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ABSTRACT For decades, the number of automobiles in urban areas around the world has been increasing. 

It causes serious challenges such as traffic congestion, accidents, and pollution, which have a social, 

economic, and environmental impact on widespread urban cities. To overcome these challenges, we need to 

explore smart AI-based perception systems for vehicular applications. Such types of systems can provide 

improved situational awareness to the driver and generate early alarm about upcoming obstacles and road 

incidents. In this study, we have presented the effective use of uncooled thermal IR sensors for designing 

smart thermal perception systems as an alternative to CMOS visible imaging by presenting state-of-the-art 

studies for in-cabin and out-cabin vehicular applications with potential long-term benefits for the automotive 

industry. The key rationale for selecting thermal IR sensors over conventional image sensors is that visible 

cameras are highly dependent on lighting conditions and performance is degraded significantly in low-

lighting scenarios and harsh weather conditions. Contrary to this, thermal sensors remain largely unaffected 

by external lighting conditions or most environmental conditions, making it a perfect optical sensor choice 

for all-weather and harsh environmental conditions. This study presents a review of the current state of the 

art for automotive thermal imaging with a focus on the contributions and advances achieved by the EU-

funded project ‘HELIAUS’ in the domain of AI-based thermal imaging pipelines for safer and reliable road 

journeys. 

INDEX TERMS Thermal-infrared, AI, In-Cabin, Out-Cabin Monitoring, advanced driver-assistance 

system (ADAS), deep learning, optimization.

I. INTRODUCTION 

Advanced Driver Assistance Systems (ADAS) are a collection 

of digital technologies that help drivers with safer driving and 

enhanced security features for reliable road journeys. ADAS 

improves automotive and road safety by providing a safe 

human-machine interface. It uses automated technologies 

such as vehicle sensors and cameras to identify surrounding 

impediments and driver faults and react correspondingly. 

Since most traffic accidents are caused by human mistakes [1], 

ADAS is designed to optimize, adapt, and improve automobile 

safety thus providing a reliable road journey experience. By 

reducing human error, ADAS has been shown to minimize 

fatal accidents [2].  

    As mentioned before safety features are intended to prevent 

mishaps and collisions by integrating technologies with the 

existing vehicular system that notifies the driver of potential 

hazards, executes protections, and, if required, takes control 

over the vehicle. Such features include sensor fusion for real-

time data logging and object/obstacle detection and tracking 

system deployment using advanced machine learning 

algorithms are two key essential technologies directly 

associated with smart car systems. This will eventually enable 

drivers to monitor the physical factors, recognize external 

objects, and forecast occurrences that they should be aware of, 

giving them a better perspective of the roadside environment 

and its surroundings. Furthermore, lidar and radar are 

categorized as typical sensors commonly used in the formation 

of smart perception systems for automotive sensor suites. Both 

visible imaging solutions and a variety of hardware sensors are  



  

  

frequently used in conjunction with providing enhanced 

monitoring systems. However, visible imaging has some 

restrictions, such that in poor lighting situations, in the 

nighttime, with sun glare, and glim from the headlight beam, 

the RGB camera does not provide satisfactory results. 

Moreover, in computer vision applications, common 

automotive sensors (radar and lidar) exploit some flaws [3]. 

    Thermal imaging sensor technology overcomes most of 

these flaws. This study will examine and analyze vision-based 

smart perception systems, with a core focus on the use of un-

cooled thermal cameras for advanced driver assistant systems. 

Thermal imagers are the type of infrared camera, that collects 

and generates images using infrared thermal radiation 

generated from the surface temperature of an object. Infrared 

thermography can be used as an effective method to overcome 

the limitations of visible or RGB imaging. The real-time 

operating capabilities of thermal cameras are not affected by 

lowlighting scenarios sun glare or vehicle head light beam 

reflection. Further, it has immunity to visual limitations and is 

considered a reliable solution in harsh weather conditions such 

as snowy and foggy weather. Uncooled thermal imaging 

sensors have emerged as low-cost yet effective optical sensors 

due to recent advancements in microbolometer technology. 

These optical sensors in the automotive suite can supplement 

or even replace current technology, with the added benefit of 

sensing the thermal emissivity of objects and operating 

independently of illumination conditions, giving it a more 

consistent option for improved environmental perception 

systems.  

     In this research, we have focused on the introduction of 

thermal imaging which can be beneficial for the design and 

deployment of thermal perception systems for advanced 

vehicular systems. Figure 1 shows a comprehensive block 

diagram representation of various in-cabin and forward-vision 

applications and vehicular applications using thermal imaging. 

The rest of the paper is organized as follows. Section II 

describes the difference between CMOS and thermal imaging 

sensors whereas Section III describes the thermal data 

acquisition pre-processing pipelines and lists the publicly 

available large-scale thermal datasets. Sections IV and V 

present published research studies regarding the latest 

advances in thermal imaging for in-cabin driver and occupant 

monitoring and out-cabin road monitoring systems Section VI 

will elaborate on and detail the significant contributions we 

made while taking part in the Horizon 2020 HELIAUS [108] 

project, which is funded by the EU and involves 11 consortium 

partners which include EU companies and academic 

consortium partners. The project mainly aims to develop and 

deploy smart thermal perceptual systems for in-cabin driver 

monitoring systems and vision-based advanced driver 

assistance systems thus effectively addressing the inside and 

outside challenges. The project focuses on creating low-cost 

and innovative technology thus validating the performance of  

developed prototypes in perceptual systems for automotive 

applications. It will measure the added value of thermal 

sensing and promote the advantages that such systems can 

offer for autonomous driving. Lastly, section VII presents the 

overall conclusions drawn based on this study and future 

possibilities in this domain for the research community. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 1. Block diagram representation of In-cabin and out-cabin 
vehicular applications. 

II. DIFFERENCE BETWEEN CMOS AND THERMAL 
IMAGING SENSORS 

A Complementary Metal Oxide Semiconductor (CMOS) 

camera sensor is a type of imager that collects visible light 

ranging from 400~700nm band [4] (which is the same 

spectrum that the human eye perceives). The CMOS sensor 

works on the theory of the photoelectric effect to convert the 
photons into electrons using the Analog to Digital (A/D) 

conversion methodology. In the next stage, it organizes that 

information to render image frames and sequence of frames. 

Image sensors assembled into today's digital/ RGB cameras, 

mobile phone cameras, and CCTVs mostly use either the CCD 

(charge-coupled device) or CMOS technology. Visible 

cameras are designed to create images, capturing light in red, 

green, and blue wavelengths (RGB) for accurate colour 

representation. As compared to the human eye which requires 

visible light, RGB cameras also require light in the visible 

spectrum to generate images with lower noise levels. Due to 

this reason visible cameras are considered unfavourable for 

producing adequate outputs in low-lighting or zero-lighting 

conditions. Their performance is also significantly degraded 

by rough atmospheric conditions such as fog, haze, smoke, 

heat waves, and smog. This limits their usage and applications 

to daytime and clear weather conditions mostly for real-time 

applications. Moreover, the CMOS image sensor has the 

disadvantage of having numerous active devices in the readout 
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path that might cause time-varying noise. Furthermore, 

fabrication errors can cause charge-to-voltage amplifier 

imbalance between distinct pixels. Fixed-pattern noise is the 

result of this, in which distinct pixels output different values 

despite being exposed to homogeneous illumination [5].  

     Thermal infrared cameras, in contrast, do not require any 

additional external lighting conditions to operate and can 

produce high-image-quality data even in low-light 

circumstances. As a result, thermal cameras can be used 

inconspicuously while still being quite effective. This makes 

thermal cameras the optimal option for applications that are 

needed both during the day and at night or in low-light 

conditions. Furthermore, thermal cameras function well in a 

variety of environmental conditions, such as fog, haze, 

smoke, or sandstorms, which can hinder visible cameras' 

performance and render them useless in adverse 

environmental situations. In this paper, the development of 

intelligent systems that should stay functional and effective 

regardless of lighting conditions is the prime motivation for 

using thermal imaging technology for vehicular applications. 

 
III. THERMAL IMAGING TECHNOLOGY AND 
PUBLICALLY AVAILABLE THERMAL DATASETS  
 

This section will highlight the working principle of LWIR 

thermal cameras, thermal camera configurations, and types 

of commercially available thermal cameras. Further, this 

section also presents publicly available large-scale thermal 

and synthetic thermal datasets which can be effectively used 

in vehicular applications for training and validation 

purposes.  
 
A. WORKING METHODOLOGY OF THERMAL SENSORS 

The thermal camera has internal measuring devices that 

capture infrared radiation, called microbolometers. Thermal 

infrared radiation is a type of electromagnetic radiation 

which is comprised of minute particles referred to as 

photons. Such types of radiation are emitted by all the objects 

at a surface temperature above absolute zero. From there, the 

microbolometer records the temperature and then assigns 

that pixel to an appropriate colour, thus mapping the 

complete heat map representing the temperature intensities 

which can be viewed on the camera screen or camera GUI 

(graphical user interface).  

B. THERMAL SENSOR CONFIGURATION & IMAGE 
CORRECTION PIPELINE 

Thermal cameras based on microbolometer technology 

generate thermal images by applying a color palette to the 

different intensities of Infrared Radiation. However, the way 

data is gathered and processed is directly influenced by 

internal sensor configurations. Most thermal cameras come 

with onboard initial image pre-processing pipelines before 

recording the data. Some of the commonly used pre-

processing steps are as follows. 

• Sensor Calibration (shutter/shutterless) 

• Re-scaling and denoising techniques  

• Automatic gain correction (AGC) 

• Bad Pixel Replacement  

• Temporal Denoising  

Figure 2 shows the three-stage image correction/ processing 

pipeline once the camera is calibrated using the shutterless 

algorithm. 

 

FIGURE 2. Three stages of image correction/ processing pipeline to 
produce high-quality thermal data.  

C. COOLED AND UNCOOLED THERMAL CAMERA 

Commercially available thermal cameras can be divided into 

two distinct categories. This includes cooled and uncooled 

thermal cameras respectively. 

Cooled Thermal Camera: Thermal imaging sensor that is 

coupled with a cryocooler is a core feature of cooled thermal 

cameras. It is the kind of system that lowers the sensor's 

temperature to cryogenic levels. To eventually lower the 

thermally actuated noise to a level below that of the sign 

from the scene being captured, it is required to lower the 

sensor temperature. Helium gas gradually pushes past gas 

seals in cryocoolers, and the moving parts that are designed 

to extremely tight mechanical tolerances eventually wear 

out. For applications that demand precise and consistent 

data, cooled thermal imaging technology is widely regarded 

as the most sensitive sort of thermal imaging technique. It 

can even detect very minute temperature changes between 

objects. They can generate images in the wavelength 

spectrum of the mid-wave infrared (MWIR) typically with 

wavelengths of 3-5µm (3000nm to 5000nm) and long-wave 

infrared (LWIR) range where the thermal complexity is high 

because of blackbody material. However, cooled MWIR 

thermal cameras are more costly as compared to the standard 

uncooled LWIR cameras.  
Uncooled thermal Cameras: These cameras are developed 

utilizing technology that eliminates the need for cryogenic 

cooling of the imaging sensor. A standard 

uncooled thermal detector relies on the microbolometer 

sensor array, a silicon component with a large surface area, 

low heat limit, high thermal segregation, and a moderate 

vanadium oxide resistor with a big temperature coefficient. 

The bolometer temperature fluctuates as a result of variations 

in scene temperature, which is the main working principle of 

uncooled thermal cameras. The electrical impulses that result 

from these temperature variations are then processed to create 

an image. Ferroelectric technology is counted as a different 

type of microbolometer for the development of uncooled 

thermal cameras.  In this case, slight variations in the 



  

  

material's temperature led to significant variations in electrical 

polarization. Metal barium strontium titanate is used to make 

ferroelectric microbolometers (BST). Uncooled sensors are 

made to operate in the longwave infrared range of 7 to 14 

microns, where the majority of the infrared energy is emitted 

by terrestrial temperature targets. Uncooled cameras are more 

affordable as compared to cooled thermal cameras. 

D. LARGE-SCALE PUBLICALLY AVAILABLE THERMAL 
DATASETS  

Dataset size plays a critical role in the training of deep neural 

networks (DNN). The bigger the amount of training data the 

better a DNN can generalize and regularize which can be 

further used for cross-validation on unseen test data. When 

coming to the supervised learning methodology for training 

DNN, datasets must be organized according to their 

respective class labels. In this section, we will highlight 

large-scale publicly available thermal datasets along with 

their respective attributes which can be used for training of 

DNN or specifically, convolutional neural networks (CNN). 

However, it is important to mention that as compared to 

visible imaging datasets we cannot find many large-scale 2D 

thermal datasets specifically for automotive applications on 

the open internet. The first part will show the facial thermal 

datasets whereas the second portion will underline the object 

detection datasets in the thermal spectrum. These datasets 

have been acquired using different types of thermal sensors 

in different environmental conditions as discussed in Table 

1 & Table 2 respectively. These datasets are used for training 

a wide range of pre-trained CNN for various in-cabin 

occupant monitoring as well as out-cabin vehicular 

applications. These applications include face detection, 

thermal gender classification, and object detection in the 

thermal spectrum on GPU and edge-GPU devices for the 

automotive sensor suite. This subsection will list the number 

of face thermal datasets in tabular form (Table 1) which are 

published and available on the open internet for non-

commercial purposes. 
TABLE I 

FACIAL THERMAL DATASETS ATTRIBUTES 

DATASET 

NAME 

DATASET DETAILS  THERMAL 

CAMERA USED  

Tufts 

dataset  

[6-7] 

• This dataset is comprised of 

113 unique subjects and 
includes images from six 

different image modalities 

that incorporate visible, near-
infrared, thermal, 

computerized sketch, a 

recorded video, and 3D 
images of both male and 

female classes.  

• The data was collected in an 

indoor environment under 

controlled lighting 
circumstances with diffused 

lighting. 

• The images were acquired 

using a FLIR Vue Pro camera 

by mounting it at a fixed 
distance and height. 

FLIR Vue Pro 

Camera 

Laval Face 

Motion and 

Time-Lapse 
Video 

Dataset [8] 

• This dataset consists of a total of 

238 subjects, which makes it the 

biggest thermal database.  

• It is divided into two main 

categories which include 
genuine thermal subjects having 

a total number of 134 and 

impostor thermal subjects having 
a total number of 104. 

• The overall dataset is acquired 

with a variety of facial poses, 

expressions, ethnicity, ageing, 

time-lapse, and opaqueness to 
eyeglasses thus making it a 

unique thermal facial dataset.  

MWIR Phoenix 

Indigo IR 

camera 
manufactured by 

FLIR 

University 

of Notre 

Dame 

(UND) 

thermal 
dataset [9] 

• This dataset contains LWIR and 

visible spectrum facial images 

with an image resolution of 

320x240 pixels resolution.  

• The dataset is acquired using the 

facial information of 241 people 
under two illumination 

conditions.  

• The database was collected in 

multiple sessions, and it contains 

a total of 2492 images. 

Merlin-Uncooled 

thermal camera 

from Indigo 

Systems  

CARL 
thermal 

dataset [10-

11] 

• This dataset is acquired in two 

different imaging spectrums 

which include visible and 
thermal. 

• The overall thermal dataset is 

recorded in 160x120 resolution 
size. 

• The complete dataset is 

consisting of 41 different 

subjects among which people 32 

are male subjects and 9 are 
female subjects. This dataset 

consists of 7380 thermal frames. 

Thermographic 
camera TESTO 

880-3 which is 

equipped with an 
uncooled 

detector 

 

This section will list the number of out-cabin object detection 

thermal datasets in tabular form (Table 2) which are 

published and available on the open internet for non-

commercial purposes. 
TABLE II 

OBJECT DETECTION THERMAL DATASETS ATTRIBUTES  

DATASET 

NAME 

DATASET DETAILS  THERMAL 

CAMERA USED  

OSU 

Thermal 

[12] 

• This dataset is acquired in the day 

and nighttime environmental 

conditions. 

• The overall dataset is consisting 

of different objects which include 

persons, cars, and poles 

• The dataset is recorded with an 

image resolution of 360x240 with 
a total of 284 thermal frames. 

Raytheon 300D 

thermal sensor 

core 

75 mm lens 

 CVC [13] • This database is acquired during 

the day and nighttime 
environmental conditions. 

• The overall dataset is consisting 

of different objects which include 

persons, cars, poles, bicycles, 

bikes, and buses. 

• The dataset is recorded with an 

image resolution of 640x480 with 

a total of 11 thousand thermal 
frames. 

LWIR FLIR Tau2 



  

  

LITIV [14] • The overall dataset is consisting 

of a single class object i.e., 

person/ pedestrian. 

• The dataset is recorded with an 

image resolution of 320x240 with 
a total of 6 thousand thermal 

frames. 

• --- 

TIV [15] • The overall dataset is consisting 

of objects from different classes 

which include persons, cars, 

bicycles 

• Images are captured with a 

resolution of 1024x1024 with a 
total of 63 thousand thermal 

frames. 

• The TIV dataset consists of seven 

different scenes, among which 

two of them were recorded in 
indoor scenes. 

FLIR SC8000 

cameras 

FLIR [16] • FLIR dataset is acquired in the 

day (60%) and nighttime (40%) 

environmental conditions.  

• The dataset includes ground truth 

annotations. 

• It contains objects from six 

different classes which include 

persons, Cars, Poles, Bicycles, 

buses, and Dogs. 

• The complete dataset consisted of 

14 thousand thermal frames with 
a recorded frame size of 

640x512. 

LWIR FLIR IR 

Tau2 

 

KAIST [17] • Likewise, the FLIR dataset and 

KAIST dataset is also acquired in 

the day and nighttime 

environmental conditions and 

provides ground truth data 

annotations. 

• It contains objects from five 

different classes which include 

persons, cars, poles, bicycles, and 

bus 

• The dataset is comprised of 95 

thousand thermal frames with a 

frame size of 320×256. 

FLIR-A35 

thermal camera 

E. SYNTHETIC THERMAL DATASETS  

Convolutional Neural Networks (CNN), which comes under 

the bigger umbrella of Deep Neural Networks, have 

significantly improved discriminative tasks and are bridging 

the automation gap. But even so, many computer-vision 

applications require significant amounts of training data to 

obtain optimum training results and reliable validation 

outcomes. Sophisticated pre-trained architectures 

demand large amounts of training data, such as annotated 

data, in order to train object detection models. However, this 

method is expensive, prone to mistakes, difficult, and time-

consuming, especially in highly complex, dynamic 

production environments. This barrier can be addressed by 

generating and including synthetic data to speed up the 

training phase of DL from suitable training datasets as the 

seed data.  

Instead of being generated by actual events, synthetic data is 

a form of information that is derived from a set of real data. 

It is usually produced with the aid of algorithms and is 

applied to a variety of tasks in order to supplement and 

enhance the number of variations in the training data and, as 

a result, to facilitate the best possible training of deep 

learning architectures. Moreover, manufacturers can use 

synthetic data for software testing and quality assurance. 

Synthetic data can help professionals and researchers to 

build data repositories that are required to train the networks 

from scratch and even fine-tune machine learning models, a 

technique referred to as transfer learning.  As discussed in 

section 3D we cannot find enough large-scale training 

datasets in thermal imaging modality therefore synthetic data 

plays a vital role at this point for optimal generalization of 

deep learning architectures. In this work, we have 

highlighted various methods for generating synthetic thermal 

data using the existing thermal datasets listed in table 1 and 

table 2. These methods include data augmentation or data 

transformation, generating fake thermal data using 

Generative Adversarial Networks (GANs), image-to-image 

translation method, and 2D to 3D face transformation using 

end-to-end deep learning networks. The generated synthetic 

data using these methods can be effectively used for the 

training purposes of pretrained CNN architectures for 

thermal classification, segmentation, and detection tasks. 

Table 3 lists the number of publicly available synthetic 

datasets along with their respective attributes. 
TABLE III 

SYNTHETIC THERMAL DATASETS ATTRIBUTES 

DATASET 

NAME 
DATASET DETAILS  THERMAL 

CAMERA USED  

Synthetic 

Depth & 

Thermal 
(SDT) 

Dataset 

[18] 

• This Synthetic Depth & 

Thermal (SDT) dataset 

consists of 40k synthetic and 

8k real depth and thermal 

stereo images, showing 

human behaviour in indoor 

environmental conditions.  

• Included samples show 

uniquely posed lying, sitting, 

and standing persons within 

four different room types 

(living room, bedroom, 

bathroom, and kitchen), 

recorded from an elevated 

position. 

• Both parts of the SDT dataset 

contain balanced sets of these 

four classes and room types. 

• The synthetic portion of the 

dataset is proposed to be used 

as training (and validation) 

data for single/multi-modal 

pose classification or person 

detection models. 

FLIR Lepton 3.5 

thermal camera 

 

IV. IN-CABIN THERMAL MONITORING SYSTEMS 

Cabin monitoring goes beyond traditional driver monitoring 

to include not just the driver, but also passengers and the 



  

  

entire cabin environment. It can safely identify the presence 

of individuals and objects, as well as assess seat occupancy 

and seatbelt wearing. For autonomous driving, the car must 

be aware of not just its passengers' presence, but also their 

position and state. The car, for example, needs to know if the 

driver is paying attention and has both hands on the wheel. 

Customizing based on driver identity, drowsiness/fatigue 

monitoring, eye localization, or health and safety criteria are 

further examples of Comfort-related use-cases. In this 

section, we will briefly discuss the in-cabin applications 

developed using thermal imaging to date. The applications 

below include both published articles for intelligent vehicles 

as well as additional relevant publications that can be utilized 

in intelligent vehicles. 

A. GENDER CLASSIFICATION 

In addition to in-cabin driver monitoring systems, human-

computer interaction, video surveillance systems, and 

psychological analysis, gender classification has found 

various uses in the larger area of computer vision systems. 

Researchers have already developed a gender categorization 

method based on visible spectrum images of the human face. 

However, a variety of factors influence the effectiveness of 

these systems, including lighting, shadow, occlusions, and 

time of day. Cunijian et al [19] presented the use of local 

binary pattern histograms (LBPH) to deduce face gender 

categorization in thermal and NIR (near-infrared) images, as 

well as the significance of machine learning algorithms like 

SVM, Adaboost, and LDA for significantly better gender 

recognition.  

    In [20], the authors proposed a Bayesian network with a 

feature selection method for the explicit and implicit fusion 

of visible and thermal images to further classify gender. 

Finally, they tested the presented approaches on the Equinox 

face database, and the Natural Visible and Infrared facial 

Expression spontaneous database. The outcomes of the 

studies indicated that combining feature-level and decision-

level fusion improves gender recognition performance when 

compared to using only one modality. Dat Tien et al [21], 

proposed a similar idea with HOG and MLBP (multi-level 

local binary pattern) methods to classify body-based gender 

using images both from the visible and thermal camera. 

Further, the same author upgraded their system to use a 

convolutional neural network to classify males and females 

from surveillance systems in [22]. Instead of just utilizing 

video or images, Mohamed Abouelenien et al [23] offered a 

multimodal dataset containing audio-visual, thermal, and 

physiological readings of males and females to classify 

gender. They also demonstrated how non-contact 

physiological measures, such as thermography readings, 

may improve existing systems that rely on audio or visual 

input. According to one of the studies [24], the thermal 

condition and gender of a person can be determined by 

monitoring physiological indicators from non-intrusive body 

areas with wearable sensor technologies like humidity 

sensation, airflow sensation, thermal preferences, and 

thermal comfort. Further to focus more on just deep learning, 

[25] proposed a system where they merged multiple CNN 

models to perform more robustly towards occlusion and low-

resolution degradation as well as demonstrate competitive 

performance.  

    Using the GENDER-FERET face dataset, Dwivedi [26] 

offered a detailed evaluation of deep learning approaches for 

robust gender identification. They also demonstrated that 

Convolutional Neural Networks (CNNs) are increasingly 

being used for feature extraction and classification in various 

vision applications and that they are suitable because of their 

high performance. In [27] authors presented a new method 

for classifying gender that relied on the temperature 

distribution of the person's ear. It has been discovered that 

the colder area on the ear is greater in percentage for males 

than for women, further to train on using simplest neural 

networks [28]. Georgia et al [29] suggested that the selected 

features of the thermal image can be based on the mean value 

of the pixels of specified areas on the face, which is a 

relatively simple way for gender discrimination utilizing 

thermal infrared images of the person's face. They also 

demonstrated that discrimination can be accomplished either 

using simple visualization in the feature space or a 

reasonably simple neural network [29]. To recognize 

people's gender in outdoor places where it is difficult or 

impossible to guard all roads, especially in dim illumination 

conditions or in the dark, [30] suggested a model that was 

developed and evaluated utilizing a controlled UAV flight 

that captured images of humans. 

 
B. FACIAL EXPRESSION/EMOTION DETECTION 

Human curiosity leads to a thorough examination of 

computational models for modelling psychological states 

and estimating emotion. Human emotion is a pure qualitative 

entity to be investigated, as the term implies. Anushree et al 

[31], proposed suggested a non-invasive method for 

classifying human emotion using thermal images. Hu's 

moment about distinct patches has been combined with a 

statistical feature called a histogram and utilized as resilient 

features in the multi-class support vector machine 

classification method. In [32], the authors developed a non-

invasive technology that relied on thermal value and not its 

intensity, further image processing techniques that make it 

possible to identify the difference between the subject and 

the environment, and a cropped region of interest to better 

recognize emotions in the thermal spectrum. As an outcome 

of the research, a smart-thermal system for diagnosing 

emotions was designed and evaluated on twenty-five people 

(625 thermograms). This test achieved an overall success 

rate of 89.9%. Goulart et al [33] utilizing emissivity variation 

designed an experiment to analyse emotions in children’s 

thermal images. The research results demonstrate the 

effectiveness of a design of experiments, including a link 

between valence and nose thermal decrement; disgust and 

happiness as effective triggers of facial emissivity variations; 

and significant emissivity variations in the nose, cheeks, and 

regions around the eye associated with various emotions. 

Furthermore, face thermal asymmetry was discovered, with 



  

  

a particular thermal tendency in the cheeks, and 

classification accuracy was more than 85% on average. 

    Authors in [34] adapted the Yolo algorithm and proposed 

heat-map-based face recognition and emotion recognition 

from thermal images. Further, the algorithm performance 

was compared with ResNet and DenseNet in terms of 

precision and intersection over union (IOU). Another 

promising solution was developed, which combined long-

wave infrared imaging (LWIR) with a parallel deep emotion 

net to improve robustness and accuracy [35]. Authors in [36] 

improved a Yolo algorithm to assess emotions hidden in the 

face, such as stress and anxiety and then estimated thermal 

images using thermal values of pixels rather than intensity 

values of pixels. The authors found that the modified YOLO-

v3 algorithm is an effective method for predicting human 

emotions. They also claimed that the issue was due to a lack 

of thermal datasets. In the future, an attempt could be made 

to create a good dataset that could provide a more accurate 

result in everyday life, assisting in the prediction of various 

people human's psychology [36]. Authors in [37] proposed 

TFSRNet, a super-resolution network to enhance low-quality 

thermal images for thermal facial emotion recognition. They 

used the Convolutional Block Attention Module (CBAM) in 

both super-resolution architectures to highlight the most 

significant aspects of each facial emotion while suppressing 

unimportant elements. Low-resolution thermal facial 

expression images are enhanced using the suggested super-

resolution frameworks, which are obtained using three 

distinct degradation models: bi-cubic down-sampling (BI), 

blurring backed by bi-cubic down-sampling (BD), and bi-

cubic down-sampling followed by adding random noise 

(DN). Residual networks are easy to tune and can benefit 

from increasing depth to improve accuracy. Authors in [38] 

used the Natural Visible and Infrared Facial Expression 

(NVIE) dataset with a pre-trained customized ResNet152 to 

train thermal facial images to predict distinct 

emotions. Further, Mustafa et al [39] surveyed and reviewed 

a comprehensive analysis of thermal-based imaging and 

particularly focused on emotions in the thermal spectrum. 

This study could also assist newcomers to the field of thermal 

imaging and emotion recognition by allowing them to 

investigate the various methodologies utilized by researchers 

to build an affective state system based on thermal imaging. 

Understanding the current state of humans may help not just 

with human-to-human communication, but also with human-

computer connection (HCI) [39].  

    Moreover, researchers are also working on building 

algorithms to detect various illnesses from thermal images 

based on emotions. Authors in [40] proposed a method to 

detect attention-deficit hyperactivity disorder (ADHD) 

syndrome (a sign of behavioural or emotional abnormalities) 

by employing data fusion analysis for face expression in 

thermal imaging and deep reinforcement learning to treat 

behavioural issues. Another example is the evaluation of the 

problems of patients who are unable to communicate their 

emotions, such as those with autism. Kavya et al [41] 

proposed a ResNet50 network, a deep-learning technique to 

detect autism disorders based on thermal imaging. Authors 

in [41] proposed a stress recognition system using biological 

signals and thermal images. When a person is anxious, the 

deep neural network gets facial landmarks as input to take 

use of the fact that eye, mouth, and head movements are 

different than usual. 
 

C. FACE RECOGNITION IN THE THERMAL IMAGE 

Thermal infrared (IR) images emphasize temperature 

variations in face muscles and blood vessels. Temperature 

variations can be considered texture elements in face images 

for thermal face recognition [42]. Debotosh et al [42] 

proposed a comparative survey of thermal face recognition 

based on local binary pattern (LBP) and Haar wavelet 

transform. For each induvial/person the temperature of face 

muscle and blood flow varies significantly. Authors in [43] 

published an overview of thermal facial characteristics and 

approaches that have been successful in face identification, 

recognition, and verification. The usage of convolutional 

neural networks and the merging of visual and thermal 

images were then highlighted as advances in the 

development of monitoring and surveillance systems. Zhan 

et al [44], proposed a novel convolutional neural network 

(CNN)architecture for thermal face recognition. When 

compared to standard recognition methods like local binary 

pattern (LBP), histogram of oriented gradients (HOG), and 

moments invariant, their recommended CNN architecture 

achieved a higher recognition rate. Further authors in [45], 

due to advances in CNN, proposed an optimized technique 

with a short processing time to recognize and detect faces 

from low-resolution thermal images. The advantages of the 

suggested network were experimentally tested using thermal 

video sequences obtained in various settings to overcome 

potential limits of remote diagnostics, such as the mobility 

of the person doing the diagnosis and the movements of the 

person being inspected. The research indicated that the state-

of-the-art at that time in image classification and facial 

detection in thermography had been significantly 

outperformed. Authors in [46], proposed a thermal to the 

visible generative adversarial network (TV-GAN). The 

network was able to transform thermal face images into their 

corresponding visible light domain images and then perform 

recognition. Recognition Systems have gained a lot of 

interest in the previous few years from academics, 

entertainment, biomedical, and business groups, among 

other places. Biometric authentication technologies have 

risen to prominence as a potential alternative to traditional 

identification methods. Thermal imaging for facial 

recognition is often used in a few systems. The heat transfer 

action created by the flow of warm arterial blood in arteries 

is known as convection and for each induvial/person the 

convection (temperature) of face muscle and blood flow 

varies significantly [47]. Shoaib et al [47] proposed a 

framework to read vein structure from thermal face to further 

extract unique features, as it differs from person to person. 

Authors in [48], proposed a biometric identification 

technique, a fusion of visible and thermal images for face 

recognition. Blood perfusion measurements are defined by 



  

  

localized blood circulation in human tissue, and so are not 

fully dependent on ambient temperature. A person's blood 

vessel distribution pattern is unique to them, therefore a 

collection of extracted notable features from blood perfusion 

data of a human face should be distinct to that face as well 

[47, 49].   Following this, authors in [49] presented a neural 

network based on minutiae (trivial detail of blood vessels) to 

distinguish faces in thermal images with 91.47% accuracy. 

Authors in [50] proposed a pose-invariant physiological 

model for face recognition in the thermal spectrum. It uses 

image morphology to locate the superficial blood vascular 

tissue structure. As mentioned before, the contour shapes 

generated by the recovered vascular tissue are unique for 

each individual. Data acquired from different poses and the 

skeletonized vascular tissue branching points are then 

developed for face recognition in the thermal [50]. Vincent 

et al [51] further reviewed research regarding temperature 

fluctuations, mathematical formulae, wave kinds, and 

approaches in thermal infrared face identification. The 

authors also proposed that the blood vessel structure and 

facial vascular networks be exploited for unique biometric 

characteristics, resulting in a thermal map of the face image. 

Thermal feature extraction from face images could be 

achieved by executing morphological procedures such as 

opening and top-hat segmentation to produce heat signs. 

    Authors in [52] compared the performance of a 

convolutional neural network with the conventional random 

forest algorithm. The evaluation was carried out in a variety 

of settings, namely normal, with noise while wearing both a 

facemask and glasses. Furthermore, the research results 

indicated that the model based on convolutional neural 

networks performed better in various challenges. Domenick 

et al [53] proposed visible-to-thermal facial landmark 

detection in thermal images based on transfer learning. 

Authors in [54] proposed a transformation model based on 

multi-scale image synthesis for thermal face recognition. 

This transformation model is based on a generative model 

(GAN), with multi-scale categorization and multiple loss 

functions such as features anchoring, identification 

conservation, and face landmark-guided texture generation 

as basic concepts. The results of the analysis indicate that the 

suggested strategy surpasses the current state of the art. The 

results of the analysis indicate that the suggested strategy 

surpasses the current state of the art. Gabriel et al [55] 

proposed StyleGAN-based thermal face generation and 

further to validate the implementation of the synthetic 

thermal database, researchers trained six pre-trained deep 

learning models for face recognition, achieving 99.98% 

accuracy.  

 
D. EYE-GAZE LOCALIZATION AND ESTIMATION 

Almost every driver monitoring system includes eye gaze 

estimation as a crucial component. The goal of gaze 

estimation is to determine the point of gaze, or "where is the 

person or driver looking." This can assist in determining if 

the driver is paying attention to the road or is distracted. Eye-

tracking and localization are difficult in the thermal 

spectrum.  Tang et al [56] proposed a quick method to locate 

an eye in infrared images. To begin, they utilized a 

homomorphic filter to boost image contrast, then used an 

iterative threshold selection algorithm and integral 

projection function to segment the human face. They got the 

eye location approximately using their understanding of the 

eye and facial geometry. Furthermore, they accurately 

captured the human eye area using the RAMF (Ranked-order 

Adaptive Median Filtering) approach. Authors in [57], 

proposed a novel algorithm for recognition and localization 

of the face and eyes in thermal images to monitor the 

temperature of the human body by measuring the eye corner 

(inner canthus). In the localization phase, the algorithm 

employs a mixture of layout, knowledge-based, and 

morphological approaches, especially the modified 

Randomized Hough Transform (RHT), as well as increasing 

segmentation to improve the system's accuracy. Further 

authors in [58], improved the existing technology where the 

thermal camera detects eye corners and measures the 

temperatures. The authors developed a device that would 

automatically measure people's body temperatures as they 

passed by. People will not need to stop and gaze into a sensor 

one by one, as they do with existing systems. Multiple people 

can be scanned at the same time. Authors in [59], to test the 

effectiveness of thermal eye-tracking, the authors invited ten 

participants and used passive thermal imaging at 60 Hz to 

observe their corneal motions. The cornea was then 

segmented from other regions of the eye in thermal images 

using a combination of shape models of eyes and an intensity 

threshold. For 5-point calibration/validation 5 times, they 

employed an animation sequence as a calibration target. 

Their results were evaluated to data obtained simultaneously 

using an SR EyeLink eye tracker at 500 Hz, indicating that 

eye-tracking using thermal images is possible. 

      Mariusz et al [60] proposed a fast algorithm for eye 

localization from thermal images. The algorithm begins with 

a block for creating characteristics that describe eye regions. 

The second stage is a neural network-based decision block 

that allows for the accurate categorization of pre-designated 

locations. A sophisticated combination of these blocks in a 

single system allows for accurate analysis of images with a 

wide geometric variety (size, location, aspect) and brightness 

distribution, with more than 91%correct localizations and 

analysis times in a few seconds. Authors in [61], proposed a 

two-eye detection approach and evaluation in thermal 

images. A comparison of performance was done on three 

distinct features: Haar, Histogram of Oriented Gradients 

(HoG), and Local Binary Patterns (LBP). The HoG function 

provided the best detection accuracy. Based on a thermal 

image, the authors in [62] proposed an effective approach for 

detecting eyes. A unique virtual high dynamic range 

approach is used for image pre-processing, which 

considerably improves thermal image contrast and enables 

the more reliable generation of sparse image descriptors. 

Their technique was also compared to the YOLO-v3 deep 

learning model, further, the proposed model achieved robust 

accuracy and rapid responsiveness in real-world situations 

without the computational complexity of deep neural 



  

  

networks or the need for a large dataset. Authors in [63] 

tested the results of two sparse image descriptors for eye 

recognition in the long-range infrared spectrum. Sparse 

descriptors of the training images were generated and 

utilized to build feature vocabulary throughout the training 

phase. Final detections were made with a bag-of-words 

technique and a geometrical constraints heuristic. Claudio et 

al [64] proposed an automated method for locating the inner 

eye canthus (inner eye-corner) in thermal images. They start 

by detecting five facial key points that correspond to the 

centre of the eyes, the tip of the nose, and the ears. Then, 

using a 3D Morphable Face Model, they calculate a sparse 

2D-3D point correspondence. Using the YOLO v2 object 

detector, the authors in [65], presented an automated eye 

localization approach using IR thermal images. For test 

images, eye localization in IR thermal images using YOLO 

v2 achieved an mAP of 97% and a mean intersection over 

union (IoU) of 90%.  

    Most of the previously suggested eye localization 

algorithms relied solely on frontal positioning. Authors in 

[66] proposed a novel algorithm for eye localization and face 

detection in cattle based on multi-view. The authors used 

HOG filters to understand the features and support vector 

machines for classification. The paper's results show that the 

suggested technique had a high level of accuracy, with an 

average sensitivity of 0.9780, precision of 0.7212, F measure 

of 0.8024, and misclassification of 0.0455. 

 
E. DROWSINESS/ FATIGUE DETECTION IN THERMAL 
IMAGING 

Drowsy driving is a leading cause of deadly car accidents 

across the world, and it may be avoided with early detection. 

There are a few key aspects that give thermal imaging an 

advantage in detecting drowsiness. For starters, unlike 

visible cameras, thermal sensors are not sensitive to light and 

do not rely on lighting. Second, drowsiness in the driver 

causes a decrease in blood flow and a change in face thermal 

patterns.  

    There have been significant advances in deep learning in 

detecting drowsiness/fatigue in drivers. Authors in [67] 

proposed a non-intrusive method for detecting fatigue and 

drowsiness in a driver. The authors acquired data from 12 

subjects to further study and estimate the blood perfusion 

level when they are drowsy. The observer rating of 

drowsiness (ORD) approach was used to measure the 

individuals' sleepiness levels separately. A four-step method 

was used to find and monitor facial blood vessels in each 

image. The research also observed that the facial arteries' 

temperature decreased from full wakefulness to drowsiness 

(0.54 ºC, 0.33 ºC, and 0.32 ºC). A series of data was created 

by the average value of the image intensity of the face blood 

patches.  

    Further, the same authors proposed another non-intrusive 

approach to detect drowsiness in thermal imaging by 

monitoring the variation in driver respiration rate from 

wakefulness to drowsiness [68]. According to the findings, 

the rate of breathing decreases as the subject goes from fully 

alert to entirely asleep. Physiological aspects of the face were 

used to pinpoint the zone around the nostrils. The respiration 

signal was created by adding the average temperature of the 

nasal area over all frames. Erick et al [69], proposed real-

time drowsiness detection by processing the human eye. 

Using the Viola-Jones algorithm for image processing, the 

authors advised utilizing the AdaBoost training algorithm, in 

which a cascade classifier detects the location and region of 

the driver’s eye in each frame. Once the driver's eyes have 

been identified, colour segmentation and thresholding based 

on the sclera binarized region are used to determine whether 

they are closed or open. Furthermore, an audible alert 

activates when detected driver is drowsy.  

    Mateusz et al [70] proposed a unique approach to detect 

fatigue in drivers based on yawn detection in thermal images. 

Firstly, face alignment begins with the identification of eye 

corners. Then the suggested yawning thermal model is then 

used to detect yawns using the Viola-Jones algorithm with a 

cascade classifier. An annotated image database was 

established for quantitative assessment and made publicly 

available [70]. Shinji Kajiwara et al. [71] examined and 

reviewed if there’s the possibility of monitoring drivers 

using thermal infrared imaging. Also included in the article 

were proper baselines, the independent nature of thermal 

imprints, experimental data, methodological considerations, 

and limitations. Authors of [67-68] further proposed an 

upgraded version of analyzing respiration to detect 

drowsiness in thermal imaging. The authors proposed 

Support Vector Machine (SVM) and K-Nearest Neighbors 

(KNN) classifiers to be used to detect fatigue. The results 

indicated a good accuracy of 90% with a precision of 91% 

[72].  

    Authors in [73] proposed a new benchmark dataset for 

driver fatigue research. It contains thermal images, depth 

maps as well as visible images. Shinji Kajiwara et al. [74] 

attempted to improve the real-time estimation method of low 

alertness rate in drowsiness detection. The author tested the 

model on full bright and low lighting condition images, the 

detection rate was found to be weak, and facial landmark 

detection was misaligned, the ear aspect ratio and mouth 

aspect ratio could not be determined reliably. Therefore, it 

was discovered that there is an issue that leads to the 

identification of a low wakefulness state and the incorrect 

detection of yawning. As a result, utilizing thermal images 

of the face produced from an infrared thermal camera that 

can be utilized in backlight and night-time conditions, the 

author developed a low-alertness state estimate method.  

    Masoumeh et al [75] proposed yet another good approach 

to detecting drowsiness. The authors located the forehead 

and the cheek skin temperature in thermal images and trained 

it on the Support Vector Machine, the K-Nearest Neighbor, 

and the regression tree classifiers. The drowsiness was 

detected with an accuracy of 82%, sensitivity of 85%, 

specificity of 90%, and precision of 84%, according to the 

research. The authors in [76] proposed drowsiness detection 

using multimodal data. The proposed methodology 

suggested an analysis of the effects of early fusion on the 

classification of the driver’s state using multiple 



  

  

physiological and thermal channels. The research outlined 

that it is better to detect drowsiness using a multimodal 

approach as it gives two separate factors and a clear picture 

of which is influencing the driver, drowsiness, or distraction 

[76]. 
 
V. OUT-CABIN THERMAL MONITORING SYSTEMS 

Sensors are becoming increasingly important in advanced 

driver assistance systems, vehicle automation, vehicle 

networking, and new mobility services as technology 

advances. With highly automated driving levels, not only are 

the interior support systems improving, but the cars' exteriors 

are redesigning themselves to create a complete out-vehicle 

experience as well. To avoid any mishaps, a vehicle must be 

aware of its surroundings. Many out-of-cabin applications, 

namely object identification, and image segmentation have 

recently been developed. This section will go through these 

applications and current advances in depth.   

 
A. OBJECT DETECTION IN THE THERMAL SPECTRUM 

Detecting objects in the thermal spectrum has numerous 

advantages. Thermal imaging produces better and more 

practical outcomes in difficult conditions, including poor 

light scenarios, and weather conditions, and is resistant to 

optical limitations in general. Recent advances in deep 

learning and a shift away from traditional machine learning 

have had a significant influence on thermal object detection. 

Chaitanya et al [77], proposed a pseudo-multimodal object 

detector. The proposed network borrows features from rich 

domains like visual RGB. They generated pseudo-RGB 

versions of a given thermal image using well-known image-

to-image translation architectures and then utilized a multi-

modal framework to detect objects in the thermal image.  
    Various applications in driver assistance such as tracking, 

monitoring, and multispectral pedestrian detection have 

become increasingly relevant in the field of computer vision. 

The authors in [78] suggested a deep learning-based 

brightness estimation model for pedestrian detection. The 

proposed unique brightness estimation technique presents 

various illumination circumstances to predict in both day and 

night time. The suggested technique performed well on the 

FLIR-ADAS Thermal dataset, with an mAP of 81.27%.  
    Kshitij Agrawal et al [79], proposed a study that will 

examine the effectiveness of object detection with a fusion 

of visible and thermal images in a publicly available dataset. 

They provided a comparison of object detection in night 

images and showed that thermal images boost detection 

accuracy considerably. Object detection, such as persons and 

vehicles, is critical for autonomous driving. ThermalDet is a 

DNN-based, one-stage detector suggested by the authors in 

[80]. ThermalDet's fundamental notion is that, since thermal 

images lack many precise visual qualities (such as colour and 

texture), features from low and high levels are equally 

essential when conducting detection tasks on images. The 

suggested detector builds on RefineDet's design and 

enhances it. To begin, they build a dual-pass fusion block 

(DFB) that allows them to immediately merge features from 

all layers. Later they introduced a channel-wise 

enhance module (CEM) to iteratively allocate relative 

weights to channels of feature maps [80].  
    The resolution of objects in the thermal spectrum is 

frequently poor. For real-time object detection in embedded 

applications, Pavan Talluri et al [81] proposed a modified 

tiny Yolo v3 trained on FLIR thermal dataset. Thermal 

cameras are also an essential component of advanced video 

surveillance systems due to the inability to use RGB cameras 

adequately at night and in adverse weather circumstances. 

Mate et al. [82] proposed utilizing convolutional neural 

network models initially designed for detection in RGB 

images to detect people in thermal images. They examined 

the performance of state-of-the-art object detectors, such as 

Faster R-CNN, SSD, Cascade R-CNN, and YOLOv3, and 

retrained on a dataset of thermal images acquired from 

recordings.  It was also observed that YOLOv3 performed 

significantly better than other detectors.  
    The authors in [83] proposed a survey to examine the 

current state of the art in deep domain adaptive object 

detection techniques in both the optical and thermal domains. 

They began by outlining the fundamental notions of deep 

domain adaptation. Next, the deep domain adaptive detectors 

are divided into five groups, with full explanations of typical 

approaches for each group. Furthermore, recommendations 

for future study trends are provided.  
    For object detection, Ravi et al [84] suggested a CNN-

based fusion architecture. They evaluated the KAIST 

multispectral pedestrian dataset and the FLIR thermal object 

detection dataset. They trained a baseline FasterRCNN 

model for detection in the daytime, the Color model 

exceeded the Thermal model, while in the nighttime, the 

Thermal model performed better than the Color model, 

demonstrating their complementary nature. Further, 

they built a basic mid-level CNN fusion architecture that 

outperforms the baseline models considerably. When 

compared to conventional approaches, they found a 0.62% 

reduction in the miss-detection rate. For safe autonomous 

vehicles, underexposure zones are critical for constructing a 

full sense of the environment.  
    Thermal cameras have become an important alternative 

for exploring areas where conventional optical sensors fail to 

capture interpretable information. In [85], the authors 

suggested a domain adaptation system that uses a style 

transfer approach to transfer learning from visual to thermal 

images. Using style consistency, the method incorporates a 

generative adversarial network (GAN) to move low-level 

characteristics from the visible spectrum domain to the 

thermal domain. Xuerui Dai et al. [86] presented TIRNet, a 

novel object detection technique based on convolutional 

neural networks (CNN), for robust and sustainable object 

recognition in thermal infrared (TIR) images. The 

lightweight feature extractor (VGG) is used rather than the 

deep-CNN backbone (ResNet, ResNeXt), which has lower 

bandwidth and significant computational cost. This approach 

attained state-of-the-art detection accuracy while 

maintaining a high detection efficiency at the time.  



  

  

    Another unique approach of domain adaption for thermal 

object detection was proposed by authors in [87]. Using the 

self-supervised contrastive learning technique, the authors 

investigated thermal object detection to model a view-

invariant model representation. They proposed a self-

supervised thermal network (SSTN) for learning features to 

optimize data between both visual and thermal spectrums. 

The proposed network was trained on FLIR and KAIST 

Multi-Spectral datasets.  
    Francesco et al [88] proposed a different technique to 

improve object detection in the thermal domain. They 

suggested integrating synthetic 3D objects into actual scenes 

as a novel data augmentation strategy for visual content 

domains with sparse training datasets. They analyzed other 

augmenting methods, such as state-of-the-art approaches 

acquired through reinforcement learning (RL) techniques, 

the infusion of simulated data, and the use of a generative 

model, and investigated how to integrate their suggested 

augmentation with these other techniques as effectively as 

possible. On the FLIR ADAS dataset, their single-modality 

detector produces state-of-the-art results, demonstrating the 

effectiveness of this technique.  
    Authors in [89], proposed Bayesian fusion object 

detection in visible and thermal spectrum based on 

multimodal data to increase safety-critical perception. They 

further explore and investigate different strategies for fusing 

data with different modalities. Sachin et al [90] 

proposed YOLO-v3 and Spatial Pyramid Pooling (SPP) 

approaches to detect objects in thermal images. The YOLO-

v3 technique for object detection is unique as it obtains the 

bounding box coordinates and confidence score for the 

image using a single CNN. They then built a Spatial Pyramid 

Pooling (SPP) layer on top of the CNN in YOLO-v3. 

Cropping the image in the fully connected layer is no longer 

necessary because of the SPP layer. This resulted in a 100-

fold increase in speed. The network was trained on the FLIR 

dataset, the proposed technique achieves above 80% 

precision.  
    To focus on the small objects in thermal images, authors 

in [91] proposed a DDSSD (dilation and deconvolution 

single shot multi-box detector). This network is a modified 

or enhanced version of SSD with a novel feature fusion 

module for small object detection. The network achieves an 

mAP of 79.7 % with an FPS of 41 with a 300x300 input 

image.  
    Chen Lu et al [92] proposed a pedestrian detection method 

based on centre, temperature, scale, and ratio prediction in 

thermal imagery. The suggested technique is divided into 

two parts: (1) extraction of features and (2) predictions of 

centroid, temperature, scale, and ratio. The feature extraction 

section extracts high-level semantic characteristics from 

thermal imaging data as input feed data using the ResNet-

101 network. The temperature, scale, and ratio prediction 

section determine if a target centroid exists in each place of 

the feature map, which is a binary classification challenge. 

The temperature branch determines whether the centroid is a 

heat-radiating pedestrian target or the background. The scale 

and aspects ratios prediction branches are used to establish 

the target size, which is a regression challenge. The 

suggested approach and its detection performance are better 

than the benchmark of night-time pedestrian detection 

systems, according to experimental results.  
 
B. SEMANTIC SEGMENTATION 

One of the most difficult challenges in computer vision is 

semantic segmentation. In the great scale of things, 

segmentation is one of the high-level tasks that leads to 

comprehensive scene interpretation. Semantic Segmentation 

aims to apply an object class to each pixel in an image. In 

self-driving surroundings, these classes may be "pedestrians, 

automobiles, buildings, trees, poles, etc." Semantic 

segmentation, for example, supports self-driving cars in 

determining which regions of an image are safe to drive.  

    Jae Shin et al [93], proposed a pixel-level matching object 

segmentation using a convolutional neural network. Based 

on pixel-level similarity between two object units, the 

network seeks to differentiate the target region from the 

background. To take use of both geographical details and 

classification semantic information, the proposed network 

depicts a target object utilizing characteristics from distinct 

depth layers. In addition, they offer a feature compression 

strategy that dramatically decreases memory needs while 

preserving feature representation capabilities. This network 

was primarily built on visual data, but the authors extended 

the network's transferability to other domains and tested it on 

thermal data too. In addition, the network performed better 

in terms of precision, efficiency, and stability.  

    Authors in [94] proposed segmentation of pedestrians in 

the thermal spectrum. The authors described the testing of 

the thresholding-based segmentation procedure in FIR 

images. The usefulness of two types of thresholding 

procedures is demonstrated by an evaluation of the acquired 

results: Otsu global thresholding vs. single threshold. Peng 

et al [95] proposed a different approach to tackle thermal 

pedestrian segmentation. The authors suggested a new 

conditional generative adversarial network-based thermal 

infrared pedestrian segmentation technique (IPS-cGAN) 

[95]. According to the results, the suggested approach 

outperformed variously supervised and unsupervised 

segmentation techniques in terms of accuracy and 

robustness, particularly in complex images. Thermal 

imaging is a very unique way of segmenting the road which 

is not visible in RGB images.  

    Authors in [96] proposed a real-time unmanned aerial 

vehicle semantic segmentation in thermal images. The 

suggested model included an encoder-decoder architecture, 

as well as a convolutional layer extracted features and a 

constrained Boltzmann machine in the network. The 

algorithm was also put to the test and evaluated with five 

state-of-the-art segmentation approaches.  The proposed 

model was shown to be a robust model with an average 

accuracy of 0.97 in the results obtained.  

Chenglong et al [97] suggested an edge conditional 

convolutional neural network for segmenting objects in 

thermal images at different times of day and night. The 



  

  

authors also present "Segmenting Objects in Day And Night" 

(SODA), a new benchmark data set for extensive 

assessments in thermal image semantic segmentation. SODA 

has approximately 7168 carefully annotated and 

synthetically produced thermal images from a variety of 

angles and scene complexity, each with 20 semantic area 

labels. Haitao et al [98] proposed a MCNet-multi-level 

correction network for semantic segmentation in thermal 

images for night-time, foggy, and snowy driving scenarios. 

It can generate a more accurate correlation matrix and step-

by-step adjust the feature development process. A large 

thermal dataset was also introduced, called SCUT- 

Seg.  SCUT-Seg comprises 10 manually annotated semantic 

area labels for 2010 thermal images taken from diverse road 

scenarios. Comprehensive tests on SCUT-Seg and the public 

MFNet dataset showed that the suggested approach 

outperforms the state-of-the-art methods.     

    Other significant advancements in the thermal semantic 

segmentation domain have mostly focused on narrowing the 

gap between RGB and thermal images, by creating a fusion 

between them. Johan et al [99] proposed a multimodal 

semantic segmentation model and utilize thermal images in 

addition to RGB images, making the network substantially 

more resilient. Moreover, this article also offers a unique 

two-stage training technique that uses a transfer learning 

mechanism to align the learned feature spaces across 

contexts. A new dataset with over 20,000 time-synchronized 

and coordinated RGB-thermal image sets to overcome the 

shortage of thermal data for self-driving cars was also 

introduced.  

    The authors of [100] utilize thermal images to build a 

unique deep neural network that fuses both RGB and thermal 

information. The proposed network uses ResNet to extract 

features, and a new decoder is being built to restore feature 

map resolution so that visual and thermal images can be 

fused. The results of the experiments show that their network 

outperforms the state of the art. Further authors in [101] 

proposed FuseSeg to achieve superior performance of 

semantic segmentation in urban scenes. The proposed 

network is made up of an end-to-end deep neural network 

that receives a pair of visual and thermal images as input and 

produces pixel-by-pixel semantic labels as outputs. The 

network interprets urban scenes, which is an important part 

of many self-driving operations including environment 

modelling, obstacle detection, mobility prediction, and 

planning.  

    Vijay et al [102] proposed BVTNet, a multi-label multi-

class fusion of visible and thermal images to determine free 

space and person segmentation. The BVTNet calculates the 

number of pedestrians and available space in each multi-

class output. In a post-processing phase, the boundaries 

semantics segmentation is incorporated into the overall 

semantic segmentation framework. The proposed model has 

been evaluated on the public MFNet dataset. The authors of 

[103] proposed a sensor fusion system that does both 

semantic forecasting and optimum semantic segmentation. 

The network predicts the available or free space, and 

pedestrian crossing labels, including their spatial and motion 

behaviour. The presented system was tested using the 

publicly available KAIST dataset and the framework can not 

only properly predict but also update the semantic 

segmentation map very accurately.  

    Yeong et al [104] proposed a framework 

that overcomes the data limitation issues and enhances 

segmentation results in the thermal. The approach further 

improves the classification performance of the thermal 

segmentation network in day and night thermal images with 

pixel-level domain adaptation. By utilizing sequential multi-

spectral knowledge transfers, such as RGB -to- RGB, RGB -

to-thermal, and thermal-to-thermal adaptations, a thermal 

image segmentation network achieved exceptional 

performance without any ground-truth labels. In addition, the 

authors include a real-world RGB-Thermal segmentation 

dataset that includes 950 manually labelled Cityscapes-style 

ground-truth labels in Nineteen classes.  

    Further authors in [105] proposed an RGB-thermal 

segmentation for snowy road scenarios. This research 

compared some of the most advanced semantic segmentation 

approaches for categorizing snow road surfaces from RGB 

images. The authors also proposed a completely new dataset 

for feature classification in various lighting circumstances 

(day and night). Wujie et al [106] proposed a graded feature 

multi-label learning network (GMNet) with two RGB-

thermal fusion modules, namely a shallow feature fusion and 

deep feature fusion to determine the segmentations in urban 

thermal image scenes. The network outperformed the state-

of-the-art methods for urban scene semantic segmentation. 

Zhifeng et al [107] proposed the state-of-the-art MLFNet to 

determine the robust semantic segmentation based on the 

fusion between RGB-thermal images in the variable lighting 

scenes. Furthermore, the results show that this network is 

precise and resilient in a variety of illumination situations 

and that it exceeds state-of-the-art networks in terms of 

overall performance.  

VI. OUR CONTRIBUTIONS TOWARDS SAFE 
AUTONOMOUS SYSTEMS USING THERMAL INFRARED 
IMAGING  

This section will summarize our core contributions toward 

the effective use of thermal imaging technology for both in-

cabin and out-cabin vehicular applications. The entire 

experimental work was carried out under the Heliaus project 

[108]. The project tends to develop a smart breakthrough 

thermal perception system using an uncooled thermal camera 

based on a microbolometer sensing array. An indigenous 

prototype VGA camera was used specially designed for data 

recording and validation purposes. The camera embeds a 

Lynred Long Wave Infrared (LWIR) sensor with a focal 

length of 7.5 mm and an F-number of 1.2. Figure 3 shows 

the images of the 640X480 LWIR thermal camera used in 

this project. The first phase of this section will highlight 

experimental results for in-cabin vehicular applications 



  

  

whereas the second phase will describe the experimental 

findings for out-cabin vehicular applications carried out 

under the Heliaus project [108].   

 

 
 
FIGURE 3.  Uncooled Prototype LWIR 640x480 thermal imaging 
developed under the Heliaus project. 

 
A. HELIAUS IN-CABIN CONTRIBUTIONS USING 
THERMAL INFRARED IMAGING  

The in-cabin applications development targeted in the 

context of the Heliaus project aims at prototyping new smart 

thermal systems enabling the monitoring of driver activities 

by specifying the person's soft biometrics, vital sign 

monitoring, and drowsiness detection. The main 

contributions are listed below.  

    In the first phase, we have prosed a composite mechanism 

to generate a large-scale synthetic thermal dataset using 

various computer and deep learning methods. These include 

data augmentation/ data transformation, synthetic data 

generation using SoA styleGAN, and lastly 2D-3D thermal 

face reconstruction using end-to-end Position map 

Regression Network (PRN) architecture [109]. The 

generated synthetic data along with the real-world thermal 

data gathered from the prototype thermal camera and other 

public thermal datasets is further used for various 

experimental work. The main goal of synthetic data is to 

further use it for robust training of deep learning models and 

the development of an autonomous driver gender 

classification system. The complete working methodology 

along with detailed experimental results are published in 

[110-111].  

    In the next phase, we have developed a thermal driver 

gender classification framework [112] for human-machine 

interface applications. For this, we have trained nine state-

of-the-art pre-trained networks from scratch (by unfreezing 

all the network layers) on a large-scale casia facial dataset. 

These models includes AlexNet, VGG-19, MobileNet-v2, 

Inception-v3, ResNet-52, ResNet-50, ResNet-101, 

DenseNet-121, Dense-201 and EfficientNet-B4. The trained 

architectures are further fine-tuned using Tufts public 

thermal dataset [113-115]. In addition to utilizing the 

pretrained architectures, the main contribution of this work 

is designing a novel CNN architecture ‘GENNet’ [112] for 

the thermal gender classification task, and further its 

performance is compared against all the pre-trained state-of-

the-art architectures. For rigorous validation tests of all the 

trained architectures including the newly proposed 

GENNET architecture on thermal data nine different 

quantitative metrics have been employed. These include 

accuracy, sensitivity, specificity, precision, negative 

predictive value, False Positive Rate (FPR), False Negative 

Rate (FNR), Matthews Correlation Coefficient (MCC), and 

F1-score.  

    In our study, the EfficientNet-B4 model achieved the 

highest test accuracy of 93.3% followed by the DenseNet-

201 and the proposed GENNet network which has achieved 

an overall testing accuracy of 92.2 and 91.1% however, 

GENNet architecture is good for a compute-constrained 

thermal gender classification use-case as it performs 

significantly better than other low-parameter models. The 

complete experimental results are published and available at 

[112].  

    The third phase of our experimental work contributes 

toward driver stress and drowsiness detection using thermal 

infrared imaging technology. Daniela et al [116] from 

NEXT2U [117] proposed a driver stress evaluation based on 

ECG signals. To estimate the "stress index" (SI) using 

thermal features derived from the face region of interest (i.e., 

nose tip, nostrils, glabella), a non-linear support vector 

regression (SVR) method was employed. The predicted, 

"stress index" (r = 0.61, p = 0) had a strong relationship with 

the actual SI. Based on the anticipated SI, a two-level 

categorization of the stress condition (STRESS, SI 150, vs 

NO STRESS, SI 150) was performed. Considering an AUC 

of 0.80, a sensitivity of 77%, and a specificity of 78%, the 

ROC analysis revealed that the classification results were 

improved drastically.  

    Further, NEXT2U [117] proposed the drowsiness 

classification work [118] using a low-cost and high-

resolution prototype thermal camera developed under the 

Heliaus project.  A total of 10 subjects participated in this 

study among which six were male subjects between the age 

range of 23-44. The data was recorded at a 30hz frame rate 

for performing further experiment work. The facial skin 

temperature was acquired using LWIR thermal camera along 

with visible facial videos which were recorded using an Intel 

RealSense D415 camera. The purpose of recording the 

visible facial data was to transfer the visible facial landmark 

features tracked to the thermal imagery, thus estimating the 

geometrical transformation between the two imaging optical 

devices. The authors utilized PERCLOS (percentage of 

eyelid closure over the pupil across time) which is one of the 

most accurate parameters to assess the drowsiness state on 

the visible data whereas the facial feature (i.e., nose tip, 

glabella) estimation was performed using the acquired 

thermal data. The recorded data was then used to train a 

conventional machine learning-based support vector 

classifier with a polynomial kernel to classify the data into 

three different classes which include AWAKE, SLEEP, and 

FATIGUE. The ROC curve showed satisfactory 

performance of the classifier with an average AUC of 0.65, 



  

  

a sensitivity of 72.52%, and an overall specificity of 67.69% 

[118].  

    A method for enhancing the quality of thermal image data 

using deep learning-based multi-image super-resolution was 

also proposed as part of the Heliaus project in [122]. In this 

paper, a novel architecture for a fully convolutional recurrent 

neural network was presented and was trained for 4x super-

resolution on a custom thermal dataset of 30 unique subjects 

in a driving simulator. The trained network significantly 

outperformed traditional bicubic interpolation both 

quantitatively and qualitatively. Further work has since been 

done on optimizing this neural network model for real-time 

inference on an embedded platform.  

    In one of the recent studies by Cardone, Daniela, et al 

[123] carried under the Heliaus project [108], the authors 

have proposed the evaluation of mental workload (MW) for 

Advanced Driver-Assistance Systems, since it is correlated 

with traffic accident risk. In this work, two different 

cognitive tests which include Digit Span Test (DST) and Ray 

Auditory Verbal Learning Test (RAVLT) were monitored 

and examined on participants while driving in a simulated 

environment. The authors utilized infrared sensing 

technology along with heart rate variability (HRV) data to 

collect features related to the psychophysiology of the 

subjects, which were then used for training machine learning 

(ML) classifiers. The authors achieved the best classifier 

performances with a maximum accuracy of 73.1%, 

sensitivity of 0.71, and specificity of 0.69 for the Digit Span 

Test and Ray Auditory Verbal Learning Test the systems 

achieve overall accuracy of 75.0%, average sensitivity of 

0.75, and an average specificity of 0.87. 

 
B. HELIAUS OUT-CABIN CONTRIBUTIONS USING 
THERMAL INFRARED IMAGING 

In this project, we have mainly focused on supervised 

learning methodology and used different types of CNN 

architectures for out-cabin driver assistance which include 

thermal object detection and classification framework. 

Moreover, the further stage of this research work focuses on 

the deployment of trained/ fine-tuned networks on single-

board edge-GPU devices for onboard real-time feasibility 

testing. The first phase of experimental work contributes 

toward a novel roadside thermal object detection dataset 

collection named ‘C3I Thermal Automotive Dataset’. The 

main purpose of this dataset is to further use it for out-of-

cabin applications which include the development of the 

SoA thermal object detection framework that should be 

effective in all weather and environmental conditions. The 

further details of the newly acquired thermal dataset from the 

prototype LWIR thermal camera are summarized in Table 4. 

The complete dataset is open-sourced and available on IEEE 

Dataport [119]. 
TABLE IV 

NOVEL THERMAL DATASETS ATTRIBUTES 
 

Dataset 

Name 

Dataset Details  Processing 

Methods 

Camera 

settings  

C3I 

Thermal 

Automot
ive 

Dataset  

1. Total No of distinct 

frames: 39,770 

2. Class annotations: bike, 

bicycle, bus, car, person 

& pole 

3. Environmental 

conditions: roadside, 

industrial town, 

downtown 

4. Time: daytime, evening 

time and nighttime 

5. Weather conditions: 

clear/ sunny, cloudy, 

windy, and foggy 

conditions 

 

1. Shutterl

ess 

calibration, 

2. Automat

ic gain 

correction 

(AGC) 

3. Bad 

pixel 

removal 

(BPR) 

4. Tempor

al 

denoising 

(TD) 

 

 

Resolution

: 640x480,  

FPS: 30, 
DPI: 96 

 

 

Figure 4 depicts various thermal frames acquired in different 

environmental and weather conditions selected from the C3I 

thermal automotive dataset. 

   

   

   

   
FIGURE 4.  Newly acquired C3I sample thermal frames acquired in the 
daytime, evening time, and nighttime showing different classes.  

     

    The newly acquired is further used for training and 

deployment of SoA end-to-end YOLO-v5 object detector 

models on GPU and edge GPU devices. The main purpose 

for choosing the YOLO-v5 framework for thermal object 

detection as compared to all the previous versions of YOLO 

released is that YOLO-v5 is different, as this is a PyTorch 

implementation rather than a fork from the original Darknet 

library. Moreover, the YOLO-v5 has a Cross-Stage-Partial 

(CSP) backbone and PA-NET neck. The foremost 

improvements include mosaic data augmentation and auto-

learning bounding box anchors thus saving the efforts for 

manual tuning of anchors for performing optimal training on 

detector models. The complete study is published and 

available online [120]. Three alternative test methodologies, 



  

  

including test-time with no augmentation (TTNA), test-time 

augmentation (TTA), and test-time with model ensembling, 

are used to validate the performance evaluation of all trained 

models (ME). Model ensembling, also known as an 

ensembling engine, is the process of combining several 

trained networks concurrently to create the best possible 

predictive inference model. 

   Figure 5 displays the results of the qualitative inference on 

nine challenging thermal frames with complex 

circumstances, such as numerous objects with overlapping 

classes, object scale and viewpoint fluctuations, and various 

weather conditions. These frames are selected from public 

test data as well as locally acquired C3I thermal automotive 

datasets. During the validation phase, the large network 

variant comprising 47.4 million parameters achieved the best 

qualitative results thus achieving the mean average precision 

(mAP) score of 84.1% using TTNA and 86.6% using the 

TTA method. The additional optimization and deployment 

of neural networks on GPUs and resource-constrained edge 

devices, including Nvidia Jetson Nano and Nvidia Jetson 

Xavier development boards, are part of the Heliaus project's 

major contribution [108]. The SoA inference accelerator 

Tensor RT is employed to further accelerate the thermally 

tailored YOLO architectures, resulting in higher frames per 

second (FPS) and shorter inference times. When deploying 

the models on edge hardware for the automobile sensor suite, 

the major goal of the quantization process is to demonstrate 

the viability of thermally tuned object detection models for 

real-time onboard testing. 

 
FIGURE 5. Inference results on nine different thermal frames using 
small, medium, large and x-large model variants of the Yolo v5 
framework. 

 

    Figure 6 shows the inference results on 4 different thermal 

frames using the TensorRT inference accelerator engine. The 

complete study along with detailed experimental outcomes 

is published in IEEE Transactions on Intelligent Vehicles 

titled “Evaluation of Thermal Imaging on Embedded GPU 

Platforms for Application in Vehicular Assistance Systems” 
[121]. The optimized version of the smaller network variant 

achieved 60 FPS on the Nvidia Jetson Xavier development 

board and 11 FPS on the Nvidia Jetson Nano board.  

 

 
FIGURE 6. Inference results on four different thermal frames using 
TensortRT optimizer. 

VII. CONCLUSION AND FUTURE WORK 

As a result of the tremendous advancements in imaging 

physics over the previous few decades, the infrared thermal 

imaging modality has witnessed numerous technological 

advancements. Further integrating this with AI-based 

imaging pipelines we can develop smart thermal perception 

systems for advanced vehicular applications. The same has 

been highlighted in the proposed research study by 

presenting state-of-the-art studies for in-cabin and out-cabin 

applications for automotive sensor suites. The most 

important reason for selecting thermal modality over 

conventional CMOS imaging is that it is unaffected by light 

or any other environmental conditions, making it ideal for 

all-weather and day conditions, thus providing redundancy. 

Further, this study lists large-scale thermal datasets and 

highlights the technique for generating synthetic thermal 

datasets. This is required to overcome the shortcomings of 

thermal datasets for optimal training of deep neural 

networks. Further, this study highlights key contributions of 

the EU-funded Helaius project and presents the state-of-the-

art studies and datasets which are published and open-

sourced as the result of the dissemination of this project. 

         The possible future directions of this research would be 

to study multi-imaging modalities which can be integrated 

with the automotive sensor suite. Such as, recently event 

camera has gained more popularity in the research 

community because they can measure per-pixel brightness 

changes asynchronously. As an outcome, a stream of events 

is generated, each of which encodes the time, location, and 

signal of the brightness changes. 
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