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Abstract

State-of-the-art approaches to most Natural Language Processing (NLP) tasks

have achieved near human performance. This recent progress has positively impacted

millions of lives and businesses around the world. However, these approaches are

neural-network based supervised approaches that require large manually annotated

datasets to be trained on. Such datasets are available in only a handful (less than 1%)

of high-resource languages. Hence, most of the world’s population is still excluded

from the benefits of NLP.

The most promising class of approaches proposed by researchers to address this is-

sue of data-sparsity in low-resource languages is Cross-lingual Model Transfer ap-

proaches. These approaches typically involve training a neural-network model using a

high-resource language called Source language and adapting it to a low-resource lan-

guage called Target language using cross-lingual/multilingual word-representations.

Although these Cross-lingual Model Transfer approaches sufficiently outperform all

other types of approaches to various NLP tasks for low-resource languages (such as

Cross-lingual Data-transfer approaches, Unsupervised approaches etc.), still they sig-

nificantly under-perform fully supervised approaches trained on abundant data. In

this work we utilised the linguistic typology knowledge available in various open-

source typology databases to improve the performances of state-of-the-art Cross-

lingual Model Transfer approaches to four key intermediate NLP tasks namely Con-

stituency Parsing, Dependency Parsing, Enhanced Dependency Parsing and Semantic

Role Labelling.

Linguistic typology is the field of linguistics that aims to study and classify all the

world’s languages based on their syntactic, semantic and phonological properties.

There are numerous publicly available typology databases such as WALS, URIEL,

ValPal etc. that provide a taxonomy of typological features and their possible values

as well distinct feature-value for each language. These databases are created by the

contributions of numerous linguistics over the decades, primarily to study the sim-

ilarities and distinctions among world’s languages. However, in this work we argue

that this typology knowledge can also be utilised by the CLT models to improve

their performance. Thus, we propose and evaluate novel cross-lingual approaches to

numerous NLP tasks that utilise typology knowledge in this work. We also propose

and evaluate various frameworks to inject the typology knowledge available in various

open-source databases into the modern neural-network architectures.

iv



Contents

1 Introduction 1

1.1 Research Objectives and Questions . . . . . . . . . . . . . . . . . . . 4

1.1.1 Constituency Parsing . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Dependency Parsing . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Enhanced Dependency Parsing . . . . . . . . . . . . . . . . . 7

1.1.4 Semantic Role Labelling . . . . . . . . . . . . . . . . . . . . . 8

1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related Work 11

2.1 NLP for Low-resource languages . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Model-transfer approaches . . . . . . . . . . . . . . . . . . . . 12

2.1.1.1 Cross-lingual Transfer Learning approaches . . . . . 14

2.1.1.2 Multilingual Joint Supervised Learning . . . . . . . . 15

2.1.1.3 Multilingual Word-Embeddings . . . . . . . . . . . . 16

2.1.1.4 Transformer Based Language Modeling . . . . . . . 18

2.1.2 Data-transfer approaches . . . . . . . . . . . . . . . . . . . . . 21

2.1.2.1 Annotation-projection approaches . . . . . . . . . . . 21

2.1.2.2 Machine translation approach . . . . . . . . . . . . . 21

2.2 Linguistic Typology and Databases . . . . . . . . . . . . . . . . . . . 22

2.2.1 Linguistic Typology . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Linguistic Universals . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2.1 Principle and Parameter Framework . . . . . . . . . 24

2.2.3 Typology databases . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3.1 Issues with databases . . . . . . . . . . . . . . . . . . 27

2.3 Prediction of Missing Typology . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Approaches to typology prediction . . . . . . . . . . . . . . . 29

2.3.1.1 Annotation-based approaches . . . . . . . . . . . . . 29

2.3.1.2 Unsupervised Clustering approaches . . . . . . . . . 31

v



2.3.1.3 Supervised approaches . . . . . . . . . . . . . . . . . 32

2.3.1.4 Heuristic Distribution approaches . . . . . . . . . . . 33

2.4 NLP with Typology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Typology features for NLP . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Approaches to Cross-lingual NLP with Typology knowledge . 35

2.4.2.1 Selective source sharing . . . . . . . . . . . . . . . . 35

2.4.2.2 Target language Biasing . . . . . . . . . . . . . . . . 36

2.4.2.3 Data selection with Typology . . . . . . . . . . . . . 37

2.4.2.4 Rule-based approach with Typology . . . . . . . . . 38

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Cross-lingual Constituency Paring with Linguistic Typology Knowl-

edge 40

3.1 Phrase-based Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Phrase Constituency . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Context Free Grammar . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Treebanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Approaches to Monolingual Constituency Parsing . . . . . . . . . . . 49

3.3.1 Dynamic Programming approaches . . . . . . . . . . . . . . . 51

3.3.1.1 Chomsky Normal Form . . . . . . . . . . . . . . . . 52

3.3.1.2 CKY Parsing . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1.3 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1.4 Probabilistic CKY . . . . . . . . . . . . . . . . . . . 53

3.3.2 Neural approaches . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 UniRNNG Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Approaches to CP for low-resource languages . . . . . . . . . . . . . . 59

3.6 RNNG model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 Discriminative vs Generative . . . . . . . . . . . . . . . . . . . 60

3.7 UniRNNG Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 65

3.8.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8.2.1 Mono-lingual Models trained on Sparse Dataset . . . 66

3.8.2.2 Unsupervised Recurrant Neural Network Grammar (URNNG) 66

vi



3.8.2.3 Cross-lingual RNNG Parser trained on single source

language (CL-RNNG-Mono) . . . . . . . . . . . . . . 66

3.8.2.4 Cross-lingual RNNG Parser trained of multiple source

languages (CL-RNNG-Poly) . . . . . . . . . . . . . . 66

3.8.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8.3.1 Short tree-bank corpora . . . . . . . . . . . . . . . . 67

3.8.4 Universal Annotation . . . . . . . . . . . . . . . . . . . . . . . 68

3.8.5 Cross-Lingual Word Embedding . . . . . . . . . . . . . . . . . 68

3.8.5.1 BERT Word Embeddings . . . . . . . . . . . . . . . 70

3.8.6 Typology and Hyper-parameters . . . . . . . . . . . . . . . . . 70

3.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.10 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 End-to-end Model for Typology Feature Prediction 74

4.1 SIGTYP 2020 Shared Task . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Input Network Component . . . . . . . . . . . . . . . . . . . . 77

4.2.2 Self-attention Network Component . . . . . . . . . . . . . . . 77

4.2.3 Multitasking Output Networks Component . . . . . . . . . . . 78

4.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Analysis and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Cross-lingual Dependency Paring with Linguistic Typology Knowl-

edge 81

5.1 Dependency Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Dependency Parsing vs Constituency Parsing . . . . . . . . . 82

5.1.2 Dependency Tree Formulation . . . . . . . . . . . . . . . . . . 83

5.1.2.1 Projectivity . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.3 Approaches to DP . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.3.1 Transition-based approaches . . . . . . . . . . . . . . 87

5.1.3.2 Graph-based approaches . . . . . . . . . . . . . . . . 89

5.1.3.3 End-to-end Approaches . . . . . . . . . . . . . . . . 92

5.2 Low-resource Dependency Parsing . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Universal Dependency . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Cross-lingual Approaches to Dependency-parsing . . . . . . . 94

vii



5.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Multitask Learning . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 URIEL Database . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Multitasking End-to-end BERT based Cross-lingual Dependency Parser 98

5.4.1 Base End-to-end BERT Parser . . . . . . . . . . . . . . . . . . 99

5.4.1.1 BERT Encoder . . . . . . . . . . . . . . . . . . . . . 99

5.4.1.2 Output Network . . . . . . . . . . . . . . . . . . . . 100

5.4.1.3 Tree-Decoder . . . . . . . . . . . . . . . . . . . . . . 101

5.4.2 Multitasking End-to-end BERT Parser . . . . . . . . . . . . . 102

5.4.2.1 Linguistic typology predictor . . . . . . . . . . . . . 102

5.4.2.2 Missing Typology . . . . . . . . . . . . . . . . . . . . 102

5.4.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.4.1 Monolingual Setup . . . . . . . . . . . . . . . . . . . 105

5.4.4.2 Cross-lingual setups . . . . . . . . . . . . . . . . . . 105

5.4.4.3 Languages . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Improving the performance of UDify with Linguistic Typology Knowl-

edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.2 UDify model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.2.1 Word-embeddings . . . . . . . . . . . . . . . . . . . 111

5.5.3 Linguistic Typology prediction . . . . . . . . . . . . . . . . . . 112

5.5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 End-to-end Enhanced Dependency-parsing for Typology Feature Pre-

diction 119

6.1 Enhanced Dependency Framework . . . . . . . . . . . . . . . . . . . 120

6.1.1 EDP Frameowork attributes . . . . . . . . . . . . . . . . . . . 120

6.1.1.1 Augmented Modifiers Rule . . . . . . . . . . . . . . . 120

6.1.1.2 Augmented Conjuncts Rule . . . . . . . . . . . . . . 122

viii



6.1.1.3 Propagated Head or Dependents Rule . . . . . . . . 122

6.1.1.4 Quantificational Determiners Rule . . . . . . . . . . 122

6.1.1.5 Conjoined prepositions . . . . . . . . . . . . . . . . . 123

6.1.2 Approaches to Cross-lingual EDP . . . . . . . . . . . . . . . . 123

6.2 mBERT based Seq2seq ED Parser . . . . . . . . . . . . . . . . . . . . 125

6.2.1 ED parse-tree as relative head-position tag sequence . . . . . . 126

6.2.2 Relative Head Sequence predictor . . . . . . . . . . . . . . . . 126

6.2.2.1 Input sentence-encoding . . . . . . . . . . . . . . . . 127

6.2.2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.2.3 Predicting . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.3 Label Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Cross-lingual Semantic Role Labelling with ValPal Database Knowl-

edge 133

7.1 Semantic Role Labelling . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1.1 SRL Datasets and Label-sets . . . . . . . . . . . . . . . . . . . 136

7.1.1.1 PropBank . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1.1.2 FrameNet . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1.2 Monoligual Approaches to SRL . . . . . . . . . . . . . . . . . 138

7.1.2.1 Feature based approach . . . . . . . . . . . . . . . . 139

7.1.2.2 Neural based approach . . . . . . . . . . . . . . . . . 139

7.2 Cross-lingual Approaches to SRL . . . . . . . . . . . . . . . . . . . . 140

7.3 ValPal Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3.1 Coding of Argument-patterns . . . . . . . . . . . . . . . . . . 141

7.3.2 Coding-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3.3 Alteration Types . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3.4 FrameNet to aid ValPal . . . . . . . . . . . . . . . . . . . . . 142

7.4 FOL rules from ValPal . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.1 Translate argument-patters to Propbank Order . . . . . . . . 144

7.4.1.1 Replace modifier argument-types . . . . . . . . . . . 144

7.4.1.2 Rewrite all non-modifier argument types . . . . . . . 145

7.4.2 Write Propbank Label order as FOL rule . . . . . . . . . . . . 145

7.5 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

ix



7.5.1 Labeler fine-tuning with ValPal . . . . . . . . . . . . . . . . . 146

7.5.1.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.6.2 Model-configurations . . . . . . . . . . . . . . . . . . . . . . . 149

7.6.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.7.1 Monolingual training . . . . . . . . . . . . . . . . . . . . . . . 151

7.7.2 Polyglot training . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.8 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8 Conclusion 155

8.1 Chapter-wise Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.2 Overall trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.3 Drawbacks of Typology knowledge Induction . . . . . . . . . . . . . . 159

8.4 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.4.1 Exploring new typology-features and new tasks . . . . . . . . 161

8.4.2 Exploring new typology knowledge injection frameworks . . . 162

8.4.3 Improvement of Multilingual Large Language Models with Ty-

pology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.4.4 Using Cross-lingual NLP for Typology . . . . . . . . . . . . . 163

8.4.5 Building new typology-databases . . . . . . . . . . . . . . . . 163

A Results of End-to-end Model for Typology Feature Prediction 165

A.1 Results in Zero-shot learning . . . . . . . . . . . . . . . . . . . . . . . 165

A.2 Results in Few-shot learning . . . . . . . . . . . . . . . . . . . . . . . 168

B Results of UDify with Typology model 171

C Results of proposed End-to-end EDP model 188

Bibliography 191

x



List of Figures

2.1 Illustrations of various approaches to low-resource NLP . . . . . . . . 13

2.2 PCA projections of popular word-embeddings of some frequent English

words and their French translations . . . . . . . . . . . . . . . . . . . 16

2.3 PCA projections of monolingual skip-gram word2vec embeddings of

English and Spanish words, as computed by Mikolov et al. (2013a) . . 17

2.4 Transformer architecture. Figures from Vaswani et al. (2017) . . . . . 19

2.5 BERT Architecture. Figure from Devlin et al. (2019) . . . . . . . . . 19

2.6 The geographical distribution of various linguistic-families in the world.

Figure from Pereltsvaig (2020) . . . . . . . . . . . . . . . . . . . . . 23

2.7 Distribution of WALS feature ‘81A: Order of Subject, Object and Verb’

across languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 The process adopted by Bender et al. (2013) to create a constituency

tree for a Welsh sentence (through Annotation projection), and subse-

quently deriving values of word-order typology-features ‘Order of Verb

and Subject’, ‘Order of Determinant and Noun’ for Welish. . . . . . . 30

3.1 Example of a constituency parse-tree . . . . . . . . . . . . . . . . . . 42

3.2 Examples of constituency parse trees based on CFG rules. . . . . . . 44

3.3 Representation of constituency parse-tree in Bracket format . . . . . 45

3.4 Demonastration of slot filling in the CKY algorithm during parsing

of an example sentence Book the flight through Houston. Figure from

Martin (2021a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Example of ambiguity in sentence I shot an elephant in my pajamas . 53

3.6 Parse tree of an example sentence I live in Galway . . . . . . . . . . 54

3.7 Parsing of sentence I do like eating fish by Cross and Huang (2016) . 55

3.8 a. Recurrent Neural Network Grammar (RNNG) architecture. b.Universal

Recurrent Neural Network Grammar (UniRNNG) architecture. . . . 62

4.1 Architecture of proposed model . . . . . . . . . . . . . . . . . . . . . 76

xi



4.2 Plot depicting trend in accuracy values achieved on all WALS features 79

5.1 The word-level dependency relationship structure and constituency

phrase-structure analysis of an example sentence ‘I prefer the morn-

ing flight through Denver ’. Figure from Martin (2021b) . . . . . 83

5.2 Example of a dependency parse tree (top) and its CONLL-U represen-

tation (bottom). Tree is generated by CoreNLP Manning et al. (2014)

parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Example of Non-projective Parse-tree. Figure from Martin (2021b) . 86

5.4 Graph-based dependency parsing algorithm Chu (1965) applied to an

example sentence Book that flight. Figure from Martin (2021b) . . 90

5.5 Deep Biaffine Network architecture proposed by Dozat and Manning

(2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Sub root decomposition as performed by Li et al. (2018) . . . . . . . 92

5.7 Examples of dependency parse tree being represented as relative head-

position tag sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 a. Base End-to-end BERT parser architecture. b.Multitasking End-

to-end BERT parser architecture. Its an extension of Base End-to-end

BERT parser architecture with one extra component namely Typology

Predictor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.9 UDify Kondratyuk and Straka (2019b) model architecture. . . . . . 110

5.10 Trends in LAS achieved by UDify and UDify-w-Syntax models on all

80 test treebanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.11 Trends in UAS achieved by UDify and UDify-w-Syntax models on all

80 test treebanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Demonstrations of EDP attributes. Examples from Schuster and Man-

ning (2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Example Enhanced Dependency Parse trees represented as Relative

Head-position tag-sequences . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Architecture of the Relative Head-position Sequence predictor model

for EDP task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Architecture of the Label predictor . . . . . . . . . . . . . . . . . . . 127

7.1 Semantic Role labels in the example sentences. . . . . . . . . . . . . 135

7.2 Example of Semantic Role Labelling of a multi-predicate sentence rep-

resented in the conllu format . . . . . . . . . . . . . . . . . . . . . . . 135

xii



7.3 Examples of Propbank Annotations . . . . . . . . . . . . . . . . . . . 136

xiii



List of Publications

1. Multitasking End-to-end BERT based Cross-lingual Dependency Parser.
In Proceedings Of SPECIAL INTEREST GROUP OF LINGUISTIC TYPOLOGY
(SIGTYP) at EACL 2023 (Under Review)

2. Cross-lingual Semantic Role Labelling with the Valpal database knowl-
edge. In Proceedings of THE 3RD WORKSHOP ON KNOWLEDGE EX-
TRACTION AND INTEGRATION FOR DEEP LEARNING ARCHITECTURES (DEEP-
LIO) AT ACL 2022

3. Universal Recurrent Neural Network Grammar. In Proceedings Of 33RD
ANNUAL CONFERENCE ON COMPUTATIONAL LiNGUISTICS AND SPEECH
PROCESSING (ROCLING) 2021

4. Improving the Performance of UDify with Linguistic Typology Knowl-
edge. In Proceedings Of SPECIAL INTEREST GROUP OF LINGUISTIC TY-
POLOGY (SIGTYP) at NAACL 2021

5. End-to-end mBERT based Seq2seq Enhanced Dependency Parser with
Linguistic Typology knowledge. In Proceedings of SPECIAL INTEREST
GROUP ON NATURAL LANGUAGE PARSING (SIGPARSE) AT ACL 2021

6. NUIG: Multitasking Self-attention based approach to SigTyp 2020 Shared
Task. In Proceedings Of SPECIAL INTEREST GROUP OF LINGUISTIC TYPOL-
OGY (SIGTYP) at EMNLP 2020

xiv



Chapter 1

Introduction

The field of Natural Language Processing (NLP) has shown tremendous progress in

the last few years. This is due to the significant advancement made in the field of deep-

learning/neural-networks which has made it possible to statistically model complex

linguistic rules and patterns, related to various sophisticated computational linguistic

tasks. In fact, the state-of-the-art neural-network (NN) based approaches to most of

the widely used NLP tasks have achieved near human performance Turc et al. (2019);

Vaswani et al. (2017). These tasks include among others Machine Translation, Web-

based Question Answering, Information Extraction, Automatic Speech Recognition,

Legal or Financial Document Analysis, Chatbot, Speech synthesis, Speech-to-speech

translation and Text-mining.

This recent progress in NLP has positively impacted millions of lives and businesses

around the world. However, although the research community has mostly conquered

the issue of mathematically modelling the extremely complex NLP tasks, these neural-

network models still require a large amount of manually annotated gold-standard

dataset to train and optimize its model-parameters. The lack of such datasets limits

their utility to only a few high-resource languages.

According to the Glottolog database1 there are over 7751 languages in the world.

Out of these languages only a handful (less than 1% in most cases) of languages are

high-resource languages that possess sufficiently large manually annotated datasets

to train the state-of-the-art model for the respective NLP task being performed Ma-

gueresse et al. (2020). Although the count of high-resource languages varies from task

to task, yet in most of the cases, this set of high-resource languages include western

European languages such as English, German, French, Italian etc. as well as Asian

languages such as Arabic, Chinese, Japanese, Hindi Korean etc. Creating a sizeable

1https://glottolog.org/

1



training dataset for any NLP task in any low-resource language is challenging as it

requires enormous financial resources as well as skilled labor. Furthermore, given the

broad range of languages and tasks, complete coverage is almost impossible. There-

fore, a large section of the world’s population are still devoid of the benefits of the

recent advancements achieved in the NLP field.

Researchers have attempted numerous types of approaches to address this issue of

data-sparsity in low-resource languages. Earlier approaches include developing un-

supervised models that do not require manually annotated datasets to be trained

on. However, it is observed that these unsupervised models significantly underper-

form as compared to the trained supervised model. Another class of approaches called

Cross-lingual Data Transfer (section 2.1.1.1) approaches have been proposed that aim

to generate datasets in low-resource languages from the datasets available in high-

resource languages using techniques such as Machine Translation (section 2.1.2.2)

and Annotation Projection (section 2.1.2.1). These approaches show impressive per-

formance for some significant tasks, but their application is extremely limited by

the requirement of numerous cross-lingual resources such as parallel aligned corpora,

bilingual lexicon etc. We will provide a brief literature review of all these approaches

in the chapter 2.

Hence so far, the most promising class of approaches to effectively address the issue of

data-sparsity in low-resource languages is Cross-lingual Model Transfer approaches.

These approaches typically involve training a NN model using a high-resource lan-

guage called Source language and adapting it to a low-resource language called Target

language. The model parameters are adapted from source to target learning using

cross-lingual word-representation learnings. In some cases, these approaches are ap-

plied in multilingual settings where the model is trained on a mixed polyglot corpus

of high-resource languages and adapted to a single low-resource transfer language.

Multi-lingual representations are used in this scenario. We will describe the cross-

lingual model transferring in details in chapters 3 to 7.

The Cross-lingual Model Transfer based approaches show significant performance

for most of the NLP tasks and only require unannotated plain text corpora in the

low-resource language, thus increasing applicability to a large pool of low-resource

languages. However, these approaches also suffer from one significant limitation. A

Cross-lingual Model Transfer approach shows extremely high performance when the

source and target languages are genealogically and typologically (and even geograph-

ically) closer to each other, but performance drops significantly when the languages

are apart Ammar et al. (2016). For example, a cross-lingual model trained on the
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source-language English would perform very well on the target-language German, and

a cross-lingual model trained on the source-language Swedish would perform very well

on the target-language Danish, but a cross-lingual model trained on the source En-

glish would perform poorly on the target-language Chinese. Hence these approaches

have limited utility for many of the low-resource languages. In this thesis, we aim to

address this issue by using linguistic typology knowledge.

Linguistic typology is the field of linguistics that aims to study and classify all the

world’s languages based on their syntactic, semantic and phonological properties.

Typology research work involves identifying such features that can uniquely define

most of the languages in the world. There are numerous publicly available typology

databases (section 2.2.3) that provide a taxonomy of typological features and their

possible values, the hierarchy among these features as well distinct feature-value for

each language. These databases are created by linguistics over decades primarily to

study the similarities and distinctions among the world’s languages. However such

typology databases can be utilised to improve the cross-lingual transferring ability

of CLT based models from high-resource source language to low-resource target lan-

guage, specifically in scenarios where source and target languages are genealogically

and typologically apart.

Hence, the overall high-level research-objective of this thesis can be stated as follows:

Integrate the linguistic typology knowledge in the publicly available

typology databases with the state-of-the-art neural network based cross-

lingual/multilingual approaches to numerous NLP tasks

Although there are a handful of researchers that used linguistic typology with

various cross-lingual/multilingual NLP models. We will provide an review of these

approaches in subsequent chapters.

The application of typology with cross-lingual NLP in the past-work is very limited

and is mainly confined to only morphological and word-order typology features from

WALS database2.

Our thesis is a wide-scope thesis. Hence, in this thesis we will experiment with

numerous typology databases, typology feature-types and explore numerous different

NLP tasks, instead of focusing deep on a single task and a single typology database.

2https://wals.info/
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1.1 Research Objectives and Questions

In this thesis, we aimed to improve the performance of cross-lingual neural-network

based approaches to numerous significant NLP with Linguistic typology knowledge

available in various publicly available typology databases, specifically in the scenarios

where source and target languages are genealogically, typologically, and geographi-

cally languages very distinct from each other. We experimented with four significant

NLP tasks namely Constituency Parsing, Dependency Parsing, Enhanced Dependency

Parsing and Semantic Role Labelling. These are intermediatory tasks that aid all the

downstream end-user tasks such as Machine Translation, Information Retrieval, Chat-

bot, Question Answering etc.

Sections 1.1.1, 1.1.2, 1.1.3 and 1.1.4 provide a brief overview of each of the four NLP

tasks. These sections will also describe the typology databases utilized as well as the

knowledge injection mechanisms adopted for each of the four tasks. Furthermore,

in these sections we will formally outline our research objectives and the research

questions addressed, with respect to each of the four tasks.

1.1.1 Constituency Parsing

Constituency parsing (CP) is the task of autonomously extracting a phrase-based

parse tree from a given sentence (section 3). Each node of such tree spans over a

specific phrase within the input sentence, that describe either a single semantic unit

(eg: time of some action) or a single syntactic unit (eg: Subject of main verb). A

constituency parse-tree simply represents the hierarchy of all such phrasal nodes that

exists in the given sentence. The root of the tree spans upon entire sentence and is

generally labelled as S.

Recurrent Neural Network Grammar (RNNG) Dyer et al. (2016) is a state of the

monolingual approach to constituency parsing task. In this segment of our research

work, we evaluated the performance of cross-lingual variant of the RNNNG (CL-

RNNG) model on numerous target-languages in both few-shot and zero-shot learning

settings.

Subsequently we proposed Universal RNNG (UniRNNG) which is a modified ver-

sion of CL-RNNG which utilises linguistic typology knowledge in WALS dataset3 to

improve cross-lingual transferring. We feed-in the typology features directly along

with word representations. Overall, this segment aims to address following research

questions.

3https://wals.info/
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RQ1: Can the state-of-the-art Recurrent Neural Network Grammar (RNNG)

approach to monolingual Constituency parsing be applied for cross-lingual

Constituency parsing ?

RQ2: Within the cross-lingual transfer-learning settings, does mixed poly-

glot training lead to improvement in performance of the RNNG model, as

compared to single source language training ?

RQ3: Does the performance of RNNG model within cross-lingual transfer-

learning settings be improved by injecting the linguistic typology knowl-

edge into it ?

1.1.2 Dependency Parsing

Dependency Parse-tree (DP) is another prominent framework to represent the syntax

of a sentence, which is very distinct from the constituency parse-tree framework. Un-

like the Constituency Parse-tree which represents the syntax of a given input sentence

as a hierarchy of phrase-structure nodes, a dependency parse-tree on the other hand

represents the syntax of a given input sentence as a set of word-pairs (section 5.1).

Each such word-pair comprises a head-word and a dependent word, thereby depicting

a single dependency-relationship. Both head-word and dependent word can be located

anywhere within the input sentence. In case of the labelled dependency parse-tree

each such dependency-relationship is also assigned a label indicating its type. Depen-

dency Parsing is the task of autonomously generating a dependency parse-tree for a

given input sentence. The dependency parse-tree is generated based on the Depen-

dency grammar (DG) of the language being parsed, which simply comprises of all the

possible word-level binary relationships that can exist in that language.

There are numerous approaches to dependency parsing been proposed and evaluated.

These approaches can be classified into three categories namely Transition-based ap-

proaches, Graph-based approaches and End-to-end approaches (section 5.1.3). Both

statistical and neural-network based monolingual approaches belonging to each of

these categories have been proposed by researchers. In subsequent chapters we will

provide a detailed literature review of the dependency-parsing task.

The End-to-end approaches are much simpler, easier to implement and resource-

efficient while performing at par with the Transition-based approaches and the Graph-

based approaches. However, in cross-lingual settings, most state-of-the-art approaches
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to the dependency-parsing are Graph-based approaches. In our thesis, we proposed an

End-to-end BERT Based Dependency Parser which can parse a sentence by directly

predicting relative head-position tag for each word within input sentence. We evalu-

ated this proposed model in both mono-lingual and cross-lingual/multilingual setups

(using Multilingual BERT).

Subsequently, we aimed to improve the performance of our proposed End-to-end

BERT Based Dependency Parser (section 5.4.1) in cross-lingual settings by util-

ising the linguistic typology knowledge available in URIEL database Littell et al.

(2017). We injected this typology knowledge into the model using multitasking frame-

work. Within the same segment we also re-implemented the state-of-the-art UDify

model Kondratyuk and Straka (2019b). Subsequently, we injected the same linguistic

typology knowledge available in URIEL database within the UDify model and re-

evaluated the performance. Similar to the proposed End-to-end BERT Based Depen-

dency Parser, we used the multitasking mechanism to inject this typology knowledge

into UDify model.

Overall this segment of our research-work addresses following research questions.

RQ4: Does an End-to-end Dependency parser performs at par with the

state-of-the-art Graph-based parser, within both monolingual and cross-

lingual settings ? RQ5: Does injecting linguistic typology knowledge into

an End-to-end cross-lingual dependency parser, through an auxiliary task

of typology feature-value prediction, leads to improvement in performance

of it ?

RQ6: Is the impact of adding the auxiliary task of typology feature-value

prediction higher with mixed polyglot training scenerio, as compared to

single source language training scenerio ?

RQ7: For the state-of-the-art UDify parser which is a multilingual multi-

tasking model that performs four key tasks simultaneously namely UPOS-

tagging, UFeat-tagging, Lammetization and Dependency-parsing, when an

auxiliary task of typology feature-value prediction is added to it, does it

impact the performances of other four NLP tasks ?

RQ8: Is there any correlation between the performance the end-to-end
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parser on the main dependency-parsing task and the performance of it on

the auxiliary task of linguistic typology feature-value prediction ?

1.1.3 Enhanced Dependency Parsing

The Enhanced Dependency Parsing (EDP) framework is an extension of the standard

Dependency Parsing framework discussed in 1.1.2, which provides additional syntac-

tic and semantic attributes that are missing in a standard dependency parse-tree. It

is observed that such additional attribute knowledge does lead to improvement in

performance on numerous downstream NLP tasks. For a given input sentence its

standard Dependency Parse-tree is simply a subset of its Enhanced Dependency-tree

Schuster and Manning (2016). Enhanced Dependency-parsing (EDP) is the task of

autonomously generating the enhanced dependency parse-tree from a given input

sentence. The Enhanced Dependency framework is proposed recently in 2015, hence

there are only limited approaches to EDP been proposed in both the monolingual

and cross-lingual settings.

In this segment of thesis, we proposed and evaluated a neural-network based approach

to the end-to-end enhanced dependency-parsing. Our proposed model is an exten-

sion of the UDify model (section 1.1.2) for standard Dependency-parsing task with

an addition auxiliary task of end-to-end EDP task. Subsequently, we injected the

linguistic typology knowledge available in URIEL database into this proposed EDP

model and observed the improvement in performance in multiple settings.

Thus in this segment we aim to address following research questions.

RQ9: Does the cross-lingual mBERT based End-to-end Enhanced De-

pendency Parser perform at par with various state-of-the-art cross-lingual

approaches to the enhanced dependency parsing task ?

RQ10: Does linguistic typology knowledge injection into a cross-lingual

mBERT based End-to-end Enhanced Dependency Parser improves its per-

formance ? Is it better to feed-in the linguistic typology knowledge into

the model directly along with word-representations, or to inject typology

knowledge though an auxiliary task ?
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1.1.4 Semantic Role Labelling

Semantic role labeling (SRL) is the task of identifying various semantic arguments

(such as Agent, Patient, Instrument, etc.) for each of the target verb (predicate)

within an input sentence (section 7.1). For a given input-sentence, a typical semantic

role labeling approach aims to assign distinct labels to various words and phrases in

the input sentence. Each assigned label indicates a unique semantic role. In case

of a multi-predicate words, the approach performs labelling of all the words in the

input-sentence for each predicate independently. SRL is useful as an intermediate

step in numerous end-user semantic tasks such as Document categorization, Text-

summarizing, Question-answering etc.

Numerous approaches to SRL in both monolingual and cross-lingual settings, has

been proposed by the researchers (section 7.2). We re-implemented a state-of-the-art

recurrent neural-network (RNN) based approach to cross-lingual SRL task proposed

Cai and Lapata (2020). It is a comprehensive approach comprising two distinct

neural-networks namely the Semantic Role Labeller and the Semantic Role Compres-

sor. The approach represents the input-sentence as a sequence of word-embeddings

generated by a popular publicly available pre-trained language model called BERT.

In this segment we injected the semantic typology knowledge available in the Valency

Patterns Leipzig (ValPal) database into the respective cross-lingual SRL approach to

improve its performance. We represented the entire typology knowledge about the

target language within the Valpal database as a set of First-order-logic rules. Subse-

quently, we utilised the Deep Probabilistic Logic framework to fine-tune the Semantic

Role Labeller component with the First-order-logic constraints.

Thus in this segment we aim to address following research questions.

RQ11: Does the performance of a simple BiLSTM model for the Semantic

Role Labelling task improve, when the semantic typology knowledge of

the target-language available in the ValPal database, is injected into it,

within monolingual and polyglot training training scenerio ?

RQ12: Does the impact of injecting the ValPal database knowledge into

the state-of-the-art cross-lingual BiLSTM based model for the Semantic

Role Labelling task increases due to joint polyglot training as compared

to the mono-lingual training ?

RQ13: Does extending the verb-inventory of ValPal database for a specific
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target-language with other lexical databases (such as FrameNet and Verb-

Net) before injecting this ValPal knowledge into the cross-lingual BiLSTM

based model for the Semantic Role Labelling, increases the impact of this

knowledge injection ?

1.2 Chapter Outline

Section outlines different NLP tasks that are experimented with, as part of our broad-

based thesis. Research work conducted with respect to each of these tasks are de-

scribed as different chapters in this thesis. This section outlines a high-level overview

all subsequent chapters in the thesis.

Chapter 2: This chapter will provide a comprehensive literature-review covering

all the previously published work relevant to our thesis. This would include detailed

overview of approaches to NLP for low-resource languages including unsupervised

and cross-lingual approaches, the linguistic typology field as well as various open-

source linguistic-typology databases, the previously published approaches to predict

the missing typology knowledge and the previously published cross-lingual transfer-

learning approaches to low-resource NLP that utilized the linguistic typology knowl-

edge to improve their performance.

Chapter 3: This chapter will describe the Constituency Parsing task and the Con-

stituency Grammar in details, including a detailed review of previous published ap-

proaches to both monolingual and cross-lingual Constituency Parsing. Subsequently,

the chapter will describe our proposed UniRNNG model which utilises linguistic ty-

pology knowledge in WALS database. The chapter will provide details about experi-

ments conducted to evaluate the proposed UniRNNG and the results achieved.

Chapter 4: This chapter will propose and describe a multitasking model to pre-

dict the WALS typology features for various languages. We proposed the model as a

solution to the SigTyp 2020 Shared Task Bjerva et al. (2020). This proposed model

forms the basis to our cross-lingual approaches to the Dependency-parsing task that

we propose and describe in chapter 5. The chapter will provide details about exper-

iments conducted to evaluate this proposed multitasking model and will discuss the

results achieved.
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Chapter 5: This chapter will describe the Dependency Parsing task and the De-

pendency Grammar in details, including a detailed review of previous published

approaches to both monolingual and cross-lingual Constituency Parsing. The will

describe two distinct cross-lingual models for dependency parsing namely End-to-end

BERT Based Dependency Parser and UDify. Subsequently, the chapter describes

the multitasking based mechanism to inject linguistic typology knowledge available

in URIEL database into both of these models. The chapter will provide details about

numerous experiments conducted to evaluate both dependency parsers and will dis-

cuss the results obtained, under different settings.

Chapter 6: This chapter describes the Enhanced Dependency Parsing framework,

outline the distinction between standard and enhanced Dependency parsing and will

provide a litrature review of numerous approaches to Enhanced Dependency Parsing

task. Subsequently, the chapter will propose an end-to-end multitasking Enhanced

Dependency Parser which is inspired by the UDify parser discussed in chapter 5. The

parser uses linguistic typology knowledge provided in URIEL database. The chapter

will provide details about experiments conducted to evaluate the proposed Enhanced

Dependency parser and will discuss the results obtained.

Chapter 7: This chapter describes the Semantic Role Labelling task as well as

provide a literature review of various previously published approaches to both mono-

lingual and cross-lingual semantic role labelling. Subsequently, the chapter describes

the Valency Patterns Leipzig (ValPal) database. The chapter will also describe de-

scribe mechanism to convert entire valpal database knowledge as first-or-logic rules

and inject it into the state-of-the-art cross-lingual semantic role labeller. Finally, the

chapter will provide details about experiments conducted and the results achieved.

Chapter 8: This chapter will conclude the thesis. The chapter will review the

research objectives and questions outlined in this chapter, outcomes achieved and

will provide directions for future research.
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Chapter 2

Related Work

In this chapter, we review the previously published work related to our disserta-

tion. We divide the entire literature review into four segments. Firstly, in section

2.1 we categorize and provide a high-level overview of various approaches to NLP

for low-resource languages including cross-lingual transfer learning approaches. In

section 2.2, we discuss the research work related to linguistic typology and universals

as well as list various open-source linguistic-typology databases. In this section we

also discuss the issue of missing typology feature-values in most open-source typol-

ogy databases which limits their utility. Subsequently, in section 2.3 we discuss the

proposed ML based approaches to predict the missing typology knowledge in these

public databases. Finally in section 2.4 we discuss the previously published cross-

lingual transfer-learning approaches to low-resource NLP that utilized the linguistic

typology knowledge to improve their performance.

This review is strongly inspired by and extends the review-work published by Ponti

et al. (2019).

2.1 NLP for Low-resource languages

Most state-of-the-art neural network approaches to standard NLP tasks such as pars-

ing, machine translation, question answering, information retrieval etc. show near

human performance. However, these approaches are supervised approaches that re-

quire large manually annotated datasets to be trained on. Such datasets are available

in only a handful of high-resource languages such as English, Arabic, Chinese etc.

Hammarström et al. (2017). Hence, despite great advancements made in the field

of NLP over the last decade, most of the world’s population is still excluded from

the benefits of NLP. There is no standard definition of a high or low resource lan-

guage. Hence such categorisation of world’s languages is very subjective and varies
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from task-to-task. The creation of gold-standard linguistic resources and datasets for

these low-resource languages is an expensive and time-consuming process which re-

quires skilled labor. Furthermore, the wide range of languages and the possible NLP

tasks makes the complete coverage unrealistic.

Earliest works by researchers to address this issue of data-sparsity in low-resource lan-

guages include various unsupervised learning approaches (Snyder and Barzilay

(2008); Vulić et al. (2011); Titov and Klementiev (2012); inter alia). These approaches

entirely abandon the use of annotated datasets and instead aim to build probabilistic

models for various NLP tasks based on known linguistic knowledge as well as the

observed patterns within the unlabeled text. However, these approaches significantly

underperform the state-of-the-art supervised learning approaches Täckström et al.

(2013) and are rarely combined with typological knowledge. Thus, we do not discuss

these approaches in detail in this literature review.

A more promising set of approaches to NLP for low-resource languages include cross-

lingual/multilingual approaches. These approaches utilize the annotated datasets

available in a handful of high-resource languages (such as English, Chinese, Arabic

etc.) to build NLP models for the low-resource languages for which such training

datasets are not adequately available. These approaches are essentially transfer-

learning approaches as they aim to transfer linguistic knowledge from the high-

resource languages called Source Languages to the low resource languages called Tar-

get Languages. Transferring such knowledge is challenging as the Source and Target

languages can differ significantly in the lexical, word orders, syntactic and semantic

properties Ponti et al. (2018a). All these cross-lingual approaches can be classi-

fied into two broad categories namely Data-transfer Approaches and Model-

transfer Approaches described in sections 2.1.2 and 2.1.1. Figure 2.1 depicts the

illustrations of these approaches.

2.1.1 Model-transfer approaches

Although the Data-transfer approaches described in section 2.1.2 show strong perfor-

mance on a selected set of low-resource languages, the utility of these approaches are

limited by the requirements of resources Agić et al. (2015) such as parallel raw text

corpora (for Alignment Projection approaches), translation system or bilingual lexi-

con (for Machine Translation approaches). It is impractical to assume the availability

of such resources for very low-resource languages.

Such limitations are effectively addressed by the Model-transfer approaches. All
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Figure 2.1: Illustrations of various approaches to low-resource NLP
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the Model-transfer approaches can be classified into two categories namely Cross-

lingual Transfer Learning approaches and Multilingual Joint Supervised

Learning approaches described as sections 2.1.1.1 and 2.1.1.2 respectively. Due to

the incompatibility in the source and target language vocabularies, the state-of-the-

art Model-transfer approaches require cross-lingual/multilingual text-representations

to make the cross-lingual transferring possible. Two broad categories of such multi-

lingual text-representation include Cross-lingual Word-Embeddings described in

section 2.2 and Transformer-based language models described in section 2.1.1.4.

2.1.1.1 Cross-lingual Transfer Learning approaches

Cross-lingual Transfer Learning (CLT) based approaches typically involve training a

model on a high-resource source-language and applying it on a low-resource target-

language Zeman and Resnik (2008). CLT approaches can be applied in two scenarios

namely Zero-shot Learning Xian et al. (2017) where no annotated dataset is available

in the target-language, and Few-shot Learning Wang and Yao (2019) scenarios where

sparse annotated datasets are available in the target-language. In the Few-shot sce-

nario the model is either pre-trained on the source-language and fine-tuned to the

target-language (Lin et al. (2021), Zhao et al. (2021)) or jointly trained on the source

and target language (sec 2.1.1.2).

Early CLT based approaches such as (Nivre et al. (2016), Zhang et al. (2012)) used

delexicalized or harmonized features (such as POS-tag sequence) to represent the

source and target language sentences. Subsequently, Täckström et al. (2012) aug-

mented these delexicalized word-representations with the multilingual Brown word

clusters Ciosici et al. (2019). However, such delexicalized features are also unavailable

for most low-resource languages and ignoring lexical information impacts performance

significantly. Hence modern approaches instead use various cross-lingual/multilingual

word-embeddings which can be learnt from simple raw-text corpora in source and tar-

get languages (sec 2.1.1.3).

On the other hand, most state-of-the-art approaches to various NLP are transformer-

based approaches Vaswani et al. (2017) that utilize multilingual transformer-based

language-models (such as mBERT Devlin et al. (2019)) for text-representation (sec

2.1.1.4). To train these transformer-based models for a specific NLP task, a task-

specific layer is added on top of the already available pre-trained transformer language-

model (such as mBERT Devlin et al. (2019)) and the weights are fine-tuned on the
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source-language training dataset and then can subsequently be applied to the target-

language. We refer to Rothman (2021) for more detailed description of this fine-tuning

process.

2.1.1.2 Multilingual Joint Supervised Learning

It simply involves training NLP models on a joint multilingual mixed training corpus.

The multilingually trained models usually outperform monolingual models as these

can leverage more (but noisier) data Ammar et al. (2016). Furthermore, in a similar

way, as the proficiency of a speaker’s previous languages can enhance his/her ability

to learn a new language Abu-Rabia and Sanitsky (2010), a model which is trained

on multilingual dataset can learn to generalize (and thereby perform well) over un-

known or lesser-known languages. Hence even in zero-shot cross-lingual scenarios Xian

et al. (2017), it is observed that the models trained on a joint multilingual corpus

of source-languages outperform models trained on a single source language Fang and

Cohn (2017). Multilingual models are also observed to be more cost-effective in terms

of model-parameters Pappas and Popescu-Belis (2017). Multilingual Joint Training

is particularly useful in scenarios where all languages are low-resource Khapra et al.

(2011) or in code-switching scenarios Adel et al. (2013).

Multilingual joint learning strategically involves parameter sharing Johnson et al.

(2017) across languages. Typically, the architecture of a multilingual neural-network

model comprises of language-specific or shared parameters across languages. Shared

parameters can include input parameters such as word-embeddings Guo et al. (2016a)

and character-embeddings Yang et al. (2016), as well as model-parameters such as

shared hidden-layers Duong et al. (2015b) or the shared attention-layers Pappas and

Popescu-Belis (2017).

Various approaches also achieved parameter sharing from separate language-specific

models by minimizing the distance between the hidden parameters Duong et al.

(2015a) or latent representations of parallel sentences (Niehues et al. (2011), Zhou

et al. (2015)).

Numerous researchers induct the language-id vector Guo et al. (2016a) along with

the word-embedding sequence during the multilingual training. The intuition is that

the model would be tailored to the specific target-language. These language-id vec-

tors can be input directly such as one-hot embedding or typology embedding vector

Ammar et al. (2016) or could be learnt in an end-to-end nlp task (Tsvetkov et al.

(2016), Östling and Tiedemann (2016)) or neural machine translation task (Johnson

et al. (2017), Ha et al. (2016)).
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Figure 2.2: PCA projections of popular word-embeddings of some frequent English
words and their French translations

2.1.1.3 Multilingual Word-Embeddings

Due to the distinctions between vocabulary, syntactic and semantic properties of

the source and target languages, the CLT based models require multilingual text-

representations to make cross-lingual model-transferring feasible. As explained in sec

2.1.1.1, the earliest cross-lingual model-transfer utilized only the delexicalized fea-

tures such as POS-tags to perform cross-lingual transferring. However, the loss of

lexical knowledge leads to significant loss in performance Duong et al. (2015a).

Hence, the advanced neural-network based approaches instead use contextualized

Multilingual Word-embeddings, which can be learnt by training a language-model on

mixed polyglot corpora. It is observed that these multilingual word-embeddings mul-

tilingual word-embeddings encode both lexical and semantic properties of the words.

This can be observed in figure 2.2 which depicts the PCA Abdi and Williams (2010)

projections of popular word-embeddings (trained on a common English-French cor-
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Figure 2.3: PCA projections of monolingual skip-gram word2vec embeddings of En-
glish and Spanish words, as computed by Mikolov et al. (2013a)

pus) of some frequent English words and their French translations, projected in the

similar vector-space. It is evident in the figure that semantically similar words acquire

similar embedding (regardless of the language).

In this section, we describe various multilingual word-embeddings that are commonly

utilised for Cross-lingual Model Transfer-learning. We used the same classification

as proposed by Ruder et al. (2019b), which is based on methods to generate these

multilingual embeddings.

Monolingual mapping is the earliest and still most popular technique to learn

the multilingual word-embeddings for the CLT based approaches. The technique

simply involves learning independent monolingual embeddings in the source and tar-

get languages, and subsequently utilizing a feed-forward based Linear Autoencoder

Kornblith et al. (2019) model to project the target-language embeddings into the

source-language space. The Linear Autoencoder is trained either on a bilingual lexi-

con Mikolov et al. (2013a) or in an unsupervised adversarial manner Conneau et al.

(2018a). Alternatively, instead of projecting Target language embeddings into the

Source language embedding-space, both can be projected on a new, lower-dimensional

space through canonical correlation analysis (CCA) (Ammar et al. (2016), Guo et al.

(2015)). Figure 2.3 depicts the PCA projections of monolingual skip-gram word2vec
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embeddings of English and Spanish words, as computed by Mikolov et al. (2013a).

As evident in the figure that the words follow similar distribution pattern in both

English and Spanish. Subsequently authors of Mikolov et al. (2013a) performed Lin-

ear Transformation to project both embedding-spaces into a common vector-space.

These transformations can then act as cross-lingual embeddings to be used to perform

cross-lingual transfer from English to Spanish.

Pseudo cross-lingual learning is a unique technique which involves replacing se-

lected words in a raw-text source language corpus with their respective target lan-

guage translations and vice-a-versa, thereby building a large mixed corpus. Subse-

quently both source and target language word-embeddings are trained on this pseudo

code-mixed corpus. Word-substitutions are performed using a bilingual lexicon Xiao

and Guo (2014), through machine-translation (Gouws and Søgaard (2015); Duong

et al. (2016)), or simply by randomly shuffling words between aligned corpora (if

available) in the two languages Vulic and Moens (2015).

Cross-lingual Fine-tuning approaches are very similar to the Monolingual map-

ping approaches. These approaches train independent monolingual embeddings for

the source and target languages and subsequently fine-tune these monolingual em-

beddings (to bring them into similar space) by optimizing on various sentence-level

cross-lingual constraints. These include tasks such as minimizing the distance between

hidden representations of similar sentence Hermann and Blunsom (2013), similar sen-

tence decoding Lauly et al. (2014), minimizing correlation loss between similar texts

Chandar AP et al. (2014) etc.

Finally, Joint optimization approaches are similar to Cross-lingual Fine-tuning

with the only difference being that in Joint optimization approaches the monolingual

word-embedding training and cross-lingual constrains are optimized simultaneously

for both languages by minimizing a combined loss-function. The constrain tasks in-

clude alignment-based translations Klementiev et al. (2012), cross-lingual word con-

texts Luong et al. (2015), minimizing the distance between similar sentence represen-

tations Gouws et al. (2015), image description Rotman et al. (2018) etc.

2.1.1.4 Transformer Based Language Modeling

Vaswani et al. (2017) proposed Transformer architecture which is a unique

neural-network architecture to process the sequential data without utilizing any re-

currence. Before the introduction of Transformers, various sequential deep-learning

architectures such as RNN Medsker and Jain (2001), LSTM Hochreiter and Schmid-

huber (1997)), GRU Chung et al. (2014) etc. were widely used to process temporal
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Figure 2.4: Transformer architecture. Figures from Vaswani et al. (2017)

Figure 2.5: BERT Architecture. Figure from Devlin et al. (2019)
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data (such as sequence of words in a sentence).

Given a sequence of words w1, w2, w3....wT , for any word wt at time-step t within this

sequence, to compute its hidden-representation rt, the RNN based architectures (such

simple-RNN, LSTM, GRU etc.) require the value of the hidden-state rt−1 of the pre-

vious word wt−1 within the sequence. Hence these architectures by design, allow the

computation at one word in the sequence at a time. This sequential nature of these

architectures does not leave any scope of parallelization (unlike in CNNs Shin et al.

(2016) where various filters can be applied in parallel). The Transformer architecture

addresses this issue effectively.

Transformer architectures instead aim to capture the contextual information about

the word in a sentence through a self-attention layer. The architecture appends the

position-encoding representing the position of each word within the sentence, to their

word-embeddings. Subsequently this word-embedding (with positional-encoding) se-

quence is fed into the self-attention layers to encode context of each word.Transformers

compute the contextual hidden representation of each word in the input sentence si-

multaneously in parallel. Figure 2.4 depicts the architecture of Transformer model.

Once the Transformer architecture was proposed, researchers subsequently attempted

to train unsupervised language models based on it. BERT Devlin et al. (2019) is the

first such transformer based language model that is trained on raw text-corpus. The

parameters of BERT model were trained by optimising on the cloze task Taylor (1953)

and next sentence identification task. In the Cloze task, selected words in the raw-text

training corpus are masked and the model is trained to simply predict these masked

words from surrounding words. Whereas in next sentence identification task, a pair

of sentence is classified as adjacent and non-adjacent sentences.

The pre-trained BERT language model is subsequently made available open-source.

Users can utilise this language model for numerous downstream tasks by adding sub-

sequent layers to it. The model parameters can also be fine tuned for specific tasks

based on available training data. Figure 2.5 depicts the architecture and usage of

BERT. Authors have also published a Multilingual variant of BERT (called mBERT)

which is trained on a mixed polyglot corpus including over 80 languages.

Inspired by BERT, numerous other Transformer based Language models were trained

and are made available online. Notable examples include BART Lewis et al. (2019),

XLM Conneau and Lample (2019), XLM-R Conneau et al. (2019), GPT-2 Radford

et al. (2019), ALBERT Lan et al. (2019) etc. These models significantly vary in

training mechanisms but are mostly similar in architecture design and usage. Fur-

thermore, Transformer based models are developed for tasks other than NLP such
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as Parmar et al. (2018) for Image data, Wave2Vec Schneider et al. (2019) for Speech

processing etc.

2.1.2 Data-transfer approaches

These approaches aim to create training datasets in the low-resource Target languages

from the available datasets in the high-resource Source languages. Subsequently,

the NLP models for the target-languages are trained on these autonomously created

datasets. There are two key categories of data-transfer approaches namely Annota-

tion projection approaches and Machine Translation approaches described

as sections 2.1.2.1 and 2.1.2.2.

2.1.2.1 Annotation-projection approaches

The Annotation-projection approaches were first introduced by Yarowsky and Ngai

(2001) and Hwa et al. (2005) (almost simultaneously). These proposed approaches

simply involved performing word-alignments on a pair of parallel raw-text corpora

in the source and target languages using a translation lexicon. After such word-

alignments, the authors performed the syntactic parsing of the source-language raw-

text corpus in the pair (using pre-trained source-language parser). Subsequently, the

predicted annotations (e.g. PoS-tags, syntactic trees) are directly projected to the

paired target-language corpus and used to train a supervised model in the target

language. Later refinements to these approaches are referred to as Soft annotation

projections Das and Petrov (2011), Padó and Lapata (2009). These approaches use

numerous constraints derived from known linguistic properties of the target language

to complement the word-alignment. Furthermore, some approaches project label

properties (Wang and Manning (2014), Agić et al. (2014)) or the sets of most likely

labels (Khapra et al. (2011); Wisniewski et al. (2014)) instead of a single label for

each word.

2.1.2.2 Machine translation approach

The Machine translation approaches Durrett et al. (2012) can be applied when the

parallel raw-text corpora are not available in source and target languages. In these

approaches, each sentence within the source-language training corpora is machine-

translated into the target language using a translation-model (if available) or a bilin-

gual lexicon Banea et al. (2008). Subsequently, the annotations are projected from

source to target language.
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There are numerous approaches that utilised Machine Translation to build and evalu-

ate Cross-lingual Transfer Learning approaches to various NLP tasks and for various

target languages. There are three main types of approaches to train and test Cross-

Lingual transfer learning approaches. All these approaches utilise cross-lingual/multilingual

text-representations described in sections 2.1.1.3 and 2.1.1.4 for cross-lingual trans-

ferring.

The first set of approaches aim to translate a large English language corpus into the

respective target language. Subsequently, this translated corpus is used to train a

monolingual model, which is then evaluated on an already available test dataset in

the target language. These approaches are referred to as TRANSLATE-TRAIN ap-

proaches Conneau et al. (2018b).

On the other hand, the Second set of approaches aim translate the available target

language test dataset. Subsequently the approaches train a Monolingual model on

available English training corpus and evaluate it on this translated test corpus. These

approaches are referred to as TRANSLATE-TEST approaches Singh et al. (2019).

However Artetxe et al. (2020) proved that training the model on raw English training

corpus and evaluating it on translated test corpus. Instead Artetxe et al. (2020) sug-

gest translating the train corpus to the target and then back translating into English

for significant improvement in performance.

Finally, the third set of approaches simply train a model on raw English train corpus

and evaluates on raw target language test corpus. These include standard Zero-shot

(or Few-shot if few target language examples are included in the training set) de-

scribed in section 2.1.1.1.

2.2 Linguistic Typology and Databases

2.2.1 Linguistic Typology

Linguistic Typology is the branch of linguistics which involves classification of human

languages according to their phonological, syntactic and semantic properties (Comrie

(1989); Croft (2002)). Linguistic typology can be both synchronic and diachronic.

Synchronic typology involves the study of structural similarities and differences be-

tween languages which are contemporary to each other (in any time-period), while

Diachronic typology involves the study of historical evolution of a language. In our

work, we utilized the Synchronic typology knowledge with cross-lingual transfer

learning.

Typologists identify structural and semantic features to represent the properties of

22



Figure 2.6: The geographical distribution of various linguistic-families in the world.
Figure from Pereltsvaig (2020)

any language. These typology features can include syntactic Dixon and Dixon (1994),

word-order Greenberg (1969), lexical Walker (2014), phonological, morpho and se-

mantic features (d’Andrade (1995), Dixon (1977), Berlin and Kay (1991), Bowerman

et al. (2001), Talmy (1991)). Each such feature has a set of values. Each of the

world’s languages possesses one of the possible values as the dominant value for the

respective feature. For very-low resource language, the value of each feature-value is

extracted from the empirical typology documentation Bickel (2007). Such typological

documentation involves collecting texts or speech excerpts and assessing the features

of a language based on their analysis.

Languages can be classified on numerous criteria such as number of speakers, time-

period, age-group of speakers etc. However, the popular classification criteria among

typology researchers are the Genealogical classification and Geographical clas-

sification of languages. Genealogical classification involves grouping the world’s

languages into families according to their degree of diachronic (historical) relatedness

Wichmann (2017). In other words, the languages which originate from the same his-

torical language are grouped together as one linguistic family/sub-family. Figure 2.6

depicts the geographical distribution of various Genealogical linguistic-families in the

world. On the hand, Geographical classification involves grouping based on the place

of origin in the world Lyovin et al. (1997).

Although typology classification and Genealogical/Geographical classification are dis-
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tinct, the cross-lingual analysis reveals that the distribution of the typology val-

ues across world’s languages is far from random. Instead, a strong correlation is

observed between the Typology classification and Genealogical/Geographical clas-

sification of world’s languages. In other words, Languages belonging to the same

class/geographical area possess similar properties Pereltsvaig (2020).

2.2.2 Linguistic Universals

Linguistic Typology research also includes identification of Language Universals. A

language universal is typology pattern observed within a distinct group of languages.

As there is a strong correlation between Genealogical/Geographical classification and

Typology, such universals are indirectly observed around various linguistic classes.

Linguists identify two distinct kinds of Language Universals namely Absolute and

Implicational universals. The Absolute Universals are typology rules that apply

to most of the natural languages (with few exceptions though). For example, A

language always has Nouns and Verbs , Any spoken language has vowels

etc. On the other hand, Implicational universals are inter-dependency rules between

various typology features. For example, Languages with Subject-Object-Verb

order have post-position spatial or temporal qualifier .

The Implicational Universals can be both Unidirectional and Bidirectional. In a

Bidirectional universal the two typology features imply the existence of each other.

For example, the languages with the value of Typology-feature ‘post-positions’ is True,

have the Subject-Object-Verb order feature-value as SOV, and likewise the languages

with the Subject-Object-Verb feature-value as SOV also have the value of Typology-

feature ‘post-positions’ is True. Hence the implication works both ways. On the

other hand, in a Unidirectional universal, the implication works only one-ways. For

example, the Languages with value of typology-feature relative-clause before noun is

True, also have Subject-Object-Verb feature-value as SOV. However, the reverse is

not true. Hence the universal is Unidirectional.

2.2.2.1 Principle and Parameter Framework

The research-work related to identification of universals is inspired by Noam Chom-

sky’s work of Principle and Parameter Framework Joseph Aoun Yen-Hui and Keyser

(1991) of linguistic knowledge acquisition. The Principle and Parameter Framework

(P and P) states that all human languages, while being superficially as diverse as they

are, share some fundamental similarities. Thus, he argues that deep down the specific
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Name Citation Types of typology-
features included

Number
of Lan-
guages

Number
of At-
tributes

World Atlas of Lan-
guage Structures
(WALS)

Dryer and
Haspel-
math
(2013)

Phonology, Morphol-
ogy, Word-order,
Syntax, Semantics,
Lexical

2871 192

Atlas of Pidgin and
Creole Language
Structures (APiCS)

Michaelis
et al. (2013)

Phonology, Morphol-
ogy

76 335

URIEL Com-
pendium

Littel et al.
(2016)

Phonology, Morphol-
ogy, Word-order,
Syntax, Semantics,
Lexical, Georpahical,
Language-id

8070 284

Syntactic Structures
of the World’s Lan-
guages (SSWL)

Collins
and Kayne
(2009)

Morphosyntax 262 148

AUTOTYP Bickel et al.
(2017)

Morphosyntax 825 1000

Valency Patterns
Leipzig (ValPaL)

Hartmann
et al. (2013)

Predicate–argument
structures

36 80 (1156
values)

Lyon–Albuquerque
Phonological Sys-
tems Database
(LAPSyD)

Maddieson
et al. (2013)

Phonology 422 70

PHOIBLE Online Moran
et al.
(2014)

Phonology 2155 2,160

StressTyp2 Goedemans
et al. (2014)

Phonology 699 927

World Loanword
Database (WOLD)

Haspelmath
and Tad-
mor (2009)

Lexical Semantics 41 24 (2000
values)

Intercontinental
Dictionary Series
(IDS)

Key and
Comrie
(2015)

Lexical Semantics 329 1310

Automated Similar-
ity Judgment Pro-
gram (ASJP)

Wichmann
et al. (2013)

Lexical Semantics 7221 40

Table 2.1: Major publicly available typological databases (listed by Ponti et al. (2019))
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grammars of various natural languages, there exists a Universal Grammar Chomsky

(1960). Universal Grammar has two key components namely the Principles which

are shared by all natural languages and the Parameters which have unique values for

each natural language.

The principles are already encoded within the genetics of a new-born child, while

during the language-acquisition the child just tunes the parameters of languages be-

ing acquired. The Typology-features can intuitively be considered as the Parameters

and the universals can intuitively be considered as the Principles.

2.2.3 Typology databases

In this section, we list and describe the popular (mostly open source) typology

databases available online and discuss their drawbacks which limit their utility into

state-of-the-art cross lingual models (section 2.2.3.1).

These typology databases are created manually by the linguistic community over the

years. These databases provide taxonomy of the typological features, their possible-

values, as well as the value of these features for each of the languages including very

low-resource languages. Table 2.1 lists the major typological databases available on-

line as listed by Ponti et al. (2019).

Some databases listed in table 2.1 such as World Atlas of Language Structures

(WALS) Dryer and Haspelmath (2013) and the Atlas of Pidgin and Creole Language

Structures (APiCS) Michaelis et al. (2013) are very comprehensive databases that

comprise of typology knowledge about a large pool of languages at multiple levels

of language descriptions including word-level, morphological, syntactic, and semantic

features.

Among all the databases listed in table 2.1, WALS has been the most popular and

most widely used by the NLP community (sec 2.4). The database comprises of 142

typological features in total, 1–19 deal with phonology, 20–29 with morphology, 30–57

with nominal categories, 58–64 with nominal syntax, 65–80 with verbal categories,

81–97 and 143–144 with word order, 98–121 with simple clauses, 122–128 with com-

plex sentences, 129–138 with the lexicon, and 139–142 with other properties. The

WALS database comprises of both universal features which are shared by all lan-

guages as well as language-specific typology features. Figure 2.7 depicts the distri-

bution of an example word-order WALS feature ‘81A Order of Subject, Object and

Verb’ across the languages around the world.

Other databases cover typology-features only at a specific level of linguage description.

For example, the databases Syntactic Structures of the World’s Languages (SSWL)
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Figure 2.7: Distribution of WALS feature ‘81A: Order of Subject, Object and Verb’
across languages

Collins and Kayne (2009) and AUTOTYP Bickel et al. (2017) provide syntactic ty-

pology features. SSWL features are crafted manually crafted, whereas AUTOTYP

features are derived autonomously from the data scripts. On the other hand the Va-

lency Patterns Leipzig (ValPaL) Hartmann et al. (2013) is a semantic database that

stores knowledge about various verb-forms and their subject-predicate relationship.

On the other hand, the Phonetics Information Base and Lexicon (PHOIBLE) Moran

et al. (2014) stores information about phonetic and phone-inventory features. The

Lyon–Albuquerque Phonological Systems Database (LAPSyD) Maddieson et al. (2013),

further provides other articulatory features such as syllabic structures, tonal systems

etc. Finally, the StressTyp2 Goedemans et al. (2014) provides stress-related articu-

lation features about various languages.

Table 2.1 also comprises of various lexical databases. For example, the World Loan-

word Database (WOLD) Haspelmath and Tadmor (2009), Automated Similarity

Judgment Program (ASJP) Wichmann et al. (2013) and the Intercontinental Dic-

tionary Series (IDS) Key and Comrie (2015). These databases provide loanword

vocabulary and word-pair translations in multiple language pairs.

2.2.3.1 Issues with databases

All these databases suffer from the following major shortcomings (to varying degrees)

that limit their utility into modern Cross-lingual NLP models.
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1. Missing Typology: In most databases listed in table 2.1, the values of nu-

merous typology-features for most of the languages are missing. The issue is

more prominent for very low-resource languages which are not well-documented.

Sometimes even for a well-documented language, a feature-value can be miss-

ing if no dominant value of the specific typology-feature is observed for that

language.

2. Granularity: Most typology databases listed in Table 2.1 assign only a single

value to each typology-feature for a specific-language. This is the most common

value observed for the language. However, many exceptions can be observed

for each typology-feature in each language. The issue of granularity is more

prominently experienced for the semantic and phonological features rather than

for the syntactic features, in most languages. Injecting typology-knowledge into

a state-of-the-art cross-lingual model without accounting for granularity may

indeed lead to a drop in performance rather than a rise.

3. Redundancy: Most typology databases comprises of redundant features. For

example, WALS database contains a syntactic feature called ‘81A Order of

Subject, Object and Verb’ with possible values as SVO, OVS, VOS etc. The

database also contains features namely ‘82A Order of Subject and Verb’ and

‘83A Order of Subject and Verb’. The issue of redundancy is usually dealt

with by manually removing the logically redundant features before injecting

the typology knowledge into a neural-network model.

4. Non-applicability of Features: Some of the databases listed in Table 2.1

consist of some features that, by definition, apply only to a subset of languages

that share some another typology feature-value. For instance, WALS consists

of feature ‘113A Symmetric or Asymmetric Standard Negation’ with values

as Symmetric/Asymmetric. WALS also comprises feature ‘114A Subtypes of

Asymmetric Standard Negation’ which apply only to languages with feature-

value of 113A feature as Asymmetric. Mostly NA value is assigned to languages

for which a feature does not apply.

2.3 Prediction of Missing Typology

As discussed in section 2.2.3.1 most of the typology databases listed in Table 2.1 suffer

from a major shortcoming of missing feature-values for low-resource languages. This
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sparked a new line of research-work which involved utilizing machine-learning/deep-

learning techniques to automatically predict such missing feature-values for the low-

resource languages. Section 2.3.1 describes various approaches to the autonomous

acquisition of missing typology feature-values in details.

Apart from saving time and resources, the autonomous acquisition of missing typology

feature-values through machine-learning has several technical advantages over manu-

ally crafted those rules. For example, most ML/Dl based approaches learn language

representation matrices to represent entire typology knowledge about specific lan-

guages. These representations encode additional information which is not included in

the manually crafted databases. Furthermore, these approaches can provide/encode

the distribution of various feature-values within a single language, rather than just

storing a single majority value, thus addressing the issue of granularity. Finally, the

ML/DL based approaches allow the continuous representation of languages rather

than representing them as discrete cross-lingual typology features.

2.3.1 Approaches to typology prediction

The approaches to autonomous acquisition of typology feature-values can be classified

into four categories namely Annotation-based approaches, Unsupervised Clustering

approaches, Supervised approaches and Heuristic Distribution approaches described

in sections 2.3.1.1, 2.3.1.2, 2.3.1.3 and 2.3.1.4 respectively.

2.3.1.1 Annotation-based approaches

These approaches tend to extract the missing typology feature-values for a language,

directly from its available annotated raw-text corpus (either created or available). For

example, if a constituency treebank (chapter 3) or a dependency treebank (chapter

4) of a specific language is available, the distribution (as well as dominant values) on

most of the syntactic and word-order features for the respective language can then be

directly observed within these treebanks (Liu (2010), Bender et al. (2013)). Figure 2.8

depicts the process adopted by Bender et al. (2013) to create a constituency tree for

a Welsh sentence (through Annotation projection), and subsequently deriving values

of word-order typology-features ‘Order of Verb and Subject’, ‘Order of Determinant

and Noun’ for Welish.

However, such an annotated corpus is not available in most less-documented lan-

guages. Hence researcher have utilized techniques that are similar to the techniques

described in section 2.1.2.1 for low-resource NLP to artificially generate such anno-

tated corpus.
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Figure 2.8: The process adopted by Bender et al. (2013) to create a constituency
tree for a Welsh sentence (through Annotation projection), and subsequently deriv-
ing values of word-order typology-features ‘Order of Verb and Subject’, ‘Order of
Determinant and Noun’ for Welish.
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For instance, Östling (2015) used annotation-projection with multilingual lexicon to

synthesize corpora in multiple target languages with the projected morphological and

syntactic annotations, from an available high-resource source-language corpus. Sub-

sequently they learnt word-order and lexical typology feature-values for these target-

languages from such synthesized corpus. Whereas Gaddy et al. (2016) used cross-

lingual model-transfer approach to learn a POS-tagger for various target-languages

and subsequently generated POS-tag annotated corpora in those target-languages

from the available raw-text corpora.

Once the synthetic annotated corpus is generated, there are multiple ways adopted by

researchers to extract the actual values and distribution of various typology features

for the specific language. The most common way is to assign a value to a typology-

feature is to simply assign the average or the prominent value as observed in the

corpus. However Gaddy et al. (2016) used SVM based classifier to classify the value

of each typology-feature for each target language.

Finally, some researchers Lewis and Xia (2008), Bender et al. (2013) extracted ty-

pological knowledge from the Interlinear Glossed Texts (IGT). These are collections

of example sentences and speech-samples that are collated by the linguists for the

record. The IGTs mark grammatical and morphological attributes which can be used

to derive typology feature values for the specific low-resource language.

2.3.1.2 Unsupervised Clustering approaches

These approaches aim to acquire missing typology feature values for a low-resource

language from other well-documented languages (for which these feature-values are

known). This is done by clustering the languages according to some shared property,

and thereafter every unknown typology feature for any language is simply assigned

the majority value within its respective cluster.

Language clustering can be done based on known typology properties (e.g. Teh

et al. (2007)) or or based on language genus Coke et al. (2016). Georgi et al. (2010)

demonstrated that typology-based clustering outperforms genealogical based cluster-

ing on the missing typology prediction task. Various unsupervised algorithms can be

adopted for the language clustering such as k-means, k-medoids, the Unweighted Pair

Group Method with Arithmetic mean (UPGMA), hierarchical clustering etc.

Some approaches instead performed clustering based on language representation vec-

tors. These language vectors are learnt end-to-end as part of training a neural model

for a multilingual downstream NLP task, such as many-to-one Neural Machine Trans-

lation Johnson et al. (2017). To learn such language-vectors, a language-id token is
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appended at the beginning of each sentence in a polyglot corpus. Subsequently the

multilingual neural network is trained on this mixed polyglot corpus end-to-end. The

average of the hidden-states corresponding to each appended language-id token is

considered the representation vector of the respective language.

These language-representation vectors are used as features while performing the

language-clustering TO propagate typological feature-values Bjerva and Augenstein

(2018). On the other hand, Malaviya et al. (2017) used these language-representations

as features to train A logistic regression model FOR missing typology feature-value

prediction. These language-representation vectors can also be used directly within

the cross-lingual NLP models to inject linguistic typology knowledge into them, as

these representation vectors are expected to encode all the typology knowledge about

the respective language.

2.3.1.3 Supervised approaches

Like Unsupervised approaches described in section 2.3.1.2, these approaches also aim

to predict the missing typology feature value for a low-resource language from other

languages for which the respective feature-value is known. The only difference is

that these approaches use supervised machine learning techniques to predict these

feature-values. Takamura et al. (2016) and Malaviya et al. (2017) used logistic re-

gression classifier to predict the missing values of WALS features, whereas Wang and

Eisner (2017) used deep neural network classifier. Both approaches used other WALS

typology features as model predictors.

The supervised approaches can also be guided by non typological predictors. For ex-

ample, Murawaki (2017) used the genealogical and areal features (along with typology

features) to represent each language as a binary latent vector. The approach adopted

a Baysian classifier to predict missing feature-value. On the other hand, (Cotterell

and Eisner (2017), Cotterell and Eisner (2018)) used various universal cognitive prin-

ciples such as dispersion and focalization in a model to build phone inventories.

A class of supervised approach simply use the implicational universals Greenberg et al.

(1963) with probabilistic models to predict the missing typology feature-value. Using

such universals, missing feature-values can be deduced by First-order-logic operations.

For instance, based on implicational rule that High consonant/vowel ratio + No

front-rounded vowels → No tones , if the former features are known, the latter

feature value can be deduced directly. Daumé III and Campbell (2009) proposed

a Bayesian model to learn probabilistic implicational universal and thereby predict
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missing feature-values. Whereas Lu (2013) proposed a Directed Acyclic Graph based

approach to missing typology feature-value prediction from implicational universals.

2.3.1.4 Heuristic Distribution approaches

In these approaches, the typology properties of a low resource language are extracted

by analyzing various word-level distributions observed within multilingual parallel

text corpora. For example, Wälchli and Cysouw (2012) represented the motion verb

distribution within a multilingual corpus as a matrix. Subsequently, the authors

performed dimensionality reduction approaches to transform this distribution matrix

into a Hamming distance matrix Norouzi et al. (2012). This provides a continuous

mapping of lexical verb-semantic properties between various languages.

On the other hand Asgari and Schütze (2017) outlined a distribution based framework

to obtain markers of various grammatical features across languages. Finally, missing

typology feature-values can be computed by simply observing the word-distributions

within monolingual text-documents, through using known linguistic universal facts.

For example, Roy et al. (2014) calculated the value of the order of Noun and Adposi-

tions directly from the monolingual text-documents. For any language, Adpositions

are the most frequent words, hence can be observed directly. Subsequently, the po-

sitions of nouns were established by the authors through various universal linguistic

constraints.

2.4 NLP with Typology

As described in chapter 1, the aim of this project is to improve the performance of

cross-lingual transfer-learning based NLP models, by inducting the linguistic typology

knowledge into them. In this section we review the previously published similar work.

In section 2.2.3 we described various publicly available typology databases. In section

2.4.1 we give a high-level overview of the various typology features used previously

with the Cross-lingual NLP approaches. In section 2.3.1 we classify and describe

various approaches to utilize Typology knowledge with Cross-lingual/Multilingual

NLP published previously.

2.4.1 Typology features for NLP

The previous work in Cross-lingual NLP with typology, is primarily limited to the

utilization of word order features from WALS Dryer and Haspelmath (2013) aimed at

the task of dependency parsing, as word order typology knowledge of a low-resource
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Features Ammar
et al.
(2016)

Daiber
et al.
(2016)

Naseem
et al.
(2012)

Täckström
et al.
(2013)

Zhang
et al.
(2012)

Barzilay
and
Zhang
(2015)

89A:Numeral and
Noun
88A:Demonstrative
and Noun
87A:Adjective and
Noun
86A:Genitive and
Noun
85A:Adposition
and Noun Phrase
84A:Object,
Oblique and Verb
83A:Object and
Verb
82A:Subject and
Verb
81A:Subject, Ob-
ject and Verb

Table 2.2: The WALS word-order features utilized by various popular modern ap-
proaches cross-lingual dependency parsers with linguistic typology knowledge

target-language can provide crucial guidance to a cross-lingual parser (trained on a

different high-resource source language) in predicting the dependency relationships

Naseem et al. (2012). Table 2.2 outlines the WALS word-order features utilized by

various previously published cross-lingual dependency parsers. As evident in table

2.2, all these CLT based dependency parsing approaches used quite similar word or-

der features, inspired by Naseem et al. (2012) indeed.

On the other hand, Daiber et al. (2016) utilized a more comprehensive subset of

WALS typology feature, which included nominal category featues (e.g. ‘Conjunc-

tions and Universal Quantifiers’) and nominal syntactic features (e.g. ‘Possessive

Classification’) features along the WALS word-order features. Berzak et al. (2016)

utilised all the features from WALS database except the lexical and the redundant

ones. Whereas Søgaard and Wulff (2012) included all the WALS features except

phonological features. Tsvetkov et al. (2016) used binarized phonological features

from URIEL Littel et al. (2016).

Finally, some previous approaches Agić (2017) and Ammar et al. (2016) considered
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the full set of available typology features without adopting any pre-selection. L. On

the other hand, Schone and Jurafsky (2001) did not basic typological features, but

instead numerous derived implicational universals Plank and Filimonova (2000).

2.4.2 Approaches to Cross-lingual NLP with Typology knowl-
edge

This section describes the previously published cross-lingual approaches to various

NLP tasks which utilize typology knowledge. These approaches utilized typology

knowledge either to perform feature engineering, source-target language mapping

or facilitating cross-lingual transfer of model parameters. All previous approaches

to cross-lingual NLP can be classified into four categories namely Selective source

sharing, Target language biasing, Data selection with Typology and Rule-based ap-

proaches described as sections 2.4.2.1, 2.4.2.2, 2.4.2.3 and 2.4.2.4.

2.4.2.1 Selective source sharing

This approach was first introduced by Naseem et al. (2012) in a generative model for

cross-lingual dependency parsing. The generative parser proposed by Naseem et al.

(2012) is trained on a joint polyglot corpus of high resource source languages. The au-

thors assume that the head-modifier relationships in any language are always derived

from a set of universal rules which are shared by all languages, whereas the order

of head and modifier in a sentence are based on language-specific properties. For

example, in all the languages, a noun is always modified by an adjective. However,

in some languages (such as English) the adjective precedes the noun while in other

languages (such as Nihali) the noun precedes the adjective.

Based on this intuition, the proposed approach aimed to learn the dependency re-

lations from all source languages, while the ordering in these relations (direction of

head-dependency) only from the typologically similar source languages, within mixed

polyglot training corpus. Hence the approach builds two distinct models for the

Head-Modifier relationship prediction and Direction-prediction. The probability of

the direction (left or right) of a head-modifier relationship is computed by applying

following equation 1

P (d|m,h, l) = σ(wg(m,h, l, fl)) (2.1)

Here Σ denotes SoftMax function and w indicates the trainable weights. Function g()

takes four inputs namely head POS-tag as h, Modifier POS-tag as m, Language-id as

l and the typology properties of the language l being parsed represented as feature
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fl. Hence the probability of the direction is dependent on the typology of language

being parsed.

A discriminative version of the above-described model was proposed by Täckström

et al. (2013). Unlike by Naseem et al. (2012) model which considers all typology

features during the prediction of any relationship direction, the discriminative model

only utilized relevant features for each head-modifier relation while predicting its

direction. For example, if the WALS typology feature ‘Order of subject, verb, and

object’ is relevant only if the head is verb and modifier is the Noun. Hence the

proposed model is a delexicalized first-order graph-based parser based on a carefully

selected feature set. From the set proposed model considered only the universal

typology features related to selection preferences and dependency length suggested

by McDonald et al. (2005) as well as manually crafted language-specific features,

while representing the typological properties of the target language.

This approach was further extended by Barzilay and Zhang (2015) which is a tensor-

based models that avoids the need of manual crafting and manual feature-selection. It

represents the entire typology knowledge as compact tensor representation and aims

to train the model to automatically select relevant features, rather than manually

selecting them.

2.4.2.2 Target language Biasing

These are model-transfer approaches that utilize linguistic typology knowledge to tune

the parameters of the shared model towards the target-language on which NLP is be-

ing performed. These approaches involve training a model usually on a mixed polyglot

corpus, with the typology knowledge about the language of each training-batch being

inputted along with text-representation vectors. This improves cross-lingual trans-

ferring ability of the model, specifically in case when the target languages are very

distinct from all source languages on which the cross-lingual model is trained.

Daiber et al. (2016) built probabilistic word-alignment pairs in a multilingual for par-

allel corpus. Subsequently the authors trained a machine translation model on this

aligned multilingual corpus and injected these alignment probabilities as input.

On the other hand, Ammar et al. (2016) utilized WALS typology knowledge to im-

prove the performance of a cross-lingual Transition based dependency parser. This

Transition-based parser comprises of a Stack s, Buffer b and a set of all possible

actions A, this transition-based parser selects the best action a ∈ A to be taken at

time-step t (eg: SHIFT ot REDUCE) given the current state of stack st, current

state of buffer bt and previous action-sequence at−1 by applying equation 2.2. Here
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Pt ∈ R|A| is the probability vectors comprising of probabilities of all actions a ∈ A to

be taken at time-step t. The action at time-step t is computed as at = argmax(Pt).

The process is continued until the buffer is empty and the stack comprises of full

dependency tree.

Pt = max{0,W ∗ [st : bt : at−1 : l] + Wbias} (2.2)

The authors encode the current states of stack and buffer using stack- LSTM

models with cross-lingual word-embedding. The authors also appended Language-id

vector along with word-embeddings for target-language biasing. They experimented

with numerous language-id such as One-hot vector as well vector comprising of all

WALS typology features.

Tsvetkov et al. (2016) injected phonological typology knowledge about various lan-

guages while training a phone-level language model. On the other hand, some ap-

proaches such as Schone and Jurafsky (2001) used typology knowledge to define the

prior model in a Bayesian Network.

2.4.2.3 Data selection with Typology

These approaches aim to utilize linguistic typology knowledge to perform the source

language selection or source training example selection (in case of polyglot source

training corpus) for the cross-lingual training, based on similarity between source

and target languages. The typology-based data-selection is commonly adopted with

either the cross-lingual model-transfer approaches (section 2.1.1) to select the most

suitable source languages which are comparatively typologically closer to the tar-

get language (Deri and Knight et al 2016), or with the joint supervision approaches

(section 2.1.1.2) to weigh the contribution of each example within the joint polyglot

training corpus. For example, Søgaard and Wulff (2012) and Agić (2017) weighted

examples in joint polyglot corpus based on the Hamming distance Hamming (1950)

between the target and source language (example’s language) typological vector.

Selection of source-languages can also be data-driven fashion, instead of measuring

similarity between typological vectors derived from various typology databases. For

example, Rosa and Žabokrtskỳ (2015) performed the source-language selection for

a cross-lingual delexicalized parser, based on the KL divergence Csiszár (1975) dis-

tances between part-of-speech trigram distributions of various source languages and

the trigram distributions of target language being parsed. On the other hand, Ponti
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et al. (2018a) made the source-language selection based on the Jaccard distance Mur-

phy (1996) between the morphological features and the tree-edit distance Bille (2005)

of dependency parses of similar sentences, between source and target-languages.

2.4.2.4 Rule-based approach with Typology

A unique approach to utilize typology knowledge for low-resource parsing was pro-

posed by Bender (2016). The proposed approach built a rule-based grammar from

the known typology features. The built grammar is within the Minimal Recursion

Semantics framework Copestake et al. (2005) and can be used to directly perform

semantic parsing of any natural language.

2.5 Conclusion

As explained in Chapter 1, our research work involves utilising linguistic typology

knowledge available in numerous external databases to improve the performances of

numerous state-of-the-art cross-lingual neural-network based models for various key

NLP tasks. In this chapter, we reviewed the previously published work relevant to

the research work described in subsequent chapters of the dissertation.

We divide the entire literature review into four segments. In the first segment we pro-

vided a high-level overview of various approaches to NLP for low-resource languages.

These include Data-Transfer Approaches and Model-transfer Approaches. In this sec-

tion we also provide an overview of various cross-lingual word-representations as well

as Transformer based language-models as these play a key role in the cross-lingual

transferring. Subsequently, in second segment we list and describe various external

linguistic typology databases. We utilised the knowledge available in some of these

databases to improve the state-of-the-art cross-lingual Model-transfer approaches to

numerous NLP tasks.

In the third segment we describe the issue of missing typology that exists in all the

popular typology databases. The issue makes the utilisation of the database with any

cross-lingual NLP model difficult. Subsequently, we provided overview of ML based

approaches to predict such missing feature-values. In our work, we indeed used the

mechanisms in these ML approaches indeed to overcome the missing typology issue

while we utilise the typology-knowledge with different cross-lingual models. Finally,

in the last segment we discussed previously published approaches to cross-lingual that

utilised linguistic typology knowledge.

Hence, in this chapter we provided all the background knowledge necessary for a
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reader of this thesis to be aware of, to fully understand our original work related to

cross-lingual transfer learning based NLP with linguistic typology knowledge, to be

described in subsequent chapters, as our work is indeed built on the work described

in this chapter.
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Chapter 3

Cross-lingual Constituency Paring
with Linguistic Typology
Knowledge

This chapter is based on our research work published as following paper:

• Universal Recurrent Neural Network Grammar. In Proceedings Of 33RD
ANNUAL CONFERENCE ON COMPUTATIONAL LiNGUISTICS AND SPEECH
PROCESSING (ROCLING) 2021

There are two key frameworks to represent the syntax of an input sentence namely

the Constituency parse-tree framework and the Dependency parse-tree framework

respectively. In our work, we improved the performances of state-of-the-art cross-

lingual approaches to both Constituency Parsing (CP) and Dependency Parsing (DP)

using linguistic typology knowledge.

In this chapter we will describe the CP task in detail as well as our proposed cross-

lingual approach to CP with linguistic typology knowledge in WALS database. In

chapter 5 we will review the DP task and the proposed cross-lingual DP model in

details.

Section 3.1 provides the high level over-view of phrase-based/constituency grammar

as well as the CP task. Section 3.2 described treebank structure whereas Section

3.3 provides a review of monolingual approaches to CP, including both statistical

and neural approaches. Finally section 3.4 provides our proposed model and the

subsequent sections will describe the experiments to evaluate our proposed model

and the results obtained.
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Annotation Phrase
S The school children will visit the Dublin museum during the

first week of September
NP The school children
VP will visit the Dublin museum during the first week of Septem-

ber
VP visit the Dublin museum during the first week of September
NP the Dublin museum
PP during the first week of September
NP the first week of September
PP of September
NP the first week

Table 3.1: Constituent phrases in the example sentence The school children will visit
the Dublin museum during the first week of September.

Non-terminal CFG rules Terminal CFG rules
S → NP V P Det→ that|this|the|a
S → Aux NP V P NN → university|weekend
S → V P V BZ → goes
NP → PRP PRP → she
NP → NN Aux→ does
NP → Det Nom TO → to
Nom→ NN
Nom→ Nom NN
Nom→ Nom PP
V P → V BZ
V P → V BZ NP
V P → V BZ PP PP
V P → V BZ PP
V P → V P PP
PP → TO NP
PP → IN NP
PP → PRP NP

Table 3.2: Examples of Context Free Grammar (CFG) rules
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Figure 3.1: Example of a constituency parse-tree

3.1 Phrase-based Grammar

3.1.1 Phrase Constituency

Syntactic constituency grouping aims to group words in a sentence into phrase con-

stituents. A word-sequence is identified as a phrase-constituent if all the words in

that sequence share some semantic or syntactic property. Each such constituent acts

as a single syntactic unit, in the constituency parse tree of the input sentence. For

example, Table 3.1 lists all the constituents that can be extracted from the following

sentence:

• The school children will visit the Dublin museum during the first

week of September.

As evident in Table 3.1, the words the first week of September can be grouped

together into a single Noun-Phrase (NP) constituent as they convey a single se-

mantic information i.e. the time of visit. Similarly, the words the Dublin museum

form another independent Noun-Phrase (NP) constituent as they collectively de-

scribe the place to be visited.
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Words can also be grouped into constituents based on the shared syntactic charac-

teristic. For example, the words The school children collectively describe the subject

of the sentence, hence forming a Noun-Phrase (NP) constituent.

Furthermore, various constituents in a sentence have a hierarchical structure. For

example, as evident in Table 3.1, the words visit the Dublin museum during the first

week of September forms a single Verb-Phrase (VP) constituent of the sentence and

is comprised of three smaller constituents namely Base-verb (VB), Preposition-

phrase (PP) and Noun-phrase (NP).

3.1.2 Context Free Grammar

Context Free Grammar (CFG) or Phrase-Structure Grammar is the most

widely used framework to extract the entire hierarchy of phrase-constituents from an

input sentence. Such a hierarchy of all phrase-constituents in a sentence is repre-

sented as its Constituency parse tree. Figure 3.2 depicts the constituency parse

tree structure of an example sentence I live in Galway. The concept of phrase-based

grammar date backs to 1900 Wundt (1900) but was formalised by linguist Noam

Chomsky in 1956 Chomsky (1956) and Backus in 1959 JW (1959) independently.

A context-free grammar typically comprises of a very large set of rules or produc-

tions. Each such rule express a possible (allowed) way to group one or more words

or phrases together. For example, consider following two rules:

NP → Det Nom

NP → NNP

These rules express that a Noun Phrase (NP) constituent can be comprised of ei-

ther a single Proper Noun (NNP) constituent or a Determiner (Det) constituent

followed by a Nominal (Nom) constituent. On the other hand, a Nominal (Nom)

can be furthur defined by following rules

Nom→ NN

Nom→ Nom NN

These rules express that a Nominal (Nom) type constituent can comprise either a

Noun (NN) or another Nominal (Nom) followed by a Noun (NN).

Apart from Constituency-types, the CFG rules can also comprise of lexical units (on
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Figure 3.2: Examples of constituency parse trees based on CFG rules.
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Figure 3.3: Representation of constituency parse-tree in Bracket format

the right hand side of the rule). For example, the following two rules comprise of

lexical right-hand side.

NN → School

Det→ the

Det→ a

V → eat

. Each such CFG rule can form branches of a constituency parse tree with left-hand

side being the parent node and right-hand side being the children node. The nodes

indicating constituency types (such as NNP, Nom etc.) are called Non-terminal

nodes whereas nodes comprising of lexical units are called Terminal nodes.

Hence formally, a context-free grammar G of any language L is defined by three

parameters listed as follws:

1. N: Set of non-terminal symbols

2. Σ: Set of terminal nodes (vocabulary of the language)

3. R: Set of rules of the format A → β where A is always a single non-terminal

and β is a sequence of terminal and non-terminal symbols

Furthermore, each CFG consists of a designated Start (S) node as a member of its

Non-Terminal node-set N indicating the constituent-type Start This node forms

the root node of any complete parse-tree, and usually comprises of all the words in

the input-sentence been parsed.

Hence, any input sentence Ŝ in a language L is considered to be grammatically correct,

if at-least one complete constituency parse-tree can be constructed for that sentence

based on CFG of L. A complete constituency parse-tree has following properties:
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Terminal Rules Non-terminal rules
DT → The NP → DT NN NNS
NN → school V P →MD V P
NNS → children V P → V B NP PP
MD → will NP → DT NNP NN
V B → visit PP → IN NP
NNP → Dublin NP → NP PP
NN → museum NP → DT JI NN
IN → during NP → NNP
JI → first
NN → week
IN → of
NNP → September

Table 3.3: CFG rules generated from the parse-tree depicted in Figure 3.1

1. Root node is of type Start (S).

2. All the words in the input sentence Ŝ form leaf nodes of the tree.

3. All the branches of the tree should be legal (based on valid CFG rules in RL).

Figure 3.2 depicts an example of a valid and an invalid parse-tree based on the limited

set of CFG rules outlined in Table 3.2. In the figure, tree b is incomplete as it does

not have single root node S thus making it illegal. On the other hand, tree c is invalid

because it consists of an illegal branch formed by the following invalid rule, which is

not in the CFG (Table 3.2) of language of the sentence being parsed.

S → NP PP V P

3.2 Treebanks

In linguistics, a treebank (term coined by Geoffrey Leech Wilson et al. (2003)) refers

to a text-corpora with each sentence been paired to its corresponding syntactic or se-

mantic sentence-structure representations (syntactic or semantic parse-tree). These

sentences are often annotated manually by the trained linguistics thus making them

gold standard. There are numerous open-source treebanks available with various syn-

tactic and semantic annotations. This section describes various constituency parsing

treebanks while section 5.2.1 will discuss the available dependency parsing treebanks.

Since the treebank is created manually, generally the CFG of the language (if un-

known) can be derived from the treebank itself. In such a case, CFG is defined by
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Annotation Description
CC Coordinating conjunction
CD Cardinal number
DT Determiner
FW Foreign word
IN Preposition conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
PRP Personal pronoun
PP Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
TO to
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund/present participle
VBN Verb, past participle
VBP Verb, non-3rd position singular present
WDT wh-determiner
WP Possessive wh-pronoun
WRB wh-adverb
. Punctuation
’ Comma

Table 3.4: Selected Annotations in the Penn treebank Taylor et al. (2003)
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CFG Format CNF Format
S → NP V P S → NP V P

S → Aux NP V P S → X1 V P
X1→ Aux NP

S → V P V P → read|study|walk|fly|book|...
S → V erb NP
S → X2 PP
S → V erb PP
S → V P PP

NP → PRP NP → I|she|me|you|we|...
NP → NNP NP → Galway|University|Ireland|Dublin|...

NP → Det Nom NP → Det Nom
Nom→ Noun Nom→ book|flight|meal|money|course|....

Nom→ NomNN Nom→ Nom Noun
Nom→ NomPP Nom→ Nom PP

V P → V B V P → book|include|prefer|...
V P → V B NP V P → V erb NP

V P → V B NP PP V P → X2 PP
X2→ V B NP

V P → V B PP V P → V B PP
V P → V P PP V P → V P PP
PP → PRP NP PP → PRP NP

Table 3.5: Example of CFG grammar translated to CNF format. Example from
Martin (2021a)
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the set of all CFG rules that are observed within these manually annotated treebank.

Table 3.3 depicts the CFG rules that are generated from an example parse-tree.

The most popular constituency parsing treebank is the Penn Treebank Taylor et al.

(2003) which was developed by Linguistic Data Consortium and University of Penn-

sylvania in the 1990s. The treebank was created by manually annotating sentences

from the Brown Francis and Kucera (1979), Switchboard Godfrey et al. (1992), ATIS,

and Wall Street Journal Paul and Baker (1992) corpora of English.

The most widely used English CFG is in fact derived from the Penn-treebank corpus.

The Penn-treebanks corpus also defined the nested bracket format to representation

a constituency parse tree indicated in Figure 3.3. The Penn treebank was further

extended for the Arabic Maamouri et al. (2004) and Chinese Xue et al. (2005) lan-

guages.

Penn treebank also provided the most widely used constituency types and their an-

notations. Table 3.4 lists some significant annotations and constiituency-types within

the Penn treebank. The annotation set provided by the Penn treebank indeed formed

the basis of other treebanks and CFGs in other languages Seki et al. (1991).

Apart from Penn, an other notable treebank is the BulTreeBank Simov and Osenova

(2004). This treebank follows a specific language-theory unlike the Penn treebank.

This treebank provides the Head Driven Phrase structure grammar (HPSG) Pollard

and Sag (1994) which is distinct from CFG format.

After the Penn English treebank, numerous linguists developed and publicly released

treebanks in other languages as well. Tables 3.8 and 3.9 lists some of these tree-

banks in various languages. Some of these treebanks were be used by us to train and

evaluate our proposed multilingual constituency parser as explained in section 3.8.

3.3 Approaches to Monolingual Constituency Pars-

ing

This section reviews the previously proposed approaches to the Constituency Parsing

task. In section 3.3.1 we will review various dynamic programming based approaches

to CP task including the CKY algorithm Manacher (1978), which is the most

widely used algorithm to generate constituency parse-tree of an input sentence from

the available CFG grammar. In subsequent sections we review modern neural-network

based approaches to constituency parsing including discriminative, generative and

unsupervised approaches.
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Figure 3.4: Demonastration of slot filling in the CKY algorithm during parsing of an
example sentence Book the flight through Houston. Figure from Martin (2021a).
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Algorithm 1 CKY Algorithm

Require: Input-sentence S as s word-sequence w = w1, w2, ...wN ; CFG rule-set in
CNF format;
for i from 1 to N do

for each r ∈ CFG ∋ r → wi do
table[i1, i]← table[i1, i] ∪ r

end for
for j from i− 1 to 0 do

for k from j + 1 to i− 1 do
for each r ∈ CFG ∋ r ∼ A→ B C ∋ B ∈ table[j, k] and C ∈ table[k, j] do

table[j, i]← table[j, i] ∪ r
end for

end for
end for

end for

3.3.1 Dynamic Programming approaches

Dynamic programming Bellman (1966) refers to a class of algorithms that can be

used to explore a very large search-space efficiently (both time and space efficiency)

to find the desired goal-state or the maximum scoring state. A typical dynamic-

programming approach resolves a comparatively larger problem by recursively break-

ing it into smaller problems and resolving them. For the task of parse-tree generation,

these sub-problems include the generation of sub-trees.

Cocke-Kasami Younger (CKY) Manacher (1978) algorithm is the most popular

dynamic-programming based approach to CP task. CKY is a recursive algorithm

which starts with the entire word-sequence as a sequence of single-node sub-trees.

Subsequently, at each iteration (at each level) the algorithm groups the smaller sub-

trees together to generate the sequence of larger sub-trees based on the CFG rules

of the language being parsed. The process is continued until only a single parse tree

comprising of all initial nodes exists. This tree is outputted as the desired consituency

parse-tree of the language being parsed. Section 3.3.1.2 will outline the entire parsing

process in details.

CKY algorithm requires the CFG rules to be written in Chomasky Normal Form

(CNF). Section 3.3.1.1 will describe the CNF and various approaches to convert

standard CFG rules into CNF format. Chart parsing Kaplan (1973); Allén (1982) is

a another popular rule-based approach to CP task.

51



3.3.1.1 Chomsky Normal Form

The CKY algorithm requires the CFG grammar to be in Chomsky Normal Form

(CNF). As already explained in section 3.1.2, the CFG rule is in format as A → β

where A is a non-terminal and β is a sequence of terminal and non-terminal symbols.

On the another hand, in CNF format a grammar rule can be either in the format

A → B C or in the format A → b where b is a non-terminal node (word). Hence

standard CFG rules are needed to be converted into the CNF format.

There are three kinds of CFG rules which needs to be converted to CNF format are

rules with mixed terminals with non-terminal nodes on right-hand side, rules with

a single non-terminal on the right-hand side and rules in which the length

of the right-hand side is greater than two. These rules are translated into the

CNF format by introducing additional Non-terminal nodes and rules.

For example, a CFG rule NP → PP ADJ NN in which the length of the right-hand

side is greater than two can be re-written as two new rules namely NP → PP X and

X → ADJ NN . Here, X is a new Non-terminal introduced for translation. Similarly

the rule INF − V P → to V P with mixed terminal and non-terminal nodes on right-

hand side can be translated as two rules INF − V P → TO V P and TO → to. Here

TO is a new non-terminal added to the inventory. Table 3.5 depicts an example CFG

grammar been converted to CNF format.

3.3.1.2 CKY Parsing

As our CFG is now in CNF format, each node in our constituency parse-tree will

have two daughter nodes (except at final level comprising of POS-tags). Let there

be an input sentence S to be parsed with a CFG. The CKY algorithm would parse

the sentence S by making a matrix of dimension R|S|∗|S|, and builds the parse-tree

by filling all cells in the upper right triangular portion of the matrix. Here |S| is the

length of sentence S. Each cell (i, j) in the matrix is filled with possible non-terminals

that can represent the constituents comprising of all the words from index i to j in

the input sentence (i, j ≤ n).

Algorithm 1 outlines the CKY algorithm. The parsing process starts with filling in

the diagonal columns. Any jth column on the diagonal is filled by all non-terminal

symbols that satisfy the CFG rule-type A → wj, where wj is the jth. In subsequent

steps the algorithm iteratively fills in all the left-over cells of the upper-right triangular

portion of the matrix. Any cell (i, j) is filled by applying equation 3.1.

Matrix[i, j] = Matrix[i, k] ∪Matrix[k + 1, j] (3.1)
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Figure 3.5: Example of ambiguity in sentence I shot an elephant in my pajamas

Here k is a split point such that i ≤ k < j. As explained in section 3.3.1.2 when CFG

is grammar is unavailable, it can be extracted from the treebank.

Figure 3.4 depicts the slot-filling process in CKY algorithm applied to an example

sentence ’Book the flight through Houston’ with CFG as shown by Martin (2021a).

3.3.1.3 Ambiguity

Ambiguity refers to a situation when more than one parse trees can be generated

based on a given CFG for a single input sentence being parsed. For example, Figure

3.5 depicts two distinct constituency parse-tree that can be generated for same input-

sentence I shot an elephant in my pyjamas based on a common CFG.

Ambiguity is one of the most severe issues to be addressed by constituency parsing

task. Probabilistic CKY is an extension of standard CKY algorithm which can

generate the parse-tree of a given input sentence while effectively addressing the

ambiguity issue. Section 3.3.1.4 will describe the probabilistic CKY in details.

3.3.1.4 Probabilistic CKY

As already explained, the statistical approaches to the constituency-parsing typically

involves a two-step process. Firstly given a training treebank corpus in any language

L, these approaches extract CFG grammar of it. Subsequently in the second step,
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Figure 3.6: Parse tree of an example sentence I live in Galway

for an input sentence S, these approaches use CKY algorithm to generate parse-tree

for the input sentence. However if S has ambiguity, the algorithm will generate more

than one parse-trees.

The Probabilistic CKY Booth (1969); Baker (1979) on the other hand, aims to ex-

tract the Probabilistic CFG instead of standard CFG from the training corpus.

For any CFG rule A→ B C, its probability can be calucted by applying equation 3.2

Pr(A→ B C) =
Count(A→ B C)

ΣAll X,Y ∈CNFL
Count(A→ X Y )

(3.2)

Here Count(A→ B C) is the number of occurrences of rule A→ B C in the training

dataset. ΣAll X,Y ∈CNFL
Count(A → X Y ) indicates the total number of occurrences

of all the rules in CFG with A on the left-hand side.

For any given tree, its probability can be computed as the product of the probability

of all its nodes. For example, Figure 3.6 depicts the constituency parse-tree T of an

example sentence I live in Galway . The probability of this tree can be computed

by applying equation 3.3.

Pr(T ) = Pr(PRP → I) ∗ Pr(V BP → live) ∗ Pr(IN → in)

∗ Pr(NNP → Galway) ∗ Pr(PP → IN NP )

∗ Pr(V P → V BP PP ) ∗ Pr(S → NP V P ) (3.3)
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Figure 3.7: Parsing of sentence I do like eating fish by Cross and Huang (2016)

However, the product of all probabilities can lead to the problem of arithmetic

underflow. Thus, for practical purposes, instead of the product of all probabilities,

the sum of log probability values are used instead as evident in equation 3.4.

Score(T ) = log(Pr(T )) = log(Pr(PRP → I)) + log(Pr(V BP → live))

+ log(Pr(IN → in)) + ...+ log(Pr(V P → V BP PP )) + log(Pr(S → NP V P ))
(3.4)

For a sentence with ambiguity, the approach usually outputs the tree with maximum

probability/log-probability sum as is correct parse-tree. Weighted CKY Mohri and

Pereira (1998) is similar to Probabilistic CKY, where each CFG rule is assigned with

the weights. Subsequently, the maximum weighted tree is outputted as the correct

tree to resolve ambiguity.

3.3.2 Neural approaches

In the previous section we described CKY based statistical approaches to mono-

lingual constituency parsing. However, with the advancement of neural networks,

modern state-of-the-art approaches to CP task are NN based approaches that signif-

icantly outperform statistical approaches. This section describes the significant NN

approaches to CP task in details. On the other hand, section 3.5 will describe various

cross-lingual and unsupervised approaches to CP task.

Recurrent Neural Network Grammar (RNNG) Kuncoro et al. (2016) is the first signif-

icant LSTM based approach to CP task that outperformed the state-of-the-art CKY

based approach. It is inspired by the Transition-based approaches to Dependency

parsing task discussed in section 5.1.3.1. The approach comprises a Stack which
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stores the incomplete parse-tree, a Buffer which stores the sentence tokens and the

set of all possible Actions. The approach is an iterative approach that chooses best

action at each time-step and update the stack and buffer accordingly. The action

is chosen based on current states of stack and buffer as well as action-history. The

process is continued until the Buffer becomes empty and Stack consists of completed

parse-tree. We will describe the RNNG approach in more detail in section 3.6 as our

proposed cross-lingual approach to CP called UniRNNG (section 3.4) is based on

the RNNG approach indeed.

Similar to RNNGs, Cross and Huang (2016) is another approach which is inspired

by and modifies the Transition-based approaches to DP. The approach uses a stack

and a buffer in a similar way as RNNG but the stack contains sentence spans (word-

sequences) with no requirement to be the part of an incomplete parse tree. Further-

more, the action set of Cross and Huang (2016) comprises of two types of action

namely the structural actions and the label actions. The Structural actions in-

cludes two actions namely Shift which is similar to the Shift action in RNNG and

the Combine action which merges the top-two sentence spans into one. The Com-

bine action is similar to the Reduce action of RNNG but it does not aim to create an

incomplete parse-tree structure and is non-directional. The Label actions assign a

label to the sentence span on top of the stack. Figure 3.7 depicts an example sentence

I do like eating the fish been parsed, as shown by Cross and Huang (2016).

Charniak et al. (2016) is another significant approach which aimed to extract the

parse-tree of a sentence by language-modelling. Language Modeling (LM) Chelba

and Jelinek (2000) typically is a probability distribution over all possible sentences

(word-sequences) in a language. Given an input sentence x = x1, x2, ...xN an LM

computes the probability value Pr(x) of sentence x by applying equation 3.5.

P (x) = P (x1, x2, ...xN) =
N∏
t=1

P (xt|x1, x2, ....xt−1) (3.5)

Inspired by the Language-modeling task, Charniak et al. (2016) approach rep-

resented entire parse-tree T (x) of an input sentence x as a sequence of symbols

T (x) = T1, T2, . . . TM . For example, the representation of an example parse-tree

(of example sentence I live in Galway) shown in Figure 3.6 can be depicted as follows

(S (NP I )NP (V P live (PP in (NP Galway )NP )PP )V P )S

. For a given training treebank, the authors first represented all the trees within the

dataset as sequence of symbols. Subsequently they trained an LSTM based Language-
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model over all these sequences. During inference, for a new input-sentence the ap-

proaches calculate the probability of all possible parse tree using this pre-trained

Parse-tree LM to output the most probable tree.

Kitaev and Klein (2018) introduced the first Transformer based approach to CP task

(section 2.1.1.4). The model adopts a simple encoder-decoder framework. In this

framework, the entire model architecture comprises an encoder NN which encodes

any input sentence s into a representation matrix, and a decoder network which takes-

in the encoder output as its input and probabilistically builds the desired parse-tree

T (s).

The architecture of the encoder NN is inspired by the Transformer model Vaswani

et al. (2017). Given an input sentence x = x1, x2, . . . ., xN of length N, the ap-

proach represents it as a feature-matrix e ∈ RN∗d where e = [ew1 , ew2 , . . . ., ewN
]. Here

ewi
∈ Rd is the contextual word-embedding. The embedding-matrix is appended with

the POS-tag representation matrix m = [m1,m2, . . . ,mN ] of dimension RN∗1 where

mi is the tag-id of POS-tag of word wi.

Hence, the input to the encoder is a feature-matrix of dimension RN∗(d+1). This

input feature-matrix is appended with positional encoding to embed word-sequence

knowledge. Similar to Vaswani et al. (2017), the encoder NN architecture comprises

eight layers. Each layer comprises of a self-attention layer and a fully connected layer.

Finally, the encoder outputs z ∈ RN∗k which is inputted into the decoder network.

The decoder network can assign the tree-score Score(T ) to a given parse-tree T by

applying equation 3.6.

Score(T ) = Σ(i,j,l)∈T score(i, j, l) (3.6)

Here score(i, j, l) is the node-score of any constituent that is located between the

positions i and j of the input sentence and has label l. The approach introduces a

dummy label ϕ to represent the non-existence of a node. For a new input sentence ŝ,

it’s parse tree T̂ is computed by applying equation 3.7.

T̂ = argmaxT (Score(T )) (3.7)

3.4 UniRNNG Introduction

As explained in chapter 2, Noam Chomsky proposed the hypothesis of Universal

Grammar (UG) which states that all human languages, while being superficially

as diverse as they are, share some fundamental similarities. Thus he argues that
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deep down the specific grammars of various natural languages, there exists a Uni-

versal Grammar. Since then many linguists Baker (2008); Fodor and Sakas (2004);

Tomasello (2005); Pinker (1995); Fodor (2001) attempted to outline the principles

and parameters of this Universal Grammar manually, but with very limited success.

If it is nearly impossible to identify and outline UG manually due to its anticipated

large size and complexity Roberts and Holmberg (2005); Kayne (2012); Cinque and

Rizzi (2010); Shlonsky (2010); we can use a neural network to learn these automati-

cally.

RNN based models such as Recurrent Neural Network Grammars (RNNG)Dyer et al.

(2016) (explained in section 3.6) are proven to do excellent job in automatically learn-

ing and encoding (as model-parameters) the grammar of any language directly from

its tree-bank corpus. This inspired us to make following assumption:

A Recurrent Neural Network based multi-lingual parser trained on a

diverse polyglot treebank corpus would learn and encode the Universal

Grammar as its model-parameters.

Based on this assumption, we proposed and evaluated Universal Recurrent Neu-

ral Network Grammar (UniRNNG) which is a multi-lingual variant of the Dyer’s

RNNG model Dyer et al. (2016).

The architecture of UniRNNG is indeed inspired by the Principle and Parameter

framework Chomsky (1993) explained in section 2.2.2.1. Hence unlike Dyer’s RNNG,

our proposed model comprises two sets of model-parameters α and β. α would encode

the Universal Principles which are shared by all the languages and β would encode

Parameters which are tuned to specific language of the sentence being parsed during

run-time.

In order to generalize a mono-lingual constituency parsing model to multi-lingual

settings, we utilized the knowledge of Language typology which is available as var-

ious typological feature-values in World Atlas of Language System (WALS)

Haspelmath (2009) database.

As discussed in section 2.1.1.1, the CLT based approaches do not perform well if

the source and target languages are typologically very distinct Ruder et al. (2019a).

But since UniRNNG explicitly models over the typological features (as inputs) and

is trained on a sufficiently diverse polyglot corpus, it is comparatively more robust to

the typological differences between source and target languages. In other words, once
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being trained on sufficiently large and typologically diverse corpus it can be applied

to any natural-language thus making it Language-Agnostic.

3.5 Approaches to CP for low-resource languages

Section 3.3 described various mono-lingual supervised approaches to the CP task, in-

cluding the state-of-the-art neural-network approaches. However, all these approaches

are supervised approaches which require a large amount of labelled training data-set,

thus limiting their utility to only a handful of high-resource languages. In this chap-

ter, we describe our proposed Universal Recurrent Neural Network Grammars

(UniRNNG) which is a multi-lingual variant of the Recurrent Neural Network

Grammars (RNNG) model for constituency parsing (section 3.6), to address this

issue of data-sparsity for low-resource languages.

UniRNNG is a Cross-lingual Transfer Learning based approach to CP task. The

architecture of UniRNNG is inspired by Principle and Parameter theory proposed by

Noam Chomsky. Furthermore, UniRNNG utilises the linguistic typology knowledge

available as feature-values within WALS database, to generalize over multiple lan-

guages. Once trained on sufficiently diverse polyglot corpus UniRNNG can be ap-

plied to any natural language thus making it Language-agnostic constituency parser.

Section 3.4 provides the introduction to out proposed UniRNNG model. In sec-

tion 3.5, we provide a brief literature-review of previously proposed cross-lingual

approaches to the CP task.

3.6 RNNG model

Recurrent Neural Network Grammar (RNNG) Kuncoro et al. (2016) model is a prob-

abilistic RNNG based parser which models the hierarchical and nested relationships

between words and phrases of an input sentence. RNNGs are indeed reminiscent of

PCFG (section 3.3.1.4) but the grammar is represented as RNN model parameters

instead of CFG rules.

The proposed RNNG based approach is a top-down variant of the standard transition-

based parsing which is commonly used for the dependency parsing task (section

5.1.3.1). Formally the authors defined RNNGs with a tuple (N,Σ, θ) where N is

the set of non-terminals, Σ is the set of terminal nodes and θ is the optimized pa-

rameters of the RNN which performs the generation or the discrimination task. The

authors provide two variants of the transition-based parser namely the Generative
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parser and the Discriminative parser.

As already explained, similar to the standard transition-based approach to dependency-

parsing task (section 5.1.3.1), the RNNG approach also comprises of a Stack S, a

buffer B and the action-set A. For a given input sentence x to be parsed, the stack S

would comprise an incomplete parse-tree and the buffer B would comprise of tokens

of x. At each time-step t, the approach chooses the best action at ∈ A, given the

current state of stack St, buffer Bt and history of actions a<t. Depending upon the

chosen action at, the Stack and Buffer are updated to St+1 and Bt+1 respectively. The

process is continued until the Stack consists of completed parse-tree.

3.6.1 Discriminative vs Generative

For a given input sentence x and its parse tree T (s), the Generative RNNG computes

the probability of generating a complete tree T(s) along with non-terminal nodes as

Pr(T (s)). On the other hand, the Discriminative RNNG computes the probability of

assigning the tree T (s) to input sentence s as Pr(T (s)|s). During the inference time

therefore the Discriminative RNNG model predicts the correct parse-tree T∗ of an

input sentence s as follows

T∗ = arg max
T∈T ′

Pr(T (s)|s)

Whereas the Generative RNNG predicts the correct parse-tree T∗ of an input sentence

s as follows

T∗ = arg max
T∈T ′

Pr(T (s))

Here T ′ is the set of all possible trees for input sentence s.

Both Discriminative and Generative RNNGs follow Transition based parsing frame-

work but differ in the set of possible actions. Tables 3.6 and 3.7 lists the action-set

for Discriminative and Generative RNNGs respectively.

3.7 UniRNNG Model

This section describes our proposed Universal Recurrent Neural Network Gram-

mar (UniRNNG). As being a multi-lingual variant of DiscRNNG (section 3.6), the

UniRNNG is also a transition based parser consisting of a Stack S, Buffer B and

action-set A. At any time-step, the Stack stores incomplete parse-tree and Buffer

stores token-sequence. At each time-step t, model predicts best action at ∈ A given

current state of Stack (St), Buffer (Bt) and Action-history (a<t). Subsequently Stack

and Buffer are updated as St+1 and Bt+1, according to action at.
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Action Description
NT(X) Opens a non-terminal node ’X’ and puts it on top of Stack. eg:

NT(VP)==>(VP
SHIFT Removes topmost token from the Buffer B and pushes onto the Stack
REDUCE Repeatedly pops completed sub-trees or terminal symbols from the

stack until an open non-terminal is encountered, and then this open
NT is popped and used as the label of a new constituent that has the
popped sub-trees as its children. This new completed constituent is
pushed onto the stack as a single composite item.

Table 3.6: Action Set for Discriminative RNNG Dyer et al. (2016)

Action Description
GEN(w) Generates a new word w (terminal node) and puts it at the end of

buffer
NT(X) Opens a non-terminal node ’X’ and puts it on top of Stack. eg:

NT(VP)==>(VP
REDUCE Repeatedly pops completed sub-trees or terminal symbols from the

stack until an open non-terminal is encountered, and then this open
NT is popped and used as the label of a new constituent that has
the popped sub-trees as its children. This new completed constituent
is pushed onto the stack as a single composite item. It can only be
applied when the top of the stack is not an open non-terminal symbol
and size of stack is greater than one.

Table 3.7: Action-set of Generative RNNGs
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Figure 3.8: a. Recurrent Neural Network Grammar (RNNG) architecture.
b.Universal Recurrent Neural Network Grammar (UniRNNG) architecture.

3.7.1 Architecture

Figure 3.8b depicts the architecture of the UniRNNG. At each time-step t the pro-

posed model computes the Stack-encoding St, Buffer encoding Bt and action-sequence

encoding a<t using stack-LSTM and RNN respectively, in similar way as DiscRNNG.

(Section 3.6). However for UniRNNG Cross-lingual Word-Embeddings are used in-

stead of Word-Identifier vectors during encoding of Stack and Buffer.

Once having computed St, Bt and a<t the model computes two distinct vector-

representations of the entire model-state at time t namely α-vector (uα
t) and β-vector

(uβ
t), unlike DiscRNNG which computes single representation ut. The uα

t and uβ
t

are computed through equations 3.8 and 3.9.

uα
t = tanh(Wα[St;Bt; a<t] + cα) (3.8)

uβ
t = tanh(W β[St;Bt; a<t] + cβ) (3.9)

A typology aware version of β-vector ûβ
t is computed by applying equation 3.10 (com-

putation simply involves concatenation and dimension reduction through feed-forward
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network).

ûβ
t = tanh(Ŵ [uβ

t;Z] + ĉ) (3.10)

Here Z ∈ R|Z| is a Linguistic-typology vector. Each value within Z represents a single

typology-feature from WALS Haspelmath (2009) database having specific value as

integer for the language being parsed. Both uβ
t and ûβ

t have same dimensions i.e.

Rd. Final state-representation at time t is given as concatenation of α-vector (uα
t)

and typology aware version of β-vector (ûβ
t ) as equation 3.11.

Missing features for any language are assigned zero indicating no dominant value for

it.

ut = [uα
t; û

β
t ] (3.11)

To summarize UniRNNG is very similar to Dyer’s Discriminative RNNGs (Dis-

cRNNG) model 3.6 with the following modifications.

1. Cross-lingual Word-embeddings are used instead of unique word-identifiers

2. At each time-step t, two distinct model-state representations are computed

namely α-vector uα
t and β-vector uβ

t.

3. Final model-state representation ut is computed as the concatenation of α-vector

and typology aware version of β-vector. This is unlike original DiscRNNG where

ut is computed directly from St, Bt and a<t

4. Model is trained on a typologically diverse polyglot corpus.

The proposed architecture is inspired by the Principle and Parameter framework

Chomsky (1993) framework proposed by linguists Noam Chomsky and Howard Las-

nik Chomsky (1993). The central idea behind the PP framework is that a person’s

syntactic knowledge can be modelled with two formal attributes namely a finite set

of fundamental Principles that are shared by all languages (e.g.: A sentence must

always have a subject) and a finite set of Parameters whose values characterize

syntactic variability amongst various languages (eg: Subject-Verb-Object (S-V-O) or-

der within a sentence).

Inspired by this PP theory, our proposed UniRNNG architecture comprises of distinct

α (Wα,cα) and β (W β,cβ) parameters to encode the universal and language specific

features.
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Language Tree-bank Family
en Penn tree-bank Marcus et al. (1993) Germanic
sd Talbanken05 Nivre et al. (2006b) Germanic
fr FrenchTreebank Abeillé et al. (2003) Romance
es Spanish UAM Treebank Moreno et al. (1999) Romance
jp Tüba-J/S Kawata and Bartels (2000) Altic
ar Arabic PENN Treebank Maamouri et al. (2004) Afro-asiatic
hu Hungarian Szeged Treebank Treebank Uralic

Table 3.8: List of source languages and their corpora used during experimentation.
corpora are used to train both Word-Embeddings and Parsers

Language Tree-bank Family
de Negra Treebank Skut et al. (1997) Germanic
da Arboretum Treebank Bick (2003) Germanic
it ISST Treebank Montemagni et al. (2003) Romance
ct Catalan AnCora Treebank Taulé et al. (2008) Romance
kr Korean Penn Treebank Han et al. (2002) Altic
hb Heberew Treebank Sima’an et al. (2001) Afro-asiatic
et Estonian Arborest Treebank Bick et al. Uralic
hi* Hindi-Urdu Treebank Bhat et al. (2017) Indo-aryan
vt* Vietnamese Treebank Nguyen et al. (2009) Austroasiatic

Table 3.9: List of target languages and their corpora used during experimentation.
corpora are used to train both Word-Embeddings and Parsers. * these languages are
used only in zero-shot settings
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3.8 Experiments

This section describes the experiments conducted to evaluate the performance of

proposed UniRNNG. There are two key novel objectives of these experiments, listed

as follows:

1. To evaluate whether the Monolingual Recurrent Neural Network Grammar

(RNNG) based model for the CP task is effective within the Cross-lingual set-

tings.

2. To evaluate how the linguistic typology knowledge induction impact the perfor-

mance of RNNG based Constituency parser within various cross-lingual settings.

As far as we are aware, this is first work to explore the use of linguistic typology

knowledge for the cross-lingual CP task. We compared the performances of both cross-

lingual variant of RNNG as well as our proposed UniRNNG model with numerous

baselines, in both few-shot and zero-shot learning settings.

Each of the experiments comprises of a set of source languages Ls and a single target

language lt.

3.8.1 Experimental Settings

We evaluated the performance of UniRNNG under two experimental setups namely

Few-shot learning and Zero-shot learning setups.

Few-shot Learning Wang and Yao (2019) is applied when only few training examples

are available in the target language. In this setup, the cross-lingual models (baseline

and UniRNNG) are trained on a mixed corpus comprising of source-language sen-

tences (covering over 80% corpus) and few available target language sentences. Hence

for Few-shot Learning setup lt ∈ Ls.

Zero-shot Learning Xian et al. (2017) is applied when no labelled dataset is available

in the target language. Hence lt /∈ Ls.

3.8.2 Baselines

This section describes the baselines used to compare the performance of our proposed

UniRNNG.
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3.8.2.1 Mono-lingual Models trained on Sparse Dataset

We used this baseline to compare the performance of our proposed UniRNNG only in

the Few-shot learning settings. As our UniRNNG model is intended to be applied for

low-resource languages, we compare the performance of it with that of the state-of-

the-art mono-lingual models trained on a sparse dataset. We experiment with three

mono-lingual constituency parsers namely DiscRNNG 3.6, Kuncoro et al. (2016) and

Transformer Vaswani et al. (2017).

These models provide over 95% F-Score when trained with sufficiently large dataset.

But they would not show such high performance when trained on sparse dataset.

3.8.2.2 Unsupervised Recurrant Neural Network Grammar (URNNG)

Its a state of the art approach to unsupervised constituency parsing. We used this

baseline to compare the performance of our proposed UniRNNG only in the Zero-shot

learning settings.

3.8.2.3 Cross-lingual RNNG Parser trained on single source language
(CL-RNNG-Mono)

It is the baseline Dyer’s RNNG model Dyer et al. (2016) evaluated within the cross-

lingual settings. To evaluate the model in cross-lingual settings we made two key

modifications described as follows. Firstly the Cross-lingual Word Embeddings Ruder

et al. (2019b) are used rather than unique word-identifier vectors as used by Dyer et.

al. Secondly the model is trained on a single source language English (UniRNNGs are

trained on polyglot corpus) and tested on multiple target language. Within Few-shot

learning, the training corpus also include small number of labelled target language

sentences.

3.8.2.4 Cross-lingual RNNG Parser trained of multiple source languages
(CL-RNNG-Poly)

It is the same model as described in 3.8.2.3, but trained on a mixed polyglot cor-

pus of high-resource source languages.(CL-RNNG-Mono is trained on a single source

language English). Similar to 3.8.2.3, a small number of labelled target-language lt

sentences are included as part of the training corpus within the Few-shot settings.
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Hyper-
parameter

Value

WE dims 768
St,Bt,a<t dims 450
uβ

t, u
α
t dims 450

Dropout prob. 0.01
Bach-size 32
Number of steps
per epoch

Size of training
corpus / 32

Epochs 150
BERT Model bert multi cased L-

12 H-768 A-12

Table 3.10: Hyper-parameter settings

3.8.3 Dataset

Tables 3.8 and 3.9 list all the Source and Target languages as well as their tree-bank

corpora used during experimentation. We evaluated our proposed UniRNNG model

and all the baseline models on each of the target languages listed in Table 3.9 inde-

pendently.

As already explained in section 3.8.1, the CL-RNNG-Mono parsers (3.8.2.3) are al-

ways trained on the single source-language English, whereas the CL-RNNG-Poly and

the UniRNNG Parsers are always trained on a mixed polyglot corpus (in both few-

shot and zero-shot setups). For each experiment, the source-language training corpus

size is always fixed to 700,000 tokens to ensure controlled experiment-settings.

We created the source-language training-corpus for CL-RNNG-Mono parsers by ran-

domly sampling sentences from the English-PTB corpus (one at a time), until the

token-size becomes approximately equal to 700,000. On the other hand, to create

the source-language training-corpus for CL-RNNG-Poly and UniRNNG models, we

randomly sampled sentences from each of the seven source-language corpora listed

in Table 3.8 until the token-size becomes approximately equal 100,000, concatenated

all these sampled datasets and randomly shuffled the order. Hence all the seven

source-languages listed in Table 3.8 are equally represented in the training-corpus for

CL-RNNG-Poly and UniRNNG models.

3.8.3.1 Short tree-bank corpora

As explained in section 3.8.1, within Few-shot learning settings, only sparse target-

language dataset should be used to train both UniRNNG and Baselines. Hence we
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extracted a small subset of entire large treebank corpus for each target language listed

in Table 3.9.

We extracted this subset by randomly sampling sentences from the target-language

tree-bank corpus until the token-size becomes approximately equal to 3000. This is

inspired by the works of Ammar et al. (2016) who used same yardstick to evaluate their

Multi-lingual Dependency Parser (MALOPA). This small target-language language

corpus is added to the source-language training corpus for each experiment, within

Few-shot Learning setup.

3.8.4 Universal Annotation

There are numerous tree-bank corpora for a diverse range of languages being devel-

oped during the years (some listed in Tables 3.8 and 3.9). But unlike Dependency

Parsing tree-banks which are mostly annotated with the UD Annotations McDonald

et al. (2013) (for most languages), in case of Constituency Parsing various existing

tree-bank corpora have their own independent tag annotations, thus making the ap-

plication of multi-lingual approaches to it as impossible.

However Han et al. (2014) proposed a Universal Phrase tag-set with 9 common

Phrase-tags. Furthermore Han et al. (2014) also provides a mapping table to map

tags of popular constituency tree-banks (including all treebanks used by us in our

experiments) to these Unversal Phrase Tags.

We used this mapping table to replace all tags within all the tree-banks listed in Ta-

bles 3.8 and 3.9, with the universal tags. Subsequently we trained and evaluated all

approaches (including baseline mono-lingual approaches) on these Universally Tagged

tree-bank versions.

3.8.5 Cross-Lingual Word Embedding

As our model is a polyglot, we use Cross-lingual Word-embeddings during the en-

coding of Stack and Buffer state at any time-step t. We use a simple Linear trans-

formation based approach Ruder et al. (2019b) to compute such Cross-lingual Word-

embeddings.

Given two languages l1 and l2, the simple Linear Transformation based approach first

trains the mono-lingual WE for both l1 and l2 independently. Subsequently, it uses

a bi-lingual lexicon to learn a transformation matrix W l1,l2 to project embeddings of

words of l1 to the embedding-space of l2 (considering l2 as reference language).

To ensure that all WE are within the same space, we use English as a reference
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Model de da it ct kr hb et
Transformers Vaswani et al. (2017) 34.34 33.08 34.71 33.74 35.58 35.60 35.57

DiscRNNG 3.6 34.49 33.52 35.01 34.15 36.02 35.74 35.94
Kuncoro et al. (2016) 34.98 33.68 35.53 34.46 36.3 36.42 36.23

CL-RNNG-Mono+Skip-Gram 65.63 70.85 54.59 58.05 22.95 30.44 53.43
CL-RNNG-Mono+Fast-text 67.13 72.55 56.39 60.35 24.75 31.94 55.83

CL-RNNG-Mono+Glove 68.73 74.15 57.29 61.15 25.45 33.84 55.93
CL-RNNG-Mono+ELMo 69.13 74.75 58.49 61.64 26.65 33.94 56.73
CL-RNNG-Mono+BERT 71.03 77.35 60.39 63.05 27.75 39.84 59.93

CL-RNNG-Poly+SkipGram 61.94 62.89 64.0 64.53 61.88 63.19 62.76
CL-RNNG-Poly+Fast-text 63.57 64.51 65.78 66.53 64.3 64.84 65.55

CL-RNNG-Poly+Glove 65.1 66.17 66.5 67.4 64.72 66.59 65.51
CL-RNNG-Poly+ELMo 65.48 66.86 67.61 68.16 65.89 66.64 66.01
CL-RNNG-Poly+BERT 67.48 69.41 69.55 70.46 69.18 69.88 69.19
UniRNNG+SkipGram 64.92 65.95 66.79 67.35 65.05 66.24 65.83
UniRNNG+Fast-text 66.42 67.65 68.59 69.64 67.05 67.74 68.23

UniRNNG+Glove 68.03 69.25 69.49 70.45 67.55 69.64 68.33
UniRNNG+ELMo 68.42 69.85 70.69 70.94 68.75 69.74 69.13
UniRNNG+BERT 70.33 72.44 72.59 73.35 71.85 72.64 72.33

Table 3.11: F1 Score in Few-shot learning settings. Top: Results for supervised
approaches trained on sparse dataset. Middle: Results for baseline Cross-lingual
Transfer Parser (CLT-P). Bottom: Results for proposed UniRNNG

Model de da it ct kr hb et hi vt
URNNG Kim et al.
(2019)

11.84 11.58 10.53 12.43 9.97 10.46 8.52 9.36 3.12

CL-RNNG-Mono+BERT 68.13 70.94 61.99 56.85 20.91 27.82 52.61 48.66 37.61
CL-RNNG-Poly+BERT 64.43 64.13 64.5 66.37 63.32 64.99 63.5 56.2 57.21
UniRNNG+BERT 67.62 67.03 67.19 69.14 66.25 68.14 66.63 59.23 60.11

Table 3.12: F1 Score in Few-shot learning settings.

language. Mono-lingual WE of any other language l are thus transformed into the

English space by learning the transformation matrix W l,e from word-pairs extracted

from English-l bi-lingual lexicon.

We experiment with five common Word-embeddings namely Skip-gram Word2vec

Mikolov et al. (2013b), Fast-text Grave et al. (2018), Glove Pennington et al. (2014),

ELMo Peters et al. (2018) and BERT (section 3.8.5.1). We use bi-lingual seed dictio-

naries provided by WOLD Haspelmath and Tadmor (2009), ASJP Wichmann et al.

(2013) and IDS Key and Comrie (2015) which are elaborate multi-lingual lexical

semantic databases.
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3.8.5.1 BERT Word Embeddings

We computed language-independent BERT-Embeddings to be fed into UniRNNG us-

ing pre-trained Multilingual BERT (mBERT) Wu and Dredze (2019) model. mBERT

is a multilingual variant of original BERT model Devlin et al. (2019) trained on text

from Wikipedia in 104 languages.

The Embeddings are calculated in same way as in Kondratyuk and Straka (2019a).

Given a sentence S, we tokenised the whole sentence using WordPiece tokeniser Wu

et al. (2016). Subsequently we fed this token-sequence into pre-trained mBERT pro-

vided by Turc et al. (2019). Embedding of any word w ∈ S i.e. ew is computed by

taking average of mBERT outputs of all Wordpiece tokens corresponding to word w.

Thus, mBERT based Word-embeddings do not require any Linear transformation.

3.8.6 Typology and Hyper-parameters

Table 3.10 outlines the hyper-perameters used during experiments. These values are

obtained by minimizing the training loss on Development dataset (Dev set) for Penn

Treebank Corpus Marcus et al. (1993).

Typology vector Z includes feature-values of all word-order and constituency fea-

tures in WALS Haspelmath (2009) database excluding trivially redundant features as

excluded by Takamura et al. (2016).

3.9 Results

Table 3.11 outlines results obtained from experiments conducted within the Few-shot

Learning settings. Best results for CL-RNNG-Mono, CL-RNNG-Poly and proposed

UniRNNG models are obtained with BERT Embedding. Table 3.12 outlines results

obtained for experiments conducted under Zero-shot learning settings. As we ob-

tained best results with BERT Embeddings within few-shot settings, we experimented

with only BERT-embeddings (3.8.5.1) in Zero-shot settings indeed.

3.10 Analysis

In this section we analyse the results outlined in section 3.9 to address the research

questions RQ1, RQ2 and RQ3 listed in section 1.1.1 as follows.

RQ1: Can the state-of-the-art Recurrent Neural Network Grammar (RNNG)
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approach to monolingual Constituency parsing be applied for cross-lingual

Constituency parsing ?

It is evident in Tables 3.11 and 3.12 that our proposed Cross-lingual variant of RNNG

(CL-RNNG) model trained on both monolingual and mixed polyglot corpora (re-

ferred in Tables as CL-RNNG-Mono and CL-RNNG-Poly) indeed significantly

outperformed key state-of-the-art monolingual supervised approaches to CP trained

on sparse dataset, on all the seven target languages on which these were tested within

Few-shot learning settings, as well as the state-of-the-art unsupervised approach to

CP task namely the Unsupervised RNNG (URNNG) model on all the nine tar-

get languages on which these were tested, within Zero-shot settings.

RQ2: Within the cross-lingual transfer-learning settings, does mixed poly-

glot training lead to improvement in performance of the RNNG model, as

compared to single source language training ?

As CL-RNNG-Mono is trained on the single source language English, it is expected to

perform comparatively better on the target languages which are typologically closer

to English and poorer on the target languages which are typologically apart from En-

glish. On the other hand, CL-RNNG-Poly and UniRNNG are expected to perform

almost uniformly on all the target languages as these are trained on typologically

diverse polyglot corpora. These expected trends are in-fact observed in both the

Few-shot and the Zero-shot learning settings as evident in Tables 3.11 and 3.12.

Hence for languages da and de, Cl-RNNG-Mono outperformed both CL-RNNG-Poly

and UniRNNG as these languages belong to the same language-family as English

namely Germanic and are indeed typologically very close to English. Whereas, on

the other five target languages which are typologically and genealogically distinct

from the source language English namely it, ct, et, hb and kr, it under-performed

CL-RNNG-Poly.

Based on these observed trends we can infer that the polyglot training training does

load to increase in the performance the cross-lingual transferring ability of the RNNG

based Constituency Parser (CL-RNNG) only when the target-language is typologi-

cally very distinct from all source languages as it allows the model to better generalize

over a diverse set of languages, but does not help when the source and target languages

are typologically close. Such trends are observed in both Few-shot and Zero-shot set-

tings.
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RQ3: Does the performance of RNNG model within cross-lingual transfer-

learning settings be improved by injecting the linguistic typology knowl-

edge into it ?

In both Few-shot and Zero-shot settings, UniRNNGs significant outperformed CL-

RNNG-Poly on all the seven target languages namely da, de, it, ct, et, hb and kr as

evident in Tables 3.11 and 3.12. Hence it can be inferred inducing linguistic typology

indeed leads to further improvement in Cross-lingual transferring ability of the RNNG

based Constituency Parser to a typologically distinct and unseen target language.

Furthermore, in zero-shot learning settings, we evaluated our models on two additional

target languages namely hi and vi (rightmost column in Table 3.12). Languages hi

and vi belong to linguistic families Indo-aryan and Austro-asiatic respectively. None

of the source languages listed in Table 3.8 belong to these linguistic families. Thus

languages hi and vi are typologically very distant form all the source languages in

the polyglot training corpus of UniRNNGs. Hence scores obtained on these languages

indicate true Language Agnostic nature of UniRNNG architecture.

Although the performance of UniRNNG for these two languages is comparatively

lower than its performance on other target languages listed in Table 3.9, yet it is

better than the performances of CL-RNNG-Mono and CL-RNNG-Poly models. This

provides an even stronger evidence that the typology knowledge injection does lead

to improvement in performance, specifically on the typologically distinct unseen tar-

get languages. In other words, once trained on significantly diverse polyglot corpus,

UniRNNG is Language-Agnostic.

3.11 Conclusion

In this work we evaluated the performance of state-of-the-art Recurrent Neural Net-

work Grammar model for monolingual within the cross-lingual few-shot and zero-shot

settings. As far as we are aware, this is the first work to explore a neural-network

based model in cross-lingual setting. We also provided a framework to train and

test cross-lingual models to CP task, despite each corpus having distinct annotation.

Furthermore, this is the first work to explore the use of linguistic typology knowledge

to aid a neural-network based model for cross-lingual CP task.

In this work, we proposed and evaluated Universal Recurrent Neural Network Gram-

mar (UniRNNG) which is a multilingual variant of Dyer’s RNNG model. The archi-
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tecture of UniRNNG is inspired by Principles and Parameters theory proposed by

linguist Noam Chomsky. The UniRNNG model is trained on a mixed polyglot corpus

and utilises linguistic typology knowledge available in WALS database to improve its

cross-lingual transferring ability. We evaluated the performance of UniRNNG in both

Few-shot and Zero-shot learning settings.

The results achieved by our experiments show that cross-lingual variant of RNNG

model does significantly outperform state-of-the-art unsupervised parsers as well

monolingual parsers trained of sparse datasets. The results show that both polyglot

training and the linguistic typology knowledge injection leads to significant improve-

ment in performance specifically when source and target languages are typologically

apart as it allows model to generalise the model over unseen languages.

Future work, would involve exploring the changes in performances of baseline and

UniRNNG models with the varying degree of diversity in the training corpus.
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Chapter 4

End-to-end Model for Typology
Feature Prediction

This chapter is based on our research work published as following paper:

• NUIG: Multitasking Self-attention based approach to SigTyp 2020 Shared
Task. In Proceedings Of SPECIAL INTEREST GROUP OF LINGUISTIC TYPOL-
OGY (SIGTYP) at EMNLP 2020

In this chapter, we describe our proposed Multitasking model to predict the WALS

Haspelmath (2009) typology features for various languages. The proposed model is

a simple neural-network based architecture inspired by the Transformers Vaswani

et al. (2017) model, which uses multitasking to simultaneously compute values for all

WALS features for a given input language. The model is proposed as part of the Sig-

Typ (Special Interest Group for Typology) 2020 Shared task Bjerva et al. (2020). The

model represents each language as a five-dimensional vector comprising phylogenetic

and geographical attributes namely Longitude, Latitude, Genus-index, Family-index

and Country-index, and does not use any of the known WALS features of the respec-

tive input language, to compute its missing WALS features.

In chapters 5 and 6, we describe our proposed end-to-end multitasking neural-network

models to the cross-lingual dependency-parsing and enhanced dependency-parsing

tasks that utilise the linguistic typology knowledge. All of these models to be de-

scribed in subsequent chapters, will be inspired by the typology-feature prediction

model described in this chapter.

Section 4.1 describe the SigTyp 2020 Shared Task. Section 4.2 describe our proposed

model architecture while subsequent sections will describe the training, experiments

and results achieved.
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Lang

code

Name Lat Long Genus Family Cou-

ntry

Features

Training Examples
mhi Marathi 19.0 76.0 Indic Indo-

European
IN order of sub-

ject, object,
and verb=SOV
— number of
genders=three

jpn Japanese 37.0 140.0 Japan-
ese

Japanese JP case syn-
cretism=no case
marking —
order of adjec-
tive and noun=
demonstrative-
Noun

Testing Example
abd Abidji 5.67 -4.59 Kwa Niger-

Congo
CI order of sub-

ject, object,
and verb=SOV
— number of
genders=?

Table 4.1: Examples of dataset examples for SigTyp 2020 Shared Task Bjerva et al.
(2020)

4.1 SIGTYP 2020 Shared Task

The SIGTYP 2020 Shared Task involved predicting the values of numerous typol-

ogy features from the World Atlas of Language Structures (WALS) Haspelmath

(2009) database. For the shared-task, the participants were required to build mod-

els to predict typology-feature values for languages unseen during the training time.

The shared-task comprised of two sub-tasks namely the Constrained and the Un-

constrained feature-prediction tasks. In Constrained settings, the participants were

required to use only the provided training-dataset, whereas in Unconstrained settings

the participant can use any external resources (such as additional text, pre-trained

language-models etc.) in addition to the provided training dataset.

Table 4.1 depicts the structure of both the training and the test dataset. For each

language, the data provides five key phylogenetic and geographical attributes namely

Longitude, Latitude, Genus, Family and Country. Furthermore, for each language the

datasets provide feature-values of all WALS typology features as a single string as

evident in table 4.1 In test dataset, some feature-values are missing (indicated by ?).

The models are required to predict these missing values.
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Figure 4.1: Architecture of proposed model
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4.2 Model

Figure 4.1 depicts the architecture of our proposed model that computes values of all

WALS typology features for a given language simultaneously. As evident in Figure 4.1,

our proposed model architecture comprises three components namely Input Network

Component, Self-attention Network Component and Multitasking Output Networks

Component described in sections 4.2.1, 4.2.2 and 4.2.3 respectively.

4.2.1 Input Network Component

The input component is a simple two layered feed-forward neural network. The input

of the network is a 5-dimensional vector x comprising values of five key attributes of

any language, namely Longitude, Latitude, Genus-index, Family-index and Country-

index as these are the attributes provided by train and test datasets (for all languages

within the datasets) for Sigtyp 2020 Shared Task. We computed Genus-index, Family-

index and Country-index from genus, family and countryCode attributes provided

within dataset using respective name-index dictionaries.

This two layered feed forward network computes the output vector o ∈ RT∗d where T

is the total number of WALS typology features to be predicted by applying equations

4.1 and 4.2.

ô = tanh(A1 ∗ x + a1) (4.1)

o = tanh(A2
T ∗ ô + a2) (4.2)

Here A1 ∈ Rd∗5, A2 ∈ RT∗1 are weights and a1 ∈ Rd and a2 ∈ RT∗d are biases.

4.2.2 Self-attention Network Component

The architecture of this component is inspired by the Transformers model Vaswani

et al. (2017). The model architecture comprises stack of N = 6 identical layers. Each

layer has two sub-layers. The first is a multi-head self-attention mechanism, and the

second is a simple fully connected feed-forward network. Hence the input to layer i

is always the output from layer i − 1. Input to the first layer is the output of the

previous Input Network Component.

For ith layer within architecture, its Feed-forward and self-attention sub-layers are

given by equations 4.3 and 4.4.

hi = tanh(Wi ∗ yi−1 + bi) (4.3)

ki = attention(hi, hi) (4.4)
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Here hi ∈ Rd and ki ∈ Rd are outputs of feed-forward and self-attention layers

respectively. We used the same attention mechanism as used by Vaswani et al. (2017).

Final output of ith layer yi is computed by adding hi and ki (equation 4.5).

yi = hi + ki (4.5)

The input to the first layer y0 is the output from the previous Input Network Compo-

nent. The output of the Self-attention Network Component is the output of the final

layer yN .

It is been observed that there is a correlation between various WALS typology fea-

tures. Thus, to predict the missing value of a particular typology feature for a specific

languages, knowledge about other typology features for that languages would be use-

ful. Such knowledge is ensured by the self-attention layers.

4.2.3 Multitasking Output Networks Component

The multitasking Output Networks Component comprises T independent feed-forward

neural-network classifiers. The component splits the output of previous Self-attention

Network Component i.e y6 ∈ RT∗d into T d-dimensional vectors e1, e2, . . . .eT . Each

corresponds to one of the T typology features to be predicted.

The value of the jth typology feature is computed by applying equation 4.6.

Prj = Softmax(Wj ∗ ej + cj) (4.6)

Here 1 <= j <= T , Prj provides the probability of each of the possible values for jth

typology feature being the true-value. Dimensions of weights and biases are unique

for each classifier as number of possible values for each of the typology features is

unique.

4.3 Training

The parameters of model described in section 4.2 are trained by optimizing the loss

function given by equation 4.7.

Loss = ΣT
t=1CE(Prt, OHt) (4.7)

Here OHt is the one-hot encoding of true-value for tth typology feature. CE is the

Cross-entropy loss.

Table 4.2 lists the hyper-parameters used during training. These are computed by

minimizing the loss over Validation set.
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Hyper-parameter Value
d 548

drop out probability 0.1
learning rate 0.1

reduce lr on plateau Yes
reduce factor 0.001

batch-size 20
steps-per-epoch 50

epochs 200
Number of features (T) 185

Table 4.2: Hyper-parameters

4.4 Results

Figure 4.2: Plot depicting trend in accuracy values achieved on all WALS features

Table 4.3 compared the accuracy achieved by our proposed model with two base-

lines provided namely frequency-baseline-constrained and knn-imputation-baseline-

constrained.

It is evident from table that our model performs at par with baselines, even though it

utilizes only five attributes of the input language, namely Longitude, Latitude, Genus-

index, Family-index and Country-index (model doesn’t utilize any known WALS fea-

ture values, provided within test dataset for various languages).

Figure 4.2 is bar-plot that depicts the trend in accuracy achieved by our model on
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Model Accuracy
frequency-baseline constrained 0.514

knn-imputation-baseline constrained 0.508
NUIG constrained 0.487

Table 4.3: Overall Accuracy of baseline and proposed models

various WALS features. Precise accuracy score achieved by our model on all 185

WALS typology features is provided in Appendix A.

4.5 Analysis and Conclusion

In this work we evaluated our proposed transformer-based model for the prediction

of linguistic-typology feature-value of the specific language. The results showed that

our proposed model performed at par with the state-of-the-art models.

Our model is much simpler in design than other state-of-the-art models. Furthermore

all other state-of-the-art models that utilise other already known typology feature-

values for the respective language to predict unknown typology feature-values. This

requirement is not satisfied for most of the very low-resource languages. On the

other hand, our model requires only four features namely namely Longitude, Latitude,

Genus-index, Family-index and Country-index.

Moreover, our model’s performance being at par with state-of-the-art also prove that

predicting multiple typology feature-values simultaneously within the multitasking

settings, does lead to improvement in performance on all. The proposed and evaluated

model will provide the basis of the multitasking end-to-end dependency parser and

the multitasking end-to-end enhanced dependency parser, proposed and evaluated by

us in chapters 5 and 6 respectively. We describe more details in these chapters.
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Chapter 5

Cross-lingual Dependency Paring
with Linguistic Typology
Knowledge

This chapter is based on our research work published as following papers:

• Multitasking End-to-end BERT based Cross-lingual Dependency Parser.
In Proceedings Of SPECIAL INTEREST GROUP OF LINGUISTIC TYPOLOGY
(SIGTYP) at EACL 2023 (Under Review)

• Improving the Performance of UDify with Linguistic Typology Knowl-
edge. In Proceedings Of SPECIAL INTEREST GROUP OF LINGUISTIC TY-
POLOGY (SIGTYP) at NAACL 2021

In chapter 3, we discussed the constituency parse-tree representation scheme and

the context free grammar. Subsequently, we proposed and evaluated a framework to

cross-lingual constituency parsing with linguistic typology knowledge from the WALS

database Dryer and Haspelmath (2013). In this chapter we discuss another signifi-

cant representation of the syntax of a natural-language sentence namely Dependency

parse-tree. In the dependency-tree framework, the syntactic structure of a sentence

is represented as a set of binary head-dependent relationships between its words, in-

stead of various phrasal structures.

Section 5.1 provides a detailed introduction to dependency-parsing (DP) framework.

Section 5.2 discusses background-work related to DP for low-resource languages. In

section 5.3 we outline our research objective. Finally, in sections 5.4 and 5.5 we de-

scribe in details our two proposed end-to-end cross-lingual DP models which utilise
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linguistic typology knowledge. These sections will also provide details of experimen-

tation during the evaluation of these models and compare the results achieved with

other state-of-the-art approaches.

5.1 Dependency Parsing

This section provides a general background on the dependency-parsing task. Section

5.1.1 provides advantages and disadvantages of dependency parsing over constituency

parsing. Section 5.1.2 provides structure of a dependency parse-tree and the issue of

projectivity in dependency-parsing. Finally, in section 5.1.3 we outline various ap-

proaches to monolingual dependency parsing including the state-of-the-art NN based

approaches.

5.1.1 Dependency Parsing vs Constituency Parsing

The dependency grammar (DG) of a language comprises all the possible word-level

binary relationships that can exist in the language. DG is significantly different from

constituency grammar (CG) which comprises of the phrase grouping rules as de-

scribed in chapter 3 Thus, the dependency parsing task aims to define the syntactic

structure of an input sentence by extracting all binary head-dependent relationships

that exist between its words based on such DG rules. This is unlike the constituency

parsing task which aims to group words of the sentence into various levels of phrase-

constituents. Figure 5.1 depicts the word-level dependency relationship structure

and constituency the phrase-structure analysis of an example sentence ‘I prefer the

morning flight through Denver ’ as done by Martin (2021b). Although the lack

of knowledge about phrase-structure of a sentence may lead to loss of performance

in some downstream tasks, dependency grammars also have several advantages over

constituency grammar.

A major advantage of DG over CG is its ability to deal with the languages with free

word-order such as Czech, Russian etc. These languages are morphologically rich

and have much more granularity in the word-order typology features. For example,

unlike in English where the subject-verb-object (SVO) order is mostly fixed, it varies

a lot from sentence to sentence in Czech. A constituency Grammar would require a

separate set of rules and sub-rules accommodating each of these variations. On the

other hand, since DG comprises of only binary relationships between word-pairs it is

not affected by the word-orders.
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Figure 5.1: The word-level dependency relationship structure and constituency
phrase-structure analysis of an example sentence ‘I prefer the morning flight
through Denver ’. Figure from Martin (2021b)

Another advantage of DG over CG is that since DG comprises of possible head-

dependent relationships, they provide approximations of semantic properties of the

language as well, such as the relationship between various predicates and their argu-

ments. It is hard to distil such semantic knowledge from CG of a language.

5.1.2 Dependency Tree Formulation

As already explained in section 5.1, dependency parsing is the task of creating the

dependency parse-tree representation of an input sentence based on the dependency

grammar rules of the language being parsed. Figure 5.2 (top) depicts the dependency-

parse tree of an example sentence ‘The quick brown fox jumps over the lazy

dog.’

Here, each connection between a pair of words represents a single dependency-relation.

The direction of relation is from the head-word to the dependent-word. The label

of each connection indicates the type of relations. Table 5.1 lists most common

dependency relationships and their representative tags under the most widely used

UD annotation scheme described in section 5.2.1 In Figure 5.2 (top), the base verb-

form (jumped) is the root-node and therefore does not have any incoming arch. The

root node is identified as the centre of clause structure while all other words in the

sentence are either directly or indirectly connected to the root verb through the
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Tag Relationship
Nominal Relationships

nsubj Noun Subject
obj Object
iobj Indirect Object
obl Oblique Nominal
vocative Vocative
expl Expletive
dislocated Dislocated Elements
nmod Nominal Modifier
appos Appositional Modifier
nummod Numeric Modifier

Clausal Relationships
csubj clausal subject
ccomp Casual Component
xcomp Open Clausal Complement
advcl Adverbial Clause Modifier
acl Clausal Noun Modifier

Modifier Word Relationships
advmod Adverbial Modifier
discourse Discourse Element
amod Adjectival Modifier

Function Word Relationships
aux Auxiliary
cop Copula
mark Marker
det Determiner
clf Classifier
case Case Marking

Other Notable Relationships
conj Conjunct
cc Coordinating Conjunction
compound Compound word
punct Punctuation
root Root Word

Table 5.1: Common Dependency Relationships defined under UD Annotation scheme
(5.2.1).
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Figure 5.2: Example of a dependency parse tree (top) and its CONLL-U representa-
tion (bottom). Tree is generated by CoreNLP Manning et al. (2014) parser
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Figure 5.3: Example of Non-projective Parse-tree. Figure from Martin (2021b)

directed dependency links.

More Formally, a dependency parse-tree of an input sentence S is a directed graph

G = (V,E) with following constraints:

1. The total Number of nodes |V | is always equal to |S|+ 1, and the total number

of edges |E| is equal to |S|. Here |S| is the length of the sentence (usually

includes punctuation).

2. The graph should comprise of only one root node.

3. The root node should have no incoming edge.

4. Each node should have exactly one incoming edge (except the root node).

5. There should be a unique path from the root node to every other node in V

6. There should be no cycles in the graph.

These constraints ensure that each word only has a single head, and that the depen-

dency structure is connected.

Figure 5.2 (bottom) depicts the CoNLL-2007 template Nivre et al. (2007) of computa-

tionally representing a dependency tree as a sentence. The conllu template stores not

only the dependency relationships but other word-level knowledge about the sentence

such as POS-tags, XPOS-tags etc.

5.1.2.1 Projectivity

Apart from the constraints listed previously, Projectivity is another constrain that is

imposed by modern transition-based approaches to the DP task discussed in section

5.1.3.1. A dependency relationship arc is projective, if there is a path from its head-

word to every word that lies between the head-word and its dependent-word within

the sentence. A dependency tree is said to be Projective if all its dependency relation-

ship arcs are Projective. In other words, a dependency tree is Projective if no two of
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its arcs cross each other. Figure 5.3 depicts a non-projective dependency tree of an ex-

ample sentence ’JetBlue canceled our flight this morning which was already

late’ from Martin (2021b). It is evident in Figure 5.3 that the arc from head-word

canceled to dependent-word morning indicating modifier relationship (mod) is cross-

ing with arc from head-word flight to dependent-word was indicating noun-modifier

relationship (nmod), thus making the entire tree as non-projective.

Most of the dependency trees in English are projective however there are many

languages (specifically ones with flexible word-order like Russian), in which non-

projective trees are legitimate and common.

5.1.3 Approaches to DP

Conventional statistical approaches to monolingual dependency-parsing task can be

categories into two key classes namely the Transition-based approaches and the Graph-

based approaches. Sections 5.1.3.1 and 5.1.3.2 will describe these approaches including

the state-of-the-art neural network ones in details. Section 5.1.3.3 will then describe

the end-to-end approach to DP on which most of our research work is based.

5.1.3.1 Transition-based approaches

The Transition based or Shift-reduce parsing approach which was originally developed

to analyse the programming languages Alfred and Ullman (1972), has effectively been

applied to the dependency-parsing task. The transition based approach to DP Cov-

ington (2001) is very similar to the Transition based approach to CP discussed in

Chapter 3. A typical Transition based parser comprises of a Stack, a Buffer and an

Oracle.

Table 5.2 depicts the steps involved in Transition based parsing of an example sen-

tence. As evident in table 5.2, in the beginning of the transition-based parsing process

(at time t = 0), the buffer consists of all the words in the sentence and Stack consists

of node root. At each time-step t, the Oracle selects the best action to be taken,

from all possible actions listed as follows.

1. LEFT-ARC: Push top two words from the stack, assign a head-dependent

relation from the topmost word in the stack (as head) to the second topmost

word in the stack (as dependent), and finally push back the topmost word onto

the stack.

2. RIGHT-ARC: Push top two words from the stack, assign a head-dependent

relation from the second topmost word in the stack (as head) to the topmost
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Step Stack Buffer Action Relations
0 [root] [the, quick, brown, fox,

jumps, over, the, lazy,
dog, . ]

SHIFT

1 [root, the, quick] [brown, fox, jumps, over,
the, lazy, dog, . ]

SHIFT

2 [root, the, quick, brown] [fox, jumps, over, the,
lazy, dog, . ]

SHIFT

3 [root, the, quick, brown,
fox]

[jumps, over, the, lazy,
dog, . ]

SHIFT

4 [root, the, quick, fox] [jumps, over, the, lazy,
dog, . ]

LEFT
arc

(fox →
brown)

5 [root, the, quick, fox] [jumps, over, the, lazy,
dog, . ]

LEFT
arc

(fox →
brown)

6 [root, the, fox] [jumps, over, the, lazy,
dog, . ]

LEFT
arc

(fox →
quick)

7 [root, fox] [jumps, over, the, lazy,
dog, . ]

LEFT
arc

(fox → the)

8 [root, fox, jumps] [over, the, lazy, dog, . ] SHIFT
9 [root, jumps] [over, the, lazy, dog, . ] LEFT

arc
(jumps →
fox)

10 [root, jumps, over] [the, lazy, dog, . ] SHIFT
11 [root, jumps, over, the] [lazy, dog, . ] SHIFT
12 [root, jumps, over, the,

lazy]
[dog, . ] SHIFT

13 [root, jumps, over, the,
lazy, dog]

[ . ] SHIFT

14 [root, jumps, over, the,
dog]

[ . ] LEFT
arc

(dog →
lazy)

15 [root, jumps, over, dog] [ . ] LEFT
arc

(dog → the)

16 [root, jumps, dog] [ . ] LEFT
arc

(dog →
over)

17 [root, jumps] [ . ] RIGHT
arc

(jumps →
dog)

18 [root, jumps, .] [] SHIFT
19 [root, jumps, .] [] SHIFT (jumps → .)
20 [root] [] DONE

Table 5.2: Example of Transition based parsing applied to an example sentence
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word in the stack (as dependent), and finally push back the second topmost

word onto the stack.

3. SHIFT: Remove the word from the front of the buffer and push it onto the

stack.

Oracles of conventional parsers Yamada and Matsumoto (2003); Nivre et al.

(2006a) typically used a machine learning classifier to choose the correct action given

the current state of Stack and Buffer as well as action history. Modern transition-

based approaches such as Elkaref and Bohnet (2017); Kırnap et al. (2018); Kiper-

wasser and Goldberg (2016) utilise LSTM or stack-LSTM Dyer et al. (2015) to en-

code the stack, buffer and action-history. Subsequently they train neural classifier to

predict the correct action to be taken at each time-step.

5.1.3.2 Graph-based approaches

Graph-based approaches constitute another distinct class of approaches to the DP

task that search through all possible parse-trees for a given sentence to find the

maximum scoring tree that satisfies all the constraints listed in section 5.1.2. Hence,

given an input sentence S a graph-based parse extracts the dependency tree of it T̂s

by applying the following equation

T̂s = argmaxTsScore(Ts)

The Score(Ts) of any sentence parse-tree T (of sentence S) is simply computed as the

sum of scores all its edges as equation

Score(T ) = Σe∈ET
score(e)

Here ET is set of all edges of the tree T and score(e) is the edge of any tree-edge e.

Figure 5.4 depicts the process of graph-based parsing. As evident in Figure 5.4 a

typical graph-based dependency parser implements following steps:

1. It builds a fully connected directed graph (with an outgoing edge from each

node to every other node) with each word in the input sentence as a node as

well as an extra root node.

2. Assign an edge score to each edge of the fully connected graph. This edge-score

of each edge is predicted by a ML/DL based algorithm, which makes prediction

based on various features of head (outgoing) and dependent (incoming) node of

the direct edge.
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Figure 5.4: Graph-based dependency parsing algorithm Chu (1965) applied to an
example sentence Book that flight. Figure from Martin (2021b)
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Figure 5.5: Deep Biaffine Network architecture proposed by Dozat and Manning
(2016)

3. Finally, the maximum spanning tree is extracted from this fully connected graph

using standard graph-theory algorithms Greenberg (1998).

The aim of training a graph-based DP model is therefore to enable the ML/DL

based scorer to assign edge-scores to all edges of the connected graph in such a way

that its maximum spanning tree is always the correct dependency parse-tree of the

respective sentences.

Conventional ML based approaches to graph-based DP involves computes the edge

score of an edge as following equation:

score(e) = ΣN
i=1wi ∗ fi

Here, fi is the feature-value of any I th and wi is the weight to be learnt through

training. The features used by various approach in edge-weight scorer include head

and dependent word-forms, lemmas, POS-tags, contexts, distance between head and

dependent etc.

The model is trained by minimizing the Loss L given by equation 5.1.

L = Score(T̂s)–Score(T∗s) (5.1)

Here T̂s is the True dependency-tree and T∗s is the maximum scoring dependency-

tree out of all possible dependency-trees for sentence S excluding the true one.
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Figure 5.6: Sub root decomposition as performed by Li et al. (2018)

Modern state-of-the-art NN based approaches to graph-based DP is very similar to

conventional one, with the exception that these approaches used a neural-network

to learn the features for the edge-scorer rather than manually encoding these fea-

tures. First NN based approach proposed by Kiperwasser and Goldberg (2016) used

Bidirectional LSTM model to encode the nodes of an edge as feature-vector represen-

tations. Final layer of the network is a feed-forward layer which takes as input these

node-embeddings and output the edge-score. The Deep Biaffine Network proposed by

Dozat and Manning (2016) is the state of the art graph-based approach to DP task. It

is similar to the work of Kiperwasser and Goldberg (2016) with a biaffine scorer that

assigns edge scores to all edges of the fully connected graph simultaneously. Figure

5.5 depicts the architecture of the Deep Biaffine network.

5.1.3.3 End-to-end Approaches

Li et al. (2018) proposed an end-to-end framework for DP task, which is distinct from

both Graph-based and Transition-based approaches. The authors of Li et al. (2018)

represented the entire dependency parse-tree as relative head-position tag sequence

as shown in Figure 5.7a. Hence the goal of the model is now to predict the correct

relative head-position tag-sequence T = t1, t2, . . . , tN given the input sentence as a

sequence of words W = w1, w2, w3. . . .wN .

Hence the DP task is now reduced to the standard sequence-tagging task (such as

POS-tagging, Named Entity Recognition etc.). However, there is one slight difference

than unlike in standard sequence tagging task, while predicting the head-position tag

sequence, we must ensure the validity of the underlying depndency-parse tree. This
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is done by imposing various heuristic constraints while predicting the head-position

tag sequence for an input word-sequence.

Li et al. (2018) proposed the BiLSTM-CRF with attention model Niu et al. (2021)

to perform this head-position tag sequence prediction task. Figure 5.8a depicts the

architecture of this BiLSTM-CRF model. The authors claimed that this proposed

model performs at par with the state-of-the-art graph-based and transition-based

parsers despite being much simpler in design and therefore much easy to implement,

train and deploy.

It was observed that the proposed end-to-end dependency parser is not good at cap-

turing long distance dependencies though thus under-performing on comparatively

longer sentences. Hence authors performed sub-root decomposition on all the sen-

tences which are longer than the set threshold length. Figure 5.6 depicts the sub-root

decomposition of an example sentence. We indeed utilised the same sub-root decom-

position technique while training our proposed parsers as described in the subsequent

sections, to address the issue of long-distance dependencies.

5.2 Low-resource Dependency Parsing

Section 5.1.3 described the state-of-the-approaches to dependency parsing. However,

all three categories of DP approaches (namely, Transition-based, Graph-based and

End-to-end approaches) are supervised approaches that require significant training

datasets. Such datasets may not be sufficiently available for many low resource lan-

guages. This inspired a new line of research to build models for DP in low-resource

languages. In this line of research, cross-lingual approaches discussed in section 2.1.1

(both Data-transfer and Model-transfer approaches) have been utilised very effec-

tively. Section 5.2.1 provides a brief introduction to the Universal Dependencies

project which is the key reason behind the success of cross-lingual approaches to DP

task. Subsequently, section 5.2.2 will provide a brief literature review of modern

approaches to cross-lingual DP. In this section, we also list numerous CL based ap-

proaches to DP that used linguistic typology knowledge to improve the cross-lingual

transferring ability of the respective models.

5.2.1 Universal Dependency

Universal Dependencies (UD) project De Marneffe et al. (2021) is aimed at de-

veloping a set of dependency treebank annotations which are consistent across most of

the world’s languages. This annotation scheme is developed based on the evolution of
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universal Stanford dependencies De Marneffe et al. (2006); De Marneffe and Manning

(2008); De Marneffe et al. (2014), Google universal part-of-speech tags Petrov et al.

(2011), and the morphosyntactic interlingua tagsets developed by Zeman (2008). The

main philosophy behind developing such UD project is to provide universal categories

and guidelines to promote consistent annotation (of similar constructions) across all

languages, while also allowing necessary language-specific extensions. Table 5.1 lists

common dependency labels adopted under the UD annotation scheme.

Hence, unlike in the case of CP where the various treebanks in multiple languages de-

veloped over the years have their own unique tag annotation, in DP various treebanks

in multiple languages were build around a shared Universal annotation tagset. This

makes the cross-lingual transfer simpler. In fact, UD project also included making

various train, test and dev treebanks in many languages available online and open-

source1 for the researchers to build and test cross-lingual DP models. UD is indeed

an ongoing crowd-sourced project where new treebanks are constantly added by the

linguists and researchers. Latest UD version (UD v2.10) comprises of 228 treebanks

in 130 languages.

5.2.2 Cross-lingual Approaches to Dependency-parsing

Numerous cross-lingual transfer-learning based approaches to Dependency parsing

for low-resource languages have been proposed. These include both Annotation-

Projection approaches such as Smith and Eisner (2009); Huang et al. (2009); Chen

et al. (2011); Jiang and Liu (2010); Li et al. (2014); Xiao and Guo (2015) as well

as Model-transfer approaches such as McDonald et al. (2011); Cohen et al. (2011);

Duong et al. (2015a); Guo et al. (2016b); Vilares et al. (2015); Falenska and Çetinoğlu

(2017); Mulcaire et al. (2019); Vania et al. (2019); Shareghi et al. (2019) which in-

volve training a model on high-resource languages and subsequently adapting it to

low-resource target languages.

Apart from bilingual model-transfer approaches, numerous multilingual parsers have

been proposed such as Stanza Qi et al. (2020), UDpipe Future Straka et al. (2019) and

UDify Kondratyuk and Straka (2019b). These parseres are trained on joint polyglot

corpora. Results in these papers show that multilingual polyglot-training improves

the performance of a model on most low-resource target-languages, as compared to

simple monolingual training for cross-lingual model-transfer.

Participants of CoNLL 2017 shared-task Daniel et al. (2017) and CoNLL 2018 shared

1https://universaldependencies.org/
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task Zeman et al. (2018) also provide numerous approaches to dependency parsing of

low-resource languages.

Numerous approaches such as Naseem et al. (2012); Täckström et al. (2013); Barzi-

lay and Zhang (2015); Wang and Eisner (2016); Rasooli and Collins (2017); Ammar

(2016) also used typological information to facilitate cross-lingual transfer. Most

of these approaches utilise only selected word-order typology features from WALS

database Haspelmath (2009). Further, they feed this linguistic typology features into

the model along with word/token representations.

5.3 Research Objective

Our research-work described in this chapter, is aimed at utilising linguistic typol-

ogy knowledge to improve the performance of two state-of-the-art end-to-end cross-

lingual/multilingual dependency parsers. Linguistic typology (specifically word-order

typology knowledge) has successfully been used by various researchers (chapter 2)

to improve the cross-lingual transferring ability of the respective models from high-

resource source languages to low-resource target languages. Section 5.2.2 describe

these approaches in detail. However, all these approaches directly feed-in the linguis-

tic typology features into the respective model along with word-representations. On

the other hand, we induced the linguistic typology knowledge into both of our models

through Multitask learning (MTL) instead, by adding an auxiliary task of linguistic

typology prediction along with DP. We injected the typology knowledge available

in URIEL database described in section 5.3.2. Section 5.3.1 provides a detailed

overview on MTL. Inducing typology knowledge through MTL rather than directly

feeding it along with word-embeddings have following advantages.

1. The model can also be applied to low-resource languages for which many typol-

ogy feature values are unknown/missing.

2. The auxiliary task should help to improve the performance on the main depen-

dency parsing task as well, since it would make the model give special emphasis

on the syntactic typology (specially word-order typology) of language being

parsed while predicting the dependency relations.

Hence, our entire research-work related to cross-lingual DP with typology can be

divided into two parts. Section 5.4 will describes the first part of work, in which we

make following contributions.
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1. We evaluated the performance an End-to-end BERT Based Parser which can

parse a sentence by directly predicting relative head-position tag for each word

in the input sentence. This is inspired by Li et al. (2018) which is an End-to-end

Seq2seq Dependency Parser. We evaluated the performance of this BERT based

end-to-end parser in both mono-lingual and cross-lingual/multilingual setups

(using mBERT). We will refer to this model as Base E2E BERT parser .

2. We added the auxiliary task of Linguistic typology prediction to our Base E2E

BERT parser to observe the change in performance under different settings. We

will refer to this model as Multitasking E2E BERT Parser in this paper.

3. We evaluated the change in performance of various mBERT based Cross-lingual

Dependency Parsing models due to polygot training.

In the second part of our research-work related to cross-lingual DP with typology

knowledge we make following contributions. Section 5.5 describes this part of work

in detail.

1. We re-implemented the UDify model which is the state-of-the-art language-

agnostic dependency parser which is trained on a polyglot corpus of 75 lan-

guages. Subsequently, we added the auxiliary task of typology prediction to it

and evaluated the increase/decrease in the performance as a result.

2. We evaluated the impact of various category of typology fetures on the perfor-

mance of UDify in multilingual settings.

5.3.1 Multitask Learning

Multi-task Learning (MTL) Ruder (2017) is a neural network framework which in-

volves performing two or more tasks simultaneously leading to knowledge/parameter

sharing. These tasks are closely related thus complement each other leading to im-

proved performance on all of them.

Even in scenarios where we primarily care about a single task, using a closely related

task as an auxiliary task for MTL can be useful. For example, Caruana (1998) used

tasks that predict different characteristics of the road as an auxiliary tasks while pre-

dicting the steering direction in a self-driving car. Zhang et al. (2014) used head pose

estimation and facial attribute inference as auxiliary tasks for facial landmark de-

tection, Liu et al. (2015), jointly learn query classification and information retrieval,

Girshick (2015) jointly predicted the class and the coordinates of an object in an
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Feature-
type

Vectors

Syntactic syntax wals, syntax sswl, syntax ethnologue, syntax knn
Phonology phonology wals, phonology ethnologue, phonology knn,

phonology average
Inventory inventory ethnologue, inventory phoible saphon, in-

ventory phoible spa, inventory phoible ph, inven-
tory phoible ra, inventory phoible upsid, inventory knn,
inventory average

Family fam
Geography geo
One-hot id

Table 5.3: Various typology vector representations of a language, provided by lang2vec
library.

Language Value Binary Representation
S SVO S SOV S VSO S VOS S OVS S OSV

en SVO 1.0 0.0 0.0 0.0 0.0 0.0
ga VSO 0.0 0.0 1.0 0.0 0.0 0.0
hi SOV 0.0 1.0 0.0 0.0 0.0 0.0
mg VOS 0.0 0.0 0.0 1.0 0.0 0.0

Table 5.4: Binary representations of WALS feature Order of Subject-Verb-Object
in URIEL Database Littell et al. (2017)

image, Arik et al. (2017) jointly predicted phoneme duration and frequency profile

for text-to-speech. In this work, we use linguistic typology feature prediction task as

auxiliary task for cross-lingual DP

5.3.2 URIEL Database

As explained in section 5.3, for Linguistic typology feature prediction auxiliary tasks

we used Linguistic typology feature values provided by URIEL database Littell et al.

(2017). The URIEL database is a collection of binary features extracted from multiple

typological, phylogenetic, and geographical databases such as WALS Haspelmath

(2009), PHOIBLE Moran et al. (2014), Ethnologue M. Paul Lewis and Fennig (2015)

and Glottolog Hammarström et al. (2017).

Let a typology-feature f has a set of values as V within its original database. Then

feature f can be converted to |V | features such that for every value v ∈ V the

corresponding binary feature fv is computed as equation 5.2.
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Lang-
code

Families

Indo-
European

Germanic West-
Germanic

Romance North-
Germanic

de 1.0 1.0 1.0 0.0 0.0
en 1.0 1.0 1.0 0.0 0.0
fr 1.0 0.0 0.0 1.0 0.0
sw 1.0 1.0 0.0 0.0 1.0
mg 0.0 0.0 0.0 0.0 0.0

Table 5.5: Representation of genealogical properties of example languages in the
URIEL database Littell et al. (2017)

fv = 1 if f == v

= 0 otherwise
(5.2)

Table 5.4 depicts the process of binarization of a prominent WALS feature Subject-

Verb-Object . In similar fashion, the authors of Littell et al. (2017) binarized all

typology features of all databases listed previously, thereby creating many compre-

hensive binary vector representations of each language.

The authors also binarized and encoded the genealogical properties of all the lan-

guages as shown in table 5.5. Finally, the authors also encoded the geographical

representation of each language as a unique vector of fixed dimension. Each feature

in the geography vector of a language comprises of the orthodromic distance—from

the specific language to a fixed point on the Earth. These distances are expressed as

a fraction of the Earth’s antipodal distance. Thus the value would be 0.0 and 1.0.

Hence the URIEL database provides numerous typology vectors listed in table 5.3. All

these vectors can be accessed through the Pyton PyPi library called lang2vec2. For

the experiments within this paper, we used only syntactic binary features generated

from WALS database (categorised as Syntax-WALS within URIEL database).

5.4 Multitasking End-to-end BERT based Cross-

lingual Dependency Parser

In this section, we describe our research-work which involved the evaluation of an

end-to-end BERT based multilingual dependency parser which is inspired by the E2E

2https://pypi.org/project/lang2vec/
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Figure 5.7: Examples of dependency parse tree being represented as relative head-
position tag sequence

Seq2seq DP model proposed by Li et al. (2018). Subsequently, we added the auxiliary

task of prediction of typology feature-values of the URIEL database. Section 5.4.1

describes our proposed Base End-to-end BERT model. In section 5.4.2 we describe

the modification of the base model architecture to inject typology knowledge. Section

5.4.3 describes the training process, section 5.4.4 describes experimental details and

section 5.4.5 outlines results achieved.

5.4.1 Base End-to-end BERT Parser

This section elaborates the details of our End2End BERT based Dependency Parser

which directly predicts the relative head position tag of each word within input sen-

tence.

Given a sentence of length T, its dependency parse-tree can be represented as a se-

quence of T relative head-position tags as demonstrated in Figure 5.7a.

Figure 5.8a depicts the architecture of our baseline model. The depicted architec-

ture comprises of three components namely BERT Encoder, Output Network and

Tree-decoder described as section 5.4.1.1, 5.4.1.2 and 5.4.1.3.

5.4.1.1 BERT Encoder

It is a BERT based network which takes as input, the entire sentence as sequence

of tokens. The model outputs d − 1 dimensional word-embeddings for all words

within the input sentence. Thus for a sentence of length T, it would output matrix

E ∈ RT∗(d−1).

We used the WordPiece tokenizer Wu et al. (2016) to tokenize input sentence and

extract embeddings. For each word within input sentence, we use the BERT output

corresponding to the first wordpiece of it as its embedding, ignoring the rest.

We also add pos-tag information in our parser by appending index of pos-tag of each
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Figure 5.8: a. Base End-to-end BERT parser architecture. b.Multitasking End-to-
end BERT parser architecture. Its an extension of Base End-to-end BERT parser
architecture with one extra component namely Typology Predictor.

word, to the encodings outputted by BERT encoder as evident in Figure 5.8a. Thus

the final embedding-matrix Ê is derived from E as:

Ê = E; [t1; t2; ....; tT ]

Here ti is POS-tag index of ith word. Ê ∈ RT∗d

5.4.1.2 Output Network

Its a simple feed-forward network with the softmax activation function. The network

takes in an embedding matrix Ê ∈ RT∗d from the BERT encoder and outputs the

probabilities of all possible relative head position tags at each word by applying the

following equation.

Pr = softmax(Ê ∗W + b)
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Here W, b are weights and biases, Pr ∈ RT∗N where N is the number of valid

relative head-position tags.

For the sentence of length T, the set of all possible relative head position tags ST is

given as

ST = [L1, L2, ..., LT , R1, R2, ..., RT−1, < root >,< EOS >]

Here < root > and < EOS > are tags to be assigned to < s > and < /s > tokens

at the begin and end of the input sentence as shown in Figure 5.7a.

For training and evaluations, we always computed probabilities of all relative head-

position tags within the tag-set for a sentence of length Max i.e. SMax as the dimen-

sions of model parameters should be fixed. Here Max is the length of largest sentence

from all corpora used during the experiments.

In this paper we experimented with only Unlabeled Dependency Parsing however

same architecture can be used for Labeled Dependency Parsing as well. In such case

the output tags would comprise of relative head positions as well as relationship labels

(eg: L2-nsubj ). Hence, the set of all possible relative head position tags S would be

much larger. Figure 5.7b depicts a labelled parse-tree being represented as sequence

of head-position tags.

5.4.1.3 Tree-Decoder

This component decodes the most probable correct label sequence from the probabili-

ties outputted by Output Network. The correct label sequence would satisfy following

constraints.

1. The sequence should start with < root > and end with < EOS > tags. These

tags should not appear anywhere else.

2. At each index (of word being labelled) the assigned label should be within the

range of sentence. For example: the word That within sentence shown in Figure

5.7a can not have tags L2, L3, L4, L5, L6 and the punctuation . in the sentence

can not have any right tags as these are outside the range of sentence.

3. The label sequence should not generate any cycles within the dependency tree.

4. One of the words should have the head at < root > token.

We used dynamic programming with beam-search to efficiently extract the most

probable label sequence which satisfies the above listed constraints, out of all possible

label sequences.
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5.4.2 Multitasking End-to-end BERT Parser

Figure 5.8b demonstrates the architecture of our proposed model. The model is very

similar to the Base E2E BERT Parser described in section 5.4.1 with one extra

component namely Linguistic typology predictor which predicts the typology features

of the language being parsed. Thus model is Multi-tasking model with hard-parameter

sharing Ruder (2017).

5.4.2.1 Linguistic typology predictor

It is a simple deep feed forward neural network which takes in the embedding gen-

erated by BERT Encoder for token < /s > as input and outputs probabilities of

values of binary syntactic typology features for the language being parsed as 1. Such

features are provided by URIEL database (section 5.3.2).

Let N̂ be the number of syntactic typology features provided by URIEL database.

The Linguistic typology predictor would then predict probability matrix Prty ∈ RN̂

by applying equation 5.3.

Prty = sigmoid(e</s> ∗ U + c) (5.3)

Here e</s> ∈ Rd is embedding from the BERT Encoder for < /s > token. U ∈ Rd∗N̂

and c ∈ RN̂ are weights and biases respectively.

Experimental Settings Source Languages Target Languages
Monolingual en, zh en, zh
Cross-lingual with single
source language

en de, hr, it, hi, zh, et, vi

Cross-lingual with multi-
ple source languages

en, ur, fr, ar, ja, pl, la, ta,
el, cop, kk, tr

de, hr, it, hi, zh, et, vi

Table 5.6: Source and Target Languages used during experiments

5.4.2.2 Missing Typology

As with most typology databases, URIEL also comprises several missing values of

various typology-features for many languages. These missing values are indicated as

’–’ in typology vector provided by URIEL (rather than having values 0 or 1). A

typology feature can also have value as ’–’ for a well-documented language if that

feature has no dominant value observed within the respective language

These missing features pose a problem during training of Multitasking BERT Parser.
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Hyper-parameter Value
d 768
Dropout prob. 0.01
Bach-size 32
Number of steps per epoch Size of training corpus / 32
Epochs 50
BERT dimensions cased L-12 H-768 A-12

Table 5.7: Hyper-parameters

We address this issue through the masking technique Vaswani et al. (2017). We

mask the missing typology features and train only on available ones for each source

language.

5.4.3 Training

We trained both BERT Encoder (fine-tuning of pre-trained BERT model) and Out-

put Network components of Base E2E BERT Parser model jointly, by optimizing the

cross-entropy loss Gómez (2018) between true relative head-position tags and proba-

bilities outputted by the Output Network.

On the other hand, Multitasking E2E BERT parser is trained to perform tasks of

Prediction of relative heap-position tag sequence and Prediction of typology features

simultaneously through MTL, by optimizing the total-loss as the sum of cross-entropy

loss over true head-position tag-sequence and the binary cross-entropy loss over true

typology values.

Table 5.7 outlines values of hyper-parameters used during experimentation. These

values are obtained by minimizing loss on Validation dataset for English language.

5.4.4 Experiments

In this section the monolingual and multilingual variants of our proposed models

within two distinct experimental setups namely Monolingual and Cross-lingual se-

tups. These are described as sections 5.4.4.1 and 5.4.4.2 respectively.

These experiments aim to achieve following novel objectives:

1. To evaluate the performance of our end-to-end BERT based model for depen-

dency parsing task in both monolingual and cross-lingual settings, and compare

it with the performances of state-of-the-art cross-lingual and monolingual mod-

els. Such evaluation is necessary as the end-to-end model is much simpler in

design and therefore highly time and space efficient.
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Languages Corpus
en en ewt-ud-train
ur ur udtb-ud-train
fr fr ftb-ud-train
ar ar padt-ud-train
ja ja gsd-ud-train
pl pl pdb-ud-train
la la ittb-ud-train
ta ta ttb-ud-train
el el gdt-ud-train
cop cop scriptorium-ud-train
kk kk ktb-ud-train
tr tr imst-ud-train

Table 5.8: Corpora for source languages listed in Table 5.6 used during experiments.
All Corpora are part of Universal Dependencies dataset.

Languages Corpus Dev Corpus*
de de hdt-ud-test de hdt-ud-dev
hr hr set-ud-test hr set-ud-dev
it it isdt-ud-test it isdt-ud-dev
hi hi hdtb-ud-test hi hdtb-ud-dev
zh zh gsd-ud-test zh gsd-ud-dev
et et edt-ud-test et edt-ud-dev
vi vi vtb-ud-test vi vtb-ud-dev

Table 5.9: Corpora for target languages listed in Table 5.6 used during experiments.
All Corpora are part of the Universal Dependencies dataset. * A small subset of
sentences are sampled from these Corpora to be added to the source Corpora in the
Few-shot scenarios

2. To evaluate the impact of injection of linguistic typology knowledge into our

proposed end-to-end parser, through multitasking.

3. To evaluate the impact of polyglot learning and few-shot learning on the perfor-

mances of both base end-to-end BERT parser as well as multitasking end-to-end

BERT parser.

We conducted the experiments on numerous source-target language pairs. Table 5.6

lists the languages on which experiments were conducted in both Monolingual and

Cross-lingual setups.
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5.4.4.1 Monolingual Setup

In this setup we conducted experiments to evaluate the performance of fully monolin-

gual variants of our proposed Base E2E BERT Parses and Multitasking E2E BERT

Parser. In these settings we experimented in two languages namely English and Chi-

nese. These monolingual variants use pre-trained monolingual English and Chinese

BERT models provided by Huggingface open-source library3.

For all experiments within this setup, we used the Deep Biaffine Parser Dozat and

Manning (2016) as the baseline. Its is a neural graph-based dependency parser which

uses biaffine attention classifiers to predict the arcs and labels of the required parse-

tree for an input sentence.

5.4.4.2 Cross-lingual setups

We conducted numerous experiments to evaluate the performance of Multilingual/Cross-

lingual variants of our proposed Base BERT Parses and Multitasking E2E BERT

Parser models in cross-lingual settings. These Multilingual variants use the pre-

trained Multilingual BERT (mBERT) Wu and Dredze (2019) model which is trained

on data from Wikipedia in 104 languages.

We evaluated the Multilingual variants of our models under following two Cross-

lingual setups.

1. Cross-lingual with single source language (CL-Single): In this setup, all the

parsers are trained in single source language English, but tested on a diverse

range of target languages

2. Cross-lingual with multiple source languages (CL-Poly): In this setup, all the

parsers are trained on diverse polygot corpus and tested on a diverse range of

target languages. There is no overlap between source and target language sets.

Furthermore, the experiments within the Cross-lingual with single source language

(CL-Single) and Cross-lingual with multiple source languages (CL-Poly) setups are

conducted under both Few-shot and Zero-shot learning scenarios.

Within the Zero-shot learning scenario, the training corpus does not contain any

sentence in the target language on which the model is being evaluated. On the

other hand, within the Few-shot learning scenario, the training corpus consists of few

sentences in the target language on which the model is being evaluated, along with

other source language sentences (covering over 80% the corpus).

3https://huggingface.co/models
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Model en zh
Deep Biaffine Network 93.77 78.67
Base E2E BERT Parser 93.00 76.87
Multitasking E2E BERT parser 93.13 78.17

Table 5.10: Unlabeled Attachment Scores (UAS) achieved in Monolingual experimen-
tal settings.

In Cross-lingual setups we used Graph-based mBERT parser by Wu and Dredze

(2019) as baseline. It is a multilingual parser that uses same architecture as Dozat

and Manning (2016) except the LSTM encoder which is replaced by mBERT.

5.4.4.3 Languages

Table 5.6 lists various source and target language used in each of the experimental

settings. In CL-Poly setup, we trained our models on joint polygot corpus of all

twelve source languages listed in Table 5.8. All these twelve languages belong to dis-

tinct linguistic families thus making the corpus typologicaly diverse.

For all experiments, the training corpus size is always fixed to 30,000 sentences. The

joint polygot corpus to train CL-Poly is created by randomly sampling 2500 sentences

from the training corpus for each of the 12 source languages listed in Table 5.8, con-

catenating them as one treebank and randomly shuffling the order.

Our Cross-lingual models are tested on seven target languages, belonging to distinct

linguistic families. Three of these seven languages namely zh, et and am belong to a

linguistic family which is distinct from language families of all the source languages

listed in Table 5.8. Thus performance on these languages indicate true robustness of

the evaluated models to typological variations between source and target languages.

For each experiment under the Few-shot learning scenario, we extracted a small set

of target language sentences (on which model is being evaluated), to be added to the

source training corpus before training.

We extracted this subset by randomly sampling sentences from the dev corpus of

the respective target-language tree-bank dataset until the token-size becomes ap-

proximately equal to 3000. This is inspired by Ammar et al. (2016) who used same

yardstick to evaluate their Multi-lingual Dependency Parser (MALOPA).

5.4.5 Results

Tables 5.11 and 5.12 outline Unlabeled Attachment Scores (UAS) obtained under

the Few-shot and the Zero-shot learning scenarios respectively. The tables 5.10, 5.11
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CL-Single CL-Poly
mBERT Base

E2E
Multi
E2E

Aux
task*

mBERT Base
E2E

Multi
E2E

Aux
task*

zh 43.32 42.98 41.74 0.01 66.81 66.52 65.35 0.28
hr 72.49 72.07 70.91 0.07 75.28 75.01 74.05 0.14
et 71.05 70.69 69.72 0.05 67.2 66.8 65.67 0.26
de 78.07 77.68 76.67 0.04 78.85 78.54 77.33 0.21
hi 44.83 44.42 43.18 0.11 74.68 74.4 73.32 0.22
it 86.63 86.32 85.23 0.04 77.77 77.4 76.3 0.21
vi 40.74 40.34 39.25 0.08 66.89 66.56 65.45 0.24

Table 5.11: Unlabeled Attachment Scores (UAS) achieved in both Cross-lingual set-
tings under the Zero-shot scenario. *F1 values achieved on the auxiliary task of
linguistic typology prediction (excluding missing values)

CL-Single CL-Poly
mBERT Base

E2E
Multi
E2E

Aux
task*

mBERT Base
E2E

Multi
E2E

Aux
task*

zh 44.04 43.69 44.29 0.57 67.68 67.37 68.19 0.76
hr 73.38 73.0 73.46 0.6 75.93 75.58 76.28 0.68
et 71.89 71.5 71.96 0.56 67.91 67.55 68.45 0.78
de 78.8 78.47 79.08 0.57 79.74 79.45 80.25 0.71
hi 45.63 45.33 45.91 0.61 75.59 75.16 76.13 0.62
it 87.44 87.12 87.63 0.61 78.51 78.14 78.98 0.66
vi 41.44 41.16 41.62 0.61 67.68 67.41 68.37 0.75

Table 5.12: Unlabeled Attachment Scores (UAS) achieved in both Cross-lingual set-
tings under the Few-shot scenario. *F1 values achieved on the auxiliary task of
linguistic typology prediction (excluding missing values)

and 5.12 also outline the F1-scores achieved by our Multitasking E2E BERT parser

model on the auxiliary task of predicting linguistic-typology features in Monolingual

settings as well as both Cross-lingual with single source language and Cross-lingual

with multiple source languages under both Zero-shot and Few-shot scenarios. The

results in these tables indicate the impact of the auxiliary task.

5.4.6 Analysis

In this section we analyse the results outlined in section 5.4.5 to address the research

questions RQ4, RQ5, RQ6 listed in section 1.1.1 as follows.

RQ4: Does an End-to-end Dependency parser performs at par with the

state-of-the-art Graph-based parser, within both monolingual and cross-
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lingual settings ?

Results outlined in section 5.4.5 indicate that in both Monolingual and Cross-lingual

settings, our Base E2E BERT parser indeed performed at par with the baseline Deep

Biaffine Parser Dozat and Manning (2016) and Graph-based mBERT parser Wu and

Dredze (2019) models respectively, despite being much simpler in design as its end-

to-end.

RQ5: Does injecting linguistic typology knowledge into an End-to-end

cross-lingual dependency parser, through an auxiliary task of typology

feature-value prediction, leads to improvement in performance of it ?

Results outlined in Table 5.10 show that within Monolingual setup, our Multitasking

E2E BERT parser showed marginal improvement over Base E2E BERT parser for

both English and Chinese. In fact the monolingual variant of our Multitasking E2E

BERT parser outperformed the baseline Deep Biaffine Parser Dozat and Manning

(2016) for both English and Chinese.

Hence it can be inferred that in Monolingual settings, the auxiliary task of predicting

linguistic typology features does lead to improvement in parsing performance indeed,

as it enables the model to emphasize on syntactic typology of language being parsed

(specifically word-order features) while predicting the dependency relations within

the sentence.

The results in Tables 5.11 and 5.12 indicate that under the Cross-lingual Zero-shot

learning scenario our proposed Multitasking E2E BERT parser under-performed the

Base E2E BERT parser in both CL-Single and CL-Poly settings for all the target

languages, whereas it outperformed the Base E2E BERT parser in both CL-Single

and CL-Poly settings under the Cross-lingual Zero-shot learning scenario.

Furthermore, it can also be observed in tables 5.11 and 5.12 that within the Zero-shot

scenario, our Multitasking E2E BERT Parser performed poorly on the auxiliary task

with average F1 score being 0.06 within CL-Single and 0.22 with CL-Poly settings

respectively. On the other hand, within the Few-shot training scenario, the proposed

Multitasking E2E BERT Parser showed comparatively better performance on the

auxiliary task with average F1 score being 0.59 within CL-Single and 0.71 with CL-

Poly settings respectively.

Based on these trends it can be inferred that the auxiliary task does not help the

model to improve the cross-lingual transfer parsing in an unseen language (which are
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not the part of training corpus). However the task does enable the model to better

learn to distinctively parse in each of the languages on which it is trained, even if the

training corpus consists of only few sentence in the language.

RQ6 Is the impact of adding the auxiliary task of typology feature-value

prediction higher with mixed polyglot training scenerio, as compared to

single source language training scenerio ?

In the CL-Poly setting under the Few-shot learning scenario, our Multitasking E2E

BERT parser shows an average improvement of 4.6% in UAS across all target lan-

guages over the Base E2E BERT parser. This is much higher than the average

improvement of 1.93% shown by ourMultitasking E2E BERT parser over Base E2E

BERT parser within CL-Single settings under the Few-shot learning scenario.

Furthermore, it is also observed that in both Few-shot and Zero-shot scenarios, our

proposed Multitasking E2E BERT Parser performed better on the auxiliary task of

linguistic typology prediction, within mixed polyglot training (CL-Poly) settings as

compared to under monolingual training settings (CL-Single).

Hence, for the cross-lingual parsing task, the improvement in performance of our

proposed Multitasking E2E BERT Parser over Base E2E BERT parser (improve-

ment due to the auxiliary task of typology prediction) is higher under mixed polyglot

training (CL-Poly) settings as compared to under monolingual training settings (CL-

Single).

5.5 Improving the performance of UDify with Lin-

guistic Typology Knowledge

5.5.1 Introduction

UDify Kondratyuk and Straka (2019b) is the state-of-the-art mBERT based language-

agnostic dependency parser, which takes the advantage of multilingual modeling to

improve its performance on low-resource languages. Section 5.5.2 describes the ar-

chitecture of UDify model in detail. The authors of UDify Kondratyuk and Straka

(2019b) trained it on a joint polyglot corpus created by concatenating all training

treebanks available in UDv2.3, and evaluated it on all test treebanks in UDv2.3 indi-

vidually. Results outlined by Kondratyuk and Straka (2019b) show that for depen-

dency parsing task, the UDify outperforms its baseline monolingual UDPipe Future
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Figure 5.9: UDify Kondratyuk and Straka (2019b) model architecture.

Straka (2018) model by a large margin especially for low-resource languages, as the

model benefit significantly from the cross-lingual transfer learning which occurs due

to joint polyglot training.

However, the performance of UDify model on the low-resource languages (less repre-

sented in the polyglot training corpus) is still much lower than the performance of it

on the high-resource languages which are well represented within the training corpus.

In this work, we use linguistic typology knowledge to improve the cross-lingual trans-

ferring ability of UDify model even further, thereby significantly reducing this gap

between model’s performance on high-resource and low-resource languages.

We induce the linguistic typology knowledge available in URIEL Littell et al. (2017)

database into the UDify model by adding an auxiliary task of linguistic typology fea-

ture prediction to it, within the multitasking framework. Section 5.5.3 will describe

this knowledge induction process in details.
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5.5.2 UDify model

UDify is a multitasking multilingual BERT based model which performs four key

language-processing tasks simultaneously namely UPOS-tagging, UFeat-tagging, Lemma-

tization and Dependency Parsing. Model utilizes a single common mBERT based

encoder for all the tasks, and individual task-specific decoders for each of the four

tasks.

The encoder takes in the entire sentence as input, tokenizes it using BERT’s pre-

trained WordPiece Tokenizer Wu et al. (2016) and subsequently outputs contextual

embeddings for each token. The architectures adopted by the UDify model for each

of the task-specific decoders are described as follows. Figure 5.9 depicts the full

architecture of the UDify model.

1. UPOS-tagging : For UPOS-tagging, the model adopts the standard neural se-

quence tagging architecture with softmax layer on the top. The decoder accepts

embeddings generated from BERT encoder and outputs a probability matrix.

2. UFeat-tagging : The encoder takes in the entire sentence as input, and sub-

sequently tokenizes the input sentence using BERT’s pre-trained WordPiece

Tokenizer. The architectures adopted by the UDify model for each of the task-

specific decoders are described as follows.

3. Lemmmatization: The encoder takes in the entire sentence as input, and sub-

sequently tokenizes the input sentence using BERT’s pre-trained WordPiece

Tokenizer. The architectures adopted by the UDify model for each of the task-

specific decoders are described as follows.

4. Dependency Parsing : The encoder takes in the entire sentence as input, and

subsequently tokenizes the input sentence using BERT’s pre-trained WordPiece

Tokenizer. The architectures adopted by the UDify model for each of the task-

specific decoders are described as follows.

5.5.2.1 Word-embeddings

Previous studies Devlin et al. (2019) have shown that when fine-tuning mBERT on

a downstream task, combining the output of the last few layers as the BERT output

is more beneficial than just the last layer outputs. Hence UDify model computes the

weighted sum of outputs all 12 BERT layers. It outputs this weighted sum correspond-

ing to each token (from input sentence), as its mBERT based token-representation
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vector. For each word, the model considers the representation-vector of its first token

as its embedding, while ignoring the rest of its tokens.

5.5.3 Linguistic Typology prediction

To improve the cross-lingual transferring ability of UDify model, we added a fifth

auxiliary task of Linguistic Typology prediction to it.

Our Typology-predictor is a simple deep feed-forward neural network with sigmoid

activation function, which predicts the values of all typology features provided by the

URIEL database Littell et al. (2017).

URIEL database is a collection of binary features extracted from multiple typolog-

ical, phylogenetic, and geographical databases such as WALS Haspelmath (2009),

PHOIBLE Moran et al. (2014), Ethnologue M. Paul Lewis and Fennig (2015) and

Glottolog Hammarström et al. (2017). URIEL database can be accessed through Py-

ton PyPi library called lang2vec4.

Let N̂ be the number of typology features provided by URIEL database. Our Ty-

pology predictor would then output the probability vector Prty ∈ RN̂ by applying

equation 5.4.

Prty = sigmoid(e</s> ∗ U + c) (5.4)

Here e</s> ∈ Rd is the contextual embedding from the shared mBERT Encoder for

end-token < /s > of the input-sentence. U ∈ Rd∗N̂ and c ∈ RN̂ are weights and

biases respectively. PrTy comprises the probability of value of each URIEL binary

feature being as 1, for the specific language being parsed.

The total-loss is computed by simply adding the Typology Predictor loss to UDify

model’s (as computed in Kondratyuk and Straka (2019b))

5.5.4 Experiments

This section describes the details of experiments conducted to evaluate our proposed

model.

5.5.5 Experimental Setup

Both baseline UDify and the proposed UDify+Typology-predictor models are trained

on a single large joint-polyglot corpus, created by concatenating all training datasets

available in UDv2.55 together.

4https://pypi.org/project/lang2vec/
5https://universaldependencies.org/
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Figure 5.10: Trends in LAS achieved by UDify and UDify-w-Syntax models on all 80
test treebanks

Figure 5.11: Trends in UAS achieved by UDify and UDify-w-Syntax models on all 80
test treebanks
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Corpus Model UPOS UFeatsLemmaUAS LAS Typo
F1

Overall UDPipe 94.27 91.37 94.99 86.24 81.78 –
(all
UDv2.5
test-
banks)

UDify 94.03 89.33 90.92 87.84 82.83 –

UDify-w-
Lang id

95.76 90.95 91.52 90.21 85.61 –

UDify-w-Syntax 95.89 92.05 91.87 93.18 88.4 74.6
UDify-w-
Syntax+Semantic

94.04 88.06 87.09 89.26 83.84 73.33

UDify-w-All 92.85 85.48 84.33 84.86 79.17 64.88

Table 5.13: Overall Results achieved by the baseline and all variants of our proposed
model. These are average of all results outlayed in Appendix B.

Corpus Model UPOS UAS LAS
English-EWT UDify 97.73 94.64 90.04
(size: 25377) UDify+ 98.32 95.73 91.41
French-GSD UDify 98.14 94.74 92.77
(size: 33399) UDify+ 99.24 96.19 92.84
Buryat-BDT UDify 60.23 36.98 21.52
(size: 19) UDify+ 73.73 73.25 59.1
Lithuanian-HSE UDify 90.47 80.1 70.38
(size: 2494) UDify+ 93.56 90.14 81.6

Table 5.14: Selected results from Appendix B. UDify+ refers to UDify+Syntax
model

Before each training-epoch, we randomly shuffled all sentences in our polyglot training

corpus, and subsequently fed mixed batches of sentences from this shuffled corpus into

the model being trained, where each batch may contain sentences from any language

or treebank (as done by authors of UDify Kondratyuk and Straka (2019b)).

We used a batch-size of 32, drop-out probability of 0.01 and the pre-trained mBERT

model cased L-12 H-768 A-12 downloaded from tensorflow-hub6. We fine-tuned these

hyper-parameters on Dev dataset for English-EWT treebank.

5.5.6 Results

We evaluated our proposed model on 80 test tree-banks available in UDv2.5 datasets

individually. Appendix B provides the results achieved on each of these 80 test-

6https://tfhub.dev/tensorflow/bert multi cased L-12 H-768 A-12/3
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Distrb 1 Distrb 2 t-value p-value
Typo F1 Diff 84.23 3.24e-23
Typo F1 Size 6.98 7.36e-11
Typo F1 UDify 1.42 0.16
Typo F1 UDify+ 3.49 6.26e-4

Table 5.15: Results of t-test for correlation between various performance parmeters.
Typo F1: Its F1 score achieved by UDify+Syntax for auxiliary task.; UDify, UD-
ify+:UAS achieved by UDify and UDify+Syntax models; Diff : Improvement in UAS
of UDify+ over UDify

Corpus Model UPOS UAS LAS
Breton-KEB UDify 63.67 63.97 40.19

UDify+ 62.15 60.65 34.23
Tagalog-TRG UDify 61.64 64.73 39.38

UDify+ 62.38 63.9 38.31
Faroese-OFT UDify 77.86 69.28 61.03

UDify+ 77.46 65.57 54.11
Naija-NSC UDify 56.59 47.13 33.43

UDify+ 55.06 46.61 27.94
Sanskrit-UFAL UDify 40.21 41.73 19.8

UDify+ 38.08 43.14 15.48

Table 5.16: Results achieved in zero-shot learning scenario. UDify+ refers to UD-
ify+Syntax model

treebanks, whereas table 5.13 outlines the average results on all these 80 treebanks.

All scores are evaluated using the official CoNLL 2018 Shared Task evaluation script.

We compared the performance of our model with two baselines namely UDPipe Fu-

tutreStraka (2018) and UDify.

URIEL database comprises of three categories of typology features namely Syntactic,

Semantic and Phonological features. In this work, we evaluated three variants of

our proposed model, based on the categories of features predicted by the typology-

predictor within the auxiliary task, namely UDify-w-Syntax (predicts only syntac-

tic typology features), UDify-w-Syntactic+Semantic (predicts syntactic and semantic

typology-features) and UDify-w-All (predicts all the URIEL typology-features).

Furthermore, we evaluated the performance of UDify-w-Lang id model. The archi-

tecture of it is identical to our proposed model but the linguistic-typology predictor

is replaced by a simple language-id predictor.
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5.5.7 Discussion

In this section we analyse the results outlined in section 3.9 to address the research

questions RQ7 and RQ8 listed in section 1.1.2 as follows.

RQ7: For the state-of-the-art UDify parser which is a multilingual multi-

tasking model that performs four key tasks simultaneously namely UPOS-

tagging, UFeat-tagging, Lammetization and Dependency-parsing, when an

auxiliary task of typology feature-value prediction is added to it, does it

impact the performances of other four NLP tasks ?

As described in section 5.5.6, we evaluated the three variants of our proposed mul-

titasking UDify model with added auxiliary task of linguistic typology prediction

namely UDify-w-Syntax, UDify-w-Syntactic+Semantic and UDify-w-All variants, dis-

tinct based on the typology feature-types been included. It is evident in results out-

lined as Appendix B that we observed similar trends in performance on all four tasks

namely UPOS-tagging, UFeats-tagging, Lammetization and Dependency Parsing.

It can be observed in the results outlined in section 5.5.6 that the UDify-w-Syntax

variant of our proposed model outperforms the other two variants of it, for most of the

test-treebanks, despite the fact that the UDify-w-Syntax+Semantic and UDify-w-All

variants utilizes more typology-features than the UDify-w-Syntax variant.

The reason being that since all four tasks performed by the UDify model namely

UPOS-tagging, UFeats-tagging, Lammelization and Dependency Parsing are syntac-

tic tasks, only the syntactic typology-features are relevant to these tasks. Henderson

(2004) proved that, having large number of unrelated features makes it difficult for

a neural-network model to effectively learn from provided training-data, and thereby

would lead to drop in performance.

It is also evident in results outlined in Appendix B (displayed as figures 5.10 and 5.11)

that for high-resource languages, the UDify+Syntax model shows only marginal im-

provement in performance over UDify whereas for low-resource languages it shows

strong improvement in performance on all four tasks. Such trends can also be ob-

served in table 5.14. Table 5.16 on the other hand, outlines results obtained on

selected languages which are not represented in the training data at all (zero-shot

learning). For such treebanks, UDify+Syntax under-performs UDify.

Hence it can be inferred that the auxiliary task of linguistic typology prediction, does

lead to significant improvement in performance of UDify in the Few-shot learning

scenario, but does not lead to any improvement within zero-shot learning scenario.
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The overall results (average) summarised in table 5.13, show that UDify+Syntax out-

performed baselines UDPipe Future and UDify model for almost all 80 test-treebanks.

Hence we can infer that adding the auxiliary task of syntactic typology prediction to

UDify model does lead to the improvement in performance.

Furthermore, to ensure that the improvement is indeed due to typology knowledge

injection, we compared the the performance of UDify-w-Syntax model with the perfor-

mance of UDify-w-Lang-id model. The architecture of it is identical to our proposed

model but the linguistic-typology predictor is replaced by a simple language-id pre-

dictor. Results in Appendix B show that the UDify-w-Syntax model outperformed

the UDify-w-Lang-id model on almost all 80 target languages.

RQ8: Is there any correlation between the performance the end-to-end

parser on the main dependency-parsing task and the performance of it on

the auxiliary task of linguistic typology feature-value prediction ?

To ensure that the auxiliary task of linguistic typology-prediction is indeed responsi-

ble for the improvement in performance of UDify, we conducted numerous statistical

t-tests to find the correlation between F1 scores achieved by the UDify+Syntax model

for the auxiliary-task of typology-prediction, and various other performance parame-

ters including the improvement in performance of UDify+Syntax over UDify. Table

5.15 outlines the results of these t-tests.

The results in Table 5.15 show that there is indeed a strong correlation between per-

formance scores on the main DP task and the score achieved on the auxiliary task.

5.6 Conclusion

In this chapter, we proposed and evaluated the performance of an End-to-end BERT

Based Dependency Parser which can parse a sentence by directly predicting relative

head-position tag for each word within input sentence. This is inspired by a mono-

lingual BiLSTM based End-to-end Dependency parser.

Subsequently, we added the auxiliary task of Linguistic typology prediction to our

Base E2E BERT parser to observe the change in performance under different settings.

Our results show that adding such auxiliary task leads to improvement in performance

of Base E2E BERT Parser within Cross-lingual settings under the Few-shot learning

scenario whereas no improvement is observed within the Zero-shot learning scenario.

As far as we are aware this is the first work to evaluate the end-to-end Dependency
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Parsing framework, within the cross-lingual settings. The future work could involve

exploring same auxiliary task for other transformer based language models such as

GPT-2, XLM-R etc. Further, other frameworks apart from Multitask learning such as

GANs can be explored to induce linguistic typology knowledge within Multi-lingual

Parser.

In this chapter, we also aimed to improve the performance of the state-of-the-art

language-agnostic UDify parser by injecting the linguistic typology knowledge avail-

able in URIEL database to improve the cross-lingual transferring ability of it. We

injected the typology knowledge in UDify model through an auxiliary task, in the

multitasking settings.
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Chapter 6

End-to-end Enhanced
Dependency-parsing for Typology
Feature Prediction

This chapter is based on our research work published as following paper:

• End-to-end mBERT based Seq2seq Enhanced Dependency Parser with
Linguistic Typology knowledge. In Proceedings of SPECIAL INTEREST
GROUP ON NATURAL LANGUAGE PARSING (SIGPARSE) AT ACL 2021

In chapter 5 we described the task of dependency parsing as well as two proposed

and evaluated approaches to cross-lingual DP with linguistic typology knowledge in-

jection. In this chapter we describe the task of Enhanced Dependency Parsing and

describe a cross-lingual multitasking approach to EDP in detail.

The Enhanced Dependency Parsing (EDP) framework Schuster and Manning (2016);

Coke et al. (2016) is an interesting extension of the standard DP framework, which

provides additional significant syntactic and semantic knowledge that is missing in a

standard dependency parse-tree. Such additional knowledge does lead to an improve-

ment in performance on numerous downstream NLP tasks.

Our proposed model is an extension of our UDify based multitasking model for DP

described in section 5.5.2, with an addition auxiliary task of end-to-end EDP task.

The architecture of the end-to-end EDP auxiliary component is indeed inspired by

the monolingual End-to-end Seq2seq Dependency-Parser proposed by Li et al. (2018).

Section 6.1 describes the Enhanced Dependency Parsing task in details. Subsequently,

section 6.1.2 provides a brief literature review of various approaches to cross-lingual

EDP task. In section 6.2, we describe our proposed model and subsequent sections

describe the experimentation conducted to evaluate the proposed model and outline

the results achieved.
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6.1 Enhanced Dependency Framework

The EDP framework also commonly adopts the UD annotation scheme (section 5.2.1)

similar to the basic DP framework (section 5.1.2). However, as compared to the stan-

dard DP framework, the EDP framework aims to define the relationships between

head and dependent words more explicitly by adding more relationship-types or aug-

menting the basic UD relationship names with additional knowledge. Hence, an En-

hanced Dependency-tree is an extension of the standard Dependency-tree comprising

all relations of the dependency tree with a few additional attributes. Section 6.1.1

outlines these additional attributes within the EDP framework.

6.1.1 EDP Frameowork attributes

This section outlines the rules in the EDP framework which are distinct from stan-

dard DP framework as subsequent sub-sections. We use the examples provided by

Schuster and Manning (2016) to explain these rules. Figure 6.1 depicts these example

sentences.

6.1.1.1 Augmented Modifiers Rule

In the standard DP framework, for a modifier relationship, the head-word that is

modified by a prepositional phrases (PP) is related to the prepositional complement-

word rather than the preposition itself. However this modifier relationship does not

provide any information about the actual preposition that is infact modifying the

head-word. Such knowledge is useful for numerous downstream tasks.

For example, in example-sentence 1a in Figure 6.1, the word house in the sentence

the house on the hill is modified by the preposition on. Hence, in the standard

dependency-tree of the sentence, the head-word house is therefore connected to

prepositional complement-word hill with relationship-type noun-modifier (nmod)

but no information about the preposition itself is provided in the tree. This issue

is addressed in the corresponding enhanced dependency-tree depicted in Figure 6.1

where the relationship-label nmod is augmented with the preposition word on (as

nmod:on). Similarly, in example 1b of Figure 6.1, the noun-modifier relationship

between words brushed and eating is augmented with preposition after.

Like the noun-modifier (nmod), in EDP framework the adverbial clause modifier

(advcl) relationship types are also augmented with respective preposition word.

If a modifier relationship comprises of multi-word preposition than entire phrase is

augmented to the relationship-label as shown in example 1c id in Figure 6.1
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Figure 6.1: Demonstrations of EDP attributes. Examples from Schuster and Manning
(2016)

121



6.1.1.2 Augmented Conjuncts Rule

Similar to the modifier, in the EDP framework the conjunct relationship-types are

augmented with their corresponding conjunction word. For example in example 2a

in Figure 6.1, the conjunction words apple and banana are augmented with the

conjunction word and whereas the words apple and orange are augmented with

the conjunction word or.

6.1.1.3 Propagated Head or Dependents Rule

If a sentence comprises of one or more conjoined phrases and if the entire phrase has

syntactic-relationships with other words in the sentence, in the standard dependency-

tree of this sentence such explicit relationship are directed to/from only the first

conjunct in the phrase. On the other hand, in the ED framework such relationships are

marked for both conjuncts. Although such propagation violates one of the standard

DP constraint of single head on each word in the sentence (section 5.1.2).

For example, in example 3a in Figure 6.1, both Sue and Paul are subjects of verb

running hence both of them are connected to word running with relationship-type

noun-subject (nsubj).

Similarly, if a sentence comprises of conjoined adjectival or adverbial phrases, all

conjuncts are connected to the respective noun or verb as evident in example 3b of

Figure 6.1.

Likewise similar rules are applied for any conjoined verb phrases as evident in example

3c in Figure 6.1.

6.1.1.4 Quantificational Determiners Rule

If a sentence comprises a multi-word construction phrase, with relations to other

words in the sentence, such relationships are often not accurately depicted in its

standard dependency-tree. For example, consider two sentences both of the girls

are reading and both girls are reading. Figure 6.1 depicts dependency-trees of

these relationships (as 4a and 4b). It is evident that for the first sentence, the word

both is marked as the subject of verb reading whereas in second sentence the word

girl is marked as the subject, even though both sentence mean the same.

In EDP framework, any relationship with such a construction phrase is always marked

at the semantically significant part of such a multi-word phrase (eg: girl not both)

while a quantificational modifier relationship is added between the words within the

phrase. For example, in example 4c in Figure 6.1 relationship nsubj to word girl
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while a new relationship det:qmod is added between the words both and girl.

This attribute can also violate one of the standard DP constraint of single head on

each word in the sentence (section 5.1.2).

6.1.1.5 Conjoined prepositions

As explained in section 6.1.1.1, for a modifier relationship-type the EDP framework

requires the preposition word (or phrase) to to be augmented to a relationship-label.

However, in some scenarios, the proposition can be a conjoined phrase with both

prepositions modifying the head-word independently. For example, in the example

sentence I bike to and from work , there are two conjunct propositions namely

from and to discussing modifying head-word bike independently. In this scenario,

EDP framework adds duplicates of the head-word and each one copy of the head-word

connected to one of the prepositions, as evident in example 5b in Figure 6.1.

6.1.2 Approaches to Cross-lingual EDP

The task of cross-lingual EDP for low-resource languages was brought into attention

as the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies

Bouma et al. (2020). The task typically provided a training and test datasets in mul-

tiple languages and the participants were invited to build and evaluate multilingual

models that can be applied to more than one languages.

Most models proposed for the task are transformer based models (section 2.1.1.4). Ap-

proaches such as He and Choi (2020); Grünewald et al. (2021); Kanerva et al. (2020)

fed the token indexes directly into a pre-trained transformers to predict ED relation-

ships. On the other hand, rather than fine-tuning the pre-trained transformer models

to predict dependencies, numerous approaches instead used word-embeddings/token-

representations generated by pre-trained transformers to be fed into another BiLSTM

models. These transformer based embeddings are often combined with other linguis-

tic features (cross-lingual) such FastText Wang et al. (2020), character-based features

as well as the features from predicted POS tags, morphological features and basic UD

parse-tree Barry et al. (2020).

Several proposed approaches to CL-EDP such as Orange Heinecke (2020), FAST-

PARSE Dehouck et al. (2020), UNIPI Attardi et al. (2020), CLASP Ek and Bernardy

(2020), ADAPT Barry et al. (2020) etc. are heuristic based approaches that aim to

predict the ED relationships by applying hand-drafted enhancement rules to the pre-

dicted standard DP relationships. On the other hand, approaches such as Emory
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NLP He and Choi (2020), ShanghaiTech Wang et al. (2020), RobertNLP Grünewald

et al. (2021) are graph-based approaches that do not derive EDP relationships from

standard UD relationships through enhancement (or conversion) of its dependency

relationships, but instead directly produce EDP trees for a given input-sentence.

Hershcovich et al. (2020) is the only transition-based system proposed that uses the

stack-LSTM architecture Dyer et al. (2015).

Similar to our proposed model described in this chapter, TurkuNLP Kanerva et al.

(2020) is another model that utilized UDify model Kondratyuk and Straka (2019b)

for the EDP task. The TurkuNLP model aimed to represent the ED relationships into

a standard DP format by combining multiple edges into a single edge with a complex

labels. The authors reduced the total number of edge-labels by adopting a mechanism

of delexicalising the labels of the edges. Subsequently, they fine-tuned UDify parser

model to predict these modified standard DP relationships. This TurkuNLP model

was subsequently outperformed by Wang et al. (2020) which used a second-order in-

ference methods involving the Mean-Field Variational Inference.

The Shared task is repeated again in 2021 where numerous researches proposed dis-

tinct and improved methods to Cross-lingual EDP. TGIF Shi and Lee (2021) is the

best performing model for the 2021 Shared Task and the current state-of-the-art. It

is a hybrid model that performs EDP in two consecutive steps. Firstly they used a

graph-based parser (section 5.1.3.2) to predict the minimum spanning tree comprising

of all dependency relations. Subsequently, they predict any additional graph-edges (of

EDP parse-tree) that is not present in the spanning trees. The authors also adopted

a language-specific fine-tuning strategy, where they first trained the model on mixed

polyglot corpus created by concatenating all available training copra in many lan-

guages and subsequently fine-tuned on each individual training language separately.

Hyper-
parameter

Value

Dropout prob. 0.01
Bach-size 32
Number of steps
per epoch

Size of training
corpus / 32

Epochs 150
BERT Model bert multi cased L-

12 H-768 A-12

Table 6.1: Hyper-parameters
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Figure 6.2: Example Enhanced Dependency Parse trees represented as Relative Head-
position tag-sequences

Language UPOS UFeats Lemmas UAS LAS ELAS
bg 99.01 35.97 98.1 93.87 90.63 81.85
en 95.37 33.47 96.76 87.57 85.46 78.8
et 96.89 35.74 96.55 86.21 83.36 76.63
lv 96.62 35.91 96.55 89.51 85.89 78.97
lt 93.8 30.59 93.66 79.05 74.42 77.22
ru 98.45 36.92 98.49 93.27 92.01 79.53
sk 96.92 23.48 95.71 90.89 88.19 81.15
sv 96.45 34.06 93.06 86.54 82.78 76.02

Table 6.2: Results achieved by the Base E2E-w-Typo parser for all the tasks in IWPT
2021 shared task

6.2 mBERT based Seq2seq ED Parser

This section describes our proposed end-to-end model for cross-lingual EDP task

which is inspired by our proposed end-to-end model for standard DP task (section

5.4). Figure 6.3b depicts the architecture of the proposed ED parser.

Our proposed End-to-end ED Parser is an extension of the UDify Kondratyuk and

Straka (2019b) model described in section 5.5.2, with one additional component

namely the Relative Head Sequence predictor which predicts the relative head-position

of the tag-sequence representing the unlabelled enhanced-dependency parse-tree of

the input sentence (as the fifth auxiliary task in the multitasking UDify model).

Section 6.2.1 describes the mechanism of representing an enhanced dependency tree

as a sequence of relative head-position tag sequence. Subsequently, section 6.2.2
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Figure 6.3: Architecture of the Relative Head-position Sequence predictor model for
EDP task

describes architecture of the Relative Head Sequence predictor component of the pro-

posed model. Our proposed model injects linguistic typology knowledge into the

Relative Head Sequence predictor to improve its cross-lingual transferring ability.

6.2.1 ED parse-tree as relative head-position tag sequence

Given a sentence of length T, its unlabelled ED parse-tree can be represented by a

relative-head tag-seq of length T̂ such that T̂ ≥ 2T + 1. Figure 6.2 depicts the rep-

resentations of sample unlabelled enhanced-dependency parse-trees as their relative

sequences of relative head-position tags. Here, the tag < b > represents the next-

token whose heads are pointed by the subsequently predicted relative-head position

tags (until the next < b > tag is predicted).

6.2.2 Relative Head Sequence predictor

As evident in Figure 6.3b, our Relative Head Sequence predictor is a standard LSTM

based Seq2seq neural-network Sutskever et al. (2014) which takes in the entire input-

sentence encoding vector as input, and sequentially predicts the relative head-position
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Figure 6.4: Architecture of the Label predictor

Model UPOS UFeats Lemmas UAS LAS ELAS
combo 97.62 94.95 94.39 91.55 89.14 85.01
dcu-epfl 96.32 91.81 95.15 87.44 84.3 86.89
fastparse 97.24 93.0 95.84 78.23 72.44 67.07
grew 97.24 93.0 95.84 89.6 87.03 82.95
robertnlp 97.89 94.06 0.01 93.15 90.4 88.44
shanghaitech 0.46 32.78 0.01 4.18 1.27 88.37
tgif 0.46 32.81 0.01 10.93 0.94 90.67
unipi 96.37 91.75 95.17 90.55 87.98 84.42
Base E2E 96.36 32.76 95.17 87.63 84.54 76.32
Base E2E-
w-Aux

96.93 32.58 95.71 87.86 84.67 78.7

Base E2E-
w-Typ

97.54 33.28 96.22 88.43 85.28 79.32

Table 6.3: Comparison of results achieved by all ED parsers in IWPT 2021 Shared
task and the variants of proposed End-to-end parsers

tag-sequence, one tag at a time.

6.2.2.1 Input sentence-encoding

The sentence-encoding eX ∈ Rd of any input sentence X = x1, x2, ...xT is computed

by applying equation 6.1.

eX = W ∗ [BERT (X);TYl] + b (6.1)

Here BERT (X) is the output embedding-vector from the UDify’s shared mBERT

encoder for the end-of-sentence token < /s > of input-sentence and TYl is a Linguistic-

typology vector of language l being parsed. Each value within the TYl represents a

single typology-feature from WALS Haspelmath (2009) database having a specific
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Languages Base E2E Base E2E-w-Aux Base E2E-w-Typo
LAS ELAS LAS ELAS LAS ELAS

bg 90.03 78.45 90.33 80.85 90.63 81.85
en 84.46 75.4 84.96 78.1 85.46 78.8
et 82.46 74.03 83.06 76.33 83.36 76.63
lv 85.19 76.67 85.29 78.57 85.89 78.97
lt 73.52 73.52 73.72 76.92 74.42 77.22
ru 91.01 76.33 91.61 78.83 92.01 79.53
sk 87.49 77.45 87.39 80.85 88.19 81.15
sv 82.18 73.12 82.08 75.52 82.78 76.02

Table 6.4: LAS and ELAS achieved by all three variants of the proposed End-to-end
Seq2seq Enhanced Dependency parsing

integer value. Equation 6.1 involves the concatenation of the BERT-output and the

Typology vectors, followed by dimension reduction through a feed-forward network.

Feeding typology features together with the input sentence could improve the cross-

lingual transferring ability of the multilingual model, as shown by Ammar et al.

(2016).

For the proposed model, we use all the word-order and constituency features in WALS

Haspelmath (2009) database excluding trivially redundant features as excluded by

Takamura et al. (2016).

6.2.2.2 Training

We trained our mBERT based Seq2seq ED Parser on a single large joint-polyglot

corpus, created by concatenating all the treebanks available in the training dataset

provided for the IWPT 2021 Shared task.

Before each training epoch, we randomly shuffle all sentences in our polyglot training

corpus, and subsequently feed mixed batches of sentences from this shuffled corpus

into the model being trained where each batch may contain sentences from any lan-

guage or treebank (as done by authors of UDify Kondratyuk and Straka (2019b)).

We optimized the weights of our multitasking model by minimizing the total loss as

the sum of sparse cross-entropy losses for all five tasks namely UPOS-tagging, UFeat-

tagging, Lemmatization, Dependency Parsing and Relative Head-position Sequence

prediction.
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6.2.2.3 Predicting

The ED parsing of any unknown input-sentence X = x1, x2, ...xT can be performed by

extracting the most probable correct relative head-position tag-sequence. The correct

relative head-position tag-sequence would satisfy following constraints.

1. The sequence should start with < b > and end with < end >.

2. For each word in xi ∈ X, the relative head-position tag assigned to it should be

within the range of the sentence. For example, within the sentence “the house

in front of the hill”, the word ‘the’ can not have tags L2, L3, L4, L5, L6 and

the word ‘hill ’ can not have any right tags, as these are outside the range of the

sentence.

3. The label sequence should not generate any cycles within the dependency tree.

4. One of the words should have the head at < root > token.

5. The sequence should contain the number of < b > tags equal to number of

tokens in the input sentence X.

We used dynamic programming with beam-search to efficiently extract the most prob-

able relative head-position tag-sequence which satisfies the above listed relative head-

position tag-sequence, out of all possible sequences.

6.2.3 Label Predictor

Figure 6.4 depicts the architecture of our Label predictor model. It is an mBERT

based multi-class classifier with a softmax layer on top. The model takes as input

the token-seq segment from the input sentence ranging from head to tail, as well as

its corresponding predicted POS-tag sequence. The model outputs the probabilities

of all possible ED dependency labels to be assigned to the given relation.

The Label-predictor is trained on all ED relationships available in training dataset

for IWPT 2021 Shared task. The parameters of the mBERT encoder of our Label

predictor are initialized with the parameters of the fine-tuned mBERT encoder of our

Relative Head-position tag-sequences.
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6.3 Experiments

In this section we aim to evaluate the proposed End-to-end BERT based Enhanced

Dependency Parser. These experiments aim to fulfill the following novel objectives:

1. To evaluate and compare the performance of our proposed cross-lingual end-to-

end model for EDP task with the other state-of-the-art more complex models

for the cross-lingual EDP. Such evaluation is significant as it is much simpler in

design and therefor much time and space efficient.

2. To evaluate the impact of injection of linguistic typology knowledge into the

end-to-end model. Furthermore, we aim to determine the best framework for

such typology knowledge injection.

We experimented with three variations of our proposed End-to-end Seq2seq ED-parser

namely Base E2E, Base E2E-w-Aux and Base E2E-w-Typ models. The Base

E2E model has similar architecture as depicted in Figure 6.3 but without the typology

vector. Thus, Base E2E does not use linguistic typology knowledge. On the other

hand, the architecture of Base E2E-w-Aux is similar to Base E2E with an addition

auxiliary task of predicting URIEL features of type WALS-Syntax, similar to UDify-

w-Syntax model for standard DP described in section 5.5.6. Finally the Base E2E-

w-Typo model feeds-in the typology features directly as shown in Figure 6.3.

All variants of the End-to-end Seq2seq ED-parser are trained on a large joint polyglot

corpus created by concatenating all the treebanks in the provided training dataset for

IWPT 2021 Shared Task. We evaluated the parsers on the test corpora provided for

the IWPT 2021 Shared Task in eight distinct languages namely bg, et, en, lv, lt, ru,

sk and sv. We outline the results achieved by our proposed model in detail in section

6.4. Table 6.1 outlines hyper-parameters used in the experiments. These values are

obtained by minimizing the training loss for English-EWT Corpus provided in the

dev dataset provided for the IWPT 2021 Shared Task for Base E2E-w-Typ variant.

6.4 Results and Analysis

This section outlines the results obtained by the experiments described in section 6.3

while addressing the research questions RQ9 and RQ10 as follows. All the results

are calculated using the evaluation script provided by the IWPT 2021 Shared task.
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RQ9: Does the cross-lingual mBERT based End-to-end Enhanced De-

pendency Parser perform at par with various state-of-the-art cross-lingual

approaches to the enhanced dependency parsing task?

Table 6.3 compares the average results (average of all languages) by all three variants

of our proposed end-to-end parser with all other participant models of IWPT 2021

Shared Task, on all five tasks namely UPOS-tagging, UFeat-tagging, Lemmalization,

DP and EDP. It is evident that the proposed End-to-end EDP parser performed

at par with state-of-the-art approaches to EDP task including other participant ap-

proaches to IWPT 2021 Shared Task, while being much simpler in design.

RQ10: Does linguistic typology knowledge injection into a cross-lingual

mBERT based End-to-end Enhanced Dependency Parser improves its per-

formance ? Is it better to feed-in the linguistic typology knowledge into

the model directly along with word-representations, or to inject typology

knowledge though an auxiliary task ?

Table 6.4 compares the Enhanced Unlabelled Attachment Score (EUAS) and Enhanced

Labelled Attachment Score (ELAS) achieved by all three variants of the proposed End-

to-end Seq2seq Enhanced Dependency parsing. It is evident from the results in tables

6.4 and 6.3 that the linguistic typology knowledge induction indeed led to improve-

ment in performance on the ED task, as both Base E2E-w-Aux and Base E2E-w-Typ

models outperformed the Base E2E model for all the target languages. The results

also show that directly feeding-in the typology knowledge into the end-to-end parser

leads to better performance then injecting this knowledge through the auxilliary task,

as the Base E2E-w-Typ model outperformed the Base E2E-w-Aux for all the target

languages.

Table 6.2 outlines results achieved by the Base E2E-w-Typ model on all eight blind

test-corpora on which the model is evaluated, for all the six tasks. Appendix C out-

lines all the results achieved by all the participants of IWPT 2021 Shared tasks for

reference.

6.5 Conclusion

Enhanced Dependency Parsing framework in an interesting extension of standard

Dependency Parsing framework, such that an Enhanced Dependency parse-tree com-
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prises of additional syntactic and semantic information which is missing in the stan-

dard dependency parse-tree. Such additional knowledge is useful in numerous down-

stream tasks.

In this work we proposed and evaluated a multitasking end-to-end mBERT based

model for cross-lingual EDP task. As far as we are aware, this is the first work that

evaluated an end-to-end approach to EDP task. Subsequently we injected linguis-

tic typology knowledge into the proposed framework to examine the impact of such

knowledge injection on its performance. We also evaluated various frameworks for

such typology knowledge injection. This is the first work that aimed to utilise linguis-

tic typology knowledge available in an external database to improve the performance

of an Enhanced Dependency Parser.

Our results show that the proposed end-to-end model preformed at par with the

state-of-the-art models while being much simpler in design and therefore much more

time and space efficient than the state-of-the-art models. Furthermore, the results

also proved that injecting the linguistic typology knowledge does indeed lead to im-

provement in performance of the parser significantly.
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Chapter 7

Cross-lingual Semantic Role
Labelling with ValPal Database
Knowledge

This chapter is based on our research work published as following paper:

• Cross-lingual Semantic Role Labelling with the Valpal database knowl-
edge. In Proceedings of THE 3RD WORKSHOP ON KNOWLEDGE EX-
TRACTION AND INTEGRATION FOR DEEP LEARNING ARCHITECTURES (DEEP-
LIO) AT ACL 2022

Semantic role labeling (SRL) is the task of identifying various semantic argu-

ments (such as Agent, Patient, Instrument, etc.) for each of the target verb (pred-

icate) within an input sentence. SRL is useful as an intermediate step in numer-

ous high level NLP tasks, such as information extraction Christensen et al. (2011);

Bastianelli et al. (2013), automatic document categorization Persson et al. (2009),

text-summarizing Khan et al. (2015) question-answering Shen and Lapata (2007) etc.

However state-of-the-art neural-network approaches to SRL task are supervised ap-

proaches that require large annotated training dataset, thus leading to data-sparsity

issue in low-resource languages. Similar to dependency parsing task (chapter 5), var-

ious cross-lingual approaches are applied for SRL as well. Cai and Lapata (2020) is

the state-of-the-art approach to cross-lingual SRL which is trained on English and

can be utilised for other low-resource languages. In this work we inject the knowl-

edge available in ValPal database , which is a comprehensive semantic typology

database, into this state-of-the-art cross-lingual semantic role labeller. Such knowl-

edge injection should improve the performance of the model.
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Section 7.1 provides a high-level overview of the semantic role labelling task while sec-

tion 7.2 provides a review of various cross-lingual approaches to SRL task. Section 7.3

describes Valpal database whereas section 7.5.1 will describe the process of injecting

this valpal database knowledge into the state-of-the-art Cai and Lapata (2020) model.

Subsequent sections provide experimental details and discuss the results obtained.

7.1 Semantic Role Labelling

Semantic Role Labeling/Shallow semantic-parsing is the task of assigning distinct

labels to words and phrases in a sentence that indicate their semantic role within

the sentence. These semantic roles include roles such as Agent, patient, instrument,

beneficiary etc. In other words, SRL task aims to identify who did what to whom

and how in a sentence.

The task of semantic-parsing Kamath and Das (2018) aims to represent the entire

meaning of a sentence either as a first-order-logic rule or as a semantic graph. Such

representations can significantly differ based on the word order. For example, consider

the three example sentences listed as follows.

1. Jane baked the cake for Harry

2. Harry enjoyed the cake by Jane

3. The cake was prepared by Jane for Harry

Although all three sentences convey the same meaning i.e. Jane is the baker,

the Cake is baked and Harry ate it, yet the sophisticated syntax-based meaning-

representations such as Elementary Dependency Structures representation Buys and

Blunsom (2017), Prague Tectogrammatical Graphs Zeman and Hajic (2020) etc. of

all three sentences are significantly different. Semantic Role Labeling is a word-

level meaning-representation which resolves this issue. Figure 7.1 which depicts the

semantic role labels for the three sentences listed previously. If a sentence has more

than one verbs, each word in that sentence is assigned a distinct semantic role label

with respect to each verb predicate. Hence a unique semantic role label sequence

is extracted for each verb-predicate in the sentence independently. Generally, SRL

sequences of all verbs are represented in the conllu format (section 5.2.1) as shown in

figure 7.2.
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Figure 7.1: Semantic Role labels in the example sentences.

Figure 7.2: Example of Semantic Role Labelling of a multi-predicate sentence repre-
sented in the conllu format
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Figure 7.3: Examples of Propbank Annotations

7.1.1 SRL Datasets and Label-sets

Most SRL models are trained on a fixed pre-defined set of semantic-labels. FrameNet

Baker et al. (1998) and PropBank Kingsbury and Palmer (2003) are two manually

annotated SRL datasets. Both of these datasets also provide a unique set of semantic

role-labels which are both derived from distinct linguistic principles. FrameNet and

Propbank label-sets are indeed the most widely used within the research community.

Section 7.1.1.1 will describe PropBank and section 7.1.1.2 will describe FrameNet in

details.

7.1.1.1 PropBank

The Proposition Bank (PropBank) is a publically available dataset of sentences

which are manually annotated with the semantic roles. The PropBank dataset is

available in a number of languages with the standard semantic role label schema

across all the languages. The English PropBank comprises all the sentences in the

popular Penn TreeBank corpus Taylor et al. (2003) whereas the Chinese PropBank

comprises all the sentences from the Penn Chinese. Subsequently, copra in numerous

other languages including it, de, es, hi etc. were annotated with PropBank label

scheme and were released publicly by various researchers.

As languages are typologically distinct it is very difficult to define a universal set of
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ArgM Description Examples
ArgM-TMP Temporal Argument (when?) yesterday, tomorrow, next week
ArgM-LOC Location Argument (where?) at the market, in Dublin
ArgM-DIR Direction Argument (where?) to home? down
ArgM-MNR Manner Argument (how?) clearly, with much eagerness
ArgM-CAU Causal Argument (why?) due to , in response to
ArgM-REC Recipient Argument audiences, each other, him
ArgM-ADV Miscellaneous
ArgM-PRD Secondary Predication Argument ... ate the fruit raw

Table 7.1: Common ArgM labels in the PropBank label set

semantic role labels which are applicable to most of the world’s languages. Hence, in

the PropBank schema, all the semantic roles are indicted simply by only the numbers

rather than names (such as Arg0, Arg1, Arg2 etc.). In general, Arg0 indicates the

semantic role PROTO-AGENT, and Arg1 indicate the PROTO-PATIENT role. The

semantic-roles of the other labels are less consistent, and vary with the predicate

verb. Although, in most cases the Arg2 label indicates the benefactor, instrument,

attribute or the end state. Figure 7.3, depicts the examples of sentences annotated

with the PropBank labels.

Apart from numbered annotations, PropBank schema also comprises of a number

of non-numbered arguments called Modifier Arguments (ArgMs) (eg: ArgM-

TMP, ArgM-LOC, etc.) as these represent roles that aim to modify or adjunct the

semantics of a sentence. These labels are indeed consistent across predicates and

languages. Table 7.1 lists the most common ArgM type PropBank labels.

7.1.1.2 FrameNet

FrameNet is a research project based at the International Computer Science Institute

(ICSI) in Berkeley, California. The project aimed to create a lexical database, based

on the linguistic theory of frame-semantics Lakoff et al. (1986). The lexical database

also provides a fixed set of arguments for each frame. Hence, the FrameNet labels are

more consistent and machine-readable as compared to PropBank, across languages.

Consider three example sentences labelled with PropBank annotations, listed as fol-

lows.

1. [Arg1Twitter-stock price] rose by [Arg26%.]

2. [Arg1Twitter-stock price] increased by [Arg26%]

3. There is a [Arg16%] rise in [Arg1Twitter-stock price].
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Argument Description
ATTRIBUTE The scalar property of the item that is changing
. DIFFERENCE The distance by which the item property changes on the scale.
FINAL STATE Description of the final state of item after the change on scale
FINAL VALUE The final value of item property after change.
INITIAL
STATE

Description of the initial state of item after the change on scale

INITIAL
VALUE

The initial value of item property after change.

ITEM The description of the item that is experiencing change.
VALUE-
RANGE

Range on scale on which the value of the ATTRIBUTE fluctuates

Table 7.2: Example Arguments of the frame change position on scale on English
Framenet

Frame Verbs
apply heat Cook, roast, boil, barbecue, fry etc.

change position on scale increase, decrease, rise, fall, went up etc.

Table 7.3: Example frames and their predicate verbs in English FrameNet

All three sentence convey the same information, but consists of three different verb-

predicates namely rise, rose and increased. FrameNet assigns all three verbs to a com-

mon frame called change position on scale. The frame change position on scale

consists of a fixed set of arguments, some of which are listed in Table 7.2 Table 7.3

provides some example frames and their example verb-predicates.

Hence, SRL with FrameNet labeling involves first identifying frame of the predicate

and subsequently identifying arguments of that frame within the sentence. All argu-

ments may not be present in the sentence.

7.1.2 Monoligual Approaches to SRL

The task of SRL typically involves predicting the semantic roles of each word for

each predicate within an input sentence. Modern approaches to SRL are supervised

ML based approach, that often adopt either FrameNet (section 7.1.1.2) of PropBank

(section 7.1.1.1) labeling scheme. This section provides a high level overview of these

approaches.
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7.1.2.1 Feature based approach

For each predicate in an input sentence, a feature-based semantic role labeller imple-

ments following steps:

1. Pruning: For any given predicate within a sentence, only a small number of

words are arguments while most of the words are to be labelled as NONE.

Hence, in the very first pruning step, the labeller filters out unlikely words in

the sentence using various heuristics.

2. Identification: For each word that is filtered from the heuristic based pruning

in step 1, the model then runs a binary classifier on it to classify if the specific

word is part of an argument or has to be assigned label NONE.

3. Classification: Finally for words that are filtered from step 2, the labeller runs

a multi-class classifier which classifies the argument type of it, out of all possible

argument types in PropBank and FrameNet.

Although the multi-class classifier (in step 3) classifies each word’s argument type

separately, thus making a simplifying assumption that each word can be labeled (as

argument of the predicate) independently. However, there is a global constraint on

the correct label-sequence, that there should be no overlap between argument types

for a single predicate (eg: A verb can not have two subjects in the same sentence).

Hence, for most feature-based labellers, the multi-class classifier generally outputs

the probability of each semantic role label being assigned to each word (instead of

the most probable label). Subsequently, a dynamic programming algorithm (such as

Viterbi algorithm Forney (1973)) is used to find the most probable role-label sequence

that satisfies the required constraints.

Popular semantic role labellers such as Gildea and Jurafsky (2002) use numerous

hand-crafted features (of the specific word being labelled) to be inputted into the

ML based multi-class and binary classifiers. These features include predicate-word,

head-word, tense, POS-tag, linear position of word phrase-type etc.

7.1.2.2 Neural based approach

State-of-the-art approaches to SRL are neural-network based approaches, that treat

the SRL ask as a sequence labelling task. Generally, neural-network approaches use

the BIO labelling scheme to label all words within the sentence simultaneously (for

each predicate independently though). In the BIO scheme Ratinov and Roth (2009)
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each tag is augmented with Begin, Intermediate or End indicators indicating the start

and end of an argument (if its multi-word).

Most common architectures for sequence-tagging tasks are Bi-LSTM based architec-

tures, which is widely adopted by NN based approaches to SRL such as Shi and Lin

(2019); He et al. (2017); Zhang et al. (2019). However state-of-the-art approaches

have also adopted transformer based architecture as it has become widely popular for

other similar sequence-tagging task Mohammadshahi and Henderson (2021) such as

POS-tagging, NER tagging.

7.2 Cross-lingual Approaches to SRL

Similar to other NLP tasks, as already explained, the state of the art approaches to

SRL (section 7.1.2) are supervised approaches which require large annotated datasets

to be trained on thus limiting their utility to only high-resource languages. This issue

of data-sparsity (in low-resource languages) has been effectively addressed with nu-

merous cross-lingual approaches to SRL including Annotation Projection approaches

such as Padó and Lapata (2009); Kozhevnikov and Titov (2013); Akbik et al. (2015);

Aminian et al. (2019), Model Transfer approaches such as McDonald and Nivre

(2013); Swayamdipta et al. (2016); Daza and Frank (2019); Cai and Lapata (2020)

and the Machine Translation approaches such as Fei et al. (2020).

In this work, we provide an overview of Valency Patterns Leipzig (ValPal) online

database1 Hartmann et al. (2013) which is a multilingual lexical database, originally

created by the linguistic research community to study the similarities and differences

in verb-patterns for various world’s languages. Furthermore, we provide a framework

to utilise the knowledge available in Valpal database to improve the performance of

the state-of-the-art cross-lingual approach to SRL task.

7.3 ValPal Database

Valency Patterns Leipzig (ValPal) is a comprehensive multilingual lexical database

which provides semantic and syntactic information about different verb-forms in vari-

ous languages, including many low-resource languages. The ValPal database provides

values of following features for each verb-form:

1. Valency: the total number of arguments that a base verb-form can take.

1http://ValPal.info/
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2. Argument-pattern: the type and order of arguments taken by a base verb-form

in its most common usage.

3. Alterations: the alternate argument-patterns that can be taken by either the

base verb-form or any of its morphological variant.

Table 7.4 depicts the information about three lexical units namely cook , kochen

and cuocere as provided in the ValPal database. Please note that Table 7.4 lists

only a few of all the alterations provided for these verb-forms in ValPal database due

to space constraints. Lexical units cook , kochen and cuocere are en, de and it

words representing base verb-form for verb activity COOKING.

7.3.1 Coding of Argument-patterns

In ValPal database each argument-pattern (including alteration) is coded with a

unique coding-frame. For example in Table 7.4, the argument-pattern of English

base verb-form cook, is coded as follows

1− nom > V.subj[1] > 2− acc

The code indicates that the base verb-form cook takes 2 arguments in its most

common usage (valency of 2). The first argument is cooker (indicated as 1-nom) and

the second one is Cooked-food (indicated as 2-acc). V.subj[1] indicates the verb with

the first argument as its agent. The order of arguments are cooker–V–cooked food

(eg: She is cooking the fish.).

Verb-form cook also has an alteration called Causative-Inchoative with the derived

argument-pattern as follows.

2− acc > V.subj[1]

This argument pattern indicates that verb-form can also have order of arguments as

cooked food–V with Agent argument missing from the sentence (eg: The fish is

cooking).

7.3.2 Coding-sets

ValPal provides a unique coding-set for each language. The codes in these coding

sets indicate various argument-types including modifier argument-types. For example,

codes NP-Nom, NP-acc and LOC-NP indicate the AGENT (Arg0), PATIENT (Arg1)

and modifier LOCATION (ArgM-LOC) arguments respectively in the coding-sets
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of all languages. The codes with+NP and mit+NP-dat indicate INSTRUMENT

argument in English and German coding-sets. Similarly codes UTT-NP indicate

the argument TEMPORAL in most coding-sets. In these codes, the NP indicates

the index of valency occupied the respective argument within the argument pattern

(eg: code 2 − acc in argument pattern 2 − acc > V.subj[1] indicates argument-type

PATIENT with the valancy-index of 2).

7.3.3 Alteration Types

As already explained, the ValPal database also provides a list of alternate argument-

patterns (called alterations) for each verb-form. Some of these alterations are morpho-

independent as they can be taken by the respective base-verb in any morphological

form, whereas others are morpho-dependent as they can be taken by the respective

verb only in a specific morphological form.

For example, both the Reflexive-Passive and Impersonal Passive alterations of the

italian base verb-form cuocere, outlined in Table 7.4 are morpho-dependent alter-

ations as these alterations are observed only when the verb-form possesses morpheme

si.

The ValPal database is originally created by the linguistic research community, typi-

cally to study the similarities and differences in verb-patterns for various world lan-

guages. However this knowledge can also be used by NLP research community for

building the models for data-sparse languages.

7.3.4 FrameNet to aid ValPal

One shortcoming of the Valpal database is that its vocabulary is limited for many

languages. If we encounter a verb in the training-set that is missing in ValPal, we

utilised the FrameNet database to extract the desired argument-pattern and alter-

ations of it from ValPal itself.

To extract this knowledge about the missing verb, firstly we extracted the frame of

the missing verb from the respective FrameNet database. Subsequently, we extracted

a replacement-verb that belongs to the same frame (as that of the missing verb)

and is available in ValPal database. Finally, we assigned the argument-pattern and

alterations of this replacement-verb to the missing verb. For example, the verb bar-

becue is missing from the ValPal database. Yet, the verb barbecue belongs to frame

COOKING-45.1 in English FrameNet Barkley. Another verb-form called cook be-

long to the same frame (COOKING-45.1) and is available in ValPal database. Thus
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Verb-
form

Lang Argument-pattern Alterations (Alteration-name:Arg-
pattern (example) )

cook English 1 − nom >
V.subj[1] > 2− acc

Understood Omitted Object :1 −
nom > V.subj[1] > 2−acc (She walked
in while I was cooking.)

Causative-Inchoative : 2 − acc >
V.subj[1] (The soup is still cooking.)

kochen German 1 − nom >
V.subj[1] > 2− acc

Benefactive Alterna-
tion :1 − nom > V ′ > subj[1] >
3 − dat > 2 − acc (Ich koche meiner
Mutter eine Suppe.)

be-Alternation :1 − nom >
beV ′.subj[1] > 4− acc > mit+ 2− dat
(Die Großmutter bekocht die Kranke
mit Suppe.)

Ambitransitive Alternation :2 −
nom > V ′.subj[2] (Das Wasser kocht.)

cuocere Italian 1 > V.subj[1] > 2 Reflexive-Passive :2 >
siV ′.subj[2] > daParteDi + 1
(La carne si cuoce con attenzione.)

Impersonal Passive :siPassV ′ >
da + 1 (Quando si è (stati) cotti dal
sole si diventa di color rosso intenso.)

Table 7.4: Sample verb-form knowledge in Valpal database

we use argument-patters provided in ValPal for verb-form cook as the argument-

patterns for barbecue.

7.4 FOL rules from ValPal

To inject the entire ValPal database knowledge about any low-resource target-language

l in a Cross-lingual Neural Network model, we represented this knowledge as a set

of First-order-logic (FOL) rules Fl. The process of generating this set of FOL rules

involves two steps namely Translating ValPal Argument-patterns to Propbank label

orders and Writing Propbank-label order as FOL rule described as sections 7.4.1 and

7.4.2.

In ValPal database, the argument-pattern for verb-form tie is outlined as equation
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7.1 (as Q).

Q = 1− nom > V.subj[1] > 2− acc > LOC − 3(> with + 4) (7.1)

We use this as an example to demonstrate the process of converting an argument-

pattern to a FOL rule.

7.4.1 Translate argument-patters to Propbank Order

In this step, we translate all the Valpal’s argument-patterns (including alterations)

for all lexical verb-forms in any target-language l, to the Propbank Orders. The entire

process of translating a ValPal argument-pattern P of the language l into a Propbank

Label-order involves two simple text-processing sub-steps described as sections 7.4.1.1

and 7.4.2.

7.4.1.1 Replace modifier argument-types

As already explained in section 7.3.2, Valpal database provides a unique coding-set

for each language. In this subset, we examined the entire coding-set for language

l to identify the codes that refer to a modifier argument-type (eg: LOC-NP and

UTT-NP etc. in English coding-set for LOCATION and TEMPORAL modifier-

arguments), and created a mapping table that maps these modifier-argument codes

to the corresponding Propbank annotations (eg: LOC-NP mapped to ARGM-LOC;

UTT-NP mapped to ARGM-TMP etc.). The coding-set of any language in the ValPal

database is small thus making it feasible to manually create such a mapping table.

Subsequently, we used this mapping table to replace all modifier argument-patterns

(if any) in the argument-pattern P being translated, with the corresponding Propbank

label.

After replacing the modifier argument-types we reduce the valancy-index of all the

arguments following the replaced modifier argument, in the argument-pattern being

translated, by one. For example, the argument-pattern outlined as equation 7.1

comprises only one modifier argument-type namely LOC3.

We replaced this with the corresponding Propbank label namely ARGM-LOC and

reduced the valency-index of all argument-types following this replaced argument-

pattern by 1 (thus (with+4) is re-written as (with+3)). Hence the argument-pattern

in Equation 1 would be re-written as equation 7.2.

Q = 1− nom > V.subj[1] > 2− acc > ARGM − LOC(> with + 3) (7.2)
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7.4.1.2 Rewrite all non-modifier argument types

After replacing all modifier argument-types in the argument-patterns by the process

described in section 7.4.1.1, we simply replaced all left over arguments in the ValPal

argument-pattern P as ’ARGx’ where x is valancyIndex−1. Hence argument 1−nom,

2 − acc and with + 3 (with valancy Indexes as 1, 2, 3 respectively) in equation 7.2

would be replaced by Arg0, Arg1 and Arg2 respectively.

Finally we replaced V subj[NP ] with V and removed all bracket symbols. Hence

argument-pattern outlined as equation 7.2 would be translated as following equation

7.3.

Q = ARG0 > V > ARG1 > ARG− LOC > ARG2 (7.3)

7.4.2 Write Propbank Label order as FOL rule

Having represented all argument-patterns (including alterations) for all lexical verb-

forms of language l as allowed Propbank Label-orders, we rewrite each verb-form

and Propbank Label-order pair as a FOL rule. For example the pair of verb-form

tie and its corresponding allowed Propbank Label-order outlined as equation 7.3, is

represented by the FOL rule indicated as the following equation 7.4.

f = baseForm(V, tie) ∨ pattern(Y,Q) (7.4)

Here Q is the Propbank label-order outlined in equation 3, and Y is the sequence

of Propbank tag-sequence predicted by a neural-network model for any input token-

seq. The logic-constraint in equation 7.4 would be true if the verb for which the

arguments are being predicted is a variant of base verb-form tie and the predicted

SRL tag sequence Y satisfies the label order Q

While checking whether a predicted SRL tag sequence follows a specific order, we ig-

nore the ‘O’ annotations (‘O’ indicates semantic role label ‘NULL’ in the Propbank

Annotation scheme). For example, the SRL tag sequences ARG0, ARG0, O, O,

V, ARG1, ARG-LOC, O, ARG2 follows the argument-pattern.

To check if the verb for which the arguments are being predicted is a morphological

variant of the specific base verb-form, we perform stemming of both base verb-form

and the token from sentence which is tagged ‘V’ by the model. If the stem strings

are equal we consider the verb token to be a variant of base verb-form.

If an argument-pattern (represented as Propbank label-order) is for a morpho-dependent
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alteration, then the morphological constraint is also added to the FOL rule represent-

ing the argument-pattern. For example, in Table 7.4 the argument-pattern Reflexive-

Passive is a morpho-dependent alteration. This argument-pattern is represented as

FOL defined by equation 7.5.

f = baseForm(V, cuocere) ∨morphoForm(V, si) ∨ pattern(Y, Q̂) (7.5)

Here Q̂ represents the corresponding label-sequence for Argument-pattern. The

rule morphoForm(V, si) constraints the verb V to have morpheme si for the rule to

be true.

Hence we obtain a set of FOL rules Fl representing the entire Valpal database knowl-

edge about language l (with each verb-form and argument-patterns pair provided in

the Valpal database for the language l as a single FOL-rule f ∈ Fl). These FOL

rules are used during the fine-tuning of a cross-lingual neural-network model for SRL

in target-language l. During fine-tuning, the model is always rewarded if it predicts

an SRL tag-seq Y which satisfies atleast one of the FOL rule f ∈ Fl, and penalised

otherwise. Section 7.5.1 will explain the fine-tuning process in more detail.

7.5 Model

7.5.1 Labeler fine-tuning with ValPal

This section describes the framework adopted by us to induce the target-language

specific ValPal database knowledge expressed as a set of FOL rules Fl, into the pre-

trained Semantic Role Labeler. Our framework is inspired by the Deep Probabilistic

Logic (DPL) framework proposed by Wang and Poon (2018). The framework assumes

the availability of only an unlabelled target-language corpus. Hence, for the Labeler

fine-tuning sub-step, we randomly sample a batch from the already available parallel

source-target data and utilised only the target language part of it.

Let X = x1.....xT be an input sentence and Y = y1.....yT be any SRL-tag sequence.

Further, let Ψ be the pre-trained Bi-LSTM based Semantic Role Labeler such that

Ψ(X, Y ) denotes the conditional probability P (Y |X) as outputted by the final soft-

max layer of Ψ.

The fine-tuning of this pre-trained Ψ to specific target-language l requires an unla-

belled target-language training corpus. Given such an unlabelled target-language-

corpus Xtarg, for each X ∈ Xtarg we input sentence X into the pre-trained Ψ to

compute the most probable SRL-tag sequence Y as Y = argmaxŶ (Ψ(x, Ŷ )) . Subse-

quently we input both the sentence X and its predicted most-probable SRL tag-seq
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Y in all the FOL rules in Fl to compute their value (as 0.0 or 1.0). DPL framework

defines the conditional probability distribution P (Fl, Y |X) as equation 7.6.

P (Fl, Y |X) =
∏
f∈Fl

exp(w.f(X,Y )).Ψ(X,Y )

exp(w)
(7.6)

The framework assumes the Knowledge-constraints to be log-linear and thus defines

each knowledge-constraint as exp(w.f(X, Y )) where f ∈ Fl is the FOL rule repre-

senting the respective knowledge-constraint. Here w is the pre-decided reward-weight

assigned to all constraints. Hence the predicted output-sequence Y would be re-

warded (as its likelihood would increase by a factor of exp(w)) if it follows one of the

defined argument-patterns in ValPal database for the respective verb for which the

arguments are being predicted (f(X, Y ) = 1.0). However no penalty is awarded for

not following the correct Argument-pattern.

7.5.1.1 Learning

The ideal way to optimize the weights (fine-tune) of the model Ψ is by minimizing

P (Fl|X) and updating the parameters through back-propagation. We can compute

P (Fl|X) by summing over all possible SRL-tag sequences as P (Fl|X) = ΣY P (Fl, Y |X).

However computing P (Fl, Y |X) by equation 7.6 with all possible output-sequences,

and subsequently back-propagating through it, for each training example is com-

putationally very inexpensive. Thus DPL framework also provides a more efficient

EM-based approach Moon (1996) to the parameter fine-tuning which is adopted by

us.

The full process of learning the parameters of Ψ (initialized with parameters pre-

trained on source language) is outlined as Algorithm 2. For each training-example

X ∈ Xtarg, the Algorithm 2 implements three steps. In the first-step, it predicts

the most probable SRL-tag sequence Y for the given training-example X as Y =

argmaxŶ (Ψ(x, Ŷ )) with current parameter values for Ψ.

In the E-step, it compute q(Y ) = P (Fl, Y |X) by applying equation 4 with current

parameters of Ψ. Finally in M-step it keeps q(Y ) as fixed and update parameters of

Ψ by minimizing the KL-divergence Kullback and Leibler (1951) loss between q(Y )

and the probability of Y from Ψ(X, Y ) (i.e. P (Y |X)).

In other words, in each epoch step the model first computes the joint likelihood of Fl

and Y i.e P (Fl, Y |X) with current model parameters, and subsequently it updates

the parameters to predict likelihood of Y i.e., to be as close to P (Fl, Y |X) as possible.
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Algorithm 2 Fine-tuning of Semantic Role Labeller

Require: Target Language corpus Xtarg; set of FOL rules Fl representing entire
Valpal db knowledge; Pre-trained LSTM based Semantic Role Labeller Ψ; Number
of Epochs N ;
repeat

for each X ∈ Xtarg do
▷ E-Step

Y ← argmaxŶ (Ψ(X, Ŷ ))
q(Y )← P (Fl, Y |X) ▷ by equation 7.6

▷ M-Step
Ψ← argminΨ̂(DKL(q(Y )||Ψ̂(X, Y )))

end for
until convergence

7.6 Experiments

This section described the experiments performed by us to evaluate the proposed

model. Subsequently, section 7.7 will discuss the results achieved. These experiments

aim to address following novel objectives:

1. To evaluate the impact of injection of VALPAL database knowledge on the

performance of a cross-lingual simple Bi-LSTM based model for the SRL task.

2. To evaluate the impact of Polyglot and Few-shot training on the performance

of the proposed BiLSTM based Semantic Role Labeller with VALPAL typology

knowledge.

3. To evaluate the impact of VALPAL vocabulary expansion with FrameNet databse,

on the performance of the proposed BiLSTM based Semantic Role Labeller with

VALPAL typology knowledge.

7.6.1 Dataset

We experimented with four languages namely en, de, zh and it as these languages are

covered in both the ValPal database as well as in the CoNLL 2009 Shared task Hajic

et al. (2009) dataset. The Semantic Role Labeller requires a fully-annotated training

dataset in the high-resource source-language. We utilized the Universal Proposition

Banks provided at 2 provided for CoNLL 2009 Shared task, for training of the Se-

mantic Role Labeller and the evaluation of various systems.

2https://github.com/System-T/UniversalPropositions
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Hyper-parameter Value
Dropout prob. 0.01
Bach-size 32
Epochs 150
embeddings size 768
predicate indicator embed size 16
Bi-LSTM hidden states size 400
BiLSTM depth 3
hidden biaffine scorer size 300
Bi-LSTM hidden states size 256
BiLSTM depth 2
compressed role rep size 30
hidden biaffine scorer size 30

Table 7.5: Hyper-parameter settings for input and training (first block), semantic
role labeler (second block) and semantic role compressor (third block). Semantic role
labeller and Semantic role compressor are same as Cai and Lapata (2020)

On the other hand, the Semantic Role Compressor component requires sentence-

paired parallel copra in source and target languages. We used the Europarl parallel

text-corpus Koehn et al. (2005), and the large-scale EN-ZH parallel corpus Xu (2019)

to train the Semantic Role Compressor, as used by Cai and Lapata (2020).

We used the target-language part of the same parallel-corpora independently for the

Valpal knowledge induction, as the Valpal database knowledge induction simply re-

quires unlabelled text-corpus in the target-language.

7.6.2 Model-configurations

We computed the language-independent BERT-Embeddings to be fed into the net-

works using pre-trained Multilingual BERT (mBERT) Wu and Dredze (2019) model.

These embeddings are calculated in same way as computed in the work of Kon-

dratyuk and Straka (2019a). Given a sentence S, we tokenised the whole sentence

using WordPiece tokeniser Wu et al. (2016). Subsequently, we fed this token-sequence

into pre-trained mBERT provided by HuggingFace 3.

Embedding of any word w ∈ S i.e. ew is computed by taking average of mBERT

outputs of all Wordpiece tokens corresponding to word w. Subsequently, these word-

embeddings are frozen during the training of the networks. Table 7.5 outlines the

hyper-parameters used during training.

3https://huggingface.co/bert-base-multilingual-cased
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Algorithm 3 Full Training process. The function FineTune represents the process
outlined as 2 and function CrossTrain represents the cross-lingual training proce-
dure adopted by Cai and Lapata (2020). LCE is cross-entropy loss and LKL is KL
divergence loss

Require: Annotated Source language corpus {XTagged, YTagged}; Parallel Source-
target Corpus {XS

Parallel, X
T
Parallel}; set of FOL rules representing entire Valpal db

knowledge of target language Fl; batch-size b; Number of Epochs E Semantic Role
Labeler Ψ; Semantic Role Compressor Φ
steps← |XTg|/b
for epoch← 1 to E do

for step← 1 to steps do
X, Y ← Sample({XTg, YTg},b)
XS, XT ← Sample({XS

Pr, X
T
Pr},b)

▷ Labeler pre-training
Ψ← argminΨ̂(DCE(Y ||Ψ̂(X)))

▷ Labeler Fine-tuning
Ψ← FineTune(XT , FL,Ψ, b)

▷ Compressor training
Φ← argminΦ̂(DKL(Ψ(X)||Φ̂(X)))

▷ Cross-lingual training
Φ,Ψ← CrossTrain(XS, XT ,Ψ,Ψ)

end for
end for

7.6.3 Baselines

We compared the performance of our proposed model against the base-model Cai and

Lapata (2020) as well as numerous other state-of-the-art baselines. These baselines

include two annotation projection based models namely Bootstrap Aminian et al.

(2017) and CModel Aminian et al. (2019), as well as two strong mixture-of-experts

models namely MOE Guo et al. (2018) which focus on combining language spe-

cific features automatically as well as MAN-MOE Chen et al. (2018) which learns

language-invariant features with the multi-nominal adversarial network as a shared

feature extractor. We also compared with PGN Fei et al. (2020) which is the state-of-

the-art translation-based model which translates the source annotated corpus into the

target language, performs annotation projection, and subsequently trains the model

on both source and the translated corpus. We utilised the source-code provided by

the authors of each of these baselines to train and test them.
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Model it de zh avg
Bootstrap 51.7 55.2 58.4 55.1
CModel 55.5 57.0 61.1 57.9
MAN-MOE 57.1 64.0 64.7 61.9
MoE 56.7 63.2 65.2 61.7
PGN 57.9 65.3 65.9 63.0
Base-wo-Compressor 37.1 49.7 45.3 44.0
Base-wo-Compressor+ Valpal 37.8 54.2 49.9 47.3
Increase 0.7 4.5 4.6 3.3
Base-full 57.2 65.1 68.8 63.7
Base-full+ Valpal 57.9 69.5 73.4 66.9
Increase 0.7 4.4 4.6 3.2

Table 7.6: Results for Monoloingual settings (with extended vocab for de and zh)

Model it de zh en avg
MAN-MOE 57.7 66.2 65.9 66.0 63.9
MoE 57.1 63.5 66.1 64.1 62.7
PGN 58.0 65.7 66.9 67.8 64.6
Base-wo-Compressor 37.6 50.2 48.9 49.9 46.6
Base-wo-Compressor + Valpal 38.5 54.7 53.6 54.8 50.4
Increase 0.9 4.5 4.7 4.9 3.8

Table 7.7: Results in Polygot settings

7.7 Results

7.7.1 Monolingual training

In the first set of experiments we trained the models on a single source language en

and tested these on the target languages zh, it and de. In these settings, we trained

the models on English UPB train-dataset and tested them on the UPB test-sets of

the target-languages. Table 7.6 shows the labeled F-scores achieved on each of these

target-languages. In Table 7.6, the Base-wo-Compressor refers to the base model

without the SRL compressor, whereas Base-full refers to the full base model.

7.7.2 Polyglot training

Table 7.7, outlines the results obtained under the polyglot training settings. For

each experiment within these settings, the models are trained on a joint polyglot

corpus of the three out of four languages namely en, it, de and zh, excluding the

target language for which the results are outlined. For each experiment within these

settings, the training corpus size is always fixed to 600,000 tokens to ensure controlled
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it de zh
Vocab 125 128 122
Ext-vocab – 975 415
Base-full 57.2 65.1 68.8
Base-full+ ValPal 57.9 65.9 68.7
Increase 0.7 0.8 0.9
Base-full+ ValPal-ext – 69.5 73.4
Increase 0.7 4.4 4.6

Table 7.8: Results with and without ext-vocab

experiment-settings.

We created such a polyglot corpus by randomly sampling sentences from UPB train-

set for each of the three source-languages until the token-size becomes approximately

equal 100,000, concatenated all these sampled datasets and randomly shuffled the

order. Alignment-projection based approaches and the Base-full are not evaluated in

the polyglot settings as these approaches require parallel-aligned source and target

language sentence-pairs.

7.8 Analysis

In this section we analyse the results outlined in section 3.9 to address the research

questions RQ11, RQ12 and RQ13 listed in section 1.1.1 as follows.

RQ11: Does the performance of a simple BiLSTM model for the Semantic

Role Labelling task improve, when the semantic typology knowledge of

the target-language available in the ValPal database, is injected into it,

within monolingual and polyglot training training scenerio ?

RQ12: Does the impact of injecting the ValPal database knowledge into

the state-of-the-art cross-lingual BiLSTM based model for the Semantic

Role Labelling task increases due to joint polyglot training as compared

to the mono-lingual training ?

Results in Table 7.6, show that for both Base-wo-Compressor and Base-full model,

adding Valpal database knowledge improved the performance of it for all three target

languages. Furthermore, for all three target-languages, the improvement in perfor-

mance of both Base-wo-Compressor and Base-full models due to Valpal knowledge
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injection are same i.e 0.7 for it, 4.4 for de and 4.6 for zh (average 3.2). This provides

the evidence that the improvement is indeed due to the Valpal Knowledge injection.

Similar trends are observed for polyglot training Results show that adding Valpal

knowledge improves the performance of Base-wo-Compressor model, even within

the polyglot settings, Furthermore, it is observed that although Base-wo-Compressor

model performs better in the polyglot training settings as compared to monolingual

settings for most of the target languages, the improvement in performance of Base-

wo-Compressor due to Valpal knowledge injection is the same in both settings. This

is because the fine-tuning of model with Valpal database knowledge is performed only

with the unlabelled target-language corpus.

RQ13: Does extending the verb-inventory of ValPal database for a specific

target-language with other lexical databases (such as FrameNet and Verb-

Net) before injecting this ValPal knowledge into the cross-lingual BiLSTM

based model for the Semantic Role Labelling, increases the impact of this

knowledge injection ?

It can be observed in Tables 7.6 and 7.7 that the improvement on target-language it

is much lower than the improvements observed on zh, de and en. The reason being

that we extended the Valpal vocabulary of en, zh and de using English Framenet

Baker et al. (1998), Chinese Framenet You and Liu (2005) and German Framenet

Burchardt et al. (2009) by the process described in section 7.3.4. However the Italian

Framenet is not publicly available.

We indeed performed experiments to analyze the impact of vocabulary extension on

the performances. Table 7.8 outlines the results of these experiments. It can be ob-

served in the table that extending the vocabulary of Valpal with the Framenet does

lead to significant improvement in performance.

7.9 Conclusion

Valency Patterns Leipzig (ValPal) is a multilingual lexical database which provides the

knowledge about the argument-patterns of various verb-forms in multiple languages

including numerous low-resource languages. The database is originally created by

the linguistic community to study the similarities and differences in the verb-patterns

for various world’s languages. In this work we utilised this database to improve the

performance of the state-of-the-art cross-lingual model for SRL task.
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We proposed and evaluated a novel framework to integrate the entire Valpal knowl-

edge about any low-resource target-language into a state-of-the-art cross-lingual LSTM

based model for SRL task. Our proposed framework only requires an unannotated

target language corpus for the knowledge integration. Our results showed that VAL-

PAL database knowledge injection does lead to significant improvement in perfor-

mance. Furthermore, we extended the vocabulary of ValPal database with FrameNet

database, to improve the performance even more.

As far as we are aware, this is the first work that aimed to integrate the semantic

typology knowledge available in an external database into a neural-network model.

We evaluated the impact of this knowledge injection on the performance of the model

under various cross-lingual settings.
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Chapter 8

Conclusion

State-of-the-art neural-network based approaches to most NLP tasks have achieved

near human performance. However, these are supervised approaches that require

large annotated datasets to be trained on. This limits their utility to only a few

high-resource languages for which such dataset is available. Manually building such

dataset is tedious, difficult and very expensive. Furthermore, the large scope of lan-

guages and the tasks makes complete coverage infeasible.

Cross-lingual Transfer-learning (CLT) based approaches are distinct class of approaches

proposed by the researchers to address this issue of data-sparsity. A typical CLT based

approach involves training a model on a high-resource source-language and is applied

on a low-resource target-language. The CLT based approach represents the input

text using either delexicalized features or cross-lingual/multilingual features to make

the cross-lingual transferring from source to target language possible.

State-of-the-art CLT based approaches to most NLP tasks significantly outperform

unsupervised approaches. The CLT based approaches perform almost at par with

the fully supervised approaches if the source and target languages are genealogically

and typologically close to each other whereas the performance drops significantly if

the source and target languages are genealogically and typologically apart. In this

project we used linguistic typology knowledge to address this issue.

Linguistic typology is the branch of linguistics that aims to classify all human lan-

guages based on their phonological, syntactic and phonological properties. These

properties are represented as the values of numerous linguistic typology features.

Hence, there are numerous publicly available typology databases that provides sets

of typology-features and their possible values, as well as respective feature values for

various languages. These databases are created by linguistics over decades primarily

to study the similarities and distinctions among world’s languages. However, in this

work we successfully utilised the knowledge available in such typology databases to
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improve the cross-lingual transferring ability of the CLT based models, specifically

in scenarios where source and target languages are genealogically and typologically

apart.

Our research project is a wide-scope project. In this project we experimented with

numerous typology databases, and four key NLP intermediate NLP tasks namely

Constituency Parsing, Dependency Parsing, Enhanced Dependency Parsing and Se-

mantic Role Labelling.

In section 8.1 we provide a chapter-wise summary of our research work. In section

8.2 we outline the overall inferences about the cross-lingual transfer-learning with lin-

guistic typology knowledge that we observed across various tasks. In section 8.3 we

outline the key limitations of linguistic typology knowledge with cross-lingual NLP

and in 8.4 we provide directions for future research.

8.1 Chapter-wise Summary

This section provides chapter-wise summary of key contributions made in the field of

cross-lingual NLP through our entire research-project.

Chapter 2: This chapter provided a very detailed literature review of the field of var-

ious significant unsupervised and cross-lingual approaches to numerous NLP tasks,

applicable within the low-resource scenarios. The chapter also reviewed linguistic-

typology field including various open-source linguistic-typology databases. Finally,

the chapter described previously published CLT based approaches that indeed used

linguistic typology knowledge to improve their performance.

Chapter 3: This chapter provided a brief overview of the Constituency Parsing

task including the Constituency Grammar schema. Subsequently, the chapter pro-

posed the Universal Recurrant Neural Network Grammar (UniRNNG) model which is

a cross-lingual neural network based constituency parser which utilises the linguistic

typology knowledge available in WALS database to improve cross-lingual transfer-

ring. We evaluated the proposed model on a selected set of source-target pairs in

both few-shot and zero-shot learning scenarios. We also evaluated the effect of poly-

glot training on the performance of our proposed UniRNNG model. Results obtained

showed that feeding the linguistic typology knowledge available in WALS database

into a cross-lingual RNNG parser does led to improvement in performance for lan-

guage pairs comprising of source and target languages that are typologically and
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geographically apart.

Chapter 4: This chapter proposed a multitasking model to predict numerous WALS

typology features including phonological, semantic and features for various languages,

as a solution to the SigTyp 2020 Shared Task. The proposed model was trained and

evaluated on the train-test dataset provided as part of the shared task. The model

was evaluated using the evaluation script provided by SigTyp 2020 indeed. The re-

sults showed that the proposed model performed at par with other complex solutions.

This model inspired our proposed multitasking end-to-end dependency parsers and

enhanced dependency parser described in chapters 5 and 6 respectively.

Chapter 5: This chapter described the dependency parsing framework and pro-

posed and evaluated an End-to-end BERT based model for cross-lingual Dependency

Parsing task. The proposed model injects linguistic typology knowledge in URIEL

database by predicting the typology feature values for the target language being

parsed as an auxiliary task within multitasking settings. Similar to the CP task, we

evaluated the proposed model in both few-shot and zero-shot settings. Results indeed

showed significant improvement in performance of due to the auxiliary task.

In the same chapter we also successfully improved the performance of the state-of-

the-art UDify model for cross-lingual DP by adding the same auxiliary task of URIEL

feature prediction.

Chapter 6: This chapter described the Enhanced Dependency parsing framework in

detailed. Subsequently, inspired by the End-to-end BERT based dependency parser

and UDify model described in Chapter 4, we proposed a Multitasking End-to-end

BERT based model for Enhanced Dependency parsing. We proposed this model as

part of SigParse 2021 Shared Task. Our proposed model performed at par with com-

plex state-of-the-art models while being much simpler in design. Furthermore, in

this chapter we also proved that injecting linguistic typology knowledge improves the

performance of the proposed model for EDP task for most target languages.

Chapter 7: This chapter described the Semantic Role Labelling task including a

review on monolingual and cross-lingual approaches to SRL. The chapter described a

state-of-the-art BiLSTM based cross-lingual model for the SRL task. Subsequently,

we provided a framework for induction of the semantic typology knowledge available

in Valency Patterns Leipzig (ValPal) database. The proposed framework is built
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on the Deep Probabilistic Logic framework for injecting first-order-logic rules into

a neural network model. The results showed that such knowledge induction led to

significant improvement in performance of the model.

8.2 Overall trends

As already described, our work is a wide-scope PhD where we experimented with

four key distinct NLP tasks Constituency Parsing, Dependency Parsing, Enhanced

Dependency Parsing and Semantic Role labelling. For each task, we evaluated and

compared the performances of a state-of-the-art cross-lingual transfer-learning model

of it, under numerous cross-lingual training and testing scenarios, such as Mixed

Polyglot vs single Source training scenarios, Few-shot vs Zero-shot learning scenarios,

Scenarios where Source and Target languages belong to same vs distant linguistic

families etc.

Furthermore for each task, we proposed a framework to inject linguistic typology

knowledge into a state-of-the-art model, and evaluated the impact of such typology

knowledge injection within all the cross-lingual training and testing scenarios de-

scribed previously.

In this section, we describe the key trends about cross-lingual transfer-learning and

the impact of typology knowledge injection, that we observed across all four tasks.

• Cross-lingual transfer learning performs better when source and tar-

get languages are typologically similar as compared to when they are

typologically apart. Specifically, we observed that models show strong per-

formance when source and target languages belong to same linguistic family.

For example, for all tasks we observed that a cross-lingual model trained on

a single source-language English shows strong performance on the target lan-

guages Danish and German, but shows poor performance of Chinese.

This observed trend is inline with the trends observed by most of the other re-

searchers 2.1.1.1. However, some modern works Bommasani et al. (2021) claim

that in the current large language model based approaches, the impact of the

typology distance between source and target languages is comparatively less on

the performances of the respective models. For example, in XTREME Hu et al.

(2020) and IGLUE Bugliarello et al. (2022) benchmarks, cross-lingual transfer

learning from Spanish to Chinese yields higher performance than from Spanish

to Friulan.
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• Mixed polyglot training performs better that Monolingual training,

specifically when the target language is apart from all the source

languages. If there are multiple source languages and a target language which

is distinct from all the source languages, we observed for all the tasks that the

mixed polyglot training on all the source languages leads to better performance

than monolingual training on each of the source languages.

• Typology knowledge induction leads to better performance within

Few-shot learning settings as compared to Zero-shot learning. For all

the tasks, we observed that the performance of cross-lingual models improves

significantly even when a handful of target languages are added to the training

corpus along with most of source languages. This is observed in both Mixed

Training and Single Source Training scenarios.

• Typology knowledge induction leads to larger improvement in per-

formance within Mixed Polyglot training scenario as compared to

Monolingual training scenario. We observed that same trend for all tasks.

Key reason behind this would be that Mixed polyglot corpus training would lead

to better generalization of models over a varied range of typology feature-values.

• Typology knowledge induction leads to larger improvement in per-

formance when the target languages are typologically distinct from

source languages. We observed this for all syntactic tasks.

8.3 Drawbacks of Typology knowledge Induction

In our work we aimed to improve the performances of cross-lingual transfer-learning

models for various NLP tasks with typology knowledge induction. Although, we

did achieve significant improvement in performances for all the tasks under various

scenarios, yet there are several reasons that we observed in our work, that could limit

the use of linguistic typology knowledge for a wide range of tasks and languages in

the future work. In this section, we list these issues.

1. Granularity: Most typology databases assign a single value for each typology

feature for a specific language. However, in most languages a single typology

feature takes multiple feature-values depending upon the context. Thus inject-

ing the linguistic typology knowledge with a single fixed value for each typology

feature, confuses the model thereby dropping the performance.
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We observed that for syntactic tasks, the granularity issue is very prominently

in free word-order languages. For example for constituency parsing task, the

typology knowledge injection leads to drop in performance for target language

Russian.

For dependency parsing task, we aimed to reduce this issue by injecting the

typology knowledge with multiple weighted feature-values for each typology

feature (instead of a single fixed feature value). We assigned weight to a feature-

value based on the percentage of times it is observed within training corpus for

the respective typology feature.

If for any target language, there are defined set of rules that defines what value

a typology feature can take within a context, such knowledge could be injected

into the prior of the model, instead of injecting the fixed typology feature-values.

2. Missing Typology: In most typology databases, the values of numerous ty-

pology features for many languages are missing. This issue is more prominent

for low-resource and less-documented languages but is also observed in well-

documented languages as well if no dominant value is observed for a specific

typology-feature. This limits the number of typology features or the number

of languages for which the typology knowledge injection can be utilized with

cross-lingual NLP model.

For dependency Parsing and Enhanced Dependency Parsing, we aimed to ad-

dress this issue by injecting the typology knowledge into the respective cross-

lingual parser through multitasking. Multitasking allows the injection of ty-

pology feature by predicting these feature-values as an auxiliary task instead

of feeding them directly along with word-embedding, thus even the typology

feature with missing value can be used in this framework.

3. Lack of Coverage: For most of the syntactic and phonological typology

database, we observed that the number of typology-features and the number

of languages covered within these databases are very limited just making them

less useful. For example, as described in chapter 7 we utilized the semantic

typology knowledge available in ValPal database along with a state-of-the-art

cross-lingual semantic role labelling model to improve its performance.

However, as described in chapter 7 the ValPal database covers only 35 languages

and that too with very limited vocabulary for most of these languages. We ad-

dressed this issue of limited by utilizing the FrameNet databases.

If we encountered any missing verb-form within the training/test dataset, we
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find a replacement-verb that belong to the same frame as that of the missing

verb, and is available in ValPal. Subsequently, we assumed the feature-values of

replacement verb as the feature-value for the missing verb. Our results showed

that such approach worked, but this approaches is also limited by the availabil-

ity of comprehensive FrameNet databases.

4. Redundancy: Most typology databases comprises of redundant features. For

example WALS database consists of a feature titled Order of Subject, Verb and

Object. The database also comprises of features Order of Subject and Verb

and Order of Verb and Object. We observed that such redundant features may

confuse the model thus leading to a drop in performance. We addressed this

issue by manually filtering out the redundant features. Our experiments showed

that such manual filtering does lead to marginal improvement in performance.

8.4 Future Research

The research-work described in this thesis can be extended in numerous directions.

We discuss some of these directions in the following subsections.

8.4.1 Exploring new typology-features and new tasks

As already explained, our research-project is a wide-scope project, in which we at-

tempted to inject typology knowledge available in numerous typology databases into

cross-lingual models for a wide range of intermediary NLP tasks. However there are

still a large number unexplored typology features and databases to be experimented

with. Furthermore, there are numerous unexplored NLP tasks that can be aided with

the linguistic typology knowledge within cross-lingual settings.

For example, there are numerous lexical databases such as the World Loanword

Database (WOLD), the Intercontinental Dictionary Series (IDS), and the Automated

Similarity Judgment Program (ASJP) and others (listed in chapter 2). The knowledge

within these lexical databases can be utilised for tasks such as word-sense disambigua-

tion or improving various multilingual/cross-lingual word-representations. Further-

more, morphological features is another set of typology features which are ignored in

this project. These typology features can be used by researchers for various numerous

morphological and lexical NLP tasks. Similarly, future researchers can also explore

phonology typology features to aid speech-processing tasks such speech-recognition,

speech-synthesis and speech-translation within cross-lingual settings.
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In fact, the typology knowledge injection framework proposed/used by us in this

project can also be indeed applied for these other tasks with these other typology

features as well.

8.4.2 Exploring new typology knowledge injection frameworks

In this project, we explored numerous frameworks to inject linguistic typology knowl-

edge into the neural-network models. These include directly feeding-in, attention,

deep probabilistic logic, multitasking etc. Chapter 2 lists these frameworks in detail.

There are numerous other frameworks proposed by researchers to inject external

database knowledge into a machine-learning/deep-learning models. The popular

frameworks for external knowledge injection into machine-learning models include

knowledge induction through Posterior Regularization Ganchev et al. (2010), Generalized-

Expectation based knowledge injection Mann and McCallum (2010), constraint-driven

learning (CODL) Chang et al. (2007), injection with dual decomposition (DD) Ko-

modakis et al. (2010), injecting typology knowledge by modelling the prior of bayesian

model Cohen (2016) etc.

Similarly there are numerous opportunities for external knowledge injection into the

deep-learning models, other than the ones explored by us in our project. For example,

apart from Deep probabilistic Logic framework, there are other frameworks such as

Hu et al. (2016b,a) to inject external knowledge as the first-order-logic constraints.

Finally there are frameworks such as Vulić et al. (2017); Mrkšić et al. (2017); Ponti

et al. (2018b) to inject external knowledge into the language-models for learning the

multilingual text-representations (rather than injecting into the models for the main

tasks).

In fact, building the frameworks for external knowledge injection in a neural-network

model is an active research-area within the field of deep learning. Thus, new frame-

works are being proposed every year. Researchers can modify and utilise these frame-

works to improve typology knowledge injection.

8.4.3 Improvement of Multilingual Large Language Models
with Typology

In section 2.1.1.4 we described the Transformer based Large Language Models (LLM).

These LLM can be utilised to convert an input sentence (as word/token sequence)

into a representation matrix. Such representation vector encode lexical, syntactic

and semantic properties of the input sentence. These LLMs are trained on a large

162



raw-text corpus.

A topmost layer can be added to these LLMs depending upon the required down-

stream task. Recently these LLMs have demonstrated extraordinary performances on

many downstream tasks. Furthermore, there are numerous multilingual LLMs that

show extraordinary performance on cross-lingual tasks.

In future work, researchers can explore these multilingual LLM to investigate how

much and which typology knowledge (about all the languages on which these are

trained) is encoded within them. Researchers can adopt approaches similar to the ty-

pology feature-value prediction approach adopted by Malaviya et al. (2017) with fea-

tures from LLMs, for such exploration. Finally the researchers can propose methods to

inject the missing typology knowledge within these LLMs either during pre-training

or through fine-tuning. Such knowledge injection should improve the cross-lingual

transferability of these Multilingual LLMs even further.

8.4.4 Using Cross-lingual NLP for Typology

In this thesis, we aimed to inject the linguistic typology knowledge into various state-

of-the-art approaches to numerous intermediate NLP tasks. However as described in

section 8.3., one of the key limitations of using typology with cross-lingual NLP is

the limited coverage as well as missing feature-values within the typology databases.

In future work, the research can explore the reverse path as they can use cross-lingual

NLP to predict the missing typology knowledge within the database.

For example, as described in chapter 7, the utilisation of ValPal database knowledge

with cross-lingual SRL models was limited to a handful of languages due to low cov-

erage of ValPal database. The ValPal database can be extended to a new language by

autonomously creating a labelled dataset in that language using state-of-the-art cross-

lingual SRL models, and then probabilistically extracting required argument patterns

from it. Such research would be highly beneficial for the linguistics community.

8.4.5 Building new typology-databases

As explained in chapter 2, the manually created typology databases have several

shortcomings including missing feature-values, inconsistencies in structure, redun-

dancy issues etc. The NLP researchers aim to limit these shortcomings by applying

various data-prepossessing techniques, however with limited effectiveness. All pub-

licly available typology-databases were created by linguistics with no deep-learning

or IT background, primarily to compare and study various linguistic structures in the
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world. The databases were not created to be integrated with deep-learning models.

Hence, there will always exists limitations with such integration.

Thus, future researchers can indeed explore bottoms-up approaches, where they could

aim to build linguistic-typology knowledge and typology databases which are specif-

ically built to be integrated into the deep-learning and machine learning models for

various NLP tasks.
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Appendix A

Results of End-to-end Model for
Typology Feature Prediction

This appendix outlines all the results achieved for our End-to-end model for linguistic

typology prediction described in chapter 4.

A.1 Results in Zero-shot learning

This section outlines the results in Zero-shot learning scenarios, obtained by the

baseline Graph-based mBERT dependency parser Wu and Dredze (2019) as well as

our proposed Base End-to-end BERT parser and Multitasking End-to-end BERT

parser for all 90 target languages on which these models were evaluated, as Table

A.1.

All test and dev corpora are downloaded from Universal Dependencies website. If

Universal Dependencies website consists of more than one test (or dev) corpora for

any target languages, all these test (or dev) corpora are concatenated into single test

(or dev) corpora.

We summarise and describe the key inferences drawn from these results in details, in

sections ??.

Table A.1: Results achieved by various mBERT based
Depndency Parsers evaluated on all 90 target languages
under Zero-shot learning scenario

Begin of Table

ZERO-SHOT
CL-Single CL-Poly

mBERT Base
E2E

Multi
E2E

Aux
task*

mBERT Base
E2E

Multi
E2E

Aux
task*
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aii 62.41 62.12 61.08 0.03 69.77 69.47 68.43 0.23
ar 48.53 48.19 47.2 0.03 73.2 72.9 71.84 0.24
hy 91.09 90.66 89.38 0.05 73.14 72.8 71.88 0.21
grc 90.82 90.54 89.38 0.05 71.79 71.51 70.58 0.22
af 90.54 90.24 88.98 0.06 74.23 73.81 72.76 0.21
am 62.29 61.93 60.76 0.04 68.63 68.29 67.15 0.15
akk 62.29 61.95 60.8 0.06 72.09 71.78 70.69 0.21
eu 40.53 40.1 38.83 0.1 57.9 57.62 56.41 0.27
zh 43.24 42.84 41.75 0.1 59.48 59.14 58.22 0.21
bxr 41.0 40.61 39.41 0.07 56.17 55.83 54.84 0.17
br 90.51 90.13 88.86 0.02 72.02 71.75 70.53 0.22
ca 79.92 79.55 78.57 0.06 69.55 69.27 68.34 0.18
bho 91.03 90.61 89.38 0.07 73.88 73.54 72.58 0.19
bg 85.93 85.5 84.45 0.04 69.18 68.84 67.85 0.26
bm 39.87 39.5 38.44 0.03 57.01 56.64 55.53 0.27
yue 41.68 41.37 40.36 0.07 53.23 52.83 51.9 0.16
be 90.83 90.47 89.2 0.09 73.89 73.54 72.45 0.24
cop 62.38 61.98 60.73 0.1 68.74 68.46 67.26 0.23
cs 73.11 72.73 71.73 0.05 71.31 71.02 69.81 0.2
lzh 41.27 40.97 39.97 0.07 58.29 57.97 56.76 0.16
hr 72.29 71.92 70.76 0.09 69.06 68.76 67.78 0.22
nl 76.07 75.8 74.65 0.01 72.77 72.39 71.3 0.22
en 92.65 92.38 91.27 0.09 69.36 68.97 68.02 0.21
da 81.82 81.53 80.55 0.1 69.25 68.82 67.57 0.2
fi 70.97 70.55 69.61 0.1 71.1 70.77 69.85 0.16
fr 84.62 84.21 83.28 0.03 73.7 73.33 72.38 0.25
et 70.77 70.48 69.48 0.07 68.54 68.16 67.17 0.15
myv 69.0 68.64 67.61 0.03 73.12 72.84 71.69 0.27
fo 91.02 90.64 89.53 0.06 69.48 69.05 68.11 0.14
de 77.97 77.68 76.69 0.1 73.83 73.49 72.55 0.16
gl 90.86 90.53 89.56 0.01 72.61 72.32 71.09 0.27
he 63.98 63.64 62.55 0.09 72.88 72.61 71.5 0.26
hi 44.56 44.25 43.24 0.02 74.01 73.72 72.58 0.17
id 56.18 55.79 54.53 0.05 51.92 51.65 50.53 0.25
hu 69.49 69.13 67.89 0.04 69.56 69.27 68.35 0.23
el 91.09 90.7 89.67 0.08 70.23 69.95 68.99 0.25
got 90.51 90.18 89.19 0.07 69.4 69.0 68.06 0.26
qhe 39.92 39.52 38.46 0.02 52.43 52.03 50.91 0.16
it 86.31 86.0 84.79 0.05 70.26 69.84 68.62 0.17
ja 35.89 35.46 34.39 0.07 71.4 71.08 69.92 0.2
ga 91.03 90.63 89.52 0.01 73.32 72.92 71.83 0.19
krl 69.19 68.87 67.73 0.09 71.93 71.64 70.42 0.21
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ko 37.4 37.01 35.8 0.03 59.64 59.28 58.22 0.25
kpv 69.67 69.26 68.25 0.05 73.0 72.73 71.76 0.25
koi 69.68 69.27 68.16 0.04 72.49 72.19 71.2 0.16
kk 41.12 40.69 39.41 0.1 73.3 72.98 71.73 0.18
mr 90.71 90.32 89.35 0.01 73.35 72.92 71.72 0.21
lt 90.56 90.2 89.15 0.04 73.56 73.18 71.99 0.15
olo 69.41 69.08 67.9 0.08 74.11 73.8 72.54 0.22
la 50.99 50.71 49.47 0.06 69.53 69.14 67.86 0.21
lv 75.07 74.71 73.78 0.02 70.97 70.56 69.29 0.15
kmr 90.71 90.42 89.14 0.04 68.9 68.58 67.32 0.16
mt 62.16 61.81 60.77 0.04 69.25 68.97 67.98 0.24
gun 41.01 40.7 39.63 0.11 54.19 53.78 52.54 0.29
mdf 68.97 68.58 67.64 0.1 68.95 68.57 67.47 0.23
pcm 90.73 90.46 89.47 0.06 74.22 73.8 72.62 0.23
no 85.14 84.87 83.71 0.01 69.72 69.32 68.25 0.28
fro 90.72 90.39 89.19 0.1 70.28 69.88 68.64 0.24
sme 69.06 68.75 67.8 0.08 69.25 68.97 67.8 0.27
cu 90.98 90.64 89.72 0.04 68.63 68.26 67.14 0.25
orv 91.22 90.86 89.87 0.08 71.11 70.72 69.77 0.14
fa 91.32 91.0 89.95 0.01 70.35 69.92 68.9 0.16
pl 81.0 80.68 79.45 0.08 73.58 73.26 72.18 0.17
pt 82.32 81.92 80.7 0.06 71.5 71.1 69.9 0.26
ro 74.41 74.01 72.8 0.03 70.87 70.44 69.42 0.2
gd 91.2 90.79 89.7 0.07 69.79 69.51 68.46 0.23
ru 71.45 71.18 70.03 0.1 72.41 72.12 71.14 0.24
sa 90.55 90.19 89.23 0.09 74.46 74.17 72.92 0.14
sr 90.95 90.6 89.56 0.08 71.38 71.1 69.85 0.29
sms 69.45 69.03 67.82 0.03 71.63 71.3 70.08 0.19
sv 85.13 84.79 83.68 0.08 74.21 73.88 72.62 0.14
es 80.0 79.57 78.32 0.02 70.83 70.46 69.29 0.26
sl 74.3 74.02 72.87 0.09 71.82 71.4 70.18 0.15
sk 75.4 75.08 73.97 0.11 73.46 73.1 72.17 0.28
swl 40.03 39.61 38.58 0.07 54.82 54.53 53.6 0.24
th 40.65 40.27 39.26 0.03 55.32 54.92 53.68 0.21
gsw 90.86 90.52 89.4 0.11 73.68 73.25 72.11 0.22
uk 69.44 69.15 67.91 0.08 73.65 73.3 72.32 0.17
hsb 91.2 90.87 89.84 0.09 72.48 72.17 71.04 0.26
tr 41.06 40.66 39.57 0.05 70.68 70.33 69.37 0.21
te 38.51 38.15 36.94 0.09 71.61 71.23 70.07 0.15
tl 54.92 54.55 53.52 0.02 55.69 55.33 54.28 0.26
ta 38.62 38.19 37.15 0.02 71.71 71.31 70.13 0.27
ur 91.17 90.77 89.55 0.09 72.56 72.25 71.32 0.22
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ug 42.06 41.73 40.61 0.05 69.56 69.29 68.3 0.27
vi 40.66 40.34 39.18 0.01 59.8 59.52 58.33 0.16
wo 42.08 41.79 40.62 0.08 53.65 53.37 52.27 0.22
yo 39.79 39.51 38.37 0.07 59.55 59.24 58.02 0.23
cy 91.1 90.83 89.65 0.04 71.75 71.36 70.36 0.29
wbp 39.93 39.55 38.48 0.06 52.29 51.99 50.83 0.19

End of Table

A.2 Results in Few-shot learning

This section outlines the results obtained under Few-shot learning, by the baseline

Graph-based mBERT dependency parser Wu and Dredze (2019) as well as our pro-

posed Base End-to-end BERT parser and Multitasking End-to-end BERT parser for

all 90 target languages on which these models were evaluated, as Table A.2.

Similar to the zero-hot learning setting, all test and dev corpora are downloaded from

Universal Dependencies website. If Universal Dependencies website consists of more

than one test (or dev) corpora for any target languages, all these test (or dev) corpora

are concatenated into single test (or dev) corpora.

Table A.2: Results achieved by various mBERT based
Depndency Parsers evaluated on all 90 target languages
under Few-shot learning scenario

Begin of Table

FEW-SHOT
CL-Single CL-Poly

mBERT Base
E2E

Multi
E2E

Aux
task*

mBERT Base
E2E

Multi
E2E

Aux
task*

aii 63.32 62.89 63.45 0.57 70.58 70.15 71.02 0.58
ar 49.26 48.83 49.4 0.55 74.0 73.71 74.6 0.61
hy 91.73 91.31 91.76 0.5 74.02 73.67 74.49 0.6
grc 91.5 91.12 91.61 0.58 72.48 72.14 72.94 0.53
af 91.29 90.88 91.4 0.5 74.99 74.69 75.46 0.51
am 63.11 62.79 63.39 0.6 69.52 69.14 70.07 0.55
akk 62.99 62.67 63.16 0.51 72.96 72.64 73.59 0.62
eu 41.3 40.91 41.46 0.51 58.77 58.34 59.24 0.5
zh 44.1 43.74 44.19 0.53 60.15 59.72 60.59 0.61
bxr 41.83 41.46 41.92 0.54 56.95 56.61 57.54 0.63
br 91.44 91.01 91.49 0.51 72.68 72.32 73.25 0.57
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ca 80.72 80.45 81.02 0.46 70.27 69.92 70.68 0.64
bho 91.77 91.38 91.9 0.59 74.81 74.49 75.31 0.61
bg 86.8 86.43 86.98 0.56 70.02 69.7 70.43 0.67
bm 40.73 40.46 40.92 0.51 57.84 57.47 58.36 0.66
yue 42.43 42.15 42.64 0.45 53.96 53.66 54.55 0.63
be 91.54 91.21 91.79 0.53 74.57 74.25 75.07 0.56
cop 63.06 62.76 63.32 0.6 69.62 69.19 69.99 0.61
cs 73.87 73.54 74.15 0.46 72.02 71.59 72.34 0.56
lzh 41.97 41.67 42.25 0.6 59.0 58.59 59.38 0.6
hr 73.17 72.76 73.35 0.52 69.73 69.39 70.27 0.67
nl 76.97 76.59 77.06 0.49 73.6 73.21 74.03 0.54
en 93.57 93.2 93.81 0.55 70.29 69.96 70.66 0.64
da 82.56 82.14 82.64 0.47 70.07 69.8 70.56 0.68
fi 71.63 71.34 71.91 0.52 71.95 71.64 72.57 0.59
fr 85.53 85.1 85.61 0.49 74.6 74.3 75.14 0.58
et 71.41 70.98 71.49 0.54 69.33 69.03 69.77 0.56
myv 69.91 69.49 70.08 0.47 73.81 73.54 74.36 0.66
fo 91.81 91.48 91.94 0.5 70.4 70.05 70.81 0.66
de 78.61 78.27 78.84 0.53 74.67 74.31 75.2 0.57
gl 91.56 91.29 91.83 0.51 73.38 72.95 73.73 0.52
he 64.75 64.36 64.81 0.47 73.7 73.28 74.08 0.5
hi 45.24 44.86 45.34 0.58 74.64 74.31 75.04 0.62
id 56.97 56.59 57.17 0.53 52.84 52.47 53.24 0.52
hu 70.4 69.98 70.46 0.6 70.47 70.04 70.91 0.66
el 91.79 91.52 92.05 0.56 70.93 70.63 71.5 0.58
got 91.23 90.86 91.38 0.58 70.05 69.65 70.46 0.65
qhe 40.57 40.25 40.8 0.56 53.3 52.87 53.59 0.55
it 86.97 86.62 87.19 0.51 70.97 70.65 71.62 0.5
ja 36.7 36.38 36.98 0.55 72.15 71.83 72.64 0.51
ga 91.94 91.6 92.17 0.59 74.01 73.68 74.39 0.67
krl 69.93 69.6 70.1 0.49 72.66 72.26 72.97 0.54
ko 38.15 37.82 38.36 0.49 60.41 60.11 60.95 0.53
kpv 70.42 70.13 70.73 0.52 73.64 73.21 74.07 0.6
koi 70.38 70.01 70.59 0.51 73.4 72.97 73.75 0.59
kk 42.04 41.72 42.25 0.58 74.16 73.88 74.81 0.57
mr 91.63 91.28 91.88 0.58 74.03 73.71 74.5 0.58
lt 91.24 90.9 91.39 0.54 74.23 73.84 74.68 0.51
olo 70.28 69.98 70.52 0.47 75.01 74.74 75.45 0.63
la 51.71 51.29 51.79 0.59 70.32 69.89 70.67 0.67
lv 75.82 75.39 75.9 0.48 71.87 71.55 72.34 0.54
kmr 91.53 91.21 91.81 0.52 69.74 69.36 70.19 0.55
mt 62.85 62.43 62.9 0.56 70.1 69.68 70.65 0.57
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gun 41.84 41.46 42.01 0.53 55.03 54.65 55.45 0.62
mdf 69.81 69.52 70.13 0.47 69.77 69.42 70.27 0.66
pcm 91.43 91.08 91.66 0.47 75.13 74.74 75.66 0.56
no 86.01 85.69 86.23 0.47 70.37 69.98 70.84 0.59
fro 91.62 91.19 91.67 0.49 71.06 70.78 71.5 0.64
sme 69.85 69.46 69.97 0.6 70.11 69.82 70.67 0.53
cu 91.66 91.34 91.91 0.53 69.38 69.1 69.95 0.51
orv 92.11 91.79 92.4 0.54 71.92 71.62 72.36 0.53
fa 92.24 91.95 92.51 0.56 71.17 70.86 71.61 0.65
pl 81.84 81.41 81.96 0.53 74.28 73.91 74.73 0.53
pt 83.02 82.61 83.08 0.56 72.38 71.97 72.91 0.66
ro 75.31 75.02 75.56 0.52 71.63 71.26 72.14 0.61
gd 91.94 91.67 92.19 0.5 70.65 70.32 71.27 0.62
ru 72.2 71.82 72.41 0.53 73.06 72.67 73.42 0.65
sa 91.19 90.77 91.32 0.59 75.36 75.0 75.7 0.67
sr 91.7 91.27 91.73 0.46 72.29 71.91 72.61 0.6
sms 70.12 69.82 70.42 0.5 72.53 72.16 72.89 0.53
sv 85.83 85.52 86.02 0.46 74.84 74.48 75.29 0.67
es 80.64 80.3 80.87 0.48 71.64 71.32 72.06 0.53
sl 75.23 74.95 75.44 0.51 72.58 72.25 73.1 0.64
sk 76.19 75.88 76.4 0.6 74.33 74.03 74.95 0.5
swl 40.95 40.63 41.24 0.52 55.6 55.17 55.89 0.52
th 41.3 40.93 41.44 0.58 56.07 55.7 56.46 0.53
gsw 91.51 91.1 91.64 0.54 74.49 74.1 74.99 0.61
uk 70.24 69.94 70.45 0.58 74.41 74.07 74.81 0.64
hsb 91.93 91.63 92.14 0.51 73.24 72.84 73.66 0.59
tr 41.76 41.36 41.83 0.59 71.35 71.08 71.87 0.58
te 39.22 38.85 39.41 0.47 72.46 72.07 72.78 0.57
tl 55.83 55.52 56.04 0.48 56.52 56.15 56.94 0.61
ta 39.44 39.15 39.69 0.56 72.46 72.05 72.87 0.66
ur 91.83 91.44 92.05 0.58 73.32 72.94 73.87 0.53
ug 42.99 42.72 43.28 0.6 70.28 69.87 70.78 0.56
vi 41.32 40.97 41.45 0.57 60.71 60.28 61.17 0.6
wo 42.95 42.65 43.17 0.5 54.35 53.94 54.76 0.61
yo 40.53 40.25 40.75 0.55 60.48 60.07 60.88 0.56
cy 91.82 91.46 91.93 0.56 72.66 72.38 73.22 0.55
wbp 40.8 40.52 41.03 0.56 53.21 52.83 53.79 0.5

End of Table
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Appendix B

Results of UDify with Typology
model

This appendix outlines the results obtained by the three variants of our proposed

models namely UDify-w-Syntax (predicts only syntactic typology features), UDify-w-

Syntactic+Semantic (predicts syntactic and semantic typology-features) and UDify-

w-All (predicts all the URIEL typology-features), as well as the baselines described

in Section 5.5.1 as table B.1.

We summarise and describe all the key inferences drawn from these results in details,

in sections 5.5.6 of chapter 5.

Table B.1: Results achieved on all 80 test tree-banks

Begin of Table
Corpus Model UPOS UFeats LemmaUAS LAS Typo

F1
Afrikaans-
AfriBooms

UDPipe 98.25 97.66 97.46 91.26 88.46 –

(size:
1315)

UDify 95.31 91.34 94.5 88.79 85.17 –

Multi-w-Lang id 96.61 92.64 94.84 90.15 87.87 –
Multi-w-Syntax 96.73 93.51 95.04 94.36 89.96 82.27
Multi-w-
Syntax+Semantic

94.8 90.51 88.31 83.91 90.63 74.82

Multi-w-All 93.73 88.8 86.48 81.5 85.96 64.94
Arabic-
PADT

UDPipe 96.83 94.11 95.28 88.29 83.69 –

(size:
21864)

UDify 95.35 99.35 99.97 88.6 84.42 –

Multi-w-Lang id 96.64 99.33 99.66 89.92 87.13 –
Multi-w-Syntax 96.76 99.31 99.59 93.78 89.24 81.75
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Multi-w-
Syntax+Semantic

96.41 92.77 94.39 90.83 84.12 74.5

Multi-w-All 96.16 89.76 90.53 86.93 81.51 69.26
Armenian-
ArmTDP

UDPipe 93.49 82.85 92.86 79.65 72.3 –

(size:
1975)

UDify 94.42 76.9 85.63 87.01 79.99 –

Multi-w-Lang id 96.02 80.58 86.62 89.06 84.3 –
Multi-w-Syntax 96.15 83.06 87.19 93.43 86.23 83.55
Multi-w-
Syntax+Semantic

92.3 82.87 86.93 85.35 84.2 71.52

Multi-w-All 91.5 81.24 85.22 79.53 81.21 60.95
Basque-
BDT

UDPipe 96.11 92.48 96.29 86.8 83.55 –

(size:
5396)

UDify 95.45 86.8 90.53 85.47 81.5 –

Multi-w-Lang id 96.71 88.85 91.16 88.02 85.28 –
Multi-w-Syntax 95.45 94.95 98.46 92.96 87.4 88.3
Multi-w-
Syntax+Semantic

95.58 87.18 82.9 88.37 81.11 79.26

Multi-w-All 93.56 84.17 80.34 84.61 79.0 73.01
Belarusian-
HSE

UDPipe 93.63 73.3 87.34 80.44 74.58 –

(size:
319)

UDify 96.12 88.36 93.97 91.08 88.59 –

Multi-w-Lang id 97.01 95.77 96.72 93.69 89.9 –
Multi-w-Syntax 97.13 96.22 96.83 95.59 92.26 83.94
Multi-w-
Syntax+Semantic

96.64 92.73 89.73 91.63 92.88 73.98

Multi-w-All 95.56 90.76 88.24 86.3 88.83 66.82
Bulgarian-
BTB

UDPipe 98.98 97.82 97.94 95.21 92.18 –

(size:
8907)

UDify 96.7 96.57 95.1 95.7 92.58 –

Multi-w-Lang id 97.54 97.01 95.4 95.05 92.26 –
Multi-w-Syntax 97.64 97.3 95.57 96.61 93.46 82.07
Multi-w-
Syntax+Semantic

95.06 93.48 87.06 98.7 94.63 74.77

Multi-w-All 93.42 92.38 84.14 93.69 92.16 69.3
Buryat-
BDT

UDPipe 40.34 32.4 58.17 34.07 20.3 –

(size: 19) UDify 61.73 47.45 61.03 49.61 27.46 –
Multi-w-Lang id 73.25 47.9 61.09 56.98 41.08 –
Multi-w-Syntax 73.73 54.74 62.8 74.42 58.5 82.69
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Multi-w-
Syntax+Semantic

72.56 53.23 59.49 77.17 47.95 71.76

Multi-w-All 70.76 49.35 56.68 73.23 44.38 63.12
Catalan-
AnCora

UDPipe 98.88 98.37 99.07 95.12 92.96 –

(size:
13123)

UDify 98.89 98.34 98.14 95.61 93.69 –

Multi-w-Lang id 99.0 98.49 98.22 95.9 93.96 –
Multi-w-Syntax 99.08 98.58 98.26 96.97 93.55 81.77
Multi-w-
Syntax+Semantic

97.47 95.05 95.29 91.97 90.02 71.06

Multi-w-All 96.12 93.31 92.87 86.69 87.62 60.62
Chinese-
GSD

UDPipe 94.88 99.22 99.99 85.84 81.7 –

(size:
7994)

UDify 93.48 99.31 100.0 92.98 84.66 –

Multi-w-Lang id 97.46 93.0 75.43 90.79 86.76 –
Multi-w-Syntax 97.57 93.83 76.49 94.61 89.19 60.82
Multi-w-
Syntax+Semantic

95.17 93.62 70.49 86.34 91.08 49.85

Multi-w-All 94.17 91.89 67.93 81.95 88.31 38.65
Coptic-
Scriptorium

UDPipe 94.7 96.35 95.49 87.4 82.79 –

(size:
792)

UDify 27.17 52.85 55.71 28.29 11.53 –

Multi-w-Lang id 51.24 60.49 58.89 51.29 32.13 –
Multi-w-Syntax 52.06 65.65 60.7 71.54 53.73 84.55
Multi-w-
Syntax+Semantic

50.62 59.7 59.62 71.52 49.73 75.59

Multi-w-All 48.95 56.29 57.39 68.19 43.67 64.17
Croatian-
SET

UDPipe 98.13 92.25 97.27 92.45 88.13 –

(size:
6914)

UDify 97.89 88.97 97.15 92.98 90.5 –

Multi-w-Lang id 98.33 90.66 97.3 94.29 92.07 –
Multi-w-Syntax 98.42 91.8 97.38 95.65 92.08 81.92
Multi-w-
Syntax+Semantic

97.08 86.49 92.89 95.4 81.97 72.68

Multi-w-All 96.44 83.45 90.91 90.35 75.32 61.19
Czech-
CAC

UDPipe 99.37 96.34 98.57 93.48 91.2 –

(size:
102993)

UDify 98.14 96.55 97.18 94.74 92.77 –

Multi-w-Lang id 98.5 96.99 97.33 93.9 92.84 –
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Multi-w-Syntax 98.59 97.29 97.41 96.04 93.82 82.61
Multi-w-
Syntax+Semantic

96.63 94.17 94.72 97.75 87.74 76.35

Multi-w-All 96.29 90.57 92.35 91.46 85.34 65.28
Czech-
CLTT

UDPipe 98.88 91.59 98.25 87.86 84.99 –

(size:
102993)

UDify 99.17 93.66 98.86 93.7 91.97 –

Multi-w-Lang id 99.18 94.58 98.88 94.14 91.71 –
Multi-w-Syntax 99.26 95.19 98.9 95.13 93.7 82.49
Multi-w-
Syntax+Semantic

98.64 91.41 91.24 86.51 89.79 74.57

Multi-w-All 96.66 88.17 87.53 80.78 86.25 66.55
Czech-
FicTree

UDPipe 98.55 95.87 98.63 93.32 90.16 –

(size:
102993)

UDify 98.18 96.36 97.33 95.77 93.98 –

Multi-w-Lang id 98.52 96.83 97.47 95.9 93.27 –
Multi-w-Syntax 98.61 97.15 97.54 95.3 93.52 82.45
Multi-w-
Syntax+Semantic

97.04 95.16 88.41 89.48 94.11 75.34

Multi-w-All 95.34 92.47 84.58 83.23 87.94 64.9
Czech-
PDT

UDPipe 99.18 97.23 99.02 94.94 92.92 –

(size:
102993)

UDify 98.21 98.38 97.55 96.27 93.99 –

Multi-w-Lang id 98.54 98.52 97.67 96.08 93.1 –
Multi-w-Syntax 98.63 98.61 97.74 95.69 94.8 81.59
Multi-w-
Syntax+Semantic

95.22 96.9 94.12 86.46 96.18 71.77

Multi-w-All 93.41 93.3 91.73 83.01 92.49 65.57
Danish-
DDT

UDPipe 97.78 97.33 97.52 88.25 85.68 –

(size:
4383)

UDify 96.02 89.78 91.0 89.76 85.52 –

Multi-w-Lang id 97.09 91.34 91.6 92.53 87.77 –
Multi-w-Syntax 97.2 92.39 91.94 93.76 89.87 82.18
Multi-w-
Syntax+Semantic

96.56 90.73 85.33 93.11 83.86 73.52

Multi-w-All 95.36 89.03 83.13 87.91 80.49 64.36
Dutch-
Alpino

UDPipe 96.83 96.33 97.09 93.13 90.14 –

(size:
18051)

UDify 97.12 92.59 98.23 95.82 92.15 –
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Multi-w-Lang id 97.82 93.69 98.3 96.25 92.69 –
Multi-w-Syntax 97.92 94.42 98.34 96.59 93.22 82.11
Multi-w-
Syntax+Semantic

97.58 92.81 90.05 87.22 91.38 74.53

Multi-w-All 96.59 91.16 88.05 82.43 87.64 64.24
Dutch-
LassySmall

UDPipe 96.5 96.42 97.41 91.82 88.01 –

(size:
18051)

UDify 98.89 96.18 93.49 95.73 92.59 –

Multi-w-Lang id 99.0 96.68 93.91 96.14 93.95 –
Multi-w-Syntax 99.08 97.02 94.14 96.05 94.27 82.29
Multi-w-
Syntax+Semantic

96.1 90.53 86.95 85.32 85.91 71.28

Multi-w-All 94.1 89.36 84.08 82.57 80.57 60.34
English-
EWT

UDPipe 96.29 97.1 98.25 91.21 88.55 –

(size:
25377)

UDify 97.73 96.12 95.84 94.64 90.04 –

Multi-w-Lang id 98.22 96.63 96.09 93.9 90.07 –
Multi-w-Syntax 98.32 96.97 96.22 94.76 91.65 81.84
Multi-w-
Syntax+Semantic

95.0 96.22 92.23 88.32 81.7 72.3

Multi-w-All 94.52 95.07 90.36 81.53 75.82 66.63
English-
GUM

UDPipe 96.02 96.82 96.85 88.4 85.25 –

(size:
25377)

UDify 95.44 94.12 93.15 91.01 87.6 –

Multi-w-Lang id 96.7 94.96 93.59 92.8 89.74 –
Multi-w-Syntax 96.82 95.53 93.84 93.3 91.27 82.38
Multi-w-
Syntax+Semantic

96.33 88.65 85.01 91.19 88.07 71.87

Multi-w-All 95.15 87.52 83.36 88.24 85.02 66.05
English-
LinES

UDPipe 96.91 96.31 96.45 84.79 80.35 –

(size:
25377)

UDify 94.55 90.43 94.42 89.56 85.34 –

Multi-w-Lang id 96.11 91.88 94.77 91.71 88.13 –
Multi-w-Syntax 96.23 92.86 94.97 93.51 89.89 82.15
Multi-w-
Syntax+Semantic

92.8 88.52 86.98 83.74 87.1 72.22

Multi-w-All 92.35 86.44 84.13 79.28 82.34 63.23
English-
ParTUT

UDPipe 96.1 95.51 97.74 91.53 88.51 –

(size:
25377)

UDify 96.16 92.61 96.45 94.72 92.02 –
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Multi-w-Lang id 97.18 93.7 96.65 94.19 92.97 –
Multi-w-Syntax 97.29 94.43 96.76 94.66 93.07 82.21
Multi-w-
Syntax+Semantic

95.24 87.42 89.92 93.54 87.18 74.59

Multi-w-All 94.78 84.1 86.6 90.09 82.66 65.91
Estonian-
EDT

UDPipe 97.64 96.23 95.3 88.52 85.7 –

(size:
25749)

UDify 96.91 87.45 77.73 91.65 86.97 –

Multi-w-Lang id 97.68 89.39 79.3 92.51 87.78 –
Multi-w-Syntax 98.16 97.34 95.68 93.24 89.49 94.0
Multi-w-
Syntax+Semantic

95.95 88.72 74.83 90.1 86.44 84.33

Multi-w-All 93.85 85.02 72.23 84.23 84.05 76.18
Finnish-
FTB

UDPipe 96.65 96.62 95.49 90.89 88.1 –

(size:
27198)

UDify 94.37 82.8 96.68 88.8 83.21 –

Multi-w-Lang id 95.99 85.51 96.86 90.97 85.49 –
Multi-w-Syntax 96.12 87.33 96.97 94.4 89.35 82.17
Multi-w-
Syntax+Semantic

94.63 85.13 95.54 83.78 86.72 72.11

Multi-w-All 94.1 83.61 93.65 79.29 82.58 66.5
Finnish-
TDT

UDPipe 97.45 95.43 91.45 90.67 88.25 –

(size:
27198)

UDify 94.43 90.48 82.89 86.8 82.41 –

Multi-w-Lang id 96.03 91.92 84.08 89.67 85.5 –
Multi-w-Syntax 96.16 92.89 84.76 92.58 89.15 82.76
Multi-w-
Syntax+Semantic

94.19 87.24 77.24 90.98 88.75 71.47

Multi-w-All 93.01 83.9 75.86 87.38 83.01 65.01
French-
GSD

UDPipe 97.63 97.13 98.35 91.77 89.18 –

(size:
33399)

UDify 99.14 95.42 98.32 94.77 92.85 –

Multi-w-Lang id 99.16 96.05 98.38 94.18 92.07 –
Multi-w-Syntax 99.24 96.47 98.42 95.57 93.09 82.08
Multi-w-
Syntax+Semantic

98.52 93.7 97.28 91.49 92.14 71.13

Multi-w-All 97.28 91.12 93.64 84.77 87.26 64.84
French-
ParTUT

UDPipe 96.93 94.43 95.7 93.97 91.43 –

(size:
33399)

UDify 95.91 95.08 96.52 92.24 88.65 –
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Multi-w-Lang id 97.8 91.27 92.16 93.67 90.63 –
Multi-w-Syntax 97.91 92.33 92.47 94.05 91.75 78.07
Multi-w-
Syntax+Semantic

96.92 90.9 88.81 89.36 88.05 66.92

Multi-w-All 95.29 89.88 84.99 85.83 86.02 58.57
French-
Sequoia

UDPipe 98.79 98.09 98.57 93.84 92.2 –

(size:
33399)

UDify 98.11 95.92 95.5 93.15 90.27 –

Multi-w-Lang id 98.48 96.47 95.77 93.74 90.82 –
Multi-w-Syntax 98.57 96.83 95.92 94.37 91.27 82.08
Multi-w-
Syntax+Semantic

95.2 90.06 86.83 88.32 86.32 75.4

Multi-w-All 93.9 86.61 84.06 82.46 84.06 68.37
French-
Spoken

UDPipe 95.91 100.0 96.92 83.08 77.71 –

(size:
33399)

UDify 96.23 98.67 96.59 86.42 81.19 –

Multi-w-Lang id 97.23 98.76 96.78 90.28 84.23 –
Multi-w-Syntax 97.34 98.82 96.89 93.39 88.49 81.8
Multi-w-
Syntax+Semantic

94.08 94.21 87.61 82.96 81.89 75.73

Multi-w-All 93.18 92.38 83.82 78.53 76.85 69.6
Galician-
CTG

UDPipe 97.84 99.83 98.58 86.66 84.04 –

(size:
2872)

UDify 96.51 97.1 97.08 84.88 81.02 –

Multi-w-Lang id 97.41 97.45 97.23 88.55 83.49 –
Multi-w-Syntax 97.52 97.68 97.32 92.77 88.59 82.22
Multi-w-
Syntax+Semantic

96.75 93.95 89.53 91.93 89.52 75.0

Multi-w-All 95.31 92.51 85.92 87.76 83.59 69.39
Galician-
TreeGal

UDPipe 95.82 93.96 97.06 83.26 78.23 –

(size:
2872)

UDify 94.59 80.67 94.93 85.52 78.21 –

Multi-w-Lang id 96.13 83.73 95.24 88.31 81.67 –
Multi-w-Syntax 96.26 85.79 95.42 92.63 85.98 81.8
Multi-w-
Syntax+Semantic

94.16 84.84 88.28 89.43 84.42 69.56

Multi-w-All 93.12 82.96 85.17 82.64 81.41 58.73
German-
GSD

UDPipe 94.48 90.68 96.8 87.17 82.71 –

(size:
166849)

UDify 97.48 96.63 95.23 88.64 85.15 –
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Multi-w-Lang id 98.06 97.06 95.52 91.49 86.49 –
Multi-w-Syntax 97.78 90.7 80.19 93.92 89.53 69.14
Multi-w-
Syntax+Semantic

97.85 91.07 94.13 91.44 83.6 59.88

Multi-w-All 96.76 89.17 90.6 87.22 80.87 54.63
Gothic-
PROIEL

UDPipe 96.61 90.73 94.75 86.61 80.93 –

(size:
3387)

UDify 95.55 85.97 80.57 86.37 80.13 –

Multi-w-Lang id 96.77 88.16 81.93 88.24 84.09 –
Multi-w-Syntax 97.7 92.18 92.64 91.62 87.82 90.23
Multi-w-
Syntax+Semantic

95.55 85.73 75.99 90.14 80.92 82.58

Multi-w-All 93.8 82.53 71.99 84.73 78.59 71.71
Greek-
GDT

UDPipe 97.98 94.96 95.82 92.9 90.59 –

(size:
1662)

UDify 97.08 99.97 98.8 95.91 93.62 –

Multi-w-Lang id 97.79 99.78 98.83 94.66 93.51 –
Multi-w-Syntax 97.89 99.87 98.84 96.56 94.05 81.96
Multi-w-
Syntax+Semantic

97.69 92.93 97.88 96.65 87.99 70.44

Multi-w-All 95.88 89.61 96.23 91.83 85.26 63.61
Hebrew-
HTB

UDPipe 97.02 95.87 97.12 90.4 87.56 –

(size:
5241)

UDify 96.21 96.02 97.28 92.14 89.68 –

Multi-w-Lang id 97.21 96.55 97.42 93.99 91.55 –
Multi-w-Syntax 97.32 96.9 97.5 94.2 92.59 82.29
Multi-w-
Syntax+Semantic

97.32 95.77 94.17 92.57 82.66 72.15

Multi-w-All 96.81 92.77 91.51 87.58 76.24 66.3
Hindi-
HDTB

UDPipe 97.52 94.15 98.67 94.95 91.93 –

(size:
13304)

UDify 98.3 92.22 95.86 95.93 92.2 –

Multi-w-Lang id 98.6 93.38 96.1 95.47 93.32 –
Multi-w-Syntax 98.69 94.15 96.24 95.72 92.11 82.27
Multi-w-
Syntax+Semantic

98.5 91.25 87.06 85.1 94.9 76.16

Multi-w-All 97.47 89.99 84.47 81.16 89.88 67.11
Hungarian-
Szeged

UDPipe 95.76 91.75 95.05 84.17 79.86 –

(size:
910)

UDify 96.36 86.16 90.19 91.01 86.21 –
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Multi-w-Lang id 97.31 88.31 90.85 91.8 88.59 –
Multi-w-Syntax 97.42 89.76 91.22 94.65 90.96 82.35
Multi-w-
Syntax+Semantic

94.01 84.9 87.63 94.74 81.06 71.86

Multi-w-All 93.46 81.98 86.48 91.43 74.44 65.56
Indonesian-
GSD

UDPipe 93.69 95.58 99.64 86.54 80.22 –

(size:
4477)

UDify 93.36 93.32 98.37 87.75 81.4 –

Multi-w-Lang id 95.31 94.29 98.43 90.96 84.62 –
Multi-w-Syntax 96.82 90.23 91.52 92.83 87.4 76.11
Multi-w-
Syntax+Semantic

92.65 87.9 93.12 88.35 85.84 64.79

Multi-w-All 91.91 86.23 89.17 85.59 83.36 55.57
Irish-IDT UDPipe 92.72 82.43 90.48 81.77 73.72 –
(size:
858)

UDify 90.96 82.09 81.08 79.38 70.65 –

Multi-w-Lang id 93.72 84.91 82.4 84.27 76.57 –
Multi-w-Syntax 93.88 86.82 83.16 90.08 82.83 83.97
Multi-w-
Syntax+Semantic

90.39 83.34 81.23 82.63 73.14 76.57

Multi-w-All 89.53 80.31 78.39 76.84 68.89 71.55
Italian-
ISDT

UDPipe 98.39 98.11 98.66 95.24 93.29 –

(size:
29685)

UDify 98.51 98.01 97.72 96.15 94.3 –

Multi-w-Lang id 98.74 98.21 97.83 96.57 93.16 –
Multi-w-Syntax 98.83 98.34 97.89 96.53 94.18 82.27
Multi-w-
Syntax+Semantic

95.14 93.4 94.91 94.87 92.56 71.28

Multi-w-All 94.13 90.05 90.97 91.84 88.32 62.14
Italian-
ParTUT

UDPipe 98.38 97.77 98.16 93.62 91.45 –

(size:
29685)

UDify 99.18 96.69 98.52 95.9 94.05 –

Multi-w-Lang id 99.19 97.11 98.57 95.38 94.85 –
Multi-w-Syntax 99.27 97.39 98.6 96.97 94.76 81.61
Multi-w-
Syntax+Semantic

96.52 90.68 93.6 98.24 89.89 74.21

Multi-w-All 94.83 88.46 91.05 94.28 87.47 65.06
Japanese-
GSD

UDPipe 98.13 99.98 99.52 95.99 94.66 –

(size:
47926)

UDify 98.73 93.44 96.5 95.1 93.43 –
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Multi-w-Lang id 98.22 94.27 90.14 94.89 93.71 –
Multi-w-Syntax 98.31 94.93 90.55 95.15 94.23 76.72
Multi-w-
Syntax+Semantic

96.63 91.07 90.11 97.63 91.41 70.03

Multi-w-All 95.98 90.07 87.13 95.22 88.14 63.07
Kazakh-
KTB

UDPipe 55.84 40.4 63.96 55.12 35.2 –

(size: 31) UDify 91.29 99.58 99.21 74.74 66.63 –
Multi-w-Lang id 93.94 99.52 99.21 81.92 72.97 –
Multi-w-Syntax 94.1 99.48 99.21 88.58 80.55 82.36
Multi-w-
Syntax+Semantic

91.45 96.21 96.02 81.59 80.85 73.43

Multi-w-All 90.23 93.96 93.1 75.99 74.65 62.45
Korean-
GSD

UDPipe 96.29 99.77 93.4 88.84 85.38 –

(size:
27410)

UDify 91.98 99.89 100.0 83.24 75.73 –

Multi-w-Lang id 94.4 99.56 99.75 87.17 81.12 –
Multi-w-Syntax 94.55 99.63 99.59 91.16 84.3 81.2
Multi-w-
Syntax+Semantic

92.58 94.34 92.28 90.01 85.69 68.82

Multi-w-All 92.18 92.19 89.53 87.41 79.76 63.39
Korean-
Kaist

UDPipe 95.59 100.0 94.3 88.62 86.68 –

(size:
27410)

UDify 94.67 99.98 85.89 87.9 84.85 –

Multi-w-Lang id 96.19 99.64 86.86 90.58 87.0 –
Multi-w-Syntax 96.31 99.9 87.42 92.87 89.07 83.56
Multi-w-
Syntax+Semantic

94.16 97.98 81.44 94.07 80.1 75.91

Multi-w-All 93.34 95.61 77.72 88.69 74.55 68.58
Kurmanji-
MG

UDPipe 53.36 41.54 69.58 46.16 35.25 –

(size: 20) UDify 60.23 37.78 58.08 36.98 21.52 –
Multi-w-Lang id 74.25 55.98 63.82 64.24 44.36 –
Multi-w-Syntax 74.72 61.74 65.41 78.91 60.28 85.67
Multi-w-
Syntax+Semantic

72.44 60.99 58.85 72.01 61.32 73.28

Multi-w-All 71.18 60.04 55.01 66.12 58.02 66.53
Latin-
ITTB

UDPipe 98.34 96.97 98.99 92.35 90.09 –

(size:
34060)

UDify 97.71 88.63 94.0 93.22 90.69 –

Multi-w-Lang id 98.21 90.38 94.38 94.19 91.25 –
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Multi-w-Syntax 97.8 95.01 94.73 95.24 91.82 82.42
Multi-w-
Syntax+Semantic

97.18 87.84 85.95 88.24 92.54 75.68

Multi-w-All 96.76 85.14 82.36 84.01 87.23 64.79
Latin-
Perseus

UDPipe 88.4 79.1 81.45 72.86 62.94 –

(size:
34060)

UDify 91.5 83.21 80.84 80.24 72.19 –

Multi-w-Lang id 94.08 85.85 82.18 84.84 78.38 –
Multi-w-Syntax 94.24 87.63 82.95 90.66 82.9 83.56
Multi-w-
Syntax+Semantic

90.67 84.65 78.08 91.71 84.56 73.65

Multi-w-All 90.08 81.38 74.86 86.87 77.64 64.8
Latin-
PROIEL

UDPipe 97.01 91.53 96.32 84.97 80.29 –

(size:
34060)

UDify 96.79 89.49 91.79 85.89 81.56 –

Multi-w-Lang id 97.6 91.1 92.33 87.94 85.54 –
Multi-w-Syntax 96.89 89.63 82.71 93.14 88.1 74.65
Multi-w-
Syntax+Semantic

94.25 87.77 89.66 87.03 80.45 65.26

Multi-w-All 93.56 84.81 86.89 83.26 77.58 56.93
Latvian-
LVTB

UDPipe 96.11 93.01 95.46 87.6 83.75 –

(size:
10156)

UDify 97.5 95.41 94.6 88.94 85.68 –

Multi-w-Lang id 98.07 96.04 94.94 91.26 87.31 –
Multi-w-Syntax 97.74 90.55 93.44 93.79 90.15 81.29
Multi-w-
Syntax+Semantic

97.47 91.74 86.86 87.64 79.88 71.0

Multi-w-All 95.4 88.6 84.17 84.92 74.62 65.49
Lithuanian-
HSE

UDPipe 81.7 60.47 76.89 53.52 43.71 –

(size:
2494)

UDify 90.49 71.84 81.27 81.15 70.38 –

Multi-w-Lang id 93.39 74.81 69.51 85.29 76.17 –
Multi-w-Syntax 93.56 78.07 70.84 90.47 81.32 74.84
Multi-w-
Syntax+Semantic

91.27 77.81 65.57 83.26 80.25 64.85

Multi-w-All 90.6 76.85 62.99 77.68 76.15 54.86
Maltese-
MUDT

UDPipe 95.99 100.0 100.0 86.18 81.24 –

(size:
1123)

UDify 90.56 99.63 82.84 84.65 76.17 –
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Multi-w-Lang id 93.45 99.48 84.04 88.21 80.22 –
Multi-w-Syntax 93.62 99.4 84.72 92.02 85.5 82.93
Multi-w-
Syntax+Semantic

92.66 93.39 80.36 83.99 81.66 75.95

Multi-w-All 92.39 90.17 77.56 77.68 78.32 65.6
Marathi-
UFAL

UDPipe 80.1 67.23 81.31 71.59 62.37 –

(size:
373)

UDify 94.29 84.49 87.71 76.46 69.34 –

Multi-w-Lang id 95.93 86.92 88.55 82.65 76.35 –
Multi-w-Syntax 96.06 88.56 89.03 88.99 82.35 82.7
Multi-w-
Syntax+Semantic

94.22 86.29 82.01 83.57 76.35 73.14

Multi-w-All 93.6 82.85 80.63 77.5 73.46 66.84
Norwegian-
Bokmaal

UDPipe 98.31 97.14 98.64 93.07 91.17 –

(size:
33282)

UDify 98.34 91.82 98.13 96.37 93.95 –

Multi-w-Lang id 98.63 93.04 98.21 95.16 93.86 –
Multi-w-Syntax 98.72 93.86 98.25 95.93 92.85 82.54
Multi-w-
Syntax+Semantic

98.67 88.01 92.42 92.62 88.51 76.51

Multi-w-All 97.17 86.85 89.65 87.88 83.47 66.37
Norwegian-
Nynorsk

UDPipe 98.14 97.02 98.18 93.71 91.63 –

(size:
33282)

UDify 97.83 96.17 97.34 95.08 92.93 –

Multi-w-Lang id 98.29 96.68 97.48 94.66 92.82 –
Multi-w-Syntax 98.38 97.01 97.55 96.47 93.01 82.47
Multi-w-
Syntax+Semantic

98.11 96.32 90.59 87.94 85.1 71.03

Multi-w-All 96.65 95.16 88.84 85.59 79.94 64.62
Norwegian-
NynorskLIA

UDPipe 89.59 86.13 93.93 69.27 61.26 –

(size:
33282)

UDify 95.01 93.36 96.13 75.8 70.0 –

Multi-w-Lang id 96.41 94.33 96.35 82.11 76.21 –
Multi-w-Syntax 96.54 94.98 96.48 89.43 82.32 82.45
Multi-w-
Syntax+Semantic

96.47 91.97 93.68 84.95 71.57 75.39

Multi-w-All 94.4 88.52 92.04 81.15 65.31 66.05
Persian-
Seraji

UDPipe 97.75 97.78 97.44 91.68 88.29 –

(size:
4798)

UDify 96.22 94.73 92.55 91.21 87.46 –
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Multi-w-Lang id 97.22 95.47 93.04 93.1 89.74 –
Multi-w-Syntax 98.19 92.08 87.04 95.54 91.46 76.91
Multi-w-
Syntax+Semantic

95.33 89.81 89.63 85.58 88.76 65.78

Multi-w-All 95.08 88.41 86.93 79.6 84.56 56.29
Polish-
LFG

UDPipe 98.8 95.49 97.54 96.77 94.95 –

(size:
31496)

UDify 98.97 96.29 94.47 96.82 95.12 –

Multi-w-Lang id 99.05 96.78 94.82 96.24 94.76 –
Multi-w-Syntax 99.13 97.1 95.01 96.58 94.42 82.34
Multi-w-
Syntax+Semantic

95.77 95.71 90.4 97.59 94.27 75.21

Multi-w-All 95.55 92.96 88.51 92.51 90.71 64.28
Portuguese-
Bosque

UDPipe 97.07 96.4 98.46 91.48 89.16 –

(size:
17992)

UDify 97.54 89.36 85.46 93.38 88.75 –

Multi-w-Lang id 98.1 90.99 86.46 92.93 90.17 –
Multi-w-Syntax 97.33 95.97 93.31 93.61 91.43 88.42
Multi-w-
Syntax+Semantic

97.25 86.0 86.6 85.0 87.72 78.71

Multi-w-All 96.86 83.66 85.4 82.64 85.66 72.05
Portuguese-
GSD

UDPipe 98.31 99.92 99.3 94.28 92.9 –

(size:
17992)

UDify 98.04 95.75 98.95 96.21 94.53 –

Multi-w-Lang id 98.43 96.32 98.97 95.64 95.03 –
Multi-w-Syntax 98.52 96.71 98.98 96.08 94.67 82.17
Multi-w-
Syntax+Semantic

94.99 90.1 91.69 89.47 84.48 74.26

Multi-w-All 93.54 88.1 88.37 85.86 79.15 65.18
Romanian-
Nonstandard

UDPipe 96.68 90.88 94.78 90.07 85.15 –

(size:
21782)

UDify 96.85 87.24 92.7 89.73 86.45 –

Multi-w-Lang id 97.64 89.22 93.17 92.32 89.02 –
Multi-w-Syntax 98.17 96.46 95.13 94.02 90.33 84.2
Multi-w-
Syntax+Semantic

95.03 86.69 87.79 94.45 92.69 76.75

Multi-w-All 94.77 84.06 84.24 89.51 86.1 67.56
Romanian-
RRT

UDPipe 97.96 97.53 98.41 92.72 88.15 –

(size:
21782)

UDify 96.94 93.41 94.15 93.43 89.91 –
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Multi-w-Lang id 97.7 94.37 94.52 93.95 91.22 –
Multi-w-Syntax 98.31 91.55 94.59 94.39 91.86 82.46
Multi-w-
Syntax+Semantic

97.79 88.58 92.66 96.92 89.67 74.87

Multi-w-All 96.92 85.79 91.08 91.81 85.74 63.73
Russian-
GSD

UDPipe 97.1 92.66 97.37 89.47 85.69 –

(size:
54099)

UDify 97.44 95.13 86.56 89.8 86.94 –

Multi-w-Lang id 98.03 95.81 87.48 91.44 88.86 –
Multi-w-Syntax 98.13 96.26 88.01 92.79 90.68 83.44
Multi-w-
Syntax+Semantic

97.55 90.07 87.88 94.22 88.19 73.55

Multi-w-All 96.62 86.43 84.78 91.21 83.72 64.12
Russian-
SynTagRus

UDPipe 99.12 97.57 98.53 95.22 93.74 –

(size:
54099)

UDify 97.46 89.3 93.8 97.35 95.3 –

Multi-w-Lang id 98.04 90.94 94.19 96.42 94.06 –
Multi-w-Syntax 98.14 92.04 94.42 96.6 95.49 82.8
Multi-w-
Syntax+Semantic

96.47 91.56 85.24 97.58 95.59 73.68

Multi-w-All 95.69 88.9 82.75 94.32 92.34 65.16
Russian-
Taiga

UDPipe 93.18 82.87 89.99 76.81 70.47 –

(size:
54099)

UDify 95.39 88.47 90.19 85.05 78.83 –

Multi-w-Lang id 96.67 90.24 90.85 87.91 83.11 –
Multi-w-Syntax 96.79 91.44 91.22 92.4 86.68 82.88
Multi-w-
Syntax+Semantic

94.62 84.64 81.78 93.23 76.18 74.81

Multi-w-All 92.94 82.19 79.46 89.74 71.12 68.8
Serbian-
SET

UDPipe 98.33 94.35 97.36 93.68 90.25 –

(size:
3328)

UDify 97.67 97.66 95.44 95.19 92.17 –

Multi-w-Lang id 98.18 97.92 95.71 94.34 93.51 –
Multi-w-Syntax 98.28 98.09 95.87 95.15 92.72 81.84
Multi-w-
Syntax+Semantic

96.82 92.0 94.62 97.62 95.09 69.71

Multi-w-All 96.12 90.24 91.3 93.18 88.4 62.96
Slovak-
SNK

UDPipe 96.83 90.82 96.4 90.77 87.85 –

(size:
8483)

UDify 98.8 87.71 94.04 97.1 95.01 –
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Multi-w-Lang id 98.94 89.61 94.42 96.52 94.48 –
Multi-w-Syntax 99.02 90.89 94.63 97.19 94.18 82.57
Multi-w-
Syntax+Semantic

98.24 89.32 86.29 93.11 97.1 72.51

Multi-w-All 96.77 86.76 82.84 87.17 90.83 61.05
Slovenian-
SSJ

UDPipe 98.61 95.92 98.25 93.75 91.95 –

(size:
8556)

UDify 97.72 93.29 89.43 95.75 93.57 –

Multi-w-Lang id 98.89 94.4 96.7 94.78 93.36 –
Multi-w-Syntax 98.97 95.03 96.81 96.14 93.33 88.09
Multi-w-
Syntax+Semantic

98.01 94.46 96.56 99.07 95.06 75.63

Multi-w-All 96.0 92.62 92.86 93.82 92.85 66.03
Slovenian-
SST

UDPipe 93.79 86.28 95.17 74.89 68.89 –

(size:
8556)

UDify 95.4 89.81 95.15 80.89 75.55 –

Multi-w-Lang id 96.67 91.36 95.45 86.08 79.37 –
Multi-w-Syntax 96.79 92.41 95.61 90.85 84.94 82.51
Multi-w-
Syntax+Semantic

94.89 91.45 89.54 93.06 77.71 71.56

Multi-w-All 93.25 89.92 87.1 89.35 72.92 66.05
Spanish-
AnCora

UDPipe 98.91 98.49 99.17 92.85 90.77 –

(size:
28492)

UDify 98.53 97.89 98.07 94.72 92.23 –

Multi-w-Lang id 98.76 98.11 98.15 94.35 92.69 –
Multi-w-Syntax 98.84 98.26 98.2 95.05 92.43 82.47
Multi-w-
Syntax+Semantic

98.49 94.01 90.46 86.57 82.26 74.49

Multi-w-All 97.12 91.6 88.9 82.45 80.2 68.69
Spanish-
GSD

UDPipe 96.85 97.09 98.97 92.14 89.46 –

(size:
28492)

UDify 97.1 89.7 91.6 92.22 88.69 –

Multi-w-Lang id 97.15 90.15 94.35 92.4 89.44 –
Multi-w-Syntax 97.26 91.36 94.57 95.03 92.11 84.76
Multi-w-
Syntax+Semantic

96.27 88.24 86.95 88.19 90.98 77.8

Multi-w-All 95.32 87.05 83.41 84.96 87.81 67.84
Swedish-
LinES

UDPipe 96.78 89.43 97.03 86.97 82.76 –

(size:
7479)

UDify 96.83 88.89 89.33 91.31 86.21 –
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Multi-w-Lang id 97.63 90.59 90.05 93.03 88.63 –
Multi-w-Syntax 97.73 91.74 90.46 94.14 89.37 82.74
Multi-w-
Syntax+Semantic

96.32 85.52 88.97 95.04 81.05 72.38

Multi-w-All 94.5 84.43 85.93 88.81 75.54 64.43
Swedish-
Talbanken

UDPipe 97.94 96.86 98.01 90.73 87.71 –

(size:
7479)

UDify 98.48 95.81 98.08 92.92 90.61 –

Multi-w-Lang id 98.72 96.37 98.16 93.6 91.35 –
Multi-w-Syntax 98.81 96.75 98.21 93.97 91.65 81.81
Multi-w-
Syntax+Semantic

97.59 91.2 95.15 85.2 88.69 72.94

Multi-w-All 96.31 88.6 92.99 79.93 86.24 65.96
Tamil-
TTB

UDPipe 91.05 87.28 93.92 74.37 66.63 –

(size:
400)

UDify 90.47 70.0 67.17 80.1 70.38 –

Multi-w-Lang id 93.4 76.35 82.58 86.07 75.59 –
Multi-w-Syntax 93.57 79.4 83.33 89.93 83.32 91.56
Multi-w-
Syntax+Semantic

89.6 76.93 82.69 82.85 81.06 81.72

Multi-w-All 89.4 75.18 81.16 78.94 77.48 71.06
Telugu-
MTG

UDPipe 93.07 99.03 100.0 92.74 86.5 –

(size:
1051)

UDify 96.58 91.77 73.55 89.46 84.62 –

Multi-w-Lang id 95.39 99.3 99.72 94.52 87.82 –
Multi-w-Syntax 95.53 99.28 99.93 95.94 90.11 98.97
Multi-w-
Syntax+Semantic

92.4 96.82 94.55 85.87 92.79 88.27

Multi-w-All 91.8 93.97 90.45 80.01 86.46 81.44
Turkish-
IMST

UDPipe 96.01 92.55 96.01 75.11 68.48 –

(size:
3664)

UDify 88.59 59.22 72.82 80.85 69.2 –

Multi-w-Lang id 92.14 65.81 74.75 84.77 76.11 –
Multi-w-Syntax 92.33 70.26 75.85 89.8 81.3 84.15
Multi-w-
Syntax+Semantic

89.85 65.69 69.47 91.52 74.33 77.58

Multi-w-All 88.44 64.48 65.52 89.05 71.95 71.7
Ukrainian-
IU

UDPipe 97.59 92.66 97.23 90.2 87.16 –

(size:
5496)

UDify 98.02 89.67 95.34 95.3 91.01 –
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Multi-w-Lang id 98.42 91.25 95.62 95.87 91.56 –
Multi-w-Syntax 98.51 92.31 95.78 95.26 92.1 81.89
Multi-w-
Syntax+Semantic

96.75 91.34 94.79 96.5 81.13 75.05

Multi-w-All 95.12 87.64 93.36 92.39 78.1 63.56
Urdu-
UDTB

UDPipe 93.66 81.92 97.4 89.41 83.53 –

(size:
4043)

UDify 93.8 90.38 88.8 88.3 83.33 –

Multi-w-Lang id 95.61 91.84 89.56 89.56 86.99 –
Multi-w-Syntax 95.74 92.82 89.99 93.24 89.31 83.37
Multi-w-
Syntax+Semantic

94.04 92.7 81.71 84.07 86.3 72.71

Multi-w-All 93.4 90.32 79.35 80.98 83.0 61.73
Uyghur-
UDT

UDPipe 89.87 88.3 95.31 79.97 68.6 –

(size:
1656)

UDify 75.88 70.8 79.7 67.78 50.69 –

Multi-w-Lang id 83.67 75.48 81.13 76.91 61.43 –
Multi-w-Syntax 83.99 78.65 81.94 85.84 73.26 83.4
Multi-w-
Syntax+Semantic

83.15 72.27 79.1 76.14 74.65 77.17

Multi-w-All 82.6 69.28 76.9 73.88 72.57 67.9
Vietnamese-
VTB

UDPipe 89.68 99.72 99.55 72.2 64.38 –

(size:
1400)

UDify 85.59 65.49 77.18 75.29 64.18 –

Multi-w-Lang id 90.14 71.05 78.79 81.82 72.35 –
Multi-w-Syntax 90.36 74.8 79.71 89.12 78.29 83.13
Multi-w-
Syntax+Semantic

88.68 68.43 71.27 91.0 70.24 73.17

Multi-w-All 86.7 67.48 69.45 87.18 67.23 68.02
Corpus Model UPOS UFeats LemmasUAS LAS Typo
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Appendix C

Results of proposed End-to-end
EDP model

This appendix compares the results achieved by our proposed ED-parser described

in chapter 6 with the results achieved by the other participants of IWPT 2021 Shared

tasks as table C.1. We summarised the results and provided key inferences drawn

from these in sections

Table C.1: Results of all participants of IWPT 2021
Shared Task

Begin of Table
Language Models UPOS UFeats Lemma UAS LAS ELAS
Bulgarian combo 98.72 97.23 97.25 92.98 89.52 86.67

dcu-epfl 98.89 97.57 97.30 93.25 90.19 92.44
fastparse 99.15 97.95 97.97 87.85 83.39 78.73
grew 99.15 97.95 97.97 94.36 91.62 88.83
robertnlp 99.13 98.31 0.01 96.30 94.15 93.16
shanghaitech 0.00 35.92 0.01 5.80 1.54 92.52
tgif 0.00 35.98 0.01 10.58 1.13 93.63
unipi 98.81 97.57 97.40 95.29 92.71 90.84
Base E2E 98.81 35.97 97.4 93.37 90.03 78.45
Base E2E-
w-Aux

98.21 35.67 97.2 93.17 90.33 80.85

Base E2E-
w-Typ

99.01 35.97 98.1 93.87 90.63 81.85

English combo 95.74 93.54 95.26 89.61 87.22 84.09
dcu-epfl 94.96 93.53 95.66 86.45 83.64 85.70
fastparse 95.85 94.16 96.04 82.36 77.99 73.00
grew 95.85 94.16 96.04 89.22 86.83 85.49
robertnlp 96.24 94.44 0.00 90.79 88.48 87.88
shanghaitech 0.28 32.80 0.00 3.71 1.24 87.27
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tgif 0.28 32.76 0.00 7.86 1.08 88.19
unipi 95.17 93.70 95.76 90.64 88.47 87.11
Base E2E 95.17 32.77 95.76 87.07 84.46 75.4
Base E2E-
w-Aux

94.67 33.07 96.46 86.77 84.96 78.1

Base E2E-
w-Typ

95.37 33.47 96.76 87.57 85.46 78.8

Estonian combo 97.42 96.57 86.09 90.00 87.53 84.02
dcu-epfl 96.46 95.30 95.58 85.31 82.35 84.35
fastparse 96.89 95.78 94.90 71.70 64.50 60.05
grew 96.89 95.78 94.90 86.62 83.85 78.19
robertnlp 97.09 96.46 0.00 90.02 87.59 86.55
shanghaitech 0.12 34.99 0.00 3.67 1.16 86.66
tgif 0.12 35.08 0.01 11.86 0.82 88.38
unipi 96.49 95.33 95.55 87.11 84.14 81.27
Base E2E 96.49 35.04 95.55 85.41 82.46 74.03
Base E2E-
w-Aux

96.59 35.34 96.25 85.71 83.06 76.33

Base E2E-
w-Typ

96.89 35.74 96.55 86.21 83.36 76.63

Latvian combo 97.35 94.97 96.53 92.91 90.25 84.57
dcu-epfl 95.95 93.59 95.34 88.47 85.10 86.96
fastparse 96.28 93.79 95.81 78.37 72.03 66.43
grew 96.28 93.79 95.81 88.32 85.27 77.45
robertnlp 97.61 95.18 0.03 93.62 91.25 88.82
shanghaitech 0.58 35.57 0.03 4.22 1.42 89.17
tgif 0.56 35.62 0.03 10.37 0.97 90.23
unipi 96.12 93.45 95.45 89.90 86.63 83.01
Base E2E 96.12 35.61 95.45 88.51 85.19 76.67
Base E2E-
w-Aux

96.12 35.11 96.05 88.71 85.29 78.57

Base E2E-
w-Typ

96.62 35.91 96.55 89.51 85.89 78.97

Lithuanian combo 97.26 95.05 93.76 88.03 84.75 79.75
dcu-epfl 93.47 87.74 92.71 78.36 73.25 78.04
fastparse 95.97 91.07 93.61 61.39 53.55 48.27
grew 95.97 91.07 93.61 82.54 78.65 74.62
robertnlp 97.42 93.20 0.00 90.49 83.27 80.76
shanghaitech 1.51 30.12 0.00 5.12 1.77 80.87
tgif 1.51 30.20 0.00 10.89 1.24 86.06
unipi 93.40 87.14 92.66 82.75 78.31 71.31
Base E2E 93.4 30.09 92.66 78.25 73.52 73.52
Base E2E-
w-Aux

93.5 29.99 93.26 78.25 73.72 76.92

189



Base E2E-
w-Typ

93.8 30.59 93.66 79.05 74.42 77.22

Russian combo 98.94 98.04 98.16 95.37 94.29 90.73
dcu-epfl 98.19 87.67 97.39 92.61 90.97 92.83
fastparse 98.86 88.97 98.33 87.09 83.23 78.56
grew 98.86 88.97 98.33 94.22 92.97 90.56
robertnlp 99.06 89.51 0.00 95.65 94.64 92.64
shanghaitech 0.02 36.35 0.00 3.35 0.73 93.59
tgif 0.02 36.37 0.00 13.81 0.51 94.01
unipi 98.25 87.52 97.49 94.51 93.32 90.90
Base E2E 98.25 36.32 97.49 92.67 91.01 76.33
Base E2E-
w-Aux

97.75 36.02 97.89 92.57 91.61 78.83

Base E2E-
w-Typ

98.45 36.92 98.49 93.27 92.01 79.53

Slovak combo 97.88 95.03 95.61 93.19 91.72 87.04
dcu-epfl 96.55 91.15 94.72 89.27 86.60 89.59
fastparse 97.67 93.42 96.47 78.23 71.71 64.28
grew 97.67 93.42 96.47 92.27 90.45 86.92
robertnlp 98.28 95.54 0.00 96.16 93.88 89.66
shanghaitech 1.19 22.69 0.00 6.06 1.96 90.25
tgif 1.17 22.69 0.00 13.67 1.60 94.96
unipi 96.62 91.44 94.61 93.32 91.75 86.05
Base E2E 96.62 22.68 94.61 90.09 87.49 77.45
Base E2E-
w-Aux

96.32 22.68 94.81 90.29 87.39 80.85

Base E2E-
w-Typ

96.92 23.48 95.71 90.89 88.19 81.15

Swedish combo 97.67 89.19 92.45 90.31 87.82 83.20
dcu-epfl 96.12 87.92 92.47 85.83 82.30 85.20
fastparse 97.25 88.82 93.60 78.88 73.11 67.26
grew 97.25 88.82 93.60 89.26 86.59 81.54
robertnlp 98.30 89.87 0.00 92.15 89.92 88.03
shanghaitech 0.00 33.79 0.00 1.55 0.34 86.62
tgif 0.00 33.79 0.00 8.42 0.20 89.90
unipi 96.07 87.83 92.47 90.86 88.53 84.91
Base E2E 96.05 33.56 92.46 85.64 82.18 73.12
Base E2E-
w-Aux

95.75 33.06 92.66 86.04 82.08 75.52

Base E2E-
w-Typ

96.45 34.06 93.06 86.54 82.78 76.02
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Eckhard Bick, Heli Uibo, and Kadri Muischnek. Preliminary experiments for a cg-

based syntactic tree corpus of estonian. https://corp.hum.sdu.dk/tgrepeye_

est.html.

Balthasar Bickel. Typology in the 21st century: Major current developments. Lin-

guistic Typology, 11(1):239–251, 2007.

Balthasar Bickel, Johanna Nichols, Taras Zakharko, Alena Witzlack-Makarevich,

Kristine Hildebrandt, Michael Rießler, Lennart Bierkandt, Fernando Zúñiga, and
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