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Abstract

Somatic mutations accumulate throughout life and contribute significantly to disease
risk. While research into somatic mutation is well established in cancer, it is only in
recent years that investigations into the implications of somatic mutations in healthy
tissues have begun to be feasible, due to advances in sequencing technologies and pro-
tocols. The requirement of specialist techniques has, however, limited the study of
somatic mutations in healthy tissues to small sample sizes, which do not allow for as-
sessment of the impact of somatic mutations on human health on a population scale. We
posited that it may be possible to study variation in the somatic mutation rate between
individuals and across the genome through analysis of low-depth sequencing data, by
developing strategies to distinguish the contribution of somatic mutations to the mis-
matches (relative to the reference genome) observed in these data from sequencing
errors, DNA damage and other artefacts.

Using somatic mutation rates obtained from the literature, we estimated that 0.4%
of the mismatches between the UK Biobank exome sequencing reads and the refer-
ence genome were due to somatic mutations. We demonstrated that this proportion
was sufficient to induce a relationship between the abundance of mismatches and age,
when individuals were grouped by integer age. We then searched for additional sample
properties that are correlated with the mismatch burden and found positive correlations
with cancer diagnosis and smoking status. However, by carefully examining the UK
Biobank exome sequencing data, we uncovered previously unreported batch effects re-
lating to sequencing run. The observed associations with cancer diagnosis and smoking
status were lost when we corrected for this batch effect. However, the batch correction
improved the correlation between age and mismatch load.

Individuals diagnosed with Lynch syndrome have increased somatic mutation loads
due to deficiencies in mismatch repair genes and we investigated whether this effect
could be detected in the exome sequencing data. In the UK Biobank, we identified
160 individuals with pathogenic variants associated with Lynch syndrome. Using the
COSMIC signatures associated with mismatch repair, we compared the contribution
of mismatch repair mutational signatures between the Lynch syndrome samples and
the remaining samples. We detected a marginally statistically significant difference
between the contribution of SBS18 between the two sample groups; however, this result
did not survive multiple correction testing.
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Somatic and germline mutations show transcription-strand asymmetry, arising from
transcription-associated DNA damage and repair. We postulated that the strength of
transcription-strand asymmetry could provide insights into the contribution of somatic
mutations to the exome sequencing data, because technical sources of mismatches, such
as DNA damage and sequencing error, should not be directly affected by transcription.
We indeed observed substantial transcription-strand asymmetry; however, this was far
stronger than we expected, given the inferred proportion of somatic mutations in the
data. This result led us to identify a technical effect that resulted in transcription-strand
asymmetry, arising from the use of single-stranded probes targeting the coding strand
in the exome capture kit used by the UK Biobank. Surprisingly, this has not previ-
ously been published and it has important implications for NGS quality control and
rare variant analyses.

The large sample size of the UK Biobank also raised the possibility of testing for
genetic variation affecting the somatic mutation rate. Treating the normalized number
of mismatches per sample as a quantitative phenotype, we performed a GWAS and dis-
covered a genome-wide significant hit in linkage with an eQTL for ERCC8, an integral
component of the transcription-coupled repair machinery. Although promising, this
candidate GWAS locus turned out to be a false-positive association, resulting from an
unusual genetic variant that our germline filter had not removed. In the course of this
work, we also proposed a methodological innovation in GWAS that consists of includ-
ing background genetic variation as a fixed effect in the linear mixed models used in
GWAS. We demonstrated that this can improve the power of GWAS when combined
with state-of-the-art polygenic scoring methodologies. Our method substantially im-
proved the estimation of effect sizes and power. However, the improvement depended
on heritability and polygenicity and consequently, the mismatch data, which showed
low heritability, did not benefit from our method.

We then pivoted our focus from understanding the variation in mismatch load acting
across samples to understanding variation across the genome. We again found evidence
that variation in the somatic mutation rate across the genome can be detected in the ex-
ome sequencing data, observing correlations in the expected directions for known mu-
tation rate modifiers, such as gene expression, replication timing and chromatin struc-
ture. Interestingly, we recovered a complex relationship between mismatch recurrence
and gene expression, consistent with the literature. The recurrence of potentially func-
tional mismatches also provides a means to infer positive selection acting on somatic
mutations and we found that several genes associated with clonal haematopoiesis of
indeterminate potential showed strong evidence of positive selection.
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Chapter 1

Introduction

1.1 DNA

1.1.1 A brief history of the DNA Sequence

DNA was first isolated in 1869 by Friedrich Miescher at the University of Tübingen
while attempting to purify protein from the nucleus of leukocytes coining the unknown
substance, nuclein [1]. It would be 75 years before the Avery-MacLeod-McCarty ex-
periment provided evidence that DNA was, in fact, the molecule in which the genetic
information was encoded [2] and another nine years before Watson and Crick pub-
lished their seminal 1953 paper on the structure of DNA [3]. In the succeeding years,
the mechanism of DNA replication was resolved to be semi-conservative [4], Fran-
cis Crick proposed the central dogma of molecular biology [5] and the first cancer
proto-oncogene was identified as c-SRC in the Rous sarcoma virus transforming our
understanding of cancer [6].

Perhaps the development with the biggest impact on our understanding of evolution
and health relating to DNA is not the modes of inheritance defined by Gregor Mendel
but that of Frederick Sanger, a two-time Nobel prize-winning British biochemist. In
1977 Sanger developed a chromatography-based method to read the nucleic acid se-
quence directly [7]. The advancement of nucleic acid sequencing quickly replaced
comparative biochemistry and peptide sequencing in understanding molecular evolu-
tion by uncovering the role of mutation outside of the coding region.

Early DNA sequence studies investigated heritable differences between nucleic acid
sequences across species. This led to the development of many mathematical models
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of DNA evolution. These models exploited the molecular clock, which was largely in
agreement with estimates from the fossil record and comparative proteomics [8, 9, 10,
11]. Building on the established molecular evolutionary theory from the twenty-first
century, the evolution of clonally expanding tissues could be modelled using somatic
mutation data to understand cancer aetiology and progression [12, 13].

In addition to understanding the evolutionary dynamics of cancer, by sequencing
an individual’s genome, genomic medicine has enormous potential to stratify patients
into treatment groups but also for use in cancer prevention. Individuals with familial
histories of disease can be screened for Mendelian diseases, such as hereditary cancers
due to BRCA1/2 variants or Lynch syndrome, removing the need for invasive mastec-
tomies or guiding clinical action towards better treatments by genotype stratification
[14]. In recent years, researchers have been able to aggregate small effect variants into
clinically relevant polygenic risk scores (PGS/PRS). PGS can contribute to quantifying
the risk of developing diseases such as cardiovascular disease and cancer [15].

1.1.2 DNA chemistry and structure

DNA exists in many possible conformations, with B-DNA being the most abundant
across life [17]. The nucleic acid sequence is a linear series of the nitrogenous bases
adenine, thymine, cytosine, and guanine bound to a sugar-phosphate backbone. DNA
is directional (anisotropic), with the carbon position on the 5-carbon deoxyribose sugar
annotating the sequence’s direction. As the linear strand is unstable, a second com-
plementary strand is bound in the opposite direction and the two are held together by
hydrogen bonding. The complementary strands form a major and minor groove within
the DNA structure. The major groove is formed where the anti-parallel phosphate back-
bones are furthest apart due to the base pair orientation. The major groove is a substrate
for DNA binding proteins that regulate gene activity within a cell [18]. The outer phos-
phate backbone of the DNA strand has a negative charge giving the DNA molecule
a slightly negative charge. The electrical charge allows for the control of chromatin
conformation through epigenetic modifications (nucleosome charge modulation).

The negatively charged DNA is packaged within the cell nucleus by wrapping 1.65
times (equivalent to ≈ 147 base pairs) around a positively charged octamer protein
complex called a nucleosome, (Fig. 1.1). This structure, sometimes referred to as
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Figure 1.1: The basic structure of DNA within the nucleus of a cell. The secondary structure
of DNA (top right) is wound around protein histone complexes to form nucleosomes. Nucleo-
somes are coiled to form the 30-nm chromatin fibre in turn coiling to form the 250-nm chromatin
fibre. Super coiling of the chromatin fibre forms the quaternary condensed chromatid. Figure
reused under creative commons license [16].



‘beads on a string’, allows the secondary 2nm DNA structure to be coiled into a tertiary
30nm 3-dimensional chromatin fibre. The 30nm chromatin fibre is then supercoiled into
a higher-order chromatid structure by forming loops anchored by the proteins cohesin
and CTCF [19]. The looping structure has two main functions. Firstly, it allows the
six billion base pairs in the nucleus to be compactly organised. Secondly, it allows for
the formation of functional topologically associated domains (TADs) [19]. TADs are
megabase structures with common genomic features such as gene expression levels,
lamina interaction, histone chromatin interactions and replication timing [19].

1.1.3 DNA replication

The ability of a cell to divide and replicate is a fundamental process in almost all tis-
sues, apart from denucleated blood cells and terminally differentiated cells [20]. De-
spite recent work on assessing the variation in replication timing across individuals
the mutation rate variation due to replication error, the inter-individual mutation rate
variation remains poorly understood [21]. However, the advent of sequencing data has
allowed researchers to uncover mutational processes such as DNA replication mutation
signatures and replication-associated mutational asymmetry (R-Asymmetry) [22]. The
lifetime number of stem cell divisions in a tissue has also been proposed as a risk factor
for cancer [23]. The mutational load data derived from cancer datasets supports this
proposal, but the correlation between mutation burden and cancer risk does not reflect
the strength of the correlation between stem cell divisions and cancer risk [23, 24].

DNA is replicated semi-conservatively, giving rise to two daughter cells, each with
50% of the parent DNA and 50% newly synthesised via DNA polymerase [4]. The cell
cycle stage where DNA replication occurs is called the synthesis phase (S-phase). As
DNA is anisotropic, and replication is bidirectional [25], DNA polymerase synthesises
the new strand in the 5’ to 3’ direction. This poses a challenge for the replication fork
running in a 3’ to 5’ direction. To address this, the replication machinery forms 200bp
single-strand loops and synthesises what are known as Okazaki fragments in the 5’ to
3’ direction [26]. DNA ligase joins the discontinuous fragments together. This process
of ‘leading’ and ‘lagging’ strand synthesis gives rise to an asymmetry in replication-
associated mutation profile with errors most likely to occur on the lagging strand, owing
to the extended period the lagging strand is single-stranded. As maintaining genomic
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integrity is a fundamental process within the cell cycle, Goulian et al. proposed in 1968,
that the nuclease activity of the DNA polymerase they had observed may play a role
in error correction [27]. In 1974, John Hopfield proposed the biochemical mechanism
from which the kinetics of proofreading was derived [28]. When the wrong nucleotide
is inserted into the DNA strand, the helical structure is distorted, activating the 3’ to 5’
exonuclease activity [29].

The fate of a cell, i.e progression to division or to programmed cell death, is de-
termined at several checkpoints throughout the cell cycle. Failure to progress correctly
through each cell cycle checkpoint may lead to severe genomic instability, called repli-
cation catastrophe [30]. When DNA lesions or adducts impede DNA replication, error-
prone polymerases (DNA pol family Y) may be used to ensure cellular integrity at the
cost of introducing somatic mutations. The Y-family of polymerases typically does not
have proofreading capabilities [31]. However, severe DNA damage may direct the cell
into senescence via apoptosis or other programmed cell death pathways. To safeguard
against excessive DNA damage repair during the S-phase, several other mechanisms
maintain the integrity of the genomic sequence throughout the cell cycle.

1.1.4 Maintaining genomic integrity via the DNA damage response

Genomic instability is a hallmark of cancer and ageing [32, 33]. A human cell can expe-
rience up to 10,000 lesions per day [34], with UV-exposed epidermal cells experiencing
up to 100,000 UV-induced adducts per hour [35]. In the absence of repair mechanisms,
cells would quickly be overwhelmed by DNA damage and become unviable within a
few replications. To maintain genomic stability, eukaryotic organisms have evolved
several distinct DNA damage repair pathways, all grouped together under the DNA
damage response (DDR) [35]. DDR includes cell cycle checkpoints [36], DNA damage
identification and signalling [37], apoptosis [38], replication fork stalling [39], telomere
contraction [40], and repair fidelity [41]. Deficiencies in DDR mechanisms have been
well-established driving factors in cancer, underpinning the importance of maintaining
genomic stability across the soma [42]. On the other hand, the inhibition of the DDR
has also transformed cancer therapeutics by exploiting genomic instability in cancer.
Perhaps the best-known example of inhibiting the DDR in cancer therapeutics is PARP
inhibition in BRCA1/2 deficient breast and ovarian cancers [43]. PARP plays a key role
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in BER and NHEJ signalling by recognizing single-strand breaks (SSBs). As BRCA1 &

BRCA2 deficient tumours ineffectively repair DSBs, inhibiting PARP forms excessive
DSBs as the SSBs are not repaired by PARP within the tumours, driving the tumour
cells into cell death.

The DDR response has evolved several mechanisms for signalling and repairing
DNA damage. DNA repair can be categorised by five main pathways depending on
the type of DNA damage accrued. These are base excision repair (BER), nucleotide
excision repair (NER), mismatch repair (MMR), homologous recombination (HR), and
non-homologous end joining (NHEJ), (Fig. 1.2). BER, NER, and MMR are all excision
repair pathways. However, they function on different types of damage. BER identifies
and repairs non-bulky adducts or DNA damage that does not disrupt the double helix
structure, e.g., 8-oxoguanine and AP-sites. NER rectifies bulky adducts such as UV-
light-induced thymine dimers and 6,4-photoproducts. The two main NER mechanisms
are transcription-coupled NER and global NER giving rise to variation in repair rates
across the genome [43]. MMR identifies and repairs the misincorporation of bases
during replication and recombination [44]. HR-mediated double-strand break (DSB)
repair is restricted to the S and G2 phases of the cell cycle, as the sister chromatid is
used as the homologous template. In contrast, in NHEJ, the blunt ends of a DSB are
joined together in the absence of a template strand, often leading to deletions within the
nucleic acid sequence.

Given the diversity of the DNA damage response to types of DNA damage, it fol-
lows that mutations that slip the leash of repair tend to have a negative effect on the
overall fitness of an organism [45]. The next section will highlight sources of SNV
somatic mutations drawing attention to some key sources of DNA damage that drive
mutagenesis and its impact on human health. As this body of work aims to recover sig-
nals of somatic mutation within a population-scale dataset, understanding how somatic
mutations may arise and some key concepts such as somatic evolution and somatic mu-
tation in health as well as how somatic mutations may differ from sources of technical
artefacts within the data is paramount.
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Figure 1.2: Schematic representing the 5 main DDR pathways (NER, MMR, BER, HR &
NHEJ). Clinically approved inhibitors that target DNA damage response pathways are illus-
trated. Figure reused under creative commons license [46].



1.2 Somatic mutation

A somatic mutation is a change in the DNA sequence acquired post-fertilization in non-
germline tissues. Somatic mutations accumulate throughout the lifetime of an organ-
ism. The single base pair substitution (point mutation, single nucleotide variant [SNV])
is the most frequent somatic mutation. However, any change to the nucleotide sequence,
such as insertion/deletions (indels), copy number variants (CNV) and structural variants
(SVs) are all classes of somatic mutation. In 2020, the ICGC/TCGA Pan-Cancer Anal-
ysis of Whole Genomes Consortium reported that, across 2,658 whole-cancer genomes,
approximately 95% of all somatic mutations were SNVs [47]. Although purported to
be ‘hiding in plain sight’ [48], somatic mutation has long been proposed as playing a
causal role in ageing and malignancy [49].

A subset of somatic mutations may confer a selective advantage to a cell leading to a
clonal expansion that carries the mutation to high frequency. Although these mutations
may be beneficial to the cell, in the context of multicellular organisms, clonal expan-
sions often convey an increased disease risk to the organism. Mutations that give a
selective advantage to a cell are called driver mutations, these typically occur in tumour
suppressor genes and proto-oncogenes. However, these terms have been used primarily
in the study of cancer, and it was assumed that all driver mutations were pathogenic.
Recent work from Martincorena et al. found that for some canonical cancer driver
genes, such as NOTCH1, the frequency of driver mutations is higher in normal, healthy
oesophageal tissue than that in cancerous oesophageal tissues [50]. Higa & DeGregori
have proposed that NOTCH1 mutants may have a lower probability of carcinogenesis
through selective competition favouring a decoy selective fitness peak [51]. Although
the study of somatic mutations in healthy tissues is still in its infancy, over the last five
years it has often redefined how cancer aetiology is viewed.

1.2.1 Sources of somatic mutation

The sources of somatic mutation can be categorised as intrinsic and extrinsic. Extrin-
sic sources arise from exposure to mutagens like radiation such as ultraviolet light,
cooked meats and chemical carcinogens such as nicotine smoking [52, 53, 54]. The
intrinsic sources of DNA damage arise from by-products of metabolism, such as reac-
tive oxygen species (ROS) and biological processes, such as replication and the innate
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immune system e.g., the Activation-induced cytidine deaminase (AID)/ Apolipopro-
tein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) response to viral
genomes. Highlighted below are some of the main sources of intrinsic and extrinsic
factors that give rise to somatic mutations.

1.2.1.1 Intrinsic sources of mutation

Intrinsic sources of somatic mutations are internal factors that can cause mutations in
the DNA of an organism’s somatic cells. These mutations can arise during normal
cellular processes and intrinsic factors can often accumulate in a clock-like or rate-like
fashion over time [55].

1.2.1.1.1 DNA replication errors

DNA replication is a complex and highly accurate process. However, errors can oc-
cur during DNA replication, despite its accuracy. As mentioned above, several mech-
anisms have evolved to identify and correct errors, reducing the mutation rate of DNA
replication to the range of 2.8× 10−7 mutations per base pair [56]. The wrong nu-
cleotide may be incorporated during polymerase elongation, resulting in a mismatched
Watson and Crick pairing. In E.coli, the MMR response is directed to the incorrect
base using the absence of methylated DNA on the nascent strand [57, 58]. In hu-
mans, the precise mechanism of MMR strand discrimination remains unknown but
the asymmetric loading of proliferating cell nuclear antigen (PCNA) by strand nicks
within the daughter strand is a leading hypothesis [59]. During DNA replication, the
newly synthesized DNA strand can slip or loop out, leading to the addition or deletion
of nucleotides. This can occur particularly in repetitive DNA sequences, where the
repeated motifs can cause the replication machinery to slip, resulting in DNA strand
length variations and potentially leading to mutations. Depending on the structure and
conformation of the DNA loop a copy number variant can arise or the mutational rate
around the loop can be increased by strand breaks and the subsequent repair.

DNA polymerases can replicate through DNA lesions via a process called transle-
sion synthesis (TLS) [60]. TLS allows for a cell to progress through the cell cycle,
rectifying damaged DNA in the following cell cycle. When DNA polymerase β (or
family X member) encounters a thymidine dimer it may be replaced by polymerase η
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(or family Y, such as ι & κ), that can correctly insert AA dinucleotides across from the
bonded thymidine dimers [61]. This allows the cells to progress through division but in-
creases the error rate as DNA pol η , ι and κ do not have proofreading capabilities [61].
During replication of repeating motifs slipped-strand mispairing (SSM) may occur. In
SSM, the template and newly synthesized strands denature, and the synthesised strand
then misaligns with a similar motif, leading to the insertion or deletion of nucleotides
via NER [62]. Although both expansion and contractions are possible, experimental
evidence suggests that repeat expansions occur more frequently [63].

1.2.1.1.2 DNA repair defects

Mutations in genes that are involved in DNA repair pathways can result in defective
DNA repair, leading to the accumulation of mutations in somatic cells. As highlighted
previously, DNA repair is a key process within a cell to ensure that genomic integrity
is maintained. Defective DNA repair machinery, either through inherited variation or
acquired somatic mutation, can lead to accelerated ageing and the development of sev-
eral cancer syndromes such as Cockayne syndrome and Lynch syndrome [64]. The
impact of DNA damage repair on human health will be discussed further in the section
‘Somatic mutation and health’.

1.2.1.1.3 Oxidative processes

Oxidative damage is a significant contributor to DNA damage [65]. Oxidative DNA
damage can arise from various sources, including reactive oxygen species (ROS). ROS
are by-products of normal cellular metabolism, particularly in the mitochondria during
cellular respiration [65]. ROS can include metabolised molecules such as superoxide
anion (O2−), hydrogen peroxide (2H2O2), and hydroxyl radical (OH·) [66]. ROS can
induce modifications of DNA by reacting with the nitrogenous base of the DNA se-
quence, for example the oxidation of guanine (G) to 8-oxoguanine and other oxidized
forms of DNA bases. Other intrinsic processes, such as chronic inflammation, can give
rise to the generation of ROS [67]. The methylation of cytosine to 5-methyl-cytosine
results in a state that is highly susceptible to deamination to thymine in the presence of
hydroxyl radicals [68].
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Environmental factors or extrinsic factors can also lead to ROS generation. Ex-
posure to environmental factors such as ionizing radiation, pollution, and toxins can
also generate ROS that can cause oxidative DNA damage [69, 70, 71, 72]. Ionizing
radiation, such as exposure to gamma rays or X-rays, can increase ROS production
in addition to directly altering the DNA sequence through strand breaks, abasic sites
and oxidative damage [69]. Ionizing radiation may be intentionally administered as
cancer therapy but may have undesirable long-term effects on the health of the patient
[73, 74]. Pollutants from excessive traffic congestion, such as particulate matter and
polyaromatic hydrocarbons, have also been linked to increased DNA instability and ox-
idative damage in traffic conductors in Tapei City, Taiwan [70]. Aflatoxin B1 (AFB1)
is a potent mycotoxin targeting the liver [72]. AFB1 is produced by the Aspergillus
species and is commonly found in grains and feedstuffs [75]. AFB1 is metabolised
in the liver into a genotoxic intermediate state, AFB1-exo-8,9-epoxide, by cytochrome
P450 enzymes [76]. AFB1-exo-8,9-epoxide reacts with guanine residues through SN2
substitution. In AFB1-exo-8,9-epoxide exposed cell lines, the mutational spectra were
predominantly found on G nucleotides with 50-68% of G-to-N mutations resulting in
G-to-T mutations [77, 78]. AFB1 exposure has been attributed to 0.7% of hepatocel-
lular carcinomas (HCC) in north America and 16% of HCC cases in Hong Kong [78].
In addition to exposure to environmental factors, lifestyle factors can also induce ROS
production. Poor diet, excessive alcohol consumption, over-cooked meats, and tobacco
use can contribute to oxidative DNA damage [52, 53, 54, 79]. Several antioxidant de-
fence mechanisms have evolved to neutralise ROS and repair oxidative DNA damage,
including enzymes such as superoxide dismutase (SOD), peroxisomal catalases, and
the pre-mentioned DNA repair pathways [80].

1.2.1.1.4 DNA strand breaks and transposable elements

Transposons, or ‘jumping genes’ are mobile genetic elements that can move within
the genome and cause mutations by inserting themselves into the DNA sequence. In
a 3000 bp window around transposable elements active in rice and grasses, the mu-
tation rate is ten times higher than the genomic background [81]. While transposons
do not directly cause single base mutations, they do form DSBs which are repaired
by using a complex system of protein complexes and replication machinery. An ex-

11



ample of transposon activity creating DSBs and recruitment of DNA repair complexes
within human cells is long interspersed element-1 (L1) [82]. DSB-induced replication
or break-induced replication (BIR) has a low fidelity around strand breaks due to in-
creased instability of the replication fork [83]. In somatic mutation data, kataegis is
commonly observed around sites of somatic rearrangement [84]. The same BIR mech-
anism is hypothesised to play a role in the increased mutation burden around chromoth-
ripsis events.

1.2.1.1.5 APOBEC & AID activity

AID and APOBEC are enzymes that can cause somatic mutations through nu-
cleotide deamination [85]. Both AID and APOBEC are involved in the immune system
in humans, but they can also lead to mutations when they function outside of their
normal context. AID is primarily expressed in antibody-producing B cells [86]. AID
deaminates cytosine to uracil that pairs with adenine to introduce a C-to-T mutation.
AID is responsible for mutating antibody genes during VDJ recombination through a
process called somatic hypermutation [85]. Somatic hypermutation is essential for the
generation of diversity (GOD) in antibody production that allows the recognition of
a wide range of pathogens [87]. However, AID can also have off-target effects when
DNA is in a single-strand state during repair, leading to mutations outside of antibody
genes. This can result in the development of cancer-causing mutations in certain cases,
particularly in B cell lymphomas [88]. Similarly, the APOBEC family of enzymes are
involved in the immune response as they protect against retroviruses and other mobile
genetic elements [85]. APOBEC enzymes can deaminate cytosine residues in single-
stranded DNA, leading to the formation of uracil. If not repaired properly, uracil can
pair with adenine during DNA replication, resulting in C-to-T or G-to-A mutations in
the newly synthesized DNA strand. APOBEC has increased activity on DNA loops or
mesoscale genomic features which are enriched for ‘driver genes’. This observation
has cast doubt on the role of some canonical driver genes in cancer [89].

Both AID and APOBEC are tightly regulated in normal physiological conditions
to prevent excessive mutations [90, 91]. However, when their regulation is disrupted,
such as in certain cancer cells, they can lead to increased mutation rates and contribute
to the accumulation of somatic mutations, which can drive tumour development and
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evolution. AID/APOBEC activity may lead to localised regions of somatic hypermuta-
tion called kataegis [22]. As DSBs are being repaired via resection, AID/APOBEC is
recruited and deaminates the exposed single-stranded DNA [92].

1.2.1.2 Extrinsic sources of mutation

While intrinsic sources of somatic mutations are inherent to normal cellular processes,
they can be influenced by external factors, such as environmental exposures and lifestyle,
affecting the rate and types of mutations that accumulate in somatic cells. For exam-
ple, although oxidative damage can be a source of intrinsic DNA damage, UV, ionising
radiation, and inflammation can also generate oxidative DNA damage.

1.2.1.2.1 UV-induced damage
UV light is a form of radiation that is a leading source of DNA damage in sun-exposed
skin [54, 93]. In addition to the formation of ROS, UV light exposure leads to two pre-
dominant types of DNA damage, the formation of pyrimidine dimers and DNA strand
breaks [54]. Pyrimidine dimers are the most common type of DNA damage caused
by UV light. UV radiation can induce the formation of covalent bonds between adja-
cent pyrimidine bases (thymine or cytosine) on the same DNA strand, creating a dimer.
This distorts the normal structure of the DNA helix, leading to disruptions in DNA
replication and transcription. Single covalently bonded pyrimidine dimers are called
6-4 photoproducts, while the formation of double covalent bonds forms cyclobutane
pyrimidine dimers [54]. UV radiation can induce SSBs and DSBs, where the DNA
molecule is physically severed into two or more pieces. DNA strand breaks have a
highly deleterious effect on the fitness of a cell [94].

1.2.1.2.2 Chemical mutagens and carcinogens

Exposure to certain chemicals or toxins can cause somatic mutations. Chemical
mutagens can interact with DNA and cause changes in the DNA sequence. For exam-
ple, polycyclic aromatic hydrocarbons and nitrosamines found in tobacco smoke [95],
aflatoxins produced by fungi [72], and various industrial chemicals have been shown
to be mutagenic and can cause somatic mutations [71]. While chemicals may lead to
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oxidative damage, they also may have other mechanisms of mutation, such as inter-
calating with the DNA bases (Aflatoxin) and forming bulky adducts through chemical
reactions (e.g. alkylation in the case of mustard gas).

Carcinogens are sometimes defined as chemicals that can cause cancer; however,
not all carcinogens are chemicals and, of course, not all chemicals are carcinogens.
Tobacco smoking is a leading cause of cancer worldwide and as of 2015, there were
933 million tobacco smokers [96, 97]. Cigarettes have been found to contain up to 72
known carcinogens, including, but are not limited to, nitrosamines, polycyclic aromatic
hydrocarbons, toxic metals and aldehydes [98]. Nitrosamines (NNN, NNK & NNAL)
are alkylating agents that add methyl or ethyl groups to the DNA base or phosphate
backbone [99]. Alkylators can cause base mispairing (alkylated-guanine pairs with
thymine) or they can lead to the formation of cross-strand links [99].

1.2.1.2.3 Viral mutagenesis
Some viral infections can lead to somatic mutations through multiple mechanisms. As
mentioned previously, viral infections can stimulate an inflammatory response which
creates ROS. Viral infections can also affect the mutational burden within a cell through
direct mechanisms, such as interaction and disruption of the DDR [99] and the inte-
gration of viral DNA at fragile sites [100]. Of the 14 million cancer cases in 2014,
approximately 9.7% have been attributed to viral infections [101]. Epstein-Barr virus
(EBV) and human papillomavirus (HPV) accounted for 760,000 new cancer cases in
North America alone [100]. Viruses may recruit host cell DNA repair and replica-
tion machinery, depleting the cell of repair proteins resulting in prolonged periods of
single-strand DNA and, consequently, increasing the mutation rate at these sites [102].
By reducing the availability of proteins related to repair and replication, viral infections
increase the global genomic mutation rate within a cell. In addition to the depletion of
DDR resources, viral sequences can also integrate into the host genome at fragile sites.
Viral integration causes DSBs, which increase the local mutation rate through BIR. In
the ICGC dataset, HPV-positive cancers had approximately 2.9 times more mutations
within 1,000bp of fragile sites than HPV-negative cancers [100].

14



1.2.2 Mutational signatures

1.2.2.1 Definition of mutational signatures

Mutational signatures or patterns are the result of various underlying mutagenic pro-
cesses or DNA repair mechanisms that lead to specific types of DNA mutations [84,
103]. Mutational signatures can provide valuable insights into the causes and mecha-
nisms of DNA damage and mutation accumulation in various biological contexts, in-
cluding cancer research, environmental exposure assessment, and evolutionary studies
[104, 105, 106].

1.2.2.2 Signature discovery methods

Mutational signatures are typically represented as numerical matrices or graphical plots
that summarize the frequencies and patterns of mutations observed in a set of sam-
ples. Statistical methods, machine learning, and computational algorithms are often
used to identify and characterize mutational signatures from large-scale genomic data.
The most widely used technique for mutation signature discovery is non-negative ma-
trix factorisation (NMF). NMF works by factorising the mutation data matrix into two
non-negative matrices, one representing the signatures and the other representing the
contributions of the signatures to each sample. This assumes that the mutations in a
sample are the result of the activity of a number of distinct processes, each with a char-
acteristic mutational signature. The factorization is performed by iteratively estimating
the signatures and their contributions to the samples until convergence.

Other statistical and machine-learning approaches are also commonly used. Ex-
amples include Bayesian NMF, PCA, ICA and convolutional neural networks, [107,
108, 109]. Mutational signature extraction can be computationally intensive, leading
to the development of sequential coordinate-wise descent NMF methods, such as the R
package NNLM, which was developed for factorisation of large datasets [110, 111]. In
small sample sets with insufficient power to decompose the true set of linear mutational
processes, non-negative least squares regression can be used to estimate the contribu-
tion of known signatures to a dataset [112]. Mutational signatures have been widely
applied to the study of cancer genomes leading to the identification of over 70 verified
mutational signatures [113].
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1.2.2.3 Databases of mutation signatures

The Catalogue of Somatic Mutations in Cancer (COSMIC) is a publicly available and
widely used mutational signature database that contains comprehensive information
about the mutational patterns observed in various types of cancer. The current set of
cancer signatures has been extracted using data from 23,000 cancer patients [113]. The
COSMIC database allows researchers to compare novel mutational signatures against
a curated reference with the potential to uncover new cancer biology [114].

1.2.2.4 Relating mutation signatures to sources of mutation

Mutational signature extraction is a purely mathematical approach to uncovering mu-
tation types that covary across samples in a dataset. Relating the resultant signatures
to the underlying biology has remained challenging. For example, single base sub-
stitution (SBS) signature 5 has been frequently found in cancer and normal tissues
[113, 55, 115]. SBS5 exhibits clock-like accumulation but the underlying biology re-
mains unknown, although it is believed to be a result of intrinsic biological processes
given its accumulation with age [55].

By considering the clinical metadata of the dataset, the aetiology for each signa-
ture can be investigated. However, experimental replication is often required for a
mutational signature to be definitively linked to an underlying process, as the expo-
sure history of a sample may not be captured by the sample metadata. Meier et al. used
MMR knockouts in C. elegans to experimentally link the MMR phenotype to the MMR
cosmic signatures [116]. Extrinsic factors also contribute to the mutational signature
activity within a sample for example, SBS4 and SBS92 have been associated with to-
bacco smoking and validated in animal studies [117]. Since the 1700’s physicians have
linked environmental exposures to cancer risk [118]. Recent mutational signature work
has examined signatures through an invitro approach, using controlled mutagenesis to
directly link mutagen exposure to mutational signatures and making mutational signa-
tures of known carcinogens and mutagens available to researchers [106].

16



1.2.3 Variation in the somatic mutation rate across the genome

1.2.3.1 Gene expression

Gene expression can impact somatic mutation rate variation across the genome through
two main opposing processes, transcription-coupled NER (TC-NER) and transcription-
associated mutagenesis (TAM) [119, 120]. As mentioned in the section on DNA repair,
NER surveys and repairs the coding region through TC-NER. The process of transcrip-
tion is mutagenic in itself, due to the unwinding of DNA to a single-stranded state and
polymerase misincorporation. The unwinding of DNA causes torsional strain on the
nucleic acid sequence and exposes the ssDNA to endogenous and exogenous sources
of DNA damage.

Interestingly, the mutation rate is not a linear function of gene expression. Recent
work from Chen et al. has identified a non-linear relationship between the somatic
mutation rate and gene expression [119]. In genes with no transcriptional activity, the
mutation rate is high. As expression increases, the mutation rate begins to decrease
until it reaches an inflection point and begins to increase once more as a consequence
of DNA damage accrued via high levels of transcription. Although not experimentally
validated, a likely reason for this increase in mutation at high gene expression levels
is that the availability of repair enzymes limits repair efficiency. As gene expression
varies from tissue to tissue it is expected that the mutation rate within a gene is not
consistent across the soma.

Transcription is a strand-specific process with half of the coding genes on the for-
ward strand and the remaining on the reverse strand. As DNA is preferentially damaged
on the non-template strand and repaired on the template strand, a mutational asym-
metry is observed in the rates of mutation type. Transcription strand asymmetry has
been described in bacteria, mammalian evolution and somatic mutation within cancer
[121, 122, 123]. In genetic variation and liver cancers, a strong A-to-G asymmetry is
observed over T-to-C, while C-to-A over G-to-T is the predominant asymmetry in can-
cer samples. Interestingly, in liver cancer, there is an excess of A-to-G mutations on the
non-transcribed strand, indicating that the asymmetry is associated not with preferential
repair but with preferential damage to the non-transcribed strand [123].
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1.2.3.2 Sequence content and chromatin structure

Sequence context drives variation in the somatic mutation rate across the genome [124].
The mutation rate in a 5’ upstream and 3’ downstream nucleotide context is one of the
strongest predictors of the variation across the genome. For example, the sequence
context TpCpN shows preferential mutation of C-to-T and C-to-G mutations. Through
mutational signature analysis, this preference has been explained by APOBEC activity
(SBS2) and is active in 60.7% of cancers [103]. The local sequence context is an impor-
tant covariate in the analysis of selection acting on genes. Early studies assumed that
the substitution rates were constant across the genome [125]. However, the substitution
rate is heterogeneous across the genome and accounting for differences in the local mu-
tation rate reduces the number of false positive cases of positive selection using dNdS
methods [126].

The GC content of a sequence affects the somatic mutation rate [127]. The local
GC content is the proportion of G and C nucleotides within the region. Across the
genome, the mutation rate is positively correlated with GC content [127]. However,
this relationship is contentious and it is not entirely linear. The level of DNA damage
is reduced in regions with high GC content, due to the open and active nature of high
GC content sites [128]. Extremely high GC content can result in the formation of
stable DNA and G-quadruplex structures that can inhibit DNA repair mechanisms, also
increasing the mutation rate [129, 130]. In addition to stoichiometric and DNA stability
influences, high GC content regions are also enriched for CpG dinucleotides. In the
presence of ROS, such as the hydroxyl radical, the deamination of methylated cytosine
to thymine occurs at a rate twice that than unmethylated cytosine [131].

The organisation of chromatin determines the 3D structure of the genome [132].
The 3D structure of the genome plays a crucial role in regulating gene expression and
other mutation-associated cellular processes [133]. For example, regions of the genome
with tightly packed chromatin structure may be less accessible to DNA repair machin-
ery, increasing the likelihood of mutations [133]. Additionally, regions of the genome
that are physically close together in the 3D structure may be more likely to interact,
leading to increased rates of mutations through mechanisms such as DNA transloca-
tions and copy number changes [134]. Breakpoints introduced during translocations
and copy number changes increase the somatic mutation rate through BIR.

Chromatin accessibility can be measured via specialised NGS protocols such as
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ChIP-seq or ATAC-seq [135, 136]. ATAC-seq enriches transposase-accessible chro-
matin. Transposases, such as the hyperactive Tn5 transposase, can cleave and tag open
chromatin and ATAC-seq has a number of advantages over ChIP-seq such as dramati-
cally reduced sample preparation time [137]. No prior information is required remov-
ing the need for specific protein-binding antibodies and the sensitivity of the assay is
increased for open chromatin enrichment [138, 136].

1.2.3.3 Replication timing

The 3D structure of the genome is closely related to replication timing [139]. Repli-
cation timing is the temporal order in which genomic regions are replicated during
the S-phase of the cell cycle. Replication timing is tightly regulated and varies across
different cell types and developmental stages. Differing rates of replication timing be-
tween active and X-inactivated chromosomes were first observed in 1960, implicating
chromatin organisation as a major factor in the variation in replication timing [140].
Replication timing has a complex relationship with the somatic mutation rate. The
inaccessibility of genomic regions to the replication and DNA repair mechanisms in-
creases the somatic mutation load in regions of late replication [141]. Nucleotide pool
depletion occurs at the later stages of genome replication. As the number of available
nucleotides diminishes the replication machinery stalls increasing the exposure of ss-
DNA to mutagens and DSBs [142]. Oxidative damage also occurs in the nucleotide
pool. This leads to the incorporation of DNA damage into the nascent lagging strand
[143].

1.2.3.4 Use of mutation signatures to study variation across the genome

Mutational processes are not consistently active across the genome. This can be ex-
plained via the correlation with genomic features such as sequence content, gene ex-
pression, chromatin structure and replication timing features. Mutational signatures
can provide insight into the mutagenic processes active within a given genomic region
[144]. For example, in germline variation, the activities of inferred mutational signa-
tures closely track with genomic features such as strand-dependent repair and replica-
tion timing [144]. Strand-specific mutational signature activity attributed to the repli-
cation fork direction has also been observed in cancer somatic mutation data, with an

19



increased mutation burden on the lagging strand [143].

1.2.4 Mutation rate evolution

Although energy is expended on maintaining genomic stability, mutation is the sub-
strate on which evolution acts [145, 146]. However, DDR in response to somatic mu-
tation is inefficient at removing all DNA damage lesions. The inability of selection to
reduce the mutation rate to zero has been explored in an evolutionary theory called the
drift-barrier hypothesis, in which the effective population size controls the efficiency
to optimise a trait [147]. The rates of DNA repair in the germline and the soma are
in stark contrast, with the latter having up to two orders of magnitude higher mutation
rate [148]. Several possible reasons exist for this observed difference, the number of
cell divisions, decreased expression of repair proteins, and elevated levels of mutagenic
metabolomic by-products. Nevertheless, what is clear is that the observed mutation rate
differences are consistent across species [149, 150].

1.2.4.1 Measuring the somatic mutation rate

The somatic mutation rate can be defined using several different representations. Typ-
ically, the number of somatic mutations per base pair is normalised by the number of
cell divisions or per unit of time. For somatic mutation data, the rate at which a cell type
divides is heterogeneous across cell types and indeed, between different ages within the
organism’s life cycle [21, 151]. Given this heterogeneity within cell types, representing
the somatic mutation rate as an expected number of mutations per base pair per unit
of time for a given cell type may not be accurate for the comparison of somatic mu-
tation rates across different studies of the same cell type. Mathematically, the somatic
mutation rate can be represented as:

µ =
m

G×C×T
Where µ is the somatic mutation rate, m is the number of somatic mutations, G is

the genome length, C is the average sequencing coverage from the NGS data and T is
the unit of time, typically, per years of age. The advent of single-cell whole-genome
sequencing has allowed for accurate estimations of the total number of somatic mu-
tations expected per cell for a given sample age [152]. This somatic mutational load
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per cell can be easily transformed to a per base pair per year estimate. The somatic
mutation rate is an important parameter in studies of cancer, ageing, and other diseases,
as it provides quantitative information about the frequency and dynamics of somatic
mutations in different biological contexts. Accurate estimation of the somatic mutation
rate provides insights into the underlying mechanisms of mutagenesis, DNA repair, and
genome stability, as well as the contribution of somatic mutations to disease develop-
ment and progression [153].

1.2.4.2 Evidence of selection on somatic mutations

While somatic mutations were once thought to accumulate randomly and without the
influence of natural selection, there is increasing evidence that selection acts on somatic
mutations even in healthy tissues [13, 154]. Genes under positive selection highlight
key cellular processes that can drive clonal expansions and malignancy [13, 154, 155].
Selection acting upon a genic region is measured using molecular evolutionary tech-
niques such as the dN/dS method (sometimes also referred to as Ka/Ks or ω). dNdS is
a widely used metric that consists of the ratio of the number of non-synonymous substi-
tutions per non-synonymous site (dN) to the number of synonymous substitutions per
synonymous site (dS) between two or more DNA or protein sequences. A key assump-
tion of the dNdS method is that synonymous mutations accumulate neutrally [156].
This assumption however has been contested in the literature where a subset of synony-
mous mutations in Saccharomyces cerevisiae were found to evolve non-neutrality via
disruption of mRNA levels within a cell, thus, decreasing the fitness [157]. However,
the work of Shen et al. has drawn criticism due to technical confounding and incorrect
experimental design [158]. Moreover, there are specific biases that can be introduced
by using simple models of DNA substitutions, for example the Jukes and Cantor model
assumes that all substitutions occur at an equal frequency these simpler models are
also biased by the nucleotide sequence around the DNA substitutions [10, 125]. To
model sequence context and varying rates of nucleotide substitution Martincorena et

al. have developed a 192 substitution rate model with a transition/transversion ratio
correction factor similar to Goldman and Yang. [13, 159]. dNdS ω values greater than
one imply that a subset of the non-synonymous mutations have accumulated under the
influence of positive selection. In contrast, dNdS values less than one imply that the
non-synonymous mutations were removed via negative selection.
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Perhaps the most surprising result from dNdS analysis in cancer is that there is
very little negative selection compared to the germline. Martincorena et al. found that
across all cancer types in ICGC, the vast majority of genes (98%) are evolving neutrally,
with only 0.2-0.5% under negative selection [13]. Of the 179 cancer genes that showed
evidence of positive selection, 54% were known canonical cancer genes. Applying the
dNdS methodology to somatic mutation data derived from healthy tissues has provided
fascinating insights into the role of somatic mutation in tumorigenesis [160, 93, 161].
In early cancer studies the recurrence of a mutation across cancer was a tell-tale sign of
pathogenicity, leading to the term ‘driver mutation‘ to define a mutation that is intrinsic
to tumorigenesis.

The application of dNdS to normal healthy tissues identified that some driver muta-
tions, such as Notch1 mutations, are more frequent in healthy tissue than pathological
tissues. Cell clones in healthy tissues have been shown to expand and contract in re-
sponse to environmental changes [162, 163]. To date, little research has been conducted
on the role of somatic mutation in a protective context. One study conducted by Wang

et al. found that somatic mutations in non-alcoholic steatohepatitis (NASH) disease
genes associated with lipotoxicity suppression were under strong selection suggesting
novel therapeutic targets [164]. The findings of Wang et al. are consistent with evolu-
tionary decoy models, which aim to explain the higher frequency of NOTCH1 mutants
in healthy tissues compared to tumour samples [51].

1.2.5 Somatic mutation and Health

1.2.5.1 Cancer

Cancer is a disease of the genome and the best-studied example of the impact of somatic
mutations for human health [165, 166, 167]. Cancer itself is not a singular pathology
but a collection of diverse and complex pathologies grouped by cell or tissue type, often
with shared causal aetiologies [168]. It remains a leading cause of death worldwide,
with over 10 million deaths in 2020 [169]. In 2021, 6.4 billion dollars was appropriated
to the US National Cancer Institute (NCI) across various projects, such as the cancer
moonshot program that aims to facilitate scientific discovery, foster collaboration be-
tween institutes and increase the sharing of cancer data [170, 171].

Aggregated cancer data has been actively curated and stored in databases for nearly
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20 years [172, 173]. Interestingly, the majority of cancer-associated genes were iden-
tified before the boom in cancer NGS data. Several early studies identified specific
somatic mutations in cancer-associated genes, such as TP53 coined ‘guardian of the
genome’, KRAS, PI3K and BRAF [174, 175, 176, 177]. NGS data gave an unprece-
dented insight into the molecular mechanisms of cancer and the evolutionary process
active within tumours.

An interesting observation that has arisen in cancer evolution is that the class of
mutation type acting on tumour suppressor genes (TSGs) and oncogenes differ. TSGs
show strong selection for truncating mutations, while oncogenes show preferential pos-
itive selection in missense mutations [13]. These mutations can confer increased cell
survival, proliferation, and resistance to treatment, providing a selective advantage to
the cancer cells carrying these mutations. Additionally, studies have shown that somatic
mutations in cancer cells can be subject to negative selection as well, albeit a small pro-
portion, where certain mutations are removed from the tumour population due to their
detrimental effects on fitness. Mutations that trigger an immune response (neoanti-
gens) have been reported to be under negative selection [178]. This result, however, is
contested within the literature [179].

Normal physiological mutagenic processes and environmental exposures do not
solely drive cancer aetiology. Genetic variation acting on DNA repair proteins can
influence an individual’s risk of cancer development [180]. About 5 to 10% of can-
cers have been attributed to inherited genetic variation [181]. BRCA1 and BRCA2 de-
fects in breast and ovarian cancers are amongst the most studied genes in hereditary
cancer or cancer syndrome [182, 183, 184]. BRCA1 and BRCA2 play a role in DSB
repair but have different functions within the DDR response [185]. Although it is well-
established that genetic modifications can dramatically affect the mutation rate, it is not
clear whether variants with a weak effect on the efficiency of DNA polymerases and
repair enzymes have an impact on the mutation rate. As more data on somatic mutation
becomes available, the power of studies to identify weak modifiers of the mutation rate
will be uncovered, shedding light on the variation driving somatic mutation.

1.2.5.1.1 Mismatch repair mutational signatures in Lynch syndrome samples
Hereditary non-polyposis colorectal cancer (HNPCC), also known as Lynch syndrome,
is an inherited cancer syndrome caused by mutations in genes involved in DNA MMR,
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primarily MLH1, MSH2, MSH6, and PMS2 [186]. Lynch syndrome accounts for 2 to
3% of all colorectal cancers, with population-wide prevalence estimates ranging from
0.4% in Iceland to 0.05-0.27% across diverse populations [187, 188]. In addition to
colorectal cancer, the risk of developing other cancers is increased, these include en-
dometrium, ovary, stomach, small intestine, pancreas, biliary tract, urinary tract, and
brain [189].

In Lynch syndrome, the loss of MMR function leads to a high frequency of so-
matic mutations and instability of microsatellites, short DNA sequences that are prone
to replication errors. Microsatellite instability (MSI) is a hallmark of Lynch syndrome.
In immuno-oncology tumours are annotated as hot or cold, reflecting MSI high/low
status. MSI and the high mutation burden in Lynch syndrome have important clinical
implications for targeted immunotherapies. They can be used as diagnostic and prog-
nostic markers, as well as predictors of response to certain treatments. For example,
tumours with high levels of MSI in Lynch syndrome have been shown to be more re-
sponsive to immunotherapy with immune checkpoint inhibitors, which can activate the
immune system to attack the tumour cells [190].

1.2.5.1.2 Repair defects in nucleotide excision repair
An inherited pathogenic mutation in NER genes can lead to severe disorders and syn-
dromes. Loss of function in ERCC8 (CSA) or ERCC6 (CSB), two genes integral to the
TC-NER response, lead to Cockayne syndrome (CS) [191]. ERCC6 also plays a role
in DSB repair [192]. The life expectancy of individuals with Cockayne syndrome is,
on average, 12 years [193]. Individuals with Cockayne syndrome exhibit a range of
phenotypes, including, photosensitivity, ‘failure to thrive‘, microcephaly and progeria
[193, 191].

Xeroderma pigmentosa (XP) is a rare photosensitive disease caused by mutations in
any of the seven XP genes (XPA through G) and, rarely, ERCC1 [194]. The XP genes
are critical for the removal of UV-induced adducts during NER. Patients diagnosed with
XP have a 10,000 times increased risk of basal cell carcinomas and 2,000 times increase
in melanoma risk [195]. XP is a progeria syndrome with individuals experiencing
accelerated ageing phenotypes, shorter lifespans and in 20-30% of cases neurological
problems and intellectual deficiencies [194]. In leukaemia, patients with XP mutations
have 25 times higher mutation burdens than non-XP leukaemia [196].
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Although CS and XP have shared aetiology via loss of NER, they have remarkably
different somatic mutation rates and consequently risks of cancer progression [197].
The difference between XP and CS arises in the NER repair process, in XP the global
NER response is deficient leading to the accumulation of UV-induced adducts leading
to high mutation rates. In stark contrast, CS has deficiencies in TC-NER, resulting in a
mutation rate consistent with cancers of unknown aetiology [197].

1.2.5.2 Neurological and psychiatric disorders

Somatic mutation has been widely implicated in neurological and psychiatric condi-
tions. As mentioned above, a substantial proportion of XP patients experience neuro-
logical symptoms that can develop in childhood up to the third decade of life [198].
The resulting neurological conditions can range from mild to severe ataxia, deafness
and intellectual disability [199]. In the most severe form of XP, De Sanctis-Cacchione,
patients exhibit several other neurological symptoms such as hyperreflexia and altered
speech [198].

What remains unclear is whether the increased mutation burden in XP is causative
or if the pathogenic mutation in the NER genes acts in another pathway resulting in
the observed neurological symptoms. The non-availability of brain tissue inhibits the
large-scale analysis typically required to understand the role of somatic mutation. So-
matic alterations are well-studied in diseases arising from genetic anticipation [200].
In anticipation, an expansion, usually in a triplet repeat, leads to somatic instability.
The phenotype is dependent on the location of the expanded repeat, for example, in
Huntington’s disease, the CAG repeat expands with age, leading to increased genomic
instability and the age-dependent onset of the disease [201]. The expansion of the CAG
repeat in Huntington’s disease leads to the loss of the regulatory promoter region. Frag-
ile X syndrome is in stark contrast to Huntington’s disease as the onset of neurological
problems occurs during development while the physical symptoms do not develop until
early adolescence [202].

Understanding the role of acquired single-base somatic mutations and their impact
on neurological health is poorly understood. The vast majority of studies of somatic
mutation in neurological disease arise from a phenomenon called somatic mosaicism
[203]. Somatic mosaicism occurs early in development, with the propagation of the
mutation depending on the location in the early tissue and the time at which the muta-
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tion occurred in differentiation [204, 203]. Somatic mosaicism is conceptually similar
to the clonal expansion of cells later in life. As previously described clonal expansions
may not only contribute to pathogenesis but also to improving the cellular fitness in tis-
sues in the presence of disease resulting in a less severe disease phenotype [205, 163].
The clonal expansion of blood stem cells is an important risk factor for haematological
malignancies and a range of diseases, such as CAD and cerebral infarction [206, 207].

1.2.5.3 Clonal haematopoiesis of indeterminate potential

Clonal haematopoiesis of indeterminate potential (CHIP) is the expansion of a single
hematopoietic stem cell that has acquired a somatic mutation typically in epigenetic
regulators, DNA repair genes and splicing factors. The most commonly mutated genes
in CHIP are the epigenetic regulators DMNT3A, TET2 and ASXL1; DNA repair genes
TP53 and PPM1D; and splicing factors SF3B1, and SRSF2 [208]. CHIP typically de-
velops late in life as the prevalence of CHIP is 1% in those under 40, increasing to 10
to 20% in those over 70 [209, 210, 211].

CHIP is a particularly interesting phenomenon for a number of reasons. CHIP is not
a malignancy in itself, and while there is a shared aetiology between the drivers of CHIP
and leukaemia, only 4% of individuals with CHIP develop blood cancer [211]. The
number of haematopoietic stem cells (HSCs) is estimated to be in the tens of thousands
this number of stem cells promoted diversity and redundancy in the stem cell population
[212]. In a 115-year-old healthy woman, all of the nuclear DNA was derived from
a single HSC clone [213]. No haematological malignancies were present, indicating
that normal blood production can continue despite loss of diversity in the HSC pool.
However, the telomere lengths were found to be shorted in blood cells compared to
other tissues indicating a finite lifespan of HSC. An important issue with samples in
CHIP is that somatic mutations can be carried to high frequency, this is problematic
as distinguishing between germline and somatic mutations requires a second sample to
accurately call high-frequency somatic mutations.

The clonal dynamic of CHIP shows that for different mutations, the age at which
the mutation occurs also impacts the trajectory of the clone [214, 215]. For example,
DMNT3A mutated clones preferentially expand quicker when arising in early life com-
pared to later in life, whereas mutations in splicing genes expanded later in life [214].
At the outset, the differing fitness effects as a function of age are surprising as the loss of
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function in genes should not alter the cellular landscape. This can be reconciled by con-
sidering the biology of the main genes mutated in CHIP. Epigenetic regulators are the
most common mutated genes in CHIP, and epigenetics is a well-established contributor
to ageing [216]. Deregulation of epigenetic regulators leads to the loss of nucleosomes
and heterochromatin [217]. Demethylation of histone mark H3K4me3 can also im-
pact the longevity of organisms [218]. By understanding the relationship between age
and mutagenesis, we can begin to uncover the variation in risk across lifespan due to
age-related changes in the cellular landscape.

1.2.5.4 Ageing

Under normal physiological conditions, somatic mutations accumulate approximately
linearly throughout life [219, 152]. Somatic mutations have been implicated in the age-
ing process for more than 60 years by Leslie Orgel and Leo Szilard in two separate
theories [220, 221]. The Orgel model implicates aberrant ribosomal proteins leading to
an ‘error catastrophe’ as the reduced efficacy of the ribosome to produce functioning
proteins creates a feedback loop accelerating the ageing process. While no experi-
mental evidence has supported this theory it has not been refuted [222]. The Szillard
model, however, assumes a ‘two-hit‘ process with somatic mutations accumulating lin-
early with the ploidy of the organism. Building on the redundancy of the second copy
of the chromosome in each cell, once the second ‘hit‘ occurs in the second copy of a
gene, the non-linearity of the ageing phenotype in older individuals is explained.

As highlighted by Millholland et al., this model breaks down when ploidy is taken
into account across different species, while it is not inconceivable for a three- or four-
hit model to exist, triploid flies do not outlive their diploid counterparts nor do hap-
loid wasps have a reduced lifespan compared to diploid members of the same species
[223, 224]. Millholland et al. have proposed the ‘somatic mutation catastrophe the-
ory of ageing’, which borrows elements from the Orgel and Szilard models [222]. The
Millholland model, suggests that the altered gene expression, in addition to altered pro-
tein sequences buffered by ploidy, creates the ageing phenotype. This may be overly
simplistic to explain the complexities of ageing. Moreover, as we have described pre-
viously in this review, the integrity and stability of the genome are controlled by many
genes (repair genes, epigenetic regulators etc...) and functional regions (telomeres, and
regulatory sequences).
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1.3 High-throughput short read sequencing

1.3.1 Background

High-throughput sequencing (HTS) is a relatively new technology that revolutionized
the field of genomics. The history of HTS can be traced back to the 1990s when the first
massively parallel DNA sequencing method, known as pyrosequencing, was developed
by Pål Nyrén and Mostafa Ronaghi at the Royal Institute of Technology in Stockholm,
Sweden [225, 226]. Similar to methods developed by Fred Sanger, pyrosequencing
used sequencing-by-synthesis, i.e, the incorporation of dNTPs by a DNA polymerase.
The key improvements in pyrosequencing over Sanger sequencing were both in the
throughput of sequencing reads produced and as the dNTPs are incorporated into the
new strand, luciferase is cleaved, allowing the direct reading of the DNA molecule to
avoid the laborious and time-consuming electrophoresis stage.

The first commercially available HTS platform was 454 Life Sciences’ Genome
Sequencer 20, which was released in 2005. Using the pyrosequencing technology, the
Genome Sequencer 20, used enzymes to produce light when nucleotides were added
by DNA polymerase to a template DNA strand [227]. This light was then detected and
used to determine the sequence of the DNA. Other NGS platforms quickly followed, in-
cluding the Illumina Genome Analyzer, based on the Solexa technology and the SOLiD
sequencing system from Applied Biosystems (now Thermo Fisher Scientific). These
platforms used different sequencing technologies, such as reversible terminators (Illu-
mina) and sequencing by ligation (SOLiD) and produced much higher throughput than
the Genome Sequencer 20 [227].

Sequencing-by-synthesis relies on detecting fluorescent signals emitted during the
synthesis of new DNA strands. Sequencing-by-synthesis technologies, such as the
Illumina-acquired Solexa system, have dominated the short-read market. Illumina uses
a technique called ‘bridge amplification’ to amplify the DNA fragments and generate
clusters of identical sequences that can be sequenced in parallel. This simplifies the
library preparation stage as the DNA is amplified on the flowcell directly. As the data
used in this body of work is generated using the Illumina system, the sequencing-by-
synthesis protocol used by Illumina is detailed below.

The genomic DNA is fragmented, and adapters and unique barcodes are ligated to
the ends of the fragments. These adapters contain sequences that are complementary
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to the primers used in the sequencing reaction. The adapters are annealed to a solid
surface, such as a glass slide of the flowcell, forming a lawn of DNA fragments, (Fig.
1.3). A primer is annealed to the adapters, and DNA polymerase is added to extend
the primer, creating a new DNA strand. As the new strand grows, it eventually disso-
ciates from the template, leaving a single-stranded ’bridge’ between the new and old
strands. Another primer is annealed to the new strand, and the process is repeated, re-
sulting in a cluster of identical DNA strands that are each attached to the surface by one
end. The clusters are then amplified by bridge PCR, which involves adding a second
primer that anneals to the opposite end of the DNA fragment and extends the DNA
strands across the bridge. The process is repeated multiple times, resulting in millions
of clusters of identical DNA sequences that are densely packed together on the surface.
A fluorescently labelled reversible terminator nucleotide is added to the reaction, and
the nucleotide is incorporated by DNA polymerase and identified based on the fluores-
cent signal. The fluorescent group is cleaved from the nucleotide, allowing the next
nucleotide to be added, and the process is repeated for many cycles. The sequence of
the DNA is determined by analysing the pattern of fluorescence in each cluster. The
reversible terminators allow for control of how many bases are added, resulting in a
fixed read length.

Whole genome sequencing (WGS) captures the full genetic sequence of an indi-
vidual. This, however, may be prohibitive in terms of cost and computational storage.
Targeted sequencing allows for the sequencing of specific regions of the genome, such
as the exome in the case of WES and in oncology gene panels, where only genes clini-
cally relevant to cancer are sequenced. Targeted capture kits can use four different types
of bait or probe sequences to capture the target region, dsDNA (e.g., TWIST), ssDNA
(e.g., IDT xGEN Exome Research Panel v1.0), ssRNA (e.g., Agilent) and dsRNA (e.g.,
Dynegen). The target capture used in the UK Biobank WES was the IDT’s xGEN Ex-
ome Research Panel v1.0, a ssDNA bait library protocol that captures 39 MB of exome
sequence.

The Illumina technology can be used for WGS, WES and targeted sequencing. The
library preparation step is a critical part of Illumina sequencing that involves the con-
struction of DNA or RNA libraries from the original sample, which is then used for
downstream sequencing. The library is a set of adapters which are ligated to the 5’ and
3’ ends of the sheared DNA fragments. The adapters contain a number of distinct se-
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Figure 1.3: Overview of the Solexa-Illumina sequencing-by-synthesis protocol. Permission
granted for reuse from Oxford academic under license 5540830021859 [228]



quences, such as the P5 and P7 sequences which bind to the complementary oligos on
the flow cell. The adapters also contain a unique tagging sequence identifying reads be-
longing to a specific sample in pooled (multiplexed sequencing) runs along with unique
molecular indices (UMI) that allow for identifying specific DNA fragments. There are
different types of Illumina library preparation protocols available, each tailored for spe-
cific applications. Commonly used Illumina libraries are TruSeq, NextEra and Ampli-
Seq. In the UK Biobank WES dataset, the IDT xGEN research capture kit was used
to capture the coding region of the genome. The captured DNA was PCR amplified
using the KAPA HiFi polymerases, before sequencing on an Illumina NovaSeq 6000
machine at the Regeneron sequencing facility [229].

1.3.2 Types of nucleotide mismatches in NGS data

The objective of this thesis is to investigate sources of variation in somatic mutation
in low-depth sequencing data from large numbers of sequenced individuals. To under-
stand somatic mutation within single-sample sequencing datasets, one must understand
sources of error within NGS data. We have previously detailed the sources of DNA
damage that may lead to somatic mutations. DNA is constantly damaged and repaired
in normal physiological conditions; however, when samples are taken for sequencing,
multiple factors can lead to increased DNA damage, the damaged DNA is then se-
quenced, leading to mismatches in the data which are indistinguishable from somatic
mutations. Typically, mismatches derived from damaged DNA occur only on one NGS
read. For germline calling, this is not a substantial issue as genetic variation should be
present on 0%, 50%, and 100% of reads up to sampling bias and in the absence of copy
number variation. Next, we will detail some of the major sources of error in NGS data.

The first major contributor to noise in NGS datasets is sequencing errors. Although
the accuracy of base calls in modern sequencers has significantly improved in recent
years there are still approximately 0.1-1% of erroneous bases due to sequencing errors
[230]. In paired-end sequencing of DNA fragments shorter than twice the read length a
proportion of the DNA fragment is sequenced twice. By sequencing the molecule twice
and assuming that sequencing errors are independent, the sequencing error on overlap-
ping read pairs can be reduced by the square of the sequencing error rate at those sites
[231]. Sequencing errors arise during the incorporation of the dNTPs during the syn-
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thesis stage of sequencing and may be due to polymerase bias or the wrong base being
incorporated [232]. As with endogenous polymerase activity, sequencing-by-synthesis
has high error rates at repetitive sites due to polymerase slippage [233, 234]. Chemical
modifications from DNA damage during library preparation, such as 8-oxoguanine, can
give rise to a G-to-T mismatch during sequencing. To offset DNA damage, DNA se-
quencing library preparation steps typically include DNA repair enzymes, however, this
repair process is limited by the exposure of the sample to the source of DNA damage,
I.e. exposure to heat such as room temperature or by the use of expired reagents. During
the clinical investigation of suspected pathological tissues, the biopsied material may
be formalin-fixed to preserve the tissue for histological analysis. Subsequent sequenc-
ing of formalin-fixed paraffin-embedded (FFPE) tissues can introduce DNA lesions
that are difficult to distinguish from somatic mutations [235]. Although sequencing
of fresh specimens remains the best option for reducing false positive mutation calls,
some computational approaches have been developed specifically for FFPE-sequenced
tissues [236].

As we detailed previously, DNA polymerases have high fidelity. During amplifica-
tion, PCR may introduce two main error types [237]. Firstly, duplicate reads may arise,
these can be identified using the optical location within the flow cell and the unique
barcode. The second type of error introduced by PCR is the incorporation of the wrong
nucleotide. Identification of PCR errors can pose a challenge because if the error occurs
in an early PCR cycle the number of reads containing the mismatch will grow exponen-
tially. This may be problematic in some cases as the base quality score may indicate
that the base call is accurate.

The alignment of the sequencing read to the reference genome may also give rise
to mapping artefacts. Mapping artefacts are prevalent around recombinant sites, such
as structural variants and repetitive regions such as microsatellites, centromeres and
telomeres [238]. Typically, regions where multi-mapping is likely to occur, are re-
moved from downstream analysis. Although substantial research has been conducted
on genome stability in repetitive regions, for example, in genetic anticipation of Parkin-
son’s disease, the exclusion of repetitive regions in somatic mutation has led to a blind
spot in our understanding of mutagenesis.
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1.3.3 How somatic mutations are called

An important stage in calling somatic mutations is removing germline variants. The
nomenclature surrounding a DNA mutation can be ambiguous and often depends on
the context in which the work is presented or the frequency of a mutation within a
database. Broadly speaking, cells within an organism such as Homo sapiens can be
split into somatic and germline cells. The DNA in germline cells is passed onto the
progeny, while somatic cells make up all other tissues and are not passed on to the
progeny. Mutations that arise in the germline are present in populations of individuals
at a frequency influenced by parameters such as their selective coefficient and the pop-
ulation size [239]. These mutations are grouped by the size of the DNA alteration and
often vague frequency thresholds. For example, single nucleotide variants that appear
on more than 1% of chromosomes in a population are termed single nucleotide poly-
morphisms (SNP), whereas germline variants that occur at a frequency less than 1% are
called single nucleotide variants (SNVs).

Large population sequencing projects such as 1000 Genomes Project and GNO-
MAD have characterised the most common variants across multiple populations [240,
241]. Over 1 billion SNPs are characterised within the dbSNP database (v155), and
approximately 4-5 million SNPs are in each individual’s genome [242]. Identification
of germline variants is carried out against the backdrop of a reference genome. At
homozygous sites, we would expect to see all DNA reads containing the reference or
alternative allele. For heterozygous sites, 50% of DNA reads would be expected to
contain the reference allele and 50% the alternative allele.

In contrast to genetic variant detection, the recovery of somatic mutations in can-
cer samples relies on using a normal tissue sample from the same individual. Variants
observed in the tumour sample are compared against those found in the ’healthy’ tis-
sue and differences that pass quality control are called as somatic mutations. For the
majority of somatic mutations, we expect the frequency of reads to be less than 50%.
In principle, mutations can be present in more than 50% of reads if mitotic recombina-
tion events have occurred, resulting in ‘loss of heterozygosity’ (LOH) or if the ploidy
is affected by copy number changes. The purity of the tumour samples and the clonal
structure of the somatic mutation all impact the variant allele frequency.
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1.4 GWAS

1.4.1 Objectives of GWAS

Genome-Wide Association Studies (GWAS) is a forward genetic approach used to
identify the genetic variants associated with complex traits or diseases. The power
of GWAS relies on large sample sizes to uncover the contribution of genetic varia-
tion to a disease or trait. SNPs typically contribute a small proportion of the heritable
component of trait variation [243]. GWAS leverage technological advances in DNA
genotyping (via microarrays and imputation, NGS) and computationally efficient algo-
rithms [244, 245, 246, 247]. Some of the key objectives of GWAS are to identify novel
genes associated with disease [248], estimate the genetic contribution to a trait [249]
and unravel the complex nature of some complex polygenic diseases, such as CAD and
T2D [15].

1.4.2 History

The first GWAS was published in 2005 when researchers identified an association
between a genetic variant on chromosome 8 and age-related macular degeneration
(AMD), a common cause of blindness in elderly individuals [250]. This study included
96 cases and 50 controls, genotyped at 116,204 sites across the genome. The next ad-
vancement of GWAS came in 2007 when the Wellcome trust case control consortium
(WTCCC) published 14,000 cases and 3,000 shared controls across seven common
diseases, (Fig. 1.4) [251]. The WTCCC identified 24 independent association sig-
nals across the seven disease types, some in known risk loci. A key methodological
approach of the WTCCC GWAS is the use of imputation. All 17,000 samples were
genotyped with the Affymetrix GeneChip 500K Mapping Array Set and imputed with
the HapMap reference set to infer approximately 2 million genetic variants across the
sample set.

A central tenet of early GWAS studies was ’common disease rare variant’. With the
release of the 1000 genomes reference panels in 2013, greater genetic variation and rare
variants could be accurately imputed [240, 252]. These advances led to what become
known as the poster boy of GWAS, the 2014 GWAS of 36,989 cases and 113,075
controls by the psychiatric genetics consortium (PGC) [253].
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Figure 1.4: Manhattan plots of the first large-scale GWAS performed on seven com-
mon diseases. Figure reproduced with permission under the Creative Commons licence
(5540960502953) from [251]



As of May 2023, Yengo et al. have performed a GWAS on height in 5.4 million in-
dividuals [254]. This study is the largest published GWAS and has identified 7,209 in-
dependent loci associated with height explaining approximately 40% of the phenotypic
variance in European ancestry. Although larger sample sizes are unlikely to contribute
new loci to height in Europeans, the work of Yengo et al. does highlight an impor-
tant issue in quantitative genetics, namely the underrepresentation of non-Europeans in
datasets. Of the 5.4 million samples, approximately 75% were of European ancestry.
Although the effect sizes of the tested variants were consistent across ancestries the
significant loci explained only 10-20% of the variation in other ancestries. This has
major implications for genomic medicine that use the contribution of genetic effects to
stratify patients based on risk and therapy [255].

1.4.3 Design and validation

GWAS typically involve large-scale analysis of genetic data from thousands to millions
of individuals to identify genetic variants associated with a particular trait or disease.
Study design considerations include defining the phenotype of interest, selecting ap-
propriate controls, ancestry considerations, and determining the sample size through
power calculations [256, 257].

Selection of the genotyping platform or methodology is important for obtaining ac-
curate and reliable genetic data. Different genotyping platforms have different strengths
and weaknesses, and their selection depends on factors such as the research question,
budget, and available resources. For example, WGS will give the most information
per sample, but the size and storage cost would not be feasible for datasets in the or-
ders of millions [258]. For this reason, most published GWAS have been performed on
microarray data that has been imputed with the latest haplotype reference datasets.

QC measures are applied to genotyping data to ensure data accuracy, reliability,
and reproducibility. This may include sample quality assessment, genotype calling,
SNP quality control, sample-level QC, batch effect assessment and correction, and im-
putation and phasing QC [259].

Statistical methods are used to identify genetic variants associated with the pheno-
type of interest. This may involve various statistical tests such as the chi-square test,
logistic regression, linear regression, or more advanced methods like linear mixed mod-
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els (LMMs) or machine learning algorithms [260, 249, 261, 262, 247, 263]. The most
commonly used LMMs are detailed in full below. Multiple testing correction methods
are applied to control for false positives but in practice, the genome-wide significance
p-value threshold of 5×10−8 is often used [264].

Replication and validation of GWAS findings in independent datasets or popula-
tions are crucial to confirm the robustness and generalizability of the results. Replica-
tion studies involve repeating the GWAS analysis in a separate dataset, while valida-
tion studies test the replicated findings in additional datasets or populations [256, 257].
Functional annotation of the identified genetic variants can help elucidate their potential
biological mechanisms and provide insights into the underlying biology of the pheno-
type. Comprehensive browser-based pipelines have been developed for downstream
analyses to investigate the functional relevance of the identified variants [265].

Meta-analysis is often performed to combine GWAS summary statistics from mul-
tiple studies to increase statistical power and identify additional genetic variants as-
sociated with the phenotype of interest. Meta-analysis involves combining summary
statistics or individual-level data from multiple studies, and appropriate meta-analysis
methods are applied to account for heterogeneity and other sources of variability across
studies [266]. For example, Yengo et al. performed a meta-analysis on height using
281 studies from the GIANT consortium and 23andme to achieve a sample size of 5.4
million individuals [254].

1.4.4 Linear mixed models

Linear mixed models (LMMs) are the most frequently applied statistical model in
GWAS [267, 268, 269, 270, 271, 272, 273, 261, 246]. A key strength of LMMs over
traditional linear modelling is their ability to account for population structure, cryptic
relatedness, and other sources of genetic and environmental variation. LMMs are an
extension of the traditional linear regression models used in GWAS, but in addition,
they incorporate random effects to account for correlations among individuals due to
genetic relatedness, via a covariance matrix proportional to the kinship matrix [274].
LMMs are particularly useful in GWAS because they can effectively control for false
positive associations and increase statistical power by properly accounting for these
sources of variation, which can lead to spurious associations and inflated type I error
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rates [275]. The specific form of the LMM will depend on the software or statistical
model used, but it generally includes binary or continuous trait values as the dependent
variable, the genotype data as the independent variable, a kinship matrix as the random
effect and fixed-effect covariates (e.g., age, sex, PCs) to account for other sources of
variation [268, 269, 270, 271, 272, 273, 261, 246, 276]. The resultant p-value and effect
size are used to evaluate the strength of the association between the tested SNP and trait
of interest.

Calculating the variance components of the random effect contributes a signifi-
cant burden to the computational complexity of the LMM as the number of rows and
columns in the kinship matrix is equal to the number of samples. This quickly becomes
intractable for GWAS sample sizes approaching millions of individuals and millions of
SNPs. Early GWAS models had a running time of O(MN2) or O(M2N), with M the
number of genotypes used to estimate genetic kinship coefficients [261]. Major reduc-
tions in memory and running time have been achieved by using LD structure to subset
the number of SNPs used in the random effect and efficient spectral decompositions
during Monte Carlo REML variance component estimation [272].

BOLT-LMM advanced GWAS methodologies in terms of power and efficient run-
time by incorporating some key algorithmic and Bayesian statistical approaches to
achieve a runtime O(MN1.5). As the spectral decomposition of the random effect is
cubic in nature, BOLT-LMM uses a conjugate gradient iterative method to reduce the
runtime of the variance components of the LMM to linear with respect to N and M. The
memory footprint of BOLT-LMM is also dramatically reduced as the random effect ma-
trix is only computed in factorised form, meaning that the N by N random effect matrix
only ever exists in M by N vectorised form [261]. The power of BOLT-LMM over tra-
ditional methodologies is due to two features. The infinitesimal model of polygenicity
is relaxed and modelled as a mixture of Gaussian effect sizes allowing for large effect
loci to be modelled as well as modelling the background genome-wide effects due to
population structure. BOLT-LMM also adopts a leave-one-chromosome-out (LOCO)
scheme to model the polygenic background and avoid proximal contamination [277].
Incorporating the polygenic background in the SNP effect size estimation has been de-
veloped further in the REGENIE GWAS model and in PGS-LMM, which provides a
flexible framework for incorporating LMMs and the polygenic background [247, 278].

Although BOLT-LMM remains the gold standard in terms of accuracy, more effi-
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cient methods with comparable accuracy have been developed [246]. FastGWA uses
a grid-search-based REML algorithm to estimate the variance components on a sparse
kinship matrix, this advancement reduces the overall runtime to O(MN). In a compar-
ison on 400,000 individuals in the UK Biobank, the runtime of fastGWA was approx-
imately 1.1% (20 minutes) that of BOLT-LMM and required approximately 5 GB of
memory compared to 55 GB for BOLT-LMM [246].

Early GWAS studies focused on the strength of the association of a particular locus
to a trait. However, as the field of GWAS moves towards clinical utility, the magnitude
of the effect of each locus has become increasingly important. Accounting for external
sources of phenotypic variation can often lead to a reduction in the standard error,
resulting in greater precision in the effect size estimate. By accounting for the polygenic
background, the effect sizes can be more accurately estimated, allowing for greater
precision in estimating the genetic risk [278].

1.4.5 Phenotype prediction

Polygenic scores (PGS) are a quantitative measure of an individual’s genetic risk for a
particular trait or disease, based on the cumulative effect of multiple genetic variants
across the genome. The simplest form of PGS is the weighted sum of the genotype (en-
coded 0, 1 & 2) and effect size of the SNPs estimated from GWAS. PGS developed out
of the field of animal and plant breeding, where an estimated breeding value (EBV) per
animal or crop was derived using phenotypic data from the individual and phenotypes
of its relatives [279]. The first use of genotypic markers dates back to the end of the
20th century [280, 281]. A key distinction between EBV and PGS is that EBV aims to
provide a group mean, i.e a trait prediction in the offspring, while PGS aims to predict
risk within the sample. This disparity leads to a large difference in the predicted values
as prediction accuracy within a sample is low compared to prediction accuracy within a
group. The heritability of the trait in question bounds the PGS accuracy for sufficiently
large sample sizes, meaning that the utility of PGS in diseases with little to no heritabil-
ity will be marginal. While not applicable to all traits, PGS have several clinical use
cases, such as predicting disease risk [280], the potential stratification of individuals in
clinical trials [282] and the realisation of personalised medicine [283, 284].

Type II diabetes (T2D) [285] and cardiovascular disease (CAD) [285] are the most
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studied human health traits using PGS. For example, In CAD, 8% of the population
tested had a greater than 3-fold increased risk of CAD. For individuals with a T2D
diagnosis, a 1 standard deviation decrease in the PGS is statistically associated with a
reduction of 1.3 years in the age of onset [285]. PGS in several psychiatric phenotypes,
such as schizophrenia [286], bipolar [287] and depression [288], has also shown clinical
utility.

1.4.6 PGS construction

In its simplest form, a PGS can be constructed by summing over the product of the
genotype dosage and effect size. There are some caveats to this method, firstly an
assumption is that the SNPs are independent. To account for the LD structure in the
genome, independent tagging SNPs are used. The addition of SNPs in LD with the tag-
ging SNP will inflate the PGS. The PRSice framework uses the clumping and thresh-
olding (C+T) algorithm to greedily remove ‘LD friends’ [289]. For a given genome
window, C+T identifies the SNP with the strongest association to the trait in question
based on a p-value and removes SNPs in LD above a user-defined R2 threshold. This
removal of SNPs within a window is problematic as the SNPs in LD with the tagging
SNP may contribute to the variation in the phenotype, thus the derived PGS may be
underpowered. If the genotypic data are available from the dataset in which the effect
sizes are estimated, methods such as best linear unbiased predictors (BLUPs) can be
used to avoid the issue of LD structure. This in practice is not the case as summary
data only is usually used, derived from genotypic data from hundreds of thousands of
individuals.

Recent work on PGS has used Bayesian modelling to condition the posterior mean
effects from summary data. These methods model the estimated effect sizes condition-
ing on the heritability (estimated from the summary data) and genomic structure (LD
maps derived from 1000 genomes). The LDpred model uses two parameters to infer
a PGS score, heritability and the fraction of causal SNPs [290]. A major drawback
of this approach was that the optimisation of the fraction of causal SNPs is tuned in
a validation dataset. To avoid subsetting the dataset and improve computational effi-
ciency, LDpred2 has implemented a grid search which estimates the fraction of causal
markers from the data directly [291]. Other methodologies that implement Bayesian
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multiple regression such as the summary Bayesian alphabet (SBayesR) have also been
developed [292].

1.5 UK Biobank

1.5.1 Background

The UK Biobank is a large-scale, long-term research project that aims to investigate
the complex interplay between genetic and environmental factors in human health and
disease [293]. It is a unique resource that provides data and samples from half a mil-
lion individuals across multiple ancestries in the United Kingdom, making it one of the
largest and most detailed biobanks in the world. The project was conceived as a means
to facilitate large-scale genetic research by creating a comprehensive database of health-
related information and biological samples from a large cohort of individuals. The goal
was to understand the causes and risk factors for various diseases, including cancer,
heart disease, diabetes, and dementia, and to promote the development of new diag-
nostic tools and treatments. The UK Biobank has enabled numerous ground-breaking
research studies in diverse fields, including genetics, epidemiology, and public health
[293, 294]. To date over 6,000 papers have been published using the UK Biobank data
[295].

The UK Biobank project received funding from various sources, including the Well-
come Trust, the Medical Research Council, the Department of Health, and the Scottish
Government. Numerous research institutions, universities, and healthcare organiza-
tions across the United Kingdom also supported the project. In 2002, the UK Biobank
received initial funding of 62 million pounds sterling from the Wellcome Trust, and
subsequent funding has been provided through a combination of public and private
sources [296, 297].

The recruitment of participants for the UK Biobank began in 2006 and lasted un-
til 2010 [293]. A total of 502,505 individuals between the ages of 40 and 69 years
were enrolled from across the United Kingdom, capturing genetic variation and health
data from a diverse set of ethnic backgrounds. Participants underwent a comprehen-
sive baseline assessment, which included detailed questionnaires about their health,
lifestyle, and medical history, as well as physical measurements such as height, weight,
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blood pressure, and lung function. Participants also provided blood, urine, and saliva
samples for long-term storage and future analysis.

The UK Biobank continues to evolve and expand its research efforts. In addition
to the extensive data and samples already collected, the UK Biobank plans to continue
following up with participants over time to collect additional health-related information
and imaging samples. The project also aims to enhance its data holdings by integrating
genetic, environmental, and clinical data from other sources, such as the cancer and
death registries and air pollution data modelled at the participant home addresses using
the ESCAPE consortium data [298]. The UK Biobank remains a valuable resource for
researchers and is expected to contribute significantly to our understanding of human
health and disease in the future. The UK Biobank has also partnered with AWS and
DNAnexus to provide a cloud computing infrastructure to circumvent the costly process
of downloading and storing 100Tbs of data per application on local servers.

1.5.2 Data protection and ethics

The UK Biobank places a strong emphasis on ethical considerations and has obtained
informed consent from all participants. Participants are provided with detailed in-
formation about the project and have the right to withdraw their participation at any
time. The UK Biobank follows strict data protection protocols and ensures that data is
anonymized and securely stored to protect participants’ privacy. Access to the data and
samples is provided to approved researchers through a data access committee (DAC).
Since its public release the UK Biobank has granted access to over 30,000 researchers
across the world [295]

1.5.3 Data types

In addition to biomarkers and baseline questionnaires, the UK Biobank has also con-
ducted imaging studies on a subset of participants, including brain imaging (MRI),
bone imaging (DXA), and retinal imaging. These imaging data provide additional in-
formation on participants’ health, including brain structure and function, bone health,
and eye health. The UK Biobank has collected extensive environmental data, includ-
ing geographic and socioeconomic data, air pollution data, and neighbourhood char-
acteristics. The UK Biobank has generated extensive genotyping and sequencing of
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participants’ DNA to generate genetic data. The genetic data from the UK Biobank
allows researchers to investigate the role of genetics in human health and disease, in-
cluding identifying genetic risk factors, studying gene-environment interactions, and
conducting polygenic risk score analyses.

1.5.4 Exome sequencing

The whole exome sequencing (WES) component of the UK Biobank has had a signifi-
cant impact on advancing our understanding of genetics and its role in human health and
disease. WES data from the UK Biobank has enabled the identification of rare genetic
variants that may have a significant impact on disease risk or other health-related out-
comes. To fully understand their role in human health large sample sizes are required
to capture rare variants. Nonetheless, rare variants can have large effect sizes and po-
tentially provide important insights into basic biological pathways and the genetic basis
of diseases that are difficult to study using common variation [299]. Identifying rare
genetic variants using WES data has helped uncover new genetic associations with dis-
eases and traits, providing valuable information for understanding disease mechanisms,
developing diagnostic tools, and identifying potential therapeutic targets [300, 301].

WES data has also been used to generate PGS which are calculated based on the
combined effects of multiple genetic variants associated with a particular trait or dis-
ease. The WES data from the UK Biobank has been used to develop and validate PGS
for various health outcomes, including cardiovascular diseases, cancer, neurodegener-
ative diseases, and mental health disorders, among others [302, 303].WES has enabled
researchers to study gene-environment interactions, which are the complex interplay
between genetic factors and environmental exposures in influencing health outcomes.
By combining genetic data from WES with environmental data available in the UK
Biobank, researchers have been able to investigate how rare genetic variants that are
not captured by microarray genotyping and imputation may modify the effects of envi-
ronmental factors on health outcomes, such as the interaction between genetic variants
related to smoking and the risk of lung cancer, or the interaction between genetic vari-
ants related to BMI and obesity [304].

WES data also captures information on somatic mutations [305]. Although attempts
to call somatic mutations have usually exploited the fact that WES data is derived from
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whole blood samples meaning CHIP genes can be exploited to identify variants which
show a linear increase with age. This excludes the majority of samples with no de-
tectable CHIP [305]. What remains unclear is if other mutational scores can be identi-
fied in the exome-seq data.

1.6 Thesis outline

The central aim of this thesis was to infer signals of somatic mutation within large
sequencing datasets. Specifically, we asked whether given sufficient sample numbers it
was possible to distinguish somatic mutations from the noise contained in the 200,000-
sample release of the UK Biobank whole exome sequencing dataset. Given that there
was indeed a signal of somatic mutation recoverable from the sequencing data, we
then asked what we could learn from this signal. Chapters 2-4 specifically address this
research question. In our final research question, described in Chapter 5, we asked
whether it was possible to improve the power and computational efficiency of genome-
wide association studies by incorporating polygenic scoring methodologies into a linear
mixed model framework.

In Chapter 2, we define a computationally efficient pipeline for calling mismatches
to the reference genome (excluding germline variants) in over 200,000 WES samples.
By aggregating the mismatches into mismatch loads we can test the central aim of
this thesis. We also developed a normalisation method to address sources of technical
variation that can give rise to differing profiles of technical noise across samples. The
expected number of mutations can be calculated for a given cell type from empirical
estimates of the somatic mutation rate, allowing an estimate of the total somatic mu-
tational load within a sample to be obtained for the WES data. We then validate the
plausibility of the central aim of the thesis through simulations and an analysis of the
relationship between mismatch loads and sample age.

In the third chapter, we set out to investigate sources of inter-individual variation in
mismatch loads across the dataset. We tested for differences in the mismatch load asso-
ciated with cancer and smoking status. We partitioned the mismatch loads on whether
the mismatch occurred in a gene that was expressed in whole blood in GTEx allow-
ing the recovery of signals of transcription-associated asymmetry across samples. The
contribution of genetic variation influencing the somatic mutation rate remains largely
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unknown outside of monogenic rare diseases. We asked whether we could detect sig-
nals of genetic variation contributing to the mismatch load variation. Building on the
intuition that genetic variation can influence somatic mutation rates, the final question
in Chapter 3 aimed to address whether there was a significant difference in the con-
tribution of mismatch repair mutational signatures between samples containing Lynch
syndrome variants and the remaining samples.

Chapter 4 pivoted to an analysis of variation in mismatch loads along the genome,
in order to mitigate the effects of substantial sources of technical variation that impeded
the analysis of variation across samples. Using the gene-level data, we tested the as-
sociation with known mutation rate modifiers such as GC content, replication timing,
recombination hotspots, chromatin accessibility, and gene expression. Gene expression
has a complex relationship with mutation rate [148]. To further explore this, we fitted
non-linear models to describe the mismatch load as a function of gene expression. In
Chapter 4, we also asked whether we could detect signals of positive selection acting
on the mismatch loads and investigated the potential of this approach to reveal genes
involved in clonal haematopoiesis of indeterminate potential (which affects upwards of
6% of UK Biobank samples) [306].

Our final research question is addressed in Chapter 5. In recent years, several so-
phisticated statistical models for GWAS have been developed. A major drawback of
these models, is their complexity and the substantial computational resources and time
that are required to fit them. We asked whether we could use state-of-the-art software
for polygenic trait prediction to, one, improve the power of GWAS and, two, improve
the computational efficiency of a GWAS pipeline. We developed and published a frame-
work that addresses this question [278].
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Chapter 2

Methodology and Validation Study

2.1 Abstract

In addition to genetic variation, NGS data contains information on somatic mutation.
The rate at which somatic mutation arises is often much lower than the background
error rates making the high-confidence calling of somatic mutations difficult at the
sequencing depths typically used to identify germline variation. Here we developed
a pipeline to recover mismatches to the reference in NGS data and filter known and
likely germline and technical artefacts. Using simulated data and age, we can infer
and validate information about somatic mutation in the UK Biobank using the median
recurrence of mismatches to the reference genome across samples in the UK Biobank.
We estimate that 0.4 - 1% of mismatches we identify are probable somatic mutations.
This allows us to use NGS data experimentally designed to analyse germline variation
in investigating processes associated with somatic mutation.

2.2 Introduction

Exome sequencing is routinely used to identify germline variants in the coding regions
of the genome. By restricting to the coding regions of the genome, the variants iden-
tified are enriched for functional effects [299]. While the cost per exome sequenced is
higher than that of genotyping variants using microarrays, exome sequencing allows for
de novo variant discovery while microarrays require a priori variant knowledge. Exome
sequencing relies on an enrichment library preparation step in which oligonucleotide
probes are used to pull down the exonic targets, omitting the non-coding portion of
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DNA.
A heterozygous germline variant sequenced at sufficient sequencing depth will be

captured on approximately 50% of sequencing reads. This variant proportion is called
the variant allele fraction (VAF). Somatic mutations typically occur at low VAFs and
are difficult to distinguish in sequencing data from sequencing errors and other arte-
facts. DNA sequencing resembles the random sampling of segments of DNA from a
population of cells. Suppose there are too few cells containing a somatic mutation.
In that case, it is unlikely to be captured in the NGS data or will be indistinguishable
from the background error. If the population of cells has undergone a clonal expan-
sion, then the number of reads supporting the somatic variant may approach a VAF of
50%, making differentiation from germline events difficult. To circumvent this, cancer
sequencing studies rely on a tumour-normal aired protocol to remove sites called in
the normal tissue as germline, leaving only high-accuracy somatic mutation calls in the
cancer sample.

Errors in sequencing data arise from multiple sources such as sequencing errors
such as base position on the read, errors introduced in DNA amplification via PCR,
DNA damage accrued during library preparation and erroneously mapped reads [307].
Given sufficient sequencing depth, the recurrence of a given mismatch to the reference
genome within a sample is the basis for the identification of somatic mutations. A
key shortcoming of this strategy is that it can only be used to identify somatic muta-
tions with a VAF greater than the sequencing error rate. QC metrics calculated during
base calling and read alignment can control the false positive rate, but these may miss
changes in the DNA sequence that arise during the sample preparation steps.

The role of somatic mutation within healthy tissues and its implication in disease
and ageing remains poorly understood. Recent efforts to characterise somatic mutation
in sun-exposed skin, oesophageal tissue and colon crypts have given an unprecedented
insight into the overlap between the background somatic mutational processes within
healthy tissues and cancer [161, 160, 93]. Although the link between somatic muta-
tion accumulation and ageing and cancer is well established [167, 40], estimating the
total number of somatic mutations per cell in different tissue types remains challenging
owing to the heterogeneous rate of background mutational processes across cell types
[52, 53, 54]. Recent work in single-cell sequencing of B cell lymphocytes across the hu-
man lifespan has provided an empirical estimate of the somatic load per cell [307]. As
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Figure 2.1: Analysis pipeline overview. Schematic illustration highlighting key pipeline pro-
cesses from alignment data storage through data QC and mismatch load generation to down-
stream applications.

lymphocytes constitute the majority of nucleated cells in whole blood, this provides a
basis to estimate the total number of somatic mutations in an exome sequencing dataset
derived from whole blood samples, such as those in the UK Biobank 200k release.

2.3 Pipeline

2.3.1 Pipeline overview

We developed a pipeline to extract mismatches to the reference genome from sequenc-
ing data (Fig. 2.1). Whole exome sequencing data generated from 200,632 sam-
ples of the UK Biobank was downloaded in CRAM format and stored on a local
high-performance BeeGFS filesystem as part of the bioinformatics high-performance
compute (HPC) infrastructure at the University of Galway over one month. The UK
Biobank 200k release consisted of 175TB of alignment files. The average sample
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CRAM file was 0.75 GB. All analyses were performed on an HPC server with 264
Intel(R) Xeon(R) CPU D-1541 physical cores and 2016 GB of random-access memory
(RAM).

Although this work deals explicitly with the investigation and recovery of single-
base substitution somatic mutation signals, data on other biological phenomena were
also generated as part of the pipeline. This included counting the number of interchro-
mosomal chimeric reads per sample, extraction of reads that span known microsatellite
instability loci and alignment statistics using the Samtools stats functionality.

We investigated two different single-base mismatches datasets. All single-base mis-
matches to the reference genome were called using Samtools (v1.12) mpileup [308],
using the filtering parameters outlined in Table 2.1. The first dataset was obtained by
restricting to mismatches that occurred on the overlapping portions of read pairs, i.e.,
sites sequenced by both read one and read two in which there is agreement on a mis-
match to the reference genome. The restriction to mismatches consistently identified
on both reads was performed to reduce the proportion of mismatches due to sequenc-
ing error (we refer to data generated using this approach as overlapping read data). In
theory, the probability of a sequence call error for these overlapping bases is the prod-
uct of the individual call error probabilities (which can be calculated from the Phred
scores). In the non-overlapping restricted mismatch calls, the default behaviour of the
Samtools software stack was used to handle the overlapping read portions, i.e., the sum
of the two base qualities was used if both reads agreed on the call and 80% of the high-
est quality was used if the reads disagreed on the call. To extract mismatches in the
overlapping data, the base quality on read one and read two are treated independently
during filtering.

A stringent filtering pipeline was devised to remove germline contamination and
technical artefacts. Sites called germline SNPs in the UKB 200k release were excluded,
and SNPs contained in the dbSNP v155 (Jun 2021) release were excluded. Mismatches
were confined to regions included in the exome capture target bed file, and sites that
overlapped repeat regions and regions where a 75bp kmer had a probability of mapping
more than twice (Gem > 0.5) were excluded from downstream analyses. The Encode
blocklist filters sites in the problematic areas of the genome. The genome masks from
Abascal et al. (lifted over from hg19 to GRCh38) were also used to remove loci that
had higher than average error rates or were prone to mapping artefacts [309]. The
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Table 2.1: Samtools (HTSLIB) read and base filtering parameters.

Filter Value
Sequencing depth 20
baseQ 37
MapQ 60
Cigar No gaps; exact match (75M)
Supplementary reads removed
Secondary reads removed
Duplicate removed
QCFail removed
Unmapped reads removed

mismatches for each sample were stored as VCF-style files containing the number of
reads at the locus, the variant allele fraction, whether the mismatch has been called as
a SNP and whether the mismatch was included in the overlapping mismatch set.

To add information to each site containing a mismatch, the data was annotated us-
ing Ensembl’s variant effect predictor (VEP). As the total number of mismatches was
in the order of 35 billion we developed an efficient file format to aggregate and store the
mismatch data prior to annotation. The gene name, codon change, transcription strand,
amino acid change, up and downstream nucleotides and transcriptionally aligned mis-
match contexts were added to the summarised data. The sequencing batch ID and
flowcell lane ID were retrieved from the alignment files. Over 1500 phenotypes were
downloaded from the UK Biobank data repository. This set included age at the time
of assessment, assessment centre, genotyping batch, cancer status and smoking status.
The imputed genetic data for the entire 500,000 individuals were downloaded and used
as the basis of the genetic variation studies in Chapters 3 and 5.

The mismatches were summarised on two levels; firstly, we analysed the mis-
matches on the sample level, i.e., each sample has a value corresponding to a mismatch
load (analysed in Chapters 2 and 3). This dataset was intended to be used to test whether
there was a detectable contribution of somatic mutations to the mismatches observed in
the UKB exome sequencing dataset (by searching for a correlation between mismatch
load and age) and to investigate sources of inter-individual variation in the mismatch
(and putative somatic mutation) load (see Chapter 3). Secondly, the mismatches were
summarised on the gene level. This dataset enabled us to assess the correlation between
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mismatch load and known mutation rate modifiers such as gene expression and replica-
tion timing, as well as the identification of genes showing evidence of somatic selection
in the form of a higher-than-expected proportion of functional mutations (see Chapter
4).

2.3.2 Data generated from pipeline

The total runtime to download and run the pipeline was approximately 12 weeks, spread
over 16 weeks, to allow fair usage of the bioinformatics HPC system. The mean
base quality across the sample set was 36.34 (Table 2.2 & Fig. 2.2 A). On average,
63,899,754 reads per sample were mapped to the GRCh38 reference genome, with
44,487,029 reads remaining after alignment QC (Table 2.2 & Fig. 2.2 B). The aver-
age number of bases sequenced was 3,381,014,204, while the mean number of mis-
matches per sample was 628,346. Applying the filtering protocol to remove germline
and problematic loci reduced this to 173,327 mismatches per sample (Table 2.2 & Fig.
2.2 C & D). The total number of mismatches across all samples after filtering was
34,748,848,164. Restricting to the overlapping portions of read pairs resulted in an
average of 534,069,937 sequenced bases per sample and 11,688,422,475 mismatches.
This corresponded to 58,299 mismatches per sample, on average, reducing to 10,131
after the filtering protocol (Table 2.2 & Fig. 2.2 E & F). Approximately 30% of reads
were filtered due to mapping quality filters or complex CIGAR entries. The mismatches
are stored in single-sample VCF format. To reduce the computational complexity of an-
notating each site across all samples with VEP, samples were collapsed into a single file
containing variant and sample information.

2.3.3 Mismatch load derivation

As the data was derived from exome sequencing, we determined the mismatch load
with respect to the transcribed strand. Variants within genes transcribed on the non-
reference strand were reverse-transcribed to align with the coding strand. To exclude
complex common germline events, the disproportionate effect of germline contamina-
tion is highlighted in Chapter 3, a conservative threshold of variants found within 1000
samples were removed (Fig. 2.3). This filter removed approximately 60% of the re-
maining mismatches. Substantial variation in the number of mismatches per sample
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Figure 2.2: Histograms illustrating variation in properties of the mismatch data across samples
are shown in panels A-D. A) The average base quality across samples. B) The total number
of mapped read-pairs per sample. C) The total number of sequenced bases per sample. D)
The total number of mismatching bases before and after filtering. E) The number of sequenced
bases within the overlapping portions of read-pairs. F) Total number of mismatching bases
within overlapping portions of read-pairs.



Table 2.2: Summary of sample level data and statistics derived from pipeline.

Min 1st Quartile Median Mean 3rd Quartile Max
Mismatch 2.49E+04 5.13E+05 6.01E+05 6.29E+05 7.05E+05 3.16E+06

Mismatch filtered 6.34E+03 1.41E+05 1.65E+05 1.73E+05 1.93E+05 8.11E+05
Ovp. mismatch 2.06E+03 4.94E+04 5.72E+04 5.83E+04 6.58E+04 3.55E+05

Ovp. mismatch filtered 3.16E+02 7.78E+03 9.73E+03 1.01E+04 1.20E+04 9.68E+04
Sequenced bases 2.60E+09 4.21E+09 4.72E+09 4.84E+09 5.31E+09 1.47E+10

Sequenced ovp. bases 6.21E+05 4.32E+08 5.19E+08 5.34E+08 6.20E+08 2.00E+09
Mean base quality 3.46E+01 3.63E+01 3.64E+01 3.63E+01 3.65E+01 3.68E+01

Total read pairs 3.43E+07 5.56E+07 6.22E+07 6.39E+07 7.00E+07 1.94E+08
Mapped read pairs 1.52E+06 3.87E+07 4.33E+07 4.45E+07 4.87E+07 1.41E+08

Mean cigar error 1.19E-03 1.64E-03 1.81E-03 1.92E-03 2.03E-03 8.73E-03
Tri-allelic 8.60E+01 1.96E+03 2.62E+03 3.05E+03 3.48E+03 3.71E+04

Chimeric reads 1.82E+03 1.10E+05 1.27E+05 1.31E+05 1.47E+05 8.84E+05
Age 3.80E+01 5.00E+01 5.80E+01 5.65E+01 6.30E+01 7.20E+01

Mismatch rate 1.20E-06 3.11E-05 3.46E-05 3.58E-05 3.83E-05 1.18E-04
Ovp mismatch rate 5.80E-07 1.59E-05 1.83E-05 1.97E-05 2.15E-05 1.75E-02

Est. Somatic load 8.77E+02 1.07E+03 1.23E+03 1.21E+03 1.34E+03 1.56E+03

was found across sequencing runs, evidenced by the difference in slopes in the number
of mismatches as a function of the number of sequenced bases per batch (Fig. 2.4). As
the sequencing batch IDs were unavailable from the UK Biobank repository, the flow
cell ID contained within the read name tag of the alignment data was used to group
samples by sequencing run. On average, 245 samples were sequenced across 817 flow
cells. The derived mismatch loads were approximately normally distributed (Fig. 2.5
A & B). To normalize the mismatch phenotype contexts across sequencing runs, the
total number of mismatches in each mutation context and flow cell run was regressed
against the total number of autosomal reads within a sample. The rank of residuals of
this model was then divided by the number of samples in the flow cell batch, resulting
in a fractional rank bounded by 0 and 1.

Interestingly, batch effects were much less evident in the mismatches in the overlap-
ping regions (Fig. 2.4 B). The lack of batch structure within the overlapping read mis-
match data may be due to differences between batches resulting from oxidative damage
during the library preparation stage. Oxidative damage occurs at greater frequencies
around DNA breakpoints. As the overlapping portion of paired-end reads tends to be
within the centre of the DNA fragment, oxidative damage is likely to have made a lower
contribution to the mismatches in these regions.
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Figure 2.3: Histogram of log 10 counts of mismatches by recurrence within each sample. The
red line indicates the stringent filtering threshold for germline variant exclusion.
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Figure 2.4: Number of mismatches as a function of sequenced bases for 25 sequencing batches.
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Figure 2.5: Distribution of mismatch loads per sample. A) Histogram of the mismatch load
derived from single-read data B) Histogram plot of the mismatch load in the overlapping read
data.



2.3.4 Data Validation

Using the equation empirically derived in Fig.1 of Zhang et al. [152], the average num-
ber of sequenced bases and 56 as the average age of UK Biobank participants, we can
infer an average somatic load of 2101 substitutions per cell. Using the average num-
ber of mismatches and sequenced bases per sample, we estimate that approximately
0.4% of mismatches are true somatic mutations, (Eq. 2.1). About 1% of overlapping
mismatches are likely somatic mutations for the overlapping read data. Simulated mis-
match loads with a known proportion of somatic mutations were generated for 200,000
samples using the formula derived from Zhang et al. [152]. We sampled 200,000 ages
from the UK Biobank to estimate an expected count of somatic mutations. We can then
add noise matching the distribution of mismatches in the UK Biobank data by shuffling
the actual mismatch counts in the UK Biobank data and adding the estimated somatic
load per cell. We regressed the median number of mismatches against age (Fig. 2.6 A,
B, D & E). The model fit for the simulated data closely matches the observed model fit
after accounting for the sequencing batch. In the overlapping mismatch load simula-
tions, we found that the variance explained across the median mismatch loads was less
than that of the single-read mismatch calls (Fig. 2.6 C & F).

SomaticMutations per bp × N sequenced bases
MeanM mismatches

(2.1)

2.4 Discussion

In this chapter, we have developed a pipeline for the recovery of signals of somatic
mutation in noisy exome sequencing data. We developed a stringent filtering process
to remove germline variants, blocklisted genomic regions and technical artefacts. The
filtering process removed approximately 70% of the UK Biobank 200K release mis-
matches. We uncovered significant unreported sequencing batch effects that contribute
to variability in the number of mismatches per sequenced base across samples. Using
information within the sequence read name tag, we grouped samples by flow cell to
remove the variation contributed by sequencing batch effects. The batch effects may
be due to several different factors. Different temperatures, distances travelled to the
sequencing centre, and different technicians handling each sample can introduce sys-
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Figure 2.6: Median count of mismatches per integer age. A) Simulated data for 200,000 sam-
ples, B) Observed median mismatch load. C) Observed median mismatch load after normalizing
by batch. D) Simulated overlapping data for 200,000 samples. E) Observed median mismatch
load in overlapping regions. F) Observed median mismatch load in overlapping regions after
normalizing for batch structure.

tematic differences between batches. Restricting to mismatches on overlapping reads
reduced the differences between batches, potentially reflecting a lower rate of oxidative
DNA damage in the interior portions of the DNA fragments. This observation is con-
sistent with findings from Chan et al. where higher rates of DNA damage have been
reported at the start and end of the read fragments [307].

To test whether the data generated from our pipeline could plausibly capture so-
matic mutation, we tested for a correlation between median mismatch load and partic-
ipant age. As somatic mutations accumulate with age, a positive linear relationship is
expected between age and the median somatic mutation load. A correlation was de-
tected, the strength of which was consistent with what we expected, given the relatively
low proportions of somatic mutations among the mismatches. We can use an expec-
tation of somatic mutation load and the variance from the mismatch data to simulate
the relationship between age and the median load of somatic mutation across simulated
data

Our simulation framework is consistent with what we observe in the UK Biobank
mismatch data. However, we hypothesised that by restricting mismatches sequenced

58



on overlapping reads, we would enrich for a signal of somatic mutation by reducing
the contribution of DNA damage-induced mismatches. We found the opposite in the
simulated and observed UK Biobank data when testing for a correlation with age. We
posit that restricting to overlapping bases has induced a stochastic effect as the number
of somatic mutations is small in the overlapping data. As a result, in the overlapping
data, the model cannot recover the same strength of signal of somatic mutation as within
the single read data. We also note that the model fit of the observed overlapping data
doesn’t capture the same amount of variation as the simulated data. In data derived from
high-confidence somatic mutation calls, the observed number of base substitutions is
substantially lower in the centre of exons due to increased transcription-coupled repair
efficiency or protection from damage driven by the greater nucleosome occupancy in
exons relative to introns [310, 311]. Therefore, when restricting to overlapping reads,
we are enriching for regions within exons with a reduced mutation rate, whereas in the
simulated data, the mutation rate is constant across exons.

Although we estimate that a relatively small proportion of mismatches (0.4% and
1% in the full and overlapping data, respectively) to be true somatic mutations, by
aggregating the recurrence of mismatches we can recover a signal of somatic mutation
in the UK Biobank as a function of increasing age. This suggests that the mismatch
data could be used to identify other (strong) sources of inter-individual variation in the
somatic mutation burden. Given the rich phenotypic and genotypic data associated with
the UK Biobank, we can use the derived mismatch loads to test for genetic variation
driving somatic mutational processes and their association with phenotypic exposure
data.

2.5 Data access acknowledgement

This research has been conducted using the UK Biobank Resource under application
number 23739. All other sources of data used in this work have been open-access and
referenced where applicable.
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Chapter 3

Inter-individual variation in the
somatic mutation rate

Declaration: Harrison Anthony identified 160 samples within the UK Biobank that
contained pathogenic Lynch syndrome variants using the pathogenic Lynch variants as

outlined by Patel et al. [312].

3.1 Abstract

The somatic mutation rate varies across individuals and between cell types. Through
an analysis of exome sequencing data of 200,000 individuals from the UK Biobank, we
investigated sources of variation in somatic mutation rate using the number of single
base mismatches to the reference genome as a proxy measure. When we considered the
5’ and 3’ nucleotide contexts, we identified a stronger correlation between the somatic
mutation rate and age than in Chapter 2. We report and detail significant batch ef-
fects within the UK Biobank exome sequencing dataset that led to spurious phenotypic
associations with cancer and smoking status. We report strong transcription strand-
associated asymmetry in the data and show, using gene expression data from GTEx,
that it is not due to transcriptional processes but rather it is likely to be due to the use of
exome capture probes designed against the coding strand. A novel finding with signif-
icant implications for rare variant testing and NGS quality metrics. We next sought to
investigate the contribution of genetic variation to the variation in mismatch load across
samples by performing GWAS and inferring the activity of mutational signatures. We
initially discovered a strong GWAS signal on chromosome 5, close to ERCC8, a gene
involved in transcription-coupled repair that is the basis of Cockayne syndrome. How-
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ever, a careful analysis of the locus revealed that this result was artefactual, highlighting
the importance of filtering highly recurrent mismatches. Despite previous reports of an
elevated somatic mutation rate in Lynch syndrome patients, an analysis of the mean
contribution of mismatch repair signatures in Lynch syndrome patients compared with
the remaining samples showed no statistical association. However, we do report for the
first time outside of paediatric oncology a significant positive association between the
contribution of SBS3 and age.

3.2 Introduction

Somatic mutations are acquired sequence alterations that arise in any somatic tissue af-
ter fertilisation [313, 314]. The most common type of somatic mutation is a single base
substitutions (SBS) and these may arise through spontaneous processes in response
to oxidative stress or through errors in biological processes [167] Studying the muta-
tional burden across samples can give an insight into the intrinsic biological processes
that shape the mutational landscape, such as aberrant transcription-coupled nucleotide
excision repair, transcription-associated mutagenesis (TC-NER/TAM) and replication-
associated errors [123, 315]. In addition to intrinsic biological mutational processes,
environmental exposures such as UV light and chemical exposure increase the somatic
mutation rate through the generation of DNA lesions which require low-fidelity repair
processes to rectify the lesion before cell-cycle progression [56, 316].

Somatic mutations accumulate throughout the genome in the natural ageing pro-
cess. The positive linear relationship between the number of somatic mutations and
age has been reported across a number of tissue types [317]. This relationship has been
extensively demonstrated in cancer and, recently, in healthy tissues [93, 160, 209, 318].
Somatic mutation rates vary greatly across cell types and samples [317, 319]. The so-
matic mutation rate has been estimated using laser capture microdissection to be as low
as 2.4 mutations per cell per year in the testis to 56 mutations per year per cell in the
appendix [115].

To understand genetic variation in large groups of samples, sequencing is performed
on whole blood or peripheral blood samples due to the minimal invasiveness of drawing
blood [240, 320]. However, the accurate identification of somatic mutations in a single
tissue remains difficult for a number of reasons. Firstly, the clonal nature of blood ex-
pansions allows somatic mutations to occur at relatively high frequency that can in some
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cases be mistaken for germline variants. Secondly, in the absence of high sequencing
depths accurately calling somatic mutations without a second reference tissue remains
cost prohibitive for a large number of samples. Several experimental methodologies
have been developed to accurately identify somatic mutations with high confidence
by reducing the sequencing and PCR error rate to below that of the somatic muta-
tion rate, but scaling these methods to understand the variation across large numbers
of samples remains a challenging problem owing to difficulties in sample preparation
[309, 321, 322].

The heritable component of the mutation rate remains poorly understood for both
germline and soma. Genetic variation affecting mutation rates has major implications
for the clinical application of genetic risk predictions for cancer and ageing disor-
ders. Genetic variation contributing to a phenotype can be uncovered using genome-
wide association studies (GWAS). Currently, GWAS performed on somatic mutation
have been restricted to large cancer cohorts [323] or in genes associated with clonal
haematopoiesis of indeterminate potential (CHIP). A major caveat of measuring the
somatic mutation rate in cancer samples is that the somatic mutation burden across
cancer samples may not reflect the true variation in the background mutational pro-
cesses and may enrich for genetic variation that drives malignancy rather than inherent
background mutational processes. No GWAS on somatic mutation burden in a dataset
representative of the general population has been performed. However, the contribution
of background mutational processes to cancer samples has been inferred via decompo-
sition techniques such as non-negative matrix factorisation (NMF), Independent com-
ponent analysis (ICA) and variational autoencoders (VAE). The mutational signatures
were then used to test for genetic variation across cancer datasets [324, 325].

Mutational signatures are generated from the factorisation of the matrix of somatic
mutation counts into lower-dimensional matrices that capture the individual mutational
processes contributing to the mutational profile and the relative contributions of these
processes across samples. The set of basis vectors, termed mutational signatures, gives
an insight into the mechanisms that contribute to the mutation profile of an individual.
These signature analyses have largely been restricted to cancer data, but certain muta-
tional signatures are common across all samples and accumulate in a clock-like way.
In the Cosmic signature dataset, these are called SBS1 and SBS5 [113]. The proposed
aetiology of SBS1 is the spontaneous deamination of cytosine while the mechanism of
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SBS5 remain unknown [113, 84, 115, 326]. Some signatures are overactive in specific
types of cancer, for example, the aberrant mismatch repair mutational signature SBS44
significantly contributes to the mutational landscape of Lynch syndrome patients [327].

Lynch syndrome is a disease conveying an increased risk of colorectal cancer due
to inherited pathogenic mutations in the mismatch repair (MMR) system. It is the
most common cause of hereditary colorectal cancer and accounts for 3% of all col-
orectal cancer cases [327]. The MMR system identifies and rectifies mismatches in
the DNA sequence. It has a major role in maintaining genomic integrity. Loss of
function in the MMR pathway leads to somatic hypermutation and microsatellite insta-
bility [328]. Typically, diagnosis of Lynch syndrome relies on pathogenic mutations in
MLH1, MSH2, MSH6, TATGAA or PMS2. [312].

As the single-read data showed better evidence of capturing variation across sam-
ples in the number of somatic mutations than the overlapping portions of paired-end
reads (Chapter 2 Fig. 2.6). The remaining analyses were restricted to the single-read
mismatch data.

We recovered a relationship between the mismatch burden and age, reflecting a
contribution of somatic mutations to the observed mismatches in the UK Biobank data
(Chapter 2). In this Chapter, we investigate variation in the mismatch burden across
samples with a view to uncovering additional variables (including genetic variation)
that may contribute to variation in the somatic mutation rate. We highlight the impor-
tance of accounting for batch structure by investigating the effect of unnormalized and
batch normalised mismatch loads on cancer and smoking status. We investigate batch
structure by measuring the asymmetry between mismatch classes on the transcribed and
non-transcribed strands. As mutagenic processes are context-specific [329], we further
generate mismatch loads in 192 triplet contexts, testing for age associations and the
role of genetic variation in explaining the variation across samples. To further extract
true mutational processes, we decompose mismatch loads into mismatch signatures
and test for stronger associations with age and for genetic variations driving variation
in the contribution of each signature. Lynch-like syndromes exhibit aberrant mismatch
repair. Samples with Lynch-like diagnosis are known to have increased somatic mu-
tation burdens [330]. Using mutational signatures of mismatch repair deficiency, we
test the relative contribution of each signature to Lynch-like samples and the remaining
UK Biobank samples. We also examine the MMR signatures for association with age
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within the Lynch and remaining samples.

3.3 Results

3.3.1 Phenotypic associations with mismatch load

In Chapter 2, we demonstrated the contribution of somatic mutation to the variation
in mismatches across samples. This chapter tests whether the contributions of other
variables to the somatic mutation rate may also be detectable through analysis of the
mismatch burden. With this idea in mind, we first tested for the association between
the mismatch burden and self-reported cancer and smoking status. We found an in-
crease in the number of mismatches in individuals with self-reported cancer relative
to the non-cancer group (Fig. 3.1 A & B). The median number of mismatches per
sample was 45,850 in the non-cancer group (n= 182,679). In contrast, we found 438
extra mismatches per sample in the group with self-reported cancer with a median of
46,288 (n= 17,886; Wilcoxon rank sum test P = 0.06; Table 3.1). This effect is clearer
when the mismatch loads are decomposed into transcriptome-aligned mutational con-
texts (Fig. 3.1 B). Across all 192 mismatch contexts, 128 remained significant after the
Bonferroni correction for multiple testing. The difference between means in the CTA-
to-CGA mismatch load has the strongest statistical support. The median in the non-
reported group was 39, while the self-reported group was 43 (Wilcoxon rank sum test
P = 4.07× 10−28)). Smoking status showed a weak association with mismatch load,
with individuals who have never smoked having, on average, 125 more mismatches
than the smoker group (45,844.5 compared to 45,969.5 ; Fig. 3.1 C). Of the 200,000
sample set, 21,009 reported that they were non-smokers, and 30,880 reported that they
were smokers. We observed a marginally significant association in the mismatch con-
text CCC-to-CAC (Wilcoxon rank sum test P = 0.02). However, given the number of
statistical tests (n=193) this relationship did not survive correction for multiple testing
(Fig. 3.1 D).

Given the significance of the mismatch data reflecting plausible phenotypic asso-
ciations, we normalised the mismatch data by regressing the sequencing depth as a
function mismatch count for each sequencing batch and transformed the data to a uni-
form distribution. In Chapter 2, we found significant structure within the mismatch data
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Figure 3.1: Median ± 95% CI plots of mismatch loads and self-reported cancer and smoking
status. Triplet contexts were chosen by the strongest statistical associations in the unnormalized
data. The median mismatch load per sample (y-axes) versus cancer or smoking status (x-axes).



Figure 3.2: Median ± 95% CI plots of mismatch loads for the CTA-to-CGA context grouped
in self-reported cancer and the CCC-to-CAC mismatch load grouped by smoking status. Triplet
contexts were chosen by the strongest statistical associations in the unnormalized data. The
median mismatch load within each context per sample (y-axes) versus self-reported cancer or
smoking status (x-axes).

attributable to the sequencing batch. To remove the possibility of the sequencing batch
giving false phenotypic associations we regressed the mismatch data on sequencing
batch. This enabled us to exclude sources of technical variation across batches, such as
different reagents and storage temperatures between sequencing runs. However, after
accounting for batch variation, we found no discernible statistical difference between
the self-identified smoking and cancer groups (Fig. 3.2). Spurious associations may
be driven by differences in smoking habits and cancer rates between regions and non-
random allocation of the samples from different regions to sample batches. By plotting
the distribution of Wilcoxon signed rank test p-values (Table A1) for all mismatches,
the effect of batch structure generating false statistical signals is highlighted (Fig. 3.3).
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Figure 3.3: Distribution of p-values across all triplet contexts. The y-axis contains the number
of Wilcoxon rank sum test p-values in each p-value bin (x-axis). Uncorrected batch structure
leads to spurious statistical relationships between cancer status mismatch load.



3.3.2 Investigating age-related accumulation of mismatches in NGS
data

In Chapter 2, the median mismatch load for samples grouped according to their inte-
ger age was found to have the expected linear relationship with age. Here we posit that
some triplet contexts may show a stronger association with age, particularly in the cases
of mutations types that accumulate with age but are not commonly associated with se-
quencing errors or other sources of mismatches that do not correspond to somatic muta-
tions. The median transcription-aligned triplet mismatch loads were regressed against
age. Four mismatch contexts that represent the variation across the 192 regressions are
shown in Fig. 3.4, and the age-associated phenotypes that remained significant after
Bonferroni correction are reported in Table 3.1 (full results are reported in Table A2).
Eight of the 192 mismatch loads remained significant after Bonferroni multiple test cor-
rection (Table 3.1). The AGA-to-ATA mismatch load was strongly associated with age
(R2 = 0.63, P = 9.73×10−8). The reverse complement of AGA-to-ATA, TCT-to-TAT
was also significantly associated with age, albeit weaker (R2 = 0.41, P = 1.02×10−4).
The majority of the triplet contexts did not show a strong linear relationship with age
(Fig. 3.5).

Table 3.1: Significant correlations between median mismatch load and age after Bonferroni
correction. R2 and p-value from linear regression are reported.

Triplet R2 P

AGA-to-ATA 0.63 9.74e-08
GGA-to-GTA 0.55 1.98e-06
TCA-to-TGA 0.49 1.28e-05
CGA-to-CTA 0.44 5.04e-05
GGT-to-GAT 0.42 8.34e-05
TCT-to-TAT 0.41 1.02e-04
GCT-to-GAT 0.4 1.40e-04
TGC-to-TTC 0.39 1.60e-04
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Figure 3.4: Median mismatch load as a function of integer age for four mismatch contexts
AGA-to-ATA, AGC-to-ATC, GCG-to-GGG and TCG-to-TAG. Each point represents the me-
dian of the normalised mismatch count per integer age.
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Figure 3.5: Histogram of R2 values derived from linear models of the median mismatch load
for each triplet context as a function of integer age. Statistically significant results are reported
in Table 3.1 and in full in Table A2.



3.3.3 Strand asymmetry

Transcriptional processes impart strand specificity to the distribution of somatic muta-
tions. To test for signals of transcription-associated asymmetry within the UK Biobank
exome sequencing dataset, the log2 ratio of each mismatch type and its reverse comple-
ment were calculated for the C-to-{A, G, T} and T-to-{A, C, G} mismatch types (Fig.
3.6). As the exome sequencing data are aligned relative to the forward strand of the
reference genome, mismatch classes within genes where the coding sequence is on the
negative strand are reverse transcribed, i.e., G-to-T becomes C-to-A. We found signifi-
cant levels of transcription strand asymmetry between the C-to-A and G-to-T mismatch
classes with an average log2 ratio of 1.85 (3.6 times more C-to-A than G-to-T on the
coding strand). The sample with the highest level of asymmetry in the C-to-A type had
a log2 ratio of 5.4 or approximately 43 times more C-to-As than G-to-Ts. By inspect-
ing the sequencing batch containing the sample with the strongest asymmetry, batch ID
HF273DSXX, a subset of samples showed significant levels of asymmetry compared
to most samples within the sequencing run (Fig. 3.7). The level of asymmetry within
this batch was bimodal. Grouping each sample within HF273DSXX by assessment
centre showed no evidence of intra-sequencing batch variation due to sample handling
at different assessment centres.

Building on the intuition that DNA damage occurs randomly across transcriptional
strands and given our simulations in Chapter 2, we expect a modest contribution from
somatic mutations within the data. The level of asymmetry was inconsistent with the
result arising from mutagenic transcriptional processes. To further investigate the pos-
sibility of true mutational processes driving the asymmetry, we partitioned the data
based on gene expression level in whole blood in the GTEx dataset. The triplet mis-
match counts were further normalised to account for discrepancies in the number of
opportunities a triplet mismatch can occur within each group, to account for differ-
ences in nucleotide content of the coding and non-coding strands. After normalisation
of the triplet counts for sequence content, we found a higher mismatch load in the
non-expressed genes compared to the expressed gene sets. An elevated mismatch load
was observed across all mismatch types in the triplet contexts containing CpGs in the
reference sequence in both the expressed and non-expressed genes (Fig. 3.8).

Under the assumption that the mismatch loads are derived from sequencing and
technical errors only, aligning each mismatch context to the transcribed strand (Tx+)
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Figure 3.6: Transcription strand asymmetry. Log2 ratio for each of the 6 mismatch types. Log2
ratios of 0 indicate no transcriptional strand asymmetry. Samples are coloured by sequencing
batch.
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Figure 3.7: C-to-A versus G-to-T asymmetry for sequencing batch HF273DSXX. Samples are
coloured by UK Biobank assessment centre. The number of mismatches per read passing QC
(y-axis) is plotted against the log2 ratio of the C-to-A to G-to-T mismatch counts (x-axis).



Figure 3.8: The difference in normalised mismatch loads grouped by expression status. All
triplet contexts containing the C-to-A mismatch type are shown. The mismatch loads have been
normalised by the frequency of each triplet context in expressed and non-expressed genes. The
normalised mismatch loads are minus log transformed.

should result in a symmetric mismatch load across the mismatch types (when the data
are normalized to account for differences in nucleotide opportunities between the cod-
ing and non-coding strand). We found, however, a strong asymmetry between certain
classes of mismatch types and their relative reverse complements. The mismatch con-
texts with the largest asymmetry show enrichment for C-to-A and G-to-T transversions
(Wilcoxon rank sum test P = 5.81× 10−5), consistent with the asymmetry observed
when the mismatch data is aggregated into mismatch types (Fig. 3.6). We find that for
three mismatch loads, the log2 ratio is greater than two, indicating that there are at least
four times more of one mismatch context relative to its reverse complement. The ACT-
to-AAT context had a log2 fold change of 2.83, indicating that, on average, there were
almost seven times more ACT-to-AAT mutations than its reverse complement AGT-to-
ATT mutations. However, the difference between the log2 ratios in the expressed and
non-expressed group was -0.08 (Table A3).

We also found that mismatch contexts statistically associated with age were more
likely to exhibit strong asymmetry (Fig. 3.9). However, we did not see any increase in
the log2 ratio as a function of sample age (data not shown). To further investigate the
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Figure 3.9: Mismatch context asymmetry. The log2 ratio of each 96-mismatch context with
its reverse complement. Global is the mutational asymmetry across all genes, while expressed
and non-expressed refer to gene expression group membership. The triplet contexts are ordered
by increasing global asymmetry. The black dots indicate whether the context or its reverse
complements is statistically associated with age (Table A3).



Figure 3.10: Difference in log2 ratios between expressed genes and non-expressed genes. The
mismatch contexts containing the C-to-A mismatch type are only shown. Positive values indi-
cate that the log2 ratio of the expressed genes is larger than that of the non-expressed.

asymmetry between mismatch contexts, we analysed the mismatch asymmetry in genes
expressed in GTEx whole blood samples and from genes that are not expressed, (see
Methods). Transcription-strand asymmetry should be more pronounced in genes that
are expressed relative to the non-expressed group if the effect is due to the transcription
process. The difference in log2 ratios between the expressed and non-expressed gene
sets for the C-to-A mismatch type showed variation across the triplet contexts, indica-
tive of a sequence-dependent bias in mismatch accumulation (Fig. 3.10). The lack of
remaining asymmetry in the C-to-A type was consistent with our previous findings;
transcriptional processes were not driving the observed asymmetry.

Consistent with our expectation from Fig. 3.6 & 3.7 that asymmetry is strongly
influenced with the sequencing batch, regressing the log2 ratios against the sequencing
batch and assessment centre showed that the sequencing batch had a high variance in
the median log2 ratio across sequencing batches compared to assessment centre (Fig.
3.11 & 3.12; Statistical support Fig. A1). We found that for contexts with high levels
of asymmetry there is variation across the sequencing batches, again, consistent with
the result reported in Fig. 3.7. In contrast, the assessment centre shows no relationship
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Figure 3.11: Median Log2 ratio of the ACT-to-ATT and it reverse complement AGT-to-AAT
mutation types. A scatter plot of the median log2 ratio of the ACT-to-ATT mismatch load (y-
axis) is reported as a function of sequencing batch (x-axis).

with the level of asymmetry (Fig. 3.12 & Fig A1).

3.3.4 GWAS

We performed GWAS using the 192 mismatch loads as phenotypes and the white-
British samples within the UK Biobank 200,000 release (158,760). Four mismatch
loads (GCG-to-GGG, TTC-to-TGC, CTC-to-CGC & CCG-to-CGG) had peaks that
reached genome-wide significance (Table. 3.2). For each of the four mismatch loads,
all had only one locus with a significant association. rs17537237, an intronic variant in
TMEM117, a gene involved in mitochondrial transport, was significant for the TTC-to-
TGC mismatch load. For the CTC-to-CGC mismatch load, the most significant variant
was rs9906359, an intronic variant in FMNL1, which is involved in cell morphology
and cell polarity. rs12481160, an intron variant in an uncharacterised non-coding RNA,
was significant for the CCG-to-CGG mismatch load.
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Figure 3.12: Median Log2 ratio of the ACT-to-ATT and it reverse complement AGT-to-AAT
mutation types. A scatter plot of the median log2 ratio of the ACT-to-ATT mismatch load (y-
axis) is reported as a function of assessment centre (x-axis).



The strongest statistically associated locus, tagged by rs12332549 (P = 1.49 ×
10−79), was identified for the GCG-to-GGG mismatch load (Fig. 3.13 & 3.14). rs12332549
is an intron variant within the ZSWIM6 gene, a zinc-finger binding protein. As the
effects of SNPs may be distal to their location or the statistically tagged SNP may
be in linkage with the causative SNP, we analysed this locus using LDlink [331].
Strikingly, we found that rs6861729 (the second most significant SNP for GCG-to-
GGG; P = 2.45×10−79) showed strong evidence of linkage (effect size= -0.343; P =

2.32× 10−21; Table. 3.3) with a cis-eQTL that decreases the expression of ERCC8.
Also known as Cockayne Syndrome A, this is an essential gene for TC-NER (Table
3.3) and, thus, a highly plausible candidate locus for association with the somatic mu-
tation rate.

Table 3.2: Significant GWAS loci across 192 mismatch contexts

Phenotype tagging SNP P Gene Symbol Consequence
GCG→GGG rs12332549 1.49e-79 ZSWIM6 Intron variant
TTC→TGC rs17537237 2.09e-26 TMEM117 Intron variant
CTC→CGC rs9906359 3.86e-18 FMNL1 Intron variant
CCG→CGG rs12481160 3.05e-49 LOC107985448 Intron variant

Table 3.3: Ten most significant LD eQTLs in linkage with rs6861729

Query RSid R2 Gene Symbol Tissue Frequency Effect Frequency Effect Size P
1 rs6861729 rs34902701 0.1 ERCC8 Cultured fibroblasts T=0.247 TGTTA=0.753 -0.343 2.326e-21
2 rs6861729 rs248686 0.1 ERCC8 Cultured fibroblasts C=0.247 T=0.753 -0.343 3.255e-21
3 rs6861729 rs35212229 0.1 ERCC8 Cultured fibroblasts CA=0.247 C=0.753 -0.346 1.233e-20
4 rs6861729 rs35453042 0.197 ELOVL7 Esophagus - Mucosa T=0.842 C=0.158 -0.515 6.393e-19
5 rs6861729 rs17331746 0.199 ELOVL7 Esophagus - Mucosa T=0.843 C=0.157 -0.515 1.742e-18
6 rs6861729 rs62372074 0.199 ELOVL7 Esophagus - Mucosa A=0.843 T=0.157 -0.515 1.742e-18
7 rs6861729 rs12516552 0.203 ELOVL7 Esophagus - Mucosa C=0.845 G=0.155 -0.511 3.096e-18
8 rs6861729 rs35078341 0.203 ELOVL7 Esophagus - Mucosa T=0.845 A=0.155 -0.511 3.096e-18
9 rs6861729 rs35957723 0.203 ELOVL7 Esophagus - Mucosa G=0.845 A=0.155 -0.511 3.096e-18

10 rs6861729 rs62367880 0.203 ELOVL7 Esophagus - Mucosa G=0.845 T=0.155 -0.511 3.096e-18

We sought to rule out technical artefacts that could give rise to this result. Al-
though, great care was taken to remove every germline variant within the UK Biobank
data. There was a possibility of high-frequency germline events remaining after our
stringent SNP filtering. We devised an additional test for loci that showed a putative as-
sociation with the somatic mutation rate that consisted of removing mismatches on the
same chromosome as the test SNP and regenerated the mismatch loads. If there were
unfiltered germline variants in LD with the test SNP driving the association, this would
remove the effect. We also regenerated the 192 phenotypes imposing a per-site recur-
rence filter of 1,000, i.e., all mutations that occurred in more than 1,000 samples were
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Figure 3.13: Manhattan plot of the GCG-to-GGG mismatch load. The x-axis displays the chro-
mosome and base pair positions. The strength of association as the -log10 p-value is measured
on the y-axis.

excluded from the mismatch load. We investigated the rs12332549 locus and discov-
ered a mismatch within 1kb of the test SNP that was present in 25,000 samples (Chapter
2, Fig. 2.3). Our exploratory analysis of this locus showed that the mismatch occurred
in fewer than 3 reads across each of the 25,000 samples; however, it showed strong
evidence of LD with the associated locus, suggesting that it is a germline variant and
that the association of the mutation load with this locus was an artefact. Indeed, when
we placed a threshold on the maximum number of samples carrying the mismatch, as
described above, the associations at this and all other significant loci described above
were no longer significant (Fig. 3.15). This demonstrated that, although our method
of removal of uncalled ‘germline events’ was stringent, some germline variants were
retained, with the potential, in extreme cases, to create false signals of association be-
tween linked germline loci and the mismatch load.

3.3.5 Mutational signature analyses

Pathogenic genetic variants underlying the conditions such as Lynch syndrome cause
higher rates of somatic mutations [328]. Matrix factorisation has identified several mis-
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Figure 3.14: GWAS performed on the unfiltered GCG-to-GGG mismatch load. The Locus-
zoom plot of tag SNP rs6861729 in the ERCC8 & ZSWIM6 locus. SNPs are coloured based on
linkage R2 with the tagging SNP. The y-axis (left) shows the strength of association between the
test SNPs and the GCG-to-GGG mismatch load as measured by the -log10 p-value. The y-axis
(right) contains the recombination rate in centimorgans per megabase.



Figure 3.15: Manhattan plot for the GCG-to-GGG mismatch load following the removal of
mismatches found in more than 1,000 samples.

match repair (MMR) mutational signatures that are over-active in Lynch-like samples.
Of the 200,000 UK Biobank exomes, we identified 160 samples with Lynch-associated
germline variants using the criteria of Patel et al. [312]. The contribution of 13
COSMIC mutational single base-pair signatures (Table 3.4), including two background
clock-like mutational signatures SBS1 and SBS5, to samples within the UK Biobank,
was estimated using non-negative least squares regression (methods). Of the 11 DNA
repair signatures tested, SBS3, SBS9, SBS18 and SBS21 returned non-zero estimated
contributions. The background mutational signatures, SBS1 and SBS5, showed no dif-
ference between the normal and Lynch-like group (Fig. 3.16). SBS18 had a marginally
larger contribution in the normal group (Wilcoxon rank sum test P = 0.023). How-
ever, this result was not statistically significant after correction for multiple hypothesis
testing. SBS1, SBS5 and SBS18 accumulate in a clock-like fashion over the human
lifespan [332]. In the Lynch samples, no signal of somatic mutation across the mean
contribution of the four mismatch repair mutational signatures tested was observed.
When the signature contribution was regressed against age, however, we did find a pos-
itive significant association between the contribution of mutational signature SBS3 and
age (Fig. 3.17).
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Figure 3.16: Boxplot of four MMR mutational signature contributions and two clock-like back-
ground signatures. Samples are grouped on whether they contain Lynch-like pathogenic vari-
ants or not. Wilcoxon rank sum test was performed to assess statistical differences between the
groups.

3.4 Discussion

In this chapter, we set out to investigate sources of variation in somatic mutation through
an analysis of the burden of mismatches of different types across 200,000 exomes in
the UK Biobank. In Chapter 2, we estimated that only a small proportion of somatic
mutations contribute to the mismatch loads. Yet, when we test for association with age,
we find we can recover the contribution of the somatic mutations to the mismatch loads.
This chapter decomposes the mismatch loads into transcriptionally-aligned triplet con-
texts to enrich the signals of somatic mutation. In doing this we reasoned that DNA
damage and sequencing error are unlikely to accrue across all nucleotide triplets at a
constant rate and transcriptional processes impart biological strand information into the
profile of mismatches. This allowed us to investigate the age-related signal we recov-
ered in Chapter 2 and to test for further phenotypic associations within the UK Biobank
dataset, such as cancer and smoking status. We quantified the mismatch asymmetry
within the data using transcription strand information and gene expression data from
the whole blood GTEx dataset. Next, we shifted our focus from environmental factors
associated with the variation in mismatch counts across samples in the UK Biobank to
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Figure 3.17: Median mismatch load as a function of integer age for four MMR mutational sig-
natures Each point represents the median of the normalised mismatch count among individuals
with the same integer age.



intrinsic processes driving somatic mutation rate variation. Using a GWAS approach
we identified loci that are associated with variation in the triplet context-specific mu-
tation loads. GWAS on somatic mutation is poorly researched owing to the difficulty
in assessing the level of somatic mutation across a large set of samples. Developing
on the idea of genetic variation impacting somatic mutation load, we identified sam-
ples with known pathogenic Lynch-like genetic variants. Lynch-like syndromes have
been empirically shown to have higher somatic mutation rates [328]. We identified a
set of DNA repair COSMIC signatures and estimated their contribution to each sample.
We then tested for differences in the contribution of the mutational signatures between
Lynch-like samples and the remaining individuals.

Several factors may influence the somatic mutational load within a sample. We
reasoned that individuals diagnosed with cancer or individuals who are current or past
smokers might have a higher somatic mutation load in blood cells and that this could
be reflected in higher mismatch loads. This effect has not been previously been inves-
tigated in a cohort as large as the UK Biobank but it could have important implications
for quantifying cancer risk. We found a statistically significant relationship between
mismatch load and cancer and smoking status. Given the significance of this result
in furthering the understanding of the role of somatic mutation and cancer risk, we
searched for potential confounding effects that may have led to this result. In Chap-
ter 2, a structure within the mismatch data associated with the sequencing batch runs
was clear when we visually inspected the data. We reasoned that this technical vari-
ance might be driving the statistical associations between cancer and smoking status.
Many technical challenges arise in the whole exome sequencing of 200,000 exomes,
from different storage conditions across assessment centres to the trans-Atlantic ship-
ping of frozen blood samples to the Regeneron sequencing facility in New York. At
each time point in the sample handling chain, batch effects can be introduced. We
identified two possible sources of large-scale batch effects, the assessment centre that
reflects the initial handling of the blood samples and the sequencing batch. We found
no significant structure related to the assessment centre in the mismatch data. This sug-
gests two insights into the data. First, a standardised methodology in sample handling
prior to long-term storage has limited the variance in DNA damage, and secondly, that
fine-scale population structure across the assessment centres is not driving differences
within the sample mismatch loads.
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Although not available as supplementary data from the UK Biobank repository, se-
quencing batch information can be extracted from the read ID in the CRAM alignment
files. We found that, on average, 800 samples were sequenced per run on the Illumina
Nova-seq 6000 at the Regeneron sequencing facility. By grouping samples by their
sequencing batch, we saw a clear structure within the mismatch data. The sequencing
batch reflected different rates of mismatch accumulation per sequencing run. Although
many technical factors may influence different error rates per sequencing run, we also
discovered significant intra-batch variation within the mismatch loads. This result may
have implications for researchers using the UK Biobank exome data. A best practice
methodology has been developed for performing GWAS on the UK Biobank imputed
genotype data this includes using genotype batch as a covariate within the regression
analysis. Given the differences we observed within the rate of mismatch accumulation,
GWAS studies performed on genotypes called from the exome sequencing data that
fail to account for sequencing batch may lead to spurious phenotypic associations. Ac-
counting for the sequencing structure may also decrease the false positive rate in rare
variant burden tests.

Given the observed sequencing batch structure, we sought to remove as much of
the sequencing batch effect as possible. As described in more detail in Chapter 2, we
adjusted our data by modelling the total number of mismatches within a sample per se-
quencing batch as a function of the number of autosomal reads. We then determined the
within-batch fractional rank of the residuals of this model for each sample. Following
this process, each sample has a value in the range [0,1] corresponding to the relative
position of the model residual of that sample among all samples of the same batch.
When we re-examined the associations we had found between mutation load and can-
cer and smoking status, we found that the sequencing batch was a significant source of
confounding. For example, none of the 128 mismatch contexts passed multiple testing
correction for association with cancer status after adjusting for the sequencing batch.
Although disappointing, by understanding the sources of confounding within the data,
we can begin to refine the mismatch loads. Accounting for as many external sources of
variation, we can build further confidence in the results contained within this study.

As we age, we accumulate somatic mutations - this phenomenon has been studied
extensively in small cohorts of healthy individuals [93, 160]. In Chapter 2, where we
found a linear relationship between the total number of mismatches within a sample and
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age. As DNA damage and sequence error accumulate at higher rates for some mutation
types, we expected the relationship with age to depend on the triplet mutation context.
We found this to be the case, with some mutations, such as AGA-to-ATA having a
strong association with age (R2 of 0.63) and others showing no age association. For
most contexts, a weak relationship with age was observed. It is important to note that
the relationship between mutations and age is obscured by technical factors such as
sequencing error and DNA damage, which may also depend on the nucleotide context.
Thus, our study has limited potential to determine the somatic mutation types that are
most strongly correlated with age, due to technical confounding. A point worth noting
is that the variance across each bin, in this case, each integer age, is not shown. The
reported model fit is on a median across a large number of samples.

Given that we can detect an age-associated increase in the median mismatch loads,
we sought to investigate if there was a difference in the rates of mismatch accumu-
lation on the transcribed strand relative to their reverse complements. DNA damage
and sequencing errors accumulate randomly across the Watson and Crick strands. The
rate of DNA damage at a specific nucleotide on the Watson strand should be approx-
imately equal to that of the same nucleotide on the Crick strand. By measuring the
rate of mismatch per substitution type on the transcribed strand, i.e accumulation of
all C-to-As on the transcribed strand compared with all the G-to-T substitutions on the
non-transcribed, we expected to recover a signal of asymmetry resulting from somatic
mutations, the accumulation of which is influenced by transcription-associated repair
and damage processes. For the C-to-A class we found significant levels of asymmetry,
which was much stronger than was observed for the remaining 5 mismatch types (Fig.
3.6). This class of substitution is well established in the literature as being associated
with transcription associated mutagenesis [123, 148].

As the exome sequencing data was generated from whole blood, using the whole
blood GTEx dataset, we sought to understand if gene expression might be driving the
observed asymmetry by determining the mismatch loads separately for expressed genes
and non-expressed genes. We found a significant increase in the mismatch loads for
the non-expressed derived data. For somatic mutations, this direction of effect has been
previously reported [148]. In addition to higher mismatch rates at low expression levels
Chen et al. found that increased expression resulted in increased strand asymmetry
between all mutation types. As sequencing errors are agnostic to biological strands, any
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deviation from symmetry is expected to result from true somatic mutations incurred by
transcriptionally associated processes. We report a strong level of asymmetry across
most mismatch contexts, with the C-to-A mismatch types showing the largest levels
of transcription-strand-associated asymmetry once again consistent with our previous
findings.

Although expected for a mutational phenotype inferred from high-confidence so-
matic mutation calls, the strength of this effect is not what we expect to see, given our
findings and simulations in Chapter 2, as most mismatches are expected to be from
sources of technical variation. Under the assumption that technical errors are the sole
contributor to the mismatch load, we should observe strand symmetry due to Char-
gaff’s second parity rule. We can test this hypothesis by inferring the asymmetry from
genes not expressed in whole blood. Significant asymmetry was found within the non-
expressed group, indicating that expression did not the cause of the transcription strand
asymmetry. The level of asymmetry as a function of mismatch load also showed struc-
ture related to the sequencing batch (Fig. 3.6 & 3.11). We tested the level of asymmetry
as a function of age. As transcriptional-associated mutagenesis is predicted to accumu-
late with age, we expected a linear increase in asymmetry. However, this was not the
case. Together our results implicate 8-oxoguanine DNA damage as the primary source
of this transcription strand asymmetry. Oxidation of guanine to 8-oxoguanine is the
most abundant source of DNA damage, DNA polymerase inserts an adenine opposite
the oxidated guanine nucleotide [65]. High levels of 8-oxoguanine arise when DNA
samples are stored incorrectly [307].

Given that the transcription strand asymmetry we observed is more consistent with
technical sources rather than somatic mutation, we sought reasons to explain what tech-
nical factors might cause transcription strand asymmetry. Differences in the contribu-
tion of DNA damage to read one and read two sequences in paired-end sequencing data
have previously been reported [307]. Therefore, an imbalance between the number of
read one and two sequences mapping to the transcribed strand could give rise to the
strand asymmetry we observed. We tested for read one vs read two strand mapping
imbalances for a subset of the 200,000 samples. However, we did not find a systematic
imbalance in read orientation that could plausibly give rise to the asymmetry effect we
observed. The most plausible explanation for the asymmetry results that we could find
relates to the design of the probes used in the capture kits for the exome sequencing.
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If the exome capture kit used single-strand probes, consistently designed to target the
coding strand sequence rather than the reference sequence, this could result in strand
asymmetry in DNA damage artefacts. Because such single-strand probes would consis-
tently capture DNA molecules from one strand, the damaged DNA, which is strongly
associated with C-to-A and G-to-T mismatches due to the frequency of 8-oxoguanine
damage, will make a strand-asymmetric contribution to the mismatch profile (Fig. 3.18
schematic below). The UK Biobank library preparation used the xGen Exome Research
Panel v1.0, a single-strand DNA capture library with the probe nucleotide sequence
oriented to the transcribed strand [333]. This observation may impact other exome
sequencing data sets where a single-strand DNA molecule is consistently pulled down
during exome capture. In addition to batch membership driving spurious associations in
studies using the exome genotypes, by providing a measure of the degree of DNA dam-
age, the C-to-A relative to G-to-T asymmetry may also be useful as a quality-control
metric. Although this could represent the primary explanation of the asymmetry we
observe, it does not rule out the possibility that some of the variation in the log2 ratios
is explained by true somatic mutations.

Next, we investigated the heritable component of the somatic mutation rate. Un-
derstanding the impact of genetic variation on somatic mutation has implications for
the aetiology of cancer and ageing in addition to increasing our understanding of the
biological mechanisms that drive mutagenesis. In the first iteration of our analysis,
four mismatch types had loci achieving genome-wide significance. One locus, within
the ZSWIM6 gene, was in LD with an eQTL for the ERCC8 gene that encodes the
Cockayne syndrome A (CSA) protein, a component of the transcription-coupled repair
pathway. Cockayne syndrome is an ageing disorder in which the cells of the affected in-
dividual cannot identify or rectify pyrimidine dimers and bulky adducts in transcribed
regions, consistent with the failure of the TC-NER response [334, 335]. This signal
was consistent with our expectations and would be a remarkable result. Genetic varia-
tion acting on mutational burdens outside of rare, highly pathogenic mutations has not
previously been identified [336]. Given the significance of this result, we tested the
possibility that there may have been technical artefacts or germline variants that had
made it through our SNP and genome masks.

When we removed the mismatches within the region containing the associated lo-
cus from the mismatch load, we found that the association signal was lost. The asso-

89



90

Figure 3.18: Schematic explaining how DNA damage can result in transcription-strand asym-
metry. A. Double-stranded probes capture DNA damage on both the transcribed and nontran-
scribed strands. The mismatch profile in the resulting data, when aligned to the transcription
strand, is symmetric. B. ssDNA/ssRNA probes capture DNA damage asymmetrically. Specifi-
cally, damaged G nucleotides (the most common type of DNA damage that arises after sample
collection) base-pair with A, resulting in a C-to-A mutation on the coding strand and a G-to-T
mutation on the template strand. When the mismatch profile is aligned to the transcription strand
an imbalance in G-to-T relative to C-to-A is observed. Image created with BioRender.com



ciation signal appears to have resulted from an unusual germline variant that occurred
in more than 25,000 samples (Chapter 2, Fig. 2.3). Interestingly, this mismatch only
occurred on a maximum of 3 reads across all the 25,000 samples. What remains un-
clear is whether the variant was a true biological variant or a mapping artefact, po-
tentially overlapping a large structural variant. Mismatches that arise from mapping
errors within high-frequency structural variants correlate with the SNPs tested in the
GWAS (pseudo-LD), leading to strong association signals [337]. To limit the impact
of loci such as this, we applied a recurrence threshold to the mismatch load to remove
mismatches that occur in more than 1000 samples. Future work could include the use
of local ancestry information around candidate high-frequency mismatches to deter-
mine whether a site is likely to be germline (if a highly recurrent mismatch is due to a
germline variant that has escaped filtering, we would expect that individuals contain-
ing the minor allele should be more closely related to one another within the genomic
region in LD with the locus).

Since we did not find any signals of genetic variation impacting the mismatch rate,
we stratified samples into those that were predicted to be Lynch-like using the genotypic
data associated with the UK Biobank to determine whether the elevated rate of somatic
mutation we expected to observe in those samples is detectable from the mismatch data.
This could help to shed light on whether the mismatch data has the capacity to reveal
germline variants associated with the somatic mutation rate. Lynch-like syndromes are
defined by heritable mutations within the mismatch repair genes MLH1, MSH2, MSH6,

TATGAA or PMS2 and are the leading cause of heritable colorectal cancer [189]. These
syndromes are characterised by microsatellite instability and increased somatic muta-
tion burden [338]. We identified 160 individuals with Lynch-like syndromes based on
the genotype data. Using non-negative least square regression, we estimated the contri-
bution of the COSMIC MMR mutational signatures to the mismatch count data. We did
not see any clear differences between the mean contribution of each mismatch repair
signature to the Lynch compared to the non-Lynch groups. This may be due to several
possibilities, such as a large variance across the Lynch group resulting from the small
sample size (Fig. 3.16) or mutational signature bleeding, where the linear contribution
of similar signatures is averaged, losing the true contribution of the relevant signature
to each sample. The samples we identified as Lynch-like may also not exhibit a higher-
than-normal mutation rate. Recent work has identified that some Lynch-like samples
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do not have an MMR deficiency phenotype [330]. As our lynch-like annotation is based
on genotype data, a significant proportion of the predicted Lynch-like samples may not
have a higher somatic mutation rate. It is therefore difficult to draw definitive conclu-
sions from this result due to the small sample size of the Lynch-like participants and the
possibility that we may not accurately stratify samples based on expected higher back-
ground mutation rates. We did however recover an age-dependent effect in SBS3 in the
normal sample group indicating that SBS3 may accumulate with age. While SBS3 is
associated with homology repair previous studies have shown that SBS3 accumulates
linearly with age in paediatric tumours [339].This result would be particularly relevant
in models of ageing as there is increasing evidence that non-homologous end-joining is
preferred over homology-based repair pathways in replicatively aged cells [340, 341].

3.5 Conclusion

Here we investigated sources of variation in the mismatch load across 200,000 ex-
ome sequencing samples from the UK Biobank. We uncovered significant unreported
batch effects in the sequence data. By decomposing the mismatch load into 192 tran-
scriptionally aligned triplet loads, we found that for some triplet contexts, there was
an increased linear relationship with age, suggesting a larger contribution of somatic
mutations to these mismatch types. We also highlight the importance of addressing un-
reported sequencing batch effects within the UK Biobank by testing the mismatch loads
between samples with self-reported cancer and smoking. We detected strong signals of
asymmetry between mismatches on the transcribed vs untranscribed strand. The level
of asymmetry was inconsistent with the expected contribution of somatic mutations to
the observed mismatches. For the first time in the literature, we report a transcription
strand asymmetry arising from a bias in the exome library preparation step.

We tested for signals of a heritable contribution to levels of mismatch within the
UK Biobank by performing a GWAS on the mismatch loads. We find evidence of com-
plex germline events which have not been reported in the dbSNP database or called in
approximately 25,000 samples containing the low variant allele fraction variant. Lynch-
like syndromes are characterised by aberrant mismatch repair processes we identified
a set of 160 samples with pathogenic variants likely to cause Lynch-like syndromes.
Using MMR mutational signatures, we estimated the relative contribution of 4 MMR
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signatures and two clocklike background signatures to predicted Lynch syndrome sam-
ples and the remaining normal group. No significant difference between the groups was
observed. However, we did recover a strong signal of SBS3 accumulating with age in
the normal group.

Overall, this chapter demonstrated that high levels of technical variation across sam-
ples make it difficult to obtain insights into inter-individual variation in somatic muta-
tion processes through an analysis of the observed mismatches. Instead, in the next
chapter we pivot the data, aggregating across samples to investigate variation in mis-
matches across the genome. By doing this, the impact of samples with high technical
variance can be reduced. We will further analyse the mismatch data on the gene level
by investigating the relationship between known somatic mutation rate modifiers and
the median mismatch burden. We also test for signals of somatic selection and de novo

mutational signatures active across the genome.

3.6 Methods

The context-specific transcriptionally-aligned mismatch loads were generated by re-
verse complementing mismatches that arose in genes annotated by VEP as being on the
‘minus’ strand. The data were normalised by the same regression-based procedure out-
lined in Chapter 2. Cancer and smoking data were downloaded from the UK Biobank
repository using the field ID, 20001 and 22506, respectively.

Phenotypic correlations were performed using R (version 4.1.3) [342] and visu-
alised using ggplot2 (version 3.4.0) [343]. Median TPM whole blood expression data
were downloaded from the GTEx portal (version 8) [344]. The mismatch loads were
regenerated using gene coordinates from genes non-zero expression levels in the GTEx
whole blood and for genes without expression levels. The log base two ratios were then
calculated for the median counts per mismatch context and its reverse complement. For
mismatch loads derived from expressed genes vs non-expressed genes, the data was
further normalised by the reference triplet frequency within each expression group.

Information and white papers for the IDT xGen Exome Research Panel v1.0 used
by the UK Biobank for exome capture can be downloaded from the Wayback machine.

https://web.archive.org/web/20180403022641/http://eu.idtdna.com/pages/products/
next-generation-sequencing/hybridization-capture/lockdown-panels/xgen-exome-research-
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panel
The coordinates and probe strand orientation can be downloaded from the following

link.
http://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/supplementary-product-

info/xgen-exome-research-panel-probesbe255a1532796e2eaa53ff00001c1b3c.bed?sfvrsn=
425c3407_7&download=true

Genome-wide association analyses were performed on 21 million genotypes filtered
using PLINK2 with a minor allele frequency (MAF) threshold of 0.0001 and Hardy-
Weinberg equilibrium (HWE) p-value cut-off of 1e-10 [345]. A pruned set of 1.3 mil-
lion variants was generated by LD-pruning (PLINK2 –indep-pairwise params=1000,100,0.5)
and a MAF of 0.01. This reduced set was then used to calculate principal components
(PCs) and to generate a genetic relationship matrix (GRM). GWAS was performed us-
ing fastGWA (version = 1.93.2) with 10 PCs, age, sex, genotype batch and assessment
centre as fixed effects [246]. The eQTL analyses of GWAS results were performed
using the web-based LDlink resource [331].

The genotype call data was used to identify Lynch-like samples. Following the pro-
tocol outlined in Patel et al. [312], samples containing one of 52 likely pathogenic
variants across six genes, MLH1, MSH2, MSH6, PCSK9, PMS2 and TATGAA associ-
ated with Lynch syndromes were grouped as Lynch-like.

To identify the contribution of the mutational signatures to the UK Biobank mis-
match data, we performed non-negative least squares regression using a set of 13 COS-
MIC signatures associated with DNA repair deficiencies or signatures that accumulate
in a clock-like fashion over the human lifespan. Non-negative least squares regression
was performed using the FitMS function of the signature.tools.lib R package (version
2.2.0) [112].
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Table 3.4: List of COSMIC signatures related to DNA damage repair or increasing age. The
proposed aetiology is provided.

Cosmic Signature Proposed aetiology
SBS3 Defective homologous recombination-based DNA damage repair
SBS6 Defective DNA mismatch repair.
SBS9 Deficient DNA repair via translesion synthesis
SBS13 AID/APOBEC activity
SBS15 Defective DNA mismatch repair and microsatellite instability (MSI)
SBS18 Damage by reactive oxygen species - Clock-like
SBS20 Defective DNA mismatch repair.
SBS21 DNA mismatch repair deficiency
SBS26 Defective DNA mismatch repair.
SBS44 Defective DNA mismatch repair.
SBS84 AID activity
SBS1 Spontaneous deamination of 5-methylcytosine to thymine - Clock-like
SBS5 Aetiology unknown - Clock-like



Chapter 4

Variation in somatic mutation rate
across the genome

4.1 Abstract

Intrinsic and extrinsic processes drive mutation rate variation. Through an analysis
of the frequency with which mismatches to the reference genome occur across UK
Biobank exome samples, we investigated the contribution of intrinsic properties such
as GC content, replication timing, and recombination hotspots to variation in the rate of
somatic mutation across the genome. Chromatin accessibility had a negative correlation
linear relationship with mismatch frequency, whereas gene expression has a complex
non-linear relationship with mismatch frequency. Many of the relationships between
genomic properties and mismatch frequency are consistent with what has been reported
for germline or somatic mutation data. Inferring mutational signatures using NMF, 5
of the 12 signatures has similarity to COSMIC signatures. We find evidence of positive
selection in genes associated with clonal haematopoiesis of indeterminate potential.
Overall, our results suggest that the exome sequencing data of 200,000 UK Biobank
individuals is informative about variation in somatic mutation rate across the genome.

4.2 Introduction

The rate of somatic mutation across regions of the genome has been reported to be cor-
related with GC content, replication timing, chromatin accessibility and gene expres-
sion [127, 141, 133, 119]. Regions with high GC content have an increased somatic
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mutation burden due to the ineffective repair of spontaneously deaminated cytosines
[346]. The GC content around single base errors has been shown to have a negligible
effect on the rate of single base errors introduced during PCR amplification [347], sug-
gesting that the observed correlations are derived from sources, other than sequencing
error, such as somatic mutation, sequencing errors and DNA damage at guanine nu-
cleotides during library preparation. GC-rich regions of the genome tend to be in open
chromatin, confounding the relationship between mutation and GC content with DNA
accessibility for replication and repair [127].

The genome can be broadly divided into regions of early and late DNA replication
[140]. Open or active chromatin replicates earliest as the super-condensed chromatin
in late-replicating DNA requires chromatin remodelling to allow replication initiation.
As the nucleotide pool becomes depleted, the late replicating regions of DNA experi-
ence instability due to being in a ssDNA state for a prolonged period of time [142]. The
relationship between ssDNA and DNA mutation rate is due to exposure to APOBEC ac-
tivity [92] and other endogenous DNA damage factors, including alkylation, oxidation
and deamination [65]. DNA damage on ssDNA also leads to DSBs which have been
empirically shown to increase the somatic mutation rate around break sites [142]. In
contrast to GC content, the mutational rate variation associated with replication timing
shows a tissue-specific effect due to differences in chromatin conformation differences
across cell types [143].

Genetic recombination during meiosis is a process found across vertebrates [348].
Sequences that have a high rate of recombination are referred to as recombination
hotspots [349]. In addition to the recruitment of low-fidelity repair-associated poly-
merases to DSBs, there is an increase in APOBEC activity at regions of ssDNA [350]
and consequently, recombination hotspots are associated with an elevated rate of germline
mutations [351]. Recombination can also occur during mitosis, but the study and impli-
cations of mitotic recombination beyond loss of heterozygosity (LOH) remains poorly
understood. In the TCGA dataset, approximately 15% of LOH events are attributed to
recombination between homologous chromosomes [352].

The accessibility of DNA repair proteins to sites of DNA damage is also a known to
influence the somatic mutation rate [133]. DNA that is in an accessible or in the ‘open-
chromatin’ state is easily accessible by repair machinery, while DNA damage within an
inaccessible or tightly wound state is less easily detectable by repair processes [133].
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The chromatin conformation varies across cell types and stages of the cell cycle. Using
sequencing-based methods such as ATAC-seq [136], the accessibility of DNA can be
quantified and used as a measure of chromatin accessibility. As the chromatin accessi-
bility increases, the sequence becomes more open to enzymatic repair, thus decreasing
the mutation burden [133].

Gene expression and somatic mutation rate have a complex non-linear relationship
[148]. Lowly expressed genes exhibit a higher mutation rate but as gene expression in-
creases, the efficiency of the transcription-coupled repair machinery also increases until
a point of inflection where genes that exhibit high gene expression lose the ability to
repair mutated DNA base due to the mutagenic properties of transcription and the muta-
tion rate once again increases. The complex relationship between mutation rate and ex-
pression has been previously observed in the soma and germline [119]. Transcription-
coupled repair and transcription-associated damage are strand-specific processes result-
ing in an asymmetric mutational profile between the substitution rate on the transcribed
and non-transcribed strands [143]. This bias is not clear when analysing mutation data
aligned to the reference strand. A strong transcriptional-associated asymmetry has been
previously described in mammalian evolution and cancer [122].

An increase in the rate of functional somatic mutations relative to the neutral expec-
tation can be used to infer selection acting on somatic mutations, via methods derived
originally from molecular evolution theory. These methods (referred to as dNdS or
KaKs) determine if there is an excess or absence of functionally consequential muta-
tions given the rate of synonymous mutations, which are assumed to be neutral [8].
An excess in the rate of functional mutations relative to the rate of non-synonymous
mutations is indicative of positive selection. In contrast, an absence of functional mu-
tations relative to the proportion of synonymous mutations is indicative of negative or
purifying selection. Martincorena et al. have developed a 96-context and 192-context
somatic mutation dNdS model (dndscv) which accounts for background genomic co-
variates including chromatin state, gene expression and for the differences in mutation
rate across genes [13]. In expanding clones, mutations that influence clonal growth
along with non-functional passenger mutations will be found at high frequencies within
a tumour. By aggregating across samples only the functional mutations will be highly
recurrent across cancer samples, for example in the TCGA dataset driver mutations in
BRAF were found in 848 samples with 64% of BRAF driver mutations correspond-
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ing to V600E [353]. Haematological clonal expansions have been previously shown
to increase with age and to be due to a relatively small number of positively selected
mutations with varying effects on the expansion of haematological cells [354].

As we age, clonal expansions begin to dominate the haematopoietic stem cell (HSC)
pool, resulting in a loss of stem cell diversity [209]. Clonal haematopoiesis of indeter-
minate potential (CHIP) results from the clonal expansion of one or more lineages of
HSCs. CHIP is a prognostic marker for numerous diseases, such as cardiovascular dis-
ease and inflammation and it increases the risk of leukaemia by 0.5-1.0% per year [208].
CHIP is most commonly associated with mutations in epigenetic regulators (DNMT3A,

TET2, ASXL1) but also in genes involved in mRNA splicing (PRPF8, SF3B1, SRSF2,

U2AF1) [355]. A single base substitution, DMNT3A R882, is the most common mu-
tation found in individuals with CHIP [354]. Between 10 and 20% of individuals over
the age of 70 have clones containing established CHIP expansion mutations [355]. Al-
though CHIP is common in older individuals, the clonal expansions can begin much
earlier in life. Interestingly, mutations have different fitness effects depending on the
age in life at which the mutation occurs [214].

In a dataset containing somatic mutations across samples, the underlying muta-
tional processes are aggregated into a single spectrum of mutation frequencies. Matrix
decomposition techniques, such as non-negative factorisation, have been used to fac-
torise a matrix of triplet mutation counts into two matrices, one of which contains the
mutational spectrum of each mutational process and the other containing the relative
contribution of each process to the mutational burden in each sample [84, 103]. Us-
ing controlled mutagenesis studies, the mutational signatures can be mapped to certain
mutagenic processes, such as APOBEC activity and clock-like mutational signatures
[106]. The COSMIC database contains a curated list of mutational signatures inferred
from cancer datasets, including proposed aetiologies [113].

In the Chapter 3, we found that the proportion of somatic mutations among the
mismatches in the UK Biobank exome sequencing was likely to be too low to allow
these data to be used to study sources of inter-individual variation in somatic mutation
load. In this chapter, instead of looking at variation between individuals, we consider
variation across the genome. Although the proportion of true somatic mutations in the
data is likely to be low, leveraging information across many individuals has the potential
to identify genomic features that correlate with mutation burden and to highlight loci
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that are recurrently mutated across samples, providing the possibility of identifying
evidence of somatic selection. By learning information from recurrent mutations across
the genome we can begin to recover true sources of somatic signal from the noise of
whole exome sequencing data. By pivoting to intra-genomic variation rather than inter-
individual variation we can mitigate technical bias. Leveraging the sources of known
mutation rate covariation, and the power of the sample size in the UK Biobank we can
extract information on the somatic mutation burden across genes even when there are
large sources of technical noise in the data.

4.3 Results

4.3.1 Genomic covariates

4.3.1.1 GC content

We used the number of samples in which a mismatch was observed at a locus in the UK
Biobank data to study variation in somatic mutation rate across loci, taking account of
the sequence context of the locus via the upstream and downstream nucleotides. The
mismatch rate was strongly correlated with gene GC content, a well-established source
of mutation rate variation in the genome [127]. Across 192 sequence contexts, 190 had
a significant Spearman correlation coefficients after multiple testing correction ( α <

0.00026), with Spearman correlation coefficients ranging from 0.03-0.35 (Table B1).
Nine of the 192 mutational contexts had significant Spearman correlation coefficients
below machine precision (P < 2.2 × 10−308; Table B1 & Fig. 4.1). There was no
obvious pattern to the sequence contexts most strongly correlated with GC content.

To aggregate the 192 sequence contexts into a single value, we computed the mean
across the ranks of the recurrence values (see Methods for details). Although a strong
correlation was found between the ranked median score and GC content (P < 2.2×
10−308, ρ = 0.51), the aggregation of median recurrences into a single score may in-
duce bias in genes with missing mutational contexts (typically shorter genes), for this
reason, we focus our results primarily on the results obtained for the individual se-
quence contexts. The relationship between GC content and mismatch recurrence un-
derscores the importance of accounting for this potential confounding as GC content is
a known to covary with gene expression and replication timing.

100



101

Figure 4.1: Hexbin plot of the median mismatch recurrence as a function of GC content for the
GAG-to-GTG, TCT-to-TGT, AAC-to-AGC and GAT-to-GTT mismatch contexts. The red line
shows the line fit from a linear model fitting the median mismatch recurrence per bp against the
genes GC-content.



4.3.1.2 Replication timing

The relationship between GC content and replication timing is well established (Fig.
4.2) [356]. After accounting for confounding between GC content and replication
timing, no linear relationship between replication timing and ranked aggregated score
(across triplet sequence contexts) was observed (P = 0.17). This, however, was biased
by short genes, filtering genes less than 500bp in length indicated a positive relationship
between the aggregated score and replication timing (Spearman P = 8.007× 10−45,
ρ = 0.11; Fig. B1). In some sequence contexts, strong linear signals after account-
ing for GC content were identified (Fig. 4.3). For example, GAG-to-GTG (linear
model P = 1.5×10−18; Spearman P = 3.2×10−182, ρ = 0.22). Of the 193 mutational
loads (192 contexts + ranked aggregated score) tested 143 mismatch loads had signif-
icant spearman correlations with replication timing after multiple testing correction.
Of those, only 16 had significant negative Spearman correlations after correction for
multiple testing. TCT-to-TGT, the mismatch context with the second highest Spearman
correlation (Table B1; P = 4.9×10−143; Spearman ρ = 0.19) is a high-weight context
in cosmic signature SBS13. The activity of this mutation signature has been reported
to correlate positively with replication timing across 17 cancer types in the COSMIC
database.

4.3.1.3 Open chromatin

To understand the relationship between variation in somatic mutation rate and the acces-
sibility of the DNA sequence, we used ATAC-seq data from a normal B-lymphoblastoid
cell line (see Methods). The ATAC-seq data measures the accessibility of chromatin and
is used as a proxy for sequences that are accessible to repair machinery. We hypoth-
esized that genes that are accessible to repair machinery will have a reduced somatic
mutation rate, which would be detectable as a reduction in the mismatch recurrence
in open chromatin regions [141]. Indeed, all mutational contexts had a negative Spear-
man correlation coefficient with chromatin accessibility, with the aggregated rank score
having the strongest linear relationship (Fig. 4.4).
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Figure 4.2: Hexbin plot highlighting the relationship between GC content and replication tim-
ing. The red line shows the line fit from a linear model between GC content and replication
timing.
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Figure 4.3: Hexbin plot of the median mutation recurrence as a function of replication timing
for the GAG-to-GTG, TCT-to-TGT, AAC-to-AGC and GAT-to-GTT mismatch contexts. The
red line shows the line fit from a linear model between each genes median mismatch recurrence
per bp as a function of replication timing.
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Figure 4.4: Hexbin plots. The median mutation recurrence as a function of chromatin openness
for the GAG-to-GTG, TCT-to-TGT, AAC-to-AGC and GAT-to-GTT mismatch contexts. The
red line shows the line fit from a linear model between a genes median mismatch recurrence per
bp and chromatin accessibility.



4.3.1.4 Recombination hotspots

Genetic recombination may influence somatic mutation. To investigate the effect of
recombination on the mismatch data, genes were classified according to whether they
overlap recombination hotspots. The mismatch proportion of mismatches overlapping
recombination hotspots (hot genes) was significantly greater than genes not overlapping
recombination sites (cold genes) (t-test P = 1.373× 10−12). To remove confounding
from GC content we calculated genome- and exome-wide estimates of GC content and
the GC content in recombination hotspots (Table B2). The GC content is significantly
lower in recombination hotspots, compared to the remainder of the genome. To ac-
count for this sequence content differences between hot and cold genes we can model
the mutational load as a function of recombination ‘hotness’, chromatin openness and
GC content. In total 87 mutational contexts had a significant model fit after multiple
testing correction (Table B3). A positive linear relationship between the proportion of
sites within a gene overlapping a recombination hotspot and the total mutational load
per gene was observed, consistent with recombination increasing the number of mis-
matches (Fig. 4.5).

4.3.1.5 Gene expression

4.3.1.5.1 Linear models

Gene expression is a well-established modifier of mutational rate. In a linear model
of mismatch recurrence as a function of median gene expression (from GTEx Whole
Blood) and other correlates of somatic mutation (replication timing and GC content),
a significant negative trend was observed (Table B4). A negative relationship was
observed for most mutational contexts (Fig. 4.6). The aggregated ranked mutation
score per gene showed the strongest association with expression (effect size = -0.01,
P = 3.06× 10−23; R2= 0.16). We also observed a strong negative linear relationship
between gene expression and the individual mutational contexts. In particular, the GCT-
to-GAT mutation context had the strongest statistical significance (effect size = -0.07,
P = 1.3×10−10; R2 = 0.004, Fig. 4.6). In total 18 mutational contexts had significant
coefficients for gene expression after multiple testing correction, with all 18 having
negative model coefficients.
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Figure 4.5: Hexbin plots of median mutation recurrence vs proportion of sites overlapping a
recombination hotspot. The GCT-to-GAT, GCA-to-GAA, ACC-to-AAC and TCT-to-TAT mis-
match contexts are shown as representative of the 192 mismatch contexts. The red line shows
the line fit from a linear model between a genes median mismatch recurrence per bp and the
proportion of a genes bases that lay within a recombination hotspot.
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Figure 4.6: Hexbin plot of the log GCT-to-GAT mutation recurrence and log gene expression.
The red line shows the line fit from a linear model of a genes median mismatch recurrence per
bp and log gene expression.



Figure 4.7: Boxplots of log median mismatch recurrence and log gene expression quintiles for
the GCT-to-GAT, TCT-to-TGT, AGC-to-AAC and GAT-to-GTT mismatch contexts.

By analysing the relationship between mismatch recurrence and gene expression
quantiles, a more nuanced relationship emerged. There was a weak parabolic relation-
ship between the median recurrence as a function of gene expression quintiles, with the
upper and lower quantiles having an increased rate of putative somatic mutations (as
measured by the median number of individuals in which the site contained a putative
somatic mutation) and the lowest rate at intermediate expression levels. This is consis-
tent with the opposing mutational forces of transcription coupled repair, which does not
act effectively on the lowest expressed genes, and transcription associated mutagene-
sis, leading to an elevated burden of putative somatic mutation for the highest expressed
genes (Fig. 4.7) [148].
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4.3.1.5.2 GAMs (Generalised additive models)

As opposing processes underlying transcriptional associated mutagenesis and repair
are likely to result in a non-linear relationship between somatic mutation and gene
expression, we used generalised additive models (GAMs) and smoothing splines to
visualize the relationship (Fig. 4.8). Given large sample sizes such as that of the UK
Biobank, GAMs can reveal the non-linear relationships between variables. The GAM
model shows a higher rate of mismatches for lowly expressed genes. A similar trend
was seen in the GAM and expression quantile analysis. As expression increases the rate
of mismatches decreases until a certain expression point where the recurrence begins to
increase once more, until the data becomes sparse and dominated by uncertainty. The
aggregated rank score shows a similar trend.

4.3.2 Analysis of selection

The selective pressure acting on a gene over evolutionary time is frequently assessed
through a comparison of the relative rate of non-synonymous substitutions per nonsyn-
onymous site to synonymous substitutions per synonymous site (referred to as dNdS)
[156]. A similar approach has been applied to infer evidence of somatic selection in
cancer and normal cells [13]. Optimising an approach developed for this purpose, (see
Methods section), we found a strong correlation between the strength of the evidence
for selection and CDS length, (P < 2.2× 10−16, Pearson’s ρ= -0.77). This is not sur-
prising, as evidence of selection (purifying or negative selection) can accumulate over
the length of the gene. To account for this bias the log of the p-value was divided by
the CDS length. To test whether genes that drive blood malignancies are enriched for
positive selection in the UK Biobank, we ordered genes according to the evidence of
positive selection. Using a list of 75 genes from the Archer variantPlex 75 Myeloid
gene panel we produced a receiver operator characteristic (ROC) curve illustrating ev-
idence for positive selection to identify genes in the myeloid panel (Fig. 4.9; Table
B5). A ROC curve represents the true positive rate as a function of the false negative
rate. The area under the ROC curve (AUC) is a measure of the models performance
in discriminating between haematological and non-haematological genes. An AUC of
0.5 reflects the model has a 50% chance of a correct prediction while a AUC of 1 re-

110



111

Figure 4.8: Generalised additive model (GAM) of the log mismatch median recurrence and log
gene expression. The datapoints are shown as hexbins to highlight the trends revealed by the
GAM and density of the mismatch recurrence.



Figure 4.9: ROC curve showing the enrichment of myeloid genes over 1000 bootstraps. The
p-value have been adjusted for myeloid gene length.

flects 100% predictions. The AUC of the dnds model was 0.61 (CI95%= 0.53-0.68;
confidence interval generated from 1000 bootstraps), suggesting that positive selection
had weak (but significantly better than random) power to identify genes in the myeloid
panel.

The top 20 genes ordered on adjusted p-value were strongly enriched for histone
genes and genes involved in cytoskeleton pathways, Table 4.1. There was considerable
evidence of positive selection acting on SRSF2, a gene that is known to contribute to
CHIP [355] and is critical in driving myelodysplastic syndromes [357]. SRSF2 had
over twice the expected rate of non-synonymous mutations, given the observed number
of synonymous mutations (omega = 2.323, Table 4.1) [358].
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Table 4.1: Top 20 positively selected genes ranked on adjusted p-value.

Gene name N-syn1 N-mis2 ω-mis P-value3 CDS length P-adj4

TUBB4B 32942 428496 3.732637 -38852.777 1338 -29.03795
ACTG1 12413 247709 5.911971 -32725.678 1128 -29.01213

HIST1H2AC 5677 68983 4.737266 -9848.482 393 -25.05975
H3F3B 10573 95847 3.379037 -9710.978 411 -23.62768
ACTB 27712 313482 3.278052 -25026.961 1128 -22.18702
CFL1 22536 202790 2.752010 -13572.942 615 -22.06982

HIST1H4E 2873 39088 5.792993 -6866.701 312 -22.00866
EEF1A2 46941 460770 2.815484 -30195.347 1392 -21.69206

HIST1H2AE 9801 81509 3.252676 -8219.057 393 -20.91363
TXNL4A 16552 164724 2.562580 -8606.809 429 -20.06249

ATP6V0C 22376 167452 2.375905 -9172.920 468 -19.60026
ARF1 28020 214048 2.301080 -10612.815 546 -19.43739

AC011530.1 8794 84857 2.853683 -5811.733 321 -18.10509
RHOB 18769 178607 2.667427 -10640.051 591 -18.00347
EEF2 72711 685477 2.790245 -45525.398 2577 -17.66605

ACTA1 29894 313731 2.816091 -19460.442 1134 -17.16088
ARL4C 20639 186946 2.541988 -10359.423 606 -17.09476
SRSF2 30146 189634 2.322876 -11244.955 666 -16.88432
RHOG 32160 206185 2.144864 -9702.280 576 -16.84424
ARF6 23010 168462 2.313264 -8765.738 528 -16.60178

1Number of synonymous mismatches
2Number of missense mismatches
3Natural logarithm of p-value
4CDS adjusted p-value
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4.3.3 Mutational signatures

Matrix factorization techniques, such as NMF, can be used to decompose a matrix of
mutation counts into a latent feature space capturing the underlying mutational pro-
cesses and technical artefacts and their relative weights across samples. Given the size
of the UK Biobank dataset, the RcppML implementation of NMF was used for speed
and memory efficiency [359]. Our count matrix consisted of 96 triplet contexts on the
columns and 17,435 genes on the rows. While the body of this work deals with 192 con-
texts in this analysis we have opted for 96 contexts to easily compare with the publicly
available COSMIC mutational signatures. The rank of the decomposition determines
the number of latent mutational processes. To determine the rank that best captures the
latent processes we use the elbow point method on mean squared error over a range
of ranks, 1-60. As the plot of the ranks against the MSE did not show an obvious el-
bow point, to use in the matrix factorisation, the unit invariant knee (UIK) method of
the inflection R package was used to infer an ‘optimal’ rank [360]. The UIK method
indicated an optimal rank of 12 for the factorization (Fig. 4.10).

To aid interpretation, the 12 estimated mutational signatures were mapped to known
mutational signatures derived from version 3.2 of catalogue of somatic mutations in
cancer (COSMIC), (Fig 4.11). Five of the 12 estimated signatures had cosine simi-
larities of greater than 0.75. These were COSMIC signatures SBS1, SBS10b, SBS15,
SBS49 and SBS90.

SBS1 is a clock-like mutational signature which is intrinsic to normal and cancer
cells, with a proposed aetiology of spontaneous deamination of 5-methylcytosine. It
has been proposed as a cell division/mitotic clock. SBS10b is found in hypermutated
cancers resulting from POLE deficiency. SBS15 is associated with defective DNA
repair and MSI instability and typically occurs in samples with other signatures of MSI
instability. SBS49 is proposed to be a sequencing artefact. SBS90 has been proposed
to arise from exposure to the alkylating agent duocarmycin. Duocarmycin is derived
from the soil-dwelling bacteria streptomyces, found in the human microbiome [361].
For estimated signatures, SBS1 and SBS15, the relationship to the cosmic signatures
are influenced by a single mutational context that may over-inflate the cosine similarity
(Fig. 4.12).

Over multiple runs of the same factorisation rank the NMF algorithm may not con-
verge on the same latent vectors (or the order of the latent features that appear in the
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Figure 4.10: Elbow point plot using the UIK method to determine the optimum factorization
rank among all ranks in the range 1 to 60. A vertical line indicates the optimal factorization
rank (12) inferred using this approach. The mean squared error between the input counts matrix
and the dot product of the inferred basis and coefficient matrices (y-axis).
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Figure 4.11: Mismatch spectra of the ‘optimum’ signatures. The bars measure the relative
contribution of each triplet mismatch to the inferred signature y-axis. Signatures with similarity
to COSMIC signatures have been renamed, right legend.
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Figure 4.12: A. COSMIC-like estimated signatures from the mismatch data. B. The closest
COSMIC signature to the estimated signature on the same row.



basis matrix may differ between runs). To estimate the stability of the rank 12 ap-
proximation we repeated the factorization 250 times. The variance across genes in the
contribution (H) matrix of the first four estimated signatures was constant whereas for
estimated signatures 5 - 12 the variance increases dramatically (Fig 4.13 A.) Taking the
mean of the D matrix (diagonal scaling matrix) from the 250 NMF runs allows us to
see that the first four signatures contribute the largest proportion of variation (Fig. 4.13
B.) A finding that is consistent with the variance explained (Fig 4.13 A.) The cosine
pairwise similarity between each signature estimated from the 250 NMF bootstraps in-
dicates that estimated signatures, 1, 2, 3 & 4, have the largest stability (Fig. 4.14). This
reflects the shape of Fig. 4.13 A where the position of the higher number of signatures
becomes increasingly unstable. The variance in the contribution of the inferred signa-
tures and the cosine similarity between the signature replicates indicates the instability
in the estimation of higher signatures (eSig5-12) which is consistent with the slight
drop in the MSE from the optimum rank analyses.

The signature contributions were all significantly correlated with chromatin open-
ness and replication timing (Table 4.2). In linear regression models that included repli-
cation timing, GC content and chromatin accessibility as fixed effect covariates, all
signatures except the SBS90-like signature, had a significant association (after multiple
testing correction) with replication timing and chromatin accessibility. The inclusion
of gene expression to the models made only a minor difference to the total variance
explained R2 across all signatures.

4.3.4 Strand asymmetry

In Chapter 3, we quantified strand asymmetry per individual. We proposed that the
asymmetry in the number of mutations observed on the transcribed versus non-transcribed
strand was due to the use of ssDNA probes in the exome capture assay. The use of
probes that are designed to be complementary to the coding sequence resulted in sig-
nals of DNA damage (specifically G to T mutations) being found at a higher rate on the
non-coding strand. We reasoned that this effect can also be detected in the log2 ratio of
the mutation recurrence between transcription strands across the genome (Fig. 4.15).
While an excess of C-to-A mutations is indicative of transcription-associated muta-
genesis [123], the strong asymmetry in C:G-to-A:T mutations that we observe in the
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Figure 4.13: 250 NMF bootstraps of optimal rank 12 to assess the stability of the approxima-
tion. A) The variance in signature weights across the genome. B) The mean scaling factor for
each estimated signature.
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Figure 4.14: Pairwise comparisons using the cosine similarity in 250 NMF runs with factoriza-
tion rank 12. Each boxplot contains 31,125 data points
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Table 4.2: Spearman correlation tests between the inferred signatures and gene expression,
replication timing and chromatin accessibility.

Gene expr P Gene expr ρ RepT P RepT ρ Chromatin P Chromatin ρ

SBSE 1.2e-98 0.16 4.6e-28 0.084 2.2e-11 -0.077
SBSF 2.3e-77 0.14 1.9e-30 0.088 4.4e-06 -0.053

SBS15-like 5.9e-74 0.14 1.3e-34 0.094 1.4e-09 -0.069
SBSB 1.3e-58 -0.12 8.9e-100 0.16 3.1e-14 -0.087

SBS49-like 2.1e-53 0.12 2.7e-13 0.056 3.3e-11 -0.076
SBS10b-like 3.1e-53 0.12 1.5e-16 0.063 7.3e-09 -0.066

SBS1-like 2.7e-52 0.12 1.1e-52 0.12 4e-09 -0.067
SBSA 9.8e-52 -0.12 1.5e-49 0.11 4.8e-09 -0.067
SBSG 9.8e-27 0.083 1.6e-08 0.043 8.7e-05 -0.045
SBSD 1.3e-15 -0.062 4e-28 0.084 1.1e-09 -0.07
SBSC 0.00025 -0.028 5e-44 0.11 2e-07 -0.06

SBS90-like 0.0067 0.021 1.9e-50 0.11 4.9e-09 -0.067

mismatch recurrence data were consistent with what we uncovered in Chapter 3 (Fig.
3.4). We proposed that most of the C:G-to-A:T asymmetry arises from 8-oxoguanine
on the non-coding DNA fragments that have been pulled down in the exome capture
Chapter 3 (Fig. 3.18). A log2 ratio value of 2.5 corresponds to approximately 5.6
times more C-to-A mutations on the coding strand compared to the non-coding strand.
Interestingly, the asymmetry was not extreme for the other mutation types (Fig 4.15).

4.4 Discussion

Here we describe the relationship between the frequency with which mismatches to the
reference genome are observed across 200,000 UK Biobank exome sequencing sam-
ples and genomic features known to covary with somatic mutation. In the previous
chapter, we investigated variation across individuals in the UK Biobank in the number
of mismatches in alignments derived from whole exome sequencing, inferred using the
pipeline described in Chapter 2 (Fig. 2.1). In addition to somatic mutations, these mis-
matches include a contribution from sequencing error, DNA damage and other technical
artefacts. We hypothesized that significant contributors, such as cancer status or age, to
the mismatch variation across samples in the somatic mutation rate could be detected
against this background of technical noise due to the large sample numbers available
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Figure 4.15: Transcription associated asymmetry for 192 mismatch contexts grouped by the
12 mismatch types. Log2 ratios were calculated using the number of reference normalised
mismatch contexts in the transcribed genes (forward strand) to the number of mismatches in the
same context in the genes on the reverse strand.



for analysis from the UK Biobank. We found evidence to suggest that this was the case,
at least to some extent for age, which showed the expected positive correlation with the
number of mismatches. Still, there was no evidence of a genetic contribution to varia-
tion in the number of mismatches. Rather than variation across individuals, this chapter
focuses on variation in the number of mismatches observed at sites in the exome. In
much the same way as experimental techniques that have been designed to overcome
technical artefacts by sequencing the same mutation multiple times (e.g., by culturing
single cells), observing a mutation of a given type in more individuals than expected by
chance can provide information, both on factors that influence variation in the somatic
mutation across the genome and somatic selection that may increase the frequency with
which a specific mutation is observed. In this chapter, we assess these effects by ex-
amining mismatch recurrence, defined as the number of individuals in which a specific
mismatch is observed at a genomic position.

Here we describe variation in the median mismatch recurrence across the genome.
A strong relationship between mismatch recurrence and known sources of variation in
somatic mutation rate across the genome was observed, lending support to this idea,
(Fig. 4.1, 4.3, 4.4, 4.5 & 4.8). There was striking statistical support for a relationship
between GC content and mismatch recurrence, which likely reflects the tendency for
guanine and cytosines to accumulate DNA damage [128]. Replication time is a driver
of local mutation rate variation [141]. There was a positive correlation between later
replication timing and mismatch recurrence. The reason for the relationship between
somatic mutation and replication timing have been extensively discussed in the liter-
ature for two main reasons [141]. Firstly, as the nucleotide pool becomes depleted,
the length of time that late-replicating regions remain in a mutable ssDNA state is
increased and secondly, late replicating regions are in a heterochromatin state which
requires chromatin remodelling that can increase strand breaks due to increase rates of
replication fork stalling [362]. We found that the TCT-to-TGT mutation context had a
strong linear correlation with replication timing. This specific context was dominant in
the SBS13 cosmic mutational signature. In 10 out of 17 cancer types analysed by the
COSMIC consortium, the activity of SBS13, which has been proposed to correspond
to AID/APOBEC activity [84], and increased with increasing replication timing. The
AID/APOBEC molecules are a family of highly prevalent cytosine deaminases which
act as DNA mutators in the generation of diversity during T/B-cell somatic hypermuta-

123



tion and edit retroviral cDNA during infection, tagging the viral DNA for degradation
or transformation into provirus [85]. AID/APOBEC activity was also found in 18% of
cancers in the TCGA dataset and is more prevalent on the lagging strand [363]. The
negative relationship between chromatin ‘openness’ and recurrence is also consistent
with expectation, as loci that are inaccessible to global and transcriptionally associated
repair mechanisms will accumulate damage at a greater rate than accessible chromatin
regions [133].

We found that the median mismatch recurrence per gene is increased for genes that
overlap recombination hotspots. As with replication timing, DNA at DSB sites shows
increased APOBEC activity due to prolonged periods of being in a single-strand state
during homologous repair [92]. During the repair of DSBs, error-prone polymerases
are recruited to repair strand breaks. Given the increase in DSBs at recombination
hotspots we hypothesise that the somatic mutation rate in genes in proximity to recom-
bination hotspots will have a higher mutation rate than genes that are not located within
the hotspots. Using proportions of sites within a gene that overlap with a recombina-
tion hotspot as a proxy for distance to a recombination hotspot we, indeed, see a linear
increase in the mutational burden as a function of increasing hotspot overlap. Note,
however, that the recombination hotspot data that was used for this analysis relates to
meiotic recombination, which will not affect somatic mutations. Recombination also
occurs during mitosis, and it is this mitotic recombination that has the capacity to in-
duce somatic mutations; however, mitotic recombination, although believed to occur
frequently [364] is more difficult to study than meiotic recombination and this analysis,
therefore, depends on the assumption that there is some degree of sharing between mei-
otic and mitotic recombination hotspots. This appears likely given that recombination
hotspots are determined to a large extent by sequence content and there is a high degree
of sharing of meiotic recombination hotspots between the female and male germlines.

We recovered a complex relationship between median gene expression in the GTEx
Whole Blood dataset and mismatch recurrence, both in the total mismatch recurrence
and in specific contexts, with increased mismatch recurrence in the tails of the gene
expression distribution. A linear model relating gene expression and mismatch recur-
rence indicated a weak negative relationship between them, corresponding to slightly
higher mismatch recurrence in low to non expressed genes, a finding that is consistent
with our findings in Chapter 3, and with what has been described previously by multi-
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ple groups [148, 365]. However, the relationship between expression and the mismatch
rate appeared non-linear (Fig. 4.8). By fitting generalised additive models (GAMs), we
found a U-shaped relationship, similar to what has been previously described, between
gene expression and both the putative somatic and the germline mutation rate [148].
This was consistent with a detectable contribution of somatic mutations to the variation
in the mismatch recurrence across the WES data. The aetiology of this relationship, as
proposed by Chen et al. [148], is that when gene expression is low, there is a reduced
effect of transcription-coupled repair, whereas, at high expression levels, the effects
of transcription-associated mutagenesis begin to dominate over transcription-coupled
repair, thus, increasing the mutation rate for the most highly expressed genes.

In addition to considering potential sources of variation in the somatic mutation
rate, we can leverage the recurrence of mismatches to better understand how selection
may be acting across genes in somatic cells. Consistent with the literature on somatic
selection, we find an absence of negative selection. This may also reflect the fact that
many mismatches are artefacts as to detect negative selection most mismatches must
be true somatic mutations. Across genes critical to myeloid malignancies a signal of
positive selection was found. Given that a substantial proportion of the genes on the
myeloid panel are involved in clonal haematopoiesis of indeterminate potential (CHIP)
this suggests that the mismatch recurrence contains a signal of true somatic mutation.
SRSF2 (Table 4.1), which is critical for haematopoiesis, and mutated in a large frac-
tion of individuals with CHIP, showed a strong signal of positive selection. We find
enrichment for signals of positive selection for histone genes and for genes involved in
cytoskeleton pathways. There is increasing evidence for the role of histone mutation in
cancer with recurrent somatic mutations well documented in some histone genes [366].
For example, H2AX forms at double-strand breaks and signals the DNA damage re-
sponse. Reduction in the capacity to recruit repair mechanisms during damage directly
impacts the mutation rate within the cell [367].

There was also an absence of evidence of selection acting on some of the canonical
CHIP genes. Although CHIP is diagnosed in about 10 to 20% of individuals over the
age of 70 [209, 210, 211], CHIP has only been identified in a small proportion (5%) of
the UK Biobank 200k cohort [305]. This makes detecting a signal of CHIP in 200,000
individuals challenging. Our hypothesis, however, was that the mutations that drive
clonal expansions arise much earlier in life and may show signals of selection across the
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UK Biobank cohort before CHIP can be identified. A future direction of work would
be to try to reintroduce high-frequency recurrent variants. A possible methodology
to do this is by using local ancestry around the filtered variant of interest, given the
structure and large sample sizes of the UK Biobank germline variants would on average
share more variants in a linkage window than unrelated samples. This could potentially
remove germline variants while retaining high-frequency recurrent mismatches.

Decomposing the matrix of mismatch counts (in their triplet nucleotide contexts)
into latent factors has the potential to separate the various artefacts and mutational pro-
cesses that contribute to the data. Here we use non-negative matrix factorization to
decompose our matrix of reference mismatches into a set of linear components reflec-
tive of the mutational or artefactual processes. The top inferred mutational signatures
showed relative robustness while the lower ranked signatures showed evidence of insta-
bility in Fig. 4.13 and 4.14. A well-known problem of NMF is the difficulty of inferring
the rank of the factorization. There was no obvious elbow point in the diagnostic plot,
Fig. 4.10. The twelve estimated signatures showed a strong association with known
sources of variation in mutation rates. No single inferred mutational signature showed
a signal of being specific to any genomic covariate, which may be indicative of the ef-
fect of signature bleeding or inter-sample bleeding, i.e. mutational processes active in a
subset of samples being erroneously attributed to all samples due to the decomposition
algorithm assuming a similar mutational landscape across all samples [368].

The effects of transcription on somatic mutation can also be studied by investigating
the asymmetry in mismatch recurrence on the coding and non-coding strands. There
was significant asymmetry for the C-to-A relative to G-to-T mutation types. In Chapter
3, we postulated that this was due to the exome capture step pulling down DNA frag-
ments that are complementary to the coding strand (Fig. 3.18). Consistent with the
sample-level variation in mismatch type asymmetry discussed in Chapter 3, we do not
see strong asymmetry across other mutation types indicating that the primary source of
DNA damage arise from 8-oxoguanine.

4.5 Conclusion

The exome sequencing data of the UK Biobank includes many somatic variants [305].
Here we provide evidence that by investigating the recurrence of mismatches to the
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reference we can extract a signal of somatic mutation. Although the data has large
numbers of mismatches resulting from technical artefacts, the large number of samples
in the UK Biobank allows the effects of somatic mutation to be detected even without
identifying individual somatic mutations with high confidence. We detected associa-
tions between mutation recurrence and GC content, replication timing, recombination
hotspots, chromatin structure and gene expression. Mutation recurrence can also be
used to understand selective pressures acting on somatic cells. An enrichment for pos-
itive selection acting on haematological genes was seen in the UK Biobank data. An
observation that is in line with earlier studies in the UK Biobank and the fact that the
data was derived from whole blood [305]. Decomposing the recurrence values into
mutational signatures collapsed the mutational contexts onto a much smaller number of
putative sources. Again, we found a strong signal of association with gene expression
except for one signal (SBS90-like). Analysing the effects of transcription strand asym-
metry on the genome, we find significant strand asymmetry for the G-to-T relative to
C-to-A mutational types consistent with DNA damage during library preparation steps.

Here we set out to probe the effects of somatic mutation across the genome. By
rotating the data to perform a gene-level analysis that combined data from all individu-
als, we avoid technical batch effects that are introduced through sample collection and
batched NGS sequencing. We find that for all genomic covariates of somatic mutation
that we investigated (gene expression, replication-timing, chromatin structure and re-
combination hotspots) the expected association was also detectable in our analysis of
all-source mismatches. In addition, we found evidence of somatic selection in the mis-
match data. A set of genes that contribute to CHIP showed greater evidence of positive
selection in these blood-derived data than the remaining genes.

4.6 Methods

4.6.1 Mutation data

A counts matrix, genes by triplet context recurrence, was generated from the filtered
annotated dataset outlined in Chapter 2 by calculating the median recurrence of each
mismatch context across samples for each gene. Measuring the median mutation triplet
context is conceptually like normalising a raw mismatch context count per gene by
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the equivalent gene length. To summarize the mutation recurrence across all mutation
contexts within a specific gene, the mean rank of each context within a specific gene is
calculated.

4.6.2 Genomic covariate analysis

Median gene expression in whole blood for healthy individuals was downloaded from
the GTEx website [369]. Replication timing data for an Epstein-Barr virus-transformed
healthy blood sample (GM12878_B-Lymphocyte_Int61574576) was downloaded from
the https://www2.replicationdomain.com/database.php database. Bedtools intersect was
used to map replication timing data to gene IDs [370]. The average replication time
across each region within a gene was taken to calculate a per-gene measure of replica-
tion timing. ATAC seq data was downloaded from ATACdb for the GM12878 cell line
(http://www.licpathway.net/ATACdb/Download.php ). Chromatin accessibility was de-
fined using the fold enrichment value calculated using the ratio of read counts against
the genomic background [371]. Recombination hotspots for the European population
of the 1000 genomes project were generated from the supplementary data from Li et

al. [372]. The proportion of mismatches overlapping a recombination hotspot per gene
was then calculated and used as a genomic covariate.

All analyses were performed using R (v4.2) and all visualizations were performed
using ggplot2 [343, 342]. GAMs were fitted using the geom_smooth function in gg-
plot2. GC content, chromatin openness and replication timing were fitted as fixed effect
covariates in all models fitting gene expression against mutation recurrence.

4.6.3 Analysis of selection

To generate the selection results on the UK Biobank data, we used a modified version
of the dndscv R package [13]. dndscv has been designed to work with sparse somatic
mutation data. To process many mismatches and samples, several modifications to the
dndscv package were made. The main changes to the algorithm included increasing
memory efficiency and prevention of p-value underflow, no changes were made to the
mathematical models except for transforming the p-values to the natural logarithm and
returning the lower tail on the probability distribution rather than 1 - pchisq(llog_ll, df).
The dndscv tool requires 5 inputs; sample ID, chromosome ID, base position, reference
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allele and mutated allele. The first change was to remove redundant information, as we
are analysing hundreds of thousands of samples and billions of variants, the R imple-
mentation quickly exhausts RAM and a more efficient method of creating the internal
N matrices was needed. If a mismatch to the reference was found in 1000 samples, then
this site would need to be annotated 1000 times which is highly inefficient given the
size of the dataset with each annotated site being stored in memory, unnecessarily. We
removed the need for a sample ID and replaced it with a sample count. When the site
is annotated, this count is appended to the N matrices. We have also removed warnings
that show if two mutations are beside each other and instruct the model to return −log

p-values. To reduce the bias of gene length having inflated signals of selection we fur-
ther normalise by CDS length to give a per-nucleotide adjusted measure of selection
significance. The input data we used for the dNdS is aligned relative to the reference
strand. To reduce the effect of complex germline confounding, as highlighted in our
GWAS study in Chapter 3, mismatches that have occurred in more than 1000 samples
have been excluded.

Once the selection omega values and p-values were calculated, a set of genes that
drive haematological malignancies were obtained from the Archer variantPlex 75 Myeloid
gene panel [215]. To assess whether there was evidence for selection acting on haema-
tological genes we used a binary classification analysis, i.e are haematological genes
enriched for positive selection given the statistics derived from the dnds model. We
used receiver operator curves (ROC) and bootstrapping to assess the enrichment of se-
lection and the confidence of the ROC curve. The fbroc package was used to generate
ROC plots and AUC with 1000 bootstraps [373]. The genes in the Archer VariantPlex
75 Myeloid gene panel are listed below.

ABL1, CBLC, DNMT3A, IDH2, MYC, RAD21, STAG2, ANKRD26, CCND2, ETNK1,

IKZF1, MYD88, RBBP6, STAT3, ASXL1, CDC25C, ETV6, JAK2, NF1, RPS14, TET2,

ATRX, CDKN2A, EZH2, JAK3, NOTCH1, RUNX1, TP53, BCOR, CEBPA, FBXW7,

KDM6A, NPM1, SETBP1, U2AF1, BCORL1, CSF3R, FLT3, KIT, NRAS, SF3B1, U2AF2,

BRAF, CUX1, GATA1, KMT2A, PDGFRA, SH2B3, WT1, BTK, CXCR4, GATA2, KRAS,

PHF6, SLC29A1, XPO1, CALR, DCK, GNAS, LUC7L2, PPM1D, SMC1A, ZRSR2,

CBL, DDX41, HRAS, MAP2K1, PTEN, SMC3, CBLB, DHX15, IDH1, MPL, PTPN11,

SRSF2
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4.6.4 Mutational signatures

RccpML was used to decompose a mutational counts matrix via the non-negative fac-
torisation [359]. RcppML factorises a matrix, Amn of counts. The matrix consisted of
96 mismatch contexts (on the rows) and genes on the columns. The factorisation results
in two latent matrices (Wmk & Hkn) and a scaling matrix, d. Wmk is a matrix containing
the contribution of each of the 96 contexts to each of k signatures, Hkn contains the
contribution of each signature to the mutational count within each gene. As highlighted
in the GWAS study in Chapter 3, some common germline variants remain in our data.
To limit the impact of any remaining germline variants, sites at which a mismatch was
seen in more than 3,000 individuals were excluded. The unit invariant knee method
from the inflection package was used to estimate the optimal rank to use in the factori-
sation [360]. To visualise the results of the factorisation the plotting functions from the
MutationalPatterns Bioconductor package was used [374].

4.6.5 Strand asymmetry

To calculate strand asymmetry the genome was split into genes annotated by Ensembl
as transcribed on the forward strand of the reference (TX+) and genes transcribed on
the reverse strand of reference (TX-). The mean count of each of 96 mismatch contexts
across genes in each group was then obtained and the log2 ratios of these means in the
forward strand genes compared to reverse strand genes were calculated.
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Chapter 5

Controlling for background genetic
effects improves the power of genome-
wide association studies

The content of this chapter has been published as:

D. Bennett, D. O’Shea, J. Ferguson, D. Morris, and C. Seoighe, ‘Controlling for
background genetic effects using polygenic scores improves the power of genome-

wide association studies,’ Sci Rep, vol. 11, p. 19571, Oct 2021.

C. Seoighe carried out difference in the AUC analyses. D. O’Shea performed case

control simulations. J. Ferguson. provided the mathematical justification of the

method outlined in Appendix C. All authors proofed the submitted manuscript

5.1 Abstract

Ongoing increases in the size of human genotype and phenotype collections offer the
promise of improved understanding of the genetics of complex diseases. In addition
to the biological insights that can be gained from the nature of the variants that con-
tribute to the genetic component of complex trait variability, these data bring forward
the prospect of predicting complex traits and the risk of complex genetic diseases from
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genotype data. Here we show that advances in phenotype prediction can be applied to
improve the power of genome-wide association studies. We demonstrate a simple and
efficient method to model genetic background effects using polygenic scores derived
from SNPs that are not on the same chromosome as the target SNP. Using simulated
and real data we found that this can result in a substantial increase in the number of
variants passing genome-wide significance thresholds. This increase in power to de-
tect trait-associated variants also translates into an increase in the accuracy with which
the resulting polygenic score predicts the phenotype from genotype data. Our results
suggest that advances in methods for phenotype prediction can be exploited to improve
the control of background genetic effects, leading to more accurate GWAS results and
further improvements in phenotype prediction.

5.2 Introduction

Linear mixed effects models (LMMs) are routinely applied to detect associations be-
tween SNPs and phenotypes in genome-wide association studies (GWAS) and many
methods have been developed that enable these models to be applied efficiently to
the large scale datasets that are typically now encountered in studies of complex traits
[267, 268, 269, 270, 271, 272, 273, 261, 246]. Compared to fixed effects models for
GWAS [260], LMMs can be designed that have the advantage of being applicable to
samples that include related individuals [375, 267, 274]. LMMs for this purpose typ-
ically include a random effect with covariance proportional to the kinship matrix that
indicates the degree of relatedness between pairs of individuals in the sample [274].
The relatedness of individuals in the sample may be known a priori or may be derived
from the genotype data by constructing a genetic relationship matrix (GRM), with en-
tries corresponding to the genotypic covariance between pairs of individuals. When
the entries of the GRM below a specified threshold are set to zero, the GRM is ap-
proximately equivalent to a family kinship matrix, with the degree of relatedness that
the matrix captures controlled by this threshold. Thresholding the matrix to capture
close family relationships (or cryptic relatedness [376]) allows specialized computa-
tional methods for sparse matrices to be applied so that model fitting remains tractable
for studies that include large numbers of individuals [246]. This is the approach taken
by fastGWA [246], a recently developed tool that has been shown to generate correctly
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calibrated statistical results efficiently for biobank-scale GWAS.
In addition to enabling application to samples containing related individuals, LMMs

can also account for genetic background effects [277, 375]. When a statistical model
is used to test for a relationship between a given SNP (the test SNP) and a phenotype,
genetic variants in the genome that are not in linkage disequilibrium with the test SNP
may also make a substantial contribution to the phenotypic variation. If this contribu-
tion to phenotypic variation is not accounted for it contributes to the error term in the
model. If the trait of interest is both highly polygenic and highly heritable this noise
may be substantial. Failure to account for sources of variance in the response in a sta-
tistical model can reduce the power to detect a relationship of interest [377, 378]. A
LMM with a full GRM (i.e. derived from all SNPs in the data and with no threshold
applied on the level of genetic correlation between individuals) is equivalent to a model
in which all variants are assumed to have a causal effect on the phenotype, with effect
sizes consisting of independent samples from a Gaussian distribution [261]. This is typ-
ically not a good fit to the true effect size distribution, and instead, the software package
BOLT-LMM [261] uses a spike-and-slab Gaussian mixture for the effect size distribu-
tion, with a component (the spike) close to zero corresponding to weak genome-wide
effects and accounting for family relationships, and component with larger variance
(the slab) corresponding to variants with large effects [261]. Fitting this more sophis-
ticated model requires specialist numeric methods, that are relatively computationally
intensive. Consequently BOLT-LMM is much more computationally intensive than
fastGWA [246].

The full GRM is an N×N matrix, where N is the number of individuals in the study.
The memory requirement of BOLT-LMM is kept tractable by not explicitly evaluating
the GRM but rather BOLT-LMM solves the mixed model equations by computing the
product of the inverse GRM and the phenotype vectors. Nonetheless, the overall com-
pute time and memory requirements of BOLT-LMM are a function of both N and the
number of model SNPs, M, that contribute to the GRM (with O((NM)1.5) compute time
and NM

4 bytes of memory required. Various options have been explored for which SNPs
to include in the calculation of the GRM [375]. Including SNPs in LD with the target
SNP results in loss of power, as the effect of the target SNP is partially accounted for
by the random effect through the GRM. This has been referred to as proximal contam-
ination [277]. On the other hand, including all (or most) SNPs that are not in LD with
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the target SNP, e.g. using a Leave One Chromosome Out (LOCO) approach, can result
in dilution of the extent to which the relevant part of the genetic background is captured
by the GRM. In the latter case, SNPs that are not relevant, in that they do not capture
direct genetic effects or tag relevant population structure effects, effectively add noise
to the GRM [277]. Alternatively, the GRM can be built from only the SNPs that are
found using a linear model to be associated with the phenotype. Although this results
in an increase in statistical power [272, 375, 379], it does not fully control for popula-
tion structure and is not recommended if population structure is of substantial concern
[261, 375]. Methods have been developed that incorporate principal components into
the GRM calculation built from significant SNPs; however, most of these methods are
not suited to large biobank-scale data, without access to cloud computing or large com-
pute farms [380, 381, 382]. Background genetic effects can also be included in the
statistical model as fixed effects and this is the recommended approach when there are
SNPs with large effect sizes [375]. A model fitting approach to determine the SNPs to
include as fixed effects has been developed, and this also results in increased power in
GWAS [277].

As the genomic architecture of complex diseases is uncovered with the help of
large biobanks, there is an advancing prospect of predicting quantitative phenotypes and
the risk of complex diseases from genotype data. Recent years have seen substantial
success and emerging clinical utility in phenotype prediction from polygenic scores
(PGS) [383, 384]. PGS are constructed from weighted sums of allele dosages, with
the weights corresponding to the effects size of the variants. Risk variants (variants
associated with the phenotype) are typically inferred from the largest available GWAS,
generally a meta-analysis. The clinical potential of PGS has already been shown in
complex diseases such as coronary artery disease (CAD), diabetes and cancer [15, 384,
385]. In CAD, the identification of individuals with similar risk to those with rare high-
risk monogenic variants has been reported [15]. Similarly, in breast cancer, pathogenic
variants in BRCA1/2 account for 25% of familial risk of the disease with genome wide
variants accounting for a further 18% of the risk [386, 387]. It is likely that in the
future specialist machine learning methods will be developed to predict phenotype from
genotype [384], potentially achieving higher accuracy by incorporating the possibility
of non-additive effects.

Here, we set out an approach to GWAS that seeks to separate the model fitting at the

134



test locus and estimation of the genetic background effect. After carrying out an initial
round of GWAS using an existing method, we derive a PGS for each chromosome,
using the summary statistics for SNPs on the remaining chromosomes. We refer to
this as the Leave One Chromosome Out Poly Genic Score (LOCO PGS). We then
perform a second round of GWAS, including the relevant LOCO PGS as a fixed effect
to account for the contribution to the variation in the phenotype of SNPs that are not on
the same chromosome as the test locus. We tested this approach in two ways. Firstly,
using simulated data we tested for an improvement in power on the task of recovering
known causal variants as a function of study size, number of causal variants and trait
heritability. In addition, we applied the method to standing height data from the UK
Biobank and determined the number and characteristics of additional variants that were
detected. For an objective assessment of performance on real data, where the true
associations are unknown, we divided the data into test and training sets and predicted
the phenotype in the test set. The improvement in performance on the critical task of
complex phenotype prediction illustrates the utility of the PGS as a means of accounting
for off target genetic effects. This straightforward, modular approach to accounting
for genetic background effects in GWAS has the advantage of leveraging advances in
phenotype prediction as they become available. It also offers significant improvements
in speed relative to existing methods that correct for genetic background.

5.3 Results

We incorporated the LOCO PGS as a fixed effect in a linear mixed model using the
existing tools, GCTA fastGWA, BOLT-LMM and REGENIE [246, 261, 247]. We refer
to the methods that result from including the LOCO PGS fixed effect by appending
PGS and the name of the method used to calculate the PGS to the name of the original
tool. For example, fastGWA with a LOCO PGS fixed effect, calculated using the P&T
or LDpred2 methods are referred to as fastGWA-PGS-PT and fastGWA-PGS-LDPred2,
respectively. We simulated data to evaluate the impact of including the LOCO PGS as
a fixed effect in GWAS. The simulations consisted initially of a normally-distributed
continuous trait in 100,000 individuals. The trait had a narrow-sense heritability (h2) of
0.5 and there were 1,000 causal SNPs with normally-distributed effects on the trait (see
Methods for details). To check the validity of this approach we performed simulations
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under the null model of no association between genotype and phenotype and found
that the method was well calibrated (Fig. C1). This was the case both for the P&T
method of calculating the LOCO PGS (with a fixed p-value threshold of 5×10−5) and
for the LDpred2 method and was in-line with our expectations, as the LOCO PGS is
approximately uncorrelated with the genotype of the tested SNP (see Appendix C for
a mathematical justification). The false positive rate rose slightly when we used a high
p-value threshold with the P&T method to calculate the LOCO PGS (Fig. C1). In this
case the majority of the variants contributing to the LOCO-PGS are likely to be false
positives and the LOCO PGS may pick up some residual population structure.

In 100 simulations we found that including a LOCO PGS resulted in a substantial
improvement in power to detect the known causal SNPs (Fig. 5.1). We considered
two alternative methods to select the SNP effects to include in the PGS calculation:
pruning and thresholding (P&T) and LDpred2 [388, 291]. When we included the PGS
obtained using P&T as a fixed effect with fastGWA (which we refer to as fastGWA-
PGS-PT) we recovered 82 additional causal variants, on average, below the conven-
tional p-value threshold of 5x10−8 compared to fastGWA (corresponding to a relative
increase in power of 18.4%; p = 3.0×10−32 from a paired T-test; Tables C1, C2 & C3).
The performance was further improved when we used LDpred2 to calculate the LOCO
PGS (referred to as fastGWA-PGS-LDpred2). This resulted in the recovery of, on av-
erage, 115 more causal variants than fastGWA alone (relative increase of 25.9%; p =
2.3×10−36). Inclusion of a LOCO PGS with an under powered BOLT-LMM (BOLT-
LMM-165-PGS-PT) resulted in a large boost in power, recovering an additional 55
variants over BOLT-LMM-165 , while BOLT-LMM with a GRM derived from all vari-
ants (BOLT-LMM-664), had the second highest power to recover causal variants after
fastGWA-PGS-LDpred2, recovering 112 more causal variants than fastGWA (relative
increase in power of 25.3%; p = 2.3×10−40). Recently, a new fast method, REGENIE
[247], has been released that also includes control of the polygenic background effect
based on prediction of the phenotype from SNPs that are not on the same chromosome
as the test SNP. In our simulations the performance of REGENIE was higher than fast-
GWA but well behind fastGWA-PGS-LDpred2. REGENIE showed no improvement
when the LOCO PGS was added as a fixed effect, suggesting that it accounts ade-
quately for the genetic background effect. We also simulated case control data for a
binary traits with h2 of 0.5 and 1,000 causal loci, with disease prevalence, k, of 0.1 and
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0.3. As with the quantitative trait simulations, inclusion of a LOCO PGS fixed effect
always resulted in an increase in the average number of casual loci recovered, with an
average of 28 more causal loci recovered for a disease prevalence of k=0.1 (p = 0.19)
while, k = 0.3 recovered on average 48 more causal loci (p= 0.03) (Fig. C2 and Table
C4 & C5).

The contribution to phenotype variance of background SNPs can also be modelled
as a random effect in a linear mixed model. This approach is applied by BOLT-LMM,
which uses a normal mixture random effect, with a component corresponding to SNPs
with large effects. The running time of BOLT-LMM is proportional to MN1.5 and the
memory requirement is approximately MN/4 bytes, where N is the number of individ-
uals in the dataset and M is the number of SNPs included in the GRM [261]. When
we ran BOLT-LMM with a subset of 165,683 SNPs (see Methods for how these were
selected) we found that including the LOCO PGS as a fixed effect resulted in a sub-
stantial gain in power (Fig. 5.1), likely resulting from inability of the reduced GRM
to account fully for genetic background. No further improvement was obtained by
adding the LOCO PGS fixed effect to BOLT-LMM with a GRM consisting of all of
the 664,393 directly genotyped SNPs (Fig. C3); however, the power obtained with
the smaller GRM with the PGS fixed effect was close to the power obtained with the
larger GRM, but with a much lower memory requirement (Table 5.1). Note that REGE-
NIE was omitted from Table 5.1, as the simulation is based on a single phenotype and
would unfairly disadvantage REGENIE, which is optimized for the task of performing
association analyses on multiple phenotypes simultaneously.

Table 5.1: Pipeline computation time and memory (N=100,000, M=664k). Analyses were
performed on a single HPC node with 32 Xeon(R) CPU D-1541 CPUs with 128GB of RAM.

CPU Time (s)
Method GWAS LOCO PGS GWAS(22 chr) Total (CPU Time) Max Memory (GB)

fastGWA-PGS-LDpred2 501.2 58,880.0 2,953.3 62,334.5 6.3
fastGWA-PGS-PT 501.2 245.8 2,953.3 3,700.2 0.7
BOLT-LMM-664 119,202.0 0.0 0.0 119,202.0 15.5

BOLT-LMM-165-PGS-PT 92,108.0 245.8 614,514.4 706,868.2 3.9

We calculated receiver operator characteristic (ROC) curves to investigate whether
the increased number of causal variants recovered when we included the LOCO PGS
as a fixed effect reflected a reduction in p-values across the board for the phenotype-
associated variants or also an improvement in the ordering of the variants, when the
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Figure 5.1: The proportion of causal variants recovered in 100 simulations. The boxplot shows
the median (center line), upper and lower quartiles (hinges) and the maximum and minimum
values not more than 1.5 times the interquartile range from the corresponding hinge (whiskers).
The simulations consisted of 100,000 individuals and a continuous trait, with narrow-sense
heritability of 0.5 and 1,000 causal variants. BOLT-LMM-165 denotes BOLT-LMM with a
GRM derived from 165,684 variants resulting from strict LD-pruning. BOLT-LMM-664 refers
to the use of BOLT-LMM with a GRM derived from all 664,393 variants in the simulations.
Methods that include PGS in the name involved the use of a LOCO PGS fixed effect, derived
either from pruning and thresholding (methods ending in PT) or using LDpred2.



variants are ordered by the evidence of an association with the phenotype. Over 100
simulations we found that the area under the ROC curve (AUC) was always higher
for fastGWA-PGS-LDPred2 than for fastGWA without the LOCO PGS fixed effect
(Fig. 5.2). This was also the case for 99 of the 100 simulations when we added the
PGS fixed effect to BOLT-LMM-165. The difference in sensitivity as a function of
specificity (Table C6) showed that the sensitivity was consistently higher at a given
specificity when the LOCO PGS-LDpred2 was included as a fixed effect, indicating
an improvement in the ordering of the SNPs. The increase in mean sensitivity was
up to 0.073 in the case of fastGWA-PGS-LDPred2 vs fastGWA, corresponding to a
relative increase of 11.6% (at a specificity of 0.9988) over fastGWA. The addition of
the LOCO PGS fixed effect led to a smaller but still consistent increase in sensitivity for
BOLT-LMM-165. In this case, the greatest increase in the mean sensitivity was 0.028,
corresponding to a 4.2% relative increase in sensitivity (at a specificity of 0.9991)

In addition to increasing the statistical power to detect causal variants, including
the PGS fixed effect also resulted in an improvement in effect size estimates (Fig. C4).
We found that when a fixed effect PGS was incorporated into the association study the
median squared error (MEDSE) of the effect size estimate was substantially reduced
(Fig. C4, Tables C7, C7 & C9). Interestingly, the MEDSE of the effect size estimate
was largest across all methods for BOLT-LMM with the reduced GRM (Fig. C4).

5.3.1 Effects of trait heritability, number of causal variants and
sample size

We simulated data over a range of values of sample size, h2 and of the number of causal
SNPs to investigate how these parameters affect the impact of including the LOCO
PGS as a fixed effect on GWAS power. For this analysis we used the P&T method to
calculate the LOCO PGS, due to its lower computational cost (Table 5.1). For the larger
sample size, a small improvement in power was obtained even for the lowest values of
h2 (0.1) simulated, with a statistically significant improvement for h2 ≥ 0.2 (Fig. 5.3).
The improvement was not statistically significant at this value of h2 when only 100,000
samples were used in the simulation, but even in this case the number of causal variants
recovered was always at least as large and typically larger when the PGS fixed effect
was included in the model (Tables C10 & C11). This was somewhat surprising, given
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Figure 5.2: Difference in sensitivity (between fastGWA-PGS-LDpred2 and fastGWA) as a
function of specificity for 100 simulations of a continuous trait with narrow-sense heritability
of 0.5 and 1,000 causal variants in 100,000 individuals. The specificity (x-axis) is discretized in
bins of size 0.0001. Each grey line shows the results of one simulation. The red line shows the
mean difference over all simulations.
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Figure 5.3: Proportion of causal variants recovered in simulations of a quantitative trait over
a range of values of h2 and the number of causal loci. Simulations on the top (A) and bottom
(B) panels were based on 100,000 and 430,000 randomly sampled individuals from the UK
Biobank, respectively.



that it is assumed that large sample sizes are required for accurate phenotype prediction
from PGS [389].

The improvement in power resulting from the inclusion of the PGS fixed effect in-
creased consistently with increasing numbers of causal variants in the case of the larger
sample size. This was not the case for the smaller sample size, for which the improve-
ment decreased or was lost altogether when the number of causal variants was large
(Fig. 5.3). This is likely due to the loss of power to detect true causal variants and
to estimate their effect sizes accurately when the genetic effect is distributed over too
large a number of causal variants, resulting in the inability to correct for the genetic
background using the PGS. This suggests that larger sample sizes would be required
for highly polygenic traits in order to obtain a benefit from using the LOCO PGS fixed
effect. However, the larger sample size simulated is comparable in scale to the UK
Biobank and with a sample of this size our simulations suggest that a significant im-
provement in power can be obtained, even for a trait with 10,000 independent causal
loci. For the case control simulation (N=100,000), a more modest increase in power
was observed as heritability increased, whereas the power to recover smaller effect loci
decreased dramatically compared to the quantitative simulation. However, we found
that for all except three simulations the inclusion of a fixed effect LOCO PGS improved
the power to detect associated loci (Fig. C5, Table C12).

5.3.2 Application to UK Biobank phenotypes

We assessed the impact of including the LOCO PGS fixed effect on the performance
of fastGWA on real data using standing height, BMI, and heel bone mineral den-
sity (HBMD) in individuals of British ancestry (Nheight=395,133, NBMI=395,149 &
NHBMD=229,191) from the UK Biobank. The distribution of p-values obtained from
fastGWA with the LOCO PGS fixed effect was lower than that obtained using fast-
GWA, regardless of the method used to calculate the PGS (Fig. C6, C7 & C8). At a
genome-wide significance level of 5x10−8 inclusion of a LOCO PGS always increased
the number of independent loci recovered, compared to fastGWA (Table 5.2). We also
applied BOLT-LMM to the real data. In this case we used all 556,516 lightly pruned
HAPMAP3 variants for the GRM (see Methods for details). Across height, HBMD,
and BMI, BOLT-LMM identified the largest number of independent associated loci.
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Including the PGS fixed effect resulted in substantial increases in the number of in-
dependent associated loci, compared to fastGWA alone for all phenotypes (Table 5.2,
Table C13).

Table 5.2: Number of independent significant loci identified and resulting phenotype prediction
model fit. R2 Full is the coefficient of determination of a model that includes the PGS, sex, age
& 10 PCs as covariates while R2 PGS is the coefficient for a model that includes only the PGS.
BOLT-LMM was applied with a GRM consisting of 556,516 variants.

Method Significant loci R2 full 95% CI R2 PGS 95% CI Spearman’s ρ Phenotype
fastGWA 1,381 0.696 0.689, 0.702 0.165 0.158, 0.170 0.382 Height

fastGWA-PGS-PT 1,583 0.701 0.694, 0.707 0.173 0.166, 0.179 0.391
fastGWA-PGS-LDpred2 1,717 0.703 0.696, 0.709 0.176 0.170, 0.182 0.395

BOLT-LMM 1,804 0.703 0.697, 0.709 0.170 0.164, 0.176 0.388
fastGWA 450 0.151 0.146, 0.158 0.130 0.124, 0.135 0.351 BMI

fastGWA-PGS-PT 493 0.153 0.147, 0.159 0.130 0.125, 0.136 0.351
fastGWA-PGS-LDpred2 500 0.151 0.146, 0.157 0.127 0.121, 0.133 0.346

BOLT-LMM 583 0.155 0.150, 0.162 0.134 0.128, 0.139 0.356
fastGWA 324 0.216 0.204, 0.232 0.158 0.144, 0.171 0.427 HBMD

fastGWA-PGS-PT 365 0.221 0.208, 0.238 0.164 0.152, 0.178 0.439
fastGWA-PGS-LDpred2 385 0.225 0.210, 0.241 0.167 0.154, 0.182 0.444

BOLT-LMM 393 0.223 0.209, 0.238 0.165 0.152, 0.178 0.437

One way to determine objectively whether fastGWA with a LOCO PGS fixed effect
outperforms fastGWA on real data is to apply the methods on the key task of phenotype
prediction. We used summary statistics from the 3 analyses above to calculate PGS
scores using LDpred2 and pruning and P&T (see Methods for details on defining inde-
pendent training and test data). For two of the three phenotypes (height and HBMD),
the PGS fixed effect resulted in an increase in the correlation between the PGS and the
phenotype in the test data (Table 5.2). In both cases the highest correlation between
with the phenotype was obtained using fastGWA-PGS-LDpred2, which out-performed
BOLT-LMM on this task. For the remaining phenotype (BMI), the addition of the PGS
fixed effected resulted in no change or a slightly worse correlation with the phenotype
in the test data. In this case the highest performance was obtained by BOLT-LMM (but
at a substantial cost in terms of computational cost; Table 1). However, even in this
case, we found that including only the SNPs with low p-values in the polygenic score
(as implemented by the P&T method) resulted in an improvement over fastGWA (Fig.
C9).

143



5.4 Discussion

Omitting covariates that are associated with a response and independent of an effect
of interest can result in a reduction in the efficiency of the estimation of the effect
of interest [377, 378]. Complex traits are associated with the genotype of many loci
across the genome, but the effects of genetic variants other than the variant being tested
are often not fully modelled by GWAS methods. We evaluated a simple two-stage
approach to accounting for this genetic background effect that consists of performing an
initial GWAS and using the summary statistics to calculate a polygenic score and then
including the polygenic score, derived from SNPs not on the same chromosome as the
target SNP, as a fixed effect in a second round of association testing. Using simulated
data, we found that this led to a substantial improvement in power of fastGWA, an
efficient tool for biobank scale GWAS that does not fully control for genetic background
effects. When we included the LOCO polygenic score as a fixed effect with fastGWA
(which we refer to as fastGWA-PGS), the power exceeded that of REGENIE [247], a
recent, computationally efficient tool for GWAS that uses ridge regression to control for
genetic background effects. When BOLT-LMM [261] was used with a GRM derived
from all of the simulated variants, the LOCO PGS fixed effect did not provide any
boost in power (Fig. C3); however, the equivalent (or slightly improved) performance
of fastGWA-PGS-LDpred2 (Fig. 5.1) was achieved at a much lower computational cost
(Table 5.1). Furthermore, we note, that our simulations were favourable to BOLT-LMM
because the LOCO PGS was calculated from the same set of variants that were used in
the GRM of BOLT-LMM. In practice, in the case of P&T millions of variants can be
included in the LOCO PGS calculations, but the number of model variants, M, that can
be included in the GRM of BOLT-LMM is constrained by memory and compute time,
both of which scale at least linearly with M. A further key advantage of the approach
that we propose is that it is modular. Any phenotype prediction method can be used
to predict the combined effect of the LOCO genetic variants on the phenotype. As
methods for phenotype prediction improve, we anticipate that the performance of this
approach will increase.

The increase in power using the PGS fixed effect was largest for simulated pheno-
types with high heritability and a large number of causal variants (Fig. 5.3). In these
cases the many background SNPs collectively explain a substantial proportion of the
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phenotypic variance and summarizing the contribution of these background SNPs to
the phenotype via the LOCO PGS is likely to result in a better estimate of the effect of
the target SNP and its standard error. The boost in performance derived from including
the LOCO PGS as a fixed effect also depended on study sizes. For example, when the
number of causal variants became large (10,000) there was no substantial boost in per-
formance in the simulation that included 100,000 individuals, presumably because in
this case the study size was not sufficient to identify and accurately estimate the effects
of the causal variants. Even with this large number of causal variants the larger simu-
lation (with 430,000 individuals) still showed a significant improvement arising from
the LOCO PGS fixed effect (Fig. 5.3). Across all the simulation parameters we inves-
tigated, the performance of fastGWA with a LOCO PGS fixed effect (calculated using
the P&T method) was never worse than fastGWA without the fixed effect included. We
also note that we calculated the P&T LOCO PGS using SNPs that were selected based
on a fixed p-value threshold. Further increases in power may be possible by optimizing
the SNPs that are used to calculate the PGS separately for each omitted chromosome
but care needs to be taken when using pruning and thresholding in order to avoid in-
creasing the false positive rate (Fig. C1). Thresholding based on a p-value was not
required for LDpred2, which may help to explain why we achieved significantly better
power when the LOCO PGS was calculated using this method rather than pruning and
thresholding (Fig. 5.1).

We also applied the method to real data (standing height, heel bone mineral den-
sity (HBMD) and body mass index (BMI) in individuals of British ancestry in the UK
Biobank). Consistent with the simulation results, we found more independent trait-
associated loci using fastGWA-PGS-LDpred2 than with fastGWA alone for all three
traits (30%, 19%, & 11% more for height, HBMD, and BMI, respectively; Table 5.2).
Although, BOLT-LMM recovered the largest number of independent significant loci
across all UK Biobank traits, this did not always translate into better correlation be-
tween a PGS calculated from the resulting summary statistics and the phenotype in the
test dataset. In fact, the highest correlation was obtained by fastGWA-PGS-LDpred2
for two of the three traits. This could be explained by a higher proportion of true posi-
tives among the loci detected using the PGS-based methods or a more accurate estimate
of the effects sizes by these methods, as suggested by Fig. C4. For BMI, the correla-
tion was in fact lower between the PGS and the phenotype in the test dataset when
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the LOCO PGS fixed effect was used (Table 5.2). However, even in this case a larger
number of significant variants were recovered than with fastGWA.

The use of polygenic scores for phenotype prediction from genotype is an increas-
ingly important application of the results of GWAS [390]. High polygenic scores can
capture a substantial component of the risk of complex diseases [15, 391] and guide in-
terventions that can confer health benefits to individuals and reduce the stress on health
systems [392]. Performing GWAS on a subset of samples and predicting on the remain-
der, we observed an increase in the correlation of the PGS with the phenotype when we
included the LOCO PGS as a fixed effect in two out of three traits considered, consis-
tent with improved effect size estimates (Fig. C4). Our results suggest that a modular
approach that integrates advances in phenotype prediction with efficient GWAS meth-
ods can have a significant impact on the power of GWAS and that this can, in turn,
lead to more accurate phenotype prediction. A recent study showed that models that
allow unequal a priori contribution of SNPs to trait heritability can lead to substantial
improvements in the accuracy of trait [393]. Although not explored in this work, the
incorporation of external PGS instruments from large meta-analyses in the first round
of GWAS may also provide an additional gain in performance, similar to proposed in
Bulik-Sullivan [394]. Indeed, our results show that GWAS summary statistics can be
used to account for genetic background effects, with results matching the performance
of methods such as BOLT-LMM that require individual-level data for this purpose. As
new efficient methods emerge from these and further insights, they can be easily sub-
stituted for the calculation of the LOCO PGS fixed effect. The current fast pace of
methodological innovation in phenotype prediction supports the use, at least for the
time being, of the simple modular approach to modelling genetic background effects
evaluated here.

5.5 Conclusion

The tasks of detecting trait-associated variants and predicting the trait in a new sample
from the summary statistics of these variants are closely intertwined. Improved per-
formance on the trait-association task can result in more associated variants and better
estimates of their effect sizes, resulting in improvement on the prediction task. On the
other hand, improved methods for phenotype prediction can help to control for back-
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ground genetic effects in methods that identify the trait-associated variants and their
effects. The method that we have explored here consists of incorporating a LOCO PGS
as a fixed-effect covariate to control for these background genetic effects; however, any
method for phenotype prediction could play this role, once its application is restricted
to variants that are not linked to the target SNP. We show here that incorporating the
PGS as a fixed-effect covariate results in increased power to detect trait-associated vari-
ants in GWAS. The resulting trait-associated variants and effect size estimates can lead
to an improvement in the PGS, as illustrated by improved performance in the task of
predicting the phenotype in a test dataset.

5.6 Methods

5.6.1 Simulations

5.6.1.1 Genotype QC

The use of the UK Biobank Materials falls within UK Biobank’s generic Research
Tissue Bank (RTB) approval from the NHS North West Research Ethics Committee,
UK. The simulated genotype data was based on autosomal genotyped data from the
UK Biobank. To limit the effects of population stratification only individuals report-
ing white British ancestry (data field 21000; code 1001; N=443,076) were included in
these analyses. The genotype data for the simulation analysis was based on directly
genotyped variants with minor allele frequency (MAF) greater than 0.05%. Variants
with genotype missingness greater than 2% or that failed a test for Hardy-Weinberg
equilibrium (HWE) at α= 0.0001 were excluded, resulting in a total of 664,393 genetic
variants. There were 429,359 samples remaining following filtering. The sparse GRM
required by fastGWA was created by setting entries corresponding to sample pairs with
an estimated relatedness of less than 0.05 to 0. To account for population structure
in the association studies, principal component analysis (PCA) was performed on a
set of 165,684 variants LD-pruned with an R2 greater than 0.1 in a sliding window of
size 500bp, sliding by 200bp. This set was also used as the basis of the BOLT-LMM
analyses with the reduced GRM size (referred to as BOLT-LMM-165 in Results). All
genotype QC was implemented in PLINK2 [345].

Based on the above genotype data, we simulated a continuous phenotype using the
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GCTA software suite [249]. The initial simulation (Fig. 5.1) consisted of 100,000
individuals, 1,000 randomly sampled causal variants and h2 = 0.5. This simulation
was repeated 100 times with the 664,393 variants remaining after variant filtering for
the GRM calculation. Power was calculated as the proportion of the causal variants
recovered. Further simulations were carried out to investigate the effects of varying
the number of causal SNPs (500, 1000, 2000, 5000 & 10,000), h2 (0.1, 0.2, 0.3 0.4,
0.5) and the sample size (100,000 & 430,000) on method performance. In each case all
parameters other than the ones being varied were the same as the initial simulation, and
one simulation was performed per set of parameter values. The pROC R package was
used to generate receiver operating characteristic (ROC) curves, variants within 1 Mb
of the causal variants were removed. [395]. We applied the same simulation strategy
to binary traits with two levels of disease prevalence, 0.1 & 0.3, using 1,000 causal loci
with h2 = 0.5, and 100,000 samples. To calculate the false positive rate we performed
30 simulations with 100,000 samples, an h2 = 0.5 and 1000 causal variants restricted
to the even chromosomes.

5.6.1.2 Simulation association tests

Association testing was performed using fastGWA, REGENIE and BOLT-LMM. To
account for known sources of covariation (technical batch effects, population struc-
ture, biological effects) 10 PCs, sex, age, genotype batch and assessment centre were
included as fixed-effect covariates in statistical models. For the PGS method we first
performed GWAS (using fastGWA, REGENIE or BOLT-LMM) and calculated PGS
scores on a Leave One Chromosome Out (LOCO) basis. This resulted in 22 sets of
PGS values (one for each autosomal chromosome, calculated from the summary statis-
tics of variants on all other autosomal chromosomes). Two PGS strategies were used
in this study, pruning and thresholding (P+T), denoted with the suffix PGS-PT and
LDpred2, denoted by the suffix PGS-LDpred2. The LOCO PGS-PT were calculated
using PRSice2 (version 2.2.12 (2020-02-20))[388]. To decrease computation time and
reduce the likelihood of over-fitting a p-value threshold of 5×10−5 was chosen, a pri-
ori, for the LOCO PGS-PT calculation. Association testing was then performed using
fastGWA in a chromosome-wise manner, with the corresponding LOCO PGS included
as a fixed effect. The bigsnpr R package (bigsnpr v1.6.1 [291] & R v3.6.1 [342] ) was
used to calculate the LOCO PGS-LDpred2 fixed effects. To reduce computation time,
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22 LOCO genotype objects containing the SNP correlations were precomputed.

5.6.2 Application to the UK Biobank

5.6.2.1 UK Biobank association tests

The genotype selection, quality control and genetic relationship matrix were performed
following the QC procedure in Jiang et al.[246]. The genetic relationship matrix used
with fastGWA and BOLT-LMM was calculated for all European individuals (N=458,686),
using a set of 556,516 lightly pruned HAPMAP3 variants (R2 greater than 0.9 in a 100
variant sliding window of size 1,000 & MAF > 0.01) [246]. Association summary
statistics were generated from a set of 1.1 million HAPMAP3 variants (MAF > 0.01,
HWE α= 1×10−6 and missingness < 0.05) [246]. Principal components were calcu-
lated using a set of 34,775 variants (LD-pruned with R2 = 0.05 in a sliding window of
size 1,000bp, sliding by 50bp)[396]. To identify white British samples with similar ge-
netic backgrounds we clustered samples based on the first 6 principal components[396],
resulting in a subset of 406,319 white-British samples. Sample pairs that had a KING
kinship coefficient above 0.05, with one member of the pair within the white-British
group and the other in the group self-reporting as white European were removed. This
left 399,135 white British and 46,406 other European samples [397, 396]. To account
for known sources of phenotype and genotype variation, 10 PCs, age, sex, genotype
batch and assessment centre were included as fixed-effect covariates for the BOLT-
LMM and fastGWA analyses. PRSice2 and LDpred2 were used to calculate the LOCO
PGS. Independent loci were identified using the clumping algorithm in plink2 (p-value
threshold = 5×10−9, window size = 5Mb, and LD R2 threshold = 0.01).

5.6.2.2 UK Biobank phenotype prediction

To test the performance of fastGWA with a LOCO PGS fixed effect on the task of pre-
dicting standing height, BMI and HBMD, the UK Biobank data was partitioned into
training and test datasets. The test data consisted of white British individuals with
similar genetic background described above and the polygenic score predictions were
tested on the remaining independent European samples. Summary statistics were gen-
erated using fastGWA, fastGWA-PGS-PT, fastGWA-PGS-LDpred2 and BOLT-LMM.
We used LDpred2 and PRSice2 to predict the phenotypic values in the test set. LDpred2
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requires LD correlation data and we used a pre-computed set built on the 1.1 million
HAPMAP3 variants for this purpose. The model fit was assessed for each method by
fitting a linear model to the values of the phenotype in the test set as a function of their
predicted values, accounting for known sources of phenotypic variation, i.e sex, age,
PC’s. We report both the proportion of variation explained collectively by the PGS,
sex, age, the first 4 principal components and assessment centre as well as the R2 using
only the PGS in the regression model.
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Chapter 6

Summary and Concluding remarks

In this thesis, the central research question was whether we could uncover sources of
variation in somatic mutation from whole exome sequencing data given a large sample
size. We addressed this question using the UK Biobank, a population-scale biobank
containing genetic and phenotypic information on over 500,000 individuals across the
United Kingdom. We first investigated sources of variation in somatic mutation be-
tween individuals and then in genic regions across the genome. Analysis of varia-
tion across individuals included the application of a genome-wide association study
approach and the final research question pertained to improving power of statistical
models that are used in such studies.

6.1 Summary

Somatic mutations can provide insights into both the aetiology of ageing and disease
while also informing therapeutic decisions. The study of somatic mutation has been
largely limited to cancer cohorts and studies on healthy individuals have been restricted
to small sample sizes. The role of somatic mutation within the general population
remains understudied. A major challenge in studying somatic mutation in large sample
sizes is that the rate at which somatic mutations occur in NGS data is typically below the
sequencing error rate. High sequencing depth and specialised NGS library preparation
can be used to accurately call somatic mutations. This, however, increases the cost per
sample and is not easily scalable to large cohorts.

In this thesis, we postulated that by leveraging the large number of samples in the
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UK Biobank we could recover information on sources of variation in somatic muta-
tion from the set of mismatches to the reference genome observed in noisy NGS data.
While large sample sizes, improve the power of statistical tests, analysing population-
scale genetic data poses several computational challenges. Genomic data is typically
embarrassingly parallel; however, the scale of the UK Biobank 200K WES data quickly
exhausted the resources available on the University of Galway high-performance com-
puting cluster for Bioinformatics research. Addressing the computational burden of
analysing the UK Biobank WES data relied on the use of careful data management and
code optimisation. In Chapter 2, we describe a computationally efficient pipeline to
extract and annotate mismatches in 175 TB of WES data across 200,632 samples.

To assess the feasibility of our central research aim and as a proof of concept, in
Chapter 2 we inferred the expected proportion of somatic mutations within the observed
mismatches and used simulations to determine whether we had the power to recover a
known source of variation in somatic mutation load from the exome sequencing data.
We estimated using empirical estimates of the somatic mutation rate in healthy blood
that approximately 0.4% of mismatches arose from somatic mutation. We reasoned
that by restricting to mismatches that occurred on overlapping pair-end reads, where
both the sequencing reads agree on the mismatch, we could reduce the sequencing er-
ror rate to the square of the sequencing error probability, enriching the proportion of
somatic mutation within the mismatch data. The use of overlapping reads to correct the
sequencing error rate has been previously used in variant calling software [231]. We
estimated that by using the overlapping read data, the estimated proportion of somatic
mutations in the mismatch data was increased to 1%. To test whether we could plausi-
bly recover modest signals of variation we simulated somatic mutation loads using the
estimated somatic mutation rates, age and the number of mismatches to match the vari-
ance of the noise within the NGS data. Surprisingly, we found that for the overlapping
reads did not provide better power to detect age-associated variation in the somatic mu-
tation load across individuals. We hypothesised two reasons for this result. Firstly, by
restricting to mismatches supported by overlapping reads we reduced the total number
of mismatches within the data and that increased the variance within the estimate of so-
matic mutations leaving our study underpowered. Secondly, the somatic mutation rate
may be reduced close to the centre of exons relative to exon boundaries and introns, due
to nucleosome occupancy. Using the mismatches with no overlapping read restriction
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we found we could in fact recover the signals of somatic mutation with respect to age
within the UK Biobank validating the feasibility of this thesis.

Given that we were able to recover somatic mutation in the UK Biobank data, in
Chapter 3 we investigated whether individuals with self-reported cancer or tobacco
smoking status had detectably higher mismatch loads. Outside of circulating tumour
DNA, it is not known whether cancer status is associated with an increased somatic mu-
tation in adjacent tissues, although it can be argued that cancers driven by Mendelian
errors in repair genes or carcinogen exposure may indeed have elevated levels of so-
matic mutation in non-cancerous tissues. We found significantly higher mismatch loads
in tobacco smokers and individuals who had had a self-reported cancer diagnosis, com-
pared to the control group. However, during the verification of the results, we identified
a strong batch effect, resulting in much higher numbers of mismatches per sequenced
read in some groups of samples (Fig. 2.4). We reasoned that the sequencing batch
might influence the mismatch loads because sequencing error can vary between se-
quencing runs. Although the sequencing batch IDs were not available from the UK
Biobank, we retrieved the flowcell IDs from the alignment data and found that the se-
quencing run explained the batch structure. After adjusting the mismatch data for batch
structure, we found that the association between mismatch load and cancer and smok-
ing status was artefactual (Fig 3.1 & 3.2). An attempt to address the sequencing batch
structure has been described in the UK biobank for the 450,000-sample exome release
[320]; however, the samples were assigned to six clusters of oligo batch. Our results
suggest that the guidelines released by the UK Biobank full exome release do not fully
address the serious issue of batch structure within the sequencing data. Addressing
known sources of technical confounding is an important step to ensure accurate results.
The UK Biobank WES data is used to study rare coding variation and its impact on
health. A high proportion of spurious rare variant calls could lead to the publication of
misleading results, particularly as sequencing batch is non-random, as illustrated by the
relationship it induced. Interestingly and most importantly for this thesis, we found that
by addressing the batch structure within the UK Biobank exome release the association
between age and mismatch load increased.

Transcription coupled-repair and mutagenesis can influence the mutation spectra in
a strand-specific manner, i.e. lesions on the non-coding strand are preferentially re-
paired while the coding strand accumulates DNA damage. This gives rise to an asym-
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metry in mutation spectra between the coding and non-coding strands. We reasoned that
this effect might be recoverable from the exome sequencing data of the UK Biobank.
We found a high level of transcription strand-associated asymmetry in C-to-A vs G-to-
T mismatches (discussed in Chapters 3 and 4). The preference for C-to-As over G-to-
Ts is a well-established result of transcriptional mutagenesis found in both the soma
and germline. The level of asymmetry observed in Chapters 3 and 4 was, however, in
conflict with an approximate proportion of mismatches arising from somatic mutation
(0.4%). DNA damage and sequencing errors accumulate randomly with respect to the
Watson and Crick strands and should not be impacted by transcription-associated dam-
age or repair. To explain the high level of transcription-strand asymmetry observed we
proposed that aspects of the library preparation protocol induced transcription-strand
asymmetry in the mismatch profile. Specifically, the use of a set of oligonucleotides
that are complementary to the coding strand during exon capture could preferentially
pull down damaged 8-oxoguanines on the coding strand, resulting in a high level of
G-to-T mismatches on this strand. Indeed, we were able to confirm from the IDT
website that the IDT oligonucleotides used in the UK Biobank exome sequencing data
generation target the coding strand only. This is a surprisingly simple explanation, but
nonetheless, a result that has not been previously documented and it has implications
for NGS QC metrics and rare variant analyses.

Postulating that common genetic variants may contribute to the variation in mis-
match loads across samples, we performed GWAS on the mismatch loads. We discov-
ered a genome-wide significant locus, linked to an eQTL for ERRC8, a gene essential
for transcription-coupled repair (Fig. 3.14). Variation acting upon the repair machinery
influencing the mutation rate in a largely healthy population has not been previously
discovered and would be a remarkable result. To remove the possibility of the GWAS
test SNP being linked to a SNP that escaped stringent SNP filtering and thus influenc-
ing the mismatch variation we regenerated the mismatch loads excluding mismatches
on the chromosome containing the GWAS hit. This, however, removed the effect, re-
vealing that this result was an artefact, caused by an unusual genetic variant that had
escaped filtering in our computational pipeline.

We also investigated whether the previously-reported impact of pathogenic Lynch
syndrome variants on the somatic mutation rate could be detected in the mismatch
loads observed in individuals carrying these variants. Using mismatch repair muta-
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tional signatures, we estimated the contribution of each signature in a group of 160
Lynch syndrome samples and compared to the remaining samples (Fig 3.16). We did
not detect significant differences in the contribution of the mismatch repair signatures
between groups. Several factors may explain the failure to observe a significantly el-
evated burden of mismatches in individuals with Lynch syndrome variants. Firstly,
of the 200,000 samples only 160 contained pathogenic variants associated with Lynch
syndrome, limiting the power to detect an effect, given the noise inherent in the mis-
match data, with somatic mutations representing a relatively small proportion of the
total. Secondly, recent work has shown that not all pathogenic Lynch variants result in
increased somatic mutational loads [328], introducing further noise and decreasing the
number of samples that may have increased somatic mutation burdens. Nevertheless,
we discovered that SBS3, a signature involved in homology-based repair accumulated
linearly with age across samples without Lynch syndrome variants (Fig. 3.17). This is
an interesting result as it suggests a potential link between the efficiency of homologous
recombination-based repair and ageing, something that has been proposed in theories
of ageing but never shown outside of paediatric tumours [339].

Intrinsic biological factors are an important source of somatic mutation rate varia-
tion. To explore the effect of intrinsic somatic mutation rate modifiers on the mismatch
load, in Chapter 4 we transferred our focus from interindividual variation to variation
across the genome. This allowed us to explore the effects of gene expression, GC
content, replication timing, chromatin accessibility and recombination hotspots on the
derived mismatch loads. Across all mutation rate modifiers, we found that the direction
of effect is consistent with published data on somatic mutation rates. This suggests
that mismatch loads averaged over large numbers of individuals, could be useful to
study variation in somatic mutation processes across the genome. The association be-
tween mismatch load and gene expression is particularly interesting as transcription
and transcription-coupled repair have a complex relationship with gene expression lev-
els (Fig 4.8). We found that for lowly expressed genes the mismatch load is high,
consistent with ineffective transcription-coupled repair. As gene expression levels in-
crease the mismatch load begins to decrease until transcription-associated mutagenesis
begins to dominate over the transcription-coupled repair, thus, increasing the mismatch
load once again. This effect has been previously published for somatic mutations by
Chen et al. [148].
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As the mismatch burden correlated consistently with different mutation rate modi-
fiers, attempting to further enrich for somatic mutation, we decomposed the recurrent
mismatch data into de novo mismatch signatures and compared the resulting signatures
with validated mutational signatures from the COSMIC database. We estimated twelve
mismatch signatures from the data, five of which showed similarity to COSMIC signa-
tures. Importantly a signature similar to SBS1, a clock-like signature active in normal
tissue and cancer, was inferred to be present in the mismatch data. This adds further
weight to our conclusion in Chapter 2 that we can recover an age signature of somatic
mutation from mismatches in the exome sequencing data.

By analysing mismatch recurrence across the genome, we could detect signals of
positive selection acting on genes known to be involved in CHIP. As the UK Biobank
WES data was generated from whole blood samples, positive selection inferred by
analyzing mismatches in a large cohort could be informative about factors that drive
clonal expansions in blood. SRSF2 is an epigenetic modifier frequently mutated in
individuals with CHIP. We detected that SRSF2 was accumulating twice the rate of
non-synonymous mutations compared what was expected by chance. An important
point to reiterate is that we may have excluded high-frequency somatic mutations in
other canonical CHIP genes by removing mismatches that occur in a large number of
samples. Hence, additional genes known to be associated with CHIP, such as DNMT3A,
may also contribute to CHIP within the UK Biobank mismatch data but have been
filtered due to high recurrence across samples.

In Chapter 5, we address our final research question. Can we increase the power of
GWAS? We present our published work on improving the computational efficiency and
power of GWAS. Using state-of-the-art polygenic prediction methods, we incorporated
leave-one-chromosome-out polygenic scores as fixed effects into a computationally ef-
ficient linear mixed model. Importantly, we found that using our PGS-LMM framework
with traits that are sufficiently heritable and polygenic leads to better estimation of SNP
effect sizes, therefore increasing the trait prediction capability of the GWAS summary
statistics. Although, in the context of this thesis, the method was intended to be ap-
plied to infer genetic variation acting upon the somatic mutation rate, this method is
not well-suited to traits with small narrow-sense heritability. Nonetheless, recent work
has also found that by using a similar method can improve the power of gene-collapsed
rare variant burden analyses, aligning with our conclusions [303].
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6.2 Concluding remarks

We set out to recover information on somatic mutation within the UK Biobank. Through-
out this body of work, we have presented evidence that in some cases the recovery of
information on somatic mutation from noisy, low-depth sequencing data is indeed pos-
sible. We assessed the feasibility of this study through simulation and validated our
results using the UK Biobank exome sequencing data and sample age. We found a
linear increase in median mismatch burden with age, indicative of the fact that somatic
mutations accumulate linearly throughout life, a result that. was consistent with our
simulation study.

We then asked whether we could, using the mismatch data, detect signs of variation
in the somatic mutation load across samples. While we found that significant sources
of technical variation remained after accounting for the sequencing batch, we could
use mutational signatures to uncover an increasing contribution of a COSMIC MMR
mutation signature (SBS3) with sample age consistent with both our findings in Chapter
2 and theories of ageing. We next reframed the mismatch data to examine the effects of
intrinsic biological mechanisms acting across the genome. Using the median recurrence
of a given mismatch context we again found that the mismatch recurrence covaried
with several mutation rate modifiers such as replication timing, GC content, chromatin
accessibility and mitotic recombination. A key finding was the recovery of a non-linear
relationship with gene expression, a result that has been shown in both germline and
somatic mutation data previously. Using NMF, we inferred several mutation signatures
that showed similarity COSMIC signatures. Of note, we recovered a signature with
similarity to SBS1, a clock-like signature that accumulates with age across samples.

Here we present the first attempt to analyse somatic mutations in a population-scale
dataset. Our methodology differs from methods designed to call somatic mutations
in single-sample NGS data. By using the recurrence across many samples, we can
aggregate the signal of somatic mutation to learn information about the variation across
both samples and the genome without specifically calling somatic mutations at each
site. We present both results that are known to be associated with somatic mutation and
novel results that, upon replication, may impact the fields of ageing and rare variant
analyses.
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6.3 Future directions

The inter-individual and cross-genome variation in somatic mutation rates can shed
light on the processes that contribute to both ageing and disease. Here we developed a
method to infer somatic mutation within the UK Biobank, we have shown that we can
capture variation in the somatic mutation rate across both the genome and across sam-
ples by replicating the association with known mutation covariates, detecting positive
selection in genes responsible for clonal expansions and mutational signature analyses.
Nevertheless, several questions remain to be addressed. For example, we have imposed
stringent recurrence filters to remove germline variants. The reintroduction of high-
frequency mismatches that have been removed is particularly pertinent for the detection
of selection. This could be achieved through analysis of the haplotypes containing the
putative high-frequency somatic variant. The implications of the transcription strand
asymmetry we observed for variant calling merits further investigation, as it could be
informative for pipelines used to call germline and somatic mutations.
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[110] V. Franc, V. Hlaváč, and M. Navara, “Sequential coordinate-wise algorithm for the non-

negative least squares problem,” in Computer Analysis of Images and Patterns: 11th

International Conference, CAIP 2005, Versailles, France, September 5-8, 2005. Pro-

ceedings 11, pp. 407–414, Springer, 2005.

176



[111] X. Lin and P. C. Boutros, “Optimization and expansion of non-negative matrix factoriza-

tion,” BMC Bioinformatics, vol. 21, p. 7, Jan 2020.

[112] A. Degasperi, T. D. Amarante, J. Czarnecki, S. Shooter, X. Zou, D. Glodzik, S. Mor-

ganella, A. S. Nanda, C. Badja, G. Koh, S. E. Momen, I. Georgakopoulos-Soares, J. M. L.

Dias, J. Young, Y. Memari, H. Davies, and S. Nik-Zainal, “A practical framework and

online tool for mutational signature analyses show inter-tissue variation and driver de-

pendencies,” Nat Cancer, vol. 1, pp. 249–263, Feb 2020.

[113] L. B. Alexandrov, J. Kim, N. J. Haradhvala, M. N. Huang, A. W. Tian Ng, Y. Wu,

A. Boot, K. R. Covington, D. A. Gordenin, E. N. Bergstrom, S. M. A. Islam, N. Lopez-

Bigas, L. J. Klimczak, J. R. McPherson, S. Morganella, R. Sabarinathan, D. A. Wheeler,

V. Mustonen, G. Getz, S. G. Rozen, M. R. Stratton, L. B. Alexandrov, E. N. Bergstrom,

A. Boot, P. Boutros, K. Chan, K. R. Covington, A. Fujimoto, G. Getz, D. A. Gordenin,

N. J. Haradhvala, M. N. Huang, S. M. A. Islam, M. Kazanov, J. Kim, L. J. Klimczak,

N. Lopez-Bigas, M. Lawrence, I. Martincorena, J. R. McPherson, S. Morganella, V. Mu-

stonen, H. Nakagawa, A. W. Tian Ng, P. Polak, S. Prokopec, S. A. Roberts, S. G.

Rozen, R. Sabarinathan, N. Saini, T. Shibata, Y. Shiraishi, M. R. Stratton, B. T. Teh,

I. a, D. A. Wheeler, Y. Wu, F. Yousif, W. Yu, L. A. Aaltonen, F. Abascal, A. Abeshouse,

H. Aburatani, D. J. Adams, N. Agrawal, K. S. Ahn, S. M. Ahn, H. Aikata, R. Akbani,

K. C. Akdemir, H. Al-Ahmadie, S. T. Al-Sedairy, F. Al-Shahrour, M. Alawi, M. Albert,

K. Aldape, L. B. Alexandrov, A. Ally, K. Alsop, E. G. Alvarez, F. Amary, S. B. Amin,

B. Aminou, O. Ammerpohl, M. J. Anderson, Y. Ang, D. Antonello, P. Anur, S. Aparicio,

E. L. Appelbaum, Y. Arai, A. Aretz, K. Arihiro, S. I. Ariizumi, J. Armenia, L. Arnould,

S. Asa, Y. Assenov, G. Atwal, S. Aukema, J. T. Auman, M. R. R. Aure, P. Awadalla,

M. Aymerich, G. D. Bader, A. Baez-Ortega, M. H. Bailey, P. J. Bailey, M. Balasun-

daram, S. Balu, P. Bandopadhayay, R. E. Banks, S. Barbi, A. P. Barbour, J. Barenboim,

J. Barnholtz-Sloan, H. Barr, E. Barrera, J. Bartlett, J. Bartolome, C. Bassi, O. F. Bathe,

D. Baumhoer, P. Bavi, S. B. Baylin, W. Bazant, D. Beardsmore, T. A. Beck, S. Behjati,

A. Behren, B. Niu, C. Bell, S. Beltran, C. Benz, A. Berchuck, A. K. Bergmann, E. N.

Bergstrom, B. P. Berman, D. M. Berney, S. H. Bernhart, R. Beroukhim, M. Berrios,

S. Bersani, J. Bertl, M. Betancourt, V. Bhandari, S. G. Bhosle, A. V. Biankin, M. Bieg,

D. Bigner, H. Binder, E. Birney, M. Birrer, N. K. Biswas, B. Bjerkehagen, T. Boden-

heimer, L. Boice, G. Bonizzato, J. S. De Bono, A. Boot, M. S. Bootwalla, A. Borg,

A. Borkhardt, K. A. Boroevich, I. Borozan, C. Borst, M. Bosenberg, M. Bosio, J. Boult-

wood, G. Bourque, P. C. Boutros, G. S. Bova, D. T. Bowen, R. Bowlby, D. D. L. Bowtell,

177



S. Boyault, R. Boyce, J. Boyd, A. Brazma, P. Brennan, D. S. Brewer, A. B. Brinkman,

R. G. Bristow, R. R. Broaddus, J. E. Brock, M. Brock, A. Broeks, A. N. Brooks,

D. Brooks, B. Brors, S. Brunak, T. J. C. Bruxner, A. L. Bruzos, A. Buchanan, I. Buchhal-

ter, C. Buchholz, S. Bullman, H. Burke, B. Burkhardt, K. H. Burns, J. Busanovich, C. D.

Bustamante, A. P. Butler, A. J. Butte, N. J. Byrne, A. L. rresen Dale, S. J. Caesar-Johnson,

A. Cafferkey, D. Cahill, C. Calabrese, C. Caldas, F. Calvo, N. Camacho, P. J. Campbell,

E. Campo, C. u, S. Cao, T. E. Carey, J. Carlevaro-Fita, R. Carlsen, I. Cataldo, M. Caz-

zola, J. Cebon, R. Cerfolio, D. E. Chadwick, D. Chakravarty, D. Chalmers, C. W. Y.

Chan, K. Chan, M. Chan-Seng-Yue, V. S. Chandan, D. K. Chang, S. J. Chanock, L. A.

Chantrill, A. Chateigner, N. Chatterjee, K. Chayama, H. W. Chen, J. Chen, K. Chen,

Y. Chen, Z. Chen, A. D. Cherniack, J. Chien, Y. E. Chiew, S. F. Chin, J. Cho, S. Cho,

J. K. Choi, W. Choi, C. Chomienne, Z. Chong, S. P. Choo, A. Chou, A. N. Christ, E. L.

Christie, E. Chuah, C. Cibulskis, K. Cibulskis, S. Cingarlini, P. Clapham, A. Claviez,

S. Cleary, N. Cloonan, M. Cmero, C. C. Collins, A. A. Connor, S. L. Cooke, C. S.

Cooper, L. Cope, V. Corbo, M. G. Cordes, S. M. Cordner, I. s Ciriano, K. Coving-

ton, P. A. Cowin, B. Craft, D. Craft, C. J. Creighton, Y. Cun, E. Curley, I. Cutcutache,

K. Czajka, B. Czerniak, R. A. Dagg, L. Danilova, M. V. Davi, N. R. Davidson, H. Davies,

I. J. Davis, B. N. Davis-Dusenbery, K. J. Dawson, F. M. De La Vega, R. De Paoli-

Iseppi, T. Defreitas, A. P. D. Tos, O. Delaneau, J. A. Demchok, J. Demeulemeester,

G. M. Demidov, D. lu, N. M. Dennis, R. E. Denroche, S. C. Dentro, N. Desai, V. Desh-

pande, A. G. Deshwar, C. Desmedt, J. Deu-Pons, N. Dhalla, N. C. Dhani, P. Dhingra,

R. Dhir, A. DiBiase, K. Diamanti, L. Ding, S. Ding, H. Q. Dinh, L. Dirix, H. Dod-

dapaneni, N. Donmez, M. T. Dow, R. Drapkin, O. Drechsel, R. M. Drews, S. Serge,

T. Dudderidge, A. Dueso-Barroso, A. J. Dunford, M. Dunn, L. J. Dursi, F. R. Duthie,

K. Dutton-Regester, J. Eagles, D. F. Easton, S. Edmonds, P. A. Edwards, S. E. Ed-

wards, R. A. Eeles, A. Ehinger, J. Eils, R. Eils, A. El-Naggar, M. Eldridge, K. Ell-

rott, S. Erkek, G. Escaramis, S. M. G. Espiritu, X. Estivill, D. Etemadmoghadam, J. E.

Eyfjord, B. M. Faltas, D. Fan, Y. Fan, W. C. Faquin, C. Farcas, M. Fassan, A. Fatima,

F. Favero, N. Fayzullaev, I. Felau, S. Fereday, M. L. Ferguson, V. Ferretti, L. Feuer-

bach, M. A. Field, J. L. Fink, G. Finocchiaro, C. Fisher, M. W. Fittall, A. Fitzgerald,

R. C. Fitzgerald, A. M. Flanagan, N. E. Fleshner, P. Flicek, J. A. Foekens, K. M. Fong,

N. A. Fonseca, C. S. Foster, N. S. Fox, M. Fraser, S. Frazer, M. Frenkel-Morgenstern,

W. Friedman, J. Frigola, C. C. Fronick, A. Fujimoto, M. Fujita, M. Fukayama, L. A.

Fulton, R. S. Fulton, M. Furuta, P. A. Futreal, A. llgrabe, S. B. Gabriel, S. Gallinger,

C. Gambacorti-Passerini, J. Gao, S. Gao, L. Garraway, Ã. Garred, E. Garrison, D. W.

178



Garsed, N. Gehlenborg, J. L. L. Gelpi, J. George, D. S. Gerhard, C. Gerhauser, J. E.

Gershenwald, M. Gerstein, M. Gerstung, G. Getz, M. Ghori, R. Ghossein, N. H. Giama,

R. A. Gibbs, B. Gibson, A. J. Gill, P. Gill, D. D. Giri, D. Glodzik, V. J. Gnanapragasam,

M. E. Goebler, M. J. Goldman, C. Gomez, S. Gonzalez, A. Gonzalez-Perez, D. A. Gor-

denin, J. Gossage, K. Gotoh, R. Govindan, D. Grabau, J. S. Graham, R. C. Grant, A. R.

Green, E. Green, L. Greger, N. Grehan, S. Grimaldi, S. M. Grimmond, R. L. Grossman,

A. Grundhoff, G. Gundem, Q. Guo, M. Gupta, S. Gupta, I. G. Gut, M. Gut, J. ke, G. Ha,

A. Haake, D. Haan, S. Haas, K. Haase, J. E. Haber, N. Habermann, F. Hach, S. Haider,

N. Hama, F. C. Hamdy, A. Hamilton, M. P. Hamilton, L. Han, G. B. Hanna, M. Hans-

mann, N. J. Haradhvala, O. Harismendy, I. Harliwong, A. O. Harmanci, E. Harrington,

T. Hasegawa, D. Haussler, S. Hawkins, S. Hayami, S. Hayashi, D. N. Hayes, S. J. Hayes,

N. K. Hayward, S. Hazell, Y. He, A. P. Heath, S. C. Heath, D. Hedley, A. M. Hegde,

D. I. Heiman, M. C. Heinold, Z. Heins, L. E. Heisler, E. Hellstrom-Lindberg, M. Helmy,

S. G. Heo, A. J. Hepperla, J. M. Heredia-Genestar, C. Herrmann, P. Hersey, J. M. Hess,

H. Hilmarsdottir, J. Hinton, S. Hirano, N. Hiraoka, K. A. Hoadley, A. Hobolth, E. Hodzic,

J. I. Hoell, S. Hoffmann, O. Hofmann, A. Holbrook, A. Z. Holik, M. A. Hollingsworth,

O. Holmes, R. A. Holt, C. Hong, E. P. Hong, J. H. Hong, G. K. Hooijer, H. j, F. Hosoda,

Y. Hou, V. Hovestadt, W. Howat, A. P. Hoyle, R. H. Hruban, J. Hu, T. Hu, X. Hua,

K. L. Huang, M. Huang, M. N. Huang, V. Huang, Y. Huang, W. Huber, T. J. Hudson,

M. Hummel, J. A. Hung, D. Huntsman, T. R. Hupp, J. Huse, M. R. Huska, B. Hutter,

C. M. Hutter, D. bschmann, C. A. Iacobuzio-Donahue, C. D. Imbusch, M. Imielinski,

S. Imoto, W. B. Isaacs, K. Isaev, S. Ishikawa, M. Iskar, S. M. A. Islam, M. Ittmann,

S. Ivkovic, J. M. G. Izarzugaza, J. Jacquemier, V. Jakrot, N. B. Jamieson, G. H. Jang,

S. J. Jang, J. C. Jayaseelan, R. Jayasinghe, S. R. Jefferys, K. Jegalian, J. L. Jennings,

S. H. Jeon, L. Jerman, Y. Ji, W. Jiao, P. A. Johansson, A. L. Johns, J. Johns, R. Johnson,

T. A. Johnson, C. Jolly, Y. Joly, J. G. Jonasson, C. D. Jones, D. R. Jones, D. T. W. Jones,

N. Jones, S. J. M. Jones, J. Jonkers, Y. S. Ju, H. Juhl, J. Jung, M. Juul, R. I. Juul, S. Juul,

N. ger, R. Kabbe, A. Kahles, A. Kahraman, V. B. Kaiser, H. Kakavand, S. Kalimuthu,

C. von Kalle, K. J. Kang, K. Karaszi, B. Karlan, R. c, D. Karsch, K. Kasaian, K. S.

Kassahn, H. Katai, M. Kato, H. Katoh, Y. Kawakami, J. D. Kay, S. H. Kazakoff, M. D.

Kazanov, M. Keays, E. Kebebew, R. F. Kefford, M. Kellis, J. G. Kench, C. J. Kennedy,

J. N. A. Kerssemakers, D. Khoo, V. Khoo, N. Khuntikeo, E. Khurana, H. Kilpinen, H. K.

Kim, H. L. Kim, H. Y. Kim, H. Kim, J. Kim, J. Kim, J. K. Kim, Y. Kim, T. A. King,

W. Klapper, K. Kleinheinz, L. J. Klimczak, S. Knappskog, M. Kneba, B. M. Knoppers,

Y. Koh, J. Komorowski, D. Komura, M. Komura, G. Kong, M. Kool, J. O. Korbel, V. Ko-

179



rchina, A. Korshunov, M. Koscher, R. Koster, Z. Kote-Jarai, A. Koures, M. Kovacevic,

B. Kremeyer, H. Kretzmer, M. Kreuz, S. Krishnamurthy, D. Kube, K. Kumar, P. Kumar,

S. Kumar, Y. Kumar, R. Kundra, K. bler, R. ppers, J. Lagergren, P. H. Lai, P. W. Laird,

S. R. Lakhani, C. M. Lalansingh, E. Lalonde, F. C. Lamaze, A. Lambert, E. Lander,

P. Landgraf, L. Landoni, A. d, A. s, D. Larsimont, E. Larsson, M. Lathrop, L. M. S. Lau,

C. Lawerenz, R. T. Lawlor, M. S. Lawrence, A. J. Lazar, A. M. Lazic, X. Le, D. Lee,

D. Lee, E. A. Lee, H. J. Lee, J. J. Lee, J. Y. Lee, J. Lee, M. T. M. Lee, H. Lee-Six, K. V.

Lehmann, H. Lehrach, D. Lenze, C. R. Leonard, D. A. Leongamornlert, I. Leshchiner,

L. Letourneau, I. Letunic, D. A. Levine, L. Lewis, T. Ley, C. Li, C. H. Li, H. I. Li, J. Li,

L. Li, S. Li, S. Li, X. Li, X. Li, X. Li, Y. Li, H. Liang, S. B. Liang, P. Lichter, P. Lin,

Z. Lin, W. M. Linehan, O. C. rde, D. Liu, E. M. Liu, F. F. Liu, F. Liu, J. Liu, X. Liu,

J. Livingstone, D. Livitz, N. Livni, L. Lochovsky, M. Loeffler, G. V. Long, A. Lopez-

Guillermo, S. Lou, D. N. Louis, L. B. Lovat, Y. Lu, Y. J. Lu, Y. Lu, C. Luchini, I. Lungu,

X. Luo, H. J. Luxton, A. G. Lynch, L. Lype, C. pez, C. n, E. Z. Ma, Y. Ma, G. MacGro-

gan, S. MacRae, G. Macintyre, T. Madsen, K. Maejima, A. Mafficini, D. T. Maglinte,

A. Maitra, P. P. Majumder, L. Malcovati, S. Malikic, G. Malleo, G. J. Mann, L. ffler,

K. Marchal, G. Marchegiani, E. R. Mardis, A. A. Margolin, M. G. Marin, F. Markowetz,

J. Markowski, J. Marks, T. Marques-Bonet, M. A. Marra, L. Marsden, J. W. M. Martens,

S. Martin, J. I. Martin-Subero, I. Martincorena, A. Martinez-Fundichely, Y. E. Maruvka,

R. J. Mashl, C. E. Massie, T. J. Matthew, L. Matthews, E. Mayer, S. Mayes, M. Mayo,

F. Mbabaali, K. McCune, U. McDermott, P. D. McGillivray, M. D. McLellan, J. D.

McPherson, J. R. McPherson, T. A. McPherson, S. R. Meier, A. Meng, S. Meng, A. Men-

zies, N. D. Merrett, S. Merson, M. Meyerson, W. Meyerson, P. A. Mieczkowski, G. L.

Mihaiescu, S. Mijalkovic, T. Mikkelsen, M. Milella, L. Mileshkin, C. A. Miller, D. K.

Miller, J. K. Miller, G. B. Mills, A. Milovanovic, S. Minner, M. Miotto, G. M. Arnau,

L. Mirabello, C. Mitchell, T. J. Mitchell, S. Miyano, N. Miyoshi, S. Mizuno, F. bor, M. J.

Moore, R. A. Moore, S. Morganella, Q. D. Morris, C. Morrison, L. E. Mose, C. D. Moser,

F. os, L. Mularoni, A. J. Mungall, K. Mungall, E. A. Musgrove, V. Mustonen, D. Mutch,

F. Muyas, D. M. Muzny, A. oz, J. Myers, O. Myklebost, P. ller, G. Nagae, A. M. Nagrial,

H. K. Nahal-Bose, H. Nakagama, H. Nakagawa, H. Nakamura, T. Nakamura, K. Nakano,

T. Nandi, J. Nangalia, M. Nastic, A. Navarro, F. C. P. Navarro, D. E. Neal, G. Nettekoven,

F. Newell, S. J. Newhouse, Y. Newton, A. W. T. Ng, A. Ng, J. Nicholson, D. Nicol,

Y. Nie, G. P. Nielsen, M. M. Nielsen, S. Nik-Zainal, M. S. Noble, K. Nones, P. A. North-

cott, F. Notta, B. D. O’Connor, P. O’Donnell, M. O’Donovan, S. O’Meara, B. P. O’Neill,

J. R. O’Neill, D. Ocana, A. Ochoa, L. Oesper, C. Ogden, H. Ohdan, K. Ohi, L. Ohno-

180



Machado, K. A. Oien, A. I. Ojesina, H. Ojima, T. Okusaka, L. Omberg, C. K. Ong,

S. Ossowski, G. Ott, B. F. F. Ouellette, C. P’ng, M. Paczkowska, S. Paiella, C. Pairo-

jkul, M. Pajic, Q. m, E. Papaemmanuil, I. Papatheodorou, N. Paramasivam, J. W. Park,

J. W. Park, K. Park, K. Park, P. J. Park, J. S. Parker, S. L. Parsons, H. Pass, D. Paster-

nack, A. Pastore, A. M. Patch, I. e, A. Pea, J. V. Pearson, C. S. Pedamallu, J. S. Ped-

ersen, P. Pederzoli, M. Peifer, N. A. Pennell, C. M. Perou, M. D. Perry, G. M. Pe-

tersen, M. Peto, N. Petrelli, R. Petryszak, S. M. Pfister, M. Phillips, O. Pich, H. A.

Pickett, T. D. Pihl, N. Pillay, S. Pinder, M. Pinese, A. V. Pinho, E. nen, X. Pivot, E. ez,

L. Planko, C. Plass, P. Polak, T. Pons, I. Popescu, O. Potapova, A. Prasad, S. R. Pre-

ston, M. Prinz, A. L. Pritchard, S. D. Prokopec, E. Provenzano, X. S. Puente, S. Puig,

M. s, S. Pulido-Tamayo, G. M. Pupo, C. A. Purdie, M. C. Quinn, R. Rabionet, J. S.

Rader, B. Radlwimmer, P. Radovic, B. Raeder, K. M. Raine, M. Ramakrishna, K. Ra-

makrishnan, S. Ramalingam, B. J. Raphael, W. K. Rathmell, T. Rausch, G. Reifenberger,

J. Reimand, J. Reis-Filho, V. Reuter, I. Reyes-Salazar, M. A. Reyna, S. M. Reynolds,

E. Rheinbay, Y. Riazalhosseini, A. L. Richardson, J. Richter, M. Ringel, M. r, Y. Rino,

K. Rippe, J. Roach, L. R. Roberts, N. D. Roberts, S. A. Roberts, A. G. Robertson, A. J.

Robertson, J. B. Rodriguez, B. Rodriguez-Martin, F. G. lez, M. H. A. Roehrl, M. Ro-

hde, H. Rokutan, G. Romieu, I. Rooman, T. Roques, D. Rosebrock, M. Rosenberg, P. C.

Rosenstiel, A. Rosenwald, E. W. Rowe, R. Royo, S. G. Rozen, Y. Rubanova, M. A.

Rubin, C. Rubio-Perez, V. A. Rudneva, B. C. Rusev, A. Ruzzenente, G. tsch, R. Sabari-

nathan, V. Y. Sabelnykova, S. Sadeghi, S. C. Sahinalp, N. Saini, M. Saito-Adachi, G. Sak-

sena, A. Salcedo, R. Salgado, L. Salichos, R. Sallari, C. Saller, R. Salvia, M. Sam, J. S.

Samra, F. Sanchez-Vega, C. Sander, G. Sanders, R. Sarin, I. Sarrafi, A. Sasaki-Oku,

T. Sauer, G. Sauter, R. P. M. Saw, M. Scardoni, C. J. Scarlett, A. Scarpa, G. Scelo,

D. Schadendorf, J. E. Schein, M. B. Schilhabel, M. Schlesner, T. Schlomm, H. K.

Schmidt, S. J. Schramm, S. Schreiber, N. Schultz, S. E. Schumacher, R. F. Schwarz,

R. A. Scolyer, D. Scott, R. Scully, R. Seethala, A. V. Segre, I. Selander, C. A. Semple,

Y. Senbabaoglu, S. Sengupta, E. Sereni, S. Serra, D. C. Sgroi, M. Shackleton, N. C.

Shah, S. Shahabi, C. A. Shang, P. Shang, O. Shapira, T. Shelton, C. Shen, H. Shen,

R. Shepherd, R. Shi, Y. Shi, Y. J. Shiah, T. Shibata, J. Shih, E. Shimizu, K. Shimizu, S. J.

Shin, Y. Shiraishi, T. Shmaya, I. Shmulevich, S. I. Shorser, C. Short, R. Shrestha, S. S.

Shringarpure, C. Shriver, S. Shuai, N. Sidiropoulos, R. Siebert, A. M. Sieuwerts, L. Siev-

erling, S. Signoretti, K. O. Sikora, M. Simbolo, R. Simon, J. V. Simons, J. T. Simpson,

P. T. Simpson, S. Singer, N. Sinnott-Armstrong, P. Sipahimalani, T. J. Skelly, M. Smid,

J. Smith, K. Smith-McCune, N. D. Socci, H. J. Sofia, M. G. Soloway, L. Song, A. K.

181



Sood, S. Sothi, C. Sotiriou, C. M. Soulette, P. N. Span, P. T. Spellman, N. Sperandio, A. J.

Spillane, O. Spiro, J. Spring, J. Staaf, P. F. Stadler, P. Staib, S. G. Stark, L. Stebbings,

A. nsson, O. Stegle, L. D. Stein, A. Stenhouse, C. Stewart, S. Stilgenbauer, M. D. Stobbe,

M. R. Stratton, J. R. Stretch, A. J. Struck, J. M. Stuart, H. G. Stunnenberg, H. Su, X. Su,

R. X. Sun, S. Sungalee, H. Susak, A. Suzuki, F. Sweep, M. Szczepanowski, H. ltmann,

T. Yugawa, A. Tam, D. Tamborero, B. K. T. Tan, D. Tan, P. Tan, H. Tanaka, H. Taniguchi,

T. J. Tanskanen, M. Tarabichi, R. Tarnuzzer, P. Tarpey, M. L. Taschuk, K. Tatsuno, S. Ã©,

D. F. Taylor, A. Taylor-Weiner, J. W. Teague, B. T. Teh, V. Tembe, J. Temes, K. Thai,

S. P. Thayer, N. Thiessen, G. Thomas, S. Thomas, A. Thompson, A. M. Thompson,

J. F. F. Thompson, R. H. Thompson, H. Thorne, L. B. Thorne, A. Thorogood, G. Tiao,

N. Tijanic, L. E. Timms, R. Tirabosco, M. Tojo, S. Tommasi, C. W. Toon, U. H. Toprak,

D. Torrents, G. Tortora, J. Tost, Y. Totoki, D. Townend, N. Traficante, I. Treilleux, J. R.

Trotta, L. H. P. mper, M. Tsao, T. Tsunoda, J. M. C. Tubio, O. Tucker, R. Turkington,

D. J. Turner, A. Tutt, M. Ueno, N. T. Ueno, C. Umbricht, H. M. Umer, T. J. Underwood,

L. Urban, T. Urushidate, T. Ushiku, L. la Reimand, A. Valencia, D. J. Van Den Berg,

S. Van Laere, P. Van Loo, E. G. Van Meir, G. G. Van den Eynden, T. Van der Kwast,

N. Vasudev, M. Vazquez, R. Vedururu, U. Veluvolu, S. Vembu, L. P. C. Verbeke, P. Ver-

meulen, C. Verrill, A. Viari, D. Vicente, C. Vicentini, K. VijayRaghavan, J. Viksna, R. E.

Vilain, I. Villasante, A. Vincent-Salomon, T. Visakorpi, D. Voet, P. Vyas, I. a, N. M.

Waddell, N. Waddell, C. Wadelius, L. Wadi, R. Wagener, J. A. Wala, J. Wang, J. Wang,

L. Wang, Q. Wang, W. Wang, Y. Wang, Z. Wang, P. M. Waring, H. J. Warnatz, J. War-

rell, A. Y. Warren, S. M. Waszak, D. C. Wedge, D. Weichenhan, P. Weinberger, J. N.

Weinstein, J. Weischenfeldt, D. J. Weisenberger, I. Welch, M. C. Wendl, J. Werner, J. P.

Whalley, D. A. Wheeler, H. C. Whitaker, D. Wigle, M. D. Wilkerson, A. Williams, J. S.

Wilmott, G. W. Wilson, J. M. Wilson, R. K. Wilson, B. Winterhoff, J. A. Wintersinger,

M. Wiznerowicz, S. Wolf, B. H. Wong, T. Wong, W. Wong, Y. Woo, S. Wood, B. G.

Wouters, A. J. Wright, D. W. Wright, M. H. Wright, C. L. Wu, D. Y. Wu, G. Wu, J. Wu,

K. Wu, Y. Wu, Z. Wu, L. Xi, T. Xia, Q. Xiang, X. Xiao, R. Xing, H. Xiong, Q. Xu,

Y. Xu, H. Xue, S. Yachida, S. Yakneen, R. Yamaguchi, T. N. Yamaguchi, M. Yamamoto,

S. Yamamoto, H. Yamaue, F. Yang, H. Yang, J. Y. Yang, L. Yang, L. Yang, S. Yang, T. P.

Yang, Y. Yang, X. Yao, M. L. Yaspo, L. Yates, C. Yau, C. Ye, K. Ye, V. D. Yellapantula,

C. J. Yoon, S. S. Yoon, F. Yousif, J. Yu, K. Yu, W. Yu, Y. Yu, K. Yuan, Y. Yuan, D. Yuen,

C. K. Yung, O. Zaikova, J. Zamora, M. Zapatka, J. C. Zenklusen, T. Zenz, N. Zeps, C. Z.

Zhang, F. Zhang, H. Zhang, H. Zhang, H. Zhang, J. Zhang, J. Zhang, J. Zhang, X. Zhang,

X. Zhang, Y. Zhang, Z. Zhang, Z. Zhao, L. Zheng, X. Zheng, W. Zhou, Y. Zhou, B. Zhu,

182



H. Zhu, J. Zhu, S. Zhu, L. Zou, X. Zou, A. deFazio, N. van As, C. H. M. van Deurzen,

M. J. van de Vijver, L. Van’t Veer, and C. von Mering, “The repertoire of mutational

signatures in human cancer,” Nature, vol. 578, pp. 94–101, Feb 2020.

[114] J. Ma, J. Setton, N. Y. Lee, N. Riaz, and S. N. Powell, “The therapeutic significance

of mutational signatures from DNA repair deficiency in cancer,” Nat Commun, vol. 9,

p. 3292, Aug 2018.

[115] L. Moore, A. Cagan, T. H. H. Coorens, M. D. C. Neville, R. Sanghvi, M. A. Sanders,

T. R. W. Oliver, D. Leongamornlert, P. Ellis, A. Noorani, T. J. Mitchell, T. M. Butler,

Y. Hooks, A. Y. Warren, M. Jorgensen, K. J. Dawson, A. Menzies, L. O’Neill, C. La-

timer, M. Teng, R. van Boxtel, C. A. Iacobuzio-Donahue, I. Martincorena, R. Heer, P. J.

Campbell, R. C. Fitzgerald, M. R. Stratton, and R. Rahbari, “The mutational landscape

of human somatic and germline cells,” Nature, vol. 597, pp. 381–386, Sept. 2021.

[116] B. Meier, N. V. Volkova, Y. Hong, P. Schofield, P. J. Campbell, M. Gerstung, and A. Gart-

ner, “and human cancers,” Genome Res, vol. 28, pp. 666–675, May 2018.

[117] S. Nik-Zainal, J. E. Kucab, S. Morganella, D. Glodzik, L. B. Alexandrov, V. M. Arlt,

A. Weninger, M. Hollstein, M. R. Stratton, and D. H. Phillips, “The genome as a record

of environmental exposure,” Mutagenesis, vol. 30, pp. 763–770, Nov 2015.

[118] J. R. BROWN, J. L. THORNTON, and P. POTT, “Percivall Pott (1714-1788) and chim-

ney sweepers’ cancer of the scrotum,” Br J Ind Med, vol. 14, pp. 68–70, Jan 1957.

[119] P. C. Hanawalt and G. Spivak, “Transcription-coupled DNA repair: two decades of

progress and surprises,” Nat Rev Mol Cell Biol, vol. 9, pp. 958–970, Dec 2008.

[120] S. Jinks-Robertson and A. S. Bhagwat, “Transcription-associated mutagenesis,” Annu

Rev Genet, vol. 48, pp. 341–359, 2014.

[121] J. R. Lobry, “Asymmetric substitution patterns in the two DNA strands of bacteria,” Mol

Biol Evol, vol. 13, pp. 660–665, May 1996.

[122] P. Green, B. Ewing, W. Miller, P. J. Thomas, and E. D. Green, “Transcription-associated

mutational asymmetry in mammalian evolution,” Nat Genet, vol. 33, pp. 514–517, Apr

2003.

[123] N. J. Haradhvala, P. Polak, P. Stojanov, K. R. Covington, E. Shinbrot, J. M. Hess,

E. Rheinbay, J. Kim, Y. E. Maruvka, L. Z. Braunstein, A. Kamburov, P. C. Hanawalt,

183



D. A. Wheeler, A. Koren, M. S. Lawrence, and G. Getz, “Mutational Strand Aymmetries

in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair,” Cell, vol. 164,

pp. 538–549, Jan 2016.

[124] M. Oman, A. Alam, and R. W. Ness, “How Sequence Context-Dependent Mutability

Drives Mutation Rate Variation in the Genome,” Genome Biol Evol, vol. 14, Mar 2022.

[125] C. Greenman, P. Stephens, R. Smith, G. L. Dalgliesh, C. Hunter, G. Bignell, H. Davies,

J. Teague, A. Butler, C. Stevens, S. Edkins, S. O’Meara, I. Vastrik, E. E. Schmidt,

T. Avis, S. Barthorpe, G. Bhamra, G. Buck, B. Choudhury, J. Clements, J. Cole,

E. Dicks, S. Forbes, K. Gray, K. Halliday, R. Harrison, K. Hills, J. Hinton, A. Jenk-

inson, D. Jones, A. Menzies, T. Mironenko, J. Perry, K. Raine, D. Richardson, R. Shep-

herd, A. Small, C. Tofts, J. Varian, T. Webb, S. West, S. Widaa, A. Yates, D. P. Cahill,

D. N. Louis, P. Goldstraw, A. G. Nicholson, F. Brasseur, L. Looijenga, B. L. Weber,

Y. E. Chiew, A. DeFazio, M. F. Greaves, A. R. Green, P. Campbell, E. Birney, D. F.

Easton, G. Chenevix-Trench, M. H. Tan, S. K. Khoo, B. T. Teh, S. T. Yuen, S. Y. Leung,

R. Wooster, P. A. Futreal, and M. R. Stratton, “Patterns of somatic mutation in human

cancer genomes,” Nature, vol. 446, pp. 153–158, Mar 2007.

[126] M. S. Lawrence, P. Stojanov, P. Polak, G. V. Kryukov, K. Cibulskis, A. Sivachenko,

S. L. Carter, C. Stewart, C. H. Mermel, S. A. Roberts, A. Kiezun, P. S. Hammerman,

A. McKenna, Y. Drier, L. Zou, A. H. Ramos, T. J. Pugh, N. Stransky, E. Helman,

J. Kim, C. Sougnez, L. Ambrogio, E. Nickerson, E. Shefler, M. L. s, D. Auclair, G. Sak-

sena, D. Voet, M. Noble, D. DiCara, P. Lin, L. Lichtenstein, D. I. Heiman, T. Fennell,

M. Imielinski, B. Hernandez, E. Hodis, S. Baca, A. M. Dulak, J. Lohr, D. A. Landau,

C. J. Wu, J. Melendez-Zajgla, A. Hidalgo-Miranda, A. Koren, S. A. McCarroll, J. Mora,

B. Crompton, R. Onofrio, M. Parkin, W. Winckler, K. Ardlie, S. B. Gabriel, C. W. M.

Roberts, J. A. Biegel, K. Stegmaier, A. J. Bass, L. A. Garraway, M. Meyerson, T. R.

Golub, D. A. Gordenin, S. Sunyaev, E. S. Lander, and G. Getz, “Mutational hetero-

geneity in cancer and the search for new cancer-associated genes,” Nature, vol. 499,

pp. 214–218, Jul 2013.

[127] P. F. Arndt, T. Hwa, and D. A. Petrov, “Substantial regional variation in substitution rates

in the human genome: importance of GC content, gene density, and telomere-specific

effects,” J Mol Evol, vol. 60, pp. 748–763, Jun 2005.

184



[128] A. R. Poetsch, S. J. Boulton, and N. M. Luscombe, “Genomic landscape of oxidative

DNA damage and repair reveals regioselective protection from mutagenesis,” Genome

Biol, vol. 19, p. 215, Dec 2018.

[129] C. K. Kwok, G. Marsico, A. B. Sahakyan, V. S. Chambers, and S. Balasubramanian,

“rG4-seq reveals widespread formation of G-quadruplex structures in the human tran-

scriptome,” Nat Methods, vol. 13, pp. 841–844, Oct 2016.

[130] R. Linke, M. Limmer, S. A. Juranek, A. Heine, and K. Paeschke, “The Relevance of

G-Quadruplexes for DNA Repair,” Int J Mol Sci, vol. 22, Nov 2021.

[131] C. A. Lewis, J. Crayle, S. Zhou, R. Swanstrom, and R. Wolfenden, “Cytosine deamina-

tion and the precipitous decline of spontaneous mutation during Earth’s history,” Proc

Natl Acad Sci U S A, vol. 113, pp. 8194–8199, Jul 2016.

[132] T. Misteli, “Beyond the sequence: cellular organization of genome function,” Cell,

vol. 128, pp. 787–800, Feb 2007.

[133] K. D. Makova and R. C. Hardison, “The effects of chromatin organization on variation

in mutation rates in the genome,” Nat Rev Genet, vol. 16, pp. 213–223, Apr 2015.

[134] S. De and F. Michor, “DNA replication timing and long-range DNA interactions predict

mutational landscapes of cancer genomes,” Nat Biotechnol, vol. 29, pp. 1103–1108, Nov

2011.

[135] D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold, “Genome-wide mapping of in

vivo protein-DNA interactions,” Science, vol. 316, pp. 1497–1502, Jun 2007.

[136] J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, and W. J. Greenleaf, “Transpo-

sition of native chromatin for fast and sensitive epigenomic profiling of open chromatin,

DNA-binding proteins and nucleosome position,” Nat Methods, vol. 10, pp. 1213–1218,

Dec 2013.

[137] S. Ma and Y. Zhang, “Profiling chromatin regulatory landscape: insights into the devel-

opment of ChIP-seq and ATAC-seq,” Mol Biomed, vol. 1, no. 1, p. 9, 2020.

[138] I. Y. Goryshin and W. S. Reznikoff, “Tn5 in vitro transposition,” J Biol Chem, vol. 273,

pp. 7367–7374, Mar 1998.

[139] B. D. Pope, T. Ryba, V. Dileep, F. Yue, W. Wu, O. Denas, D. L. Vera, Y. Wang, R. S.

Hansen, T. K. Canfield, R. E. Thurman, Y. Cheng, G. lsoy, J. H. Dennis, M. P. Snyder,

185



J. A. Stamatoyannopoulos, J. Taylor, R. C. Hardison, T. Kahveci, B. Ren, and D. M.

Gilbert, “Topologically associating domains are stable units of replication-timing regu-

lation,” Nature, vol. 515, pp. 402–405, Nov 2014.

[140] J. H. TAYLOR, “Asynchronous duplication of chromosomes in cultured cells of Chinese

hamster,” J Biophys Biochem Cytol, vol. 7, pp. 455–464, Jun 1960.

[141] K. C. Akdemir, V. T. Le, J. M. Kim, S. Killcoyne, D. A. King, Y. P. Lin, Y. Tian, A. In-

oue, S. B. Amin, F. S. Robinson, M. Nimmakayalu, R. E. Herrera, E. J. Lynn, K. Chan,

S. Seth, L. J. Klimczak, M. Gerstung, D. A. Gordenin, J. O’Brien, L. Li, Y. L. De-

ribe, R. G. Verhaak, P. J. Campbell, R. Fitzgerald, A. J. Morrison, J. R. Dixon, and

P. Andrew Futreal, “Somatic mutation distributions in cancer genomes vary with three-

dimensional chromatin structure,” Nat Genet, vol. 52, pp. 1178–1188, Nov 2020.

[142] F. F. Diehl, T. P. Miettinen, R. Elbashir, C. S. Nabel, A. M. Darnell, B. T. Do, S. R.

Manalis, C. A. Lewis, and M. G. Vander Heiden, “Nucleotide imbalance decouples cell

growth from cell proliferation,” Nat Cell Biol, vol. 24, pp. 1252–1264, Aug 2022.

[143] M. Tomkova, J. Tomek, S. Kriaucionis, and B. ckler, “Mutational signature distribution

varies with DNA replication timing and strand asymmetry,” Genome Biol, vol. 19, p. 129,

Sep 2018.

[144] V. B. Seplyarskiy, R. A. Soldatov, E. Koch, R. J. McGinty, J. M. Goldmann, R. D. Her-

nandez, K. Barnes, A. Correa, E. G. Burchard, P. T. Ellinor, S. T. McGarvey, B. D.

Mitchell, R. S. Vasan, S. Redline, E. Silverman, S. T. Weiss, D. K. Arnett, J. Blangero,

E. Boerwinkle, J. He, C. Montgomery, D. C. Rao, J. I. Rotter, K. D. Taylor, J. A. Brody,

Y. I. Chen, L. de Las Fuentes, C. M. Hwu, S. S. Rich, A. W. Manichaikul, J. C. My-

chaleckyj, N. D. Palmer, J. A. Smith, S. L. R. Kardia, P. A. Peyser, L. F. Bielak, T. D.

O’Connor, L. S. Emery, C. Gilissen, W. S. W. Wong, P. V. Kharchenko, and S. Sunyaev,

“Population sequencing data reveal a compendium of mutational processes in the human

germ line,” Science, vol. 373, pp. 1030–1035, Aug 2021.

[145] A. A. Maklakov and S. Immler, “The Expensive Germline and the Evolution of Ageing,”

Curr Biol, vol. 26, pp. R577–R586, Jul 2016.

[146] M. Nei, “Selectionism and neutralism in molecular evolution,” Mol Biol Evol, vol. 22,

pp. 2318–2342, Dec 2005.

[147] M. Lynch, “Evolution of the mutation rate,” Trends Genet, vol. 26, pp. 345–352, Aug

2010.

186



[148] C. Chen, H. Qi, Y. Shen, J. Pickrell, and M. Przeworski, “Contrasting Determinants of

Mutation Rates in Germline and Soma,” Genetics, vol. 207, pp. 255–267, Sep 2017.

[149] M. Lynch, “Rate, molecular spectrum, and consequences of human mutation,” Proc Natl

Acad Sci U S A, vol. 107, pp. 961–968, Jan 2010.

[150] M. Lynch, “Evolution of the mutation rate,” TRENDS in Genetics, vol. 26, no. 8, pp. 345–

352, 2010.

[151] C. Tomasetti, J. Poling, N. J. Roberts, N. R. London Jr, M. E. Pittman, M. C. Haffner,

A. Rizzo, A. Baras, B. Karim, A. Kim, et al., “Cell division rates decrease with age, pro-

viding a potential explanation for the age-dependent deceleration in cancer incidence,”

Proceedings of the National Academy of Sciences, vol. 116, no. 41, pp. 20482–20488,

2019.

[152] L. Zhang, X. Dong, M. Lee, A. Y. Maslov, T. Wang, and J. Vijg, “Single-cell whole-

genome sequencing reveals the functional landscape of somatic mutations in B lympho-

cytes across the human lifespan,” Proc Natl Acad Sci U S A, vol. 116, pp. 9014–9019,

Apr 2019.

[153] R. Anandakrishnan, R. T. Varghese, N. A. Kinney, and H. R. Garner, “Estimating the

number of genetic mutations (hits) required for carcinogenesis based on the distribution

of somatic mutations,” PLoS Comput Biol, vol. 15, p. e1006881, Mar 2019.

[154] D. Weghorn and S. Sunyaev, “Bayesian inference of negative and positive selection in

human cancers,” Nat Genet, vol. 49, pp. 1785–1788, Dec 2017.

[155] K. Voskarides, “Broadening the spectrum of cancer genes under selection in human pop-

ulations,” FASEB Bioadv, vol. 3, pp. 275–277, Apr 2021.

[156] S. Kryazhimskiy and J. B. Plotkin, “The population genetics of dN/dS,” PLoS Genet,

vol. 4, p. e1000304, Dec 2008.

[157] X. Shen, S. Song, C. Li, and J. Zhang, “Synonymous mutations in representative yeast

genes are mostly strongly non-neutral,” Nature, vol. 606, no. 7915, pp. 725–731, 2022.

[158] L. Kruglyak, A. Beyer, J. S. Bloom, J. Grossbach, T. D. Lieberman, C. P. Mancuso,

M. S. Rich, G. Sherlock, and C. D. Kaplan, “Insufficient evidence for non-neutrality of

synonymous mutations,” Nature, vol. 616, no. 7957, pp. E8–E9, 2023.

187



[159] N. Goldman and Z. Yang, “A codon-based model of nucleotide substitution for protein-

coding dna sequences.,” Molecular biology and evolution, vol. 11, no. 5, pp. 725–736,

1994.

[160] I. Martincorena, J. C. Fowler, A. Wabik, A. R. J. Lawson, F. Abascal, M. W. J. Hall,

A. Cagan, K. Murai, K. Mahbubani, M. R. Stratton, R. C. Fitzgerald, P. A. Handford,

P. J. Campbell, K. Saeb-Parsy, and P. H. Jones, “Somatic mutant clones colonize the

human esophagus with age,” Science, vol. 362, pp. 911–917, Nov 2018.

[161] H. Lee-Six, S. Olafsson, P. Ellis, R. J. Osborne, M. A. Sanders, L. Moore, N. Geor-

gakopoulos, F. Torrente, A. Noorani, M. Goddard, P. Robinson, T. H. H. Coorens,

L. O’Neill, C. Alder, J. Wang, R. C. Fitzgerald, M. Zilbauer, N. Coleman, K. Saeb-

Parsy, I. Martincorena, P. J. Campbell, and M. R. Stratton, “The landscape of somatic

mutation in normal colorectal epithelial cells,” Nature, vol. 574, pp. 532–537, Oct 2019.

[162] M. Zhu, T. Lu, Y. Jia, X. Luo, P. Gopal, L. Li, M. Odewole, V. Renteria, A. G. Sin-

gal, Y. Jang, K. Ge, S. C. Wang, M. Sorouri, J. R. Parekh, M. P. MacConmara, A. C.

Yopp, T. Wang, and H. Zhu, “Somatic Mutations Increase Hepatic Clonal Fitness and

Regeneration in Chronic Liver Disease,” Cell, vol. 177, pp. 608–621, Apr 2019.

[163] K. Yoshida, K. H. C. Gowers, H. Lee-Six, D. P. Chandrasekharan, T. Coorens, E. F.

Maughan, K. Beal, A. Menzies, F. R. Millar, E. Anderson, S. E. Clarke, A. Pennycuick,

R. M. Thakrar, C. R. Butler, N. Kakiuchi, T. Hirano, R. E. Hynds, M. R. Stratton, I. Mar-

tincorena, S. M. Janes, and P. J. Campbell, “Tobacco smoking and somatic mutations in

human bronchial epithelium,” Nature, vol. 578, pp. 266–272, Feb 2020.

[164] Z. Wang, S. Zhu, Y. Jia, Y. Wang, N. Kubota, N. Fujiwara, R. Gordillo, C. Lewis, M. Zhu,

T. Sharma, L. Li, Q. Zeng, Y. H. Lin, M. H. Hsieh, P. Gopal, T. Wang, M. Hoare, P. Camp-

bell, Y. Hoshida, and H. Zhu, “Positive selection of somatically mutated clones identifies

adaptive pathways in metabolic liver disease,” bioRxiv, Mar 2023.

[165] T. Boveri, “Concerning the origin of malignant tumours by Theodor Boveri. Translated

and annotated by Henry Harris,” J Cell Sci, vol. 121 Suppl 1, pp. 1–84, Jan 2008.

[166] I. R. Watson, K. Takahashi, P. A. Futreal, and L. Chin, “Emerging patterns of somatic

mutations in cancer,” Nat Rev Genet, vol. 14, pp. 703–718, Oct 2013.

[167] L. A. Aaltonen, F. Abascal, A. Abeshouse, H. Aburatani, D. J. Adams, N. Agrawal,

K. S. Ahn, S. M. Ahn, H. Aikata, R. Akbani, K. C. Akdemir, H. Al-Ahmadie, S. T. Al-

Sedairy, F. Al-Shahrour, M. Alawi, M. Albert, K. Aldape, L. B. Alexandrov, A. Ally,

188



K. Alsop, E. G. Alvarez, F. Amary, S. B. Amin, B. Aminou, O. Ammerpohl, M. J. An-

derson, Y. Ang, D. Antonello, P. Anur, S. Aparicio, E. L. Appelbaum, Y. Arai, A. Aretz,

K. Arihiro, S. I. Ariizumi, J. Armenia, L. Arnould, S. Asa, Y. Assenov, G. Atwal,

S. Aukema, J. T. Auman, M. R. R. Aure, P. Awadalla, M. Aymerich, G. D. Bader,

A. Baez-Ortega, M. H. Bailey, P. J. Bailey, M. Balasundaram, S. Balu, P. Bandopad-

hayay, R. E. Banks, S. Barbi, A. P. Barbour, J. Barenboim, J. Barnholtz-Sloan, H. Barr,

E. Barrera, J. Bartlett, J. Bartolome, C. Bassi, O. F. Bathe, D. Baumhoer, P. Bavi, S. B.

Baylin, W. Bazant, D. Beardsmore, T. A. Beck, S. Behjati, A. Behren, B. Niu, C. Bell,

S. Beltran, C. Benz, A. Berchuck, A. K. Bergmann, E. N. Bergstrom, B. P. Berman,

D. M. Berney, S. H. Bernhart, R. Beroukhim, M. Berrios, S. Bersani, J. Bertl, M. Betan-

court, V. Bhandari, S. G. Bhosle, A. V. Biankin, M. Bieg, D. Bigner, H. Binder, E. Bir-

ney, M. Birrer, N. K. Biswas, B. Bjerkehagen, T. Bodenheimer, L. Boice, G. Bonizzato,

J. S. De Bono, A. Boot, M. S. Bootwalla, A. Borg, A. Borkhardt, K. A. Boroevich,

I. Borozan, C. Borst, M. Bosenberg, M. Bosio, J. Boultwood, G. Bourque, P. C. Boutros,

G. S. Bova, D. T. Bowen, R. Bowlby, D. D. L. Bowtell, S. Boyault, R. Boyce, J. Boyd,

A. Brazma, P. Brennan, D. S. Brewer, A. B. Brinkman, R. G. Bristow, R. R. Broaddus,

J. E. Brock, M. Brock, A. Broeks, A. N. Brooks, D. Brooks, B. Brors, S. Brunak, T. J. C.

Bruxner, A. L. Bruzos, A. Buchanan, I. Buchhalter, C. Buchholz, S. Bullman, H. Burke,

B. Burkhardt, K. H. Burns, J. Busanovich, C. D. Bustamante, A. P. Butler, A. J. Butte,

N. J. Byrne, A. L. rresen Dale, S. J. Caesar-Johnson, A. Cafferkey, D. Cahill, C. Cal-

abrese, C. Caldas, F. Calvo, N. Camacho, P. J. Campbell, E. Campo, C. u, S. Cao, T. E.

Carey, J. Carlevaro-Fita, R. Carlsen, I. Cataldo, M. Cazzola, J. Cebon, R. Cerfolio, D. E.

Chadwick, D. Chakravarty, D. Chalmers, C. W. Y. Chan, K. Chan, M. Chan-Seng-Yue,

V. S. Chandan, D. K. Chang, S. J. Chanock, L. A. Chantrill, A. Chateigner, N. Chatterjee,

K. Chayama, H. W. Chen, J. Chen, K. Chen, Y. Chen, Z. Chen, A. D. Cherniack, J. Chien,

Y. E. Chiew, S. F. Chin, J. Cho, S. Cho, J. K. Choi, W. Choi, C. Chomienne, Z. Chong,

S. P. Choo, A. Chou, A. N. Christ, E. L. Christie, E. Chuah, C. Cibulskis, K. Cibulskis,

S. Cingarlini, P. Clapham, A. Claviez, S. Cleary, N. Cloonan, M. Cmero, C. C. Collins,

A. A. Connor, S. L. Cooke, C. S. Cooper, L. Cope, V. Corbo, M. G. Cordes, S. M. Cord-

ner, I. s Ciriano, K. Covington, P. A. Cowin, B. Craft, D. Craft, C. J. Creighton, Y. Cun,

E. Curley, I. Cutcutache, K. Czajka, B. Czerniak, R. A. Dagg, L. Danilova, M. V. Davi,

N. R. Davidson, H. Davies, I. J. Davis, B. N. Davis-Dusenbery, K. J. Dawson, F. M.

De La Vega, R. De Paoli-Iseppi, T. Defreitas, A. P. D. Tos, O. Delaneau, J. A. Demchok,

J. Demeulemeester, G. M. Demidov, D. lu, N. M. Dennis, R. E. Denroche, S. C. Dentro,

N. Desai, V. Deshpande, A. G. Deshwar, C. Desmedt, J. Deu-Pons, N. Dhalla, N. C.

189



Dhani, P. Dhingra, R. Dhir, A. DiBiase, K. Diamanti, L. Ding, S. Ding, H. Q. Dinh,

L. Dirix, H. Doddapaneni, N. Donmez, M. T. Dow, R. Drapkin, O. Drechsel, R. M.

Drews, S. Serge, T. Dudderidge, A. Dueso-Barroso, A. J. Dunford, M. Dunn, L. J. Dursi,

F. R. Duthie, K. Dutton-Regester, J. Eagles, D. F. Easton, S. Edmonds, P. A. Edwards,

S. E. Edwards, R. A. Eeles, A. Ehinger, J. Eils, R. Eils, A. El-Naggar, M. Eldridge, K. Ell-

rott, S. Erkek, G. Escaramis, S. M. G. Espiritu, X. Estivill, D. Etemadmoghadam, J. E.

Eyfjord, B. M. Faltas, D. Fan, Y. Fan, W. C. Faquin, C. Farcas, M. Fassan, A. Fatima,

F. Favero, N. Fayzullaev, I. Felau, S. Fereday, M. L. Ferguson, V. Ferretti, L. Feuer-

bach, M. A. Field, J. L. Fink, G. Finocchiaro, C. Fisher, M. W. Fittall, A. Fitzgerald,

R. C. Fitzgerald, A. M. Flanagan, N. E. Fleshner, P. Flicek, J. A. Foekens, K. M. Fong,

N. A. Fonseca, C. S. Foster, N. S. Fox, M. Fraser, S. Frazer, M. Frenkel-Morgenstern,

W. Friedman, J. Frigola, C. C. Fronick, A. Fujimoto, M. Fujita, M. Fukayama, L. A.

Fulton, R. S. Fulton, M. Furuta, P. A. Futreal, A. llgrabe, S. B. Gabriel, S. Gallinger,

C. Gambacorti-Passerini, J. Gao, S. Gao, L. Garraway, Ã. Garred, E. Garrison, D. W.

Garsed, N. Gehlenborg, J. L. L. Gelpi, J. George, D. S. Gerhard, C. Gerhauser, J. E.

Gershenwald, M. Gerstein, M. Gerstung, G. Getz, M. Ghori, R. Ghossein, N. H. Giama,

R. A. Gibbs, B. Gibson, A. J. Gill, P. Gill, D. D. Giri, D. Glodzik, V. J. Gnanapragasam,

M. E. Goebler, M. J. Goldman, C. Gomez, S. Gonzalez, A. Gonzalez-Perez, D. A. Gor-

denin, J. Gossage, K. Gotoh, R. Govindan, D. Grabau, J. S. Graham, R. C. Grant, A. R.

Green, E. Green, L. Greger, N. Grehan, S. Grimaldi, S. M. Grimmond, R. L. Grossman,

A. Grundhoff, G. Gundem, Q. Guo, M. Gupta, S. Gupta, I. G. Gut, M. Gut, J. ke, G. Ha,

A. Haake, D. Haan, S. Haas, K. Haase, J. E. Haber, N. Habermann, F. Hach, S. Haider,

N. Hama, F. C. Hamdy, A. Hamilton, M. P. Hamilton, L. Han, G. B. Hanna, M. Hans-

mann, N. J. Haradhvala, O. Harismendy, I. Harliwong, A. O. Harmanci, E. Harrington,

T. Hasegawa, D. Haussler, S. Hawkins, S. Hayami, S. Hayashi, D. N. Hayes, S. J. Hayes,

N. K. Hayward, S. Hazell, Y. He, A. P. Heath, S. C. Heath, D. Hedley, A. M. Hegde,

D. I. Heiman, M. C. Heinold, Z. Heins, L. E. Heisler, E. Hellstrom-Lindberg, M. Helmy,

S. G. Heo, A. J. Hepperla, J. M. Heredia-Genestar, C. Herrmann, P. Hersey, J. M. Hess,

H. Hilmarsdottir, J. Hinton, S. Hirano, N. Hiraoka, K. A. Hoadley, A. Hobolth, E. Hodzic,

J. I. Hoell, S. Hoffmann, O. Hofmann, A. Holbrook, A. Z. Holik, M. A. Hollingsworth,

O. Holmes, R. A. Holt, C. Hong, E. P. Hong, J. H. Hong, G. K. Hooijer, H. j, F. Hosoda,

Y. Hou, V. Hovestadt, W. Howat, A. P. Hoyle, R. H. Hruban, J. Hu, T. Hu, X. Hua,

K. L. Huang, M. Huang, M. N. Huang, V. Huang, Y. Huang, W. Huber, T. J. Hudson,

M. Hummel, J. A. Hung, D. Huntsman, T. R. Hupp, J. Huse, M. R. Huska, B. Hutter,

C. M. Hutter, D. bschmann, C. A. Iacobuzio-Donahue, C. D. Imbusch, M. Imielinski,

190



S. Imoto, W. B. Isaacs, K. Isaev, S. Ishikawa, M. Iskar, S. M. A. Islam, M. Ittmann,

S. Ivkovic, J. M. G. Izarzugaza, J. Jacquemier, V. Jakrot, N. B. Jamieson, G. H. Jang,

S. J. Jang, J. C. Jayaseelan, R. Jayasinghe, S. R. Jefferys, K. Jegalian, J. L. Jennings,

S. H. Jeon, L. Jerman, Y. Ji, W. Jiao, P. A. Johansson, A. L. Johns, J. Johns, R. Johnson,

T. A. Johnson, C. Jolly, Y. Joly, J. G. Jonasson, C. D. Jones, D. R. Jones, D. T. W. Jones,

N. Jones, S. J. M. Jones, J. Jonkers, Y. S. Ju, H. Juhl, J. Jung, M. Juul, R. I. Juul, S. Juul,

N. ger, R. Kabbe, A. Kahles, A. Kahraman, V. B. Kaiser, H. Kakavand, S. Kalimuthu,

C. von Kalle, K. J. Kang, K. Karaszi, B. Karlan, R. c, D. Karsch, K. Kasaian, K. S.

Kassahn, H. Katai, M. Kato, H. Katoh, Y. Kawakami, J. D. Kay, S. H. Kazakoff, M. D.

Kazanov, M. Keays, E. Kebebew, R. F. Kefford, M. Kellis, J. G. Kench, C. J. Kennedy,

J. N. A. Kerssemakers, D. Khoo, V. Khoo, N. Khuntikeo, E. Khurana, H. Kilpinen, H. K.

Kim, H. L. Kim, H. Y. Kim, H. Kim, J. Kim, J. Kim, J. K. Kim, Y. Kim, T. A. King,

W. Klapper, K. Kleinheinz, L. J. Klimczak, S. Knappskog, M. Kneba, B. M. Knoppers,

Y. Koh, J. Komorowski, D. Komura, M. Komura, G. Kong, M. Kool, J. O. Korbel, V. Ko-

rchina, A. Korshunov, M. Koscher, R. Koster, Z. Kote-Jarai, A. Koures, M. Kovacevic,

B. Kremeyer, H. Kretzmer, M. Kreuz, S. Krishnamurthy, D. Kube, K. Kumar, P. Kumar,

S. Kumar, Y. Kumar, R. Kundra, K. bler, R. ppers, J. Lagergren, P. H. Lai, P. W. Laird,

S. R. Lakhani, C. M. Lalansingh, E. Lalonde, F. C. Lamaze, A. Lambert, E. Lander,

P. Landgraf, L. Landoni, A. d, A. s, D. Larsimont, E. Larsson, M. Lathrop, L. M. S. Lau,

C. Lawerenz, R. T. Lawlor, M. S. Lawrence, A. J. Lazar, A. M. Lazic, X. Le, D. Lee,

D. Lee, E. A. Lee, H. J. Lee, J. J. Lee, J. Y. Lee, J. Lee, M. T. M. Lee, H. Lee-Six, K. V.

Lehmann, H. Lehrach, D. Lenze, C. R. Leonard, D. A. Leongamornlert, I. Leshchiner,

L. Letourneau, I. Letunic, D. A. Levine, L. Lewis, T. Ley, C. Li, C. H. Li, H. I. Li, J. Li,

L. Li, S. Li, S. Li, X. Li, X. Li, X. Li, Y. Li, H. Liang, S. B. Liang, P. Lichter, P. Lin,

Z. Lin, W. M. Linehan, O. C. rde, D. Liu, E. M. Liu, F. F. Liu, F. Liu, J. Liu, X. Liu,

J. Livingstone, D. Livitz, N. Livni, L. Lochovsky, M. Loeffler, G. V. Long, A. Lopez-

Guillermo, S. Lou, D. N. Louis, L. B. Lovat, Y. Lu, Y. J. Lu, Y. Lu, C. Luchini, I. Lungu,

X. Luo, H. J. Luxton, A. G. Lynch, L. Lype, C. pez, C. n, E. Z. Ma, Y. Ma, G. MacGro-

gan, S. MacRae, G. Macintyre, T. Madsen, K. Maejima, A. Mafficini, D. T. Maglinte,

A. Maitra, P. P. Majumder, L. Malcovati, S. Malikic, G. Malleo, G. J. Mann, L. ffler,

K. Marchal, G. Marchegiani, E. R. Mardis, A. A. Margolin, M. G. Marin, F. Markowetz,

J. Markowski, J. Marks, T. Marques-Bonet, M. A. Marra, L. Marsden, J. W. M. Martens,

S. Martin, J. I. Martin-Subero, I. Martincorena, A. Martinez-Fundichely, Y. E. Maruvka,

R. J. Mashl, C. E. Massie, T. J. Matthew, L. Matthews, E. Mayer, S. Mayes, M. Mayo,

F. Mbabaali, K. McCune, U. McDermott, P. D. McGillivray, M. D. McLellan, J. D.

191



McPherson, J. R. McPherson, T. A. McPherson, S. R. Meier, A. Meng, S. Meng, A. Men-

zies, N. D. Merrett, S. Merson, M. Meyerson, W. Meyerson, P. A. Mieczkowski, G. L.

Mihaiescu, S. Mijalkovic, T. Mikkelsen, M. Milella, L. Mileshkin, C. A. Miller, D. K.

Miller, J. K. Miller, G. B. Mills, A. Milovanovic, S. Minner, M. Miotto, G. M. Arnau,

L. Mirabello, C. Mitchell, T. J. Mitchell, S. Miyano, N. Miyoshi, S. Mizuno, F. bor, M. J.

Moore, R. A. Moore, S. Morganella, Q. D. Morris, C. Morrison, L. E. Mose, C. D. Moser,

F. os, L. Mularoni, A. J. Mungall, K. Mungall, E. A. Musgrove, V. Mustonen, D. Mutch,

F. Muyas, D. M. Muzny, A. oz, J. Myers, O. Myklebost, P. ller, G. Nagae, A. M. Nagrial,

H. K. Nahal-Bose, H. Nakagama, H. Nakagawa, H. Nakamura, T. Nakamura, K. Nakano,

T. Nandi, J. Nangalia, M. Nastic, A. Navarro, F. C. P. Navarro, D. E. Neal, G. Nettekoven,

F. Newell, S. J. Newhouse, Y. Newton, A. W. T. Ng, A. Ng, J. Nicholson, D. Nicol,

Y. Nie, G. P. Nielsen, M. M. Nielsen, S. Nik-Zainal, M. S. Noble, K. Nones, P. A. North-

cott, F. Notta, B. D. O’Connor, P. O’Donnell, M. O’Donovan, S. O’Meara, B. P. O’Neill,

J. R. O’Neill, D. Ocana, A. Ochoa, L. Oesper, C. Ogden, H. Ohdan, K. Ohi, L. Ohno-

Machado, K. A. Oien, A. I. Ojesina, H. Ojima, T. Okusaka, L. Omberg, C. K. Ong,

S. Ossowski, G. Ott, B. F. F. Ouellette, C. P’ng, M. Paczkowska, S. Paiella, C. Pairo-

jkul, M. Pajic, Q. m, E. Papaemmanuil, I. Papatheodorou, N. Paramasivam, J. W. Park,

J. W. Park, K. Park, K. Park, P. J. Park, J. S. Parker, S. L. Parsons, H. Pass, D. Paster-

nack, A. Pastore, A. M. Patch, I. Ã©, A. Pea, J. V. Pearson, C. S. Pedamallu, J. S.

Pedersen, P. Pederzoli, M. Peifer, N. A. Pennell, C. M. Perou, M. D. Perry, G. M. Pe-

tersen, M. Peto, N. Petrelli, R. Petryszak, S. M. Pfister, M. Phillips, O. Pich, H. A.

Pickett, T. D. Pihl, N. Pillay, S. Pinder, M. Pinese, A. V. Pinho, E. nen, X. Pivot, E. ez,

L. Planko, C. Plass, P. Polak, T. Pons, I. Popescu, O. Potapova, A. Prasad, S. R. Pre-

ston, M. Prinz, A. L. Pritchard, S. D. Prokopec, E. Provenzano, X. S. Puente, S. Puig,

M. s, S. Pulido-Tamayo, G. M. Pupo, C. A. Purdie, M. C. Quinn, R. Rabionet, J. S.

Rader, B. Radlwimmer, P. Radovic, B. Raeder, K. M. Raine, M. Ramakrishna, K. Ra-

makrishnan, S. Ramalingam, B. J. Raphael, W. K. Rathmell, T. Rausch, G. Reifenberger,

J. Reimand, J. Reis-Filho, V. Reuter, I. Reyes-Salazar, M. A. Reyna, S. M. Reynolds,

E. Rheinbay, Y. Riazalhosseini, A. L. Richardson, J. Richter, M. Ringel, M. r, Y. Rino,

K. Rippe, J. Roach, L. R. Roberts, N. D. Roberts, S. A. Roberts, A. G. Robertson, A. J.

Robertson, J. B. Rodriguez, B. Rodriguez-Martin, F. G. lez, M. H. A. Roehrl, M. Ro-

hde, H. Rokutan, G. Romieu, I. Rooman, T. Roques, D. Rosebrock, M. Rosenberg, P. C.

Rosenstiel, A. Rosenwald, E. W. Rowe, R. Royo, S. G. Rozen, Y. Rubanova, M. A.

Rubin, C. Rubio-Perez, V. A. Rudneva, B. C. Rusev, A. Ruzzenente, G. tsch, R. Sabari-

nathan, V. Y. Sabelnykova, S. Sadeghi, S. C. Sahinalp, N. Saini, M. Saito-Adachi, G. Sak-

192



sena, A. Salcedo, R. Salgado, L. Salichos, R. Sallari, C. Saller, R. Salvia, M. Sam, J. S.

Samra, F. Sanchez-Vega, C. Sander, G. Sanders, R. Sarin, I. Sarrafi, A. Sasaki-Oku,

T. Sauer, G. Sauter, R. P. M. Saw, M. Scardoni, C. J. Scarlett, A. Scarpa, G. Scelo,

D. Schadendorf, J. E. Schein, M. B. Schilhabel, M. Schlesner, T. Schlomm, H. K.

Schmidt, S. J. Schramm, S. Schreiber, N. Schultz, S. E. Schumacher, R. F. Schwarz,

R. A. Scolyer, D. Scott, R. Scully, R. Seethala, A. V. Segre, I. Selander, C. A. Semple,

Y. Senbabaoglu, S. Sengupta, E. Sereni, S. Serra, D. C. Sgroi, M. Shackleton, N. C.

Shah, S. Shahabi, C. A. Shang, P. Shang, O. Shapira, T. Shelton, C. Shen, H. Shen,

R. Shepherd, R. Shi, Y. Shi, Y. J. Shiah, T. Shibata, J. Shih, E. Shimizu, K. Shimizu, S. J.

Shin, Y. Shiraishi, T. Shmaya, I. Shmulevich, S. I. Shorser, C. Short, R. Shrestha, S. S.

Shringarpure, C. Shriver, S. Shuai, N. Sidiropoulos, R. Siebert, A. M. Sieuwerts, L. Siev-

erling, S. Signoretti, K. O. Sikora, M. Simbolo, R. Simon, J. V. Simons, J. T. Simpson,

P. T. Simpson, S. Singer, N. Sinnott-Armstrong, P. Sipahimalani, T. J. Skelly, M. Smid,

J. Smith, K. Smith-McCune, N. D. Socci, H. J. Sofia, M. G. Soloway, L. Song, A. K.

Sood, S. Sothi, C. Sotiriou, C. M. Soulette, P. N. Span, P. T. Spellman, N. Sperandio, A. J.

Spillane, O. Spiro, J. Spring, J. Staaf, P. F. Stadler, P. Staib, S. G. Stark, L. Stebbings,

A. nsson, O. Stegle, L. D. Stein, A. Stenhouse, C. Stewart, S. Stilgenbauer, M. D. Stobbe,

M. R. Stratton, J. R. Stretch, A. J. Struck, J. M. Stuart, H. G. Stunnenberg, H. Su, X. Su,

R. X. Sun, S. Sungalee, H. Susak, A. Suzuki, F. Sweep, M. Szczepanowski, H. ltmann,

T. Yugawa, A. Tam, D. Tamborero, B. K. T. Tan, D. Tan, P. Tan, H. Tanaka, H. Taniguchi,

T. J. Tanskanen, M. Tarabichi, R. Tarnuzzer, P. Tarpey, M. L. Taschuk, K. Tatsuno, S. Ã©,

D. F. Taylor, A. Taylor-Weiner, J. W. Teague, B. T. Teh, V. Tembe, J. Temes, K. Thai,

S. P. Thayer, N. Thiessen, G. Thomas, S. Thomas, A. Thompson, A. M. Thompson,

J. F. F. Thompson, R. H. Thompson, H. Thorne, L. B. Thorne, A. Thorogood, G. Tiao,

N. Tijanic, L. E. Timms, R. Tirabosco, M. Tojo, S. Tommasi, C. W. Toon, U. H. Toprak,

D. Torrents, G. Tortora, J. Tost, Y. Totoki, D. Townend, N. Traficante, I. Treilleux, J. R.

Trotta, L. H. P. mper, M. Tsao, T. Tsunoda, J. M. C. Tubio, O. Tucker, R. Turkington,

D. J. Turner, A. Tutt, M. Ueno, N. T. Ueno, C. Umbricht, H. M. Umer, T. J. Underwood,

L. Urban, T. Urushidate, T. Ushiku, L. la Reimand, A. Valencia, D. J. Van Den Berg,

S. Van Laere, P. Van Loo, E. G. Van Meir, G. G. Van den Eynden, T. Van der Kwast,

N. Vasudev, M. Vazquez, R. Vedururu, U. Veluvolu, S. Vembu, L. P. C. Verbeke, P. Ver-

meulen, C. Verrill, A. Viari, D. Vicente, C. Vicentini, K. VijayRaghavan, J. Viksna, R. E.

Vilain, I. Villasante, A. Vincent-Salomon, T. Visakorpi, D. Voet, P. Vyas, I. a, N. M.

Waddell, N. Waddell, C. Wadelius, L. Wadi, R. Wagener, J. A. Wala, J. Wang, J. Wang,

L. Wang, Q. Wang, W. Wang, Y. Wang, Z. Wang, P. M. Waring, H. J. Warnatz, J. War-

193



rell, A. Y. Warren, S. M. Waszak, D. C. Wedge, D. Weichenhan, P. Weinberger, J. N.

Weinstein, J. Weischenfeldt, D. J. Weisenberger, I. Welch, M. C. Wendl, J. Werner, J. P.

Whalley, D. A. Wheeler, H. C. Whitaker, D. Wigle, M. D. Wilkerson, A. Williams, J. S.

Wilmott, G. W. Wilson, J. M. Wilson, R. K. Wilson, B. Winterhoff, J. A. Wintersinger,

M. Wiznerowicz, S. Wolf, B. H. Wong, T. Wong, W. Wong, Y. Woo, S. Wood, B. G.

Wouters, A. J. Wright, D. W. Wright, M. H. Wright, C. L. Wu, D. Y. Wu, G. Wu, J. Wu,

K. Wu, Y. Wu, Z. Wu, L. Xi, T. Xia, Q. Xiang, X. Xiao, R. Xing, H. Xiong, Q. Xu,

Y. Xu, H. Xue, S. Yachida, S. Yakneen, R. Yamaguchi, T. N. Yamaguchi, M. Yamamoto,

S. Yamamoto, H. Yamaue, F. Yang, H. Yang, J. Y. Yang, L. Yang, L. Yang, S. Yang, T. P.

Yang, Y. Yang, X. Yao, M. L. Yaspo, L. Yates, C. Yau, C. Ye, K. Ye, V. D. Yellapantula,

C. J. Yoon, S. S. Yoon, F. Yousif, J. Yu, K. Yu, W. Yu, Y. Yu, K. Yuan, Y. Yuan, D. Yuen,

C. K. Yung, O. Zaikova, J. Zamora, M. Zapatka, J. C. Zenklusen, T. Zenz, N. Zeps, C. Z.

Zhang, F. Zhang, H. Zhang, H. Zhang, H. Zhang, J. Zhang, J. Zhang, J. Zhang, X. Zhang,

X. Zhang, Y. Zhang, Z. Zhang, Z. Zhao, L. Zheng, X. Zheng, W. Zhou, Y. Zhou, B. Zhu,

H. Zhu, J. Zhu, S. Zhu, L. Zou, X. Zou, A. deFazio, N. van As, C. H. M. van Deurzen,

M. J. van de Vijver, L. Van’t Veer, and C. von Mering, “Pan-cancer analysis of whole

genomes,” Nature, vol. 578, pp. 82–93, Feb 2020.

[168] F. nez, F. os, I. s, J. Deu-Pons, I. Reyes-Salazar, C. Arnedo-Pac, L. Mularoni, O. Pich,

J. Bonet, H. Kranas, A. Gonzalez-Perez, and N. Lopez-Bigas, “A compendium of muta-

tional cancer driver genes,” Nat Rev Cancer, vol. 20, pp. 555–572, Oct 2020.

[169] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray,

“Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality

Worldwide for 36 Cancers in 185 Countries,” CA Cancer J Clin, vol. 71, pp. 209–249,

May 2021.

[170] N. E. Sharpless and D. S. Singer, “Progress and potential: The Cancer Moonshot,” Can-

cer Cell, vol. 39, pp. 889–894, Jul 2021.

[171] N. N. C. Institute, “Most recent reported fiscal year budget 2021,”

https://www.cancer.gov/about-nci/budget/fact-book/data/recent-fiscal-year.

[172] S. Bamford, E. Dawson, S. Forbes, J. Clements, R. Pettett, A. Dogan, A. Flanagan,

J. Teague, P. A. Futreal, M. R. Stratton, and R. Wooster, “The COSMIC (Catalogue of

Somatic Mutations in Cancer) database and website,” Br J Cancer, vol. 91, pp. 355–358,

Jul 2004.

194



[173] P. A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R. Wooster, N. Rahman, and

M. R. Stratton, “A census of human cancer genes,” Nat Rev Cancer, vol. 4, pp. 177–183,

Mar 2004.

[174] D. P. Lane, “Cancer. p53, guardian of the genome,” Nature, vol. 358, pp. 15–16, Jul 1992.

[175] D. Uprety and A. A. Adjei, “KRAS: From undruggable to a druggable Cancer Target,”

Cancer Treat Rev, vol. 89, p. 102070, Sep 2020.

[176] F. Rascio, F. Spadaccino, M. T. Rocchetti, G. Castellano, G. Stallone, G. S. Netti, and

E. Ranieri, “The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug

Resistance: An Updated Review,” Cancers (Basel), vol. 13, Aug 2021.

[177] M. miech, P. ski, H. Kono, C. Wardell, and H. Taniguchi, “Mutations in Cancer Progres-

sion and Their Possible Effects on Transcriptional Networks,” Genes (Basel), vol. 11,

Nov 2020.

[178] E. Lakatos, M. J. Williams, R. O. Schenck, W. C. H. Cross, J. Househam, L. Zapata,

B. Werner, C. Gatenbee, M. Robertson-Tessi, C. P. Barnes, A. R. A. Anderson, A. Sot-

toriva, and T. A. Graham, “Evolutionary dynamics of neoantigens in growing tumors,”

Nat Genet, vol. 52, pp. 1057–1066, Oct 2020.

[179] N. Kherreh, S. Cleary, and C. Seoighe, “No evidence that HLA genotype influences the

driver mutations that occur in cancer patients,” Cancer Immunol Immunother, vol. 71,

pp. 819–827, Apr 2022.

[180] M. M. Pomerantz and M. L. Freedman, “The genetics of cancer risk,” Cancer J, vol. 17,

no. 6, pp. 416–422, 2011.

[181] P. Anand, A. B. Kunnumakkara, C. Sundaram, K. B. Harikumar, S. T. Tharakan, O. S.

Lai, B. Sung, and B. B. Aggarwal, “Cancer is a preventable disease that requires major

lifestyle changes,” Pharm Res, vol. 25, pp. 2097–2116, Sep 2008.

[182] J. M. Hall, M. K. Lee, B. Newman, J. E. Morrow, L. A. Anderson, B. Huey, and M. C.

King, “Linkage of early-onset familial breast cancer to chromosome 17q21,” Science,

vol. 250, pp. 1684–1689, Dec 1990.

[183] Y. Miki, J. Swensen, D. Shattuck-Eidens, P. A. Futreal, K. Harshman, S. Tavtigian,

Q. Liu, C. Cochran, L. M. Bennett, and W. Ding, “A strong candidate for the breast

and ovarian cancer susceptibility gene BRCA1,” Science, vol. 266, pp. 66–71, Oct 1994.

195



[184] R. Wooster, G. Bignell, J. Lancaster, S. Swift, S. Seal, J. Mangion, N. Collins, S. Gre-

gory, C. Gumbs, and G. Micklem, “Identification of the breast cancer susceptibility gene

BRCA2,” Nature, vol. 378, no. 6559, pp. 789–792, 1995.

[185] R. Roy, J. Chun, and S. N. Powell, “BRCA1 and BRCA2: different roles in a common

pathway of genome protection,” Nat Rev Cancer, vol. 12, pp. 68–78, Dec 2011.

[186] P. Bhattacharya and T. W. McHugh, “Lynch syndrome,” in StatPearls [Internet], Stat-

Pearls Publishing, 2022.

[187] S. Haraldsdottir, T. Rafnar, W. L. Frankel, S. Einarsdottir, A. Sigurdsson, H. Hampel,

P. Snaebjornsson, G. Masson, D. Weng, R. Arngrimsson, B. Kehr, A. Yilmaz, S. Haralds-

son, P. Sulem, T. Stefansson, P. G. Shields, F. Sigurdsson, T. Bekaii-Saab, P. H. Moller,

M. Steinarsdottir, K. Alexiusdottir, M. Hitchins, C. C. Pritchard, A. de la Chapelle, J. G.

Jonasson, R. M. Goldberg, and K. Stefansson, “Comprehensive population-wide analy-

sis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2,” Nat

Commun, vol. 8, p. 14755, May 2017.

[188] N. Abu-Ghazaleh, V. Kaushik, A. Gorelik, M. Jenkins, and F. Macrae, “Worldwide

prevalence of Lynch syndrome in patients with colorectal cancer: Systematic review

and meta-analysis,” Genet Med, vol. 24, pp. 971–985, May 2022.

[189] E. Barrow, J. Hill, and D. G. Evans, “Cancer risk in Lynch Syndrome,” Fam Cancer,

vol. 12, pp. 229–240, Jun 2013.

[190] M. Tonello, F. Nappo, L. Vassallo, R. Di Gaetano, C. Davoli, E. Pizzolato, O. De Simoni,

C. Tassinari, A. Scapinello, P. Pilati, F. Loupakis, S. Lonardi, and A. Sommariva, “Com-

plete pathological response of colorectal peritoneal metastases in Lynch syndrome after

immunotherapy case report: is a paradigm shift in cytoreductive surgery needed?,” BMC

Gastroenterol, vol. 22, p. 17, Jan 2022.

[191] V. Laugel, “Cockayne syndrome: the expanding clinical and mutational spectrum,” Mech

Ageing Dev, vol. 134, no. 5-6, pp. 161–170, 2013.

[192] N. L. Batenburg, E. L. Thompson, E. A. Hendrickson, and X. D. Zhu, “Cockayne syn-

drome group B protein regulates DNA double-strand break repair and checkpoint activa-

tion,” EMBO J, vol. 34, pp. 1399–1416, May 2015.

196



[193] A. C. Karikkineth, M. Scheibye-Knudsen, E. Fivenson, D. L. Croteau, and V. A. Bohr,

“Cockayne syndrome: Clinical features, model systems and pathways,” Ageing Res Rev,

vol. 33, pp. 3–17, Jan 2017.

[194] A. R. Lehmann, D. McGibbon, and M. Stefanini, “Xeroderma pigmentosum,” Orphanet

J Rare Dis, vol. 6, p. 70, Nov 2011.

[195] P. T. Bradford, A. M. Goldstein, D. Tamura, S. G. Khan, T. Ueda, J. Boyle, K. S. Oh,

K. Imoto, H. Inui, S. Moriwaki, S. Emmert, K. M. Pike, A. Raziuddin, T. M. Plona, J. J.

DiGiovanna, M. A. Tucker, and K. H. Kraemer, “Cancer and neurologic degeneration in

xeroderma pigmentosum: long term follow-up characterises the role of DNA repair,” J

Med Genet, vol. 48, pp. 168–176, Mar 2011.

[196] A. A. Yurchenko, I. Padioleau, B. T. Matkarimov, J. Soulier, A. Sarasin, and S. Nikolaev,

“XPC deficiency increases risk of hematologic malignancies through mutator phenotype

and characteristic mutational signature,” Nat Commun, vol. 11, p. 5834, Nov 2020.

[197] K. S. Reid-Bayliss, S. T. Arron, L. A. Loeb, V. Bezrookove, and J. E. Cleaver, “Why

Cockayne syndrome patients do not get cancer despite their DNA repair deficiency,”

Proc Natl Acad Sci U S A, vol. 113, pp. 10151–10156, Sep 2016.

[198] E. Uribe-Bojanini, S. Hernandez-Quiceno, and A. M. Cock-Rada, “Xeroderma Pigmen-

tosum with Severe Neurological Manifestations/De Sanctis-Cacchione Syndrome and a

Novel XPC Mutation,” Case Rep Med, vol. 2017, p. 7162737, 2017.

[199] A. D. Andrews, S. F. Barrett, and J. H. Robbins, “Xeroderma pigmentosum neurological

abnormalities correlate with colony-forming ability after ultraviolet radiation,” Proc Natl

Acad Sci U S A, vol. 75, pp. 1984–1988, Apr 1978.

[200] M. Nishioka, M. Bundo, K. Iwamoto, and T. Kato, “Somatic mutations in the human

brain: implications for psychiatric research,” Mol Psychiatry, vol. 24, pp. 839–856, Jun

2019.

[201] R. Kacher, F. X. Lejeune, S. l, C. Cazeneuve, A. Brice, S. Humbert, and A. Durr,

“Propensity for somatic expansion increases over the course of life in Huntington dis-

ease,” Elife, vol. 10, May 2021.

[202] Y. McLennan, J. Polussa, F. Tassone, and R. Hagerman, “Fragile x syndrome,” Curr

Genomics, vol. 12, pp. 216–224, May 2011.

197



[203] H. Ogawa, K. Horitani, Y. Izumiya, and S. Sano, “Somatic Mosaicism in Biology and

Disease,” Annu Rev Physiol, vol. 84, pp. 113–133, Feb 2022.

[204] D. Freed, E. L. Stevens, and J. Pevsner, “Somatic mosaicism in the human genome,”

Genes (Basel), vol. 5, pp. 1064–1094, Dec 2014.

[205] Z. Wang, S. Zhu, Y. Jia, Y. Wang, N. Kubota, N. Fujiwara, R. Gordillo, C. Lewis, M. Zhu,

T. Sharma, L. Li, Q. Zeng, Y. H. Lin, M. H. Hsieh, P. Gopal, T. Wang, M. Hoare, P. Camp-

bell, Y. Hoshida, and H. Zhu, “Positive selection of somatically mutated clones identifies

adaptive pathways in metabolic liver disease,” Cell, vol. 186, pp. 1968–1984, Apr 2023.

[206] R. Bhattacharya, S. M. Zekavat, J. Haessler, M. Fornage, L. Raffield, M. M. Uddin,

A. G. Bick, A. Niroula, B. Yu, C. Gibson, G. Griffin, A. C. Morrison, B. M. Psaty, W. T.

Longstreth, J. C. Bis, S. S. Rich, J. I. Rotter, R. P. Tracy, A. Correa, S. Seshadri, A. John-

son, J. M. Collins, K. M. Hayden, T. E. Madsen, C. M. Ballantyne, S. Jaiswal, B. L. Ebert,

C. Kooperberg, J. E. Manson, E. A. Whitsel, P. Natarajan, and A. P. Reiner, “Clonal

Hematopoiesis Is Associated With Higher Risk of Stroke,” Stroke, vol. 53, pp. 788–797,

Mar 2022.

[207] S. Jaiswal, P. Natarajan, A. J. Silver, C. J. Gibson, A. G. Bick, E. Shvartz, M. Mc-

Conkey, N. Gupta, S. Gabriel, D. Ardissino, U. Baber, R. Mehran, V. Fuster, J. Danesh,

P. Frossard, D. Saleheen, O. Melander, G. K. Sukhova, D. Neuberg, P. Libby, S. Kathire-

san, and B. L. Ebert, “Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular

Disease,” N Engl J Med, vol. 377, pp. 111–121, Jul 2017.

[208] C. S. Marnell, A. Bick, and P. Natarajan, “Clonal hematopoiesis of indeterminate poten-

tial (CHIP): Linking somatic mutations, hematopoiesis, chronic inflammation and car-

diovascular disease,” J Mol Cell Cardiol, vol. 161, pp. 98–105, Dec 2021.

[209] M. Xie, C. Lu, J. Wang, M. D. McLellan, K. J. Johnson, M. C. Wendl, J. F. McMichael,

H. K. Schmidt, V. Yellapantula, C. A. Miller, B. A. Ozenberger, J. S. Welch, D. C.

Link, M. J. Walter, E. R. Mardis, J. F. Dipersio, F. Chen, R. K. Wilson, T. J. Ley, and

L. Ding, “Age-related mutations associated with clonal hematopoietic expansion and

malignancies,” Nat Med, vol. 20, pp. 1472–1478, Dec 2014.

[210] G. Genovese, A. K. hler, R. E. Handsaker, J. Lindberg, S. A. Rose, S. F. Bakhoum,

K. Chambert, E. Mick, B. M. Neale, M. Fromer, S. M. Purcell, O. Svantesson, M. n,

M. glund, S. Lehmann, S. B. Gabriel, J. L. Moran, E. S. Lander, P. F. Sullivan, P. Sklar,

H. nberg, C. M. Hultman, and S. A. McCarroll, “Clonal hematopoiesis and blood-cancer

198



risk inferred from blood DNA sequence,” N Engl J Med, vol. 371, pp. 2477–2487, Dec

2014.

[211] S. Jaiswal, P. Fontanillas, J. Flannick, A. Manning, P. V. Grauman, B. G. Mar, R. C. Lind-

sley, C. H. Mermel, N. Burtt, A. Chavez, J. M. Higgins, V. Moltchanov, F. C. Kuo, M. J.

Kluk, B. Henderson, L. Kinnunen, H. A. Koistinen, C. Ladenvall, G. Getz, A. Correa,

B. F. Banahan, S. Gabriel, S. Kathiresan, H. M. Stringham, M. I. McCarthy, M. Boehnke,

J. Tuomilehto, C. Haiman, L. Groop, G. Atzmon, J. G. Wilson, D. Neuberg, D. Altshuler,

and B. L. Ebert, “Age-related clonal hematopoiesis associated with adverse outcomes,”

N Engl J Med, vol. 371, pp. 2488–2498, Dec 2014.

[212] J. L. Abkowitz, S. N. Catlin, M. T. McCallie, and P. Guttorp, “Evidence that the num-

ber of hematopoietic stem cells per animal is conserved in mammals,” Blood, vol. 100,

pp. 2665–2667, Oct 2002.

[213] H. Holstege, W. Pfeiffer, D. Sie, M. Hulsman, T. J. Nicholas, C. C. Lee, T. Ross, J. Lin,

M. A. Miller, B. Ylstra, H. Meijers-Heijboer, M. H. Brugman, F. J. Staal, G. Hol-

stege, M. J. Reinders, T. T. Harkins, S. Levy, and E. A. Sistermans, “Somatic mutations

found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal

hematopoiesis,” Genome Res, vol. 24, pp. 733–742, May 2014.

[214] M. A. Fabre, J. G. de Almeida, E. Fiorillo, E. Mitchell, A. Damaskou, J. Rak, V. u,

M. Marongiu, M. S. Chapman, M. S. Vijayabaskar, J. Baxter, C. Hardy, F. Abascal,

N. Williams, J. Nangalia, I. Martincorena, P. J. Campbell, E. F. McKinney, F. Cucca,

M. Gerstung, and G. S. Vassiliou, “The longitudinal dynamics and natural history of

clonal haematopoiesis,” Nature, vol. 606, pp. 335–342, Jun 2022.

[215] N. A. Robertson, E. Latorre-Crespo, M. Terradas-Terradas, J. Lemos-Portela, A. C. Pur-

cell, B. J. Livesey, R. F. Hillary, L. Murphy, A. Fawkes, L. MacGillivray, M. Copland,

R. E. Marioni, J. A. Marsh, S. E. Harris, S. R. Cox, I. J. Deary, L. J. Schumacher,

K. Kirschner, and T. Chandra, “Longitudinal dynamics of clonal hematopoiesis identifies

gene-specific fitness effects,” Nat Med, vol. 28, pp. 1439–1446, Jul 2022.

[216] K. Wang, H. Liu, Q. Hu, L. Wang, J. Liu, Z. Zheng, W. Zhang, J. Ren, F. Zhu, and

G. H. Liu, “Epigenetic regulation of aging: implications for interventions of aging and

diseases,” Signal Transduct Target Ther, vol. 7, p. 374, Nov 2022.

199



[217] Y. Ishimi, M. Kojima, F. Takeuchi, T. Miyamoto, M. Yamada, and F. Hanaoka, “Changes

in chromatin structure during aging of human skin fibroblasts,” Exp Cell Res, vol. 169,

pp. 458–467, Apr 1987.

[218] E. L. Greer, T. J. Maures, A. G. Hauswirth, E. M. Green, D. S. Leeman, G. S. Maro,

S. Han, M. R. Banko, O. Gozani, and A. Brunet, “Members of the H3K4 trimethyla-

tion complex regulate lifespan in a germline-dependent manner in C. elegans,” Nature,

vol. 466, pp. 383–387, Jul 2010.

[219] F. Manders, R. van Boxtel, and S. Middelkamp, “The Dynamics of Somatic Mutagenesis

During Life in Humans,” Front Aging, vol. 2, p. 802407, 2021.

[220] L. Szilard, “ON THE NATURE OF THE AGING PROCESS,” Proc Natl Acad Sci U S

A, vol. 45, pp. 30–45, Jan 1959.

[221] L. E. ORGEL, “The maintenance of the accuracy of protein synthesis and its relevance

to ageing,” Proc Natl Acad Sci U S A, vol. 49, pp. 517–521, Apr 1963.

[222] B. Milholland, Y. Suh, and J. Vijg, “Mutation and catastrophe in the aging genome,” Exp

Gerontol, vol. 94, pp. 34–40, Aug 2017.

[223] J. W. Gowen, “ON CHROMOSOME BALANCE AS A FACTOR IN DURATION OF

LIFE,” J Gen Physiol, vol. 14, pp. 447–461, Mar 1931.

[224] A. M. Clark, H. A. Bertrand, and R. E. Smith, “Life span differences between haploid and

diploid males of habrobracon serinopae after exposure as adults to x rays,” The American

Naturalist, vol. 97, no. 895, pp. 203–208, 1963.

[225] P. n, B. Pettersson, and M. n, “Solid phase DNA minisequencing by an enzymatic lu-

minometric inorganic pyrophosphate detection assay,” Anal Biochem, vol. 208, pp. 171–

175, Jan 1993.

[226] M. Ronaghi, S. Karamohamed, B. Pettersson, M. n, and P. n, “Real-time DNA sequenc-

ing using detection of pyrophosphate release,” Anal Biochem, vol. 242, pp. 84–89, Nov

1996.

[227] J. M. Heather and B. Chain, “The sequence of sequencers: The history of sequencing

DNA,” Genomics, vol. 107, pp. 1–8, Jan 2016.

[228] K. V. Voelkerding, S. A. Dames, and J. D. Durtschi, “Next-generation sequencing: from

basic research to diagnostics,” Clin Chem, vol. 55, pp. 641–658, Apr 2009.

200



[229] C. V. Van Hout, I. Tachmazidou, J. D. Backman, J. D. Hoffman, D. Liu, A. K. Pandey,

C. Gonzaga-Jauregui, S. Khalid, B. Ye, N. Banerjee, A. H. Li, C. O’Dushlaine, A. Mar-

cketta, J. Staples, C. Schurmann, A. Hawes, E. Maxwell, L. Barnard, A. Lopez, J. Penn,

L. Habegger, A. L. Blumenfeld, X. Bai, S. O’Keeffe, A. Yadav, K. Praveen, M. Jones,

W. J. Salerno, W. K. Chung, I. Surakka, C. J. Willer, K. Hveem, J. B. Leader, D. J.

Carey, D. H. Ledbetter, L. Cardon, G. D. Yancopoulos, A. Economides, G. Coppola,

A. R. Shuldiner, S. Balasubramanian, M. Cantor, M. R. Nelson, J. Whittaker, J. G.

Reid, J. Marchini, J. D. Overton, R. A. Scott, G. R. Abecasis, L. Yerges-Armstrong,

and A. Baras, “Exome sequencing and characterization of 49,960 individuals in the UK

Biobank,” Nature, vol. 586, pp. 749–756, Oct 2020.

[230] K. Mitchell, J. J. Brito, I. Mandric, Q. Wu, S. Knyazev, S. Chang, L. S. Martin, A. Karls-

berg, E. Gerasimov, R. Littman, B. L. Hill, N. C. Wu, H. T. Yang, K. Hsieh, L. Chen,

E. Littman, T. Shabani, G. Enik, D. Yao, R. Sun, J. Schroeder, E. Eskin, A. Zelikovsky,

P. Skums, M. Pop, and S. Mangul, “Benchmarking of computational error-correction

methods for next-generation sequencing data,” Genome Biol, vol. 21, p. 71, Mar 2020.

[231] J. Zhang, K. Kobert, T. Flouri, and A. Stamatakis, “PEAR: a fast and accurate Illumina

Paired-End reAd mergeR,” Bioinformatics, vol. 30, pp. 614–620, Mar 2014.

[232] J. J. Salk, M. W. Schmitt, and L. A. Loeb, “Enhancing the accuracy of next-generation

sequencing for detecting rare and subclonal mutations,” Nat Rev Genet, vol. 19, pp. 269–

285, May 2018.

[233] F. Pfeiffer, C. ber, M. Blank, K. ndler, M. Beyer, J. L. Schultze, and G. Mayer, “System-

atic evaluation of error rates and causes in short samples in next-generation sequencing,”

Sci Rep, vol. 8, p. 10950, Jul 2018.

[234] P. Murat, G. Guilbaud, and J. E. Sale, “DNA polymerase stalling at structured DNA

constrains the expansion of short tandem repeats,” Genome Biol, vol. 21, p. 209, Aug

2020.

[235] H. Do and A. Dobrovic, “Sequence artifacts in DNA from formalin-fixed tissues: causes

and strategies for minimization,” Clin Chem, vol. 61, pp. 64–71, Jan 2015.

[236] D. D. Dodani, M. H. Nguyen, R. D. Morin, M. A. Marra, and R. D. Corbett, “Com-

binatorial and Machine Learning Approaches for Improved Somatic Variant Calling

From Formalin-Fixed Paraffin-Embedded Genome Sequence Data,” Front Genet, vol. 13,

p. 834764, 2022.

201



[237] V. Potapov and J. L. Ong, “Examining Sources of Error in PCR by Single-Molecule

Sequencing,” PLoS One, vol. 12, no. 1, p. e0169774, 2017.

[238] R. Sun, M. I. Love, T. Zemojtel, A. K. Emde, H. R. Chung, M. Vingron, and S. A. Haas,

“Breakpointer: using local mapping artifacts to support sequence breakpoint discovery

from single-end reads,” Bioinformatics, vol. 28, pp. 1024–1025, Apr 2012.

[239] E. M. Jewett, M. cken, and Y. S. Song, “The Effects of Population Size Histories on Esti-

mates of Selection Coefficients from Time-Series Genetic Data,” Mol Biol Evol, vol. 33,

pp. 3002–3027, Nov 2016.

[240] A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M. Kang, J. O. Korbel, J. L.

Marchini, S. McCarthy, G. A. McVean, G. R. Abecasis, A. Auton, G. R. Abecasis, D. M.

Altshuler, R. M. Durbin, G. R. Abecasis, D. R. Bentley, A. Chakravarti, A. G. Clark,

P. Donnelly, E. E. Eichler, P. Flicek, S. B. Gabriel, R. A. Gibbs, E. D. Green, M. E.

Hurles, B. M. Knoppers, J. O. Korbel, E. S. Lander, C. Lee, H. Lehrach, E. R. Mardis,

G. T. Marth, G. A. McVean, D. A. Nickerson, J. P. Schmidt, S. T. Sherry, J. Wang, R. K.

Wilson, R. A. Gibbs, E. Boerwinkle, H. Doddapaneni, Y. Han, V. Korchina, C. Kovar,

S. Lee, D. Muzny, J. G. Reid, Y. Zhu, J. Wang, Y. Chang, Q. Feng, X. Fang, X. Guo,

M. Jian, H. Jiang, X. Jin, T. Lan, G. Li, J. Li, Y. Li, S. Liu, X. Liu, Y. Lu, X. Ma,

M. Tang, B. Wang, G. Wang, H. Wu, R. Wu, X. Xu, Y. Yin, D. Zhang, W. Zhang,

J. Zhao, M. Zhao, X. Zheng, E. S. Lander, D. M. Altshuler, S. B. Gabriel, N. Gupta,

N. Gharani, L. H. Toji, N. P. Gerry, A. M. Resch, P. Flicek, J. Barker, L. Clarke, L. Gil,

S. E. Hunt, G. Kelman, E. Kulesha, R. Leinonen, W. M. McLaren, R. Radhakrishnan,

A. Roa, D. Smirnov, R. E. Smith, I. Streeter, A. Thormann, I. Toneva, B. Vaughan,

X. Zheng-Bradley, D. R. Bentley, R. Grocock, S. Humphray, T. James, Z. Kingsbury,

H. Lehrach, R. Sudbrak, M. W. Albrecht, V. S. Amstislavskiy, T. A. Borodina, M. Lien-

hard, F. Mertes, M. Sultan, B. Timmermann, M. L. Yaspo, E. R. Mardis, R. K. Wilson,

L. Fulton, R. Fulton, S. T. Sherry, V. Ananiev, Z. Belaia, D. Beloslyudtsev, N. Bouk,

C. Chen, D. Church, R. Cohen, C. Cook, J. Garner, T. Hefferon, M. Kimelman, C. Liu,

J. Lopez, P. Meric, C. O’Sullivan, Y. Ostapchuk, L. Phan, S. Ponomarov, V. Schnei-

der, E. Shekhtman, K. Sirotkin, D. Slotta, H. Zhang, G. A. McVean, R. M. Durbin,

S. Balasubramaniam, J. Burton, P. Danecek, T. M. Keane, A. Kolb-Kokocinski, S. Mc-

Carthy, J. Stalker, M. Quail, R. M. Durbin, S. Balasubramaniam, J. Burton, P. Danecek,

T. M. Keane, A. Kolb-Kokocinski, S. McCarthy, J. Stalker, M. Quail, J. P. Schmidt, C. J.

Davies, J. Gollub, T. Webster, B. Wong, Y. Zhan, A. Auton, C. L. Campbell, Y. Kong,

A. Marcketta, R. A. Gibbs, F. Yu, L. Antunes, M. Bainbridge, D. Muzny, A. Sabo,

202



Z. Huang, J. Wang, L. J. Coin, L. Fang, X. Guo, X. Jin, G. Li, Q. Li, Y. Li, Z. Li,

H. Lin, B. Liu, R. Luo, H. Shao, Y. Xie, C. Ye, C. Yu, F. Zhang, H. Zheng, H. Zhu,

C. Alkan, E. Dal, F. Kahveci, G. T. Marth, E. P. Garrison, D. Kural, W. P. Lee, W. F.

Leong, M. Stromberg, A. N. Ward, J. Wu, M. Zhang, M. J. Daly, M. A. DePristo, R. E.

Handsaker, D. M. Altshuler, E. Banks, G. Bhatia, G. Del Angel, S. B. Gabriel, G. Gen-

ovese, N. Gupta, H. Li, S. Kashin, E. S. Lander, S. A. McCarroll, J. C. Nemesh, R. E.

Poplin, S. C. Yoon, J. Lihm, V. Makarov, A. G. Clark, S. Gottipati, A. Keinan, J. L.

Rodriguez-Flores, J. O. Korbel, T. Rausch, M. H. Fritz, A. M. tz, P. Flicek, K. Beal,

L. Clarke, A. Datta, J. Herrero, W. M. McLaren, G. R. Ritchie, R. E. Smith, D. Zerbino,

X. Zheng-Bradley, P. C. Sabeti, I. Shlyakhter, S. F. Schaffner, J. Vitti, D. N. Cooper,

E. V. Ball, P. D. Stenson, D. R. Bentley, B. Barnes, M. Bauer, R. K. Cheetham, A. Cox,

M. Eberle, S. Humphray, S. Kahn, L. Murray, J. Peden, R. Shaw, E. E. Kenny, M. A.

Batzer, M. K. Konkel, J. A. Walker, D. G. MacArthur, M. Lek, R. Sudbrak, V. S.

Amstislavskiy, R. Herwig, E. R. Mardis, L. Ding, D. C. Koboldt, D. Larson, K. Ye,

S. Gravel, A. Swaroop, E. Chew, T. Lappalainen, Y. Erlich, M. Gymrek, T. F. Willems,

J. T. Simpson, M. D. Shriver, J. A. Rosenfeld, C. D. Bustamante, S. B. Montgomery,

F. M. De La Vega, J. K. Byrnes, A. W. Carroll, M. K. DeGorter, P. Lacroute, B. K.

Maples, A. R. Martin, A. Moreno-Estrada, S. S. Shringarpure, F. Zakharia, E. Halperin,

Y. Baran, C. Lee, E. Cerveira, J. Hwang, A. Malhotra, D. Plewczynski, K. Radew, M. Ro-

manovitch, C. Zhang, F. C. Hyland, D. W. Craig, A. Christoforides, N. Homer, T. Izatt,

A. A. Kurdoglu, S. A. Sinari, K. Squire, S. T. Sherry, C. Xiao, J. Sebat, D. Antaki,

M. Gujral, A. Noor, K. Ye, E. G. Burchard, R. D. Hernandez, C. R. Gignoux, D. Haus-

sler, S. J. Katzman, W. J. Kent, B. Howie, A. Ruiz-Linares, E. T. Dermitzakis, S. E.

Devine, G. R. Abecasis, H. M. Kang, J. M. Kidd, T. Blackwell, S. Caron, W. Chen,

S. Emery, L. Fritsche, C. Fuchsberger, G. Jun, B. Li, R. Lyons, C. Scheller, C. Sidore,

S. Song, E. Sliwerska, D. Taliun, A. Tan, R. Welch, M. K. Wing, X. Zhan, P. Awadalla,

A. Hodgkinson, Y. Li, X. Shi, A. Quitadamo, G. Lunter, G. A. McVean, J. L. Marchini,

S. Myers, C. Churchhouse, O. Delaneau, A. Gupta-Hinch, W. Kretzschmar, Z. Iqbal,

I. Mathieson, A. Menelaou, A. Rimmer, D. K. Xifara, T. K. Oleksyk, Y. Fu, X. Liu,

M. Xiong, L. Jorde, D. Witherspoon, J. Xing, E. E. Eichler, B. L. Browning, S. R. Brown-

ing, F. Hormozdiari, P. H. Sudmant, E. Khurana, R. M. Durbin, M. E. Hurles, C. Tyler-

Smith, C. A. Albers, Q. Ayub, S. Balasubramaniam, Y. Chen, V. Colonna, P. Danecek,

L. Jostins, T. M. Keane, S. McCarthy, K. Walter, Y. Xue, M. B. Gerstein, A. Aby-

zov, S. Balasubramanian, J. Chen, D. Clarke, Y. Fu, A. O. Harmanci, M. Jin, D. Lee,

J. Liu, X. J. Mu, J. Zhang, Y. Zhang, M. B. Gerstein, A. Abyzov, S. Balasubramanian,

203



J. Chen, D. Clarke, Y. Fu, A. O. Harmanci, M. Jin, D. Lee, J. Liu, X. J. Mu, J. Zhang,

Y. Zhang, Y. Li, R. Luo, H. Zhu, C. Alkan, E. Dal, F. Kahveci, G. T. Marth, E. P. Gar-

rison, D. Kural, W. P. Lee, A. N. Ward, J. Wu, M. Zhang, S. A. McCarroll, R. E. Hand-

saker, D. M. Altshuler, E. Banks, G. Del Angel, G. Genovese, C. Hartl, H. Li, S. Kashin,

J. C. Nemesh, K. Shakir, S. C. Yoon, J. Lihm, V. Makarov, J. Degenhardt, J. O. Korbel,

M. H. Fritz, S. Meiers, B. Raeder, T. Rausch, A. M. tz, P. Flicek, F. P. Casale, L. Clarke,

R. E. Smith, O. Stegle, X. Zheng-Bradley, D. R. Bentley, B. Barnes, R. K. Cheetham,

M. Eberle, S. Humphray, S. Kahn, L. Murray, R. Shaw, E. W. Lameijer, M. A. Batzer,

M. K. Konkel, J. A. Walker, L. Ding, I. Hall, K. Ye, P. Lacroute, C. Lee, E. Cerveira,

A. Malhotra, J. Hwang, D. Plewczynski, K. Radew, M. Romanovitch, C. Zhang, D. W.

Craig, N. Homer, D. Church, C. Xiao, J. Sebat, D. Antaki, V. Bafna, J. Michaelson,

K. Ye, S. E. Devine, E. J. Gardner, G. R. Abecasis, J. M. Kidd, R. E. Mills, G. Dayama,

S. Emery, G. Jun, X. Shi, A. Quitadamo, G. Lunter, G. A. McVean, K. Chen, X. Fan,

Z. Chong, T. Chen, D. Witherspoon, J. Xing, E. E. Eichler, M. J. Chaisson, F. Hormoz-

diari, J. Huddleston, M. Malig, B. J. Nelson, P. H. Sudmant, N. F. Parrish, E. Khurana,

M. E. Hurles, B. Blackburne, S. J. Lindsay, Z. Ning, K. Walter, Y. Zhang, M. B. Ger-

stein, A. Abyzov, J. Chen, D. Clarke, H. Lam, X. J. Mu, C. Sisu, J. Zhang, Y. Zhang,

M. B. Gerstein, A. Abyzov, J. Chen, D. Clarke, H. Lam, X. J. Mu, C. Sisu, J. Zhang,

Y. Zhang, R. A. Gibbs, F. Yu, M. Bainbridge, D. Challis, U. S. Evani, C. Kovar, J. Lu,

D. Muzny, U. Nagaswamy, J. G. Reid, A. Sabo, J. Yu, X. Guo, W. Li, Y. Li, R. Wu, G. T.

Marth, E. P. Garrison, W. F. Leong, A. N. Ward, G. Del Angel, M. A. DePristo, S. B.

Gabriel, N. Gupta, C. Hartl, R. E. Poplin, A. G. Clark, J. L. Rodriguez-Flores, P. Flicek,

L. Clarke, R. E. Smith, X. Zheng-Bradley, D. G. MacArthur, E. R. Mardis, R. Fulton,

D. C. Koboldt, S. Gravel, C. D. Bustamante, D. W. Craig, A. Christoforides, N. Homer,

T. Izatt, S. T. Sherry, C. Xiao, E. T. Dermitzakis, G. R. Abecasis, H. Min Kang, G. A.

McVean, M. B. Gerstein, S. Balasubramanian, L. Habegger, M. B. Gerstein, S. Bal-

asubramanian, L. Habegger, H. Yu, P. Flicek, L. Clarke, F. Cunningham, I. Dunham,

D. Zerbino, X. Zheng-Bradley, K. Lage, J. B. Jespersen, H. Horn, S. B. Montgomery,

M. K. DeGorter, E. Khurana, C. Tyler-Smith, Y. Chen, V. Colonna, Y. Xue, M. B. Ger-

stein, S. Balasubramanian, Y. Fu, D. Kim, M. B. Gerstein, S. Balasubramanian, Y. Fu,

D. Kim, A. Auton, A. Marcketta, R. Desalle, A. Narechania, M. A. Sayres, E. P. Gar-

rison, R. E. Handsaker, S. Kashin, S. A. McCarroll, J. L. Rodriguez-Flores, P. Flicek,

L. Clarke, X. Zheng-Bradley, Y. Erlich, M. Gymrek, T. F. Willems, C. D. Bustamante,

F. L. Mendez, G. D. Poznik, P. A. Underhill, C. Lee, E. Cerveira, A. Malhotra, M. Ro-

manovitch, C. Zhang, G. R. Abecasis, L. Coin, H. Shao, D. Mittelman, C. Tyler-Smith,

204



Q. Ayub, R. Banerjee, M. Cerezo, Y. Chen, T. W. Fitzgerald, S. Louzada, A. Massaia,

S. McCarthy, G. R. Ritchie, Y. Xue, F. Yang, C. Tyler-Smith, Q. Ayub, R. Banerjee,

M. Cerezo, Y. Chen, T. W. Fitzgerald, S. Louzada, A. Massaia, S. McCarthy, G. R.

Ritchie, Y. Xue, F. Yang, R. A. Gibbs, C. Kovar, D. Kalra, W. Hale, D. Muzny, J. G.

Reid, J. Wang, X. Dan, X. Guo, G. Li, Y. Li, C. Ye, X. Zheng, D. M. Altshuler, P. Flicek,

L. Clarke, X. Zheng-Bradley, D. R. Bentley, A. Cox, S. Humphray, S. Kahn, R. Sudbrak,

M. W. Albrecht, M. Lienhard, D. Larson, D. W. Craig, T. Izatt, A. A. Kurdoglu, S. T.

Sherry, C. Xiao, D. Haussler, G. R. Abecasis, G. A. McVean, R. M. Durbin, S. Balasub-

ramaniam, T. M. Keane, S. McCarthy, J. Stalker, R. M. Durbin, S. Balasubramaniam,

T. M. Keane, S. McCarthy, J. Stalker, A. Chakravarti, B. M. Knoppers, G. R. Abeca-

sis, K. C. Barnes, C. Beiswanger, E. G. Burchard, C. D. Bustamante, H. Cai, H. Cao,

R. M. Durbin, N. P. Gerry, N. Gharani, R. A. Gibbs, C. R. Gignoux, S. Gravel, B. Henn,

D. Jones, L. Jorde, J. S. Kaye, A. Keinan, A. Kent, A. Kerasidou, Y. Li, R. Mathias,

G. A. McVean, A. Moreno-Estrada, P. N. Ossorio, M. Parker, A. M. Resch, C. N. Ro-

timi, C. D. Royal, K. Sandoval, Y. Su, R. Sudbrak, Z. Tian, S. Tishkoff, L. H. Toji,

C. Tyler-Smith, M. Via, Y. Wang, H. Yang, L. Yang, J. Zhu, W. Bodmer, G. Bedoya,

A. Ruiz-Linares, Z. Cai, Y. Gao, J. Chu, L. Peltonen, A. Garcia-Montero, A. Orfao,

J. Dutil, J. C. Martinez-Cruzado, T. K. Oleksyk, K. C. Barnes, R. A. Mathias, A. Hennis,

H. Watson, C. McKenzie, F. Qadri, R. LaRocque, P. C. Sabeti, J. Zhu, X. Deng, P. C. Sa-

beti, D. Asogun, O. Folarin, C. Happi, O. Omoniwa, M. Stremlau, R. Tariyal, M. Jallow,

F. S. Joof, T. Corrah, K. Rockett, D. Kwiatkowski, J. Kooner, T. T. n, S. J. Dunstan, N. T.

Hang, R. Fonnie, R. Garry, L. Kanneh, L. Moses, P. C. Sabeti, J. Schieffelin, D. S. Grant,

C. Gallo, G. Poletti, D. Saleheen, A. Rasheed, D. Saleheen, A. Rasheed, L. D. Brooks,

A. L. Felsenfeld, J. E. McEwen, Y. Vaydylevich, E. D. Green, A. Duncanson, M. Dunn,

J. A. Schloss, J. Wang, H. Yang, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison,

H. Min Kang, J. O. Korbel, J. L. Marchini, S. McCarthy, G. A. McVean, G. R. Abeca-

sis, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. Min Kang, J. O. Korbel,

J. L. Marchini, S. McCarthy, G. A. McVean, and G. R. Abecasis, “A global reference for

human genetic variation,” Nature, vol. 526, pp. 68–74, Oct 2015.

[241] K. J. Karczewski, L. C. Francioli, G. Tiao, B. B. Cummings, J. ldi, Q. Wang, R. L.

Collins, K. M. Laricchia, A. Ganna, D. P. Birnbaum, L. D. Gauthier, H. Brand,

M. Solomonson, N. A. Watts, D. Rhodes, M. Singer-Berk, E. M. England, E. G. Seaby,

J. A. Kosmicki, R. K. Walters, K. Tashman, Y. Farjoun, E. Banks, T. Poterba, A. Wang,

C. Seed, N. Whiffin, J. X. Chong, K. E. Samocha, E. Pierce-Hoffman, Z. Zappala,

A. H. O’Donnell-Luria, E. V. Minikel, B. Weisburd, M. Lek, J. S. Ware, C. Vittal,

205



I. M. Armean, L. Bergelson, K. Cibulskis, K. M. Connolly, M. Covarrubias, S. Don-

nelly, S. Ferriera, S. Gabriel, J. Gentry, N. Gupta, T. Jeandet, D. Kaplan, C. Llanwarne,

R. Munshi, S. Novod, N. Petrillo, D. Roazen, V. Ruano-Rubio, A. Saltzman, M. Schle-

icher, J. Soto, K. Tibbetts, C. Tolonen, G. Wade, M. E. Talkowski, B. M. Neale, M. J.

Daly, D. G. MacArthur, C. A. Aguilar Salinas, T. Ahmad, C. M. Albert, D. Ardissino,

G. Atzmon, J. Barnard, L. Beaugerie, E. J. Benjamin, M. Boehnke, L. L. Bonnycastle,

E. P. Bottinger, D. W. Bowden, M. J. Bown, J. C. Chambers, J. C. Chan, D. Chasman,

J. Cho, M. K. Chung, B. Cohen, A. Correa, D. Dabelea, M. J. Daly, D. Darbar, R. Duggi-

rala, J. Dupuis, P. T. Ellinor, R. Elosua, J. Erdmann, T. Esko, M. Ã¤, J. Florez, A. Franke,

G. Getz, B. Glaser, S. J. Glatt, D. Goldstein, C. Gonzalez, L. Groop, C. Haiman, C. Hanis,

M. Harms, M. Hiltunen, M. M. Holi, C. M. Hultman, M. Kallela, J. Kaprio, S. Kathire-

san, B. J. Kim, Y. J. Kim, G. Kirov, J. Kooner, S. Koskinen, H. M. Krumholz, S. Ku-

gathasan, S. H. Kwak, M. Laakso, T. ki, R. J. F. Loos, S. A. Lubitz, R. C. W. Ma, D. G.

MacArthur, J. Marrugat, K. M. Mattila, S. McCarroll, M. I. McCarthy, D. McGovern,

R. McPherson, J. B. Meigs, O. Melander, A. Metspalu, B. M. Neale, P. M. Nilsson,

M. C. O’Donovan, D. Ongur, L. Orozco, M. J. Owen, C. N. A. Palmer, A. Palotie, K. S.

Park, C. Pato, A. E. Pulver, N. Rahman, A. M. Remes, J. D. Rioux, S. Ripatti, D. M. Ro-

den, D. Saleheen, V. Salomaa, N. J. Samani, J. Scharf, H. Schunkert, M. B. Shoemaker,

P. Sklar, H. Soininen, H. Sokol, T. Spector, P. F. Sullivan, J. Suvisaari, E. S. Tai, Y. Y. Teo,

T. Tiinamaija, M. Tsuang, D. Turner, T. Tusie-Luna, E. Vartiainen, M. P. Vawter, J. S.

Ware, H. Watkins, R. K. Weersma, M. Wessman, J. G. Wilson, and R. J. Xavier, “The

mutational constraint spectrum quantified from variation in 141,456 humans,” Nature,

vol. 581, pp. 434–443, May 2020.

[242] S. T. Sherry, M. H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and

K. Sirotkin, “dbSNP: the NCBI database of genetic variation,” Nucleic Acids Res, vol. 29,

pp. 308–311, Jan 2001.

[243] J. Yang, B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R. Nyholt, P. A.

Madden, A. C. Heath, N. G. Martin, G. W. Montgomery, M. E. Goddard, and P. M. Viss-

cher, “Common SNPs explain a large proportion of the heritability for human height,”

Nat Genet, vol. 42, pp. 565–569, Jul 2010.

[244] H. Liu, L. Han, G. Kang, M. Zhang, and R. Cheng, “Editorial: Statistical Methods,

Computing and Resources for Genome-Wide Association Studies,” Front Genet, vol. 12,

p. 714894, 2021.

206



[245] P. R. Loh, G. Kichaev, S. Gazal, A. P. Schoech, and A. L. Price, “Mixed-model associa-

tion for biobank-scale datasets,” Nat Genet, vol. 50, pp. 906–908, Jul 2018.

[246] L. Jiang, Z. Zheng, T. Qi, K. E. Kemper, N. R. Wray, P. M. Visscher, and J. Yang,

“A resource-efficient tool for mixed model association analysis of large-scale data,” Nat

Genet, vol. 51, pp. 1749–1755, Dec 2019.

[247] J. Mbatchou, L. Barnard, J. Backman, A. Marcketta, J. A. Kosmicki, A. Ziyatdinov,

C. Benner, C. O’Dushlaine, M. Barber, B. Boutkov, L. Habegger, M. Ferreira, A. Baras,

J. Reid, G. Abecasis, E. Maxwell, and J. Marchini, “Computationally efficient whole-

genome regression for quantitative and binary traits,” Nat Genet, vol. 53, pp. 1097–1103,

Jul 2021.

[248] M. Imamura, A. Takahashi, T. Yamauchi, K. Hara, K. Yasuda, N. Grarup, W. Zhao,

X. Wang, A. Huerta-Chagoya, C. Hu, S. Moon, J. Long, S. H. Kwak, A. Rasheed,

R. Saxena, R. C. Ma, Y. Okada, M. Iwata, J. Hosoe, N. Shojima, M. Iwasaki, H. Fujita,

K. Suzuki, J. Danesh, T. rgensen, M. E. rgensen, D. R. Witte, I. Brandslund, C. Chris-

tensen, T. Hansen, J. M. Mercader, J. Flannick, H. as, N. P. Burtt, R. Zhang, Y. J. Kim,

W. Zheng, J. R. Singh, C. H. Tam, H. Hirose, H. Maegawa, C. Ito, K. Kaku, H. Watada,

Y. Tanaka, K. Tobe, R. Kawamori, M. Kubo, Y. S. Cho, J. C. Chan, D. Sanghera,

P. Frossard, K. S. Park, X. O. Shu, B. J. Kim, J. C. Florez, T. Luna, W. Jia, E. S.

Tai, O. Pedersen, D. Saleheen, S. Maeda, and T. Kadowaki, “Genome-wide associa-

tion studies in the Japanese population identify seven novel loci for type 2 diabetes,” Nat

Commun, vol. 7, p. 10531, Jan 2016.

[249] J. Yang, S. H. Lee, M. E. Goddard, and P. M. Visscher, “GCTA: a tool for genome-wide

complex trait analysis,” Am J Hum Genet, vol. 88, pp. 76–82, Jan 2011.

[250] R. J. Klein, C. Zeiss, E. Y. Chew, J. Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P.

SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable,

and J. Hoh, “Complement factor H polymorphism in age-related macular degeneration,”

Science, vol. 308, pp. 385–389, Apr 2005.

[251] P. R. Burton, D. G. Clayton, L. R. Cardon, N. Craddock, P. Deloukas, A. Duncan-

son, D. P. Kwiatkowski, M. I. McCarthy, W. H. Ouwehand, N. J. Samani, J. A. Todd,

P. Donnelly, J. C. Barrett, P. R. Burton, D. Davison, P. Donnelly, D. Easton, D. Evans,

H. T. Leung, J. L. Marchini, A. P. Morris, C. C. Spencer, M. D. Tobin, L. R. Cardon,

D. G. Clayton, A. P. Attwood, J. P. Boorman, B. Cant, U. Everson, J. M. Hussey, J. D.

207



Jolley, A. S. Knight, K. Koch, E. Meech, S. Nutland, C. V. Prowse, H. E. Stevens,

N. C. Taylor, G. R. Walters, N. M. Walker, N. A. Watkins, T. Winzer, J. A. Todd,

W. H. Ouwehand, R. W. Jones, W. L. McArdle, S. M. Ring, D. P. Strachan, M. Pem-

brey, G. Breen, D. St Clair, S. Caesar, K. Gordon-Smith, L. Jones, C. Fraser, E. K.

Green, D. Grozeva, M. L. Hamshere, P. A. Holmans, I. R. Jones, G. Kirov, V. Moskv-

ina, I. Nikolov, M. C. O’Donovan, M. J. Owen, N. Craddock, D. A. Collier, A. Elkin,

A. Farmer, R. Williamson, P. McGuffin, A. H. Young, I. N. Ferrier, S. G. Ball, A. J.

Balmforth, J. H. Barrett, D. T. Bishop, M. M. Iles, A. Maqbool, N. Yuldasheva, A. S.

Hall, P. S. Braund, P. R. Burton, R. J. Dixon, M. Mangino, S. Suzanne, M. D. Tobin,

J. R. Thompson, N. J. Samani, F. Bredin, M. Tremelling, M. Parkes, H. Drummond,

C. W. Lees, E. R. Nimmo, J. Satsangi, S. A. Fisher, A. Forbes, C. M. Lewis, C. M.

Onnie, N. J. Prescott, J. Sanderson, C. G. Mathew, J. Barbour, M. K. Mohiuddin, C. E.

Todhunter, J. C. Mansfield, T. Ahmad, F. R. Cummings, D. P. Jewell, J. Webster, M. J.

Brown, D. G. Clayton, G. M. Lathrop, J. Connell, A. Dominczak, N. J. Samani, C. A.

Marcano, B. Burke, R. Dobson, J. Gungadoo, K. L. Lee, P. B. Munroe, S. J. Newhouse,

A. Onipinla, C. Wallace, M. Xue, M. Caulfield, M. Farrall, A. Barton, I. N. Bruce,

H. Donovan, S. Eyre, P. D. Gilbert, S. L. Hider, A. M. Hinks, S. L. John, C. Potter, A. J.

Silman, D. P. Symmmons, W. Thomson, J. Worthington, D. G. Clayton, D. B. Dunger,

S. Nutland, H. E. Stevens, N. M. Walker, B. Widmer, J. A. Todd, T. A. Frayling, R. M.

Freathy, H. Lango, J. R. Perry, B. M. Shields, M. N. Weedon, A. T. Hattersley, G. A.

Hitman, M. Walker, K. S. Elliott, C. J. Groves, C. M. Lindgren, N. W. Rayner, N. J.

Timpson, E. Zeggini, M. I. McCarthy, M. Newport, G. Sirugo, E. Lyons, F. Vannberg,

A. V. Hill, L. A. Bradbury, C. Farrar, J. J. Pointon, P. Wordsworth, M. A. Brown, J. A.

Franklyn, J. M. Heward, M. J. Simmonds, S. C. Gough, S. Seal, M. R. Stratton, N. Rah-

man, M. Ban, A. Goris, S. J. Sawcer, A. Compston, D. Conway, M. Jallow, M. Newport,

G. Sirugo, K. A. Rockett, D. P. Kwiatowski, S. J. Bumpstead, A. Chaney, K. Downes,

M. J. Ghori, R. Gwilliam, S. E. Hunt, M. Inouye, A. Keniry, E. King, R. McGinnis,

S. Potter, R. Ravindrarajah, P. Whittaker, C. Widden, D. Withers, P. Deloukas, H. T. Le-

ung, S. Nutland, H. E. Stevens, N. M. Walker, J. A. Todd, D. Easton, D. G. Clayton,

P. R. Burton, M. D. Tobin, J. C. Barrett, D. Evans, A. P. Morris, L. R. Cardon, N. J.

Cardin, D. Davison, T. Ferreira, J. Pereira-Gale, I. B. Hallgrimsdottir, B. N. Howie, J. L.

Marchini, C. C. Spencer, Z. Su, Y. Y. Teo, D. Vukcevic, P. Donnelly, D. Bentley, M. A.

Brown, L. R. Gordon, M. Caulfield, D. G. Clayton, A. Compston, N. Craddock, P. De-

loukas, P. Donnelly, M. Farrall, S. C. Gough, A. S. Hall, A. T. Hattersley, A. V. Hill, D. P.

Kwiatkowski, C. Mathew, M. I. McCarthy, W. H. Ouwehand, M. Parkes, M. Pembrey,

208



N. Rahman, N. J. Samani, M. R. Stratton, J. A. Todd, and J. Worthington, “Genome-wide

association study of 14,000 cases of seven common diseases and 3,000 shared controls,”

Nature, vol. 447, pp. 661–678, Jun 2007.

[252] A. R. Wood, J. R. Perry, T. Tanaka, D. G. Hernandez, H. F. Zheng, D. Melzer, J. R. Gibbs,

M. A. Nalls, M. N. Weedon, T. D. Spector, J. B. Richards, S. Bandinelli, L. Ferrucci,

A. B. Singleton, and T. M. Frayling, “Imputation of variants from the 1000 Genomes

Project modestly improves known associations and can identify low-frequency variant-

phenotype associations undetected by HapMap based imputation,” PLoS One, vol. 8,

no. 5, p. e64343, 2013.

[253] S. Ripke, B. M. Neale, A. Corvin, J. T. Walters, K. H. Farh, P. A. Holmans, P. Lee,

B. Bulik-Sullivan, D. A. Collier, H. Huang, T. H. Pers, I. Agartz, E. Agerbo, M. Albus,

M. Alexander, F. Amin, S. A. Bacanu, M. Begemann, R. A. Belliveau, J. Bene, S. E.

Bergen, E. Bevilacqua, T. B. Bigdeli, D. W. Black, R. Bruggeman, N. G. Buccola, R. L.

Buckner, W. Byerley, W. Cahn, G. Cai, D. Campion, R. M. Cantor, V. J. Carr, N. Carrera,

S. V. Catts, K. D. Chambert, R. C. Chan, R. Y. Chen, E. Y. Chen, W. Cheng, E. F. Che-

ung, S. A. Chong, C. R. Cloninger, D. Cohen, N. Cohen, P. Cormican, N. Craddock, J. J.

Crowley, D. Curtis, M. Davidson, K. L. Davis, F. Degenhardt, J. Del Favero, D. Demon-

tis, D. Dikeos, T. Dinan, S. Djurovic, G. Donohoe, E. Drapeau, J. Duan, F. Dudbridge,

N. Durmishi, P. Eichhammer, J. Eriksson, V. Escott-Price, L. Essioux, A. H. Fanous,

M. S. Farrell, J. Frank, L. Franke, R. Freedman, N. B. Freimer, M. Friedl, J. I. Friedman,

M. Fromer, G. Genovese, L. Georgieva, I. Giegling, P. guez, S. Godard, J. I. Goldstein,

V. Golimbet, S. Gopal, J. Gratten, L. de Haan, C. Hammer, M. L. Hamshere, M. Hansen,

T. Hansen, V. Haroutunian, A. M. Hartmann, F. A. Henskens, S. Herms, J. N. Hirschhorn,

P. Hoffmann, A. Hofman, M. V. Hollegaard, D. M. Hougaard, M. Ikeda, I. Joa, A. Ã ,

R. S. Kahn, L. Kalaydjieva, S. Karachanak-Yankova, J. Karjalainen, D. Kavanagh, M. C.

Keller, J. L. Kennedy, A. Khrunin, Y. Kim, J. Klovins, J. A. Knowles, B. Konte, V. Kucin-

skas, Z. Ausrele Kucinskiene, H. Kuzelova-Ptackova, A. K. hler, C. Laurent, J. L. Keong,

S. H. Lee, S. E. Legge, B. Lerer, M. Li, T. Li, K. Y. Liang, J. Lieberman, S. Limborska,

C. M. Loughland, J. Lubinski, J. nnqvist, M. Macek, P. K. Magnusson, B. S. Maher,

W. Maier, J. Mallet, S. Marsal, M. Mattheisen, M. Mattingsdal, R. W. McCarley, C. Mc-

Donald, A. M. McIntosh, S. Meier, C. J. Meijer, B. Melegh, I. Melle, R. I. Mesholam-

Gately, A. Metspalu, P. T. Michie, L. Milani, V. Milanova, Y. Mokrab, D. W. Morris,

O. Mors, K. C. Murphy, R. M. Murray, I. Myin-Germeys, B. ller Myhsok, M. Nelis,

I. Nenadic, D. A. Nertney, G. Nestadt, K. K. Nicodemus, L. Nikitina-Zake, L. Nisen-

209



baum, A. Nordin, E. O’Callaghan, C. O’Dushlaine, F. A. O’Neill, S. Y. Oh, A. Olincy,

L. Olsen, J. Van Os, C. Pantelis, G. N. Papadimitriou, S. Papiol, E. Parkhomenko, M. T.

Pato, T. Paunio, M. Pejovic-Milovancevic, D. O. Perkins, O. inen, J. Pimm, A. J. Pock-

lington, J. Powell, A. Price, A. E. Pulver, S. M. Purcell, D. Quested, H. B. Rasmussen,

A. Reichenberg, M. A. Reimers, A. L. Richards, J. L. Roffman, P. Roussos, D. M. Rud-

erfer, V. Salomaa, A. R. Sanders, U. Schall, C. R. Schubert, T. G. Schulze, S. G. Schwab,

E. M. Scolnick, R. J. Scott, L. J. Seidman, J. Shi, E. Sigurdsson, T. Silagadze, J. M.

Silverman, K. Sim, P. Slominsky, J. W. Smoller, H. C. So, C. A. Spencer, E. A. Stahl,

H. Stefansson, S. Steinberg, E. Stogmann, R. E. Straub, E. Strengman, J. Strohmaier,

T. S. Stroup, M. Subramaniam, J. Suvisaari, D. M. Svrakic, J. P. Szatkiewicz, E. derman,

S. Thirumalai, D. Toncheva, S. Tosato, J. Veijola, J. Waddington, D. Walsh, D. Wang,

Q. Wang, B. T. Webb, M. Weiser, D. B. Wildenauer, N. M. Williams, S. Williams, S. H.

Witt, A. R. Wolen, E. H. Wong, B. K. Wormley, H. S. Xi, C. C. Zai, X. Zheng, F. Zim-

prich, N. R. Wray, K. Stefansson, P. M. Visscher, R. Adolfsson, O. A. Andreassen,

D. H. Blackwood, E. Bramon, J. D. Buxbaum, A. D. rglum, S. Cichon, A. Darvasi,

E. Domenici, H. Ehrenreich, T. Esko, P. V. Gejman, M. Gill, H. Gurling, C. M. Hultman,

N. Iwata, A. V. Jablensky, E. G. nsson, K. S. Kendler, G. Kirov, J. Knight, T. Lencz,

D. F. Levinson, Q. S. Li, J. Liu, A. K. Malhotra, S. A. McCarroll, A. McQuillin, J. L.

Moran, P. B. Mortensen, B. J. Mowry, M. M. then, R. A. Ophoff, M. J. Owen, A. Palotie,

C. N. Pato, T. L. Petryshen, D. Posthuma, M. Rietschel, B. P. Riley, D. Rujescu, P. C.

Sham, P. Sklar, D. St Clair, D. R. Weinberger, J. R. Wendland, T. Werge, M. J. Daly, P. F.

Sullivan, and M. C. O’Donovan, “Biological insights from 108 schizophrenia-associated

genetic loci,” Nature, vol. 511, pp. 421–427, Jul 2014.

[254] L. Yengo, S. Vedantam, E. Marouli, J. Sidorenko, E. Bartell, S. Sakaue, M. Graff, A. U.

Eliasen, Y. Jiang, S. Raghavan, J. Miao, J. D. Arias, S. E. Graham, R. E. Mukamel,

C. N. Spracklen, X. Yin, S. H. Chen, T. Ferreira, H. H. Highland, Y. Ji, T. Karaderi,

K. Lin, K. ll, D. E. Malden, C. Medina-Gomez, M. Machado, A. Moore, S. eger, X. Sim,

S. Vrieze, T. S. Ahluwalia, M. Akiyama, M. A. Allison, M. Alvarez, M. K. Andersen,

A. Ani, V. Appadurai, L. Arbeeva, S. Bhaskar, L. F. Bielak, S. Bollepalli, L. L. Bonnycas-

tle, J. Bork-Jensen, J. P. Bradfield, Y. Bradford, P. S. Braund, J. A. Brody, K. S. Burgdorf,

B. E. Cade, H. Cai, Q. Cai, A. Campbell, M. adas Garre, E. Catamo, J. F. Chai, X. Chai,

L. C. Chang, Y. C. Chang, C. H. Chen, A. Chesi, S. H. Choi, R. H. Chung, M. Cocca,

M. P. Concas, C. Couture, G. Cuellar-Partida, R. Danning, E. W. Daw, F. Degenhard,

G. E. Delgado, A. Delitala, A. Demirkan, X. Deng, P. Devineni, A. Dietl, M. Dimitriou,

L. Dimitrov, R. Dorajoo, A. B. Ekici, J. E. Engmann, Z. Fairhurst-Hunter, A. E. Farmaki,

210



J. D. Faul, J. C. Fernandez-Lopez, L. Forer, M. Francescatto, S. Freitag-Wolf, C. Fuchs-

berger, T. E. Galesloot, Y. Gao, Z. Gao, F. Geller, O. Giannakopoulou, F. Giulianini,

A. P. Gjesing, A. Goel, S. D. Gordon, M. Gorski, J. Grove, X. Guo, S. Gustafsson,

J. Haessler, T. F. Hansen, A. S. Havulinna, S. J. Haworth, J. He, N. Heard-Costa, P. Heb-

bar, G. Hindy, Y. A. Ho, E. Hofer, E. Holliday, K. Horn, W. E. Hornsby, J. J. Hottenga,

H. Huang, J. Huang, A. Huerta-Chagoya, J. E. Huffman, Y. J. Hung, S. Huo, M. Y.

Hwang, H. Iha, D. D. Ikeda, M. Isono, A. U. Jackson, S. ger, I. E. Jansen, I. Johans-

son, J. B. Jonas, A. Jonsson, T. rgensen, I. P. Kalafati, M. Kanai, S. Kanoni, L. L. rhus,

A. Kasturiratne, T. Katsuya, T. Kawaguchi, R. L. Kember, K. A. Kentistou, H. N. Kim,

Y. J. Kim, M. E. Kleber, M. J. Knol, A. Kurbasic, M. Lauzon, P. Le, R. Lea, J. Y. Lee,

H. L. Leonard, S. A. Li, X. Li, X. Li, J. Liang, H. Lin, S. Y. Lin, J. Liu, X. Liu, K. S.

Lo, J. Long, L. Lores-Motta, J. Luan, V. Lyssenko, L. P. inen, A. Mahajan, V. Mamakou,

M. Mangino, A. Manichaikul, J. Marten, M. Mattheisen, L. Mavarani, A. F. McDaid,

K. Meidtner, T. L. Melendez, J. M. Mercader, Y. Milaneschi, J. E. Miller, I. Y. Millwood,

P. P. Mishra, R. E. Mitchell, L. T. llehave, A. Morgan, S. Mucha, M. Munz, M. Naka-

tochi, C. P. Nelson, M. Nethander, C. W. Nho, A. A. Nielsen, I. M. Nolte, S. S. Nong-

maithem, R. Noordam, I. Ntalla, T. Nutile, A. Pandit, P. Christofidou, K. rna, M. Pauper,

E. R. B. Petersen, L. V. Petersen, N. nen, O. ek, A. Poveda, M. H. Preuss, S. Pyarajan,

L. M. Raffield, H. Rakugi, J. Ramirez, A. Rasheed, D. Raven, N. W. Rayner, C. Riveros,

R. Rohde, D. Ruggiero, S. E. Ruotsalainen, K. A. Ryan, M. Sabater-Lleal, R. Saxena,

M. Scholz, A. Sendamarai, B. Shen, J. Shi, J. H. Shin, C. Sidore, C. M. Sitlani, R. C.

Slieker, R. A. J. Smit, A. V. Smith, J. A. Smith, L. J. Smyth, L. Southam, V. Steinthors-

dottir, L. Sun, F. Takeuchi, D. S. P. Tallapragada, K. D. Taylor, B. O. Tayo, C. Tcheand-

jieu, N. Terzikhan, P. Tesolin, A. Teumer, E. Theusch, D. J. Thompson, G. Thorleifsson,

P. R. H. J. Timmers, S. Trompet, C. Turman, S. Vaccargiu, S. W. van der Laan, P. J.

van der Most, J. B. van Klinken, J. van Setten, S. S. Verma, N. Verweij, Y. Veturi, C. A.

Wang, C. Wang, L. Wang, Z. Wang, H. R. Warren, W. Bin Wei, A. R. Wickremasinghe,

M. Wielscher, K. L. Wiggins, B. S. Winsvold, A. Wong, Y. Wu, M. Wuttke, R. Xia,

T. Xie, K. Yamamoto, J. Yang, J. Yao, H. Young, N. A. Yousri, L. Yu, L. Zeng, W. Zhang,

X. Zhang, J. H. Zhao, W. Zhao, W. Zhou, M. E. Zimmermann, M. Zoledziewska, L. S.

Adair, H. H. H. Adams, C. A. Aguilar-Salinas, F. Al-Mulla, D. K. Arnett, F. W. Assel-

bergs, B. O. svold, J. Attia, B. Banas, S. Bandinelli, D. A. Bennett, T. Bergler, D. Bharad-

waj, G. Biino, H. Bisgaard, E. Boerwinkle, C. A. ger, K. nnelykke, D. I. Boomsma, A. D.

rglum, J. B. Borja, C. Bouchard, D. W. Bowden, I. Brandslund, B. Brumpton, J. E. Bur-

ing, M. J. Caulfield, J. C. Chambers, G. R. Chandak, S. J. Chanock, N. Chaturvedi,

211



Y. I. Chen, Z. Chen, C. Y. Cheng, I. E. Christophersen, M. Ciullo, J. W. Cole, F. S.

Collins, R. S. Cooper, M. Cruz, F. Cucca, L. A. Cupples, M. J. Cutler, S. M. Dam-

rauer, T. M. Dantoft, G. J. de Borst, L. C. P. G. M. de Groot, P. L. De Jager, D. P. V.

de Kleijn, H. Janaka de Silva, G. V. Dedoussis, A. I. den Hollander, S. Du, D. F. Easton,

P. J. M. Elders, A. H. Eliassen, P. T. Ellinor, S. hl, J. Erdmann, M. K. Evans, D. Fatkin,

B. Feenstra, M. F. Feitosa, L. Ferrucci, I. Ford, M. Fornage, A. Franke, P. W. Franks,

B. I. Freedman, P. Gasparini, C. Gieger, G. Girotto, M. E. Goddard, Y. M. Golightly,

C. Gonzalez-Villalpando, P. Gordon-Larsen, H. Grallert, S. F. A. Grant, N. Grarup,

L. Griffiths, V. Gudnason, C. Haiman, H. Hakonarson, T. Hansen, C. A. Hartman, A. T.

Hattersley, C. Hayward, S. R. Heckbert, C. K. Heng, C. Hengstenberg, A. W. Hewitt,

H. Hishigaki, C. B. Hoyng, P. L. Huang, W. Huang, S. C. Hunt, K. Hveem, E. nen, W. G.

Iacono, S. Ichihara, M. A. Ikram, C. R. Isasi, R. D. Jackson, M. R. Jarvelin, Z. B. Jin,

K. H. ckel, P. K. Joshi, P. Jousilahti, J. W. Jukema, M. nen, Y. Kamatani, K. D. Kang,

J. Kaprio, S. L. R. Kardia, F. Karpe, N. Kato, F. Kee, T. Kessler, A. V. Khera, C. C.

Khor, L. A. L. M. Kiemeney, B. J. Kim, E. K. Kim, H. L. Kim, P. Kirchhof, M. Kivi-

maki, W. P. Koh, H. A. Koistinen, G. D. Kolovou, J. S. Kooner, C. Kooperberg, A. ttgen,

P. Kovacs, A. Kraaijeveld, P. Kraft, R. M. Krauss, M. Kumari, Z. Kutalik, M. Laakso,

L. A. Lange, C. Langenberg, L. J. Launer, L. Le Marchand, H. Lee, N. R. Lee, T. ki,

H. Li, L. Li, W. Lieb, X. Lin, L. Lind, A. Linneberg, C. T. Liu, J. Liu, M. Loeffler,

B. London, S. A. Lubitz, S. J. Lye, D. A. Mackey, R. gi, P. K. E. Magnusson, G. M.

Marcus, P. M. Vidal, N. G. Martin, W. rz, F. Matsuda, R. W. McGarrah, M. McGue, A. J.

McKnight, S. E. Medland, D. m, A. Metspalu, B. D. Mitchell, P. Mitchell, D. O. Mook-

Kanamori, A. D. Morris, L. A. Mucci, P. B. Munroe, M. A. Nalls, S. Nazarian, A. E.

Nelson, M. J. Neville, C. Newton-Cheh, C. S. Nielsen, M. M. then, C. Ohlsson, A. J.

Oldehinkel, L. Orozco, K. Pahkala, P. Pajukanta, C. N. A. Palmer, E. J. Parra, C. Pattaro,

O. Pedersen, C. E. Pennell, B. W. J. H. Penninx, L. Perusse, A. Peters, P. A. Peyser, D. J.

Porteous, D. Posthuma, C. Power, P. P. Pramstaller, M. A. Province, Q. Qi, J. Qu, D. J.

Rader, O. T. Raitakari, S. Ralhan, L. S. Rallidis, D. C. Rao, S. Redline, D. F. Reilly, A. P.

Reiner, S. Y. Rhee, P. M. Ridker, M. Rienstra, S. Ripatti, M. D. Ritchie, D. M. Roden,

F. R. Rosendaal, J. I. Rotter, I. Rudan, F. Rutters, C. Sabanayagam, D. Saleheen, V. Sa-

lomaa, N. J. Samani, D. K. Sanghera, N. Sattar, B. Schmidt, H. Schmidt, R. Schmidt,

M. B. Schulze, H. Schunkert, L. J. Scott, R. J. Scott, P. Sever, E. J. Shiroma, M. B.

Shoemaker, X. O. Shu, E. M. Simonsick, M. Sims, J. R. Singh, A. B. Singleton, M. F.

Sinner, J. G. Smith, H. Snieder, T. D. Spector, M. J. Stampfer, K. J. Stark, D. P. Strachan,

L. M. ’t Hart, Y. Tabara, H. Tang, J. C. Tardif, T. A. Thanaraj, N. J. Timpson, A. njes,

212



A. Tremblay, T. Tuomi, J. Tuomilehto, M. T. Luna, A. G. Uitterlinden, R. M. van Dam,

P. van der Harst, N. Van der Velde, C. M. van Duijn, N. M. van Schoor, V. Vitart, U. lker,

P. Vollenweider, H. lzke, N. H. Wacher-Rodarte, M. Walker, Y. X. Wang, N. J. Ware-

ham, R. M. Watanabe, H. Watkins, D. R. Weir, T. M. Werge, E. Widen, L. R. Wilkens,

G. Willemsen, W. C. Willett, J. F. Wilson, T. Y. Wong, J. T. Woo, A. F. Wright, J. Y. Wu,

H. Xu, C. S. Yajnik, M. Yokota, J. M. Yuan, E. Zeggini, B. S. Zemel, W. Zheng, X. Zhu,

J. M. Zmuda, A. B. Zonderman, J. A. Zwart, D. I. Chasman, Y. S. Cho, I. M. Heid,

M. I. McCarthy, M. C. Y. Ng, C. J. O’Donnell, F. Rivadeneira, U. Thorsteinsdottir, Y. V.

Sun, E. S. Tai, M. Boehnke, P. Deloukas, A. E. Justice, C. M. Lindgren, R. J. F. Loos,

K. L. Mohlke, K. E. North, K. Stefansson, R. G. Walters, T. W. Winkler, K. L. Young,

P. R. Loh, J. Yang, T. Esko, T. L. Assimes, A. Auton, G. R. Abecasis, C. J. Willer, A. E.

Locke, S. I. Berndt, G. Lettre, T. M. Frayling, Y. Okada, A. R. Wood, P. M. Visscher,

J. N. Hirschhorn, G. C. Partida, Y. Sun, D. Croteau-Chonka, J. M. Vonk, S. Chanock, and

L. Le Marchand, “A saturated map of common genetic variants associated with human

height,” Nature, vol. 610, pp. 704–712, Oct 2022.

[255] A. B. Popejoy and S. M. Fullerton, “Genomics is failing on diversity,” Nature, vol. 538,

pp. 161–164, Oct 2016.

[256] J. H. Barrett, J. C. Taylor, and M. M. Iles, “Statistical perspectives for genome-wide

association studies (GWAS),” Methods Mol Biol, vol. 1168, pp. 47–61, 2014.

[257] A. Dehghan, “Genome-Wide Association Studies,” Methods Mol Biol, vol. 1793, pp. 37–

49, 2018.

[258] S. Pavan, C. Delvento, L. Ricciardi, C. Lotti, E. Ciani, and N. D’Agostino, “Recommen-

dations for Choosing the Genotyping Method and Best Practices for Quality Control in

Crop Genome-Wide Association Studies,” Front Genet, vol. 11, p. 447, 2020.

[259] A. T. Marees, H. de Kluiver, S. Stringer, F. Vorspan, E. Curis, C. Marie-Claire, and E. M.

Derks, “A tutorial on conducting genome-wide association studies: Quality control and

statistical analysis,” Int J Methods Psychiatr Res, vol. 27, p. e1608, Jun 2018.

[260] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller,

P. Sklar, P. I. de Bakker, M. J. Daly, and P. C. Sham, “PLINK: a tool set for whole-

genome association and population-based linkage analyses,” Am J Hum Genet, vol. 81,

pp. 559–575, Sep 2007.

213



[261] P. R. Loh, G. Tucker, B. K. Bulik-Sullivan, B. J. lmsson, H. K. Finucane, R. M. Salem,

D. I. Chasman, P. M. Ridker, B. M. Neale, B. Berger, N. Patterson, and A. L. Price,

“Efficient Bayesian mixed-model analysis increases association power in large cohorts,”

Nat Genet, vol. 47, pp. 284–290, Mar 2015.

[262] L. Jiang, Z. Zheng, H. Fang, and J. Yang, “A generalized linear mixed model association

tool for biobank-scale data,” Nat Genet, vol. 53, pp. 1616–1621, Nov 2021.

[263] D. O. Enoma, J. Bishung, T. Abiodun, O. Ogunlana, and V. C. Osamor, “Machine learn-

ing approaches to genome-wide association studies,” Journal of King Saud University-

Science, p. 101847, 2022.

[264] A. S. Kaler and L. C. Purcell, “Estimation of a significance threshold for genome-wide

association studies,” BMC Genomics, vol. 20, p. 618, Jul 2019.

[265] K. Watanabe, E. Taskesen, A. van Bochoven, and D. Posthuma, “Functional mapping

and annotation of genetic associations with FUMA,” Nat Commun, vol. 8, p. 1826, Nov

2017.

[266] Y. F. Pei, Q. Tian, L. Zhang, and H. W. Deng, “Exploring the Major Sources and Extent of

Heterogeneity in a Genome-Wide Association Meta-Analysis,” Ann Hum Genet, vol. 80,

pp. 113–122, Mar 2016.

[267] C. G. Crossner, J. Carlsson, B. din, A. rnvik, L. Unell, P. Venge, and L. Wranne, “Peri-

odontitis in the primary dentition associated with Actinobacillus actinomycetemcomitans

infection and leukocyte dysfunction. A 3 1/2 year follow-up,” J Clin Periodontol, vol. 17,

pp. 264–267, Apr 1990.

[268] G. R. Svishcheva, T. I. Axenovich, N. M. Belonogova, C. M. van Duijn, and Y. S.

Aulchenko, “Rapid variance components-based method for whole-genome association

analysis,” Nat Genet, vol. 44, pp. 1166–1170, Oct 2012.

[269] J. Jakobsdottir and M. S. McPeek, “MASTOR: mixed-model association mapping of

quantitative traits in samples with related individuals,” Am J Hum Genet, vol. 92,

pp. 652–666, May 2013.

[270] H. M. Kang, N. A. Zaitlen, C. M. Wade, A. Kirby, D. Heckerman, M. J. Daly, and E. Es-

kin, “Efficient control of population structure in model organism association mapping,”

Genetics, vol. 178, no. 3, pp. 1709–1723, 2008.

214



[271] Z. Zhang, E. Ersoz, C. Q. Lai, R. J. Todhunter, H. K. Tiwari, M. A. Gore, P. J. Bradbury,

J. Yu, D. K. Arnett, J. M. Ordovas, and E. S. Buckler, “Mixed linear model approach

adapted for genome-wide association studies,” Nat Genet, vol. 42, pp. 355–360, Apr

2010.

[272] C. Lippert, J. Listgarten, Y. Liu, C. M. Kadie, R. I. Davidson, and D. Heckerman, “FaST

linear mixed models for genome-wide association studies,” Nat Methods, vol. 8, pp. 833–

835, Sep 2011.

[273] X. Zhou and M. Stephens, “Genome-wide efficient mixed-model analysis for association

studies,” Nat Genet, vol. 44, pp. 821–824, Jun 2012.

[274] J. Eu-Ahsunthornwattana, E. N. Miller, M. Fakiola, S. M. Jeronimo, J. M. Blackwell,

and H. J. Cordell, “Comparison of methods to account for relatedness in genome-wide

association studies with family-based data,” PLoS Genet, vol. 10, p. e1004445, Jul 2014.

[275] C. Widmer, C. Lippert, O. Weissbrod, N. Fusi, C. Kadie, R. Davidson, J. Listgarten,

and D. Heckerman, “Further improvements to linear mixed models for genome-wide

association studies,” Sci Rep, vol. 4, p. 6874, Nov 2014.

[276] A. L. Price, N. A. Zaitlen, D. Reich, and N. Patterson, “New approaches to population

stratification in genome-wide association studies,” Nat Rev Genet, vol. 11, pp. 459–463,

Jul 2010.

[277] J. Listgarten, C. Lippert, C. M. Kadie, R. I. Davidson, E. Eskin, and D. Heckerman, “Im-

proved linear mixed models for genome-wide association studies,” Nat Methods, vol. 9,

pp. 525–526, May 2012.

[278] D. Bennett, D. O’Shea, J. Ferguson, D. Morris, and C. Seoighe, “Controlling for back-

ground genetic effects using polygenic scores improves the power of genome-wide asso-

ciation studies,” Sci Rep, vol. 11, p. 19571, Oct 2021.

[279] N. R. Wray, K. E. Kemper, B. J. Hayes, M. E. Goddard, and P. M. Visscher, “Complex

Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans:

Genomic Prediction,” Genetics, vol. 211, pp. 1131–1141, Apr 2019.

[280] T. H. Meuwissen, B. J. Hayes, and M. E. Goddard, “Prediction of total genetic value

using genome-wide dense marker maps,” Genetics, vol. 157, pp. 1819–1829, Apr 2001.

[281] T. H. Meuwissen, B. J. Hayes, and M. Goddard, “Prediction of total genetic value using

genome-wide dense marker maps,” genetics, vol. 157, no. 4, pp. 1819–1829, 2001.

215



[282] A. C. Fahed, A. A. Philippakis, and A. V. Khera, “The potential of polygenic scores to

improve cost and efficiency of clinical trials,” Nat Commun, vol. 13, p. 2922, May 2022.

[283] M. Dehestani, H. Liu, and T. Gasser, “Polygenic Risk Scores Contribute to Personalized

Medicine of Parkinson’s Disease,” J Pers Med, vol. 11, Oct 2021.

[284] B. Cross, R. Turner, and M. Pirmohamed, “Polygenic risk scores: An overview from

bench to bedside for personalised medicine,” Front Genet, vol. 13, p. 1000667, 2022.

[285] J. R. Ashenhurst, O. V. Sazonova, O. Svrchek, S. Detweiler, R. Kita, L. Babalola,

M. McIntyre, S. Aslibekyan, P. Fontanillas, S. Shringarpure, J. D. Pollard, and B. L.

Koelsch, “A Polygenic Score for Type 2 Diabetes Improves Risk Stratification Beyond

Current Clinical Screening Factors in an Ancestrally Diverse Sample,” Front Genet,

vol. 13, p. 871260, 2022.

[286] S. Mistry, J. R. Harrison, D. J. Smith, V. Escott-Price, and S. Zammit, “The use of poly-

genic risk scores to identify phenotypes associated with genetic risk of schizophrenia:

Systematic review,” Schizophr Res, vol. 197, pp. 2–8, Jul 2018.

[287] B. J. Coombes, M. Markota, J. J. Mann, C. Colby, E. Stahl, A. Talati, J. Pathak, M. M.

Weissman, S. L. McElroy, M. A. Frye, and J. M. Biernacka, “Dissecting clinical het-

erogeneity of bipolar disorder using multiple polygenic risk scores,” Transl Psychiatry,

vol. 10, p. 314, Sep 2020.

[288] E. Agerbo, B. B. Trabjerg, A. D. rglum, A. J. Schork, B. J. lmsson, C. B. Pedersen,

C. Hakulinen, C. ana, D. M. Hougaard, J. Grove, J. J. McGrath, J. Bybjerg-Grauholm,

O. Mors, O. Plana-Ripoll, T. Werge, N. R. Wray, P. B. Mortensen, and K. L. Musliner,

“Risk of Early-Onset Depression Associated With Polygenic Liability, Parental Psychi-

atric History, and Socioeconomic Status,” JAMA Psychiatry, vol. 78, pp. 387–397, Apr

2021.

[289] J. Euesden, C. M. Lewis, and P. F. O’Reilly, “PRSice: Polygenic Risk Score software,”

Bioinformatics, vol. 31, pp. 1466–1468, May 2015.

[290] B. J. lmsson, J. Yang, H. K. Finucane, A. Gusev, S. m, S. Ripke, G. Genovese, P. R. Loh,

G. Bhatia, R. Do, T. Hayeck, H. H. Won, S. Kathiresan, M. Pato, C. Pato, R. Tamimi,

E. Stahl, N. Zaitlen, B. Pasaniuc, G. Belbin, E. E. Kenny, M. H. Schierup, P. De Jager,

N. A. Patsopoulos, S. McCarroll, M. Daly, S. Purcell, D. Chasman, B. Neale, M. God-

dard, P. M. Visscher, P. Kraft, N. Patterson, A. L. Price, S. Ripke, B. M. Neale, A. Corvin,

216



J. T. Walters, K. H. Farh, P. A. Holmans, P. Lee, B. Bulik-Sullivan, D. A. Collier,

H. Huang, T. H. Pers, I. Agartz, E. Agerbo, M. Albus, M. Alexander, F. Amin, S. A. Ba-

canu, M. Begemann, R. A. Belliveau, J. Bene, S. E. Bergen, E. Bevilacqua, T. B. Bigdeli,

D. W. Black, R. Bruggeman, N. G. Buccola, R. L. Buckner, W. Byerley, W. Cahn,

G. Cai, D. Campion, R. M. Cantor, V. J. Carr, N. Carrera, S. V. Catts, K. D. Cham-

bert, R. C. Chan, R. Y. Chen, E. Y. Chen, W. Cheng, E. F. Cheung, S. A. Chong, C. R.

Cloninger, D. Cohen, N. Cohen, P. Cormican, N. Craddock, J. J. Crowley, D. Curtis,

M. Davidson, K. L. Davis, F. Degenhardt, J. Del Favero, L. E. DeLisi, D. Demontis,

D. Dikeos, T. Dinan, S. Djurovic, G. Donohoe, E. Drapeau, J. Duan, F. Dudbridge,

N. Durmishi, P. Eichhammer, J. Eriksson, V. Escott-Price, L. Essioux, A. H. Fanous,

M. S. Farrell, J. Frank, L. Franke, R. Freedman, N. B. Freimer, M. Friedl, J. I. Friedman,

M. Fromer, G. Genovese, L. Georgieva, E. S. Gershon, I. Giegling, P. Giusti-Rodrguez,

S. Godard, J. I. Goldstein, V. Golimbet, S. Gopal, J. Gratten, J. Grove, L. de Haan,

C. Hammer, M. L. Hamshere, M. Hansen, T. Hansen, V. Haroutunian, A. M. Hart-

mann, F. A. Henskens, S. Herms, J. N. Hirschhorn, P. Hoffmann, A. Hofman, M. V.

Hollegaard, D. M. Hougaard, M. Ikeda, I. Joa, A. Julia, R. S. Kahn, L. Kalaydjieva,

S. Karachanak-Yankova, J. Karjalainen, D. Kavanagh, M. C. Keller, B. J. Kelly, J. L.

Kennedy, A. Khrunin, Y. Kim, J. Klovins, J. A. Knowles, B. Konte, V. Kucinskas,

Z. A. Kucinskiene, H. Kuzelova-Ptackova, A. K. Kahler, C. Laurent, J. L. Keong, S. H.

Lee, S. E. Legge, B. Lerer, M. Li, T. Li, K. Y. Liang, J. Lieberman, S. Limborska,

C. M. Loughland, J. Lubinski, J. Lnnqvist, M. Macek, P. K. Magnusson, B. S. Ma-

her, W. Maier, J. Mallet, S. Marsal, M. Mattheisen, M. Mattingsdal, R. W. McCar-

ley, C. McDonald, A. M. McIntosh, S. Meier, C. J. Meijer, B. Melegh, I. Melle, R. I.

Mesholam-Gately, A. Metspalu, P. T. Michie, L. Milani, V. Milanova, Y. Mokrab, D. W.

Morris, O. Mors, P. B. Mortensen, K. C. Murphy, R. M. Murray, I. Myin-Germeys,

B. Mller-Myhsok, M. Nelis, I. Nenadic, D. A. Nertney, G. Nestadt, K. K. Nicodemus,

L. Nikitina-Zake, L. Nisenbaum, A. Nordin, E. O’Callaghan, C. O’Dushlaine, F. A.

O’Neill, S. Y. Oh, A. Olincy, L. Olsen, J. Van Os, C. Pantelis, G. N. Papadimitriou, S. Pa-

piol, E. Parkhomenko, M. T. Pato, T. Paunio, M. Pejovic-Milovancevic, D. O. Perkins,

O. Pietilinen, J. Pimm, A. J. Pocklington, J. Powell, A. Price, A. E. Pulver, S. M. Pur-

cell, D. Quested, H. B. Rasmussen, A. Reichenberg, M. A. Reimers, A. L. Richards,

J. L. Roffman, P. Roussos, D. M. Ruderfer, V. Salomaa, A. R. Sanders, U. Schall, C. R.

Schubert, T. G. Schulze, S. G. Schwab, E. M. Scolnick, R. J. Scott, L. J. Seidman, J. Shi,

E. Sigurdsson, T. Silagadze, J. M. Silverman, K. Sim, P. Slominsky, J. W. Smoller, H. C.

So, C. C. Spencer, E. A. Stahl, H. Stefansson, S. Steinberg, E. Stogmann, R. E. Straub,

217



E. Strengman, J. Strohmaier, T. S. Stroup, M. Subramaniam, J. Suvisaari, D. M. Svra-

kic, J. P. Szatkiewicz, E. Sderman, S. Thirumalai, D. Toncheva, P. A. Tooney, S. Tosato,

J. Veijola, J. Waddington, D. Walsh, D. Wang, Q. Wang, B. T. Webb, M. Weiser, D. B.

Wildenauer, N. M. Williams, S. Williams, S. H. Witt, A. R. Wolen, E. H. Wong, B. K.

Wormley, J. Q. Wu, H. S. Xi, C. C. Zai, X. Zheng, F. Zimprich, N. R. Wray, K. Stefans-

son, P. M. Visscher, R. Adolfsson, O. A. Andreassen, D. H. Blackwood, E. Bramon, J. D.

Buxbaum, A. D. rglum, S. Cichon, A. Darvasi, E. Domenici, H. Ehrenreich, T. Esko, P. V.

Gejman, M. Gill, H. Gurling, C. M. Hultman, N. Iwata, A. V. Jablensky, E. G. Jonsson,

K. S. Kendler, G. Kirov, J. Knight, T. Lencz, D. F. Levinson, Q. S. Li, J. Liu, A. K. Mal-

hotra, S. A. McCarroll, A. McQuillin, J. L. Moran, P. B. Mortensen, B. J. Mowry, M. M.

Nthen, R. A. Ophoff, M. J. Owen, A. Palotie, C. N. Pato, T. L. Petryshen, D. Posthuma,

M. Rietschel, B. P. Riley, D. Rujescu, P. C. Sham, P. Sklar, D. St Clair, D. R. Weinberger,

J. R. Wendland, T. Werge, M. J. Daly, P. F. Sullivan, M. C. O’Donovan, P. Kraft, D. J.

Hunter, M. Adank, H. Ahsan, K. ki, L. Baglietto, S. Berndt, C. Blomquist, F. Canzian,

J. Chang-Claude, S. J. Chanock, L. Crisponi, K. Czene, N. Dahmen, I. d. o. s. S. Silva,

D. Easton, A. H. Eliassen, J. Figueroa, O. Fletcher, M. Garcia-Closas, M. M. Gaudet,

L. Gibson, C. A. Haiman, P. Hall, A. Hazra, R. Hein, B. E. Henderson, A. Hofman, J. L.

Hopper, A. Irwanto, M. Johansson, R. Kaaks, M. G. Kibriya, P. Lichtner, S. m, J. Liu,

E. Lund, E. Makalic, A. Meindl, H. Meijers-Heijboer, B. ller Myhsok, T. A. Muranen,

H. Nevanlinna, P. H. Peeters, J. Peto, R. L. Prentice, N. Rahman, M. J. nchez, D. F.

Schmidt, R. K. Schmutzler, M. C. Southey, R. Tamimi, R. Travis, C. Turnbull, A. G.

Uitterlinden, R. B. van der Luijt, Q. Waisfisz, Z. Wang, A. S. Whittemore, R. Yang, and

W. Zheng, “Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk

Scores,” Am J Hum Genet, vol. 97, pp. 576–592, Oct 2015.

[291] F. Ã©, J. Arbel, and B. J. lmsson, “LDpred2: better, faster, stronger,” Bioinformatics,

vol. 36, pp. 5424–5431, Apr 2021.

[292] L. R. Lloyd-Jones, J. Zeng, J. Sidorenko, L. Yengo, G. Moser, K. E. Kemper, H. Wang,

Z. Zheng, R. Magi, T. Esko, A. Metspalu, N. R. Wray, M. E. Goddard, J. Yang, and P. M.

Visscher, “Improved polygenic prediction by Bayesian multiple regression on summary

statistics,” Nat Commun, vol. 10, p. 5086, Nov 2019.

[293] T. Wilkinson, C. Schnier, K. Bush, K. e, D. E. Henshall, C. Lerpiniere, N. E. Allen,

R. Flaig, T. C. Russ, D. Bathgate, S. Pal, J. T. O’Brien, and C. L. M. Sudlow, “Identi-

fying dementia outcomes in UK Biobank: a validation study of primary care, hospital

admissions and mortality data,” Eur J Epidemiol, vol. 34, pp. 557–565, Jun 2019.

218



[294] J. Elliott, B. Bodinier, M. Whitaker, C. Delpierre, R. Vermeulen, I. Tzoulaki, P. Elliott,

and M. Chadeau-Hyam, “COVID-19 mortality in the UK Biobank cohort: revisiting and

evaluating risk factors,” Eur J Epidemiol, vol. 36, pp. 299–309, Mar 2021.

[295] A. Mullard, “The UK Biobank at 20,” Nat Rev Drug Discov, vol. 21, pp. 628–629, Sep

2022.

[296] U. Biobank, “Press release,” https://www.ukbiobank.ac.uk/learn-more-about-uk-

biobank/news/regeneron-announces-major-collaboration-to-exome-sequence-uk-

biobank-genetic-data-more-quickly.

[297] S. Inst, “Press release,” https://www.sanger.ac.uk/collaboration/uk-biobank-whole-

genome-sequencing-project/.

[298] R. Beelen, O. Raaschou-Nielsen, M. Stafoggia, Z. J. Andersen, G. Weinmayr, B. Hoff-

mann, K. Wolf, E. Samoli, P. Fischer, M. Nieuwenhuijsen, et al., “Effects of long-term

exposure to air pollution on natural-cause mortality: an analysis of 22 european cohorts

within the multicentre escape project,” The lancet, vol. 383, no. 9919, pp. 785–795, 2014.

[299] I. P. Gorlov, O. Y. Gorlova, M. L. Frazier, M. R. Spitz, and C. I. Amos, “Evolutionary

evidence of the effect of rare variants on disease etiology,” Clin Genet, vol. 79, pp. 199–

206, Mar 2011.

[300] N. authors listed, “STAARpipeline: an all-in-one rare-variant tool for biobank-scale

whole-genome sequencing data,” Nat Methods, vol. 19, pp. 1532–1533, Dec 2022.

[301] Q. Wang, R. S. Dhindsa, K. Carss, A. R. Harper, A. Nag, I. Tachmazidou, D. Vitsios,

S. V. V. Deevi, A. Mackay, D. Muthas, M. hn, S. Monkley, H. Olsson, S. Wasilewski,

K. R. Smith, R. March, A. Platt, C. Haefliger, S. Petrovski, B. R. Angermann, R. Artzi,

C. Barrett, M. Belvisi, M. Bohlooly-Y, O. Burren, L. Buvall, B. Challis, S. Cameron-

Christie, S. Cohen, A. Davis, R. F. Danielson, B. Dougherty, B. Georgi, Z. Ghazoui,

P. B. L. Hansen, F. Hu, M. Jeznach, X. Jiang, C. Kumar, Z. Lai, G. Lassi, S. H. Lewis,

B. Linghu, K. Lythgow, P. Maccallum, C. Martins, A. Matakidou, E. lsson, S. Moos-

mang, S. O’Dell, Y. Ohne, J. Okae, A. O’Neill, D. S. Paul, A. Reznichenko, M. A.

Snowden, A. Walentinsson, J. Zeron, and M. N. Pangalos, “Rare variant contribution to

human disease in 281,104 UK Biobank exomes,” Nature, vol. 597, pp. 527–532, Sep

2021.

[302] P. Dornbos, R. Koesterer, A. Ruttenburg, T. Nguyen, J. B. Cole, A. Leong, J. B. Meigs,

J. C. Florez, J. I. Rotter, M. S. Udler, and J. Flannick, “A combined polygenic score of

219



21,293 rare and 22 common variants improves diabetes diagnosis based on hemoglobin

A1C levels,” Nat Genet, vol. 54, pp. 1609–1614, Nov 2022.

[303] S. J. Jurgens, S. H. Choi, V. N. Morrill, M. Chaffin, J. P. Pirruccello, J. L. Halford, L. C.

Weng, V. Nauffal, C. Roselli, A. W. Hall, M. T. Oetjens, B. Lagerman, D. P. vanMaanen,

K. G. Aragam, K. L. Lunetta, C. M. Haggerty, S. A. Lubitz, P. T. Ellinor, G. Abecasis,

X. Bai, S. Balasubramanian, A. Baras, C. Beechert, B. Boutkov, M. Cantor, G. Coppola,

T. De, A. Deubler, A. Economides, G. Eom, M. A. R. Ferreira, C. Forsythe, E. D. Fuller,

Z. Gu, L. Habegger, A. Hawes, M. B. Jones, K. Karalis, S. Khalid, O. Krasheninina,

R. Lanche, M. Lattari, D. Li, A. Lopez, L. A. Lotta, K. Manoochehri, A. J. Mansfield,

E. K. Maxwell, J. Mighty, L. J. Mitnaul, M. Nafde, J. Nielsen, S. O’Keeffe, M. Orelus,

J. D. Overton, M. S. Padilla, R. Panea, T. Polanco, M. Pradhan, A. Rasool, J. G. Reid,

W. Salerno, T. D. Schleicher, A. Shuldiner, K. Siminovitch, J. C. Staples, R. H. Ulloa,

N. Verweij, L. Widom, and S. E. Wolf, “Analysis of rare genetic variation underlying

cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank,” Nat

Genet, vol. 54, pp. 240–250, Mar 2022.

[304] X. Wang, E. Lim, C. T. Liu, Y. J. Sung, D. C. Rao, A. C. Morrison, E. Boerwinkle, A. K.

Manning, and H. Chen, “Efficient gene-environment interaction tests for large biobank-

scale sequencing studies,” Genet Epidemiol, vol. 44, pp. 908–923, Nov 2020.

[305] S. P. Kar, P. M. Quiros, M. Gu, T. Jiang, J. Mitchell, R. Langdon, V. Iyer, C. Barcena,

M. S. Vijayabaskar, M. A. Fabre, P. Carter, S. Petrovski, S. Burgess, and G. S. Vassiliou,

“Genome-wide analyses of 200,453 individuals yield new insights into the causes and

consequences of clonal hematopoiesis,” Nat Genet, vol. 54, pp. 1155–1166, Aug 2022.

[306] M. D. Kessler, A. Damask, S. O’Keeffe, M. V. Meter, N. Banerjee, S. Semrau, D. Li,

K. Watanabe, J. Horowitz, Y. Houvras, C. Gillies, J. Mbatchou, R. R. White, J. A. Kos-

micki, M. G. LeBlanc, M. Jones, R. G. Center, G.-R. D. Collaboration, D. J. Glass, L. A.

Lotta, M. N. Cantor, G. S. Atwal, A. E. Locke, M. A. R. Ferreira, R. Deering, C. Pauld-

ing, A. R. Shuldiner, G. Thurston, W. Salerno, J. G. Reid, J. D. Overton, J. Marchini,

H. M. Kang, A. Baras, G. R. Abecasis, and E. Jorgenson, “Exome sequencing of 628,388

individuals identifies common and rare variant associations with clonal hematopoiesis

phenotypes,” medRxiv, 2022.

[307] L. Chen, P. Liu, T. C. Evans, and L. M. Ettwiller, “DNA damage is a pervasive cause

of sequencing errors, directly confounding variant identification,” Science, vol. 355,

pp. 752–756, Feb 2017.

220



[308] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,

and R. Durbin, “The Sequence Alignment/Map format and SAMtools,” Bioinformatics,

vol. 25, pp. 2078–2079, Aug 2009.

[309] F. Abascal, L. M. R. Harvey, E. Mitchell, A. R. J. Lawson, S. V. Lensing, P. Ellis, A. J. C.

Russell, R. E. Alcantara, A. Baez-Ortega, Y. Wang, E. J. Kwa, H. Lee-Six, A. Cagan,

T. H. H. Coorens, M. S. Chapman, S. Olafsson, S. Leonard, D. Jones, H. E. Machado,

M. Davies, N. F. Øbro, K. T. Mahubani, K. Allinson, M. Gerstung, K. Saeb-Parsy, D. G.

Kent, E. Laurenti, M. R. Stratton, R. Rahbari, P. J. Campbell, R. J. Osborne, and I. Mart-

incorena, “Somatic mutation landscapes at single-molecule resolution,” Nature, vol. 593,

pp. 405–410, May 2021. Number: 7859 Publisher: Nature Publishing Group.

[310] M. Rodriguez-Galindo, S. Casillas, D. Weghorn, and A. Barbadilla, “Germline de novo

mutation rates on exons versus introns in humans,” Nat Commun, vol. 11, p. 3304, Jul

2020.

[311] J. Frigola, R. Sabarinathan, L. Mularoni, F. os, A. Gonzalez-Perez, and N. pez Bigas,

“Reduced mutation rate in exons due to differential mismatch repair,” Nat Genet, vol. 49,

pp. 1684–1692, Dec 2017.

[312] A. P. Patel, M. Wang, A. C. Fahed, H. Mason-Suares, D. Brockman, R. Pelletier, S. Amr,

K. Machini, M. Hawley, L. Witkowski, C. Koch, A. Philippakis, C. A. Cassa, P. T. Elli-

nor, S. Kathiresan, K. Ng, M. Lebo, and A. V. Khera, “Association of Rare Pathogenic

DNA Variants for Familial Hypercholesterolemia, Hereditary Breast and Ovarian Can-

cer Syndrome, and Lynch Syndrome With Disease Risk in Adults According to Family

History,” JAMA Netw Open, vol. 3, p. e203959, Apr 2020.

[313] A. M. D’Gama and C. A. Walsh, “Somatic mosaicism and neurodevelopmental disease,”

Nat Neurosci, vol. 21, pp. 1504–1514, Nov 2018.

[314] D. J. Burgess, “A body-wide view of somatic mutations,” Nat Rev Genet, vol. 22, p. 689,

Nov 2021.

[315] J. Hu, S. Adar, C. P. Selby, J. D. Lieb, and A. Sancar, “Genome-wide analysis of hu-

man global and transcription-coupled excision repair of UV damage at single-nucleotide

resolution,” Genes Dev, vol. 29, pp. 948–960, May 2015.

[316] T. Lindahl and D. E. Barnes, “Repair of endogenous DNA damage,” Cold Spring Harb

Symp Quant Biol, vol. 65, pp. 127–133, 2000.

221



[317] P. Ren, X. Dong, and J. Vijg, “Age-related somatic mutation burden in human tissues,”

Front Aging, vol. 3, p. 1018119, 2022.

[318] Z. R. Chalmers, C. F. Connelly, D. Fabrizio, L. Gay, S. M. Ali, R. Ennis, A. Schrock,

B. Campbell, A. Shlien, J. Chmielecki, F. Huang, Y. He, J. Sun, U. Tabori, M. Kennedy,

D. S. Lieber, S. Roels, J. White, G. A. Otto, J. S. Ross, L. Garraway, V. A. Miller, P. J.

Stephens, and G. M. Frampton, “Analysis of 100,000 human cancer genomes reveals the

landscape of tumor mutational burden,” Genome Med, vol. 9, p. 34, Apr 2017.

[319] B. Werner and A. Sottoriva, “Variation of mutational burden in healthy human tissues

suggests non-random strand segregation and allows measuring somatic mutation rates,”

PLoS Comput Biol, vol. 14, p. e1006233, Jun 2018.

[320] J. D. Backman, A. H. Li, A. Marcketta, D. Sun, J. Mbatchou, M. D. Kessler, C. Ben-

ner, D. Liu, A. E. Locke, S. Balasubramanian, A. Yadav, N. Banerjee, C. E. Gillies,

A. Damask, S. Liu, X. Bai, A. Hawes, E. Maxwell, L. Gurski, K. Watanabe, J. A. Kos-

micki, V. Rajagopal, J. Mighty, M. Jones, L. Mitnaul, E. Stahl, G. Coppola, E. Jorgenson,

L. Habegger, W. J. Salerno, A. R. Shuldiner, L. A. Lotta, J. D. Overton, M. N. Cantor,

J. G. Reid, G. Yancopoulos, H. M. Kang, J. Marchini, A. Baras, G. R. Abecasis, and

M. A. R. Ferreira, “Exome sequencing and analysis of 454,787 UK Biobank partici-

pants,” Nature, vol. 599, pp. 628–634, Nov 2021.

[321] A. Carducci, R. Vannucchi, M. Guidi, D. Reali, and M. A. Ruschi, “Human rotavirus

detection in stool specimens using enzyme-linked immunosorbent assays and latex ag-

glutination test,” Boll Ist Sieroter Milan, vol. 67, no. 3, pp. 241–244, 1988.

[322] M. L. Hoang, I. Kinde, C. Tomasetti, K. W. McMahon, T. A. Rosenquist, A. P. Grollman,

K. W. Kinzler, B. Vogelstein, and N. Papadopoulos, “Genome-wide quantification of rare

somatic mutations in normal human tissues using massively parallel sequencing,” Proc

Natl Acad Sci U S A, vol. 113, pp. 9846–9851, Aug 2016.

[323] J. R. Huyghe, S. A. Bien, T. A. Harrison, H. M. Kang, S. Chen, S. L. Schmit, D. V.

Conti, C. Qu, J. Jeon, C. K. Edlund, P. Greenside, M. Wainberg, F. R. Schumacher, J. D.

Smith, D. M. Levine, S. C. Nelson, N. A. Sinnott-Armstrong, D. Albanes, M. H. Alonso,

K. Anderson, C. Arnau-Collell, V. Arndt, C. Bamia, B. L. Banbury, J. A. Baron, S. I.

Berndt, S. zieau, D. T. Bishop, J. Boehm, H. Boeing, H. Brenner, S. Brezina, S. Buch,

D. D. Buchanan, A. Burnett-Hartman, K. Butterbach, B. J. Caan, P. T. Campbell, C. S.

Carlson, S. Bel, A. T. Chan, J. Chang-Claude, S. J. Chanock, M. D. Chirlaque, S. H.

222



Cho, C. M. Connolly, A. J. Cross, K. Cuk, K. R. Curtis, A. de la Chapelle, K. F. Do-

heny, D. Duggan, D. F. Easton, S. G. Elias, F. Elliott, D. R. English, E. J. M. Feskens,

J. C. Figueiredo, R. Fischer, L. M. FitzGerald, D. Forman, M. Gala, S. Gallinger, W. J.

Gauderman, G. G. Giles, E. Gillanders, J. Gong, P. J. Goodman, W. M. Grady, J. S.

Grove, A. Gsur, M. J. Gunter, R. W. Haile, J. Hampe, H. Hampel, S. Harlid, R. B. Hayes,

P. Hofer, M. Hoffmeister, J. L. Hopper, W. L. Hsu, W. Y. Huang, T. J. Hudson, D. J.

Hunter, G. ez Sanz, G. E. Idos, R. Ingersoll, R. D. Jackson, E. J. Jacobs, M. A. Jenkins,

A. D. Joshi, C. E. Joshu, T. O. Keku, T. J. Key, H. R. Kim, E. Kobayashi, L. N. Kolonel,

C. Kooperberg, T. hn, S. ry, S. S. Kweon, S. C. Larsson, C. A. Laurie, L. Le Marchand,

S. M. Leal, S. C. Lee, F. Lejbkowicz, M. Lemire, C. I. Li, L. Li, W. Lieb, Y. Lin, A. Lind-

blom, N. M. Lindor, H. Ling, T. L. Louie, S. Ã¶, S. D. Markowitz, V. n, G. Masala, C. E.

McNeil, M. Melas, R. L. Milne, L. Moreno, N. Murphy, R. Myte, A. Naccarati, P. A.

Newcomb, K. Offit, S. Ogino, N. C. Onland-Moret, B. Pardini, P. S. Parfrey, R. Pearl-

man, V. Perduca, P. D. P. Pharoah, M. Pinchev, E. A. Platz, R. L. Prentice, E. Pugh,

L. Raskin, G. Rennert, H. S. Rennert, E. Riboli, M. guez Barranco, J. Romm, L. C.

Sakoda, C. Schafmayer, R. E. Schoen, D. Seminara, M. Shah, T. Shelford, M. H. Shin,

K. Shulman, S. Sieri, M. L. Slattery, M. C. Southey, Z. K. Stadler, C. Stegmaier, Y. R.

Su, C. M. Tangen, S. N. Thibodeau, D. C. Thomas, S. S. Thomas, A. E. Toland, A. Tri-

chopoulou, C. M. Ulrich, D. J. Van Den Berg, F. J. B. van Duijnhoven, B. Van Guelpen,

H. van Kranen, J. Vijai, K. Visvanathan, P. Vodicka, L. Vodickova, V. Vymetalkova,

K. Weigl, S. J. Weinstein, E. White, A. K. Win, C. R. Wolf, A. Wolk, M. O. Woods,

A. H. Wu, S. H. Zaidi, B. W. Zanke, Q. Zhang, W. Zheng, P. C. Scacheri, J. D. Potter,

M. C. Bassik, A. Kundaje, G. Casey, V. Moreno, G. R. Abecasis, D. A. Nickerson, S. B.

Gruber, L. Hsu, and U. Peters, “Discovery of common and rare genetic risk variants for

colorectal cancer,” Nat Genet, vol. 51, pp. 76–87, Jan 2019.

[324] S. Wang, J. J. Pitt, Y. Zheng, T. F. Yoshimatsu, G. Gao, A. Sanni, O. Oluwasola, M. Ajani,

D. Fitzgerald, A. Odetunde, G. Khramtsova, I. Hurley, A. Popoola, A. Falusi, T. Ogundi-

ran, J. Obafunwa, O. Ojengbede, N. Ibrahim, J. Barretina, K. P. White, D. Huo, and O. I.

Olopade, “Germline variants and somatic mutation signatures of breast cancer across

populations of African and European ancestry in the US and Nigeria,” Int J Cancer,

vol. 145, pp. 3321–3333, Dec 2019.

[325] M. Vali-Pour, B. Lehner, and F. Supek, “The impact of rare germline variants on human

somatic mutation processes,” Nat Commun, vol. 13, p. 3724, Jun 2022.

223



[326] L. B. Alexandrov, S. Nik-Zainal, D. C. Wedge, P. J. Campbell, and M. R. Stratton, “Deci-

phering signatures of mutational processes operative in human cancer,” Cell Rep, vol. 3,

pp. 246–259, Jan 2013.

[327] B. C. H. Lee, P. S. Robinson, T. H. H. Coorens, H. H. N. Yan, S. Olafsson, H. Lee-Six,

M. A. Sanders, H. C. Siu, J. Hewinson, S. S. K. Yue, W. Y. Tsui, A. S. Y. Chan, A. K. W.

Chan, S. L. Ho, P. J. Campbell, I. Martincorena, S. J. A. Buczacki, S. T. Yuen, S. Y.

Leung, and M. R. Stratton, “Mutational landscape of normal epithelial cells in Lynch

Syndrome patients,” Nat Commun, vol. 13, p. 2710, May 2022.

[328] M. C. Olave and R. P. Graham, “Mismatch repair deficiency: The what, how and why it

is important,” Genes Chromosomes Cancer, vol. 61, pp. 314–321, Jun 2022.

[329] J. J. Michaelson, Y. Shi, M. Gujral, H. Zheng, D. Malhotra, X. Jin, M. Jian, G. Liu,

D. Greer, A. Bhandari, W. Wu, R. Corominas, A. Peoples, A. Koren, A. Gore, S. Kang,

G. N. Lin, J. Estabillo, T. Gadomski, B. Singh, K. Zhang, N. Akshoomoff, C. Corsello,

S. McCarroll, L. M. Iakoucheva, Y. Li, J. Wang, and J. Sebat, “Whole-genome se-

quencing in autism identifies hot spots for de novo germline mutation,” Cell, vol. 151,

pp. 1431–1442, Dec 2012.

[330] A. A. Bielska, W. K. Chatila, H. Walch, N. Schultz, Z. K. Stadler, J. Shia, D. Reidy-

Lagunes, and R. Yaeger, “Tumor Mutational Burden and Mismatch Repair Deficiency

Discordance as a Mechanism of Immunotherapy Resistance,” J Natl Compr Canc Netw,

vol. 19, pp. 130–133, Feb 2021.

[331] S.-H. Lin, R. Thakur, and M. J. Machiela, “LDexpress: an online tool for integrating

population-specific linkage disequilibrium patterns with tissue-specific expression data,”

BMC Bioinformatics, vol. 22, p. 608, Dec. 2021.

[332] A. Cagan, A. Baez-Ortega, N. Brzozowska, F. Abascal, T. H. H. Coorens, M. A. Sanders,

A. R. J. Lawson, L. M. R. Harvey, S. Bhosle, D. Jones, R. E. Alcantara, T. M. Butler,

Y. Hooks, K. Roberts, E. Anderson, S. Lunn, E. Flach, S. Spiro, I. Januszczak, E. Wrig-

glesworth, H. Jenkins, T. Dallas, N. Masters, M. W. Perkins, R. Deaville, M. Druce,

R. Bogeska, M. D. Milsom, B. Neumann, F. Gorman, F. Constantino-Casas, L. Peachey,

D. Bochynska, E. S. J. Smith, M. Gerstung, P. J. Campbell, E. P. Murchison, M. R. Strat-

ton, and I. Martincorena, “Somatic mutation rates scale with lifespan across mammals,”

Nature, vol. 604, pp. 517–524, Apr 2022.

224



[333] IDT, “xgen exome research panel v1.0,” https://web.archive.org/web/20180403022641/http://eu.idtdna.com/pages/products/next-

generation-sequencing/hybridization-capture/lockdown-panels/xgen-exome-research-

panel.

[334] T. Iyama and D. M. Wilson, “Elements That Regulate the DNA Damage Response of

Proteins Defective in Cockayne Syndrome,” J Mol Biol, vol. 428, pp. 62–78, Jan 2016.

[335] V. Laugel, C. Dalloz, M. Durand, F. Sauvanaud, U. Kristensen, M. C. Vincent,

L. Pasquier, S. Odent, V. Cormier-Daire, B. Gener, E. S. Tobias, J. L. Tolmie, D. Martin-

Coignard, V. Drouin-Garraud, D. Heron, H. Journel, E. Raffo, J. Vigneron, S. Lyonnet,

V. Murday, D. Gubser-Mercati, B. Funalot, L. Brueton, J. Sanchez Del Pozo, E. oz,

A. R. Gennery, M. Salih, M. Noruzinia, K. Prescott, L. Ramos, Z. Stark, K. Fieggen,

B. Chabrol, P. Sarda, P. Edery, A. Bloch-Zupan, H. Fawcett, D. Pham, J. M. Egly,

A. R. Lehmann, A. Sarasin, and H. Dollfus, “Mutation update for the CSB/ERCC6 and

CSA/ERCC8 genes involved in Cockayne syndrome,” Hum Mutat, vol. 31, pp. 113–126,

Feb 2010.

[336] T. A. Sasani, D. G. Ashbrook, A. C. Beichman, L. Lu, A. A. Palmer, R. W. Williams, J. K.

Pritchard, and K. Harris, “A natural mutator allele shapes mutation spectrum variation in

mice,” Nature, vol. 605, pp. 497–502, May 2022.

[337] A. Platt, B. J. lmsson, and M. Nordborg, “Conditions under which genome-wide asso-

ciation studies will be positively misleading,” Genetics, vol. 186, pp. 1045–1052, Nov

2010.

[338] A. nez Roca, M. Giner-Calabuig, O. Murcia, A. Castillejo, J. L. Soto, A. a Heredia,

and R. Jover, “Lynch-like Syndrome: Potential Mechanisms and Management,” Cancers

(Basel), vol. 14, Feb 2022.

[339] V. Thatikonda, S. M. A. Islam, R. J. Autry, B. C. Jones, S. N. bner, G. Warsow, B. Hutter,

D. Huebschmann, S. hling, M. Kool, M. Blattner-Johnson, D. T. W. Jones, L. B. Alexan-

drov, S. M. Pfister, and N. ger, “Comprehensive analysis of mutational signatures reveals

distinct patterns and molecular processes across 27 pediatric cancers,” Nat Cancer, vol. 4,

pp. 276–289, Feb 2023.

[340] A. Mojumdar, N. Mair, N. Adam, and J. A. Cobb, “Changes in DNA double-strand

break repair during aging correlate with an increase in genomic mutations,” J Mol Biol,

vol. 434, p. 167798, Oct 2022.

225



[341] R. R. White and J. Vijg, “Do DNA Double-Strand Breaks Drive Aging?,” Mol Cell,

vol. 63, pp. 729–738, Sep 2016.

[342] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2023.

[343] H. Wickham, “ggplot2: Elegant graphics for data analysis,” 2016.

[344] L. J. Carithers and H. M. Moore, “The Genotype-Tissue Expression (GTEx) Project,”

Biopreserv Biobank, vol. 13, pp. 307–308, Oct 2015.

[345] C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and J. J. Lee, “Second-

generation PLINK: rising to the challenge of larger and richer datasets,” Gigascience,

vol. 4, p. 7, 2015.

[346] Z. Zheng, H. Hu, W. Lei, J. Zhang, M. Zhu, Y. Li, X. Zhang, J. Ma, D. Wan, T. Ma,

G. Ren, and D. Ru, “,” Evol Appl, vol. 15, pp. 1875–1887, Nov 2022.

[347] D. A. Shagin, I. A. Shagina, A. R. Zaretsky, E. V. Barsova, I. V. Kelmanson, S. Lukyanov,

D. M. Chudakov, and M. Shugay, “A high-throughput assay for quantitative measure-

ment of PCR errors,” Sci Rep, vol. 7, p. 2718, Jun 2017.

[348] B. Arbeithuber, A. J. Betancourt, T. Ebner, and I. Tiemann-Boege, “Crossovers are asso-

ciated with mutation and biased gene conversion at recombination hotspots,” Proc Natl

Acad Sci U S A, vol. 112, pp. 2109–2114, Feb 2015.

[349] A. V. Nesta, D. Tafur, and C. R. Beck, “Hotspots of Human Mutation,” Trends Genet,

vol. 37, pp. 717–729, Aug 2021.

[350] C. J. Sakofsky, N. Saini, L. J. Klimczak, K. Chan, E. P. Malc, P. A. Mieczkowski,

A. B. Burkholder, D. Fargo, and D. A. Gordenin, “Repair of multiple simultaneous

double-strand breaks causes bursts of genome-wide clustered hypermutation,” PLoS Biol,

vol. 17, p. e3000464, Sep 2019.

[351] X. Long and H. Xue, “Genetic-variant hotspots and hotspot clusters in the human genome

facilitating adaptation while increasing instability,” Hum Genomics, vol. 15, p. 19, Mar

2021.

[352] K. K. Takahashi and H. Innan, “Frequent somatic gene conversion as a mechanism for

loss of heterozygosity in tumor suppressor genes,” Genome Res, vol. 32, pp. 1017–1025,

Jun 2022.

226



[353] Q. Yi, J. Peng, Z. Xu, Q. Liang, Y. Cai, B. Peng, Q. He, and Y. Yan, “Spectrum of BRAF

Aberrations and Its Potential Clinical Implications: Insights From Integrative Pan-Cancer

Analysis,” Front Bioeng Biotechnol, vol. 10, p. 806851, 2022.

[354] C. J. Watson, A. L. Papula, G. Y. P. Poon, W. H. Wong, A. L. Young, T. E. Druley, D. S.

Fisher, and J. R. Blundell, “The evolutionary dynamics and fitness landscape of clonal

hematopoiesis,” Science, vol. 367, pp. 1449–1454, Mar 2020.

[355] S. Jaiswal and B. L. Ebert, “Clonal hematopoiesis in human aging and disease,” Science,

vol. 366, Nov 2019.

[356] Y. Watanabe, T. Abe, T. Ikemura, and M. Maekawa, “Relationships between replication

timing and GC content of cancer-related genes on human chromosomes 11q and 21q,”

Gene, vol. 433, pp. 26–31, Mar 2009.

[357] M. Heuser, F. Thol, and A. Ganser, “Clonal Hematopoiesis of Indeterminate Potential,”

Dtsch Arztebl Int, vol. 113, pp. 317–322, May 2016.

[358] P. Valent, W. Kern, G. Hoermann, J. D. Milosevic Feenstra, K. Sotlar, M. cker,

U. Germing, W. R. Sperr, A. Reiter, D. Wolf, M. Arock, T. Haferlach, and H. P. Horny,

“Clonal Hematopoiesis with Oncogenic Potential (CHOP): Separation from CHIP and

Roads to AML,” Int J Mol Sci, vol. 20, Feb 2019.

[359] Z. J. DeBruine, K. Melcher, and J. Timothy J. Triche, “Fast and robust non-negative

matrix factorization for single-cell experiments,” bioRxiv, 2021.

[360] D. Christopoulos, “Introducing unit invariant knee (uik) as an objective choice for elbow

point in multivariate data analysis techniques,” Available at SSRN 3043076, 2016.

[361] T. Yasuzawa, K. Muroi, M. Ichimura, I. Takahashi, T. Ogawa, K. Takahashi, H. Sano,

and Y. Saitoh, “Duocarmycins, potent antitumor antibiotics produced by Streptomyces

sp. structures and chemistry,” Chem Pharm Bull (Tokyo), vol. 43, pp. 378–391, Mar

1995.

[362] J. A. Stamatoyannopoulos, I. Adzhubei, R. E. Thurman, G. V. Kryukov, S. M. Mirkin,

and S. R. Sunyaev, “Human mutation rate associated with DNA replication timing,” Nat

Genet, vol. 41, pp. 393–395, Apr 2009.

[363] V. B. Seplyarskiy, R. A. Soldatov, K. Y. Popadin, S. E. Antonarakis, G. A. Bazykin, and

S. I. Nikolaev, “APOBEC-induced mutations in human cancers are strongly enriched

227



on the lagging DNA strand during replication,” Genome Res, vol. 26, pp. 174–182, Feb

2016.

[364] M. E. Moynahan and M. Jasin, “Mitotic homologous recombination maintains genomic

stability and suppresses tumorigenesis,” Nat Rev Mol Cell Biol, vol. 11, pp. 196–207,

Mar 2010.

[365] E. D. Pleasance, R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D.

Greenman, I. Varela, M. L. Lin, G. R. ez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer,

D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P. I. Kokko-Gonzales,

N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims, T. James, M. Jia,

Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. Ning, T. Royce, O. B.

Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague, D. Williamson,

L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal, and M. R. Stratton, “A

comprehensive catalogue of somatic mutations from a human cancer genome,” Nature,

vol. 463, pp. 191–196, Jan 2010.

[366] S. Amatori, S. Tavolaro, S. Gambardella, and M. Fanelli, “The dark side of histones:

genomic organization and role of oncohistones in cancer,” Clin Epigenetics, vol. 13,

p. 71, Apr 2021.

[367] T. T. Paull, E. P. Rogakou, V. Yamazaki, C. U. Kirchgessner, M. Gellert, and W. M.

Bonner, “A critical role for histone H2AX in recruitment of repair factors to nuclear foci

after DNA damage,” Curr Biol, vol. 10, no. 15, pp. 886–895, 2000.

[368] F. Maura, A. Degasperi, F. Nadeu, D. Leongamornlert, H. Davies, L. Moore, R. Royo,

B. Ziccheddu, X. S. Puente, H. Avet-Loiseau, P. J. Campbell, S. Nik-Zainal, E. Campo,

N. Munshi, and N. Bolli, “A practical guide for mutational signature analysis in hemato-

logical malignancies,” Nat Commun, vol. 10, p. 2969, Jul 2019.

[369] J. Lonsdale, J. Thomas, M. Salvatore, R. Phillips, E. Lo, S. Shad, R. Hasz, G. Wal-

ters, F. Garcia, N. Young, B. Foster, M. Moser, E. Karasik, B. Gillard, K. Ramsey,

S. Sullivan, J. Bridge, H. Magazine, J. Syron, J. Fleming, L. Siminoff, H. Traino,

M. Mosavel, L. Barker, S. Jewell, D. Rohrer, D. Maxim, D. Filkins, P. Harbach, E. Cor-

tadillo, B. Berghuis, L. Turner, E. Hudson, K. Feenstra, L. Sobin, J. Robb, P. Branton,

G. Korzeniewski, C. Shive, D. Tabor, L. Qi, K. Groch, S. Nampally, S. Buia, A. Zim-

merman, A. Smith, R. Burges, K. Robinson, K. Valentino, D. Bradbury, M. Cosentino,

N. Diaz-Mayoral, M. Kennedy, T. Engel, P. Williams, K. Erickson, K. Ardlie, W. Winck-

ler, G. Getz, D. DeLuca, D. MacArthur, M. Kellis, A. Thomson, T. Young, E. Gelfand,

228



M. Donovan, G. Grant, D. Mash, Y. Marcus, M. Basile, J. Liu, J. Zhu, Z. Tu, N. J. Cox,

D. L. Nicolae, E. R. Gamazon, H. Kyung, A. Konkashbaev, J. Pritchard, M. Stevens,

T. Flutre, X. Wen, T. Dermitzakis, T. Lappalainen, R. Guigo, J. Monlong, M. Sammeth,

D. Koller, A. Battle, S. Mostafavi, M. McCarthy, M. Rivas, J. Maller, I. Rusyn, A. Nobel,

F. Wright, A. Shabalin, M. Feolo, N. Sharopova, A. Sturcke, J. Paschal, J. M. Anderson,

E. L. Wilder, L. K. Derr, E. D. Green, J. P. Struewing, G. Temple, S. Volpi, J. T. Boyer,

E. J. Thomson, M. S. Guyer, C. Ng, A. Abdallah, D. Colantuoni, T. R. Insel, S. E.

Koester, A. R. Little, P. K. Bender, T. Lehner, Y. Yao, C. C. Compton, J. B. Vaught,

S. Sawyer, N. C. Lockhart, J. Demchok, and H. F. Moore, “The Genotype-Tissue Ex-

pression (GTEx) project,” Nat Genet, vol. 45, pp. 580–585, Jun 2013.

[370] A. R. Quinlan and I. M. Hall, “BEDTools: a flexible suite of utilities for comparing

genomic features,” Bioinformatics, vol. 26, pp. 841–842, Mar 2010.

[371] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum,

R. M. Myers, M. Brown, W. Li, and X. S. Liu, “Model-based analysis of ChIP-Seq

(MACS),” Genome Biol, vol. 9, no. 9, p. R137, 2008.

[372] Y. Li, S. Chen, T. Rapakoulia, H. Kuwahara, K. Y. Yip, and X. Gao, “Deep learning

identifies and quantifies recombination hotspot determinants,” Bioinformatics, vol. 38,

pp. 2683–2691, May 2022.

[373] E. Peter, “Fbroc: Fast algorithms to bootstrap receiver operating characteristics curves,”

R package version 0.4. 0, URL https://CRAN. R-project. org/package= fbroc, 2016.

[374] F. Manders, A. M. Brandsma, J. de Kanter, M. Verheul, R. Oka, M. J. van Roosmalen,

B. van der Roest, A. van Hoeck, E. Cuppen, and R. van Boxtel, “MutationalPatterns: the

one stop shop for the analysis of mutational processes,” BMC Genomics, vol. 23, p. 134,

Feb 2022.

[375] J. Yang, N. A. Zaitlen, M. E. Goddard, P. M. Visscher, and A. L. Price, “Advantages

and pitfalls in the application of mixed-model association methods,” Nat Genet, vol. 46,

pp. 100–106, Feb 2014.

[376] B. Devlin and K. Roeder, “Genomic control for association studies,” Biometrics, vol. 55,

pp. 997–1004, Dec 1999.

[377] R. A. Fisher, “Design of experiments,” British Medical Journal, vol. 1, no. 3923, p. 554,

1936.

229



[378] J. M. Neuhaus, “Estimation efficiency with omitted covariates in generalized linear mod-

els,” Journal of the American Statistical Association, vol. 93, no. 443, pp. 1124–1129,

1998.

[379] C. Lippert, G. Quon, E. Y. Kang, C. M. Kadie, J. Listgarten, and D. Heckerman, “The

benefits of selecting phenotype-specific variants for applications of mixed models in ge-

nomics,” Sci Rep, vol. 3, p. 1815, 2013.

[380] G. Tucker, A. L. Price, and B. Berger, “Improving the power of GWAS and avoiding con-

founding from population stratification with PC-Select,” Genetics, vol. 197, pp. 1045–

1049, Jul 2014.

[381] O. Canela-Xandri, K. Rawlik, and A. Tenesa, “An atlas of genetic associations in UK

Biobank,” Nat Genet, vol. 50, pp. 1593–1599, Nov 2018.

[382] C. Kadie and D. Heckerman, “Ludicrous speed linear mixed models for genome-wide

association studies,” bioRxiv, 2019.

[383] V. Tam, N. Patel, M. Turcotte, Y. Ã©, G. Ã©, and D. Meyre, “Benefits and limitations

of genome-wide association studies,” Nat Rev Genet, vol. 20, pp. 467–484, Aug 2019.

[384] A. Torkamani, N. E. Wineinger, and E. J. Topol, “The personal and clinical utility of

polygenic risk scores,” Nat Rev Genet, vol. 19, pp. 581–590, Sep 2018.

[385] T. Yanes, M. A. Young, B. Meiser, and P. A. James, “Clinical applications of polygenic

breast cancer risk: a critical review and perspectives of an emerging field,” Breast Cancer

Res, vol. 22, p. 21, Feb 2020.

[386] K. Michailidou, S. m, J. Dennis, J. Beesley, S. Hui, S. Kar, A. on, P. Soucy, D. Glubb,

A. Rostamianfar, M. K. Bolla, Q. Wang, J. Tyrer, E. Dicks, A. Lee, Z. Wang, J. Allen,

R. Keeman, U. Eilber, J. D. French, X. Qing Chen, L. Fachal, K. McCue, A. E. Mc-

Cart Reed, M. Ghoussaini, J. S. Carroll, X. Jiang, H. Finucane, M. Adams, M. A.

Adank, H. Ahsan, K. ki, H. Anton-Culver, N. N. Antonenkova, V. Arndt, K. J. Aronson,

B. Arun, P. L. Auer, F. Bacot, M. Barrdahl, C. Baynes, M. W. Beckmann, S. Behrens,

J. Benitez, M. Bermisheva, L. Bernstein, C. Blomqvist, N. V. Bogdanova, S. E. Bo-

jesen, B. Bonanni, A. L. rresen Dale, J. S. Brand, H. Brauch, P. Brennan, H. Bren-

ner, L. Brinton, P. Broberg, I. W. Brock, A. Broeks, A. Brooks-Wilson, S. Y. Brucker,

T. ning, B. Burwinkel, K. Butterbach, Q. Cai, H. Cai, T. s, F. Canzian, A. Carracedo,

B. D. Carter, J. E. Castelao, T. L. Chan, T. Y. David Cheng, K. Seng Chia, J. Y. Choi,

230



H. Christiansen, C. L. Clarke, M. e, D. M. Conroy, E. Cordina-Duverger, S. Cornelissen,

D. G. Cox, A. Cox, S. S. Cross, J. M. Cunningham, K. Czene, M. B. Daly, P. Devilee,

K. F. Doheny, T. rk, I. Dos-Santos-Silva, M. Dumont, L. Durcan, M. Dwek, D. M. Ec-

cles, A. B. Ekici, A. H. Eliassen, C. Ellberg, M. Elvira, C. Engel, M. Eriksson, P. A.

Fasching, J. Figueroa, D. Flesch-Janys, O. Fletcher, H. Flyger, L. Fritschi, V. Gaborieau,

M. Gabrielson, M. Gago-Dominguez, Y. T. Gao, S. M. Gapstur, J. A. enz, M. M. Gaudet,

V. Georgoulias, G. G. Giles, G. Glendon, M. S. Goldberg, D. E. Goldgar, A. lez Neira,

G. I. s, M. Grip, J. Gronwald, A. Grundy, P. nel, L. Haeberle, E. Hahnen, C. A. Haiman,

N. kansson, U. Hamann, N. Hamel, S. Hankinson, P. Harrington, S. N. Hart, J. M.

Hartikainen, M. Hartman, A. Hein, J. Heyworth, B. Hicks, P. Hillemanns, D. N. Ho,

A. Hollestelle, M. J. Hooning, R. N. Hoover, J. L. Hopper, M. F. Hou, C. N. Hsiung,

G. Huang, K. Humphreys, J. Ishiguro, H. Ito, M. Iwasaki, H. Iwata, A. Jakubowska,

W. Janni, E. M. John, N. Johnson, K. Jones, M. Jones, A. Jukkola-Vuorinen, R. Kaaks,

M. Kabisch, K. Kaczmarek, D. Kang, Y. Kasuga, M. J. Kerin, S. Khan, E. Khusnut-

dinova, J. I. Kiiski, S. W. Kim, J. A. Knight, V. M. Kosma, V. N. Kristensen, U. ger,

A. Kwong, D. Lambrechts, L. Le Marchand, E. Lee, M. H. Lee, J. W. Lee, C. Neng Lee,

F. Lejbkowicz, J. Li, J. Lilyquist, A. Lindblom, J. Lissowska, W. Y. Lo, S. Loibl, J. Long,

A. Lophatananon, J. Lubinski, C. Luccarini, M. P. Lux, E. S. K. Ma, R. J. MacInnis,

T. Maishman, E. Makalic, K. E. Malone, I. M. Kostovska, A. Mannermaa, S. Manoukian,

J. E. Manson, S. Margolin, S. Mariapun, M. E. Martinez, K. Matsuo, D. Mavroudis,

J. McKay, C. McLean, H. Meijers-Heijboer, A. Meindl, P. ndez, U. Menon, J. Meyer,

H. Miao, N. Miller, N. A. M. Taib, K. Muir, A. M. Mulligan, C. Mulot, S. L. Neuhausen,

H. Nevanlinna, P. Neven, S. F. Nielsen, D. Y. Noh, B. G. Nordestgaard, A. Norman, O. I.

Olopade, J. E. Olson, H. Olsson, C. Olswold, N. Orr, V. S. Pankratz, S. K. Park, T. W.

Park-Simon, R. Lloyd, J. I. A. Perez, P. Peterlongo, J. Peto, K. A. Phillips, M. Pinchev,

D. Plaseska-Karanfilska, R. Prentice, N. Presneau, D. Prokofyeva, E. Pugh, K. s, B. Rack,

P. Radice, N. Rahman, G. Rennert, H. S. Rennert, V. Rhenius, A. Romero, J. Romm,

K. J. Ruddy, T. diger, A. Rudolph, M. Ruebner, E. J. T. Rutgers, E. Saloustros, D. P.

Sandler, S. Sangrajrang, E. J. Sawyer, D. F. Schmidt, R. K. Schmutzler, A. Schneeweiss,

M. J. Schoemaker, F. Schumacher, P. rmann, R. J. Scott, C. Scott, S. Seal, C. Seynaeve,

M. Shah, P. Sharma, C. Y. Shen, G. Sheng, M. E. Sherman, M. J. Shrubsole, X. O.

Shu, A. Smeets, C. Sohn, M. C. Southey, J. J. Spinelli, C. Stegmaier, S. Stewart-Brown,

J. Stone, D. O. Stram, H. Surowy, A. Swerdlow, R. Tamimi, J. A. Taylor, M. m, S. H.

Teo, M. Beth Terry, D. C. Tessier, S. Thanasitthichai, K. ne, R. A. E. M. Tollenaar,

I. Tomlinson, L. Tong, D. Torres, T. Truong, C. C. Tseng, S. Tsugane, H. U. Ulmer,

231



G. Ursin, M. Untch, C. Vachon, C. J. van Asperen, D. Van Den Berg, A. M. W. van den

Ouweland, L. van der Kolk, R. B. van der Luijt, D. Vincent, J. Vollenweider, Q. Waisfisz,

S. Wang-Gohrke, C. R. Weinberg, C. Wendt, A. S. Whittemore, H. Wildiers, W. Willett,

R. Winqvist, A. Wolk, A. H. Wu, L. Xia, T. Yamaji, X. R. Yang, C. Har Yip, K. Y. Yoo,

J. C. Yu, W. Zheng, Y. Zheng, B. Zhu, A. Ziogas, E. Ziv, S. R. Lakhani, A. C. Antoniou,

A. Droit, I. L. Andrulis, C. I. Amos, F. J. Couch, P. D. P. Pharoah, J. Chang-Claude,

P. Hall, D. J. Hunter, R. L. Milne, M. a Closas, M. K. Schmidt, S. J. Chanock, A. M.

Dunning, S. L. Edwards, G. D. Bader, G. Chenevix-Trench, J. Simard, P. Kraft, and D. F.

Easton, “Association analysis identifies 65 new breast cancer risk loci,” Nature, vol. 551,

pp. 92–94, Nov 2017.

[387] O. Bahcall, “Common variation and heritability estimates for breast, ovarian and prostate

cancers,” Nat Genet, vol. 10, 2013.

[388] S. W. Choi and P. F. O’Reilly, “PRSice-2: Polygenic Risk Score software for biobank-

scale data,” Gigascience, vol. 8, Jul 2019.

[389] F. Dudbridge, “Power and predictive accuracy of polygenic risk scores,” PLoS Genet,

vol. 9, p. e1003348, Mar 2013.

[390] A. R. Martin, M. J. Daly, E. B. Robinson, S. E. Hyman, and B. M. Neale, “Predicting

Polygenic Risk of Psychiatric Disorders,” Biol Psychiatry, vol. 86, pp. 97–109, Jul 2019.

[391] N. Mars, J. T. Koskela, P. Ripatti, T. T. J. Kiiskinen, A. S. Havulinna, J. V. Lindbohm,

A. Ahola-Olli, M. Kurki, J. Karjalainen, P. Palta, B. M. Neale, M. Daly, V. Salomaa,

A. Palotie, E. n, S. Ripatti, A. Palotie, M. Daly, H. Jacob, A. Matakidou, H. Runz,

S. John, R. Plenge, M. McCarthy, J. Hunkapiller, M. Ehm, D. Waterworth, C. Fox,

A. Malarstig, K. Klinger, K. Call, T. Ã¤, J. Kaprio, P. Virolainen, K. Pulkki, T. Kilpi,

M. Perola, J. Partanen, A. ranta, R. Kaarteenaho, S. Vainio, K. Savinainen, V. M. Kosma,

U. Kujala, O. Tuovila, M. Hendolin, R. Pakkanen, J. Waring, B. Riley-Gillis, A. Mataki-

dou, H. Runz, J. Liu, S. Biswas, J. Hunkapiller, D. Waterworth, M. Ehm, D. Diogo,

C. Fox, A. Malarstig, C. Marshall, X. Hu, K. Call, K. Klinger, M. Gossel, S. Ripatti,

J. Schleutker, M. Perola, M. Arvas, O. Carpen, R. Hinttala, J. Kettunen, R. Laakso-

nen, A. Mannermaa, J. Paloneva, U. Kujala, O. Tuovila, M. Hendolin, R. Pakkanen,

H. Soininen, V. Julkunen, A. Remes, R. inen, M. Hiltunen, J. Peltola, P. Tienari, J. Rinne,

A. Ziemann, J. Waring, S. Esmaeeli, N. Smaoui, A. Lehtonen, S. Eaton, H. Runz,

S. Ã¤, S. Biswas, J. Michon, G. Kerchner, J. Hunkapiller, N. Bowers, E. Teng, J. Eicher,

V. Mehta, P. Gormley, K. Linden, C. Whelan, F. Xu, D. Pulford, M. Ã¤, S. Pikkarainen,

232



A. Jussila, T. Blomster, M. Kiviniemi, M. Voutilainen, B. Georgantas, G. Heap, J. War-

ing, N. Smaoui, F. Rahimov, A. Lehtonen, K. Usiskin, J. Maranville, T. Lu, N. Bowers,

D. Oh, J. Michon, V. Mehta, K. Kalpala, M. Miller, X. Hu, L. McCarthy, K. Eklund,

A. ki, P. ki, L. Ã¤, O. nen, J. Huhtakangas, B. Georgantas, J. Waring, F. Rahimov,

A. Lertratanakul, N. Smaoui, A. Lehtonen, D. Close, M. Hochfeld, N. Bowers, J. Mi-

chon, D. Diogo, V. Mehta, K. Kalpala, N. Bing, X. Hu, J. Esparza Gordillo, N. Mars,

T. Laitinen, M. Pelkonen, P. Kauppi, H. Kankaanranta, T. Harju, N. Smaoui, D. Close,

S. Greenberg, H. Chen, N. Bowers, J. Michon, V. Mehta, J. Betts, S. Ghosh, V. Salomaa,

T. Niiranen, M. Juonala, K. rinne, M. nen, J. Junttila, M. Laakso, J. ki, J. Sinisalo, M. R.

Taskinen, T. Tuomi, J. Laukkanen, B. Challis, A. Peterson, J. Hunkapiller, N. Bowers,

J. Michon, D. Diogo, A. Chu, V. Mehta, J. Parkkinen, M. Miller, A. Muslin, D. Wa-

terworth, H. Joensuu, T. Meretoja, O. Carpen, L. Aaltonen, A. Auranen, P. Karihtala,

S. Kauppila, P. Auvinen, K. Elenius, R. Popovic, J. Waring, B. Riley-Gillis, A. Lehtonen,

A. Matakidou, J. Schutzman, J. Hunkapiller, N. Bowers, J. Michon, V. Mehta, A. Loboda,

A. Chhibber, H. Lehtonen, S. McDonough, M. Crohns, D. Kulkarni, K. Kaarniranta,

J. Turunen, T. Ollila, S. Seitsonen, H. Uusitalo, V. Aaltonen, H. rvinen, M. Ã¤, N. Hau-

tala, H. Runz, E. Strauss, N. Bowers, H. Chen, J. Michon, A. Podgornaia, V. Mehta,

D. Diogo, J. Hoffman, K. Tasanen, L. Huilaja, K. Hannula-Jouppi, T. Salmi, S. Peltonen,

L. Koulu, I. Harvima, K. Kalpala, Y. Wu, D. Choy, J. Michon, N. Smaoui, F. Rahi-

mov, A. Lehtonen, D. Waterworth, A. Jalanko, R. Kajanne, U. Lyhs, M. Kaunisto, J. W.

Davis, B. Riley-Gillis, D. Quarless, S. Petrovski, J. Liu, C. Y. Chen, P. Bronson, R. Yang,

J. Maranville, S. Biswas, D. Chang, J. Hunkapiller, T. Bhangale, N. Bowers, D. Diogo,

E. Holzinger, P. Gormley, X. Wang, X. Chen, Ã. Hedman, K. Auro, C. Wang, E. Xu,

F. Auge, C. Chatelain, M. Kurki, S. Ripatti, M. Daly, J. Karjalainen, A. Havulinna,

A. Jalanko, K. Palin, P. Palta, P. Della Briotta Parolo, W. Zhou, S. Ã¤, M. Rivas, J. Harju,

A. Palotie, A. Lehisto, A. Ganna, V. Llorens, A. Karlsson, K. Kristiansson, M. Arvas,

K. rinen, J. Ritari, T. Wahlfors, M. Koskinen, O. Carpen, J. Kettunen, K. s, M. Kalaoja,

M. Karjalainen, T. Mantere, E. Kangasniemi, S. Heikkinen, A. Mannermaa, E. Laakko-

nen, J. Kononen, A. Loukola, P. Laiho, T. Sistonen, E. Kaiharju, M. Laukkanen, E. rven-

sivu, S. ki, L. Ã¶, R. Wong, K. Kristiansson, H. Mattsson, S. Ã¤, T. Hiekkalinna, M. nez,

K. Donner, P. Palta, K. rn, J. Nunez-Fontarnau, J. Harju, E. inen, T. P. Ã¤, G. Brein,

A. Dada, G. Awaisa, A. Shcherban, T. Ã¤, H. Laivuori, A. Havulinna, S. Ã¤, T. Kiiski-

nen, T. Laitinen, H. Siirtola, J. Gracia Tabuenca, L. Kallio, S. Soini, J. Partanen, K. nen,

S. Vainio, K. Savinainen, V. M. Kosma, and T. Kuopio, “Polygenic and clinical risk

scores and their impact on age at onset and prediction of cardiometabolic diseases and

233



common cancers,” Nat Med, vol. 26, pp. 549–557, Apr 2020.

[392] G. Gibson, “On the utilization of polygenic risk scores for therapeutic targeting,” PLoS

Genet, vol. 15, p. e1008060, Apr 2019.

[393] Q. Zhang, F. Prive, B. J. Vilhjalmsson, and D. Speed, “Improved genetic prediction of

complex traits from individual-level data or summary statistics,” Nat com, 2021.

[394] B. Bulik-Sullivan, “Mixed models for meta-analysis and sequencing,” bioRxiv, 2015.

[395] X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. C. Sanchez, and M. ller,

“pROC: an open-source package for R and S+ to analyze and compare ROC curves,”

BMC Bioinformatics, vol. 12, p. 77, Mar 2011.

[396] C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp, A. Motyer,

D. Vukcevic, O. Delaneau, J. O’Connell, A. Cortes, S. Welsh, A. Young, M. Effing-

ham, G. McVean, S. Leslie, N. Allen, P. Donnelly, and J. Marchini, “The UK Biobank

resource with deep phenotyping and genomic data,” Nature, vol. 562, pp. 203–209, Oct

2018.

[397] A. Manichaikul, J. C. Mychaleckyj, S. S. Rich, K. Daly, M. Sale, and W. M. Chen, “Ro-

bust relationship inference in genome-wide association studies,” Bioinformatics, vol. 26,

pp. 2867–2873, Nov 2010.

234



Appendix A

Table A1: Wilcoxon signed rank test p-values for association between mismatch load and
cancer and smoking status.

Context Cancer Cancer Norm Smoking Smoking Norm

Total load 6.17e-02 6.17e-01 1.23e-01 9.19e-01
CTACGA 4.07e-28 1.41e-01 4.12e-01 1.49e-02
GAGGCG 9.87e-28 4.27e-01 3.93e-01 2.98e-01
TTCTGC 3.65e-25 6.68e-01 3.50e-01 3.54e-03
GAAGCA 4.23e-25 5.11e-01 4.03e-01 5.69e-02
AAAACA 6.38e-25 9.29e-01 6.79e-01 3.94e-01
TTATGA 1.05e-24 8.44e-01 9.22e-01 2.91e-01
CTCCGC 1.49e-24 1.84e-01 5.74e-01 3.21e-01
AAGACG 2.23e-24 4.78e-01 3.19e-01 4.30e-02
TAGTCG 2.71e-24 9.61e-01 8.56e-01 7.77e-01
TAATCA 5.37e-24 9.75e-01 4.90e-01 1.71e-01
CTTCGT 7.57e-24 9.68e-01 2.78e-01 2.90e-02
GTCGGC 2.07e-23 5.99e-01 3.15e-01 7.32e-02
TTTTGT 3.73e-23 1.50e-01 6.41e-01 3.95e-01
CAACCA 1.56e-22 8.98e-01 4.31e-01 1.43e-01
TACTCC 2.12e-22 9.28e-01 9.88e-01 9.65e-01
GACGCC 5.40e-22 2.05e-01 3.68e-01 2.93e-02
CTGCGG 5.60e-22 4.22e-01 3.07e-01 1.55e-02
GTAGGA 1.99e-21 5.12e-01 6.53e-01 2.56e-01
CAGCCG 1.99e-21 2.37e-01 3.44e-01 1.30e-01
AACACC 2.51e-21 9.93e-01 7.46e-01 2.52e-01
GGGGCG 6.77e-21 8.73e-02 1.50e-01 6.61e-01
GTGGGG 7.19e-21 1.69e-01 7.13e-01 1.52e-01
GTTGGT 2.37e-20 2.61e-01 6.23e-01 1.99e-01
TTGTGG 2.77e-20 3.10e-01 3.20e-01 2.23e-01
CACCCC 4.36e-20 9.37e-01 9.47e-01 2.62e-01
CCTCGT 5.76e-20 8.60e-01 1.50e-01 7.97e-01
GGAGCA 2.46e-19 7.86e-01 2.25e-01 7.19e-01
AGGACG 2.47e-19 9.90e-01 2.78e-01 6.14e-01
GGTGTT 5.73e-19 7.76e-02 2.82e-01 6.39e-01
TGGTCG 7.17e-19 1.34e-01 1.38e-01 9.91e-01
TCATGA 3.91e-18 6.62e-01 1.35e-01 3.97e-01
CATCCT 4.13e-18 5.59e-01 3.84e-01 3.76e-01
CCCCGC 4.36e-18 5.24e-01 7.84e-02 1.55e-01
TCCTGC 9.70e-18 5.20e-01 6.19e-02 2.64e-02
TCTTGT 1.78e-17 5.27e-01 6.67e-02 2.52e-03
TGATCA 1.81e-17 7.97e-01 1.69e-01 8.27e-01
CCGCGG 4.30e-17 4.93e-01 4.81e-01 5.48e-01
AGAACA 5.09e-17 2.76e-01 2.22e-01 1.92e-01
CCACGA 7.75e-17 5.89e-01 4.64e-02 5.83e-02
ATGAGG 1.04e-16 3.87e-01 6.07e-01 8.16e-01
ATTAGT 1.23e-16 9.15e-01 5.04e-01 8.59e-01
AATACT 1.56e-16 5.57e-01 7.16e-01 6.27e-01
GCTGGT 3.41e-16 2.87e-01 4.28e-02 1.99e-02
GCGGGG 3.63e-16 2.26e-01 2.13e-02 2.33e-02
ACGAGG 5.28e-16 9.55e-01 1.97e-01 4.12e-01
AGCACC 1.33e-15 5.05e-01 2.93e-01 6.07e-01
AGTATT 1.36e-15 5.21e-01 3.57e-01 3.48e-01
GCCGGC 3.75e-15 3.22e-01 2.35e-01 9.59e-01
CGACCA 1.39e-14 6.49e-01 2.30e-01 4.77e-01
CGGCCG 1.54e-14 3.49e-01 2.73e-01 6.94e-01
CGCCCC 3.28e-14 9.48e-01 4.36e-01 9.07e-01
AGAATA 3.62e-14 8.33e-01 3.18e-01 6.29e-01
GATGCT 4.15e-14 6.60e-01 4.43e-01 8.51e-01
GGAGTA 4.30e-14 1.99e-01 4.40e-01 7.60e-01
TGTTTT 4.82e-14 3.32e-01 6.68e-01 2.84e-01
GGCGCC 6.31e-14 8.88e-01 1.62e-01 5.07e-01
ACTAGT 8.77e-14 9.32e-01 3.82e-01 9.22e-01
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ATCAGC 1.31e-13 1.90e-01 3.81e-01 7.32e-01
GCAGGA 1.76e-13 5.83e-01 8.67e-02 9.69e-02
TCGTGG 2.76e-13 4.60e-01 8.08e-01 3.35e-01
CGTCCT 3.56e-13 4.52e-01 3.64e-01 7.27e-01
GGCGTC 9.37e-13 5.03e-01 6.55e-01 1.67e-01
ACCAGC 1.01e-12 5.06e-01 3.05e-01 7.82e-01
ACAATA 1.84e-12 3.04e-01 4.99e-01 1.78e-01
AGCATC 2.22e-12 7.81e-01 3.45e-01 9.20e-01
CGTCTT 6.16e-12 6.08e-01 4.88e-01 7.54e-01
GGTGCT 6.80e-12 6.98e-01 2.43e-01 6.08e-01
TGCTCC 8.15e-12 9.29e-01 1.20e-01 4.00e-01
CGCCTC 1.05e-11 4.75e-01 1.84e-01 6.89e-01
CCACTA 1.26e-11 3.44e-01 4.90e-01 1.65e-01
CGACTA 2.43e-11 9.11e-01 2.75e-01 8.32e-01
AGTACT 3.21e-11 7.93e-02 4.72e-01 4.91e-01
TCATTA 2.09e-10 2.02e-01 6.79e-01 6.50e-01
ATAAGA 3.29e-10 8.59e-01 3.92e-01 9.81e-01
TGTTCT 2.47e-09 9.14e-01 4.17e-01 2.05e-01
CCCCTC 2.52e-09 7.12e-01 4.94e-01 1.36e-01
TATTCT 2.57e-09 4.62e-01 3.79e-01 5.85e-01
AGGATG 6.05e-09 7.04e-01 1.94e-01 8.93e-01
GGGGTG 7.87e-09 3.69e-01 2.04e-01 8.38e-01
CGGCTG 1.44e-08 7.33e-01 3.87e-01 4.14e-01
ACAAGA 1.77e-08 1.44e-01 5.35e-01 3.85e-02
ACCATC 2.26e-08 6.51e-01 5.39e-01 1.70e-01
TGCTTC 2.82e-08 3.96e-01 6.51e-01 1.96e-01
ACTATT 3.41e-08 1.38e-01 1.87e-01 8.64e-01
TGTTAT 5.49e-08 5.94e-01 1.01e-01 3.99e-01
CTACCA 5.89e-08 4.03e-01 8.66e-02 7.43e-01
TCCTTC 6.57e-08 8.71e-01 4.67e-01 6.03e-01
GCAGTA 7.52e-08 6.20e-01 2.08e-01 7.97e-01
ATAACA 1.57e-07 7.01e-01 1.21e-01 8.28e-01
TGGTAG 1.99e-07 6.11e-02 1.74e-01 4.07e-01
GCCGTC 2.04e-07 2.77e-01 1.25e-01 6.45e-01
CTCCCC 2.39e-07 2.06e-01 1.43e-01 7.74e-01
ATCACC 2.62e-07 1.76e-01 1.01e-01 5.56e-01
TACTGC 5.94e-07 8.52e-01 1.26e-01 8.77e-01
TGATTA 7.85e-07 9.53e-01 5.78e-01 4.68e-01
TGATAA 1.18e-06 5.75e-01 2.45e-01 5.71e-01
TGGTTG 1.42e-06 4.98e-01 2.02e-01 8.23e-01
CCGCAG 1.60e-06 6.25e-02 1.82e-01 9.83e-01
TAGTGG 2.01e-06 2.13e-01 1.24e-01 5.62e-01
GTCGCC 2.06e-06 4.56e-01 1.95e-01 3.85e-01
GACGGC 2.51e-06 4.30e-01 7.68e-02 6.16e-01
CAGCGG 2.97e-06 7.03e-01 4.33e-02 6.95e-02
TGCTAC 3.34e-06 4.23e-01 2.38e-01 5.98e-01
TATTGT 3.59e-06 2.26e-01 9.63e-02 8.32e-01
TTCTCC 3.63e-06 9.96e-01 1.14e-01 5.49e-01
GTAGCA 4.38e-06 4.18e-01 6.70e-02 3.63e-01
GGTGAT 5.32e-06 4.74e-02 2.47e-01 2.15e-01
CACCGC 6.07e-06 8.04e-01 8.03e-02 3.97e-01
GATGGT 6.16e-06 6.69e-01 1.23e-01 8.63e-01
GCTGTT 7.48e-06 2.32e-01 1.86e-01 2.97e-01
CTTCCT 9.34e-06 7.06e-01 1.37e-01 7.08e-01
GAGGGG 1.20e-05 3.61e-01 4.48e-02 2.04e-01
GAAGGA 1.63e-05 2.11e-01 8.92e-02 9.14e-01
TTGTCG 2.12e-05 4.01e-01 5.20e-02 2.48e-01
CTGCCG 2.33e-05 7.10e-01 9.45e-02 7.04e-01
TAATGA 2.88e-05 3.87e-02 8.06e-02 4.93e-01
TTATCA 3.07e-05 9.75e-02 7.95e-02 4.60e-01
ATGACG 3.21e-05 3.26e-01 7.12e-02 3.49e-01
CATCGT 4.04e-05 4.30e-01 2.98e-02 4.91e-03
CAACGA 4.39e-05 2.12e-01 7.71e-02 7.70e-01
TCCTAC 4.55e-05 8.19e-01 5.80e-02 6.56e-01
CCTCTT 5.86e-05 5.95e-01 2.77e-01 3.86e-01
TCTTTT 7.84e-05 2.28e-01 6.10e-01 3.16e-01
GTGGCG 8.48e-05 4.70e-01 1.02e-01 3.29e-01
AAGAGG 1.25e-04 4.85e-01 8.73e-02 3.14e-01
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GGAGAA 1.78e-04 1.50e-01 2.66e-01 8.02e-01
TCGTTG 2.20e-04 5.21e-01 5.99e-01 3.24e-01
CCTCAT 2.26e-04 8.60e-01 5.95e-02 7.47e-01
ATTACT 3.28e-04 2.34e-01 1.57e-01 7.61e-01
TCTTAT 4.40e-04 5.31e-01 5.47e-02 7.92e-01
GGGGAG 4.47e-04 4.91e-01 6.99e-02 3.80e-01
GTTGCT 4.56e-04 4.33e-01 2.30e-01 4.88e-01
AGCAAC 6.45e-04 8.25e-01 7.58e-02 3.14e-01
GGCGAC 6.50e-04 8.89e-01 1.43e-01 6.63e-01
GCCGAC 6.80e-04 5.01e-01 2.49e-02 9.37e-01
TTTTCT 7.53e-04 6.39e-01 3.63e-01 1.13e-02
CCCCAC 1.02e-03 4.40e-01 2.29e-02 6.83e-01
AGAAAA 1.12e-03 2.89e-01 2.05e-01 3.62e-01
GCTGAT 1.17e-03 9.90e-01 2.62e-02 4.46e-01
TACTTC 1.31e-03 2.53e-01 3.51e-01 4.55e-01
AAAAGA 1.47e-03 4.97e-01 3.09e-01 1.41e-01
AGTAAT 1.55e-03 3.10e-01 5.08e-02 6.56e-01
AAAATA 1.59e-03 8.95e-01 5.03e-01 1.83e-01
AATATT 1.60e-03 7.89e-01 2.73e-01 7.21e-01
AACAGC 1.60e-03 6.86e-01 1.94e-01 3.44e-01
ACCAAC 1.90e-03 2.98e-01 4.38e-02 8.62e-01
TTTTAT 2.33e-03 7.80e-01 3.18e-01 5.34e-01
CTACAA 3.21e-03 5.03e-02 5.22e-01 9.86e-01
ATTAAT 3.40e-03 5.33e-01 1.12e-01 4.44e-01
AATAGT 4.41e-03 6.40e-01 1.48e-01 5.72e-01
CTTCAT 4.54e-03 7.46e-01 1.84e-01 7.90e-01
GTTGAT 5.48e-03 8.80e-01 1.93e-01 3.46e-01
CCACAA 5.49e-03 5.58e-01 5.07e-02 3.58e-01
AGGAAG 7.49e-03 8.89e-01 1.09e-01 3.76e-01
GCGGAG 8.27e-03 9.09e-01 6.02e-01 4.32e-02
AAGATG 9.56e-03 7.93e-01 2.22e-01 9.46e-01
TCATAA 1.13e-02 3.38e-01 7.81e-02 8.40e-01
ATCAAC 1.22e-02 8.55e-01 4.37e-01 7.51e-02
GATGTT 1.23e-02 5.96e-01 2.24e-01 7.75e-01
TCGTAG 1.36e-02 9.45e-01 2.92e-02 5.55e-01
ACTAAT 1.64e-02 1.83e-01 4.99e-02 6.95e-01
GTAGAA 1.67e-02 7.89e-01 5.73e-01 3.52e-01
ACGATG 1.69e-02 5.77e-01 8.62e-01 4.61e-01
TAGTTG 1.87e-02 4.63e-01 6.04e-01 7.34e-01
AACATC 1.99e-02 5.13e-01 3.08e-01 3.02e-01
CGACAA 2.94e-02 9.90e-01 5.09e-02 1.62e-01
CGCCAC 5.80e-02 7.83e-02 1.39e-01 6.99e-01
TTATAA 6.37e-02 4.73e-01 3.52e-01 6.45e-01
GCGGTG 6.43e-02 8.55e-02 9.05e-01 2.97e-01
GCAGAA 6.97e-02 7.42e-01 4.66e-02 6.95e-01
ACGAAG 8.51e-02 6.97e-01 8.32e-01 3.89e-02
TAATTA 8.70e-02 8.10e-01 9.69e-01 4.41e-02
CGGCAG 1.13e-01 1.24e-02 5.47e-01 8.77e-01
TATTTT 1.31e-01 6.15e-01 6.01e-01 1.74e-01
ATAAAA 1.32e-01 9.40e-01 7.13e-01 6.57e-02
CGTCAT 1.54e-01 9.45e-01 2.84e-01 7.86e-01
CACCTC 1.68e-01 9.75e-01 1.96e-01 4.18e-01
GAAGTA 1.90e-01 3.47e-01 5.49e-01 3.82e-01
ACAAAA 2.60e-01 1.15e-01 1.56e-01 7.56e-01
TTCTAC 2.61e-01 2.27e-01 6.34e-01 2.86e-01
ATGAAG 2.93e-01 8.80e-01 2.62e-01 4.16e-01
CCGCTG 3.15e-01 4.14e-01 5.03e-01 8.59e-01
GAGGTG 3.25e-01 7.30e-01 2.38e-01 9.45e-01
CAACTA 3.53e-01 2.04e-01 4.38e-01 3.91e-01
CAGCTG 3.65e-01 8.10e-01 1.73e-01 7.75e-01
GACGTC 3.74e-01 9.07e-01 3.76e-01 4.40e-01
GTCGAC 4.40e-01 8.18e-01 3.05e-01 7.13e-01
TTGTAG 4.89e-01 5.76e-02 2.47e-01 7.65e-01
GTGGAG 5.38e-01 5.64e-01 1.18e-01 8.61e-01
CTGCAG 7.72e-01 6.50e-01 6.47e-02 5.03e-01
CATCTT 8.64e-01 2.21e-01 2.54e-01 8.40e-01
CTCCAC 9.82e-01 1.72e-01 2.38e-01 8.37e-01
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Table A2: Linear model fit between mismatch load and age.

Triplet R2 P

AGAATA 0.63 9.74e-08
GGAGTA 0.55 1.98e-06
TCATGA 0.49 1.28e-05
CGACTA 0.44 5.04e-05
GGTGAT 0.42 8.34e-05
TCTTAT 0.41 1.02e-04
GCTGAT 0.4 1.40e-04
TGCTTC 0.39 1.60e-04
AGCATC 0.37 2.82e-04
GGCGTC 0.36 3.20e-04
TGATTA 0.36 3.33e-04
TGTTAT 0.31 1.08e-03
TCATAA 0.31 1.17e-03
TAGTGG 0.3 1.56e-03
TGATCA 0.29 1.75e-03
TATTGT 0.29 1.97e-03
ACTATT 0.28 2.41e-03
TACTGC 0.27 2.69e-03
AGGAAG 0.27 3.02e-03
CATCGT 0.26 3.31e-03
GACGCC 0.25 4.04e-03
MismatchLoad 0.25 4.23e-03
CCACTA 0.22 7.90e-03
TTATCA 0.22 8.29e-03
ATAACA 0.21 9.35e-03
ATAAGA 0.21 9.36e-03
TATTCT 0.21 9.97e-03
ACTAGT 0.19 1.41e-02
GCGGGG 0.19 1.44e-02
GAAGGA 0.19 1.55e-02
CCGCAG 0.18 1.58e-02
TTGTCG 0.18 1.69e-02
AAGAGG 0.18 1.76e-02
TCCTGC 0.18 1.77e-02
TGTTTT 0.18 1.88e-02
AGTAAT 0.17 2.08e-02
TCCTAC 0.16 2.75e-02
GATGGT 0.14 3.78e-02
TTATAA 0.14 3.85e-02
CCACGA 0.14 3.90e-02
ACAAAA 0.14 4.11e-02
GGTGTT 0.13 4.29e-02
AGAACA 0.13 4.56e-02
GGAGAA 0.13 4.59e-02
GAGGGG 0.13 4.60e-02
TAATTA 0.12 5.18e-02
TCGTGG 0.12 5.33e-02
ACAAGA 0.12 5.38e-02
ACTAAT 0.12 5.42e-02
AATATT 0.12 5.97e-02
CGACAA 0.12 6.19e-02
ATCAGC 0.11 6.27e-02
GACGGC 0.11 6.67e-02
ATTAGT 0.11 7.08e-02
TAATGA 0.1 7.88e-02
TGGTTG 0.1 7.98e-02
CCTCTT 0.1 7.99e-02
GCCGAC 0.1 8.31e-02
GAGGCG 0.1 8.37e-02
AGAAAA 0.099 8.43e-02
GGCGAC 0.096 8.95e-02
CATCTT 0.095 9.21e-02
TTCTGC 0.092 9.80e-02
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GCTGTT 0.091 9.99e-02
GCAGTA 0.09 1.01e-01
CGCCCC 0.09 1.01e-01
TATTTT 0.09 1.02e-01
AAAACA 0.088 1.06e-01
TTTTCT 0.084 1.13e-01
CCGCGG 0.084 1.14e-01
CTTCCT 0.082 1.19e-01
ATGAGG 0.079 1.25e-01
GGAGCA 0.075 1.35e-01
AATACT 0.075 1.35e-01
CAGCCG 0.075 1.36e-01
GCCGTC 0.074 1.39e-01
CGTCCT 0.074 1.39e-01
GGCGCC 0.072 1.44e-01
GCAGAA 0.071 1.46e-01
GTGGGG 0.069 1.53e-01
GCCGGC 0.069 1.54e-01
GTCGGC 0.068 1.56e-01
CACCTC 0.068 1.57e-01
AAAATA 0.066 1.62e-01
TACTTC 0.065 1.66e-01
AGTACT 0.064 1.70e-01
TGCTCC 0.064 1.71e-01
ATGAAG 0.063 1.73e-01
CCTCAT 0.062 1.77e-01
ATTACT 0.062 1.78e-01
CTTCGT 0.06 1.83e-01
GCAGGA 0.059 1.89e-01
GAAGTA 0.058 1.93e-01
CAACCA 0.057 1.95e-01
CAACGA 0.057 1.96e-01
AATAGT 0.057 1.97e-01
AAAAGA 0.056 1.99e-01
TCCTTC 0.054 2.09e-01
GCTGGT 0.053 2.12e-01
CGGCTG 0.052 2.15e-01
CCCCGC 0.052 2.16e-01
TCTTTT 0.052 2.17e-01
GATGCT 0.049 2.33e-01
CTGCCG 0.047 2.44e-01
AACATC 0.046 2.46e-01
GCGGTG 0.045 2.54e-01
ACAATA 0.044 2.56e-01
CACCCC 0.043 2.61e-01
CGCCTC 0.039 2.84e-01
CTCCGC 0.039 2.86e-01
GATGTT 0.036 3.07e-01
ACCATC 0.034 3.20e-01
CACCGC 0.033 3.28e-01
CTGCGG 0.032 3.33e-01
GTTGGT 0.032 3.36e-01
TCGTAG 0.032 3.38e-01
CTACGA 0.032 3.39e-01
ATGACG 0.03 3.50e-01
AGGATG 0.026 3.85e-01
TAGTCG 0.026 3.90e-01
GGGGTG 0.024 4.00e-01
TTGTGG 0.024 4.01e-01
AACACC 0.024 4.10e-01
CAGCGG 0.023 4.14e-01
AGTATT 0.023 4.16e-01
CGCCAC 0.023 4.19e-01
CTTCAT 0.022 4.29e-01
ACGAAG 0.022 4.30e-01
AGCACC 0.021 4.38e-01
GTCGCC 0.02 4.46e-01
CTACCA 0.019 4.54e-01
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TGGTAG 0.017 4.79e-01
TAGTTG 0.017 4.80e-01
GAGGTG 0.017 4.81e-01
GTCGAC 0.016 4.97e-01
ATCACC 0.016 5.00e-01
TTATGA 0.016 5.02e-01
CGTCAT 0.016 5.03e-01
ATAAAA 0.016 5.04e-01
TACTCC 0.015 5.12e-01
CTCCCC 0.015 5.15e-01
GTAGCA 0.015 5.17e-01
ATCAAC 0.013 5.34e-01
TTCTAC 0.013 5.37e-01
AAGACG 0.013 5.48e-01
ATTAAT 0.012 5.55e-01
AGCAAC 0.012 5.57e-01
CCCCAC 0.012 5.57e-01
TTTTGT 0.012 5.59e-01
GCGGAG 0.012 5.65e-01
ACGATG 0.011 5.73e-01
GTTGCT 0.011 5.75e-01
TTGTAG 0.011 5.78e-01
TGGTCG 0.01 5.93e-01
TGATAA 0.0097 5.99e-01
TCATTA 0.0095 6.01e-01
AGGACG 0.0094 6.05e-01
CGGCAG 0.0089 6.14e-01
AAGATG 0.0086 6.20e-01
AACAGC 0.0082 6.29e-01
GTGGCG 0.0079 6.34e-01
CTACAA 0.0073 6.47e-01
TCTTGT 0.0043 7.26e-01
CGACCA 0.0042 7.30e-01
ACGAGG 0.0039 7.39e-01
CCGCTG 0.0039 7.40e-01
TGTTCT 0.0036 7.49e-01
CAACTA 0.0033 7.59e-01
CCACAA 0.0033 7.59e-01
CTCCAC 0.0026 7.84e-01
GAAGCA 0.0026 7.85e-01
CTGCAG 0.0026 7.86e-01
TCGTTG 0.0019 8.15e-01
CGTCTT 0.0019 8.17e-01
TTTTAT 0.0017 8.24e-01
CCTCGT 0.0017 8.27e-01
GTTGAT 0.0015 8.36e-01
TGCTAC 0.0013 8.47e-01
GGGGCG 0.0012 8.54e-01
GTAGGA 0.0012 8.56e-01
TTCTCC 0.001 8.65e-01
ACCAAC 0.00092 8.71e-01
CCCCTC 0.0009 8.73e-01
CGGCCG 0.00075 8.84e-01
GACGTC 0.00072 8.86e-01
GTAGAA 0.00071 8.87e-01
GTGGAG 0.00053 9.02e-01
ACCAGC 0.00047 9.08e-01
TAATCA 0.00036 9.19e-01
GGGGAG 0.00011 9.56e-01
GGTGCT 3.4e-05 9.75e-01
CATCCT 1.9e-05 9.82e-01
CAGCTG 4.5e-06 9.91e-01

Table A3: Mismatch asymmetry based on mismatches falling with gene expression groupings.
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Context Expressed Nonexpressed Global Mismatch type Difference

AAAACA_TTTTGT 0.44 -0.041 0.32 AC 0.48
AAAAGA_TTTTCT 0.44 -0.0076 0.3 AG 0.44
AAAATA_TTTTAT 0.5 0.056 0.36 AT 0.45
AACACC_GTTGGT 0.24 0.2 0.18 AC 0.044
AACAGC_GTTGCT 0.12 0.0088 0.065 AG 0.11
AACATC_GTTGAT 0.23 0.12 0.17 AT 0.11
AAGACG_CTTCGT 0.22 -0.19 0.11 AC 0.41
AAGAGG_CTTCCT 0.21 -0.19 0.097 AG 0.4
AAGATG_CTTCAT 0.28 -0.1 0.17 AT 0.38
AATACT_ATTAGT -0.084 -0.083 -0.11 AC -0.00067
AATAGT_ATTACT -0.19 -0.15 -0.19 AG -0.032
AATATT_ATTAAT -0.046 -0.0094 -0.055 AT -0.037
ACAAAA_TGTTTT 2.7 2.5 2.7 CA 0.25
ACAAGA_TGTTCT 0.2 -0.033 0.12 CG 0.23
ACAATA_TGTTAT -0.093 -0.35 -0.18 CT 0.26
ACCAAC_GGTGTT 2.4 2.5 2.4 CA -0.049
ACCAGC_GGTGCT 0.046 0.083 0.047 CG -0.037
ACCATC_GGTGAT -0.029 -0.035 -0.041 CT 0.0055
ACGAAG_CGTCTT 0.82 0.38 0.73 CA 0.43
ACGAGG_CGTCCT 0.049 0.38 0.1 CG -0.33
ACGATG_CGTCAT 0.73 0.8 0.67 CT -0.07
ACTAAT_AGTATT 2.8 2.9 2.8 CA -0.081
ACTAGT_AGTACT -0.0088 -0.018 -0.025 CG 0.0094
ACTATT_AGTAAT -0.61 -0.58 -0.62 CT -0.036
CAACCA_TTGTGG 0.46 0.21 0.37 AC 0.25
CAACGA_TTGTCG 0.35 0.17 0.27 AG 0.18
CAACTA_TTGTAG 0.36 0.19 0.28 AT 0.17
CACCCC_GTGGGG -0.18 -0.0063 -0.16 AC -0.17
CACCGC_GTGGCG -0.24 -0.17 -0.24 AG -0.066
CACCTC_GTGGAG -0.21 -0.13 -0.2 AT -0.076
CAGCCG_CTGCGG -0.099 -0.16 -0.11 AC 0.057
CAGCGG_CTGCCG -0.14 -0.19 -0.16 AG 0.049
CAGCTG_CTGCAG -0.074 -0.13 -0.089 AT 0.052
CATCCT_ATGAGG -0.35 -0.0082 -0.27 AC -0.34
CATCGT_ATGACG -0.5 -0.17 -0.43 AG -0.33
CATCTT_ATGAAG -0.38 -0.047 -0.31 AT -0.34
CCACAA_TGGTTG 0.72 0.8 0.73 CA -0.077
CCACGA_TGGTCG -0.23 -0.13 -0.21 CG -0.11
CCACTA_TGGTAG -0.33 -0.27 -0.33 CT -0.066
CCCCAC_GGGGTG 0.66 0.78 0.67 CA -0.12
CCCCGC_GGGGCG -0.21 -0.11 -0.18 CG -0.1
CCCCTC_GGGGAG -0.29 -0.18 -0.28 CT -0.11
CCGCAG_CGGCTG -0.38 -0.26 -0.34 CA -0.12
CCGCGG_CGGCCG -0.53 -0.053 -0.44 CG -0.48
CCGCTG_CGGCAG 0.0085 0.43 0.083 CT -0.42
CCTCAT_AGGATG 1.1 1.4 1.2 CA -0.34
CCTCGT_AGGACG -0.33 0.027 -0.26 CG -0.36
CCTCTT_AGGAAG -0.74 -0.37 -0.66 CT -0.36
GAAGCA_TTCTGC 0.24 -0.12 0.12 AC 0.36
GAAGGA_TTCTCC 0.24 -0.16 0.13 AG 0.4
GAAGTA_TTCTAC 0.33 -0.064 0.22 AT 0.4
GACGCC_GTCGGC 0.29 0.04 0.2 AC 0.25
GACGGC_GTCGCC 0.21 0.09 0.18 AG 0.12
GACGTC_GTCGAC 0.29 0.17 0.26 AT 0.12
GAGGCG_CTCCGC 0.33 0.095 0.26 AC 0.23
GAGGGG_CTCCCC 0.3 -0.034 0.23 AG 0.33
GAGGTG_CTCCAC 0.36 0.043 0.3 AT 0.32
GATGCT_ATCAGC -0.11 -0.18 -0.12 AC 0.071
GATGGT_ATCACC -0.17 -0.26 -0.18 AG 0.086
GATGTT_ATCAAC -0.039 -0.12 -0.045 AT 0.077
GCAGAA_TGCTTC 0.74 0.63 0.71 CA 0.11
GCAGGA_TGCTCC 0.011 -0.056 -0.011 CG 0.067
GCAGTA_TGCTAC 0.047 -0.08 0.012 CT 0.13
GCCGAC_GGCGTC 0.54 0.59 0.55 CA -0.056
GCCGGC_GGCGCC -0.082 -0.036 -0.063 CG -0.046
GCCGTC_GGCGAC 0.069 0.11 0.076 CT -0.039
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GCGGAG_CGCCTC -0.79 -1.2 -0.87 CA 0.43
GCGGGG_CGCCCC 0.1 0.071 0.19 CG 0.034
GCGGTG_CGCCAC 1 1.2 1 CT -0.17
GCTGAT_AGCATC 0.86 1 0.89 CA -0.13
GCTGGT_AGCACC -0.095 0.0014 -0.062 CG -0.096
GCTGTT_AGCAAC -0.33 -0.21 -0.3 CT -0.11
TAATCA_TTATGA -0.086 -0.26 -0.017 AC 0.18
TAATGA_TTATCA -0.17 -0.24 -0.18 AG 0.07
TAATTA_TTATAA -0.099 -0.19 -0.13 AT 0.087
TACTCC_GTAGGA 0.41 0.53 0.41 AC -0.13
TACTGC_GTAGCA 0.25 0.28 0.24 AG -0.038
TACTTC_GTAGAA 0.28 0.34 0.27 AT -0.065
TAGTCG_CTACGA -0.57 -0.57 -0.51 AC 0.0043
TAGTGG_CTACCA -0.76 -0.77 -0.73 AG 0.011
TAGTTG_CTACAA -0.54 -0.54 -0.52 AT 0.00061
TATTCT_ATAAGA -0.22 -0.0046 -0.17 AC -0.22
TATTGT_ATAACA -0.31 -0.042 -0.25 AG -0.27
TATTTT_ATAAAA -0.21 0.04 -0.15 AT -0.25
TCATAA_TGATTA 1.9 2.1 1.9 CA -0.24
TCATGA_TGATCA -0.18 0.1 -0.16 CG -0.28
TCATTA_TGATAA -0.41 -0.19 -0.37 CT -0.22
TCCTAC_GGAGTA 1.2 1.6 1.3 CA -0.37
TCCTGC_GGAGCA -0.52 -0.13 -0.46 CG -0.39
TCCTTC_GGAGAA -0.63 -0.29 -0.56 CT -0.35
TCGTAG_CGACTA 0.49 0.35 0.52 CA 0.14
TCGTGG_CGACCA -0.44 0.19 -0.33 CG -0.64
TCGTTG_CGACAA -0.14 0.19 -0.11 CT -0.34
TCTTAT_AGAATA 1.8 2.3 1.9 CA -0.56
TCTTGT_AGAACA -0.63 -0.13 -0.49 CG -0.51
TCTTTT_AGAAAA -1.1 -0.49 -0.91 CT -0.56
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Figure A1: Distribution of p-values derived from the linear regression of median log2 ratio
and assessment centre (n=22) or sequencing batch (n=816). For sequencing batch, there are a
majority of batches that have statistical enrichment for association with DNA damage.



Figure B1: Hexbin plot of the median mutation recurrence as a function of replication timing
ranked aggregated score. The red line shows the line fit from a linear model between mismatch
recurrence as a function of replication timing.

Appendix B

Table B1: Spearman correlation tests for mismatch load and genomic covariates.

GC P GC ρ Replication (T) P Replication (T) ρ Accessibility P Accessibility ρ

TGATTA 1.2e-61 0.12 0.32 0.0076 0.0065 -0.031
TTGTGG 1.9e-28 0.084 0.46 -0.0056 0.024 -0.026
CGGCCG 7e-32 0.089 0.45 0.0057 0.022 -0.026
TAGTCG 1.7e-66 0.13 0.27 0.0085 6.6e-07 -0.057
GATGGT 4.6e-83 0.15 4.8e-14 0.058 0.016 -0.028
GCAGTA 2.8e-170 0.21 1e-43 0.11 4.6e-05 -0.047
AATATT 0.036 0.016 4.2e-33 -0.092 0.51 -0.0076
TTTTGT 4.4e-256 0.25 5.8e-49 0.11 1.1e-05 -0.05

ACCAAC 2.4e-99 0.16 0.18 -0.01 0.88 -0.0018
GGTGTT 4.9e-196 0.22 5.7e-19 0.068 0.0013 -0.037
TGCTCC 1.2e-172 0.21 3.1e-54 0.12 2e-08 -0.064
TTATCA 1.5e-26 0.081 0.29 -0.0081 0.14 -0.017

GCAGGA 2.3e-226 0.24 3.6e-12 0.053 5e-07 -0.058
TCCTTC 4.7e-79 0.14 0.2 0.0098 7e-05 -0.046

GACGGC 8.1e-165 0.21 1.8e-13 0.056 0.00027 -0.042
GCCGGC 7.2e-208 0.23 4e-58 0.12 1.2e-05 -0.05
GCAGAA 9.6e-158 0.2 2.1e-35 0.095 5.8e-05 -0.046
CCACAA 3.1e-43 0.1 0.0071 0.021 0.0056 -0.032
GTTGGT 1.9e-129 0.18 0.43 -0.0061 9.5e-05 -0.045
AGTACT 9.2e-66 0.13 0.13 -0.012 0.00019 -0.043
CCTCGT 6.1e-295 0.27 1.3e-23 0.077 1.6e-06 -0.055
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CGACAA 2.2e-121 0.18 3.4e-34 0.093 2.5e-05 -0.048
GTCGAC 6e-39 0.099 3.5e-09 -0.045 0.071 -0.021
TGTTTT 6.6e-264 0.26 8.8e-16 0.062 2.5e-07 -0.059
TATTGT 1.7e-67 0.13 6.9e-13 0.055 0.17 -0.016

GCTGGT 1.2e-39 0.1 1.5e-12 -0.054 0.038 -0.024
GGAGTA 2.5e-109 0.17 2e-44 0.11 7e-07 -0.057
TCGTAG 1.9e-200 0.23 3.6e-10 0.048 7.2e-05 -0.045
CTCCCC 2.1e-71 0.13 0.97 -0.00027 0.00086 -0.038
GGTGAT 4.8e-151 0.2 7.4e-41 0.1 6.5e-06 -0.052
GTGGAG 1.9e-38 0.098 4.1e-17 0.064 0.0056 -0.032
TCATGA 5.2e-85 0.15 0.36 -0.007 0.035 -0.024

GAGGGG 1.1e-278 0.27 2.5e-49 0.11 8e-11 -0.074
GTAGCA 3.5e-102 0.16 2.9e-23 0.076 0.00091 -0.038
CCGCGG 2.4e-93 0.15 1.1e-09 -0.047 0.04 -0.024
TAATGA 7e-92 0.15 2.4e-24 0.078 8.8e-06 -0.051
ATCACC 5.1e-126 0.18 0.015 0.019 5e-06 -0.052
TCCTGC 5e-106 0.16 6.8e-25 0.079 0.0001 -0.045
ACCAGC 3.9e-255 0.25 4.8e-47 0.11 0.0019 -0.036
TTCTAC 4.1e-27 0.082 0.18 0.01 0.00075 -0.039
CTACCA 8.6e-292 0.27 9e-124 0.18 6.6e-17 -0.096
TTATAA 3.5e-104 0.16 2.1e-38 0.099 1.6e-05 -0.049

GACGCC 7.5e-238 0.25 3.7e-36 0.096 3.6e-05 -0.047
TTATGA 6.7e-56 0.12 0.015 -0.019 0.098 -0.019

GTAGGA 2.9e-102 0.16 0.076 -0.014 0.0038 -0.033
AGAACA 4.2e-111 0.17 0.0016 -0.024 0.26 -0.013
TTCTGC 3.1e-208 0.23 4.7e-56 0.12 0.00031 -0.041
TGATCA 8.7e-68 0.13 0.05 0.015 0.0051 -0.032
GATGCT 6.1e-119 0.17 2.1e-20 0.071 2.2e-07 -0.059
ATAAAA 1.1e-141 0.19 5.2e-42 0.1 0.0055 -0.032
CTACGA 8.8e-148 0.19 1.5e-07 -0.04 0.0038 -0.033
CGACCA 1.6e-154 0.2 0.089 0.013 0.094 -0.019
TCATTA 3.3e-148 0.19 1.3e-38 0.099 3.3e-10 -0.072
ATTAAT 1.7e-248 0.25 7.5e-83 0.15 8.5e-10 -0.07

ATCAGC 6.1e-81 0.14 0.0057 0.021 0.0025 -0.035
CCTCTT 1.5e-56 0.12 8e-06 0.034 0.0016 -0.036
TTTTCT 1.2e-75 0.14 0.005 -0.021 0.062 -0.021

CCGCAG 0 0.3 4.6e-45 0.11 5.5e-07 -0.057
AAAATA 1.3e-179 0.21 1.1e-25 0.08 1.2e-05 -0.05
CTTCCT 0 0.31 1e-118 0.18 2.8e-10 -0.072

GAGGCG 2e-100 0.16 0.0031 0.023 1e-08 -0.066
AGCATC 9.5e-117 0.17 8e-09 0.044 0.00028 -0.042
GCCGTC 8e-75 0.14 0.12 0.012 0.00014 -0.044
GCTGAT 1.9e-37 0.097 0.00021 -0.028 0.18 -0.015
CATCGT 4.3e-84 0.15 7.9e-38 0.098 4.7e-07 -0.058
ACAATA 4.4e-16 0.061 0.00018 -0.029 0.012 -0.029

ACAAGA 2.4e-59 0.12 0.00053 0.027 0.0001 -0.045
ACCATC 3.4e-105 0.16 9.9e-05 0.03 0.0099 -0.03

AAGAGG 3e-103 0.16 8.2e-30 0.087 4e-08 -0.063
TACTTC 4.7e-117 0.17 4.8e-40 0.1 1.2e-08 -0.065

CTGCGG 2.4e-144 0.19 3.6e-06 0.035 0.00061 -0.039
ACAAAA 1.6e-310 0.28 2.1e-80 0.14 1e-09 -0.07
GTTGAT 2.3e-135 0.19 6e-44 0.11 1.9e-05 -0.049
CTACAA 1.2e-141 0.19 2.5e-22 0.074 5.4e-06 -0.052
CCCCAC 1.4e-138 0.19 0.00068 0.026 0.2 -0.015
CGCCAC 4.4e-230 0.24 1.7e-48 0.11 3.2e-07 -0.059
GCGGGG 2.8e-85 0.15 9.7e-06 -0.034 0.0089 -0.03

TCTTTT 1e-149 0.2 1.3e-06 0.037 5.3e-05 -0.046
CCACGA 0.00011 0.029 4.8e-10 -0.048 0.014 -0.028

TTTTAT 1.2e-55 0.12 0.69 0.0031 0.11 -0.018
TGCTAC 9.8e-169 0.21 4.4e-42 0.1 0.00022 -0.042
TGATAA 5.2e-206 0.23 2.4e-56 0.12 1e-09 -0.07
CACCCC 3.3e-317 0.28 1.2e-16 0.063 0.00057 -0.039
ACTAAT 1.1e-160 0.2 9.9e-46 0.11 0.00035 -0.041

GTAGAA 3.6e-135 0.19 2.3e-41 0.1 0.00031 -0.041
TCGTTG 1.7e-263 0.26 1.6e-84 0.15 3.4e-08 -0.063
TGTTAT 4e-221 0.24 1.9e-59 0.12 5.4e-05 -0.046
CTTCAT 1.5e-104 0.16 1.4e-12 0.054 6.2e-07 -0.057

GTCGGC 6.1e-73 0.14 0.00018 0.029 1.1e-06 -0.056
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AGAAAA 8.2e-136 0.19 5.2e-18 0.066 0.00024 -0.042
CCACTA 6.2e-51 0.11 0.0055 -0.021 0.38 -0.01
TCCTAC 6.6e-243 0.25 2.1e-42 0.1 5.9e-10 -0.071

ACGAGG 4e-98 0.16 0.52 -0.0049 0.53 -0.0072
AATAGT 2e-53 0.12 0.0052 0.021 1.5e-05 -0.05
TGGTCG 2.4e-271 0.26 8e-47 0.11 1.3e-08 -0.065
CGTCAT 4.1e-170 0.21 1.9e-20 0.071 0.0022 -0.035
CCCCTC 1.4e-152 0.2 1.7e-38 0.099 1.7e-05 -0.049
GTGGCG 4.1e-256 0.25 2.8e-83 0.15 3.6e-10 -0.072
CTGCAG 1.2e-194 0.22 4e-60 0.12 1.5e-06 -0.055
CGTCTT 3.8e-129 0.18 3.4e-31 0.089 0.0019 -0.036

GCGGTG 6.2e-182 0.22 4.2e-16 0.062 1.2e-05 -0.05
ATAACA 6.4e-56 0.12 0.7 -0.0029 0.019 -0.027
AGCACC 6.4e-116 0.17 4.9e-20 0.07 0.005 -0.032
TCATAA 4.9e-77 0.14 0.001 0.025 7.1e-06 -0.051
CGCCCC 1e-148 0.19 6.7e-28 0.084 9.5e-05 -0.045
ACTAGT 2.1e-302 0.28 3.6e-46 0.11 1.3e-07 -0.06

ACGAAG 1.6e-13 0.056 2.5e-21 -0.072 0.63 -0.0055
TACTGC 5.6e-17 0.063 1.9e-05 -0.033 0.023 -0.026
ATTACT 3.2e-183 0.22 1.2e-34 0.094 1.1e-07 -0.061

GTGGGG 1.5e-110 0.17 1.7e-25 0.08 3.3e-06 -0.053
CAGCTG 2.7e-133 0.18 4e-36 0.096 0.00074 -0.039
GCTGTT 1.6e-95 0.16 0.079 -0.013 0.027 -0.025
AGCAAC 4.2e-146 0.19 2e-13 0.056 0.00021 -0.042

TATTTT 2.3e-40 0.1 5.7e-06 0.035 0.061 -0.021
CAGCCG 2.8e-73 0.14 0.011 -0.019 0.22 -0.014
TTGTAG 2.8e-164 0.2 7.4e-76 0.14 1.1e-14 -0.088
ATTAGT 1.1e-42 0.1 0.0011 -0.025 0.029 -0.025

GGCGCC 0 0.32 2.3e-27 0.083 6.1e-06 -0.052
CCCCGC 1.2e-34 0.093 5.2e-22 -0.074 0.17 -0.016
CGACTA 1.3e-130 0.18 0.0088 -0.02 0.024 -0.026
CAACCA 2e-111 0.17 9.1e-24 0.077 0.0045 -0.033
TAGTTG 2e-255 0.25 3.2e-66 0.13 4.5e-06 -0.053
GTCGCC 0 0.33 5.5e-90 0.15 8.7e-05 -0.045
TGGTAG 3.1e-196 0.22 1.3e-37 0.098 0.0088 -0.03
TGTTCT 3.4e-115 0.17 7.2e-25 0.079 0.00016 -0.043
TATTCT 2.4e-184 0.22 2.7e-69 0.13 1.4e-06 -0.055

CGGCAG 5.2e-183 0.22 3.4e-13 0.056 0.00014 -0.044
CATCCT 7e-41 0.1 0.016 -0.019 0.023 -0.026
CTCCAC 0 0.29 6.1e-98 0.16 1.9e-09 -0.069

AGGAAG 4.9e-260 0.26 3.2e-65 0.13 4e-08 -0.063
GAGGTG 0 0.35 3.2e-182 0.22 5.4e-12 -0.079
TAGTGG 7.8e-92 0.15 2e-07 -0.04 0.017 -0.027
AACACC 2.2e-75 0.14 0.0039 -0.022 0.092 -0.019
CCTCAT 4.2e-114 0.17 1e-34 0.094 3.1e-10 -0.072
CACCTC 1.4e-252 0.25 2.6e-47 0.11 1.1e-06 -0.056
CGGCTG 5.3e-28 0.083 5.3e-07 -0.038 0.17 -0.016
TTGTCG 9.1e-117 0.17 0.46 -0.0056 0.00023 -0.042
AACATC 1.3e-161 0.2 4.8e-31 0.089 0.00066 -0.039
GGCGTC 0 0.29 2.7e-90 0.15 2.8e-06 -0.054
CTGCCG 5.4e-61 0.12 0.71 -0.0028 0.0023 -0.035
GAAGCA 1.1e-163 0.2 8.4e-30 0.087 4.9e-06 -0.052
GCCGAC 4.4e-192 0.22 2.8e-23 0.076 1.5e-05 -0.05
CTCCGC 1.9e-202 0.23 6.8e-54 0.12 7.2e-07 -0.057
CGCCTC 3.3e-63 0.13 0.21 -0.0097 0.021 -0.027
GCGGAG 2.3e-201 0.23 3.3e-21 0.072 5.6e-07 -0.057
GGAGCA 1.2e-241 0.25 5.2e-22 0.074 5.8e-08 -0.062
TACTCC 4e-94 0.15 9.6e-25 0.078 0.0022 -0.035
CCGCTG 4e-194 0.22 2.4e-26 0.081 3.3e-06 -0.053
AAAAGA 2e-83 0.15 1.2e-09 0.047 0.013 -0.029
ATAAGA 3.3e-98 0.16 4.5e-23 0.076 0.017 -0.027
ATGAGG 3.6e-114 0.17 2.6e-23 0.076 2.9e-05 -0.048
GGAGAA 8.1e-206 0.23 3.4e-52 0.12 2.6e-05 -0.048

ACTATT 5.8e-311 0.28 2.8e-66 0.13 5.1e-08 -0.062
AACAGC 2.6e-320 0.28 2.1e-21 0.073 4.6e-08 -0.063
AGAATA 7.9e-148 0.19 2.6e-16 0.063 0.00019 -0.043
AAGATG 8.3e-40 0.1 3.7e-12 -0.053 0.00037 -0.041
TGCTTC 4.5e-07 0.038 0.018 -0.018 0.096 -0.019

246



GAAGGA 0 0.3 4.9e-124 0.18 1.7e-06 -0.055
CTTCGT 5.9e-206 0.23 4.8e-24 0.077 1.3e-07 -0.06

AAAACA 5e-136 0.19 7e-10 0.047 0.0045 -0.033
GAAGTA 9e-143 0.19 3.9e-22 0.074 0.00012 -0.044
GATGTT 6e-294 0.27 8.8e-113 0.17 4.2e-10 -0.071
TCTTGT 0 0.3 4.9e-143 0.19 6.7e-09 -0.066
CAACTA 8.4e-115 0.17 1.4e-05 0.033 0.099 -0.019
ATGACG 3e-185 0.22 4.1e-16 0.062 8.7e-08 -0.061
CAGCGG 1.9e-227 0.24 5.5e-74 0.14 3.7e-09 -0.068
GGCGAC 3.7e-192 0.22 2.7e-24 0.078 5.4e-10 -0.071
GTTGCT 9.2e-317 0.28 4.5e-60 0.12 5.7e-13 -0.082
CACCGC 6.6e-109 0.17 4.6e-05 0.031 0.029 -0.025
AGGACG 2.9e-209 0.23 2.8e-16 0.063 0.034 -0.024
TAATCA 1.1e-58 0.12 0.34 -0.0074 0.099 -0.019
TTCTCC 2.5e-66 0.13 0.42 -0.0062 0.18 -0.015
TCGTGG 9.3e-116 0.17 0.00041 0.027 3.2e-05 -0.048
ACGATG 1e-178 0.21 5.3e-44 0.11 0.00043 -0.04
AGTAAT 1.5e-105 0.16 2.3e-24 0.078 6.1e-06 -0.052
AGGATG 9.8e-150 0.2 0.6 0.0041 0.036 -0.024
AGTATT 1.4e-310 0.28 3.1e-33 0.092 3.1e-05 -0.048

CAACGA 8.1e-122 0.18 6.1e-06 0.035 7.2e-05 -0.045
GGTGCT 3.5e-200 0.23 6e-12 0.053 0.064 -0.021
CGTCCT 0.28 -0.0081 6e-16 -0.062 0.41 -0.0095

GGGGCG 3.3e-95 0.16 3.4e-06 0.036 0.044 -0.023
ATGAAG 2e-33 0.091 0.65 -0.0035 0.00081 -0.038
GACGTC 1.2e-155 0.2 2.1e-36 0.096 0.00024 -0.042
AATACT 6.7e-60 0.12 2.9e-13 0.056 6.5e-06 -0.052

GGGGTG 3.3e-205 0.23 1.7e-21 0.073 3.2e-05 -0.048
TAATTA 6.1e-96 0.16 0.011 0.019 4.9e-05 -0.046
TCTTAT 1.4e-209 0.23 4.3e-51 0.11 4.5e-10 -0.071

AAGACG 6.9e-159 0.2 4.8e-13 0.055 3.4e-06 -0.053
ATCAAC 1.6e-204 0.23 7e-66 0.13 1.6e-09 -0.069
TGGTTG 1.5e-73 0.14 0.0017 0.024 0.0018 -0.036
CATCTT 2.9e-164 0.2 9.1e-21 0.071 2.5e-09 -0.068

GGGGAG 2.6e-285 0.27 4.3e-56 0.12 1.3e-08 -0.065
rank_mean 0 0.52 4.1e-102 0.16 7.5e-27 -0.12
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Table B2: Nucleotide content proportions in recombination hotspots, the exome and genome
wide.

GC As Cs Gs Ts Total Bases
Recombination hotspots 43.23 28.37 21.6 21.63 28.4 22778529

Exome 51.75 24.11 25.9 25.84 24.14 37495327
Genome 39.19 28.31 19.56 19.63 28 2824183054

Table B3: Linear model of mismatch load and recombination adjusted for chromatin structure
and GC content.

Context P R2 Effect size

GCTGAT 4.6e-83 0.072 2.7e+03
GCAGAA 3.8e-69 0.089 2.9e+03
ACCAAC 7.2e-54 0.062 1.9e+03
TCTTAT 4.1e-51 0.06 1.3e+03

ACAAAA 6.5e-50 0.081 2e+03
CAGCTG 9.8e-42 0.073 1.2e+03
GCCGAC 2.8e-40 0.053 2.3e+03
CACCTC 2.4e-37 0.074 1.2e+03
CCCCAC 1.8e-31 0.066 1.4e+03
GTGGAG 2.5e-27 0.033 1.4e+03
CCACTA 2.7e-27 0.042 9.7e+02
CCACAA 4e-27 0.051 1.7e+03
GCCGTC 7.4e-25 0.045 1.1e+03
ACTAAT 3.8e-24 0.071 1.3e+03
TGCTAC 2.1e-23 0.086 1.3e+03
TACTTC 5.9e-19 0.089 9.7e+02
TCATAA 1.5e-18 0.057 1.4e+03

GGCGAC 5.2e-17 0.08 1.3e+03
GCAGTA 2.3e-14 0.05 1.1e+03
GCGGTG 6.5e-14 0.062 9.7e+02
TCCTAC 2.7e-13 0.053 1e+03
CTCCGC 3.9e-13 0.083 -1.1e+03
TGATCA 4.5e-13 0.05 -8.9e+02
TCCTTC 1.9e-11 0.053 4.8e+02

GAGGCG 4.3e-11 0.07 -7e+02
TAATCA 4.6e-11 0.038 -7.2e+02
GTCGAC 1.6e-10 0.035 7.2e+02
GACGTC 2e-10 0.069 6.8e+02
GTAGAA 2.5e-10 0.053 7.5e+02
AGGAAG 4.8e-10 0.08 5.8e+02
CTGCAG 9.1e-10 0.079 8.2e+02
AAGAGG 9.5e-10 0.058 5.1e+02
TCTTGT 1.3e-09 0.092 -5.4e+02
CCTCAT 1.4e-09 0.061 9.1e+02
TAGTCG 1.6e-09 0.046 -6.9e+02

GAAGCA 4.6e-09 0.035 -7.1e+02
CTCCCC 5.2e-09 0.05 5e+02

GCGGGG 7.3e-09 0.027 -8.6e+02
GCGGAG 1.4e-08 0.063 9.6e+02
GAAGGA 3.1e-08 0.099 -7.7e+02
AGCAAC 4.3e-08 0.074 6.3e+02
AAGACG 5.5e-08 0.059 -7.9e+02
CAACCA 9.3e-08 0.046 -8.6e+02
TGGTAG 1e-07 0.04 8.7e+02
CGGCCG 3.2e-07 0.026 -6.7e+02
GGGGCG 4.2e-07 0.045 -8.8e+02
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TCCTGC 5.1e-07 0.047 -8.3e+02
CGACAA 5.8e-07 0.054 6e+02
TAGTTG 5.9e-07 0.077 3.7e+02
TTATGA 9.6e-07 0.026 -6.4e+02
CTTCGT 1e-06 0.046 -5e+02

GGAGCA 1.5e-06 0.054 -3.2e+02
CCGCGG 1.8e-06 0.054 -4.6e+02
CGCCCC 3.1e-06 0.039 -5.3e+02
TTCTGC 3.7e-06 0.044 -4.6e+02
CCCCTC 4.2e-06 0.061 5.5e+02
ATAAGA 6.3e-06 0.051 -5.7e+02
TGTTTT 7.5e-06 0.077 -6e+02
TTTTGT 9.6e-06 0.07 -5.2e+02
TGCTTC 1.1e-05 0.008 3.9e+02

ACGAGG 1.2e-05 0.039 -6.7e+02
GGTGCT 1.2e-05 0.064 -5.7e+02
ACTATT 1.2e-05 0.1 -5.3e+02
TATTCT 2.3e-05 0.06 -5.8e+02

GATGCT 2.5e-05 0.05 -3.9e+02
AGCACC 2.6e-05 0.05 -6.7e+02
TACTCC 2.6e-05 0.041 -5.8e+02
GCTGGT 4e-05 0.025 -5.5e+02
CAGCCG 4.1e-05 0.04 -5.8e+02
AGTACT 4.2e-05 0.036 -4.1e+02
CTCCAC 5e-05 0.093 4.2e+02
TCATGA 5.7e-05 0.034 -4.6e+02

AGAACA 5.9e-05 0.035 -5.6e+02
CGGCAG 6.1e-05 0.059 6.3e+02
AGGACG 7.3e-05 0.029 -5.2e+02
GACGCC 7.8e-05 0.062 -4.2e+02
GCAGGA 8.5e-05 0.066 -3.4e+02
AATACT 0.00011 0.026 -2.8e+02
TTGTGG 0.00012 0.029 -3.8e+02

GGGGAG 0.00016 0.09 5e+02
AAAACA 0.00016 0.049 -4.5e+02
ACCAGC 0.00021 0.085 -4e+02
GGTGTT 0.00021 0.051 -5.7e+02
TGCTCC 0.00022 0.047 -4.1e+02
TAATGA 0.00025 0.041 -4.5e+02
GTTGGT 0.00025 0.056 -4.2e+02
TGATAA 0.00025 0.075 4.2e+02

Table B4: Linear model of mismatch load and gene expression adjusted for replication timing
and GC content.

Context P Effect size R2

TGATTA 0.00028 -0.034 0.0019
TTGTGG 0.044 -0.019 0.0021
CGGCCG 0.008 -0.032 0.0027
TAGTCG 0.35 -0.011 0.006
GATGGT 0.00017 -0.035 0.012
GCAGTA 0.22 -0.016 0.03
AATATT 9.4e-07 -0.047 0.013
TTTTGT 0.88 0.0018 0.027

ACCAAC 0.024 -0.026 0.015
GGTGTT 0.76 0.0037 0.019
TGCTCC 0.33 0.012 0.012
TTATCA 0.4 0.011 0.00089

GCAGGA 0.0092 -0.025 0.012
TCCTTC 0.00024 -0.041 0.0014

GACGGC 0.0054 -0.033 0.014
GCCGGC 0.7 -0.0041 0.02
GCAGAA 0.72 0.0047 0.018
CCACAA 0.025 -0.03 0.0017
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GTTGGT 0.32 0.013 0.015
AGTACT 1.3e-05 -0.047 0.006
CCTCGT 0.37 -0.0092 0.028
CGACAA 0.4 0.012 0.021
GTCGAC 0.02 -0.033 0.0097
TGTTTT 0.85 0.0024 0.028
TATTGT 0.028 -0.022 0.0011

GCTGGT 0.098 -0.021 0.0081
GGAGTA 0.12 -0.02 0.0045
TCGTAG 0.89 0.0019 0.013
CTCCCC 0.0062 -0.029 0.0058
GGTGAT 0.013 -0.031 0.0065
GTGGAG 5.9e-09 -0.055 0.0042
TCATGA 0.0079 -0.031 0.005

GAGGGG 0.45 0.0098 0.032
GTAGCA 0.029 -0.026 0.012
CCGCGG 0.55 -0.0082 0.021
TAATGA 0.51 0.0078 0.0027
ATCACC 0.45 -0.0091 0.0082
TCCTGC 0.083 -0.022 0.0077
ACCAGC 0.41 0.0088 0.013
TTCTAC 0.3 -0.013 0.00053
CTACCA 0.029 0.027 0.031
TTATAA 0.43 -0.0098 0.0056

GACGCC 0.22 0.014 0.02
TTATGA 0.34 -0.011 0.0018

GTAGGA 0.49 -0.0084 0.011
AGAACA 0.33 -0.012 0.018
TTCTGC 0.00019 -0.033 0.036
TGATCA 0.2 -0.017 0.0046
GATGCT 0.34 -0.013 0.013
ATAAAA 0.065 -0.022 0.011
CTACGA 0.011 -0.027 0.027
CGACCA 0.037 0.028 0.028
TCATTA 3.9e-09 -0.056 0.008
ATTAAT 0.15 -0.016 0.017

ATCAGC 0.69 -0.0049 0.006
CCTCTT 0.013 -0.027 0.0014
TTTTCT 0.17 0.018 0.0031

CCGCAG 0.66 0.0067 0.031
AAAATA 0.046 -0.025 0.0096
CTTCCT 0.34 0.013 0.046

GAGGCG 0.5 0.0085 0.0077
AGCATC 0.91 0.0017 0.017
GCCGTC 0.0062 -0.035 0.0083
GCTGAT 1.3e-10 -0.066 0.0042
CATCGT 0.0007 -0.038 0.004
ACAATA 0.00028 -0.044 0.0039

ACAAGA 0.0045 -0.032 0.0016
ACCATC 0.041 -0.023 0.012

AAGAGG 0.027 -0.027 0.00082
TACTTC 0.67 -0.0052 6.6e-05

CTGCGG 3e-07 -0.051 0.018
ACAAAA 0.023 0.027 0.04
GTTGAT 0.31 0.012 0.0029
CTACAA 0.14 -0.019 0.013
CCCCAC 0.0002 -0.041 0.018
CGCCAC 0.23 0.02 0.035
GCGGGG 0.013 0.033 0.02

TCTTTT 0.72 -0.0046 0.016
CCACGA 0.0023 -0.035 0.012

TTTTAT 0.084 -0.023 0.0061
TGCTAC 0.015 -0.032 0.0088
TGATAA 0.93 -0.0011 0.01
CACCCC 0.55 -0.0064 0.05
ACTAAT 0.035 -0.022 0.003

GTAGAA 0.031 -0.027 0.0096
TCGTTG 0.23 0.016 0.025
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TGTTAT 0.08 -0.018 0.023
CTTCAT 0.041 -0.024 0.0051

GTCGGC 0.95 0.00067 0.00083
AGAAAA 0.13 -0.019 0.014
CCACTA 2e-06 -0.052 0.0059
TCCTAC 0.0096 -0.028 0.031

ACGAGG 0.38 -0.012 0.0085
AATAGT 0.54 0.0086 0.0025
TGGTCG 0.54 -0.0071 0.032
CGTCAT 0.0019 0.051 0.025
CCCCTC 0.046 -0.026 0.022
GTGGCG 0.36 -0.011 0.029
CTGCAG 0.013 0.034 0.03
CGTCTT 0.98 -0.00028 0.014

GCGGTG 0.0013 0.045 0.014
ATAACA 0.51 0.0078 0.0057
AGCACC 0.092 -0.022 0.015
TCATAA 0.098 -0.022 0.012
CGCCCC 0.54 0.0079 0.011
ACTAGT 0.73 0.0039 0.042

ACGAAG 0.22 -0.015 0.0077
TACTGC 0.0006 -0.041 0.0024
ATTACT 0.54 -0.0067 0.012

GTGGGG 0.63 -0.0056 0.0043
CAGCTG 0.0012 -0.037 0.013
GCTGTT 0.57 -0.0074 0.013
AGCAAC 2.4e-09 -0.059 0.0032

TATTTT 0.061 -0.018 0.00036
CAGCCG 0.39 -0.011 0.01
TTGTAG 0.097 -0.021 0.02
ATTAGT 0.42 0.011 0.0053

GGCGCC 0.39 0.011 0.049
CCCCGC 5.1e-07 -0.046 0.0075
CGACTA 0.63 -0.0055 0.0085
CAACCA 0.6 -0.0064 0.0068
TAGTTG 0.82 -0.0025 0.013
GTCGCC 0.018 -0.026 0.033
TGGTAG 0.31 -0.014 0.033
TGTTCT 0.02 -0.029 0.016
TATTCT 0.0092 -0.029 0.01

CGGCAG 0.66 -0.0056 0.022
CATCCT 0.47 -0.0079 0.0046
CTCCAC 2.5e-05 -0.045 0.025

AGGAAG 7.5e-07 -0.055 0.014
GAGGTG 0.58 0.0072 0.078
TAGTGG 0.049 -0.021 0.0068
AACACC 0.95 -0.00083 0.012
CCTCAT 8.9e-06 -0.057 0.0027
CACCTC 0.29 -0.012 0.024
CGGCTG 0.96 -0.00063 0.0072
TTGTCG 0.038 -0.026 0.013
AACATC 0.022 -0.028 0.0096
GGCGTC 0.41 0.0096 0.039
CTGCCG 0.4 -0.012 0.0057
GAAGCA 0.16 -0.017 0.023
GCCGAC 0.0017 -0.03 0.037
CTCCGC 0.24 0.016 0.023
CGCCTC 0.18 -0.016 0.007
GCGGAG 0.003 0.041 0.021
GGAGCA 0.014 -0.022 0.0089
TACTCC 0.1 -0.022 0.014
CCGCTG 0.27 0.017 0.026
AAAAGA 0.23 -0.013 0.0068
ATAAGA 0.018 -0.029 0.0069
ATGAGG 0.8 0.0035 0.018
GGAGAA 0.00044 -0.041 0.023

ACTATT 0.011 -0.03 0.016
AACAGC 0.13 -0.016 0.031
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AGAATA 0.24 -0.014 0.012
AAGATG 0.0018 -0.031 0.0024
TGCTTC 0.018 -0.029 0.0019

GAAGGA 0.97 0.00035 0.041
CTTCGT 0.046 -0.021 0.028

AAAACA 0.0068 -0.032 0.012
GAAGTA 0.047 -0.021 0.0025
GATGTT 0.54 0.0073 0.027
TCTTGT 0.34 -0.01 0.044
CAACTA 0.53 -0.0076 0.003
ATGACG 0.64 0.0064 0.033
CAGCGG 0.29 -0.013 0.028
GGCGAC 0.61 0.0066 0.025
GTTGCT 0.016 0.032 0.03
CACCGC 0.0068 -0.031 0.0065
AGGACG 0.72 0.0043 0.023
TAATCA 0.76 -0.0039 0.0069
TTCTCC 0.14 -0.017 0.007
TCGTGG 0.7 -0.0052 0.01
ACGATG 0.00087 0.048 0.015
AGTAAT 0.42 -0.0089 0.01
AGGATG 0.76 -0.004 0.017
AGTATT 0.73 0.0035 0.036

CAACGA 0.86 0.0024 0.02
GGTGCT 0.14 -0.016 0.044
CGTCCT 0.0057 -0.04 0.0046

GGGGCG 0.047 -0.024 0.0077
ATGAAG 0.47 -0.0095 0.00041
GACGTC 8.6e-08 -0.051 0.01
AATACT 0.021 -0.024 0.00049

GGGGTG 0.98 -0.00027 0.015
TAATTA 0.78 0.0034 0.0017
TCTTAT 0.0002 -0.043 0.015

AAGACG 0.022 -0.027 0.0062
ATCAAC 0.076 -0.019 0.003
TGGTTG 0.0012 -0.042 0.0042
CATCTT 0.23 -0.013 0.013

GGGGAG 0.41 -0.012 0.027
rank_mean2 3.1e-23 -0.013 0.16

Table B5: dNdS results for the top 20 ranked haematological genes.

Gene name N-syn N-mis ω-mis P-mis CDS length P-adj

SRSF2 30146 189634 2.322876 -11244.9547 666 -16.884316

U2AF2 83303 505291 1.940647 -18337.7656 1428 -12.841573

NPM1 10133 47335 1.490590 -726.8417 885 -0.821290

DDX41 122384 545952 1.470771 -8056.4894 1923 -4.189542

STAT3 208089 909437 1.409478 -10700.6964 2313 -4.626328

DHX15 255217 960539 1.393180 -11797.8082 2388 -4.940456

ABL1 229318 948077 1.367368 -9621.0455 3450 -2.788709

IDH2 83657 380479 1.351408 -3315.8351 1359 -2.439908

WT1 67222 287218 1.349230 -2600.4189 1554 -1.673371

DNMT3A 118109 509999 1.340271 -4369.6349 2739 -1.595339
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SF3B1 418724 1469848 1.316580 -12954.7957 3915 -3.309015

KRAS 38502 151979 1.311895 -1197.1147 570 -2.100201

NOTCH1 367914 1639304 1.307178 -11399.9642 7668 -1.486693

MYD88 69599 253709 1.305917 -2047.8061 954 -2.146547

XPO1 361907 1414859 1.295563 -10161.1907 3216 -3.159574

ETV6 104629 411400 1.292756 -2894.4140 1359 -2.129812

CALR 65982 321637 1.279577 -1759.3411 1254 -1.402983

MAP2K1 75993 294054 1.277377 -1900.8293 1182 -1.608147

RPS14 43185 152801 1.276941 -1055.7144 456 -2.315163

BRAF 157443 549267 1.261917 -3457.1107 2424 -1.426201
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Appendix C

Theory

The following supplement gives more technical arguments that conditioning on a poly-
genic gene score, that is constructed from SNPs on off-target chromosomes, selected
for signficance of association with the outcome, improves statistical power while con-
serving type I error in a standard linear mixed model. To simplify arguments, we will
compare the two approaches fastGWA and fastGWA-PGS. The argument will be in
3 stages. First, we derive an expression for the variance of the association estimate
when the PGS is not adjusted for. Second, we derive an expression for the variance
of the association estimate in the PGS adjusted model, under the assumption that the
genetic and environomental residuals remain independent of the target SNP genotype
conditional on the PGS - importantly, this independence condition also implies that the
association parameter being estimated is the same in the models with and without ad-
justment for PGS. This PGS-adjusted association will be seen to have smaller variance
than the corresponding estimator from the unadjusted model. Finally, we argue this in-
dependence condition (of the residuals in the PGS-adjusted model and SNP genotype)
is approximately true assuming that the PGS is statistically independent of the selected
SNP. In practice, the PGS should be approximately independent of the selected SNP
under the null hypothesis of no causal association at the target SNP, since the off-target
SNPs that constitute the polygenic score are selected independently and are on differing
chromosomes (that is they are not in LD with the target SNP and there is no-collider
bias between the target SNPs and off-target SNPs since the null hypothesis is true).
This proves the conservation of type I error. Under the alternative hypothesis that the
target SNP has a causal association with the outcome, collider bias might result in some
correlation between the PGS and target SNP genotype; however, the extent of this cor-
relation is likely extremely weak when there are a large number of variants that are
associated with the trait in question, and unlikely to invalidate the following argument.

We first list the assumptions and notation we will use for the remainder of the argu-
ment.
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Assumptions

• Let X correspond to the standardized SNP genotype at a particular location

• Without loss of generality, assume that Var(X) = 1 and E(X) = 0 (that is if X∗ is
the original genotype data, X = (X∗−E(X∗))/SD(X∗)

• Similarly, the outcome Y is standardized, so that E(Y ) = 0 and Var(Y ) = 1

• Data collected on outcome, Y , target SNP X , and offtarget genetic SNPs, G1, ...,GK

for samples i = 1 . . .N

• The estimated LOCO polygenic score, P̂ = ∑k∈Ŝ β̂kGk, constructed over SNPs in
the selection set Ŝ. Again SNP variables Gk for k ∈ S are standardized to have
mean 0, variance 1. By construction, P̂ has expected value 0. We assume that β̂k

are scaled so that the empirical variance of P̂ over samples i ≤ N is 1.

• Finally, we consider the LOCO polygenic score P that corresponds to SNPs in S

but weighted according to their ”true” associations βk, P = ∑k∈Ŝ βkGk

• Subscript notation. i and j refer to individuals i, j ≤ N; k ≤ K refers to genetic
location

Variance of β̂ in fastGWA model

The fastGWA model takes the form:

Y = βX +g(0)+ ε
(0) (1)

where Var(ε(0)1 , ...,ε
(0)
N )= σ2

0 I and Var(g(0)) = Var(g(0)1 , ...,g(0)N ) = Πτ2
0 , where the fam-

ily matrix Π is assumed known (or can be estimated using the original genotypes). The
overall variance matrix of Var(Y) = (Y1, ...,YN) in (1) accounting for both the envi-
ronmental variance and genetic random effect is V = σ2

0 I +Πτ2
0 Assuming consistent

REML estimates,τ̂0 and σ̂0, of τ0 and σ0, estimated by fastGWA, fastGWA estimates β

by genalized least squares:

β̂ = XtV̂−1Y
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Since, β̂ is computed using generalized least squares, it is easily shown that:

Var(β̂ ) = (XtV̂−1X)−1

with X being the vector of the target SNP over i = 1, ...,N
Henceforth, we will assume that estimation error in the estimated variance com-

ponents: σ̂0 and τ̂0 is negligible, so can effectively leave out the hat-notation when
referring to variance components.

To examine the effect of the extent of family correlation structure on Var(β̂ ) in a
simplistic setting, we will assume that Π has a compound symmetry structure (implying
that all individuals are equally related. That is

Π = ρJ+(1−ρ)I

where J is the N ×N matrix of 1’s. That is Π has elements −1 ≤ ρ ≤ 1 on its off
diagonals and 1 on its diagonals. It follows that the matrix V has also a compound
symmetry form:

V = ρτ
2
0 J+((1−ρ)τ2

0 +σ
2
0 )I

The inverse of V (if it exists) can be calculated analytically and is equal to:

V−1 = I/((1−ρ)τ2
0 +σ

2
0 )−J

ρτ2
0

((1−ρ)τ2
0 +σ2

0 )((1−ρ)τ2
0 +σ2

0 +Nρτ2
0 )

It follows that:

Var(β̂ )= (XtV̂−1X)−1 = [
∑i≤N X2

i

(1−ρ)τ2
0 +σ2

0
−

∑i, j≤N XiX jρτ2
0

((1−ρ)τ2
0 +σ2

0 )((1−ρ)τ2
0 +σ2

0 +Nρτ2
0 )
]−1

Now, noting that E(X2
i ) =1 and assuming that E(XiX j) = ρ , the genetic correlation,

for large N one can show that the above is approximately equal to

Var(β̂ ) =
σ2

0 +(1−ρ)τ2
0

N(1−ρ)
(2)

indicating that Var(β̂ ) is smallest when fastGWA is run on unrelated individuals,
that is where ρ = 0. From this, we see that the inclusion of a genetic-random effect
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(with a particular correlation matrix) in fastGWA does little to increase power (although
the association estimate will be slightly more efficient than the corresponding estimate
from a regression not taking into account family structure when ρ ̸= 0. The goal in Fast-
GWA is instead to properly incorporate family structure in the estimation of Var(β̂ ).
In particular, related-ness in the GWAS reduces the power of finding associated SNPs
(which is indicated in that Var(β̂ ) is a increasing function of ρ).

Variance of β̂ in fastGWA-PGS model

The fastGWA-PGS model takes the form:

Y = βX +g(1)+ γP̂+ ε
(1) (3)

where P̂ = P+ εP is the estimated polygenic risk score, assumed to be independent
of X , and estimated in a LOCO fashion. We will later justify that the modified residual
terms ε(1) and g(1), are zero mean random variables that are independent of X con-
ditional on P̂ provided P̂ is independent of X . Comparing with equation (1) we have
that:

Var(ε(0))+Var(g(0)) =Var(ε(1))+Var(g(1))+ γ
2 (4)

Importantly, these independence conditions imply that conditional on P̂, Cov(X ,Y |P̂)=
βVar(X |P̂)= βVar(X). Noting then that Cov(X ,Y |P̂) is constant, it must equal Cov(X ,Y ),
which implys that β =Cov(X ,Y )/Var(X). This indicates that the coefficient β multi-
plying the SNP genotype is the same in (3) and (1). Note that the variances of both
residual terms may be reduced due to addition of the polygenic risk score, that is
Var(ε(1)) =σ2

1 <Var(ε(0)) =σ2
0 and Var(g(1)) = τ2

1 <Var(g(0)) = τ2
0 . As vector equa-

tions we again assume that Var(ε(0)1 , ...,ε
(1)
N )= σ2

1 I and Var(g(1)) = Var(g(1)1 , ...,g(1)N ) =
Πτ2

1 . Comparing equations (1) and (3), it follows that adjustment for the polygenic
score will reduce the variance of the environmental noise and genetic components in
(1), by the quantities: Corr(P̂,ε(0)) and Corr(P̂,g(0)). Note if we instead adjusted for
the ”true” polygenic score, P, in the regression, we might reduce more of the noise
in the genetic random effect but would not reduce noise in the environmental random
effect.
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The model can be approximately fit in 2 stages. First, we orthogonalize the out-
come, Y with respect to P̂. That is we set Y (1) = Y −YP̂ = Y − γ̂P̂, where YP̂ is the
predicted outcome from a regression using P̂. Second, we orthogonalize X with re-
spect to P̂, that is calculate X (1) = X −XP̂. Assuming X is truly independent of P̂ one
would expect that X (1) ∼ X . Finally, β is estimated by a generalized least squares fit,
regressing Y (1) on X (1), in the following model

Y (1) = βX (1)+g(1)+ ε
(1) (5)

where the variance matrix

V (1) = σ
2
1 +Πτ

2
1 . (6)

Similarly to before, β̂ = X(1)tV(1)−1Y(1) and the variance of β̂ is

Var(β̂ ) = [X(1)tV(1)−1X(1)]−1 (7)

and under the circumstance that the off-diagonal elements of Π are all equal to ρ ,
and X (1) ∼ X , this is approximately

Var(β̂ ) =
σ2

1 +(1−ρ)τ2
1

N(1−ρ)
(8)

noting that σ2
1 < σ2

0 and τ2
1 < τ2

0 and comparing to (2) indicates the variance of β̂ is
reduced by adding the informative (and independent) estimated PGS to the regression.
Because of near-orthogonality of X and P̂, one would not expect the absolute-size of β̂

to be altered (indeed we argued previously that the β coefficient in the two regression
formulae (1) and (5) should be equal), indicating that a test based on β̂ 2/Var(β̂ ) should
have improved power.

Justification of independence of modified residuals and SNP geno-
type X under approximate independence of X and P̂

As previously noted, if residuals, ε(1) and g(1) and genotype, X , in equation (3) are truly
independent of each other, and ε(1) and g(1) are zero mean and finite variance, standard

258



calculations as demonstrated later show that the variance calculated as (7) is asymptot-
ically correct. In addition, the β parameters will ’match’ in equations (1) and (3), and
hence the PGS adjusted model will have improved power under the alternative whilst
conserving type I error under the null. The following is an argument to justfify this con-
dition. By assumption, in equation (1), the residual terms ε(0) and g(0) are independent
of the genotype vector X . We also have assumed that the selected polygenic score, P̂

is statistically independent of X . This implies that once standardized to have mean 0,
X and P̂ should be approximately orthogonal. Now, conditional on the vector of poly-
genic scores, P̂ Let YP̂ = γ̂P̂ be the projection of the response vector Y onto the vector
P̂. By examining the right hand side of equation (1), and the approximate orthogonality
of X and P̂, this projection is also equal to the sum of the projections of the vectors
ε(0) and g(0) onto P̂, which we denote ε

(0)
P̂

+ γ
(0)
P̂

. Now denoting ε(1) = ε(0)− ε
(0)
P̂

and

g(1) = g(0)−g(0)
P̂

, we have the equation:

Yi − γ̂P̂i ≈ βXi + ε
(1)+g(1) (9)

where β is the same coefficient as in equation (1). Noting that conditional on P̂, the
vectors ε(1) and g(1) are functions of the vectors ε(0) and g(0), which are all independent
of X, ε(1) and g(1) are also independent of X. In addition, ε(0), g(0) and P̂ are 0-mean
random variables by assumption. Since, as vectors ε(1) and g(1) can be viewed as the
difference of a zero mean vector and a projection onto a zero mean vector they can also
be viewed as zero mean vectors, which completes the argument.

Conservation of Type I error, after adjustment for P̂, assuming inde-
pendence of X and modified residuals

Under the scenario that we have sucessfully reduced residual noise by incorporating
a polygenic risk score as above, the association test checks the orthogonality of the
genotype vector for the SNP, X with the noise reduced outcome vector (after subtracting
off the predicted outcome based on the polygenic score). Since the polygenic risk
score is approximately othogonal to the SNP in question, and was constructed with
no reference to the SNP, the Type I error of this test should not be affected. This
follows in a straightforward way from the observations that the modified genetic and
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environmental residuals are independent of X and have 0 mean and the variance matrix
listed above as we have justified above.

In more detail, suppose that β = 0. If E(β̂ ) = 0 and the variance of Var(β̂ ) is really
given by (7), it follows that the test statistic: β̂ 2/Var(β̂ ) should be approximately chi-
squared with 1 degree of freedom, and p-values will be uniform as required for a valid
statistical test.

First E(β̂ ) = E(X(1)tV(1)−1Y(1)) = X(1)tV(1)−1E(Y(1)). Now since β=0, E(Y(1)) =
E(g(1)+ ε(1)) = 0 from the model.

Second, Var(β̂ ) = Var(X(1)tV(1)−1Y(1)) = X(1)tV(1)−1Var(Y(1))V(1)−1X(1). Now
Var(Y(1)) = Var(ε(1))+Var(g(1)), which by definition is given by (6), implying that
Var(β̂ ) is indeed given by (7)

260



Supplementary figures & Tables

Figure C1: Assessment of the false positive rate in 100 simulations, causal variants were simu-
lated on the even chromosomes leaving the odd chromosomes to carry information on the false
positive rate. The results of fastGWA-PGS are shown for three P&T p-value thresholds (LOCO
PGS is calculated using 5 x 10−5, 0.05 & 0.5 p-value cut off points) and LDpred2.
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Figure C2: Proportion of causal variants recovered in 100 case-control simulations of a disease
with prevalence 0.1 (left) or 0.3 (right), heritability of 0.5 and 1,000 causal variants.



263

Figure C3: The effect on power of adding the LOCO PGS fixed effect to BOLT-LMM with a
GRM that included all variants in the simulation. The LOCO PGS is calculated using the P&T
method. The plot shows the proportion of causal variants recovered over 10 simulations.
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Figure C4: Median squared error of effect size estimates over 100 simulations of a quantitative
trait with heritability of 0.5 and 1,000 causal variants in 100,000 individuals .
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Figure C5: The proportion of causal variants recovered as a function of the number of causal
variants in case-control simulations of a disease with prevalence 0.1. The plots show the results
for h2 ranging from 0.2 to 0.5.
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Figure C6: QQ plots comparing the distributions of the negative logarithm of the p-values
obtained when different methods were applied to the height phenotype from the UK Biobank.
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Figure C7: QQ plots comparing the distributions of the negative logarithm of the p-values
obtained when different methods were applied to the heel bone mineral density (HBMD) phe-
notype from the UK Biobank
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Figure C8: QQ plots comparing the distributions of the negative logarithm of the p-values
obtained when different methods were applied to the body mass index (BMI) phenotype from
the UK Biobank
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Figure C9: Proportion of phenotypic variance explained by differing GWAS methods
Proportion of phenotypic variance (in height, BMI, & HBMD) explained by polygenic

scores, calculated using the P&T method, as a function of the p-value thresholds
applied in the P&T method. The polygenic scores were calculated from summary

statistics obtained using the methods shown.



Table C1: Mean proportion of causal variants recovered in 100 simulations of a quantitative
trait (h2=0.5, N=100,000 & 1,000 causal loci).

Method Mean Change (%) relative to fastGWA
fastGWA 0.445 0.00

fastGWA-PGS-PT 0.527 18.4
fastGWA-PGS-LDpred2 0.561 25.9

BOLT-LMM-165 0.491 10.3
BOLT-LMM-165-PGS-PT 0.545 22.4

BOTL-LMM-664 0.558 25.3
REGENIE 0.481 8.1

REGENIE-PGS-PT 0.485 8.9

Table C2: Paired t-tests for fastGWA vs all other methods (based on 100 simulations of a
quantitative trait with h2=0.5, N=100,000 & 1,000 causal loci).

Method Mean difference Conf-95 Conf+95 P
fastGWA-PGS-PT 82 78 86 3e-32

fastGWA-PGS-LDpred2 115 110 120 2.3e-36
BOTL-LMM-664 112 108 116 2.3e-40
BOLT-LMM-165 45 42 47 3.1e-31

BOLT-LMM-165-PGS-PT 100 96 103 1.4e-39
REGENIE 36 34 39 3e-28

REGENIE-PGS-PT 39 34 43 3.9e-20
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Table C3: Paired t-tests for BOLT-LMM-664 vs all other methods (based on 100 simulations
of a quantitative trait with h2=0.5, N=100,000, & 1,000 causal loci).

Method Mean difference Conf-95 Conf+95 P
fastGWA 112 108 116 2.3e-40

fastGWA-PGS-PT 30 26 34 3.1e-18
fastGWA-PGS-LDpred2 -2.7 -5.9 0.47 0.092

BOLT-LMM-165 68 65 70 2.9e-37
BOLT-LMM-165-PGS-PT 12 9.9 15 1.9e-12

REGENIE 76 73 79 1.7e-37
REGENIE-PGS-PT 73 69 77 1.4e-31

Table C4: Median proportion of recovered variants in 100 case control simulations with disease
prevalence of 0.1 & 0.3 (h2=0.5, N=100,000, & 1,000 causal loci).

Method Prevalence Median
fastGWA 0.10 0.30
fastGWA 0.30 0.31

fastGWA-PGS-PT 0.10 0.33
fastGWA-PGS-PT 0.30 0.36

Table C5: Paired t-tests between fastGWA and fastGWA-PGS-PT for 100 case control simula-
tions with a disease prevalence of 0.1 & 0.3 (h2=0.5, N=100,000 & 1,000 causal loci).

Method Prevalence Mean difference Conf-95 Conf+95 P
fastGWA-PGS-PT 0.1 29.3 28.1 30.6 2.17e-65
fastGWA-PGS-PT 0.3 38.2 32.9 43.5 3.66e-25
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Table C6: Maximum difference in sensitivity between methods, and the corresponding speci-
ficity at which this maximum occurs (from 100 simulations with h2=0.5, N=100,000 & 1,000
causal loci).

Method comparison Relative increase Max ∆Sensitivity Corresponding specificity

fastGWA-PGS-LDpred2 vs fastGWA 0.1135 0.0728 0.9988
fastGWA-PGS-LDpred2 vs BOTL-LMM-664 0.0016 0.0015 0.2000
REGENIE vs fastGWA 0.0315 0.0217 1.0000
REGENIE-PGS-PT vs fastGWA 0.0347 0.0239 1.0000
BOLT-LMM-PGS-PT vs BOLT-LMM-165 0.0419 0.0278 0.9991
BOTL-LMM-664 vs fastGWA 0.1185 0.0766 0.9986
fastGWA-PGS-PT vs fastGWA 0.0847 0.0531 0.9992
fastGWA-PGS-LDpred2 vs fastGWA-PGS-PT 0.0287 0.0208 0.9966
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Table C7: Average of the median squared error (MEDSE) of effect size estimates for causal
variants across 100 simulations (h2=0.5, N=100,000 & 1,000 causal loci) and relative change to
fastGWA.

Method Mean Improvement relative to fastGWA
fastGWA 0.6196 0.0%
fastGWA-PGS-PT 0.5756 7.1%
fastGWA-PGS-LDpred 0.5612 9.4%
BOLT-LMM-165 0.6510 -5.0%
BOLT-LMM-165-PT 0.5764 7.0%
BOTL-LMM-664 0.6070 2.0%
REGENIE 0.6032 2.6%
REGENIE-PT 0.6022 2.8%
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Table C8: Paired t-tests applied to the median squared error (MEDSE) of effect size estimates
for causal variants across 100 simulations, relative to fastGWA (h2=0.5, N=100,000 & 1,000
causal loci).

Method Mean difference Conf-95 Conf+95 P
fastGWA-PGS-PT -0.044 -0.046 -0.042 3e-76

fastGWA-PGS-LDpred2 -0.058 -0.06 -0.057 5.9e-91
BOTL-LMM-664 -0.013 -0.014 -0.011 3.7e-30
BOLT-LMM-165 0.031 0.015 0.048 0.00022

BOLT-165-PGS-PT -0.043 -0.045 -0.041 2.6e-71
REGENIE-PGS-PT -0.017 -0.02 -0.015 2.2e-26

REGENIE -0.016 -0.018 -0.015 1.9e-38
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Table C9: Paired t-test of MEDSE beta estimates of 100 quantitative trait simulations relative
to BOLT-LMM-165.

Method Mean difference Conf-95 Conf+95 P
fastGWA -0.031 -0.048 -0.015 0.00022

fastGWA-PGS-PT -0.075 -0.092 -0.059 5.2e-15
fastGWA-PGS-LDpred2 -0.09 -0.11 -0.073 3e-18

BOTL-LMM-664 -0.044 -0.061 -0.027 1.1e-06
BOLT-165-PGS-PT -0.075 -0.09 -0.059 2e-15
REGENIE-PGS-PT -0.049 -0.063 -0.034 1.8e-09

REGENIE -0.048 -0.063 -0.033 1.2e-08
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Table C10: Proportion of causal variants recovered for simulations of a quantitative trait over
a range of parameter values (N=100,000; Nc = number of causal variants).

Heritability Method Nc Proportion

0.1 fastGWA 500 0.25

0.1 fastGWA 1,000 0.10

0.1 fastGWA 2,000 0.03

0.1 fastGWA 5,000 0.00

0.1 fastGWA 10,000 0.00

0.1 fastGWA-PGS-PT 500 0.26

0.1 fastGWA-PGS-PT 1,000 0.11

0.1 fastGWA-PGS-PT 2,000 0.03

0.1 fastGWA-PGS-PT 5,000 0.00

0.1 fastGWA-PGS-PT 10,000 0.00

0.2 fastGWA 500 0.35

0.2 fastGWA 1,000 0.23

0.2 fastGWA 2,000 0.10

0.2 fastGWA 5,000 0.02

0.2 fastGWA 10,000 0.00

0.2 fastGWA-PGS-PT 500 0.39

0.2 fastGWA-PGS-PT 1,000 0.26

0.2 fastGWA-PGS-PT 2,000 0.12

0.2 fastGWA-PGS-PT 5,000 0.02

0.2 fastGWA-PGS-PT 10,000 0.00

0.3 fastGWA 500 0.47

0.3 fastGWA 1,000 0.33

0.3 fastGWA 2,000 0.18

0.3 fastGWA 5,000 0.04

0.3 fastGWA 10,000 0.01

0.3 fastGWA-PGS-PT 500 0.50

0.3 fastGWA-PGS-PT 1,000 0.38

0.3 fastGWA-PGS-PT 2,000 0.20

0.3 fastGWA-PGS-PT 5,000 0.05

0.3 fastGWA-PGS-PT 10,000 0.01

0.4 fastGWA 500 0.53
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0.4 fastGWA 1,000 0.39

0.4 fastGWA 2,000 0.23

0.4 fastGWA 5,000 0.07

0.4 fastGWA 10,000 0.02

0.4 fastGWA-PGS-PT 500 0.58

0.4 fastGWA-PGS-PT 1,000 0.45

0.4 fastGWA-PGS-PT 2,000 0.29

0.4 fastGWA-PGS-PT 5,000 0.09

0.4 fastGWA-PGS-PT 10,000 0.02

0.5 fastGWA 500 0.56

0.5 fastGWA 1,000 0.43

0.5 fastGWA 2,000 0.28

0.5 fastGWA 5,000 0.11

0.5 fastGWA 10,000 0.03

0.5 fastGWA-PGS-PT 500 0.62

0.5 fastGWA-PGS-PT 1,000 0.52

0.5 fastGWA-PGS-PT 2,000 0.36

0.5 fastGWA-PGS-PT 5,000 0.16

0.5 fastGWA-PGS-PT 10,000 0.04
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Table C11: Proportion of causal variants recovered for simulations of a quantitative trait over
a range of parameter values (N=430,000; Nc = number of causal variants).

Heritability Method Nc Proportion

0.1 fastGWA 500 0.54

0.1 fastGWA 1,000 0.40

0.1 fastGWA 2,000 0.25

0.1 fastGWA 5,000 0.08

0.1 fastGWA 10,000 0.02

0.1 fastGWA-PGS-PT 500 0.55

0.1 fastGWA-PGS-PT 1,000 0.41

0.1 fastGWA-PGS-PT 2,000 0.27

0.1 fastGWA-PGS-PT 5,000 0.08

0.1 fastGWA-PGS-PT 10,000 0.02

0.2 fastGWA 500 0.68

0.2 fastGWA 1,000 0.56

0.2 fastGWA 2,000 0.40

0.2 fastGWA 5,000 0.21

0.2 fastGWA 10,000 0.08

0.2 fastGWA-PGS-PT 500 0.69

0.2 fastGWA-PGS-PT 1,000 0.59

0.2 fastGWA-PGS-PT 2,000 0.44

0.2 fastGWA-PGS-PT 5,000 0.23

0.2 fastGWA-PGS-PT 10,000 0.09

0.3 fastGWA 500 0.73

0.3 fastGWA 1,000 0.64

0.3 fastGWA 2,000 0.50

0.3 fastGWA 5,000 0.30

0.3 fastGWA 10,000 0.15

0.3 fastGWA-PGS-PT 500 0.76

0.3 fastGWA-PGS-PT 1,000 0.68

0.3 fastGWA-PGS-PT 2,000 0.54

0.3 fastGWA-PGS-PT 5,000 0.34

0.3 fastGWA-PGS-PT 10,000 0.18

0.4 fastGWA 500 0.77
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0.4 fastGWA 1,000 0.68

0.4 fastGWA 2,000 0.56

0.4 fastGWA 5,000 0.37

0.4 fastGWA 10,000 0.21

0.4 fastGWA-PGS-PT 500 0.81

0.4 fastGWA-PGS-PT 1,000 0.72

0.4 fastGWA-PGS-PT 2,000 0.62

0.4 fastGWA-PGS-PT 5,000 0.40

0.4 fastGWA-PGS-PT 10,000 0.26

0.5 fastGWA 500 0.76

0.5 fastGWA 1,000 0.70

0.5 fastGWA 2,000 0.58

0.5 fastGWA 5,000 0.41

0.5 fastGWA 10,000 0.26

0.5 fastGWA-PGS-PT 500 0.80

0.5 fastGWA-PGS-PT 1,000 0.74

0.5 fastGWA-PGS-PT 2,000 0.66

0.5 fastGWA-PGS-PT 5,000 0.49

0.5 fastGWA-PGS-PT 10,000 0.33
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Table C12: Proportion of causal variants recovered for simulations of a binary trait over a range
of parameter values (N=100,000; disease prevalence = 0.1; Nc = number of causal variants).

Heritability Nc Method Proportion

0.2 10,000 fastGWA 0.0001

0.2 10,000 fastGWA-PGS-PT 0.0001

0.2 1,000 fastGWA 0.0970

0.2 1,000 fastGWA-PGS-PT 0.1030

0.2 2,000 fastGWA 0.0310

0.2 2,000 fastGWA-PGS-PT 0.0315

0.2 500 fastGWA 0.2580

0.2 500 fastGWA-PGS-PT 0.2660

0.3 10,000 fastGWA 0.0012

0.3 10,000 fastGWA-PGS-PT 0.0013

0.3 1,000 fastGWA 0.1810

0.3 1,000 fastGWA-PGS-PT 0.1940

0.3 2,000 fastGWA 0.0755

0.3 2,000 fastGWA-PGS-PT 0.0850

0.3 500 fastGWA 0.3400

0.3 500 fastGWA-PGS-PT 0.3480

0.4 10,000 fastGWA 0.0032

0.4 10,000 fastGWA-PGS-PT 0.0030

0.4 1,000 fastGWA 0.2480

0.4 1,000 fastGWA-PGS-PT 0.2720

0.4 2,000 fastGWA 0.1095

0.4 2,000 fastGWA-PGS-PT 0.1215

0.4 500 fastGWA 0.4100

0.4 500 fastGWA-PGS-PT 0.4400

0.5 10,000 fastGWA 0.0072

0.5 10,000 fastGWA-PGS-PT 0.0071

0.5 1,000 fastGWA 0.2873

0.5 1,000 fastGWA-PGS-PT 0.3183

0.5 2,000 fastGWA 0.1630

0.5 2,000 fastGWA-PGS-PT 0.1790

0.5 500 fastGWA 0.4360
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0.5 500 fastGWA-PGS-PT 0.4700
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Table C13: Two-sample tests of equality of proportions applied to the proportions of significant
loci identified using the method shown, compared to fastGWA. The results shown are for the
three UK Biobank quantitative traits analyzed. Prop 1 and Prop 2 show the proportions of
significant loci for the method on the row and for fastGWA, respectively. Conf-95 and Conf+95
show the low and upper 95% confidence interval for the difference in these proportions.

Method Phenotype P X-sq Prop 1 Prop 2 Conf-95 Conf+95

BOLT-LMM BMI 3.133e-05 17.3357 0.0159 0.0123 0.0019 0.0054

fastGWA-PGS-LDpred2 0.1083 2.5795 0.0136 0.0123 -0.0003 0.0030

fastGWA-PGS-PT 0.1563 2.0093 0.0135 0.0123 -0.0005 0.0029

BOLT-LMM HBMD 0.009114 6.8004 0.0106 0.0087 0.0005 0.0033

fastGWA-PGS-LDpred2 0.02029 5.3864 0.0104 0.0087 0.0003 0.0031

fastGWA-PGS-PT 0.1066 2.6034 0.0098 0.0087 -0.0002 0.0026

BOLT-LMM Height 5.458e-19 79.2553 0.0493 0.0360 0.0104 0.0163

fastGWA-PGS-LDpred2 1.953e-13 54.0515 0.0468 0.0360 0.0079 0.0138

fastGWA-PGS-PT 1.166e-06 23.6328 0.0430 0.0360 0.0042 0.0099
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