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Abstract

The chief objective of this thesis is to provide an introduction to symplectic numerical methods

and how they may be applied to optical problems, particularly for tracing rays within gradient-

index (GRIN) optics. Specifically, we investigate how symplectic methods compare in terms

of accuracy with well-established numerical integration techniques such as Euler’s method and

the fourth-order Runge-Kutta method (RK4). As a near-term application, symplectic methods

are used to render a test image which requires nonlinear ray tracing. The accuracy of implicit

numerical methods is also considered, in addition to the derivation of algebraic iteration schemes

for lenses with separable index profiles thereby removing the need for root solvers when using

implicit methods. Finally, the pyramid wavefront sensor, a component commonly employed in

adaptive optics systems, is considered as a means of measuring aberrations present within GRIN

elements and is proposed as a tool to undertake the characterisation and optical testing of same.

Keywords: Symplectic numerical methods, GRIN optics, optical testing.
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Chapter 1

Introduction

When students first begin their study of optics, the refractive index is often presented as a

material property with a fixed value. Birefringent media, with various constant index values

along a given axis or set of axes are then typically introduced, though the process of determining

ray trajectories through isotropic or birefringent media is essentially identical. However, the

idea of a position-dependent refractive index is often considered a specialist topic and is seldom

taught in great detail, since the determination of analytical trajectories through media with

non-constant refractive indices becomes significantly more challenging and is even impossible in

a great number of cases.

That said, it is still worth examining spatially-varying gradient-index (GRIN) elements as they

offer an additional degree of freedom in the design of optical components. For instance, Figure 1

shows how it is possible to use a GRIN lens with spherical surfaces to direct an axially-collimated

bundle of rays to an ideal focus. Thus, we no longer need to manufacture complex aspheric

surfaces in order to correct for spherical aberration. Various techniques exist for the fabrication

of GRIN elements. Photopolymerisation, for example, involves the exposure of monomers to UV

light with varying intensity, causing the monomers to partially polymerise, creating a gradient-

index profile [64]. Another technique involves the Fickian diffusion of exchange molecules across

a flat boundary, reporting that lenses manufactured via this method experience an order of

magnitude reduction in spherical aberration when compared with constant-index lenses of the

same geometry [28].

Gradient index optics are not just synthetic curiosities; rather, many natural examples also

exist. Earth’s atmosphere has a spatially- and temporally-varying refractive index [66], causing

a notable reduction in the quality of images obtained by Earth-based astronomical observatories

[83]. Also, in the field of ophthalmology, developing an accurate GRIN model of the human eye
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Gradient-index lenses Introduction

which accounts for ageing is an active area of research [84]. Finally, the most exotic example

of a natural GRIN lens, is perhaps the Solar Gravitational Lens, where detector spacecraft are

placed along the gravitational focal line of the Sun in order to obtain high-resolution images of

distant exoplanets. However, many technological obstacles prevent it from being realised [96].

This thesis primarily investigates symplectic numerical methods, a class of numerical integrators

designed for solving Hamiltonian systems, comparing their performance with a range of common

numerical methods used in the solution of ordinary differential equations (ODEs). We also show

how implicit numerical methods may be employed without the need for a root-solving algorithm,

provided that the refractive index of a lens is of a particular form. The pyramid wavefront sensor

is then proposed as an aberrometer for GRIN optics.

It is perhaps worth stating at the outset that the simulations presented here are purely phe-

nomenological; rays are simply treated as the trajectories of corpuscles, calculated based on

the eikonal approximation of Maxwell’s equations [11]. Hence, any effects owing to the wave

nature of light (i.e. diffraction), are neglected completely. So too are the singularities of light

wave amplitudes which occur at caustics surfaces which are tangential to each of the rays [88].

Furthermore, wavefronts are considered to be surfaces orientated perpendicular to each ray at

a given instance during its propagation within an optical system, that is, all points of the same

phase. While the phase function governing a particular wavefront is typically periodic, the pyra-

mid wavefront sensor struggles to reconstruct wavefronts with phase discontinuities [9]. Hence,

wavefront branches are disregarded here for simplicity.

This thesis is laid out as follows: Chapter 2 provides an overview of the mathematics required for

the Hamiltonian formulation of geometric optics and symplectic methods before applying them

to a selection of spherical GRIN lenses in Chapter 3, where image rendering is also presented as

an alternative use for symplectic numerical techniques. Chapter 4 then demonstrates how lenses

with certain separable index profiles enable the use of implicit symplectic methods without the

need for computationally expensive nonlinear root-solvers. Simulations of aberrometry with the

pyramid wavefront sensor are given in Chapter 5. Concluding remarks and recommendations

then follow in Chapter 6. Three appendices accompany the text. The first provides further

details of each numerical method used in the thesis. The second contains a proof that the

implicit midpoint method is symplectic. The third appendix then proves the non-existence of

explicit symplectic Runge-Kutta methods.
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Constant index

Gradient index

Figure 1.1: Using a gradient-index element to achieve a perfect focus. This particular element
is known as the Ilinsky lens and is examined in further detail in Chapter 4

.
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Chapter 2

Mathematical preliminaries

2.1 Hamiltonian optics: the state of the art

Hamiltonian dynamics in its most general sense has its roots in optics, first being presented in

William Rowan Hamilton’s Theory of systems of rays [39]. However, Hamilton’s initial work

on optics was quickly extended to mechanics [40], laying the foundation for quantum mechanics

and forming a large portion of mechanics courses at university level. While several volumes

have been published specifically on Hamiltonian optics [14,70,90], Hamilton’s analysis is seldom

exploited to its full potential, typically being neglected in favour of an equivalent Lagrangian

framework, which has already proved useful for ray tracing in GRIN media [51,65,73].

Nonetheless, by using the more symmetrical Hamiltonian framework, a system’s phase space may

be examined, thereby offering a unique perspective. The utility of phase space in optics is well

documented [92, 94, 100] and has several advantages. Firstly, the inverse problem determining

the refractive index of a medium from the optical path of a given ray is simply solved by

a Legendre transform between coordinate and momentum spaces [63]. Secondly, aberrations

present in a freeform optical system can be easily quantified by polynomial curve-fitting of phase

space data, allowing a more natural alternative framework to Seidel aberration theory [4, 5].

Moreover, since the determination of ray trajectories requires the solution of a nonlinear partial

differential equation, which is only analytic in specific cases [58], numerical methods prove

to be indispensable for nonlinear ray tracing [35]. Furthermore, by adopting the Hamiltonian

perspective, we may construct numerical techniques for ray tracing in GRIN media that are both

accurate and computationally inexpensive. Thus, by turning once again to phase space, we can

construct numerical methods capable of preserving certain phase space properties which only

become apparent when considered from a Hamiltonian point of view. Chief among them is the

symplectic structure, representing the spread of light within an optical system [18]. Numerical
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methods which conserve the symplectic structure are referred to as symplectic integrators and

have been well studied [37,78,103]. Popular applications include celestial mechanics [45,77] and

molecular dynamics [34, 87]. By comparison, they have seen limited use in optics [68, 80], with

symplectic ray tracing receiving little consideration over the past two decades, despite numerous

advances being made in the relevant underlying theory [37,38,80].

Consequently, the objective of this chapter is to provide the necessary mathematical prelimi-

naries for Hamiltonian optics without the need for extensive prior knowledge of topics such as

differential geometry or group theory. Notation is deliberately kept similar to existing litera-

ture so as to allow for assimilation of relevant results from pre-existing manuscripts, ultimately

highlighting the merits of applying symplectic numerical methods to optical problems.

2.2 A review of the Hamiltonian formalism

To begin, we define a dynamical system in k-dimensional configuration space by its generalised

coordinates q =
[
q1(t), q2(t), . . . , qk(t)

]
, parameterised by some scalar t. For mechanical systems,

t typically represents time, though other parameterisations (e.g. arclength) may also be used

as any parameterisation is not generally unique [93]. The system’s corresponding generalised

velocities are q̇ =
[
q̇1(t), q̇2(t), . . . , q̇k(t)

]
, where throughout the remaineder of this thesis, the

notation q̇i represents the total derivative with respect to t, that is

q̇i =
dqi
dt

. (2.1)

The action S is then defined as the integral of the Lagrangian L = L(q(t), q̇(t), t) along a given

trajectory between a pair of fixed endpoints parameterised by t1 and t2

S =

∫ t2

t1

L dt. (2.2)

For a Lagrangian that is not explicitly t-dependent,
[
i.e. L = L(q(t), q̇(t)

]
, multiple trajectories

exist between t1 and t2, such that the difference between any two trajectories is minimised to

the first order and higher-order terms are assumed to be negligible [48]. In other words, we have

defined the stationary action principle, expressed mathematically as follows:

δS = δ

∫ t2

t1

L dt = 0. (2.3)

The system’s generalised momenta (or conjugate momenta) are then defined as

pi ≡
∂L

∂q̇i
, (2.4)
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where the energy function of the system is given by

EL =
k∑

i=1

q̇i
∂L

∂q̇i
− L. (2.5)

The Hamiltonian may then be defined by an inverse Legendre transform of the energy function:

H =
k∑

i=1

q̇ipi − L. (2.6)

Then, by making an infinitesimal perturbation of the Hamiltonian, we notice

δH =
k∑

i=1

(q̇iδpi + piδq̇i)− δL

=

k∑

i=1

[
q̇iδpi + piδq̇i −

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)]
. (2.7)

However, recalling Eq. (2.4), we find

δH =

k∑

i=1

(
q̇iδpi −

∂L

∂qi
δqi

)
(2.8)

=

k∑

i=1

(
∂H

∂pi
δpi +

∂H

∂qi
δqi

)
, (2.9)

then, comparing Eqs. (2.8) and (2.9)

∂H

∂pi
= q̇i, (2.10)

∂H

∂qi
= −∂L

∂qi
. (2.11)

From the Euler-Lagrange equation, we obtain the following useful result

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
= ṗi, (2.12)

which gives us Hamilton’s equations

∂H

∂pi
= q̇i, (2.13)

∂H

∂qi
= −ṗi. (2.14)
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The primary advantage of Hamilton’s formalism is that it reduces k second-order Euler-Lagrange

equations into 2k first-order equations. Furthermore, certain symmetries and invariants might

not be obvious in configuration space, but become apparent in phase space [41], which is the

natural setting for Hamiltonian dynamics. One such invariant is the symplectic structure [3].

Although the Hamiltonian formulation may not necessarily reduce the difficulty in finding ex-

act solutions when compared with its Lagrangian counterpart, we can exploit the symplectic

structure to find highly accurate numerical solutions.

2.3 Phase space and symplectic integrators

In the search for a full description of a dynamical system, the configuration space picture of

Lagrangian dynamics is necessarily incomplete. The system considered in the previous section

exists in a k-dimensional configuration space, describing its position for a given value of the

parameter t. Configuration space does, however, fail to take account of the generalised veloc-

ities. Hence, we require an extended space which describes both the position and velocity (or

momentum) of the system at a given value of t and also how the system evolves with changes

in t; the extended space we require is phase space.

Our system, with its k-dimensional configuration space has an associated phase space of dimen-

sion 2k, consisting of the configuration space and the system’s momentum space, which may be

thought of as an analogous configuration space for the system’s generalised momenta [41]. As a

result, only the complete phase space of a one-dimensional system can be depicted easily on a

single graph; representing the full phase space of higher-dimensional systems is cumbersome. To

assist with visualisation, however, phase space may be decomposed into two-dimensional phase

planes [86], with one for each piqi pair. Regardless of the dimension of the system’s phase space,

a given point z0 in phase space is described by

z0 = z(t0) =

(
p0

q0

)
=

(
p(t0)

q(t0)

)
, (2.15)

and so Hamilton’s equations may be rewritten in matrix form:

ż0 = J−1 ∂H

∂z0
, (2.16)

where

J ≡
(

0 Ik

−Ik 0

)
(2.17)

is a 2k × 2k skew-symmetric block matrix. 0 is a k × k null matrix and Ik is a k × k identity

7
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matrix. For t1 = t0 +∆t, we define another phase space point

z1 = z(t1) =

(
p1

q1

)
=

(
p(t1)

q(t1)

)
(2.18)

that also satisfies Eq. (2.16) i.e.

ż1 = J−1 ∂H

∂z1
. (2.19)

After some algebra, Eq. (2.19) yields an alternative matrix equation

(
∂z1
∂z0

)T

J

(
∂z1
∂z0

)
= J, (2.20)

in general, for tn = t0 + n∆t,

(
∂z2
∂z1

)T

J

(
∂z2
∂z1

)
=

(
∂z3
∂z2

)T

J

(
∂z3
∂z2

)
= . . . =

(
∂zn+1

∂zn

)T

J

(
∂zn+1

∂zn

)
= J, (2.21)

where the superscript T denotes the matrix transpose. Any matrix that satisfies Eq. (2.20) is

deemed to be symplectic as it conserves the symplectic structure in phase space.
(
∂zn+1

∂zn

)
is the

Jacobian of the system’s flow [23]. This flow (so called because of its similarity to a fluid flow)

traces the phase space trajectory of the system, mapping the initial condition to another state

(
p0

q0

)
7→
(
pn

qn

)
. (2.22)

As a simple example, Figure 2.1 shows the phase space of a one-dimensional simple harmonic

oscillator, whose Hamiltonian is given by

H(p, q) =
p2

2
+

q2

2
. (2.23)

From Eq. (2.23), we see the trajectory in each piqi plane is a circle, which is further confirmed

in Figure 2.1 and so, it follows that the transformations required to map the initial conditions

to another point on the phase space trajectory are the parametric equations of a circle

(
pn

qn

)

︸ ︷︷ ︸
zn

=

(
cos t − sin t

sin t cos t

)

︸ ︷︷ ︸
flow

(
p0

q0

)

︸ ︷︷ ︸
z0

. (2.24)

Ensuring that the Jacobian of the flow is symplectic via substitution into Eq. (2.20) is a straight-

forward task. Recalling Eq. (2.23) once again, we observe that a symplectic transformation cor-

responds to some initial state being rotated anticlockwise through an angle of π
2 radians. Thus,

we now have a means of depicting the symplectic structure. Without loss of generality, for a

8
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pair of vectors in phase space (v,w) and using the notation presented in [25], the symplectic

structure [v,w] is defined to be

[v,w] ≡ (J× v) ·w, (2.25)

where J is the same skew-symmetric matrix from Eq. (2.16). For the one-dimensional case, as in

Figure 2.1, [v,w] is simply the area of the projection of the parallelogram defined by v and w.

In higher dimensions, [v,w] becomes a sum of k terms, where each term is the area of the

parallelogram defined in the kth phase plane. We can then more easily visualise a volume in

2k dimensions as a series of two-dimensional “slices” through each phase plane. Irrespective of

the dimensions of the system, the symplectic structure is unique to Hamiltonian systems and is

thus conserved by Hamilton’s equations (i.e. d
dt [v,w] = 0). The formal statement describing the

conservation of the symplectic structure is known as Liouville’s theorem, which is demonstrated

graphically in Figure 2.2, where the area of the parallelogram remains unchanged for each point

on the phase space trajectory. In optics, conserving the symplectic structure corresponds to

conserving étendue [18], meaning the extent to which the rays spread out cannot decrease as

the light propagates.

−1 1

−1

1

0

(q0, p0) q

p

Figure 2.1: The phase space of a one-dimensional simple harmonic oscillator. Beginning at
(q0, p0) = (1, 0), the oscillator is then released and allowed to oscillate indefinitely. The trajectory
traced by the system is indicated by the arrows. To fully describe a two-dimensional oscillator,
we require two such plots. Likewise, a three-dimensional one would require three plots and so
on. The maximum momentum and displacement are normalised with qmax = pmax = 1.
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−1 1

−1

1

0

q

p

Figure 2.2: The symplectic structure [v,w] (i.e. the area of each parallelogram) is conserved and
unchanging at each point on the phase space trajectory. Arrows represent the vectors v and w.

In more general terms, however, the application of symplectic numerical methods to Hamiltonian

systems is possible since (2.23) is of the form H = P (px, py, pz)+N(x, y, z), making it separable.

This allows the terms dependent on position and momentum to be treated independently. Sym-

plectic numerical methods for separable Hamiltonians are constructed via splitting, giving two

separate iterative schemes to calculate the position and momentum related to a given trajec-

tory. Constructing the relevant iterative schemes first requires us to solve Hamilton’s equations

in matrix form. First, we combine the position and momentum vectors for a given ray into a

single matrix z = (p,q)T with with p and q representing a ray’s position and optical momentum

vectors for a given ray, as before. and define the Liouville operator DH [25] to act on z, where

DHz :=
3∑

i=1

(
∂z

∂qi

∂H

∂pi
+

∂z

∂pi

∂H

∂qi

)
. (2.26)

The system (2.16) may now be written more concisely as

dz

dt
= DHz. (2.27)

Treating DH as a vector operator, the solution to Eq. (2.27) is a matrix exponential

z(t) = [exp(tDH)] z(0). (2.28)

10
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Recalling that (2.23) is separable, if we further define

DP z :=
3∑

i=1

(
∂z

∂qi

∂H

∂pi

)
,

DNz :=

3∑

i=1

(
∂z

∂pi

∂H

∂qi

)
,

(2.29)

We then observe DH · = DP ·+DN · , where “ · ” represents the vector operand. By choosing sets

of coefficients {ci} for momentum and {di} for position, we subdivide the difference between

0 and t into m equal parts, where m is the known as the order of the numerical method. For

our numerical method to be consistent (i.e. both useful and physically meaningful), we require∑m
i=1 ci =

∑m
i=1 di = 1, Assuming an infinitesimally small t we now write

exp
[
t(DP +DN )

]
=

m∏

i=1

exp(tciDP ) exp(tdiDN ) +O(tm+1), (2.30)

However, this does not exclude the possibility of negative coefficients in the case where the

sums of {ci} and {di} would otherwise be greater than unity. Ruth’s method [32], for instance,

provides a concrete example of a fourth-order method with negative coefficients and is considered

in the appendix. Next, performing first-order Taylor expansions of exp(tciDP ) and exp(tdiDN )

exp(tciDP ) = I + tDP +O(t2), (2.31)

exp(tdiDN ) = I + tDN +O(t2). (2.32)

In the simplest case of a first-order method (i.e. taking ci = di = 1), if we know the state

governing a trajectory zn at t = n, we may calculate zn+1 at tn+1 = tn + ∆t (where ∆t is

some small, finite difference between subsequent iterations). Multiplying (2.31) by zn before

substituting the result into (2.32), we obtain the symplectic Euler method [38]:

pin+1 = pin − ∂

∂qi
[N(qin)]∆t,

qin+1 = qin +
∂

∂pi

[
P (pin+1)

]
∆t,

(2.33)

Higher-order symplectic methods can then be constructed by choosing appropriate values for

ci and di. However, finding the optimal values for these coefficients often involves a large sys-

tem of equations which may not have an exact solution [32, 57, 103]. Nonetheless, Higher-order

methods can then be constructed by composition of the symplectic Euler method using frac-

tional steps, since the composition of two symplectic methods is itself a symplectic method [49].

The composition technique for constructing symplectic methods is presented in greater detail

in Chapter 4. Moreover, by considering higher-order integrators, we can construct numerical

11
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techniques that are both symplectic and symmetric [37]. In contrast, the explicit Euler method

pin+1 = pin − ∂

∂qi
[N(qin)]∆t,

qin+1 = qin +
∂

∂pi
[P (pin)]∆t,

(2.34)

is not generally a symplectic method as it does not conserve the symplectic structure. Differences

between symplectic and nonsymplectic numerical methods are more easily observed by compar-

ing their behaviour during each iteration. Figure 2.3 illustrates how position and momentum

values calculated during each iteration are handled differently by each method. A nonsymplec-

tic method will update the momentum and position using data obtained exclusively from the

previous iteration, while a symplectic method initially calculates the momentum, then, with

this updated momentum, it obtains the position during the same iteration, resulting in a lower

overall error for a greater number of iterations [30,37,38]. A useful consequence of this result is

that symplectic numerical methods are typically more accurate than their nonsymplectic coun-

terparts, particularly when using a relatively large step between successive iterations [37, 38].

Figure 2.3: Differences between symplectic and nonsymplectic methods, with p and q repre-
senting momentum and position, respectively. By making use ofthe momentum obtained from
the same iteration to update the position, symplectic methods are often more accurate.
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However, a special case exists where the explicit Euler method behaves as a symplectic method

[30]. Specifically, for a system whose Hamiltonian is separable and has constant generalised

momenta, the explicit Euler method is symplectic. Hence, we observe

∂P

∂pi
= pi,

−∂N

∂qi
= 0.

(2.35)

Now, applying the explicit Euler method

pin+1 = pin ∀t,
qin+1 = qin +∆t pin ,

(2.36)

then, calculating the Jacobian of the flow

∂pin+1

∂pin
= 1,

∂pin+1

∂qi
= 0,

∂qin+1

∂pin
= ∆t,

∂qin+1

∂qin
= 1.

∂zn+1

∂zn
=

(
1 0

∆t 1

)
.

Finally, testing the Jacobian for symplecticity

(
∂zn+1

∂zn

)T

J

(
∂zn+1

∂zn

)
=

(
1 0

∆t 1

)T (
0 1

−1 0

)(
1 0

∆t 1

)

=

(
1 ∆t

0 1

)(
0 1

−1 0

)(
1 0

∆t 1

)

=

(
−∆t 1

−1 0

)(
1 0

∆t 1

)

=

(
0 1

−1 0

)

= J.

Hence, for a separable Hamiltonian whose generalised momenta are constant, the explicit Euler

satisfies Eq. (2.20) and is therefore symplectic.

13
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2.4 Ray tracing in homogeneous media

While the previous section illustrates an interesting result within the Hamiltonian framework,

it is natural to consider whether this finding has any relevance to optics. In fact, it provides

a motivating example for symplectic ray tracing within homogeneous media, describing the

propagation of rays through isotropic or birefringent media. Of course, exact ray paths in such

systems are easily solvable. Even so, it is encouraging to see that symplectic ray tracing produces

equivalent results.

From Fermat’s principle of least time, the path travelled by a light ray between two points

A =
[
q1A(t), q2A(t), q3A(t)

]
and B =

[
q1B(t), q2B(t), q3B(t)

]
is the one that takes the least

amount of time [18]. This is mathematically equivalent to Eq. (2.3), thereby allowing us to

define an optical Lagrangian [46] in three-dimensional space:

δS = δ

∫ B

A
n
ds

dt
dt = δ

∫ B

A
L dt = 0, (2.37)

where S is the optical path
(
not to be confused with the action S), ds =

√
dq21 + dq22 + dq23 is

an infinitesimal change in the geometrical path s and n is the refractive index, assumed (for

now) to be constant along each coordinate axis (i.e. the medium is homogeneous). Substituting

the expression for ds into Eq. (2.37), yields the optical Lagrangian:

L = n
√
q̇21 + q̇22 + q̇23, (2.38)

Consequently, the system’s optical momenta (so called due to its similarity to the concept of

conjugate momentum in classical mechanics) are defined as

p ≡
(
∂L

∂q̇1
,
∂L

∂q̇2
,
∂L

∂q̇3

)
(2.39)

=

(
nq̇1√

q̇21 + q̇22 + q̇23
,

nq̇2√
q̇21 + q̇22 + q̇23

,
nq̇3√

q̇21 + q̇22 + q̇23

)
(2.40)

=

(
n
dq1
ds

, n
dq2
ds

, n
dq3
ds

)
(2.41)

= (p1, p2, p3). (2.42)

Following algebraic manipulation of the optical Lagrangian

L = q̇1
nq̇1√

q̇21 + q̇22 + q̇23
+ q̇2

nq̇2√
q̇21 + q̇22 + q̇23

+ q̇3
nq̇3√

q̇21 + q̇22 + q̇23

= q̇1p1 + q̇2p2 + q̇3p3.

(2.43)
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Recalling the definition of the Hamiltonian from Eq. (2.6)

H =
k∑

i=1

q̇ipi − L

= 0.

(2.44)

We see that the H vanishes identically. This gives us some direction in choosing the correct

form for the optical Hamiltonian. In this instance, we make use of the following ansatz:

H =
1

2

[
∥p∥2 − n2(q)

]
= 0. (2.45)

Further details on the rationale behind this choice for the optical Hamiltonian are given in

Chapter 3. Now, we realise that the use of a harmonic oscillator as an example in Section

2.3 was no coincidence; Eq. (2.45) and Eq. (2.23) have a similar form, save for a few crucial

differences. First, we notice that the sign of the second term in Eq. (2.45) is negative, meaning

its phase space trajectory is in the opposite direction to Figure 2.1. Second, the function chosen

for the refractive index will determine whether our “oscillator” is “damped” or “driven”, which

could cause the phase space trajectory to spiral inwards or outwards rather than remain periodic.

First, however, we take the gradient of the optical path

∇S = n
dq

ds

= p.

(2.46)

Moreover, considering the eikonal equation [18]

(
∂S

∂q1

)2

+

(
∂S

∂q2

)2

+

(
∂S

∂q3

)2

= n2, (2.47)

we see p21 + p22 + p23 − n2 = 0, indicating our choice for the optical Hamiltonian in Eq. (2.45) is

suitable. From Eqs. (2.46) and (2.47), the differential equation of light rays [58] is then derived.

d

ds

(
n(q)

dq

ds

)
= ∇n(q), (2.48)

from Eqs. (2.45) and (2.48), we can demonstrate

dp

ds/n
= −∂H

∂q
. (2.49)

By defining dt ≡ ds
n , Eq. (2.49) is rewritten as

dp

dt
= −∂H

∂q
, (2.50)
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which is identical to Eq. (2.14). However, in order to avoid confusion, some caution is warranted.

Here, dt does not represent a small, finite time step, but rather a small finite change in the

geometric path of the ray, divided by the refractive index of the medium. Nonetheless, a useful

consequence of parameterising Eq. (2.49) in terms of dt is that the optical momenta reduce to

the direction cosines p = (cosαq1 , cosαq2 , cosαq3), where αq1 , αq2 and αq3 are the angles made

with axes q1, q2 and q3 respectively. In a manner similar to Eq. (2.49), one can also demonstrate

dq

dt
=

∂H

∂p
. (2.51)

Returning to Eq. (2.48), since we assumed the refractive index is constant ṗ1 = ṗ2 = ṗ3 = 0,

indicating optical momentum is conserved in accordance with Snell’s law. Hence, p1, p2 and p3

are each constant. Likewise, from Eq. (2.13)

q̇1 =
1

2

∂

∂p1

(
p21 + p22 + p23 − n2

)
= p1, (2.52)

q̇2 =
1

2

∂

∂p2

(
p21 + p22 + p23 − n2

)
= p2, (2.53)

q̇3 =
1

2

∂

∂p3

(
p21 + p22 + p23 − n2

)
= p3. (2.54)

Substituting from Eqs. (2.52)–(2.54) into Eq. (2.33)

q1 = q10 + p1t, (2.55)

q2 = q20 + p2t, (2.56)

q3 = q30 + p3t, (2.57)

or in vector form, the system can be written as

q = q0 + pt, (2.58)

which is an exact description of light rays traversing a homogeneous medium. This formulation

is applicable to isotropic media or birefringent media, where t may replace ∆t in Eqs. (2.55)-

(2.58). However, the power of symplectic ray tracing becomes particularly apparent when it

is applied to gradient-index media, where the ray trajectories are not necessarily available in a

closed form, making the use of numerical methods an absolute necessity. The following chapter

explores the suitability of symplectic numerical methods for nonlinear ray tracing and compares

their performance with popular nonsymplectic methods.
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Chapter 3

Numerical experiments with

spherical GRIN lenses

3.1 An alternative derivation of the optical Hamiltonian

The previous chapter demonstrated how to derive the optical Lagrangian as a consequence of

Fermat’s principle before performing a Legendre transform on this Lagrangian to obtain the

associated optical Hamiltonian [46,94,100]. Here, however, we dispense with this procedure for

the sake of brevity, showing that it is also possible to derive the necessary optical Hamiltonian

directly from the eikonal equation [74]

(
∂S

∂x

)2

+

(
∂S

∂y

)2

+

(
∂S

∂z

)2

= n2(x, y, z), (3.1)

Taking the total differential dS of the optical path, via the chain rule, we find

dS = ∇S · dq, (3.2)

where ∇S is the gradient of the optical path vector and dq is the differential of the position

vector q = (x, y, z)T . Recalling that by definition dS = n ds, therefore we may write

n ds = ∇S · dq, (3.3)

then, multiplying both sides by n/ds

n2 = ∇S · ndq
ds

, (3.4)
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and n2 = |∇S|2 = ∇S · ∇S from Eq. (3.1),

∇S = n
dq

ds
, (3.5)

which is identical to the optical momentum defined in Eq. (2.42). Hence,

p = n
dq

ds
. (3.6)

Now, differentiating p with respect to s

d

ds

(
n
dq

ds

)
=

d

ds
(∇S)

=
dq

ds
· ∇(∇S), (3.7)

then, rearranging Eq. (3.5) (∇S)/n = dq/ds

d

ds

(
n
dq

ds

)
=

∇S

n
· ∇(∇S)

=
∇(∇S2)

2n
. (3.8)

Recalling |∇S|2 = n2 from Eq. (3.1) once again

d

ds

(
n
dq

ds

)
=

∇n2

2n
. (3.9)

Finally, multiplying both sides by n

n
dp

ds
= ∇

(
n2

2

)
. (3.10)

Defining dt = ds/n, we now rewrite Eq. (3.1) as a system of six ordinary differential equations

dx

dt
= px,

dpx
dt

=
∂

∂x

(
n2

2

)
,

dy

dt
= py,

dpy
dt

=
∂

∂y

(
n2

2

)
, (3.11)

dz

dt
= pz,

dpz
dt

=
∂

∂z

(
n2

2

)
.

By choosing to parameterise our system in terms of t, we transform Eq. (3.1) from a partial

differential equation into a system of Hamilton’s equations for some optical Hamiltonian H.
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Thus, we may now write.

px =
∂H

∂px
,

∂

∂x

(
n2

2

)
= −∂H

∂x
,

py =
∂H

∂py
,

∂

∂y

(
n2

2

)
= −∂H

∂y
, (3.12)

pz =
∂H

∂pz
,

∂

∂z

(
n2

2

)
= −∂H

∂z
,

Solving for H in (3.12) is then a straightforward exercise, providing us with the optical Hamil-

tonian. We see it is identical in form to Eq. (2.45), i.e. the ansatz made in the previous chapter.

H =
1

2

[
p2x + p2y + p2z − n2(x, y, z)

]
. (3.13)

3.1.1 A brief remark on alternatives to ray tracing

While ray tracing is among the highest fidelity methods for image formation [85], other methods

for solving the eikonal equation have arisen outside of the optical domain in fields such as

geophysics and control theory [53,67]. Rather than taking a Hamiltonian ray-optical approach,

these alternative techniques aim to solve for the optical path directly from the eikonal equation.

Chief among them is the fast marching method [81], developed in the 1990s by James Sethian,

which divides a scene into a grid of nodes and iteratively solves for the optical path directly,

building a solution that is informed by the information available from the boundary conditions.

Another method related to the fast marching method is the fast sweeping method [104], first

proposed in 2005 by Hong-Kai Zhao. Like the fast marching method, it directly solves for the

optical path, but it uses an upwind differencing scheme to descretise the domain on which the

equation is to be solved. Once the initial optical path values are assigned, Gauss-Seidel iteration

is used to update them until the optical path values converge satisfactorily. Fast sweeping

and fast marching approaches have been compared extensively [17]. The fast sweeping method

tends to outperform the fast marching method on problems where the characteristics are mostly

straight lines (i.e. for plane wavefronts). By contrast, the fast marching method performs better

when the object we wish to image is an irregular shape.

Nevertheless, for optical design and testing of elements, numerical ray tracing methods are

typically sufficient for our needs. Moreover, in our experiments with point sources and collimated

rays, the benefit offered by the fast marching method for complicated object geometries simply

isn’t warranted. Additionally, while the numerical methods used here solve for the ray trajectory

in a series of linear steps, this may be to our advantage in the simulation of lenses which can

be practically fabricated. For instance, spherical lenses are constructed by repeated stacking
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of increasingly larger spherical shells, as shown in Figure 3.1. Each shell is of a finite width

(∆t, say) whose refractive indices differ from each other by ∆n ≪ 1. Thus, a numerical trace

constructed by a sequence of linear steps, each of size ∆t could, in effect, be exact for a real

GRIN lens. Here, the ray tracing methods used are iterative methods, typically written in the

form qn+1 = f(qn). In other words, each update depends soley on information from previous

iterations, though Chapter 4 considers methods with update schemes that are implicit in qn+1.

∆t ∆t

R0 = k∆t

. . . n0

...

n0 − (k − 1)∆n

n0 − (k − 2)∆n

∆t ∆t

R0 = k∆t

. . . n0

...

n0 − (k − 1)∆n

n0 − (k − 2)∆n

∆t ∆t

R0 = k∆t

. . . n0

...

n0 − (k − 1)∆n

n0 − (k − 2)∆n

∆t ∆t

R0 = k∆t

. . . n0

...

n0 − (k − 1)∆n

n0 − (k − 2)∆n

Figure 3.1: A schematic of a spherical GRIN lens of radius R0 = k∆t, constructed from k
spherical shells. Each shell is of width ∆t and its refractive index will differ from subsequent
shells by ∆n, with the innermost shell having a refractive index of n0.

3.2 Results of numerical experiments

In order to test the validity of symplectic methods for solving optical problems, simulated traces

with a monochromatic light source of wavelength λ = 589.3 nm were carried out within a

selection of spherically symmetric lenses, each of radius R0 = 1 mm, all of which have been

extensively studied in existing optical literature. The Lüneburg [52] and Maxwell fish-eye [55]

lenses are classical GRIN elements which have found applications as directional antennae for

radio and microwave devices [24, 54] and more recently at optical wavelengths [105]. While

the Lüneburg lens will direct a collimated bundle of rays to a single focus on its surface, the

Maxwell fish-eye is described as an absolute optical instrument, theoretically capable of perfect

point-to-point imaging in three-dimensional space [97].
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Figure 3.2: Numerical traces through a Lüneburg lens of radius R0. The region shown in each
right-hand column is marked on each trace in the left-hand column by a black rectangle and
depicts the focal point in greater detail.
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Figure 3.3: Numerical traces through a Maxwell fish-eye lens of radius R0. The right-hand
column once again depicts the focal point in greater detail.
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The Eaton lens [27] and the optical black hole (also referred to as a concentrator lens) [69] differ

from the Lüneburg and Maxwell fish-eye lenses with refractive index profiles that are singular at

their centres, providing a significant challenge to numerical methods which may be used to traces

these lenses. Thankfully, however, we may take advantage of analogies which exist between such

singular GRIN lenses and systems examined in other fields; the ray path within the Eaton lens,

for instance, is effectively identical to the trajectory of a body in the Kepler problem of celestial

mechanics [13]. The Eaton lens is gradually finding applications as a beam deflector [26], while

the optical black hole could prove useful for laboratory astrophysics [44].

Table 3.1 provides further details about each of the four lenses used during numerical experiments

where six numerical methods were chosen to trace each lens. However, for the Eaton lens, the

symplectic Chin-Chen 4A method [19] developed for celestial mechanics was also tested on

account of the Eaton lens’ behaviour as an optical analogue for celestial mechanics. Table 3.2

provides information on the order and symplecticity of each method used, with their associated

numerical recipes being presented in Appendix A.1.

Lens name Index profile Singularity present?

Lüneburg n(y, z) =
√

2− y2+z2

R2
0

No

Maxwell fish-eye n(y, z) = 2
(
1 + y2+z2

R2
0

)−1
No

Eaton n(y, z) =

√
2
√

R2
0

y2+z2
− 1 Yes

Optical black hole n(y, z) =
√

R2
0

y2+z2
Yes

Table 3.1: The lenses used in these numerical experiments and their respective index profiles.
R0 represents the radius of each lens. All lenses are configured such that no refraction will take
place at the surface of each lens when it is surrounded by a vacuum.

Since the Lüneburg and Maxwell fish-eye lenses directed all rays to a single focal point, it was

possible to trace multiple rays and examine their behaviour simultaneously. However, as the

Eaton lens and optical black hole direct each individual ray to a unique focus, only a single

ray was traced in these lenses. The initial ray heights for the single rays in the Eaton lens and

optical black hole were y0 = 0.58R0 and y0 = 0.94R0 respectively. These values were chosen

so each numerical method would be challenged to maintain its accuracy in the vicinity of the

singularity and avoid producing erroneous unphysical results.

Figures 3.2 and 3.3 depict numerical ray traces through the Lüneburg and Maxwell fish-eye

lenses respectively, with the left-hand column depicting the traces in their entirety while the

right-hand column presents a detailed view of the focal points. The step size values range from

∆t = λ to ∆t = 100λ, where λ = 589.3 nm. The exact solution is depicted in each case by

a continuous blue line. As one might expect, the disparity between the numerical methods

decreases with a reduction in ∆t and an increase in method order m. For the Lüneburg lens,
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all methods with the exception of the Euler method are indistinguishable from each other and

the exact solution for ∆t = λ. Significant discrepancies between each of the methods are not

readily visible until ∆t = 100λ, where each of the methods can be easily identified, though

significant overlap is still observed between RK2, RK4 and Ruth’s method. For Maxwell’s fish-

eye, however, both the Euler method and the symplectic Euler method deviate noticeably at

∆t = λ, with both methods disappearing from the inset when ∆t is increased to 100λ. Each of

the second- and fourth-order methods then follow suit, accumulating greater errors and deviating

significantly from the expected focal point as ∆t reaches 100λ. RK2, in particular, appears to

substantially underestimate the focal distance while the Velocity Verlet method displays the

opposite behaviour, overestimating the focal distance, thought not to the same extent. RK4

and Ruth’s method both appear to underestimate the focal distance by approximately same

amount, indicating unsurprisingly that any differences between symplectic and nonsymplectic

methods appear to diminish with an increase in method order for the same choice of step size.

Method name Order m Symplectic?

Euler method 1 No
Symplectic Euler method [38] 1 Yes
RK2 2 No
Velocity Verlet [98] 2 Yes
RK4 [82] 4 No
Ruth’s method [32] 4 Yes
Chin-Chen 4A [19] 4 Yes

Table 3.2: The numerical methods used to ray trace each lens. The Chin-Chen 4A method is
applied to the Eaton lens only, owing to its similarity to the Kepler problem.

For both the Lüneburg and Maxwell fish-eye lenses, Figure 3.6 indicates that symplectic methods

tend to exhibit lower focus errors than their nonsymplectic counterparts of the same order, with

the focus error being defined as the difference between the numerical and exact focus along

the lens perimeter, divided by the lens circumference, normalised in terms of the lens radius

R0. The dashed horizontal line represents the Airy disk radius, providing a benchmark for

diffraction-limited imaging. Consequently, any error values below this line may be considered

exact. Most noticeably, the symplectic Euler method vastly outperforms the standard Euler

method by several orders of magnitude for the Lüneburg lens and approximately one order

of magnitude for the Maxwell fish-eye. The initial conditions presented in Figure 3.6 for the

Lüneburg and Maxwell fish-eye lenses are associated with the rays in Figures 3.2 and 3.3 whose

optical momentum experiences the greatest rate of change. Differences between the fourth-order

methods are much less drastic, with both RK4 and Ruth’s method producing errors on the same

order of magnitude. However, for second-order methods, the results are much more surprising;

the velocity Verlet method is the only method for which the numerical trace is diffraction limited

for all step sizes examined. It not only outperforms RK2, but also RK4 and Ruth’s method,
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Figure 3.4: Numerical traces through an Eaton lens of radius R0. The left- and right-hand
columns respectively show the ray trace for each ∆t and a detailed view of the focus, as before.
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Figure 3.5: Numerical traces through an optical black hole of radius R0. The shaded region on
each plot represents the event horizon of a Schwarzschild black hole, providing a stop condition
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particularly when ∆t > 5λ for the Lüneburg lens and when ∆t = 2.5λ or 25λ for the Maxwell

fish-eye, suggesting that the increased computational expense incurred by using higher-order

methods is not necessarily justified by greater accuracy. This is especially true of the Lüneburg

lens when ∆t = λ, where the velocity Verlet method is exact to within machine precision.
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Figure 3.6: Error in ray tracing each lens with numerous step sizes. The error is defined as
the distance between the exact and numerical focus along the lens perimeter, divided by the
lens circumference, normalised in terms of the lens radius R0. The dashed line represents the
diffraction limit for the wavelength λ = 589.3 nm.

A similar analysis is presented for the Eaton lens and optical black hole in Figures 3.4 and

3.5, where the symplectic methods once again generally appear to offer superior performance

to nonsymplectic methods, particularly at larger step sizes. For the Eaton lens with ∆t = 10λ,

the symplectic Euler method not only outperforms the standard Euler method (which is only

contained within the inset for ∆t = λ) but also proves more accurate than RK2. For ∆t = 100λ,

both RK4 and the Chin-Chen 4A method appear to offer the most accurate solutions, suggesting

that the use of methods developed outside optics could could be of benefit for numerical ray

tracing also. Although it does not dominate all other methods to the same extent as it did with

the Lüneburg lens and Maxwell fish-eye, the velocity Verlet method, still appears to perform

somewhat well, particularly when compared with RK2, with the velocity Verlet method focusing

just outside the inset. In contrast, Ruth’s method performs somewhat poorly here, requiring a
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smaller step size in order to match the results produced by RK4 and the velocity Verlet method.

Nonetheless, Ruth’s method does mimic their behaviour at least in a qualitative sense by over-

estimating the focusing ability of the Eaton lens. The Chin-Chen 4A method instead follows

similar trajectories to all other methods, where the focusing ability of the lens is underestimated.

Thus, the combination of an overestimating method with an underestimating one would perhaps

form the basis for a successful predictor-corrector scheme, though this would presumably come

at an elevated computational cost, especially if the methods chosen are not symplectic.

In contrast with the retroreflecting behaviour of the Eaton lens, the singular index profile of

the optical black hole directs rays along an infinite inward spiral. However, the shaded grey

circle in Figure 3.5 provides a practical stopping condition and represents the event horizon of a

Schwarzschild black hole with radius 0.67R0. Despite the necessary truncation of the ray paths,

some surprising results may still be observed. For instance, RK4 exhibits uncharacteristically

poor performance across all step sizes. Moreover, it is surpassed by all symplectic methods and

even the standard Euler method when ∆t = 100λ. Unlike the Eaton lens, however, RK2 performs

similarly to the Velocity Verlet method across all step sizes, providing a marked difference

in its ray tracing capabilities for the two singular-index lenses. Finally, the symplectic Euler

method outperforms the nonsymplectic Euler method by a considerable margin, particularly

for ∆t ≥ 10λ, further emphasising the gains in accuracy which may be made though the use of

symplectic numerical methods, particularly if a low-order method is desired. Furthermore, as was

the case with the Eaton lens, The combination of methods which both over- and underestimate

the focal distance (such as the velocity Verlet and Ruth’s methods, for instance) could once

again form a useful predictor-corrector method, enabling a larger step size to be used.

On the whole, Symplectic methods demonstrate more consistent performance across both sin-

gular lenses. Though the higher-order methods do not necessarily dominate nonsymplectic

methods to the same extent as they did for the Lüneburg and Maxwell fish-eye lenses, they

tend to at least perform as well as the more established nonsymplectic algorithms at smaller

step sizes. This is especially true of the optical black hole, where Ruth’s method exhibits the

lowest error of all methods for ∆t = λ, while RK4’s focus error remains almost constant for all

chosen step sizes, as depicted in Figure 3.6. Differences in error between the symplectic and

standard Euler methods for both the Eaton lens and optical black hole follow a similar general

trend of decreasing with the step size, though the error values tend to oscillate less than those

of the Lüneburg lens and Maxwell fish-eye. A noteable exception, however, is Ruth’s method

with ∆t = 2.5λ for the optical black hole, where the error increases once again for ∆t = λ. By

contrast, for the Eaton lens, RK4 still appears to be the most accurate choice for most step

sizes, being the only method which offers a diffraction limited image for a step size greater than

10λ. Nonetheless, differences in accuracy between RK4 and Ruth’s method for the Eaton lens

become almost negligible when ∆t = λ. Additionally, the Chin-Chen 4A method appears to
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underperform at smaller step sizes, with the velocity Verlet method making it almost redundant

by offering similarly accurate solutions while demanding less computational resources.

Nevertheless, performing calculations at quadruple rather than double precision would enable us

to examine any trends further and ascertain whether or not RK4 continues to hold its own versus

Ruth’s method for ray tracing within the Eaton lens and also check the constancy of its focus

error when tracing the optical black hole. Likewise, any differences between RK2 and the velocity

Verlet method within the optical black hole could also be considered in greater detail. Indeed,

the impressive performance of the velocity Verlet method within the Lüneburg and Maxwell

fish-eye lenses could also be further tested by quadruple-precision numerical experiments.

3.2.1 A note of caution on higher-order methods

While the velocity Verlet and Ruth’s methods certainly appear to perform well for spherical

GRIN profiles, they are not necessarily the most suitable methods in all circumstances. Specif-

ically, radial profiles seem to provide a significant challenge to each of these methods. As a

concrete example, we will examine the Mikaelian lens (also known commercially as the SELFOC

lens) [61], a rod lens with planar end surfaces capable of focusing axially collimated rays to a

point on its back surface. The necessary index profile is that of a hyperbolic secant, i.e.

n(y) = n0 sech
(πy
2l

)
, (3.14)

where n0 is the refractive index on the optical axis and l is the length of the lens. The relevant

optical Hamiltonian is then written as

HMikaelian =
1

2

[
p2y + p2z − n2

0 sech2
(πy
2l

)]
. (3.15)

Like each of the previous spherical lenses, an analytic trace also exists for the Mikaelian lens,

with periodic ray trajectories given by

y(z) =
2l

π
arcsinh

[
sinh

(πy0
2l

)
cos
(πz
2l

)]
, (3.16)

where y0 is the ray height at the front surface of the lens. Since these trajectories are periodic,

the Mikaelian lens finds applications mainly in integrated optics and microwave antennae [60].

Figure 3.7 shows that even for ∆t = λ, significant errors are present for all numerical methods,

though distinguishing one method from another is rather challenging. However, by increasing the

step size by an order of magnitude to 10λ, we see that even the standard Euler method performs

better than the velocity Verlet method, raising serious concerns about the applicability of the

velocity Verlet method to axial or radial index profiles. The method then redeems itself to some

degree for ∆t = 100λ, where it outperforms the standard Euler RK2 and RK4 methods. Ruth’s
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Figure 3.7: Numerical traces through a Mikaelian lens of length l.
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method appears not to perform particularly well either, though its error seems not to increase

substantially with the step size and performs considerably better than RK4, most noticeably for

∆t = 100λ. The most unusual result is the excellent performance of the symplectic Euler method,

which gives a significantly more accurate solution than all higher-order methods presented here.

Considering the change in focus error (defined for the Mikaelian lens as the height above the focus

on the lens back surface) with step size for the marginal ray in Figure 3.8, we observe that the

RK2, RK4, standard Euler and velocity Verlet methods follow repeated exponential trends, with

the second-order methods growing at the fastest rate followed by RK4 and then by the standard

Euler method. Still, each symplectic method is more accurate than its nonsymplectic counterpart

of the same order. Curiously, the error associated with Ruth’s method mains essentially flat

for all step sizes, much like RK4 did when tracing the optical black hole. However, the most

unusual result is given by the symplectic Euler method, further confirming our observations in

Figure 3.7. However, its focus error is only below the diffraction limit for ∆t = 50λ, suggesting

that the optimum step size is not necessarily the smallest in this instance. For smaller step sizes,

the error then increases rapidly, tending towards the values obtained by Ruth’s method.
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Figure 3.8: Error in ray tracing the Mikaelian lens with numerous step sizes. The error is
defined as the height above the ideal focus on the lens’ back surface. The dashed line once again
represents the diffraction limit for the wavelength λ = 589.3 nm.

Overall, these results seem to suggest that including higher-order terms may sometimes adversely

affect the accuracy of numerical traces, particularly if the error associated with those terms is
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not necessarily balanced out by the lower-order terms. For instance, neglecting terms of order

(∆t)2 from the velocity Verlet method gives a solution which is exact to within machine precision

for ∆t = λ. Another valid approach could be to solve the optimisation problem of finding the

most suitable step size for the symplectic Euler method when tracing the Mikaelian lens.

3.3 Applying symplectic methods to image rendering

Although it may be some time yet before the GRIN lenses considered in the previous section

are incorporated into consumer optical devices, symplectic ray tracing finds a more immediate

application in nonlinear ray tracing for rendering computer images. Considering the consistent

performance of both the velocity Verlet method and Ruth’s method when tracing spherical

index profiles, we now examine their suitability for ray tracing a black hole test image, with

RK4 given as a nonsymplectic comparison. The ray trace programme, written in Python, was

originally made available on GitHub [2], requiring some modifications to remove dependencies on

deprecated functions and the inclusion of the symplectic methods within the existing programme.

1080p samples of the black hole test images are shown in Figure 3.9. In a Cartesian coordinate

system whose origin is at the centre of the black hole’s event horizon, the observer is located

at (x, y, z) = (0, rS ,−20rS), where rS is the black hole’s Schwarzschild radius (i.e. the radius of

its event horizon). All image rendering took place on a Dell™ Inspiron 5570 computer with an

Intel® Core™ i7 CPU and 8 GB of DDR4 RAM. Each ray was then traced from the observer’s

location for a total of 250 iterations with a step size of 0.16rS . The rendering workload was

balanced as equally as possible between four threads, with each thread running in parallel,

assigned to one of the four CPU cores. At first glance, no significant differences can be seen

between each of the three images in Figure 3.9. However, Figure 3.10 presents a normalised pixel-

wise difference map between both symplectic methods and RK4. Some noticeable differences

between the velocity Verlet method and RK4 may then be observed, especially in the vicinity of

the black hole’s event horizon and at the edge of its accretion disk. By contrast, any discrepancies

between Ruth’s method and RK4 are substantially more difficult to distinguish. The radius of

the event horizon in pixels for each image was then calculated, with the results displayed in

Table 3.3. We see that the resolution of RK4 and Ruth’s method is identical, each resulting in

an angular resolution per pixel of 64.0041 arcseconds for our observer. The angular resolution

per pixel for the velocity Verlet method is marginally lower at 64.4041 arcseconds, though Figure

3.9 has already demonstrated this reduction in resolution is practically negligible.

Symplectic methods further demonstrate their advantage in Figure 3.11, where both the velocity

Verlet and Ruth’s methods provide modest reductions in the computation times required to trace

the test images at various resolutions with both 16:9 and 4:3 aspect ratios. The same computer,

step size, number of iterations and observer position used to render the 1080p images in Figure
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RK4

Ruth’s method

Velocity Verlet

Figure 3.9: 1080p test images of a Schwarzschild black hole, showing no significant difference in
image quality between the three numerical methods shown. The observer is located at (x, y, z) =
(0, rS ,−20rS), where the origin of this coordinate system is at the centre of the black hole’s event
horizon and rS represents its Schwarzschild radius.
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Method rS (pixels) Angular resolution per pixel (arcsec.)

RK4 161 64.0041
Ruth’s method 161 64.0041
Velocity Verlet 160 64.4041

Table 3.3: Angular resolution per pixel for each of the three numerical methods used to render
1080p images as observed from (x, y, z) = (0, rS ,−20rS). The angular resolutions of RK4 and
Ruth’s method are identical; the velocity Verlet method’s angular resolution is slightly lower.
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Figure 3.10: A normalised pixel-wise difference map for Ruth’s method and the velocity Verlet
method when compared with RK4. Any differences between RK4 and the velocity Verlet method
are significantly more noticeable than those of Ruth’s method.
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3.9 were again used to render each image here. Owing to a greater number of pixels overall, each

4:3 ratio image took longer to render than a 16:9 image at the same approximate resolution.

Independent of the aspect ratio, we notice that RK4 consistently requires more time to trace

the same image when compared with Ruth’s method and the velocity Verlet method, with RK4

taking over 30 minutes to trace the largest image, yet the velocity Verlet method needs only

half that time to carry out the same task. Furthermore, the difference in the time required by

these two methods appears to grow with a decrease in image resolution. Ruth’s method also

offers a modest reduction in the time required to trace the test image when compared with

RK4. However, the fact that its image quality is virtually identical to that of the velocity Verlet

method makes it somewhat a redundant choice for our task. Nonetheless, this still proves that

symplectic methods prove to be a more optimal choice for nonlinear ray tracing, especially, as

in our case, where the programme may be executed in parallel, since parallel implementations

of symplectic methods should not need extensive modification of serial code.
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Figure 3.11: A plot of the necessary trace time versus image height for images with 16:9 and 4:3
aspect ratios. Both Ruth’s method and the velocity Verlet method require less time than RK4
to ray trace the same test image.

Although the use of the Python language for this ray tracer made its modification straightfor-

ward, additional speed increases could be achieved by using a just-in-time Python compiler such

as Cython or Numba [7,47], or even rewriting the programme completely in a compiled language

such as C, with multiprocessing aspects being handled by well-established parallel computing
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APIs such as OpenMP or MPI [20, 21]. The ray tracer would presumably stand to benefit

greatly from GPU acceleration as well. Since only a CPU was available for the numerical exper-

iments presented here, performance benchmarking on a GPU-enabled system would provide an

interesting comparison with our present results. Particularly in the context of image rendering,

symplectic ray tracing methods could also be tested against fast marching and fast sweeping

methods, mentioned briefly earlier in this chapter. Nevertheless, the existing Python ray tracer

could still serve as a valuable educational resource for introducing students to topics including

nonlinear ray tracing, numerical integration and high-performance computing.

3.4 Summary

In general, symplectic methods offer consistently accurate performance when ray tracing GRIN

elements and often outperform popular nonsymplectic numerical techniques such as RK4. Al-

though optics currently lags behind fields such as celestial mechanics and molecular dynamics

in its adoption of symplectic methods, the velocity Verlet and Ruth’s methods both appear to

provide a useful template for the development of symplectic numerical methods specifically for

ray tracing within spherical GRIN profiles. That said, the construction of a symplectic method

whose performance is adequate across a range of spherical, axial and radial profiles will presum-

able pose a considerable challenge. Nevertheless, complex optical elements such as natural and

artificial eyes, for which analytical ray traces may not exist could indeed benefit from the ap-

plication of tailor-made symplectic methods. In addition to standard GRIN elements, freeform

GRIN (F-GRIN) optics offer another degree of freedom in optical design, taking advantage of a

lack of rotational invariance as well as a GRIN profile which may or may not be continuous [50].

A selection of bespoke symplectic numerical methods could accelerate the design and prototyp-

ing of useful F-GRIN lenses. The ability to accurately trace arbitrary F-GRIN elements would

hopefully, in turn, lead to developments in fabrication and metrology, addressing in particular

a current lack of useful testing methods for conventional GRIN and F-GRIN elements alike.

Moreover, each of the symplectic methods considered in this paper are explicit methods, meaning

each subsequent step relies on position and optical momentum data obtained previously. Several

implicit symplectic methods, often renowned for their increased numerical stability, could also

be used. Unfortunately, implicit methods typically require a root-solving algorithm to calculate

the relevant data during each iteration, substantially increasing the computational cost required

in their implementation. However, certain index profiles exist for which implicit methods may

be used without the need for a root solver, thus eliminating any extra computational expenses

incurred. A selection of such index profiles are considered at length in the following chapter.

36



Chapter 4

An implicit method for separable

GRIN profiles

4.1 Introduction

The vast majority of studies related to symplectic numerical methods focus disproportionately

on explicit methods [33,57, 62], which rely solely on data obtained during previous calculations

in order to update a ray’s trajectory. Implicit methods, which are known for their increased

numerical stability [99], instead substitute data which is yet to be obtained into the relevant

equations, requiring the desired quantities to be isolated in order to be calculated. In most

instances, however, the relevant equations are nonlinear in the quantities of interest (e.g. the

ray’s position or direction cosine), meaning a root-finding algorithm such as Newton’s method

must also be employed during the iteration process, greatly increasing the computational cost

associated with their use [37]. Thus, the use of implicit numerical methods is often limited

to situations where the need for additional numerical stability justifies the increased memory

overhead. This result is particularly relevant to symplectic methods, as symplectic Runge-Kutta

methods are implicit by definition [79]. A proof of this result is available in Appendix A.3.

Nevertheless, it was previously shown that separable index profiles (i.e. profiles for which the

terms dependent on each coordinate can be treated as separate functions) reduce the difficulty

in solving the eikonal equation [12]. Subject to certain constraints, we find that separable

GRIN profiles enable the use of implicit numerical methods without the need for a root-solver,

thereby greatly reducing the computational cost involved. Here, we identify a general expression

for the refractive index, allowing the inexpensive use of implicit symplectic methods while also

performing numerical experiments on a selection of lenses whose index profiles are of the required

form, allowing us to compare an implicit symplectic method with a selection of explicit methods,
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both symplectic and nonsymplectic. First, however, we recall Eq. (2.45)

H =
1

2

[
p2x + p2y + p2z − n2(x, y, z)

]
, (4.1)

where we notice that the form of the refractive index will greatly influence the level of difficulty

in computing ray trajectories. Thus, in some instances, we may benefit from the increased

numerical stability of an implicit symplectic method [37]. However, implicit methods often

require a root-finding scheme to solve for each subsequent iterate, making their implementation

computationally expensive. Yet, in some cases, we may solve for each iterate algebraically, taking

advantage of the additional stability offered by implicit methods at no extra computational cost,

provided the relevant GRIN profile can be written in the following form

n2(x, y, z) = c1

[
c2 + c3(x+ c4)

α1

c5 + c6(x+ c7)α2
+

c8 + c9(y + c10)
α3

c11 + c12(y + c13)α4
+

c14 + c15(z + c16)
α5

c17 + c18(z + c19)α6
+ c20

]
, (4.2)

where c1, . . . , c20 are constants with α1, α3, α5 ∈ {0, 1, 2, 3, 4, 5} and α2, α4, α6 ∈ {0, 1, 2} subject

to the constraints α1 + α2 ≤ 5, α3 + α4 ≤ 5 and α5 + α6 ≤ 5. Thus, any iterative scheme

constructed will contain at most a polynomial of degree 4 in x, y, or z, whose roots can be

solved analytically. To the best of this author’s knowledge, Eq. (4.2) has not been presented

elsewhere in existing literature. We notice that the previous expression is indeed separable, since

it is possible to express the square of the index as a sum of separate functions, each dependent

solely on x, y or z, thus matching the definition for separable GRIN profiles provided in [12].

The implicit midpoint method, a second-order symplectic method is presented as an example of

a method whose implementation need not be expensive. Its construction and application to a

group of GRIN lenses whose profiles are of the form of Eq. (4.2) follows in the next section.

4.2 The implicit midpoint method

4.2.1 Construction by composition

In Chapter 2, we constructed the symplectic Euler method via the splitting technique [29, 37],

where separate symplectic methods are derived from Hamilton’s equations in order to solve for

the position and optical momentum of a given ray. However, a symplectic numerical method

may also be created via composition, where each finite step is divided into a number of sub-steps

before alternating between the use of an implicit and explicit method to solve for the position

and optical momentum at each subsequent sub-step. In order to derive the implicit midpoint
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method, we first recall the forward Euler method

pin+1 = pin − ∂

∂qi
[H(qin)]∆t,

qin+1 = qin +
∂

∂pi
[H(pin)]∆t,

(4.3)

By itself, the forward Euler method is a cheap yet inaccurate choice for GRIN ray tracing [56].

Its implicit counterpart, the backward Euler method, is usually more stable but not necessarily

more accurate [38], given by

pin+1 = pin − ∂

∂qi

[
H(qin+1)

]
∆t,

qin+1 = qin +
∂

∂pi

[
H(pin+1)

]
∆t.

(4.4)

A subtle difference between Eqs. (4.4) and (4.3) may be seen; index n+ 1 now appears on both

sides of the equality. In cases where the partial derivative terms are strongly nonlinear, fixed-

point iteration schemes such as the Newton-Raphson method are required to solve for terms

with index n + 1 at each step. Often, this greatly increases the computational cost of using

implicit methods, meaning they are typically reserved for instances where their stability justifies

any additional computational expense [99]. To construct a second-order method, we first divide

∆t by two, with the first half-step being carried out by the backward Euler method and the

forward Euler method performing the second half-step, as follows

pin+1/2
= pin − ∂

∂qi

[
H(qin+1/2

)
] ∆t

2
,

qin+1/2
= qin +

∂

∂pi

[
H(pin+1/2

)
] ∆t

2
,

(4.5)

pin+1 = pin+1/2
− ∂

∂qi

[
H(qin+1/2

)
] ∆t

2
,

qin+1 = qin+1/2
+

∂

∂pi

[
H(pin+1/2

)
] ∆t

2
,

(4.6)

then, substituting Eqs. (4.5) into Eqs. (4.6),

pin+1 = pin − ∂

∂qi

[
H(qin+1/2

)
] ∆t

2
− ∂

∂qi

[
H(qin+1/2

)
] ∆t

2

= pin − ∂

∂qi

[
H(qin+1/2

)
]
∆t,

qin+1 = qin +
∂

∂pi

[
H(pin+1/2

)
] ∆t

2
+

∂

∂pi

[
H(pin+1/2

)
] ∆t

2

= qin +
∂

∂pi

[
H(pin+1/2

)
]
∆t.

(4.7)
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Rearranging Eqs. (4.5) and (4.6) in terms of qin+1/2
and pin+1/2

, we find

pin+1/2
= pin − ∂

∂qi

[
H(qin+1/2

)
] ∆t

2
, (4.8)

= pin+1 +
∂

∂qi

[
H(qin+1/2

)
] ∆t

2
, (4.9)

qin+1/2
= qin +

∂

∂pi

[
H(pin+1/2

)
] ∆t

2
, (4.10)

= qin+1 −
∂

∂pi

[
H(pin+1/2

)
] ∆t

2
, (4.11)

Since pin+1/2
and qin+1/2

are obtained either by a positive half-step from pin and qin or a negative

half-step from pin+1 and qin+1 , the implicit midpoint method is symmetric, making it suitable

for modelling the physics of GRIN optics by ensuring Helmholtz reciprocity (i.e. each ray trace

is reversible). Finally, adding Eq. (4.10) to Eq. (4.11) and Eq. (4.8) to Eq. (4.9), we obtain

2pin+1/2
= pin+1 +

∂

∂qi

[
H(qin+1/2

)
] ∆t

2
+ pin − ∂

∂qi

[
H(qin+1/2

)
] ∆t

2
,

2qin+1/2
= qin+1 −

∂

∂pi

[
H(pin+1/2

)
] ∆t

2
+ qin +

∂

∂pi

[
H(pin+1/2

)
] ∆t

2
,

and hence, we observe

pin+1/2
=

pin+1 + pin
2

,

qin+1/2
=

qin+1 + qin
2

,

which gives us the implicit midpoint method

pin+1 = pin − ∂

∂qi

[
H

(
qin+1 + qin

2

)]
∆t,

qin+1 = qin +
∂

∂pi

[
H

(
pin+1 + pin

2

)]
∆t.

(4.12)

Proving the symplecticity of the implicit midpoint method is demonstrated in Appendix A.2.

Composition is thus a highly versatile method for constructing symplectic numerical methods

of arbitrarily high order. For example, the implicit midpoint method could itself be composed

to create a fourth-order method, which could, in turn, be composed to create an eighth-order

method and so on. However, the construction of such high-order methods quickly becomes un-

wieldy without the assistance of a computer algebra system, making these methods prohibitively

expensive for lenses whose indices are not of the form in Eq. (4.2). We may now examine the

iteration schemes derived by applying the implicit method to a group of GRIN lenses with

refractive indices of the necessary form, allowing it to be used without the need for a root solver.
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Figure 4.1: Exact traces available for the lenses given in Table 4.1.
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Lens name Index type Index profile General solution?

Lüneburg [52] Spherical n(y, z) =
√
2− y2+z2

R2
0

Yes

Ilinsky [43] Spherical n(y, z) =
√

y2+(z−f)2

(f−r1)2
No

Tarkhanov [91] Axial n(z) = n0√
1−2n0

z
f

No

Table 4.1: A selection of lenses whose GRIN profiles of the form identified in Eq. (4.2). R0

represents the radius of the Lüneburg lens, while r1 represents the radius of the front surface for
the Ilinsky lens. Finally, n0 is the refractive index value on the optical axis for the Tarkhanov
lens while f represents the relevant focal distance for each lens.

4.2.2 Deriving the necessary iteration scheme for each lens

We now apply the implicit midpoint method to a selection of lenses whose index profiles may

be written in the requisite form of Eq. (4.2) and derive the necessary iterative schemes in each

case. Table 4.1 provides additional information about the index profiles of the lenses examined,

as well as the existence of solutions for general ray traces. Here, we notice the ability to use

the implicit midpoint method without a root-solver is not strictly limited to axial or spherical

index profiles, with the Lüneburg [52] and Ilinsky [43] lenses providing examples of spherical

profiles, while the Tarkahnov [91] lens demonstrates an axial instance. The existence of exact

traces for axially-collimated rays in the Ilinsky and Tarkhanov lenses is well documented [35,43],

as depicted in Figure 4.1. However, closed-form solutions for general rays deviating from these

special cases usually exist only within the paraxial region in the vicinity of the optical axis [31].

Thus, the use of numerical methods is necessary in all other instances.

Beginning with the Lüneburg lens, we first derive its optical Hamiltonian by substituting its

index profile from Table 4.1 into Eq. (4.1).

HLüneburg =
1

2

(
p2y + p2z +

y2 + z2

R0

)
− 1, (4.13)

where R0 is the lens’ radius with 0 ≤ y2 + z2 ≤ R2
0. Partial differentiation of Eq. (4.13) yields

∂H

∂pi
= pi,

∂H

∂qi
=

qi
R0

. (4.14)

Substituting Eqs. (4.14) into Eqs. (4.12), we obtain

pin+1 = pin − 1

R0

[
qin + (pin+1 + pin)

∆t

2
+ qin

]
∆t

2
,

qin+1 = qin +

[
pin − 1

R0
(qin+1 + qin)

∆t

2
+ pin

]
∆t

2
,
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then, expanding brackets and grouping similar terms

pin+1

[
1 +

(∆t)2

4R0

]
= pin

[
1− (∆t)2

4R0

]
− qin

R0
∆t,

qin+1

[
1 +

(∆t)2

4R0

]
= qin

[
1− (∆t)2

4R0

]
+ pin∆t.

(4.15)

Finally, dividing both sides by 1 + [(∆t)2/4R0]

pin+1 = pin

[
4R0 − (∆t)2

4R0 + (∆t)2

]
− qin

[
4∆t

4R0 + (∆t)2

]
,

qin+1 = qin

[
4R0 − (∆t)2

4R0 + (∆t)2

]
+ pin

[
4R0∆t

4R0 + (∆t)2

]
.

(4.16)

Hence, we observe it is possible to isolate pin+1 and qin+1 , thereby deriving recurrence relations

in terms of pin and qin for the Lüneburg lens. Repeating this analysis for the Ilinsky lens, we

find its optical Hamiltonian may be written as

HIlinsky =
1

2

[
p2y + p2z −

y2 + (z − f)2

(f − r1)2

]
, (4.17)

with y2 + z2 ≤ r21, where r1 is the radius of the lens’ front surface and f is the focal distance.

However, we notice that for the Ilinsky lens, Hamilton’s equations with respect to y and z are

not identical for each variable, as we saw with the Lüneburg lens. The iteration schemes for

y and z must now be considered separately, where the relevant expressions are:

pyn+1 = pyn +
1

(f − r1)2

[
yn + yn+1

2

]
∆t,

pzn+1 = pzn +
1

(f − r1)2

[
zn + zn+1

2
− f

]
∆t,

(4.18)

yn+1 = yn +

(
pyn+1 + pyn

2

)
∆t,

zn+1 = zn +

(
pzn+1 + pzn

2

)
∆t.

(4.19)

Then, we substitute Eqs. (4.18) into Eqs. (4.19) and vice versa, expanding the resulting expres-
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sions and grouping similar terms, as we did before

pyn+1

[
1−

(
∆t

2(f − r1)

)2
]
= pyn

[
1 +

(
∆t

2(f − r1)

)2
]
+

yn
(f − r1)2

∆t,

pzn+1

[
1−

(
∆t

2(f − r1)

)2
]
= pzn

[
1 +

(
∆t

2(f − r1)

)2
]
+

(zn − f)

(f − r1)2
∆t,

yn+1

[
1−

(
∆t

2(f − r1)

)2
]
= yn

[
1 +

(
∆t

2(f − r1)

)2
]
+ pyn∆t,

zn+1

[
1−

(
∆t

2(f − r1)

)2
]
= zn

[
1 +

(
∆t

2(f − r1)

)2
]
+ pzn∆t−

(
f

2

)[
∆t

(f − r1)

]2
.

Finally, dividing across by 1− {∆t/[2(f − r1)]}2

pyn+1 = pyn

[
4(f − r1)

2 + (∆t)2

4(f − r1)2 − (∆t)2

]
+ yn

[
4∆t

4(f − r1)2 − (∆t)2

]
,

pzn+1 = pzn

[
4(f − r1)

2 + (∆t)2

4(f − r1)2 − (∆t)2

]
+ (zn − f)

[
4∆t

4(f − r1)2 − (∆t)2

]
,

yn+1 = yn

[
4(f − r1)

2 + (∆t)2

4(f − r1)2 − (∆t)2

]
+ pyn

[
4∆t(f − r1)

2

4(f − r1)2 − (∆t)2

]
,

zn+1 = zn

[
4(f − r1)

2 + (∆t)2

4(f − r1)2 − (∆t)2

]
+ [pzn − 2f(∆t)2]

[
4∆t(f − r1)

2

4(f − r1)2 − (∆t)2

]
,

(4.20)

which gives the necessary iteration schemes for the Ilinsky lens. Moving onto the Tarkhanov

lens, since its refractive index profile is axial (i.e. it is z-dependent only), we immediately find

pyn = py0∀n and so yn+1 = yn + py0∆t. This is, in effect, the standard Euler method, which is

symplectic since pyn = py0 . The optical Hamiltonian for the Tarkhanov lens is then given by

HTarkhanov =
1

2

[
p2y + p2z −

n2
0

1− 2n0
z
f

]
, (4.21)

where n0 is the refractive index at the apex of the curved back surface of the lens. Differentiation

with respect to z and substitution into Eq. (4.12) provides us iterative schemes for z and pz

pzn+1 = pzn +

{
fn3

0

[f − n0(zn + zn+1)]
2

}
∆t, (4.22)

zn+1 = zn +

(
pzn+1 + pzn

2

)
∆t. (4.23)
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Now, substituting Eq. (4.23) into Eq. (4.22) and rearranging

(pzn+1 − pzn)

{
f − n0

[
2zn + (pzn+1 + pzn)

∆t

2

]}2

− fn3
0∆t = 0, (4.24)

expanding the previous equation with the assistance of a symbolic algebra system [59] then gives

a cubic expression ap3zn+1
+ bp2zn+1

+ cpzn+1 + d, where

a =

(
n0∆t

2

)2

,

b = apzn − n0 (f − 2n0zn)∆t,

c =−ap2zn − 4znn0 (f − n0zn) + f2,

d =−ap3zn − (b− apzn)p
2
zn − (c+ ap2zn)pzn − fn3

0∆t.

Checking the discriminant of this cubic equation indicates that it has three real roots. How-

ever, two of these roots give solutions consistent with axially-collimated rays (i.e. the situation

presented in Figure 4.1), which is obviously incorrect in this instance. Thus, the desired root is

pzn+1 = − 1

3a

(
b+ C +

∆0

C

)
, (4.25)

where

C =
3

√
∆1 +

√
∆2

1 − 4∆3
0

2
,

∆0 = b2 − 3ac,

∆1 = 2b3 − 9abc+ 27a2d.

However, caution is advised, as ∆2
1−4∆3

0 can become negative due to inaccuracies in the floating

point arithmetic and so, additional care is need to prevent rounding errors.

4.3 Numerical ray tracing

The accuracy of the implicit midpoint method is now tested against a number of symplectic and

nonsymplectic numerical methods when ray tracing the lenses present given in Table 4.1. Since

it exists, we make use of the analytical solution available for the Lüneburg lens [52]. However,

to the best of our knowledge, general analytical solutions for the Ilinsky and Tarkhanov lenses

have not yet been derived; the nonsymplectic RK4 method [89] is used as an alternative in

these instances. Based on their impressive performance in spherical lenses, the velocity Verlet

method and Ruth’s method are also compared with the implicit midpoint method to further

assess its suitability for optical problems. The geometry of the Lüneburg lens is identical to
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that of the lenses considered in Chapter 3 (i.e. R0 = 1.0 mm), while the Ilinsky lens is of radius

r1 = 1.875 mm with an aperture diameter of 2.0 mm. The Tarkhanov lens is of radius r2 = −2.0

mm (its radius is negative, following the Cartesian sign convention) where, like the Ilinsky lens,

its aperture diameter is also 2.0 mm. For the Lüneburg lens, the object was placed an infinite

distance to the left of the lens while for both the Ilinsky and Tarkhanov lenses the object distance

do was chosen to be 100.0 mm to the left of each lens.

Figures 4.3 and 4.5 show numerical ray traces within the Lüneburg, Ilinsky and Tarkhanov lenses

respectively. Overall, the trace for the Lüneburg lens, is much the same as that in the previous

chapter, with all the methods being effectively indistinguishable when ∆t = λ before becoming

more easily identifiable as ∆t increases. For the largest step size examined, we notice that

the implicit midpoint appears to be slightly more accurate than Ruth’s method, which further

emphasises the results of our previous numerical experiments, with a second-order method once

again outperforming a fourth-order one. For the Ilinsky lens, however, the RK4 method (which

is used in the absence of an analytical trace) deviates somewhat from the trajectories returned

by the velocity Verlet, implicit midpoint and Ruth’s methods for all step sizes examined, where

each of the symplectic methods are virtually identical for all ∆t values. However, in the absence

of an analytical solution, attempting to ascertain which of the methods is the most accurate

will require further work. A similar situation is present in the Tarkhanov lens, though in this

instance Ruth’s method, RK4 and the velocity Verlet method display significant overlap at all

step sizes, with the implicit midpoint method exhibiting a noticeably different trajectory, which

may suggest that the implicit midpoint method is less effective for axial rather than spherical

index profiles. Another possible explanation for this discrepancy could be the significant amount

of floating point arithmetic required by the implicit midpoint for the Tarkhanov lens, resulting

in rounding errors which may adversely affect its accuracy. Yet again, however, without an

analytical ray trace, we are somewhat unsure as to which method is best for GRIN ray tracing.

To further assess the suitability of the implicit midpoint method, we may examine the amount

of coma introduced within the Ilinsky and Tarkhanov lenses for each step size when the beam

is rotated about the optical axis. Coma is an optical aberration which occurs when a lens fails

to focus an off-axis ray bundle to a single point. As a result, the object will appear to possess

a tail similar to a comet, and so, the name “coma” was chosen to describe this effect. Figure

4.2 depicts a constant-index meniscus lens exhibiting coma for a group of parallel, off-axis rays

and also the wavefront corresponding to the comatic image. Wavefronts are discussed in further

detail in Chapter 5. The Lüneburg lens, being aplanatic (i.e. free of spherical aberration and

coma), is unfortunately unsuitable for this kind of test. Nevertheless, Figure 4.6 shows the

amount of coma recorded for each method when the incoming beam is moved one, five and ten

degrees off-axis. For the Ilinsky lens, RK4 exhibits significantly less coma for all rotation angles,

with each of the symplectic methods giving roughly the same coma value, particularly when
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∆t < 50λ. For the Tarkahnov lens, the implicit midpoint method exhibits substantially less

coma than all other methods, though the difference is significantly less than that of the Ilinsky

lens. Noticeably, the amount of coma recorded with RK4, the velocity Verlet method and Ruth’s

method is almost identical in each case and seems to decrease slightly as ∆t tends to 100λ. By

contrast, the implicit midpoint deviates from this trend entirely, exhibiting much less coma than

the other three methods considered. It remains mostly flat when the beam is rotated 5 or 10

degrees off-axis before increasing slightly as ∆t approaches 100λ. For a single degree off-axis,

the amount of coma appears to be minimised when ∆t = 25λ before increasing once again

and following the same general trend. To carry our investigation further, these results could be

compared with an analytical calculation of how much coma may be expected for both the Ilinsky

and Tarkhanov lenses, providing another means of validating the numerical methods presented.

Figure 4.2: Left: A constant-index meniscus lens with n = 1.40 exhibiting coma, where the
screen is placed at the intersection point of the marginal rays. Right: The wavefront profile
associated with coma. Wavefront profiles are explained in further detail in Chapter 5.

Another method by which we may compare the implicit midpoint with the other numerical

methods is by considering the deviation in the optical path calculated for forward and reverse

ray traces within each lens. Unlike the previous experiment, this approach remains valid for

the Lüneburg lens also. Figure 4.7 depicts the difference between the optical paths computed

by each method within each lens for three separate initial ray heights, with the diffraction limit

being represented by the dashed horizontal line, as before. For the Lüneburg lens, the difference

in optical path follows the same general trend for all ray heights, with the implicit midpoint

and Ruth’s method both offering a diffraction-limited trace for all ray heights provided that

∆t ≤ 25λ. RK4 and the velocity Verlet instead perform much less satisfactorily, not offering

diffraction limited traces for any step size. Within the Ilinsky lens, however, much more variation

is observed. This time, the implicit midpoint method appears to be the least accurate of all

the methods, thought it still provides a diffraction-limited trace for ∆t ≤ 10λ. RK4 and the

velocity Verlet method follow a similar downward trend, being diffraction-limited for all step

sizes. While it is also diffraction limited for all ∆t values, Ruth’s method is much more erratic,

showing a particularly drastic decrease of more than three orders of magnitude when ∆t = λ for
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Figure 4.3: Implicit midpoint tracing a Lüneburg lens of radius R0. Like in Chapter 3, the
region shown in each right-hand column is marked on each trace in the left-hand column by a
black rectangle and depicts the focal point in greater detail.
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Figure 4.4: Implicit midpoint tracing an Ilinsky lens whose front surface is of radius r1. The
left hand column represents a detailed view of the focus, as before.The detector, represented by
the dashed vertical line, is placed at the ideal focus.
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Figure 4.5: Implicit midpoint tracing a Tarkhanov lens whose back surface is of radius r2. As
before, the detector is represented by a dashed vertical line located at the ideal focus.
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bundle of rays placed one, five and ten degrees off-axis.
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Figure 4.7: Differences in the optical path travelled by forward and reverse traces. The dashed
horizontal line represented the diffraction limit, as before, with do and y0 representing the object
distance to the left of each lens and the initial ray height, respectively.
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a ray height of y0 = 0.66 mm. Finally, the Tarkhanov lens is more similar to the Lüneburg lens,

where there any differences in the difference between the forward and reverse traces appear to be

much less significant with all methods well below the diffraction limit. Once again, the implicit

midpoint method outperforms the other three methods, while the velocity Verlet method and

Ruth’s method provide virtually indistinguishable results. RK4 follows the same trend for the

most part, particularly for ∆t ≤ 25λ. It does, however, err more noticeably if the step size is

further increased, exhibiting behaviour that we might expect when comparing symplectic and

nonsymplectic methods, where symplectic methods are generally more accurate for the same

given step size. That said, any discrepancies between RK4 and the three symplectic methods

are seen to diminish with an increase in initial ray height.

In summary, we have attempted to numerically trace rays using the implicit midpoint method

within the Lüneburg, Ilinsky and Tarkahnov lenses. A bundle of rays emanating from a point

source placed on the optical axis located a distance of 100 mm to the left of the Ilinsky and

Tarkhanov lenses was chosen to examine their behaviour, while the ray bundles incident on the

Lüneburg lens were instead axially collimated. The implicit midpoint method appears to perform

reasonably well when compared with a selection of explicit numerical methods, though it seems

to favour spherical rather than axial index profiles. However, the use of the implicit midpoint

without the need for Newton’s method or a similar root-finding scheme is limited to lenses with

a separable index profile subject to specific constraints; A number of popular lenses fall outside

this category, such as the Maxwell fish-eye [55], Eaton [27] and optical black hole [69] meaning

the use of a root-finder cannot be avoided for these lenses. Moreover, root-finding methods

would presumably struggle to converge in the vicinity of the singularities present in the Eaton

lens and optical black hole. Thus, the overall usefulness of the implicit midpoint method for

numerical ray tracing appears to be somewhat limited.
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Chapter 5

GRIN aberrometry with a pyramid

wavefront sensor

5.1 A lack of testing techniques

While ray tracing simulations have their uses in optical design, a lack of methods (destructive

or otherwise) for testing lens prototypes leaves us with no experimental comparison for the ray

traces carried out in the previous chapter. Indeed, the means required for the mass production

of Ilinsky- and Tarkhanov-type lenses remain to be created. However, another barrier to their

implementation lies in the difficulty of performing optical testing on GRIN lenses.

Most techniques available are not suitable for GRIN optics, or do not provide all of the nec-

essary information. For instance, using a Mach-Zehnder interferometer offers only a relative

measurement of the refractive index [102]. Another possible metrology technique requires the

destruction of the lens in order to perform individual measurements in regions whose refractive

index is approximately constant [50]. Furthermore, inferring a material’s refractive index by

geometric means (such as its position on a detector, say), can easily be solved for media with

constant indices, though the same technique is far less useful for GRIN elements; one cannot

be sure at which point in the lens an aberration may be introduced. Often, a tomographic

method is required, though the lack of scattering in properly fabricated GRIN lenses makes

optical coherence tomography unavailable for this purpose.

Nonetheless, we may still gain some information about the quality of each lens simply by ray

tracing. A spot diagram, for example, depicts the position of each ray in the detector plane. By

comparing the spot size with that of the Airy disk, whose radius is given by rAiry = 1.22λ f
D ,

whereD is the lens’ aperture diameter, we may investigate whether a lens is capable of producing
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a diffraction-limited image of a point source. Figure 5.1 depicts spot diagrams for the Ilinsky and

Tarkhanov lenses, where a point source was placed at a distance do = 100 mm to the left of each

lens, as in the previous chapter. The Airy disk is represented by the black circle at the centre of

each plot, indicating that for the object distance chosen, both the Ilinsky and Tarkhanov lenses

produce defocused images significantly larger than the diffraction limit. However, we also notice

that the spot size of 0.0899 mm for the Ilinsky lens is slightly smaller than that of 0.10747 mm

in the case of the Tarkhanov lens, which seems to suggest that the Ilinsky lens is slightly more

tolerant to misconjugation of the object.

h = 0.0899 mm

Ilinsky spot diagram (do = 100 mm)

h = 0.10747 mm

Tarkhanov spot diagram (do = 100 mm)

Figure 5.1: Spot diagrams for the Ilinsky (top) and Tarkhanov (bottom) lenses. The Airy disk
is represented by a black circle in each case.
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Even so, a simple ray trace is incapable of providing us with information about the wavefront

error associated with a particular GRIN lens, meaning a device is required to measure the re-

sulting wavefront. While we may not be able to identify which region within a lens is responsible

for a particular aberration, we could, in the case of the Illinsky and Tarkhanov lenses, obtain an

estimate for the wavefront aberrations introduced when the incident rays are no longer axially

collimated. The pyramid wavefront sensor, a component typically employed in adaptive optics

systems and well-known for its high sensitivity presents itself as a useful tool for optical testing

in such a scenario. The following section provides further information on the pyramid wavefront

sensor itself before detailing the mathematical methods employed in wavefront modelling and

giving example wavefront profiles for the Ilinsky and Tarkhanov lenses. Finally, a polynomial

decomposition is performed on the resulting wavefront in each case.

5.2 The pyramid wavefront sensor

The pyramid wavefront sensor was first developed by Ragazzoni in 1996 [72], where an oscillating

prism was used to obtain four images of the pupil on a single detector. The operating principle

of the pyramid wavefront sensor is based on the Foucault knife-edge test in two orthogonal

directions [76]. While the pyramid wavefront sensor is considerably more sensitive than the

more mature Shack-Hartmann sensor, it has a much smaller dynamic range. Nevertheless, the

dynamic range of the pyramid wavefront sensor may be increased by modulating the sensor’s

glass pyramid at the expense of a reduction in sensitivity [36].

When simulating a pyramid wavefront sensor, two different approaches may be used. The first

treats the glass pyramid as a transmission mask object, where each image of the telescope pupil

is created by applying a different Heaviside step filter to the point spread function (PSF) of the

telescope entrance pupil [83]. The four pupil images must then be stitched together, creating a

single image similar to the detector plane seen in Figure 5.2. The second method of simulating

a pyramid wavefront sensor instead treats the pyramid as a phase mask object, adding a phase

shift to the wavefront [83]. This method more accurately accounts for the geometry of the glass

pyramid, generating a single image of the detector plane without the need to stitch together

four individual pupil images [16]. Irrespective of which method may be used to simulate the

sensor, the data of interest are the normalised wavefront gradients, obtained from the detector

plane intensities via the expressions, first presented in [72]:

Sx =
(I1 + I4)− (I2 + I3)

I1 + I2 + I3 + I4
, Sy =

(I1 + I2)− (I3 + I4)

I1 + I2 + I3 + I4
, (5.1)

The calculation of these gradients is significantly easier using the transmission mask approach as

arithmetic operations are more easily carried out on four individual pupil images. Isolating the

four pupils from a single phase mask image is a more tedious task. In fact, for simulation packages
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Telescope aperture

Glass pyramid

Incoming wavefront

Detector

Focusing lens

I1 I2

I3I4

Figure 5.2: Schematic of a pyramid wavefront sensor.

which use the phase mask approach, calculating wavefront gradients is a significant challenge.

For example, the open-source library High-Contrast Imaging for Python (HCIPy) employs a

phase mask pyramid wavefront sensor, though the function used to estimate the wavefront

gradients does not operate as intended and requires further work [71]. Another Python library,

AOtools, instead uses a transmission mask pyramid capable of sensing the required wavefront

gradients. At the time of writing, AOtools’ pyramid does not yet oscillate, placing significant

limits on its performance [95].

However, another algorithm is required in order to reconstruct the wavefront from the measured

data. To this end, polynomial fitting is a useful tool as it allows any wavefront to be decomposed

into a linear combination of mutually orthogonal polynomials, typically obtained via a singular

value decomposition [22,83,101]. Mathematically, a given wavefront ϕ is then expressed as:

ϕ =

∞∑

n=1

anPn, (5.2)

where Pn is the nth term in a series of polynomials chosen to model the wavefront and an is its

associated coefficient. Obviously, it is impossible to perfectly model any wavefront, since the

series in equation (5.2) contains an infinite number of terms. Therefore, any practical attempt
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to profile a wavefront will require this series to be truncated eventually. Hence, the competing

requirements of accuracy and computation time must be balanced.

Figure 5.3: Detector plane images of transmission mask (left) and phase mask (right).

While any set of orthogonal polynomials is suitable in theory, Zernike polynomials are perhaps

the most popular set of polynomials for optical problems, as they represent optimally balanced

classical aberrations (i.e. astigmatism, coma, spherical aberration, etc.). Additionally, recursive

schemes are available, allowing a large number of Zernike polynomials to be generated quickly [1].

Numerically, Zernike polynomials are given by

Zm
n (r, θ) = Nm

n Rm
n (r)Θ(θ), (5.3)

where n is the radial degree and m is the azimuthal order. Rm
n (r) is the radial polynomial,

written as:

Rm
n (r) =

n−|m|
2∑

s=0

(−1)s(n− s)!

s!
(
n+m
2 − s

)
!
(
n−m
2 − s

)
!
rn−2s, (5.4)

with n ∈ N0 and n−|m| being even. Θ(θ) is sometimes referred to as the triangular function [22],

described by:

Θ(θ) =





sin (mθ) m < 0

1 m = 0

cos (mθ) m > 0

(5.5)

Although other normalisations are equally valid, the one presented here is perhaps the most

popular, chosen such that the RMS for each polynomial is unity over the unit circle [8]:

Nm
n =





√
n+ 1 m = 0

√
2(n+ 1) m ̸= 0

(5.6)
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5.3 The test procedure

The premise of testing GRIN elements with a pyramid wavefront sensor is primarily based on

replacing the focusing lens in Figure 5.2 with a GRIN lens to be tested. Figure 5.4 shows a

simple diagram of the test setup with an Ilinsky lens, where an ideal optic should, in theory,

produce a wavefront free of aberrations, or, at least only affected by any aberrations intrinsic

to the pyramid element. Thus, we may compare any real lens with a theoretical, ideal one.

Additionally, based on the numerical results obtained in the previous chapter, we may also

estimate the aberrations introduced when the incident rays are no longer axially collimated,

assuming a suitable numerical method has been used for the ray trace.

In our experiments, rather than considering rays emanating from an object at infinity, we instead

placed a point source on the optical axis at a distance of do = 100 mm to the left of the front

surface of each lens. A similar analysis of the Lüneburg lens was avoided, since it would have

to be brought into contact with the pyramid, resulting in damage to the Lüneburg lens, the

pyramid, or both in any practical implementation. 500 rays were traced through each lens, with

the detector position chosen in order to remove any misconjugation errors which might affect

the incoming wavefront. These values were found to be 5.2219 mm and 3.8265 mm for the

Ilinsky and Tarkhanov lenses respectively. The primary wavelength was once again chosen to be

λ = 589.3 nm, assumed to be produced by a monochromatic light source. Based on the results

obtained in Chapter 3, Ruth’s method was used to trace both lenses during each simulated test.

Figure 5.4: An Ilinsky lens being tested with the pyramid wavefront sensor.

Figure 5.5 shows the wavefront profiles generated by the Ilinsky and Tarkhanov lenses, with

positive spherical aberration being the most obvious aberration in both cases. However, observ-

ing the colour bars to the right of each wavefront profile, we notice that the peak-to-valley error

for the Ilinsky lens is nearly three times less than that of the Tarkhanov lens. This therefore
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Ilinsky wavefront profile (do = 100 mm)
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Figure 5.5: Wavefront profiles for Ilinsky (top) and Tarkhanov (bottom) lenses.
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suggests that the Ilinsky lens is more tolerant to misconjugation, thereby offering better image

quality for objects placed a finite difference from the front surface of the lens.

A decomposition using the first 37 Zernike polynomial coefficients for the wavefronts obtained

from both lenses is given in Figure 5.6, where Zernike polynomials are arranged following the

Noll indexing scheme [66]. The first three terms (i.e. piston, tip and tilt) have been omitted. As

expected, the spherical terms dominate, with spherical aberration (Z11) and defocus (Z4) being

almost balanced in magnitude for both lenses. Other off-axis aberrations (i.e. astigmatism,

coma) are virtually negligible. Higher-order spherical terms are also present, with negative fifth-

order spherical aberration (Z22) being the next most dominant term for the Ilinsky lens, while

negative fifth- and seventh-order spherical aberration (Z37) are nearly identical in magnitude for

the Tarkhanov lens. The difference in sign between the two lenses for seventh-order spherical

aberration is perhaps due to the fact that their back surfaces are of opposite sign.
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Ilinsky
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Tarkhanov

Zernike Coefficients

Zj (Noll index)

a
j

(λ
)

Figure 5.6: A Zernike wavefront decomposition for each lens. Piston, tip and tilt are omitted.

While the simulated experiments here present a strong case for using the pyramid wavefront

sensor for aberrometry in general, we have not yet considered how aberrations associated with

an off-axis, oblique wavefront may manifest themselves within the Tarkhanov and Ilinsky lenses.

Moreover, while the Moore-Pensrose pseudoeinverse [6] was used to compute a best-fit decompo-

sition to reconstruct the wavefront, other techniques make use of Fourier and Hilbert transforms

for wavefront construction, though their accuracy is somewhat limited [10, 83]. A range of it-

erative methods have also been developed [42]. With this in mind, further work could be done
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to see if symplectic algorithms could also be applied to wavefront reconstruction in addition

to ray tracing. Since various Hamiltonian formulations of wave-mechanical problems already

exist [57,75], many of these techniques could perhaps be adapted for the purposes of wavefront

propagation, reconstruction or solving other problems which may arise when considering GRIN

testing from a wave-optical perspective.
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Chapter 6

Conclusions and recommendations

Having first provided a brief overview of Hamiltonian optics, this work emphasises the value

of symplectic numerical techniques for ray tracing GRIN media, demonstrating their increased

accuracy when compared with popular nonsymplectic methods. On the whole, the results pre-

sented here make a strong case for the development of specialised symplectic methods for GRIN

optics where analytical ray traces may not exist. Furthermore, we have identified the form an

index may take in order for the implicit midpoint method to be used without the need for a com-

putationally intensive root-solver and although some practical examples have been identified,

several popular GRIN elements including the Maxwell fish-eye and Eaton lens fall outside this

category. Higher-order symplectic Runge-Kutta methods may also be tested in the same manner

as the implicit midpoint method, though deriving the necessary iterative schemes could prove

to be a rather tedious process. Furthermore, our results do not suggest that implicit symplectic

methods offer any significant improvement when compared with explicit methods. However, the

combination of multiple symplectic methods as part of a predictor-corrector scheme could be a

worthwhile area for further investigation.

In addition to future applications in optical design, symplectic methods greatly reduce the

computational cost of nonlinear ray tracing, which may also be of some use to those outside

the scientific community, particularly for visual effects in video games and entertainment media.

Finally, we propose the pyramid wavefront sensor as a means of performing aberrometry on

GRIN lenses in order to address the dearth of optical testing methods available for GRIN

elements while simultaneously enabling the development of wavefront reconstruction algorithms

to be used with the pyramid wavefront sensor or other prism-based wavefront sensors. Finally,

pyramid wavefront sensors could also be used to find the necessary conjugation for an axial point

source in order to achieve diffraction-limited imaging using the Ilinsky or Tarkhanov lenses.
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A.1 Numerical recipes for explicit methods

This appendix provides numerical recipes for the explicit methods used in this thesis so that

results may be reproduced. The notation given here will be identical to that in Section 3.2, where

∆t represents a small step between iterations, with P = (p2x+ p2y + p2z)/2 and N = n2(x, y, z)/2.

Nonsymplectic methods

The Euler method is given by

pin+1 = pin − ∂

∂qi
[N(qin)]∆t,

qin+1 = qin +
∂

∂pi
[P (pin)]∆t.

The RK2 (second-order Runge-Kutta) method, an improvement in accuracy over the standard

Euler method, is represented by

pin+1 = pin −
(
k̂i1 + k̂i2

2

)
,

qin+1 = qin +

(
k̃i1 + k̃i2

2

)
,

where

k̂i1 =
∂

∂qi
[N(qin)]∆t, k̃i1 =

∂

∂pi
[P (pin)]∆t,

k̂i2 = (pin + k̂i1)∆t, k̃i2 = (qin + k̃i1)∆t.

The RK4 (fourth-order Runge-Kutta) method is itself an improvement in accuracy over RK2 by

further subdividing the interval between successive iterations and the use of a weighted average:

pin+1 = pin −
(
k̂i1 + 2k̂i2 + 2k̂i3 + k̂i4

6

)
,

qin+1 = qin +

(
k̃i1 + 2k̃i2 + 2k̃i3 + k̃i4

6

)
,
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where

k̂i1 =
∂

∂qi
[N(qin)]∆t, k̃i1 =

∂

∂pi
[P (pin)]∆t,

k̂i2 =

(
pin +

k̂i1
2

)
∆t, k̃i2 =

(
qin +

k̃i1
2

)
∆t,

k̂i3 =

(
pin +

k̂i2
2

)
∆t, k̃i3 =

(
qin +

k̃i3
2

)
∆t,

k̂i4 =

(
pin +

k̂i3
2

)
∆t, k̃i4 =

(
qin +

k̃i3
2

)
∆t.

Symplectic methods

The symplectic Euler method differs from the standard Euler method by first calculating a ray’s

optical momentum before computing the ray’s position using this new momentum value.

pin+1 = pin − ∂

∂qi
[N(qin)]∆t,

qin+1 = qin +
∂

∂pi

[
P (pin+1)

]
∆t.

The velocity Verlet method is created by taking two symplectic Euler method iterations with

step size ∆t/2. This method is symmetric, producing nearly-identical trajectories for positive

and negative step sizes.

qin+1 = qin +
∂

∂pi
[P (pin)]∆t+

∂

∂qi
[N(qin)]

(∆t)2

2
,

pin+1 = pin − ∂

∂qi

[
N(qin) +N(qin+1)

] ∆t

2
.
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Ruth’s method was initially developed for molecular dynamics simulations. Like the velocity

Verlet method, is also symmetric, described by

pin+1/4
= pin +

(
21/3 + 2−1/3 + 2

6

)
∂

∂qi
[N(qin)]∆t,

qin+1/3
= qin +

(
21/3 + 2−1/3 + 2

3

)
pin+1/4

∆t,

pin+1/2
= pin+1/4

−
(
21/3 + 2−1/3 − 1

6

)
∂

∂qi

[
N(qin+1/3

)
]
∆t,

qin+2/3
= qin+1/3

−
(
27/3 + 25/3 + 2

6

)
pin+1/2

∆t,

pin+3/4
= qin+2/3

−
(
21/3 + 2−1/3 − 1

6

)
∂

∂qi

[
N(qin+2/3

)
]
∆t,

qin+1 = qin+2/3
+

(
21/3 + 2−1/3 + 2

3

)
pin+3/4

∆t,

pin+1 = pin+3/4
+

(
21/3 + 2−1/3 + 2

6

)
∂

∂qi

[
N(qin+1)

]
∆t.

It is perhaps worth drawing attention to the positive signs before the bracketed coefficients in the

expressions for pin+1/4
and pin+1 . These are not errors, but rather are results of the coefficients

being negative, as mentioned previously in Chapter 3.

Finally, the Chin-Chen 4A method is one of a series of symmetric fourth-order numerical methods

created with the aim of solving few-body gravitational problems, which are almost mathemati-

cally identical to ray trajectories within the Eaton lens. The method itself is written as

pin+1/3
= pin − ∂

∂qi
[N(qin)]

∆t

6
,

qin+1/2
= qin + pin+1/3

∆t

2
,

pin+2/3
= pin+1/3

− ∂

∂qi

[
N(qin+1/2

)
] 2∆t

3
− ∂2

∂q2i

[
N(qin+1/2

)
] (∆t)3

72
,

qin+1 = qin+1/2
+ pin+2/3

∆t

2
,

pin+1 = pin+2/3
− ∂

∂qi

[
N(qin+1)

] ∆t

6
.
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A.2 Proof that the implicit midpoint is indeed symplectic

In order to prove that the implicit midpoint is symplectic, we must first compute ∇H by

differentiating Eq. (4.12)
∂pin+1

∂pin
=

(
1− ∂2H

∂q2i

∆t

2

)
∂qin+1

∂pin
,

∂pin+1

∂qin
= −

(
1 +

∂qin+1

∂qin

)
∂2H

∂q2i

∆t

2
,

∂qin+1

∂pin
=

(
1 +

∂pin+1

∂pin

)
∂2H

∂p2i

∆t

2
,

∂qin+1

∂qin
=

(
1 +

∂2H

∂p2i

∆t

2

)
∂pin+1

∂qin
.

Now, substituting each of the expressions into one another, as necessary.

∂pin+1

∂pin
=

(
1− ∂2H

∂q2i

∆t

2

)(
1 +

∂pin+1

∂pin

)
∂2H

∂p2i

∆t

2
,

∂pin+1

∂qin
= −

{
1 +

[(
1 +

∂2H

∂p2i

∆t

2

)
∂pin+1

∂qin

]}
∂2H

∂q2i

∆t

2
,

∂qin+1

∂pin
=

{
1 +

[(
1− ∂2H

∂q2i

∆t

2

)
∂qin+1

∂pin

]}
∂2H

∂p2i

∆t

2
,

∂qin+1

∂qin
= −

(
1 +

∂2H

∂p2i

∆t

2

)(
1 +

∂qin+1

∂qin

)
∂2H

∂q2i

∆t

2
.

Then, isolating each of the first-order partial derivatives

∂pin+1

∂pin
=

[
1 +

∂2H

∂q2
∂2H

∂p2

(
∆t

2

)2
]−1 [

1− ∂2H

∂q2
∂2H

∂p2

(
∆t

2

)2
]
,

∂pin+1

∂qi
= −

[
1 +

∂2H

∂q2
∂2H

∂p2

(
∆t

2

)2
]−1

∂2H

∂q2
(∆t)2,

∂qin+1

∂pin
=

[
1 +

∂2H

∂q2
∂2H

∂p2

(
∆t

2

)2
]−1

∂2H

∂p2
(∆t)2,

∂qin+1

∂qin
=

[
1 +

∂2H

∂q2
∂2H

∂p2

(
∆t

2

)2
]−1 [

1− ∂2H

∂q2
∂2H

∂p2

(
∆t

2

)2
]
.

and so,

∇H =

[
1 +

∂2H

∂q2
∂2H

∂p2

(
∆t

2

)2
]−1(

1− ∂2H
∂q2

∂2H
∂p2

(
∆t
2

)2 −∂2H
∂q2

(∆t)2

∂2H
∂p2

(∆t)2 1− ∂2H
∂q2

∂2H
∂p2

(
∆t
2

)2

)
.
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For notational simplicity, let

α =

[
1− ∂2H

∂q2
∂2H

∂p2

(
∆t

2

)2
]
, β = −∂2H

∂q2
(∆t)2,

γ =

[
1 +

∂2H

∂q2
∂2H

∂p2

(
∆t

2

)2
]−1

, δ =
∂2H

∂p2
(∆t)2.

Then, substituting into Eq. (2.20)

(∇H)TJ(∇H) = γ2

(
α β

δ α

)T (
0 1

−1 0

)(
α β

δ α

)
,

= γ2

(
α δ

β α

)(
δ α

−α −β

)
,

= γ2

(
0 α2 − βδ

βδ − α2 0

)
,

algebraic manipulation reveals γ2(α2 − βδ) = 1. Hence

(∇H)TJ(∇H) =

(
0 1

−1 0

)
,

= J,

Thus, the implicit midpoint method is a symplectic numerical method. □
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A.3 Proof of the nonexistence of explicit symplectic Runge-

Kutta methods

In general, a Runge-Kutta method may be written as follows

yn+1 = yn +∆t

m∑

i=1

biki,

with

k1 = f [tn, yn],

k2 = f [tn + c2∆t, yn + (a21k1)∆t] ,

k3 = f [tn + c3∆t, yn + (a31k1 + a32k2)∆t] ,

...

km = f


tn + cm∆t, yn +∆t

m∑

j=1

aijkj


 ,

where each aij is a coefficient in the Runge-Kutta matrix, bi is the associated weight and ci is

known as a node. As in the rest of the text, m represents the method’s order. Alternatively, we

may represent a Runge-Kutta method in the form of a Butcher tableau [15], shown below

c1 a11 a12 . . . a1m

c2 a21 a22 . . . a2m
...

...
...

. . .
...

cm am1 am2 . . . amm

b1 b2 . . . bm

or, more succinctly
c a

bT

For a Runge-Kutta method to be explicit, its Runge-Kutta matrix a must be strictly lower

triangular (i.e. aij = 0 for j ⩾ i). Furthermore, for a Runge-Kutta method to be useful, it must

be consistent, where a Runge-Kutta method is classified as consistent if and only if
∑m

i=1 bi = 1.

However, in order for a Runge-Kutta method to be symplectic, it must also satisfy the relation

bTa+ baT − bTb = 0 ∀ i, j = 1, . . . ,m.

We first assume there exists a method whose Runge-Kutta matrix is strictly lower triangular

while also satisfying bTa + baT − bTb = 0 ∀ i, j = 1, . . . ,m. Yet, if we examine the case

for terms on the main diagonal (i.e. where i = j), we notice bi · 0 + bj · 0 − bibj = 0, since

for explicit methods aij = aji = 0. Hence, we require bibj = b2i = 0 ∀ i = 1, . . . ,m, which

contradicts
∑m

i=1 bi = 1, making it impossible for a Runge-Kutta method to be both explicit

and symplectic. In other words, symplectic Runge-Kutta methods are necessarily implicit. □
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