
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-28T10:07:18Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title

Modelling the response of influent volumes of wastewater
treatment plants under current and future conditions for
effective wastewater management in combined sewerage
systems

Author(s) Saikia, Sukanya D.

Publication
Date 2023-09-28

Publisher NUI Galway

Item record http://hdl.handle.net/10379/17927

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


1 
 

 

MODELLING THE RESPONSE OF INFLUENT VOLUMES OF 

WASTEWATER TREATMENT PLANTS UNDER CURRENT AND FUTURE 

CONDITIONS FOR EFFECTIVE WASTEWATER MANAGEMENT IN 

COMBINED SEWERAGE SYSTEMS 

 

 

By 

 

Sukanya D Saikia 

 

A thesis submitted to the College of Science and Engineering, University of Galway,  

in partial fulfilment of the requirements for the Degree of Doctor of Philosophy 

 

 

2023 

 

 

 

Academic supervisors: Dr. Eoghan Clifford, Dr. Paraic Ryan 

 

 

 

 



2 
 

Declaration 

I, the undersigned, hereby declare that this thesis, entitled, ‘Modelling the response of 

influent volumes of wastewater treatment plants under current and future conditions for 

effective wastewater management in combined sewerage systems”, is entirely my own 

work. The thesis has not been submitted in whole or in part to any other university or 

institution. All sources used have been acknowledged and referenced in the text.  

 

Sukanya Diganta Saikia 



3 
 

Acknowledgements 

Firstly, I would like to thank Dr. Eoghan Clifford for supervising me with utmost 

dedication and patience. His guidance and support helped me overcome my inhibitions. 

He was present whenever I sought his advice, and I am very grateful for his time. I would 

also like to thank Dr. Paraic Ryan for agreeing to co-supervise me. His attention to detail 

pushed me to try and achieve the highest standard and nothing less only ever. Both their 

supervision enhanced my critical thinking skills and I believe, made me a better 

researcher. 

I am grateful to the Energy System Integration Partnership Programme (ESIPP) for 

funding the research. I would also like to thank the College of Science and Engineering 

in University of Galway for supporting this research. I am grateful to my graduate 

research committee Prof. Padraic O’Donoghue, Dr. Mark Healy and Dr. Stephen Nash 

for believing in me. Thanks to Irish Water for providing me with the data for this thesis. 

Special thanks to Dr. Paul Nolan from Irish Centre for High-End Computing, who despite 

his busy schedule, always responded promptly to my doubts and gave me a word of 

encouragement when I needed. Thanks to Sudeep and Ronan for being there whenever I 

needed to chat. Sharing the struggles and the successes made the journey more enjoyable. 

My beloved friends, Jenny, Soorya, Nikita, Anand, Cerine, Jiahui, Cleressa, Rajib and 

Hugh helped me cope with homesickness. They made me feel at home, even though I 

was thousands of miles away, in a different country. I will always be grateful for them, 

for lending me an ear when I needed one, their shoulders to lean on, when I felt like 

everything was going wrong! I am very grateful to Tara, without whom, I wouldn’t have 

had a home in Ireland while finishing my thesis. She gave me a safe space to work with 

a stable mind when I had no place to stay.  

My mother and my sister were the greatest strengths from the very beginning of my PhD 

and throughout life. Despite being miles away, they made sure they talk to me each and 

every single day on the phone. Be it the highs or the lows, they have been there for me 

and helped me to remain motivated and be persistent. They always looked out for me, 

mentally, emotionally and financially despite all the troubles. Their unconditional love 

and support made my PhD journey a tad bit easier. My brother-in-law was also there in 

every step of the way, inspiring me and making me believe that I can do this. My heart is 



4 
 

full of gratitude and love for each one of them. I am also very grateful to my late father 

who dreamt of a brighter future for me and believed in my quality education that has 

helped to build a strong foundation. I am sure he is smiling seeing his name (my middle 

name) on the thesis! His presence is missed every single day. 

Last, but certainly not the least, my heartfelt gratitude to Abhishek, who was my biggest 

support through my entire PhD. He was there on the phone, listening and talking to me 

through all my problems. He was there each and every time I was close to giving up, 

pushing me, encouraging me to always face the challenges and believing in me, more 

than I believed in myself. The distance, the pandemic and everything else, although 

extremely difficult to tackle, never really mattered because he was always there, on the 

other end of the phone, smiling at me, telling me that if there is anyone who could do 

this, it is me. I cannot thank my stars enough to have received so much support from him. 

I will be forever grateful. I could not have done this without him.  



5 
 

Abstract 

Wastewater treatment plants (WWTPs) are critical infrastructure globally and are 

essential to protect public health and the environment. With factors such as population 

growth, urbanisation, increase in water consumption etc., the amount of wastewater 

generated has increased significantly, which impact the operations of WWTPs. Of 

particular concern are WWTPs with combined sewerage systems (CSSs) which treat foul 

and storm wastewater collectively. Such WWTPs are also influenced by changes in the 

intensity and frequency of precipitation events. During instances of increased 

precipitation intensity and frequency of storm events, WWTPs with CSSs might 

encounter hydraulic overloading and release of untreated wastewater called combined 

sewer overflows (CSOs). On the other hand, lack of precipitation can lead to reduced 

flow and increased contaminant loading. In both the cases, with climate change and the 

associated changes in precipitation patterns, WWTPs with CSSs may become more 

susceptible to system failures that pose a threat to the receiving waters and the 

surrounding natural environment.  

As stricter environmental regulations are enforced to limit the occurrences of CSOs, it 

has become increasingly important to identify the variables that impact the functioning 

of WWTPs with CSSs. However, unavailability of real data is a key challenge in the 

research area of monitoring the performance of WWTPs and sewerage systems. Studies 

have conventionally used modelled data simulated from hydraulic models that do not 

cater to local characteristics of individual WWTPs and hence are often associated with 

large uncertainties. While considerable attention has been given to the impacts of climate 

variables (current and future) and urbanisation on effluent quantity and quality and the 

performance of the sewerage systems focusing on CSOs, the same cannot be said for 

wastewater influent volumes. Influent volume characteristics function differently as 

compared to CSOs and effluent volumes. Once CSOs leave the sewerage system, there 

are still variations in the flow that proceed towards the WWTPs during or after the spill. 

Hence influent volumes have a significant impact on subsequent WWTP processes and 

predicting how they might change can help prevent occurrences of overflows and aid in 

achieving resilience of WWTPs. Studies investigating the degree to which precipitation 

change (current and future), tidal level, river level, and urbanisation impacts influent 

volumes of WWTPs with CSSs remain unexplored.  
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This research addresses these gaps by studying influent volume response characteristics 

of 14 WWTPs of varying sizes, connected with CSSs, that are spatially distributed over 

Ireland. The thesis uses real spatio-temporal datasets of precipitation, influent volumes 

and location-specific data of tidal and river level. The objective of this study was to 

develop methodologies under practical data constraints to build models that could define 

meaningful relationships among the different variables. Daily precipitation and daily 

mean river level were found to be statistically significant predictor variables of influent 

volumes at a daily scale. On a monthly basis, monthly average daily precipitation, number 

of wet days in a month (and thus zero rainfall days) were observed to be statistically 

significant. The daily and monthly variations in influent volumes for each of the WWTPs 

were assessed with the help of simple and multiple linear regression modelling analysis. 

These individual WWTP models helped to capture local characteristics specific to each 

WWTP. In addition, a novel pooled model was developed through spatio-temporal 

analysis across all the 14 WWTPs to derive generic trends in influent volumes across any 

WWTP. Probability of exceedance curves linking daily precipitation and influent 

volumes were also developed that could aid in identifying storm overflow events under 

various precipitation categories. These graphs could be potentially used for future climate 

scenarios using precipitation projections to estimate the projected frequency of storm 

overflow events. 

This research also analysed, for the first time, the evolution of influent volumes during 

mid-century period (2041 – 2060) as compared to current period. It predicted future 

influent volumes by leveraging high resolution multi-model regional climate model 

projections of precipitation intensity and extreme events for each WWTP and linking 

them to the developed data-driven models and probability of exceedance curves. This 

analysis offers valuable insights into how WWTPs might get impacted in future (e.g., 

exceedance of peak design capacity under extreme weather conditions) due to climate 

change. 

Finally, this research aims to investigate the degree to which urbanisation might 

potentially impact influent volumes of WWTPs with CSSs. Landsat 5 and Landsat 8 

satellite images were used to perform landuse landcover classification of all the 14 

agglomerations corresponding to each WWTP to estimate the change in built-up area. 

Percentage change in built-up area relative to agglomeration area was found to be 

statistically significant with moderate degree of correlation with influent volumes across 
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all agglomerations. The findings of this research will help wastewater utilities 

(particularly the ones connected with CSSs) as end-users, take informed decision in their 

planning and adaptation strategies in order to establish resilient wastewater infrastructure 

at regional and local WWTP scales.  
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UNFCCC United Nations Framework Convention on Climate 

Change 

USGS United States Geological Survey 

UWWTD Urban Waste Water Treatment Directive 

VIF Variance Inflation Factor 

WD Number of wet days in a month 

WRF Weather Research Forecasting 

WWAP World Water Assessment Program 

WWTP Wastewater treatment plant 
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List of Notation 

𝑦    Dependent variable 

𝑥    Predictor variable 

𝛽   Coefficient of the predictor variable in a linear regression 

equation 

𝑐    Intercept 

∈    Model Error 

𝑛    Number of predictor variables 

𝑜    Number of observations 

R2   Regression coefficient or coefficient of determination 

𝑄    Observed daily influent volume 

𝑄𝑚𝑖𝑛    Minimum observed daily influent volume 

𝑄𝑚𝑎𝑥    Maximum observed daily influent volume 

𝑄𝐷
′     Normalised daily influent volume 

𝐴𝐷𝐼𝑉    Observed monthly average daily influent volume 

𝐴𝐷𝐼𝑉𝑚𝑖𝑛   Minimum observed monthly average daily influent 

volume 

𝐴𝐷𝐼𝑉𝑚𝑎𝑥   Maximum observed monthly average daily influent 

volume   

𝑄𝑀
′     Normalised monthly average daily influent volume 

𝑄𝐷𝑤𝑑𝑦
′    Predicted normalised daily influent volume of WWTP 𝑤, 

on day 𝑑 and year 𝑦 
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𝑃𝑤𝑑𝑦    Observed daily precipitation of WWTP 𝑤, on day 𝑑and 

year 𝑦 

𝑄𝑀𝑤𝑚𝑦
′    Predicted normalised monthly average daily influent 

volume of WWTP 𝑤, in month 𝑚 and year 𝑦 

𝐴𝐷𝑃𝑤𝑚𝑦    Observed monthly average daily influent volume of 

WWTP 𝑤, in month 𝑚 and year 𝑦 

𝑍𝑅𝐷𝑤𝑚𝑦  Observed number of zero rainfall days of WWTP 𝑤, in 

month 𝑚 and year 𝑦 

𝑄𝑃𝐷    Predicted daily influent volume 

𝑄𝑃𝑀    Predicted monthly average daily influent volume 

𝑄𝑚    Observed average daily influent volume in month 𝑚  

𝑄𝑚,𝑝   Predicted future average daily influent volume in month 

𝑚 

𝑅𝐶𝑂,𝑚     Observed reserved capacity in month 𝑚 

𝑃𝐷    Peak design capacity 

𝐵𝑈𝑡%    Percentage change in built-up area over time interval 𝑡 

𝐵𝑈𝑡𝑠    Built-up area of the subsequent year 𝑡𝑠 

𝐵𝑈𝑡𝑝    Built-up area of the antecedent year 𝑡𝑝 

𝐵𝑈𝑡𝐴%   Percentage change in built-up area to total agglomeration 

area 

𝐴    Total agglomeration area 

𝐵𝑈𝑡𝑅%   Rate of urbanisation / average annual rate of change in 

built-up area 
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𝐵𝑈𝑡𝑓    Built-up area in the final year 𝑡𝑓 

𝐵𝑈𝑡𝑖     Built-up area in the initial/first year 𝑡𝑖 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

1. INTRODUCTION



  

28 
 

1. Introduction 

1.1. Background 

Global water use is increasing at the rate of 1% per year and has increased 6-fold over 

the past 100 years due to increases in population, economic development and changing 

consumption patterns (UNESCO, 2020).  Wastewater is “used” water contaminated with 

pollutants by human activities (Jones et al., 2021). Therefore, increase in water use 

inherently leads to surge in the quantity of wastewater generated that puts additional 

pressure on the wastewater infrastructure services (Teklehaimanot et al., 2015). Ongoing 

increases in wastewater generation can lead to increased pollution loads within receiving 

waters and can pose a serious threat to our aquatic ecosystems, human health and 

livelihoods of communities and economy (Astaraie-Imani et al., 2012; García-Ávila et 

al., 2021; Sahu, 2019).  

The risk of contaminated water being discharged without any treatment is further 

exacerbated by various factors such as change in sea level, urbanisation marked by a rise 

in impervious surfaces, population growth etc. (Astaraie-Imani et al., 2012; Hussain et 

al., 2022; Kleidorfer et al., 2009; Mohammed et al., 2021; Semadeni-Davies et al., 2008; 

Shakeri et al., 2021; Teklehaimanot et al., 2015).  Furthermore, according to the 

International Panel on Climate Change (IPCC), human and natural systems have already 

encountered some irreversible impacts of climate change arising from exposure to 

irregular weather patterns and extreme weather events (IPCC, 2022). These variables are 

known to be key factors influencing hydraulic characteristics of WWTPs both in terms 

of wastewater quality and quantity; but in some cases, their effects on wastewater 

volumes are not well understood.  

Wastewater treatment facilities are considered as critical infrastructure globally 

(Hawchar et al., 2020), and are affected by changes in the intensity and frequency of 

precipitation events (Gooré Bi et al., 2015; Langeveld et al., 2013; Li et al., 2018; Mines 

et al., 2007; Mohammed et al., 2021). For example, increased rainfall intensity and 

frequency of extreme rainfall events will result in increased wastewater influent volumes 

due to inflow and infiltration and flow from combined sewerage systems (CSSs) that 

collect both wastewater and stormwater (Hughes et al., 2021). Decreased rainfall will 

lead to the contrary outcome of reduced flow and inflow and infiltration, resulting in 
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increased contaminant concentrations (from reduced dilution capacity) due to reduced 

volumes of wastewater (Hughes et al., 2021, Zouboulis and Tolkou, 2015). Furthermore, 

extreme weather events such as floods or droughts will likely decrease the efficiency of 

treatment processes in WWTPs (Reznik et al., 2020). Storm events can trigger overflow 

of excess untreated wastewater, called the combined sewer overflows (CSOs) (Gooré Bi 

et al., 2015) whereas drought events can lead to settled debris in the pipelines (Draude et 

al., 2019). In case of a combination of extreme events such as an extended dry period 

followed by a storm event, the settled debris is carried to the receiving waters resulting 

in increased pollutant loading (Langeveld et al., 2013). The performance characteristics 

of influent volumes, CSOs and effluent volumes for WWTPs connected to CSSs are 

different (discussed in detail in Chapter 2, Section 2.3.1).  While the response of CSO 

and effluent characteristics to rainfall have been studied extensively, the degree to which 

rainfall patterns may impact WWTP influent volumes has not been widely investigated, 

particularly in the context of expected changing rainfall patterns to mid-century and 

beyond.  

In addition to climatic parameters, the degree to which stormwater might affect a CSS, 

in the event of extreme precipitation, may be linked to existing landuse land cover 

(LULC) around the catchment or agglomeration from where the CSS is connected. In the 

case of urban areas, LULC comprises significant amounts of impermeable surfaces 

increasing the amount of stormwater runoff, and can overburden sewer networks (Yao et 

al., 2016) though the degree to which this may impact WWTPs is also not well 

understood. 

Along with changes in precipitation variables (current and future) and urbanisation, 

changes in tidal level and river level can also cause challenges for the design and 

operation of wastewater collection and treatment systems (Lian et al., 2013; Yin et al., 

2011). Indeed, WWTPs in coastal areas are prone to tidal inflow that can enter the sewer 

systems of coastal WWTPs via CSO outfall pipes and can thus influence influent volumes 

to WWTPs. For example the effects (individually or combined) of tidal inflow and 

precipitation can lead to higher influent volumes, partly induced by elevated groundwater 

levels, and, consequently increase operational costs and reduce treatment capacities 

(Cahoon & Hanke, 2017; Cahoon and Hanke, 2019; Flood & Cahoon, 2011). However, 

the degree to which influent volumes of WWTPs with CSSs, which are constructed close 
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to rivers or in coastal regions, may be impacted by tidal and river water levels has not 

been investigated previously to the best knowledge of the author.  

1.2. Knowledge Gaps 

This research aims to address several key gaps in the field of urban wastewater 

management studies which are summarised below: 

• It is clear that limiting  the number of CSOs and instances of hydraulic 

overloading are becoming increasingly important due to the risks they pose to the 

environment and public health (Astaraie-Imani et al., 2012; Butler et al., 2016; 

Gooré Bi et al., 2015; Li et al., 2012; Olds et al., 2018). Management of influent 

volumes, which is a significant WWTP parameter, will help in minimizing such 

risks. To the best knowledge of the author, research investigating the impacts of 

precipitation on influent volumes of WWTPs are limited to three studies 

(Langeveld et al., 2013; Li et al., 2018; Mines et al., 2007). These studies 

investigated either only one WWTP over a long time period (temporal aspect), or 

several WWTPs over a very short time period (spatial aspect). Thus, there is a 

clear gap in modelling the variation of the impacts of precipitation variables 

(Peleg et al., 2016) on influent volume characteristics over space and time 

(spatial-temporal aspect). Other studies have assessed the impacts of precipitation 

on the performance of sewerage systems focusing on CSOs and not on influent 

volumes (Gooré Bi et al., 2015; Hlodversdottir et al., 2015; Schroeder et al., 

2011). A majority of these studies have used hydrodynamic pipe flow models or 

other pre-defined hydraulic models to simulate wastewater flows rather than real 

data. Therefore, there is a lack of understanding of responses of influent volumes 

to different precipitation variables, particularly for WWTPs connected to CSSs. 

There is a need to develop models that use a range of spatial and temporal real 

data to derive relationships between precipitation and influent volumes which can 

be generally applied at a regional level. 

• Previous studies that have focused on the impacts of tidal levels on wastewater 

quantity and flooding include Cahoon & Hanke, (2017; 2019), Flood & Cahoon, 

(2011); Lian et al., (2013) and Yin et al., (2011). To the best knowledge of this 

author there has not been a previous study focusing on the impact of river levels 

on wastewater influent volumes. This may be particularly significant in the case 
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of tidal rivers where river level may be impacted both by precipitation changes 

and tidal changes. 

• Analysis of potential climate change impacts has generally investigated the 

performance of sewerage systems and not WWTP influent volumes (Gooré Bi et 

al., 2015; Hlodversdottir et al., 2015; Kleidorfer et al., 2009). In addition, these 

studies involved application of fixed percentage change to observed datasets to 

generate climate change induced simulations, instead of using high-resolution 

climate model simulations. These fixed percentages are assumptions and hence 

lack a degree of scientific basis provided by the latest climate models in terms of 

future climate change impacts. Therefore, analysis of how influent volumes may 

be impacted by changes in future precipitation projections (derived from high-

resolution climate models) are required.  

• Studies conducted to investigate the impacts of urbanisation on sewer systems 

(Hussain et al., 2022; Loperfido et al., 2014; Ravagnani et al., 2009; Yao et al., 

2016; Zhou et al., 2019) are limited to studying the response behaviour of 

stormwater runoff. To the best knowledge of author, previous studies do not 

reflect the degree to which it might affect wastewater influent volumes.  

1.3. Research Aims and Objectives 

The overall aim of this research was to thoroughly investigation the nature of response of 

influent volumes to WWTPs – a critical parameter as a function of  precipitation (current 

and future), tidal and river levels and urbanisation, and provide a number of tools to 

stakeholders (e.g., utilities, researchers, engineers, and other wastewater 

operating/managing personnel) in this sector which could be applied at regional and 

national levels to derive generic trends. This was achieved by targeting the knowledge 

gaps and shortcomings identified above (Section 1.2) and undertaking the following 

objectives: 

• Analyse the response characteristics of influent volumes of WWTPs, connected 

to CSSs, to precipitation, using extensive observational datasets and develop a 

pooled model from detailed spatio-temporal data analysis, that could be used to 

derive general trends of influent volumes across WWTPs of various sizes, while 

accounting for local characteristics. This research uses data from 14 WWTPs 

spatially distributed across Ireland, to establish the relationship between the 
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precipitation variables, and the response characteristic of influent volumes to 

WWTPs. Additionally, a new, but simple means to examine expected influent 

volumes resulting from particular precipitation events is proposed by means of 

probability of exceedance curves.  

• Develop an understanding of the impacts of tidal level and river levels on 

wastewater influent volumes, and the potential relationships amongst these 

variables using data from different WWTPs located near rivers or coasts. 

• Use the above models (relationships between current precipitation and influent 

volumes) to analyse evolution of wastewater influent volume characteristics by 

mid-century (2041 – 2060) at WWTP scale based on future projected change in 

mean precipitation intensity and frequency of extreme events derived from high-

resolution Regional Climate Models (RCMs) outputs. The use of probability of 

exceedance curves to investigate the projected impacts of high and very high 

rainfall days on the frequency of events exceeding the peak design capacity of 

WWTPs is examined. 

• Enhance the understanding of the potential effects of urbanisation on the influent 

volumes of WWTPs connected to CSSs by using supervised classification 

techniques to calculate change in builtup areas and analyse this in the context of 

WWTP influent volumes over those periods of time (and in the context of the 

above objectives).  

1.4. Structure of the dissertation: 

This research thesis is structured into 7 different chapters and an appendix. Chapter 1 

presents a brief introduction to the research area of wastewater infrastructure and an 

overview of the challenges faced by wastewater utilities, the knowledge gaps identified 

through literature review, the research aims and objectives, the dissertation structure, and 

the contribution of this thesis to existing literature. 

Chapter 2 presents a literature review which provides background on wastewater 

treatment plants, the way they function, the types of sewerage systems, focusing on 

combined sewerage systems. It discusses the impacts of precipitation variability (current 

and future), tidal and river levels, and urbanisation on the operation and maintenance of 

wastewater infrastructure. Chapter 2 also discusses in detail the existing literature in this 

field, the knowledge gaps and how this research aims to cover some of these gaps.  
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Chapter 3 describes the data sources and the data used in this research. It identifies the 

significant variables impacting influent volumes of WWTPs with combined sewerage 

systems and presents the methodologies used to model these relationships in Chapters 4, 

5 and 6. 

Chapter 4 presents the results of analysis of observed historical precipitation records, 

river and tidal levels and their impacts on the influent volume characteristics of 14 

WWTPs of varying sizes. The chapter develops and presents a number of models and 

explains how probability of exceedance curves can be used to capture the influent volume 

response characteristics specific to each WWTP and across all WWTPs. The results 

demonstrate the usability and predictive capacity of the models developed and the curves 

in predicting influent volume to WWTPs based on variables for current period. This 

chapter has been published as a peer reviewed paper. 

Chapter 5 of this thesis presents an analysis of future precipitation projections on influent 

volume characteristics of combined sewerage systems. It takes into consideration the 

latest climate model projections available and depicts an analysis of evolution of influent 

volumes by mid-century (2041 – 2060) as compared to a historical reference period (1981 

– 2000) and the current period (2005 – 2018). It focuses on the projected change in 

precipitation intensity and frequency to illustrate the results, showing the evolution of 

wastewater influent volumes under RCP 4.5 and RCP 8.5. 

Chapter 6 explains in detail the methodology adopted to estimate the change in landuse 

land cover at an urban catchment scale and investigates its influence on wastewater 

influent volumes. It also investigates impacts of urbanisation (individually or combined 

with precipitation), on influent volume changes in the WWTPs examined. The chapter 

discusses the different outcomes and provides thorough justification of the results. 

Chapter 7 outlines the conclusions of the thesis. It starts with an overview of the research 

questions and the aims and objectives addressed in the PhD thesis. The chapter then 

highlights the main conclusions discussing the novel approaches utilised to address the 

research gaps and the main results obtained. It also discusses the limitations of the 

research and finally, it provides recommendations on promising future research scope.  



  

34 
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• Saikia, S.D., Ryan, P., Nuyts, S., Nolan, P. Clifford, E., (2023). Impacts of 

projected future changes in precipitation on the WWTP influent volumes 

connected by combined sewer collection systems. Climate Services (Under 

Review) 

• Saikia, S.D., Ryan, P., Clifford, E. (2023). Understanding the relative response of 

influent volumes to urbanisation and precipitation for WWTPs connected by 

combined sewerage systems. Urban Water Journal (Under preparation) 

1.5.2. Conferences 
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– 28th August.  
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2. LITERATURE REVIEW  
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2. Literature review 

2.1. Overview 

Proper functioning of wastewater treatment plants (WWTPs) is essential to protect public 

health and the environment. There are several external factors such as demographics, 

climate change, urbanisation etc., that influence the operations of WWTPs (Gooré Bi et 

al., 2015; Hawchar et al., 2020; Hughes et al., 2021; Kleidorfer et al., 2009; Reznik et al., 

2020; Semadeni-Davies et al., 2008; Zhou et al., 2019). Various studies have analysed 

the impacts of climate change and urbanisation on wastewater effluent discharge quantity 

and quality (Astaraie-Imani et al., 2012; Butler et al., 2016; Gooré Bi et al., 2015; Li et 

al., 2012; Olds et al., 2018) or on the hydraulic performance of the sewer systems (Fortier 

& Mailhot, 2015; Gooré Bi et al., 2015; Hlodversdottir et al., 2015; Mohammed et al., 

2021; Shakeri et al., 2021). However, while influent to WWTPs is critical in terms of the 

operation and design of WWTPs (Giokas et al., 2002), there have been limited studies on 

analyzing the wastewater influent volumes (Langeveld et al., 2013; Y. Li et al., 2018; 

Mines et al., 2007). This chapter outlines the present state-of-the-art literature and the 

methodologies involved in studying the impacts of hydrological parameters such as 

precipitation and tidal levels, climate change and urbanisation on WWTPs and their 

associated sewer/sewerage systems, with a focus on the importance of wastewater 

influent characteristics. To establish context for this research, the initial sections review 

relevant literature regarding wastewater treatment plants and the different types of 

sewerage systems. The chapter then reviews literature regarding climate change model 

projections and scenarios. The core principles of remote sensing are also discussed to set 

the foundation for using this technology in this research. The chapter concludes with an 

overview of the key knowledge gaps identified and how they are addressed in part in this 

study. 

2.2. Wastewater and Wastewater Treatment Systems 

Wastewater contains a number of pollutants and harmful micro-organisms. Because of 

its highly contaminated nature, it needs to be safely carried away and treated to avoid 

negative impacts to the environment and public health. There are two broad categories of 

wastewater: i) domestic sewage, ii) infiltration and industrial wastewater (Sperling 2007). 

Domestic sewage wastewater includes water from toilets, bathrooms, kitchens, hospitals 
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etc. This type of wastewater is generated on a daily basis and depends on the per capita 

use. Infiltration and industrial wastewater, on the other hand, mainly comprises of water 

from commercial activities such as manufacturing, chemical processes, industries and 

stormwater and surface runoff from rain and flooding and can be collectively termed as 

non-sewage wastewater since it does not contain human waste.  

In most cases, wastewater from a given area is transferred and directed towards public 

sewer systems and then to wastewater treatment plants (WWTPs). The area served by a 

WWTP is known as an agglomeration and is defined by the European Union Urban Waste 

Water Directive (UWWTD) as “an area where the population and/or economic activities 

are sufficiently concentrated for urban waste water to be collected and conducted to an 

urban waste water treatment plant or to a final discharge point” (European Commission, 

2007). On the contrary, in rural areas, where there might not be any wastewater network 

serving the area, individual households have sewer/ septic tanks which are private and 

are also called domestic wastewater treatment systems.  

2.2.1. Types of wastewater sewerage collection systems 

Wastewater sewerage systems are designed to collect and convey wastewater generated 

by their agglomerations, for treatment in WWTPs. Hence the term wastewater sewerage 

system comprises the collection, treatment, and disposal systems (Sperling 2007). In this 

thesis, sewerage system is interchangeably used with the terms sewer system/ network, 

or, in the context of some literature, drainage system. The part of the sewerage system 

that collects the wastewater from its sources is the sewerage collection system. For 

efficient conveyance, WWTPs are generally located in low lying areas where wastewater 

can naturally and progressively flow, with the help of gravity. For the WWTPs which are 

not located in lower elevations and for agglomerations with varied topography and 

relatively long pipe networks, pumping stations are required to transfer the wastewater 

upwards from the sources. The design of the wastewater infrastructure is determined by 

a specific hydraulic treatment capacity which is generally called the population 

equivalent (PE) of the urban area served (Irish Water, 2015). There are three main 

categories of sewerage collection systems aimed to collect wastewater or stormwater: (i) 

sanitary sewers, (ii) storm sewers and (iii) combined sewerage system (CSS). The 

following sub-sections describe the different WWTP sewerage collection systems. 
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2.2.1.1. Sanitary sewers 

Sanitary sewers are designed in such a way that the sewage, in this case, wastewater, is 

transported from its sources to the WWTPs without being mixed with stormwater. Under 

ideal conditions, sanitary sewers transfer wastewater from its sources to the WWTPs and 

thereby help prevent discharge of untreated wastewaters into the environment. However, 

when a system’s capacity is exceeded or due to leakage or other faults in the network, 

these systems can be prone to sanitary sewer overflows (SSOs) (Cahoon & Hanke, 2017). 

During wet weather conditions, additional extraneous flows of stormwater or 

groundwater can infiltrate the sewer network, and might cause SSOs (Water Environment 

Federation, 2011). On the other hand, SSOs might also occur prior to reaching the 

WWTPs, resulting from blockages in the sewer network, during dry weather conditions 

(US EPA, 2004). Draude et al., (2019) defined blockages as “any obstruction in the sewer 

that has resulted in a reportable service failure that impacts customers or the 

environment”. Dry weather can cause increase in settled debris in the sewer network due 

to the reduced hydraulic flow. When such a dry spell is followed by a rainy event, the 

debris gets accumulated within the network resulting in blockages. During wet weather, 

the increased flowrate carries the debris through the network or build up until it restricts 

the flow, resulting in flooding from SSOs (Draude et al., 2019). 

2.2.1.2. Storm sewers 

A storm sewer or storm drain collects surface water (they are not designed to carry 

wastewater) from rain, melted snow etc. and channel it to streams, rivers, coastal waters, 

estuaries, and other water bodies. By draining and diverting the excess stormwater and 

runoff collected from impervious surfaces such as paved roads, parking lots, footpaths, 

roofs etc., these storm sewer systems help prevent flooding. However, the surface runoff 

from impervious surfaces might carry pollutants which without treatment can impact the 

water quality of the natural water bodies. Nevertheless, these systems help minimize the 

problem of inflow and infiltration in sanitary sewers during wet weather events.  

2.2.1.3. Combined sewerage systems 

CSSs are sewer infrastructure designed to collect both wastewater (from its sources) and 

stormwater (from surface runoff), for transfer to a WWTP for treatment. CSSs functions 

differently in dry and wet weather conditions (Figure 2.1). On a day marked by heavy 
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intensity precipitation event, these systems may not have the capacity to cope with the 

total amount of incoming wastewater and stormwater. During such an event the systems 

can discharge excess flows to rivers and streams and other receiving water bodies without 

the wastewater undergoing any kind of treatment. Hence combined sewer overflows 

(CSOs) can happen during times of precipitation events. 

This deviation of excess flows to the receiving waters acts like a relief valve that prevents 

wastewater backing up in the system that could cause flooding, health issues and system 

failure and blockages (Irish Water, 2015). This system becomes a problem when 

overflows happen too frequently, or if the receiving waters are negatively impacted by 

such overflows (Irish Water, 2015).  

 

Figure 2.1: Operation of combined sewerage collection system under dry and wet 

weather conditions, starting from collection to transfer to publicly owned treatment 

works (POTW) (Source: Thompson, 2020) 

On the contrary, prolonged dry periods also lead to blockages in the sewer network 

affecting the operation of the wastewater systems (Draude et al., 2019). Drought periods 

also reduce the base flow of the streams and the rivers where effluent is discharged 

(Zouboulis and Tolkou, 2015). As a result, when a consecutive number of dry days are 

followed by the first flush of wet weather events, the solid waste settled upstream from 

the CSO, gets carried away due to the rain and can be a significant source of pollution to 

the receiving water (McDonnell et al., 2014). Figure 2.2 gives examples of how very wet 

or prolonged dry periods can impact wastewater treatment infrastructure.  
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Figure 2.2: Loop showing the relationships between extreme events impacts on 

wastewater systems 

2.2.2. Global wastewater treatment and sustainable wastewater management 

Depending on the contaminant load, regulatory requirements, level of infrastructure and 

investment, the treatment of wastewater comprises some or all of the following stages: 

preliminary treatment, primary treatment, secondary treatment, floc formation, final 

settlement, tertiary treatment, nutrient removal and quality control1,  after which, it is 

finally being released into the environment.  A recent study by Jones et al., (2021) 

estimated that only 52% of the amount of wastewater produced globally are treated 

(Figure 2.3). They also stated that the collection and treatment rates were highest in 

western Europe and lowest in South Asia and sub-Saharan Africa. High-income countries 

treat 70% of the wastewater generated on average (WWAP, 2017). In case of upper and 

lower middle-income countries, the figure drops to 38% and 28% respectively, whereas 

in low-income countries, only 8% receive treatment of any kind (WWAP, 2017). Thus, 

 
1 https://www.water.ie/help/wastewater/treatment/ (Accessed in Feb 2022) 

https://www.water.ie/help/wastewater/treatment/
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significant volumes of wastewater continue to be discharged to the environment with 

little or no treatment.  

 

Figure 2.3: Country scale world map depicting a) wastewater production 

(m3/year/capita); b) percentage of wastewater collected; c) percentage of wastewater 

treated and d) percentage of wastewater reused (Jones et al., 2021). 

The United Nations (UN) General Assembly adopted an agenda called the Sustainable 

Development Goals (SDGs) in 2015 with an aim to end poverty, protect the environment 

and ensure prosperity to all by 2030 (UNESCO, 2017). It is crucial to identify the 

potential synergies between the UNSDGs and sustainable wastewater management to 

ensure the protection of the natural environment. Sustainable wastewater management 

contributes towards 7 out of 17 UNSDGS: Goal 3 – Good health and well-being, Goal 6 

– Clean water and sanitation, Goal 8 – Decent work and economic growth, Goal 11 – 

Sustainable cities and communities, Goal 13 – Climate action, Goal 14 – Life below water 

and Goal 15 – Life on land (UNESCO, 2017). Therefore, sustainable wastewater 

management will help achieve water and sanitation services for all, promote good health 

and well-being, thereby preventing diseases, reducing WWTP operation failures and 

treatment costs. Building resilient wastewater infrastructure will contribute towards 

economic growth by preventing losses, help in safeguarding the agglomerations from 

climate change hazards (floods and droughts), mitigate greenhouse gas (GHG) emissions, 

and protect the aquatic and terrestrial ecosystem.  
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2.2.3. Wastewater treatment in Ireland 

In Ireland, Irish Water is the national water utility that provides water and wastewater 

services in the country. There are approximately 1000 WWTPs and collection systems 

serving around 3.3 million people in Ireland (Irish Water, 2015). Irish Water ensures the 

maintenance and operation of wastewater treatment facilities and is responsible for the 

planning and adaptation of wastewater infrastructure in future. The Environmental 

Protection Agency (EPA) of Ireland is the environmental regulator of Irish Water which 

sets emission limits of wastewater discharges post treatment to be released back into the 

environment, to safeguard the aquatic ecosystem of the receiving waters and public health 

(EPA, 2021). The Commission for Regulation of Utilities (CRU) of Ireland, on the other 

hand, is the financial regulator of Irish Water as it regulates the revenue and charges of 

water and wastewater services such that these facilities are provided at a reasonable cost 

to the public2. It also cooperates with EPA in regulating the environmental discharges. 

2.2.3.1. Legislation in Ireland 

The Water Framework Directive (2000/60/EC) is the European Union (EU) directive 

adopted in 2000 that requires all the member states to protect and improve water quality 

in all waters to achieve good ecological status by 2015, or latest by 20273. It was 

implemented in Ireland by the European Communities (Water Policy) Regulations 2003. 

Ireland follows the UWWTD (EU, 1991) which states that, for all discharges from 

agglomerations with greater than 10,000 population equivalents (PE), collection and 

secondary treatment processes are mandatory (Morgan et al., 2017). The same treatment 

processes are also required for discharges to fresh waters and estuaries from 

agglomerations with greater than 2000 PE (Morgan et al., 2017). Morgan et al., (2017) 

stated that for agglomerations with less than 2000 PE, appropriate treatment should be 

provided to wastewater entering collection systems for discharges to fresh waters and 

estuaries. The authors also reported that the Directive requires appropriate treatment for 

discharges to coastal waters for agglomerations with less than 10,000 PE. For all 

agglomerations with WWTPs of hydraulic treatment capacity greater than 10,000 PE., 

tertiary treatment must be provided for discharges to sensitive areas (Morgan et al., 2017). 

 
2 https://www.cru.ie/professional/water-2/ (Accessed in Feb 2022) 
3 https://www.gov.ie/en/publication/f7c76-water-framework-directive/#what-the-eu-water-
framework-directive-wfd-is (Accessed in Oct 2022) 

https://www.cru.ie/professional/water-2/
https://www.gov.ie/en/publication/f7c76-water-framework-directive/#what-the-eu-water-framework-directive-wfd-is
https://www.gov.ie/en/publication/f7c76-water-framework-directive/#what-the-eu-water-framework-directive-wfd-is
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Pre-authorisation of all urban wastewater discharges, along with monitoring and 

reporting of the performance of the WWTPs and the water quality of the receiving water 

bodies are also required as per the Directive. 

2.2.3.2. Wastewater collection network in Ireland 

The majority of the urban areas in Ireland are connected to combined sewerage collection 

systems (Morgan et al., 2017). Irish Water policy is, where possible, manage pollution 

related to CSOs resulting from occurrence of a heavy precipitation event, by diverting 

the first flush from going into the environment (Irish Water, 2022)4. An impact 

assessment of CSOs in Ireland under the Water Framework Directive concluded that the 

cumulative annual spill volumes were in the order of 5-10% of the total annual combined 

flows (Camp Dresser & McKee, 2009). In order to address the problem of CSO spills, 

improving the sewerage collection systems need to be prioritised to prevent such spills to 

occur again in future. According to the recent 2021 report by EPA Ireland, there still 

exists seven collection systems in Ireland that requires an upgrade. It is therefore crucial 

to understand the influent volume response characteristics of WWTPs and the factors that 

potentially affect these systems, to prevent hydraulic overloading leading to operation 

and system failures. 

2.3. Factors impacting sewerage systems and WWTP operations 

There are several drivers influencing the maintenance and operations of WWTPs and 

their associated sewerage systems. Climate variables such as precipitation and 

temperature, population, human behaviour, urbanisation etc. are some of the variables 

that have been studied to understand their impacts on the hydraulic performance of 

WWTPs and sewerage systems (Astaraie-Imani et al., 2012; Butler et al., 2007; Gooré Bi 

et al., 2015; Hussain et al., 2022; Kleidorfer et al., 2009; Langeveld et al., 2013; 

Mohammed et al., 2021; Shakeri et al., 2021; Teklehaimanot et al., 2015; Zhou et al., 

2019). Among all these factors, precipitation (current and future) and urbanisation are 

considered as the most influential factors that challenge the operation of WWTPs and 

their associate sewerage systems (Li et al., 2018; Zhou et al., 2019). Studies carried out 

to analyse the impacts of precipitation and urbanisation on the hydraulic performance of 

 
4 https://www.water.ie/conservation/business/business-conservation-tips/construction/ (Accessed in 
Sep 2022) 

https://www.water.ie/conservation/business/business-conservation-tips/construction/
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WWTPs and sewerage systems have mainly focused on 1) wastewater quantity, as 

measured by peak flows, CSO frequency, volume discharge, storage capacity, events of 

flooding and sewer system blockage etc. and 2) wastewater quality, i.e., the wastewater 

contaminant concentrations which eventually impact the receiving waters. However, 

there are still key gaps in understanding how wastewater influent volumes are impacted 

by precipitation and may be in the future by climate change and urbanisation. As influent 

volumes approach the design capacity of the WWTP, its response to these variables is 

crucial, particularly as many WWTP operational decisions are based on the influent 

wastewater entering the WWTP. In addition to this, location-specific variables such as 

WWTPs located near coasts or rivers may also be impacted by saltwater intrusion, or 

infiltration during peak flows of high rainfall combined with high tidal level (Irish Water, 

2015).  

This sub-section presents a detailed discussion on the impact of precipitation and related 

hydrological parameters on wastewater treatment infrastructure (and storm water 

infrastructure where relevant). Discussions related to climate change and urbanisation are 

presented in Sections 2.4 and 2.5 respectively. 

2.3.1. Quantitative assessment of precipitation impacts on wastewater treatment 

systems 

Unlike variables such as peak flow, CSO volume or frequency, effluent volume etc., that 

define the performance of the wastewater sewerage systems, influent volume, i.e., the 

total amount of wastewater that finally arrives at the WWTP inlet, defines the WWTP 

functions. Peak flows might not take into account any leakage in or out of the WWTP, if 

the measuring meter is placed after the leaking point in the sewer system. Hence peak 

flows do not represent the impact on WWTP operations. Any change in the peak flow 

after it is recorded, is thereby taken into account by the influent volume parameter. Since 

influent volume is the amount of untreated wastewater ready for the treatment process, it 

will impact all the other processes in the WWTP. Moreover, the pattern of influent and 

effluent volume on a daily basis on a normal weather day can be disturbed during storm 

events, when the amount of influent volume can differ from the amount of wastewater 

effluent volume. In such cases, the amount of wastewater influent going into a WWTP is 

regulated by reserving the excess amount in storage tanks, which changes the amount of 

wastewater coming out of the WWTP as shown in Figure 2.4. 
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Figure 2.4: A schematic of the different characteristics of CSO, influent and effluent flows 
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On a subsequent day, when the wastewater influent volume is manageable, the amount 

stored in the storage tanks are treated and released into the environment, making the 

amount of effluent volume higher than the influent volume. Due to this difference in the 

influent wastewater volume and the effluent wastewater quantity (which is frequently 

studied), studies investigating influent volume will provide a different perspective when 

trying to achieve a better understanding of WWTP functions and operations under 

different weather conditions. However, such studies are few in number, which might be 

due to the limitations of the approaches used.  For example, key limiting factors can 

include the issue of availability of real data from WWTPs (Langeveld et al., 2013; Li et 

al., 2018) and unavailability of long-term observed data of CSO events required to design 

efficient CSO control measures (Fortier & Mailhot, 2015; Schroeder et al., 2011).  

2.3.1.1. Assessment of precipitation impacts on hydraulic characteristics of 

the sewer system 

Generally, when monitored observational datasets of wastewater systems are unavailable, 

studies have adopted software-based hydraulic models to generate simulated data of 

sewer systems. The most commonly used model is the Storm Water Management Model 

(SWMM) developed by the United States Environmental Protection Agency. This is an 

open-source free software used in the design, planning and analysis of data related to 

stormwater runoff, combined and sanitary sewers and other drainage systems (US, EPA, 

2022)5. SWMM allows for hydraulic and water quality simulation while accounting for 

hydrologic processes. There are other such models like the MIKE MOUSE (MOdel of 

Urban SEwers) water modelling software by Danish Hydraulic Institute that models the 

sewer hydraulics.  

Gooré Bi et al., (2015) carried out an impact assessment of a number of precipitation 

variables such as rainfall intensity and duration on volume discharge and peak CSO 

flowrate between May and October 2013, in a CSS in Longueuil, Canada. They observed 

that 8 rainfall events during this period led to CSOs which they used to calibrate a 

PCSWMM, which is a personal computer version of SWMM. It was found that high 

intensity events could be more accurately modelled than longer duration or low intensity 

 
5 https://www.epa.gov/water-research/storm-water-management-model-swmm (Accessed in Sep 
2022) 

https://www.epa.gov/water-research/storm-water-management-model-swmm


  

47 
 

events. The drawback associated with this model as pointed out by the authors was it 

performed relatively poorly in modelling events marked with low intensity rainfall that 

could potentially lead to concentrated discharges in the receiving waters. Another study 

of a CSS by  Hlodversdottir et al., (2015) assessed the flood hazard in the CSS network. 

They used the MIKE MOUSE software package to model the runoff and sewer flows in 

the combined or stormwater pipes by using historical 10-minute intervals precipitation 

data (1998 – 2008) as inputs. Domestic wastewater was negligible during high rainfall 

days and hence was not considered by the authors. Flood hazard was assessed in terms of 

the sum of the number of flooded manholes and the number of manholes with water level 

1 m below ground. The model output suggested that 3% of the public network manholes 

were vulnerable to flooding during short-term high rainfall events.  

Model-based approaches are usually carried out when physical characteristics of the 

sewer networks are available but day-to-day operational data or data at sub-daily levels 

are unavailable. Hence, a majority of the research using hydraulic modelling techniques 

use limited observational data for calibrating the model or validating model outputs 

(Gooré Bi et al., 2015; Hussain et al., 2022; Kleidorfer et al., 2009; Schroeder et al., 2011; 

Semadeni-Davies et al., 2008; Zhou et al., 2019). These studies focus on the hydraulic 

characteristics of the sewer network rather than WWTPs itself. Moreover, model-based 

analyses have a major drawback as they can only take into account the processes that are 

incorporated into the models and hence the outputs may not be useful in making more 

general observations (Langeveld et al., 2013). 

Research that uses real data are restricted to studying CSO characteristics such as volume 

and frequency of CSOs. With a limited set (2 years) of CSO discharge data of the Berlin 

CSS and rainfall data, Schroeder et al., (2011) demonstrated the efficiency of CSO 

control measures in four catchments. The authors developed a methodology that enables 

the prediction of CSO occurrences from rainfall data based on 2 years of CSO volume 

discharge data. From the CSO data, a subset was used to determine the rainfall depth 

threshold value which led to CSOs of a given probability. This was followed by validating 

the identified rainfall depth with the remaining subset of the CSO data which in turn 

enabled long term modelling of the responses of CSSs to changing precipitation. As 

stated by the authors, this method is applicable when long-term rainfall records are 

available but the CSO discharge data is limited. Mailhot et al., (2015) leveraged the 



  

48 
 

previous study to develop a rainfall threshold-based model to forecast the occurrence of 

CSOs using observed rainfall and CSO datasets. They carried out an accuracy assessment 

of the threshold model to assess whether the forecast was statistically significant using 

the Odds Ratio Skill Score and found that this threshold model could significantly 

forecast the CSO frequency. 

The common thread between these studies is the focus on the sewer system performance 

rather than the WWTPs. Such studies can help in assessing sewer system performance, 

but do not give us outputs associated with the changing influent volume characteristics, 

that can be used to assess the impacts on WWTPs itself. The subsequent section reviews 

the research that has been carried out to assess the precipitation impacts on influent 

volume at the inlet of the WWTPs.  

2.3.1.2. Assessment of precipitation impacts on WWTP influent volume 

characteristics 

As previously discussed, it is important to understand the characteristics of influent 

wastewater to ensure the smooth functioning of WWTPs under various weather 

conditions (wet and dry). If influent wastewater can be correctly managed and designed, 

it will be a significant part of ensuring efficient WWTP operation and in avoiding all the 

subsequent problems associated with non-compliance of effluent standards (Giokas et al., 

2002) or occurrence CSOs or spills. Furthermore, it is necessary to understand both 

current influent characteristics and also those that might occur throughout the WWTP 

design life cycle. Across all types of collection networks, but particularly CSSs, influent 

volumes (the key characteristic of focus in this study) are significantly impacted by 

precipitation.  

Langeveld et al., (2013) investigated the impacts of a specific precipitation event in 2007, 

characterised by a 38-day long dry event followed by an intense storm event in 

Eindhoven, Netherlands. The prolonged dry period showed typical dry weather flow 

values which decreased over the 6 weeks due to decrease in the extraneous flows into the 

sewer system. The storm event following the dry period had a precipitation amount of 33 

mm. They found that the dry spell resulted in deposition of debris in the culverts through 

which the discharge arrives at the WWTP. Due to this reason, during the hours of the 

storm event, no large wet weather flows were arriving at the WWTP. However, the 
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authors observed a sudden increase of flows in the influent chamber after the storm event. 

They explained this phenomenon by stating that, as the culverts were blocked during the 

storm event, by switching to a spare culvert, the WWTP pumping station could have 

emptied the sewer system after the storm ended. This resulted in the delayed response of 

increase in influent flows. The authors also suggested that the blockage caused a CSO 

further upstream of the sewer system to discharge for a longer duration of time, thereby 

increasing the spill volume. Li et al., (2018) assessed the relationship between monthly 

precipitation and monthly influent volume in one WWTP over a 3-year period and found 

a strong linear relationship between the two parameters. However, this linear relationship 

ceased to exist beyond the total monthly precipitation value of 193.2 mm, where monthly 

inflow rate became stagnant. This indicates that the sewer system surpassed its full 

capacity beyond 193.2 mm and occurrence of CSOs were implied  as demonstrated by 

the unchanged monthly influent volume. Another study by Mines et al., (2007) carried 

out linear regression for 24 WWTPs over a single year to asses the impact of rainfall on 

WWTP influent flows. When all the WWTPs were analysed together, weak correlations 

were found between average monthly influent volume and average monthly precipitation. 

Hence, in order to derive more generic and meaningful trends, the authors pooled subsets 

of WWTPs of similar size and characteristics to investigate the relationship between 

average monthly influent volume and average monthly precipitation. This resulted in 

moderate to strong correlations between these variables for each subset of similar 

WWTPs. However, the authors did not consider more independent precipitation variables 

to explain influent volume nor propose a model that could be used across all the 24 

WWTPs of varying sizes. Moreover, daily relationships between precipitation and 

influent volumes were not explored that could provide more insights into the probability 

of exceedance of influent volumes that could potentially lead to CSOs under various 

precipitation intensities.  

Thus,  Li et al., (2018) focused on a single case-study,  (Langeveld et al., 2013) focused 

on a single storm event and (Mines et al., 2007) studied several WWTPs over one year. 

Consequently, there is a gap in relation to studying several WWTPs, of varying size 

across a number of years, to try and identify broader trends in relation to precipitation 

and influent wastewater.  
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2.3.2. Quantitative assessment of tidal and river level impacts on wastewater 

treatment systems 

In the context of tidal level impacts on urban wastewater, drainage and storm water 

infrastructure, the focus, to date, has been urban flooding (Lian et al., 2013; Tang et al., 

2017; Williams et al., 2016; Yin et al., 2011). Other research analyses the impacts of 

inflow and infiltration on the operations of coastal wastewater infrastructure or impacts 

of flooding from storm events and high tides on coastal sewer networks (Cahoon & 

Hanke, 2017, 2019; Flood & Cahoon, 2011).  

Flood & Cahoon, (2011) studied the impacts of tidal level individually and with 

precipitation on daily flows to four central wastewater treatment systems. They found 

that infiltration of elevated groundwater, influenced by heavy precipitation or variation 

in tidal levels, significantly contributed towards increased influent volumes. Cahoon & 

Hanke, (2019) studied the impacts of rainfall, sea level and temperature on 19 wastewater 

collection systems in the coastal regions of North Carolina. These parameters were found 

to be significant drivers of inflow and infiltration into the collection systems. When 

analysed separately, it was found that the flows (consisting of inflow and infiltration) of 

95% of the 19 WWTPs in coastal North Carolina, studied over a period of two years, 

were significantly impacted by tidal levels.  

Although tidal level is found to be a significant contributor to flows into wastewater 

collection systems, studies investigating impacts on influent volumes, particularly for 

CSSs are limited to the best knowledge of the author. Moreover, catchments with tidal 

rivers might also influence wastewater collection systems. While there have been studies 

to understand the effect of wastewater effluent on river water quality (Bo, 2014; Colson 

et al., 2019; Mascher et al., 2017; River et al., 2016; Ryu et al., 2014) or impacts of 

precipitation extreme events leading to variability in streamflow (Coffey et al., 2016; 

Kiely, 1999; Murphy and Charlton, 2006). There has been no study to date, to the best 

knowledge of the author, which analyses the impacts of river levels on WWTP influent 

volumes. With climate change expected to impact sea and river levels (Coffey et al., 

2016; Vousdoukas et al., 2017), analysing the effects of these hydrological parameters 

on the wastewater influent volumes and consequently, on the operations of WWTPs is 

necessary and is an important gap in ensuring wastewater infrastructure can respond to 
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these challenges.  Other studies carried out to evaluate the impacts of precipitation and 

tidal levels on WWTPs and their associate sewerage systems are presented in Table 2.1. 
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Table 2.1: Research studying the impacts of precipitation variables and tidal level on WWTPs and their associate sewerage systems 

References Objective Key features and outcomes of study 

Studies based on precipitation and tidal levels (using observed datasets) 

(Draude et al., 

2019) 

Analysis of sewer blockages as an effect of dry 

weather days 

Statistical techniques used to demonstrate the relationships 

between rainfall, number of dry days and consecutive number 

of dry days on sewer blockage.  

The study found that consecutive preceding dry days is more 

likely to influence sewer blockages as compared to rainfall or 

number of dry days. 

(Mohammed et 

al., 2021) 

Modelling the performance of a sanitary sewer system 

under precipitation events of different return periods 

Performance of the sanitary sewer before and after stormwater 

leakage event was assessed using an SWMM. Model 

calibration was performed using observed leaked surface 

runoff data and dry weather flow. Model validation was 

carried out using another single event based observed data. 

Model was found to have good fit with a correlation 

coefficient of 0.86 between observed and modelled data. 

When return period increased, the precipitation intensity 

increase resulting in stormwater leakage during wet weather 



  

53 
 

days. The study found that the system operated well during 

dry weather days. 

(Peleg et al., 

2016) 

Understanding the influence of climate variability and 

spatial rainfall variability, jointly and individually on 

the response of a calibrated hydrodynamic urban 

drainage model 

This study used a stochastic high resolution rainfall generator 

to simulate many realizations of rainfall accounting for both 

climate (temporal variability over 30 years) and spatial 

rainfall variability. The generated rainfall data was 

incorporated into a calibrated SWMM to simulate surface 

runoff and channel flow for a small urban catchment. Peak 

flows at three different locations in the sewer network for 

different return periods of 5 to 15 years was also assessed.  

It was found that the variation in flow was significantly 

impacted by variation in climate. The effect of the spatial 

rainfall variability on flow extremes depended on the return 

period, with a greater contribution observed for events of high 

return periods. The results indicated the importance of 

studying both spatial and temporal variation in flows. 

(Cahoon & 

Hanke, 2017) 

Impact assessment of rainfall induced inflow and 

infiltration in coastal wastewater treatment systems 

Investigated the influence of inflow and infiltration arising 

due to rainfall events or sea level rise that might lead to 

sanitary system overflows was studied with a focus on coastal 

WWTPs. Regression analysis of system flow responses to 
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rainfall was carried out. Rainfall effects were found to be 

statistically significant.  

(Lian et al., 

2013) 

Analysis of combined impacts of rainfall and tidal 

level on flooding in a coastal city with a complex river 

network 

Flood severity and flood probability was studied under a 

range of precipitation intensities of different return periods 

and tidal level were assessed using a hydrodynamic model.  

It was found that the greatest threat to flooding was from 

heavy rainfall. However, tidal level was found to increase the 

risk of flood severity and flood frequency, if ignore, could 

lead to underestimation of the flood risk. 
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2.4. Climate change 

Climate is defined as the observed patterns of average weather of a particular location 

over a time period in terms of mean and variability of climate variables such as 

precipitation, temperature, wind etc. (Intergovernmental Panel on Climate Change 

(IPCC), 2014 a). The time period referred to in terms of climate is generally decades or 

longer. Climate change, on the other hand, is the alterations in the state of climate, i.e., 

the change in the statistical mean or variability of a particular variable, analysed and 

detected by statistical tests (IPCC, 2014 a).  The United Nations Framework Convention 

on Climate Change (UNFCCC) distinguishes the causes of climate change into two 

categories: i) due to natural internal processes and ii) due to external forcing such as 

volcanic eruptions or persistent anthropogenic activities contributing towards changing 

atmospheric composition. Anthropogenic activity is a broader term that includes 

deforestation, forest fragmentation, agriculture, land use change, burning of fossil fuels, 

urbanisation, vehicular emission, industrial uses, to name a few, that contribute to 

greenhouse gas (GHG) emissions (Mahmoud et al., 2018). Natural events like volcanic 

eruptions, solar activity, variations in the oceanic and atmospheric circulation also lead 

to climate change. However, the effects of natural causes are much smaller in comparison 

to the effects of increase in greenhouse gases due to human activities (IPCC, 2022).  

A major consequence of human-induced climate change is the increasing frequency of 

extreme events such as heat waves, drought, large storms, floods etc. (US EPA, 2022)6. 

It is now accepted that a changing climate will lead to changes in the frequency, intensity, 

spatial extent, duration, and timing of extreme weather and climate events (IPCC, 2022). 

Such events will have severe implications on both natural resources and man-made assets 

and infrastructure (IPCC, 2014 b; 2022). 

Infrastructure that is designed in the present with the purpose of serving many years down 

the line are likely to experience the effects of climate change 30 to 50 years from now 

(Meyer et al., 2012). Dawson et al., (2018) reported that $2.5 trillion a year is invested 

on infrastructure which are typically designed to last long (at least decades). During this 

time, changing climate may alter the performance and operation of such services. In the 

 
6 https://www.epa.gov/climate-indicators/weather-
climate#:~:text=Scientific%20studies%20indicate%20that%20extreme,storms%2C%20floods%2C%20an
d%20droughts. (Accessed in Sep 2022) 

https://www.epa.gov/climate-indicators/weather-climate#:~:text=Scientific%20studies%20indicate%20that%20extreme,storms%2C%20floods%2C%20and%20droughts
https://www.epa.gov/climate-indicators/weather-climate#:~:text=Scientific%20studies%20indicate%20that%20extreme,storms%2C%20floods%2C%20and%20droughts
https://www.epa.gov/climate-indicators/weather-climate#:~:text=Scientific%20studies%20indicate%20that%20extreme,storms%2C%20floods%2C%20and%20droughts
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context of wastewater infrastructure, with climate change, extreme weather events such 

as floods and droughts will decrease the efficiency and increase the costs of treatment 

processes in WWTPs (Reznik et al., 2020). Kirchhoff & Watson (2019), revealed that a 

majority of wastewater managers are implementing changes in the wastewater networks 

to build in climate-resilience based on the historical storm events rather than future 

climate change analyses. Therefore, there is a high probability that these infrastructures 

will continue to experience impacts of climate variability in the future. Research studying 

the climate extremes and its impacts on the wastewater systems in various parts of the 

world is discussed in Section 2.4.3.  

2.4.1. Future climate scenarios and projections 

Weather and climate vary spatially and temporally. As changes in climate at a regional 

scale might impact climate change at the global scale and vice-versa, an understanding 

of this interaction between regional and global climate change is important in order to set 

effective global climate policy targets and designing scenarios (Tebaldi et al., 2015). Such 

climate scenarios are designed on the basis of GHG emissions which determine the 

atmospheric composition. The IPCC has found a parameter to measure the amount of 

GHG emission in terms of Radiative Forcing. Radiative forcing is the net change in the 

energy (irradiance) balance of the earth system caused by external influence across a 

temporal range, usually represented as the value due to changes between pre-industrial 

times and present-day (Huang et al., 2013). It is a quantitative measure widely 

implemented by scientists and researchers that provides the basis of comparison of 

potential climate response characteristics to various external drivers.  

Quantifying radiative forcing from GHG emissions needs to take into account a number 

of factors such as population growth, technological and economic development etc. 

which renders the prediction of changes in future climate patterns difficult to achieve 

(Santoso et al., 2008). That is why, different scenarios are developed which aid in the 

process of identifying possible impact of climate change. These future climate conditions 

are developed by the IPCC in the form of trajectories or pathways of radiative forcing 

levels or CO2-equivalent concentrations. These pathways are called the Representative 

Concentration Pathways or RCPs. These RCPs are also termed as climate scenarios that 

depict the various emission possibilities in future. 
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According to the IPCC’s 5th Assessment Report (AR5), 2014, there are four RCPs that 

depict the range of possible impacts based on GHG emissions (Figure 2.5). These 

scenarios do not take into account the possible changes in natural forcings. These four 

scenarios are: i) RCP 2.6 or the stringent/ low emission pathway that limits CO2 emissions 

and requires it to start declining by 2020 to zero at the end of the century, ii) RCP 4.5 is 

the intermediate pathway with no climate policies adopted, and represents the peak in 

CO2 emissions around 2040 followed by a decline, iii) RCP 6.0 which shows CO2 

emissions peak around 2080 followed by a decline and iv) RCP 8.5 which is the high 

emission or the worst-case scenario depicts an increase in CO2 emissions through the 

century until 21007. The annual GHG emission pathways are included in AR5 (Figure 

2.6).  

 

Figure 2.5: The four RCPs based on different greenhouse gas emissions (IPCC AR5 

Synthesis Report, 2014 c) 

 
7 https://en.wikipedia.org/wiki/Representative_Concentration_Pathway (Accessed in Jan 2019) 

https://en.wikipedia.org/wiki/Representative_Concentration_Pathway
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Figure 2.6: Annual GHG emission pathways 2000 - 2100 (IPCC AR5 Synthesis 

Report, 2014 c). 

The IPCC in their 6th Assessment Report, has introduced the latest climate scenarios, as 

a set of 9 emission and concentration scenarios. These scenarios are built on a range of 

radiative forcings and five shared socio-economic pathways (SSPs) (IPCC, 2021 a; 2021 

b). The SSPs are different socio-economic storylines developed on the basis of 

population, urbanisation, human and technological development etc. that describe a range 

of potential future worlds (IPCC, 2021 a).  This new set of scenarios, referred to as SSPX-

Y, where X represents the socio-economic pathways 1 – 5 and Y refers to the radiative 

forcings 1.9, 2.6, 3.4, 4.5, 6.0, 7.0 and 8.5 provides a wider range of future worlds as 

compared to RCPs (Table 2.2) and thus, fill some gaps. 
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Table 2.2: Description of the SSPX-Y Scenarios and comparison to RCPs (Source: IPCC, 2021 a) 

SSPX-Y 

Scenario 

Description From an Emissions/Concentrations 

Perspective 

Closest RCP Scenarios 

SSP1-1.9 Implies net-zero CO2 emissions around the middle of the 

century. 

Not available. No equivalently low RCP scenario exists. 

SSP1-2.6 Implies net-zero CO2 emissions in the second half of the 

century. 

RCP 2.6, although RCP 2.6 might be cooler for the same 

model settings. 

SSP4-3.4 A scenario between SSP1-2.6 and SSP2-4.5 in terms of 

end-of-century radiative forcing.  

3.4 level of end-of-century radiative forcing was not 

available in the RCPs. Nominally SSP4-3.4 sits between 

RCP 2.6 and RCP 4.5, although SSP4-3.4 might be more 

similar to RCP 4.5. Also, in the early decades of the 

21st century, SSP4-3.4 is close to RCP 6.0, which featured 

lower radiative forcing than RCP 4.5 in those decades. 

SSP2-4.5 Scenario approximately in line with the upper end of 

aggregate nationally determined contribution (NDCs) 

emissions levels by 2030 [NDCs are each country’s 

target to reduce emissions to adapt to climate change]. 

CO2 emissions remaining around current levels until the 

middle of the century. New or updated NDCs by the end 

RCP 4.5 and, until 2050, also RCP 6.0. Forcing in the 

latter was even lower than RCP 4.5 in the early decades of 

the 21st century. 
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of 2020 did not significantly change the emissions 

projections up to 2030, although more countries adopted 

2050 net-zero targets in line with SSP1-1.9 or SSP1-2.6. 

The SSP2-4.5 scenario deviates mildly from a ‘no-

additional-climate-policy’ reference scenario. 

SSP4-6.0 The end-of-century nominal radiative forcing level of 

6.0 W m–2 can be considered a ‘no-additional-climate-

policy’ reference scenario, under SSP1 and SSP4 socio-

economic development narratives. 

RCP 6.0 is nominally closest in the second half of the 

century. 

SSP3-7.0 An intermediate-to-high reference scenario resulting 

from no additional climate policy under the SSP3 socio-

economic development narrative. CO2 emissions 

roughly double from current levels by 2100. SSP3-7.0 

has particularly high non-CO2 emissions, including high 

aerosols emissions. 

Between RCP 6.0 and RCP 8.5, although SSP3-7.0 non-CO2 

emissions and aerosols are higher than in any of the RCPs. 

SSP3-7.0- 

lowNTCF 

A variation of the intermediate-to-high reference 

scenario SSP3-7.0 but with mitigation of CH4 and/or 

short-lived species such as black carbon and other short-

lived climate forcers (SLCF). Variants of SSP3-7.0-

SSP3-7.0-lowNTCF is between RCP 6.0 and RCP 8.5, as 

RCP scenarios generally incorporated a narrow and 

comparatively low level of SLCF emissions across the range 

of RCPs. 
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lowNTCF differ in terms of whether CH4 emissions are 

reduced.  

SSP5-3.4-OS 

(Overshoot) 

A mitigation-focused variant of SSP5-8.5 that initially 

follows unconstrained emissions growth in a fossil fuel-

intensive setting until 2040 and then implements the 

largest net negative CO2 emissions of all SSP scenarios 

in the second half of 21st century to reach SSP1-2.6 

forcing levels in the 22nd century.  

Not available. Initially, until 2040, similar to RCP 8.5. 

SSP5-8.5 A high-reference scenario with no additional climate 

policy. CO2 emissions roughly double from current 

levels by 2050. Emissions levels as high as SSP5-8.5 are 

not obtained under any of the SSPs other than the fossil-

fuelled SSP5 socio-economic development pathway. 

RCP 8.5, although CO2 emissions under SSP5-8.5 are higher 

towards the end of the century. CH4 emissions under SSP5-

8.5 are lower than under RCP 8.5. When used with the same 

model settings, SSP5-8.5 may result in slightly higher 

temperatures than RCP 8.5 
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2.4.2. Climate models  

Climate models are developed using mathematical equations that helps in simulating 

weather patterns in future or in the past. They are used to identify and estimate future 

climate projections (simulations) of various parameters like precipitation, temperature etc 

based on climate scenarios.  Generally, various models and scenarios are used to generate 

a range of projections that provide alternatives to the policymakers in order to map their 

activities. All models represent real-world phenomena but always have an associated 

error between the observed and the predicted values. Different climate models provide a 

range of representations of the Earth’s response to the different forcings as mentioned 

above. It also takes into account the natural variability of climate (IPCC, 2013). The IPCC 

uses the results of a representative climate model project called the Coupled Model 

Intercomparison Project (CMIP) in the assessment reports (Ohba, 2021). This project was 

initiated by the World Organization Research Program in 1995. The latest CMIP is the 

CMIP Phase 6 which aims to fill the scientific gaps remaining in the previous CMIP, i.e., 

the CMIP Phase 5 which were incorporated into the IPCC AR5. CMIP6 considers the 

socio-economic conditions by linking the SSPs to RCPs (Table 2.2), thereby enhancing 

the robustness of the projections (Zhang & Ayyub, 2021).  

Each CMIP project involves different scientific modelling groups across the world to 

provide General Circulation Models (GCMs). GCMs are models that yield large-scale 

simulations representing the physical, atmospheric, and oceanic processes of Earth. 

However, they are restricted to coarser resolutions due to computational constraints. 

Although CMIP 6 is the most up-to-date climate model project, GCM projections from 

CMIP 6 are still in the process of becoming available. Hence, Shakeri et al., (2021) stated 

that the GCMs from CMIP 5 are considered the most reliable and current climate model 

which included simulations at a coarse resolution for assessment  in the IPCC’s AR5. 

However, precipitation effects vary spatially, depending on local topography, and cannot 

be captured in such coarse resolution simulations. Hence, such large-scale projections are 

not suitable for analysis and planning at local levels (Peng et al., 2023). Estimating 

climate change projections at finer regional or local scales, requires that global large scale 

simulations are downscaled using high-resolution Regional Climate Models (RCMs), 

which take into account the finer level local conditions (Nolan and Flanagan, 2020). As 

all models, RCMs also have model errors that flow from the GCMs in the process of 
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downscaling the observations. However, one advantage of RCMs in addition to better 

representation of local climate effects is that they produce improved simulations with 

relatively small spatial and temporal character (Nolan and Flanagan, 2020). Downscaled 

RCM simulations from CMIP 6 GCMs are still not widely available yet (Peng et al., 

2023).  

In relation to WWTPs , these climate model projections of high spatial and temporal 

resolution under various scenarios can be used to model key parameters such as influent 

volume, effluent characteristics etc., analysing future performance of wastewater 

infrastructure under future climate scenarios (Arnbjerg-Nielsen, 2012). The following 

section details the work done in investigating the future change in precipitation induced 

by climate change and its impacts on WWTPs and their associated sewerage systems.  

2.4.3. Impacts of precipitation change on wastewater systems in future – state-of-

the-   art 

There have been several studies (Abdellatif et al., 2014; Arnbjerg-Nielsen, 2012; Butler 

et al., 2007; Gooré Bi et al., 2015; Hlodversdottir et al., 2015; Jung et al., 2015; Kleidorfer 

et al., 2009; Semadeni-Davies et al., 2008; Shakeri et al., 2021; Willems, 2013;  Zhou et 

al., 2019) that have used model projections of GCMs and RCMs to establish that 

increased intensity of precipitation is a primary driver that will influence the design and 

operation of WWTPs and their associated sewer systems. These studies have used 

different approaches depending on the use of climate projections (GCMs or RCMs), and 

the parameter that is modelled such as peak flow, hydrologic runoff, storage capacity of 

the sewer network, CSO frequency etc. These are characteristics that can be used to 

measure the performance of sewer network. Each approach is described below using 

example case studies.  

Zhou et al., (2019) investigated the effects induced by climate change on hydrological 

runoff and urban flood volumes in northern China to emphasize the importance of 

drainage adaptation and planning. They used projections from five GCMs from the 

CMIP5 archive under RCP 2.6 and RCP 8.5 climate scenarios. A change factor 

methodology was applied to these raw projections with large uncertainties to obtain more 

confidence in the projected changes. Change factor methodology is commonly used in 

climate change impact studies where the difference between future and baseline GCM or 
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RCM simulations, termed as the climate change factor, is estimated, which is then applied 

to the raw projections (Zhou et al., 2019). The climate change factors are the projected 

changes which (Zhou et al., 2019) stated to have more confidence on, as compared to the 

absolute values of the projections. The authors then used the resulting projections from 

the change factor methodology in the SWMM to understand the hydraulic response 

characteristics of sewer systems to climate change. They observed that under future 

climate scenarios, the ratio of total flood volume (overflows from overloading manholes) 

to surface runoff volume, increases with increase in rainfall intensities. Moreover, they 

also concluded that total flood volume increases in the future for all return periods from 

1 to 100 years, with higher increases for heavier precipitation events.  On the other hand, 

Butler et al., (2007) studied the impacts of climate change on storage tanks of sewer 

networks in North London, UK, which are generally used to limit overflows into the 

environment. Using the climate predictions for UK derived from the Hadley Centre’s 

Europe RCM, under IPCC medium-high emission scenario, the authors generated a long-

term synthetic rainfall time series and predicted that under future rainfall conditions, a 

35% increase in storm events was observed that could lead to 57% increase in the 

requirement of storage tank capacity.   

CSO characteristics (volume discharge and peak flow) under current and future climate 

was studied by Gooré Bi et al., (2015) using observed overflow events in 2013 in a 

combined sewer system in Canada, leading from a 20% increase in rainfall intensity of 8 

observed rainfall events. They based their research on the projections of the Canadian 

Regional Climate Model that suggests an increase in extreme precipitation events by 

2050. Using the SWMM model, they found a 15% – 500% increase in volume discharge 

and a 13% – 148% increase in peak flow in 2050 as compared to the 2013 period. Fortier 

& Mailhot (2015) conducted a study considering 30 CSO outfalls in southern Quebec for 

3 years for the period of May to October. They estimated the rainfall threshold at which 

CSOs might occur based on the methodology adopted by Schroeder et al., (2011) 

(described in Section 2.3.1.1) and used the Canadian RCM to estimate the change in CSO 

frequency in future. The authors found that on a monthly basis, CSOs are expected to be 

more frequent in future for the months of May and October but decrease in the summer 

months of July and August. These methodologies featured the use of limited event-based 

rainfall data and focused on CSO characteristics. The model applied to simulate some of 
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the quantitative variables does not incorporate the process descriptions representing the 

dynamics observed in monitoring data.  

With respect to wastewater volumes, a recent study by (Shakeri et al., 2021) assessed the 

potential impact of the change in climate variables on the change in wastewater 

production in Tehran. The authors used climate projections from CMIP5 models 

downscaled using a Statistical DownScaling Model (SDSM), and finally forecasted 

wastewater production volume under RCPs 2.6, 4.5 and 8.5 using Multi-Layer Perceptron 

Network and Fuzzy model. However, as wastewater networks in Tehran feature separate 

storm and wastewater sewerage systems, the research found temperature, relative 

humidity, sunshine hours, and population as significant variables of wastewater volumes 

rather than precipitation.  

While the importance of studying wastewater influent volumes in WWTP design and 

operation has been recognised (discussed in Section 2.3.1), as has the influence of climate 

change on (future change in precipitation variables and extreme events) on wastewater 

systems (Reznik et al., 2020), to date, no study has investigated how changes in climate 

(and in particular precipitation) will impact influent wastewater volumes in the coming 

decades. Thus there are gaps in knowledge as to the robustness of WWTPs in meeting 

future climate-related  challenges. Table 2.3 presents a literature review of various studies 

based on the impacts of future precipitation change on WWTPs and their associate 

sewerage systems.
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Table 2.3: Research studying the impacts of climate change on WWTPs and their associate sewerage systems 

References Objective Key features and outcomes of study 

Studies based on impacts of future precipitation change 

(Berggren et al., 

2012) 

Analysis of the hydraulic performance of urban 

drainage systems based on precipitation changes 

induced by climate change 

Two hydraulic parameters were studied: water levels in nodes 

(represented by the number of floods and frequency and 

duration of floods) and pipe flow ratio. 

It was found that the number of flooded nodes, geographical 

distribution of floods, flooding frequency and flood duration 

will increase in the future. The pipe flow ratio was found to 

improve the understanding of system capacity while 

delineating critical areas when presented graphically. 

(Kirchhoff & 

Watson 2019) 

Assessment of how wastewater managers are adapting 

the wastewater infrastructure to climate change 

Surveys and interviews were carried out to understand the 

methods and techniques of wastewater managers to adapt to 

climate change. 

78% of WW managers were found to making changes to the 

design of wastewater infrastructure as per the storms that they 

experienced in the past instead of considering future climate 

change impacts. 
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(Arnbjerg-

Nielsen, 2012) 

Quantitative analysis of the climate change impacts on 

precipitation which is used for hydrologic design 

These studies are all centered around climate change impacts 

on the design parameters of urban drainage systems based on 

the rainfall characteristics.  

Use of historical rainfall data RCM projections. 

Results suggest change in the design intensities and storage 

facilities in future reflecting increase in both the design 

parameters, implying the change in the response of the urban 

drainage systems in future as compared to current period.  

(Willems, 2013) 
Revision of urban drainage system design based on 

climate change impacts on precipitation 

(Arnbjerg-

Nielsen et al., 

2013) 

Review of climate change impacts on rainfall 

extremes and urban drainage systems 

Both these studies are reviews of the methods involving the 

climate change impacts on precipitation intensity and 

precipitation extremes that can eventually impact the urban 

drainage systems. 
(Willems et al., 

2012) 

Impact assessment of climate change on urban rainfall 

extremes and urban drainage 

(Jung et al., 

2015) 

Analysis of the effects of climate change on runoff in 

an urban drainage system 

Linear regression analysis was carried out for observed 

rainfall data of different duration (1 hour, 24 hours and 10 

minutes) to analyse the trend and extrapolate future climate 

change scenarios. Design rainfall intensity and peak discharge 

of the urban drainage basin were calculated using a calibrated 

SWMM to evaluate the effect of the variation in rainfall 

events on increased runoff. 
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Statistically significant upward trends were observed for 1 

hour and 24 hours rainfall duration. However, the steepest 

slope was observed for the shortest rainfall duration, although 

it was nearly significant at 90% level of confidence. 

Simulated peak discharge increased with increase in the short 

duration rainfall intensity. 

(Gooré Bi et al., 

2017) 

Review of downscaled data for climate change impact 

studies in urban areas 

Trends and approaches to study climate change impacts with 

a focus on urban drainage systems are reviewed. 

(P. Nolan et al., 

2017) 

Climate change impacts on rainfall by mid-century in 

Ireland using RCM ensemble approach 

Detailed the precipitation projection in Ireland by mid-

century. 

Precipitation amounts showed significant projected decrease 

as opposed to extreme events such as heavy precipitation 

events and extended dry periods which showed significant 

projected increase. 

(Hughes et al., 

2021) 

Analysis of impacts and implications of climate 

change on wastewater systems 

Impacts such as spill and odour nuisance leading to flooding, 

water quality deterioration due to uncontrolled discharges and 

damage to infrastructure were shown as direct climate-related 

impacts. Long-term implications of these impacts were 

demonstrated. 
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In addition to precipitation variables, changes in land use land cover (LULC) due to urban 

development can increase the amount of impermeable surfaces in agglomerations. This 

combined with increasing populations can also overburden existing WWTPs (Kleidorfer 

et al., 2009; Semadeni-Davies et al., 2008), particularly WWTPs with CSSs, making such 

infrastructure vulnerable to the variable nature  of influent wastewater volume (Marlow 

et al., 2013; Willuweit and O’Sullivan, 2013). Therefore, it is important to analyse how 

changing LULC may impact the design and operation of urban wastewater infrastructure. 

2.5. Land use land cover 

Land use is a description based solely on the human activity or function of an area of land 

(US EPA, 2021)8 and refers to the purpose that the land serves. Examples of land use 

types include agricultural, residential industrial, transport, commercial etc. Land cover 

refers to the physical and biological characteristics that cover the earth’s surface (US 

EPA, 2021). It describes the type of land being used and is captured in the distribution of 

forest, grassland, open water, marsh land, agriculture, developed/ built-up / urban land 

(impervious), barren land etc. Land cover changes can result from anthropogenic 

activities, though such changes do not necessarily imply degradation of land. The land 

use land cover (LULC) pattern of a region is an outcome of natural and socio-economic 

factors and their changes in time and space (Rimal, 2011). 

Of particular concern are urban areas, where half of the world’s population live (Ritchie 

and Roser, 2020) (Figure 2.7). Urbanisation is a complex and heterogeneous process 

involving various factors such as population growth of urban areas, economic 

development, migration of people from rural to urban areas, spatial rearrangement, and 

adaptation of settlements, landuse land cover (LULC) change etc.9 

 
8 https://www.epa.gov/report-environment/land-use (Accessed in Dec 2021 
9 https://www.conserve-energy-future.com/urbanization-and-urban-growth.php (Accessed in Sep 2022) 

https://www.epa.gov/report-environment/land-use
https://www.conserve-energy-future.com/urbanization-and-urban-growth.php
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Figure 2.7: World map showing proportion people living in urban areas, Source: 

UN Population Division (via World Bank, 2022) 

These factors are intricately linked with one another, and hence multifaceted, as 

economic growth leads to migration of people, leading to population growth. Population 

growth inherently brings about changes in the LULC (Shukla et al., 2018) as human 

activities and economic growth are also observed to follow an upward trend (Mushtaq & 

Lala, 2017). Urbanisation also refers to a change in landuse type and is defined as the 

“development of modern urban infrastructure and public service facilities that cater to the 

changing economic and social circumstances of the working population such as changes 

in their thinking patterns, lifestyle, behaviour etc.” (Chaolin, 2020). As of 2021, 

approximately 57% of the world population live in urban areas. In case of Ireland, 64% 

of the population live in urban areas10 (World Bank, 2022). In the past decade (2011 – 

2021), the urbanisation has increased by 2.2%. 

2.5.1. Monitoring LULC change using Remote Sensing and GIS 

Remote Sensing (RS) is the process of acquiring information of an area of interest from 

a distance, by monitoring its physical characteristics measured by its reflected and 

 
10 https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=IE (Accessed in June 2022) 

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=IE
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emitted radiation, thereby detecting any kind of dynamic phenomenon happening on the 

surface of the Earth (Read & Torrado, 2009). RS is most commonly used to map landuse 

land cover changes because of its efficiency in collecting multi-temporal, multi-spectral, 

and multi-location data (Saraswat et al., 2016). Geographical Information System (GIS) 

is a “spatial system that creates, manages, analyses, and maps all types of data. It helps 

users understand patterns, relationships, and geographical context” (Environmental 

Systems Research Institute11). It enables users to identify problems, monitor them and 

manage and respond to such events.  Integration of GIS and RS are fundamental for 

monitoring LULC change and are extremely useful for future planning. The core 

principles of RS are presented in the following section to underpin the methodology used 

in this thesis to estimate LULC change (Chapter 6).  

2.5.1.1. Electromagnetic Radiation 

Electromagnetic (EM) radiation spans over a broad spectrum from very long radio waves 

to very short gamma rays (Butcher, et al., 2016) as shown in Figure 2.8. The portion of 

the spectrum visible to our eye is a narrow range between 380 – 700 nanometres. These 

ranges of different wavelengths are also called spectral bands. 

 

Figure 2.8: Electromagnetic spectrum – the spectral range of different wavelengths 

(Szantoi, 2013) 

 
11 https://www.esri.com/en-us/what-is-gis/overview (Accessed in Aug 2022) 

https://www.esri.com/en-us/what-is-gis/overview
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Some of this energy is reflected back into the atmosphere where it is then scattered, due 

to interactions with particles in the air, before reaching a remote sensor (Figure 2.9). 

Clouds can also cause colours to appear faint and hazy because the EM radiation we see 

is mostly scattered light. It is therefore important in RS to use images with little to no 

cloud cover so that visual and digital image interpretation is easier as colours are brighter 

and surface features are clearer. Visible radiation can readily pass through the atmosphere 

and microwaves can even transmit through clouds making them the best wavelength to 

undergo remote sensing. 

 

Figure 2.9: Energy interactions in the atmosphere (Bakker et al., 2000) 

2.5.1.2. Spectral Reflectance 

The radiation emitted by an object is normally perceived as the object colour by humans. 

For example, healthy vegetation is perceived as green in colour because plants absorb the 

red and blue incident light for photosynthesis and reflect the green light (DeRiggi, 2017). 

However, vegetation has the highest reflectance in near-infrared (NIR) wavelength 

(Figure 2.10). Thus, the reflectance of different land cover type depends on the 

wavelength of the electromagnetic spectrum. When this reflectance or spectral response 

of an object is represented graphically, over the range of electromagnetic spectrum, 

characterised by the different wavelengths, it is called spectral reflectance curve or 
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spectral signature. Spectral signatures can be a strong tool to interpret remotely sensed 

images.  

 

Figure 2.10: Spectral signature of vegetation (Roman and Ursu, 2016) 

2.5.1.3. Band combinations and satellite images 

In terms of mapping, there are two primary colour models used to visualise satellite 

images and these are i) the red-green-blue (RGB) colour model or the additive colour 

model, and ii) the subtractive colour model. The RGB colour model is based on the theory 

that a very broad range of visible colours can be seen by mixing the three primary colours 

red, green and blue.  The RGB colour model is used for screen displays such as when 

remote sensing technology is accessed through computer graphics applications. In 

contrast, the subtractive colour model is when the primary colours are subtracted from 

white light to get yellow, magenta or cyan. This model is used for device outputs such as 

printed hardcopies of photos.  

The RGB colour model can be used in different ways of spectral band combinations, 

called colour schemes, in order to achieve composite images based on the visual 

requirements of the user. True colour composite scheme is when the red, green and blue 

visible spectral bands of the image is aligned with the red, green and blue input channels 
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of a monitor. The resulting composite image is perceived in the same way as it occurs 

naturally on ground. For example, vegetation in true colour composite image would 

appear as green pixels as it would appear normally on ground. On the contrary, false 

colour composite (FCC) scheme is when the red, blue and green values of the image do 

not align with the true red, green, blue planes of the monitor (input channel). This method 

of using band combinations is very beneficial in visualizing wavelengths that are not 

detected by human eye. For example, as per the spectral signature of vegetation (Figure 

2.11), since high reflectance value is observed in NIR band (wavelength), a user whose 

study focuses on detecting vegetation would ideally select the NIR band to highlight 

vegetation. Therefore, to ensure efficient interpretation of vegetation, the NIR, red and 

green bands are aligned with the red, green and blue planes of the monitor respectively. 

An example of a typical FCC is shown in Figure 2.11. 

 

Figure 2.11: A typical FCC band combination for LANDSAT 8 for better 

visualization12 

Different satellite images are characterised by a range of spectral bands. The researcher 

selects the satellite image and band combinations depending on factors such as their 

research interest, data availability, spatial resolution required etc. The Landsat satellite is 

one of the most robust satellites initiated by the joint program of National Aeronautics 

 
12 https://gsp.humboldt.edu/olm/Courses/GSP_216/lessons/composites.html (Accessed in Sep 2022) 

https://gsp.humboldt.edu/olm/Courses/GSP_216/lessons/composites.html
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Space Administration (NASA) and the United States Geological Survey (USGS). This 

satellite has been continuously orbiting the earth since 1972 (Google Earth Engine Data 

Catalog, 2020). Landsat captures satellite images of the entire earth at 30 m spatial 

resolution in the form of scenes or tiles, with each scene covering 180 X 185 km2 (Roy 

et al., 2014), approximately once every two weeks. Landsat data is freely available, 

making it a unique resource for researchers working in agriculture, forestry, regional 

planning, mapping, education and global change research. Two such Landsat satellites 

are Landsat 5 and Landsat 8. Landsat 5 satellite of the Landsat program, launched in 1984 

is the “Longest Operating Earth Observation Satellite" which was decommissioned in 

201313 (USGS, 2022). Landsat 5 carried two sensors the Multispectral Scanner (MSS) 

and the Thematic Mapper (TM). While the MSS sensor consisted of four spectral bands: 

Visible green (0.5 – 0.6 µm), visible red (0.6 – 07 µm), NIR 1 (0.7 – 0.8 µm) and NIR 2 

(0.8 – 1.1 µm), the TM sensor consisted of 7 bands (Table 2.4).

 
13 https://www.usgs.gov/landsat-missions/landsat-5 (Accessed in Sep 2022) 

https://www.usgs.gov/landsat-missions/landsat-5
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Table 2.4: Landsat 5 bands 

Bands Description Resolution Wavelength 

B1 Blue 30 m 0.45-0.52 μm 

B2 Green 30 m 0.52-0.60 μm 

B3 Red 30 m 0.63-0.69 μm 

B4 Near infrared 30 m 0.77-0.90 μm 

B5 Shortwave infrared 1 30 m 1.55-1.75 μm 

B6 Thermal  

30 m 

 

(While originally 

collected with a 

resolution of 120 m / 

pixel (60 m / pixel for 

Landsat 7), this band 

has been resampled 

using cubic convolution 

to 30 m) 

10.40-12.50 μm 

B7 Shortwave infrared 2   2.08-2.35 μm 

 

Landsat 8 was launched in 2013 and is the first Landsat satellite of the 21st century. It 

consists of two sensor instruments, the Operational Land Imager (Band 1 to Band 9) and 

the Thermal Infrared sensor (Bands 10 and 11)14 (Table 2.5).

 
14 https://www.usgs.gov/landsat-missions/landsat-8 (Accessed in Sep 2022) 

https://www.usgs.gov/landsat-missions/landsat-8
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Table 2.5: LANDSAT 8 bands 

Bands Description Resolution Wavelength 

B1 Coastal aerosol 30 m 0.43 - 0.45 μm 

B2 Blue 30 m 0.45 - 0.51 μm 

B3 Green 30 m 0.53 - 0.59 μm 

B4 Red 30 m 0.64 - 0.67 μm 

B5 Near infrared 30 m 0.85 - 0.88 μm 

B6 Shortwave infrared 1 30 m 1.57 - 1.65 μm 

B7 Shortwave infrared 2 30 m 2.11 - 2.29 μm 

B8 Panchromatic 15 m 0.52 - 0.90 μm 

B9 Cirrus 15 m 1.36 - 1.38 μm 

B10 

Thermal infrared 1, 

resampled from 100 m to 

30 m 

30 m 10.60 - 11.19 μm 

B11 

Thermal infrared 2, 

resampled from 100 m to 

30 m 

30 m 11.50 - 12.51 μm 

2.5.2. Digital image classification of remotely sensed data 

In order to convert band information of these satellite images into usable data that could 

be easily interpreted, digital image processing techniques are applied. These involve 

various procedures such as correcting data (e.g. correction for atmospheric conditions), 

digital enhancement for better visual interpretation (e.g. cloud masking), automated 

image classification etc. Following such corrections, digital image classification 

classifies and labels groups of pixels on a satellite image based on common features. 

These homogeneous collections of pixels or features are called feature classes. In the 

context of LULC classification, the different feature classes are characterised by different 

reflectance values of the pixels, perceived as different colours (whether in true or false 

colour composite) and represent the different LULC types. There are three different 

image classification techniques, and the background of each technique is provided in the 

sub-sections below. 
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2.5.2.1. Unsupervised classification 

Unsupervised classification is used when the user does not possess specific (to the 

research interest) knowledge on the study area. For unsupervised classification, clustering 

algorithms are used to automatically identify and define a number of “clusters”. The 

number of clusters generated depends on the user requirements. Fewer clusters lead to 

reduced variability implying more resemblance of pixels within groups as opposed to 

higher number of clusters.15 Clustering algorithms are then used to group pixels into 

clusters based on their properties without the help of predefined class labels. The user 

then manually assigns feature classes (LULC class) to each cluster. Unsupervised 

classification may sometimes be preferred over supervised if the user requires a classified 

image quickly and with minimum effort. However, it is not well suited to applications 

where fine details are necessary in the resulting classified image.  

2.5.2.2. Supervised classification 

In the case of supervised classification approach, the user defines the feature classes in 

the satellite image based on the pixel reflectance. Hence, the selection of classes is 

‘supervised’ by the operator. A representative training sample (or training set) is selected 

for each LULC class. The number of training sets needed for an accurate classification 

result depend on the classification algorithm being used, the number and distinctiveness 

of classes, the homogeneity of the image and the image signal to noise ratio (SNR). All 

the spectral information (bands, pixel reflectance values) of the training samples is stored 

in a file called “signature file”. The final step is to use a classification algorithm to run 

classification based on the signature file. Although supervised classification is a longer 

process, it allows the user to be more specific about the definitions of the labels. Results 

produced by this method are therefore generally more accurate as the input data is well 

known.  

2.5.2.3. Object-based classification 

Unlike unsupervised and supervised classification which are pixel-based, object-based 

image classification segments an image by creating groups of pixels. These groups of 

pixels are called objects which are characterised by different geometries. These objects 

 
15 https://gisgeography.com/image-classification-techniques-remote-sensing/ (Accessed in Sep 2022) 

https://gisgeography.com/image-classification-techniques-remote-sensing/


  

79 
 

can be classified based on their shapes, texture and spectral information. Therefore, 

object-based classification can be performed using very high-resolution images to 

distinguish between the different shapes and textures to create objects. 

2.5.2.4. Validation of results 

Classification of satellite images is always accompanied by a degree of error which might 

occur inherently during capturing the image or by the user while carrying out the process 

of LULC classification. Therefore, in order to validate the classification results, accuracy 

assessment is carried out, which is one of the most important stages of classification to 

ensure optimum quality of classified image (Hasmadi et al., 2009). In this validation 

process, the classified images are validated against true world reference data such as 

aerial maps, raw satellite images etc. This is key for precise representation of on-ground 

geographical features. 

Accuracy assessment is carried out by a sampling approach where a number of sample 

points are selected from the classified images to be compared with reference data. There 

are different sampling schemes that can be used to select the sampling points. The 

quantity of samples required must be considered before deciding on a sampling scheme. 

One of the most common sampling schemes is random sampling (Bakker et al., 2000). 

Once the satellite images are classified, GIS can be integrated into the analysis for further 

post-processing of the images based on the requirements of the user. Validation and post-

processing of classified images are further discussed in Chapter 6. 

2.5.2.5. Various platforms for image classification and GIS processing 

There are several remote sensing and GIS platforms available to conduct integrated RS 

and GIS applications. Platforms such as ERDAS, ENVI, ArcGIS, QGIS, and R allow 

users to conduct digital image processing techniques such as image classification. While 

ERDAS, ENVI and ArcGIS are expensive licensed software, QGIS and R are open source 

platforms, which provide the capability to run classification algorithms. The selection of 

platform depends on the needs of the user (research area) and the type of classification 

the user would like to run. 

One platform that has been used in recent years with regard to RS applications is the 

Google Earth Engine (GEE) platform developed by Google. GEE uses JavaScript 
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programming language to analyse RS datasets, which are of massive volumes of data. 

These datasets are often difficult to handle in common software packages and desktop 

computing resources (Amani et al., 2020). In addition to this, processes such as 

appropriate data identification, data fusion, data visualization and interpretation is also 

challenging. GEE effectively addresses all these challenges by being a prominent cloud-

based remote sensing and geospatial data processing platform (Amani et al., 2020). In a 

paper involving review of 450 journal articles from 150 journals, Amani et al., (2020) 

stated that GEE provides free access to numerous RS datasets and is the most popular big 

geodata processing platform. They found that it is most extensively used for analysing 

Landsat and Sentinel (10 m satellite by European Union’s Copernicus Programme) 

satellite images. Another review by Wang et al., (2021) found that GEE has become one 

of the emerging platforms for studying specifically urban land change science. 

For geospatial workflows, software packages such as ArcGIS Pro, QGIS, MapInfo etc 

are some of the most common GIS applications. ArcGIS platform by Environmental 

Systems Research Institute (ESRI) is extensively used for any kind of GIS-based analysis 

as it offers a wide range (1500+) of geoprocessing tools across 35 toolboxes, allows 

integration with ArcGIS online (Mariushko et al., 2018), enables customisation of 

workflows and toolboxes through Model Builder (Stefanidinis et al., 2021) and most 

importantly, because of its user-friendliness (Wi et al., 2017). However, one of its 

disadvantages is that it is an expensive licensed software as mentioned above as opposed 

to QGIS.  

2.5.3. Urbanisation and its impacts on wastewater systems – state-of-the-art 

As land changes from pervious (e.g. open fields) to impervious (e.g. paved roads) 

surfaces, water from rainfall that previously soaked through the grass, forests, soil and 

bedrock, is no longer intercepted (Farjad et al., 2017; Loperfido et al., 2014) . As a result, 

large volumes of water (stormwater runoff) gets prevented from infiltrating into the sub-

surface layers of soil and flows without any interruption to local water bodies which can 

lead to flooding (Saraswat et al., 2016; Zope et al., 2016) as shown in Figure 2.12. With 

rapid urbanisation and decline in green cover, substantial amounts of stormwater runoff 

is generated (Yao et al., 2016) which will eventually flow to the inlets of the WWTPs (in 

case of CSSs) and can cause significant challenges for wastewater systems (Astaraie-

Imani et al., 2012; Willuweit and O’Sullivan, 2013).  
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Recent literature has focused on the impacts of urbanisation on surface runoff, and, in 

turn, the hydraulic performance of sewerage systems or storm drainage systems (Hussain 

et al., 2022; Kleidorfer et al., 2009; Loperfido et al., 2014; Miller et al., 2014; Paule-

Mercado et al., 2017; Ravagnani et al., 2009; Semadeni-Davies et al., 2008; Yao et al., 

2016; Zhou et al., 2019). Other studies have analysed the response of sewerage systems 

and stormwater-runoff to rainfall events by implementing stormwater Best Management 

Practices (BMPs). To date, research that has studied the impacts of LULC changes in 

agglomerations on influent wastewater volumes have not been found. However, some the 

aforementioned work is reviewed below as some of the lessons and outputs are of 

relevance to this research. 

 

Figure 2.12: Change in runoff characteristics based on the degree of impervious 

surfaces present (Saraswat et al., 2016) 

Yao et al., (2016) conducted a model-based analysis (SWMM) in a residential catchment 

in Beijing China. In this study they visually interpreted a satellite image of 0.6 m spatial 

resolution, in order to assess land cover. They also used GIS and field investigation to 

identify two parameters of imperviousness; (i) the whole fraction of the impervious area 

in a catchment, termed as total impervious area (TIA) and (ii) the part of TIA which is 

hydraulically connected to the drainage systems, known as directly connected impervious 

area (DCIA). They simulated three runoff metrics; total runoff depth, peak runoff depth 

and lag-time using the SWMM. Regression analyses were performed to understand the 
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relative impacts of the two impervious metrics on the runoff variables under various 

storm scenarios. Different storm conditions representing local characteristics were fed 

into the SWMM as input storms. The study found that lag-time was affected by DCIA to 

a greater extent than TIA which was found to be insignificant. With the increase in DCIA, 

lag-time reduced (R2 value < 0.45), but this relationship weakened with increases in 

rainfall amount, rainfall peak ratio (ratio of the rainfall peak time to the total rainfall 

duration) and duration. On the other hand, it was found that TIA was a stronger 

contributor towards changing total runoff as compared to DCIA under various storm 

conditions. In terms of wastewater quantity, the added volume of stormwater runoff 

(contributed by impervious area and rainfall), in addition to the wastewater load that is 

generated, can result in hydraulic overloading in WWTPs with CSSs and lead to 

occurrence of CSOs.  

In order to assess the impacts of urbanisation on the performance of CSSs for 250 virtual 

case studies, Kleidorfer et al., (2009) analysed two parameters as indicators of 

urbanisation: effective impervious fraction and dry weather flow. The virtual case-studies 

with varying system properties were generated using a case-study generator. A real-world 

case-study was also used for comparison. The authors simulated future scenarios of both 

parameters by implementing -60% to +60% changes from current conditions of the 

effective impervious fraction of the real-world case study. The authors reported that the 

area of impervious surfaces was a significant contributor to the percentage of runoff 

reaching the WWTP, when averaged over the simulation period of 10 years. While 

studying the comparative impacts of an increase in built-up areas and climate change, 

they found that a 20% increase in rainfall intensity  had the same effect on the 

performance of the CSSs, as a 40% increase in impervious area. Semadeni-Davies et al., 

(2008) also investigated the relative effects of climate change and urbanisation on 

wastewater and stormwater flows in a WWTP connected by a CSS in Helsingborg, 

Sweden. The paper took into consideration inflows to the WWTP with respect to 

stormwater referred to as quick flows (impacted by the impervious areas) and sewer 

infiltration referred to as slow flows (contributed by permeable surfaces). The study 

considered the period 1994 – 2003 as the study period when 58% of the total annual 

inflow was wastewater, with the remaining being stormwater from inlets and sewer 

infiltration from groundwater. It was reported that during this period overflows occurred 

due to high intensity storm events. Using the Danish Hydrological Institute MOdel of 
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Urban Sewers (MOUSE) model, they simulated the CSS for the period 1994 – 2003 and 

for the period 2081 – 2090. For two climate change greenhouse gas (GHG) emission 

scenarios B2 (medium/low) and A2 (high) (IPCC Special Report on Emission Scenarios 

(SRES) Report, 2000), the change in present and future simulations at a monthly scale 

were applied to the existing rainfall series. Four urbanisation storylines were built based 

on the Swedish trends during the 1994 – 2003 period that represented city growth to urban 

renewal. These storylines were i) current situation with no change in the system but 

climate is changed, ii) increase in city size but no change in the sewerage system, iii) 

increase in city size but disconnection of 75% of the impervious areas to the CSS and iv) 

an ideal situation representing optimum management of the system. The highest impact 

on overflows was observed under the storyline characterised by city growth with no 

change in the drainage system and networks. Climate change exacerbated the effects on 

the CSS with or without city growth through increased wastewater inflows. The worst 

effect on the drainage system was demonstrated by city growth storyline in conjunction 

with A2 SRES scenario. From the findings of these studies, it can be concluded that 

strategies for adaptation of sewerage systems connected to WWTPs need to be taken to 

compensate for the dual effects of climate change and urbanization. Another case study 

by  (Hussain et al., 2022) in Iraq carried out the comparison between the effects of climate 

change and urbanisation on stormwater sewer system using SWMM.  They implemented 

a landuse change scenario where the surface area of the sub-catchment contributing to 

surface runoff (representing actual data in 2008) was doubled (resulting in a 58% increase 

in impervious area). It was found that the surface runoff volume and flooding volume 

also increased almost two-fold (Hussain et al., 2022). However, the authors found that 

the adverse impacts of climate change were higher than that of landuse change. The 

model was validated by comparing the maximum discharge in pipes predicted by SWMM 

with the observed data, which showed an R2 value of 0.95. 

Other aspects of sewer systems that might get affected due to amplified surface runoff 

are the response time properties of a catchment (e.g. peak time, i.e., the time between the 

start of the rainfall event and peak discharge and lag-time, defined in this paper as the 

time between the peak rainfall and peak discharge) (Tuohy et al., 2018) and discharge 

properties (e.g. peak flows) (Miller et al., 2014). Response time of a catchment is the time 

interval between a storm event and the response of a catchment in terms of achieving 

peak flows (peak time) or any other quantitative variable of interest. A study conducted 
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by Miller et al., (2014) aimed to investigate the response of stormwater runoff from two 

catchments of similar sizes in Swindon, UK, that transformed from rural to peri-urban 

areas. One of the catchments was highly urbanised and the other was a recently developed 

peri-urban area. The peri-urban catchment had two distinct areas of drainage where one 

consisted of both natural and built storm drainage pathways and the other comprised of 

only built storm drainage systems. Comparison of observed storm hydrographs 

demonstrated that the area served by storm drainage system was a stronger factor in 

determining stormwater runoff as compared to impervious area or development type. The 

authors used digitized historical topographic maps to map historical levels of urbanisation 

and impervious cover from the 1960s to 2010s. The results showed that the impervious 

area in the peri-urban catchment increased from 11% to 44% from 1960s to 2010s. 

Installation of a large-scale storm drainage network in the early 2000s resulted in the 

reduction of the characteristic flood duration by more than 50% and increase in peak flow 

by more than 400%. The runoff response to rainfall was contributed mainly by the type 

of drainage system (built storm drainage or natural) rather than the development type 

(urban or peri-urban). This was supported by the examples of the highly urbanised 

catchment and the part of the peri-urban catchment connected to the natural drainage 

system. Both these catchments that receive runoff from sub-surface pathways and storm 

drainage, had similar response to rainfall. However, the part of the peri-urban catchment 

connected to the built storm drainage that receive runoff solely from impervious area 

showed a rapid and flashy response to runoff.     

From the above studies it can be concluded that, in the context of water and wastewater 

infrastructure services, ongoing urbanisation can potentially impact the response 

characteristics of the existing urban drainage systems (Zhou, 2014; Zhou et al., 2019) and 

urban water/ wastewater management systems (Astaraie-Imani et al., 2013; Farjad et al., 

2017; Shukla et al., 2018). With increases in extreme precipitation events and in 

impermeable surfaces, wastewater flowrates (quantity), wastewater quality, entering the 

WWTPs, and response time, particularly for the WWTPs connected with CSSs, are 

affected, which eventually impacts the receiving waters. Remote sensing images can be 

very useful and precise in identifying changing patterns of urban land cover by estimating 

impervious surfaces to study peak discharge entering into storm sewer systems 

(Ravagnani et al., 2009). Although the urbanisation impacts on discharge wastewater 

quality has been studied before (Astaraie-Imani et al., 2012; Li et al., 2012) along with 
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sewer network studies, it is also vital to incorporate the change in LULC, to study 

wastewater influent volumes. This will enable wastewater utility managers to optimise 

WWTP performance, better manage stormwater and protect the environment by limiting 

the frequency of CSOs. However, to the best knowledge of the author, research carried 

out have not incorporated LULC to study the WWTP flows. Table 2.6 presents various 

studies investigating the impacts of LULC change on stormwater runoff and sewerage 

systems.
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Table 2.6: Literature review of research studying the impact of LULC change on stormwater runoff and sewerage systems 

References Objective Key features and outcomes of study 

LULC change based studies 

(Saraswat et al., 

2016) 

Analysis of stormwater runoff management practices 

based on climate change and urbanisation 

Studies are based on the assessment of management practices 

of stormwater runoff.  

Results display the importance of sustainable best 

management practices on mitigating stormwater runoff and 

the role of RS and GIS in identifying optimum measures to 

inform policy makers and researchers in the field of 

stormwater management. 

(Loperfido et 

al., 2014) 

Assessment of distributed and centralized stormwater 

best management practices and land cover  

(Paule-

Mercado et al., 

2017) 

Analyse the influence of ongoing land development on 

stormwater runoff while integrating four different 

Low Impact Development and best management 

practice scenarios in a catchment of mixed LULC in 

South Korea connected to a sanitary sewer system.  

The area upstream of the sanitary sewer had a natural drainage 

system receiving inflow from a forest, whereas the area 

downstream connected to the stormwater drainage system 

received inflow from both pervious and impervious areas.  

Data of 41 storm events (characterised by 3 antecedent dry 

days, 4 mm of rainfall and 6 hours of runoff duration) and 

monthly LULC were monitored. LULC map and network data 

was estimated by classifying an aerial image of 0.4 m spatial 

resolution accompanied by monthly field monitoring. A 
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SWMM was used to simulate the monitored storm events by 

incorporating catchment characteristics, climate, LULC etc. 

Model validation showed that the model is fit and reliable to 

be used in this context. They also found that stormwater 

quality deteriorated with an increase in imperviousness. In 

addition to that, they emphasized the importance of 

implementing LID-BMPs as they can reduce runoff volume, 

peak flow and pollutant concentrations.  

 

(Ravagnani et 

al., 2009) 

Assessing the impact of urban impervious fraction on 

peak discharge entering a storm sewer system. 

Use of RS technology to estimate the urban impervious 

fraction. Two issues regarding the margin of error in remotely 

sensed image and the unavailability of the information about 

the connection of impervious and pervious areas to the sewer 

system were addressed. 

It was found that the remote sensing image was sufficient and 

precise in mapping impervious and pervious areas without 

affecting the peak discharge. But if the information on how 

the different areas is connected is ignored, peak discharge is 

overestimated.  
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(Sanyal et al., 

2014) 

Investigating the impact of LULC changes at sub-

catchment level on flood peak at a catchment outlet. 

Classification of Landsat images to produce LULC maps and 

use of HEC-HMS hydrological model to simulate the rainfall-

runoff process.  

They found a statistically significant linear relationship 

between the LULC changes and flood peak with an R2 value 

of 0.53. However, a number of sub-catchments deviated from 

this relationship. The authors suggested that it is difficult to 

upscale the relationship between LULC changes and runoff 

due to localised change in landcover at sub-catchment scale. 

(Zhou, 2014) 
Review of sustainable urban drainage systems with 

respect to climate change and urbanisation impacts 

Recent progress in sustainable drainage systems were 

reviewed considering climate change and urbanisation 

impacts 

(Zhou et al., 

2019) 

Impact analysis of urban development on hydrological 

runoff and urban flood volumes.  

They developed a geospatial database of landuse types, 

surface imperviousness and drainage systems and 

incorporated these into the SWMM urban drainage model. 

The study revealed that urban development, particularly 

accelerated urbanisation caused a large increase (208 – 413%) 

in surface runoff. However, the changes in the urban flood 

volumes depended on the performance of drainage systems.  
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(Yazdanfar & 

Sharma, 2015) 

Investigation of different factors varying spatially and 

temporally, affecting the functioning of urban 

drainage system 

Challenges in the urban drainage system designing due to 

climate change and urbanisation were reviewed. 

(Amani et al., 

2020) 

Review of GEE Platform as compared to software or 

desktop programs 

Review of 450 journal papers across 150 journals to 

demonstrate a deep understanding of GEE 

(Wang et al., 

2021) 

Demonstrate the advances of GEE in studies related to 

urban land cover change 

Reviewed GEE progress in four specific areas of urban 

studies: urban extent mapping, urbanisation estimation, urban 

ecosystem characterization, and city accessibility assessment. 
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2.6. Summary of literature review 

It is evident from the published literature that there has been ongoing research 

investigating the impacts of climate variables (current and future) and urbanisation on the 

hydraulic efficiency of sewerage systems. Some research have also based their focus at 

the WWTP scale to study the quantitative and qualitative impacts on wastewater 

infrastructure. Table 2.1, Table 2.3 and Table 2.6 summarise the studies investigating the 

range of climate and urbanisation variables used to assess the degree to which WWTPs 

and its associated sewer network are impacted. It is evident that the number of studies 

investigating CSOs, and effluent are abundant as opposed to influent flows. As 

established in Figure 2.4, these parameters exhibit different characteristics. Influent 

volume characteristics is one of the most influential factors determining WWTP 

operations. Lack of understanding of influent volume variations can be addressed by a 

detailed study investigating influent volumes values representing a range of WWTPs and 

the factors affecting it. A key challenge in the research area of monitoring the 

performance of WWTPs and sewer systems is data unavailability. The majority of the 

literature published to date have used modelled data from hydraulic models with 

calibration and validation of models using limited observed data. Sewer process models 

are limited in terms of representing actual processes (Langeveld et al., 2013). For 

example, the limited data available for calibration and validation might not include rare 

extreme events. As such these models only represent the processes that are incorporated 

by the user and hence, cannot be applied in a generic way (Langeveld et al., 2013). With 

advancement in data monitoring, data-based analysis could be performed to tackle this 

problem. However, research using observed dataset are limited to demonstrating either 

spatial variability of wastewater characteristics based on rainfall characteristics (for a 1-

year period) or the temporal variability of wastewater characteristics based on rainfall 

characteristics (for 1 case study). When models are fed with a single aspect, the impact 

of the spatio-temporal variability of rainfall on the response of the urban drainage system 

remains unexplored (Peleg et al., 2016). This drawback along with the drawback of 

lacking models that can be applied universally, can be addressed by developing a model 

that captures the spatio-temporal aspect and can be applied to any WWTP of any 

treatment capacity and size.  
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One aspect that is common across Table 2.1, Table 2.3 and Table 2.6 is the limited 

number of studies that focus on influent volumes, with the effluent discharge volume and 

performance of sewer systems being frequently studied. In addition to this, research 

addressing the tidal level impacts on wastewater flows are significantly limited. River 

level which may be influenced by tides, is another factor that will enhance the 

understanding of the response of wastewater flows but has not been investigated till date. 

In terms of future climate change impacts, it can be noted from Table 2.3 that all the 

published literature are centered around the performance and design of the urban drainage 

system. As the impacts on wastewater influent flows as result of precipitation has been 

established, with the climate change induced change in precipitation patterns, analysis 

involving projected future influent wastewater flows as a function of projected change in 

future precipitation is highly valuable. However, such an analysis has not been studied 

till date. This will help wastewater utility managers in taking informed decision while 

strategizing adaptation techniques. 

In relation to LULC based studies, Table 2.6 clearly demonstrates the impact of 

urbanisation on stormwater runoff. However, the author did not find any study that 

investigates the degree to which this runoff might impact the amount of wastewater 

influent to the WWTPs. This will provide deeper insight into the response of wastewater 

influent volume characteristic of WWTPs and help determine whether urbanisation 

induced surface runoff is a significant variable in terms of hydraulic overloading at the 

inlets of WWTPs with CSSs. 

These findings underpin the objectives for this PhD and provide a focus for the remainder 

of the literature review. The objectives which address the gaps highlighted above are as 

follows: 

1) Detailed understanding of influent volume characteristics that varies downstream 

after CSOs and define the WWTP operations. 

2) Use of real spatio-temporal data to analyse wastewater influent volumes of 

WWTPs with CSSs as the variable of interest to enhance the understanding of 

WWTP responses to precipitation. 

3) Consideration of tidal and river levels impacts incorporated in the analysis of 

wastewater influent volumes. 
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4) Consideration of climate change impacts to develop an understanding of the 

evolution of wastewater influent volume characteristics in future. 

5) Study of urbanisation impacts on wastewater influent volumes. 

Methodologies undertaking these objectives will help in the optimal management of 

wastewater quantity entering the WWTPs. 
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3. ANALYTICAL PROCEDURE   
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3. Analytical procedure 

3.1. Overview 

The aim of this chapter was to provide a summary of the study area of this research, the 

datasets obtained and used for the study. These datasets include precipitation, tidal and 

river levels, the future precipitation projections under various climate change scenarios, 

and data with respect to land use and land cover. This chapter describes the sources, 

resolution, and range of all the datasets. It describes the fourteen wastewater treatment 

plants of varied capacity and network size studied in this thesis. It also illustrates the 

methodologies which underpin the results in chapters 4, 5 and 6.  Part of this chapter has 

already been published in Results in Engineering (Saikia, S.D., Ryan, P., Nuyts, S., 

Clifford, E. (2022). Precipitation, tidal and river level impacts on influent volumes of 

combined wastewater collection systems: A regional analysis. Results in Engineering, 

15, 100588). The future datasets and methodology have been submitted to Climate 

Services. 

3.2. Summary of Datasets 

This section summarizes all the datasets used for the analysis in Chapter 4, 5 and 6. 

3.2.1. Observed Datasets 

3.2.1.1. Influent volume data  

In order for a WWTP to be considered as part of this study, it needed 1) to have a CSS, 

2) to have at least 3 years of daily data of influent volumes, and 3) have had limited recent 

network improvements/extensions, in order to exclude their impact from the analysis 

(albeit this criterion was not strictly applied given ongoing improvements in many 

locations in Ireland). Geographical spread and the size of the WWTPs were also 

considered. Data was obtained from Irish Water, and the data gathering process from the 

initiation of the talks with Irish Water to the final acquisition of the data involved 

approximately 16 months.  This timeline also included a 6-month internship (4 months 

of work at their Mullingar office followed by 2-months remote work) and a 5-month post 

internship period for Irish Water to formally transfer the data. The Asset Management 

team of Irish Water assisted in the acquisition of the data. The data collection included 
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manual analysis of both online and “paper-based” records. The highest resolution of data 

available were daily datasets and were recorded in m3/day unit of measurement. Sub-

daily data although suitable for this research, were not available for a sufficient number 

of WWTPs. The data were in various formats including PDF, excel and word documents.  

This eventually led to the selection of 14 different WWTPs with varying treatment 

capacities representing small to very large agglomerations (Table 3.1), geographically 

spread across Ireland. Out of the 14 WWTPs, 5 WWTPs are located in the west of the 

country, five in the east, one in the north and three are centrally located. Lastly, 6 of the 

WWTPs are in close proximity to rivers or to the coast. The location of the WWTPs were 

provided as shapefiles (.shp format) by Irish Water. The data available for each of the 

WWTPs is summarised in Table 3.2.  

Table 3.1: Network categories 

Range of Treatment Capacities (population equivalent - 

PE) 

Network 

Categories 

≥ 1,000 – 30,000 Small 

> 30,000 – 100,000 Medium 

> 100,000 – 450,000 Large 

> 450,000 – 1,640,000 Very Large 
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 Table 3.2: Summary of the 14 WWTPs 

WWTPs 
Treatment 

Capacity (PE) 

Peak Design 

Capacity 

(m3/day) 

Network 

Category 

Average annual 

precipitation * 

(mm/year) 

River/Tidal 

Analysis 

Temporal Range of data 

availability (Current Period) 

Influent 

Volume 

Tidal 

Level 

River 

Level 

WWTP 1 1,86,000 88,500 Large 995 River 2014 - 2018 
2014 - 

2018 

2014 - 

2018 

WWTP 2 4,13,200 3,59,592 Large 1044 Tidal 2005 - 2018 
2010 - 

2018 
- 

WWTP 3 28,000 23,814 Small 1632 - 2012 - 2018 - - 

WWTP 4 25,000 14,760 Small 1211 Tidal 2008 - 2018 
2012 - 

2018 
- 

WWTP 5 3,000 2,250 Small 1267 - 2014 - 2018 - - 

WWTP 6 40,000 32,400 Medium 1243 - 2015 – 2018 - - 

WWTP 7 55,000 37,125 Medium 1024 - 2014 - 2018 - - 
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WWTP 8 1,70,000 1,35,000 Large 1352 Both 2011 - 2018 
2011 - 

2018 

2011 - 

2018 

WWTP 9 39,000 23,400 Medium 837 - 2012 - 2018 - - 

WWTP 

10 
16,40,000 9,59,040 Very large 621 Both 2015 - 2018 

2015 - 

2018 

2017 - 

2018 

WWTP 

11 
1,86,000 1,08,000 Large 716 - 2015 - 2018 - - 

WWTP 

12 
20,000 12,000 Small 965 Tidal 2008 - 2018 

2012 - 

2018 
- 

WWTP 

13 
24,834 5,063 Small 1171 - 2016 - 2018 - - 

WWTP 

14 
45,000 33,000 Medium 897 - 2014 - 2018 - - 

  *Average annual precipitation calculated from years covering the available data of the influent volumes 
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3.2.1.2. Precipitation data 

For 13 of the 14 wastewater treatment plants, daily precipitation data used in this study 

was obtained from weather stations nearest to the WWTPs, which are operated by Met 

Éireann (Irish national meteorological service). The one exception was WWTP 8. For 

this WWTP, precipitation data was obtained from a calibrated weather station at the 

University of Galway as this was the nearest calibrated weather station.  All precipitation 

data were recorded in mm/day unit of measurement. 

Wet days were defined as those with greater than 1 mm/day precipitation, and zero 

rainfall days defined as those with 0 mm/day rainfall (Met Éireann, 2019). Figure 3.1 

summarizes monthly rainfall patterns in Ireland for the years 1981 – 2010 and shows that 

annual precipitation is significantly higher on the western seaboard compared to central 

and eastern areas of the country. 
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Figure 3.1: Monthly rainfall distribution map of Ireland depicting 1981 – 2010 

monthly average rainfall data with 1 km spatial resolution (Data source: Met 

Éireann) 

3.2.1.3. Tidal level and river level data 

Tidal levels, recorded in metres (m), was available at a 5 – 6 minute resolution from the 

Marine Institute of Ireland. From this, the daily maximum tidal data was extracted for 

WWTPs 2, 4, 8 10 and 12, i.e., those with a coastal location or located on a tidal river. 

Daily mean water or river level data was extracted from the publically available Hydro-

data from the Office of the Public Works (OPW, 2020) for WWTPs 1, 8 and 10. The data 

is recorded in metres and the daily mean river level was directly available. The vertical 

reference for both the tidal and the river level data is OD Malin Head Irish Tranverse 

Mercator.  
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3.2.2. Future Datasets – CMIP 5 Model Projections: 

The projected Irish precipitation climate data were obtained from the High-resolution 

Climate Projections for Ireland – A Multi-model Ensemble Approach report (Nolan and 

Flanagan, 2020). The climate projections were generated by downscaling the following 

CMIP5 GCM data; the UK Met Office’s Hadley Centre Global Environment Model 

version 2 Earth System configuration (HadGEM2-ES) GCM (Collins et al., 2011), the 

EC-Earth consortium GCM (Hazeleger et al., 2011), the CNRM-CM5 GCM developed 

by CNRM-GAME (Centre National de Recherches Météorologiques—Groupe d’études 

de l’Atmosphere Météorologique) and CERFACS (Centre Européen de Recherche et de 

Formation Avancée) (Voldoire et al., 2012), the Model for Interdisciplinary Research on 

Climate (MIROC5) GCM developed by the MIROC5 Japanese research consortium 

(Watanabe et al, 2010) and the MPI-ESM-LR  Earth System Model developed by the 

Max Planck Institute for Meteorology (Giorgetta et al., 2013). 

The CMIP5 data were dynamically downscaled using the Consortium for Small-scale 

Modeling – Climate Limited-area Modelling (COSMO-CLM) and Weather Research 

Forecasting (WRF) RCMs. The RCMs were initially driven by global boundary 

conditions with the following nesting strategies; CMIP5 global dataset to 50 km to 18 km 

to ~ 4 km (for lower resolution CMIP5 data) and CMIP5 to 18 km to ~ 4 km (for higher 

resolution CMIP5 data). For the current study, only 4 km grid spacing RCM data are 

considered. The higher resolution data allows sharper estimates of the regional variations 

of climate projections. To address the issue of uncertainty, a multi-model ensemble 

approach was employed. Through the ensemble approach, the uncertainty in the 

projections can be partially quantified, thus providing a measure of confidence in the 

predictions. To account for the uncertainty arising from the estimation of future global 

emission of greenhouse gases, downscaled GCM simulations based on two 

Representative Concentration Pathways (RCP 4.5 and RCP 8.5) were used herein to 

simulate the future climate of Ireland (Moss et al., 2010; van Vuuren et al., 2011). A full 

description of the model setup, model validations and future projections is given by Nolan 

et al. (2017) and Nolan and Flanagan (2020).  

The results show that by mid-century, substantial decreases in precipitation are expected 

for Ireland in the summer months, with reductions ranging from ≈ 0% to 11% for the 

RCP 4.5 scenario and from 2% to 17% for the RCP 8.5 scenario. Other seasons, and over 



  

101 
 

the full year, show small projected changes in precipitation. However, the mid-century 

precipitation climate is expected to become more variable with substantial projected 

increases in both dry periods and heavy precipitation events (Nolan and Flanagan, 2020). 

For this study, three aspects of future precipitation projections were of interest and are 

summarised in Table 3.3. The location-specific data corresponding to each of the 14 

WWTPs were obtained through collaboration with the Irish Centre for High-end 

Computing [authoring institution of Nolan and Flanagan, (2020)], with a focus on three 

different datasets as described in Table 3.3. The description of the data, in addition to the 

purpose of the data in this paper are also included in Table 3.3. 
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Table 3.3: Rainfall projections from (Nolan and Flanagan, 2020) used in this study 

Data from (Nolan 

and Flanagan, 

2020) 

Description Purpose in this research 

Projected % change 

in seasonal mean 

precipitation 

Change in seasonal mean 

precipitation in 2041 – 2060 as 

compared to 1981 – 2000  

To understand the nature 

of influent volume 

variations on a monthly 

scale as a result of 

changes in monthly 

average daily 

precipitation 

33rd and 66th 

percentiles of the 

ensemble of RCM 

projections of mean 

precipitation for 

each season 

33rd (P33) and 66th (P66) 

percentiles are calculated of the 

ensemble of RCM projections 

for each season. For each RCM 

ensemble member, the mean 

change in precipitation is 

calculated for the period 2041–

2060 with respect to 1981–2000  

To help capture the 

impact of climate 

projection uncertainty on 

wastewater influent 

volumes and analyse 

variability of the findings 

of the ensembles 

Projected % change 

in the annual 

number of high and 

very high 

precipitation days 

Change in the annual number of 

high precipitation days (days 

with > 20 mm/day rainfall) and 

very high precipitation days 

(days with >30 mm/day rainfall) 

in 2041 – 2060 as compared to 

1981 – 2000  

To understand the 

evolution of influent 

volume characteristics as 

an effect of extreme 

events (defined as high 

and very high 

precipitation days for this 

research) 

The three different datasets of mid-century projected % change in seasonal mean 

precipitation, the 33rd and the 66th percentiles of the ensemble of RCM projections of 

seasonal mean precipitation and the projected % change in the annual number of high 
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and very high precipitation days obtained from Nolan and Flanagan (2020) are presented 

in Figure 3.2, Figure 3.3 and Figure 3.4. 

Figure 3.2: Spatial variation in the projected change in ensemble mean seasonal 

precipitation in Ireland in 2041 – 2060 as compared to 1981 – 2000 under a) RCP 

4.5 and b) RCP 8.5. The numbers shown on each plot are the minimum and the 

maximum projected changes in mean seasonal precipitation displayed at their 

respective locations 

 
(a (b) 
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Figure 3.3: The 33rd and 66th percentiles of the projected % change in seasonal mean 

precipitation in Ireland in 2041 – 2060 as compared to 1981 – 2000 a) under RCP 

4.5 and b) under RCP 8.5 
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Figure 3.4: Projected % change in annual a) high precipitation days (> 20 mm/day) and b) very high precipitation days (> 30 mm/day), in 

2041 – 2060 as compared to 1981 – 2000 under RCP 4.5 and RCP 8.5 
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3.2.3. Datasets for Land Use Land Cover Analysis 

3.2.3.1. Satellite Imageries 

As this project is focusing on a timeframe since 2005, Landsat 5 Thematic Mapper (TM) 

and Landsat 8 images from this timeframe were used in this research in order to maintain 

a uniformity in the spatial resolution. These images were used across the years for which 

influent volume data was obtained for each of the agglomerations. Landsat 7 images were 

not used in this research given the Scan Line Corrector (SLC) of the satellite failed in 

2003. Landsat 5 and 8 were previously reviewed in Chapter 2 Section 2.5.1.3. The 

detailed methodology adopted in the selection of the satellite imageries are mentioned in 

Chapter 6 Section 6.3.1. 

Data sources for the satellite images include the United States Geological Survey (USGS) 

Earth Explorer and the Google Earth Engine (GEE) Code platform. USGS Earth Explorer 

is a tool (website) enabling users to search for satellite images and aerial imageries in 

their catalogs. It also allows users to download satellite data in chronological timelines 

according to user-defined criteria as shown in Figure 3.5. Tier 1 (T1) Landsat imagery 

which refers to the data that meets the USGS radiometric and geometric quality 

requirements were used for this research.  

 

Figure 3.5: USGS Earth Explorer platform and its various components (Source: 

USGS Earth Explorer, 2022) 
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Once the satellite images were selected, the GEE code editor platform was used to import 

the imageries. An archive of various LANDSAT satellite images (5 and 8) of historical 

and current data was available online in their Google data catalog. This editor platform 

aims to simplify complex geospatial workflow and is designed into various components 

as shown in Figure 3.6. Detailed methodology using this platform to import the satellite 

images is described in Chapter 6 Section 6.3.2.  

 

Figure 3.6: Diagram showing the GEE code editor interface with its various 

components (Source: Google Developers, 202216) 

Apart from the classification of satellite images, Google Earth Pro software has been used 

for the validation and accuracy assessment of classified imageries (Refer to Chapter 6 

Section 6.3.3). This is a freely available software that allows users to create, overlay, 

assess and visualize geospatial information. It provides a time slider that helps users to 

analyse historical data of the area of interest.  

3.2.3.2. Shapefiles 

The agglomeration boundaries required to assess the urban dynamics and its impacts on 

WWTPs with CSSs were acquired from Irish Water in shapefile (.shp) format. These 

 
16 https://developers.google.com/earth-engine/guides/playground (Accessed in Apr, 2022) 

https://developers.google.com/earth-engine/guides/playground
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shapefiles have polygon features that represent the boundary of each agglomeration as 

shown in Figure 3.7. 

 

Figure 3.7: The agglomeration boundary shapefiles 

3.3. Analysis and Model Building: 

The relationship between wastewater influent volumes and variables such as 

precipitation, tidal level, river level and urban land cover was investigated by undergoing 

statistical analysis. Statistical modelling of the response variable aids in explaining the 

behaviour of the variable of interest by a model represented by an algebraic equation. 

Linear regression is one of the simplest and the most effective method to analyse trends 
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and detect the non-stationarity nature of local precipitation data and hence often used in 

urban design studies (Jung et al., 2015). Moreover, when the nature of the function of the 

regression equations are unknown, linear regression is often considered as first 

approximation of regression function (Kutner et al., 2005). Urban drainage design studies 

use annual maximum precipitation data or rainfall extremes and hence use modelling 

techniques such as generalized extreme value model, Mann Kendall test etc (Arnbjerg-

Nielsen, 2012; Willems, 2013; Willems et al., 2012). These tests do not take into 

consideration the strong temporal variability of daily or sub-daily datasets (Willems et 

al., 2012). In addition, the studies that investigated the impacts of precipitation variables 

on influent volumes (Langeveld et al., 2013; Li et al., 2018; Mines et al., 2007)  have 

already established that linear regression modelling approach could be efficiently used to 

model influent volume characteristics at daily, monthly and event-based scales on the 

basis of precipitation variables (Chapter 2 Section 2.3.1.2). This thesis did not consider 

WWTP design, but focused on the influent volume characteristics, at daily scale, hence, 

in this research, linear regression modelling was adopted and the methodologies were 

developed based on regression analysis to understand the trends and variations of 

wastewater influent volumes as a response variable with respect to the above-mentioned 

predictor variables. There are five main assumptions underlying linear regression 

analysis: i) linearity, i.e., the variables must be linearly related, ii) homoscedasticity, i.e., 

equal variances between residuals and predicted values, iii) normality, iv) residuals are 

independent and v) the predictor variables should not be highly correlated. These 

assumptions are checked, and it was found that the data satisfies four out of the five 

assumptions. The data did not follow a normal distribution and had a skewness factor of 

approximately 0.3 – 0.8 across all the WWTPs. This indicated that the data is slightly 

positively skewed. However, since Least Squares Regression method (a linear model 

represented by a line to fit the data) is a linear unbiased estimator, i.e., the data need not 

be normally distributed (Tellinghuisen, 2008), but rather the residuals and their mean 

should be zero. This was further checked, and the errors satisfied this condition across all 

the WWTPs. It is to be noted that it is normal to find influent volume data to not follow 

a normal distribution due to the presence of extreme values (outliers) that might skew the 

distribution. However, removal of extreme values will not represent the data in its true 

sense and thereby, the model will fail to take into account extreme events leading to 

higher values of influent volumes which are required in studies related to wastewater 

infrastructure. 
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R Studio free open-source software was used to perform regression analysis. It is an 

integrated development environment (IDE) that uses the R programming language for 

statistical computing17. 

Simple linear regression (SLR) modelling technique is used when one predictor variable 

is considered at a time in a regression equation to evaluate its impacts on the dependent 

or response variable. On the other hand, multiple linear regression (MLR) modelling 

technique is carried out when more than one predictor variables influence the dependent 

variable. MLR is useful to estimate the combined impacts of predictor variables. SLR 

(Equation 1) and MLR equations can be represented as follows: 

 𝑦𝑝 =  𝛽𝑥 + 𝑐+ ∈ (Eq. 3.1) 

   

 𝑦𝑝 =  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝑐 + ∈ (Eq. 3.2) 

Where 𝑦𝑝 represents the predicted values of the response variable y, 𝑥, 𝑥1, 𝑥2, …, 𝑥𝑛 are 

the predictor variables, 𝑛 is the number of predictor variables, 𝛽, 𝛽1, 𝛽2, …, 𝛽𝑛 are the 

coefficients of the variables respectively, c is the intercept. However, each regression 

model has an associated model error ∈. This term, representing the error originates from 

sources beyond the control of the user and can be calculated in terms of various error 

metrics that that can determine the differences between predicted and actual values of the 

response variable. However, it does not indicate how much the error has contributed to 

the discrepancy. For each of the SLR and MLR models, the coefficient of 

regression/determination (denoted by R2 or adjusted-R2 in case of MLR), p value, slope 

coefficient of each independent variable, residual standard error (RSE) and model error 

were also determined. RSE or sigma of a model provides a measure of prediction error; 

lower its value, higher is the accuracy of the model. RSE is expressed in terms of residual 

sum of squares and degrees of freedom (Equation 3.3).  

𝑅𝑆𝐸 =  
√∑(𝑦 − 𝑦𝑝)2

𝑜 − 𝑘 − 1
× 100 (Eq. 3.3) 

 
17 https://www.rstudio.com/ (Accessed in June, 2022) 

https://www.rstudio.com/
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where 𝑜 represents the number of observations, and 𝑘 represents the number of model 

parameters. 

The model error denotes the total number of incorrect predictions out of all the predictions 

made and is estimated by Equation 3.4. 

𝑀𝑜𝑑𝑒𝑙 𝑒𝑟𝑟𝑜𝑟 =  
𝑅𝑆𝐸

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
× 100 (Eq. 3.4) 

Another error metric that was been considered in this study are root mean square error 

(RMSE) which is analogous to standard deviation and provides a measure of the spread 

of the residuals. It also takes into account outliers (if any) present in the dataset. The unit 

of RMSE is similar to the response variable, making it easier for a user to interpret the 

results. In this case, the unit of RMSE is m3/day.  

The statistical significance of the model p and of each explanatory variable was also 

estimated. p value showing less than 0.05 (5% level of significance or 95% level of 

confidence) were considered significant variables.  

3.4. Development of methodologies 

This section discusses the inception of the methodologies developed to study the response 

of wastewater influent volumes to different variables addressed in this research as 

discussed in Section 3.1. In order to analyse the impacts on wastewater influent volumes 

based on observed precipitation, tidal and river levels, the future precipitation projections 

under various climate change scenarios, and lastly, the change in urban land cover, the 

methodologies developed are presented in the following sub-sections. 

3.4.1. Impact assessment on wastewater influent volumes using observed datasets 

– a pilot case study 

This section discusses the use of observed datasets elaborated in Section 3.2.1. WWTP 8 

was selected as a “case-study” to help identify the variables that were most likely to have 

an impact on wastewater influent volumes. It is 1) a large sized network in an urban area, 

2) located near the coast, and 3) has a tidal river in close proximity to the WWTP. As 

such, it provided an ideal opportunity to test a long list of rainfall variables for 

significance in relation to their impacts on influent volumes. The variables that were 
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found to have a significant impact on influent volumes are defined in Table 3.4. All other 

variables that were tested but had no significant impact on influent volumes are presented 

in Appendix I. 

All variables defined in Table 3.4 were tested separately for statistical significance at a 

95% level of confidence using simple linear regression (SLR) analysis, grouped by 

impact of 1) precipitation, 2) tidal levels, and 3) river levels. Multiple linear regression 

(MLR) was also performed to estimate the effects of more than one variable on influent 

volume. For every MLR analysis (daily, monthly, and pooled), bivariate correlation 

analysis and Variance Inflation Factor (VIF) estimation were conducted to check for 

multi-collinearity amongst the predictor variables. Variable(s) with correlation 

coefficients greater than 0.80 signified high correlation between the variables. This was 

followed by a check of variables with VIF greater than 5. After following up with these 

two procedures, the variables satisfying both these criteria were discarded (Tay, 2017). 

Lag-time (i.e., difference in time between the day that precipitation event occurs and the 

day the related response or surge in influent volume is observed at the WWTP) was also 

analysed to understand the response characteristics of influent volumes better. 

Precipitation categories were determined by categorizing daily precipitation across all 

years based on percentile evaluation (Schär et al., 2016); and probability of exceedance 

curves (PoE) represented the likelihood of exceeding certain influent volumes across all 

years under each precipitation category. Details of the application of this methodology 

on the rest of the WWTPs and the results are described in Chapter 4. 
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Table 3.4: List of significant variables/terminologies used in this research, their 

definition and unit 

Variables Dependent/Predictor 

variable 

Description Unit 

Variables at daily scale 

Daily influent 

volume (Q) 

Dependent Daily influent volume 

to the WWTP 

m3/day 

Daily precipitation 

(P) 

Predictor Total daily 

precipitation 

mm/day 

Precipitation for 1,2 

and 3 days before 

the corresponding 

influent volume 

Predictor For influent volume at 

any given day (d), 

daily precipitation at 

day d-1, d-2, and d-3 

mm/day 

Daily maximum 

tidal level (T)* 

Predictor Maximum tidal height 

recorded for each day 

m 

Daily mean river 

level (RL)* 

Predictor River level readings 

averaged for each day 

m 

Dry weather flow 

(DWF) 

Predictor Influent volume 

corresponding to a 

zero rainfall day 

m3/day 

Variables at monthly scale 

Average daily 

influent volume 

(ADIV) over a 

month 

Dependent Average daily 

influent volume over 

a given month 

m3/day 

Number of wet days 

(WD) in a month 

Predictor Days with 

precipitation greater 

than or equal to 1 mm 

in a month 

days 

Number of dry/ 

zero rainfall days 

(ZRD) in a month 

Predictor Days with no 

precipitation in a 

month 

days 
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Average daily 

precipitation (ADP) 

over a month 

Predictor Average daily 

precipitation over a 

given month 

mm/day 

*Relevant only for WWTPs close to rivers and/or sea 

The methodology to analyse the different aspects of precipitation, i.e., intensity, 

frequency and duration in conjunction at daily and monthly scale is presented in Figure 

3.8. The timescale at which WWTP assessments are carried out is of primary importance. 

Daily flows are much more variable during wet weather days whereas maximum monthly 

average daily flow is used for the hydraulic design capacity (Mines et al., 2007). Whereas 

(Li et al., 2018) reported that the relationship between rainfall and inflow rate of 

combined sewer systems at a monthly scale can be very well depicted by linear models.  

 

Figure 3.8: Methodology of analysing historical impacts of precipitation variables 

on wastewater influent volumes 
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In order to investigate the influence of all the other identified statistically significant 

variables, a similar approach was carried out. However, tidal level and river level were 

analysed at a daily scale only. 

3.4.2. Impact assessment on wastewater influent volumes using future datasets 

Seasonal mid-century projected changes for 2041 – 2060 (Future Period) as compared to 

1981 – 2000 (Past Period) were available for Ireland across 4 seasons (i) December, 

January and February (DJF – winter); (ii) March, April and May (MAM – spring), (iii) 

June, July and August (JJA – summer) and (iv) September, October and November (SON 

– autumn) (Nolan and Flanagan, 2020). The models (Equation 3.1 and 3.2) at a monthly 

scale established using the observed datasets of influent volumes and precipitation for the 

current period (Table 3.2) for all the WWTPs (details in Chapter 4) are leveraged in this 

study for future projections of influent volumes. Thus the methodology adopted in this 

part of the research exploring the future impacts of projected precipitation (described 

below) included the following assumptions due to the nature of the available climate 

change projection data: (i) the seasonal projected data were representative of each month 

of the season; for example, the value of the projected % change in the winter season was 

applied to the months of December, January and February, which constitutes that season; 

(ii) change was assumed to have occurred linearly from the past period (1981 – 2000) to 

the future period (2041 – 2060) (Figure 3.9); and (iii) the projected wastewater influent 

volume characteristics did not account for demographic changes within the urban areas – 

thus the impacts are those induced by changes in rainfall patterns only. 



  

116 
 

 

Figure 3.9: Assumption of linear change for a variable showing increase in the 

future due to climate change 

It is to be noted that, if the climate change variable of interest is shown to decrease in 

future, the linear interpolation plot can be produced similarly. As shown in Figure 3.9, 

with the assumption of linear change in precipitation variables between the past period 

(1981 – 2000) and the future period (2041 – 2060), projected precipitation changes for 

the current period could be estimated using linear interpolation. This is discussed in detail 

in Chapter 5. 

The methodology (Figure 3.10) for analysis of wastewater influent volumes with respect 

to mid-century projected changes in precipitation variables was based on the regression 

models of the historical analysis, the background to which are presented in Section 3.4.1. 

Detailed methodologies using data in Sections 3.2.2 are illustrated in Chapter 5.
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Figure 3.10: Broad methodology of analysing future impacts of precipitation projections on wastewater influent volumes
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3.4.3. Impact assessment on wastewater influent volumes using land use land cover 

datasets  

LULC classification technique was performed to classify the satellite images obtained 

(Detailed in Chapter 6 Section 6.3.2). For this research the random forest classification 

technique was adopted. Random forest is a machine learning classifier algorithm which 

performs classification based on decision trees which are its building blocks. It is one of 

the most commonly used classifiers (Kulkarni et al., 2016) that uses data features to 

classify into desired number of classes. The random forest algorithm builds numerous 

decision tree classifiers using bagging and feature randomness on several sub samples of 

the dataset. Decision tree classifiers are more efficient than single stage classifiers as 

decisions are being made at multiple levels (Kulkarni et al., 2016). It uses averaging to 

control overfitting and to improve the predictive accuracy. One of the main advantages 

of this classification method is its accuracy, which is considered the best among all the 

current classification algorithms such as support vector machines, artificial neural 

networks etc (Kulkarni et al., 2016). 

Hence random forest classifier was used to classify landuse classes of Landsat 5 and 8 

satellite images were classified, with a focus on built-up areas. A time-series analysis of 

the built-up areas was carried out to estimate the change in urban cover over the years in 

ArcGIS Pro. This urban dynamic was assessed to understand the relationship between 

impermeable surface area and the amount of wastewater influent volume incoming into 

the inlets of the WWTPs resulting from surface runoff. The detailed methodology of 

LULC classification and the trend analysis are presented in this thesis in Chapter 6. The 

broad methodology for impact assessment of LULC change on influent volumes followed 

in this research is shown in Figure 3.11.  
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Figure 3.11: Broad methodology of analysing the impacts of urbanisation on 

influent volumes 

3.5. Conclusions 

The literature review in Chapter 2 established that studying the influent volume 

characteristics is very crucial to understand the impacts of various drivers on WWTPs. 

The novelty of this research lies in the investigation of the impacts of the different aspects 

of precipitation change (current and future), tidal levels, river levels, and urbanisation on 

influent volumes.  Chapter 2 also revealed that literature is dominated by the use of 

computer-based software/ models which are pre-defined with artificially derived sewer 

system characteristics. This has emerged from the challenge of data unavailability of 

observed influent volumes. However, these models are not effective because they do not 

cater to the specific local characteristics of each WWTP and therefore, are associated 

with large uncertainties. The datasets used in this study are typical of what are available 

from WWTPs and thus, the objective was to develop these methodologies described in 



  

120 
 

this chapter using these available observed datasets in the best way possible to build 

models. These models could detect trends in influent volumes based on the different 

parameters, under practical data constraints. One of the key contributions of these models 

was the ability to capture local influent volume characteristics at local WWTP scale as a 

function of specific local features of precipitation, tidal and river levels, and land use land 

cover change. Another significant contribution of these models was that they could be 

linked to future precipitation projections under different climate change scenarios. As the 

significance of wastewater influent volume characteristics has already been established, 

it essentially demonstrates how future changes in precipitation variables would drive 

these characteristics and eventually impact WWTP operations in future.  Hence the future 

impact analysis methodology in this research introduces the concept of using data driven 

models to investigate the evolution of wastewater influent volumes in the future, a 

novelty of this study. This will be very helpful for the wastewater utilities to take 

informed decision in their planning and implementation of adaptation strategies to fulfil 

the sustainable vision of building resilient wastewater infrastructure, thereby contributing 

towards good health of the communities and the environment. Moreover, these 

methodologies could be adapted to perform similar analyses globally. 
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4. PRECIPITATION, TIDAL AND RIVER LEVEL 

IMPACTS ON INFLUENT VOLUMES OF COMBINED 

WASTEWATER COLLECTION SYSTEMS: A 

REGIONAL ANALYSIS   
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4. Precipitation, tidal and river level impacts on influent volumes of combined 

wastewater collection systems: A regional analysis 

4.1. Overview 

The aim of this chapter was to analyse the variations of precipitation and their link with 

influent volumes. The chapter adopts a new approach to understand influent volume 

variations by taking into consideration, the combined and individual impacts of tidal and 

river levels in addition to precipitation; a topic that has not been examined in literature to 

date. The chapter presents the detailed methodology of using the observed spatio-

temporal datasets of the 14 WWTPs with combined sewerage systems, discussed in 

Chapter 3, to develop models and curves that could be used to determine the response 

characteristics of influent volumes specific to each WWTP and across all WWTPs. The 

effectiveness and predictive capacity of these models and the usability of the curves are 

discussed with the help of examples.  

This chapter has been published in Results in Engineering (Saikia, S.D., Ryan, P., Nuyts, 

S., Clifford, E. (2022). Precipitation, tidal and river level impacts on influent volumes of 

combined wastewater collection systems: A regional analysis. Results in Engineering, 

15, 100588. https://doi.org/10.1016/j.rineng.2022.100588  

4.2. Introduction 

Wastewater treatment plants (WWTPs) that treat both foul and storm wastewater 

(combined sewerage systems) will experience significant pressure due to changing 

precipitation patterns and other geophysical parameters. A majority of the studies in the 

wastewater industry related to precipitation impacts are limited to investigating CSOs 

and performance of the sewer network (Astaraie-Imani et al., 2012; Butler et al., 2007; 

Gooré Bi et al., 2015; Hussain et al., 2022; Mailhot et al., 2015; Mohammed et al., 2021; 

Shakeri et al., 2021; Schroeder et al., 2011). However, influent volumes are also an 

important parameter to consider (Langeveld et al., 2013; Li et al., 2018; Mines et al., 

2007). On days with heavy precipitation intensity, the influent volumes do not match with 

the effluent volumes due to overflow of untreated wastewater or diversion of excess water 

to storage tanks as discussed in Chapter 2 Section 2.3.1. Since influent volumes are 

measured at the inlet of WWTPs, managing this parameter will help ensure the smooth 

functioning of WWTPs with CSSs and reduce the incidences of CSOs.  

https://doi.org/10.1016/j.rineng.2022.100588
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Limited work has been done to understand the links between factors such as tidal and 

river levels, precipitation, and influent volumes to WWTPs (Chapter 2). Another key 

challenge was data unavailability and hence conventional methods of investigating 

impacts on WWTPs and their associated sewer systems use hydraulic models and limited 

observed data for model calibration and validation.  This chapter uses extensive range of 

observed datasets of precipitation, tidal level, river level and influent volumes (Chapter 

3, Section 3.2.1) to define the relationships among these variables. This will help 

stakeholders in wastewater management with long-term planning and investment 

including responses to changing precipitation patterns and their impact on wastewater 

infrastructure. 

4.3. Methods 

4.3.1. Daily data analysis 

Regression analyses of daily influent volume was carried out based on three predictor 

variables at a daily scale 1) daily precipitation, 2) maximum tidal level and 3) mean river 

level.  

4.3.1.1. Precipitation regression analysis  

SLR was carried out to assess the relationship between daily precipitation and daily 

influent volume data for each WWTP. Lag-time was analysed by comparing influent 

volume at any given day (d) to precipitation of up to 3 previous days (i.e., daily 

precipitation at day d-1, d-2, and d-3) for all WWTPs individually. Lag time was studied 

in intervals of 1 day to match the resolution of influent data.  

4.3.1.2. Tidal level regression analysis  

SLR was used to analyse the relationship between daily maximum tidal level and daily 

influent volume for all relevant WWTPs, on all days and for zero rainfall days separately 

(as defined in Chapter 3 Section 3.2.1.2).  
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4.3.1.3. River level regression analysis  

SLR analysis was carried out to assess the potential impact of daily mean river levels 

(wherever relevant) on daily influent volumes for all days and zero rainfall days 

separately. 

4.3.1.4. Multiple variable regression analysis 

MLR was used to analyse the variation of influent wastewater volumes for all days and 

separately for zero rainfall days (i.e., dry weather flow to the WWTP), with respect to the 

potential combined influence of 1) daily precipitation and daily maximum tidal levels, 2) 

daily precipitation and daily mean river level, 3) daily maximum tidal level and daily 

mean river level and, 4) daily precipitation, daily maximum tidal level and daily mean 

river level. 

4.3.1.5. WWTP influent volumes response to precipitation intensity 

Daily precipitation was categorised for each WWTP as outlined in Table 4.1. The influent 

volumes under each precipiation category were then checked for statistically significant 

differences using the Kruskal Wallis test. A Pairwise Wilcoxon test was performed as a 

post-hoc or a posteriori statistical analysis to determine statistically significant 

differences between each pair of categories.  

Table 4.1: Precipitation categories based on percentile values for all WWTPs 

Category Percentile range for daily precipitation Category Name 

1 25th percentile No precipitation 

2 >25th percentile ≤ 50th percentile Very low precipitation 

3 >50th percentile ≤ 75th percentile Low precipitation  

4 >75th percentile ≤ 95th percentile Moderate precipitation 

5 >95th percentile ≤ 99th percentile Heavy precipitation 

6 >99th percentile Extreme precipitation  



  

125 
 

Categories were later merged if there were no statistically significant differences between 

the daily mean influent volumes for precipitation categories. For example, in the case of 

some WWTPs where the frequency of heavy intensity precipitation events was limited 

for some agglomerations, bands 5 and 6 (categories heavy and extreme precipitation 

respectively) were merged. Therefore these precipitation categories were unique to each 

WWTP and represented its local precipitation characteristics. 

Because the daily influent volumes observed were also distinctive to the treatment 

capacities and sizes of each WWTP, the unique response characteristics of each WWTP 

to their individual precipitation categories were also studied in detail. This was carried 

out by developing a method to determine the likelihood that influent volumes would 

exceed any given limit as the result of specific precipitation events.  

4.3.2. Monthly data analysis 

Daily data analysis focusing on precipitation, river, and tidal level, can give insights into 

the impacts of these variables on influent data, however they can be quite variable and 

monthly analysis can be used to help determine long-term hydraulic issues at a WWTP. 

Li et al., (2018) previously reported that the relationship between precipitation and 

influent data of CSOs at a monthly scale can be depicted by linear models. In addition, 

maximum monthly average daily influent flows are often used for the hydraulic design 

capacity (Mines et al., 2007). 

In this study, SLR was used to assess the separate impacts of; 1) monthly average daily 

precipitation, 2) number of wet days in a month and, 3) number of zero rainfall days in a 

month on monthly average daily influent volume. These precipitation parameters were 

also analysed together as predictor variables in an MLR model, to estimate their 

combined effects on monthly average daily influent volume. However, as discussed in 

Chapter 3 Section 3.4.1, bivariate correlation analysis and VIF estimation was carried out 

to assess multicollinearity. This resulted in the removal of number of wet days from the 

MLR analysis which considered the monthly average daily precipitation and number of 

zero rainfall days as predictor variables. 

In the case of all analysis, the coefficient of regression/determination (denoted by R2 or 

adjusted-R2 in case of MLR), p value, slope coefficient of each predictor variable, and 

root mean square error (RMSE) were evaluated. The RMSE is in the units of the response 
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variable, in this case m3/day. For both simple and multiple linear regression, R2 (or 

adjusted R2) values obtained were compared and qualitatively assessed based on Table 

4.2, in line with Mines et al., (2007). The Time Web (2006) also depicts similar 

correlation coefficient data. The values of correlation coefficients between similar 

variables for similar studies also represent similarities (Li et al., 2018; Mines et al., 2007). 

Table 4.2: R2 values and degree of correlation (Mines et al., 2007 after Franzblau, 

1958) 

R2  Degree of Correlation 

0 to 0.04 No or negligible correlation 

0.04 to 0.16 Low degree of correlation 

0.16 to 0.36 Moderate degree of correlation 

0.36 to 0.64  Marked degree of correlation 

0.64 to 1  High degree of correlation 

4.3.3. Pooled data analysis 

To develop models at daily and monthly scales, that could be used across all the WWTPs, 

all datasets for each WWTP, irrespective of the different temporal range of data, were 

pooled together for two separate models. These models corresponded to two different 

time periods, 1) across all years of data for all WWTPs and 2) across 2016 – 2018, which 

represents the time period of data availability for all the WWTPs facilitating equal 

influence for each WWTP. Only precipitation variables were considered for this analysis 

because these were available across all the WWTPs. However, because the influent 

volume varies by orders of magnitude between some of the WWTPs in terms of treatment 

capacity/design population, the daily influent volume (on daily basis) and average daily 

influent volume (on monthly basis) data were normalised using Equation 4.1 and 4.2 

respectively. 

 𝑄𝐷
′ =

𝑄 − 𝑄𝑚𝑖𝑛

𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛
 (Eq. 4.1) 
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where 𝑸𝑫
′  is the normalised daily influent volume, ranging between 0 – 1, 𝑸 , 𝑸𝒎𝒊𝒏 and 

𝑸𝒎𝒂𝒙 represent the observed values of daily influent volume, the minimum and 

maximum values of the observed daily influent volumes of each plant respectively. 

 𝑄𝑀
′ =

𝐴𝐷𝐼𝑉 − 𝐴𝐷𝐼𝑉𝑚𝑖𝑛

𝐴𝐷𝐼𝑉𝑚𝑎𝑥 − 𝐴𝐷𝐼𝑉𝑚𝑖𝑛
 (Eq. 4.2) 

where 𝑸𝑴
′  is the normalised monthly average daily influent volume, ranging between 0 

– 1, 𝑨𝑫𝑰𝑽 represents the observed values of monthly average daily influent volume, 

𝑨𝑫𝑰𝑽𝒎𝒊𝒏 and 𝑨𝑫𝑰𝑽𝒎𝒂𝒙 means the minimum and maximum values of the observed 

monthly average daily influent volumes respectively. 

SLR and MLR were used to analyse the relationship between daily precipitation and 𝑸𝑫
′  

(daily scale) and average daily precipitation, number of wet and zero rainfall days in a 

month (individually and combined) and 𝑸𝑴
′  (monthly scale) across all the WWTPs 

respectively. Modelled values of normalised daily influent volume and normalised 

monthly average daily influent volume were then calculated using Equations 4.3 and 4.4 

respectively. However, as mentioned in Chapter 3 Section 3.4.1 and section 4.3.2 of this 

chapter, number of wet days in a month was discarded from the pooled monthly MLR 

model (Equation 4.4) due to presence of multicollinearity. 

 𝑄𝐷𝑤𝑑𝑦
′ =  𝛽𝑃𝑤𝑑𝑦 + 𝑐 + ∈ 

 

(Eq. 4.3) 

 

where  𝑸𝑫𝒘𝒅𝒚
′  is the predicted normalised influent volume of WWTP 𝒘 in day d and year 

y, P is daily precipitation and  𝜷 is its coefficient. 

𝑄𝑀𝑤𝑚𝑦
′ =  𝛽1𝐴𝐷𝑃𝑤𝑚𝑦 + 𝛽2𝑍𝑅𝐷𝑤𝑚𝑦 + 𝑐 + ∈ (Eq. 4.4) 

Q’Mwmy is the predicted normalised monthly average daily influent volume of WWTP w 

in month m and year y; ADP, and ZRD are average daily precipitation and number of 
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zero rainfall days in a month respectively; β1 and β2 are the coefficients related to these 

variables obtained from the pooled regression analysis. 𝒄 is the intercept and ∈ is the 

residual of the model in both the equations. The model coefficents can be interpreted as 

the change in normalised influent volume with unit change in each of the predictor 

variables.  

From these modelled normalised values, daily influent volume and monthly average daily 

influent volume were then calculated as per Equations 4.5 and 4.6 respectively.  

 𝑄𝑃𝐷 =  𝑄𝐷𝑤𝑑𝑦
′ ∗ [(𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛)] + 𝑄𝑚𝑖𝑛 (Eq. 4.5) 

   

 𝑄𝑃𝑀 =  𝑄𝑀𝑤𝑚𝑦
′ ∗ [(𝐴𝐷𝐼𝑉𝑚𝑎𝑥 − 𝐴𝐷𝐼𝑉𝑚𝑖𝑛)] + 𝐴𝐷𝐼𝑉𝑚𝑖𝑛 (Eq. 4.6) 

where, 𝑄𝑃𝐷 and 𝑄𝑃𝑀 are the predicted daily influent volume and monthly average daily 

influent volume respectively. RMSE was estimated by analysing the difference between 

𝑄𝑃𝐷 and Q and 𝑄𝑃𝑀 and ADIV. Linear regression analysis was carried out between the 

observed and predicted average daily influent volume for the two time periods to assess 

the predictive capacity of the two pooled models.  

Additionally, in order to assess the performance of the pooled model in  making 

generalisable predictions, the Leave One Out Cross Validation technique was used. This 

method is a commonly used approach where each set of observations, in this case, 

WWTPs, is considered as the validation set whereas the remaining sets of observations 

are considered as the training set. Hence, in order to carry out this technique, a regression 

model is developed using the ADP, ZRD (predictor variables) and ADIV data (response 

variable) of 13 WWTPs, leaving one WWTP at a time. The observed values of ADP and 

ZRD of the WWTP which was left out (the validation set) was then incorporated into the 

regression model to predict ADIV values. This can be explained with the help of an 

example. In the first run, WWTP 1 was left out and a pooled regression model ws  

developed with data of WWTP 2 to 13. The observed data of WWTP 1 was then 

incorporated into this model to predict the ADIV values of WWTP 1. This was repeated 
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13 more times for the remaining WWTPs. Model error and RMSE values were recorded 

for each run. 

4.4.  Results and discussion 

The full daily and monthly results of the analysis for each of the 14 WWTPs are discussed 

in this section with an initial focus on WWTP 8 as an example. The response of influent 

volume characteristics and pooled WWTP results are also described. As mentioned in 

Chapter 3 Section 3.4.1, all MLR analysis results presented in this paper has taken into 

account multi-collinearity amongst variables and only demonstrates the variables with 

bivariate correlation coefficient and VIF less than 0.80 and 5 respectively. 

4.4.1. Daily analysis results 

As described in Chapter 3 Section 3.4.1, WWTP 8 was used to identify the initial 

variables that would have a significant impact on the daily influent volumes. The daily 

scale results for WWTP 8 are summarised in Table 4.3. All model results were found to 

be statistically significant at a 95% level of confidence. The impact of the various 

variables from Table 4.3 are discussed in-turn in the sub sections below.  

Table 4.3: Regression results at daily scale for WWTP 8 (pilot case-study) for all 

years 2011 – 2018 

Variables modelled R2/Adjusted 

R2*** 

Model 

Error 

RMSE 

(m3/day) 

Precipitation Analysis  

Precipitation v/s influent volume 0.27 18% 10364 

Precipitation v/s influent volume with 

1-day lag-time 

0.23 19% 10687 

Tidal Level Analysis  

Maximum tidal level* v/s influent 

volume 

0.16 20% 11170 

Maximum tidal level* v/s dry weather 

flow 

0.37 11% 5009 
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River Level Analysis  

Mean river level* v/s influent volume 0.53 18% 8385 

Mean river level* v/s dry weather flow 0.46 13% 6264 

Multiple Variable Analysis  

Precipitation and maximum tidal 

level* v/s influent volume 

0.37 17% 9632 

Precipitation and mean river level* v/s 

influent volume 

0.67 12% 6962 

Maximum tidal level and mean river 

level** v/s influent volume 

0.53 15% 8382 

Maximum tidal level and mean river 

level** v/s dry weather flow 

0.46 13% 6222 

Precipitation, maximum tidal level, 

and mean river level** v/s influent 

volume 

0.67 12% 6961 

* For the relevant WWTPs with maximum tidal level or mean river 

level data 

 

** For the relevant WWTPs with both maximum tidal and mean 

river level data 

 

*** Adjusted R2 is reported for all the multiple variable analysis  

4.4.1.1. Precipitation regression analysis results 

For WWTP 8, the relationship between daily precipitation (with and without lag-time – 

see Section 4.3.1.1) and daily influent volumes indicated a moderate degree of correlation 

without lag-time (18% model error and R2 = 0.27) and with one day lag-time (19% model 

error and R2 = 0.23). As such, the regression analysis between daily precipitation and 

daily influent volume resulted in a higher degree of correlation and lower model error 

when compared to the application of a 1 day lag-time (i.e. no lag-time effect was 

identified, in the case of this WWTP). The R2 and model errors for the daily analysis 

indicate that there are several other factors (e.g., soil moisture content, level of infiltration 

into the sewer network, evapotranspiration, water consumption) which may influence the 
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changing influent volume at a daily basis. These factors are, however, outside the scope 

of the paper.  

In relation to the daily precipitation and influent volume analysis for the remaining 13 

WWTPs, daily precipitation was found to be statistically significant in explaining the 

variation in daily influent values. However, the relationship between these two variables, 

defined by R2, was observed to range from very low to marked correlation (R2 = 0.03 – 

0.38) and model errors ranged from 18% – 56% across all plants (Appendix I). In relation 

to lag-time analysis, it was observed that for 7 of the remaining 13 WWTPs, representing 

all the network categories (refer to Chapter 3 Table 3.2), a 1-day lag-time between 

precipitation and daily influent volume improved model error and R2 values (full details 

in Appendix I). Due to the differences in the relative capacity of stormwater storage 

across the WWTPs, and the presence of impervious surfaces, it is logical that the the lag-

time characteristics would vary. However, for all WWTPs, lag-time greater than 1-day 

resulted in a decrease in the R2 and an increase in model error between daily precipitation 

and daily influent volume. Sub-daily data, which was not available for this study, would 

facilitate a more thorough investigation into lag-time.  

4.4.1.2. Tidal level regression analysis results 

For all relevent WWTPs (2, 4, 8, 10, and 12), on all weather days, daily maximum tidal 

level showed a low degree of correlation (R2 = 0.04 – 0.16) with daily infuent volume. 

However, the analysis did indicate that examining the impact of tidal elevation may be a 

good means of predicting variations in dry weather flow. Indeed, for WWTP 8, the lowest 

model error (11%) occurred when assessing the relationship between the dry weather 

flow with the daily maximum tidal level. This may be due to infiltration of saline water 

into the sewer system at high tides. For the other four WWTPs (WWTPs 2, 4, 10 and 12) 

with tidal data, model errors ranged between 13% and 38% when analysing the impacts 

of maximum daily tidal level on dry weather flow. This can reflect site-specific 

infrastructure issues such as the height above sea level of any storm overflows, the 

location of the WWTP relative to any storm overflows to the sea or the presence of 

backflow prevention valves. 



  

132 
 

4.4.1.3. River level regression analysis results 

For WWTP 8, the relationship between daily mean river level and daily influent volume 

had a marked degree of correlation (R2 = 0.53) for all weather days, and decreased to R2 

= 0.46 when only taking into account dry weather flow. WWTP 8 is located in a city that 

is relatively flat with some low hills in suburban areas, has a short tidal river which is fed 

by a lake with a relatively large catchment (> 3,100 km2) and thus a surcharge to the 

sewerage system due to high river levels is not unexpected. However, for WWTP 8, 

flooding in the urban area does not occur despite frequent occasions of high river levels. 

Therefore its is more likely that the backflow of due to absence of non-return valves for 

this specific WWTP. 

For the remaining two WWTPs with local rivers (WWTPs 1 and 10), daily mean river 

level showed a marked to high degree of correlation with daily influent volume (R2 values 

0.49 – 0.61 and model errors 16% – 24%). For dry weather flows, R2 values were 

observed to be  0.57 – 0.60 with model errors 13% - 18%. The rivers for these two 

agglomerations are also tidal rivers and hence show similar characteristics to WWTP 8. 

The reason for the comparatively weaker tidal effect (as opposed to river level) might be 

because the invert levels of storm overflows are possibly higher than the maximum tidal 

level for this WWTP, which would explain the minimum impact of tidal level on 

wastewater influent volumes. Additionally, as mentioned in Section 4.4.1.1, there are 

several other factors such a soil moisture content, evapotranspiration etc. that may 

influence the effect of daily precipitation on wastewater influent volumes. As these 

variables are not considered in this research, variation in daily influent volumes can only 

be partially explained using daily precipitation alone. Daily mean river level is found to 

better explain the variation in daily influent volume than the daily precipitation and the 

daily maximum tidal level. It is to be noted that rain and river level were found to be not 

correlated for all the WWTPs.  

4.4.1.4. Multiple variable regression analysis results 

The previous sub-section showed that precipitation, tidal level, and river level explain to 

some degree the variation in daily influent volume. If all three variables are considered 

together, daily precipitation and river level were found to be statistically significant and 

a high degree of correlation is found between the MLR predictor variables and influent 
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volumes for the relevant WWTPs: adjusted R2 = 0.67 for WWTP 8, and adjusted R2 = 

0.52 for WWTP 10. In addition, model errors are lowest when all three variables are 

considered together for WWTP 10 (23%). It was observed that for WWTP 8, the R2 and 

model error remain unchanged when predictor variables influent volume and river level 

were considered as compared to when all the three variables were considered. It indicated 

that river level is a stronger contributor when compared to tidal level for this 

agglomeration for reasons discussed in Section 4.4.1.3 (Refer to Section 4.4.1.3).  

As such, the analysis shows that precipitation, tidal level, and river level are very likely 

to explain a significant component of daily variations in influent volume for the selected 

WWTPs. This insight can be used to examine additional WWTPs with similar 

characteristics or for hydraulic design capacity of future WWTPs. The full set of tidal 

and river level analysis for the relevant WWTPs are presented in Appendix I. 

4.4.1.5. Response of WWTP influent volumes to precipitation intensity 

This analysis categorised daily precipitation and investigated the “probability” of a given 

daily precipitation, resulting in exceedance of a daily influent volume, in the monitoring 

period of each WWTP. This section details the response characteristics of influent 

volume to precipitation intensity (Table 4.1) for WWTP 8 with the remaining 13 WWTPs 

presented in Appendix I. The specific precipitation categories for WWTP 8 are detailed 

in Table 4.4. The Kruskal Wallis test and the Pairwise Wilcoxon test confirmed a 

statistically significant difference between the daily influent volumes under each 

category.  

 

Table 4.4: The daily precipitation categories for WWTP 8 based on percentile 

evaluation 

Bands Thresholds Category Name 

1 Rain (mm/day) = 0 No precipitation 

2 0 < Rain (mm/day) <= 1.2 Very low precipitation 

3 1.2 < Rain (mm/day) <= 5.4 Low precipitation 
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4 5.4 < Rain (mm/day) <= 15 Moderate precipitation 

5 15 < Rain (mm/day) <= 25.6 Heavy precipitation 

6 Rain (mm/day) > 25.6 Extreme precipitation 

Figure 4.1 depicts all daily precipitation plotted against daily influent volume for WWTP 

8. While there is significant spread in the data (which might occur due to seasonal factors 

such as influx of tourists, but also river and tidal levels, ground water conditions, soil 

moisture content, etc.) a clear upward trend in influent volume with increasing 

precipitation intensity is apparent, albeit with notable variations in influent volumes 

during zero or low precipitation categories. The maximum daily influent under each 

precipitation category is observed to be around 80,000 – 85,000 m3/day (with a small 

number of higher values observable). This may indiciate some level of storm overflow 

occuring beyond this point. 

 

Figure 4.1: Daily precipitation v/s Daily influent volume plot depicting the 

precipitation categories for WWTP 8 across 2011 – 2018 

Figure 4.2 shows the probability of exceedance curves which indicate the percentage of 

data points that exceed a given influent flow volume for any precipitation category in the 

2011 – 2018 period for WWTP 8. For example, on zero rainfall days (category 1) less 

than 20% of influent flows were above 60,000 m3/day whereas for days with high 

precipitation (category 5) more than 80% of influent flows were above 60,000 m3/day.  
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Figure 4.2: PoE curves showing likelihood, in percentage, of influent volumes 

exceeded by the different precipitation categories for WWTP 8 across 2011 – 2018 

The frequency of occurrence of various influent volumes or storm overflows, from a 

particular WWTP, can be analysed using these probability of exceedance curves 

developed for a particular WWTP and account for future projected changes in heavy 

precipitation events. Indeed, the curves are helpful in representing the different 

characteristics of the WWTPs that are reflected in their precipitation patterns and 

hydraulic response characteristics. In addition, they illustrate the link between heavy 

precipitation events and CSO, which can be damaging to receiving waterbody ecosystems 

and public health (O’Sullivan, 2020). Precipitation categories and probability of 

exceedance curves were developed for all the 14 WWTPs and are presented in Appendix 

I. 

4.4.2. Monthly analysis results 

In order to take into account the impacts of monthly patterns of precipation, monthly 

average daily data is analysed here. This does not account for daily variation but can 

account for seasonal factors such as tourism, rainfall, presence of university students, 

festivals etc. Figure 4.3 highlights the R2 and RMSE of these three variables 

independently. As mentioned in Section 4.3.2, the number of wet days per month was 

omitted from the MLR , hence the results demonstrating the influence on monthly 
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average daily influent volume took into account only the remaining two predictor 

variables.  

It is clear that all WWTPs showed marked to high degree of correlation between the three 

variables independently and influent volumes, except for WWTP 4 which showed a 

moderate degree of correlation between monthly average daily precipitation and monthly 

average daily influent volume. Although several factors will have an influence on the 

correlation for WWTP 4, it is most likely caused by; 1) a number of incidents of 

stormwater overflow during moderate and high precipitation events as reported in the 

Annual Environmental Report (AER) by Irish Water (Irish Water, 2018) and 2) upgrades 

and improvements carried out in the CSS of WWTP 4 during the monitoring period.   

Overall, when looking at the impact of precipitation on influent volumes, the monthly 

analysis shows higher R2 values compared to the daily analysis across all WWTPs. In 

particular, the daily R2 values ranged between 0.03 and 0.38, whereas the monthly R2 

values ranged between 0.26 and 0.83; this is not unexpected given the variations in daily 

data.  
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Figure 4.3: Monthly analysis results across all WWTPs, with a) Monthly average 

daily precipitation v/s monthly average daily influent volume, b) Number of wet 

days in a month v/s monthly average daily precipitation over a month, c) Number 

of zero rainfall days in a month v/s monthly average daily influent volumes, and d) 

Monthly average daily precipitation and number of zero rainfall days in a month 

v/s monthly average daily influent volume 

Six out of the 14 WWTPs (WWTPs 2, 4, 8, 9, 10 and 12) showed higher R2 values or 

lower model errors when monthly average daily precipitation and number of zero rainfall 

days in a month were considered together to explain the variation in monthly average 

daily influent volumes as opposed to SLR analysis when these variables were considered 

separately. The remaining WWTPs showed approximately equal model statistics (R2 and 

model errors) when compared to the single variable analysis results of monthly average 

daily precipitation and monthly average daily influent volumes. The results reiterate that 

although monthly average daily precipitation is the strongest significant contributor and 

positively correlated to influent volumes, the number of zero rainfall days (negatively 

correlated) can aid in explaining variations in monthly average daily influent volumes. It 
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is likely it can help explain some impacts due to rainfall intensity i.e., for any given 

monthly precipitation a reduced number of zero rainfall days would indicate lower 

intensity rainfall. This is in line with (Li et al., 2018), taking into account the varying 

precipitation and hydraulic characteristics across the WWTPs.  

4.4.3. Pooled WWTP analysis results 

Pooled models were developed to provide regional/national level insights into the impact 

of precipitation on influent volumes across all WWTPs. As stated in Section 4.3.3, two 

separate models were developed with different temporal datasets: 1) across all available 

years of data for the different WWTPs, and 2) across 2016 – 2018, which representes the 

time period of data availability covering all WWTPs. Taking into account the previous 

findings (i.e. the variability of precipitation on a daily basis compared to a montly basis), 

the impact of these two models are highlighted by comparing them with the results of 

individual daily model (Section 4.4.1.1) and individual monthly model (Section 4.4.2). It 

should be noted that only precipitation analysis is taken into account in the models as this 

is the only parameter available for all 14 WWTPs. 

4.4.3.1. Daily Pooled Model 

The daily pooled models were developed using Equation 4.3, with model regression 

coefficient of β = 0.0135724, c = 0.2523078, p value = <0.001 and ∈ = 0.001769. Daily 

precipitation was found to be statistically significant at a 95% level of confidence. Table 

4.5 shows the model errors of the individual daily model (from Section 4.4.1.1), and the 

pooled daily models for all years, and the pooled model for 2016-2018.  

The model errors for the daily pooled models are observed to be significantly high  and 

probably render these pooled models unsuitable for further use at this scale. This may be 

due to factors such as the variability of precipitation between WWTPs, differences in the 

sewer networks and urban population density. Indeed, it may be very challenging to 

develop pooled models at a daily level basis for WWTPs. Hence RMSE was also not 

reported further for the daily model. 
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Table 4.5: Model errors of multiple linear regression analysis of Individual v/s 

Pooled daily WWTP models 

WWTP Individual Daily 

Model 

Pooled Daily Model 

All years 2016-2018 

1 24% 39% 25% 

2 23% 36% 27% 

3 40% 50% 42% 

4 26% 53% 24% 

5 47% 82% 48% 

6 47% 64% 46% 

7 39% 59% 37% 

8 18% 24% 27% 

9 32% 37% 36% 

10 32% 44% 33% 

11 47% 100% 63% 

12 51% 100% 80% 

13 56% 100% 100% 

14 48% 100% 88% 

4.4.3.2. Monthly Pooled Model 

The monthly pooled models were developed using Equation 4.4. Table 4.6 shows details 

about the model regression coefficients of the Equation, where β1 and β2 are the model 

regression coefficients of monthly average daily precipitation and number of zero rainfall 

days in a month respectively. 
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Table 4.6: Model coefficients (Equation 4.4) of the Pooled monthly multiple linear 

regression models developed in this research 

  Pooled all-years model   Pooled 2016-2018 model 

  Coefficient Error p-value   Coefficient Error p-value 

β1 0.08458 0.00401 <0.001   0.09882 0.00674 <0.001 

β2 -0.00172 0.00127 0.17357   -0.00597 0.00191 <0.01 

Intercept -0.081667   0.086451 

Datapoints 1097   495 

Table 4.7 highlights the model errors of the individual monthly model (from Section 

4.4.2), and the pooled monthly models for all years and for 2016-2018, from the adapted 

Equation 4.4. 

Table 4.7: Model errors and RMSE of multiple linear regression analysis of 

Individual v/s Pooled monthly WWTP models 

WWTP Individual Monthly 

Model 

Pooled Monthly Model 

All years 2016-2018 

 Model 

error 

RMSE 

(m3/day) 

Model 

error 

RMSE 

(m3/day) 

Model 

error 

RMSE 

(m3/day) 

1 11% 5097 14% 6806 16% 7369 

2 12% 12106 12% 12484 10% 10567 

3 20% 1776 30% 2640 29% 2499 

4 20% 1782 38% 3376 9% 913 

5 14% 33 27% 66 14% 34 

6 18% 1768 21% 2095 21% 1959 

7 21% 1918 26% 2441 21% 1829 

8 8% 4671 9% 5123 9% 5428 

9 22% 2496 23% 2649 25% 2457 

10 14% 57412 16% 67680 18% 73048 

11 24% 7101 26% 7873 25% 7553 

12 23% 1234 28% 1478 23% 1243 

13 29% 811 31% 907 31% 911 
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14 21% 1241 24% 1494 21% 1220 

 

The model errors reveal that, in general, individual WWTP models showed better 

accuracy, as they take into account WWTP specific factors rather than the generic pooled 

WWTP model, i.e., model errors are lower for individual monthly models compared to 

both pooled models. Nevertheless, for 10 out of 14 WWTPs the pooled models showed 

only a 3% difference in model error when compared to individual WWTP models, with 

large and medium WWTPs representing the best results accross all the pooled models. 

The RMSE values of the pooled models also reflect comparable errors to individual 

WWTP models. For example for WWTP 1, the RMSE was found out to 6806 m3/day for 

the all years pooled model. This was considered a good measure of error because the 

observed data for WWTP 1 was in the range of 32000 – 72000 m3/day. The model errors 

above are similar to those reported in Mines et al., (2007), Steinschneider et al., (2013) 

and Li et al., (2018) – albeit there are different variables being analysed.  

The 2016 – 2018 pooled model showed lower model error and RMSE when compared to 

the all-years pooled model for almost all WWTPs. This may be explained by a number 

of factors including (i) the all-years pooled model is more heavily influenced by WWTPs 

with the maximum amount of data and (ii) the 2016 – 2018 model represents the most 

updated/recent networks which accounts for recent changes (if any) to the networks and 

potential changes in weather patters experienced in recent years. 

Figure 4.4 shows the 2016 – 2018 pooled monthly model across all the WWTPs and 

separately for very large, large, medium, and small sized WWTPs. Overall, the predictive 

capacity of the pooled models was found to be strong, as also cross validated by the Leave 

One Out Cross Validation (Table 4.8). R2 values ranged from 0.43 – 0.94, representing 

marked to high degree of correlation (as Table 4.2). The pooled monthly models across 

different sized WWTPs for both the time periods and their correlation coefficients are 

presented in Appendix I.
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Figure 4.4: Observed v/s predicted average daily influent volume on a monthly basis across (a) all WWTPs, (b) 1 very large WWTP, (c) 4 

large WWTPs, (d) 4 medium WWTPs, and (e) 5 small WWTPs using the built 2016 - 2018 pooled model data

(e) 
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The Leave One Out Cross Validation results are presented in Table 4.8. 

Table 4.8: Model errors and RMSE for the 14 WWTPs calculated by the Leave One 

Out Cross Validation method 

WWTPs  Pooled Monthly Model for Cross Validation 

All years 2016-2018 

 Model error RMSE (m3/day) Model error RMSE (m3/day) 

1 15% 7009 16% 7677 

2 12% 12632 10% 10617 

3 32% 2857 32% 2767 

4 41% 3741 9% 925 

5 28% 69 14% 34 

6 21% 2118 21% 1989 

7 27% 2527 21% 1833 

8 9% 5187 10% 5561 

9 23% 2689 25% 2461 

10 16% 67978 18% 74830 

11 26% 7945 25% 7562 

12 29% 1560 23% 1259 

13 31% 912 32% 929 

14 25% 1556 21% 1252 

The predictions made for each WWTP by the regression models developed by excluding 

them using the Leave One Out Cross Validation method showed approximately equal 

model errors and RMSE for 7 of the 14 WWTPs as compared to the model errors and 

RMSE when all the 14 WWTPs were considered, for both the all years and 2016 – 2018 

pooled models. The predictions for the remaining 7 WWTPs showed only a difference of 

1 – 3 % model errors as compared to the predictions from the pooled regression model 

when all the 14 WWTPs were considered. As the model error of the pooled model showed 

high predictive capacity (Figure 4.4), and the cross validation also indicated similar 

model errors, it can be concluded that the pooled model could be adapted to derive genric 

trends of influent volumes across any WWTP. 
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In conclusion, these pooled models can enable modelling of hydraulic responses to 

rainfall of other WWTPs with similar characteristics. In addition, the model errors from 

Leave One Out Cross Validation analysis shows that the pooled models can be used 

across urban CSOs in Ireland as they capture the variability of hydraulic characteristics 

across different plants, in particular for for medium and large WWTPs (model error is 

more pronounced for smaller WWTPs). Furthermore, the models can be linked with 

regional climate change projections to better understand how changing precipitation 

patterns may impact storm overflows and influent wastewater volumes.  

4.5. Conclusion 

This study analysed wastewater collection systems with foul water and stormwater 

collected together (i.e., combined sewerage system) to understand the impact of different 

variables (i.e., precipitation, tidal level, and river level) on wastewater treatment plant 

(WWTP) influent volume. The degree to which key variables such as precipitation, tidal 

and river levels impact influent wastewater influent volumes has received limited 

attention to date. Given the importance of wastewater infrastructure and their 

vulnerability to climate impacts, this is an area that requires further research. Uniquely 

for this application, this study leverages data from a number of regionally spread WWTP 

of various sizes and treatment capacities. Furthermore precipitation, tidal and river levels 

(at daily scale) of between 3 and 14 years has been used for each WWTP. Influent 

volumes for 14 WWTPs over the above time period was also collated at a daily scale (the 

highest frequency available).  

When considering the daily scale analysis, the key conclusions of the study are as follows: 

• At the daily scale, precipitation, and mean river level, when considered separately, 

are significant contributors to changes in influent volumes. In addition, examining 

the impact of tidal elevation proved to be a good means of predicting variations 

in dry weather flow.  

• Precipitation intensity bands were developed for each WWTP. When analysed 

with influent volume this enabled key hydraulic responses to rainfall to be 

elucidated. For example, for WWTP on days with zero rainfall, less than 20% of 

the influent volumes was above 60,000 m3/day, whereas for days with high 

precipitation, more than 80% influent flows were above 60,000 m3/day. This 
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analysis was completed for all WWTPs investigated and is a simple, but robust 

means of estimating the response of a network to rainfall. This analyses could be 

adopted for other WWTPs and allow utilities to rapidly identify vulnerabilities in 

their networks to precipitation; for example in relation to increasing storm 

overflows drive by precipitation changes.   

At the monthly scale, monthly average daily precipitation, number of wet per month and 

number of zero rainfall days per month (when considered separately) were all significant 

contributors to average daily influent volumes. The analysis also showed that, although 

monthly average daily precipitation is the strongest contributor to variations in influent 

volumes, number of zero rainfall days aids in explaining variations in monthly average 

daily influent volumes. 

A novel pooled WWTP model, based on a spatio-temporal analysis, was also developed 

to study the characteristics of wastewater influent volume. This model consisting of 

WWTPs of varying capacities was also established to build an optimized model with high 

predictive capacity, which could be adapted to model other WWTPs with CSOs to 

improve understanding of network responses to rainfall while accounting for regional 

characteristics in WWTP or CSS design.  

Future research should focus on analysing issues how other variables can be used to 

reduce model error. These may include soil moisture deficit, evapotranspiration, use of 

water consumption data, use of sub-daily data and analysis of land use and land cover in 

urban areas.  
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5. IMPACTS OF PROJECTED FUTURE CHANGES IN 

PRECIPITATION ON THE WWTP INFLUENT 

VOLUMES CONNECTED BY COMBINED SEWER 

COLLECTION SYSTEMS   
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5. Impacts of projected future changes in precipitation on the WWTP influent 

volumes connected by combined sewer collection systems  

5.1. Overview 

The aim of this chapter was to study the evolution of wastewater influent volume 

characteristics of WWTPs with combined sewerage systems in future as an impact of 

climate change, a topic that has not been investigated to date. Impacts of two main aspects 

of climate change are focused in this chapter, i.e., the projected change in mean 

precipitation intensity in future and the projected change in the frequency of extreme 

precipitation events. The work described herein leverages data driven models of observed 

precipitation variables and influent volumes for 14 Irish WWTPs described in Chapter 4, 

to project monthly wastewater influent volumes in 2041 – 2060 using Ireland’s most up-

to-date high resolution multi-model RCM projections under RCPs 4.5 and 8.5, that are 

described in Chapter 3. In addition to this, the probability of exceedance curves 

introduced in Chapter 4, are used in this chapter to link them to projected extreme events, 

to identify events exceeding the peak design capacities of each of the 14 WWTPs.  

This chapter has been submitted in Climate Services (Saikia, S.D., Ryan, P., Nuyts, S., 

Nolan, P. Clifford, E., (2023). Impacts of projected future changes in precipitation on the 

WWTP influent volumes connected by combined sewer collection systems. Climate 

Services (Under Review) and is currently under review. 

5.2. Introduction 

With the changing climate, as human-water interaction changes, the amount of municipal 

wastewater generated will be impacted  (Shakeri et al., 2021), which will eventually end 

up entering WWTPs (Zouboulis and Tolkou, 2015), influencing such infrastructure with 

increased instances of CSOs and hydraulic overloading. However, infrastructure in many 

cases, will not have been designed for these changes (Meyer et al., 2012). While there 

have been detailed studies identifying precipitation variables impacting wastewater 

influent volumes in CSSs (for example Gooré Bi et al., 2015; Langeveld et al., 2013; Li 

et al., 2016; Mines et al., 2007; Saikia et al., 2022), the response characteristics of the 

influent volumes with respect to future change in precipitation induced by climate change 

have, to the best knowledge of the author, yet to be analysed. Therefore, it is likely that, 

if future projections are not considered, new and existing infrastructure may not be 
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resilient to future climates, making it important to consider climate change impacts in the 

planning and management of wastewater utilities (Vogel et al., 2016).  

Conventionally, studies have investigated the impact of potential changes in rainfall 

patterns on the hydraulic response characteristics of wastewater infrastructure or focused 

on sanitary sewers ( Gooré Bi et al., 2015; Hlodversdottir et al., 2015; Jung et al., 2015; 

Kleidorfer et al., 2009; ; Shakeri et al., 2021). Historically, based on the strong 

relationship between wastewater influent volumes for WWTPs with CSSs and 

precipitation (Saikia et al., 2022), climate change induced precipitation events will also 

likely impact influent volumes in the future in countries which utilise CSS systems. As 

the influent volumes approach the design capacity of the WWTP, there is an increased 

likelihood of occurrences of system failures. However, there has been no research 

focused on future change in precipitation as the climate change variable of interest, to 

evaluate the effects it might have on the evolution of wastewater influent volume 

characteristics at a WWTP scale. In addition to this, all the above-mentioned studies 

considering the future impacts of climate change on the hydraulic response characteristics 

of wastewater infrastructure take into account one case-study at a time. With the latest 

IPCC 6th Assessment Report stating that there is a high confidence that precipitation 

change in future will exhibit substantial regional differences and seasonal contrasts 

(IPCC, 2021), the importance of considering the spatial and temporal scales (Rubio-

Martin et al., 2023) in identifying the differences in the response of WWTPs to future 

climate change scenarios has been ignored.  

In order to fill this gap in literature, this chapter has been built on Chapter 4, by leveraging 

historical analysis of precipitation impacts on wastewater influent volumes of 14 WWTPs 

of varying treatment capacities, connected to CSSs, and spatially distributed across 

Ireland. Having established the models and relationships between precipitation variables 

and wastewater influent volumes at monthly and daily scales, this chapter predicts the 

evolution of wastewater influent volume characteristics in the mid- 21st century (2041 – 

2060) as compared to the current period based on future precipitation projections under 

the two climate change scenarios of RCP 4.5 and RCP 8.5. By focusing at detailed 

WWTP scale, this chapter intends to present the findings as a climate service for 

wastewater utility managers as end-users (Swart et al., 2021), to help them towards better 
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understanding of the problems and challenges that WWTPs are likely to face with the 

changing climate at a regional and local scale, with particular focus on CSSs.    

5.3. Methods 

5.3.1. Impact of projected changes in mean precipitation on influent volumes 

The linear regression models developed in Chapter 4 that described the relationship 

between monthly average daily influent volume and monthly average daily precipitation 

is presented in Equation 5.1:  

 𝑄𝑚 =  𝛽𝐴𝐷𝑃 + 𝑐 + ∈ (Eq. 5.1) 

where, 𝑄𝑚 represents the observed monthly average daily influent volume,  𝛽 is the 

coefficient of the predictor variable 𝐴𝐷𝑃 (monthly average daily precipitation),  𝑐 is the 

intercept and ∈ is the residual.  The projected percentage change in monthly average daily 

precipitation between the current and future time periods, computed on the basis of linear 

interpolation (Chapter 3 Figure 3.9) for emission scenarios RCP 4.5 and RCP 8.5, were 

incorporated into the existing linear regression models (Equation 5.1) for each of the 

WWTPs to give a new projected monthly average daily influent volume 𝑄𝑚,𝑝 for each 

time period based on each emission scenario. The methodology to derive future changes 

in monthly average daily influent volumes as a function of monthly average daily 

precipitation is depicted in Figure 5.1.
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Figure 5.1: Methodology depicting the estimation of projected % change in monthly average daily influent volume based on change in 

monthly average daily precipitation for the 14 WWTPs to 2041 – 2060 
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In order to analyse the variability in the projected influent volume findings, as mentioned 

in Chapter 3 Table 3.3, the 33rd (P33) and 66th (P66) percentile values of the projected % 

change in monthly average daily influent volumes were also estimated using the 

methodology described above and in Figure 5.1.    

The impact of climate change on each WWTP is assessed in terms of the change in the 

reserve capacity of a WWTP. The reserve capacity of a WWTP, was defined as the 

portion of the peak design capacity which is not used under normal circumstances and 

can be affected by climate change induced change in precipitation events (Equation 5.2).  

 𝑅𝐶𝑂,𝑚 =  𝑃𝐷 − 𝑄𝑚 (Eq. 5.2) 

Where 𝑅𝐶𝑂,𝑚 is the observed reserve capacity for the month 𝑚, 𝑃𝐷 is the peak design 

capacity (a fixed value for each WWTP) which is obtained from the Annual 

Environmental Reports (Environmental Protection Agency, Ireland) and 𝑄𝑚  is the 

observed average daily influent volume for month 𝑚 as mentioned in Equation 5.1. If the 

projected climate change impacts upon the calculated influent capacities, resulting in a 

new monthly average daily influent volume (defined as 𝑄𝑚,𝑝), it will alter the observed 

reserve capacity. This % change in reserve capacity under RCP 4.5 and RCP 8.5, is 

expressed as a new metric introduced in this paper which provides an insight into the 

impact of climate change, and can be calculated as (Equation 5.3):   

 % 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
(𝑃𝐷 − 𝑄𝑚,𝑝) − 𝑅𝐶𝑜,𝑚

𝑅𝐶𝑜,𝑚
∗ 100 (Eq. 5.3) 

5.3.2. Impact of high and very high precipitation days on influent volumes 

In order to assess the impact of extreme events on the influent volume response 

characteristics, the projected % change in annual number of days with high (> 20 

mm/day) and very high precipitation (> 30 mm/day) in 2041 – 2060 as compared to 

current period were also computed on the basis of the assumption of linear interpolation 

as shown in Chapter 3 Figure 3.9.  

Using the observed daily influent volume data under high and very high precipitation 

days, the proportion of times a high or very high precipitation day led to influent volumes 
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to the WWTP of greater than 25%, > 50%, > 75% and > 100% of the peak design capacity 

was calculated annually for each of the 14 WWTPs. It is to be noted that the daily influent 

volumes, and thereby the peak design capacities were unique to each of the WWTP 

(Chapter 3 Table 3.2). Hence the nature of response characteristics of the influent 

volumes to the individual precipitation categories were also unique to each of the WWTP.  

It was assumed that for any given rainfall event, the probability of exceedance of any 

given proportion of peak design capacity (e.g., flows > 100% as per above) of each 

WWTP in the future period remains unchanged as compared to current period. Thus, the 

change in the number of incidences of flows exceeding a particular level of design 

capacity, during the future period, would be directly related to the change in the number 

of occurrences in high and very high precipitation days under the RCP 4.5 and RCP 8.5 

scenarios. The methodology for calculating this change is summarised in Figure 5.2. 
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Figure 5.2: Methodology depicting the estimation of mid-century projected annual 

number of occurrences exceeding any given proportion of peak design capacity 

under high and very high precipitation days as compared to current period for each 

of the 14 WWTPs 

In order to highlight the impact of extreme events on the WWTP influent volumes, the 

return period for exceeding 100% of peak design capacities were also estimated for each 

of the WWTP under RCP 4.5 and RCP 8.5. Any difference between the current and the 

future return period of events characterized by exceedance of 100% of the peak design 

capacity would reflect the climate change impact. 

5.4. Results  

This section presents the results depicting the evolution of influent volume characteristics 

across all the 14 WWTPs by 2041 – 2060, due to change in precipitation characteristics 

induced by climate change. Results for both the emission scenarios RCP 4.5 and RCP 8.5 

are demonstrated. In some cases, specific results for individual WWTPs are presented to 

illustrate trends.  



  

155 
 

5.4.1. Response of influent volumes to projected change in monthly mean 

precipitation 

The changes in monthly average daily influent volumes in the future period (2041 – 2060) 

compared to the current period (somewhere between 2005 – 2018 depending on WWTP) 

under RCP 8.5 and RCP 4.5 are summarised in Figure 5.3 and Figure 5.4 respectively. 

The shades in blue denote reductions in influent volume to the WWTP in the future period 

with respect to the current period, green denotes no change in influent volume and the 

shades in orange represent increase in influent volume. During the winter months, the 

high emission RCP 8.5 scenario showed increases in monthly average daily influent 

volumes (due to changes in rainfall) across all WWTPs, ranging from +0.3% to +3%. 

Under RCP 4.5 the monthly average daily influent volume showed mixed trends in winter 

months across the 14 WWTPs, with projected increases in monthly average daily influent 

volumes ranging from +0.2% to +0.6% for 6 WWTPs with the remaining showing 

decreases ranging from -0.9% to -0.2%. It was found that, for the spring months, 13 out 

of the 14 WWTPs showed a decrease in monthly average daily influent volumes, with 

the exception showing an almost negligible increase of +0.1% under both RCPs 8.5 and 

4.5. As seen in Figure 5.3 and Figure 5.4, these decreases are marginal, ranging from -

1% to -0.1% for the 13 WWTPs across the RCP 8.5 and RCP 4.5 scenarios. In the summer 

months, projected decreases in monthly average daily influent volumes across all 

WWTPs under both RCP 8.5 and RCP 4.5, ranged from -3.2% to -0.8% and -2.7% to -

0.5% respectively. During the autumn months under RCP 8.5, the majority of the 

WWTPs (9 out of 14) showed an increase in influent volume (+0.1% to +0.9%), 4 

WWTPs showed negligible decreases ranging from -0.4% to -0.1%, and the remaining 

one showed no change. Under RCP 4.5, a reduction was projected ranging from -1.9% to 

-0.1% across all WWTPs. Overall, the winter months showed the maximum increases 

and summer months showed maximum decreases in the monthly average daily influent 

volumes under both RCP 4.5 and RCP 8.5. 
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Figure 5.3: Projected % change in monthly average daily influent volume as 

compared to current period under RCP 8.5 based on monthly average daily 

precipitation projections (Equation 5.1) 

 

Figure 5.4:  Projected % change in monthly average daily influent volume as 

compared to current period under RCP 4.5 based on monthly average daily 

precipitation (Equation 5.1) 

No spatial trend was apparent with respect to the projected change in influent volumes. 

However, the data used to produce the influent volumes results, i.e., the projected change 

in seasonal mean precipitation, showed a strong spatial trend as demonstrated in Chapter 

3 Figure 3.2. This strong spatial signal did not translate into the influent volumes findings 

due to the following reasons: i) The precipitation projections are obtained at the seasonal 
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scale as opposed to the influent volume projections which are estimated at the monthly 

scale, ii) some of the WWTPs studied in this paper are not precisely located in the areas 

where a strong spatial trend in seasonal mean precipitation is observed, and iii) in addition 

to change in precipitation in future, other variables such as urbanisation and 

demographics which might have an impact on wastewater influent volumes, were not 

considered. The only exceptions were observed under RCP 8.5, when i) WWTP 12, 

located in the southeast of Ireland showed the maximum increase in influent volumes 

during the winter months, coinciding with Winter map shown in Chapter 3 Figure 3.2 b 

and ii) WWTPs 2 (southeast), 7 (midlands), 12 (southeast) and 13 (midlands), which 

showed decreases in the summer months coinciding with the Summer map shown in 

Chapter 3 Figure 3.2 b. 

The 33rd and 66th percentiles of the projected % change in monthly average daily influent 

volume for each of the 14 WWTPs in future period as compared to the current period 

were also reported to help analyse the climate projection related uncertainty associated 

with the future influent volume findings (Figure 5.5 and Figure 5.6). The variability or 

spread in the projected findings was determined by the range between the 33rd and the 

66th percentile values. As observed from Figure 5.5, under RCP 8.5, summer months 

showed the least variability in monthly average daily influent volumes with spread 

(difference between P66 and P33) ranging from 0.6% (WWTPs 5 and 9) to 2.8% (WWTP 

7).  Winter months showed maximum spread in the projected findings ranging from 0.7% 

(WWTP 4) to 4.5% (WWTP 13). The variability in the spring and autumn months was 

observed to lie between the variability in the winter and summer months. This might be 

because extreme events such as storms and dry spells are more likely to occur in winter 

and summer months resulting in increased uncertainty associated with the projected % 

change in monthly average daily influent volumes. Similarly, Figure 5.6 shows the 

variability associated with the influent volume projections under RCP 4.5. Under RCP 

4.5, contrary to RCP 8.5, maximum spread of 4.4% was observed for the spring months 

and minimum spread of 3.1% for autumn months. Variability in the influent volume 

findings of summer and winter months lied between that of spring and autumn months.   
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Figure 5.5: The 33rd and the 66th percentile values of the projected % change in monthly average daily influent volumes based on the 

projected % change in monthly average daily precipitation in 2041 – 2060 as compared to current period across all the 14 WWTPs under 

RCP 8.5 
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Figure 5.6: The 33rd and the 66th percentile values of the projected % change in monthly average daily influent volumes based on the 

projected % change in monthly average daily precipitation in 2041 – 2060 as compared to current period across all the 14 WWTPs under 

RCP 4.5
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From these results, it can be concluded that the influent volume findings are more reliable 

in summer months under RCP 8.5 and in summer and winter months under RCP 4.5. 

However it is to be kept in mind that the uncertainty calculated from the 33rd and the 66th 

percentiles reported in Figure 5.5 and Figure 5.6 is associated with the climate model 

projections used to calculate the influent volume projections. These values do not take 

into account the model errors of the regression equations of each of these WWTPS, where 

the monthly average daily precipitation projections were fed into, to estimate the monthly 

average daily influent volume projections. These model errors of the individual WWTPs 

are provided in Appendix I Table I.7. Thus the calculation of total uncertainty is 

demonstrated with the help of an example.  Under RCP 8.5, the variability in influent 

volume projections for WWTP 1 in the month of January is 1.6% (Refer to Appendix II 

Table II.2). The model error associated with the regression model of WWTP 1 is 11% 

(Refer to Appendix I Table I.7). Therefore the total uncertainty associated with the 

average daily influent volume projection for the month of January under RCP 8.5 is 

12.6%. The full results showing the model errors of the regression equations and the 

range of the projected influent volume findings for all the 14 WWTPs are included in 

Appendix I and Appendix II respectively. 

In addition to the above results, the % change in reserve capacity of these WWTPs was 

estimated from Equation 5.3 for RCP 8.5 and RCP 4.5. Among all the 14 WWTPs, 

influent volumes of WWTP 13 showed to be the most susceptible to the effects of change 

in precipitation in future induced by climate change, with a reduction in reserve capacity 

by and 18.1% under RCP 4.5 108.4% under RCP 8.5 for the month of January. In the 

span of three years of observed data for WWTP 13 from 2016 – 2018 (Chapter 3 Table 

3.2), the observed monthly average daily influent volume in the month of January 

exceeded the peak design capacity for two years in 2016 and in 2018. Hence the plant 

has in recent times being operating a maximum capacity in come more recent years. The 

projected change in reserve capacity was also demonstrated to further reduce in future 

under both the RCP 4.5 and RCP 8.5. Results for all the other WWTPs are presented in 

Appendix II. 
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5.4.2. Response of influent volumes to projected change in number of high and very 

high precipitation days 

Table 5.1 summarises the change in the return period of each WWTP exceeding its peak 

design capacity (PD) due to high or very high rainfall events under RCP 4.5 and RCP 8.5 

(as outlined in Section 5.3.2).  

Table 5.1: Return periods of exceedance of 100% of the peak design capacity under 

high and very high precipitation days 

WWTPs 

High precipitation days Very high precipitation days 

Current 

(years) 

RCP 4.5 

(years) 

RCP 8.5 

(years) 

Current 

(years) 

RCP 4.5 

(years) 

RCP 8.5 

(years) 

WWTP 1 5 4.6 4.4 5 4.2 4.1 

WWTP 2 - - - - - - 

WWTP 3 - - - - - - 

WWTP 4 2.5 2.4 2.35 - - - 

WWTP 5 - - - - - - 

WWTP 6 - - - - - - 

WWTP 7 - - - - - - 

WWTP 8 - - - - - - 

WWTP 9 1.8 1.6 1.6 7 5.74 5.67 

WWTP 10 1 0.97 0.97 4 3.64 3.52 

WWTP 11 1 0.98 0.97 2.5 2.38 2.37 

WWTP 12 0.22 0.21 0.21 0.65 0.61 0.59 

WWTP 13 0.38 0.36 0.34 1 0.87 0.85 

WWTP 14 - - - - - - 

As shown in Table 5.1, the return periods of events exceeding 100% of peak design 

capacity in 2041 under RCPs 4.5 and 8.5 reduced as compared to the current period across 

all 7 of the 14 WWTPs for which the return periods could be computed. For the remaining 

7 WWTPs, there were no observed occurrences of such events in the current period and 

hence projected return periods could not be estimated.  For better illustration of the 
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response of the WWTPs to the projected change in the number of high and very high 

precipitation days, WWTP 11 is elaborated as an example.  

The observed exceedance of 25%, 50%, 75% and 100% of the peak design capacity of 

WWTP 11 under high and very high precipitation conditions is shown in Figure 5.7. 

 

Figure 5.7: Observed probability of exceedance curves showing the likelihood, in 

percentage, of influent volumes exceeding any given proportion of peak design 

capacity under high and very high precipitation days for WWTP 11 

As mentioned in Section 5.3.2, on the basis of the assumption that the probability of 

exceedance (%) under both high and very high precipitation days remains unchanged 

from the current period to future period (2041 – 2060), using the projected % change in 

the number of high and very high precipitation days from current period to 2041 – 2060 

(Figure 5.8), the number of occurrences of events exceeding 25%, 50%, 75% and 100% 

of the peak design capacity for WWTP 11 were estimated as shown below in Table 5.2. 
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Figure 5.8: Projected % change in the annual number of occurrences of a) high precipitation days marked by > 20 mm/day and b) very 

high precipitation days marked by >30 mm/day across all the 14 WWTPs under RCP 4.5 and RCP 8.5
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Table 5.2: Estimation of number of events exceeding any given proportion of peak design capacity of WWTP 11 based on observed 

probability of exceedance and the projected % change in high and very high precipitation days in 2041 – 2060 as compared to current 

period under RCP 4.5 and RCP 8.5 

    > 25% of PD > 50% of PD > 75% of PD > 100% of PD 

Time period Annual 

number of 

occurrences 

Observed 

PoE 

Annual 

no. of 

events 

exceeding 

25% of 

PD 

Observed 

PoE 

Annual 

no. of 

events 

exceeding 

50% of 

PD 

Observed 

PoE 

Annual 

no. of 

events 

exceeding 

75% of 

PD 

Observed 

PoE 

Annual 

no. of 

events 

exceeding 

100% of 

PD 
 

High precipitation days 

Current 5.5 100% 5.5 77% 4.25 41% 2.25 18% 1 

2041 – 2060 

(RCP 4.5)  

5.6 
 

5.6 
 

4.33 
 

2.29 
 

1.02 

2041 – 2060 

(RCP 8.5) 

5.7 
 

5.7 
 

4.4 
 

2.33 
 

1.04 

  Very high precipitation days 

Current 1.4 100% 1.4 86% 1.2 71% 1 29% 0.4 
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2041 – 2060 

(RCP 4.5)  

1.47 
 

1.47 
 

1.26 
 

1.05 
 

0.42 

2041 – 2060 

(RCP 8.5) 

1.48 
 

1.48 
 

1.27 
 

1.06 
 

0.42 

*PD refers to the peak design capacity and PoE refers to Probability of Exceedance  
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This analysis for each of the 14 WWTPs is provided in Appendix II. The results indicate 

that with projected increase in high and very high precipitation days in Ireland, the 

operations and maintenance of WWTPs with CSSs will be challenged as the frequency 

of days exceeding a given proportion of peak design capacity increases under both the 

medium and high emission scenarios RCP 4.5 and RCP 8.5 respectively. It will also 

impact the return period of occurrence of challenging operational events such as 

exceedance of 100% of the peak design capacity. This suggests that WWTP infrastructure 

may need to adapt to handling more intense precipitation to avoid occurrence of 

combined sewer overflows.  

5.5. Conclusions 

Precipitation is one of the strongest variables influencing the response of influent 

volumes, particularly for combined sewerage systems. With climate change, changing 

precipitation patterns, may impact influent volume characteristics and present 

infrastructure operators and designers with new challenges. To date, research studying 

how precipitation changes predicted in climate change models may impact wastewater 

influent volumes of combined sewerage systems is not found. This chapter analyses the 

evolution of wastewater influent volume characteristics in the mid-21st century (2041 – 

2060) as compared to recent data using (i) precipitation projections under two climate 

change scenarios, namely RCP 4.5 and RCP 8.5 and (ii) influent data from 14 WWTPs 

in Ireland.  

The outputs of the analyses show that there is an expected increase in monthly average 

daily influent volumes during autumn and winter months, particularly under RCP 8.5. On 

the other hand, during the spring and summer months, some WWTPs could face 

challenges associated with reduced influent volumes. The research presents a new metric 

to indicate the change in reserve hydraulic capacity of WWTPs from predicted changes 

to precipitation patterns. In this context most of the WWTPs examined, currently have 

sufficient reserve capacity with one being more vulnerable. 

Projected impacts of extreme events such as high and very high precipitation days on the 

influent volumes in relation to the peak design capacities of the WWTPs were also 

quantified. The annual number of occurrences of exceedance of peak daily WWTP 

hydraulic design capacities was projected to increase in future under both RCP 4.5 and 
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RCP 8.5. Overall, this chapter provides an insight into the degree to which the wastewater 

influent volumes might be impacted by precipitation. This research also assists 

wastewater utility managers in making informed decision towards establishing resilient 

wastewater infrastructure under climate change conditions. Promising future research in 

this area could examine additional temporally dynamic parameters such as urbanisation 

and demographics. 
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6. IMPACTS OF URBANISATION ON INFLUENT 

VOLUMES   
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6. Impacts of urbanisation on influent volumes 

6.1. Overview 

This chapter presents a detailed investigation into the impacts of urbanisation and the 

combined impacts of urbanisation and precipitation on wastewater influent volumes. The 

estimation of urbanisation is based on land use land cover (LULC) changes using Remote 

Sensing. This analysis focuses on the agglomerations corresponding to the 14 WWTPs 

with combined collection systems which are discussed in detail in Chapter 4 and 5. 

Section 6.2 outlines a brief introduction on the topic of urbanisation impacts on urban 

water and wastewater management systems. Section 6.3 describes the LULC 

classification techniques adopted in this thesis and the methodology involved in analysing 

the impact of urbanisation on influent volume. Section 6.4 presents detailed results and 

discussion with a focus on case-studies to illustrate key points. The results for all WWTPs 

analysed (and associated images) are included in Appendix III of this thesis.  

6.2. Introduction 

In addition to climate change, rapid growth in urbanisation is a crucial variable affecting 

the hydraulic and hydrologic processes of urban water management systems (Zhou et al., 

2019). In the context of this research, “urbanisation” is defined as the increase in built-

up area. Urban or built-up LULC mainly consists of impermeable surfaces such as 

concrete, asphalt, etc. When the surface area of impervious surfaces increases, in 

conjunction with changes in precipitation variables, such as precipitation intensity and 

frequency, it can change stormwater runoff characteristics (Yao et al., 2016). This 

happens because the degree of contribution of urbanisation to stormwater runoff depends 

on the precipitation intensity, peak location and duration of a rainfall event (Yao et al., 

2016). That is why, in terms of wastewater infrastructure, particularly CSSs, it is crucial 

to understand the dynamics between precipitation, urbanisation and influent volumes, as 

an increase in stormwater runoff can increase the hydraulic loading to WWTPs leading 

to increased release of untreated wastewater into the environment (Kleidorfer et al., 2009; 

Semadeni-Davies et al., 2008). 

Conventionally, as discussed in Chapter 2 Section 2.5.3, studies have extensively 

investigated the impacts of increase in impervious areas on the varied response of 

stormwater runoff characteristics and eventually on the performance of the sewerage 



  

170 
 

systems (Hussain et al., 2022; Kleidorfer et al., 2009; Loperfido et al., 2014; Miller et al., 

2014; Paule-Mercado et al., 2017; Ravagnani et al., 2009; Semadeni-Davies et al., 2008; 

Yao et al., 2016; Zhou et al., 2019). The findings of these studies indicate that, the impact 

of urbanisation on CSSs extend to the WWTPs connected to these networks by default. 

Moreover many studies suggest that newer developments need to consider features such 

as sustainable drainage systems, green blue infrastructure, rainwater storage, low 

development impact techniques and other best management practices that are shown to 

efficiently manage stormwater runoff (Loperfido et al., 2014; Miller et al., 2014; Paule-

Mercado et al., 2017).  However, there is a key gap in understanding the influence of 

urbanisation (and its nature) and precipitation on wastewater influent volumes. Hence, 

this chapter uses LULC change as a measure of urbanisation at a WWTP scale for 14 

agglomerations across Ireland to analyse its impacts individually, and combined with 

precipitation on wastewater influent volumes.  

6.3. LULC classification techniques and association of urbanisation with influent 

volumes 

The data used for this Chapter and the broad methodology was described in Chapter 3 

Section 3.4.3. This section presents a detailed description of the methods adopted to 

estimate urban land cover and analyse the impacts of (a) urbanisation and (ii) the 

combined impacts of precipitation and urbanisation on wastewater influent volumes. 

Landuse land cover changes, for each WWTP, were analysed to align with the years for 

which influent volume data was available for each WWTP (Table 3.2, Chapter 3). The 

LULC classification methodology applied is summarised and described in the sections 

below.
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Figure 6.1: Detailed methodology of LULC classification and LULC change detection in GEE code editor and ArcGIS  
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6.3.1. Selection of Satellite Images 

Initially, for the selection of satellite images for each agglomeration, the time period 

corresponding to each satellite image was identified based on the following criteria: 

1. The time period for the satellite images for each agglomeration should be available 

within the temporal range of influent volume data availability for each corresponding 

WWTP (Table 3.2, Chapter 3).  

2. A minimum of two sampling points (i.e., satellite images) for each agglomeration were 

considered to analyse change in urban patterns. 

3. Changes in urbanisation could be estimated over a minimum 2-year period (e.g., from 

2014 – 2016 but not from 2014 – 2015). For agglomerations with a longer temporal 

range of WWTP influent volume data, the number of sampling points were greater 

than two.  

Once the particular years of interest for each agglomeration was delineated based on the 

above-mentioned criteria, search for the corresponding satellite images was carried out 

in USGS Earth Explorer platform. This was performed keeping in mind the following 

eligibility criteria:     

1. Each scene/ tile of satellite image (Chapter 2 Section 2.5.1.3) should be sufficiently 

clear (i.e., minimal cloud cover), in order to be chosen for further study. Cloud cover 

within the extent of the agglomeration boundary (known as the Area of Interest or the 

AOI) inside each satellite image should be preferably 0%. For example, if a satellite 

image has approximately 10% of cloud cover over some parts or areas, it could still 

be used, provided the AOI within the image is cloud-free. In order to minimise 

misclassification of pixels, this task was performed manually, as any cloud cover or 

cloud shadow could affect the accuracy of classification (Section 6.4.1). An exception 

was made where no cloud-free satellite image was found within the years of 

preference. In that case, ± 1 year was considered to expand the temporal range and 

increase the possibility to find a cloud-free image.  

2. An image was selected such that the AOI was covered completely under one scene of 

satellite image. If the extent of the study area was divided in more than one scene, then 
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another scene consisting of the entire study area extent was considered. This is because 

two different scenes captured on different days would be dissimilar due to several 

external environmental factors such as variation in atmospheric conditions, sun 

reflectance intensity etc. Hence, this step was carried out to ensure that the spectral 

signature of the ground features was uniform, which is an important consideration 

during the image classification process. 

Based on all the above-mentioned criteria, either Landsat 5 (1984 – 2012) or Landsat 8 

(2013 – Present) (Chapter 2 Section 2.5.1.3 and Chapter 3 Section 3.2.3.1) satellite 

images were selected. For example, for the agglomeration with WWTP 2, for which 

influent volume data was available for the period 2005 – 2018 (Table 3.2, Chapter 3), 4 

satellite images were selected in order to analyse the change in urbanisation patterns. 

These images were spaced at different intervals from 3 years to 5 years in 2006, 2011, 

2015 and 2018, based on all the criteria previously described. While Landsat 5 images 

were selected for 2006 and 2011, Landsat 8 images were selected for 2015 and 2018. On 

the contrary for WWTP 5, for which influent volume data was available from 2014 – 

2018, Landsat 8 satellite images at 2-year intervals from 2014, 2016 & 2018 were 

selected. For all the remaining WWTPs, a similar exercise was carried out with a 

minimum of 2-year interval between consecutive images.   

6.3.2. Classification of satellite images using Google Earth Engine Code Editor 

The script for LULC classification was developed within the code editor section in the 

Google Earth Engine (GEE) code editor platform. The script was developed with the help 

of online tutorials and Google repositories and is presented in Appendix III. 

6.3.2.1. Defining the study area extent 

Using GEE code editor, a geometric layer (polygon type) of rectangular shape was 

created with the variable name ROI (Region of Interest) that was specified by the 

coordinates of its boundary. The ROI is defined with a buffer of approximately 5 km 

around the agglomeration boundary (thus the agglomeration boundary is within the ROI 

boundary). The purpose of defining this layer was to aid in loading the portion of the 

satellite imagery that corresponds to the specific study area extent in the Map section 

(Refer to Figure 3.7 in Chapter 3 Section 3.2.3.1), of the GEE code editor platform. This 

ensured that the classification was carried out within the ROI boundary (rather than for 
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the whole image) and reduced algorithm processing time by focusing on the area within 

the coordinates specified in the script. 

6.3.2.2. Loading the satellite image 

The next part of the script was used to load the satellite image within the ROI into the 

Map section of the GEE code editor. In order to execute this step, the date that was 

identified in Section 6.3.1 was incorporated to filter that specific image from the 

repository of the LANDSAT 5/8 collection of images as shown in Figure 6.2. 

 

Figure 6.2: Code using JavaScript in GEE code editor for displaying satellite 

imagery 

For better visual interpretation, the satellite image was loaded in False Colour Composite 

(FCC) (Refer to Figure 2.11, Chapter 2 Section 2.5.1.3) using the function 

‘map.addlayer’. All the bands for the satellite image (LANDSAT 5/8), that are required 

to carry out LULC classification, were stored in the variable s2_bands.   

6.3.2.3. Creating and training the classes 

For the purpose of this research, four types of feature classes (Chapter 2, Section 2.5.2) 

were created, i.e., built-up, water, green cover and open spaces (Table 6.1). 
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Table 6.1: The geographical features based on which LULC classes were assigned 

Classes On-ground geographical features Colour 

Built-up Rooftops, house, carparks, roads Red 

Water River bodies, estuaries, ponds etc. Blue 

Green cover Agricultural vegetation, forests, land with bushes/trees etc. Green 

Open spaces 
Open land such as football grounds, public open spaces, 

barren land, marshland, wetlands, sediments, sand etc. 
Brown 

Training samples for each feature class were created to train the satellite image. All the 

samples were created based on the following image interpretation techniques (Table 6.2). 

Table 6.2: Colour Signature of different geographical features in Standard FCC18 

S. No. Earth Surface Feature Colour (In Standard FCC) 

1 Built-up area  

  

  

High density 

Low density 

Dark blue to bluish green 

Light blue 

2 Water   

  

  

Clear water 

Turbid waterbody 

Dark blue to black 

Light blue 

3 Green cover   

  

  

  

  

  

Evergreen forests 

Deciduous forests 

Scrubs 

Cropped land 

Fallow land 

Red to magenta 

Brown to red 

Light brown with red patches 

Bright red 

Light blue to white 

4 Open spaces   

  

  

  

  

Rock outcrops 

Sandy deserts/River sand/Salt affected 

Deep ravines 

Shallow ravines 

Light brown 

Light blue to white 

Dark green 

Light green 

 
18 Introduction to Remote Sensing, Chapter 7, (https://ncert.nic.in/textbook/pdf/kegy307.pdf) (Accessed in June, 

2022) 

https://ncert.nic.in/textbook/pdf/kegy307.pdf
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  Wetlands Motelled black 

Based on supervised classification method (Refer to Chapter 2, Section 2.5.2.2), around 

50 – 150 samples were selected for each class to capture the different spectral signatures 

across all the pixels belonging to each class. The selection of the amount of samples for 

each class depends on the type of class. For example, because water is a fairly 

homogeneous landuse class, lesser number of samples are taken. In case the water is 

turbid or has sediments in it, the reflection of such pixels vary from a pure water pixel. 

But since both the turbid or pure water pixels belong to the water body, samples from 

each type of these pixels are taken if present. On the contrary, for a class such as built-

up, different kinds of features (roads, roofs, parking spaces) might have different 

reflectance values of pixels. In such a scenario, care must be taken that samples from 

each and every type of pixel is taken and allocated to the built-up class. Therefore, 

training samples for built-up class were greater than that of water. 

 

Figure 6.3: The point training samples for one agglomeration 

Training samples were unique to each agglomeration. For example, as shown in the 

“Geometry Imports” in Figure 6.3 above, this particular agglomeration did not have any 

water body within the limits of the ROI boundary. Hence no training samples for water 

class were provided for this agglomeration. Similarly, in some cases, two or more classes 

were created to represent the same geographical feature. In the Figure 6.3, “Green” and 

“Forest”, both represent green cover, but while selecting the training samples, agricultural 

vegetation was assigned to class “Green” and larger tree covers were assigned to class 
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“Forest”. These would be later reclassified into one class during the post-processing stage 

as discussed in Section 6.3.4. 

6.3.2.4. Classification algorithm 

After the training samples were created, these were then overlaid on the satellite image. 

A random forest classifier (Chapter 3, Section 3.4.3) was used to classify the satellite 

image into different classes based on these training samples. Based on the optimum 

number of decision trees – generally shown to range from 64 to 128, and the number of 

training samples, 100 decision trees were used in the classifier (Oshiro et al., 2012).  

Finally, a classified image was generated and added to the GEE code editor. 

6.3.3. Validation of the classified images: 

The objective of accuracy assessment was to evaluate the accuracy with which the pixels 

were classified into each of the appropriate land cover classes. Accuracy assessment was 

carried out initially using two methods for one agglomeration as a pilot study. This was 

performed to check which method would provide better accuracy. In the first method, for 

one pilot case-study (agglomeration), validation of the classified satellite image was 

carried out in GEE code editor. Before executing the code, the same feature classes, i.e., 

built-up, green cover, water and open spaces, had to be created again. New sampling 

points had to be manually created for each class which was time consuming. Moreover, 

manual selection of sampling points could be biased which could overestimate the 

accuracy. Given these disadvantages, this method was not executed on the remaining 

agglomerations. In the second method 40 – 50 samples were generated randomly for each 

class on the classified image in ArcGIS. In total, for the four different classes, 160 

samples for each satellite image were generated. These points were then imported into 

the Google Earth Pro platform and manually checked and validated against the images in 

those respective years since they are of higher quality as compared to the original satellite 

image used for classification (Figure 6.4). In case a particular satellite image of interest 

is not available in Google Earth Pro, the original satellite image was used as the reference. 
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Figure 6.4: a) Google Earth Pro Satellite image 2010, b) Landsat 5 Image 2010 True 

Colour Composite (TCC), c) Landsat 5 Image 2010 False Colour Composite (FCC) 

At this stage, two types of accuracy measures were computed using a confusion or error 

matrix; the user and producer accuracies (Equation 6.1 and 6.2). User accuracy is the 

measure of the pixels that are incorrectly classified and is also known as the Type I error 

or the error of commission (Eq. 6.1). Producer accuracy is the measure of pixels that are 

omitted from the correct class and also known as the Type II error or the error of omission 

(Eq. 6.2). These two errors provide an accuracy assessment of each class individually. 

 𝑈𝑠𝑒𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 
𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 
𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠

∗ 100 (Eq. 6.1) 

 

 

 

a) b) 

c) 
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𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%)

=

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠
 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠
 𝑡ℎ𝑒 𝑘𝑛𝑜𝑤𝑛 𝑐𝑙𝑎𝑠𝑠

∗ 100 

(Eq. 6.2) 

 

The quality of the classified image was then assessed by calculating the overall accuracy 

as per Equation 6.3 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%)

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
∗ 100 

(Eq. 6.3) 

The classified images were finally exported in TIFF format with the condition that the 

overall accuracy of the classified images was ≥ 80% which can be considered as a 

successful accuracy for random forest classifier (Matarira et al., 2022). If the accuracy 

was below this threshold, resampling of training sets of each class was carried out to 

ensure higher accuracy on the next run.  

6.3.4. Post processing 

After the required overall accuracy was achieved, all the classified images were imported 

into ArcGIS platform. This comprised 39 images in total across 14 WWTPs. The 4 

classes were then reduced to 2 classes using the Reclassify tool (under Spatial Analyst 

Tool) in ArcToolbox – (i) Built-up and (ii) Other. The class “Other” included all the 

classes initially assigned in GEE code editor except built-up class. This was performed 

because urbanisation demonstrated by the change in built-up area (impervious surfaces) 

over the years was the primary focus of this Chapter. All the classified images from the 

different years were then overlaid on one another to analyse the change in urban land 

cover over the period of time. The reclassified images (originally set to the extent of the 

ROI) were eventually clipped according to the agglomeration boundary of each of the 14 

WWTPs. The clipped reclassified images were converted to vector (shapefile) format. 
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Finally, the surface areas of the vector classes: “Built-up” and “Other”, were calculated 

using the Calculate Geometry Tool.   

6.3.5. Analysis of impacts of change in urban areas on wastewater influent volumes 

The change in built-up area was estimated by comparing an image for a specific 

agglomeration to the previous image (e.g., if an agglomeration had images for 2014, 2016 

and 2018 – the change in built-up area between 2014 and 2016 was measured, similarly 

for 2016 and 2018 etc.) and was analysed in three different ways as follows: 

1. Percentage change in built-up area as shown in Equation 6.4 

 𝐵𝑈𝑡% =  
𝐵𝑈𝑡𝑠 − 𝐵𝑈𝑡𝑝

𝐵𝑈𝑡𝑝
∗ 100 (Eq. 6.4) 

where, 𝑩𝑼𝒕% refers to the percentage change in built-up area over a particular time 

interval 𝒕 specific to each agglomeration; 𝑩𝑼𝒕𝒔 and 𝑩𝑼𝒕𝒑 refers to the built-up area of 

the subsequent year 𝒕𝒔 and the antecedent year 𝒕𝒑 respectively. 

2. Change in the ratio of the built-up area to total agglomeration area as shown in 

Equation 6.5 

 𝐵𝑈𝑡𝐴% =
𝐵𝑈𝑡𝑠 − 𝐵𝑈𝑡𝑝

𝐴
∗ 100 (Eq. 6.5) 

where, 𝑩𝑼𝒕𝑨% represents the percentage change in built-up area to total agglomeration 

area in time interval 𝒕, 𝑩𝑼𝒕𝒔 and 𝑩𝑼𝒕𝒑 represent the same variables as in Equation 6.4 

and 𝑨 is the total agglomeration area which is constant over the years. 

3. Rate of urbanisation as shown in Equation 6.6 

 
𝐵𝑈𝑡𝑅% =

𝐵𝑈𝑡𝑓 −  𝐵𝑈𝑡𝑖

𝐵𝑈𝑡𝑖
∗ 100

𝑡𝑓 − 𝑡𝑖
 

(Eq. 6.6) 
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where, 𝑩𝑼𝒕𝒇 is the built-up area in the final year 𝑡𝑓, 𝑩𝑼𝒕𝒊 is the built-up area in the 

initial/first year 𝑡𝑖 and 𝑩𝑼𝒕𝑹% is the average annual rate of change in built-up or the rate 

of urbanisation/year during the monitoring period.  

Since the 14 agglomerations considered vary with respect to i) the size of their surface 

area and ii) the temporal range of data availability; all the built-up variables in the three 

equations mentioned above are expressed as percentages for standardisation purpose. 

Finally, the response of influent volumes to 𝑩𝑼𝒕%,  𝑩𝑼𝒕𝑨% and 𝑩𝑼𝒕𝑹% individually 

and combined with the % change in precipitation (for  𝑩𝑼𝒕% and 𝑩𝑼𝒕𝑨%) and rate of 

change in average annual precipitation (for 𝑩𝑼𝒕𝑹%) was assessed by linear regression 

analysis in R and visual interpretation.  

6.4. Results and Discussion 

This section presents the results of the different stages of LULC classification and the 

results of analysing the relationship between the built-up variables with and without the 

precipitation variable and influent volume. Results are demonstrated with examples of 

agglomerations and WWTPs.  

6.4.1. Results for LULC classification  

After accounting for cloud cover and other criteria outlined in Section 6.3.1, between 2 

and 4 images were found to be suitable for each agglomeration. The final classified 

images after multiple runs of resampling and classification algorithm for the different 

years for agglomeration A4 are demonstrated in Figure 6.5 as an example.  



  

182 
 

 

Figure 6.5: LULC classified images set to the ROI boundary in GEE code editor for 

agglomeration A4 for the years a) 2010 (LANDSAT 5), b) 2015 (LANDSAT 8) and 

c) 2018 (LANDSAT 8) 

As mentioned in Section 6.3.3, accuracy assessment in ArcGIS with the help of random 

sampling eliminated the possibilities of any bias induced by the user and therefore, was 

found to be a better technique in validating the classified images. The user and producer 

accuracies of each of the class for agglomeration A4 is shown in Table 6.3. 
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Table 6.3: Error matrix of the classified images for agglomeration A4 

2010 

Class Built-up Water 
Green 

cover 

Open 

Spaces 
Total 

User 

Accuracy 

Built-up 35 1 2 2 40 87.5% 

Water 0 33 2 5 40 82.5% 

Green cover 1 0 37 2 40 92.5% 

Open spaces 0 3 2 35 40 87.5%  

Total 36 37 43 44 160 
 

Producer 

accuracy 
97.2% 89.2% 86.0% 79.5% 

    

2015 

Class Built-up Water 
Green 

cover 

Open 

Spaces 
Total 

User 

Accuracy 

Built-up 34 1 4 1 40 85.0% 

Water 0 34 0 6 40 85.0% 

Green cover 1 0 39 0 40 97.5% 

Open spaces 0 3 1 36 40 90.0% 

Total 35 38 44 43 160 
 

Producer 

accuracy 
97.1% 89.5% 88.6% 83.7% 

    

2018 

Class Built-up Water 
Green 

cover 

Open 

Spaces 
Total 

User 

Accuracy 

Built-up 33 0 5 2 40 82.5% 

Water 0 34 0 6 40 85.0% 

Green cover 2 0 38 0 40 95.0% 

Open spaces 0 1 0 39 40 97.5% 

Total 35 35 43 47 160 
 

Producer 

accuracy 
94.3% 97.1% 88.4% 83.0% 
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Each column of this table refers to the total number of samples classified under each 

LULC class. Each row refers to the total number of reference samples. For example, for 

the year 2010, a total of 36 samples were classified as built-up out of a total of 40 

reference built-up training samples. Out of the 36 classified built-up samples, 35 were 

correctly classified, 1 sample which was green cover was incorrectly classified as built-

up. Therefore, the producer accuracy for built-up as per Equation 6.2 is the ratio of 35 to 

36 multiplied by 100, which equates to 97.2%. On the other hand, as we go across the 

row, for the year 2010, it was observed that, out of 40 reference samples of built-up, 35 

were correctly classified, 1 was classified as water, 2 were classified as green cover and 

2 were classified as open spaces. As per Equation 6.3, the user accuracy for built-up is 

the ratio of 35 to 40 multiplied by 100, which equates to 87.5%. Similarly, producer and 

user accuracies of each of the LULC class for each year are shown in Table 6.3. The 

overall accuracies as per Equation 6.4, for each of the 14 agglomerations were found to 

be greater than 80% (Table 6.4).  
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Table 6.4: Overall accuracy of all agglomeration as per Equation 6.3 

Agglomeration Year of the classified image Overall accuracy 

A1 

  

  

2014 

2016 

2018 

86.6% 

87.0% 

85.5% 

A2 

  

  

  

2006 

2011 

2015 

2018 

81.2% 

83.7% 

84.4% 

86.2% 

A3 

  

  

2011 

2015 

2018 

90.1% 

90.1% 

91.6% 

A4 

  

  

2010 

2015 

2018 

87.5% 

89.3% 

90.0% 

A5 

  

  

2014 

2016 

2018 

89.2% 

90.0% 

91.7% 

A6 

  

2015 

2018 

85.0% 

83.1% 

A7 

  

  

2014 

2016 

2018 

89.5% 

84.0% 

89.0% 

A8 

  

  

2011 

2015 

2018 

82.5% 

84.2% 

84.2% 

A9 

  

  

2011 

2015 

2018 

91.0% 

90.0% 

89.0% 

A10 

  

2015 

2018 

86.9% 

86.2% 

A11 

  

2015 

2018 

86.9% 

86.2% 
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A12 

  

  

2010 

2015 

2018 

88.8% 

91.8% 

86.2% 

A13 

  

2016 

2018 

82.0% 

85.0% 

A14 

  

  

2014 

2016 

2018 

83.0% 

84.0% 

81.0% 

 

The accuracy of the classified images is impacted by the presence of mixed pixels on 

ground characterised by two or more LULC types. Such pixels are difficult to classify, 

particularly in moderate resolution LANDSAT images of 30 m x 30 m pixel sizes. 

Moreover, built-up pixels and pixels of sediments or sand particles have similar 

reflectance values. In case of agglomeration A4, the open spaces include sediments as 

shown in Figure 6.5. As a result, they are interchangeably misclassified by the algorithm. 

This is the most common reason why misclassification occurred during the LULC 

classification process in this research. There are also certain errors inherently present in 

the imagery that are caused due to factors such as technical errors while capturing the 

image, atmospheric conditions etc., that are beyond the control of the user. The classified 

image with the ROI boundary overlaid with the agglomeration boundary is shown in 

Figure 6.6. 
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Figure 6.6: a) Classified image set to ROI with overlaid agglomeration boundary of 

A4 and b) Classified image clipped to agglomeration boundary of A4 

Finally, the vector shapefiles of the reclassified images clipped to the agglomeration 

boundaries in ArcGIS for all the agglomerations were created as demonstrated by an 

example in Figure 6.7. 
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Figure 6.7: Reclassified vector shapefiles of agglomeration A4 into built-up areas 

represented by red, and other landuse areas represented by yellow for a) 2010, b) 

2015 and c) 2018 

6.4.2. Built-up Cover Change detection 

The surface area of built-up class increased across all the time intervals for each of the 

agglomerations (Appendix III). An example of the change in built-up area from 2014 to 

2018 in a 2-year interval period is shown in Table 6.5. 
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Table 6.5: Estimation of change in built-up area for agglomeration A4 (example) 

over 2010 – 2018 

Year Area in sq. m Time interval % Change in built-up area 

2010 4161552         - - 

2015 4777729 2010 – 2015 14.80% 

2018 5215966 2015 - 2018 9.20% 

As shown in Table 6.5, in agglomeration A4, urban area increased from 2010 to 2015 by 

14.8% and from 2015 – 2018 by 9.2%.  

6.4.3. Comparative response of influent volumes to urbanisation and change in 

precipitation  

Out of the three urbanisation variables, i.e., % change in built-up area (𝑩𝑼𝒕%), % change 

in the built-up to agglomeration area (𝑩𝑼𝒕𝑨%) and rate of urbanisation/year (𝑩𝑼𝒕𝑹%),  

𝑩𝑼𝒕𝑨% was found to be a statistically significant variable at a 95% level of confidence, 

in helping explain changes in influent volume over each interval period across all 

agglomerations. This variable estimated the change in built-up area in each 

agglomeration relative to its agglomeration area and thereby, provided a greater degree 

of insight into the changes in influent volume contributed by the existing urban to non-

urban area ratio within each agglomeration. This might be the reason why R2 value was 

the highest (R2 = 0.17 showing a moderate degree of correlation as per Table 4.2, Chapter 

4) for 𝑩𝑼𝒕𝑨% (Table 6.6).  On the contrary, 𝑩𝑼𝒕% for each agglomeration indicates just 

the absolute value of the change in built-up area but does not account for the degree to 

which urbanisation occurred relative to total agglomeration area and hence showed a 

lower R2 value with influent volumes. The difference in outcomes between 𝑩𝑼𝒕% and 

𝑩𝑼𝒕𝑨% can be explained with the help of an example. Let us suppose agglomeration AX 

has a total surface area of 500 m2 and initial built-up area of 100 m2 and agglomeration 

AY has a total surface area of 5000 m2 with an initial built-up area of 500 m2. As per 

Equation 6.4, a 50% increase in built-up area (𝑩𝑼𝒕%) would mean that the built-up 

increased from 100 m2 to 150 m2 for agglomeration AX and from 500 m2 to 750 m2 for 

agglomeration AY. However, since AY is ten times greater in size than AX, a 50% 

increase in built-up area in AY (250 m2 increase out of 5000 m2 agglomeration area) will 

not have a significant impact on influent volumes as compared to a 50% increase in built-
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up area in AX (50 m2 increase out of 500 m2 agglomeration area) which is much smaller 

in size. As per Equation 6.5, when the surface area of each agglomeration is accounted 

for,  𝑩𝑼𝒕𝑨% can be computed to be 10% and 5% respectively for agglomerations AX and 

AY. Hence, 𝑩𝑼𝒕𝑨% makes more sense while considering all the agglomerations together 

as the consequences of the same value for 𝑩𝑼𝒕% for two agglomerations might vary if 

the agglomerations differ in size. This result implies that influent volumes are affected 

by the degree of urbanisation relative to total space in each agglomeration, rather than 

urbanisation itself.   

On the other hand, 𝐵𝑈𝑡𝑅% accounts for the difference in the temporal range of data 

availability across the 14 agglomerations. However, R2 between 𝐵𝑈𝑡𝑅%  and rate of 

change of influent volume was the lowest. This might be because rate of 

urbanisation/year is small and hence, insignificant in contributing towards influent 

volumes. New urban developments over the years might be connected to sanitary sewers 

which will not contribute to influent volumes resulting in dissociation of urbanisation and 

influent volumes.  Moreover, 𝐵𝑈𝑡𝑅% does not consider the relative changes in built-up 

area to other LULC types over the years within each agglomeration area which might 

have a higher degree of influence on influent volumes as indicated by 𝑩𝑼𝒕𝑨%.  

Table 6.6: R2 values of change in influent volume v/s change in built-up area and 

precipitation 

Variables R2/ Adjusted-R2  p-value 

𝑩𝑼𝒕% v/s % change in influent volume 0.04 0.3348 

𝑩𝑼𝒕𝑨%* v/s % change in influent volume 0.17 0.0432 

𝑩𝑼𝒕𝑹% v/s rate of change (%) of influent 

volume 

0.03 0.3012 

% change in precipitation* v/s % change in 

influent volume 

0.30 0.0060 

rate of change in precipitation* (%) v/s rate of 

change of influent volume 

0.49 0.0063 

𝑩𝑼𝒕% and % change in precipitation* v/s % 

change in influent volume 

0.23 0.0114 
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𝑩𝑼𝒕𝑨% and % change in precipitation* v/s % 

change in influent volume 

0.28 0.0126 

𝑩𝑼𝒕𝑹% and rate of change in precipitation* (%) 

v/s rate of change of influent volume 

0.48 0.0047 

Adjusted- R2 is only reported for the multiple 

linear regression model results 

  

Precipitation was found to be statistically significant throughout all the results. In all the 

cases the predictor variables were positively correlated with influent volume (intercept 

was negative across all the models). The model errors and RMSEs of all the regression 

models indicated that their predictive powers were low. When both urbanisation and 

precipitation variables were considered, the adjusted-R2 (which compensates for the 

overestimation of the goodness-of-fit of the model) decreased as compared to R2 when 

precipitation was considered alone. This is because urbanisation is only slightly 

correlated to influent volumes as compared to precipitation and including urbanisation in 

the multiple linear regression model does not necessarily improve the model fit. This 

indicates that precipitation is a stronger contributor to influent volumes as compared to 

urbanisation.  

Generally, the expected response to increase in impervious surfaces is also amplified 

influent volumes due to the increase in stormwater runoff as evident from the numerous 

studies discussed in the literature review. Despite the marginal impact of urbanisation on 

influent volumes, as observed from the regression analysis results, a number of case-

specific examples are highlighted in more detail below (Figure 6.8, Figure 6.9 and Figure 

6.10).  
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Figure 6.8: Percentage change (y-axis) in precipitation (grey bars), built-up area (orange bars) and influent volume (blue bars) over 

the different time periods (x-axis) particular to each agglomeration 
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Figure 6.9: Percentage change (y-axis) in precipitation (grey bars), built-up are with respect to agglomeration area (yellow bars) and 

influent volume (blue bars) over the different time periods (x-axis) particular to each agglomeration 
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Figure 6.10: Rate of change (%) in precipitation/year (grey bars), built-up area/year 

(orange bars) and influent volume/year (blue bars) across all agglomerations 

There were four different outcomes of influent volumes observed from Figure 6.8, Figure 

6.9 and Figure 6.10 which were triggered by both the change in  built-up variable and 

change in precipitation: i) increase in built-up area and precipitation leading to increase 

in influent volume, ii) increase in built-up area and precipitation leading to decrease in 

influent volume, iii) increase in built-up area and  decrease in precipitation leading to 

increase in influent volumes and iv) increase in built-up and decrease in precipitation 

leading to decrease in influent volumes. For the purpose of comparison of these mixed 

trends (different hydraulic response characteristics), the results for agglomerations A1, 

A2, A4, and A14 in Figure 6.8 are discussed in detail. 

For agglomeration A1, during the time period 2014 – 2016, there was a reduction in the 

precipitation amount by more than 20% accompanied by an increase in built-up area by 

10%. It was observed that the influent volumes decreased by around 1%. The slight 

change in influent volume may reflect the reduced precipitation which off-sets the 

increase in built-up area in agglomeration A1. However, during 2016 – 2018, both built-

up area and precipitation increased by 3 – 4% but influent volume declined by 5%. The 

reason for this outcome might be because the increase in built-up area and precipitation 

was marginal and some other factors such as soil moisture deficit, evapotranspiration rate 

etc. might play a bigger role which are not analysed. In addition to that, there might be 

the occurrence of possible overflows in the sewer network which might mask the influent 

volume increases (if any) during this period. For example, there was one incident in 
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agglomeration A1 in 2017 when surcharge of the sewer network resulted in spillage of 

wastewater onto the road (Annual Environmental Report for agglomeration A1, EPA 

Ireland, 2017). This factor could also be the reason why, during 2011 – 2015 for 

agglomeration A2, when there was a significant increase in precipitation amount by 

around 50% and built-up area by just more than 10%, influent volumes increased by only 

8% which was relatively low. Agglomeration A2 also had a number of overflow events 

during this period which might have resulted from hydraulic overloading of the sewer 

network (Annual Environmental Report for agglomeration A2, EPA Ireland, 2015).  

Agglomeration A4 showed an increase in precipitation by around 40% and increase in 

built-up area by approximately 12% during the period 2010 – 2015. Influent volume 

increased by around 40% during the same period. The significantly high percentage 

change in influent volume could be the combined effects of precipitation and 

urbanisation, but based on the results above, mostly due to precipitation. In case of 

agglomeration A14, for all the time periods (2014 – 2016 and 2016 – 2018), there was 

reduction in precipitation, although the built-up cover increased. Influent volumes were 

observed to decrease during both the periods. These results indicate that, out of the two 

predictor variables, precipitation was a stronger contributing factor towards variation in 

influent volumes. Lastly, there have been recent changes to storm water management in 

Ireland. New developments are required to have separate storm drainage systems which 

might result in reduced stormwater ingress at the inlets of the WWTPs (Irish Water, 

2020). These developments might have already taken place in many agglomerations 

across Ireland  which could be an explanation for the disasscociation of impervious areas 

with influent volumes. Moreover, these newer developments might have taken into 

consideration low impact developments such sustainable drainage systems, green blue 

infrastructure, rainwater storage etc. and might have adopted best management practices. 

The different outcomes in the relationship between urbanisation, precipitation and 

influent volumes across the different agglomerations highlight individual characteristics 

and scenarios specific to each agglomeration. 

Overall, the marginal impact of urbanisation on the influent volumes across all the 

agglomerations considered in this thesis might be attributed to additional factors such as 

soil moisture deficit and evapotranspiration rates. In Ireland, the soil moisture deficit in 

the east (e.g., Dublin Airport) is generally lower than in the west (e.g. Valentia) (Allen et 
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al., 1998; Schulte et al., 2005; Garcia et al., 2022).  According to EPA, the average annual 

mean soil moisture deficit (1981 – 2016) for poorly drained soil ranges from -5 mm to 

+15 mm from west to east (Werner et al., 2016). The same report states that actual 

evapotranspiration is highest along the western coast of Ireland. Depending on the soil 

type, poorly, moderately or well-drained soil types, evapotranspiration rate, and soil 

moisture deficit, the runoff might be impacted, which will eventually impact influent 

volumes. For example for a highly saturated soil and high water table, depending on the 

season of the year, urbanisation might not have as much effect on runoff due to lower 

percolation of water into the sub-surface layers of the soil (Zope et al., 2016). 

6.5. Conclusions 

This Chapter conducted a comprehensive investigation of the possible impacts of 

urbanisation on wastewater treatment plants. This analysis was enhanced by the inclusion 

of change in precipitation as one of the additional variables to explain the variation in 

influent volume. LULC classification of remotely sensed satellite images was carried out 

using coding in JavaScript programmimg languange in Google Earth Engine Code Editor. 

Accuracy assessment showed more than 80% accuracy for all the classfied images. 

Although this platform has been used for LULC change detection in various studies, it 

has been used in a study of WWTP influent volumes for the first time in this thesis.  

Trend analysis of LULC change in the 14 agglomerations and their corresponding 

influent volumes of the 14 WWTPs was carried out. The results indicated that, in order 

to detect the trend in influent volumes, the % change of built-up area relative to 

agglomeration area was a stronger indicator as compared to the percentage change in 

built-up area and the rate of urbanisation/year. Precipitation change was found to be 

statistically significant and the stronger contributor to influent volumes as compared to 

urbanisation. Additional factors that were identified as potential influencers contributing 

towards variation in influent volumes are lag-time, hydraulic overloading and overflow 

of untreated wastewater, developments of sewer networks etc., that might have led to the 

dissociation of stormwater runoff (from impervious areas) and influent volumes. As the 

findings could not fully demonstrate the impacts of urbanisation on influent volumes, 

additional parameters such as soil moisture deficit and evapotranspiration data, will aid 

in further understanding the response characteristics of WWTP influent volumes 

connected with combined collection systems. Information about wastewater networks, 
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connections, pipelines etc. can be promising in terms of improving the understanding of 

urbanisation impacts on WWTPs.  
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7. CONCLUSIONS AND RECOMMENDATIONS   
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7. Conclusions and recommendations 

7.1. Overview 

The operations of wastewater treatment plants (WWTPs), particularly ones connected to 

combined sewerage systems, can often encounter challenges such as hydraulic 

overloading and combined sewer overflows. In the case of hydraulic overloading, the 

WWTP can no longer treat the incoming wastewater effectively. On days with heavy 

precipitation intensity, combined sewer overflows can result in untreated wastewater 

being released into the environment leading to serious pollution. With factors such as 

climate change (current and future) and urbanisation, the frequency of occurrence of such 

events may be amplified. As stricter environmental regulations towards releasing of 

treated and untreated wastewater are enforced to protect the receiving waters, it has 

become increasingly important to identify crucial variables that impact the maintenance 

and operations of WWTPs. A critical parameter to consider is influent volume at the inlet 

of a WWTP. Due to factors downstream of the CSO during and after skills, there is still 

variations in the wastewater inflow which is accounted for in influent volumes. Therefore 

influent volumes have a significant impact on subsequent WWTP processes, and their 

management can prevent occurrences of overflows. Given WWTPs can have a design 

life of between 20 and 50 years projecting future influent volumes is key to both efficient 

design and operation of such facilities. 

In this research, the importance of influent volumes has been thoroughly established. An 

extensive temporal range of precipitation and influent volume data were obtained for 14 

WWTPs (population equivalents ranging from 3,000 to 1,640,000), spatially distributed 

across Ireland. The data was analysed to determine the impacts of precipitation on 

influent wastewater volumes. In addition to this, out of the 14 WWTPs, location-specific 

information such as daily maximum tidal level and daily mean river level were collected 

for WWTPs located near coasts or rivers, respectively. The relationships between these 

variables and influent volumes were explored. Future high-resolution regional climate 

model projections of precipitation variables under RCP 4.5 and RCP 8.5 emission 

scenarios were obtained for each of the 14 WWTPs to project the evolution of influent 

volumes, based on the predicted changes in precipitation to mid-century. Lastly, Landsat 

satellite images for each of the 14 agglomerations corresponding to each WWTP were 

also obtained to analyse how urbanisation might impact wastewater influent volumes.  
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7.2. Conclusions 

The main conclusions of this research are as follows: 

• Regression analyses revealed that local daily precipitation, and daily mean river 

level, when considered separately, were statistically significant at a 95% level of 

confidence in explaining some of the variation in influent volumes at a daily scale 

for each of the 14 WWTPs. R2 values between daily precipitation and daily 

influent volume ranged from very low to marked correlation (R2 = 0.03 – 0.38). 

Seven out of the 14 WWTPs showed better correlation between daily precipitation 

and 1-day lagged influent volumes, when compared with 0-day lag. River level 

and influent volume showed marked to high degrees of correlation (R2 = 0.49 – 

0.61) for the 3 WWTPs with local rivers. Daily maximum tidal level was found 

to be a significant variable in relation to dry weather flow for treatment plants 

close to the sea.  

• On a monthly basis, for each of the 14 WWTPs individually, monthly average 

daily precipitation, number of wet days in a month and number of zero rainfall 

days in a month were found to be statistically significant contributors at a 95% 

level of confidence, when considered separately. Moderate to high degrees of 

correlation were observed between each of the predictor variables individually 

(R2 = 0.26 – 0.84 for monthly average daily precipitation and R2 = 0.20 – 0.56 for 

number of zero rainfall days in a month) with monthly average daily influent 

volumes. When considered together, monthly average daily precipitation and 

number of zero rainfall days were statistically significant. However, monthly 

average daily precipitation was found to be the stronger contributor towards 

influent volumes. 

• A novel pooled model across all the 14 WWTPs linking the monthly average daily 

influent volume to monthly average daily precipitation and number of zero 

rainfall days in a month was developed through spatio-temporal analysis which 

demonstrated a high predictive capacity. This model accounted for the spatial and 

temporal variation of rainfall and influent volume characteristics by using 

observed datasets across the 14 WWTPs. This pooled model consisting of 

WWTPs of varying sizes, was cross validated with the Leave One Out Cross 

Validation method and the model errors indicated that the pooled model could be 
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adapted to model the generic trend in influent volumes of any WWTP, connected 

with CSS, while also accounting for the local characteristics of the WWTP.  

• Probability of exceedance curves were developed from observed daily datasets of 

precipitation and influent volumes. These curves allow for analysis of the 

likelihood that influent volume would exceed a given limit under a range of 

precipitation categories. The probability of exceedance curves thereby, enables 

the explanation of key hydraulic responses to rainfall, allowing utilities to identify 

potential vulnerabilities (e.g., exceedance of peak design capacities) in their 

networks.  These curves can also be considered in the context of future rainfall 

projections (e.g. extreme events) to identify specific influent volume events of 

interest, giving indications as to the exceedance of peak design capacity of 

WWTPs.   

• Future climate change impacts based on high-resolution multi-model RCM 

projected monthly precipitation data were observed to be seasonally variable with 

the highest decrease in influent volumes during the summer months and the 

highest increase during the winter months, particularly under the high greenhouse 

gas emission scenario RCP 8.5. While 13 of the 14 WWTPs examined were found 

to have sufficient reserve hydraulic capacity under RCP 4.5 and RCP 8.5, one of 

the 14 WWTPs was found to be particularly vulnerable to climate change impacts 

• The probability of exceedance curves when applied to projected extreme events 

in the future, showed that increases in expected high (< 20 mm/day) and very high 

precipitation (> 30 mm/day) would reduce the return period of overflow events 

across all WWTPs under both RCPs 4.5 and 8.5. For example, the return period 

for annual exceedance of peak design capacity of WWTP 1 under high 

precipitation days was found to reduce from 5 years under current conditions to 

4.6 years and 4.4 years under RCP 4.5 and RCP 8.5, respectively. On the other 

hand, under very high precipitation days, the return period of such events was 

shown to reduce from 5 years (current) to 4.2 years (RCP 4.5) and 4.1 years (RCP 

8.5). 

• Despite the strong correlation between urbanisation and stormwater runoff from 

various literature discussed in Chapter 2, urbanisation was found to have 

negligible to moderate degree of correlation with influent volumes. Rate of 

urbanisation per year showed negligible correlation (R2 = 0.03) with rate of 
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change of influent volume per year. Similarly, there was negligible correlation 

between the percentage change in urban area and percentage change in influent 

volume for a given time (R2 = 0.04). It is noted however that percentage change 

in built-up area relative to total agglomeration area was found to be statistically 

significant at a 95% level of confidence across all agglomerations with R2 = 0.17 

with influent volumes. There was dissociation between stormwater runoff and 

influents potentially arising from a number of factors such as lag-time, recent 

developments of sewer networks and possible transition from combined to 

separate sewer systems, hydraulic overloading and overflow of untreated 

wastewater etc. 

Despite have a high degree of uncertainty associated with precipitation projections, a 

significant contribution of this research is that the high-quality multi-model RCM 

projections could be used to derive meaningful cause-impact relationships between 

extreme events and exceedance of peak design capacities in future. The impact of the 

climate projection uncertainty on the influent volume projections estimated in this 

research could be captured to an extent with the help of the 33rd and 66th percentiles of 

the ensemble of RCM projections of mean precipitation. This would help wastewater 

utility managers in enhancing the understanding of network response characteristics to 

rainfall. This research will assist them in making informed decisions in mitigating risks 

and vulnerabilities in the network and developing adaptation strategies to combat the 

effects of climate change. The methodology enables users to adapt it to different WWTPs 

across the world, while also keeping in mind the local characteristics specific to each 

WWTP as derived from the individual WWTP models. 

7.3. Recommendations for future work 

Some of the recommendations for future work are as follows: 

• The understanding of the relationship between precipitation and influent volume 

characterised by lag-time should be improved by integrating sub-daily level 

datasets and network information about directly connected areas to the WWTPs 

etc. Access to such data will enhance the existing model and will also help to 

focus on the response characteristics of influent volumes at a much-detailed time 

scale. 
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• Because of the adaptability of the pooled model derived from spatio-temporal 

analysis across a range of WWTPs of various sizes, further study can update the 

model by including data from other WWTPs. However, this model is likely only 

suitable only for WWTPs with combined sewerage systems. As rainfall 

characteristics change spatially and characteristics of influent volumes change 

with WWTPs, the coefficients of the model would change. Nonetheless, future 

studies have the scope of updating the model with additional information, thereby 

increasing the robustness of the model.  

• Investigation of impacts on influent volumes in future could leverage 

precipitation variables at a finer scale, where access to higher temporal resolution 

(monthly and daily, as opposed to seasonal) RCM projections are available. 

Additionally, higher spatial resolution (< 4 km) projection datasets with higher 

accuracy from updated climate models from more recent reports will provide a 

deeper insight into evolution of influent volumes in future.  

• Better understanding of the evolving dynamics of wastewater influent 

characteristics can also be achieved by integrating other variables such as 

projected sea level rise, demographics, etc. 

• Future work should also take into consideration other additional variables such as 

soil moisture deficit, evapotranspiration, water consumption etc. at different time 

scales to assess their impacts on wastewater influent volumes. 
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Appendices 

Appendix I 

Appendix I contains the supplementary information for Chapter 3 Section 3.4.1 and 

Chapter 4 of the thesis. 

Table I.1: Variables assessed during the initial analysis on WWTP 8 

Variables at daily scale 

Sl. No. List of variables 

1 Daily precipitation v/s Daily influent volume 

2 Wet day precipitation v/s Wet day influent volume  

3 Precipitation v/s 1 day lagged influent volume   

4 Precipitation v/s 2 days lagged influent volume 

5 Precipitation v/s 3 days lagged influent volume 

6 Precipitation v/s 1 day lagged influent volume excluding zero rainfall days 

7 
Precipitation v/s 2 days lagged influent volume excluding zero rainfall 

days 

8 
Precipitation v/s 3 days lagged influent volume excluding zero rainfall 

days 

9 
Precipitation v/s 1 day lagged influent volume excluding all days with 

rainfall < 1 mm 

10 
Precipitation v/s 2 days lagged influent volume excluding all days with 

rainfall < 1 mm 

11 
Precipitation v/s 3 days lagged influent volume excluding all days with 

rainfall < 1 mm 

12 Daily maximum tidal level v/s Daily influent volume 

13 Daily maximum tidal level during wet days v/s Wet day influent volume 

14 Daily maximum tidal level v/s Dry weather flow 
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15 Daily mean river level v/s Daily influent volume 

16 Daily mean river level during wet days v/s Wet day influent volume 

17 Daily maximum tidal level v/s Dry weather flow 

18 Daily precipitation v/s Daily maximum tidal level 

19 Daily precipitation v/s Daily mean river level 

20 Daily maximum tidal level v/s Daily mean river level  

Variables at monthly scale 

Sl. No. List of variables 

1 
Average daily precipitation over a month v/s Average daily influent 

volume over a month 

2 
Number of wet days in a month v/s Average daily influent volume over a 

month 

3 
Number of zero rainfall days in a month v/s Average daily influent volume 

over a month 

4 
Average wet day precipitation in a month v/s Average wet day influent 

volume in a month 

5 
Number of rainy days (with precipitation > 0.2 mm and less than 1 mm) 

in a month v/s Average daily influent volume in a month 

6 
Average rainy day precipitation in a month v/s Average rainy day influent 

volume in a month 

7 Number of wet days v/s Average daily influent volume of wet days 

8 
Number of zero rainfall days v/s Average daily influent volume of zero 

rainfall days 

9 Total monthly precipitation v/s Total monthly influent volume 

10 Number of wet days v/s Total monthly influent volume 

11 Number of zero rainfall days v/s Total monthly influent volume 

12 Number of rainy days v/s Total monthly influent volume 
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13 
Number of consecutive zero rainfall days v/s Average influent volume of 

that period 

14 
Number of consecutive wet days v/s Average influent volume of that 

period 

 

Table I.2: Comparison of regression results of daily precipitation v/s daily influent 

volume with and without 1 day lag-time 

Daily precipitation v/s daily influent volume 

WWTPs 

R2 Model Error 

Without 

Lag-time 

With 1 day Lag-

time 

Without Lag-

time 

With 1 day 

Lag-time 

WWTP 1 0.14 0.31 24% 21% 

WWTP 2 0.28 0.21 23% 24% 

WWTP 3 0.38 0.26 40% 44% 

WWTP 4 0.06 0.16 26% 25% 

WWTP 5 0.21 0.44 47% 40% 

WWTP 6 0.21 0.45 47% 39% 

WWTP 7 0.34 0.27 39% 41% 

WWTP 8 0.27 0.23 18% 19% 

WWTP 9 0.17 0.16 32% 32% 

WWTP 10 0.13 0.37 32% 27% 

WWTP 11 0.17 0.34 47% 41% 

WWTP 12 0.32 0.28 51% 52% 

WWTP 13 0.28 0.16 56% 57% 

WWTP 14 0.03 0.32 48% 40% 
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Table I.3: Tidal level analysis results for all the WWTPs located near coast 

Plants 

Daily Maximum 

Tidal level v/s Dry 

weather flow 

Daily Maximum 

Tidal Level v/s 

Daily influent 

volume 

Daily maximum tidal 

level and Daily 

precipitation v/s Daily 

influent volume 

R2 Model Error R2 Model Error R2 Model Error 

WWTP 2 0.17 13% 0.16 24% 0.36 21% 

WWTP 4 0.09 15% 0.16 18% 0.23 17% 

WWTP 8 0.37 11% 0.16 20% 0.37 17% 

WWTP 10 0.02 26% 0.04 36% 0.16 31% 

WWTP 12 0.01 38%  0.08 61% 0.32 53% 

Table I.4: River level analysis results for all the WWTPs located near river 

Plants 

Daily mean river 

level v/s Dry weather 

Flow 

Daily mean river 

level v/s Daily 

influent volume 

Daily mean river 

level and Daily 

precipitation v/s 

Daily influent volume 

R2 Model Error R2 Model Error R2 Model Error 

WWTP 1 0.57 13% 0.61 16% 0.65 15% 

WWTP 8 0.46 13% 0.53 18% 0.67 12% 

WWTP 10 0.6 18%  0.49 24% 0.51 24% 

Table I.5: Tidal and river level analysis results for all the WWTPs located near both 

coast and river 

Plants 

Daily mean river 

level and Daily 

maximum tidal level 

v/s Dry weather flow 

Daily mean river 

level and Daily 

maximum tidal level 

v/s Daily influent 

volume 

Daily mean river 

level, Daily maximum 

tidal level and Daily 

Precipitation v/s 

Daily influent volume 

R2 Model Error R2 Model Error R2 Model Error 

WWTP 8 0.46 13% 0.53 15% 0.67 12% 

WWTP 10 0.6 18%  0.51 24% 0.52 23% 
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Table I.6: Daily Precipitation categories for all WWTPs based on percentile 

evaluation (Refer to Table 4.1 for the percentile values) 

Plants 
No 

rainfall 
 

Very 

low 
 

Low 
 

Moderate 
 

High 
 

Extreme 

event 

WWTP 1 
0 

>0 <= 

0.7 

>0.7 <= 

3.7 

>3.7 <= 

11.8 

>11.8 <= 

21.1 
>21.1 

WWTP 2 
0 

>0 <= 

0.3 

>0.3 <= 

3.1 

>3.1 <= 

14.9 

>14.9 <= 

28.3 
>28.3 

WWTP 3 
<=0.1 

>0.1 

<= 2 
>2 <= 6.7 

>6.7 <= 

16.6 

>16.6 <= 

26.7 
>26.7  

WWTP 4 
0 

>0 <= 

0.4 

>0.4 <= 

3.6 

>3.6 <= 

16.6 

>16.6 <= 

31.4 
>31.4 

WWTP 5 
0 

>0 <= 

1.2 

>1.2 <= 

4.7 

>4.7 <= 

15.1 

>15.1 <= 

25.7 
>25.7  

WWTP 6 
0 

>0 <= 

1.2 

>1.2 <= 

4.8 

>4.8 <= 

13.6 

>13.6 <= 

23.4 
>23.4 

WWTP 7 
0 

>0 <= 

0.7 

>0.7 <= 

3.8 

>3.8 <= 

12.1 

>12.1 <= 

23 
>23 

WWTP 9 
0 

>0 <= 

0.8 

>0.8 <= 

2.9 

>2.9 <= 

10.2 

>10.2 <= 

18.7 
>18.7 

WWTP 10 
0 0 >0 <= 1.8 

>1.8 <= 

8.8 

>8.8 <= 

17.9 
>17.9 

WWTP 11 
0 <=0.1 >0.1 <= 2 >2 <= 10.5 

>10.5 <= 

24.2 
>24.2 

WWTP 12 
0 

>0 <= 

0.2 

>0.2 <= 

2.8 

>2.8 <= 

13.2 

>13.2 <= 

26.8 
>26.8 

WWTP 13 
0 

>0 <= 

0.6 
>0.6 <= 4 >4 <= 12.4 

>12.4 <= 

21.3 
>21.3 

WWTP 14 
0 

>0 <= 

0.6 
>0.6 <= 3 >3 <= 11.4 

>11.4 <= 

19.9 
>19.9 
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In case of some WWTPs where influent volumes under two precipitation categories were 

not statistically significantly different, they were merged in order to plot the probability 

of exceedance curves. All the probability of exceedance curves for all the WWTPs are 

presented in the set of figures below. Probability of exceedance curves for WWTP 8 is 

already presented in Chapter 4. 
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Figure I.1: Probability of exceedance curves for all the WWTPs based on the 

different precipitation categories
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Table I.7: Monthly regression analysis results of monthly average daily influent 

volumes (ADIV) v/s monthly average daily precipitation (ADP), number of wet 

days in a month (WD) and number of zero rainfall days in a month (ZRD) 

considered individually and together for all the WWTPs   

Monthly Analysis summary across all WWTPs 

Plants 
ADP v/s ADIV WD v/s ADIV ZRD v/s ADIV 

ADP and ZRD v/s 

ADIV 

R2 

Model 

Error R2 

Model 

Error R2 

Model 

Error 

Adjusted-

R2 

Model 

Error 

WWTP 1 0.70 11% 0.56 13% 0.47 14% 0.70 11% 

WWTP 2 0.63 12% 0.51 14% 0.46 15% 0.66 12% 

WWTP 3 0.71 20% 0.53 26% 0.38 30% 0.71 20% 

WWTP 4 0.26 20% 0.27 20% 0.21 21% 0.27 20% 

WWTP 5 0.84 14% 0.58 22% 0.43 26% 0.83 14% 

WWTP 6 0.77 18% 0.57 25% 0.48 27% 0.76 18% 

WWTP 7 0.69 21% 0.47 27% 0.32 31% 0.68 21% 

WWTP 8 0.66 9% 0.61 9% 0.56 10% 0.69 9% 

WWTP 9 0.37 22% 0.39 22% 0.37 23% 0.41 22% 

WWTP 10 0.49 15% 0.44 16% 0.42 16% 0.53 14% 

WWTP 11 0.62 24% 0.46 28% 0.43 29% 0.61 24% 

WWTP 12 0.65 23% 0.45 29% 0.40 31% 0.66 23% 

WWTP 13 0.53 29% 0.50 30% 0.20 38% 0.52 29% 

WWTP 14 0.56 21% 0.38 24% 0.25 27% 0.54 21% 
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Table I.8: Model errors of Individual v/s pooled models at daily and monthly scales 

Plants 

Daily Scale Monthly Scale 

Model accuracy in terms of 

model errors for Individual v/s 

Pooled Daily WWTP model 

Model accuracy in terms of model 

errors for Individual v/s Pooled 

Monthly WWTP model 

Individual 

Daily 

Model 

Pooled 

Daily 

all-

years 

Model 

Pooled 

Daily 

2016 - 

2018 

Model 

Individual 

Monthly 

Model 

Pooled 

Monthly 

all-years 

Model 

Pooled 

Monthly 

2016 - 2018 

Model 

WWTP 1 24% 39% 25% 11% 14% 16% 

WWTP 2 23% 36% 27% 12% 12% 10% 

WWTP 3 40% 50% 42% 20% 30% 29% 

WWTP 4 26% 53% 24% 20% 38% 9% 

WWTP 5 47% 82% 48% 14% 27% 14% 

WWTP 6 47% 64% 46% 18% 21% 21% 

WWTP 7 39% 59% 37% 21% 26% 21% 

WWTP 8 18% 24% 27% 9% 9% 9% 

WWTP 9 32% 37% 36% 22% 23% 25% 

WWTP 10 32% 44% 33% 14% 16% 18% 

WWTP 11 47% 100% 63% 24% 26% 25% 

WWTP 12 51% 100% 80% 23% 28% 23% 

WWTP 13 56% 100% 100% 29% 31% 31% 

WWTP 14 48% 100% 88% 21% 24% 21% 

 

Individual model represents the analysis done for each WWTP separately whereas pooled 

model represents the analysis done across all WWTPs.   
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Figure I.2: Observed v/s predicted monthly average daily influent volume from pooled models (all-years and 2016 – 2018) for all WWTPs 
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Appendix II 

This section refers to the supplementary information of Chapter 5 of the thesis. 

Table II.1: Difference between 33rd and 66th percentile of the projected % change in 

monthly average daily influent volumes in 2041 - 2060 as compared to current 

period under RCP 4.5 (%) 

WWTPs 
Winter Spring Summer Autumn 

D J F M A M J J A S O N 

WWTP 1 1.8 1.8 1.6 1.4 0.9 1.2 0.9 1.1 1.3 0.7 0.5 0.9 

WWTP 2 1.9 1.9 1.4 2.2 1.9 2.1 0.7 0.7 0.6 0.7 0.7 0.7 

WWTP 3 1.5 1.3 1.4 2.2 1.9 2.1 1.9 1.9 2.2 2.5 2.4 2.8 

WWTP 4 0.8 0.8 0.6 1.2 1.3 1.1 1.2 1.2 1.1 0.3 0.4 0.4 

WWTP 5 1.8 1.7 1.5 2.4 1.8 2.0 1.1 1.3 1.3 1.7 1.7 2.1 

WWTP 6 3.3 3.6 3.1 1.2 1.0 1.1 1.2 1.5 1.5 2.5 2.2 3.1 

WWTP 7 2.7 2.5 2.5 2.4 2.1 2.5 1.6 1.5 1.8 1.4 1.4 1.8 

WWTP 8 2.1 1.9 1.6 1.3 1.1 1.5 1.6 1.6 1.3 1.5 1.5 1.8 

WWTP 9 1.4 1.3 1.1 1.3 1.1 1.3 1.0 0.9 1.1 0.9 1.0 1.0 

WWTP 10 2.7 2.2 1.4 1.1 1.1 1.2 1.2 0.9 0.9 0.4 0.3 0.5 

WWTP 11 3.6 3.0 2.3 2.5 2.0 2.2 1.2 1.4 1.4 1.2 1.0 1.5 

WWTP 12 1.6 1.4 1.2 4.4 3.9 4.0 3.3 3.5 3.2 0.6 0.6 0.7 

WWTP 13 2.2 2.3 2.4 2.7 1.6 1.8 2.4 2.2 3.0 2.1 1.8 2.0 

WWTP 14 2.1 1.9 1.8 2.7 2.2 2.8 1.5 1.3 1.6 0.7 0.7 1.0 
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Table II.2: Difference between 33rd and 66th percentile of the projected % change in 

monthly average daily influent volumes in 2041 - 2060 as compared to current 

period under RCP 8.5 (%) 

WWTPs 
Winter Spring Summer Autumn 

D J F M A M J J A S O N 

WWTP 1 1.6 1.6 1.6 1.2 0.8 1.1 0.7 0.8 1.1 1.2 0.9 1.5 

WWTP 2 1.2 1.2 1.1 2.9 2.5 2.6 1.1 1.2 1.0 1.6 1.6 1.6 

WWTP 3 4.3 3.7 4.0 2.5 2.1 2.3 2.1 2.1 2.3 1.9 1.8 2.2 

WWTP 4 0.8 0.8 0.7 1.6 1.7 1.6 0.9 0.9 0.8 0.6 0.7 0.9 

WWTP 5 3.4 3.3 3.0 2.3 1.7 2.0 0.6 0.8 0.8 2.2 2.2 2.6 

WWTP 6 3.1 3.3 3.0 1.8 1.5 1.7 1.6 2.1 2.1 2.5 2.1 3.0 

WWTP 7 3.2 3.0 3.0 2.0 1.8 2.1 2.5 2.3 2.8 2.7 2.8 3.4 

WWTP 8 1.4 1.2 1.0 0.6 0.6 0.7 0.8 0.9 0.9 1.7 1.8 2.1 

WWTP 9 2.0 1.6 1.4 0.9 0.6 0.9 0.8 0.6 0.7 1.0 1.1 1.2 

WWTP 10 1.5 1.2 0.8 0.9 0.8 0.9 1.8 1.4 0.4 1.2 0.9 1.4 

WWTP 11 1.9 1.6 1.3 1.3 1.2 1.3 1.5 1.7 1.7 1.5 1.2 1.7 

WWTP 12 2.0 1.7 1.5 4.0 3.6 3.7 1.3 1.3 1.3 0.9 1.2 1.3 

WWTP 13 4.2 4.4 4.5 2.1 1.3 1.4 0.9 0.9 1.2 3.1 2.7 3.0 

WWTP 14 2.2 2.0 1.9 1.4 1.1 1.5 1.4 1.2 1.5 1.5 1.4 2.1 
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Figure II.1: Percentage change in reserve capacity for all the WWTPs in 2041-2060 

as compared to current period under RCP 4.5  

 

Figure II.2: Percentage change in reserve capacity for all the WWTPs in 2041-2060 

as compared to current period under RCP 8.5  

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

WWTP 1 0.3 0.3 0.3 0.3 0.1 0.1 0.4 0.5 0.7 0.2 0.1 0.3

WWTP 2 -0.2 -0.2 -0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.5 0.5 0.6

WWTP 3 0.3 0.1 0.2 0.5 0.3 0.3 0.4 0.4 0.6 0.3 0.4 0.8

WWTP 4 -0.7 -0.6 -0.4 0.2 0.2 0.2 0.9 0.8 0.8 0.8 1.2 2.0

WWTP 5 -0.1 -0.1 -0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1

WWTP 6 0.5 0.7 0.4 0.1 0.0 0.0 0.3 0.4 0.4 0.0 0.0 0.0

WWTP 7 0.3 0.3 0.3 0.2 0.1 0.1 0.7 0.6 0.8 0.3 0.3 0.7

WWTP 8 -0.3 -0.2 -0.2 0.1 0.1 0.1 0.3 0.3 0.4 0.4 0.4 0.6

WWTP 9 0.9 1.0 0.7 0.2 0.1 0.1 0.8 0.5 0.7 0.2 0.2 0.3

WWTP 10 0.4 0.3 0.1 -0.1 0.0 0.0 0.5 0.3 0.3 0.5 0.3 0.7

WWTP 11 0.6 0.5 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.4 0.3 0.6

WWTP 12 -0.7 -0.6 -0.4 0.1 0.1 0.1 0.8 0.9 0.9 0.8 1.4 2.4

WWTP 13 -0.4 -18.1 -1.1 1.8 0.5 0.5 1.0 0.9 1.4 1.2 0.7 1.4

WWTP 14 0.2 0.2 0.1 0.1 0.1 0.1 0.3 0.2 0.3 0.1 0.1 0.2

% change in reserved capacity in 2041 - 2060 as compared to 

current period under RCP 4.5

Winter Spring Summer Autumn
WWTPs

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

WWTP 1 -1.0 -1.1 -0.9 0.2 0.1 0.1 0.6 0.8 1.2 -0.7 -0.5 -1.2

WWTP 2 -0.8 -0.8 -0.5 0.3 0.2 0.2 0.7 0.7 0.6 -0.1 -0.1 -0.1

WWTP 3 -1.1 -0.5 -0.8 0.5 0.4 0.4 1.0 1.0 1.5 -0.3 -0.3 -0.7

WWTP 4 -3.3 -2.9 -1.8 0.6 0.6 0.5 1.5 1.3 1.4 -0.2 -0.3 -0.5

WWTP 5 -0.4 -0.3 -0.2 0.1 0.0 0.1 0.2 0.2 0.2 -0.1 0.0 -0.1

WWTP 6 -0.6 -0.8 -0.5 0.2 0.1 0.2 0.4 0.6 0.6 0.0 0.0 0.1

WWTP 7 -0.9 -0.8 -0.7 0.3 0.2 0.2 0.8 0.6 0.9 -0.2 -0.2 -0.5

WWTP 8 -0.8 -0.7 -0.5 0.0 0.0 0.0 0.5 0.6 0.7 0.0 0.0 -0.1

WWTP 9 -0.5 -0.5 -0.4 0.2 0.2 0.2 0.9 0.6 0.8 0.3 0.4 0.5

WWTP 10 -0.7 -0.6 -0.3 -0.1 -0.1 -0.1 0.8 0.5 0.6 0.0 0.0 0.0

WWTP 11 -1.0 -0.8 -0.4 0.2 0.1 0.1 0.5 0.5 0.5 0.0 0.0 0.1

WWTP 12 -4.6 -3.7 -2.3 0.2 0.1 0.1 1.8 2.1 2.2 -0.2 -0.3 -0.4

WWTP 13 -2.5 -108.4 -6.4 1.6 0.5 0.5 1.5 1.2 2.1 -1.2 -0.7 -1.4

WWTP 14 -0.2 -0.2 -0.2 0.1 0.1 0.1 0.3 0.2 0.3 0.1 0.1 0.1

Winter Spring Summer Autumn

% change in reserved capacity in 2041 - 2060 as compared to 

current period under RCP 8.5

WWTPs



  

237 
 

Table II.3: Estimation of annual number of events exceeding any given proportion of peak design capacity based on observed (obs.) 

probability of exceedance and the projected % change in high and very high precipitation days in 2041 – 2060 as compared to current 

period for all WWTPs [Note: All numbers displayed in the table are estimated annually] 

WWTPs 
Precipitation 

days 

Time 

period 

No. of 

occurrences 

> 25% of PD > 50% of PD > 75% of PD > 100% of PD 

Obs. 

PoE 

No. of 

events 

exceeding 

25% of 

PD  

Obs. 

PoE 

No. of 

events 

exceeding 

50% of PD  

Obs. 

PoE 

No. of 

events 

exceeding 

75% of PD  

Obs. 

PoE 

No. of 

events 

exceeding 

100% of PD  

WWTP 1 

High 

precipitation 

days 

Current 4.2 
100

% 
4.2 95% 4.0 71% 3.0 5% 0.2 

2041 - 

2060 

RCP 4.5  

4.56   4.56   4.35   3.26   0.22 

2041 - 

2060 

RCP 8.5 

  

4.72   4.72   4.5   3.37   0.23 
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Very high 

precipitation 

days 

Current 0.4 
100

% 
0.4 

100

% 
0.4 50% 0.2 50% 0.2 

2041 - 

2060 

RCP 4.5  

0.47   0.47   0.47   0.24   0.24 

2041 - 

2060 

RCP 8.5  

0.49   0.49   0.49   0.25   0.25 

WWTP 2 

High 

precipitation 

days 

Current 9.9 99% 9.9 4% 0.4 0% 0.0 0% 0 

2041 - 

2060 

RCP 4.5  

10.2   10.2   0.44   0.0   0.0 

2041 - 

2060 

RCP 8.5  

10.5   10.4   0.45   0.0   0.0 

Very high 

precipitation 

days 

Current 3.00 
100

% 
3.00 10% 0.29 0% 0.0 0% 0.0 

2041 - 

2060 

RCP 4.5  

3.31   3.31   0.31   0.0   0.0 
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2041 - 

2060 

RCP 8.5  

3.35   3.35   3.32   0.0   0.0 

WWTP 3 

High 

precipitation 

days 

Current 9.6 
100

% 
9.6 85% 8.1 51% 4.9 0% 0.0 

2041 - 

2060 

RCP 4.5  

10.3   10.3   8.7   5.2   0.0 

2041 - 

2060 

RCP 8.5  

10.4   10.4   8.9   5.3   0.0 

Very high 

precipitation 

days 

Current 2 
100

% 
2 

100

% 
2 79% 1.6 0% 0.0 

2041 - 

2060 

RCP 4.5  

2.4   2.4   2.4   1.9   0.0 

2041 - 

2060 

RCP 8.5 

  

2.5   2.5   2.5   1.9   0.0 
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WWTP 4 

High 

precipitation 

days 

Current 12.2 98% 12.0 87% 10.6 46% 5.6 3% 0.4 

2041 - 

2060 

RCP 4.5  

12.7   12.5   11   5.8   0.42 

2041 - 

2060 

RCP 8.5  

13.0   12.7   11.3   5.9   0.42 

Very high 

precipitation 

days 

Current 4.5 
100

% 
4.5 96% 4.3 53% 2.4 0% 0.0 

2041 - 

2060 

RCP 4.5  

4.8   4.8   4.6   2.6   0.0 

2041 - 

2060 

RCP 8.5  

5.0   5.0   4.8   2.7   0.0 

WWTP 5 

High 

precipitation 

days 

Current 7.8 26% 2.0 0% 0.0 0% 0.0 0% 0.0 

2041 - 

2060 

RCP 4.5  

8.3   2.1   0.0   0.0   0.0 
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2041 - 

2060 

RCP 8.5  

8.6   2.2   0.0   0.0   0.0 

Very high 

precipitation 

days 

Current 2 50% 1 
100

% 
0.0 0% 0.0 0% 0.0 

2041 - 

2060 

RCP 4.5  

2.3   1.1   0.0   0.0   0.0 

2041 - 

2060 

RCP 8.5  

2.4   1.2   0.0   0.0   0.0 

WWTP 6 

High 

precipitation 

days 

Current 6.3 92% 5.8 76% 4.8 32% 2.0 0% 0.0 

2041 - 

2060 

RCP 4.5  

6.8   6.3   5.2   2.2   0.0 

2041 - 

2060 

RCP 8.5  

6.9   6.3   5.2   2.2   0.0 

Current 1.8 
100

% 
1.8 

100

% 
1.8 71% 1.3 0% 0.0 
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Very high 

precipitation 

days 

2041 - 

2060 

RCP 4.5  

2.0   2.0   2.0   1.4   0.0 

2041 - 

2060 

RCP 8.5  

2.0   2.0   2.0   1.4   0.0 

WWTP 7 

High 

precipitation 

days 

Current 5.0 
100

% 
5.0 64% 3.2 12% 0.60 0% 0.0 

2041 - 

2060 

RCP 4.5  

5.3   5.3   3.4   0.63   0.0 

2041 - 

2060 

RCP 8.5  

5.4   5.4   3.4   0.65   0.0 

Very high 

precipitation 

days 

Current 0.8 
100

% 
0.8 75% 0.6 0% 0.0 0% 0.0 

2041 - 

2060 

RCP 4.5  

0.8   0.8   0.6   0.0   0.0 
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2041 - 

2060 

RCP 8.5  

0.9   0.9   0.7   0.0   0.0 

WWTP 8 

High 

precipitation 

days 

Current 7.3 
100

% 
7.3 71% 5.1 0% 0.0 0% 0.0 

2041 - 

2060 

RCP 4.5  

7.7   7.7   5.5   0.0   0.0 

2041 - 

2060 

RCP 8.5  

8.0   8.0   5.7   0.0   0.0 

Very high 

precipitation 

days 

Current 1.8 
100

% 
1.8 93% 1.6 0% 0.0 0% 0.0 

2041 - 

2060 

RCP 4.5  

1.9   1.9   1.8   0.0   0.0 

2041 - 

2060 

RCP 8.5  

2.0   2.0   1.9   0.0   0.0 
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WWTP 9 

High 

precipitation 

days 

Current 2.9 
100

% 
2.9 85% 2.43 55% 1.60 20% 0.57 

2041 - 

2060 

RCP 4.5  

3.06   3.06   2.60   1.68   0.61 

2041 - 

2060 

RCP 8.5  

3.11   3.11   2.64   1.70   0.62 

Very high 

precipitation 

days 

Current 0.29 
100

% 
0.29 

100

% 
0.29 

100

% 
0.29 50% 0.14 

2041 - 

2060 

RCP 4.5  

0.35   0.35   0.35   0.35   0.17 

2041 - 

2060 

RCP 8.5  

0.35   0.35   0.35   0.35   0.18 

WWTP 

10 
Current 2.0 

100

% 
2.0 88% 1.75 75% 1.50 50% 1.00 
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High 

precipitation 

days 

2041 - 

2060 

RCP 4.5  

2.1   2.1   1.80   1.54   1.03 

2041 - 

2060 

RCP 8.5  

2.1   2.1   1.80   1.54   1.03 

Very high 

precipitation 

days 

Current 0.5 
100

% 
0.5 

100

% 
0.5 

100

% 
0.5 50% 0.30 

2041 - 

2060 

RCP 4.5  

0.55   0.55   0.55   0.55   0.27 

2041 - 

2060 

RCP 8.5  

0.57   0.57   0.57   0.57   0.28 

WWTP 

12 

High 

precipitation 

days 

Current 7.2 99% 7.1 86% 6.2 77% 5.5 62% 4.5 

2041 - 

2060 

RCP 4.5  

7.6   7.5   6.5   5.8   4.7 



  

246 
 

2041 - 

2060 

RCP 8.5  

7.7   7.6   6.6   5.9   4.8 

Very high 

precipitation 

days 

Current 2.5 
100

% 
2.5 89% 2.2 78% 1.9 63% 1.5 

2041 - 

2060 

RCP 4.5  

2.6   2.6   2.3   2.0   1.6 

2041 - 

2060 

RCP 8.5  

2.7   2.7   2.4   2.1   1.7 

WWTP 

13 

High 

precipitation 

days 

Current 3.3 
100

% 
3.3 

100

% 
3.3 90% 3.0 80% 2.7 

2041 - 

2060 

RCP 4.5  

3.5   3.5   3.5   3.2   2.8 

2041 - 

2060 

RCP 8.5  

3.6   3.6   3.6   3.3   2.9 
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Very high 

precipitation 

days 

Current 1.3 
100

% 
1.3 

100

% 
1.3 75% 1.0 75% 1.0 

2041 - 

2060 

RCP 4.5  

1.5   1.5   1.5   1.1   1.1 

2041 - 

2060 

RCP 8.5  

1.6   1.6   1.6   1.2   1.2 

WWTP 

14 

High 

precipitation 

days 

Current 3.40 94% 3.20 41% 1.40 12% 0.40 0% 0.0 

2041 - 

2060 

RCP 4.5  

3.53   3.32   1.45   0.42   0.0 

2041 - 

2060 

RCP 8.5  

3.67   3.46   1.51   0.43   0.0 

Very high 

precipitation 

days 

Current 0.40 
100

% 
0.40 

100

% 
0.40 50% 0.20 0% 0.0 

2041 - 

2060 

RCP 4.5  

0.43   0.43   0.43   0.21   0.0 
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2041 - 

2060 

RCP 8.5  

0.45   0.45   0.45   0.22   0.0 

*PD refers to the peak design capacity and PoE refers to Probability of Exceedance  
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Appendix III 

This section contains the supplementary information relevant to Chapter 6. 

Following is the JavaScript code used in Google Earth Engine to perform landuse 

landcover classification for all the WWTPs. The lines starting with “//” refers to a 

comment that describes the steps following it. 

Script: 

Map.setCenter(-9.29076, 53.85468, 12); 

// Importing satellite imagery using the satellite imagery extent 

var composite = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA') 

    .filterDate('2018-06-29', '2018-07-01') 

    .filterBounds(ROI) 

    .map(function(image) { 

      return image.addBands(image.metadata('system:time_start')); 

    }) 

    .median(); 

var clipped = composite.clip(ROI); 

// Inster System data (1530358446505) from metadata using inspect option 

var date = ee.Date(1530358446505); 

print (date) 

// Display satellite imagery 

Map.addLayer(clipped, cls_3, 'Imagery'); 

var s2_bands = ['B1','B2', 'B3', 'B4', 'B5', 'B6','B7']; 

var TrainingImage = composite.select(s2_bands); 

// set the selection bands 

var predictionBands = TrainingImage.bandNames(); 

print (TrainingImage.bandNames());  
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// Merge all into a single Feature collection 

var trainingFeatures1=Builtup.merge(Water).merge(Green); 

var classifierTraining = TrainingImage.select(predictionBands) 

.sampleRegions({collection: trainingFeatures1, properties: ['Class'], scale: 10 }); 

var classifier = ee.Classifier.smileRandomForest({ 

 numberOfTrees: 100, 

}); 

var classifyer = classifier.train({features:classifierTraining,  

classProperty:'Class', inputProperties: predictionBands}); 

var classified = TrainingImage.select(predictionBands).classify(classifyer); 

var ClassifiedClip = classified.clip(ROI); 

Map.addLayer(ClassifiedClip, cls, 'Classified'); 

Export.image.toDrive({ 

  image: classified, 

  description: 'Castlebar_L8_2018_Classified', 

  scale: 10, 

  region: ROI, 

  maxPixels: 1e11 

}); 

Classified Images 

The following figures and tables refer to the classified images and change in built-up area 

for all the agglomerations within each time interval. The results for agglomeration A4 are 

already in Chapter 6.  
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Figure III.1: Classified images of agglomeration A1 

 

Table III.1: Change in built-up area for agglomeration A1 

Year Area in sq. m Time interval % Change in built-up area 

2014 29767155 - - 

2016 33267652 2014 – 2016 11.8% 

2018 34524554 2016 – 2018 3.9% 

 

 

 

2014  2016 

 

2018 
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Figure III.2: Classified images of agglomeration A2 

 

Table III.2: Change in built-up area for agglomeration A2 

Year Area in sq. m Time interval % Change in built-up area 

2006 50707123 - - 

2011 54399667.17 2006 – 2011 7.3% 

2015 61906975.75 2011 – 2015  13.8% 

2018 66579507.35 2015 – 2018  7.5% 

 

 

 

 

2006  2011 

 

 

 

2015  2018 
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Figure III.3: Classified images of agglomeration A3 

Table III.3: Change in built-up area for agglomeration A3 

Year Area in sq. m Time interval % Change in built-up area 

2012 4946759 - - 

2015 5652319 2012 – 2015 14.3% 

2018 6360817 2015 – 2018  12.5% 

 

 

 

 

2012  2015 

 

2018 
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Figure III.4: Classified images of agglomeration A5 

 

Table III.4: Change in built-up area for agglomeration A5 

Year Area in sq. m Time interval % Change in built-up area 

2014 587644.4962 - - 

2016 658957.9656 2014 – 2016  12.1% 

2018 727430.8012 2016 – 2018  10.4% 

 

 

 

 

2014  2016 

 

2018 

 



  

255 
 

 

Figure III.5: Classified images of agglomeration A6 

Table III.5: Change in built-up area for agglomeration A6 

Year Area in sq. m Time interval % Change in built-up area 

2015 7330511.304 - - 

2018 8938004.292 2015 – 2018  21.9% 

 

 

 

 

 

2015  2018 
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Figure III.6: Classified images of agglomeration A7 

Table III.6: Change in built-up area for agglomeration A7 

Year Area in sq. m Time interval % Change in built-up area 

2014 5856560 - - 

2016 6253100 2014 – 2016 6.8% 

2018 7215996 2016 – 2018  15.4% 

 

 

 

 

2014  2016 

 

2018 
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Figure III.7: Classified images of agglomeration A8 

Table III.7: Change in built-up area for agglomeration A8 

Year Area in sq. m Time interval % Change in built-up area 

2011 13956239.8 - - 

2015 16789311.81 2011 – 2015  20.3% 

2018 17441316.39 2015 – 2018  3.9% 

 

 

 

 

 

2011  2015 

 

2018 
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Figure III.8: Classified images of agglomeration A9 

Table III.8: Change in built-up area for agglomeration A9 

Year Area in sq. m Time interval % Change in built-up area 

2011 6082515 - - 

2015 7200470 2011 – 2015  18.4% 

2018 8240562 2015 – 2018  14.4% 

 

 

 

 

2011  2015 

 

2018 
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Figure III.9: Classified images of agglomeration A10 

Table III.9: Change in built-up area for agglomeration A10 

Year Area in sq. m Time interval % Change in built-up area 

2015 189692508.1 - - 

2018 211502456.4 2015 – 2018  11.5% 

 

 

Figure III.10: Classified images of agglomeration A11 

Table III.10: Change in built-up area for agglomeration A11 

Year Area in sq. m Time interval % Change in built-up area 

2015 12303947.78 - - 

2018 14680329.32 2015 – 2018  19.3% 

 

 

 

 

2015  2018 

 

 

 

 

2015  2018 
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Figure III.11: Classified images of agglomeration A12 

Table III.11: Change in built-up area for agglomeration A12 

Year Area in sq. m Time interval % Change in built-up area 

2010 3347277 - - 

2015 3907893 2010 – 2015  16.8% 

2018 4261501 2015 – 2018  9.1% 

 

 

 

 

2010  2015 

 

2018 
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Figure III.12: Classified images of agglomeration A13 

Table III.12: Change in built-up area for agglomeration A13 

Year Area in sq. m Time interval % Change in built-up area 

2016 3418032 - - 

2018 3529107 2016 – 2018  3.2% 

 

  

 

 

 

2016  2018 
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Figure III.13: Classified images of agglomeration A14 

Table III.13: Change in built-up area for agglomeration A14 

Year Area in sq. m Time interval % Change in built-up area 

2014 8170230 - - 

2016 8362440 2014 – 2016 2.3% 

2018 8640393 2016 – 2018  3.3% 
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