, the weight adjustment at each node through
the activation functions are controlled according to the efficiency
of the loss functions and thereby the use of appropriate loss
functions further improves the performance of the deep neural
networks (Jiang, El-Shazly, & Zhang, 2019; Lee & Kim, 2020; Liu,
Zhang, Meng, & Gao, 2020). The use of synthetic datasets and
the selection of appropriate training methodology can help in
the human facial depth estimation. Overall, none of the current
datasets is large enough to support the development of a model
that can reliably work on real images from a wide range of scenes.
Currently, we are confronted with a number of datasets that
may be useful when combined, but are individually biased and
incomplete.

3. Modeling of the synthetic dataset

This section presents a detailed pipeline of creating the syn-
thetic dataset. Most of the datasets currently available for facial
depth estimation have a very limited amount of ground truth
(GT) which makes them unsuitable for training deep learning
models (Borghi et al., 2017; Fanelli et al., 2011; Min et al., 2014).
Besides, due to practical limitations in data acquisition, most of
the depth GT are error-prone. Datasets with multiple facial pose
representations are especially prone to errors in the depth GT
data.

Furthermore, the acquisition of facial data from subjects is
now subject to a range of privacy regulations and ethical con-
straints. In Europe the General Data Protection and Regulations
(GDPR) govern the acquisition and distribution of personal data
introducing new challenges for researchers working with data
from live humans. This makes a case for generating inexpensive
synthetic dataset with lower complexity and a rich amount of
labeled data resembling the features of realistic human models
such as the camera parameters, positions, light locations, scene
illuminations and other constraints within a 3D environment.

This work introduces a methodology to build synthetic human
facial datasets. This methodology leverages a commercial tool for
generating synthetic avatars, iClone and Character Creator (CC)
employs an open access 3D animation environment, Blender to
build a rich variety of scenes for rendering 2D data samples
with matching, pixel exact, depth GT. Once avatar models are ex-
ported into the 3D environment it is relatively straight forward to
vary the rendering camera location and positions, camera model
and acquisition parameters together with controlling the scene

Fig. 1. A schematic representation of generating the synthetic human facial
dataset: Samples from the 100 Realistic Head Models, with variation in gender,
race, and age. In iClone, changing the morph to create variations to the head
models. Importing fully rigged FBX models from iClone to Blender, lighting,
camera positioning, and generating the final 2D images.

backgrounds, lighting sources, and absolute head pose. Facial
animations can also be used and variations in facial expression
can be introduced. Most importantly, all of the inputs to build a
particular 3D scene can be recorded and reproduced exactly in a
way that is not feasible for a real-world data acquisition.

Naturally, synthetic facial data will not have the same richness
in terms of skin features as real image data. But given the other
benefits of using synthetic data to train a neural DESI model, a key
research question that we seek to answer in this work is whether
we can achieve comparable accuracy to SoA DESI models that are
trained on real-world data?

Our procedure for generating the synthetic dataset is illus-
trated in Fig. 1 and the detailed description is presented in the
subsections.

3.1. Synthetic human model with 3D scene setup

Previous works (Elanattil & Moghadam, 2019;
Gu, Yang, De Mello, & Kautz, 2017; Varol et al., 2017) with syn-
thetic virtual humans relied on high-quality 3D scans to produce
synthetic data from 3D human models. But these 3D scans are
expensive and difficult to capture due to different data regulation
laws like GDPR, so there is a very limited number of variations
in the currently available synthetic facial depth datasets. This
study uses the low-cost commercially available 3D asset creation
software and an open-source 3D computer graphics (CG) tool as
an alternative to creating virtual human models. Fig. 2 shows an
example of these models.

3.1.1. The iClone character creation process
The characterization of virtual human models is achieved

with realistic human faces, humanoid behaviors, and 3D riggings
through the iClone CC process. In the process the template is
applied to the base body while the sculpting and morphs features
are utilized for capturing the facial animations. A realistic facial
expressions and morph transformation are then applied in the 3D
mesh that enhance the variations in the data. The virtual human
face models are imported from CC to iClone.

481



F. Khan, S. Hussain, S. Basak et al. Neural Networks 142 (2021) 479–491

Fig. 2. From left to right: Samples from the 100 Realistic Human Models with
variation in gender, race, age and facial expressions followed with a fully rigged
FBX model from iClone to Blender with the mesh representation.

Fig. 3. In Blender, a simplified view of the rendering configuration. The left row
shows the body shape, light and camera setting information; the middle row
shows the facial RGB image and the last row illustrates the corresponding facial
depth image.

3.1.2. Adding variations to models in iClone
The iClone provides a rich features library with embedded

templates supporting full parameter control for shapes, textures,
clothes materials modification and representations in different
styles. The layout base is easily adjustable to all the sub-nodes
by rotating them through different angles from hair element to
the coordinates texture and facial expressions. Such features are
implemented to specify the models with a range of human char-
acteristics including neutral, angry, happy, sad, and scared along
with the customized fabric plates layers and five different colored
hairstyle that results in generating above hundred variations for
the facial model.

3.1.3. Model transfer from iClone to Blender
To capture a richer GT with dense facial depth, head pose,

camera locations, scene illuminations the model needs a trans-
formation interface from iClone to Blender software. The interface
is designed by coupling the 3D modeling software to adjust the
adaptation of FBX format between the different software tools.

3.1.4. Manipulating models in Blender
Blender is a 3D creation suite open-source tool that provides

full support for modeling, rigging, animation, simulation, ren-
dering, composition, motion tracking, video editing and game
creation (with python integration) over the entire 3D model.
The rigs animations are controlled with the constraint keyframes
and shape keys, while the camera parameters are configured by
adjusting the field of view (FOV), the clip zoom in–out values,
sensors size, depth field and the f-stop values. Furthermore, the
light paths of refraction, reflection, diffraction, and absorption are
tracked through realistic cycle rendering engine as illustrated in
Fig. 3.

3.1.5. Building 3D scenes in Blender
The FBX format alignment allowed us to control and adjust

the head motions of various angles, while illuminations such as
area, sun, point, and spotlight assisted in varying the lights based
on the realistic scenarios of the scene. The GT rendering of the
image is achieved through admission of the camera model to
the particular scene mode, during the cycle rendering engine
control process. The ground truth data is generated by conducting

a sequences of head movements experiments through controlling
the neck bone rotations over the FBX based model. In the process
the initial head position is maintained by scaling an arbitrary
object between the eyeballs under the range of the camera focal
point.

The translation and the rotations of neck bones are transferred
to the arbitrary object in a way by retaining the constraints of
the original object. The default setting of Blender does not allow
the head to be positioned at zero angle therefore the imported
model head moment is restricted by default. The initialization of
head frame position is performed by setting down the yaw, pitch
and roll of the initial frame in the Blender world coordinator,
the original neck bone is then rotated by wisely minimizing the
delta through a python script, that tuned the local coordinates x,
y, and z-axis of arbitrary object to zeros. After the initial setup,
a sequential (Pitch, roll, and yaw) uniform rotation was applied
to the neck bone and a balanced status of all the frames was
recorded. The yaw, pitch and roll of the head pose are calculated
by capturing the corresponding values from the rotation matrix.
The ranges of the yaw, pitch, and roll have been maintained
in range of ± 80◦, ± 70◦ and ± 55◦, respectively, with the
granularity of 3◦ angle.

3.1.6. The Blender camera model
The Blender camera specifies the lens focal length and aper-

ture parameters for defining the viewpoint of the scenes and
their rendering. The default camera model is applied to the scene,
and its properties are adjusted to replicate the real environment.
The camera is set at 30 centimeters distance from nose tip of
the model and the background plane is set at a distance of 2
m, respectively. The camera sensors size and FOV are set at
36 millimeters (mm) with 60◦ and the near and far clip are
set at 0.001 and 5.0 meters (m), which results in covering the
overall scenes. The representation of 3D objects with 2D images is
obtained through optimizing the camera lens options. The camera
placement was maintained at a fixed position while the human
model was placed within the range of 700–1000 mm relative to
the camera that replicate the capturing of data in realistic sce-
narios. Finally, the realistic 2D images are obtained by a random
selection of main camera translation, head camera translation and
rotations.

3.1.7. 3D background scene selections in Blender
A mix of plain, textured, and real images have been used to

add variations to the background. The background of the scene
was varied to provide more variations in order to improve model
generalization. The Brodatz-based color images provided by Ab-
delmounaime and Dong-Chen (2013) are used for the textured
background. The classroom and barbershop scene from Blender
Eevee were chosen for the complex background.

3.1.8. Ground truth rendering in Blender
Blender provides Cycles and Eevee render engines for path

tracing and rasterization functions, respectively. To obtain a re-
alistic rendering, the Cycles rendering engine is used as cycles is
Blender most feature-rich and production-proven renderer. The
path tracers function captures the light reflection, refraction, and
adsorption while the rasterization maintained the pixel informa-
tion for a fast rendering process but reduced the accuracy. It has
been observed that the degrade in accuracy is due to the ren-
dering process of transparent materials and noises during their
Cycle path tracing. The noises are reduced by the branched path
tracing mechanism, which splits the original ray by capturing its
reflected rays in multiple directions that provide a full control
over the shades and support the accuracy improvement.
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Fig. 4. Random sample frames with high-resolutions RGB images and their corresponding ground truth depth with different variations (head poses, expressions, light
variations, camera positions, clothes, viewpoints and backgrounds: plain; textured; real) obtained from the generated synthetic dataset.

The movement of most of the other parts of body are con-
trolled according to the structures of their bones. The RGB render
pass was used in the Blender compositor setup to get the final
render. The head and the shoulders bone are identified in the pose
mode then the head mesh is rotated with respect to the selected
bones and the selected key frames are recorded. Finally, all the
key frames are rendered by capturing their respective head poses
through the python plugins and the RGB and the depth images are
obtained.

3.2. Dataset information

Following the methodology outlined above, the proposed
framework works as follows: In CC, a set of virtual human models
is constructed using the Real 100 humans face models. To add
more variation, the texture and morphology of the models are
changed. These models are then sent to iClone, where different
facial expressions are imposed. The mesh, textures, and anima-
tion keyframes for the final 3D models with facial expressions
are exported in FBX format. Complete information can be found
in Sections 3.1.1 and 3.1.2.

Following that, the FBX files are imported and scaled in
Blender world coordinate system. Lights and cameras are added
to the scene, and their properties are adjusted to capture the
real environment. The render layer RGB and Z-pass outputs are
then set up in the compositor to get the final result. In pose
mode, the head and shoulder bones are identified, and the head
mesh is rotated in relation to those bones, with the keyframes
saved. Finally, all of the keyframes are rendered to obtain RGB
and depth images, and the appropriate head pose (yaw, pitch, and
roll) is captured using Blender Python plugin. Sections 3.1.3–3.1.8
contain the detailed information. GT is rendered on an Intel Core
i5-7400 3 GHz CPU with 32 GB RAM and an NVIDIA GeForce GTX
TITAN X Graphical Processing Unit (GPU) with 24 GB of dedicated
graphics memory.

For each frame, the RGB images are rendered with 640 × 480
resolutions and saved in jpg format and the corresponding depth
data is saved in a raw file (.exr format). Additionally, the head

pose information for each frame is captured and saved in a text
(.txt) file. Cycle Rendering Engine, Blender physically-based path
tracer for production rendering, took an average of 26.3 s to
render each 2D image frame. The total dataset size is around
3500k image samples, with approximately 3.5k 2D image samples
per subject. For each of the 100 face models, the data is saved in
its own folder. The rendered RGB images and the corresponding
Gt (depth and head pose) for each face model are stored in three
different paths for the three types of backgrounds — simple,
textured, and complex. The sample frames with their ground
truth depth images and different backgrounds (simple, textured
and complex) obtained from the synthetic dataset are illustrated
in Fig. 4.

The generated synthetic dataset used in this research work
consists of 3D virtual human models and 2D rendered RGB and
GT depth images in zipped version with a total size of 650
GB categorized into two folders. All of the CC and iClone data
information (textures, .fbx, .fbm, and .blend) for each subject
is contained in the 3D virtual models folder, which is further
divided into sub-folders (male, female). The male and female
sub-folders of the 2D rendered images folder contain 56 and
44 subjects, respectively. For the three types of backgrounds –
simple, textured, and complex – these subjects are stored in three
different paths. The sample and texture path are divided into five
main directories (happy, sad, neutral, scared, and angry), each of
which contains the RGB images, depth images, and raw head pose
data for each frame. The complex directory is divided into two
main folders, classroom and barbershop, which have the same
structure as the sample and textured folders. The file hierarchy
structure is shown in Fig. 5.

Our synthetic dataset1 is available for a free of cost download
and can be utilized for scientific research purposes.

In contrast to the existing datasets (Borghi et al., 2017; Fanelli
et al., 2011; Min et al., 2014) our dataset provides a richer set
of portrait scene detail. Examples include a pixel-exact GT depth
information corresponding to each rendered RGB image; a larger

1 https://github.com/khan9048/Facial_depth_estimation.
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Fig. 5. Dataset organization: The dataset is divided into different folders which
correspond to each ‘subject’ being captured and rendered with RGB images;
ground truth depth images.

number of training samples; variations in camera perspective,
facial expression and head pose. Most importantly each 3D scene
data can be exactly replicated, and new variations introduced to
test the importance of different elements of scene composition.

4. Evaluating state-of-art models for single image depth esti-
mation

The purpose of this study is to see how well synthetic facial
depth data can be used to estimate facial depth estimation. A set
of SoA DESI neural networks is used to analyze the generated
synthetic human facial depth dataset. Since there are no publicly
available benchmarks methods for the evaluations purposes, this
work used DESI neural networks to train over the generated syn-
thetic dataset and evaluate with test data. In addition, a new CNN
model is proposed, and its performance is evaluated against the
SoA networks. Initially, SoA DESI methods BTS (Lee et al., 2019),
Densedepth (Alhashim & Wonka, 2018) and UNet-simple (Khan,
Basak, & Corcoran, 2021) are trained using the synthetic human
facial dataset and the results are compared against the proposed
network.

The most important requirement for a sensible training
scheme is that computations are performed in an appropriate
output space that is compatible with all GT representations. As
a result, the GT was scaled to the generated dataset for training
the SoA methods. A typical CNN system comprises of certain
layers which include convolution layers, pooling layers, dense
layers, and fully connected layers. There are a variety of pre-
trained networks that can be used to perform tasks like visual
recognition, object detection, segmentation, and depth estima-
tion. This work employ a pool of pre-trained networks which
includes EfficientNet-B0, EfficientNet-B7, ResNet-101, ResNet-50,
DenseNet-169, DenseNet-201, DenseNet-161 to generalize the
model for the target facial depth estimation.

Although these methods can produce depth maps with com-
parable accuracy, they are computationally more expensive and
requires large amount of graphical memory. As an alternative, the
proposed model in this work automates the collection of optimal
parameters, thus reducing model complexity during the training

Fig. 6. Schematic diagram of the proposed depth estimation network: A multi-
layer Encoder–Decoder network is used to generate accurate facial depth maps
based on the MobileNet backbone model.

process, and is more computationally efficient than the current
SoA depth estimation models and shows performance equal to,
or better than SoA when tested across 4 public datasets.

We examine how to compare the effects of various methods
for estimating a scene facial depth from a single image frame.
A new evaluation protocol of SoA facial depth estimation algo-
rithms for synthetic dataset is proposed, setting up a new SoA
for facial depth estimation.

Section 5 provides details of the Encoder–decoder model and
the associated loss functions used in the training process. In Sec-
tion 6, we present a detailed analysis of our model performance
against these methods using four public datasets. Also, a brief
comparison analysis, evaluation matrices, test datasets, imple-
mentation details, encoders comparison and qualitative study are
presented.

5. An encoder–decoder based facial depth estimation model

In this section, we described the proposed single image depth
estimation network with encoder–decoder mechanism and hy-
brid loss function to optimally select the hyper parameters for im-
proving the training process over the generated synthetic dataset.

5.1. Network architecture

To analyze the validity of the generated datasets, a CNN net-
work is designed that is referred to as FaceDepth and its perfor-
mance is compared against the SoA architectures. A schematic
diagram of the proposed model is illustrated in Fig. 6. It con-
sist of input and output images and a detailed Encoder–decoder
network architecture. The Encoder–decoder learn to map data-
points from an input domain to an output domain via a two-stage
mechanism in the network. In the first stage the encoder function
f = f (x), compresses the input into a latent-space representation
while in the second stage the decoder function y = g(f ) predicts
the output. In the encoder, we employ MobileNet (Sifre & Mallat,
2014) which is based on depthwise decomposition process to
factorize the CNN layers into depthwise and pointwise layers.
Each of the depthwise layers utilize the filtration function that ex-
tracts low-resolution features from the input image. The extracts
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Fig. 7. An illustration of the hybrid loss function composition: A hybrid loss
function is introduced through the combination of point-wise loss, gradient loss,
surface normal loss, and SSIM loss functions.

features are then fed to the decoder, which refines, merge and
upsample them to the final high-resolution output depth map.
In the second stage of the network, the decoder consists of five
upsampling and a single pointwise layers. Each upsample layer
performs a 5x5 CNN and reduces the number of channels with a
ratio of 2:1 input and output channels. Three skip connections
are applied to reconstruct a more detailed dense information
for the final depth map. The hybrid loss function measures the
differences between the GT depth and the predicted depth map
to minimize the reconstruction errors. A detailed description of
the hybrid loss function is presented in the subsequent section.

5.2. Hybrid loss function

The loss functions estimate the image depth by measuring the
difference between the true depth (g) and predicted depth (d)
such that the loss function results in a higher error if d deviates
largely from g and vice versa. To fine-tune and to penalize the
distortion among the GT and predicted depths for high frequency
images a hybrid loss function is introduced through the combina-
tion of point-wise loss, gradient loss, surface normal loss, and the
structural similarity index measure (SSIM) (Wang, Bovik, Sheikh,
& Simoncelli, 2004) loss functions. The designed loss function
learns to estimate the depth while minimizing the boundaries of
scenes as well as the 3D structure of the faces. Fig. 7 shows an
overview of the proposed loss function. The hybrid loss function
L between g and d is defined as the weighted sum of the four
different losses

L(g, d) = w1Ldepth(g, d) + w2LSSIM (g, d)+

w3Lgrad(g, d) + w4LSurfaceNorm(g, d) (1)

The first loss term
(
Ldepth

)
represents the point-wise

(
L1

)
loss for

the depth values and is according to Eq. (2).

Ldepth(y, y̆) =
1
n

n∑
p

|gp − dp| (2)

The second loss term
(
LSSIM

)
incorporates the SSIM metric with

its upper bound for reconstructing the image using Eq. (3) (Wang
et al., 2004).

LSSIM (y, y̆) =

(1 − LSSIM (g, d)
MaxDepth

)
(3)

The third term
(
Lgrad

)
represents the

(
L1

)
loss for the gradient

of the image depth with penalizing the error around their edges
according to Eq. (4).

Lgrad(g, d) =
1
n

n∑
p

∇x(ep) + ∇y(ep) (4)

where ∇x(ep) and ∇y(ep) denote the spatial derivatives of the
difference between the ground truth and predicted depth for the
pth pixels ep which stands (∥gp − dp∥) for the x, y-axis. The depth
maps gradient loss is sensitive to both x, y axes and is obtained
using Sobel Filter method. It is important to note that the two loss
functions presented,

(
Ldepth

)
and

(
Lgrad

)
, complement each other

for various types of errors. As a result, we use the (weighted) sum
of

(
Ldepth

)
and

(
Lgrad

)
.

According to the statistics of natural range images, depth
maps of natural scenes can be roughly approximated by a limited
number of smooth surfaces and step edges in between them. For
example, at an object edge, depth is frequently discontinuous.
Errors along such sharp edges are penalized by

(
Lgrad

)
. However,

while depth differences at such occluding boundaries of objects
might be very high, we must choose a reasonable value. We
explore yet another loss to deal with such small depth structures
and enhance fine details of depth maps. This loss measures the
accuracy of the normal to the surface of an estimated depth map
with respect to its ground truth.

The
(
LSurfaceNorm

)
loss function is used to avoid the small struc-

tural errors and estimate the normal and predicted depth maps.
The surface norms of the ground-truth and the predicted depth
are denoted by

ng
p =

(
Ψ [−∇x(gp),−∇y(gp), 1]T

)
and

nd
p =

(
Ψ [−∇x(dp),−∇y(dp), 1]T

)
where ng

p , nd
p are the surface normal vectors, ∇ is a vector

differential operator, ψ calculates the gradients of the differ-
ence between the ground truth and predicted depth in both the
horizontal and vertical directions. The loss is computed by the
difference between the two surfaces normal according to Eq. (5).

LSurfaceNorm =
1
n

n∑
p

(
1 −

⟨nd
p, n

g
p⟩

∥nd
p∥ · ∥ng

p∥

)
(5)

where ⟨nd
p, n

g
p⟩ denotes the inner product of the vectors.

We empirically found and set the values of the weights w1,
w2, w3, w4 as 0.28, 0.22, 0.30, 0.20 respectively. The four loss
functions are evaluated through an adoptive method with varying
weights and are coupled into a hybrid loss function for obtaining
optimal results, the development procedure of our hybrid loss
function is shown in Fig. 7.

6. Experiments

The experimental results are presented in this section to illus-
trate the effectiveness of the proposed method. We will start by
comparing training and evaluation results of SoA to the proposed
work and demonstrating a brief comparison analysis. Following
that, the network was tested on four different test datasets. For
the encoder, various comparison analyses have been conducted,
analyzing them based on accuracy and computational footprints.
Finally, we present an ablation study of the hybrid loss function,
which will be used to demonstrate the benefits of the method.
The proposed synthetic dataset was used to train all networks,
which were then tested against different test datasets.

Our extensive experiments, which cover approximately four
GPU months of computation, show that a model trained on a
rich and diverse set of images, combined with an appropriate
training procedure, yields SoA results in a variety of scenarios. To
show this, zero-shot cross-dataset transfer protocol is used for
comparison purposes. More specifically, the model was trained
on one dataset and then evaluated on unseen test datasets.
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Fig. 8. Overall implementation details of training the proposed model with
hybrid loss function.

6.1. Implementation details

The dataset was split into 0.8 and 0.2 ratios for training and
validation, and the model was validated on four publicly available
benchmark datasets (discussed in Section 6.2). The facial depth
estimation model is trained using the PyTorch deep learning
framework (Paszke et al., 2019). For all of the experiments, we
use the Adam optimizer on a workstation equipped with NVIDIA
2080ti GPUs for 50 epochs with a 0.0001 learning rate and batch
size of 6. For the entire model, there are approximately 14.42
million trainable parameters. For evaluations, Root Mean Square
Error (RMSE), log Root Mean Square Error (RMSE (log)), Absolute
Relative difference (AbsRel), Square Relative error (SqRel) and
Accuracies are used, see Eqs. (6)–(10).

For training BTS (Lee et al., 2019), Adam optimizer with β1 =

0.9, β2 = 0.999 is used and 10−6 learning is scheduled via
polynomial decay from base learning rate 10−3 with power p =

0.98. The total number of epochs is set to 50 with batch size 4.
The complete implementation details of the proposed model are
illustrated in Fig. 8.

6.2. Test datasets

To benchmark the generalization performance of DESI net-
works (Alhashim & Wonka, 2018; Khan et al., 2021; Lee et al.,
2019) and the proposed model trained on the synthetic human
facial dataset with various pre-trained models such as (Efficient-
Net-B0, EfficientNet-B7, ResNet-101, ResNet-50, DenseNet-169,
DenseNet-201, DenseNet-161), four datasets are selected based
on diversity and accuracy of their ground truth. This includes Pan-
dora (Borghi et al., 2017), Eurecom Kinect Face (Min et al., 2014),
Biwi Kinect Head Pose (Fanelli et al., 2011) and our proposed
test dataset for the testing and evaluation purposes. It should
be noted rather than fine-tuning the networks, we have trained
all the models from scratch on these datasets. We refer to this
experimental procedure as zero-shot cross-dataset validation.

• Pandora (Borghi et al., 2017): Pandora dataset is used for
different applications such as head pose estimation, head
center localization, depth estimation and shoulder pose esti-
mation. It contains a total of 250K full resolution RGB images
with corresponding depth images.

• Eurecom Kinect Face (Min et al., 2014): The dataset consists
of the multi-model face images of 52 people including 38
males and 14 females, which is obtained by using the Kinect
sensor. It consists of different facial expression, occlusion
and lighting conditions in 9 different states such as smile,
eye occlusion, mouth, light and paper, neutral, open mouth,
left–right profile.

• Biwi Kinect Head Pose (Fanelli et al., 2011): Consists of 15k
images of 20 subjects recorded by using the Kinect sensor by
moving the heads freely around each side. For every frame,
RGB and depth images are provided, together with the 3D
location of the head and its rotation angles.

6.3. Evaluation metrics

To evaluate the results a commonly accepted evaluation
method has been used with five evaluation indicators: Root
Mean Square Error (RMSE), log Root Mean Square Error (RMSE
(log)), Absolute Relative difference (AbsRel), Square Relative error
(SqRel), Accuracies, Normalized Root Mean Square Error (NRMSE)
and R-squared. These are formulated as follows:

RMSE =

√
1
N

∑
iεN

∥di − gi∥2 (6)

RMSELog =
1
N

∑
iεN

∥log(di) − log(gi)∥2 (7)

AbsRel =
1
N

∑
iεN

∥di − gi∥
gi

(8)

SqRel =
1
N

∑
iεN

∥di − gi∥2

gi
(9)

Accuracies = % of dimax
(di
gi
,
gi
di

)
= δ < thr (10)

NRMSE =
RMSE − RMSEmin

RMSEmax − RMSEmin
(11)

R2
= 1 −

∑N
m=1

(
di−gi

)2∑N
i=1

(
di−ḡi

)2 (12)

where gi is the ground truth, ḡi is the mean of the ground truth
and di is the predicted depth of the pixel i, N denotes the total
number of pixels and thr denotes the threshold for determining
the accuracy.

6.4. Comparison of encoders

Since the proposed network uses existing models as an en-
coder for dense feature extraction, it is worth comparing its
output to that of other commonly used base networks for similar
tasks. We checked the proposed method by adjusting the en-
coder with different models while keeping the other settings the
same. The influence of the encoder architecture is illustrated in
Fig. 10. The model is trained with EfficientNet-B0, EfficientNet-B7,
ResNet-101, ResNet-50, DenseNet-169, DenseNet-201, DenseNet-
161 encoder as our baseline architectures and the relative im-
provement in performance when swapping with different en-
coders. The results are reported in Table 1 (row 2,3, 5–9).

6.5. Final results and comparison with prior work

Results achieved with the proposed methodology are sum-
marized in Fig. 9 and Table 1, the performance of the facial
depth estimation model is compared to the SoA on the synthetic
human facial dataset. As it can be seen from Table 1, the proposed
network achieves SoA results.
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Table 1
Comparison of various depth estimation models with the proposed method FaceDepth, BTS (Lee et al., 2019), Densedepth (Alhashim & Wonka, 2018) and UNet-simple
(Khan et al., 2021) with various base models (EfficientNet-B0, EfficientNet-B7, ResNet-101, ResNet-50, DenseNet-201, DenseNet-161). FC refers to the facial crop which
means the errors are estimated only on the facial region.
No. Methods AbsRel SqRel RMSE NRMSE R2 RMSElog δ1 < 1.25 δ2 < 1.252 δ3 < 1.253

1. DenseDepth-161 0.0312 0.0121 0.0610 0.0607 0.0345 0.0169 0.9854 0.9876 0.9902
2. DenseDepth-121 0.0320 0.0132 0.0712 0.0746 0.0465 0.0180 0.9732 0.9803 0.9880
3. DenseDepth-169 0.0296 0.0096 0.0373 0.0432 0.0245 0.0129 0.9890 0.9920 0.9981
4. BTS 0.0165 0.0092 0.0206 0.0321 0.0254 0.0102 0.9830 0.9943 0.9956
5. DenseDepth-201 0.0375 0.0097 0.0304 0.0476 0.0265 0.0101 0.9920 0.9956 0.9969
6 ResNet-101 0.0123 0.0210 0.0306 0.0456 0.0236 0.0089 0.9938 0.9965 0.9980
7 ResNet-50 0.0232 0.0219 0.0445 0.0598 0.0231 0.0186 0.9919 0.9974 0.9984
8 EfficientNet-B0 0.0145 0.0280 0.0360 0.0476 0.0228 0.0154 0.9912 0.9934 0.9978
9 EfficientNet-B7 0.0132 0.0234 0.0353 0.0431 0.0225 0.0144 0.9880 0.9909 0.9965
10 UNet-simple 0.0103 0.0207 0.0281 0.0321 0.0212 0.0089 0.9960 0.9976 0.9987
11 UNet-simple (FC) 0.0098 0.0096 0.0143 0.0274 0.0201 0.0043 0.9982 0.9992 0.9996
12 DenseDepth(FC)-169 0.0110 0.0074 0.0161 0.0286 0.0189 0.0034 0.9981 0.9990 0.9992
13 BTS(FC) 0.0109 0.0072 0.0152 0.0248 0.0165 0.0033 0.9971 0.9991 0.9992
14 ResNet (FC)-101 0.0132 0.0077 0.0170 0.0213 0.0149 0.0035 0.9980 0.9990 0.9992
15 EfficientNet (FC)-B7 0.0112 0.0076 0.0166 0.0210 0.0141 0.0032 0.9887 0.9945 0.9989
16 Our FaceDepth (FC) 0.0176 0.0030 0.0105 0.0204 0.0136 0.0029 0.9982 0.9986 0.9996

Fig. 9. Qualitative results of the proposed method on a subset of the synthetic human facial dataset that was not used for training or validation. From left to right,
input RGB images, ground truth depth images and predicted depth images.

As stated in Section 4, since there are no available benchmark
methods for performance evaluation; in the first phase the gener-
ated synthetic human facial dataset is utilized to retrain the SoA
DESI methods (Alhashim & Wonka, 2018; Lee et al., 2019) and a
UNet-simple (Khan et al., 2021). Afterwards, all the trained mod-
els are then evaluated and tested on four benchmark datasets.
As stated above, the model is initially trained over the whole
image and then applied to the Facial crop (FC) for evaluating
errors particularly in the face region. In other words, the depth
has been masked within a certain range of 50 centimeters from
the camera to evaluate the results only on the facial region of
the images, see Table 1 (rows 11–16). The proposed lightweight
network structure contains fewer parameters to the SoA methods.
A detailed comparison analysis is given in Table 2.

6.6. Qualitative result

We discuss qualitative results from the proposed framework
against SoA methods in this section. Figs. 10 and 11 show a
qualitative comparison of our model to the three best-performing
models with various Encoders architectures. As it can be observed
from Fig. 10 our results show better information and consistency,
which proves that the proposed method performs better at depth
estimation with improvements on the facial region.

In testing across a combination of real and synthetic images,
we outperform SoA both quantitatively and qualitatively, and set
a new SoA for Facial DESI. Example results are shown in Table 1,
Table 2 and Fig. 11.

In terms of accuracy and depth range, based on the evaluations
the proposed method achieved the best performance as compared
to other SoA methods. On the synthetic human facial dataset,
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Table 2
Properties of the studied methods (Lee et al., 2019), (Alhashim & Wonka, 2018), UNet-simple (Khan et al., 2021) and our proposed model (ED: Encoder–Decoder; F:
Trained on the synthetic human facial dataset); LR/E: Learning Rate/Epochs; CC: Computational Complexity.
Method Input Type Optimizer Parameters Output LR/E CC

BTS 640 × 480F ED Adam 46.6M 640 × 480F 0.0001/50 69.23 GMac
DenseDepth-169 640 × 480F ED Adam 42.6M 320 × 240F 0.0001/20 66.12 GMac
ResNet-50 640 × 480F ED Adam 68M 640 × 480F 0.0001/25 101.27 GMac
EfficientNet-B7 640 × 480F ED Adam 80.4M 640 × 480F 0.00001/20 113.44 GMac
UNet-simple (FC) 640 × 480F UNet Adam 17.27M 640 × 480F 0.001/20 188.04 GMac
Our FaceDepth 640 × 480F ED Adam 14.42M 320 × 240F 0.0001/50 16.41 GMac

Table 3
Experimental results using a synthetic human facial dataset with various weights setting.
Method w1 , w2 , w3 , w4 AbsRel SqRel RMSE RMSElog δ1 < 1.25 δ2 < 1.252 δ3 < 1.253

FaceDepth [FC] 1.00, 0.1, 0.1, 1.00 0.0118 0.0037 0.0108 0.0031 0.9982 0.9985 0.0996
FaceDepth [FC] 1.00, 0.00, 0.00, 0.00 0.0178 0.0048 0.0124 0.0042 0.9961 0.9974 0.9991
FaceDepth [FC] 0.00, 1.00, 0.00, 0.00 0.0107 0.0011 0.0108 0.0033 0.9888 0.9924 0.9945
FaceDepth [FC] 0.00, 0.00, 1.00, 0.00 0.0495 0.0086 0.0181 0.0081 0.9881 0.9952 0.9986
FaceDepth [FC] 0.00, 0.00, 0.00, 1.00 0.0039 0.0206 0.0256 0.0113 0.8781 0.9821 0.9840
FaceDepth [FC] 0.25, 0.25, 0.25, 0.25 0.0219 0.0038 0.0109 0.0032 0.9961 0.9982 0.9990
FaceDepth [FC] 0.28, 0.22, 0.30, 0.20 0.0176 0.0030 0.0105 0.0029 0.9982 0.9986 0.9996

Fig. 10. A qualitative comparison of our approach to the four best competitors: from left to right; (Input: input RGB images; GT: ground truth images; Ours:
Our FaceDepth method; BTS (Lee et al., 2019), Ef-Net: EfficientNet-B7 (Alhashim & Wonka, 2018; Wang et al., 2019); Rs-Net: ResNet-50 (Alhashim & Wonka,
2018; He, Zhang, Ren, & Sun, 2016); D-Net: DenseDepth-169 (Alhashim & Wonka, 2018); U-Net: UNet-simple (FC) (Khan et al., 2021) applied to different datasets
(Our-D: Synthetic human facial dataset; P-D: Pandora dataset (Borghi et al., 2017); E-D: Eurecom Kinect Face dataset (Min et al., 2014); B-D: Biwi Kinect Head Pose
dataset (Fanelli et al., 2011).

the proposed network achieved 0.0105 RMSE and threshold ac-
curacy of 0.9996 with δ < 1.253 as shown in Table 1 (row 16).
Furthermore, the proposed method is shown to have a signifi-
cantly reduced memory footprint with improved computational
efficiency as compared to other SoA methods as shown in Table 2
(row 6). At 16.41 G-MACs per frame, this approach can enable real
time single frame depth estimation. Table 2 (row 5) portrays that
albeit the UNet-Simple model has comparatively lower number of
parameters comparing to the other models; however, the design
principal of double convolution layer, where the batch norm,
ReLU activation and the bi-linear up-sampling stages make it
computationally expensive. Moreover, our faceDepth model has
a fewer parameters with pre-trained weights help in avoiding
several computational steps in the decoder and thereby reducing
the computational complexity.

Table 2 shows properties of the studied methods for single
image facial depth estimation (ED: Encoder–Decoder; F: Trained
on the synthetic human facial dataset). Based on our evaluations,
BTS (Lee et al., 2019), DenseDepth (Alhashim & Wonka, 2018)
with various base models and UNet-simple method (Khan et al.,

2021) can generate high resolution depth maps with comparable
accuracy but they are computationally expensive and require a
significant amount of memory. On the other hand, FaceDepth sig-
nificantly reduced the computational time and memory footprint,
which can be used for both quality and low-cost single frame
facial depth estimations (Table 2 and Fig. 11).

6.7. Ablation study

The ablation studies in Table 3 are performed adaptively such
that all the possibilities of coupling the terms in connection with
their corresponding weights are tested and their performance
is recorded and thereby based on the optimal predicted depth
output the four terms combination has been selected.

We conduct ablation studies to analyze the effectiveness of the
hybrid loss criteria utilized in the proposed network architecture.
We start with weights defined for loss function in Eq. (1). The
result is given in Table 3. As the total weights (w1 = 0.28, w2 =

0.22, w3 = 0.30, w4 = 0.20) sum is equal to 1, the overall
performance is improved. We also analyze the effect of weights
separately and the results are shown in Table 3.
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Fig. 11. Results of the baseline model trained using our proposed hybrid loss
function and synthetic human facial dataset. The model trained using the hybrid
loss function provides more details of local depth structure and higher accuracy
at depth boundaries. The test images are a combination of real and synthetic
images which is not used in the training process for any of the above models.
Best viewed zoomed in on-screen shown on two real images.

As an exhaustive search of possible weight values is not com-
putationally feasible, this study sought to show that no single ele-
ment of the loss function can provide the demonstrated accuracy
without the other methods.

This was done by setting the weights to 0 for all methods
except the one being examined and is shown in rows 2–5 of
Table 3 these rows should be compared with row 6 where each
weight was set to the same value summing to 1 (0.25, 0.25,
0.25, 0.25). The best weight set examined is in row 7 (0.28, 0.22,
0.30, 0.20) which seems to indicate the relative importance L1
loss, particularly L1 calculated over the image gradient so as to
magnify the significance of errors on edges.

One unexpected result is shown in row 5 where w4 was set to
1 while all other weights were set to 0. This is the best result on
the AbsRel metric but performs poorly on the rest.

One possibility is that if w4 is too high, the network can
prioritize the reduction of differences that are due to noise, and
focus too much on the reduction small structural errors at the
possible expense of errors around edges. This is supported by
the fact that our best performing experiment in Table 3 had the
lowest non zero value for w4.

It is a reasonable expectation that when only the surface norm
is used in loss calculations that this would have the greatest
impact on the relative absolute error but it is unclear why this did
not translate into a greater improvement for AbsRel in the case
that L1 was used for training as the primary difference between
the loss function used in training and the evaluation metric is the
scaling (gi) factor. A more thorough ablation study analyzing this
possibility may be investigated in future work.

7. Discussion

This research offers a new encoder–decoder model for facial
depth estimation using synthetic human facial dataset and eval-
uates its performance against other SoA approaches. In contrast
to the different SoA approaches, the developed framework has
a remarkably smaller network size and reduced computational
complexity. The performance significance is due to the model
training method, which selects an adequately appropriate loss
function through a combination of different loss functions and

Fig. 12. The relative performance of several technique evaluation metrics (lower
is better).

the use of a synthetic human facial dataset with pixel-accurate
ground truth depth information.

The generated synthetic human facial depth dataset is ana-
lyzed using a set of SoA DESI neural networks. This work uti-
lized DESI neural networks to train over the generated synthetic
dataset and evaluate with test data because there are no publicly
available benchmarks techniques for evaluations. A new CNN
model is also proposed, and its performance is compared to the
SoA networks. The performances of the proposed model and the
SoA methods were measured using seven evaluation matrices:
Root Mean Square Error (RMSE), log Root Mean Square Error
(RMSE (log)), Absolute Relative Difference (AbsRel), Square Rela-
tive Error (SqRel), Accuracies, Normalized Root Mean Square Error
(NRMSE), and R-squared shown in Table 1. In addition, when
compared to previous SoA approaches, the suggested method has
a much smaller memory footprint and improved computational
efficiency, as demonstrated in Table 2 (row 6). At 16.41 G-MACs
per frame, this approach can enable real time single frame depth
estimation.

We test on a collection of datasets that were never seen
during training for all the experiments and comparisons to the
SoA. Figs. 10 and 11 illustrate a qualitative comparison of the
models, which show that the proposed method performs better at
depth estimation generalization with improvements in the facial
region. Following that, we adaptively run ablation tests on the
loss function Table 3, in which all possible couplings of terms with
their corresponding weights are examined and their performance
is recorded, and the four terms combination is chosen based
on the optimal predicted depth output. A comparison of the
different types of error concerning the SoA approaches is illus-
trated in Fig. 12. It is evident high-performance achievement with
the proposed method by reducing the errors across many test
datasets compared to the different SoA approaches. The selection
of appropriate loss function and the synthetic dataset enables the
model to reduce the error with lower computational cost. The
model performance in reducing the different types of errors is
shown through a box plot in Fig. 13. In general, the proposed
model reduces all the errors, while particularly, it has a significant
performance for the error types RMSElog and SqRel compared to
the AbsRel and RMSE, respectively.

Synthetic data can have a lot of advantages. Ground truth is
perfect and available for tasks such as depth estimation, head
pose, reconstruction, tracking, and camera or object position
without the need for costly human labeling. Motion blur and
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Fig. 13. The FaceDepth method box plot shows the relative performance of
various errors.

lighting changes, as well as camera position and expressions for
algorithm introspection, can all be used to recreate sequences.
It is also possible to generate conditions that would be impos-
sible to replicate in real life, such as exact ground truth depth
information. We would need a large number of images dataset
containing pixel-accurate ground truth of a scene to train and
test deep learning algorithms making it suitable for deployment
in embedded systems and in Edge-AI application. Many other
related challenges, such as shape completion, 3D reconstruction,
and 3D fusion may make use of synthetic data necessary for the
real-life applications.

8. Conclusion

The principle contribution of this research is an improved and
efficient encoder–decoder based neural model for single image
frame depth estimation. This model is competitive with other SoA
depth estimation models, but is significantly smaller in size and
computational complexity, making it suitable for deployment in
embedded systems and in Edge-AI applications (Ignatov et al.,
2018).

When tested across four public data sets, this model shows
performance that is equal to or better than SoA across all primary
metrics, as shown in Section 6.2 and Table 1. In part this level
of performance relies on a training methodology, which makes
use of synthetic data samples to provide a pixel-accurate ground
truth for depth. This improves on ground truth data available
from existing public datasets, and is a major contributory factor
to the high performance and lower complexity of the model.
A second significant contribution of this work is the synthetic
training dataset and associated training methodology which are
described in detail in this work.

A key take-away from this research is that synthetic human fa-
cial data can provide higher quality ground truth depth data than
can be obtained in practical data acquisition and this high-quality
training data can be leveraged to achieve improved, lightweight,
single image depth models. Further improvement beyond SoA
should be feasible by introducing real-data samples, improving
the photo-realism of the synthetic data samples and introducing
a wider variety of facial features, expressions and scene lightings.

Thus future work could include investigations into the super-
positioning of photo-realistic face textures over the synthetic
avatar models and introducing more sophisticated facial dynam-
ics such as mouth and eye variations used to express a wide range
of emotions. Also of interest would be an exploration of different
lightweight encoder–decoder architectures, data augmentation
techniques, and evaluations with a broader range of test datasets.
It would also be interesting to explore some 3D loss functions to
address specific downstream applications.

Finally, the release of the synthetic human facial depth dataset
used in this research and the associated 3D synthetic subject
models, will benefit future research in areas such as 3D facial
reconstruction, understanding, and facial analysis.
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Chapter 4

Face Reconstruction with weak
Supervision

4.1 Background

When it comes to facial analysis tasks, single image-based face reconstruction has received
considerable attention in the computer vision community. Predicting the 3D features of
the human face is the pre-requisite for many facial analysis tasks such as face reenactment
and speech-driven animation, video dubbing, projection mapping, face replacement, facial
animations, and many others [170]. Due to the limitation of depth sensors, it is difficult
to capture high-frequency details through RGB-D data. At the same time learning from
synthetic face depth is only able to predict the mean shape. Capturing high-quality 3D scans is
expensive and often restricted because of ethical and privacy concerns. A popular alternative
to these facial capturing methods is to estimate the face geometry from an uncalibrated 2D
face image. However, this 3D-from-2D reconstruction of the human face is an ill-posed
problem because of the complexity and variations of the human face. We need to capture the
individual facial geometry, head pose, and texture information such as color and illumination.
A common solution is to add some prior knowledge about the human face, as human faces
have a common mean shape. One of the well-accepted methods to add this prior knowledge
is starting with a statistical model of the human face.

One of the most popular of these models is called the 3D Morphable model (3DMM)
[20]. 3DMMs are linear statistical models of shape and appearance that are built from a set of
3D scans that provides an analytical definition of the human face and acts as a priori to novel
face synthesis tasks. With the help of 3DMMs, 3D face reconstruction can be formulated as
a non-linear optimization problem that is constrained by linear statistical models of shape
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and facial texture. With the advancement of deep learning, recent methods directly try to
learn the mapping between the 2D image and 3D faces, encoding the prior knowledge in the
weights of the learned models. But the main obstacle when applying deep learning to 3D
face reconstruction is the lack of facial scans or high-quality depth as the ground truth data.
A solution to this is to create synthetic 3D faces with the help of 3DMMs. But as 3DMMs
are used to create the ground truth, it does not overcome the shortcomings of the linearly
modeled data and fails to provide enough variations to the ground truths. To overcome this
problem of collecting ground truth scans and to avoid the drawbacks of synthetic sets, a new
strategy is introduced based on self-supervision. The main idea behind this approach is that
the generated data by the learning network itself provides supervision by adding a rendering
layer at the end of the network [113, 130]. The rendering function is fully differentiable, and
the rendering parameters can be learned. This enables an end-to-end learnable network as
follows -

1. A 3D face is synthesized by learning the latent parameters of shape and textures
through a regressor network.

2. It is then rendered by a differentiable renderer with the help of camera and illumination
parameters.

3. The reconstruction error between the rendered and ground truth face images is calcu-
lated by preferred matrices.

4. The parameters of the regressor and the differentiable renderer are updated based on
the derivatives of the error.

4.2 Research Objective

The above-mentioned regressor network predicts the 3DMM parameters via a deep neural
network. Almost all of the previous methods [113, 112, 54, 40, 58, 138] used CNN-based
backbones like Resnet [67] to extract the 3DMM parameters. But by its fundamental design,
convolution operations are local to the image space and sometimes incapable of processing
global operations. Adding skip connections can overcome some of these shortcomings but
sometimes fail to extract fine spatial information because of misalignment of the features
extracted in different layers. In recent times, transformer networks have become popular in
computer vision tasks because of their ability to capture long-term dependencies. Specifically,
vision transformers (ViTs) [44] have achieved SOTA performance in different computer
vision tasks like object detection [122], image segmentation [167], image classification [29],
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etc. But as it extracts the long-term dependencies, sometimes it fails to learn the local
features. So we need to incorporate the local feature learning abilities into the ViTs and see
their performance in 3D face reconstruction tasks, which is not studied yet. As the pipeline
does not use any ground truth face scans, the model performance highly relies on objective
functions. So the effects of multi-loss functions are also studied to show the individual
influence of the loss terms.

4.3 Summary of Contribution

The work is presented in the article - Basak, Shubhajit, Peter Corcoran, Rachel McDonnell,
and Michael Schukat. "3D face-model reconstruction from a single image: A feature aggre-
gation approach using hierarchical transformer with weak supervision." Neural Networks
156 (2022): 108-122. A copy of the paper is attached at the end of this chapter.

The contributions of the authors for the research mentioned above work [13] as per the
four major criteria discussed in section 1.4 is presented in the table 4.1.

Table 4.1 Author’s Contribution to [13]

Contribution Criteria Contribution Percentage
Ideation SB 100%

Experiments & Implementations SB 100%
Manuscript Preparation SB 80%, RM 5%, MS 5%, PC 10%

Background Work SB 70%, MS 20%, PC 10%

To achieve the research objective, we have proposed to replace the regressor with a
vision transformer. Normal ViTs are comparatively large and computationally expensive.
Instead, we have used the Swin Transformer [95] as the backbone of the feature extractor.
To add emphasis on the local feature extraction, we first introduced a hierarchical feature
extractor consisting of four stages that extracted the features in four different resolutions.
Then we gradually aggregate the features from the various stages through a multi-scale
feature aggregation module (FAM), which fuses the multi-scale features and performs a
coarse-to-fine feature extraction.

We have used the popular 300W-LP [168] database for this learning. While training the
network, we utilized multi-loss function settings with some weak supervision. It consists of
five different components, of which the first three are learned in an unsupervised manner - 1)
Landmark Loss - which provides weak supervision with the help of a SOTA face alignment
network [26]. 2) Photometric Loss - It measures the photometric discrepancies between
the rendered image and the ground truth. 3) Perceptual Loss - a pretrained SOTA face
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Fig. 4.1 Qualitative comparison of the generated face shape with previous works - GANFIT
[57], Tewari et al. [129], Tran & Liu [138]. The results of the previous works are taken from
GANFIT [57]

recognizer(FR) ArcFace [39] is used to calculate the perceptual features of the face and help
to learn the more intrinsic characteristics of the face. The other two are supervised losses - 4)
Shape Loss - we add a supervised cue by adding the shape loss, which is calculated as the L1
loss between the predicted 3DMM shape parameters and the ground truth 3DMM parameters.
Adversarial Loss - To keep the predicted 3DMM parameters near to ground truth, we add an
adversarial loss where a discriminator is trained to discriminate the fake shapes leaned by the
network from the real shape generated from the 300W-LP dataset. This helps generalize the
network while balancing the unsupervised and supervised training.

4.4 Discussion on Contribution

This work provides the first-ever use of transformer networks in monocular face reconstruc-
tion tasks. Though there are multiple studies on face reconstruction where the researchers
used a CNN-based feature extractor, none of the previous work has explored the potential
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Fig. 4.2 Qualitative comparison of shape and texture on occluded images as ground truth
with previous work - Tiwari et al. [133], Deng et al. [40], MOFA [130]. The results of the
previous works are taken from Tiwari et al. [133]

of transformer networks. To mitigate one of the major drawbacks of transformer networks,
i.e., their failure to extract local features, we introduce hierarchical feature extraction and
aggregation of those multi-scale features. To explore the effectiveness of the transformers,
we have conducted a detailed ablation study varying the backbones with different versions of
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Table 4.2 Subjective evaluation results in four different hypotheses - Realism, texture, shape
reconstruction, occlusion resistance. The table shows the Mean Opinion Score (MOS) and
the standard deviation (Std.)

Methods
Realism Texture-

Completion
Shape-
Reconstruction

Occlusion-
Resistant

MOS Std. MOS Std. MOS Std. MOS Std.
GANFIT [57] 3.53 0.49 3.73 0.57 3.26 0.44 - -

Genova et al. [58] 3.13 0.61 3.06 0.24 - - - -
Tran et al. [134] 2.33 0.69 2.4 0.48 2.93 0.44 - -
Deng et al [40]. 3.26 0.44 3.46 0.61 3.13 0.49 3.0 0.36

Tewari et al. [129] 2.73 0.57 2.66 0.47 2.6 0.48 2.13 0.49
Tiwari et al. [133] - - - - - - 3.2 0.4

Ours 3.6 0.48 3.66 0.47 3.2 0.54 3.4 0.48

pretrained (with 1K and 22K of ImageNet data variants) Swin Transformers - tiny, small,
base, and large. We also compared their performance with other CNN-based backbones like
Resnet, EfficientNet, and other Vanilla Transformers. We have published the benchmark
results with their computational complexity, like a number of parameters and GFLOPs. We
have made interesting observations where EfficientNet performs better than the vanilla ViTs,
and the Swin-Base backbone is able to outperform all of these backbones with a compara-
tively small amount of parameters and computational complexity. We have also performed
an ablation study to see the individual influence of the different loss functions on the overall
loss. As the landmark loss mostly helps the network to scale the face properly and learn the
alignment, we have put comparatively smaller weight on that. Through our extensive study,
we have found that unsupervised photometric loss and supervised shape loss play the most
important role in overall network training.

We evaluated our model on two aspects - 3D face reconstruction and 3D face alignment -
across two popular evaluation datasets, AFLW2000-3D [168], and MICC Florence [8]. In
the face alignment task, compared with ten previous works, our work achieves comparable
results with SADRNet [116] and 3DDFAv2 [64] while outperforming the other works in
quantitative evaluation. While comparing qualitatively, we have found our model produces
good results compared to others. Particularly, for samples that have partial occlusion, our
method performs well, while others output larger errors. When evaluated for the face
reconstruction task, we followed the evaluation protocol provided by GANFIT [57]. From
the comparative results, we have found that our work outperforms all the previous works by a
reasonable margin except the GANFIT [57] method by producing a smaller mean error on the
face shape. Figure 4.1 shows a qualitative comparison of the generated face shape on MoFA
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[130] test dataset. We also test our method against the faces with occlusions. We believe that
as we have put a higher weight on the face-recognizer-based perceptual error, our method
provides high-quality results in terms of textures in the high occlusion cases and is able to
preserve the identity information better than the previous works. Figure 4.2 provides some
comparative results on the occluded faces which clearly shows that our method preserves
the identity features (like face textures and colors) better than the other methods. To justify
the qualitative evaluation, we conducted a subjective study with fifteen participants. We
compiled the response and computed the mean opinion score (MOS) in terms of realism,
texture completion, shape reconstruction, and occlusion resistance. Table 4.2 shows the
comparative MOS scores on those above factors. From the output scores, we have found that
our method gives the best results for realism and occlusion resistance while coming second
best in texture and shape reconstruction.

In summary, through this work, we have introduced the vision transformer in the face
reconstruction task from a single-face image. We have proposed a hierarchical feature fusion
mechanism to learn the local features as well as the long-distance dependencies through the
transformers. We have published a new benchmark based on different backbones of ViTs in
single image-based face reconstruction. Though through extensive ablation studies, we have
found that transformer-based methods are able to achieve near SOTA performance compared
to the traditional convolution methods, a major drawback of these methods is their huge
model size and high computational cost. Even the convolution-based SOTA methods are
also computationally expensive, which makes these methods unsuitable for edge devices.
Removing the statistical model dependency and estimating dense 3D face landmarks can be
a solution to reduce the network size and computational cost while helping to predict the face
geometry. We will discuss this approach in the next chapter.
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a b s t r a c t

Convolutional Neural Networks (CNN) have gained popularity as the de-facto model for any computer
vision task. However, CNN have drawbacks, i.e. they fail to extract long-range perceptions in images.
Due to their ability to capture long-range dependencies, transformer networks are adopted in computer
vision applications, where they show state-of-the-art (SOTA) results in popular tasks like image
classification, instance segmentation, and object detection. Although they gained ample attention,
transformers have not been applied to 3D face reconstruction tasks. In this work, we propose a novel
hierarchical transformer model, added to a feature pyramid aggregation structure, to extract the 3D
face parameters from a single 2D image. More specifically, we use pre-trained Swin Transformer
backbone networks in a hierarchical manner and add the feature fusion module to aggregate the
features in multiple stages. We use a semi-supervised training approach and train our model in a
supervised way with the 3DMM parameters from a publicly available dataset and unsupervised training
with a differential renderer on other parameters like facial keypoints and facial features. We also train
our network on a hybrid unsupervised loss and compare the results with other SOTA approaches.
When evaluated across two public datasets on face reconstruction and dense 3D face alignment tasks,
our method can achieve comparable results to the current SOTA performance and in some instances do
better than the SOTA methods. A detailed subjective evaluation also shows that our method performs
better than the previous works in realism and occlusion resistance.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Retrieving the 3D face shape geometry from a single 2D facial
image is an important problem in computer vision research. It has
a wide range of applications in face analysis (Garrido et al., 2015;
Thies, Zollhofer, Stamminger, Theobalt, & Nießner, 2016), facial
expression estimation (Bejaoui, Ghazouani, & Barhoumi, 2017),
face manipulation (Geng, Cao, & Tulyakov, 2019; Shu et al., 2017),
3D face recognition (Echeagaray-Patron, Kober, Karnaukhov, &
Kuznetsov, 2017; Tu et al., 2020; Zhao et al., 2018), facial ani-
mation (Cudeiro, Bolkart, Laidlaw, Ranjan, & Black, 2019; Karras,
Aila, Laine, Herva, & Lehtinen, 2017) etc. With the advancement
of deep learning methods, estimating the accurate 3D face shape
from a 2D image without any 3D labels in an unsupervised or

✩ This work was conducted with the financial support of the Science Founda-
tion Ireland Centre for Research Training in Digitally-Enhanced Reality (d-real)
under Grant No. 18/CRT/6224.

∗ Corresponding author.
E-mail address: s.basak1@nuigalway.ie (S. Basak).

semi-supervised way has become very popular in the current
research (Deng, Yang, et al., 2019; Genova et al., 2018; Tewari
et al., 2018; Tran & Liu, 2018; Wu, Rupprecht, & Vedaldi, 2020).
Most of these methods apply an analysis-by-synthesis method
to learn a non-linear 3D face model trained on a large set of
unlabeled RGB face image data by fitting a 3D Morphable Model
(3DMM) first introduced by Blanz and Vetter (1999). These meth-
ods use a convolutional neural network (CNN)-based encoder
network to learn the scene illumination, projection, shape, and
albedo parameters, and a decoder network to map the learned
non-linear 3DMM parameters to the 3D face. A differentiable
rendering layer is added to the pipeline to train the decoder by
minimizing the difference between the ground truth face image
and the reconstructed face.

Though these CNN-based 3DMM feature extractor methods
show very good results, by its fundamental design, convolutions
are local operations and CNNs are sometimes incapable to process
global information. Skip-connections can overcome this short-
coming, but sometimes fail to extract fine spatial information
because of the misalignment of different layer features. Recently,

https://doi.org/10.1016/j.neunet.2022.09.019
0893-6080/© 2022 Elsevier Ltd. All rights reserved.
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transformers have gained popularity and replaced the traditional
CNN-based approach to overcome its shortcomings, due to their
ability to capture long-term dependencies. Specifically, vision
transformers (ViTs) (Dosovitskiy et al., 2020) have achieved state-
of-the-art (SOTA) results in many computer vision tasks like
image classification (Chen, Fan, & Panda, 2021), object detec-
tion (Sheng et al., 2021), and image segmentation (Zheng et al.,
2021) due to their capability to extract global context features.

In this work, we leverage this ability of the transformer and
apply it to the face reconstruction task. As per our assessment,
none of the previous 3D face reconstruction work examined the
power of the vision transformer. To avoid the large memory
consumption of traditional transformers we use the Swin Trans-
former (Liu et al., 2021) as the backbone of the feature extractor,
which reduces the computational cost and makes the model size
smaller compared to other vanilla transformers. To add empha-
sis on the local feature extraction, we also integrate it with a
hierarchical feature aggregation module, which fuses the multi-
scale features and performs coarse-to-fine feature extraction. This
further improves the network performance. We take a semi-
supervised approach to train our network on unlabeled RGB face
images through the differential rendering method and labeled
ground truth face images with their corresponding 3DMM param-
eters, optimizing a hybrid loss function. We evaluate our model
on two evaluation tasks, 3D face reconstruction and 3D dense
face alignment with two public datasets. The quantitative experi-
mental results show that our method achieves comparable results
to the SOTA and in a few instances outperforms the current
SOTA. We have also conducted a detailed subjective evaluation
to compare our work with the previous works in terms of overall
realism, shape and texture reconstruction, and performance of
the model against occlusions. The results show that our work
performs better in realism and occlusion resistance. We have
done a study to compare our work with other feature extractor
backbones including the convolution networks and the vanilla
vision transformers and presented the results. Additionally, we
perform an extensive set of ablation studies to investigate the
performance while varying the feature fusion, Swin Transformer
complexities, and multi-loss functions, and present the results in
Section 6.

The rest of this paper is organized as follows: Section 2
presents a review of the related literature on monocular face
reconstructions and visual transformers. The building blocks of
our model, including the 3DMM face model, camera model, scene
lighting, rendering, and the hierarchical Swin Transformer with
the Feature Aggregation Module (FAM) are explained in Section 3.
The training methodology and multi-loss functions are described
in Section 4. Section 5 provides details of the experiments includ-
ing the training datasets. It also provides the evaluation results
and the test dataset descriptions. Section 6 presents a detailed ab-
lation study on the effects of different Swin Transformer models,
feature extractor backbones, feature aggregations, and multi-loss
functions. Finally, the limitations and scope of improvements are
discussed in Section 7 followed by the conclusion in Section 8.

2. Related works

3D face reconstruction from a monocular face image is a
complex task because of the lack of 3D information present in a
2D image. It requires prior knowledge to resolve it. Statistical 3D
face models are one of the most mentioned ways in literature to
add this prior knowledge. Due to advancements in deep learn-
ing, some model-free methods are also proposed that regress
the 3D shape from a single image without any prior statistical
parametric models. In this section, we will discuss the current
advancement in the 3D face reconstruction task and the use of
feature aggregation with Swin Transformers in computer vision
tasks.

2.1. Model based face reconstruction

Statistical Face Models: The most common and popular 3D
face model used is the 3D Morphable Model (3DMM) proposed
by Blanz and Vetter (1999). It consists of a shape and albedo
(texture or color) model learned from a Principle Component
Analysis (PCA). Basel Face Model (BFM) (Paysan, Knothe, Amberg,
Romdhani, & Vetter, 2009) is another popular 3DMM face model
constructed by applying a non-rigid iterative closest point (NICP)
algorithm that decomposes the expression bases from the shape
bases. SFM (Surrey Face Model) (Huber et al., 2016) is built using
dense correspondence via an iterative multi-resolution dense 3D
registration method, which has a diverse variation in age and
ethnicity. In later years other works evolved that built 3D face
modes on top of these early works. Face datasets like the Large
Scale Facial Model (LSFM) (Booth, Roussos, Zafeiriou, Ponniah, &
Dunaway, 2016), Facewarehouse (Cao, Weng, Zhou, Tong, & Zhou,
2013) and FLAME (Li, Bolkart, Black, Li, & Romero, 2017) are some
of the multi-linear or bi-linear face models with additional at-
tributes for identity and expressions. Ranjan, Bolkart, Sanyal, and
Black (2018) created the non-linear face model COMA through a
deep learning-based autoencoder model. A more detailed analysis
of the 3DMM evolution can be found in Egger et al. (2020).

Methods based on Optimization: These methods based on
optimization iteratively try to fit the 3DMM models to an image,
video, or collection of images (Blanz, Basso, Poggio, & Vetter,
2003; Blanz & Vetter, 1999; Fried, Shechtman, Goldman, & Finkel-
stein, 2016; Roth, Tong, & Liu, 2016). More specifically, as these
try to align the generated images from the 3DMM with the image
based on image features such as landmarks, their performance
drops with occlusions in faces.

Methods based on Deep Learning: With the advancement of
deep learning, face reconstruction using deep neural networks
became popular. These methods, which try to regress the 3DMM
parameters, mainly depend on face autoencoders (Deng, Yang,
et al., 2019; Gao et al., 2020; Genova et al., 2018; Richardson,
Sela, & Kimmel, 2016; Tuan Tran, Hassner, Masi, & Medioni, 2017)
which learn the latent distribution of the face with the statistical
parameters, and connect them with the renderer to complete
the end-to-end training. Guo, Cai, Jiang, Zheng, et al. (2018),
Tewari et al. (2018), Trâń et al. (2018) proposed a coarsed-to-
fine strategy with a coarse linear network to learn the 3DMM
parameters and a fine scale network for further corrections. These
methods are highly constrained by the initial base face shape
generated from the linear 3DMM.

To overcome this limitation later work proposed nonlinear
models. Gao et al. (2020) used an encoder network to learn the
pose, identity, expression, and lighting features and introduced
the non-linearity in the decoder by using a discriminator, which
forces the decoder to learn face shapes that follow the distribu-
tion of real faces. Deng, Yang, et al. (2019) used multiple view
similarity and recovered the final face reconstruction by com-
bining the single-view reconstructions according to confidence
scores. Zhou, Deng, Kotsia, and Zafeiriou (2019) used colored
mesh decoding to represent the non-linear 3DMMmodels. Ranjan
et al. (2018) learned the 3D face shape using spectral graph
convolution networks. Some of the more recent work (Guo, Yu,
Lattas, & Deng, 2022) propose a simultaneous reconstruction of
the face in world space and predict face landmarks in 2D image
place to improve the results under perspective projection (e.g. —
the face is very close to the camera). Zielonka, Bolkart, and Thies
(2022) propose MICA (MetrIC fAce) and introduced a metrical
benchmark to measure the absolute error with respect to the face
reconstruction task.
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2.2. Swin transformer with feature fusion

The transformer architecture was originally proposed for nat-
ural language processing (NLP) tasks as it can extract global
context features and model long-range dependency effectively.
It is made of multiple stacked encoder/decoder layers with a
self-attention mechanism embedded in it. To further improve
its results, a multi-head attention mechanism (Vaswani et al.,
2017) was proposed to calculate the attention among different
positions jointly. In recent years transformers have shown better
results than traditional CNNs in different vision tasks such as
image classification, image segmentation, and object detection as
discussed in Section 1. It splits the images into multiple patches
and applies linear embeddings to the individual patches before
sending them through the transformers as tokens (Dosovitskiy
et al., 2020). The Swin Transformer (Liu et al., 2021) reduces the
complexity of the traditional transformers from Θ(N2) to Θ(N) by
limiting the self-attentions within the non-overlapping window,
instead of calculating the global attention between all tokens.
Following the pioneering work of Lin et al. (2017), which pro-
posed the Feature Pyramid Networks for object detection, similar
approaches have been used in some of the computer vision tasks
which fuse the hierarchical feature fusion with the transformer
architecture. For example, Zhu et al. (2022) proposed a depth
supervised salient object detection using the Swin Transformer
backbone and hierarchical feature aggregation.

3. Background and preliminaries

This section describes the basics of the different modules and
models used in this work. We use the 3DMM-based Basal Face
Model (BFM) as the parametric face model. As a prerequisite of
our rendering pipeline, we regress the face pose and scene illumi-
nation. The 3DMM, face pose, and scene illumination parameters
are generated by the Swin Transformer framework. We detail
these sub-modules as follows:

3.1. 3DMM face model

In a 3DMM face model the 3D face shape S ϵ R3N×1 with N
vertices and the face texture T ϵ R3N×1 is defined through the
following equations:

S = S(αid, αexp) = S + Bidαid + Bexpαexp (1)

T = T (αtex) = T + Btexαtex (2)

where S ϵ R3N×1 and T ϵ R3N×1 are the mean shape and texture
respectively. Bid ϵ R3N×K are the first K principle components
trained on facial scans with neutral expressions, Bexp ϵ R3N×L are
the first L principle components trained on a predefined offset
of neutral scan and expression scans, Btex ϵ R3N×M are the first
M principle components trained on facial texture. αid ϵ RK×1,
αexp ϵ RL×1, αtex ϵ RM×1 are their corresponding coefficient vectors
which are being learned by the regressor network developed with
the Swin transformer to generate the 3D face. Similar to Deng,
Yang, et al. (2019), we use the Basel Face Model (Paysan et al.,
2009) as the base 3DMM model, which has the non-trainable
parameters S, T , Bid, Bt set in it. For Bexp we use similar to Deng,
Yang, et al. (2019) the data from the work of Guo et al. (2018),
which has been trained from Facewarehouse (Cao et al., 2013).
We learn the 3DMM feature vectors excluding the neck and ear
region following Deng, Yang, et al. (2019). The final dimensions
of the three parameters are αid ϵ R80, αexp ϵ R64 and αtex ϵ R80.
The resulting 3DMM model consists of 35709 vertices and 70789
faces.

3.2. Camera model

Similar to previous work, (Deng, Yang, et al., 2019; Gao et al.,
2020) we use the perspective camera model. The focal length
is selected empirically as in Deng, Yang, et al. (2019). The face
pose is obtained through the 3D–2D projection geometry with its
rotation (yaw, pitch and roll) R3 and translation (x, y, z shift) R3

3.3. Scene illumination model

We approximate the scene illumination using Spherical Har-
monics (SH) (Ramamoorthi & Hanrahan, 2001), while the 3D faces
are assumed to be a Lambertian surface. Similar to Deng, Yang,
et al. (2019) we have chosen the illumination model where the
radiosity of a vertex vi with surface normal ni and texture ti can
be calculated as

C(ni, ti|δ) = ti ·
B2∑
b=1

δbφb(ni) (3)

where φb is the SH coefficients of the SH basis function δb :

R3
→ R. We have also set the illumination as white light with 3

bands (Tewari et al., 2017) such that δ ϵ R9.

3.4. Rendering layer

As we do not have any ground truth 3D face scans, we utilize
a differential rendering layer to render the predicted 3DMM
models. The 3D model is projected into an image plane with a
weak perspective projection which follows:

S2D = ρ ∗ Pr ∗ R ∗ S + t2D (4)

where S2D ϵ R2×N is the face shape projected on the image plane.

Pr =

[
1 0 0
0 1 0

]
is the orthographic projection matrix, and R is

the rotation matrix in Euler angles for yaw, pitch and roll. t2D =

[tx, ty]T is the image plane translation vector and ρ is the scale
factor. As stated in the previous section, we use the Lambertian
surface and spherical harmonics illumination with three bands
with the illumination parameter δ. The rendering process is a
function of χ = {αid, αexp, αtex, yaw, pitch, roll, δ, ρ, t2D}. The
rendering layer is implemented with the help of an open-source
differential rendering library called Nvdiffrast (Laine et al., 2020).

3.5. Swin transformer layer

To learn the 3DMM parameters during the feature extraction,
we use multiple Swin Transformer Layers (STL), which replace
the traditional convolution layers. The STL is constructed based
on the original transformer layer used in Natural Language Pro-
cessing tasks. Instead of the global self-attention used by this
conventional transformer, Swin uses the self-attention within
the non-overlapping local windows for fast computation and
efficient modeling. To achieve cross-window connections and
long-range dependencies, a shifted window partitioning mecha-
nism is added as well. Thus it achieves better performance for
different pixel-wise computer vision tasks.

The input to the Swin block is a token Xϵ RH×W×D×C with a
patch resolution of H ′,W ′,D′ and the dimension of H ′

× W ′
×

D′
× C ′, where H, W, D and S are the image height, width, depth,

and sample size respectively. As stated in the original work, we
use a patch partition layer to make a sequence of 3D tokens that
have dimensions of

[ H
H ′

]
×

[ W
W ′

]
×

[ D
D′

]
and project them into a

C-dimensional embedding layer. For efficient token interaction,
self-attention is computed in non-overlapping windows, which
are created during the partitioning stage. A (M×M×M) window
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Fig. 1. Representation of a Swin Transformer block.

is used to evenly partition the 3D tokens into
[
H ′

M

]
×

[
W ′

M

]
×

[
D′

M

]
regions in a given layer l. In layer l + 1 the window is shifted by[M

2

]
,
[M

2

]
,
[M

2

]
voxels. The outputs of the layer l and l+ 1 in the

STL can be calculated as follows:
ẑ l = W-MSA(LN(z l−1)) + z l−1

z l = MLP(LN(̂z l)) + ẑ l

ẑ l+1
= SW-MSA(LN(z l)) + z l

z l+1
= MLP(LN(̂z l+1)) + ẑ l+1

(5)

Fig. 1 shows two consecutive Swin Transformer blocks repre-
sented by Eq. (5). Here the LN stands for the linear layer, and
MLP denotes the multi-layer perceptron with the Gaussian Error
Linear Unit (GELU) activation function. The standard multi-head
self-attention layer used in a normal transformer is replaced
by the window-based multi-head self-attention (W-MSA) and
the shifted window-based multi-head self-attention (SW-MSA)
respectively. For the efficient computation of the shifted windows
task, we adopted the 3D cyclic-shifting as stated in the original
work (Liu et al., 2021). The self-attention is been computed as:

Attention(Q , K , V ) = Softmax(
QK T

√
d
)V (6)

where Q, K, and V are queries, keys, and values respectively, while
d is the dimension of the query and key.

3.6. Hierarchical feature extraction

The regressor part of the network as shown in Fig. 2 extracts
hierarchical features in four different scales at four stages. It
starts from an input image and gradually merges neighboring
image patches while progressing to deeper layers. The input RGB
image is first divided into sizes of 4 × 4 non-overlapping patches
with the final patch dimension of 4 × 4 × 3 = 48. Then a
linear embedding layer projects this feature into an arbitrary
dimension denoted as C , resulting in a patch token with the
shape of (H4 ×

W
4 , C). To generate the hierarchical features in the

later stage, the patches are merged by concatenating each 2 × 2

group of neighboring patches and passing the result through a
linear layer to get a high-dimensional patch. If N is the number
of tokens and D denotes the input dimension, the output shape
of the patch merging is (N4 , 2D). At each stage, a sequence of
STB is applied to merge the patches while keeping the number
of tokens unchanged. The four stages have 2, 2, 18, and 2 STB
respectively. Each stage produces 4 hierarchical features denoted
as F4, F3, F2, F1 with shapes (H4 ×

W
4 , C), (H8 ×

W
8 , 2C), ( H

16 ×
W
16 , 4C),

( H
32 ×

W
32 , 8C) respectively.

3.7. FAM: Multi-scale feature aggregation module

As discussed in the previous Section 3.6, the regressor gets the
hierarchical features in four different spatial resolutions. How-
ever, using only the hierarchical regressor results in a large gap in
semantics because of the four different learning stages. The high-
resolution feature maps have very detailed low-level features,
but fail to capture salient characteristics. On the other hand, the
low-resolution maps capture semantically significant high-level
features only. In order to utilize both high and low-level features
for a dense prediction similar to DFTR (Zhu et al., 2022), we
propose a multi-scale feature aggregation module (FAM) that will
gradually aggregate the features in different stages.

Fig. 2b shows the detailed architecture of the module. It takes
the low and high-resolution feature maps as input and aggre-
gates them to get an output with the same shape as the high-
resolution map. The coarse feature (f 1in) is passed through a
bi-linear up-sampling layer to match the spatial dimension of the
input with the high-resolution map (4N, 2D) through interpola-
tion. The high-resolution feature map (f 2in) is passed through a
convolution and a linear layer to enlarge its channel dimension
by a factor of two (4N, 2D). Both the outputs are then passed
through a multiplication and a channel-wise concatenation layer.
The multiplication operation enhances the common pixels and
reduces the effect of the ambiguous pixels. The output fmid with
dimension (4N, 6D) can be represented as :

fmid = U(f 1in) ⊕

Lθ2(Convθ1(f 2in)) ⊕

(U(f 1in) ⊗ Lθ2(Convθ1(f 2in)))
(7)

Finally, the output fmid is again passed through a convolution
and a linear layer to get the desired output fout with a reduced
channel dimension of (4N,D),

fout = Lθ4(Convθ3(fmid)) (8)

where ⊕ and ⊗ are the concatenation and the multiplication
operation respectively. U, L and Conv are the up-sampling, Linear
and Convolution layer respectively and θ1, θ2, θ3, θ4 are their
trainable parameters.

4. Methodology

We have designed a regressor network that performs end-
to-end adversarial training to extract the disentangled semantic
features of a human face. Similar to Gao et al. (2020), we incor-
porate an inverse rendering method that uses a parameterized
illumination model and a differentiable renderer to programmat-
ically render back the 2D face image from the 3D face parameters,
thereby varying the identity, illumination, expression, pose, and
texture.

111



S. Basak, P. Corcoran, R. McDonnell et al. Neural Networks 156 (2022) 108–122

Fig. 2. (a) Overview of the network structure which consists of Swin Transformer Blocks (STB) in a hierarchical way. (b) FAM: Multi-scale feature aggregation module.

Fig. 3. Overview of the training pipeline with the five different loss functions and the differential renderer in place. The regressor network consists of the STB and
FAM module.

4.1. Training pipeline

The overall training framework is comprised of a feature ex-
tractor that extracts the 3DMM parameters, and a differentiable

renderer that renders a synthetic face image out of that param-
eters, as shown in Fig. 3. We use a dual training methodology,
where the input image set is composed of unlabeled face images
for unsupervised training and a set of labeled face images that
have the 3DMM parameters as described in Eq. (1) as the ground
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truth. The regressor network comprises of the feature extractor
with the FAM module as discussed in Sections 3.6 and 3.7. It
regresses the 3DMM parameters alphaid, alphaexp, alphatex, pose
(yaw, pitch,roll) and the illumination parameter δ. These param-
eters are then sent to a differential renderer to get the output
face image and merged with the background using the face mask
calculated by the regressor.

4.2. Loss functions

We have incorporated a hybrid loss similar to Gao et al. (2020)
to train the network in a semi-supervised way. The overall loss
function is defined as:

L = w1Llmk + w2Lpht + w3Lperc + w4Lshape + w5Ladv (9)

where Llmk, Lpht , Lperc , Lshape, Ladv are the landmark loss, pho-
tometric loss, perceptual loss, shape loss and adversarial loss
respectively with their corresponding weights w1, w2, w3, w4, w5.
The different losses and setting the values of their corresponding
weights are discussed in subsequent sections in detail.

4.2.1. Landmark loss
We calculate the landmark loss similar to Deng, Yang, et al.

(2019), Gao et al. (2020) to capture the low-level information of
the constructed face. The landmark positions on the 2D image
domain provide weak supervision while training the network.
We first run the state-of-the-art face alignment network (Bulat
& Tzimiropoulos, 2017) with the ground truth images to get the
68 key points {qn} of the training faces. While training the net-
work, we project the 3D landmark vertices of the reconstructed
face shapes on the 2D face image to get the corresponding 2D
landmarks {qn′

}. The loss function is calculated as follows:

Llmk(x) =
1
N

N∑
n=1

ωn
qn − qn′(x)

2
+ Lgdl,lmk (10)

Here ∥. . .∥ is the l2 norm, N is the number of keypoints, ωn
is the landmark weight, which is set to 20 for the inner mouth
and nose and 1 for others (Deng, Yang, et al., 2019). We have
also added the gradient difference loss (GDL) (Mathieu, Couprie, &
LeCun, 2015) similar to Gao et al. (2020) denoted as Lgdl,lmk, which
is applied on the sparse landmarks. It helps to maintain con-
sistency of the distances between the different landmark points
such as the upper and lower eyelids and upper and lower lips,
therefore giving more weight to features like eye openings and
mouth openings.

4.2.2. Photometric loss
A popular way to determine the difference between a ground

truth image and the rendered image is to measure the photo-
metric discrepancy. Since there are occlusions like hair which can
degrade its performance, we first obtain a mask M using the work
of Nirkin, Masi, Tuan, Hassner, and Medioni (2018) to get rid of
the occlusions, before calculating the photometric loss as:

Lpht = M ⊙
(
∥i′ − i∥2

2 + Lgdl
)

(11)

Here also we have added the GDL (Mathieu et al., 2015) to re-
duce the pixel-wise discrepancies. ⊙ is the element-wise product
function.

4.2.3. Perceptual loss
Training the network with the above-discussed photometric

and landmark loss produces smooth textures and lower visual
discrepancies, but the underlying 3D shapes are not learned prop-
erly. Therefore, similar to Deng, Yang, et al. (2019) we add a
perception level loss to add the additional cues on shapes. The

intuition behind this loss is to extract the deep features from
face images through a pre-trained face recognition (FR) model
and try to minimize the cosine distance between the ground truth
image features and the rendered image features. We have chosen
ArcFace (Deng, Guo, Xue, & Zafeiriou, 2019) as the FR model
which has the highest accuracy in FR tasks on popular public
datasets like LFW 99.83% and YTF DB 99.02%. ArcFace has been
trained on ResNet-100 [18] using the MS1M dataset (Guo, Zhang,
Hu, He, & Gao, 2016) and further uses the additive angular margin
loss to improve its result. The loss function is defined as:

Lperc(x) = 1 −
⟨arc(i), arc

(
i′(x)

)
⟩

∥arc(i)∥ · ∥arc (i′(x))∥
(12)

where arc(·) is the features encoded by the ArcFace FR and ⟨·, ·⟩

is the vector inner product.

4.2.4. Shape loss
The loss functions defined in the previous sections mostly help

training the network in a semi-supervised way with unlabeled
data or generated pseudo labels from pre-trained networks. To
train the network with more shape cues we train the network
in a supervised way with the help of labeled 3DMM parameters.
We have used the 300W-LP dataset (Zhu, Lei, Liu, Shi, & Li,
2016) that has approximately 122k face images with its fitted
3DMM parameters across large poses created from a face profiling
technique. Similar to Deng, Yang, et al. (2019) we have excluded
the neck and ear of the BFM model, so our base 3D face template
has 35709 vertices. The L1 loss between the ground truth shape s
is calculated from the 300W-LP database and the predicted shape
s′ parameters through Eq. (1). The shape loss is defined as:

Lshape(x) = ∥s′ − s [:, ν] ∥1 (13)

where ν is the vertex indices of our base face template.

4.2.5. Adversarial loss
Though the above supervised training with the shape loss

gives good results for the 300W-LP dataset, it fails to provide good
results for some subsets of the unlabeled data which are used
for the semi-supervised training. To keep the generated 3DMM
parameter distribution near to the ground truth 3DMM parame-
ters from 300W-LP, we have incorporated an adversarial training
similar to Gao et al. (2020). Here a discriminator network is added
at the end of the feature extractor that tries to discriminate the
fake shapes reconstructed from the feature extractor network
and the real shapes generated from 300W-LP dataset. We follow
the Wasserstein Divergence GAN (Wu, Huang, Thoma, Acharya, &
Van Gool, 2018) to get the min–max optimization as:

min
G

max
D

E
s′∼Pg

[D(s′)] − E
s[:,ν]∼Pr

[D(s[:, ν])]

− k E
ŝ∼Pu

[∥∇ŝD(ŝ)∥p
]

(14)

where −D(s′) is the adversarial loss (Ladv). s′ and s are the shape
predicted by the network (fake shape) and the ground truth shape
from 300W-LP (real shape) respectively with their probability
distributions Pg and Pr .∇ is the gradient operator and Pu is the
distribution derived from sampling uniformly the fake and real
data along a straight line drawn between them.

4.2.6. Selection of weights
As we have used a combination of different losses as our

objective function. We set the weights of each term of the loss
function to balance the influence of each loss term. Following
the previous works (Deng, Yang, et al., 2019; Gao et al., 2020),
as the landmark loss only helps to align the generated face with
the ground truth, to reduce its influence in other tasks, we set
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a comparatively small weight for its loss term to 0.001 across
all our experiments. We then conduct a large set of experiments
as part of our ablation study to empirically set the rest of the
weights. To observe the influence of the individual loss term we
conducted experiments where we set the weights corresponding
to photo-metric, perceptual, and shape loss individually to 1 and
kept others to zero. Through the observation, we have found that
photo-metric loss and shape loss has the highest influence on
the result whereas putting higher values on the perceptual loss
reduces the accuracy and results in degeneration of shape. So we
have put a higher weight on the photo-metric and shape loss
compared to the perceptual loss. In the final set of experiments,
we have added a comparatively small weight to the adversarial
loss to constrain the model towards the real 3DMM distributions
during the supervised learning phase. The final values of the
weights w1, w2, w3, w4, w5 associated to the five loss func-
tions landmark loss (Llmk), photometric loss (Lpht ), perceptual loss
(Lperc), shape loss (Lshape), and adversarial loss (Ladv) are set to
0.001, 1.70, 0.30, 1.20, 0.10 respectively. The detailed results of
the ablation experiments can be found in Table 6.

5. Experiments

In this section, we will discuss the experimental setup in-
cluding the data preparation for both training and evaluation,
and the training methodology of our proposed hybrid training,
which includes both unsupervised training from unlabeled face
images and supervised training on labeled 3DMM parameters. Af-
ter which we will present the evaluation results both quantitative
and qualitatively on dense face alignment and face reconstruction
task. We will also conduct a detailed subjective evaluation of the
face reconstruction task and share the results.

5.1. Training datasets

For the unsupervised and weakly supervised training we use
in-the-wild face images from the two popular open face datasets:
CelebA (Liu, Luo, Wang, & Tang, 2015) and VGGFace2 (Cao, Shen,
Xie, Parkhi, & Zisserman, 2018). CelebA has a total of around 200k
images with 10176 identities in it. VGGFace2 has 9131 subjects
with around 3.31 million images. We use a subset of VGGFace2
which consists of approximately 300k images. The total collection
of face images amounts to around 500k. We run Insightface
(which is built on top of ArcFace (Deng, Guo, et al., 2019)) to clean
the dataset and remove some of the ambiguous and extreme im-
ages, and the frames which contain multiple faces. For supervised
training, we use the 300W-LP (Zhu et al., 2016) dataset, which has
a total of 61225 face images with 3837 identities. It provides the
68 3D face keypoints with the ground truth face images. During
training, the input images are augmented through random scaling
between [0.8, 1.0] and random horizontal flips on the go.

5.2. Implementation details

The complete network is trained in three steps through batch
processing. At first, the datasets created from CelebA and Vg-
gFace2 are randomly split into two parts. Then the training pro-
cess is as follows:

• In the first step the network is trained with the unlabeled
face taken from the part 1 split of CelebA and VggFace2 with
the three loss functions: Landmark Loss (Llmk), Photometric
Loss (Lpht ) and Perceptual Loss (Lperc) for 100 epochs. We
name this as unlabeled training.

• In the next step the model is further trained with the labeled
300W-LP dataset and the remaining second split of CelebA
and VggFace2. The CelebA and VggFace2 data is passed
through the Landmark Loss (Llmk), Photometric Loss (Lpht )
and Perceptual Loss (Lperc) as those do not have the ground
truth shape parameters. The 300W-LP is trained on all five
losses including the Shape Loss (Lshape) and Adversarial Loss
(Ladv). We name this mixed training.

The effect of the individual loss and these two steps has been
discussed in more detail in the ablation study section. For the
feature extraction module, we have experimented with all the
four available Swin Transformer models namely Swin Tiny (Swin-
T), Swin Small (Swin-S), Swin Base (Swin-B), and Swin Large
(Swin-L) with the different pre-trained weights based on the
training on ImageNet-1k and ImageNet-22k datasets.

The input size of the face images is set to 224 × 224, the
first stage embedding dimension is chosen as C = 192 and the
window size is 12. The number of heads and the number of blocks
in the STB module for each stage of the regressor network is set to
6, 12, 24, 48 and 2, 2, 18, 2 respectively. The network is trained
using the Adam Optimizer (Kingma & Ba, 2014) with an initial
learning rate of 5e-5 that is reduced by 10 every 50 epochs, and a
batch size of 5. The experiments were carried out on an Intel Core
i5-7400 3 GHz CPU with 32 GB RAM and an NVIDIA GeForce GTX
TITAN X Graphical Processing Unit (GPU) with 12 GB of dedicated
graphics memory.

5.3. Evaluation datasets

We evaluate our model on two aspects, 3D face reconstruc-
tion accuracy and dense face alignment. For face alignment, we
chose the very popular evaluation dataset AFLW2000-3D (Zhu
et al., 2016), and for 3D face reconstruction we use the MICC
Florence (Bagdanov, Del Bimbo, & Masi, 2011) dataset.

• AFLW2000-3D is an in-the-wild face dataset with a large
variation in illumination, pose, occlusion and expression. It
has 2000 images with its 3DMM parameters to recover the
ground truth face shape and the 68 3D face landmark points
for face alignment. We use it for face alignment evaluation.

• MICC Florence is a 3D face dataset that has 3D mesh
scanned by a structured-light system of 53 subjects and
respective short video footage under three settings: ‘coop-
erative’, ‘indoor’ and ‘outdoor’.

5.4. Evaluation on face alignment

We compare our work with the previous works in terms of the
dense face alignment task both quantitatively and qualitatively.

5.4.1. Quantitative comparison
To measure the face alignment quantitatively we use the nor-

malized mean error (NME) as the evaluation metric. NME is
computed as the normalized mean Euclidean distance between
each set of corresponding landmarks in the predicted result l and
the ground truth l′:

NME =
1
N

N∑
i=1

∥li − l′i∥2

d
(15)

Following the previous works (Ruan et al., 2021), the normal-
ization factor d is computed as

√
h ∗ w, where h and w are

the height and width of the bounding box respectively. Similar
to Feng et al. (2018), Ruan et al. (2021) for 2D and 3D sparse align-
ment we consider all 68 landmark points. We divide the dataset
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Table 1
Comparative Results on AFLW2000-3D on the task of Sparse Alignment with 68 landmarks. The NME
(%) is reported for different yaw angles and for a balanced subset with an average distribution of
yaw angles. Results of the previous works are taken from the SADRNet (Ruan, Zou, Wu, Wu, &
Wang, 2021) paper.
Method (0◦ ,30◦) (30◦ , 60◦) (60◦ , 90◦) Balanced

3DDFA 3.78 4.54 7.93 5.42
3DFAN 2.77 3.48 4.61 3.62
DeFA – – – 4.50
3DSTN 3.15 4.33 5.98 4.49
NonLinear 3DMM – – – 4.12
PRNet 2.75 3.51 4.61 3.62
DAMDN 2.90 3.83 4.95 3.89
CMD – – – 3.90
SPDT 3.56 4.06 4.11 3.88
3DDFAv2 2.63 3.42 4.48 3.51
SADRNet 2.66 3.30 4.42 3.46
Ours 2.68 3.37 4.51 3.54

Fig. 4. Comparative results having rendered texture with previous works - Gecer, Ploumpis, Kotsia, and Zafeiriou, Genova et al.,Tuan Tran et al., Tewari et al..
Source: The images are taken from the paper of Gecer et al..

based on the yaw angles (0◦, 30◦), (30◦, 60◦) and (60◦, 90◦) and
a balanced subset created by taking a random sample from the
whole dataset. The results are presented in Table 1. We compare
our outcome with previous works — 3DDFA (Zhu et al., 2016),
3DFAN (Bulat & Tzimiropoulos, 2017), DeFA (Liu, Jourabloo, Ren,
& Liu, 2017), 3DSTN (Bhagavatula, Zhu, Luu, & Savvides, 2017),
non-linear 3DMM (Tran & Liu, 2019), PRNet (Feng et al., 2018),
DAMDN (Jiang, Wu, & Kittler, 2019), CMD (Zhou et al., 2019),
SPDT (Piao, Qian, & Li, 2019), 3DDFA Ver 2 (Guo et al., 2020),
and SADRNet (Ruan et al., 2021). It can be seen that our method
achieves comparable results to SADRNet, 3DDFAv2 and beats the

other works in most of the measures. Particularly our method
produces good results in balanced partitions.

5.4.2. Qualitative comparison
We also compare our results with previous works including

MGCNet (Shang et al., 2020), PRNet (Feng et al., 2018) and SADR-
Net (Ruan et al., 2021). The results are presented in Fig. 5 .
MGCNet fits the shape and poses parameters on a 3DMM model
learning from a CNN network. PRNet directly regresses the face
mesh vertices and UV position maps. SADRNet decomposes the
dense face alignment and face reconstruction task into several
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Fig. 5. A qualitative comparison on the AFLW2000-3D dataset on the dense face alignment and 3D face reconstruction task with the previous works MGCNet (Shang
et al., 2020), PRNet (Feng, Wu, Shao, Wang, & Zhou, 2018) and SADRNet (Ruan et al., 2021). The ground truth landmarks are in red and the predicted landmarks
are in blue. The NME percentage is shown at the bottom right corner for each landmark image. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Source: The ground truth images and results of the previous works are taken from the SADRNet paper (Ruan et al., 2021).

Fig. 6. Qualitative comparison of the reconstructed shape and texture with previous works including (Deng, Yang, et al., 2019; Guo, Cai, & Zhang, 2021; Richardson
et al., 2016; Tewari et al., 2017; Trâń et al., 2018).
Source: The outputs are taken from Guo et al. (2021).

simple subtasks and proposes an occlusion-aware self-alignment
network. From the result, we can see for the samples which have
partial occlusions (rows 2, 3, 4) that MGCNet does not predict the
shapes properly. For the invisible regions (row 5) PRNet tends to
produce a larger error, while MGCNet fails to predict the shape.
In contrast, our method provides good results in all these cases
and produces comparable results with SADRNet.

5.5. Evaluation of face reconstruction

We evaluate our network in terms of face reconstruction tasks
on the popular MICC dataset. We compare it with the previous
works both qualitative and quantitatively.

5.5.1. Quantitative comparison
To measure the accuracy in terms of face reconstruction we

measure the mean error as mentioned in the GANFIT (Gecer
et al., 2019) paper. We use the MICC Florence 3D Face dataset
as mentioned in the previous section. Similar to Genova et al.
(2018), Tuan Tran et al. (2017) we first extract all the frames from
the video files provided in the dataset and run the ArcFace FR
model to identify the face in it, as a few frames either do not have
any human or have multiple human faces. We follow a similar
evaluation methodology as stated in Gecer et al. (2019). The steps
are as follows:

• The ground truth face scans are manually annotated for the
68 face key points. We take the data provided by Gecer et al.
(2019). With the help of these, we then register the ground
truth meshes with the BFM base template.
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Table 2
Quantitative comparison of the Florence MICC dataset on the task of face reconstruction. The table shows the mean error (Mean)
and the standard deviation (Std.).
Method Co-operative Indoor Outdoor

Mean Std. Mean Std. Mean Std.

Tran et al. 1.93 0.27 2.02 0.25 1.86 0.23
Booth et al. 1.82 0.29 1.85 0.22 1.63 0.16
Genova et al. 1.50 0.13 1.50 0.11 1.48 0.11
Deng et al. 0.978 0.22 1.083 0.26 1.075 0.25
Gecer et al. 0.95 0.107 0.94 0.106 0.94 0.106
Ours 0.956 0.23 1.086 0.24 0.964 0.22

Table 3
Subjective evaluation results in four different hypotheses — Realism, texture, shape reconstruction, occlusion
resistance. The table shows the Mean Opinion Score (MOS) and the standard deviation (Std.).
Methods Realism Texture-Reconstruction Shape-Reconstruction Occlusion-Resistant

MOS Std. MOS Std. MOS Std. MOS Std.

Gecer et al. 3.53 0.49 3.73 0.57 3.26 0.44 – –
Genova et al. 3.13 0.61 3.06 0.24 – – – –
Tran et al. 2.33 0.69 2.4 0.48 2.93 0.44 – –
Deng et al. 3.26 0.44 3.46 0.61 3.13 0.49 3.0 0.36
Tewari et al. 2.73 0.57 2.66 0.47 2.6 0.48 2.13 0.49
Tiwari et al. – – – – – – 3.2 0.4
Ours 3.6 0.48 3.66 0.47 3.2 0.54 3.4 0.48

• Each face mesh from both the predicted and the ground
truth is cropped at a radius of 95 mm around the nose tip
similar to previous works. Deng, Yang, et al. (2019), Gecer
et al. (2019), Genova et al. (2018), Tuan Tran et al. (2017)
to evaluate the face shape reconstruction of the inner facial
mesh.

• Then for each frame the 3D mesh is predicted by the net-
work and coarsely aligned with the corresponding ground
truth scans with the help of the 68 landmark points.

• To get rid of any misalignment, a rigid Iterative Closest Point
(ICP) algorithm (Besl & McKay, 1992) is applied without
deforming the predicted meshes.

• Finally, the error is calculated as the mean symmetrical
point-to-plane distance.

The quantitative results on face shape are given in Table 2 with
their mean errors (Mean) and corresponding standard deviations
(Std.). Our result is compared with the previous works of Booth
et al. (2017), Deng, Yang, et al. (2019), Gecer et al. (2019), Genova
et al. (2018), Tuan Tran et al. (2017). The results of Booth et al.
(2017), Gecer et al. (2019), Genova et al. (2018), Tuan Tran et al.
(2017) are taken from the GANFIT (Gecer et al., 2019) paper and
the result of Deng, Yang, et al. (2019) is calculated by running the
published pre-trained model from their work following the above
mentioned methodology. From the result, it can be seen that our
method is able to outperform all the previous work except the
GANFIT with a reasonable margin.

5.5.2. Qualitative comparison
We further compare our results qualitatively with previous

works.
Comparison with MoFA test dataset: Fig. 4 shows compar-

ative results on textures and shape on some samples from the
MoFA (Tewari et al., 2017) test dataset compared with works
from Ganfit (Gecer et al., 2019), Genova et al. (2018), Tuan Tran
et al. (2017), Tewari et al. (2018). The corresponding shapes
are compared and presented in Fig. 8. Here we add the shapes
available from Tran and Liu (2018). In both cases, our results
outperform most of the previous works. Also, the texture and
shape reconstructions preserve the identity characteristics better
than in the previous works.

Comparison with MICC dataset: We compare our network
output on the publicly available MICC dataset with the previous

Fig. 7. Qualitative comparison of the MICC dataset. Our reconstructed shape is
compared with previous works.
Source: The results are taken from Deng, Yang, et al. (2019).

Fig. 8. Qualitative comparison of the generated face shape with previous works.
Source: The results of the previous works are taken from GANFIT (Gecer et al.,
2019).

works VRN (Jackson, Bulat, Argyriou, & Tzimiropoulos, 2017),
3DDFA (Deng, Yang, et al., 2019; Liu et al., 2017; Tuan Tran
et al., 2017; Zhu et al., 2016) and present the learned shapes in
Fig. 7. Results of the previous works are taken from (Deng, Yang,
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Fig. 9. Qualitative comparison with shape and texture on occluded images as
ground truth.
Source: The previous work outputs are taken from Tiwari, Kurmi, Venkatesh, and
Chen (2022).

et al., 2019). From the visual inspection, it can be seen that our
method is able to learn the shapes better than the previous works,
especially near the expressive areas like the eyebrows, lips, and
upper section of mouths.

Comparison of Occluded Cases: We also test our method
against the face images with occlusions. Here we take sample
images from a recent work (Tiwari et al., 2022), which particularly
deals with face reconstruction in occlusion. The results are shown
in Fig. 9. The first and second rows show the original images
and the occluded images respectively. The consecutive rows show
the results from the works of Tiwari et al. (2022), RNet (Deng,
Yang, et al., 2019), MOFA (Tewari et al., 2017) and ours. From the
results, we can see that our network learns better texture than
the previous works in the occluded regions. Particularly texture-
wise our result is able to preserve the identity information better
than the previous works.

Comparison with other works: We also conduct a quali-
tative comparison with Richardson et al. (2016), Tewari et al.
(2017), Tran and Liu (2018), Deng, Yang, et al. (2019) and Guo
et al. (2021). The results produced by our method are compar-
atively better than most of the previous methods in terms of
learned texture and shapes (see Fig. 6).

5.6. Subjective evaluation on face reconstruction

In this section we conducted a subjective analysis of the 3D
face reconstruction results and compared our work with other
related works.

5.6.1. Participants, protocols, and hypothesis
Fifteen participants (6 female and 9 male) volunteered to take

part in the experiments with a median age of 27 and mean age of
26.33. All participants reported medium to high familiarity with
computer graphics and digital media and are recruited through
general solicitations.

Before the experiments participants are given access to a
shared drive containing all the results and an excel sheet con-
taining the detailed questionnaire with the response options. We
have used a Likert scale from 1 to 5 as a level of agreement (1 —
Strongly disagree, 2 — Disagree, 3 — Neither agree nor disagree,
4 — Agree, 5 — Strongly agree).

For each and every method participants are asked to give their
response on the four hypotheses -

• The reconstructed face looks realistic when compared with
the ground truth (realism).

• The texture of the face is well reconstructed (Texture recon-
struction).

• The shape of the face is well reconstructed (Shape recon-
struction).

• The overall face is well reconstructed under occlusion (Oc-
clusion resistant).

5.6.2. Results
We computed the response of the participants and calculated

the mean Opinion Score (MOS). Table 3 shows the calculated MOS
and standard deviation for different methods in four different cat-
egories (hypothesis). We have compared the realism and texture
constructions with Deng, Yang, et al. (2019), Gecer et al. (2019),
Genova et al. (2018), Tewari et al. (2018), Tiwari et al. (2022),
Tran and Liu (2018) and shape reconstruction with Deng, Yang,
et al. (2019), Gecer et al. (2019), Tewari et al. (2018), Tran and
Liu (2018) and the occlusion resistance with Deng, Yang, et al.
(2019), Tewari et al. (2018), Tiwari et al. (2022). From the result,
we can find that our method gives the best result in realism and
the occlusion resistance section and came second best in texture
and shape reconstruction. Though as a generic comment from the
participants it has been found that it is difficult to judge the shape
reconstruction results by seeing the rendered results only. Fig. 10
shows the whisker box plot for the responses to the four different
hypotheses.

6. Ablation study

In this section, we validate the effectiveness of the proposed
network and aggregated loss functions in the face reconstruction
and texture generation task. We conduct detailed ablation ex-
periments on the MICC Florence dataset on the following task:
(1) The Feature Aggregation Module, (2) The SWIN transformer
backbones, and (3) The multi-loss function. We presented the
results in Mean Error (lower is better) and Standard Deviation,
and the model size and complexity in terms of a number of
parameters (#Params) and FLOP Counts (GFLOPs) respectively in
Table 4.

6.1. Feature aggregation module

We run the experiments with and without the FAM module
and analyze the results, which are shown in Table 4 (Column
‘Fusion’ — ‘Y’ denotes with and ‘N’ denotes without the FAM
module). We can see that for all the SWIN transformer variants
the network produces a lower mean error in the MICC evalua-
tion when using the feature aggregation block. As expected the
GFOLPs and the number of parameters has increased slightly after
introducing the FAM module.
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Fig. 10. Comparative results of the subjective study through whisker plots for four different hypotheses — Realism, Texture reconstruction, Shape reconstruction,
and Occlusion Resistance .

Table 4
Ablation results of the network varying the Fusion method, Swin model backbone, and pretrained (trained in ImageNet data) weight
variations.
*ID Backbone Pretrain Fusion #Params GFLOPs Co-operative Indoor Outdoor

Mean Std. Mean Std. Mean Std.

1 Swin-T 1K N 27.4M 6.42 1.123 0.35 1.224 0.78 1.286 0.8
2 Swin-T 1K Y 28M 6.46 1.115 0.29 1.204 0.18 1.166 0.32
3 Swin-S 1K N 55.1M 10.8 0.988 0.6 1.196 0.25 1.09 0.87
4 Swin-S 1K Y 55.8M 11.1 0.983 0.45 1.18 0.29 1.02 0.46
5 Swin-B 1K N 87M 16.8 0.978 0.56 1.12 0.74 0.99 0.35
6 Swin-B 1K Y 87.6M 17.2 0.972 0.62 1.096 0.22 0.982 0.16
7 Swin-B 22K N 87M 16.8 0.978 0.62 1.098 0.31 0.988 0.42
8 Swin-B 22K Y 87.6M 17.2 0.962 0.57 1.088 0.64 0.972 0.41
9 Swin-L 1K N 197.4M 35.6 0.968 0.44 1.098 0.55 0.97 0.12
10 Swin-L 1K Y 198M 35.9 0.964 0.24 1.094 0.34 0.972 0.82
11 Swin-L 22K N 197.4M 35.6 0.962 0.54 1.112 0.41 0.975 0.67
12 Swin-L 22K Y 198M 35.9 0.956 0.23 1.086 0.24 0.964 0.22

6.2. Variation of SWIN transformer blocks

In this set of experiments, the performance of the network is
chosen based on the model size. We repeat our experiments by
varying the STB blocks in the regressor modules. We test with
all the variants of the SWIN transformers — Tiny (Swin-T), Small
(Swin-S), Base (Swin-B), and Large (Swin-L). For Swin-B and Swin-
L we also test the two variants using the pre-trained models
trained on the ImageNet 1K and the ImageNet 22K datasets
(Column ‘Pretrain’). The remaining Swin-T and Swin-S models are
trained on the Imagenet 1K dataset.

As expected the network provides in all scenarios better re-
sults (i.e., a lower mean error) when the 22K pre-trained version
is used compared to the 1K pre-trained one. The best result is
achieved by the Swin-L 22K version. As the model size increases
from Swin-T to Swin-L, the network performance also increases
with the cost of a larger GFLOPs size. From the result on rows 8
and row 12, we can see that increasing the size of the backbone
from Base to Large only contributes to a limited improvement
of the performance, while paying a significant increase in the
computational cost. Also, the Swin-B 22k with feature fusion
version outperforms the other Swin-L versions except for the
Swin-L 22k with fusion. Overall the outcome of the experiments
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Table 5
Ablation results of the network varying the backbones (all are pre-trained with ImageNet 22K) with image frame size 256X256.
ID Backbone #Params GFLOPs Co-operative Indoor Outdoor

Mean Std. Mean Std. Mean Std.

1 ResNet-101 42M 8.6 1.112 0.11 1.216 0.32 1.226 0.82
2 ResNet-152 62M 11.4 1.105 0.31 1.211 0.18 1.166 0.32
3 R-101 × 3 368M 204.6 0.986 0.32 1.108 0.28 1.062 0.36
4 EffNetV2-L 105M 53.0 0.992 0.61 1.113 0.44 1.08 0.71
5 EffNetV2-XL 198M 94.0 0.988 0.25 1.042 0.12 1.02 0.82
6 ViT-B/16 82M 55.5 1.02 0.76 1.105 0.47 1.1 0.15
7 ViT-L/16 298M 191.1 0.993 0.68 1.092 0.23 1.054 0.55
8 Swin-B 87M 16.8 0.978 0.62 1.098 0.31 0.988 0.42
9 Swin-B+FAM 87.6M 17.2 0.962 0.57 1.088 0.64 0.972 0.41

shows the trade-off between the performance metrics and the
computational cost (see Table 4).

6.3. Variation of backbones

To study the effect different backbones on the face reconstruc-
tion task we have repeated our experiments with the popular
convolution backbones (see Table 5) like ResNet-101, ResNet-
152 (He, Zhang, Ren, & Sun, 2016), R-101x3 (Kolesnikov et al.,
2020), EfficientNetV2-L and XL (Tan & Le, 2021) and the variations
of vanilla vision transformers ViT-B/16 and ViT-L/16 (Dosovit-
skiy et al., 2020). As expected the deeper variation of ResNet-
101x3 performs best among the ResNets with the compromise
of its huge number of parameters and FLOPs. We have also
tested with the two variations of EfficientNetV2 and vanilla vi-
sion transformers (ViTs). We have found interesting observations
where the EfficientNet performs better than the vanilla ViTs.
Whereas the SWIN-Base backbone was able to outperform all
these backbones with a comparatively smaller number of pa-
rameters and GFLOPS. Lastly, the SWIN-Base with the Feature
Aggregation Module (FAM) was able to further improve the per-
formance of the network by reducing the mean error to the
lowest among all of the variations.

6.4. Multi loss functions

To study the effect of different losses on the training we also
conduct several experiments to set the values of weights w1, w2,
w3, w4, w5 corresponding to the landmark loss, photometric loss,
perceptual loss, shape loss, and adversarial loss respectively. We
start our ablation study by observing the effect of perceptual
loss and the combination of landmark loss and photometric loss
individually. Following the previous works (Deng, Yang, et al.,
2019; Gao et al., 2020) we put a comparatively small weight on
the landmark loss compared to the other losses by setting it to
0.001 for all our experiments, as the landmark loss mostly helps
to align the predicted face with the ground truth face.

From rows 1,2 and 3 in Table 6 we can see that the combi-
nation of photometric, landmark, and perceptual loss improves
the result compared to using these losses individually. Combin-
ing these with the supervised shape loss and adversarial loss
improves the result further. In the final experiment, we put a
comparatively large weight on the photometric and the shape
loss, as those two play a significant role in learning the shapes and
textures. The adversarial loss helps to make the predicted shape
distribution closer to the real distributions (3DMM parameters)
from the 300W-LP dataset, thus making the shapes more realistic.

7. Discussion

In this work, we present a deep learning-based method that
learns the 3D face model from a 2D face image with the help

of a hierarchical transformer and coarse to fine feature aggrega-
tion. Although the experimental results show that our proposed
method is effective and is able to provide similar to current SOTA
results it has limitations and has further scope for improvement.

• As we use a Hierarchical Vision Transformer as the fea-
ture extractor, though it has achieved a comparable result
when compared to the other SOTA methods, the underlying
computational cost hinders its use and deployment in edge
devices. Here we can use different width and depth pruning
methods to find and remove unimportant units in the trans-
former network to reduce its model size and computational
costs.

• As we can see in Fig. 5 our method sometimes produces
inaccurate shapes in the occluded regions. Here we can
use different face segmentation methods to exclude these
parts in the loss during backpropagation to improve its
performance.

• For the supervised learning we use the 3DMM shape pa-
rameters from the 300W-LP dataset, which mostly encodes
global facial deformations, therefore our method fails to
recover low-dimensional facial details like wrinkles. Also,
transformer-based approaches are mostly very effective in
modeling non-local interactions, whereas graph convolution
networks are very good at predicting neighborhood vertex
interactions. Here we can introduce a graph convolution
network into the transformer architecture to recover the
fine-grain details.

8. Conclusion

In this work, we have explored the potential of the trans-
former network in the face reconstruction task. We have pro-
posed a hierarchical transformer to extract the deep features from
the face image. We have adopted the feature pyramid approach
and aggregated the multi-scale features in different stages from
coarse to fine. This helps to learn both local and global features
from the face images. We trained the network with a hybrid loss
function in a semi-supervised way without any ground truth face
scans. Both qualitative and quantitative evaluations on 3D face
reconstruction and 3D dense face alignment tasks demonstrate
the effectiveness of our approach and ability to outperform the
current SOTA task in some instances. In the subjective evaluation
experiments as well our work gives better results in realism and
occlusion-resistant scenarios. We also conducted an extensive set
of experiments to measure the performance of the different types
of Swin transformers, different feature extraction backbones, fea-
ture aggregation, and loss functions and presented their results
which further provide a trade-off between model complexity,
computational cost, and network performance.
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Table 6
Ablation results for the network varying the weights w1 , w2 , w3 , w4 , w5 associated to the five loss functions landmark loss (Llmk),
photometric loss (Lpht ), perceptual loss (Lperc ), shape loss (Lshape), and adversarial loss (Ladv).

w1 w2 w3 w4 w5 Co-operative Indoor Outdoor

Mean Std. Mean Std. Mean Std.

0.000 0.00 1.00 0.00 0.00 2.012 0.31 1.914 0.45 1.957 0.54
0.001 1.00 0.00 0.00 0.00 1.915 0.39 1.820 0.15 1.736 0.62
0.001 1.00 1.00 0.00 0.00 1.684 0.92 1.792 0.25 1.592 0.67
0.001 1.00 1.00 1.00 0.00 1.503 0.31 1.656 0.22 1.413 0.32
0.001 1.00 0.70 1.00 0.00 1.326 0.63 1.581 0.82 1.324 0.64
0.001 1.20 0.70 1.00 0.10 1.161 0.45 1.486 0.57 1.20 0.83
0.001 1.20 0.50 1.20 0.10 0.983 0.32 1.422 0.14 1.182 0.21
0.001 1.50 0.50 1.20 0.10 0.972 0.62 1.296 0.22 0.982 0.16
0.001 1.70 0.30 1.20 0.10 0.956 0.23 1.086 0.24 0.964 0.22
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Chapter 5

Lightweight dense facial Landmark
Prediction

5.1 Background

As discussed in the previous chapter, with the help of highly complex deep neural network
models, we are able to recover the detailed face shape from uncalibrated face images.
However, most of these methods depend on some kind of statistical priors of face shape like a
3DMM and the sparse face landmarks for face alignments. Some of the previous works also
used additional signals beyond color images, like facial depth [131, 10], optical flow [27], or
multi-view stereo [17, 121], and then optimized using geometric and temporal prior. Each of
these methods can produce very detailed results but take a very long time to compute. At the
same time, the model size and huge computational requirements make these approaches not
suitable for real-time applications in edge devices. Therefore it is still a very challenging
task to implement a face modeling pipeline on limited computational cost systems such as
mobile or embedded systems.

To reduce the dependencies on the priors, such as the statistical models, estimating 3D
landmarks on the face can work as an alternative to estimating the face structure. These
landmarks work as a point of correspondence across the face. But all the publicly available
datasets mostly contain a sparse set of 68 facial landmarks, which fails to encode the full
face structure. So increasing the number of these landmarks can help to learn face geometry
better. Unfortunately, annotating a real face with dense landmarks is highly ambiguous
and expensive. Some of the previous methods, like Wood et al. [150], rely on synthetic
data alone. Though the authors have detailed ground truth annotations like albedo, normals,
depth, and dense landmarks, none of these data is publicly available. The authors also



126 Lightweight dense facial Landmark Prediction

proposed a method [152] to learn the dense landmarks as a Gaussian uncertainty from
those synthetic data and fit a 3DMM model from those dense key points only. Some other
methods [38, 49, 168] use pseudo-labels model-fitting approaches like fitting an existing
3DMM model to generate synthetic landmarks. Jeni et al. [77] predicted dense frontal face
landmarks with cascade regressions. They created 1024 dense 3D landmark annotations from
3D scan datasets [165, 166] through an iterative method. While Kartynnik et al. [82] used a
predefined mesh topology of 468 points arranged in fixed quads and fit a 3DMM model to a
large set of in-the-wild images to create ground truth 3D dense annotations of key points.
They later employed direct regression to predict these landmarks from face images. Some
other methods [6, 49] used a different method to unwrap each pixel of the face as a position
map and regress the position in 3D space. They created the position map by fitting the Basel
Face Model (BFM) [106] from the 300WLP dataset [168], which has the 3DMM parameters
associated with more than 60k in the wild images. As we don’t have access to such massive
3D scan data, the same position map data can be an option to create the ground truth dense
landmark.

5.2 Research Objective

As discussed in the above section, as we don’t have access to large 3D scan data, generating
position maps similar to Feng et al. [49] can be an alternative. The position map records the
3D shape of the complete face in UV space as a 2D representation, where each pixel value has
the 3D position information of that pixel. It provides correspondence to the semantic meaning
of each point on the UV space. Their method aligns a 3D face model to the corresponding
2D face image and stores the 3D position of the points. We can apply the same to extract
dense key points to create the ground truth data, before using direct regression to train a
model that can predict those dense landmarks in 3D space. Overall, the main objective of
this study is the followings:

• Extract a dense key point mesh topology from the existing UV position map extracted
by Feng et al. [49] that will have the same semantic meaning across all faces.

• Following the topology, create the ground truth data of face images and their corre-
sponding dense key points.

• Create a regression model to perform the direct regression task.

• Evaluate the model performance in terms of 3D key points.
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Fig. 5.1 UV position map example from [49]. Left: 3D plot of the corresponding position
map on top of the 2D RGB image. Right: The first row is the 2D RGB image and the
corresponding extracted texture and position map. The second row shows the x,y, and z
channels of the position map data.

5.3 Summary of Contribution

To achieve the above objective, we first propose a methodology to generate the dense key
points of 520 face landmarks from the position map data. Then we create a lightweight
regressor network to build a model that will predict those key points from monocular face
images. We will discuss these in more detail in the following section:

5.3.1 Dense Facial Landmark Data Generation from UV Map

As stated in the previous section, Feng et al. [49] proposed a 3D facial representation based
on the UV position map. They used the UV space to store the 3D position points from
the 3D face model aligned with the 2D facial image. They assume the projection from
the 3D model on the 2D image as a weak perspective projection and define the 3D facial
position as a Left-hand Cartesian coordinate system. The ground truth 3D facial shape
exactly matches the 2D image when projected to the x-y plane. They define the position map
as Pos(ui,vi) = (xi,yi,zi), where (ui,vi) represents the ith point in face surface and (xi,yi,zi)

represents the corresponding 3D position of facial mesh with (xi,yi) being the corresponding
2D position of the face in the input RGB image and zi representing the depth value of the
corresponding point. Figure 5.1 shows an example of the position map data taken from [49].

We followed the same representation and used their pipeline to build the raw data from the
300W-LP [168] dataset. This contains more than 60k unconstrained face images with fitted
3DMM parameters which are based on the Basel Face Model. They used the parameterized
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Fig. 5.2 Selection of key points through Delaunay Triangulation. (a) Initial selected key
points across the jaw, forehead, and nose tip (b) First iteration of Delaunay triangulation and
centroid selection (c) Second iteration of Delaunay triangulation and centroid selection (d)
Third iteration of Delaunay triangulation and centroid selection

UV coordinates from Bas et al. [11], which computes a Tutte embedding [51] with conformal
Laplacian weight and then maps the mesh boundary to a square. So we can filter this UV
position map data to create a dense face landmark. The 3DMM face template that was used
by Feng et el. [49] has a total of 43867 vertices. Out of these, we have sampled 520 vertices.
To sample, we have followed the following steps as shown in figure 5.2 -

• First, we have selected 18 key points across the jaw and one key point on the nose tip
from the 68 key points provided.

• Then we run the Delaunay triangulation [93] on the selected points and select the
centroids of the three vertices of each triangle.
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Fig. 5.3 (a) Template mesh in Blender (b) Final selected vertices highlighted on the template
in Blender

• We repeat the same step another two times and have the final key points

• Finally, we select these key points across the template mesh and manually select the
rest of the key points and rectify some of the already selected key points in Blender.

After these iterations, the final version of the ground truth data has the RGB face images
and their corresponding 520 face key points which includes the popular 68 key points set
in it. Figure 5.3 shows the final selected key points on a face mesh in Blender. Figure 5.4
shows some of the samples from the ground truth data. The whole dataset contains around
61k pairs of ground truth images and their corresponding ground truth position map data
saved in numpy format. Further, we expanded the data by applying a horizontal flip which
made the total dataset size to 120k of paired images and their position map data.

5.3.2 Dense Facial Landmark Prediction using Regression

As we have around 120k pairs of ground truth face images in the wild and their corresponding
ground truth facial key points, we formulate the problem as a direct regression of those 520
key points from a monocular face image. We build a model with a standard feature extractor
with a classifier head. The trained model will predict a continuous value of three positions
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Fig. 5.4 Sample ground truth data. 1st column in the RGB image, 2nd column shows the
selected 68 key points, 3rd column shows the fully selected 43867 vertices. 4th column
shows the final selected 520 vertices.
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(x,y,z) for those 520 3D landmarks. We choose the total number of classes as 520 x 3 = 1560.
As the feature extractor, we have chosen two popular backbones, Resnet50 and MobilenetV2.

The standard loss function that is typically used for any landmark estimator is the L1,
and L2 loss or the Mean Square Error loss [24–26, 142]. But the L2 loss (L2(x) = x2/2)
function is sensitive to outliers. So Rashid et al. [111] used smoothL1 loss which is defined
as -

smoothL1(x) =

{
x2/2, i f x < 1

|x|−1/2, otherwise
(5.1)

Both L1 (L1(x) = |x|) and smoothL1 perform well for outliers, but they produce a very
small value for small landmark differences. This hinders the network training for small errors.
To solve this issue, Feng et al. [50] proposed a new loss called Wing loss which pays more
attention to small and medium errors. They combined the L1 loss for the large landmark
deviations and ln(.) for small deviations as follows -

wing(x) =

{
w ln(1+ |x|/ε), i f |x|< w

|x|−C, otherwise
(5.2)

where C = w−w ln(1+w/ε), w and ε are the hyperparameters(w = 15, ε = 3 in the
paper). In this work as well we combined the Meas Square Error loss with the Wing loss to
define a hybrid loss function as -

L = w1LWing +w2LMSE (5.3)

Through an ablation study, we set the weight of these two loss terms as w1 = 1.5 and w2 =
0.5.

As we don’t have any evaluation or test dataset that has the 3DMM parameters or the
position map data available, we evaluated our trained model on the 3D face alignment task.
To measure the face alignment quantitatively, we use the normalized mean error (NME) as
the evaluation metric. NME is computed as the normalized mean Euclidean distance between
each set of corresponding landmarks in the predicted result l and the ground truth l

′
:

NME =
1
N

N

∑
i=1

∥li − l
′
i∥2

d
(5.4)
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Fig. 5.5 Loss function comparison: L2, L1, smoothL1, Wing (with w = 15, ε = 3). The
plot shows the loss value against the error between the ground truth and the predicted value
[83]. The quadratic growth of the L2 loss makes it sensitive to the outliers, while L2, L1,
and smoothL1 yield a very small value for small errors between the ground truth and the
predicted values. On the contrary, Wing loss is less sensitive to outliers and is much more
sensitive to medium-to-small errors, which improves the training overall.

Following the previous works [116], the normalization factor d is computed as
√

h∗w,
where h and w are the height and width of the bounding box, respectively. Similar to [49, 116]
for 2D and 3D sparse alignment, we consider all 68 landmark points. We divide the dataset
based on the yaw angles (0°,30°), (30°,60°) and (60°,90°) and a balanced subset created
by taking a random sample from the whole dataset. We benchmarked our model on the



5.3 Summary of Contribution 133

Table 5.1 Quantitative evaluation on AFLW2000-3D dataset on facial alignment task.

Method 0 to 30 30 to 60 60 to 90 All
ESR [28] 4.60 6.70 12.67 7.99

3DDFA [168] 3.43 4.24 7.17 4.94
DenseCorr [161] 3.62 6.06 9.56 6.41

3DSTN [18] 3.15 4.33 5.98 4.49
3D-FAN [26] 3.16 3.53 4.60 3.76

3DDFA TPAMI [169] 2.84 3.57 4.96 3.79
PRNet [49] 2.75 3.51 4.61 3.62

2DASL [137] 2.75 3.46 4.45 3.55
3DDFA V2[64] 2.63 3.420 4.48 3.51

Ours 2.86 3.68 4.76 3.77

Table 5.2 Quantitative evaluation on AFLW dataset with 21-point landmark definition on
facial alignment task.

Method 0 to 30 30 to 60 60 to 90 All
ESR [28] 5.66 7.12 11.94 8.24

3DDFA [168] 4.75 4.83 6.39 5.32
3D-FAN [26] 4.40 4.52 5.17 4.69
3DSTN [18] 3.55 3.92 5.21 4.23

3DDFA TPAMI [169] 4.11 4.38 5.16 4.55
PRNet [49] 4.19 4.69 5.45 4.77

3DDFA V2[64] 3.98 4.31 4.99 4.43
Ours 4.04 4.45 5.2 4.57

Table 5.3 Comparative analysis with two different backbones Mobilenet-V2 and Resnet-18
of Quantitative result on AFLW-3D dataset on facial alignment task and the computational
requirement.

Backbone 0 to 30 30 to 60 60 to 90 All gMac gFlop # Params
Resnet-18 2.88 3.72 4.82 3.83 5.13 2.56 16.03M

Mobilenet-V2 2.86 3.68 4.76 3.77 0.39 0.19 4.18M

widely used AFLW2000-3D dataset. It is an in-the-wild face dataset with a large variation in
illumination, pose, occlusion, and expression. It has 2000 images with 68 3D face landmark
points for face alignment.

Following 3DDFA-V2 [64], we have also evaluated our work using the AFLW full set
(21K test images with 21-point landmarks). We followed the same split and showed the
results for different angles in table 5.2.
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Fig. 5.6 Cumulative Errors (NME) Distribution (CED) curves on AFLW2000-3D. Evaluation
is performed on 68 landmarks with coordinates. Overall 2000 images from the AFLW2000-
3D dataset are used. The backbone and loss functions are also shown in the legend. WL
stands for Wing Loss, and L2 stands for MSE loss

5.4 Discussion on Contribution

As there is no public data set available for dense landmarks, we have proposed a pipeline
to create ground truth data for 520 key points. With the help of that data generated, we
have trained a key point detection network with two popular backbones, Resnet18 and
MobileNetV2. As we don’t have access to any evaluation dataset which has dense landmarks,
we evaluated our model on a 3D face alignment task for 68 key points. We have used a hybrid
loss function for the learning, which is a combination of MSE and Wing loss. Experimental
results show that with the help of a hybrid loss function, we are able to achieve near SOTA
performance on both AFLW2000-3D and AFLW benchmarks. Also, the MobilenetV2-based
model is comparatively lightweight and requires fewer computational resources. Table 5.3
shows a comparative analysis of the Rensent and Mobilenet-based networks in terms of their
computational resource requirement. We have also conducted an ablation study on the effect
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Fig. 5.7 Cumulative Errors (NME) Distribution (CED) curves on AFLW with 21 point
landmarks. Overall 21k images from the AFLW dataset are used here. The backbone and
loss functions are also shown in the legend. WL stands for Wing Loss, and L2 stands for
MSE loss.

of the hybrid loss function. Figure 5.6 and 5.7 shows the cumulative error distribution curves
based on NME for the AFLW-3D and AFLW dataset. In both cases, a combination of Wing
Loss and MSE performs better than the rest.

Though by visual inspection, the results of the model look good, due to the lack of ground
truth test data we are only able to evaluate the model against the 3D facial alignment task. In
the future, we can extend this work and use those 520 key points to fit an existing statistical
(e.g., 3DMM) model to the face and evaluate the full face reconstruction benchmark.





Chapter 6

Additional Contributions

In this chapter, some of my secondary publications are briefly mentioned.

6.1 Speech-driven Video Editing via Audio-Conditioned
Diffusion Model

6.1.1 Background

One of the most popular facial analysis and modification tasks is visual dubbing. This task
synthesizes a lip-synced talking head video by inputting the corresponding audio and mesh
vertex, facial image, or video. The model first learns from the visual appearance data and
then dynamically maps the lower-dimensional speech signal to the high-dimensional video
signal data such as facial expression, facial action, and human lip shape. Finally, the learned
network performs the video rendering and outputs the multi-modal video data. It has several
real-world applications, like translating a video into a different language or modifying the
speech after recording it.

Before the deep learning era, researchers mainly adopted cross-modal retrieval methods
[56, 55, 132, 23] and Hidden Markov Model (HMM) [155] to accomplish talking head
generation tasks. With the rapid development of deep learning, it has become the de-
facto method for this task. The deep-learning-based tasks can be broadly divided into two
categories - pipeline-based methods and end-to-end methods. The pipeline-based techniques
mainly consist of two steps: first, the low dimensional driving source data, such as the audio
signals, are mapped to the facial parameters like face landmarks and facial coefficients (e.g.,
3DMM parameters). Then the facial parameters are passed to a video rendering module
to generate the faces by GPU rendering, video editing, or GAN-based generative models.
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The earliest pioneering landmark-based method was proposed by Suwajanakorn et al. [128].
They used a single-layer LSTM to map the low-dimensional speech signal into nonlinear lip
keys and passed them to face texture synthesis and video construction. Like them, Kumar
et al. [92] used an LSTM+UNet-based architecture and Pix2Pix-based image synthesis
method. But both these methods are limited to a single training speaker as they trained on an
Obama-speaking video dataset. To overcome this limitation, Jalalifar et al. [76] introduced
a basic conditional generative adversarial network (C-GAN) as a stand-alone network for
audio-to-video mapping to generate video from the learned landmarks. It can learn from
any audio as a driving source, thus minimizing the dependency on a person’s specific audio
source. Kim et al. [88] introduced the 3DMM [20] as the facial parameter learning phase.
As 3DMM is a full-face parametric model, this method covered full control over the facial
action parameters, like expressions, shape, and scene illuminations. Though the method
does not consider temporal coherence, the lips in the consecutive frames are not aligned
properly. However, most models are trained on particular speaker-specific data and cannot
generalize among different identities. To overcome this issue, Cudeiro et al. [35] proposed a
model called VOCA, which fused the audio features extracted by DeepSpeech from different
speakers and output the displacement data of the 3D vertices from the FLAME parametric
model.

Although these pipeline methods were very popular in the early deep-learning era, there
are major drawbacks. These methods have a complex pipeline of processing, time-consuming
and expensive facial parameter annotations, and depend on auxiliary techniques like facial
landmark detection and 3D reconstructions. To overcome this researchers began recently to
study the end-to-end approach for talking head video synthesis, where the goal is to generate
the lip-synced face videos from the driving source (like audio) without involving any facial
parameters like key points as an intermediate learning step. One of the earliest methods to
explore this end-to-end strategy is the Speech2Vid [34], which consists of an audio encoder,
an speaker identity encoder, an image decoder, and a deblurring module. The image decoder
takes the audio feature vector and identity feature vector. It performs a feature fusion through
a transposed convolution and an up-sampling method to synthesize an output image. But,
it does not consider the continuity in time series and produces incoherent video sequences,
skipped frames, and jitters. To overcome this, researchers proposed GAN-based methods
and introduced more efficient learning objectives. Vougioukas et al. [139] first introduced
the GAN-based speech-driven video generation. They proposed an end-to-end approach
to generate talking head videos using a single image of a person and an audio clip of the
speech without relying on any hand-crafted intermediate features. In recent work, Yin et al.
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proposed StyleHEAT [159], which utilizes StyleGAN [81] to synthesize talking faces guided
by speech embeddings.

6.1.2 Research Objective

Despite the popularity of GAN in image generation, their application in speech-driven video
synthesis is limited by some drawbacks. One of the foremost reasons is the difficulty of
gaining stability in GAN training. It often requires extensive architectural search and tuning
of model parameters to achieve convergence. The stability of the training can be improved by
using additional guidance like face masks or driving frames. This limits the facial reenactment
task like talking head generation and reduces the ability to generate original head movements
and expressions. Further, GAN training can often lead to mode collapse [7], where the
generator fails to generate samples that cover the entire data distribution and instead learns
to produce a few unique samples. To overcome these challenges, a new class of generative
model has been gaining attention among researchers based on Diffusion [126, 68]. These
models are a type of generative probabilistic model that consists of two steps - in the first
step, the forward diffusion process manipulates the data by steadily adding a small amount of
random Gaussian noise over a series of time stamps until the data is destroyed. In the second
step, a reverse diffusion process learns to train a model to restore the structure of the data by
removing the noise over a series of time steps. The trained model then can sample information
from a random Gaussian noise distribution and steadily denoise it over a series of time steps
to generate the desired output. Due to their nature, diffusion models achieve high mode
coverage than GAN, while the training of these networks is much simpler. At the same time,
these models have shown extraordinary generating capabilities and beat GAN in tasks like
image synthesis [41] and other guided generation tasks [101, 108, 110, 115]. In recent times
diffusion models have gained popularity and show competitive results in image-to-image
translation [115, 118], video generation problems [66, 69, 70], audio synthesis [31, 89, 59],
and many others [157]. This makes the diffusion models an ideal choice for audio-driven
video editing, which is mostly dominated by GAN-based approaches [30, 32, 140]. The main
objectives of this study are -

• Explore the capabilities of diffusion models in speech-driven video editing tasks.

• Introduce the conditioning mechanism to the diffusion model based on the audio signal
and other cues to maintain temporal stability.
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6.1.3 Summary of Contribution

The work is presented in the article - Bigioi, Dan, Shubhajit Basak, Michał Stypułkowski,
Maciej Zieba, Hugh Jordan, Rachel McDonnell, and Peter Corcoran. "Speech driven video
editing via an audio-conditioned diffusion model." Image and Vision Computing (2024):
104911. A copy of the paper is attached at the end of this chapter.

The contributions of the authors for the research mentioned above work [19] as per the
four major criteria discussed in section 1.4 is presented in the table 6.1. Though the primary
work for these was carried out by Dan Bigioi, my contribution to these work are:

• Set up the evaluation experiments and perform the evaluation studies.

• Drafting the evaluation section in the manuscript.

Table 6.1 Author’s Contribution to [19]

Contribution Criteria Contribution Percentage
Ideation DB 80%, PC 20%

Experiments & Implementations DB 80%, SB 15%, HJ 5%
Manuscript Preparation DB 80%, RM 5%, SB 5%, PC 10%

Background Work DB 80%, PC 20%

To accomplish the above objectives, we proposed an unstructured end-to-end approach
for speech-driven video editing using a denoising diffusion probabilistic model. Our work
is based on the Palette [118] architecture, a denoising U-Net model originally trained for
image-to-image translation tasks. We formulated our problem as an image inpainting task by
masking out the bottom portion of the face. We particularly used a rectangular mask to hide
the jaw contour, as we have found that if the jaw contour is visible to the network, it will
learn to predict the lip movements based on the jaw alone, thus discarding the audio signal
completely as noise. We conditioned the network on audio frames and trained to impaint the
lower half region of the face so that the lip and jaw movements are synchronized to the input
audio signal. We train the network on both single and multi-speaker versions of the GRID
dataset and demonstrate promising results despite access to a limited amount of data and
training hardware. We compute the mel-spectogram features from the conditioning audio
and concatenate them with the image channel. As our approach works frame-by-frame to
ensure the temporal consistency between the consecutive frames, we pass the preceding
image frame and the previous, current, and future audio frame features while training. The
experimental results show promising results and demonstrate that using a denoising diffusion
model to do audio-driven video editing is feasible and produces reasonable results.
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6.1.4 Discussion on Contribution

Through some initial experiments, we have shown that the denoising diffusion model can
be applied successfully in audio-driven video editing tasks. Though it is able to perform
reasonably to this task due to its nature, diffusion models are slow to train and infer. Our
model is also no exception taking approximately 30 minutes per epoch to train the single-
speaker model, 90 minutes per epoch for the multi-speaker one, and approximately 1 minute
to generate one frame with 2000 diffusion steps on a single 32 GB V100 GPU. As future
work, we are working on applying latent diffusion [115] that facilitates the training on
latent space, thus shrinking the parameters of the model. We also need to incorporate new
methodologies to infuse the audio features while training, as the current model performs
badly in some specific syllables. Also, the multi-speaker model, model fails to keep the
identity information while generating long videos. So work must be done to add additional
constraints to add the identity information.

6.2 A Review of Benchmark Datasets and Training Loss
Functions in Neural Depth Estimation

While we were working on the monocular depth estimation project, we surveyed the available
real datasets that had depth information. As there is very limited monocular depth data
available which has facial data, we studied each dataset and its attributes. We divided the
datasets into five different categories - (i) people detection and action recognition, (ii) faces
and facial pose, (iii) perception-based navigation (i.e., street signs, roads), (iv) object and
scene recognition, and (v) medical applications. Also, we studied different data mixing
strategies for neural depth estimation that can be found in the literature. Another key aspect
of the monocular depth estimation task is the objective function. So we studied the common
loss functions used in-depth estimation tasks and discussed their details, including their
advantages and limitations.

The work is presented in the article - Khan, Faisal, Shahid Hussain, Shubhajit Basak,
Mohamed Moustafa, and Peter Corcoran. "A Review of Benchmark Datasets and Training
Loss Functions in Neural Depth Estimation." IEEE Access 9 (2021): 148479-148503. A
copy of the paper is attached at the end of this chapter.



142 Additional Contributions

6.3 Copy of Published Works
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A B S T R A C T   

Taking inspiration from recent developments in visual generative tasks using diffusion models, we propose a 
method for end-to-end speech-driven video editing using a denoising diffusion model. Given a video of a talking 
person, and a separate auditory speech recording, the lip and jaw motions are re-synchronised without relying on 
intermediate structural representations such as facial landmarks or a 3D face model. We show this is possible by 
conditioning a denoising diffusion model on audio mel spectral features to generate synchronised facial motion. 
Proof of concept results are demonstrated on both single-speaker and multi-speaker video editing, providing a 
baseline model on the CREMA-D audiovisual data set. To the best of our knowledge, this is the first work to 
demonstrate and validate the feasibility of applying end-to-end denoising diffusion models to the task of audio- 
driven video editing. All code, datasets, and models used as part of this work are made publicly available here: 
https://danbigioi.github.io/DiffusionVideoEditing/.   

1. Introduction 

The idea behind audio-driven video editing is to provide a means to 
re-synchronise the lip and jaw movements of an actor in a video, in 
response to a new speech input signal. This new speech signal may come 
from the original speaker, or a voice actor. Regardless of the source of 
the input speech, a key objective is that the performance of the actor is 
never diminished. No matter how the lip and jaw movements change in 
response to the new audio, the facial expressions, and emotions por-
trayed by the actor should remain consistent with the original 
performance. 

Achieving such seamless audio-driven video editing is an exciting 
prospect for the entertainment industry, one with the potential of being 
applied to movies, TV shows, live streaming, and even homemade 
content uploaded to platforms such as YouTube, TikTok, and others. 
Giving video content creators the ability and option to edit their work 
without having to go through time-consuming, and expensive re-shoots, 
allows them to work with a greater tolerance for error during filming. 

Furthermore, the realisation of true audio-driven video editing 
would bring about a significant transformation in the world of cinema 
and television, allowing for more accessible and cost-effective dubbing 
of English-language movies/TV shows/videos into other languages and 
vice versa, allowing for the further democratisation of video content by 
making it more engaging and personalised for audiences worldwide. 
Recent advancements in deep learning and talking head generation 
techniques are bringing us closer to this exciting possibility, where audio 
and video will be seamlessly synchronised in real-time. 

Current approaches for speech driven video editing, and the related 
task of talking head generation can be grouped into two distinct types: 
structured, and unstructured. Structured generation refers to techniques 
that use the speech signal to first extract an intermediate structural 
representation of the face (facial landmarks, 3D model expression pa-
rameters), before utilising it to render the photo-realistic frame 
[7,31,71,86,89]. On the other hand, unstructured generation ap-
proaches [18,29,73,88], utilise image reconstruction techniques to 
generate the photo-realistic frame directly in an end-to-end manner. 
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Through the implementation of a divide-and-conquer strategy, 
structured approaches demonstrate the ability to generate videos of 
significantly higher quality compared to their unstructured counter-
parts. This strategy involves employing multiple models, each special-
ising in a distinct aspect of the generation process, ultimately 
contributing to a more accurate outcome during inference. 

On the other hand, unstructured methods take a different approach, 
opting for a direct, end-to-end methodology that prioritises optimization 
of a single model in the pixel space. While this approach offers simplicity 
and streamlined processing, it inevitably involves a trade-off, sacrificing 
some of the accuracy achieved by structured methods. To address this, 
traditional methods frequently incorporate multiple loss functions, each 
designed to steer the optimization process towards refining the model’s 
performance in the desired manner. Selecting the optimal combination 
of loss functions is a highly challenging task however, which involves 
striking a delicate balance between competing objectives to ensure the 
model captures essential features accurately, and converges during 
training. 

Through the use of diffusion models, we introduce a method for 
training a stable end-to-end video editing model that overcomes the 
aforementioned challenges associated with unstructured methods. By 
leveraging an audio-conditioned diffusion model, our approach aims to 
enhance model stability during training, avoid common GAN pitfalls 
such as mode collapse, and, generate photorealistic high quality frames 
without relying on complicated multiple loss functions. 

Diffusion models [16,24,48,62] are a relatively new class of gener-
ative model that have recently been gaining traction due to their strong 
performance on image synthesis tasks, often outperforming state-of-the- 
art GAN (Generative Adversarial Network) [20]-based methods [16]. 
Utilising conditioning signals such as text and even images, diffusion 
models have shown that they can be trained and conditioned towards 
generating a specific desired output at inference time with relative ease 
[55]. They achieve high mode coverage unlike GANs, maintain high 
sample quality, and are stable during training. These properties make 
them an ideal candidate for application towards the task of unstructured 
audio-driven video editing, a task that has thus far been dominated by 
GAN-based approaches [8,11,73]. 

We present an approach for automatic speech driven video editing 
using a denoising diffusion model. We utilise a U-Net backbone modi-
fying it for the task of video editing, and introduce a feature concate-
nation mechanism for conditioning the network with information 
related to the previously generated frame in the sequence so that the 
network can generate temporally coherent frames. We further condition 
the network on speech by feeding spectrogram feature embeddings 
combined with the noise signal throughout the residual layers of the U- 
Net. To the best of our knowledge, this is the first work that applies 
denoising diffusion models to the task of audio-driven video editing. As 
part of this work, we state the following contributions to the field:  

• A novel unstructured end-to-end approach for audio-driven video 
editing using a denoising diffusion model. We condition the network 
on speech and train it to modify the face such that the lip and jaw 
movements are synchronised to the conditioning audio signal on a 
frame-by-frame basis. We train both single, and multi-speaker proof- 
of-concept models using the GRID [14], and CREMA-D [6] datasets 
respectively, achieving strong proof-of-concept results when tested 
on unseen speakers. The project code, datasets, and trained models 
will be made freely available to the public.  

• We demonstrate the applicability of our approach on the video 
editing task, achieving competitive results thanks to our conditional 
inpainting strategy which gathers information from previous frames 
and audio spectral embeddings, to generate the current frame. Our 
method achieves near state-of-the-art results when measured on 
traditional image quality metrics such as SSIM, PSNR, FID, and 
competitive SyncNet [13] lip synchronisation scores compared to 
other relevant methods from the field. 

2. Related works 

2.1. Audio driven video generation 

Audio-driven video generation methods can generally be categorised 
by whether they are generated by leveraging an audio-driven structural 
representation of the face, or without. 

There have been numerous approaches over the years relating to the 
former. Taylor et al. [70] and Karras et al. [32] among the first to apply 
machine learning techniques to the facial animation task, the former 
learning facial expression parameters of a 3D face model from phoneme 
labels, and the latter predicting 3D vertex positions of a face mesh from a 
speech audio window. Suwajanakorn et al. [68] trained a speaker spe-
cific network to output sparse mouth key-points, using them to modify 
videos of President Obama. Eskimez et al. [17] presented a recurrent 
architecture capable of taking in speech as input and outputting 2D 
landmark face co-ordinates, with Chen et al. [9] utilising cascaded GANs 
to translate those landmark features into photorealistic frames. Cudeiro 
et al. [15] introduced a 4D facial dataset, and trained a network to 
generate animations from speech with it. [5,40,74,89] generated in-
termediate landmark features from audio, also exploring the related task 
of extracting realistic headpose. Thies et al. [71] generated 3D facial 
expression parameters using features from a pretrained audio encoder, 
using these parameters to generate a photorealistic video via a neural 
renderer, with [64,76] following a similar approach but operating on 
videos instead. [7,82] presented methods to generate 3D face animation 
parameters, in addition to realistic head pose from speech, using these 
features to generate photorealistic frames. Ji et al. [31] approached the 
problem of video editing, generating emotion-controllable talking head 
portraits using both intermediate landmark structures, and 3D model 
parameters. [37,54,63,77,83,85] are other approaches from the litera-
ture which predict expression parameters from audio to drive a 3D face 
model. 

What these approaches all have in common is that they use these 
intermediate structural representations as input to a separate neural 
rendering model which is typically trained as an image-to-image 
translation task to generate the final photo-realistic image frame. As of 
the date of this submission, GAN-based [20] approaches such as Pix2Pix 
[28], CycleGAN [91], and other variations have proved immensely 
popular for this task. However, diffusion-based techniques show big 
promise for the future, especially given recent developments in various 
image-to-image translation tasks [58]. 

Nonstructural/end-to-end methods on the other hand utilise latent 
feature learning and image reconstruction techniques to generate a 
photo-realistic video sequence from an input speech signal and reference 
image/video in an end-to-end manner. Approaches such as 
[8,18,29,36,44,50,66,73,87,88,90] have seen much success in recent 
times. Each of these approaches differs from the one used in this paper as 
they are all GAN/VAE (variational autoencoder) [34] based probabi-
listic methods while ours leverages a denoising diffusion model. While 
current end-to-end approaches suffer from low output resolution quality 
compared to structural methods, there is a lot of potential for 
improvement, especially by exploiting diffusion models’ ability to syn-
thesise high-quality samples while maintaining good mode coverage/ 
diversity. 

2.2. Diffusion models 

Denoising diffusion models [62,65] have seen great success on a 
wide variety of different challenges, ranging from image-to-image 
translation tasks like inpainting, colorisation, image upscaling, 
uncropping [4,25,42,43,51,55,58,60], audio generation 
[10,27,33,35,38,49,69,79], text-based image generation 
[2,19,21,47,53,57,59], video generation [22,26,81,84], and many 
others. Recently, diffusion models have also been applied to the related 
task of talking head generation, with the works of [61,67], concurrent 
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approaches to our own. For a thorough review of diffusion models and 
all of their recent applications, we recommend [80]. 

Diffusion models are a class of generative probabilistic models that 
consist of two steps: 1) the forward diffusion process that destroys data 
by steadily adding small amounts of random Gaussian noise over a series 
of time steps until the data becomes a sample from a standard Gaussian 
distribution. 2) The reverse diffusion process where a denoising model is 
trained to restore structure in the data by steadily removing noise over a 
series of time steps. The trained model can then sample information 
from random Gaussian noise and steadily denoise it over a series of time 
steps to attain the desired output. 

Sohl-Dickstein et al. [62] developed the first diffusion model and 
coined the term, followed by Ho et al. [24] combining denoising score 
matching with Langevin dynamics [65] and diffusion models to syn-
thesise images. This ignited a steady interest in diffusion models, with 
Nichol et al. [48] showing that by making small adjustments to the 
diffusion process, they could sample data faster and achieve better log- 
likelihoods to models trained explicitly to minimise it with minimal 
impact to sample quality. They also found that training diffusion models 
with more computational power typically lead to better sample quality. 
Chen et al. [10] and Kong et al. [35] applied diffusion models to the task 
of audio synthesis, succeeding in generating high-quality samples. 
Dhariwal and Nichol [16] demonstrated that diffusion models beat 
GANs on image synthesis, also introducing the concept of “classifier 
guidance” for a conditional generation. 

As diffusion models are trained under a single loss and do not rely on 
a discriminator, they are more stable during training and do not suffer 
from typical issues associated with training GANs such as mode collapse, 
and vanishing gradients. They produce high-quality output samples and 
display high mode coverage unlike GANs [78]. Despite these advan-
tages, their sampling speed is slow due to the need to run the inverse 
diffusion process thousands of times on the same sample to denoise it 

completely. Xiao et al. [78] and Rombach et al. [55] attempted at 
speeding up the sampling and training times associated with diffusion 
models with the former proposing a method to model the denoising 
distribution using a complex multi-modal distribution in order to facil-
itate larger diffusion steps, and the latter applying diffusion models in 
the latent space of a pre-trained autoencoder to reduce the complexity. 
This is an ongoing focus of research in the field, and it is a certainty that 
more works tackling the inference/training speed problem will emerge. 

3. Materials and methods 

A diffusion model is defined as having two steps, the forward diffu-
sion process where the data is gradually destroyed, and the learned in-
verse diffusion process which reconstructs the data, and is used during 
training and inference. In our case, we condition a denoising U-Net on 
image and speech features to denoise a masked portion of the target 
frame into the desired output. A high-level overview of this process is 
depicted in Fig. 1. 

3.1. Diffusion process 

3.1.1. Forward diffusion process 
As defined by [62], the forward diffusion process is a Markov chain 

that adds small amounts of noise to the data y over a predefined number 
of time steps T, until the data is completely destroyed at time step t = T. 
This state is represented as yT with y0 representing the data before any 
noise was added to it. The Markov chain is defined by: 

q(y1:T |y0) :=
∏T

y=1
q(yt|yt− 1) (1)  

where at each step, Gaussian noise is added by: 

Fig. 1. High-level overview of the network architecture. Left of the dashed line indicates the training procedure, right of it depicts the inference procedure. ⊕
represents the concatenation operator, and → represents a skip connection. The current frame is passed through the forward diffusion process where the noise is 
computed and added to the masked region of the face, obtaining noisy frame Yt (Eq. (3)). The previous and identity frames are then concatenated channel-wise to it, 
forming a 128x128x9 feature and passed to the U-net directly. Audio features and noise level information are fed into the U-net through conditional residual blocks as 
described in Eq. (7), and depicted in Fig. 1. During inference, the predicted noise is removed from noisy image Yt , obtaining Yt− 1. The previous and identity frames 
are concatenated to Yt− 1, and the process is repeated until the image is fully denoised (Eq. (6)). 
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q(yt|yt− 1) := N (yt;
̅̅̅̅
αt

√
yt− 1, (1 − αt)I ), (2)  

with αt := (1 − βt), representing the hyperparameters of our fixed noise 
scheduler. [24] show that it is possible to sample yt at any step t in closed 
form: 

q(yt|y0) := N (yt;
̅̅̅̅
αt

√
y0, (1 − αt)I ), (3)  

with αt :=
∏t

s=1αs. This is an important observation, as it significantly 
speeds up the forward diffusion process, and can be used to train a model 
on the fly with random noise levels at each forward step. 

3.1.2. Inverse diffusion process 
Given a noisy image y defined as: 

y :=
̅̅̅
α

√
y0 +

̅̅̅̅̅̅̅̅̅̅̅
1 − α

√
ε, ε ∼ N (0, I) (4)  

the goal of the Inverse diffusion process is to learn an algorithm that can 
denoise and restore the noisy image to its original image Y0. Following 
the approach in [58], we train a neural network fθ(x, y,α,ω), a 2D U-Net 
[56], to predict the noise generated at time t, optimising the Lsimple 

objective proposed by [24]: 

Et,y0 ,ε

[⃦
⃦
⃦fθ

(
x,

̅̅̅
α

√
y0 +

̅̅̅̅̅̅̅̅̅̅̅
1 − α

√
ε,α,ω

)
− ε

⃦
⃦
⃦

2
]

(5)  

where x represents the identity and previous frame input to our network, 
y the noisy image, α the noise level, and ω the audio features. During 
training, we only calculate the loss for the masked region of the face to 
conserve computational resources, following the approach in [58]. 

Following [24], to run inference, each step of the inverse diffusion 
process can then be computed by: 

yt− 1←
1
̅̅̅̅αt

√

(

yt −
1 − αt
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√ fθ(x, yt, αt)

)

+
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
εt, (6)  

where ε ∼ N (0, I). The inverse diffusion step is then repeated T times. 
Please see Fig. 0 for a high-level view of our network architecture, and to 
better understand where each equation is used. For a more detailed 
discussion behind these equations, and how they are derived, please see 
[24,62,65]. 

3.2. Model architecture 

Fig. 1 depicts the overall architecture of our model. We frame the 
problem of audio-driven video editing as a conditional inpainting task 
with a few key changes. Traditionally, inpainting is an image-to-image 
translation task where a neural network must learn to fill in a masked 
out region of the image with realistic content. For video editing, we must 
provide the network with additional context, to help guide its generation 
process. To do this, we split the conditioning step into two categories, 
frame-based, and audio-based conditioning. 

3.2.1. Frame-based conditioning 
For a given frame yi extracted from a video consisting of frames (y0, 

…,yn), our model takes three images as input: 1) the current masked 
noisy frame yi

T that is to be inpainted, 2) the previous frame y(i− 1) in the 
video sequence, and 3) a constant identity frame y0. As our approach is 
auto-regressive and works on a frame-by-frame basis, the purpose of the 
previous frame is to ensure that there is temporal stability between 
consecutive frames. Omitting it causes the model to output jittery, un-
stable frames. The identity frame is there to encourage the model not to 
deviate away from the target identity during the generation process, as 
so often is the case with auto-regressive models. While the identity frame 
can be omitted if training a single-speaker model with little to no 
adverse effects, we found that its inclusion was key to having a model 
that could generalise well to unseen subjects when training on multiple 

identities. These three frames are concatenated channel-wise, and fed 
into the U-Net as an input feature of size [128x128x9], as depicted on 
the left hand side of Fig. 1. 

3.2.2. Audio-based conditioning 
For a given video sequence of frames (y0,…, yn), there is a corre-

sponding sequence of audio spectral features (spec0,…, spec2n) extracted 
from the original speech signal. Each audio feature spans a 40 ms win-
dow, overlapping every 20 ms. Details on how we compute these fea-
tures are provided in Section 3.3. In order to provide the audio 
information to the network, we extract a window of audio from (spec2i− 2 

to spec2i+2) spanning 120 ms denoted as zi that is centered around the 
current video frame yi. We do this so that audio information from both 
the preceding and following frames is captured within the window to 
guarantee the accurate production of lip movements for plosive sounds 
(“p, t, k, b, d, g”) by taking into consideration that these lip movements 
precede the sound production. We then introduce this information to the 
U-net via the use of conditional residual blocks that condition the 
network on audio and noise level embeddings, scaling and shifting the 
hidden states of the U-net following the approach of [67]: 

hs+1 = zi
s(tsGN(hs)+ tb )+ zi

b (7)  

where hs and hs+1 represent consecutive hidden states of the U-Net, (zi
s,

zi
b) = MLP

(
zi), and (ts, tb) = MLP(αt). MLP represents a shallow neural 

network with a couple of linear layers separated by a SiLu() activation 
function, and GN is a group normalisation layer. This is shown detail in 
Fig. 2. 

3.2.3. U-net set up 
In order to denoise the current noisy frame, we use a denoising U-net 

[56], following the general architecture described by [58], which in turn 
is based on the model proposed by [24] with modifications inspired by 
the works of [16,60]. For this work we use a lightweight 128 × 128 
version of the 256 × 256 U-net architecture described by [16], omitting 
the class conditioning mechanism. Like [58] we condition the model to 
generate the desired frames via the concatenation of the previous and 
identity frames to the masked frame. We drive the facial animation by 
sending spectral audio features throughout conditional residual blocks 
within the U-Net as detailed by [67], described by Eq. (7). We include all 
details related to our U-Net configuration in Table 1. 

Table 1 displays the hyperparameters we use to train our diffusion 
model for the task of audio-driven video editing. We train two models, a 
single-speaker model trained on identity S1 of the GRID dataset, and a 
multispeaker model trained on the train set of the CREMA-D dataset. A 
notable difference between the two models is the use of attention. For 
the single-speaker model, we omitted it from the up/downsampling 
layers of the U-Net, using it only within the middle block in an effort to 
boost training speed. Despite this, we still obtain pleasing results, as 
shown both in Table 2, and in the videos provided as part of the sup-
plementary materials. During our experiments, we discovered that the 
use of attention within the multi-speaker model was crucial for it to 
generalise well to both seen and unseen speakers. We apply it at reso-
lutions of 32 × 32 within the up/downsampling layers of the U-Net. We 
provide more discussion on this in Section 4. To perform training we 
used a server of 4 32GB Nvidia V100 GPUs, allowing us a batch size of 40 
per GPU. We trained the multi-speaker model for approximately 20 
days, for a total of 735 epochs to achieve the results presented. 

3.3. Data processing 

3.3.1. Dataset 
We rely on the GRID [14], and CREMA-D [6] audio-visual speech 

data sets to carry out the work in this paper. GRID is a multi-speaker data 
set consisting of 34 speakers (18 male, 16 female), with each speaker 
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uttering 1000 short 6-word sentences. CREMA-D is a multi-speaker 
dataset consisting of 7442 talking head clips of 91 speakers from 
diverse ethnic backgrounds. As described by the [6], the racial/ethnic 
breakdown is as follows: 53 non-Hispanic Caucasian speakers, 8 
Caucasian Hispanic speakers, 21 African American speakers, 1 African 
American Hispanic speaker, 7 Asian speakers, and 1 speaker of un-
specified background. 

We present two models: 1) A single speaker model trained on 950 
videos from the speaker 1 of the GRID dataset, with the model’s per-
formance being evaluated on the remaining 50 videos on the task of 
video editing. 2) A multi-speaker model trained on a majority of the 
CREMA-D dataset totaling 432,000 individual samples (frames), with 
frames from videos of speaker identities 15, 20, 21, 30, 33, 52, 62, 81, 
82, and 89 kept hidden from the model for testing and evaluation 
purposes. 

3.3.2. Audio preprocessing 
From each video within the GRID and CREMA-D datasets, we extract 

the audio files and resample them at 16Khz. From the audio we compute 
overlapping mel-spectrogram features with n-fft 2048, window length 
640, hop length 320, and 256 mel bands. With these values, a 1-s audio 
feature has a shape [50,256] that can be easily aligned to a sequence of 
video frames. 

3.3.3. Video preprocessing 
First, we perform a 128 × 128 pixel crop centered around the face on 

every video frame. We do this by aligning the face in the video to the 
canonical face with a smoothing window of 7 frames, following the 
approach of [72]. We do this for two reasons: To get rid of any irrelevant 
background, and to reduce the image size to facilitate faster training and 
convergence speeds. In our initial experiments, we used an image size of 
256 × 256 however the model was too expensive to train on our limited 
resources. It is worth noting that a video super-resolution technique such 
as [39] may be applied on top of our solution to achieve high-resolution 
samples. 

Next, every video frame needs to have a rectangular region of the 
face masked out. Using an off-the-shelf facial landmark extractor [41], 
we extract facial landmark coordinates to determine the position of the 
jaw. Using this information, we mask out a rectangular portion of the 
face that covers a region just below the nose, as within Fig. 1. This face 
mask is computed and applied to the frames at train time within the data 
loader on the fly. 

During training, it is critical to hide the speaker’s jawline with a 
rectangular face mask. This is because the network can easily pick up on 
the strong correlation between lip and jaw movements, leading it to 
ignore the speech input entirely. By hiding the jawline, we compel the 
model to learn to generate lip movements based solely on the accom-
panying speech. As the diffusion process relies on a single loss function, 
applying the rectangular face-mask is the easiest way to prevent the 
frame-based input dominating over the speech input. 

3.3.4. Audio video alignment 
As described previously in Section 3.2, given a video sequence with 

frames (y0,…, yn), there is a corresponding sequence of audio spectral 
features (spec0,…, spec2n) extracted from the original speech signal. Each 
audio feature spans a 40 ms window, overlapping every 20 ms. For any 
given frame Yi, it is aligned to audio features spanned by (spec2i− 2 to 
spec2i+2). To align the first and last video frames, we simply append 
silence to the start, and ends of their respective audio features. Care must 
be taken when choosing the audio window, too large and the network 
won’t use the most meaningful information available to it, too small and 
there may not be enough context for the network to generate more 
complex lip movements caused by plosives. 

Fig. 2. High-level overview of the conditional residual blocks found within our 
U-Net architecture depicting the process in which we condition our model on 
noise level and audio embeddings. ⊕ represents the addition operator, and ⊗
represents the multiplication operator. Given the noise level embedding, we 
pass it through a SiLu activation function, and a linear layer, splitting the 
output into a scale and shift embedding. Meanwhile, the input features are 
normalised, and passed through a SiLu activation function before being passed 
through an up or downsampling block depending on where in the Unet we are. 
The resultant features are then multiplied by the scale embeddings, and added 
to the shift embeddings that represent the noise level. As shown in the diagram, 
this process is repeated for the audio feature embeddings, with the final hidden 
state being added to the output of the skip connection layer. This sequence of 
events is described by Eq. (7). 

Table 1 
U-Net training hyperparameters.   

Single ID Multi-ID 

Image Size 128x128 128x128 
Total Frames 73704 432000 

Diffusion Steps 2000 1000 
Noise Schedule Linear Cosine 

Linear Start 1e − 06 NA 
Linear End 0.01 NA 

Input Channels 10 10 
Inner Channels 64 64 

Channels Multiple 1,2, 4, 8 1,2, 3 
Attention Resolution NA 32 

Res Blocks 2 2 
Head Channels 32 32 

Drop Out 0.2 0.2 
Batch Size 10 40 

Training Epochs 2000 735 
Learning Rate 5e − 05 5e − 05  
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4. Results 

In this section we present two models. A single-speaker video editing 
model trained on speaker S1 from the GRID dataset, and a multi-speaker 
model trained on the train-split of the CREMA-D dataset. We evaluate 
and compare our results to other recent audio-driven video generation 
methods, namely EAMM [30], PC-AVS [88], MakeItTalk [89], Speech 
Driven Animation [73], and Wav2Lip [50]. All models we test against 
are relevant end-to-end image-reconstruction based methods, except for 
MakeItTalk, a landmark-based method we compare against for reference 
purposes. We evaluate these models on the CREMA-D multispeaker test 
set, reporting their scores along with our own in Table 2. We generate 
the videos for each model using the official publicly available imple-
mentations with the recommended parameters. 

As our models are trained explicitly for video editing, they generate 
only a small portion of the overall frame, while keeping the rest as is. 
Therefore, to maintain fairness, all metrics that rely on comparing the 
generated frame to the ground truth are computed only on the generated 
portion of the image. This limitation could also create bias in the 
perceptual metrics and readers should consider this when comparing our 
model scores to others within the literature. 

We emphasise that the objective of this paper is to serve as a proof-of- 
concept demonstrating the potential of applying denoising diffusion 
models to the task of audio-driven video editing. As such, while we do 
not achieve state-of-the-art in some of the metrics we report, our results 
still show promising improvements over existing methods and highlight 
the potential of using denoising diffusion models for this task instead of 
traditional GAN-based methods. 

4.1. Evaluation metrics 

We use a number of objective metrics to measure the quality of our 
generated videos, allowing us to compare them directly to other state-of- 
the-art audio-driven video generation methods from the literature. We 
compute the following metrics:  

• SSIM [75] (Structural Similarity Index Measure) ↑: SSIM evaluates 
the quality of an image by considering three key components: 
luminance, contrast, and structure. A higher SSIM value indicates a 
greater similarity between the images, implying that they are visu-
ally more alike. 

• PSNR (Peak Signal to Noise Ratio) ↑: This measures the ratio be-
tween the maximum possible power of a signal and the power of the 
noise present in the signal. In the context of images, PSNR quantifies 
how much the quality of the image has degraded or been distorted 
compared to the original.  

• FID [23] (Frechet Inception Distance) ↓: This provides a measure of 
the similarity between the distribution of real images and the dis-
tribution of generated images. It captures both the quality and di-
versity of generated samples where a lower FID scores indicate better 
performance, suggesting that the generated images are close to the 
real data distribution.  

• CPBD [46] (Cumulative Probability Blur Detection) ↑: This is a 
metric used to assess the overall bluriness of an image. 

• SyncNet [13,50] Confidence (LSE-C) ↑: This the “average confi-
dence score, where the higher the confidence, the better the audio- 
video correlation. A lower confidence score denotes that there are 
several portions of the video with completely out-of-sync lip 
movements”  

• SyncNet [13,50] Distance (LSE-D) ↑: This is the average error 
measure “calculated in terms of the distance between the lip and 
audio representations, where a lower LSE-D indicates a higher audio- 
visual match, i.e., the speech and lip movements are in sync.” 

We reiterate the point that in order to maintain fairness when 
computing the image quality metrics, we only compute them on the 
generated portion of the image where possible. 

4.2. Single speaker 

We train our single speaker model on identity S1 using data from the 
GRID audio-visual corpus [14]. There are 1000 videos in total, each of 
them roughly 3 s in length totaling about 50 min of audio-visual content 
for training. We train our model on 950 videos, withholding 50 of them 
for testing purposes. We train this model for 895 Epochs. As we 
mentioned previously, we did not use any attention layers within the 
up/downsampling blocks of this model, using it just within the middle 
block of the U-Net. We did this to save on training time, however, for 
stronger results we recommend using it, as we show within our multi- 
speaker model. 

4.3. Multi-speaker 

We train our multi-speaker model on all identities of the CREMA-D 
data set except for speakers 5, 20, 21, 30, 33, 52, 62, 81, 82, and 89, 
choosing to keep them hidden from the model for testing purposes. We 
train the model for 735 Epochs. There are a number of key changes we 
make to train the multi-speaker model. First, we use self-attention layers 
within the U-Net at the 32 × 32 resolution, as well as in the middle 
block. Second, we switch to a cosine noise schedule and decrease the 
number of diffusion steps taken by the model during training to 1000. 
Finally, we decrease the number of channel multiples to [1–3]. We also 

Table 2 
Quantitative comparison with previous works on image quality and lip synchronisation metrics. Most previous works we compare to require a driving video to guide 
the pose of the generated speaker. For these approaches (Actual) indicates whether we provided the ground truth video to their model in addition to the ground truth 
audio to generate the new video, while (Random) indicates that we used a random audio file instead. We report their results under both configurations to maintain 
fairness. For our models we also indicate how many diffusion timesteps were used to generate the frames during inference. We report results for 100, 500, and 1000 
inference steps. † indicates that this metric was computed on the full frame. * indicates that these results are reported from their paper.  

Method LSE-C↑ LSE-D↓ FID SSIM↑ PSNR↑ CPBD 

Ground Truth CREMA-D 5.45 8.12 – – – – 
EAMM (Actual) 3.98 8.92 22.52 0.74 29.43 0.1 

EAMM (Random) 3.95 8.98 23.04 0.72 29.21 0.124 
PC-AVS (Actual) 6.12 7.8 38.46 0.61 28.47 0.127 
PC-AVS (Randon) 6.07 7.82 40.05 0.59 28.42 0.11 

SpeechDrivenAnimation – – 155.63 0.844* 27.98* 0.277* 

Wav2Lip(Actual) 5.89 7.57 16.21 0.886 34.23 0.253 
Wav2Lip(random) 5.6 7.89 20.23 0.872 34.04 0.247 

Make It Talk 3.5 9.71 27.35 0.75 31.37 0.152 
Ours (MultiSpeaker - 100) 3.53 9.74 2.362† 0.893 34.32 0.26 
Ours (MultiSpeaker - 500) 3.5 9.68 2.13† 0.902 34.4 0.26 
Ours (MultiSpeaker - 1000) 3.49 9.69 2.369† 0.863 34.12 0.242 

Ours (Single Speaker) 4.98 7.59 2.312† 0.92 32.47 0.29  
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experimented with training a model without attention in the up/ 
downsampling blocks. It failed to converge on even train set identities. 
We speculate that increasing the number of inner channels used by our 
U-Net from 64 to 128 or 256 would significantly improve the results, as 
well as training the model for a longer amount of time. Please see Table 2 
for a summary of our experiments and evaluations, compared to other 
popular works in the literature, and Section 4.4 for a detailed discussion 
surrounding the results. 

4.4. Results discussion 

Table 2 depicts the results our models score when tested on their 
unseen test sets versus other approaches in the literature. While the 
results we obtain are not state-of-the-art in all metrics, they successfully 
demonstrate that using a denoising diffusion model to do audio-driven 
video editing, is indeed quite feasible, and produces high-quality re-
sults comparable to other relevant methods in the literature. 

The multi-speaker model generalises quite well to unseen speakers, 
scoring highly on image quality metrics, managing to outperform all 
other methods except for Wav2Lip on SSIM and CPBD. The single 
speaker model also achieving similarly strong results. We believe that 
this is due to the diffusion models inherent ability to model complex, 
high-dimensional data distributions, allowing it to learn the statistical 
properties of the dataset and generate images that are similar to those in 
the training set. Further, as diffusion models are trained to gradually 
remove noise from the target image over time, this may help it generate 
smoother, and more visually pleasing results than those generated by a 
GAN-based model which generates the frame in one shot. Within the 
context of audio-driven video editing, achieving visually pleasing results 
is a key requirement that our model fulfils. Please see the videos 
attached in the supplementary material for a visual comparison between 
our method and existing ones. 

When evaluated on SyncNet [13] confidence (LSE-C) and distance 
(LSE-D) scores, our multi-speaker results are comparable to other pop-
ular methods from the literature, slightly outperforming MakeItTalk, but 
scoring lower than EAMM. PC-AVS and Wav2Lip score the highest in 
that order. Notably, their approaches significantly outperform the 
ground truth. We believe that this is because all other methods are 
specifically trained to optimise a loss function designed to penalise their 
models for poor lip synchronisation. In the case of PC-AVS and Wav2Lip, 
they both rely on a strong lip sync discriminator, to encourage their 
models to generate distinct, clear lip movements given speech. Our 
approach uses no such losses or discriminators, inherently learning the 
relationship between speech and lip movement during training. As such 
while our lip synchronisation scores on unseen speakers are lower, we 
offer a novel approach to the task as we do not explicitly train the model 
to improve lip synchronisation. 

It is also worth noting that our single-speaker model performs very 
well on the synchronisation metrics mentioned above, leading us to 
speculate that with more time spent learning the data distribution, our 

multi-speaker model could also theoretically achieve such results. 
During inference, we noticed that the multi-speaker model occa-

sionally struggled to maintain the identity consistent throughout the 
generation process, with the problem especially prevalent if there were 
extreme changes in head pose present in the original video. This is due to 
a buildup of small errors, as our approach is completely auto-regressive 
at inference time, relying entirely on just the previously generated 
frame, and identity frame to modify the current frame. Fig. 3 highlights 
one such instance of failure, and the phenomenon is noticeable in some 
of the videos we provide in our video abstract. We speculate that this 
could be alleviated in three ways 1) introducing small amounts of face 
warping on the previous frame during training in order to simulate the 
distortion that naturally occurs over the generation process. This would 
encourage the model to look at the identity frame in order to correct 
itself. 2) Simply train the model for longer. 3) Train on a more diverse 
dataset of speakers captured in unconstrained conditions such as Vox-
Celeb or LRS. 

When testing on identities seen by the network during training by 
replacing the original audio with a new one, the model achieves strong 
lip synchronisation, and the identity deviation seen when testing on 
unseen identities is significantly diminished, or simply does not occur 
over the course of the video. This problem is also non-existent in our 
single-speaker model. 

We also observed that the multi-speaker model is highly sensitive to 
speaker volume, and intonation, especially when exposed to speech 
from unseen speakers. In instances where the speaker shouts or speaks 
loudly and clearly at the microphone, the lip movement is highly ac-
curate and appears well-synchronised. When the volume is low, the 
speaker appears to be mumbling, and the full range of lip motion is not 
correctly generated. Analysing the synchronisation metrics confirmed 
this for us, with videos generated using audio labelled as being “angry” 
or “happy”, scoring significantly higher than instances where the por-
trayed emotion was “sad”, “fearful”, or “disappointed”. We suspect that 
this is due to our use of spectral feature embeddings when conditioning 
our network, and could be alleviated or significantly diminished with 
the use of a pretrained audio encoder for speech recognition. This is 
because such models are typically trained to extract the content from 
speech, disregarding information considered irrelevant such as pitch, or 
tone, and intonation. 

5. Future work 

5.1. Model speed and in the wild training 

It is no secret that diffusion models are slow, both to train and to 
sample from. Our models are no exception, taking us approximately 6 
min/epoch to train the single-speaker model, and 40 min/epoch for the 
multi-speaker one. We briefly experimented with training in the latent 
space to speed up training following the approach of [55], however, 
sample quality suffered, so we decided to operate in the pixel space. We 

Fig. 3. Multi-speaker failure case: Over time the appearance of the speaker slowly drifts away from the original.  
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intend to revisit this however as improving our models training speed is 
a top priority for us as it would allow us to train on larger, more diverse, 
“in-the-wild” datasets such as VoxCeleb [45], or LRS [12]. 

Furthermore, our base model has plenty of scope for optimisation, 
and improvement. From utilising standard techniques such as mixed- 
precision training, improving our learning rate scheduling, and tweak-
ing the number of layers and parameters in our model, we can improve 
the training duration of our approach, and facilitate learning on larger 
more diverse datasets to produce a more robust model. 

5.2. Appearance consistency 

As previously discussed, our multi-speaker model’s generated output 
appearance for unseen identities occasionally deviates from the original. 
To investigate this phenomenon, we intend to delve deeper into the 
underlying causes. Specifically, we will explore whether this effect is 
due to inadequate training or insufficient diversity in the training 
dataset, or a combination of both. By conducting a more detailed anal-
ysis, we hope to gain a better understanding of how to optimise our 
model’s performance for a wider range of identities. Further, we intend 
to fully train a model that utilises the face warping augmentation to 
determine whether this truly provides a positive impact on the gener-
ated samples. 

5.3. Speech conditioning 

We plan to explore the potential of conditioning our model with a 
wider range of speech features, such as experimenting with larger or 
smaller window sizes when computing spectral features or using pre- 
trained audio encoders such as Wav2Vec2 [3], Whisper [52], or Deep-
Speech2 [1]. We believe that incorporating such features could poten-
tially improve the lip synchronisation performance of our model and 
generate even more realistic and expressive lip movements. 

6. Conclusion 

Our results showcase the versatility of denoising diffusion models in 
capturing complex relationships between audio and video signals and 
generating coherent video sequences with accurate lip movements for 
the task of speech-driven video editing. We are encouraged by the strong 
performance achieved by our proof-of-concept approach, scoring highly 
on all tested metrics, comparable to existing state of the art in end-to-end 
video generation. 

However, our work is not without limitations. The CREMA-D dataset 
is relatively small compared to other publicly available speech and video 
datasets, which limits the generalizability of our approach to other do-
mains. Additionally, our approach requires a significant amount of 
computational resources and time to train. This is a challenge for real- 
time applications or for training on large-scale datasets. 

We are confident that our work will inspire further research and 
development in this area, leading to more efficient and effective 
methods for speech-driven video editing. The practical applications that 
our work may enable in the future are exciting, ranging from on-demand 
real-time video editing applied to homemade content uploaded to 
websites such as YouTube or Tiktok, to big budget Hollywood movie 
productions, allowing them to save time and money on costly re-shoots. 
Major streaming services such as Netflix also stand to benefit immensely 
from effective video-editing technology as it may provide them the 
ability to dub content quickly, and effectively, expanding the global 
reach of their services to audiences across the world. With the 
continuing advancements in machine learning and computer vision, we 
believe that denoising diffusion models will play an increasingly 
important role in enabling high-quality and immersive multimedia ex-
periences that can better reflect the diversity and richness of human 
communication. 
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ABSTRACT In many applications, such as robotic perception, scene understanding, augmented reality, 3D
reconstruction, and medical image analysis, depth from images is a fundamentally ill-posed problem. The
success of depth estimation models relies on assembling a suitably large and diverse training dataset and
on the selection of appropriate loss functions. It is critical for researchers in this field to be made aware of
the wide range of publicly available depth datasets along with the properties of various loss functions that
have been applied to depth estimation. Selection of the right training data combined with appropriate loss
functions will accelerate new research and enable better comparison with state-of-the-art. Accordingly, this
work offers a comprehensive review of available depth datasets as well as the loss functions that are applied
in this problem domain. These depth datasets are categorised into five primary categories based on their
application, namely (i) people detection and action recognition, (ii) faces and facial pose, (iii) perception-
based navigation (i.e., street signs, roads), (iv) object and scene recognition, and (v)medical applications. The
important characteristics and properties of each depth dataset are described and compared. Amixing strategy
for depth datasets is presented in order to generalise model results across different environments and use
cases. Furthermore, depth estimation loss functions that can help with training deep learning depth estimation
models across different datasets are discussed. State-of-the-art deep learning-based depth estimationmethods
evaluations are presented for three of the most popular datasets. Finally, a discussion about challenges and
future research along with recommendations for building comprehensive depth datasets will be presented as
to help researchers in the selection of appropriate datasets and loss functions for evaluating their results and
algorithms.

INDEX TERMS Datasets, depth datasets, depth loss function, deep learning, depth estimation.

I. INTRODUCTION
Depth estimation, the process of preserving 3D informa-
tion of a scene using 2D information acquired by camera,
can proof beneficial for many challenging computer-vision
applications. Examples include human-machine interaction,
robotics, augmented reality, object detection, pose estima-
tion, semantic segmentation, and 3D reconstruction. Having
access to ground truth depth information is valuable for devel-
oping robust guidance systems in autonomous vehicles, envi-
ronment reconstruction, security, and image understanding

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino .

where it is desirable to determine the primary objects and
region with the imaged scene.

To this end, various methods have been developed to
capture depth measurements as well as to research depth
estimation using monocular or multi-view solutions, which
aim to find the distance between scene objects and camera
from a single or multiple point(s) of view relying on one or
more images.

This study presents a detailed overview of depth datasets,
depth loss functions, and their applications in the field of
computer vision. Starting with a brief description (litera-
ture, definitions), datasets are analyzed in terms of citations,
and then depth datasets are classified according to their
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applications, the important characteristics and properties of
each depth dataset are described and compared. Afterwards,
depth-based loss functions and a mixing strategy for depth
datasets are briefly discussed. Finally, state-of-the-art deep
learning-based depth estimation methods evaluations and
discussion about challenges and future research along with
recommendations for building comprehensive depth datasets
are presented.

A. APPLICATION CLASSES OF DEPTH DATASET
Datasets play a crucial role in scientific research, specifically
for artificial intelligence models, datasets are the building
block for analysing the performance and validating their
results. Different datasets contain data captured in differ-
ent environments (e.g., indoor vs outdoor scenes), of dif-
ferent objects, depth annotation types (relative, absolute,
dense, sparse), accuracies (laser stereo, time-of-flight, syn-
thetic data, structure-from-motion, human annotation), image
quality, size, and camera settings. Every dataset has its own
features and related problems and biases [1]. Large dataset
collections from internet sources have many issues including
quality of images, accuracy, and unknown camera parame-
ters [2], [3]. High quality datasets can play an important role
at enabling researchers to develop depth solutions for specific
computer vision depth problems [4], [5].

Depth datasets are classified into various categories
depending on particular task-based applications (i.e.,
indoor/outdoor, portrait/driver, half/full body scene, indoor
small room, large street scene, large indoor scene, land-
scape/cityscape, and medical). A map of per-pixel data con-
taining depth-related information is referred to as depth data.
A depth data object incorporates a disparity or depth map and
offers conversion methods, focus information, and camera
calibration data to help with rendering and computer vision
applications.

Structured light cameras, which give dense depth maps
up to 10 meters, are commonly used to collect indoor
depth information. They work by projecting a sequence of
known patterns onto an object, and the deformation resulting
from the object’s shape is then observed through a camera
from some other direction. Depth information can then be
extracted from the observed distortion’s disparity from the
original projected pattern. The original Kinect sensor, also
called Kinect v1, along with the Asus Xtion Pro, utilize this
approach for depth capture [6]. Another commonly used
technique is time-of-flight cameras, such as the Kinect v2,
which relies on measuring the round-trip time for an emitted
light using a sensor array and illumination unit [6]. Indoor
places include locations such as offices, labs, corridors, study
rooms, laboratories, and kitchens. Visual localization allows
for intriguing applications like robot navigation and aug-
mented reality by estimating the precise location of a camera.
This is particularly useful in indoor environments were other
localization technologies, such as Global Navigation Satellite
System (GNSS), fail. Indoor spaces impose interesting tasks
on visual localization methods (i.e., texture-less surfaces,

occlusions due to people, large view-point changes, repetitive
textures, and low light).

Outdoor depth datasets are typically collected with a spe-
cific application in mind such as autonomous vehicles and
generally captured with customized sensor arrays consisting
of multi or monocular cameras and Light Detection and
Ranging (LiDAR) scanners. Outdoor place categories include
street signs, forests, indoor/outdoor parking lots, urban areas,
roads, residential areas, and coast areas. The primary applica-
tions of outdoor depth datasets involve perception tasks in the
context of autonomous vehicles, semantic scene understand-
ing, and 3D reconstruction.

Human faces are one of the most prevalent features in
images, and thus are a key part of a lot of computer vision
tasks. It is widely known in human skeletal anatomy that the
eye-separation in a human face fall within a small range, thus
given information of a camera’s field-of-view, it is feasible
to calculate the distance-to-camera of a human subject with
reasonable accuracy [7]. Human facial depth datasets include
facial images, depth maps, images of the visible light spec-
trum (i.e., RGB), 3D depth maps, and head pose information.
Deep neural networks can be trained to detect age, face, and
gender using facial depth datasets, or to pick the optimum
type of image for a specific task, such as facial recognition.
It is also feasible to utilize data from people in random and
frontal orientations to see if a facial recognition system can
recognize faces from different perspectives [7], [8]. The face
recognition system is typically divided into two different
tasks in the computer vision field such face identification
and face verification. The former is based on a one-to-many
comparison to recognize the best match between a given face
and a set of possibilities. While the latter uses a one-to-one
comparison and can find whether the input item is of the same
person’s face or not.

Depth datasets created for a medical application consist
of multi-view frames, video, RGB, depth maps, calibration
parameters, 2D and/or 3D pose annotations, and human
bounding boxes. The data generated during surgeries can
be used for medical image analysis and machine learning
to observe, analyze, model and support staff activities and
clinician in the operating rooms.

Ideally researchers should combine multiple datasets dur-
ing training, validation, and testing to improve generalization,
but care is needed when combining datasets with differing
characteristics. The design and building blocks of the network
are important, but the performance of the network is mostly
determined by how it is trained which requires a diverse
dataset and a suitable loss function.

B. LOSS FUNCTIONS FOR DEPTH DATASETS
Another way to improve the deep network’s training results is
by introducing an appropriate loss function. The loss function
calculates the network output’s variance from the estimated
output which is used to adjust the parameters of the deep
network. This is achieved by backpropagating the error cal-
culated using the loss function to the first layer in the training
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process, changing the network’s weights at each iteration.
In the literature, several losses, architectures, and experi-
mental conditions are given, but it is difficult to determine
their relative influence on performance. An in-depth study
is proposed of different losses and experimental situation for
depth regression in this research.

A deep network must have a loss function. The loss func-
tion must be differentiable because of the back-propagation
stage used in deep learning systems, which relies on propa-
gating the gradients of the model’s error from the output layer
back towards the first layer. An in-depth study of various loss
functions for depth regression is proposed that can be used
for both short and long-range depth datasets.

C. RESEARCH CONTRIBUTIONS
This review aims to collect the available depth image datasets
using bibliometric research by providing detailed information
on the available datasets. Additionally, an easy and brief
description is presented for each of the datasets to provide
a basis for predicting depth estimation trends and explores
their sub-areas; dataset popularity helps in identifying study
areas that receive less attention.

The main scope of this study is to make it easier to navigate
among the depth datasets and common loss functions that
are frequently used in the depth estimation research. A list
of popular datasets is compiled by looking through the pub-
lications indexed by the web of science library and IEEE
Explore, as well as doing searches utilizing online search
engines. These datasets are classified into different use case
categories and present their detailed description such as (cam-
era tracking, scene reconstruction, tracking, semantic, pose,
video and recognition, streets, people i.e., identity recog-
nition/faces, medical depth-based applications, indoor and
outdoor scenes). The most popular datasets are highlighted,
together with bibliographic information (such as the number
of citations). Furthermore, different aspects of the datasets
are compared, common characteristics of popular datasets
are described, and key recommendations for generating depth
estimation datasets are suggested. The dataset description,
metadata, ground truth, and relevant information i.e. (year
of publication, ground truth information, size of the images,
type, objects per image and number of images) are all listed
in a structured way for each dataset. Also, each loss function
is described in a way that can help the research community
choose a right loss function for their specific tasks.

The authors hope to answer the following research ques-
tions based on the review. What are currently available
datasets for the depth estimation? What are the most com-
monly used datasets for depth estimation and what are their
distinguishing features?

How distinct are the features of such datasets and what are
their pros and cons when considering them for training by
machine learning (ML) algorithms? What are the most com-
monly used loss functions and how they influence the model
performancewhile training the depth estimations throughML

algorithms? What are the best practices for building a depth
estimation datasets?

The rest of the survey paper is organized as follows:
Section 2 describes related work, primarily other studies or
surveys in the field of depth estimation. The findings of a bib-
liometric study are provided in section 3. A comprehensive
review of depth datasets is presented in Section 4. Section 5
describes common characteristics of popular datasets. Top
five state-of-the-art (SoA) depth estimation methods on three
most popular datasets are presented in Section 6.In section 7,
popular depth estimation loss functions are studied. A brief
overview, relevant research, problems, and future research
prospects are presented in Section 8. A summary of the
current review is offered in section 9, while sections 10 and 11
make broad recommendations for creating new datasets to
achieve scientific importance and conclusion.

II. RELATED WORKS
In this section, a review of the current SoA research is
provided for depth datasets. Next, an overview of available
related depth estimation research and 3D reconstruction arti-
cles is presented, followed by depth from 2D, monocular, and
depth from Stereo & Multi-View depth datasets.

A. DEPTH DATASETS
The procedure of maintaining 3D information of a scene
using 2D information captured by cameras is referred to as
depth estimation. The authors in [8] presented a detailed
analysis of image-based depth estimation and 3D reconstruc-
tion. They provided details of existing systems, shortcomings,
and reconstruction approaches while briefly introducing five
publicly available datasets for depth estimation. However,
due to several limitations, particularly hardware (e.g., sensors
and optics limitations), the applicability of such datasets is
questionable for future research. The authors in [9] looked
at image segmentation research using deep learning with
details of five public depth datasets and briefly discussed
other segmentation datasets. The authors also point out sen-
sor limitations and future research directions, but they don’t
explain all the relevant datasets.

While the authors in [10] presented an analysis of a
method that combines ten datasets for monocular depth esti-
mation with results on ten datasets, a description for uti-
lizing the datasets, however, is not presented. An overview
of deep-learning algorithms for monocular depth estima-
tion using two public datasets was published in [11]; they
present the significance of using NYU-v2 and KITTI datasets
and argue that comprehensive testing with other datasets is
required.

Three types of depth estimation datasets were chosen and
described in [12] for understanding depth estimation models.

The application of deep learning algorithms with four
primary depth datasets for monocular depth estimation was
studied in [13]. However, some of the relevant datasets which
may influence the performance were not given much impor-
tance. The authors in [14] surveyed deep learning-based
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monocular depth estimation algorithms in the visible spec-
trum by describing a total of seven visible spectrum datasets.
Some of the existing review articles [15]–[20] focusing on
depth estimation either from single or multiple views, but the
accessibility of those datasets is unclear.

B. DEPTH ESTIMATION RESEARCH AND 3D
RECONSTRUCTION
One of themost useful intermediate representations for action
in physical environments is depth information, however,
activity depth estimation remains a challenging problem in
computer vision. To solve it, one must exploit many, some-
times, visual cues, subtle, short-range or long-range con-
text, along with their corresponding information. This calls
for learning-based methods. Depth estimation methods have
been shown in the SoA to be a potential solution to sev-
eral of problems [10], [11], [15]. Accurate depth estimation
approaches can help with understanding 3D scene geome-
try and 3D reconstruction, which is especially significant
in cost-sensitive applications and use case applications [16].
A comprehensive review of 3D reconstruction research is
proposed in [8], which focuses on the work that uses deep
neural network-basedmethods to estimate the 3D shape either
from single or multi-view images [21].

C. DEPTH FROM 2D, MONOCULAR IMAGES
Estimating depth information from 2D images is one of the
most important problem in the field of computer vision and
image processing. Depth information can be applied in 2D
to 3D reconstruction, scene refocusing, scene understand-
ing, depth-based image editing, and 3D scene conversion.
The problem of monocular depth estimation is currently
best tackled with convolutional neural networks due to their
properties that can be used particularly in cost-sensitive
applications [22]. SoA monocular depth methods have been
reviewed in [11], [17], [18], [23]–[25], which focus on both
non-deep learning and deep learning methods.

D. DEPTH FROM STEREO & MULTI-VIEW
Depth from stereo or multi-view can be obtained by using
two or more cameras. The main idea is that triangulation
and stereo matching can be used to estimate the depth,
which can be utilized in various tasks such as robotic navi-
gation, different object grasp, collision avoidance, or broad-
casting and multimedia. Various methods have been studied
in [2], [4], [8], [20], [26] that focus on depth estimation from
both stereo and multi-view images.

III. METHODOLOGY FOR REVIEWING DEPTH DATASETS
AND LOSS FUNCTIONS EMPLOYED IN LITERATURE
Utilizing the most suitable dataset for a given task is a basic
assumption for the effective training and validation of any
scientificmethod. In the domain of depth estimation research,
the lack of publicly available depth estimation datasets and
loss functions present challenges for researchers for their
specific task or use-case.

This section aims to provide an in-depth explanation of
the methodology used to search for and collect more than 40
popular datasets and loss functions which is presented in this
review. The authors defined popularity based on the citation
rank within the research areas and provide a detailed list of
collected datasets and loss functions, as well as reviewed
papers, in subsequent sections.

A. EXPLORING THE IMAGE DEPTH RELATED RESEARCH
There are numerous literature sources related to depth estima-
tion. This study focuses on research publications that involve
depth estimation tasks such as smart mobility-based road
navigation, object detection, 3D reconstruction, robotics, and
self-driving cars. The searchmethodology illustrated in Fig. 1
is adopted as to concentrate on the most relevant papers
as well as leverage popular libraries and search tools such
as Web of Science, Google Scholar, and IEEE Engineering
online libraries.

Keywords such as ‘‘depth estimation and 3D reconstruc-
tion’’, ‘‘depth datasets, databases’’, ‘‘monocular and multi
view depth estimation methods’’ were used as search criteria
which helped in identifying 634 relevant journal papers. The
selection of papers was based on three main factors: (i) Com-
puter vision, engineering, deep learning, imaging technol-
ogy, autonomous vehicles and robotics, 3D reconstruction,
(ii) Science citation index, and (iii) English language.

B. PRIMARY STUDIES AND ASSESSMENT OF RESEARCH
QUALITY
Following the research methodology (Fig. 1), the initial filter
search using the datasets keyword retrieved 321 results for
depth datasets and 212 results for loss functions out of 634
papers, the results were further analysed by title and abstract
which filtered out 145 and 104 research articles respectively.
Next, it is analysed that the text with the criteria being the
selection of those articles in which the authors discussed at
least one depth image datasets and loss function, carried out
manually by reading the selected research articles. Such anal-
ysis helped in further reducing the number of papers to 92 and
80, which were further filtered down to the most relevant 52
and 48 articles using full-text-based selection criteria. As per
the last stage’s criteria, the following categories of articles are
excluded:

1. Those publications that are not directly related to depth
estimation research. Examples include studies on 3D
reconstruction or segmentation tasks datasets.

2. Reproductions or the same research work appearing in
several places.

3. Studies that are concerned with human depth but do not
make use of any depth datasets (e.g., review studies).

C. ANALYSIS OF THE MOST RELEVANT DATASETS
The methodology discovered that about 61% of the total
papers in this domain considered at least one dataset in their
experimental study. Additionally, 51% of the publications
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FIGURE 1. An illustration of the methodology adopted for conducting the survey categorizes depth estimation databases and
the loss functions.

considered two or more than two datasets. Fig. 2 shows the
results, where it is highlighted that the overall number of cita-
tions for the most popular datasets. The figure indicates that
the most highly ranked depth datasets are KITTI, Cityscapes,
and NYU-V2, with a citation count of 141, 94, and 78 in 120,
70, and 52 papers, respectively. This implies that about 25%
of the studies considered these datasets for depth estimation
tasks. These datasets are considered benchmark datasets in
about 242 (77%) research studies.

The descriptions and comparisons of numerous crite-
ria used to assist in navigating current publicly available
datasets are presented by focusing on the usefulness of the
datasets for specific study areas. The nature of the data
imposes several restrictions on the availability of the datasets
to the public. To assess the current availability of each
dataset, their accessibility, in terms of access and obtain-
ing a copy, is confirmed manually by the authors for each
dataset. The test for access to each of the datasets included

checking free access and an email-based inquiry to the host
institution.

IV. PUBLICLY AVAILABLE DEPTH ESTIMATION
DATASETS
This section presents an overview with tabular summaries of
themost widely used image depth datasets and classifies them
into different use case applications.

Numerous interesting datasets are available for training
depth estimation models for both multi-view and monocular
images. The datasets general metadata includes details on
the number of objects, scenes, and the number of RGB and
depth images. The ground truth includes different types of
knowledge available in each dataset, including depth, mesh,
camera trajectories, video, poses, point cloud, semantic label,
trajectory, and dense multi-class labels.

With the growth (evolution) in image depth estimation
research, increasing efforts are made in generating larger and

FIGURE 2. Mag an illustration of database according to the number of citations in each year from 2017 to 2021. The number against each database
represents the total citations in each year.
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FIGURE 3. The amount of depth datasets released each year, with
predicted releases in 2021 represented as a dashed line.

more ambitious depth estimation datasets. One growing trend
is the increasing number of new publicly available depth
estimation datasets becoming available each year over the last
ten (10) years. This trend is shown in Fig. 3. A structured
taxonomy showing the importance of the depth estimation
datasets is given in Fig. 4. The datasets are further divided into
different environments (i.e., real/synthetic indoor/outdoor,
static indoor/outdoor, and real/rendered facial) in Figure 4.

Large and diverse training sets are required for depth esti-
mation. Since obtaining pixel accurate ground-truth depth at
scale in a range of circumstances is challenging, different
datasets with specific characteristics and biases have been
proposed.

A. THE TYPE AND REPRESENTATIONS OF DATA
There are different types (i.e., alphanumeric, text, image,
video, point cloud, mesh, voxel) and representations of data
such as (stereo 2D, 2.5D, 3D) that are used to analyse the
scenes from different perspectives (e.g., angles).

The most up-to-date depth datasets are divided into many
use case applications, such as (camera tracking, scene recon-
struction, tracking, semantic, pose, video, streets, people
i.e., identity recognition and faces, and medical depth-based
applications, indoor and outdoor scenes). A detailed compar-
ative analysis for various data representations is provided in
Table 1.

Moreover, as some datasets contain data of various types
and categories, Table 2 – 11 tabulates a comparative study
for the data present in each dataset using the following
labels:
• RGB: 2-dimensional visible light spectrum images.
• Depth: generic term for a map of per-pixel data contain-
ing depth-related information. A depth map describes at
each pixel the distance to an object (e.g., distance from
camera).

• Video: sequence of temporally consecutive visual read-
ings.

• Point cloud: data composed of a collection of points
representing a 3-dimensional shape, where each point
has at least an x, y, z coordinate.

• Mesh: polygon-based representation of 3-dimensional
shapes that directly captures topology and shape surface.

• Scene: data recording some environment such as a room.
• Semantic: labels mapping some data to a class in some
ontology (e.g., human, vehicle, etc.).

• Object: data capturing features of objects such as shape
or motion. Suitable for tasks such as object classification
or tracking.

• Camera: data that can be used to track the camera’s
geometrical features.

• Action: data recording subjects performing certain
actions.

FIGURE 4. Organized classification of depth datasets studied in this paper, which shows different use case applications
of each categories.
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TABLE 1. Comparison between data representations.

• Trajectory: data capturing the path of motion or action
being performed by some object or entity.

• Pose: data specifying human pose information, such as
head pose.

B. DEPTH DATASETS FOR PEOPLE DETECTION AND
ACTION RECOGNITION
Datasets that capture people doing different tasks like walk-
ing and acting as well as human recognition and activity depth
datasets can play an important role. By employing depth map
people datasets, the goal is to recognize the subject’s identity,
gender, or other qualities and activities.

1) RGB-D PEOPLE
The RGB-D people dataset [27] contains over 3,000 RGB and
depth frames collected from three Kinect sensors mounted
vertically in a university hall. The data is comprised of
up-right walking and standing humans seen from various
angles with various degrees of occlusion. The data is gathered
in a middle position (i.e., the lobby of a large canteen) by
observing people’s unscripted behaviour during lunch time.
The video sequences are captured at 30Hz using a set of three
Kinect v1 sensors vertically joined (1300x 500 field of view).
This capturing device is around 1.5 meters away from the
ground. It ensures that the three images are captured in a
synchronized and simultaneous manner while also reducing
IR projector crosstalk between the sensors. To reduce sensor
biases, certain background samples are taken from another
building on the College campus. Occlusions between people
is present in most sequences to make the data more realistic.
Following the ground truth, all frames aremanually annotated
with bounding boxes in 2D depth image space and subject
visibility position. A total of 1,088 frames, including 1,648
instances of persons, have been labelled to smooth the evalu-
ation of individual detection systems.

2) TST FALL DETECTION V2
During the simulation of Activities of Daily Living (ADLs)
and falls, the dataset [28] contains depth frames and skeleton
joints collected using Microsoft Kinect v2 and acceleration
samples provided by an inertial measurement unit (IMU).

The ADLs dataset is simulated for 11 young actors. The
actions listed below are included in the ADL category:

the actor sits in a chair; the actor walks and grabs an object
from the floor; the performer takes a walk back and forth;
the actor lies down on the floor. The following actions are
included in the category of fall: In the front, the actor falls
to the ground and lies down; at the back, the actor falls
backward and ends up lying; at the side, the actor falls to
the side and ends up lying; EUpSit, the actor falls backward
and ends up sitting. Each actor performed each action three
times, resulting in a total of 264 sequences. The following
information is provided for each sequence: Two raw accel-
eration streams, provided by IMUs constrained to the actor’s
waist and right wrist; skeleton joints in depth and skeleton
space, captured by Microsoft SDK 2.0; depth frames with
a resolution of 512 × 424, captured by Kinect v2; timing
information, timestamps of Kinect frames and acceleration
samples, useful for synchronization.

3) WEB STEREO VIDEO
The web stereo video dataset can be used for depth from
monocular video sequences containing a large number of
non-rigid objects, such as people. To learn non-rigid scene
reconstruction cues, [2] includes 553 stereoscopic videos
from YouTube. This dataset contains a wide range of scene
types as well as several non-rigid features.

4) MANNEQUIN CHALLENGE
In-wild recordings of people in static poses as a handheld
camera pan around the environment are available in the man-
nequin challenge dataset [29]. The dataset is split into three
parts for training, validation, and testing. The mannequin
challenge is a film collection of people replicating man-
nequins by freezing in a variety of natural poses as a hand-
held camera covers the scene. More than 170K frames and
associated camera postures were retrieved from around 2,000
YouTube videos in the dataset. SLAM and bundle adjustment
techniqueswere used to calculate the camera poses. TheMan-
nequin Challenge dataset has been used to train the model for
predicting dense depth maps from common video with the
camera and participants in the scene moving.

5) MHAD
Except for one senior person, the Berkeley Multimodal
Human Action Database (MHAD) [30] contains 11 acts done
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by 7 male and 5 female subjects between the ages of 23
and 30. All the individuals repeated each action five times,
resulting in about 660 action sequences and 82 minutes of
total recording time. In addition, they recorded a T-pose for
each subject which can be used for the skeleton extraction; as
well as the background data (i.e., with and without the chair
used in some of the activities). Actions with movement in
both upper and lower extremities, such as jumping in place,
jumping jacks, and throwing; actions with high dynamics
in upper extremities, such as waving hands and clapping
hands; and actions with high dynamics in lower extremities,
such as sitting down and standing up, are included in the
specified set of actions. The subjects were given instructions
on what action to complete before each recording, but no
exact specifics on how the activity should be carried out were
supplied (i.e., performance style or speed). As a result, some
of the activities have been performed in a variety of styles
by the individuals (e.g., punching, throwing). Depth data
is collected using two Microsoft Kinect v1 sensors placed
in opposite directions to prevent active pattern projection
interference.

6) UR FALL DETECTION
The dataset [31] has 70 sequences (30 falls + 40 activi-
ties of daily living). Falling events are captured using two
Microsoft Kinect v1 cameras and accelerometric data. Only
one device (camera) and an accelerometer are used to record
ADL actions. PS Move (60Hz) and x-IMU (256Hz) devices
were used to collect sensor data.

7) MOBILE-RGBD
On the mobile platform, MobileRGBD is a corpus dedicated
to low-level RGB-D dataset [32]. It flipped the traditional
corpus recording paradigm on its head. The goal is to make
ground truth annotation and record reproducibility easier in
the face of speed, trajectory, and environmental changes.
To portray static users in the environment, they utilized dum-
mies that do not move between recordings. It is feasible to
record the same motion multiple times to validate the impact
of detecting algorithms at different speeds. This benchmark
corpus is for low-level RGB-D algorithms such as 3D-SLAM,

body/skeleton tracking, and face trackingwith amobile robot.
Depth data was collected using a Kinect v2 sensor.

C. DEPTH DATASETS FOR FACES AND POSES
Aside from providing a low-cost camera sensor that produces
both RGB and depth information, the depth camera sensor
also allows a faster human-skeletal tracking. This tracking
technique can offer the exact location of human body joints
across time, making analyses of complex human behaviours
simpler and faster. As a result, deducing human faces from
depth images or combining depth and RGB images has
received much attention. In recent years, several of these new
depth datasets have been developed to help in the verification
of human facial activity analysis techniques.

1) BIWI
BIWI dataset [33] with over 15K images of 20 people
(6 females and 14 males - 4 people were recorded twice).
A depth image, the associated RGB image (both 640 × 480
pixels), and the annotation are provided for each frame. The
range of head poses is approximately + − 75 degrees yaw
and + − 60 degrees pitch. The ground truth is provided in
the form of the head’s 3D location and rotation. Depth data is
acquired using a Kinect v1 sensor.

2) EURECOM KINECT FACE
The multimodal face images of 52 persons (14 females, 38
males) acquired by Kinect v1 are included in the Dataset [34].
The data was collected in two sessions at different times
(about half a month). In each session, the dataset provides
the facial images of each person in 9 states of different facial
expressions, lighting, and occlusion conditions: neutral face,
smiling, open mouth, strong illumination, occlusion of eyes
by sunglasses, occlusion of mouth by hand, occlusion of side
of face by paper, right profile, and left profile. The RGB
color image, the depth map (given in two forms of the bitmap
depth image and the text file containing the actual depth levels
sensed by Kinect), and the 3D image are all produced in three
formats. The dataset also includes manual landmarks for six
facial positions: left eye, right eye, the tip of the nose, left
corner of the mouth, right corner of the mouth, and the chin.

TABLE 2. Depth datasets for people detection and action recognition.
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TABLE 3. Properties of depth datasets for people detection and action recognition.

3) PANDORA
The Pandora dataset [35] has 250K full-resolution RGB and
depth images, obtained from a Kinect v2 sensor, as well as
their annotations. For head centre localization, head pose
estimation, and shoulder pose estimation, the Pandora dataset
is frequently utilized.

4) FACESCAPE
The FaceScape dataset [36] contains large-scale and high-
quality 3D face models, parametric models, and multi-view
images. The camera settings, as well as the subjects age
and gender, are all included. The information has been made
available to the public for non-commercial research purposes.
The FaceScape dataset contains 18,760 textured 3D faces,
eachwith 20 distinct expressions, captured from 938 subjects.
The pore-level facial geometry is also processed to be topo-
logically uniformed in the 3Dmodels. For rough shapes, these
fine 3D facial models can be represented as a 3D morphable
model, and for detailed geometry, as displacement maps.
Using a deep neural network to learn the expression specific
dynamic features, a novel approach is proposed that takes
advantage of the large-scale and high-accuracy dataset.

5) 3DMAD
The 3D Mask Attack Database [37] (3DMAD) is a database
for spoofing biometric (facial) data. It contains 76500 frames
of 17 people captured with Kinect v1 for real-time spoofing
attacks. A depth image (640× 480 pixels – 1× 11 bits), the
corresponding RGB image (640 × 480 pixels – 3 × 8 bits),
and carefully labelled eye positions make up each frame (con-
cerning the RGB image). For each person, data is collected
in three separate sessions such that in each session capturing
five 300-frame recordings. The recordings are conducted in
a controlled environment with a frontal view and neutral
expression. The first two sessions are dedicated to real-world
samples, in which individuals are recorded with a two-week
gap between captures. A single operator captures 3D mask
attacks in the third session (attacker).

D. PERCEPTION-BASED NAVIGATION DEPTH DATASETS
(i.e., STREET SIGNS, ROADS)
The peripheral vision of humans enables them to observe
more than just the focused objects, and their visual system
is capable of immediately analysing various characteristics
of the observed objects, such as distance, shape, motion, etc.
But this is not the case with robots and other computer-based
agents. Their vision relies upon the complex structure of hard-
ware cameras and software with complicated mechanisms

for panoramic sight and perceiving depths. Due to the wide-
screen views and blurred depth perception, robotics such
as drones and self-driving cars typically lack the ability to
provide valuable feedback as they navigate.

1) KITTI
KITTI [38] is one of the most often used datasets in mobile
robots and self-driving cars. It contains hours of videos of
traffic scenarios captured with a range of sensor modalities,
including high-resolution RGB and grayscale stereo cameras,
as well as a 3D laser scanner (LiDAR). The dataset itself
does not contain ground truth for semantic segmentation.
However, various researchers have annotated parts of the
dataset manually to meet their needs. The authors in [39]
created ground truth for 323 images from the road detection
challenge, divided into three categories: road, vertical, and
sky. The work in [40] annotated 252 (140 for training and 112
for testing) acquisitions, RGB and Velodyne LiDAR scan,
from the tracking challenge for ten object categories includ-
ing building, sky, road, vegetation, sidewalk, car, pedestrian,
cyclist, sign/pole, and fence. The authors in [41] labelled 170
images for training and 46 images for testing (from the visual
odometry challenge) with 11 classes: building, tree, sky, car,
sign, road, pedestrian, fence, pole, sidewalk, and bicyclist.

2) CITYSCAPES
The Cityscapes dataset [42] is a large-scale dataset ded-
icated to the semantic evaluation of urban street scenes.
It includes semantic, instance-based, and dense pixel anno-
tations for 30 classes divided into eight groups (i.e., flat
surfaces, humans, vehicles, constructions, objects, nature,
sky, and void). Around 5,000 finely annotated images and
20,000 coarsely annotated images make up the dataset. The
data was collected in 50 places for several months, during
daylight hours and under favourable weather circumstances.
It was originally shot on video; therefore, the frames were
hand-picked to include a large number of dynamic objects,
a dynamic scene layout, and a changing background. It also
contains 5,000 polygonal annotations, 5,000 volume anno-
tated images for both fine and course annotations, video
frames, GPS coordinates, Ego-motion, and outside temper-
ature data from the vehicle sensor and odometry. In terms of
diversity, cityscapes are one of the most popular benchmark
datasets.

3) DRIVING STEREO
DrivingStereo is a large-scale stereo dataset [43] that was
created. It is hundreds of times larger than the KITTI stereo
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TABLE 4. Depth datasets for faces and poses.

TABLE 5. Properties of depth datasets for faces and poses.

dataset, with over 180k images covering a wide range of
driving scenarios. A model-guided filtering technique from
multi-frame LiDAR points produces high-quality disparity
labels. Deep-learning models trained on the DrivingStereo
dataset achieve higher generalization accuracy in real-world
driving scenes than models trained on other datasets. The
dataset contains left and right images along with disparity
maps and depth maps. The total number of images 182188
is further divided into 174437 for training and 7751 pairs for
testing.

4) KITTI-DEPTH
The depth maps from projected LiDAR point clouds were
matched against the depth estimation from the stereo cameras
in the KITTI-depth dataset [44]. It contains 93K depth maps
with corresponding raw scene and RGB images captured with
LiDAR aligned with the raw KITTI Dataset. On the bench-
mark server, there are 86k training images, 7k validation
images, and 1k test set images. This dataset will enable the
training of advanced deep learning models for the problems
of depth completion and single image depth prediction.

5) UASOL
The UASOL RGB-D stereo dataset [45] has 160,902 frames
captured in 33 separate scenes with between 2k and 10k
frames each. The frames represent different pathways, such
as sidewalks, trails, and roadways, as seen through the eyes
of a pedestrian. The images were extracted fromHD2K video
files having a resolution of 2280 × 1282 pixels and a frame
rate of 15 frames per second. Each second in the sequences
has a GPS geolocation identifier, and the dataset reflects
various climatological circumstances. It also involves up to
four people photographing the dataset several times during
the day.

6) DDAD
DDAD is a new autonomous driving dataset [25] from the
Toyota Research Institute (TRI) for long-range (up to 250m)

and dense depth estimation in challenging and diverse urban
environments. It includes monocular movies as well as accu-
rate ground-truth depth (over a full 360-degree field of view)
generated by high-density LiDARs placed on a fleet of
self-driving automobiles driving across the United States.
Scenes from cities in the United States (San Francisco, Bay
Area, Cambridge, Detroit, Ann Arbor) and Japan (Tokyo,
Odaiba) appear in DDAD.

7) DENSE
DENSE (Depth Estimation on Synthetic Events) [46] is a
novel dataset with pixel accurate ground truth. The camera
specifications are set to imitate the MVSEC event camera,
which has a sensor size of 346 × 260 pixels and a horizontal
field of view of 83 degrees. DENSE is divided into five
training sequences, two validation sequences, and one testing
sequence. Each sample is a tuple containing one RGB image,
the stream of scenes between 2 subsequent images, ground
truth depth, and segmentation labels. Each sequence has 1000
samples at 30 frames per second.

8) HEADCAM
This dataset [47] features panoramic video captured while
riding a bike around suburban Northern Virginia with a
helmet-mounted camera. The videos were used to test an
unsupervised learning system for estimating depth and ego
motion. The videos are saved as.mkv video files with lossless
H.264 compression.

E. OBJECT AND SCENE RECOGNITION DEPTH DATASETS
Object recognition determines whether the input image con-
tains the pre-defined object, while scene recognition labels
all objects in a scene in a dense manner. With the help of
object recognition methods, one can distinguish the differ-
ences between objects and determine many distortions that
might occur such as different occlusions levels, illumination
variations, and reflections. Combining RGB and depth infor-
mation could potentially improve the robustness of the feature
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methods. Several depth datasets are generated for different
tasks in depth object and scene recognition.

1) NYU-D V2
NYU-DV2 [48] is mainly composed of video sequences from
a variety of indoor environments captured by the Microsoft
Kinect v1 RGB and depth cameras. It consists of 1,449
richly annotated pairs of aligned RGB and depth images from
over 450 scenes across three cities. A class and an instance
number are assigned to each object (e.g., cup1, cup2, cup3,
etc.). There are also 407,024 unlabelled frames in the col-
lection. In comparison to other datasets, this one is relatively
small. This dataset was used as a benchmark for indoor depth,
segmentation, and classification in the representative study
work.

2) SCANNET
ScanNet [49] is an indoor RGB-D dataset that includes both
2D and 3D data at the instance level. Rather than points or
objects, it is a collection of labelled voxels. ScanNet v2, the
most recent version of ScanNet, has collected 1513 annotated
scans with a surface coverage of over 90%. This dataset is
divided into 20 classes of annotated 3D voxelized objects for
the semantic segmentation challenge.

3) SUN3D
SUN3D includes [50], a large-scale RGB-D video database
with 8 annotated sequences. Each frame contains a semantic
segmentation of the scene’s features in conjunction with the
information on the camera’s position. It is made up of 415
segments captured in 254 distinct locations across 41 dif-
ferent buildings. Furthermore, several locations have been
photographed multiple times throughout the day. Depth
acquisition was performed using the Asus Xtion Pro Live
which utilizes depth from structured light technology.

4) SUN RGB-D
There are 10335 realistic RGB-D images of room scenes in
the SUN RGB-D dataset [51]. Each RGB image has a depth
and segmentationmap that corresponds to it. There are almost
700 different objects with labelled categories. There are 5,285
and 5,050 images in the training and testing sets, respec-
tively. The entire dataset is fully annotated, including 146,617
2D polygons and 58,657 3D bounding boxes with detailed
object orientations, as well as a 3D room layout and scene
categorization. This dataset allows us to train data-hungry
scene-understanding algorithms, evaluate them using direct
and relevant 3D metrics, minimize overfitting to a limited
testing set, and investigate cross-sensor bias. Four sensors,

TABLE 6. Perception-based navigation depth datasets (i.e., street signs, roads).

TABLE 7. Properties of perception-based navigation depth datasets (i.e., street signs, roads).
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leveraging three different depth technologies, were used for
gathering depth data: Intel RealSense (depth-from-stereo),
Kinect v1 and Asus Xtion (structured light), and Kinect v2
(Time-of-Flight).

5) MEGADEPTH
The MegaDepth dataset [52] contains 196 distinct locations
reconstructed usingCOLMAPStructure-from-Motion/Multi-
View Stereo (SfM/MVS) for single-view depth prediction.
This dataset generates training data from multi-view Internet
photo collections, a virtually limitless data source, using
sophisticated SfM and MVS algorithms, and presents a large
depth dataset named MegaDepth. Data obtained by MVS has
its own set of difficulties, such as noise and unreconstructed
objects. These issues are addressed by new data cleaning
methods, as well as automatically enriching data with ordinal
depth relations obtained by semantic segmentation.

6) DIODE
DIODE (Dense Indoor/Outdoor DEpth) [53] is the first stan-
dard dataset for monocular depth estimation that includes a
variety of indoor and outdoor scenarios captured with the
same hardware setup. There are 8,574 indoor and 16,884
outdoor samples in the training set, each with 20 scans. The
validation set consists of 325 indoor and 446 outdoor samples
obtained from ten separate scans. The indoor training and
validation splits have a ground truth density of around 99.54
percent and 99.54 percent, respectively. With 67.19 percent
for training and 78.33 percent for validation subsets, the
density of the outdoor sets is naturally lower. The datasets
ranges are 50m and 300m indoors and outdoors, respectively.
Depth data is acquired using the FARO LiDAR.

7) MIDDLEBURY
The Middlebury Stereo dataset [54] contains pixel-accurate
ground-truth disparity data and high-resolution stereo
sequences with complicated geometry. The ground-truth dis-
parities are obtained using a unique technique that uses struc-
tured illumination and does not require the light projectors for
calibration. The Middlebury dataset, which contains 38 real-
istic indoor scenes taken through a structured light scanner,
was one of the first datasets for stereo matching. A modified
version of the Middlebury dataset with 33 new indoor scenes
presented to provide a more accurate annotation at a reso-
lution of 6 Megapixels. They are, however, generally small
in size due to the difficulty and expensive cost of creating
such exact and dense stereo datasets, which also leads to
the problem of low variability. In an indoor setting with
controlled lighting, the scenes are limited.

8) EDEN
EDEN (Enclosed garDEN) is a synthetic multimodal dataset
for nature-oriented applications [55]. More than 300,000
images were captured from more than 100 garden models in
the dataset. Semantic segmentation, depth, surface normals,

intrinsic colours, and optical flow are among the low/high
level vision modalities labelled on each image.

9) INRIA DLFD
The INRIA Dense Light Field Dataset (DLFD) [55] is a
light field dataset for testing depth estimation methods. There
are 39 scenes inDLFDwith a disparity range of [−4,4] pixels.
The light fields have a 512 × 512 spatial resolution and
a 9 × 9 angular resolution.

10) SUNCG
The SUNCG dataset [56] contains 45,622 scenes with realis-
tic room and furniture layouts that were generated manually
using the Planner5D platform. Planner5D is a web-based
interior design tool that lets users construct multi-floor room
layouts, add furniture from a library, and arrange it in the
rooms. After deleting duplicated and empty scenes, a simple
Mechanical Turk cleaning operation was used to improve the
data quality. During the work, the authors display a set of top
view renderings of each level and ask the participants to vote
on whether or not this is a valid apartment floor. They take
three votes for each floor, and a floor is considered valid if it
receives at least two positive votes. They have 49,884 valid
floors, 404,058 rooms, and 5,697,217 object instances from
2,644 unique object meshes containing 84 categories in the
end. They also manually assigned category labels to all the
library items.

11) STANFORD 2D-3D
The Stanford 2D-3D dataset [49] collects mutually regis-
tered modalities from 2D, 2.5D, and 3D domains, as well
as instance-level semantic and geometric annotations, across
six indoor areas. It includes more than 70,000 RGB images,
as well as depths, surface normals, semantic annotations,
global XYZ images, and camera information. Depth data
was collected using the Matterport camera, which combines
3 structured-light sensors at different pitches to capture 18
RGB and depth images during a 360◦ rotation at each scan
location.

12) MATTERPORT3D
The Matterport3D dataset [57] is a big RGB-D dataset that
can be used to analyze scenes in indoor areas. It is made up
of 194,400 RGB-D images and features 10,800 panoramic
views inside 90 real building-scale sceneries. Surface con-
struction, camera postures, and semantic segmentation are all
annotated in each scene, of a residential building with many
rooms and floor levels. The Matterport camera is also used
for this dataset.

13) TASKONOMY
Taskonomy [58] offers a vast and high-quality dataset of
various indoor environments. This dataset contains compre-
hensive pixel-level geometry information via alignedmeshes,
as well as semantic information, derived from ImageNet,
MS COCO, and MIT Places, camera positions, complete
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camera intrinsic parameters, and high-quality images, mak-
ing it three times the size of ImageNet. This is accomplished
by searching a latent space for (first and higher order) transfer
learning dependencies across a dictionary of twenty-six 2D,
2.5D, 3D, and semantic tasks.

14) ETH3D
ETH3D is a MVS benchmark/3D reconstruction benchmark
that covers a wide range of indoor and outdoor environ-
ments [4]. A high-precision laser scanner was used to gen-
erate ground truth geometry. Images were captured using
a DSLR camera and a synchronized multi-camera system
with variable field-of-view. Instead of carefully construct-
ing scenes in a controlled laboratory environment as in
Middlebury, ETH3D provides the full range of challenges of
real-world photogrammetric measurements. However, it still
suffers from a lack of data samples and variability.

15) 2D-3D MATCH
The 2D-3D Match dataset [59] is a novel 2D-3D correspon-
dence dataset that takes advantage of the availability of vari-
ous 3D datasets from RGB-D scans. The data from SceneNet
and 3DMatch are specifically utilised. There are 110 RGB-D
scans in the training dataset, with 56 images from SceneNet
and 54 scenes from 3DMatch. The following is how the 2D-
3D correspondence data is generated. A set of 3D patches
from various scanning viewpoints is extracted from a 3D
point randomly sampled from a 3D point cloud. Each 3D
patch’s 3D position is re-projected into all RGB-D frames
for which the point lies in the camera frustum, taking occlu-
sion into consideration, to find a 2D-3D correlation. Around
the re-projected point, the matching local 2D patches are
extracted. Around 1.4 million 2D-3D correspondences are
collected in total.

16) 3D60◦

360◦ [60] repurposed newly released large scale 3D datasets,
rendering them to 360, and creating high-quality 360 datasets
with ground truth depth annotations. 3D60 is a collection
of datasets created as part of multiple 360◦ vision research
projects (Matterport-3D, Stanford 2D-3D, SunCG). It con-
sists ofmulti-modal stereo representations of scenarios gener-
ated from large-scale 3D datasets, both realistic and synthetic.

17) MINNAV
MinNav is a synthetic dataset based on the sandbox game
Minecraft [61]. To generate rendered image sequences with
time-aligned depth maps, surface normal maps, and cam-
era poses, the dataset employs multiple plug-in applications.
Because of the big gaming community, there is an extremely
large number of 3D open-world environments where players
can identify acceptable shooting locations and create data
sets, as well as create scenes in-game. Sildur renders 300
monocular color images for each camera trajectory, which are
stored as 8-bit PNG files with lossless compression. The fps

is being adjusted from 10 to 120 and render at 800×600 with
fov=70 and fps=10.

18) MAKE3D
The Make3D dataset [62] is a monocular depth estimation
dataset with 400 single training RGB and depth map pairs
and 134 test samples. While the RGB images have a high
resolution, the depth maps have a low resolution of 305× 55
generated from a custom 3D laser scanner.

19) TUM RGB-D
TUM RGB-D [63] is an RGB-D indoor dataset that contains
colour and depth images from a Microsoft Kinect v1 sensor
along with the sensors ground-truth trajectory. The data was
captured at a full-frame rate (i.e., 30 Hz) and with a sensor
resolution of 1 megapixel (i.e., 640× 480). A high-accuracy
motion-capture system with eight high-speed tracking cam-
eras provided the ground-truth trajectory (i.e., 100 Hz).

F. DEPTH DATASETS FOR MEDICAL APPLICATIONS
In the last decade, medical recognition utilizing depth maps
has seen significant research. As a result, depth maps-based
medical methods are being employed for various applica-
tions, including monitoring of radiation in image-guided
interventions to decrease surgical stuff exposure to X-rays,
endoscopic surgeries for real time safety monitoring, and
navigation analysis to support ultrasound procedures. Various
datasets have been generated to address different medical
task-based applications.

1) ENDOSLAM
The endoscopic SLAMdataset [64] (EndoSLAM) is a dataset
for endoscopic video depth estimation. This includes 3D
point cloud data for six porcine organs, capsule and standard
endoscopy recordings, synthetically produced data, and clini-
cally used conventional endoscope recordings of the phantom
colon with computed tomography (CT) scan ground truth.

2) MVOR
The Multi-View Operating Room (MVOR) dataset [65] con-
sists of 732 multi view frames captured by three RGB-D
cameras (Asus Xtion Pro). Every frame consists of three
RGB and depth images. The data was sampled from four
days of recording in room at the hospital during vertebro-
plasty and lung biopsy. There are in total 2,926 2D key point
annotations, 4,699 bounding boxes and 1,061 3D key point
annotations.

3) Cholec80
The Cholec80 dataset [66] consists of 80 videos for chole-
cystectomy surgeries performed by different surgeons. The
videos were shot at a frame rate of 25 frames per second.
The timing (at 25 frames per second) and tool presence anno-
tations are included in the dataset (at 1 fps). The dataset is
divided into two equal-sized subgroups (i.e., 40 videos each).
There are around 86K annotated images in the first subset.
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TABLE 8. Object and scene recognition depth datasets.

TABLE 9. Properties of object and scene recognition depth datasets.

Ten videos from this selection have also been thoroughly
annotated with tool bounding boxes. The evaluation subgroup
(the second subset) is utilized to put the algorithms for tool
presence detection and phase recognition to the test.

4) xawAR16
The xawAR16 dataset [67] is multi-view RGB-D camera
dataset that was created in an operating room (IHU Stras-
bourg) to test the tracking and relocalization of a hand-held
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moving camera. To create such a dataset, three RGB-D cam-
eras (Asus Xtion Pro Live) were employed. Two of them
are fixed to the ceiling in such a way that they may capture
views from both sides of the operating table. A third is
attached to a display that is moved around the room by a user.
A moving camera is fitted with a reflecting passive marker,
and its ground-truth pose is determined using a real-time
optical 3Dmeasuring system. The dataset consists of 16 time-
synchronized color and depth images in full sensor resolution
(640 × 480) captured at 25 frames per second, as well as
ground-truth positions of the moving camera measured at 30
frames per second by the tracking device. Each sequence
includes occlusions, motion in the scene, and sudden per-
spective shifts, as well as varied scene layouts and camera
movements.

G. EXPLANATION AND DATASETS COMPARISON
This section demonstrate brief comparision of depth datasets
from several aspects. For an easy access, all the datasets are
ordered by year; table 6 shows some features including the
name of the datasests, the year of creation, ground truth type,
size, objects per image in the dataset, type, and number of
images. In terms of popularity of the datasets, the authors
ranked the datasets based on the number of citations. The
datasets that are available freely and with longer history
always have more citations than the newer ones. Particularly
Kitti, Cityscapes, Nyu-v2, Sun-RGB-D, Make3D, SceneNet,
SunCG all have high number of citations compared to the
rest of the datasets. However, it does not necessarily mean
that the old datasets are better than the new ones. In terms
of the baseline evaluation datasets for depth estimation, Kitti,
Cityscapes, Nyu-v2 are the commonly used benchmarks. The
depth datasets are divided into different categories of intended
applications and studied properties. However, each dataset
may not be limited to one specific application only (e.g. Kitti
can be used for both depth and 3D reconstruction, Nyu-v2 can
be used for both depth and segmentation). The datamodalities
include RGB, depth, indoor, outdoor, real, synthetic, seman-
tic, labeled voxels, 3D, volumetric, meshes, point cloud, 3D
landmarks, surface normals, camera poses, and segmentation.
This is helpful for researchers to quickly identify the datasets
of interest especially when they are working on multi-modal
fusion. A link to each dataset is also provided, which can help
research involved in similar studies. It is important to keep in
mind that some datasets are updated while others’ websites
may change.

H. MIXING DATASETS FOR TRAINING ON DIVERSE DATA
To the author’s knowledge, the systematic combination of
many data sources has only been briefly studied. Refer-
ence [68] described amodel for estimating two-view structure
and motion, which they trained on a combination of smaller
datasets with static scenes; although, they did not explain the
impact of themethod used. Reference [69] proposed amethod
of naïvely mixing datasets for monocular depth estimation
with known camera parameters. Combining different datasets

can be challenge as the ground truth data is in different
forms (i.e., absolute form: laser based or stereo camera with
unknown camera parameters, depth from unknown scale,
disparity maps) in every dataset (see table 3). A methodology
that can be compatible with all ground truth representations
for training deep networks is required. Furthermore, an appro-
priate loss function can be designed, which must be flexible
and compatible with different kind of ground data sources.

Three key issues are identified by [10] and studied in detail.
• Direct vs. inverse depth representations are inherently
different representations of depth.

• Scale ambiguity: depth with unknown scale (or camera
parameters, camera calibration) in some data sources.

• Uncertainty about shift: some datasets only include dis-
parity maps up to a certain known scale.

Although a stochastic optimization computation, loss func-
tion and prediction space allow for the mixing of different
data sources, while it is not instantly obvious in what per-
centages different datasets will be merged through training.

When it comes to mixing datasets, there are two crucial
approaches to consider.

1. In each minibatch, the first technique is to combine dif-
ferent data sources into equal parts which sample F/K
training data from each dataset for a minibatch of size
F, where K specifies the number of different datasets.
This technique ensures that all datasets, regardless of
the size, are characterized equally in the effective train-
ing set for training deep networks.

2. The second approach takes a more principled style,
adapting a recent Pareto-optimal multi-task learning
method [70]. They examine every dataset as a differ-
ent task and try to find an approximated Pareto opti-
mum across all datasets (i.e., a technique in which the
loss on each training set cannot be reduced without
raising it on at least one of the others). To minimize
the multi-objective optimization criteria, it utilizes the
algorithm provided in [70] that can be used for mixing
different kind of ground truth data into an effective way
for various tasks in computer vision-based applications.

minf (L1(f ), . . . ,Ll(f ))t

where parameters of the model f are shared across different
datasets.

V. COMMON CHARACTERISTICS OF WELL-KNOWN
DATASETS
It was observed that, of the datasets mentioned above, the
depth estimation datasets with the highest potentials dis-
played five common qualities:
• Longevity -This study finds that the datasets that were

available for a longer period of time gained more attention
and popularity. The KITTI is the most discussed dataset and
has been accessible since its launch in 2012. It is the most fre-
quently cited benchmark dataset despite several constraints,
such as small scale. The KITTI dataset has become a standard
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TABLE 10. Depth datasets for medical applications.

TABLE 11. Properties of depth datasets for medical applications.

benchmark for comparing new results and methods for depth
estimation and 3D reconstruction tasks.
• Scale – The number of samples and subjects in a

dataset plays a critical role in its popularity. A dataset must
have enough sample data features for successful statistical
research. Datasets with many samples (and thus a higher
statistical relevance) provide objective standards. In conjunc-
tion with the dataset size, some other features such as the
methodology of its representation are also important.
• Timing – It is observed that the most popular datasets

provided novel features and facilitated research that was not
possible with previously available public datasets. The KITTI
dataset, which was the first publicly available depth outdoor
dataset, the NYU-V2 dataset, which was the first dataset
to add indoor imaging, and the Cityscapes dataset, which
was the first to feature high-resolution images, are all good
examples.
• Data quality - The data quality plays a critical role in

providing the information about its use in the given situation
(e.g., data analysis). It is worth noting that the datasets with
details for information collection usually get more attention
than the rest of the datasets (e.g., NYU-D V2, FaceScape,
Cityscapes).
• The Right Data Transformation - Once generated, the

datasets are modified for meeting particular performance
objectives while using the machine learning algorithms.
Domain knowledge and algorithm features/functions can help
determine the best type of transformation to increase the
training performance. Datasets that include tools for cleaning,
transforming, and preparing data for training are popular than
research-oriented datasets.

VI. STATE-OF-THE-ART DEPTH ESTIMATION METHODS
ON THREE MOST POPULAR DATASETS
The performance of the top five SoA algorithms on popular
depth estimation benchmarks is tabulated in this section.
It’s worth noting that, while most deep networks report
their results using standard datasets and metrics, some don’t,
making it impossible to compare SoA methods across the

board. Furthermore, only a small percentage of papers pro-
vide reliable additional information, such as execution time
and memory footprint, which is critical for industrial depth
estimation model applications (such as drones, self-driving
cars, robotics, and so on) that must run on embedded con-
sumer devices with limited processing power and storage and
thus require efficient, lightweight models. The performance
of the top five SoA deep learning-based depth estimation
models on three of the most popular datasets is summarized
in Tables 12-14. 3d-ken-burns [71] is the best of the other
methods trained on the NYU-V2 dataset, while AdaBins [72]
is better on the KITTI dataset and HRNetV2 [79] is better on
the cityscapes dataset.

VII. AN OVERVIEW OF LOSS FUNTIONS FOR DEPTH
ESTIMATION
Deep learning-based methods usually optimize a regression
model on the reference depthmap. For depth regression tasks,
defining an appropriate loss function is the main challenge
faced by the SoA methods. Optimisation algorithms are used
by neural networks (i.e., stochastic gradient descent to min-
imize the errors in the algorithm). The loss function, which
measures how well or poorly the model performs, is used to
calculate this error. There are several noteworthy loss func-
tions that have been employed in depth estimation problems
where deep neural networks are used to forecast depth maps
from a single or multiple images.

A. LEAST SQUARE LOSS
To supervise the training process of the models, the differ-
ences between the real depth y and predicted y̆ maps are
used. For the depth values, the L2 loss function [73] can be
represented as (L2) and is defined as:

L2(y, y̆) =
1
N

N∑
i

(yi − y̆i)22 (1)

As a result, depth estimation architectures predict the
ground truth to learn the depth information of the scenes.

148494 VOLUME 9, 2021



F. Khan et al.: Review of Benchmark Datasets and Training Loss Functions in Neural Depth Estimation

TABLE 12. Results of top five SoA depth estimation models on the
NYU-V2 dataset.

TABLE 13. Results of top five SoA depth estimation models on the KITTI
Eigen split dataset.

B. SCALE-INVARIANT LOSS
During the training stage, depth estimation approaches use
the ground truth of depth y and the corresponding model
predicts the log depth. The training Scale-invariant loss func-
tion [73] (LSI ) can be represented by (LSI ) for the depth values
and is defined as:

LSI (y, y̆) =
1
N

N∑
i

(log(yi)− log(y̆i))2

−
λ

N
(
N∑
i

log(yi)− log(y̆i))2 (2)

λ refers to the balance factor and is set to 0.5.

C. BERHU LOSS
To account for data that contains outliers or heavy-tailed
errors, the Ordinary Least Square (OLS) estimator is deemed
ineffective in this scenario. In the case of Gaussian noise,
however, Berhu loss is designed to keep good qualities. Fur-
thermore, the adaptive Berhu penalty encourages a grouping
effect, which develops one group with the highest coeffi-
cients. Berhu loss function [74] (LBerhu) can be represented
by (LBerhu) for the depth values and is defined as:

LBerhu(y, y̆) =

 (yi − y̆i) if (yi − y̆i) ≤ c,
(yi − y̆i)2 + c2

2c
if (yi − y̆i) > c,

(3)

D. HUBER LOSS
It is known that Mean Square Error (MSE) is better for
learning outliers in a dataset, butMeanAbsolute Error (MAE)
is better for ignoring them. However, data that appears to
be outliers should not be considered in some circumstances,
and those points should not be given great attention. For this
reason, Huber loss function [74] (LHuber ) can be represented
by (LHuber ) for the depth values and is defined as:

LHuber (y, y̆) =

 (yi − y̆i) if (yi − y̆i) ≥ c,
(yi − y̆i)2 + c2

2c
if (yi − y̆i) < c,

(4)

TABLE 14. Results of top five SoA depth estimation models on the
cityscapes dataset.

E. SILOG LOSS
Correctly scaling the range of the loss function can increase
convergence and training outputs, while increasing the λ
forces more focus on minimizing the error variance, resulting
in Silog loss function. Reference [74](Lsilog) can be repre-
sented by (Lsilog) for the depth values, λ = 0.5 and N
represent ground truth values (i.e., the number of pixels).

By rewriting equation. 2:

Lsilog(y, y̆) =
1
N

N∑
i

(log(yi)− log(y̆i))

−
1
N

i∑
N

(yi − y̆i)2 + (1− λ)
1
N

i∑
N

(yi − y̆i)2

In log space, variance and weighted squared mean errors is
combined define the Silog loss:

Lsilog(y, y̆) = α
√
Lsilog(y, y̆) (5)

F. COMMON DEPTH LOSS
Let y be a ground-truth depth map and y̆ be its estimated
depth. The common depth loss [84] L1 is given by the entry-
wise L1-norm for a matrix

L1(y, y̆) =
1
HW

(yi − y̆i)1 (6)

whereW and H are the width and height of the depth maps.

G. GLOBAL MEAN REMOVED LOSS
The global mean removed loss [84] is defined as

LGMR(y, y̆) =
1
HW

((yi − ȳi)− (y̆i − ¯̆yi))1 (7)

where W and H are the width and height of the depth maps,
ȳi and ¯̆yi are the average depths in y and y̆i, respectively.
This loss is based on the observation that, while estimating
the global depth scale (i.e., average depth) from an image is
unclear, predicting the relative depth of each pixel in relation
to the average depth is more reliable. In some situations, such
as age estimation, relative estimation is easier than absolute
estimation.

H. LOCAL MEAN REMOVED LOSS
A local mean removed loss [84] LMR, which penalizes the
relative depth errors with respect to local n×n square regions
and defined as follows:

LMR(y, y̆) =
1
HW

((yi − yi ⊕
Jm
m2 )− (y̆i − y̆i ⊕

Jm
m2 ))1 (8)
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where ⊕ denotes the convolution, and Jm is the n× n matrix
composed of all ones.

I. SSIM LOSS
The perceptual difference between two comparable images
is measured using SSIM. It can’t tell which of the two is
superior because it doesn’t know which is the ‘‘original’’
and which has undergone further processing like data com-
pression. The loss function for the structural similarity index
measure (SSIM) is represented by (LSSIM ) and can be defined
as:

LSSIM (y, y̆) = (
1− LSSIM (y, y̆)
MaxDepth

) (9)

J. PHOTOMETRIC LOSS
A SSIM term is combined with the L1 reprojection loss due
to its better performance in complex illumination scenarios.
Thus, the (LP) photometric loss [85] of theN scale is modified
as

LP(y, y̆) =
N∑
i

(1− λ)(yi − y̆i)1 + λ
1− LSSIM (y, y̆)

2
(10)

K. PRE-PIXEL SMOOTHNESS LOSS
A per-pixel smoothness loss is introduced to combine with
the LSL reprojection loss to encourage the inverse depth pre-
diction to be locally smooth, as depth discontinuities often
occur at image gradients. Thus, the (LSL) loss is defined as

LSL(y, y̆) =
N∑
i

∂xdte−∂x (y,y̆)+∂ydte−∂y(y,y̆) (11)

L. RECONSTRUCTION LOSS
The network calculates disparity during training, and the
bilinear sample is used to generate the input image, which
is then used to reconstruct another image using the disparity
map. The bilinear sampler is fully differentiable at the local
level and smoothly integrates into a fully convolutional archi-
tecture. A LHuber and SSIM is combined as a photometric
image reconstruction loss, which computes the inconsistency
between the input image and the reconstructed image, it is
defined as follows

LR(y, y̆) =
1
N

N∑
i

1− LSSIM (y, y̆)
2

+ (1− α)LHuber ((y, y̆)) (12)

M. PRIOR RECONSTRUCTION LOSS
It is consequently shown that constraining a cost function
involving a polarimetry-specific geometry is valid. Further-
more, because it is dependent on both the input and output
of the processing pipeline, this minimization strategy can
be used to optimize a deep learning model. This method is
consistent in unusual circumstances, implying a limited cam-
era calibration or a specific azimuth to angle of polarization

thought processes. As a result, a new method provides an
alternative but comparable strategy that allows for standard
calibration and the release of constraints via a generalized
loss term defined as follows

LPR(y, y̆) = µminLR + ν∂2x dte
−∂2x (y,y̆)+∂2y dte

−∂2y (y,y̆) (13)

N-1. SCALE INVARIANT LOSS
The scale-invariant loss [32] for a single sample is defined as

LSI (y, y̆) =
1
N

N∑
i

ρ2(y, y̆)−
λ

n2

(
N∑
i

ρ(y, y̆)

)
(14-1)

where ρ function defines the scale invariant loss
and λ ∈ [0, 1].

N. SCALE SHIFT INVARIANT LOSS
The scale-shift-invariant loss for a single sample is defined
as

LSSI (y, y̆) =
1
2N

N∑
i

ρ(y, y̆) (14)

where ρ function defines the scale invariant loss.

O. POINT-WISE LOSS
Point-wise loss function (Ldepth) can be represented by (L1)
for the depth values and is defined as:

Ldepth(y, y̆) =
1
n

∑
(yi − y̆i) (15)

P. GRADIENT LOSS
To capture the local structural consistency, a gradient loss
function (Lgrad ) is proposed and can be represented by
(Lgrad ), which penalize the gradient of depth around the edges
of the image and can be defined as

Lgrad (y, y̆) =
1
n

n∑
i

yx(ei)+ y̆y(ei) (16)

where yx(ei) and y̆y(ei) represent the spatial derivatives of the
difference between the ground truth and predicted depth for
the pth pixels ei which stands (||yi − y̆i||) for the x, y-axis.

Q. SURFACE NORMAL LOSS
The surface normal loss function (LSN ) can be utilized to
avoid minor errors and predicts the normal and estimated
depth maps. The ground-truth surface norms and predicted
depth are represented by

nyi = (9[−∇x(yi),−∇y(yi),1]T )

and

ny̆i = (9[−∇x(y̆i),−∇y(y̆i),1]T )

The loss is calculated as the difference between
the two surfaces normals, which may be expressed
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mathematically as follows

LSN =
1
n

n∑
i

(1−
〈nyi , ny̆i〉

(||nyi || · ||n
y̆
i ||)

) (17)

where 〈nyi , n y̆i〉 denotes the inner product of the vectors.

R. PERCEPTUAL LOSS
The ability of the MSE function to capture perceptually
relevant differences (such as high texture details). It is very
limited in the use cases because they are defined based on
differences in image pixels, minimizing the pixel averages.
Therefore, a perceptual loss function is introduced to make
the two more perceptible similarities by comparing feature
maps between original view and reconstructed view. Denote
by α the feature map obtained after the j-th convolution (after
activation) of the i-th convolutional layer in the VGG-16
network and the perceptual loss is defined as the Euclidean
distance between the feature maps of the original view y and
the reconstructed view y̆

LPRL(y, y̆) =
1
HW

N∑
i

(α(yi)− α(y̆i))2 (18)

The size of the generated feature map for a specific layer in
the VGG network is described by H and W. Perceptual loss,
rather than pixel-by-pixel loss, is more reflective of semantic
similarity between images during training. By adding percep-
tual loss training, the depth map generated by the model has
more precise details and edge information.

S. STRUCTURE GUIDED RANKING LOSS
Structure-Guided Ranking Loss is a pair-wise ranking loss
that is very broad, allowing it to be applied to a wide range
of depth and pseudo-depth data. The sampling method for
certain point pairs, on the other hand, might have a significant
impact on the reconstruction quality. Rather than utilizing
random sampling, the proposed segment-guided sampling
technique and purpose is to direct the networks attention to
the regions that matter most, i.e., the scene’s salient depth
structures, and can be characterized as

LSGL(y, y̆) =
1
N

N∑
i

(α(yi − y̆i))+ Lgrad(y, y̆) (19)

T. CHAMFER LOSS
The chamfer distance between two points can be defined is

D(X1,X2) =
N∑

x∈X1

min
y∈X2
||x − y||2 +

N∑
y∈X2

min
y∈Y
||x − y||2

for a distance d between subsets in R2, Then the Chamfer loss
function takes the form

LCL(y, y̆) =
N∑
i

d(yi − y̆i)) (20)

where i indexes training samples.

U. BIN CENTER DENSITY LOSS
Bin centre density loss function can be used to follow the
distribution of the depth pixels in the ground truth, and it can
be defined as the set of bin centres c(b) and a set of the ground
truth pixels in the image X along with bi-directional Chamfer
loss as a regularizes

LBCDL =
N∑
x∈X

min
y∈c(b)

||x − y||2 +
N∑

y∈c(b)

min
x∈X
||x − y||2 (21)

V. GRADIENT MATCHING LOSS
To encourage the network to output a depth map with sharp
edges, gradient matching loss is used and defined as

LGML(y, y̆) =
1
K

N∑
k=1

K∑
i=1

(∣∣∣∣ k∇x k
E
x

∣∣∣∣+ ∣∣∣∣ k∇y k
E
y

∣∣∣∣) (22)

where
k
∇
x
and

k
∇
y
are the gradient of the prediction.

W. PAIRWISE DISTILLATION LOSS
The pairwise distillation loss is obtained in two steps. First,
affinity maps for the feature maps are generated. Then the
MSE between the affinity maps of the obtained features is
then computed.

LPDL(y, y̆) =
1

x × y

∑
i

∑
j

(
ptij − p

u
ij

)
(23)

where ptij and p
u
ij are the affinity maps.

VIII. DISCUSSION
Over the previous two decades, available depth estimation
datasets have improved, yet there are still problems to be
solved. The most significant limitation is their availability,
which implies that many of the datasets are only available
for a limited duration. It’s also worth noting that in some
circumstances, when the authors prefer to give the dataset
based on the asking institutions, limited access is noticed
(institutions with a lower profile might typically have more
problems obtaining a dataset). This negatively impacts indi-
vidual researchers’ ability to replicate the analysis, as well
as future researchers’ capabilities to publish findings derived
from such datasets. The impact of aging has been studied
using public datasets collected in the previous few years.
Long and complex depth estimation is limited by the diffi-
culties of following up on a large group of people over a long
period of time.

The new data privacy standards, which secure personal
rights, have created a relatively new challenge. In Europe,
for example, the General Data Protection Regulation (GDPR)
includes a right to erasure (often known as the right to be
forgotten), which gives subjects the option to withdraw their
consent to the use of their data and have subject-related mate-
rial removed from datasets (if possible). Because of the nature
of biometric data, the subject can be uniquely identified.
As a result, potential changes in datasets could compromise
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the determination and uniformity of reported data over time.
Similar legislations are being discussed globally as a result
of recent difficulties relating to the lack of realistic data.
Imperfections in the mentioned collection setup and tech-
nique are also significant limitations of the current datasets.
Some of the dataset generation criteria are not available, but
they may be useful so that others can greatly expand the
datasets possible applications. Also, the optical system infor-
mation is sometimes not completely defined as well as some
of the datasets lack of sensor information, capture distance,
range of spectrum in the generated images, and environmental
validation. Some of the datasets only provide cropped image
regions of the complete scene, so information like aperture,
speed shutter, and sensitivity is lacking.When collecting with
mobile devices, data from the IMU (i.e., an accelerometer
and a gyroscope) may be beneficial in reducing the negative
effects of the rolling shutter and recognizing motion blur
(e.g., smartphones). In addition, several datasets only provide
compressed images, reducing the quantity of data captured by
the sensor.

Due to the differences in image quality, researchers require
a complete explanation of the method and capture informa-
tion in different research areas. Despite the common features
in research problems, smartphone depth capture research
focuses on using additional sensor information available in
mobile platforms (IMU or multiple imaging sensors) and
computational methods to process captured images, whereas
depth in motion research focuses on novel sensors and optical
systems.

Many research papers underline the absence of datasets
suited for evaluating a specific parameter (i.e., a constrained
environment with only one parameter’s variability), which
leaves research conclusions and underlying reasons unclear,
underlining the need for more research. In some cases, having
a clear protocol description may be enough to solve the prob-
lem. If the camera specifications (usually removed for privacy
concerns) were contained in the EXIF/metadata, several of
these issues may be avoided. This information is generally
missing from datasets created using custom-built cameras,
as well as a protocol description. While many details of
specialized hardware are hidden from users of other datasets,
publicly accessible cameras provide such attributes by default
in the image file.

There is also a mismatch between datasets acquired under
visible light. In some cases, the authors used a monochro-
matic sensor with a band-pass filter to catch the entire visible
band of light, while in others, they used mass market cameras
to collect visible light in three spectral bands (separately for
the colors red, green, and blue). Because the spectral sensitiv-
ity of the visible light filter differs from that of the individual
color filters (even when the color bands are combined), they
should not be compared. Additionally, most consumer color
cameras have a Bayer filter that restricts individual band
resolution to one-quarter for red and blue spectra and one-half
for green; as a result, two-thirds of the color information are
estimated rather than measured.

The review also found that synthetic image datasets have
not got momentum in depth estimation research. Researchers
prefer standard datasets (real) instead of synthetic images,
despite the fact that synthetic images have a higher num-
ber of samples. The authors feel that these datasets lack
the realism of research effects that occur in less confined
circumstances.

Only a small percentage of distance depth capture research
has focused on computational depth capture, such as using
super-resolution, whereas the majority has focused on con-
structing a standard optical system with mirrors for the
capture.

A. RELATED RESEARCH
This has been a review of existing datasets generated for
performance evaluation, with a focus on depth. The datasets
investigated in this work could be useful in other fields
of research that use images of the human body, faces,
poses, objects, indoor/outdoor, medical information, and
environments.

Face tracking and segmentation have been used in a wide
range of applications, from human–computer interaction to
medical diagnosis. These applications usually have other
well-known datasets, but they primarily share initial depth
image processing, such as depth localization and segmenta-
tion. As a result, depth estimation datasets could be useful as
a secondary data source. Furthermore, a useful medical diag-
nostic for detecting neurotransmitter and neuronal activity
levels has been proven using the pupil [66]. Object recogni-
tion and classification algorithms are a comparable, but more
sophisticated academic area. However, depth estimation is
often a more difficult challenge. It’s been utilized in medical
applications, such as diagnosing computer vision syndrome
and facial recognition technologies.

Biometrics datasets are restricted in that they do not con-
tain identification information, that restricts the use of many
datasets. Alternatively, unsupervised methods can play an
important role in depth-based recognition problems.

B. CHALLENGES AND COMPETITIONS
An independent evaluation and standard compression anal-
ysis can greatly help current depth estimation methods in a
range of applications and tasks in computer vision research.
There is a well-defined baseline for the SoA methods, but
the results are greatly diverse due to the datasets, training,
evaluation, and implementation methodologies. These vari-
ations make it difficult to compare the methods objectively
for a specific problem related to depth estimation. Many of
these issues can be avoided by creating benchmark datasets
and conducting independent evaluations. This ensures an
objective comparison of methods by using standardized pro-
tocols and environments. Competitions and/or challenges are
commonly used to organize such evaluations. This strat-
egy stimulates competition among academics in addition to
the production of publicly available datasets with uniform
measurements.
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C. FUTURE RESEARCH DIRECTIONS
Image-based depth estimation using deep learning
approaches has shown promising results following detailed
research over the last few years. However, the subject is still
in its early stages, and more developments are to be expected.
In this section, the authors will go over some of the hot
topics right now and point out in the right direction for future
research.
• Data for training purposes is a problem: The availabil-
ity of training data is critical to the effectiveness of
deep learning algorithms. Unfortunately, compared to
the training datasets used in tasks like classification and
recognition, the size of publicly available datasets that
comprise both images and their ground truth depth is
small. Due to a lack of 3D training data, 2D supervi-
sion techniques have been utilized. However, many of
them rely on silhouette-based supervision and can only
reconstruct the visual hull as a result. Consequently, one
can expect to see more papers in the future propos-
ing new largescale datasets with diverse environments,
new weakly-supervised and unsupervised methods that
leverage various visual cues, and new domain adaptation
techniques in which networks trained on data from a
specific domain, such as synthetically rendered images,
are adapted to a new domain, such as in-the-wild images,
with very little retraining and supervision. Research into
realistic rendering approaches that can bridge the gap
between actual and synthetically created images has the
potential to help with the training data problem.

• Generalization to unseen objects: Most SoA studies,
such as BTS and AdaBins, divide a dataset into three
subsets for training, validation, and testing, and then
report on the performance on the test subsets. However,
it is unclear how these approaches would perform on
categories of objects/images that have never been seen
before. In reality, the ultimate goal of the depth esti-
mation method is to be able to recreate any 3D shape
from any set of images. Learning-based strategies, on the
other hand, only work on images and objects that are part
of the training set. A number of recent publications have
attempted to examine this topic. However, combining
classical and learning-based strategies to improve the
generalization of the latter methods would be an inter-
esting direction for future research.

• Fine-scale depth estimation: The coarse depth struc-
ture of shapes can be recovered using current SoA
approaches. Although subsequent work has enhanced
the resolution of the reconstruction by employing refine-
ment modules, thin and small portions such as plants,
hair, eyes, and fur remain unrecoverable.

• Reconstruction versus recognition: The difficulty of
obtaining depth from images is ill-posed. As a result,
effective solutions must incorporate low-level image
cues, structural knowledge, and a high-level understand-
ing of the object. Deep learning-based depth estimation
algorithms are biased towards recognition and retrieval,

according to a recent study [8]. As a result, many of
them have difficulty generalizing and recovering fine-
scale features. Therefore, it is expected that this area
of research might see more exploration in the future on
how to mix top-down (i.e., recognition, classification,
and retrieval) and bottom-up approaches (i.e., pixel-
level reconstruction based on geometric and photometric
cues). This has the potential to improve the approaches’
generalization capabilities (see item (2) above).

• Handling multiple objects in the presence of occlusions
and cluttered backgrounds: Most of the SoA approaches
deal with single-object images. Images taken in the wild,
on the other hand, often feature a variety of things
from several categories. Detection and reconstruction
within regions of interest have been used in previous
studies. The modules for detection, depth, and recon-
struction are all independent of one another. These tasks,
however, are interrelated and might benefit from one
other if completed together. Two major concerns must
be solved in order to achieve this goal. The first is
a lack of multiple-object reconstruction training data.
Second, especially for methods that are learned without
3D supervision, creating proper CNN architectures, loss
functions, and learning procedures is critical. In general,
these employ silhouette-based loss functions, which
necessitate precise object segmentation.

• Data Imbalance: Some class representations are limited
in some scene understanding tasks, such as semantic
labelling, whereas others have a lot of examples. Learn-
ing a model that respects both types of categories and
performs equally well on frequent and less frequent ones
is a challenge that requires more research.

Deep-learning algorithms for depth estimation rely largely on
training datasets annotated with ground truth labels, which
are difficult to come by in the actual world. Large datasets
for 3D reconstruction are expected to emerge in the future.
One of the interesting future paths for study in depth esti-
mation is emerging new self-adoption algorithms that can
adapt to changing circumstances in real-time or with minimal
supervision.

IX. SUMMARY
This analysis reveals significant heterogeneity in available
datasets in terms of size (ranging from 5 to >1,800 classes),
sensors used, image quality, and so on. Because of this
variation, there is a dataset available for many research
issues, but it is not always straightforward for researchers
to choose the optimal alternative. This analysis not only
serves to help researchers find the right dataset and loss
function, but it also makes suggestions for establishing new
ones. Because there are so many features that researchers
can be interested in, presenting a global summary in the
form of a research article is challenging. According to the
bibliometric analysis, the KITTI dataset is the most cited,
followed by CITYSCAPES and NYU-V2 datasets. As a
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result, it is recommended that these datasets be used as
benchmarks when comparing approaches to the published
SoA. Furthermore, a license signed by a researcher is suf-
ficient to get these datasets, as opposed to the signature
of the institutional legal representative, which is normally
requested by others. It’s best to use datasets developed for
specific challenges or competitions for comparative research
because they come with a standardized evaluation methodol-
ogy. MOBILE-RGBD is a tool for evaluating depth images
obtained by smartphone cameras. FACESCAPE is a frame-
work for studying 3D reconstruction and detection. There are
3600 andWEBSTEREOVIDEO to examine combinations of
multiple modalities. Reference [68] has put a lot of effort into
developing publicly available datasets, in addition to KITTI
and CITYSCAPES. Their website contains 102 high-quality
datasets (plusmore from othermodalities), making it themost
comprehensive web resource the authors found. Although
the bibliometric analysis showed that these datasets are not
as popular as those at KITTI or CITYSCAPES, NYU-V2
and did not cover the depth estimation-based research, it is
encouraged that the academics explore them further.

X. RECOMMENDATION FOR BUILDING A
COMPREHENSIVE DATASETS
Various scientific groups have explored important aspects of
gathering and distributing research data.

• Plan availability for years to come - In the field of
depth estimation, the acceptance of a new benchmark is
typically difficult. It is critical to allocate resources for
database distribution for several years into the future in
order to maintain the database’s availability. The most
important resources are (i) technical – a solid URL for
the promoting website as well as the infrastructure to
keep it available – and (ii) personal – a designated person
responsible for licensing maintenance as well as answer-
ing any problems that prospective users may encounter.

• Make access simple - We discovered that databases
that include licenses that can be signed by individual
academics are more popular. For young researchers,
requiring the signature of the legal institutional represen-
tative, especially in a college environment (usually the
rector), is a substantial barrier. Instead, they frequently
choose to develop their own database. If an institutional
representative’s signature is required, we recommend
posting the whole license agreement as well as a sample
of the database images on the project website. This
aids in determining whether the database is appropri-
ate for a certain research project before beginning the
administrative procedures required to secure the requi-
site approvals.

• Include a statistically relevant number of samples
Acquiring and handling test subjects is one of the most
challenging tasks when creating a biometric database.
The number of subjects included should be as large
as possible; however, there is always a minimum size

for obtaining statistically relevant results. Although this
minimum is difficult to quantify for the general case, the
statistical significance of 100 samples obtained from the
same subjects is not the same as 1000 samples obtained
from 100 different subjects.

• Make the database unique - Many authors who use a
database in one publication continue to use it in subse-
quent publications. A database is often used to inves-
tigate particular qualities or problems in a methodical
manner, as we have seen in earlier sections. A suc-
cessful database should assist users in coming up with
new research findings and conclusions. As a result, the
database should be able to meet the needs of new study
areas where benchmarks have yet to be created.With this
review, the authors hope to aid in this work by making
the demands more apparent to database designers.

• Extensive protocol and setup description - Despite the
fact that the majority of the datasets available were
developed to test a specific hypothesis or for a certain
study aim, researchers frequently suggest that the dataset
can be beneficial for more than one research topic. It is
critical to offer a detailed description of the technique
and setup in order to maximize the dataset’s potential.
Important information, such as the wavelength of the
setup lighting, the distance at which the images were
captured, and descriptions of the sensor or optical sys-
tem employed, is usually lacking, restricting the usabil-
ity of the datasets.

• More Challenging Datasets - For depth estimation
and instance segmentation, several large-scale image
datasets have been generated. However, new complex
datasets, as well as datasets for diverse types of images,
are still needed. Datasets containing a large number of
objects and overlapping objects would be quite useful
for still images. This may make it possible to train
models that are better at dealing with dense object sce-
narios and high overlaps between objects, which are
typical in real life. With the growing popularity of 3D
image depth reconstruction, particularly in autonomous
vehicles and robotics, large-scale 3D image datasets are
in high demand. The creation of these datasets is more
difficult than that of their lower-dimensional equiva-
lents. Existing datasets for 3D image depth estimation
are often insufficiently large, and some are synthetic,
therefore larger andmore difficult 3D image datasets can
be extremely beneficial.

XI. CONCLUSION
This paper provides a detail review of the depth datasets
and loss functions developed in the field of computer
vision for depth estimation problems. The publicly available
depth datasets and depth-based loss functions have achieved
impressive performance in various depth maps tasks based on
deep learning networks. People detection and action recog-
nition, faces and poses, perception-based navigation (i.e.,
street signs, roads), object and scene recognition, andmedical
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applications are among the five general categories in which
the depth datasets are categorized. Each depth dataset’s main
properties and characteristics are described and compared.
To generalize model results across different environments,
a mixing approach for depth datasets is presented. In addition,
depth estimation loss functions are briefly presented, which
will facilitate in the training of deep learning depth estimation
models on a variety of datasets for both short- and long-range
depth map estimation. Three of the most popular datasets are
evaluated using SoA deep learning-based depth estimation
algorithms. Finally, there is a discussion of challenges and
future research, as well as recommendations for creating
comprehensive depth datasets, which will help researchers in
choosing relevant datasets and loss functions for evaluating
their results and methods.

The main aim of this survey paper is that, to speed up the
research in depth estimation tasks and compare the results
to SoA methodologies for use case applications, researchers
in this discipline must first understand the appropriate
depth datasets and loss functions. To improve generaliza-
tion, researchers should incorporate various datasets during
training, validation, and testing. However, when combin-
ing datasets with different features, caution is required. The
network’s design and building blocks are important, but its
performance is mostly influenced by how it is trained, which
requires a diverse dataset and an appropriate loss function.
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Chapter 7

Conclusion and Future Work

In this chapter, we summarize the main contributions of this dissertation along with their
limitations and future work with respect to each of these contributions.

7.1 Contribution to the Generation of synthetic Face Data

In Chapter 2, a synthetic facial data generation pipeline is proposed based on low-cost
asset creation software and an open-source CG tool. With the proposed pipeline, it is
possible not only to create a large number of samples, but also to add a large number of
variations and randomness by adding virtual scene augmentation. With the help of the
proposed methodology, we have then generated a large-face dataset with 100 identities
and five different facial expressions (Appendix A). The whole dataset has more than 300k
sample RGB face images with their head pose and raw face depth data as their ground truth
annotations. This kind of large synthetic face dataset can be useful to train deep learning
models for head pose estimation and monocular depth estimation tasks. We have also released
the virtual human models and the data generation pipeline code written in Python. With
the help of this open-sourced code base and the synthetic models, one can generate a large
amount of full-body synthetic data with sufficient augmentations.

In future work, as we have access to the full body models, the dataset can be extended to
collect different ground truth annotations like face segmentation, facial landmarks, full body
activity recognition, etc. Though the proposed pipeline can create a large amount of face
dataset, the rendered face images still look different from the real face images. So another
future direction can be to extend the data with more realistic face textures generated by
generative methods like StyleGAN or diffusion, which will reduce the domain gap between
the real and synthetic faces.
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7.2 Contribution to the Validation of the generated syn-
thetic Face Data

In Chapter 3, we validate the synthetic data that was generated in the previous task. As we
have collected two different ground truth annotations (i.e., head pose and face depth), we
have chosen the facial analysis tasks associated with these two ground truths.

We first train a SOTA HPE model with only the synthetic head pose data generated by
our method and validate its performance against a real dataset. The model trained only on
our synthetic data gives a competitive result when compared with other SOTA HPE methods
over some ranges of head pose. Though it gives a good result in some narrow head pose
angles, it performs poorly for profile face images. So, to improve its performance, we then
apply the transfer learning approach, a common training paradigm for training models on
synthetic data. We first train the model on our synthetic data and then fine-tune it with a
small set of real data. The fine-tuned model is able to surpass the result of the previous SOTA
method that follows a similar transfer learning approach by a large margin while using only
10 percent of the real data compared to the previous SOTA method.

Though applying transfer learning to our data gives SOTA performance, we then focus on
training the model without labeled real data. The major reason behind the poor performance
of the model, when trained only on synthetic data, is the domain gap between the real
and synthetic face images. So to reduce the domain gap, we then introduce an adversarial
learning method where we train the model simultaneously on synthetic data against the main
objective function of learning the head pose, and on unlabelled real data on an adversarial
objective to reduce the gap between the real to the synthetic domain. This synthetic to real
domain adaptation technique normally produces good results for classification tasks, as these
have discrete label spaces, and matching source label clusters to target label clusters are
comparatively easier. But for the HPE tasks where the label spaces are continuous, the
traditional adversarial domain adaptation does not give good results. So we introduce a
sampling methodology to sample the label spaces from the target real domain so that it
keeps close to source synthetic labels (Appendix B). With the proposed adversarial domain
adaptation learning, we are able to achieve near SOTA results in HPE tasks and show the
potential of this technique for learning regression tasks from solely synthetic label spaces.
We also validate the face depth data against the monocular depth estimation task. We
propose an efficient encoder-decoder-based model with a hybrid loss function for accurate
monocular facial depth estimation. The model is competitive with the other SOTA methods
but significantly smaller in size and computational complexity, which makes it suitable for
deployment in edge-AI applications.
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While working with the real head pose, we have found visually that some of the frames
with high yaw, pitch, and roll angles have errors in their ground truth annotations which
are difficult to measure. As the collected synthetic ground truth head pose has accurate
annotations, as a future work, a cross-validation approach can be applied to the real and
synthetic datasets to identify the errors in the real ground truth annotations. Additionally, we
can extend the adversarial domain adaptation approach to the facial depth estimation task as
well to improve the depth estimation model performance earning from synthetic data only.

7.3 Contribution to the unsupervised Face Reconstruction
from a single Image

In Chapter 4, we extend the 3D facial analysis task by proposing a weakly supervised
approach to learning the 3D face structure from a single 2D face image. In the previous
work of learning the facial depth from synthetic data, we have found that though we are able
to learn the 3D structure of the face, estimating an accurate 3D face from the monocular
face images is still not possible by learning from synthetic data only. So we introduce a
hierarchical feature fusion-based vision transformer backbone for 3D facial feature extraction
and propose unsupervised learning of the 3D face structure by introducing a differential
renderer in the training pipeline. We train our network without any ground truth 3D face scan
data and only utilize a large face dataset with its corresponding 3DMM parameters. We also
introduce a hybrid loss function that combines both supervised and unsupervised objective
functions. As per our knowledge, we are the first to introduce a vision transformer backbone
to the face reconstruction task. Through both qualitative and quantitative results, we have
shown that our method has achieved competitive results with other SOTA methods.

We have used the vision transformer as the feature extractor, which is by nature memory
intensive and larger in size. This hinders its use and deployment in edge devices. In future
work, we can use different width and depth pruning mechanisms to remove the unimportant
units in the network and reduce the model size and computational complexity. Also, for
supervised training, we have used the 3DMM parameters from the 300W-LP dataset, which
mostly encodes the global facial deformations. So it fails to recover low-dimensional details
like wrinkles. To recover these low-level features, we can use graph convolutions which
are very effective in modeling the neighborhood vertex information. On the other hand,
transformers are very good at predicting non-local interactions. So we can infuse the graph
convolution into the transformer architecture to recover the fine-grain details of the face.
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7.4 Contribution to the Data Generation and Model Build-
ing for dense Face Landmark Estimation

In Chapter 5, we extend the previous work to create a lightweight face shape predictor.
Instead of predicting a dense shape mesh, we focus on predicting dense face key points.
We assume that from a dense facial landmark it is possible to predict the full face shape
information. Currently, there is no face dataset publicly available that has dense landmarks
available as ground truth. So we first introduce a pipeline to create a dense landmark of 520
key points sampled from a UV position map data that can be extracted by fitting a face model
to a face with the help of its 3DMM parameters. Using the newly created ground truth dense
landmark data, we train a lightweight model with the MobilenetV2 backbone that predicts
the dense landmarks from a single-face image. As there is no real data available with dense
landmark ground truth for evaluation, we evaluate our model against the 3D face alignment
task with 68 3D face key points. From the result, we find the trained model performs well
when compared to other SOTA tasks when evaluated on the 3D face alignment task. As
we use the lightweight Mobilenet backbone as the feature extractor, the overall model size
and the memory requirement (FLOPs) are comparatively much smaller than the other SOTA
backbones.

As future work, we can extend this to utilize more lightweight backbones like VarGFaceNet
[156] to optimize the model further. We can also apply different knowledge distillation meth-
ods to pass task-specific features from a large, high-performing network. As we are trying to
learn the dense landmark, we can create a weighted graph network and apply graph learning
to replace the normal convolutions with graph convolution to learn the relationship and
dependencies of the neighbor landmarks. As we don’t have access to any ground truth-dense
landmark dataset, we evaluate our model against the 68 key points. To evaluate the whole
face shape, we can fit an existing face base model with the help of the dense landmarks and
evaluate the learned shape against the ground truth face scans available publicly.
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