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Abstract

Serverless Computing is a powerful cloud-based architecture for the creation

of applications. It boasts incredible scalability by running processes on a vast

network of edge nodes. It decreases the time to deployment, as the developer

no longer needs to programme a traditional server-side back-end, only having

to focus on the application’s business logic. Serverless applications are billed by

counting the number of invocations a function receives in conjunction with its

memory allocation. This means that there is no need to pay for the provision of a

server that constantly runs in the background when it may only receive a small

number of requests per month. These unique selling points, when used in the

intended way, can drastically reduce operational costs. However, it has given rise

to a potential form of cyber attack that specifically seeks to cause inflated usage

bills through the abuse of serverless functions. This attack is called Denial of Wallet

(DoW). This thesis presents the first in depth investigation in academia on DoW,

comprising the formal definition of the attack, theorised attack vectors, a means

of safely recreating attacks for research purposes via synthetic data generation,

and a novel detection strategy utilising image classification that yields a detection

accuracy of 97.98%
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CHAPTER 1

Introduction

Serverless computing is a method of providing back-end services on an as-used

basis. A serverless provider allows users to write and deploy code without the

hassle of worrying about the underlying infrastructure. A company that gets back-

end services from a serverless vendor is charged based on their computation and

do not have to reserve and pay for a fixed amount of bandwidth or number of

servers, as the service is auto-scaling. Since the launch of AWS Lambda circa

2014, serverless computing has seen a steady rise of uptake by businesses as

they migrate their monolithic applications to the cloud. Some benefits of this

move are the increased load capacity and ease of scaling, as the developer is

not responsible for designing and maintenance of the back-end resources. The

serverless computing market is predicted to reach a value of $36.84 billion by 2028

[3].

1.1 Motivation

Serverless computing is by no means a perfect model. With its unique combina-

tion of pay-as-you-go computing and its capability for massive scaling, it allows

for the execution of a potential attack, Denial of Wallet (DoW), which is the inten-

tional mass and continual invocation of serverless functions, resulting in financial
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exhaustion of the victim in the form of inflated usage bills. This attack is currently

considered theoretical as there have been no documented instances of targeted

DoW in the wild. However, this is not a convincing indicator that it has not been

carried out. Given that the only victim of DoW is the bill payer of the application,

end users would not be directly affected by the attack. As such, there would be no

need for a business to declare that they were attacked, keeping it secret. Also, as

will be discussed throughout this research, there are potential forms of this attack

that may never be detected, as they may not arouse suspicion.

The current state of serverless security does not openly address the issue of

DoW with specific tools. Instead there is a reliance on existing mitigation strategies

for other attacks and placing the onus on developers to take the security of their

functions into their own hands. We believe this is not an appropriate approach

to such a looming threat. It is important to take advantage of this opportunity

to conduct pre-emptive research on this attack, as it is a rare occasion where the

defence can be a step ahead of the attackers in the arena of cybersecurity. The

unique attack vectors of DoW require the development of novel research tools

and approaches in order to understand and create the first formal analysis of this

looming threat and answer the question of whether it can be accurately detected

and defeated.

1.2 Research Questions

This thesis aims to answer the following research questions:

1. What makes DoW unique to other attacks and how does this influence the

potential design of its attack patterns? (RQ1)

2. How can a lack of historical data be overcome in the preemptive investiga-

tion of this attack, where traditional sandbox testing is not viable? (RQ2)

3. Can an attack that so closely mimics regular traffic be detected and mitigated

against? (RQ3)

4. What is the potential direction DoW may take in the hands of malicious

actors for increased damage and success of attack? (RQ4)
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1.3 Hypotheses

From the research questions outlined above, this thesis expects to demonstrate

that:

1. DoW is a threat to serverless computing that warrants this early investigation

where there has not currently been a disclosed instance of the attack. As a

result, initial theorised attack patterns and intelligent means of detection

are required in order to be a step ahead of potential attacks.

2. In a position of no available data on which to conduct research, synthetic

data generation is a viable source of material for the continued development

of DoW attack classifiers.

3. By devising a novel means of representing request traffic, detection of at-

tacks that purposefully mimic normal traffic is possible by training classifi-

cation algorithms on said representations.

1.4 Contributions

The main contributions of this research are:

• The first formal analysis and definition of DoW in academic literature.

• Creation of a safe means of testing DoW detection approaches without incur-

ring financial damage, Denial of Wallet Test Simulator (DoWTS). Through

the use of synthetic data generation, any number of DoW scenarios can be

created for further research, thus closing the knowledge gap where there is

a total lack of historical data demonstrating DoW.

• Development of a novel means of representing large volumes of request

traffic to function triggers. These representations were then used to train an

image classifier for use in an early warning system for DoW detection that

achieved more than 97% accuracy.
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1.5 Publications

The main contents of this thesis have been published in journals and conference

proceedings. The list of publications is found below.

1.5.1 Journal Papers

1. Daniel Kelly, Frank G. Glavin and Enda Barrett

“Denial of Wallet - Defining a Looming Threat to Serverless Computing,”

Journal of Information Security and Applications 60 (2021): 102843

Impact factor - 4.96 Citations - 14

2. Daniel Kelly, Frank G. Glavin and Enda Barrett

“DoWTS – Denial-of-Wallet Test Simulator: Synthetic Data Generation for

Preemptive Defence”

Journal of Intelligent Information Systems 60, no. 2 (2023): 325-348

Impact factor - 2.9 Citations - 1

1.5.2 Conference Proceedings

1. Daniel Kelly, Frank G. Glavin and Enda Barrett

“Serverless Computing: Behind the Scenes of Major Platforms”

2020 IEEE 13th International Conference on Cloud Computing (CLOUD) pp.

304-312. IEEE, 2020

Citations - 24

1.5.3 Poster Presentations

1. Daniel Kelly, Frank G Glavin and Enda Barrett

“Poster: Denial of Wallet Preemptive Defence-Attack Simulation and Vulner-

ability Scouting”

43rd IEEE Symposium on Security and Privacy, IEEE S&P 2022
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1.5.4 Under Review

1. Daniel Kelly, Frank G Glavin and Enda Barrett (2023)

“DoWNet - Classification of Denial of Wallet Attacks on Serverless Applica-

tion Traffic”

1.6 Thesis Overview

This thesis is made up of seven chapters and an appendix. Chapters 3, 4, 5 and 6

contain our peer reviewed articles that detail the evolution of this work and major

contributions to the field.

The content of each chapter is as follows:

• Chapter 1: We highlight the motivation and contributions of this research.

• Chapter 2: We provide a background and review of the literature on related

work that gives context to the research in this thesis.

• Chapter 3: We present the first published definition of the DoW attack. We

discuss the potential threat to serverless computing and highlight a number

of theoretical use cases of its unique attack capabilities. The content of this

chapter is in part taken from “Denial of Wallet - Defining a Looming Threat

to Serverless Computing”. We extend the discussion on DoW attacks beyond

what is discussed in our previous publications. Namely, a deeper discussion

on attack strategies and difficulties with accurate detection and meaningful

mitigation.

• Chapter 4: We perform a detailed evaluation of the underlying topology of

major serverless platforms that introduces the threat of the DoW attack. The

content of this chapter is taken from “Serverless Computing: Behind the

Scenes of Major Platforms”

• Chapter 5: We develop a synthetic data generator for the safe testing of DoW

detection strategies. This chapter looks at synthetic data use in cybersecurity

and demonstrates the Denial of Wallet Test Simulator (DoWTS). Also, we

design a safe isolated testbed for testing attack and mitigation strategies.

This testbed replicates a commercial platform for more realistic protection
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system evaluation. The content of this chapter is taken from “Denial of

Wallet - Defining a Looming Threat to Serverless Computing” and “DoWTS –

Denial-of-Wallet Test Simulator: Synthetic Data Generation for Preemptive

Defence”.

• Chapter 6: We create an early warning detection system utilising image

classification. We devise a novel approach to web application traffic visuali-

sation that allows for the use of image recognition techniques to detect DoW

attacks. The content of this chapter is taken from “DoWNet - Classification

of Denial of Wallet Attacks on Serverless Application Traffic”.

• Chapter 7: We give the main conclusions of the research presented and we

discuss the limitations and potential for future work.
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CHAPTER 2

Background and Literature Review

This chapter presents the relevant background material required to understand

the contributions presented in this thesis. The topics covered address cloud

computing as a whole and, more specifically, serverless computing, synthetic data

generation, related cyber threats, machine learning, and computer vision.

2.1 Cloud Computing

2.1.1 Background

Cloud computing is a technology that enables the delivery of computing services

over the Internet. Instead of running applications or storing data on local devices,

cloud computing provides access to computing resources such as servers, storage,

and software applications remotely. This technology has become an essential tool

for businesses of all sizes.

The concept of cloud computing dates back to the 1960s when the idea of

time-sharing was introduced to the IBM 7090 machine [4].

“Computation may someday be organized as a public utility, just as the

telephone system is a public utility. We can envisage computing service

companies whose subscribers are connected to them by telephone lines.
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Each subscriber needs to pay only for the capacity that he actually uses,

but he has access to all programming languages characteristic of a very

large system” - John McCarthy [5]

Cloud computing became a reality with the development of virtualisation tech-

nology and the availability of high-speed Internet in the 2000s. Amazon Web

Services (AWS) launched in 2006 and provided the first widely available cloud

computing platform. The popularity of cloud computing grew rapidly in the 2010s,

as more businesses and organisations began to adopt cloud computing for their

IT infrastructure. In addition to AWS, Google Cloud, and Microsoft Azure, other

major cloud computing providers such as IBM, Oracle, and Alibaba Cloud also

emerged during this period [6].

The types of cloud computing service models offered by providers are [7]:

1. Infrastructure-as-a-Service (IaaS) - is a type of cloud computing service

model where users can rent or provision virtualised computing resources

such as servers, storage or networking, on a pay-per-use basis from a cloud

provider. In IaaS, the cloud provider is responsible for managing the in-

frastructure, including hardware, networking, and storage, while the user

is responsible for managing the operating system, applications, and data.

This allows users to focus on their core business operations rather than

managing hardware and infrastructure. IaaS offers several advantages, in-

cluding scalability, cost-effectiveness, and flexibility. Users can easily scale

their infrastructure up or down based on their needs, pay only for the re-

sources they use, and have the flexibility to choose the operating system,

applications, and tools that best meet their requirements.

2. Platform-as-a-Service (PaaS) - is a cloud computing service model where

users can rent or provision a platform for developing, running, and manag-

ing applications. As in IaaS, the cloud provider is responsible for managing

the infrastructure. Additionally, the platform, including the operating sys-

tem, middleware, and runtime environment are also managed. Users are

responsible for developing and deploying their applications on the platform.

PaaS providers offer services such as application hosting and database man-

agement, and provide users with APIs and tools to easily manage their
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applications. Some popular examples of PaaS providers include Heroku,

Microsoft Azure, and Google App Engine. PaaS is often used by developers to

quickly build and deploy web applications, mobile applications, and other

types of software without having to worry about the underlying infrastruc-

ture.

3. Software-as-a-Service (SaaS) - is another cloud computing model where

users can access and use software applications hosted by a cloud provider.

In SaaS, the cloud provider manages all aspects pertaining to maintenance

of the platform and software, and users access the software application

through some interface, such as a web browser. This eliminates the need

to download and maintain software updates. SaaS providers offer a range

of software applications such as productivity tools, customer relationship

management software, and enterprise resource planning software, and pro-

vide users with Application Programming Interfaces (API) and integration

options to easily integrate with other software applications. Some popular

examples of SaaS providers include Salesforce, Microsoft Office 365, and

Google Workspace.

There is a fourth service model, Function-as-a-Service (FaaS) also known as

Serverless Computing, which is the domain of this research and is described in

detail in this section.

There are great benefits to cloud computing over on-premises resource hosting,

the most notable of which being its cost effectiveness. Cloud computing elimi-

nates the need to invest in expensive infrastructure and allows businesses to pay

for computing resources on an as-needed basis. Another major benefit to resource

hosting in the cloud is the capacity for scalability. Cloud computing allows busi-

nesses to scale their computing resources up or down as needed without worrying

about physical infrastructure. While the upwards scaling ability is important for

applications expecting large bursts in traffic, the ability to down scale is equally

useful. Cloud computing allows for this without the need to manage unused

hardware, as would be the case if managing resources on-premises. Additional

benefits include increased accessibility as users can access their data and appli-

cations from anywhere with an internet connection, integrated baseline security

measures, and continued access to the latest innovation in cutting-edge technolo-
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gies such as machine learning and AI that would be challenging to implement

on-premises.

However, despite the numerous benefits, there are challenges that must be

met when utilising cloud computing. While security measures are offered by

each platform, businesses need to ensure that their data and applications are

adequately secured. Businesses also must ensure compliance in their use of cloud

computing, notably data storage and access. Finally, it is worth a business’s time

to plan how they can avoid vendor lock-in to ensure that they can easily switch to

another cloud provider if needed.

Serverless Computing has emerged as a powerful paradigm and service model

for application development. Contrary to what the name implies, serverless com-

puting does actually use servers. However, the management of these servers

is handled by the cloud provider. The concept of serverless computing can be

traced back to the early days of the Internet, when Common Gateway Interface

(CGI) scripts were used to dynamically generate HTML pages [8]. The concept of

serverless computing began to take shape in the 2010s. The term serverless was

coined in 2012 by Ken Fromm [9]. AWS Lambda launched in 2014, which allowed

developers to run code in response to events without having to provision or man-

age servers. This gradual rise in popularity can be seen in Google trends data on

searches for serverless computing (Figure 2.1). Serverless computing has become

an increasingly popular way for developers to build and deploy applications. With

serverless computing, developers utilise back-end services from cloud providers

on a pay-as-you-go basis, meaning they pay only for the services used and never

pay for idle capacity. The cloud provider spins up and provisions the required com-

puting resources on demand when the code executes, and spins them back down

when execution stops, termed scaling to zero. Serverless computing is attractive to

developers in that it reduces the effort allocated to server management, security,

and scalability. With serverless, routine tasks such as managing the operating

system and file system, security patches, load balancing, capacity management,

scaling, logging, and monitoring are all offloaded to a cloud services provider.
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Fig. 2.1 Emergence of popularity of serverless computing. Numbers represent
search interest relative to the highest point on the chart for the given region and
time. A value of 100 is the peak popularity for the term. A value of 50 means that
the term is half as popular. A score of 0 means that there was not enough data for
this term. "Data source: Google Trends (https://www.google.com/trends)."

2.1.2 Usage of Serverless Computing

Serverless differs from other cloud computing models in that the cloud provider

is responsible for managing both the cloud infrastructure and the scaling of appli-

cations. Serverless apps are deployed in containers that automatically launch on

demand when called.

On applications that utilise an IaaS cloud computing model, developers pro-

vision all components necessary to run the application in an always on system

(in order for there to be functionality, the components must always be running,

waiting for interaction). It is the developer’s responsibility to monitor traffic loads

and scale up server capacity during times of high demand and to scale down when

that capacity is no longer needed.

With serverless computing, by contrast, apps are launched only as needed.

When an event triggers a function to run, the cloud provider dynamically allo-
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Fig. 2.2 Typical life-cycle of serverless function utilisation (example of AWS prod-
ucts)

cates resources for that code. The developer will only be billed for the resources

consumed during the execution time of the function [10].

Applications are developed for each desired process and the event that invokes

it via constructs called functions. Serverless function platforms provide the in-

frastructure to deploy code for execution across their cloud and define the event

processing logic that prompts the functions to run using the model: event, trigger,

and action. Serverless computing promotes the idea that application develop-

ment is abstracted from the underlying infrastructure and that there is no need

for a dedicated team to manage software in-house, embracing the term “NoOps”

(no operations)[11]. Serverless computing abstracts back-end management from

users, allowing only minimal access to some basic parameters such as function

memory allocation and function runtime timeout.

The billing of serverless function execution varies slightly by cloud provider.

In general, they utilise the following system:

Charges are based on the number of requests to the functions and the time

it takes for the code to execute. The cloud provider registers a request each time

it starts to execute in response to an event notification or invoke call, including

test invokes from the console. Charges are for the total number of requests across

all the functions. Duration is calculated from the time the code begins executing

until it returns or otherwise terminates, rounded up to the nearest 1ms. The price

depends on the amount of memory that is allocated to the function. Typical rates
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would be $0.00001667 for every GB-second [12]. Each provider will also include

a free usage tier, usually around 1 million requests and 400,000 GB-seconds of

usage.

2.1.3 Pros and Cons of Serverless Computing

Serverless computing is seeing continued growth as more developers are choosing

to utilise it in new applications and existing companies are migrating their legacy

software to the cloud. The advantages and disadvantages are reminiscent of those

discussed on cloud computing above. However, there are more examples specific

to serverless as follows. The advantages include the following:

• Cost-effectiveness - Users and developers pay only for the time when code

runs on a serverless compute platform. They do not pay for idle virtual

machines (VM) as serverless containers can scale-to-zero.

• Ease of deployment - Developers can deploy apps in hours or days rather

than weeks or months. Time can be spent writing and developing apps

instead of dealing with servers and runtimes.

• Autoscaling - Cloud providers handle scaling up or spinning down resources

or containers when the code is not running.

The disadvantages of serverless computing include the following:

• Vendor lock-in - Switching cloud providers might be difficult because the

way serverless services are delivered can vary from one vendor to another.

There is often a heavy reliance on other internal services on the cloud plat-

form.

• Inefficient for long-running apps - Sometimes using long-running tasks

can cost much more than running a workload on a VM or dedicated server.

• Latency - There’s a delay in the time it takes for a scalable serverless platform

to handle a function for the first time, often known as a cold start.

• Debugging is more difficult - Because a serverless instance creates a new

version of itself each time it spins up, it is hard to acquire the data needed to

debug and fix a serverless function.
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2.1.4 Use cases for Serverless

Given its unique combination of attributes and benefits, serverless architecture is

well suited for use cases around microservices, mobile backends, and data and

event stream processing.

Event-triggered computing - For scenarios that involve numerous devices access-

ing various file types, such as mobile phones and PCs uploading videos, text files,

and images.

Serverless and microservices - Supporting microservice architectures is one of

the most common uses of serverless computing. The microservices model is

focused on creating small services that do a single job and communicate with

each other using APIs. Although developers can use containers or PaaS to build

and operate microservices, they can also use serverless computing because of its

inherent and automatic scaling, rapid provisioning, and pricing model that only

charges for the capacity used.

API backends - Serverless computing makes it easier to build RESTful APIs that

developers can scale up on demand. Any action (or function) on a serverless

platform can be turned into an HTTP endpoint ready to be consumed by web

clients. When enabled for web, these actions are called web actions. These can

be combined into a full-featured API with an API gateway that brings additional

security, OAuth support, rate limiting, and custom domain support.

Data processing - Serverless is well suited to work with structured text, audio,

image, and video data, around tasks such as data enrichment, transformation,

validation, cleansing, PDF processing, audio normalisation, image processing

(rotation, sharpening, noise reduction, thumbnail generation), optical character

recognition (OCR), and video transcoding.

In summary, serverless computing is rapidly increasing in popularity and up-

take. There are many benefits to its highly obfuscated back-end management,

especially for developers looking to quickly integrate business logic into their

services. FaaS is the latest addition to the as-a-Service family and has been widely

adopted by industry for its ease of scaling capabilities and cost-effectiveness [3].
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2.2 Synthetic Data Generation

2.2.1 Background

Synthetic data generation is the process of creating artificial data that mimics

the characteristics of real data. This is often done to overcome the limitations

of real-world data, where perhaps there are privacy concerns or data scarcity.

Synthetic data generation has a wide range of applications across many fields

beyond cybersecurity. Some common use cases of synthetic data include:

• Data augmentation - is a technique commonly used in machine learning to

increase the amount of data available for training models. It involves creat-

ing modified copies of existing data or generating new synthetic data, which

can help to reduce overfitting by increasing regularisation. This technique

can be particularly useful in addressing under-sampling within a dataset,

such as when a specific subgroup of the population is underrepresented i.e.

an imbalanced dataset. By adding synthetic data to boost that subgroup,

the model’s performance may improve, resulting in a more inclusive and

fair model overall. It is important to exercise caution when interpreting the

results of data augmentation and to ensure that the training and evaluation

datasets are kept completely separate to avoid data leakage [13].

• Prevention of privacy attacks on machine learning models - The use of

machine learning models can pose a risk to data security through privacy

attacks aimed at uncovering the data used for training. With the increasing

prevalence of white box and black box attacks, it has become easier to access

and retrieve training data, potentially leading to the leakage of personal

information. However, one way to mitigate this risk is by using synthetic

data to develop machine learning models. By constructing models using

synthetic data, the risk of data leakage is eliminated, as any training data

recovered by attackers would only be synthetic variants. This not only

strengthens security, but also enables models to be shared more widely

in the scientific community, optimising learning and utility in this field.

This use case highlights the potential of synthetic data to enhance security,

facilitate sharing, and reduce the risk of disclosing real data that may contain

personal information [13].
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While synthetic data generation has many potential benefits, there are also

several challenges and considerations to keep in mind. Bias is a major issue in

all datasets, regardless of whether it is synthetic or not. This can be because

of inherent bias in the creator of the dataset, e.g. an image dataset of people

containing a disproportionate number of white males. Synthetic data generation

can compound the issue, as it will be trained to mimic said biases, thus creating an

unfair representation of reality by amplifying those biases. Also, such a generator

may be too rigid in its produced data, whereas real data is dynamic and evolving.

This leads to a greater concern of AI models being fed synthetic data becoming a

closed loop system where it will make predictions based on this data and upon

further training begin to diverge further from reality [14].

2.2.2 Methods of Data Synthesis

There are several techniques for generating synthetic data, each with its own

strengths and weaknesses. Some of the most common techniques include:

Generative Adversarial Networks (GAN) are a type of deep learning architecture

that consists of two neural networks: a generator and a discriminator. The gen-

erator network is trained to create synthetic data, such as images, audio, or text,

similar to the training data. During training, the generator generates synthetic

data, and the discriminator tries to distinguish between the synthetic and real

data. The feedback from the discriminator is then used to update the generator,

so it can create more realistic synthetic data. This process continues until the

generator can generate synthetic data that is indistinguishable from the real data,

at which point the discriminator is no longer able to differentiate between the

two. GANs can generate new data that have characteristics similar to those of the

training data. However, they can also be challenging to train due to their insta-

bility and the potential for mode collapse, where the generator produces limited

varieties of data [15]. GANs have seen successful use in supplementing medical

imaging data for training of various medical condition detection systems [16, 17].

They are especially useful where it is difficult to obtain enough real data given the

nature in which such images must be obtained (finding a patient with the ailment

who will consent to their images being added to the dataset). However, even in

applications where there are less ethical considerations for data collection, GANs
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have shown their effectiveness in synthesising not only images for applications

such as vehicle registration plate recognition [18] and infrared target detection

[19] but also tabular data [20].

Variational Autoencoders (VAE) are a type of generative model that can learn to

generate new data similar to the training data. VAEs are a type of neural network

that can learn to represent high-dimensional data in a lower-dimensional latent

space. The VAE architecture comprises two parts: an encoder and a decoder.

The encoder takes in an input data and maps it to a latent space representation,

and the decoder takes the latent space representation and maps it back to the

original input data space. The VAE learns to reconstruct the input data as closely

as possible while also learning to create diverse samples from the latent space

[21]. VAEs have demonstrated their ability in generating synthetic images, such as

faces [22, 23] and text characters [24]. However, they have also shown capability

in niche domains, synthesising network traffic [25] and chemical molecules [26].

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms used in

statistical analysis and machine learning to generate samples from a complex

distribution. MCMC methods allow for the approximation of the behaviour of a

complex system by simulating a Markov chain of samples that converge to the

desired distribution. A Markov chain is constructed in which each sample is gener-

ated from the previous sample by a transition probability that depends only on the

current state. The next sample in the chain is generated on the basis of the current

sample, and the process repeats for a large number of iterations. As the number

of iterations increases, the samples in the chain become more representative

of the desired distribution. MCMC methods can be computationally expensive

and it can be challenging to determine when the Markov chain has converged to

the desired distribution. There are several popular MCMC methods, including

Metropolis-Hastings and Gibbs sampling [27].

However, within the scope of this research, we focus on the use of heuristic-based

synthetic data generation.

Heuristic-based synthetic data generation is a method that uses rules or heuris-

tics to create data that resembles real-world data. This approach is often used

when there is limited recorded data available or when the available data is not
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representative of the full range of possible scenarios. A set of heuristics is used to

generate data that matches the statistical properties and distribution or correla-

tion structure of existing data.

One heuristic-based approach is to use a data model to generate data that is

statistically similar to the real-world data. The model is evaluated on a number of

statistical measurements such as Wasserstein Distance, Jensen Shannon Diver-

gence and Kolmogorov Smirnov Test Statistic. Another approach is to use expert

knowledge to create heuristics that describe the underlying structure of the data.

For example, an expert in a particular field may be able to identify patterns or

relationships in the data that can be used to generate synthetic data that matches

the real-world data.

Heuristic-based synthetic data generation has advantages over the previously

discussed methods of generating synthetic data. It can be faster and more efficient

than other methods, as it does not require as much computational power or

resources. It can also be more interpretable, as the heuristics used to generate the

data can be easily understood and explained. However, heuristic-based methods

may not always be as accurate as other methods, particularly when heuristics do

not fully capture the complexity of the real-world data.

2.2.3 Synthetic Data in Cybersecurity

Synthetic data generation is becoming increasingly important in the field of cy-

bersecurity. Large volumes of data are required in order to identify and respond

to cyber threats, but there may be no access to real-world data due to privacy

concerns or other constraints as mentioned above.

One way synthetic data generation is used in cybersecurity is to create realis-

tic datasets for training and testing machine learning algorithms by generating

datasets that mimic real-world cyber attacks [28, 29]. Algorithms can then be

trained to recognise and respond to these attacks more effectively. This can help

improve the accuracy and reliability of cybersecurity systems.

Synthetic data generation can also be used to protect sensitive data in cyberse-

curity. By generating synthetic data that is statistically similar to real-world data,

researchers can create datasets that can be used for testing and development with-

out risking the exposure of sensitive information, such as location information,

payment details, purchase or search history, etc.
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Another application of synthetic data generation in cybersecurity is to create

synthetic network traffic [30, 31]. By generating synthetic network traffic that re-

sembles real-world traffic patterns, the performance of cybersecurity systems can

be tested and potential vulnerabilities or weaknesses can be identified. This par-

ticular application is especially pertinent to this research, as we had to overcome

a lack of historical network traffic that demonstrates the DoW attack.

Synthesising web application traffic refers to the process of creating realistic

web traffic patterns to simulate user behaviour on a web application. This can be

useful for testing the performance and security of web applications, as well as for

generating synthetic datasets for training machine learning models.

There are a number of techniques and tools available for synthesising web

application traffic. In industry, it is common to use a traffic generator tool, such as

Apache JMeter1 or Selenium WebDriver 2, to simulate user behaviour by sending

HTTP requests to the web application. The tool can be configured to generate

requests that mimic the behaviour of real users, such as clicking links, filling out

forms, and submitting requests. For attack traffic, adversarial software such as

Low Orbit Ion Cannon (LOIC) [32] may be used to send HTTP floods.

Beyond the tools employed by those working in cybersecurity, any of the meth-

ods of generating synthetic data mentioned previously may be used in conjunction

with a simple web client such as cURL to handle the actual sending of requests.

The synthetic data generators can recreate the timings of regular traffic which are

then fed to the web client for transport.

Examples of synthetic network traffic generation in the literature include:

Cordero et al. [30] did create a tool to allow for standardised replication of network

intrusion detection research by generating synthetic attack traffic by replicating

background traffic properties. They demonstrate the ability to inject attack traffic

using their tool rather than requiring the release of specific datasets for that attack.

Xu et al. [31] did create a tool to generate network traffic. They run an exhaustive

suite of tests for validating the data which includes likelihood testing; negative log

likelihood and performance in machine learning tasks.

1https://jmeter.apache.org/
2https://www.selenium.dev/documentation/webdriver/
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However, these approaches are currently best suited to non-serverless application

architectures and real-time (1 to 1) data generation i.e. it takes an hour to create

an hour’s worth of network traffic. For our research we require large amounts of

archived network traffic data. Our solution to this is discussed in Chapter 5.

2.3 Understanding the Threat Domain

2.3.1 Background

In this research we are investigating an attack that, although it has not been

publicly observed specifically, shares characteristics with other related attacks. As

such, it is important to be aware of these various related threats in order to better

theorise attack and defence strategies.

Denial of Service

Denial of Service (DoS) is a type of cyber attack that involves disrupting or inter-

rupting the normal functioning of a website, network, or server by overwhelming

it with traffic or requests. The aim of a DoS attack is to make the targeted system

unavailable to its users, causing inconvenience, financial losses, or reputational

damage to the targeted organisation.

There are several types of DoS attacks, each with its own characteristics and

techniques. Examples of DoS attack types are [33]:

• Data Flooding Attacks - These volumetric attacks flood the target network or

server with a large number of requests or traffic, overwhelming its capacity

to handle them. This type of attack is often carried out using botnets, which

are networks of compromised devices controlled by an attacker.

• Protocol Attacks - These attacks exploit vulnerabilities in network protocols,

such as TCP/IP, DNS, and ICMP, to disrupt the communication between the

target system and its clients. Protocol attacks can be more sophisticated

and difficult to detect than volumetric attacks.

• Application-layer Attacks - These attacks target specific applications or

services running on the target system, such as web servers, email servers,
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or databases. Application-layer attacks can be more targeted and effective

than other types of attacks, as they exploit vulnerabilities in the software or

configuration of the target application.

DoS attacks can have impact beyond the immediate taking down of a service. A

DoS attack on a government website can disrupt the delivery of essential services

to citizens, while on a financial institution can cause knock on financial losses.

DoS attacks on healthcare organisations can compromise patient data and disrupt

critical medical services, while on e-commerce websites can result in lost revenue

and damage to customer trust.

Economic Denial of Sustainability

Economic Denial of Sustainability (EDoS) is a type of cyber attack that targets the

economic resources of a system, with the aim of disrupting its functioning and

causing economic damage as a result of mass scaling of the service [34]. EDoS

attacks can be carried out in various ways, but generally they exploit vulnerabilities

in the pricing or resource allocation models of a system to create artificial scarcity

or increase costs, which can make the system unsustainable.

An EDoS attack on a cloud computing service provider could involve a mali-

cious user or group that consumes a large amount of resources without paying for

them, creating congestion, and driving up costs for legitimate users. This can lead

to a situation where the provider is unable to sustain its operations or maintain

quality of service, leading to service disruptions and financial losses.

EDoS attacks can have significant impacts on the economic viability and

sustainability of a system, as they can reduce revenue, create mistrust among

users, and discourage new investment. EDoS attacks can also increase costs

and make the system less accessible to smaller users, further exacerbating the

economic damage. As Chapter 3 will discuss, EDoS is the precursor to DoW, with

DoW being a term that is more commonly used and arguably more specific, as

this thesis will demonstrate.

Click Fraud

Perhaps the most prevalent form of cyber attack that specifically targets the fi-

nances of an application owner is click fraud. It is an issue that has plagued
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companies with an online advertising presence long before the introduction of

FaaS or the emergence of EDoS. It is a type of fraudulent activity that involves

repeatedly clicking on online ads, often with the aim of generating revenue for the

fraudster or causing financial harm to the advertiser.

Click fraud involves artificially inflating the number of clicks on online ads,

typically through the use of automated scripts or bots. The goal of click fraud is

often to generate revenue for the fraudster, as on-line ads are often sold on a pay-

per-click (PPC) basis, meaning that advertisers pay each time their ads are clicked.

By clicking on ads repeatedly, fraudsters can drain the budgets of advertisers and

divert traffic away from legitimate sites.

Click fraud can also be used as a form of sabotage or retaliation, as a competitor

or disgruntled individual can click on an advertiser’s ads repeatedly in order to

exhaust their budget and reduce the effectiveness of their campaigns.

These two categories of click fraud are known as [35]:

• Inflationary Click Fraud - Third parties may click on advertisements hosted

on their service in order to inflate their revenues.

• Competitive Click Fraud - Rivals fraudulently click on their competitor’s

advertisements in order to drive up their advertising costs, thus exhausting

their budget.

Click fraud can have a significant impact on the advertising industry, as it can

reduce the effectiveness of advertising campaigns and drain advertising budgets.

Click fraud can also lead to mistrust and decreased confidence in online advertis-

ing, as advertisers may be reluctant to invest in ad campaigns if they believe that

their budgets will be wasted on fraudulent clicks. Click fraud was estimated to

cost $6.5 billion dollars globally despite 80% of brands (participating in the study),

deploying some form of fraud countermeasure [36].

2.3.2 Related Threat Mitigation

Since occurrences of DoW are limited to a only handful of examples spoken

about online, we are in a rare position of being ahead of the attackers. We can

preemptively develop mitigation strategies rather than reacting to an attack when

it occurs. Application layer DoS attacks are the strongest contender for the starting
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point of effective DoW attacks, as well as Economic Denial of Sustainability. The

former could be re-purposed for DoW use, potentially leaving APIs, modules and

libraries vulnerable to such modified attacks. The latter being the closest analogue

to DoW that has been researched previously. Therefore, it is advantageous to be

aware of mitigation strategies for those attacks and more.

Denial of Service Mitigation

Detecting and mitigating DoS attacks require a combination of technical, organi-

sational, and policy measures. Some common techniques and best-practices used

to prevent or mitigate DoS attacks are as follows.

1. Network-level Protection - This includes measures such as firewalls, intru-

sion detection systems, and traffic filtering to block malicious traffic and

prevent unauthorised access to the network.

2. Application-level Protection - This includes measures such as implement-

ing secure coding practices, using secure protocols, and regularly patching

software vulnerabilities to prevent application-layer attacks.

3. Cloud-based Protection - Cloud-based protection services, such as Content

Delivery Networks (CDN) and external DoS mitigation services such as

scrubbing servers, absorb and filter traffic before it reaches the target system,

reducing the impact of volumetric attacks.

Inspiration for DoW mitigation may come from research carried out by DoS

mitigation. Barna et al. [37] proposed a system for DoS mitigation that dynam-

ically changes the rules on a firewall to minimise false positive detections and

then pass suspicious activity to a CAPTCHA challenge. The application layer was

the area of the web application being monitored. This makes this mitigation sys-

tem relevant to DoW research, as DoW attacks are conducted on the application

layer via API triggers. Their experimental setup of a mock application that they

then attacked with real DoS tools served as inspiration for the experimental setup

devised in Chapter 5.

These initial insights into application layer DoS mitigation are a useful starting

point. However, this research will aim to employ more sophisticated means of
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detection with the use of machine learning. Machine learning approaches to DoS

detection are discussed in Section 2.4.

Economic Denial of Sustainability

In general, since EDoS is a financial exhaustion attack, improved policies and

diligence in billing and resource management will prove to be the most effective

defence. Ensuring that the pricing and resource allocation models of a system are

designed to resist and mitigate EDoS attacks is a critical step in preventing them

from occurring in the first place.

Implementing technical measures such as rate limiting, resource allocation

policies, and congestion control can help to reduce the impact of EDoS attacks

by limiting the amount of resources that can be consumed by malicious actors.

Also, regularly monitoring the system for signs of EDoS attacks, such as unusual

resource consumption, large amounts of traffic, and cost spikes, can help to detect

and respond to attacks early, reducing their impact.

As EDoS is the precursor to DoW, it is beneficial to look towards existing

research on specific mitigation approaches.

Kumar et al. [38] propose a model that operates in two modes depending on the

load imposed on the server; Normal Mode and Suspect Mode. When the resource

consumption threshold is reached, the service provider activates Suspect Mode in

anticipation of a Distributed Denial of Service (DDoS) attack. In this mode, the

client machine must now solve a mathematical puzzle when a request is made.

Khor et al. [39] also propose a puzzle-based mitigation approach with self-

verifying Proof of Work (sPoW). sPoW was designed in such a way that it could

be implemented into existing cloud technology. It returns a puzzle with an en-

cryption key when a client tries to connect to a server. The client communicates

with the server through plugins embedded in a static webpage. The server plugin

handles puzzle generation by creating a temporary encryption channel and sends

a puzzle to the client to solve. If successful, the connection can proceed; otherwise,

it will return a more difficult puzzle in order to re-establish the connection.

Idziorek et al. [40] proposed two detection methodologies: Zipf’s Law and Entropy

detection. Zipf’s law is used to detect anomalous patterns in incoming traffic,
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whereby anomalous traffic will not fit the frequency distributions of ranked data

being the expected traffic. Entropy-based detection analyses individual user traffic

and calculates the entropy of session lengths over a specific time.

Sqalli et al. [41] devised EDoS Shield. It consists of virtual firewalls (VF) and

verifier nodes (V-nodes). Client requests are sent to the VF which forwards the

request to a V-node. The V-node sends a graphical Turing test to the client, such

as Completely Automated Public Turing test to tell Computers and Humans Apart

(CAPTCHA). If successful, the client’s IP address is updated to the whitelist in the

VF. Failing the test leads to the source IP address being added to the blacklist with

subsequent packet requests being dropped.

Click Fraud

Click fraud schemes are either executed by low-wage workers from developing

countries or large botnets [42]. These botnets execute ever increasingly sophis-

ticated algorithms that mimic the behaviour of legitimate users. In 2016-2017,

more than 76% of fraud detections were found to be from machines that hosted

both a bot and a human [43]. This makes the task of detecting such illegitimate

traffic much more difficult. Detection approaches for click fraud include:

• Implementing Click Fraud Detection Systems - Advertisers can use spe-

cialised software tools and algorithms to detect click fraud and identify

suspicious activity. These systems identify patterns of fraudulent behaviour

and flag suspicious activity such as mouse movement [36] for review.

• Using IP Address Filtering - Advertisers and can also use IP address filtering

to block traffic from known sources of click fraud, defining geographical

areas of suspicion for incoming traffic [42].

• Ad Fraud Policies - Advertisers can establish clear policies and guidelines

around click fraud, including what constitutes fraudulent activity and how

it will be dealt with. Ad networks can also establish policies and penalties

for publishers who engage in click fraud or other fraudulent activities.
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2.3.3 Serverless Attack Surface

Serverless functions can be invoked by various triggers. By far the most common

method is via API endpoints. Some platforms such as Google Cloud will create

a URL endpoint for a function once it is deployed, whereas others such as AWS

requires to link functions to an API Gateway. The result is a means of executing

functions via a request to the endpoint. This intrinsic link with serverless functions

makes API endpoints the largest attack surface in which DoW could manifest.

Datta et al. [44] proposes a system to mitigate the flow of indirect functions

by monitoring the activity of every API trigger of the function. This research was

directed at preventing information theft. However, analysis of all exposed API

endpoints is necessary for DoW mitigation as any unprotected function triggers

will serve as a point of attack.

There are unique vulnerabilities that can target APIs, as outlined in the Open

Web Application Security Project’s (OWASP) top ten risks to APIs [45]. These

vulnerabilities serve as an entry point for an attacker to cause DoW. Specifically

in the cases of a Lack of Rate Limiting and Insufficient Logging and Monitoring,

an attacker could flood API endpoints with requests quickly driving up costs.

However, all of these vulnerabilities can be exploited with the aim of causing DoW.

Efforts to combat API vulnerabilities are largely based on training developers to

identify the issue and implement a fix. To this end, a number of training schemes

that gamify vulnerability exploration by rewarding users for correct exploitation

of known vulnerabilities on purpose-built insecure applications have been devel-

oped [46–48]. OWASP examples of these applications include:

WebGoat3: a deliberately insecure application that allows developers to test

vulnerabilities commonly found in Java-based applications that use common and

popular open source components.

Juice Shop4: a sophisticated insecure web application used in security train-

ing, awareness demos, and as a test environment for security tools. Juice Shop

encompasses vulnerabilities from the entire OWASP Top Ten along with many

3https://owasp.org/www-project-webgoat/
4https://owasp.org/www-project-juice-shop/
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other security flaws found in real-world applications.

2.3.4 Denial of Wallet in Literature

At the time of starting this research in 2020 there was no academic analysis of DoW.

A number of blogs have drawn attention to the issue [49–51] although they only

go as far as to describe what DoW is rather than conduct in depth analyses of the

issue. Pursec [52] released a list of ten security risks that face serverless computing

with DoW featured on that list. They do not go into detail on DoW specifically,

instead focusing on DoS attacks and suggesting mitigation techniques such as:

1. Write efficient serverless functions that perform discrete targeted tasks.

2. Setting appropriate timeout limits for serverless function execution.

3. Setting appropriate disk usage limits for serverless functions.

4. Applying request throttling on API calls.

5. Enforcing proper access controls to serverless functions.

6. Using APIs, modules, and libraries that are not vulnerable to application

layer DoS attacks such as ReDoS and Billion-Laughs-Attack

In 2017 OWASP included DoW in their risks to serverless report [53]. This is

one of the first major reports that categorically lists DoW as a threat. AWS also

released two whitepapers around this time, discussing the security of its Lambda

serverless platform[54] and serverless architecture in general [55], which have

seen subsequent revisions. However, no mention of DoW is made.

The available literature on DoW was non-exhaustive, with little to no testing

to further understand the potential damage this threat could inflict. In 2021

and 2022 we published two papers on the subject. The former being an initial

investigation on DoW in order to give it a formal definition in academia (Chapter 3)

and the latter furthering our investigation and polishing our definition along with

development of a tool to aid further research (Chapter 5). These publications have

sparked what appears to be a growing interest in DoW. The Register published an

article summarising our work [56] that garnered good discussion on the article
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itself and was widely shared on social media. Two articles published in 2022 by

two seperate research groups specifically focus on DoW, one being a continuation

of our work [57] and the other investigating a new realm of DoW termed internal

DoW, where the attack originates within the applications network [58].

2.4 Machine Learning in Cyber Threat Detection

2.4.1 Background

Machine learning is a branch of artificial intelligence that focuses on developing

algorithms and models that enable computers to learn from data without being

explicitly programmed. Machine learning algorithms can recognise patterns in

the data and make predictions or decisions based on these patterns.

Supervised learning is a subcategory of machine learning. It is defined by its

use of labelled datasets to train algorithms that classify data or predict outcomes

accurately. As input data is fed into the model, it adjusts its weights until the

model has been fitted appropriately, which occurs as part of the cross-validation

process. Cross-validation is a technique used to assess a machine learning model’s

performance and generalisation ability. It involves dividing the data into subsets,

training the model on some subsets, and evaluating it on others. This process

is repeated multiple times, and the average performance is used as an estimate

of the model’s effectiveness. It helps in avoiding overfitting and provides a more

reliable evaluation metric.

Regression finds correlations between dependent and independent variables.

Therefore, regression algorithms help predict continuous variables such as house

prices, market trends, and weather patterns.

Classification is an algorithm that finds functions that help divide the dataset

into classes based on various parameters. A model is trained on a dataset and

categorises the data into various categories depending on what it has learned.

Unsupervised learning is a type of machine learning in which the algorithm is

trained on an unlabelled data set, that is, the input data is not associated with any

output. Unsupervised learning aims to find patterns and relationships in the data,
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such as clusters of similar data points or principal components that capture most

of the variance in the data.

Reinforcement learning is a type of machine learning in which an agent learns

to interact with an environment by performing actions and receiving rewards or

penalties based on its actions. The agent learns a policy that maximises cumula-

tive reward over time. Reinforcement learning has been successfully applied to

a wide range of applications, such as playing games, robotics, and autonomous

driving.

Machine learning is increasingly being used in cyber security to help detect and

prevent cyber attacks. With the rise of big data, it has become increasingly difficult

for humans to analyse and identify potential threats. Machine learning algorithms

can be trained on large datasets of known cyber attacks and patterns of suspicious

activity, and then used to detect and respond to new threats in real time. Within

cybersecurity, applications of machine learning include [59]:

• Malware detection - Detect and classify malware by analysing patterns in

code, behaviour, and network traffic.

• Intrusion detection - Detect and respond to suspicious activity on networks,

such as attempts to exploit vulnerabilities or unauthorised access.

• Fraud detection - Detect fraudulent activity, such as credit card fraud or

identity theft.

• Phishing detection - Detect and block phishing attacks, which use social

engineering techniques to trick users into divulging sensitive information.

However, the use of machine learning in threat detection introduces chal-

lenges and considerations that, if not addressed, will lead to false or missed threat

detections.

• Data quality - Machine learning models require high-quality data to pro-

duce accurate results. If the data is incomplete, inconsistent, or biased, the

model may produce incorrect or unreliable predictions.
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• Adversarial attacks - Attackers may attempt to manipulate machine learn-

ing models by feeding them misleading data or exploiting vulnerabilities in

the model itself [60].

• Explainability - Machine learning models can be difficult to interpret, which

can make it challenging for security analysts to understand how the model

makes decisions and identify false positives.

• Privacy - Machine learning models may be trained on sensitive data, such

as personally identifiable information, which raises concerns about privacy

and data protection.

Image Processing and Classification

Image classification is the labelling of images by a pre-trained model. One appli-

cation of such that has increased advancement in the field exponentially is the

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [61].

The ILSVRC was an annual competition in the field of computer vision that was

held between 2010 and 2017. The goal of the challenge is to develop algorithms

for object detection and image classification that can accurately classify objects in

large-scale datasets.

The challenge is based on the ImageNet dataset, which contains more than 1.2

million images with more than 1,000 object categories, all labelled with bounding

boxes and class labels. The ILSVRC is divided into two tracks: detection and

classification. The detection track requires algorithms to identify and locate

objects within an image, while the classification track requires algorithms to

classify entire images into one of the 1,000 object categories.

The challenge has played an important role in advancing the field of computer

vision and has led to the development of several breakthrough algorithms. In

particular, the 2012 ILSVRC competition saw the introduction of the AlexNet ar-

chitecture, which achieved a significant improvement in classification accuracy

over previous methods.

Neural networks are a type of machine learning process that uses interconnected

nodes or neurons in a layered structure that resembles the human brain. It creates

an adaptive system that computers use to learn from their mistakes and improve
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Fig. 2.3 Basic architecture of CNN

continuously. They have consistently been at the top of the image classification

section of the ILSVRC [62]. In particular, the use of Convolutional Neural Networks

(CNN) has paved the way forward in image classification.

A CNN consists of several layers, including convolutional layers, pooling layers,

and fully connected layers. The input to the network is an image, which is passed

through a series of convolutional layers that perform feature extraction. Each

convolutional layer consists of several filters, which are small matrices that are

applied to the input image to extract specific features, such as edges, corners, and

textures.

After the feature extraction process, the output of the convolutional layers is

passed through pooling layers, which reduce the dimensionality of the feature

maps and improve the computational efficiency of the network. The pooled

feature maps are then passed through fully connected layers, which perform

classification or regression tasks based on the extracted features (Figure 2.3).

CNNs are typically trained using back-propagation, a gradient-based optimi-

sation algorithm that updates the weights and biases of the network based on

the error between the predicted output and the true output. The training process

involves feeding large amounts of labelled data into the network, and adjusting

the weights and biases of the network to minimise the error between the predicted

output and the true output [63]. Examples of high performing CNNs in the ILSVRC

include:
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Visual Geometry Group Simonyan et al. [64] of the Visual Geometry Group (VGG)

investigate the effect of the convolutional network depth on its accuracy in the

large-scale image recognition setting. Their submission to the ILSVRC in 2014

received first and second prize in the localisation and classification sections,

respectively. They used small convolution filter sizes of 3× 3 in architectures

of increasing weight layers, testing from 11 to 19 layers. They found that the

networks with 16 layers (13 convolution layers and 3 fully-connected layers) and

19 layers (16 convolution layers and 3 fully-connected layers) achieved 74.4%

top-1 classification accuracy on the ImageNet dataset.

Residual Networks He et al. [65] developed a model that utilises residual learning

in order to drastically increase the number of weighted layers from VGG19’s 19

layers to 152 layers without the cost of increased complexity. This is achieved by

creating shortcut connections between stacked layers where the residual represen-

tation of the network is generated and then used in the subsequent number of

stacked layers. The author’s Residual Network with 50 layers (ResNet50) achieved

a 75.3% top-1 classification accuracy on the ImageNet dataset.

SqeezeNet Iandola et al. [66] sought to replicate AlexNet [67] level classification

accuracy with a more lightweight network that is easier to train and deploy. This

is achieved via three strategies:

1. Replace 3×3 filters with 1×1 filters

2. Decrease the number of input channels to 3×3 filters

3. Downsample late in the network so that convolution layers have large acti-

vation

SqueezeNet achieved 60.4% top-1 classification accuracy on the ImageNet dataset.

However, the model was 510× smaller than non-compressed AlexNet.

Xception Chollet et al. [68] aimed to build upon the GoogLeNet (later InceptionV3[69])

model by re-interpreting inception modules, that are a means of making the pro-

cess of a convolutional kernel mapping cross-channel and spatial correlations

easier by treating those channels as separate spaces. The hypothesis is that cross-

channel correlations and spatial correlations are sufficiently decoupled that it is
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preferable not to map them jointly. Xception takes this hypothesis to the extreme

by basing its architecture on entirely depthwise separable convolution layers.

Xception achieved 79% top-1 accuracy on the ImageNet dataset.

MobileNet Sandler et al. [70] employ the techniques demonstrated by the previ-

ously mentioned models, namely residual representations of the network with

shortcut connections and depthwise separable convolution layers. They achieved

74.7% top-1 accuracy with MobileNetV2 on the ImageNet dataset. This back-

ground knowledge is relevant as in Chapter 6, these CNNs are trained to detect

DoW.

2.4.2 Applications of Machine Learning in Cybersecurity

As cyber attacks become ever more complex and powerful, the need for equally

effective mitigation systems increases. To this end, the use of machine learning

algorithms trained on datasets of previous attacks for classification of suspicious

traffic has become an important step forward in cybersecurity.

Niyaz et al. [71] use deep learning for feature reduction of a large set of features de-

rived from network traffic headers for the detection of DDoS. They use a Stacked

Auto-Encoder (SAE) which is a type of ANN that consists of multiple layers of

autoencoders. An autoencoder is an unsupervised learning algorithm that learns

to encode and decode data in an efficient way. The goal of an autoencoder is to

learn a compressed representation of the input data, called the latent space, which

can be used to reconstruct the original input data. This SAE consists of stacked

sparse autoencoders and a softmax classifier for unsupervised feature learning

and classification, respectively. A sparse auto-encoder is a neural network with

three layers; input and output containing M nodes and a hidden layer containing

N nodes. M nodes represent a record with M features. For training, output is the

identity function of the input. The sparse auto-encoder networks calculate opti-

mal weights of matrices and bias vectors while trying to learn an approximation of

an identity function using back-propagation. Multiple sparse auto-encoders are

stacked, so the output of one feeds into the input of the next while also reducing in

dimension. Finally, the last hidden layer is fed into the softmax classifier. Normal

traffic data was collected by recording use on a home network over 72 hours. The

attack data was generated using hping3 in an isolated environment. Tcpreplay
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was used on a software defined network environment for training and testing by

replaying the recorded normal traffic and generated attack traffic. DDoS attacks

were detected with an accuracy of 95.65% using this system.

He et al. [72] compare multiple supervised and unsupervised machine learning

algorithms to classify outgoing traffic from a cloud platform as DDoS. They train

the algorithms to detect the attacks from the source rather than on the victim end.

The attacks they chose for detection were: Secure Shell (SSH) Brute Force, DNS

Reflection, ICMP Flood and TCP Synchronise Flood.

They trained the following algorithms:

• Supervised - Linear Regression, Support vector machines w/ Linear, poly-

nomial and radial basis function kernels, Decision Tree, Naïve Bayes and

Random Forest

• Unsupervised - K-Means and Gaussian Mixture Model for Expectation Max-

imisation

They ran these trained algorithms on a test cloud running OpenStack for

virtual machine provisioning and found that Random Forest had the best accuracy

at 94.96%.

Priya et al. [73] also found that Random Forest had the best accuracy, training the

algorithm on attacks gernerated by hping3.

Ko et al. [74] utilised netflow data on an Internet Service Provider (ISP) and BoNeSi

[75] for generating attacks. A dynamic feature selector was devised for use with

Self-Organising Maps in training an attack detection system.

Examples of cyber threat detection utilising image classification are predomi-

nantly on malware detection. Malware can be reduced to greyscale images where

a given malware binary is read as a vector of 8 bit unsigned integers and then

organised into a 2D array. This can be visualised as a greyscale image in the

range [0,255] (0: black, 255: white) [76]. Local binary patterns (LBP) can be ex-

tracted from such images in order to classify the malware [77]. This idea is further

enhanced by the creation of MalNet-Image [78]. It eases the past difficulty of

researching the topic with a large dataset, offering 24× more images and 70×

34



2.4 Machine Learning in Cyber Threat Detection

more classes than existing databases of binary image representations of malware.

The role of image classification in cyber threat detection grows as more methods

of visualising attack data are devised. Azab et al. [79] advances malware classifica-

tion from binary images and searching for LBPs to representation of malware as

spectroscopy images and uses CNNs for classification.

Wang et al. [80] create image representations of raw traffic from pcap files in

order to detect malware traffic. A 4 step procedure is used to trim, sanitise and

anonymise the pcap file before translating the byte code into an image. They

subsequently train a CNN to identify features representing malware and achieved

a 99.17% accuracy in their 20 class classifier.

Taheri et al. [81] perform a similar process of creating image representaions of

raw traffic pcap files and CNN training. However, the aim of this research is botnet

detection. A classification accuracy of 99.98% was achieved on the CTU-13 dataset

[82].

McCullough et al. [1] propose a novel method of representing aggregated TCP

traffic from the Internet of Things (IoT) as heat maps and subsequently training a

CNN to detect DDoS traffic patterns. We take inspiration from this work, adapting

the use of heat map representations of traffic for one month’s worth of HTTP

requests to FaaS endpoint triggers, rather than egress TCP traffic from an IoT

devices (Figure 2.4). They were able to mitigate DDoS by detecting if there was a

compromised IoT device on the network that performed the attack and removing

them. Their detection approach used the same CNN algorithms that were pre-

viously discussed above. The authors reported excellent classification accuracy

utilising existing models of approximately 99% and F1 scores of approximately

97%.

With the continued persistence of CNNs in all areas of image classification, in-

cluding cyber threat detection, the use of existing models should be considered,

where these models have performed with high accuracy in other domains. The

previously discussed selection of notable CNNs produced for the ILSVRC heavily

inspired the work presented in our approach to attack detection. Given their

success in other domains of computer vision, we concluded that a CNN will serve
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Fig. 2.4 Difference between McCullough et al. [1] approach to heat map represen-
tation of traffic and ours. The former shows ingress traffic in the left column and
egress in the right with each row representing a time step. Our approach maps a
month’s worth of incoming requests to a 24×30 grid (further discussed in Chapter
6)

as the backbone of our detection strategy. We perform an evaluation of the mod-

els listed above in Chapter 6 and further take inspiration from their underlying

architecture in the development of our own model, DoWNet.

2.5 Summary

In summary, this background and related work serves as a useful starting point for

DoW research. DoW is a variant of EDoS, in which the damage caused is financial

as a result of unwanted operations on an application. DoW and click fraud exhibit

similar characteristics, such as the ability to cause damage per click/invocation

and the fact that it is not necessary to perform flooding-style attacks to have an

effect. API endpoints are the largest attack surface for DoW, since REST APIs

are the most common trigger for serverless functions. As such, understanding

the security concerns of APIs is important. Also, as this work proposes the use
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of synthetic data for machine learning classifier training, it is beneficial to look

towards existing research on the subject.

Looking at previous uses of machine learning in cyber threat detection, we

can begin to form ideas on how best to approach DoW detection. The work done

on novel uses of image classification for attack detection inspired the developed

solution in Chapter 6.
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CHAPTER 3

Denial of Wallet -

Defining a Looming Threat to Serverless Computing

This chapter introduces the main focus of this research, the Denial of Wallet attack.

This chapter presents a detailed discussion and formal definition of DoW in

academic literature. The work outlined in this chapter contains content from the

first published definition of DoW in academia Kelly, D., Glavin, F.G., and Barrett,

E. (2021) “Denial of wallet: defining a looming threat to serverless computing”

Journal of Information Security and Applications [83]. Up until the publication

of the article in 2021, all DoW discourse was carried out on technology blogs

[49–51] and occasional security reports [52]. DoW was often an afterthought,

assumed to be mitigated by standard DoS mitigation. However, as this chapter will

discuss, DoW has nuance to the means in which it can operate that would allow for

circumvention of typical request rate limiting, thus answering RQ1, “What makes

DoW unique to other attacks and how does this influence the potential design

of its attack patterns?” . As will be discussed in this thesis, DoW on serverless

functions as a targeted attack is presently theoretical, as there are no publicly

disclosed instances of it. As such, in this research, we have attempted to address

the issue of lack of data by proposing basic attack patterns that would be the

most obvious starting point in the evolution of DoW. For this, we approached

the matter from the point of view of an adversarial actor (black hat). We expand
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upon this line of thinking with extended discussion on those proposed attack

patterns (addressing RQ4) and potential other cases where DoW may be executed.

As a means of balance in our discussion, this chapter also highlights the current

mitigation strategies available on commercial platforms.

3.1 Introduction

As previously discussed, serverless computing is an application deployment archi-

tecture that aims to provide pay-as-you go event driven functionality. Applications

are developed as per each desired process and the event that invokes it. Serverless

function platforms provide the infrastructure to deploy code for execution across

their cloud and define the event processing logic that prompts the functions to

run using the model: event, trigger, and action. Serverless computing abstracts

back-end management from users, allowing only minimal access to some basic

parameters such as function memory allocation and function run time timeout.

Functions execute on the platform’s traditional IaaS VM offerings. However, the

provision of such VMs is managed by the platform in response to function invoca-

tion and not by the developer. A function container is spun up on the VM where

the serverless function will execute. A container will be made for each function

invocation, and containers may be reused for repeat invocations. Unlike IaaS,

you do not pay for the uptime and resources consumed by the execution VM or

the function container, but rather for the run time of each function, hence the

name FaaS. This system allows for serverless applications to scale massively as

the application is hosted on the serverless platform’s cloud and as such has access

to its resources. The appeal of decreased time to deployment, lack of servers to

manage, and the pay-per-use cost model of the functions that execute the busi-

ness logic has accelerated its adoption by many application owners. As these

serverless function-driven applications are highly scalable, a weak attempt at a

flooding-style DoS attack may be absorbed with no disruption to service. However,

such a capability also leaves serverless functions vulnerable to an evolution of

the EDoS attack. This evolution has been named Denial-of-Wallet [83]. DoW

can describe any abuse of a pay-per-use cloud product to cause an inflated bill.

However, in the scope of this research, we will focus on the continual triggering
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of serverless functions in an attempt to induce greater operation costs for the

application owner.

The contributions of this chapter are as follows:

1. First formal definition of DoW on serverless computing in academia.

2. Preliminary investigation into potential attack patterns and theoretical dam-

age potential of DoW.

3. Extended discussion on further exploitation of serverless functions for DoW

by adversaries.

4. Initial hypothesised mitigation strategies beyond what is presented in this

thesis.

3.2 Presenting Denial of Wallet

3.2.1 Formal Definition

The purposeful targeting of an individual’s service with the aim of causing undue

usage bills has existed under various guises in the past. In this research, we

approach the topic of DoW from the perspective of specifically targeting serverless

functions. To date, this perspective has received very little attention, and, as such,

ground should be broken on this latest avenue for attackers to exploit.

We define DoW attacks as the intentional mass and continual invocation of

serverless functions, resulting in financial exhaustion of the victim in the form of

inflated usage bills. Execution costs are increased via excessive function run time,

invocation count, and additional resource consumption. This can be achieved

by exploiting the massive capability for scaling, as the platform will handle the

increased load, but will incur costs in doing so or taking advantage of the gradual

accumulation of excessive traffic that does not trigger traditional rate limiting

systems.

A DoW attack is a unique form of attack that especially applies to serverless

computing. Due to the scaling capabilities of serverless platforms, the effects of a

regular DoS attack can be dealt with by massively scaling to handle the volume
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of requests. However, this scaling comes at a price. Serverless, or Function-as-a-

Service, bills the application owner per run time of each function invocation. The

resulting volume of function invocations following a DoS attack would therefore

incur financial exhaustion of the application owner. As such, the term DoW

came to describe this attack, since unlike DoS, where the service is targeted

and disrupted, the wallets (that is the finances) are the target. The result is an

application owner who must now pay for function executions that are not, in fact,

legitimate usage. As we will discuss in the Mechanisms of Attack, simple flooding

attacks are not the only threat. We believe that there is potential for a slow rate

attack that avoids detection.

The term DoW potentially came into being when it was used on Twitter in 2013

to describe the excessive bills posted by a user for leaving a BizTalk VM running

[84]. The term has since become popular to describe any instance of runaway

usage bills following some unexpected circumstance (e.g. infinite loops or VMs

being left active when not in use). DoW as a targeted attack has been on the

conscience of developers even before the advent of FaaS.

One of the earliest uses of the phrase in a publication is in the OWASP report

on the security risks of serverless computing [53]. It is mentioned as a risk to

consider along with traditional DoS attacks. Prior to this, DoW was often referred

to as EDoS, a financial exhaustion attack, denial of capital or simply serverless

denial of service. However, we believe that a serverless DoS attack and a DoW attack

can be seen as unique threats, with the former focusing on serverless specific

resource exhaustion and the latter being as we have described.

3.2.2 Preemptive Examination of a Threat

Initially, there was little to no targeted research on DoW; however, the area has

started to see increased interest with the publishing of papers in late 2022 [58, 57].

We believe this is due to the absence of publicly known occurrences of attacks.

However, smaller scale exploits have been reported in the media of the supposed

successful takedown of a Dallas Police Department antisocial behaviour reporting

application by flooding the AWS storage bucket with Kpop videos [85], resulting

in excessive usage bills [86]. This presents a unique opportunity to be ahead of

attackers by mitigating against attack methods that are early in development.

The vulnerability exists in serverless technology, and it would be naïve to believe
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Table 3.1 Comparison of related attack terms

Attack Name Description

DoW Intentional abuse of serverless functions to
cause inflated usage bills

Financial exhaustion Catch-all term that can describe any attack that
attack causes inflated usage bills

Denial of capital Lesser used term the same as financial exhaustion
attack

EDoS Flooding attacks on cloud services, such as VM
provision, that prompt massive scaling causing
inflated bills

Serverless DoS Attacks targeting serverless function seeking to disrupt
service and not specifically cause financial damage

that it will not be exploited. In Section 3.4 we discuss the potential motivations

for conducting such an attack and the potential scenarios in which they may be

executed.

Research on DoW will encompass strategically approaching the issue from

the perspective of a bad actor. This domain shares many key attributes with bot

detection, DoS mitigation, and cloud security, meaning it also inherits their pitfalls

and difficulties.

This research aims to bring a dormant threat into the conscience of the com-

munity and potentially address it before it may even begin and develop effective

mitigation strategies before it can become a prominent threat.

3.3 Mechanisms of Attack

In the previous chapter, we discussed related attacks such as DoS, EDoS and

Click Fraud. Since there have been no reported major instances of DoW, it is

necessary to consider attack strategies that may be developed. In this section we

will take precedent from the techniques employed by DoS attacks and analyse

their potential for modification as a DoW attack. Many of the strategies used in

DoS attacks are viable in a DoW setting. However, we propose a number of unique

cases that invariably distinguish DoW as its own potential threat.
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3.3.1 Traditional Attack Methods

As serverless computing operates on the No Ops principle (that is, the developer

is not involved with the setup or maintenance of the application’s back-end),

popular traditional DoS attack patterns such as ICMP Flood, SYN Flood and UDP

Flood [33] may not necessarily work as functions themselves do not possess the

infrastructure such attack’s target. If the goal is to specifically target serverless

functions rather than taking down an application as a whole, the most appropriate

attack method would be HTTP flooding given that the majority of serverless

functions work from API triggers. We distinguish between short-time span and

long-time span HTTP flooding below.

Short Time Span Attack (Flood)

Short time span attacks are any form of flood attack. As many requests as possi-

ble are sent to the server as quickly as possible. This is the basis of DoS. A Web

Application Firewall (WAF) is the recommended mitigation approach for large

spike HTTP flooding attacks. An effective strategy against HTTP flooding DoS

attacks is rate-limiting requests from a single IP address via the WAF. Commercial

platforms offer WAF services that implement safety against OWASP’s top 10 secu-

rity risks [53] and provide rate limiting rules such as AWS[87], Google Cloud[88],

and Microsoft Azure [89]. These rules are difficult to establish. A hard limit will

protect against short time span (large spike in requests) HTTP flooding, but at the

risk of producing false positives in the event of actual real traffic spikes. Adaptive

rules could be deployed but would become a target for long-term false normative

baseline inducing attacks.

Rate limiting also exists within the API Gateway services themselves. These

are generally limits that show off the service’s ability to handle large traffic (AWS

API Gateway can handle 10000 requests per second[90]). Unlike the rate-limiting

rules on the firewall, if the API rate limit is reached, this could incur a DoS result

as resources are taken up. Efforts to stop the effect of DoW by limiting the massive

scaling factor of serverless applications could instead cause DoS as limits are

reached.
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Long Time Span Attack (Leech)

There are a number of slow DoS attacks, as described by Zargar et al.[91], such

as Slowloris and R-U-Dead-Yet (RUDY). These attacks, through various means,

aim to send high-workload requests that lock up connection resources i.e. sockets

[92].

A new strategy may be employed for long-term DoW attacks that differs from

the previous interpretation of slow attacks. We theorise the idea of leeching as

a potential form of DoW. A leech being a malicious programme that continually

triggers API endpoints that invoke functions. These leeches operate indefinitely

and at a rate that would not be detected by reasonable WAF rate-limiting rules.

The key difference between DoW and DoS is that DoW does not need to run all at

once to consume all available resources to cause damage. As such, a leech DoW

attack could be executed over a long time span and appear as legitimate traffic.

The leeches will then appear as regular users. If there are enough leeches, then

the damage increases. Unless you have some reason to believe this is illegitimate

traffic, then the traffic will be allowed to continue and the bill will be paid.

The pay-as-you-go pricing model that commercial serverless platforms oper-

ate is the vulnerability that allows for such an attack. If the load of a DoS attack

was distributed over a month, the attack would be ineffective as the load on the

system would never become high enough to bring it down. However, with FaaS,

the bill continually rises. This attack plays on the same vulnerabilities as click

fraud does in that it is up to the accounts manager to spot the anomaly in the

billing, which as shown through the prevalence of click fraud, occurs on a large

scale.

In DoS mitigation systems that use an adaptive rule set, i.e., can change the

firewall rules based on fluctuation in deemed to be real traffic [37], a DoW attack

can again utilise the fact that it can be executed over a long time span. Unlike a

rigid firewall rule where it will be forever limited, if the attacker gently increases

the intensity in such a way that the mitigation system adapts to it, it will then

establish new false normative baselines.
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3.3.2 Distributed Denial of Wallet

A long time span attack would be the most simple method of bypassing WAF rules

and implementing a DoW attack. However, a single attacker or leech may not

inflict financial damage on a scale that would affect larger organisations. Multiple

leeches could be deployed onto a botnet either willingly, such as through IRC

chat as seen in Operation Payback [93], or via malware that makes unknowing

victims hosts for the leeches. A distributed approach to DoW would ultimately

prove difficult to detect given how closely it would resemble real traffic using a

long time span attack protocol.

3.3.3 Serverless Exploitation

As well as API triggers, serverless functions can also be invoked by uploading

to a storage service (such as S3 buckets for AWS Lambda). This introduces the

concept of serverless specific attack patterns such as function input parameter

exploitation, by flooding a storage service with images of varying size depending

on the limits imposed by the function.

To fully realise the potential harm a DoW attack may be capable of, it should

not be simply seen as a slow-burning DoS attack. Instead, it should fully exploit

any oversights the developer may have made. If no limit is imposed on functions

that process files, the run time of a function will increase. We show this effect in

Section 3.5.1.

Similarly, on Microsoft Azure Functions, the developer does not configure the

memory allocation of a function unlike its competitors. This could similarly be

abused by forcing a function to scale to a higher memory allocation to cope with

larger inputs.

3.3.4 Fake Users

A novel approach that could be taken towards performing a DoW attack would be

the mass generation of fake users on a user subscription web application. Varol

et al. [94] found that between 9% and 15% of Twitter accounts are bot accounts.

This equates to roughly 49.5 million accounts based on the current monthly active
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user statistics in 2020 [95]. Using a tool like Selenium1, which automates browser

activity, a mass of clients could perform a site walkthrough creating many fake

users. Not only would this trigger many functions involved with profile creation

but also, as discussed in Section 3.3.3, uploading the largest images possible,

e.g. as profile pictures, can be used to increase run time. A further result of the

mass generation of fake users would be access to other API endpoints such as

page querying or other site functionality, further falsely invoking more functions

causing more damage.

In recent studies, there have been three main approaches to fake user detec-

tion: graph-based, crowd-sourcing, and machine learning.

Graph-based detection is the use of graphs constructed from the social net-

work of users to understand the network information and the relationships be-

tween edges or links across accounts to detect bot activity. There are many ap-

proaches to graph-based bot detection, a popular one being the use of random

walks, for example SybilRank [96], Criminal account Inference Algorithm (CIA)

[97] and SybilWalk [98]. SybilWalk claims a more robust classification with 99%

of the top 80,000 nodes ranked in order of likelihood to be a Sybil (bot), being

correctly classified Sybils. However, in the ranking lists produced by SybilRank

and CIA, only 0.3% and 30% are Sybils, respectively. Accounts are ranked by per-

forming a random walk-based movement on an undirected social graph. The idea

of the random walk method is to label human users with benignness scores and

Sybil users with badness scores. The score is then used to rank users.

Crowd-sourcing is the use of humans to label whether a given user is a Sybil

or a human. They identify, evaluate, and determine behaviours that would point

towards an account being a bot. Alarifi et al. [99] recruited 10 volunteers deemed

to have expert knowledge of Twitter (all BSc Computer Science graduates and

active Twitter users) to rate and label 2000 random accounts captured via a Tweet

streaming API. Using this, a ground truth data set was established for the further

training and comparison of various machine learning algorithms such as C4.5 and

Random Forest.

The machine learning method involves developing algorithms and statistical

methods that can develop an understanding of the revealing features or behaviour

of social network accounts in order to distinguish between human and computer-

1https://www.selenium.dev/
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led activity. Ersahin et al. [100] used a Naïve Bayes based classification algorithm

on a data set that had undergone preprocessing via Entropy Minimisation Dis-

cretization (EMD). The results were 86.1% correct classification before EMD and

90.9% after.

3.4 Motivation for Denial of Wallet

Attacks such as DoW and previous examples of EDoS differ from destructive at-

tacks such as DoS in that the resulting damage has a large range of values in

which it can be effective. A successful DoS attack will shut down a service and be

immediately noticed by victims. However, with DoW, the financial damages may

accrue over a long period of time depending on how perceptive the application

owner is. To this end, DoW may affect smaller companies and individual appli-

cation developers more due to limited funding. The ability to potentially remain

undetected for longer is also a strong advantage to using such an attack.

In a recent report by Trend Micro [101], the price of botnet acquisition has

decreased dramatically since 2015. Generic DDoS botnets can be acquired from

$50 a day and generic botnets can be rented from $5 a day. Therefore, it is highly

feasible that, despite the initial investment, an attack could net more damage.

DoW is an attack that may be chosen for its covertness and suitability for

sabotage. Rather than an attack that seeks to take out a victim, they can potentially

weaken them. This could be a tactic employed where a larger entity is interested

in stifling the growth of a smaller one. It may also be used to cause customers to

distrust the application if it is regularly attacked.

Another possible motivation would be as a form of ransom attack. Attackers

may cause a DoW and then contact the victim looking to extort some payout with

threat of continuing to cause DoW or even contact in advance with threats of a

DoW in order to receive a payout. We discuss this in more detail in Section 3.6.

3.4.1 Scenarios

For DoW to occur, a malicious entity must gain access to function endpoints.

This can be broadly achieved via knowledge that certain services use serverless

functions, e.g., Seattle times image loading [102]. More targeted approaches could
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be taken to extract specific endpoints of functions via web scrapers looking for

direct API links that follow the typical naming convention, e.g.

• AWS - https://xxxxx.execute-api.xx-xxxx-x.amazonaws.com/xxxxx/xxxxx

• Azure - https://xxxxx.azurewebsites.net/api/xxxxx

• GCF - https://xx-xxxxx-spherical-plane-xxxxx.cloudfunctions.net/xxxxx

It is good practise among industry professionals not to leave API URLs visible

like this; however, such a vulnerability could still exist through human error.

The core mechanism of a DoW attack will be to spam function triggers. We

consider two likely scenarios for this to occur.

Scenario 1 Function API endpoint URLs have been scraped or leaked. These URLs

are loaded into spamming software that continuously hits these endpoints with

HTTP requests. The rate of attack can vary depending on the security of the appli-

cation. In the presence of no DDoS security (rate limiting, etc.), fast paced attacks

can take place but will raise suspicion when an application owner sees a sudden

spike. Slow-rate attacks, Leeches, are effective for DoW due to their difficulty of

detection. They are akin to Bad Bot Traffic, fictitious traffic generated by botnets

intended to give false analytics. As such, slow rate DoW has a double impact of

driving up operational costs with function invocations and spoofing application

owners with falsified traffic (potentially causing further financial damage when

used to justify increased spending).

Scenario 2 Developers have successfully hidden or obscured API URL endpoints

or the endpoint is a different trigger such as upload to a storage system. Attacks

will need to be performed as a fake application user. Web application testing

software such as Selenium can automate interactions with a web application.

Applying a similar tactic to a botnet will produce fictitious traffic as with the URL

example. The downside to this is that it requires greater computing resources

and knowledge of which applications use serverless functions and how they are

triggered.
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Table 3.2 Effect on Run Time of increasing Image Size

Image size Test 1 Test 2 Test 3 Test 4 Test 5 Average
l ×w (pixels) (ms) (ms) (ms) (ms) (ms) (ms)

540 248.27 230.51 254.77 239.32 236.22 241.818
1080 371.18 368.43 361.15 385.22 409.24 379.044
2160 1045.59 1051.62 1083.57 1046.05 1059.11 1057.188
4320 2945.17 2958.46 2954.22 2963.07 2933.42 2950.868
8640 9901.85 9843.55 9924.92 9877.68 9881.59 9885.918

3.5 Theoretical Damage Analysis

In order to convey the threat of DoW we will theorise a worst case example of the

attack based on a plausible situation. This damage analysis is to demonstrate that

DoW has the capacity for large scale financial impact.

3.5.1 Serverless Function Input Parameter Exploitation

A common use case of serverless functions is in image re-processing, such as

creating a thumbnail from a user uploaded image [103]. We use AWS Lambda as

an example to demonstrate how one could exploit input parameters to a serverless

function by uploading large images that must be resized to a thumbnail size. For

this, an AWS Lambda function was created that resizes images uploaded to an

AWS S3 bucket to a 128×128 pixels thumbnail [104]. The thumbnail image is then

stored in its own separate bucket. Images of increasing size were uploaded, and

we observe the effect on function run time. The function memory allocation was

kept constant at 512MB, as we found that lower memory allocations could not

handle the largest images. The results are shown in Table 4.1.

As expected, there is an increase in run time with an increase of image size. In

this scenario, it would be up to the developer to impose a hard limit on image size.

However, as smartphones are producing higher resolution images with each new

flagship device, for example, the baseline of an acceptable maximum image size

gets pushed higher. This makes even well-thought-out functions susceptible to

input exploitation.
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Fig. 3.1 Cost incurred when an increasing number of nodes send 2000 requests
every hour

3.5.2 Cost Analysis of excessive Function Invocation

As a reference, an Apple iPhone X takes photos that produce an image of 4032×
3024 pixels [105]. Cross-referencing our previous experiments on input exploita-

tion (Section 3.5.1), we can take a run time of 2950 ms of a memory allocation

of 512MB as a benchmark for a legitimate function that a malicious user would

consider targeting for a DoW attack.

A cost analysis of this function on the four largest commercial serverless plat-

forms; AWS Lambda, Google Cloud Functions, Microsoft Azure Functions and IBM
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Cloud Functions, was performed for increasing number of function invocations

using the serverless function cost calculator we devised as the mock application

on our isolated testbed (Chapter 5).

This calculator takes the number of function requests, the run time of each of

those functions, and the memory allocation of the function as input and returns

the total cost of executing those functions inclusive of all free allowances granted

by each platform and additional costs such as API call costs. The official cost

guides for each platform were used; AWS Lambda2, Google Cloud Functions3,

Microsoft Azure Function4 and IBM Cloud Functions 5.

The three graphs show a linear increase of cost incurred with Google Cloud

functions, resulting in the greatest charges followed by AWS Lambda, IBM Cloud

Functions, and lastly Azure Functions. With a modest botnet of 1000 nodes, a

slow rate attack of 2000 requests per hour will cost an application owner roughly

$40,000 after one month and between $400,000 and $500,000 if left unchecked for

a year. A botnet of 10,000 nodes will do the same damage in one month that 1000

nodes would do in a year.

3.6 Black Hat Perspective on DoW Execution

A black hat is an individual or group who wishes to inflict cyber attacks for mon-

etary gain, ideology or simply for fun. We, as the white hats, are in constant

competition with them for finding exploits and vulnerabilities to attack or defend.

For either side to launch successful campaigns, the opposing perspective must be

taken in order to theorise counter strategies. This section expands on the discus-

sion of potential DoW attack pattern above for consideration in future research.

We make reference to DoWNet, which our DoW detection system proposed in

Chapter 6, in order to give context to the points raised.

2https://aws.amazon.com/lambda/pricing/
3https://cloud.google.com/functions/pricing/
4https://azure.microsoft.com/en-us/pricing/details/functions/
5https://cloud.ibm.com/functions/learn/pricing
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3.6.1 Beyond Hypothesised Attack Patterns

The attack patterns discussed in this thesis serve as a base for formulating various

tools and approaches to DoW protection. However, it is unlikely that an adversary

will launch an attack as simple as this. These attacks were proposed leech attacks,

persistent attacks that do not trigger rate limits that may establish new false

normative baselines for expected traffic. We believe that leeches are one of the

greatest threats from the point of view of DoW targeting serverless computing.

For a leech to be most effective, it must appear as normal traffic so as not to

arouse suspicion. We found during our testing of DoWNet that our simple attack

patterns were often detected as they continued their rate of request spamming

into the lull hours of the expected traffic volumes. Therefore, for an effective leech,

an adversary must perform some level of recognition of the traffic patterns of the

victims. This will enable them to increase and decrease their attack rate with lulls

and peaks, avoiding detection for as long as necessary.

While we have determined that traditional flooding attacks may not be as

effective, there may be a case to be made for intermittent high-rate flooding. As

discussed, an effective strategy for DoW is to convince the victim that they are

experiencing legitimate traffic. A constant barrage of requests lasting many hours

will not only be detected by DoWNet, but will also look like a run-of-the-mill DoS

attack, therefore prompting the victim to take action. If short bursts of high load

traffic are sporadically launched at strategic times throughout a month, it would

be detected by DoWNet as obvious spikes in traffic. Multiple short bursts of traffic

may convince the victim of legitimate peaks in traffic rather than a DoW attack.

In short, there are numerous ways our initial attack patterns can be expanded

upon by a black hat actor to cause more damage and avoid detection. Our ex-

amples assume a certain level of protection in place, such as a WAF or even a

deployment of DoWNet. However, as serverless becomes increasingly adopted

as an easy means of deploying functionality to a web facing service, there will

be an abundance of low hanging fruit in the form of unprotected endpoints that,

if found, are open to abuse by regular HTTP flooding attacks. This is especially

relevant to inexperienced programmers pushing code to code repositories like

GitHub. It has been shown that it is a simple matter of scraping public repositories

for access credentials that may have been pushed mistakenly [106]. It stands

to reason that these same scrapers could also include serverless endpoint APIs
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in their search. These inexperienced programmers may also be thoroughly ill

equipped to deal with an attack and, as such, may have to terminate their service

and/or pay an extortionate bill.

3.6.2 Expanded Attack Surfaces

Serverless functions are most commonly triggered via API endpoints. This has

been the focus of our research since it is the most widely used method. However, as

mentioned in Section 3.2, there are other means of exploiting serverless functions

in order to carry out a DoW attack. That is, abuse of a storage service that triggers

a function to action on the uploaded file. We demonstrated this with an image

thumbnail generator by uploading more and more large images.

It is also possible to trigger functions that continuously poll a database. There-

fore, a similar approach to storage service abuse can be taken, though rather than

seeking to increase runtime, the aim is increased invocations. This may also have

a knock-on effect if the database charges per access. This brings up the expanded

domain of DoW, that is, on other pay-per-invocation services. Cloud providers are

increasingly offering this billing model on their services. This may include, but is

not limited to:

• Database service - Charged per read/write

• Internet of Things service - Charged per message

• Machine Learning service - Charged per prediction

Therefore, a black hat wanting to launch a successful DoW attack will target as

many of these services as possible in order to maximise damage.

3.6.3 Ransom Style Attacks

All attacks mentioned in this work have focused on the immediate damage caused

by covertly (in the case of leech attacks) or openly (DoS style flooding attacks)

spamming function triggers. However, as with DoS, the effect of DoW could be

extended by using it as a means of ransom attack. In DoS ransom attacks, the

attacker hits a service causing an outage and then follows up with a ransom threat

to the victim that they will continue to take down their services unless some
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amount is paid. DoW ransom may work in the same way where the attacker

threatens to continuously spam function endpoints until a ransom is paid. While

DoW does not have the immediate scare factor of taking down a service, it does,

however, directly target a service’s profit. Also, as of now, the abilities of DoW are

unknown; therefore, if an attacker threatens that they can ramp up the attack,

the victim has no precedent to fall back on in establishing whether or not this is

possible. The victim then has a number of choices:

1. Pay the ransom. The thinking being that the ransom is worth less than the

potential damage that may be inflicted.

2. Take down the affected endpoints and functions. This stops the attack, but

inadvertently causes DoS as the service has now been disrupted.

3. Change the endpoints. This will stop the attack. However, if the attacker

could find the endpoints before, perhaps they can find them again.

4. Do not pay the ransom and absorb the damage cost. This will cause un-

known damage but potentially give time to figure out other remedies for the

problem.

As a ransom attack, it may not be as intimidating as DoS. However, as it does

not require the computing power of DoS, it is cheaper and easier to execute. This

may lead to its adoption by script kiddies6 who are looking to cause trouble and

potentially make quick money as hackers-for-hire on the Darknet.

3.7 Mitigation Strategies with Current Serverless In-

frastructure

Securing a serverless function from threats, not limited to DoW, falls in the hands

of the application developer. AWS highlight a shared responsibility model, where

the developer is responsible for the security of the code and explicitly states

that poorly configured code resulting in adverse repercussions may not receive

sympathy when reported [55]. Steps to protect applications are highlighted in their

6Entry level hackers who predominantly use existing tools to perform attack as their knowledge
is only basic. Often they are teenagers performing the attacks for fun rather than a higher purpose.
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whitepapers to develop well-architected frameworks and the security overview

of AWS Lambda [54, 55]. The relevant pillars of a well architected framework that

should be implemented to protect a serverless application from DoW (specifically

for AWS based applications) include:

1. Operational Excellence Pillar – Developers should set individual alarms for

separate Lambda functions so that you can catch invocations running for

longer than usual. AWS X-ray tracing should also be utilised for monitoring

of interactions with the service.

2. Security Pillar – Applications should undergo risk assessment and have

appropriate mitigation strategies. Identity and access management is an

important factor in the implementation of secure applications. As serverless

functions are often invoked via API triggers, the following mechanisms are

recommended:

• AWS IAM authorisation – Only allow users within AWS environments

access with IAM credentials (protect against internal attack by a com-

promised user). Always give the least amount of access.

• Cognito user Pools – Built in user management or integration with

social login. Uses Oauth scopes.

• API Gateway Lambda authoriser – Use a lambda function to interact

with some Identity Provider.

• Resource policies – Resource policy can block/allow specific AWS ac-

counts, IP ranges, Classless Inter-Domain Routing (CIDR) Blocks, vir-

tual private clouds, etc. via JavaScript Object Notation (JSON) policy

file.

3. Cost Optimisation Pillar – Application owners should appropriately monitor

costs to further refine return on investment. With many more functions and

API endpoints, it is recommended to allocate costs from bills to individual

resources to gain a more granular view. This allows for quick identification

of services that generate elevated costs.

While these safeguards are described specifically to AWS’s offerings, the same

principles apply to all platforms.
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On the development side, the following considerations should be taken at

certain levels:

• Identity and Access - Implement some form of authentication to hide func-

tion interaction endpoints from the public facing Web.

• Code - Use of secrets to maintain the privacy of credentials and business

critical data. Input validation to minimise risks associated with API requests.

Vigilance in monitoring and dependency vulnerabilities.

• Data - Encryption in Transit, such as Secure Sockets Layer (SSL).

• Infrastructure - Configuration of usage plans to help against effects of DoW.

Implementation of a WAF for protection against other forms of cyber attack.

• Logging and Monitoring - Appropriate usage of both to detect suspicious

usage on the application.

The listed safeguards serve as a possible first defence against the possibility

of being affected by a DoW attack. However, these safeguards are not apparent

for new-to-serverless developers. Official sample applications that such a devel-

oper would follow when learning how to create serverless applications [107, 108]

are susceptible to API vulnerability attacks, such as capturing an endpoint URL

(Figure 3.2) and replaying the request with varying header and body fields to

force repeat invocations. Serverless DoW relies on repeatedly triggering functions,

the most common method being via API endpoints. Requests can be spammed

using trivial programmes that quickly loop REST commands. An attacker is not

required to use a large number of nodes to cause damage, as in DDoS. The attack

can cause financial damage with only a modest-sized attack source. However,

it is worth noting that in the event of such an attack, if the application owner

becomes aware and decides to shut down an endpoint or even the whole appli-

cation, this is essentially a successful DoS with a fraction of the required firepower.

Further to the best practices discussed, there are a number of Cloud Security

Services that provide DDoS protection. These are either offering of the cloud plat-

form itself, such as AWS Shield7 or Google Cloud Armor8, or external services that

7https://aws.amazon.com/shield/
8https://cloud.google.com/armor
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Fig. 3.2 API endpoints that trigger functions can be sniffed on the network by
searching for URLs that match the platform template (unique ID blurred for
privacy)

operate as a middleman to analyse traffic on an application, such as Cloud Flare9

or Akami10. While DDoS protection would do little to prevent leech attacks given

their vastly different attack rate, these services are an effective safety measure by

entrusting the handling of an application’s security to a tailor made tool and/or

expert third party. These DDoS protection services are also prime candidates

for deploying DoW recognition algorithms as they are already monitoring all the

traffic to an application. We believe that such an offering, whether it is built on

the findings of our research or not, will soon become mainstream.

3.7.1 Potential Future Mitigation Strategies

The successful classification of malicious traffic patterns by DoWNet is a great step

forward for DoW mitigation research. Our results suggest that the answer to RQ3

“Can an attack that so closely mimics regular traffic be detected and mitigated

against?”, is in fact yes. Following on from our use of image classification in DoW

detection, we have theorised two other potential avenues that further detection

research could take.

Function Invocation Graphing In order to conduct anomaly detection, there

must be some knowledge of what is normal. In serverless applications, there can

be a wide range of serverless functions executing the business logic. These may be

functions that are triggered one after another in a chain starting from one trigger

or there may be many stand-alone functions that could be separately invoked.

In the development of DoWTS in Chapter 5, we explain the former, i.e. chains of

functions that operate together to fulfil a single user interaction. These functions

9https://www.cloudflare.com/en-gb/ddos/
10https://www.akamai.com/solutions/security/ddos-protection
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are always executed in series. However, in the latter scenario where there are

many separate functions, we propose a potential means of detecting anomalous

behaviour by creating normal function invocation graphs. These graphs would

map out the typical interaction with the functions. Therefore, it would be possible

to detect when a user is behaving uncharacteristically.

For example, an application that resizes an image may have four public facing

functions; login, logout, upload and download. A normal function invocation

graph that may represent typical behaviour on the application may map: login

-> upload -> download. If an attacker deploys bots to repeatedly spam whatever

function triggers it can find to increase the number of invocations, it may uncere-

moniously requests functions like: login -> logout -> login -> logout or login ->

upload -> upload -> upload repeatedly. These kinds of interactions should then

be easily detectable and flagged for the user to be potentially banned.

User Network Graphing Building on the idea of function invocation graphing

and work carried out on social media bot detection via graph-based detection

[96–98], the two could be combined to further detect which users may be bots

spamming function endpoints. Where anomalous behaviour is detected, the

corresponding function invocation graph of that behaviour can be searched for

in other user interactions. Where there is overlap in those atypical behaviour

patterns, a network of users can be created where further information can be

utilised in order to most effectively secure the application. By discovering as many

of the suspected attacking bots as possible, it would then be possible to alter

security policies based on the shared information of this group, such as region,

user-agent, address range, etc.

3.8 Summary

The intentional mass, and continual, invocation of serverless functions, result-

ing in financial exhaustion of the victim in the form of inflated usage bills, is the

formal definition of DoW first published in academia that has seen citation by

current researchers taking on the topic [57, 58]. We answer RQ1 “What makes

DoW unique to other attacks and how does this influence the potential design

of its attack patterns?” through the following observations. While DoW can be

achieved via simple HTTP flooding, similar to DoS attack, we have theorised a
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slow rate attack that could be utilised as a covert means of undermining competi-

tion or generally causing damage without being detected. There are similarities

with better documented attacks, such as click fraud, EDoS, fake users, and other

distributed attacks. Understanding these attack vectors can help to conduct a

better pre-emptive investigation on DoW. The theoretical damage analysis we

performed highlights the financial damage that could occur as a result of DoW.

Our simple attacks incurred theoretical damage of more than one million dollars.

While these numbers seem outlandish, it is an important baseline for worst-case

scenarios that can be built upon to prevent such attacks becoming a reality.

Additionally, we address RQ4 “What is the potential direction DoW may take

in the hands of malicious actors for increased damage and success of attack?” by

opening discussion on how a black hat actor may think in order to formulate the

most effective DoW strategy. We theorised attack vectors that go beyond the scope

of the three that will be tested in this thesis (Chapter 5 and 6). Such vectors would

play to the ability to fool an application owner into thinking they are receiving

legitimate increases in traffic. We also discussed how DoW is a threat beyond

the subject domain of this thesis, serverless computing. Any pay per invocation

service is vulnerable to such cost inflation attacks. Finally, we suggest the potential

for DoW to be used in a ransom attack situation. Given the relative recency in the

uptake of serverless computing and a lack of precedent to fall back on, application

owners may feel it to be wise to pay a ransom if being hit with DoW for fear of

even greater damage being caused.

In addition to the black hat perspective, we also provide the defence perspec-

tive. We outline existing methods of securing serverless functions and also theorise

some potential future methods that utilise graphing the usage characteristics of

an application and the users interactions on the application.

The following chapters of this thesis will detail our approach to DoW detection.
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CHAPTER 4

Behind the Scenes of major Serverless Platforms

All successful cyber attacks require knowledge of the target system. Therefore, it is

important to have a complete picture of the infrastructure and possible exploits

that could leave a system vulnerable. As serverless computing operates on a black

box model where end users are not expected to interact with or have knowledge of

this infrastructure, we believe it is important to document the current state of the

commercial offerings. We provide an in-depth look at the underlying infrastruc-

ture of a selection of the largest commercial serverless platforms and how that

investigation led us to uncover the danger of runaway usage bills as published in

Kelly, D., Glavin, F.G., and Barrett, E. (2020) “Serverless Computing: Behind the

Scenes of Major Platforms” IEEE CLOUD Conference [109].

4.1 Introduction

Our investigation on DoW begins with a look behind the scenes of serverless func-

tions and offers up-to-date insight on the hardware differences of the four largest

platforms: AWS Lambda, Google Cloud Functions, Microsoft Azure Functions, and

IBM Cloud Functions, as well as outline performance metrics and potential effects

on performance. Through this analysis, we came to experience the potential threat

of DoW. This investigation also serves to highlight the still relative ambiguity that
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serverless functions operate under on commercial platforms, where developers

must trust in the black box that their business logic is executed.

This analysis serves as available counter-intelligence against attackers who

may leverage this same information in order to exploit serverless functions to

cause excessive usage times. As the commercial platforms do not publish this

information themselves, our findings may help inform developers in choosing a

serverless platform or in making any other security decisions.

We design a testing system to expose the underlying infrastructure on which

serverless functions run. We gather the CPU specifications and usage statistics

in order to provide this overview of the resources provisioned. To this end, we

establish a means of identifying VMs to create meaningful profiles of VM config-

urations. From this, we gain insight into their topology and observe the major

differences between the platforms. Users cannot directly request the specification

of these execution VMs, only the memory allocation each function has access

to and, as such, document how this configuration can effect the specification

of the VM deployed. We further investigate how this memory allocation affects

function performance by recording various timing statistics and benchmarking

metrics associated with function execution such as: function runtime, cold start

time (initialisation lag), CPU utilisation, and disk I/O throughput. Lastly, given

that all the functions for a given platform are executed from the same cloud space

(split into regions), we investigate the effect of potential interference from load on

the platform by running our test system over the course of one month in order to

detect any anomalies in runtime performance.

There are countless blogs written by serverless application developers that

give a brief overview of the performance of serverless functions [110–114]. The

focus of these is often on the issue of cold starts and the choice of programming

language for the development of functions. Given how quickly these articles are

produced, the results often seem at odds with each other as time goes on. For

example, Voijta [114] concluded that the memory allocation of a function does

not affect the cold start time, while Cui [111] concluded that it did one year later.

In academia, a number of researchers have attempted to assess the performance

of various serverless platforms. Hendrickson et al. [115] created an open-source

serverless platform using the Lambda Programming Model (develop functions

that respond to events), which achieved lower latency at low loads and was better
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at bursts of traffic compared to AWS Elastic Beanstalk1. The authors also pro-

posed a benchmarking tool (LambdaBench) for the Lambda Programming Model.

McGrath et al. [116] analysed the performance of AWS Lambda, Google Cloud

Functions, Microsoft Azure, and Apache OpenWhisk against their own prototype

serverless platform. They made observations on the scaling and cold start latency

of the platforms, finding AWS and Google to be best-in-class at the time. However,

the testing setup may not have been optimal for recording cold start times i.e.

not allowing for enough time to pass where a cold start would be encountered.

Llyod et al. [117] expand on the cold start issue by defining them as: provider cold

(first request to the cloud provider), VM cold (first request to a VM within that

cloud), and container cold (first request to a container within that VM), as well

as voicing the need for a standard means of benchmarking serverless functions

inspired by the suggestions of Aderaldo et al. [118] on microservices. Mohanty et

al. [119] investigate the popular performance metrics used by other researchers

with their study focusing on open source frameworks such as OpenFaas, Kubeless,

and Fission. There were no comparisons to the commercial offerings in this work.

Hellerstein et al. [120] provide a devil’s advocate opinion on serverless architecture,

listing limitations such as limited function lifetime, I/O bottlenecks, no specialised

hardware, how FaaS stymies distributed computing because there is no network

addressability of serverless functions, two functions can work together serverlessly

only by passing data through slow and expensive storage and how FaaS discour-

ages open source service innovation since most popular open source software

cannot run at the same scale as current commercial serverless offerings. Wang et

al. [121] performed an analysis of the hardware differences of serverless platforms

and their performance. This work has inspired some of the methodology of the

experiments carried out in this section.

Despite the related work completed in the field, we have identified gaps in the

knowledge that our work aims to fill. That is, we investigate potential interference

effects on performance caused by load on the cloud platform by other users

over the course of one month. This has resulted in the generation of a data set

containing more than 500,000 function calls between the four platforms that we

have published along with our benchmarking tools [122]. This work is performed

1https://aws.amazon.com/elasticbeanstalk/
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on the current state of AWS Lambda, Google Cloud Functions, Microsoft Azure

Functions, and IBM Cloud Functions in 2020.

The contributions of this chapter are as follows:

1. Analysis of effect configuration of serverless functions has on specification

of the VM it executes on.

2. Investigation of how memory allocation affects function performance by

recording various timing statistics and benchmarking metrics associated

with function execution.

3. Investigation of potential interference from load on the platform, running

our test system over the course of one month in order to detect any anoma-

lies in runtime performance.

4.2 Methodology

The typical case for the invocation of serverless functions is through the use of

REST APIs. For our tests, we deploy an observer virtual machine on each platform’s

traditional cloud computing offering. They were deployed on the same availability

zone as the serverless functions in order to best nullify network latency. This

observer’s role was to invoke the functions via their API, record the request and

response times, and finally push the results to an external MongoDB database.

The observer script is written in Python and uses the requests package to trigger

each function via its URL. We execute the observer script in two scenarios:

1. Two sequential function invocations for the definitive measurement of a

cold and warm function start.

2. Fifty concurrent function invocations to prompt scaling and put increased

workload on the function platform.

These scenarios were run every hour for one month. The serverless functions

execute a number of routines that perform measurements on the specifications

of the function’s runtime environment. Such measurements include: function

runtime, VM uptime, total available memory on VM, disk I/O throughput, CPU
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Fig. 4.1 AWS Experimental Setup

information, and unique identifiers for both function and VM instances. Much of

these results were read from the Linux proc filesystem (procfs) where available.

We collate results of these routines into a JSON response that is sent back to

the observer where it could append extra information such as: memory allocation

of the function, total runtime of the function (request to response), and the start

lag time (cold start time Section 4.4.1), before storing the results on the database.

This process is illustrated in Figure 4.1 for AWS Lambda, and a nearly identical

setup is used for the other platforms except using their equivalent cloud offerings.

4.3 Platform Architecture

In order to understand the architecture of the four platforms, we consult the offi-

cial documentation for each platform in addition to running our aforementioned

64



4.3 Platform Architecture

Table 4.1 Recorded Attributes of Execution VM

Identification
VM ID A unique identifier for each execution VM.

The method of measurement varies for each platform.
Function ID A unique identifier for each function instance.

Previous A collection of Function IDs that have executed on
Function IDs a particular VM.

System Information
CPU Speed The speed in MHz of the CPU.
CPU Times The amount of time in milliseconds a host has spent

in user, system and idle time.
CPU Model What CPU is used on the host.

Uptime The timestamp the VM booted.
Total Memory Total memory configured to the VM

Memory The function memory allocation.

tests. Table 4.1 shows the measurements that we record using the function to

gather information on the architecture of the platform.

Overview

AWS, Azure and IBM The proc file system exposes information about the execu-

tion VM that the functions run on and not just the function container. From our

measurements, we found that the average VMs configured were as follows:

• AWS - Intel Xeon E5-2670 v2 processor @ 2.5 GHz with memory that varied

based on the memory allocation of the functions executed on it such that it

was slightly greater than the function’s memory allocation

• Azure - Intel Xeon E5-2673 v4 @ 2.3 GHz with 2GB of memory

• IBM - Intel Xeon E5-2683 v4 @ 2.1 GHz with 16GB of memory

Google Cloud Functions Functions run in isolation on Google’s proprietary hy-

pervisor. This obscures the data we would have gathered from the proc file system

to show mostly nothing. From our test, however, we could conclude that the

average VM was configured with a Intel Xeon Skylake processor @ 2 GHz with 2GB

of memory.
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In contrast to AWS, Google and Azure simply allocate all their execution VMs

with the maximum memory requirement for the largest function configuration

of 2048MB and IBM allocate a larger memory allocation perhaps to handle more

function containers per VM.

4.3.1 Unique VM Identifier

Uniquely identifying the VM used to execute the function allows us to gain a

picture of the infrastructure each platform is using and can help answer questions

about scaling, function isolation, disk access, etc. The work carried out by Wang

et al. [121] determined that for AWS Lambda functions, the VM can be identified

via the /proc/self/cgroup file, where an entry contains a unique identifier

sandbox-root- followed by some random characters. For Azure, they proposed the

use of an environment variable called WEBSITE_INSTANCE_ID. However, at the

time of our experiments, no such variable could be found. For both Azure and

IBM, the /proc/machineid file is used to identify VMs. No means to uniquely

identify a Google Cloud Function’s execution VMs was established. Due to the

isolation Google’s proprietary hypervisor imposes on the functions, access to the

information normally stored in the proc file system is abstracted to show nothing,

therefore, information to identify a machine could not be found. A heuristic to

identify a VM by assuming that they all have unique boot times by Lloyd et al.

[117] was also disproved by Wang et al. [121], deeming it unreliable. In order to

gather meaningful data for comparison with the other platforms, we propose a

method of identifying function containers by writing some Unique Identifier (UID)

to a file into the /tmp folder. It was found that this file could be read by other

functions that are executed in the same container. This was used, in conjunction

with the boot time information as a sanity check, to ensure that the UID is indeed

allocated to one container.

4.3.2 VM hardware differences

We examine the hardware differences from our data set of 563,276 function in-

vocations. This exposed 156,856 VMs on AWS, 1392 VMs on Azure, 114 VMs on

IBM and 21271 unique function containers on Google. It was stated by Wang et

al. [121], and confirmed ourselves through correspondence with Google employ-
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Table 4.2 AWS Lambda Function Memory to VM Total Memory

Function Memory (MB) VM Total Memory (MB)

128 192.484
256 331.740
512 633.804

1024 1190.860
*1024 1717.196
2048 3230.668

ees, that Google Cloud Functions execute on their proprietary hypervisor that

abstracts as much information about the execution VM as possible. However, we

were successful in identifying function containers and could infer the CPU model

information from the measurements we took. Two fields that were not hidden in

the /proc/cpuinfo file were the CPU model id and the speed. We determine CPU

models using the model number entry in the /proc/cpuinfo file, which gives a

decimal number that can be converted to hexadecimal and then cross-referenced

against the CPUID Signature table found in the Intel Architectures Software Devel-

oper’s Manual, Volume 4 Chapter 2 [123].The CPU models found on each platform

are collated in Table 4.3. All CPUs were a member of the Intel Xeon product line

with IBM boasting the latest versions of such, comprising mainly versions 3 and

4. AWS has a more homogeneous CPU configuration than the other platforms,

opting for 99.93% of them being Intel Xeon E5-2670 v2.

We also measure the total memory configured to the VM. In AWS, we observe

that this value varied depending on the memory allocation of the function itself.

A mostly consistent mapping was observed, as shown in Table 4.2, except for two

outliers in the 1024MB functions, which ran on a VM with 1717MB of memory*.

The other platforms had a constant memory configuration with Azure and Google

allocating 2GB and IBM allocating 16GB.

4.4 Function Performance

The degree to which a developer can customise the configuration of a serverless

function is quite limited. For AWS you can alter the memory allocation by incre-

ments of 64kB from 128MB to 3096MB and choose the timeout from a range of

1 second to 5 minutes. IBM has memory allocation in increments of 32kB from
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Table 4.3 CPU Identification

Platform Model ID Speed Model Name Prevalence
(decimal) (MHz) (%)

AWS
62 2500 Xeon E5-2670 v2 99.93
62 3000 Xeon E5-2690 v2 0.07

Google
45 2600 Xeon E5-2670 24.12
45 3300 Xeon E5-1660 0.02
62 2500 Xeon E5-2670 v2 0.14
63 2300 Xeon E5-2680 v3 4.79
79 2200 Xeon E5-2650 v4 11.25
85 2000 Xeon (Skylake)* 53.11
85 2200 Xeon (Skylake)* 6.54

IBM
85 2300 Xeon Gold6140 19
79 2100 Xeon E5-2683 v4 42.68
79 2600 Xeon E5-2690 v4 18.83
79 2200 Xeon E5-2650 v4 2.6
63 2600 Xeon E5-2690 v3 9.79
85 2100 Xeon Gold6130 7.05
63 2000 Xeon E5-2683 v3 0.04

Azure
79 2300 Xeon E5-2673 v4 68.68
63 2400 Xeon E5-2673 v3 22.07
85 2600 Xeon Platinum8171M 9.24

* Specific model
could not be determined

128MB to 2048MB and a timeout of 1 second to 10 minutes. Google allows you to

choose from a predefined set of five memory allocations: 128MB, 256MB, 512MB,

1024MB and 2048MB. Finally, Azure does not allow the developer to configure

their memory allocation opting instead for autoscaling memory. For our investi-

gation of function performance, we use a series of measurements, as detailed in

Table 4.4, on functions with memory allocations 128MB, 256MB, 512MB, 1024MB

and 2048MB for AWS, Google, and IBM. For Azure, the same tests were run without

the granularity of five memory allocations, i.e. only one function that was allowed

to autoscale accordingly.
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Table 4.4 Measurements of Function Performance

Total Runtime Measured from time API invokes the function
to the time a response is received.

Function Runtime The time taken for a function to execute its tasks
not including initialisation time of the function.

Start Lag Function initialisation time.
Measured from request time to main method start time.

CPU Utilisation The number of primes a function can compute in 1000 ms.
Disk I/O The I/O throughput of a function.

Number of VMs The number of execution VMs created to handle scaling.

4.4.1 Cold Start Latency

One of the greatest problems facing serverless computing is the infamous cold

start. Cold starts have been the subject of research papers and blogs [112, 124, 113,

110, 125, 126] and continue to be a major source of doubt for those considering a

serverless-based application. They are the notable delays incurred when invoking

a function for the first time. This is caused by the need for the platform to spin up a

container that has all the required resources for a function to run. We measure the

time taken from the function request to the time a function’s main method began

executing. We gathere these times for functions that were the first to execute on a

new function container. This is determined by a file written to the /tmp directory

that contains a log of all IDs of functions that had previously been executed in that

container. The /tmp directory is ephemeral storage that lasts the lifespan of its

function container. If the log was empty, it was a new container. We sample over a

period of one month, running the tests every hour. This results in over 170,000

function invocations on AWS, Google, and IBM and over 36,000 on Azure (a fifth

of the number of invocations since no separate tests for each memory allocation)

for our analysis. The results are shown in Figure 4.2.

AWS Of 175,477 function invocations executed on AWS, 156,847 were cold starts.

This would suggest that AWS may not prioritise the reuse of old containers. Of

the five memory allocations chosen for the test function, 128MB had the slowest

average cold start time at 346.73 ms. A point of interest is the near identical average

values for the 256, 512, 1024 and 2048MB functions at 221ms ±3ms. It may be

possible that AWS gives more precedence to these latter memory allocations.
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Google Of the 175,357 function invocations executed on Google 21,253 were cold

starts. There is high container reuse on Google Cloud Functions; some containers

were hosting over a thousand function executions. A more expected stepping in

results for each memory allocation’s average cold start time was observed. These

values were considerably higher than AWS with averages for 128, 256, 512, 1024

and 2048MB being 14465.52ms, 5722.33ms, 4681.37ms, 3689.48ms and 2865.49ms,

respectively.

IBM Of 176,266 function invocations executed on IBM 37,820 were cold starts.

Similar container reuse to Google is observed, although with much shorter cold

starts: 2990.55ms, 1076.60ms, 1310.43ms, 1319.05ms and 915.49ms for the re-

spective memory allocations. The results do not show a consistent trend which is

discussed in Section 4.4.4.

Azure Of 36,176 function invocations executed on Azure, 1392 were cold starts.

The average cold start time was 1997.63ms. The low number of cold starts is likely

to do with there being only one function being invoked rather than five, thus

allowing for greater container reuse.

From these results we can see the different tactics used by the different plat-

forms. AWS opts for less container reuse (shorter lifespan), which results in more

cold starts, although the cold start times were considerably shorter than the others.

Google and IBM reused containers much more, thus minimising cold starts. This

is especially useful for Google, whose cold starts were considerably higher.

4.4.2 Benchmarking - CPU Utilisation

Given a 1000ms time limit, check as many numbers as possible to determine

whether it is prime. The method we use to check for prime numbers is trial

division. For some number n across a set

1 < a ≤p
n (4.1)

n is prime if

gcdn, a ≥ 1 (4.2)
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Fig. 4.2 Cross-platform cold start (request time to function start)

function i sPr i me(n)

st ar t ← 2

l i mi t ←p
n

while st ar t ≤ l i mi t do

if n < 1 (mod st ar t ) then

return F al se

else

st ar t ← st ar t +1

end if

end while

return Tr ue

end function

This is a laborious way to calculate primes with the sole intention of consuming

100% of the CPU resources. The results are based on the volume of numbers

checked for primality one by one (Figure 4.3).
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AWS The volume of numbers that the function could check for primality increased

as the memory allocation increased. AWS specifies that CPU power is distributed

using time slicing, with larger memory allocations receiving longer time slices.

The method of time slicing yields consistent access to the CPU as demonstrated

by our results, i.e. the number of numbers checked had a low range of variation.

Google Average values were similar to those of AWS. However, each memory

allocation had quite a wide range of values. This is likely due to the larger variety

of CPUs used by the execution VMs, resulting in less consistent results.

IBM Average values were similar across all memory allocations with a smaller

spread of values in the higher allocations. These values are comparable to the

1024MB functions in AWS and Google. There is a considerable spread in the

lower memory allocations. However, we believe this is due to interference on the

platform (discussed in Section 4.4.4).

Azure Again, a similar volume of primes was computed to the other platforms.

The similarity in the results suggests that the differences in topology (Table

4.3) are not necessarily a factor governing a function’s CPU utilisation. The greater

factor is likely the method that each platform employs for CPU resource allocation.

Time-slicing is the most suitable method of allocating resources, as one can then

use a more homogeneous back-end for function execution, reducing complexity.

The algorithm for time-slicing will be the deciding factor in a function’s CPU

utilisation.

4.4.3 Benchmarking - Disk I/O Throughput

Serverless functions are more commonly associated with reading and writing to a

proprietary storage solution: AWS Lamba → Amazon Simple Storage Service (S3)

and Google Cloud Functions → Google Filestore. However, both offerings also

allow for the reading and writing of temporary files to disk on the execution VM.

Our disk throughput tests use the Linux dd command to read and write blocks of

512KB 1000 times and outputs disk throughput in MB/s (Figure 4.4).

AWS Throughput increased as memory allocation increased sharply after 128MB.

However, it tapered towards the larger memory allocations, never getting above
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Fig. 4.3 Cross platform no. numbers checked for primality

3MB/s. Given the more homogeneous topology of the execution VMs observed,

we can infer that this is the limit that is approached as the function is allocated

more CPU time slices with a greater memory allocation.

Google A more varied range was recorded with an increasing throughput for

greater memory allocations. This is likely related to the much larger number of

CPU configurations (Table 4.3). Another recording of note is how much higher the

values are to those of AWS. It is stated in Google Cloud Functions’ documentation

that these temporary files are actually stored in memory rather than on disk [127]

which may be resulting in the greater throughput.

IBM Average values were consistent and approximately 0.6MB / s for each memory

allocation. This, along with the previous test, further suggests that IBM Functions

are not affected by memory allocation.

Azure The throughput recorded for Azure was the lowest of all platforms, averaging

under 0.5MB/s. Disk throughput is important for more complex functions that

depend on temporary memory access. As functions are billed on execution time,

lower throughput may result in increased run time.
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Fig. 4.4 Cross-Platform Disk I/O Throughput

4.4.4 Interference Effect on Performance

Serverless platforms employ a similar strategy in how functions are executed. A

function runs within a function container on an execution VM within a predefined

region of the serverless platform’s cloud. The execution VMs are isolated from

other individual users [121]. However, different users’ VMs can exist in the same

region or on the same host, potentially leading to interference effects. Other

events such as wide-scale updates, system outages etc. may also interfere with

the execution of the function. We ran our tests over the course of one month

to investigate the potential effect of any interference that causes anomalies or

predicable fluctuations in performance. We examine the effect on function run

time, CPU utilisation, and disk I/O throughput. The results are a smoothed graph

of data points taken from each hourly run of our test functions using gnuplot’s

acspline [128] for run time (Figure 4.5), CPU utilisation (Figure 4.6) and disk I/O

throughput (Figure 4.7). Tables 4.5, 4.6 and 4.7 shows the observed variability,

including the coefficient of variation for each platform.

AWS Running in region eu-west-1, we observe minimal variance in values for

CPU utilisation. However, a sinusoidal pattern is visible in the results of the effect
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on run-time and disk I/O throughput. The pattern becomes clearer with higher

memory allocations. We believe this is due to higher memory allocations having

greater access to the CPU (via time slicing) and, as such, will execute in a more

consistent manner, therefore amplifying the visual effect of interference when

it occurs. The pattern has peaks at 12:00 pm and troughs at 12:00 am each day,

corresponding to higher use during the day than at night. This may be evidence

to support the potential effect of regular load on the system.

Google Running in region us-central1-a, more erratic values were observed. How-

ever, consistent peaks and troughs are visible, similar to those of AWS. Unlike AWS,

Google Cloud did not have a consistent topology for its execution VMs (Section

4.3.2), which may be the cause of the varied array of results. AWS Lambda func-

tions ran predominantly on the same CPU configurations, which means that their

results were more consistent, allowing us to see clearer interference patterns.

IBM Running in region Dallas, clear signs of strain on the platform were observed

with large performance dips occurring at the beginning and near the end of our

month of testing. There were a number of issues affecting IBM’s cloud during this

time according to their status history page2, which may be the culprit. Another

possibility is that IBM’s serverless platform is not capable of consistent perfor-

mance like its competitors, leading to anomalies like the ones captured by our

tests.

Azure Running in region Central US, we observe results similar to Google to be

erratic in amplitude but periodic in time peaks and troughs in its performance.

Our month-long analysis demonstrates that there is interference on each platform

and we propose potential sources for such interference. As serverless functions

are billed per 100ms, we can see that the fluctuations observed from our tests

would have an effect on the final cost. As well as cost, there are also considerations

to be made for more critical functions requiring consistent performance.

2https://cloud.ibm.com/status?selected=history
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Fig. 4.5 Function run times over one month *Smoothed hourly values. Note: IBM
functions peak off-chat with a value of 66978ms

4.5 Encountering Denial of Wallet

In the process of conducting these tests, we unintentionally perform DoW on

ourselves. Early implementations of our tests had all experiments running one

after another on the same function and that function being executed 1000 times

an hour to induce automatic scaling. While we had calculated that this would not

consume our free allowance of 1 million function invocations on AWS Lambda, we

did not account for the compute limit of 400,000 GBs. As all the experiments were

being executed, some functions took upwards of 20 seconds to complete, which

when deployed on a 2048MB Lambda function cause the free compute limit to be

reached within a few hours.
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Fig. 4.6 Function CPU Utilisation (prime computation) over one month *Smoothed
hourly values

Action was taken within an hour of the issue being discovered, thankfully

resulting only in $40 of damage. However, it was at the expense of having to shut

down the entire experimental setup and delaying the data gathering by a month.

This effect, as previously discussed, was known as EDoS in academia or, more

recently, the term DoW has been adopted within the wider cloud computing com-

munity. It is from this experience that we decided that a more detailed investiga-

tion was required on the potential for this self-inflicted disaster to be weaponised

as a targeted attack.

Beyond the request spamming DoW, the information presented in this chapter

would have been accessible to any attacker previously. Such data can inform an

adversary on potential attack strategies in order to leverage serverless function
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Fig. 4.7 Function Disk I/O Throughput over one month *Smoothed hourly values

exploitation. While such exploit identification is beyond the scope of this research,

we believe that it is important to identify potential venerability points in the early

stage of our investigation on DoW.

4.6 Summary

In summary, this chapter presents an in-depth analysis of the underlying hardware

differences of the four biggest commercial serverless platforms and the effects on

performance for differing memory allocations. We found that AWS has a different

approach to function container reuse that we theorise to be a design choice to

address scaling and cold start issues. We determined that memory allocation

largely affects the performance of serverless functions on these platforms and
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Table 4.5 Observed variability on each platform for function runtime

Platform Function Standard Mean (ms) Coefficient
Memory (MB) Deviation (ms) of variation

AWS
128 126.04 2214.69 5.69
256 71.72 1612.41 4.45
512 76.36 1494.12 5.11
1024 76.15 1458.08 5.22
2048 74.72 1445.36 5.17

Google
128 5686.66 14452.68 39.35
256 1854.73 4223.67 43.91
512 1532.46 3188.12 48.07
1024 1362.32 2528.19 53.89
2048 1157.38 2088.89 55.41

IBM
128 8661.12 5177.24 167.29
256 1141.66 2244.39 50.87
512 850.62 2506.45 33.94
1024 3061.52 2792.65 109.63
2048 1008.78 2181.85 46.24

Azure
n/a 44913.14 62160.29 72.25

must be a serious consideration when developing applications. Finally, we per-

formed a month-long observation on function performance, creating a large data

set of function benchmarks and uncovering potential interference effects due to

increased load on the platform during the day and strain caused by maintenance

on the platform. Through the process of this investigation, we came face-to-face

with the potential threat of DoW. It was from this accident that we decided to

focus on the largely under-research attack. The information in this chapter is not

easily discovered from the cloud providers themselves. As such, we believe that by

publishing our findings we are helping developers inform themselves on potential

avenues adversaries my utilise in order to conduct attacks.
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Table 4.6 Observed variability on each platform for CPU utilisation

Platform Function Standard Mean (numbers) Coefficient
Memory (MB) Deviation (numbers) of variation

AWS
128 40.92 2717.97 1.51
256 56.28 4374.51 1.29
512 76.11 7079.63 1.08
1024 112.87 11385.87 0.99
2048 186.85 16474.25 1.13

Google
128 3149.86 5150.98 61.15
256 1992.45 5427.00 36.71
512 1355.52 8358.26 16.22
1024 1892.16 12588.69 15.03
2048 1659.63 16466.22 10.08

IBM
128 3697.85 12010.97 30.79
256 2630.06 13043.96 20.16
512 1945.07 11384.95 17.08
1024 1740.70 11845.25 14.70
2048 967.96 12226.08 7.92

Azure
n/a 876.89 13189.77 6.65
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Table 4.7 Observed variability on each platform for disk I/O throughput

Platform Function Standard Mean (MB/s) Coefficient
Memory (MB) Deviation (MB/s) of variation

AWS
128 242.26 783.32 30.93
256 7.40 1.87 394.71
512 9.88 2.28 434.17
1024 7.74 2.31 334.85
2048 5.23 2.28 229.51

Google
128 318.15 379.37 83.86
256 274.38 106.59 257.42
512 1.28 3.68 34.66
1024 2.15 6.32 34.03
2048 1.83 9.08 20.14

IBM
128 0.31 0.60 52.43
256 0.18 0.66 27.29
512 0.17 0.54 31.17
1024 0.16 0.60 27.13
2048 0.12 0.66 18.83

Azure
n/a 0.05 0.24 21.73
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CHAPTER 5

Synthesis and Simulation -

Continuing Research in the Absence of Data

The greatest difficulty of this research topic is analysing DoW on the specific

domain of serverless computing. Despite similar types of attack, such as, DDoS

and EDoS, there is an absences of data on serverless computing instances of DoW.

To this end, a great deal of work was put into the development of a means to safely

test the effects of the attack that would not deplete the research funding. Also,

a method of synthesising data for future work on training detection systems in

the absence of existing historical attack data was developed, thus answering RQ2

“How can a lack of historical data be overcome in the preemptive investigation of

this attack, where traditional sandbox testing is not viable?”.

This chapter details the proposed solutions to these issues. Content from

Kelly, D., Glavin, F.G., and Barrett, E. (2022) “DoWTS – Denial-of-Wallet Test Simu-

lator: Synthetic Data Generation for Preemptive Defence” Journal of Intelligent

Information Systems [129] details the development of the Denial of Wallet Test

Simulator (DoWTS) tool that allows us to quickly generate synthetic traffic logs of

normal usage and attack data. Also outlined is an isolated testbed from Kelly, D.,

Glavin, F.G. and Barrett, E. (2021) “Denial of wallet - defining a looming threat to

serverless computing” Journal of Information Security and Applications [83] that
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enables safe deployment of an analogue serverless environment for analysis of

attack and mitigation strategies on deployed serverless applications.

5.1 Introduction

In this chapter, we present our work on a tool for generating synthetic usage data

on a serverless application, called Denial-of-Wallet Test Simulator (DoWTS) and

an analogue serverless platform for real-time testing of attacks. Chronologically,

in this research, DoWTS was developed after the serverless platform analogue.

However, we will present it first as it reflects how the two tools are utilised later

in Chapter 6 for training and testing of a DoW mitigation system. Namely, the

contributions discussed in this chapter are:

1. Creation of DoWTS as a means of generating normal usage data in the

absence of historical data. We detail extensively our heuristics for generating

such data and perform an in-depth evaluation of the validity of our synthetic

“normal” usage generator. Such validity checks include visual analytics,

quantitative comparison, and a number of statistical tests used for assessing

the synthetic data similarity to real data. We surmise three basic attack

vectors that will serve as an initial investigation into how an adversary may

conduct DoW attacks.

2. Design of a serverless platform analogue that serves as a testbed to demon-

strate the validity of future mitigation strategies. We describe the design and

setup of this system for ease of replication by the research community.

5.2 DoWTS - Denial-of-Wallet Test Simulator

In order to gain insight into and tackle related cybersecurity threats that target

public facing applications, the inspection of network traffic is required. However,

such data can raise privacy concerns as network traffic logs may reveal personal

information of users such as IP address, browsing data, and in the cases of ecom-

merce data; purchase history. Therefore, it can be difficult to obtain realistic data

for the training of mitigation systems. There are additional factors that increase
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Fig. 5.1 DoWTS usage flow

the difficulty in obtaining the required data for training serverless application-

based threat detection systems. In general, there is a lack of available traffic data

that log interactions with function triggers that make up a serverless application.

As the serverless paradigm undergoes continued adoption, this lack of data will

no doubt be remedied. However, in this early stage of serverless specific security

research, it remains a large issue. An additional factor that makes DoW research

specifically more difficult is that this attack targets the capital of application own-

ers. As such, it is a costly and tedious ordeal to investigate DoW on in-the-field

deployments of serverless applications due to the requirement to literally pay for

any investigations into various attacks. The solution to these issues is to utilise syn-

thetic data generators to create the required datasets for further use in mitigation

system training.

5.2.1 Architecture

DoWTS is a simulated serverless platform that will emulate the cost damage of

DoW and create pseudo timestamped datasets of request traffic [130]. DoWTS

generates synthetic baseline request traffic via a system of heuristics modelled

on existing datasets of requests on e-commerce websites [131, 132]. This serves
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as background usage upon which any number of theorised DoW attacks can be

launched. DoWTS calculates the current cost of serverless function invocations

per simulation time step for four of the largest commercial platforms. It also

generates usage log data for every function invocation with a label that denotes

whether it was a bot or legitimate traffic. Such labelled data will be used in future

research on classifying legitimate traffic.

DoWTS is written in Golang1 in order to take advantage of the multi-threading

capabilities of goroutines. It is composed of three main components; Serverless

Platform Emulator, Usage Generator and a MongoDB database (Figure 5.1).

DoWTS is operated through interaction with the usage generator as shown in

the sequence diagram in Figure 5.2. The user specifies the combination of attack

method and user identification spoofing according to the attack traffic generator.

The scenario is programmed with predefined values for the parameters listed in

the synthetic traffic generator. Finally, the scenario is executed.

DoWTS creates log files for each of the simulated platform’s cost, compute

time, and number of function invocations per run. This is to accompany the

generated dataset of traffic to the serverless functions.

Serverless Platform Emulator

We developed the Serverless Platform Emulator in order to compare the effects of

Denial-of-Wallet across multiple commercial platforms. It includes go-packages

each for AWS Lambda, Google Cloud Functions, Azure Functions, and IBM func-

tions. Utilising the openly available pricing formulae for each platform, the emula-

tor keeps count of: total cost, total invocations, and total runtime of the functions

on that platform. DoWTS can be used to model the expected expenditure on the

serverless components of an application across the four largest platforms. This

information is useful in the decision making process for which platform to choose

as the host of the serverless functions. However, while our simulator does indeed

offer this utility, its primary purpose is the generation of datasets for DoW detec-

tion research and as a means to safely study a variety of attack vectors. DoWTS

can be configured with specific instances of serverless applications by varying the

input parameters, such as usage metrics and function configuration.

1https://go.dev/
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Fig. 5.2 Sequence diagram of DoW attack simulator and dataset generator

5.2.2 Usage Generator

The usage generator comprises an attack traffic generator, synthetic traffic gen-

erator, and dataset-based traffic generator. The role of the usage generator is to

manage the timings of function invocations to the Serverless Platform Emulator,

log the function invocations, and persist them to the database. All three gener-

ators have a standardised output format for each pseudo requests comprising:

timestamp, IP address, function ID and a label denoting whether the request came

from the attack generator or not.
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Dataset Based Traffic Generator

There is a lack of historical data on both attacks and general usage on serverless

applications available to the public. However, it is feasible to use certain datasets

that capture usage on traditional web applications where the endpoints of an

interaction are recorded. For example, the following datasets [131, 132] are request

event histories recorded over five-month periods each. The data was collected via

Open CDP [133] on a fashion and an electronics e-commerce store, respectively.

These datasets contain a field event_type that corresponds to what URL endpoint

a user interacted with. If this is to be translated into a similar mechanism on

serverless applications, these can be interpreted as API triggers to serverless

functions. As such, the recorded traffic, in these datasets, can be streamed via the

dataset-based traffic generator as the legitimate traffic in the DoWTS system. The

result of translating this traffic to the DoWTS system allows for the fine-tuning of

our synthetic data generator.

Synthetic Traffic Generator

The synthetic traffic generator takes in a number of parameters from the user, in a

given usage scenario, that define:

• User base size - The total number of users that access an application

• Botnet size - The number of bots attacking the application

• Time step - The granularity of time for the simulation run (seconds, minutes,

hours, days, weeks, months). This will affect the data logs generated

• Number of time steps - The length of the simulation

• Users per time step - The number of users accessing the application in a

given time step

• Requests per time step - The number of function requests in a given time

step

Once these parameters have been entered, DoWTS generates IP addresses for

the users and botnet. The user is then prompted to enter in the configuration of

however many functions are present in their application i.e. memory allocation
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Fig. 5.3 Synthetic data traffic pattern compared to example of real traffic pattern
(e-commerce shop 2 in October).

and function execution time. The functions may then be grouped into chains

of functions that logically execute one after another. These chains contain a

parameter that allows for the distribution of traffic to certain chains more than

others for instances where there are functions that are more commonly used than

others.

Traffic Synthesis The timing of requests is dictated by a system of heuristics de-

vised in reference to the output of the e-commerce datasets [131, 132]. The hourly

count of requests is used as the metric on which we base these heuristics. The full

methodology of our data synthesis is presented in Appendix A. In summary, our

method uses a Poisson distribution for underlying random fluctuations in traffic

and a number of features are coded into the traffic such as:

• Weekly traffic peaks

• Large dips in traffic every night

• Noise during those dips

• Noisy peaks in traffic during the day

• Day time peaks longer than night time dips

Figure 5.3 shows the created synthetic traffic pattern compared to a sample of real

traffic.
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Attack Traffic Generator

There are no documented instances of targeted DoW on serverless to date. There-

fore, it is required that our research take on the role of devising potential attack

patterns that may cause DoW in an effort of preemptive defence. This research

focuses primarily on presenting DoWTS as a system for future attack research. As

such, the attack generator posed here serves as a proof of concept. We surmise

three rudimentary leech attacks [83] to demonstrate DoWTS’s capability in gener-

ating attack data. We have modelled three potential attack vectors for a simple

long-term leech. These attacks take precedent from traditional DoS attacks but

also aim to highlight the unique capabilities of a leech for DoW.

1. Constant rate – eg. 2000 requests per hour (rph) per bot

2. Geometric rate – start low (eg. 10 rph) then increase by factor (eg. 1.001) of

rph

3. Random rate – attack with randomly varying numbers of requests

On top of the three attack vectors, DoWTS also implements a number of

methods of recycling and changing the IP addresses of the botnet to either emulate

a changing botnet or spoofing IP address. These methods are as follows:

1. No IP address change

2. Change bot IP address every x number of requests

3. Change bot IP address every x amount of time steps

4. Pool bot IP addresses for reuse over time

These serve as a starting point from which we begin the challenge of training

classifiers to detect varying attack strategies for DoW (Chapter 6). Initial attack

vectors will be simplistic, but over time we will investigate increasingly difficult

patterns to detect, utilising DoWTS to generate data.

5.2.3 Execution Example

The configuration parameters for DoWTS can be arbitrarily chosen or selected

in order to replicate a known serverless application. In this example, we choose
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the usage values described in an AWS serverless application load testing guide [2].

It describes a geolocation question and answer based application along with its

expected traffic load. From this we can set the following parameters for normal

operation:

• User base size - 1,000,000

• Time step - 1 hour

• Number of time steps - 730 (1 month)

• Users per time step - 1,500

• Requests per time step - 61,000

The time step and requests per time step are the most important values in

this example as they set the expected load on the application. The usecase also

provides information on how functions should be chained (Figure 5.4). These

are the four API requests a user can make when interacting with the application

(GET/POST Questions and Answers). Each API request triggers a chain of Lambda

functions. For the purpose of DoWTS, we are only interested in the number of

Lambda functions and in what order they execute. Understanding the mechanism

of the example application is not required to generate traffic data with DoWTS.

From this we can infer the following function chains:

1. POST Question: PostQuestions → ProcessQuestion → Publish

2. POST Answer: PostAnswers → ProcessStarAnswers or

ProcessGeoAnswers → Aggregation → Publish

3. GET Answer: GetAnswers → Aggregation → Publish

4. GET Question: GetQuestions → Publish

Also, we know the expected load on each endpoint, so we can set the factor on

each function chain that determines the ratio of the total traffic it should receive.

Running DoWTS on this configuration gives us a result for normal operation

usage in this scenario. We can visualise the traffic by counting the requests per

hour (Figure 5.5).
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Fig. 5.4 Architecture diagram of application in AWS load testing example [2]

Fig. 5.5 Normal traffic on usecase application

This configuration is used as the background traffic upon which we can per-

form three additional runs with each of the attack patterns activated. The first run

will be a continuous-rate leech attack of 100 bots performing 200 requests each

throughout each hour. This is a very low rate that would not trigger any sensible

rate-limiting rules on a WAF. The second run will be an geometric rate leech attack

of 100 bots that will start at 10 requests each and increase by a factor of 1.005 each

time step. The goal is to lull the application owner into thinking that they are

receiving a steady increase in legitimate traffic. Finally, a random rate leech attack

of 100 bots will be performed by randomly selecting a number of requests to send

from 0 to 400. Figure 5.6 visualises the effect on traffic these attacks have.
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Fig. 5.6 Three leech attack variants on usecase application

Table 5.1 Operational cost of the application in each scenario for one month of
each serverless platform

AWS Google Azure IBM

No attack $20.69 $26.62 $20.02 $17.15
Constant rate $77.40 $85.92 $74.71 $68.44

Geometric rate $49.49 $56.65 $47.78 $43.25
Random rate $79.18 $87.74 $76.42 $70.07

DoWTS also calculates the cost of these function invocations. Table 5.1 shows

how attacks increase the operational costs of the application through the end-of-

the-month bill. Even at low scale we can see that leech attacks may double the

costs.

5.2.4 Synthetic Normal Data Evaluation

A major challenge with regard to synthetic data generation is to ensure that the

generated data correlates closely with the real world data as much as possible. A

simulation platform is only useful if it can emulate the system it models and give

confidence that any classifiers trained using the simulation data will be robust

when deployed in the real world. To assess the usability of DoWTS in future

work on training classification algorithms, we must evaluate the validity of the

data produced by our synthetic usage generator. We used the SynthGauge [134]
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framework for performing a statistical analysis and also conducted our own visual

analysis of the data.

SynthGauge is a Python library that provides a framework for evaluating the

utility and privacy of synthetic datasets, using a range of metrics and visualisations.

It is the result of a collaboration between the UK Office for National Statistics and

The Alan Turing Institute. Our evaluation focuses on the timings of arrivals of

requests, from which we bin traffic to achieve an hourly count of requests. On the

basis of this data, we compute the following to assess the validity of our synthetic

data.

• Quantitative Comparison - calculation of useful statistical values such

as: Mean, Standard Deviation, Min/Max, Interquartile Range, and Me-

dian. These values are useful for an initial comparison of real and synthetic

datasets in order to determine whether they are similar in scale (number of

data entries).

• Kolmogorov Smirnov (KS) Test Statistic [135] - calculates the maximum

difference between the cumulative distribution functions of the traffic count

in the real and synthetic datasets. If the returned statistic is small, then it

can be said that the datasets come from the same distribution.

• Wasserstein Distance [136] - or Earth Mover’s distance, can be thought of as

calculating the amount of work required to move from the distribution of

the synthetic data to the distribution of the real data. The distance is zero if

the distributions are identical, and increases as they become less alike. We

compare the Wasserstein distances between multiple months of real data

and compare the distance between real and synthetic data with that.

• Jensen Shannon Divergence [137] - describes the difference between the

real and synthetic distributions of the traffic count in terms of entropy. We

can think of the Jensen-Shannon divergence as the amount of information,

or entropy, encoded in the difference between the real and synthetic dis-

tributions of the traffic count. The distance is zero if the distributions are

identical, and is bounded above by one if they are nothing alike.

For consistency in comparison, the range of data for each month was re-

duced to the shortest month of data gathering to accommodate the shortest
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Table 5.2 Quantitative comparison of dataset 1 on the number of requests per
hour.

Month Mean StD Min 25% 50% 75% Max

October 5544 2824 673.0 3010 6081 7492 15201
November 6245 3601 694.0 2970 6626 8212 23257
December 5131 2555 675.0 2702 5649 7126 10912

January 5533 2858 415.0 2637 6054 7902 11473
February 5986 3011 94.0 3136 6672 8429 14427

Table 5.3 Quantitative comparison of synthetic data based on dataset 1 on number
of requests per hour.

Mean StD Min 25% 50% 75% Max

Synthetic 5415 2685 771 2578 5937 7633 10750

period of measurements in the dataset. Henceforth, the fashion and electronics

e-commerce datasets shall be referred to as dataset 1 and dataset 2 respectively.

Quantitative Comparison

Our first measure of validation is a comparison of quantitative metrics for each

dataset. We compute the mean, standard deviation, minimum value, maximum

value, interquartile range, and median of the number of requests per hour. By com-

puting these values on each of the five months of real data in both real datasets we

can determine a range of values that should constitute acceptable readings for our

synthetic data (Table 5.2 and Table 5.4). This will suggest that the combination

of input parameters to DoWTS, in conjunction with the synthetic usage gener-

ator heuristics, will output traffic in line with expected values based on historic

readings. Table 5.3 and Table 5.5 confirm that the synthetic data falls within an

acceptable range of the real data it is based off.

Statistical Testing

Our next measure of validity is a number of statistical tests chosen to determine the

similarity between the real and synthetic datasets. Our quantitative comparison

confirmed that our datasets contain similar values. As such, we can apply the

three aforementioned tests to determine whether they are distributed in a similar
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Table 5.4 Quantitative comparison of dataset 2 on the number of requests per
hour.

Month Mean StD Min 25% 50% 75% Max

October 210 107 21 104 225 296 450
November 270 134 0 133 299 380 548
December 208 101 8 110 236 289 428

January 253 122 23 130 280 354 545
February 251 1115 30 136 284 339 460

Table 5.5 Quantitative comparison of synthetic data based on dataset 2 on the
number of requests per hour.

Month Mean StD Min 25% 50% 75% Max

Synthetic 235 118 33 111 260 331 494

Table 5.6 Statistical evaluation of dataset 1 on the number of requests per hour
against itself to establish baseline values.

KS Test Wasserstein Jensen Shannon
statistic p-value Distance Divergence

Oct - Nov 0.1202 0.0002 730.4824 0.0264
Nov - Dec 0.1875 <0.0001 1113.7660 0.0546
Dec - Jan 0.1218 0.0002 427.7308 0.0218
Jan - Feb 0.0946 0.0075 464.5721 0.0091

manner. These tests were first performed on each month of real data on its

following month (Table 5.6 and Table 5.8). These values are used to confirm the

validity of the tests, as we know that these datasets are similar. Therefore, if our

synthetic dataset is equally similar, then it would pass as legitimate traffic. The

suite of tests are run against each month of each real dataset and the synthetic

dataset (Table 5.7 and Table 5.9). The results indicate that the generated data is

suitably distributed when compared to the real dataset on which it is based.

5.2.5 Visual Analysis and Evaluation

Finally, a sanity check is performed through visual analysis of traffic data. The

traffic count is plotted with respect to time invoked for all datasets and grouped

for visual comparison. Figure 5.7 and Figure 5.8 clearly show obvious day/night
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Table 5.7 Statistical evaluation of synthetic data against dataset 1 on number of
requests per hour.

KS Test Wasserstein Jensen Shannon
statistic p-value Distance Divergence

Oct - Synth 0.1073 0.0014 393.5753 0.0467
Nov - Synth 0.1153 0.0004 948.3461 0.0517
Dec - Synth 0.1137 0.0006 435.7339 0.0451
Jan - Synth 0.0961 0.0062 271.7403 0.0280
Feb - Synth 0.125 0.0001 710.1907 0.0290

Table 5.8 Statistical evaluation of dataset 2 on the number of requests per hour
against itself to establish baseline values.

KS Test Wasserstein Jensen Shannon
statistic p-value Distance Divergence

Oct - Nov 0.2932 <0.0001 60.1891 0.0757
Nov - Dec 0.3509 <0.0001 61.4647 0.1123
Dec - Jan 0.2644 <0.0001 44.1185 0.0799
Jan - Feb 0.0785 0.0426 13.0929 0.0155

Table 5.9 Statistical evaluation of synthetic data against dataset 2 on the number
of requests per hour.

KS Test Wasserstein Jensen Shannon
statistic p-value Distance Divergence

Oct - Synth 0.1378 <0.0001 25.6730 0.0376
Nov - Synth 0.1778 <0.0001 36.1410 0.0269
Dec - Synth 0.1826 <0.0001 27.6826 0.0573
Jan - Synth 0.0865 0.0186 18.0961 0.0130
Feb - Synth 0.0929 0.0090 19.1153 0.0104

cycles, noise at the peaks and troughs, and a slight variation in traffic over a period

of seven days.

The results presented in Section 5.2.4 demonstrate that DoWTS generates the

appropriate volumes of requests when given a set of input parameters. This is

shown by the similarity in scale of value when comparing the real datasets and the

synthetic dataset. The mean value of requests in dataset 1 is between 5,131 and

6,245 requests across five months of observed traffic. When given similar usage

parameters to this dataset, DoWTS produces 5,415 requests on average. Similar
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Fig. 5.7 Visual comparison of requests per hour on DoWTS and real dataset 1.

confirmations are produced across the quantitative comparison fields, suggesting

the suitability of DoWTS to produce realistic data.

The results presented in Section 5.2.4 should be interpreted as follows.

• KS Test Statistic - The KS Test is utilised to determine goodness of fit be-

tween two samples. It produces two results, both bounded between 0 and 1:

the KS statistic and the p-value. The null hypothesis of the KS Test is that

the distributions of datasets are identical if the statistic value is low and the

p value is high. In our tests we observe both values to be low. This suggests

that we reject the null hypothesis as the distribution of the datasets is not

identical. DoWTS does not aim to over-fit the data it produces to the two

real datasets utilised in this research, in order to ensure a good variety of

produced data. This coupled with the large sample size used in our tests will

lead to the KS Test performing overly strictly when calculating the p-value,
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Fig. 5.8 Comparison of requests per hour on DoWTS and real dataset 2.

which results in the recorded low values. However, the calculated statistic of

the KS Test (the maximum difference between the distributions) suggests

that the recorded values in the datasets are at least similarly distributed,

although not exact. The KS Test statistic on each month of real data returns

values between 0.09 and 0.19 in dataset 1. DoWTS produces datasets with

similar KS Test statistics when compared to each month of real data. This

suggests that the data generated by DoWTS is no less believable than any

other sample of real data. When coupled with the additional tests, we be-

lieve the KS Test statistic to be a valuable marker of the suitability of the data

DoWTS produces.

• Wasserstein Distance - The value obtained from calculating the Wasserstein

Distance has no upper limit. As such, interpretation of the results presented

should be independently related to each dataset. The values calculated
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when comparing real data are similar to those comparing real with synthetic

data.

• Jensen Shannon Divergence - The range for Jensen Shannon Divergence

is between 0 and 1. The results of our tests demonstrate with suitably low

values that DoWTS produces synthetic data similar to the real datasets used

for comparison in this research. No comparison of our synthetic data with

real data yielded a Jensen Shannon Divergence greater than 0.06.

From our analysis, we can determine that the synthetic usage generator performs

suitably well in replicating real traffic. As such, we are confident in utilising it

for generating background traffic upon which hypothesised DoW attacks will be

launched for use in training of detection and mitigation systems via machine

learning.

5.3 Isolation Zone for Denial of Wallet Attack Testing

As DoW is a financial attack, it is impractical to test such on real commercial

platforms. Given that there are no known historical examples of DoW, we must

have a means of generating data for training of mitigation systems and then

validating such systems. To facilitate this, we designed an isolated serverless

platform that will emulate the cost damage of DoW and deployment structure of

commercial serverless functions. The design consists of a number of machines

running on the same network. One machine was designated as the “victim”.

It would play host to the serverless platform and cost emulator that are being

targeted by our attacks. The other machines were designated as “attackers”. From

these machines, we will launch a variety of attack strategies to determine the best

candidate for DoW. The topology of our testbed is illustrated in Figure 5.9.

5.3.1 Configuration

The “victim” machine is a Linux desktop running the Ubuntu 18.04 operating sys-

tem. The serverless platform used to execute functions is OpenFaaS2. OpenFaaS is

a framework for building serverless functions with Docker and Kubernetes which

2https://www.openfaas.com/
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Fig. 5.9 testbed of an isolated serverless platform for attack simulation.

has first-class support for metrics. Any process can be packaged as a function,

enabling you to consume a range of web events without repetitive boiler-plate

coding. The mock application that will trigger the functions on OpenFaaS runs

on Apache Server 23. The Apache HTTP Server Project is an effort to develop and

maintain an open-source HTTP server for modern operating systems including

UNIX and Windows. In order to perform more meaningful experiments on DoW,

our environment has a two-fold security system. Where commercial platforms

offer one Web Application Firewall (WAF) that can run on all its products, e.g. AWS

WAF4, finding a single catch-all solution to secure both our application server

and serverless platform proved difficult. Our solution was to secure the Apache

server with the ModSecurity v25 WAF and use the Intrusion Prevention System

(IPS) Snort v26 to perform WAF actions on the OpenFaaS deployment.

3https://httpd.apache.org/
4https://aws.amazon.com/waf/
5https://modsecurity.org/
6https://www.snort.org/
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5.3.2 Serverless Deployment

OpenFaaS was chosen as the serverless platform for executing function code.

Some of its highlights include;

• Ease of use through UI portal and one-click install

• Write functions in any language for Linux or Windows and package in

Docker/OCI image format

• Portable - runs on existing hardware or public/private cloud with Kuber-

netes or containerd

• CLI available with YAML format for templating and defining functions

• Auto-scales as demand increases

OpenFaaS runs on the “PLONK” stack. PLONK is a Cloud Native stack for building

applications which stands for:

• Prometheus - metrics and time-series

• Linux - OS or service mesh

• OpenFaaS - management and auto-scaling of compute - PaaS/FaaS, a developer-

friendly abstraction on top of Kubernetes. Each function or microservice is

built as an immutable Docker container or OCI-format image.

• NATS - asynchronous message bus / queue

• Kubernetes - declarative, extensible, scale-out, self-healing clustering

The function gateway can be accessed through its REST API, via the CLI or through

the UI. All services or functions get a default route exposed, but custom domains

can also be used for each endpoint. Prometheus collects metrics which are avail-

able via the function gateway’s API and which are used for auto-scaling. Functions

are invoked from the application front end via an API gateway. This also exposes

the functions to direct invocation (as is normal in FaaS). The front-end and Open-

FaaS communicate via HTTP requests and JSON.
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5.3.3 Web Application Server Deployment

The Apache server hosts the application front end. It is a powerful, flexible,

HTTP/1.1 compliant web server that implements the latest protocols, includ-

ing HTTP/1.1 (RFC2616). It is highly configurable and extensible with third-party

modules, which we make use of when implementing our security solution. Apache

runs on Windows 2000, Netware 5.x and above, OS/2, and most versions of Unix,

as well as several other operating systems, meaning that we could easily pair it

with our OpenFaaS deployment on Ubuntu 18.04. This server will be used to host

mock applications for future experiments.

5.3.4 Security

As mentioned above, where commercial platforms offer a single WAF that protects

all their products, this proved unrealistic for our environment. We split the security

measures into 1. protect the application server and 2. protect the serverless

platform.

The application server is protected by ModSecurity. It is a toolkit for real-time

web application monitoring, logging, and access control. Its capabilities include:

• Real-time application security monitoring and access control

• Full HTTP traffic logging

• Continuous passive security assessment

• Web application hardening

We use this a the primary means of securing the application from attacks such

as XML or Shell injection etc.

A highly recommended means of mitigating HTTP Flood attacks (which is

the core of worst-case scenario DoW attacks) is rate limiting based on IP address.

For this, all inbound traffic gets filtered through Snort. Snort is an open-source

network intrusion detection system (NIDS). Snort is a packet sniffer that monitors

network traffic in real time, scrutinising each packet closely to detect a dangerous

payload or suspicious anomalies. Snort is based on libpcap (for library packet cap-

ture), a tool that is widely used in TCP/IP traffic sniffers and analysers. Through
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protocol analysis and content searching and matching, Snort detects attack meth-

ods, including DoS, buffer overflow, CGI attacks, stealth port scans, and SMB

probes. Running in “inline” mode, Snort becomes an intrusion prevention system.

Inline mode is where Snort sits between two bridged network interfaces, analysing

network packets as they come in. When suspicious behaviour is detected, it will

drop any packets that trigger certain rules. Otherwise, it will pass them to the

Apache server or OpenFaaS back end (depending on the function invocation

method).

5.3.5 Serverless Platform Pricing Emulator

We developed the Serverless Platform Pricing Emulator in order to compare the

effects of DoW across multiple commercial platforms. It operates largely the same

as the DoWTS Serverless Platform Emulator. However, it is designed to sit on

top of an OpenFaaS serverless deployment that allows you to emulate how much

its function executions would cost on AWS Lambda, Google Cloud Functions,

IBM Cloud Functions, and Microsoft Azure Functions. It is written in Python and

converts usage metrics gathered by Prometheus on the OpenFaaS platform to a

comparable cost had those functions been invoked on the four largest commercial

serverless platforms. The cost calculator queries Prometheus for the total number

of successful function invocations and the cumulative execution time. As all

functions are configured to 128MB, delineation between function executions is

not required and a total cost can be calculated as per each platform’s pricing

guidelines. The source code7 is available for use by the community who wishes to

perform similar experiments on serverless computing financial effects.

5.3.6 Attacking Nodes

The attack machines execute a Python script that sends multiple GET requests to

the functions and changes the IP address of the machine (simulating any number

of attack nodes required). For DoW, slow rate attacks are the primary concern,

however, DoS style of attacks may also be executed.

7https://github.com/psykodan/openfaas-commercial-platform-emulator
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The attacker can also be configured with the Kali Linux operating system8 for

the use of existing attack software. In Section 5.3.7, we do so and utilise the DoS

tool Low Orbit Ion Cannon.

5.3.7 Demonstrating Denial of Wallet

Using our testbed, we can demonstrate the mechanism of DoW attacks. First, we

use an existing DoS tool, LOIC, a DoS tool made famous by the “Operation Payback”

attacks in defence of Wikileaks in 2010, which can perform HTTP flooding attacks

[32]. We configured a single node with Kali Linux and ran LOIC with a single

serverless function on our OpenFaas platform as the target. We allowed LOIC to

execute for one hour, continuously spamming direct function invocations to our

OpenFaaS deployment. Our platform gathers metrics such as function invocation

rate, container scaling, total invocations, and execution time using Prometheus

and Grafana. We observed that more than 130,000 function invocations could

be triggered in this time span (Figure 5.10). The average invocation rate and run

time per 20 second interval is also recorded (Figures 5.11 and 5.12). This run

demonstrated how a serverless platform scales to accommodate large volumes

of requests by creating additional containers for function execution (Figure 5.13).

However, this example is a worst-case scenario where a single attacker is allowed

to continuously spam requests. A WAF can mitigate simple GET request flooding

using rate limiting. Using LOIC again and activating our intrusion prevention

system (IPS) that acts as a WAF to our OpenFaaS deployment, we can limit the

damage any one node can do with an HTTP Flooding attack by rate-limiting

requests from a single source. This would suggest that short time span single-

node attacks are not suitable for DoW.

From this demonstration, we can infer that an unprotected serverless function

is susceptible to DoW from a single node. Implementing rate limiting protects

against the issue. However, as discussed previously in Section 3.3.1, DoW can be

executed over a much longer time span than a DoS attack, thus rate limiting will

be ineffective in such cases.
8https://www.kali.org/
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Fig. 5.10 Total function invocations collected from HTTP flood attack without
protection.

Fig. 5.11 Function invocation rate per 20 second interval collected from HTTP
flood attack with no protection.

Fig. 5.12 Average run time of the function per 20 second interval collected from
the HTTP flood attack with no protection.

5.4 Summary

In summary, this chapter has detailed the creation of two tools that allow for

the continued research on DoW attacks without the need to use commercial

platforms that would end up costing the researcher unnecessary amounts. One
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Fig. 5.13 Metrics collected from HTTP flood attack with no protection. Function
replica generation

that can generate large quantities of normal usage data on theoretical serverless

applications. The other that allows for the deployment of serverless functions

on top of a system that calculates equivalent bill amounts on four of the largest

commercial serverless platforms. Together, these tools can be used to rapidly test

scenarios of attack and defence strategies.

This work addresses our second research question, in that we were able to

overcome the limitation of a lack of historical data of usage on serverless platforms

and of the attack itself. This also confirms our hypothesis that synthetic data can

be utilised as a source data for training of mitigation systems (as will be discussed

in the next chapter).

This chapter highlights the difficulties that had to be overcome in this project.

The solutions proposed are the first step in useful tooling for DoW research. As

such, we believe that this work serves as a significant contribution to the field,

whether it is via use of our tools or as inspiration for further refined solutions.
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CHAPTER 6

A Novel Solution to a Unique Problem -

Detecting Denial of Wallet

This chapter presents the culmination of the previous work, taking the looming

threat of DoW and proposing a means of mitigating this attack before it becomes

a wide-spread issue. Our system of DoW detection utilises a novel means of

representing large-scale traffic logs in a graphical form that consumes a fraction of

the memory it would in its raw form. Based on these graphical representations, a

CNN is trained to detect anomalous patterns in traffic. This detection system may

serve as an early warning system for application owners to take action when there

is suspected abuse of serverless functions leading to DoW. This chapter contains

work currently submitted to the Oxford University Press Journal of Cybersecurity

for review. This chapter answers RQ3 "Can an attack that so closely mimics regular

traffic be detected and mitigated against?”.

6.1 Introduction

Recent research on DoW has further defined it be split into internal and exter-

nal DoW [138]. This research suggests that external DoW can be detected and

mitigated by traditional DoS mitigation techniques. However, unlike DoS, DoW
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may use alternative attack patterns that do not trigger DoS detection parameters

as they may not be volumetric attacks, generating large traffic volumes that seek

to cause damage in a short amount of time. Instead, these attacks execute over

long periods of time in order to not raise suspicion like a traditional DoS flooding

attack (leech attacks).

In this chapter, we present our novel approach to representing these attacks

for use in a detection system that utilises deep learning of a CNN for classification

of suspicious traffic on an application. The contributions of this body of work are

as follows:

1. Development of a novel approach to translating large volumes of request

traffic data into summary image representations and then generating a new

dataset of the said representations via data synthesis.

2. Analysis of the feasibility of approaching DoW detection as an image clas-

sification problem and subsequent training of a CNN for malicious traffic

classification.

3. Creation of a system for applying the traffic classification model that would

allow application owners to evaluate their traffic in real time and alert them

when potential attacks have been detected.

6.2 Denial-of-Wallet Attack Data Generation

As the aim of DoW is to cause the application owner to receive excessive usage

bills, the users of the application are not the ones being affected by the attack.

Therefore, if there was to be an attack, it would not serve the victim any advantage

to publicly disclose such an attack. This, along with the relative recency of the

development and uptake of serverless computing, is potentially why there are

no documented large-scale DoW attacks that can be used as training data. We

utilised DoWTS [129] in order to generate many different attack scenarios with

varying parameters for attack configuration.
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6.2.1 Image Representation of Function Request Traffic

The logs generated by DoWTS cover one month of traffic, which is the billing cycle

of a serverless application. These logs can vary in size depending on the normal

background usage and the intensity of the attack. For the normal traffic use case

used by default in DoWTS, these files can expect to be approximately 4GB in size

with no attack execution on top. The subsequent attacks can increase this to 20GB

in cases where the attack is particularly aggressive (high rate of requests). As such,

a method of representing the data to minimise storage space and computation

time to process is required.

The traffic data is represented as a heat map, with hour of the day on the x axis,

day of the month on the y axis, and number of requests relative to the month’s

worth of requests as the intensity of the square on the grid (as demonstrated in

Figure 6.1). These heat maps are 24×30 pixels in size and single channel greyscale

images in order to reduce storage and processing time. The intensity of the traffic

is represented as a value of 0 to 255 relative to the traffic in that month. This

procedure is outlined in Figure 6.2. The actual heat maps produced for the three

types of attack modelled by DoWTS are shown in Figure 6.3. Their pixels are not

as clearly visible because of scaling up from their original small size.

6.2.2 Dataset Characteristics

Using DoWTS to run various attack scenarios and then converting those logs into

heat maps, we generated the following dataset:

• 10,000 images generated in total

– 4,000 Normal traffic heat maps - Traffic modelled by DoWTS based

on historic web application use data

– 3 attack types - Randomly choosing a start time as the hour in the

month and the duration of the attack in hours

* 2,000 Linear attack heat maps - Randomly chosen from range,

fixed rph for each run. Range between 0 and 3000 rph.

* 2,000 Geometric attack heat maps - Variable fixed request in-

crease factor. Range between 1.001 and 1.01 increase factor per

hour.
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Fig. 6.1 Representation image of a produced heat map with clearly visible pixels
where (x, y) co-ordinate of pixel corresponds to (hour, day) of observation.

* 2,000 Random attack heat maps - Variable rph each hour. Range

between 0 and 3000 rph.

This dataset is fully labelled for the four classes; normal, linear, geo, and rand.

There is also an accompanying log file that lists the attack parameters and the

damage caused. However, it is not used for our detection system.

In summary, our dataset consists of 10,000 labelled images of heat maps. These

heat maps are labelled for the traffic they represent on a serverless application,

i.e., the number of function invocations an hour. The traffic representations are:

normal use traffic, linear increase attack traffic, geometric increase attack traffic,

and random rate increase attack traffic. The data produced cover a range of attacks

intensity for training of a robust detection model.
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6.2 Denial-of-Wallet Attack Data Generation

Fig. 6.2 Full life-cycle of data generation from DoWTS to heat map creation.
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6.2 Denial-of-Wallet Attack Data Generation

Fig. 6.3 Heat map representation of request traffic: (a) Normal Traffic, (b) Linear
rate attack, (c) Geometric rate attack, (d) Random rate attack, (e) Difficult to detect
linear rate attack due to lower attack intensity, (f) Difficult to detect geometric rate
attack due to lower attack intensity, and (g) Difficult to detect random rate attack
due to lower attack intensity. Note that the images are scaled up from 24×30
pixels for visibility
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6.3 Image Classification Model for Detection of At-

tacks

6.3.1 Analysis of Preexisting Networks for Image Classification

In Section 2.4.1, we outline a number of image classification CNNs that achieved

notable results on the ImageNet dataset. These networks are publicly available

as Keras Applications [139]. As such, we perform an evaluation of a the selection

of networks, discussed in Chapter 2, on our dataset for the DoW attack detection

problem domain. Table 6.1 lists the classification accuracy, F1 score, precision

and recall of each model as defined in equations 6.1, 6.2, 6.3 and 6.4 respectively,

where T P = Tr uePosi t i ves, T N = Tr ueNeg ati ves, F P = F al sePosi t i ves and

F N = F al seNeg ati ves. Also included are a basic implementation of a Multi

Layer Perceptron (MLP) and a Long Short-Term Memory (LSTM) network.

All models were trained on 1500 images of normal, linear attack, geometric

attack, and random attack traffic each. The images were scaled up by a factor of

three in order to meet the minimum input size for the models. They were also

loaded as three-channel images. An 80/20 training to validation split was used

on this data, where the validation set is used for tuning of hyperparameters in

the model. A final dense layer was added to each network as the output layer for

classification of the four labels using a softmax activation. Each model was trained

for 10 epochs to ensure a reasonable comparison. A holdout dataset was used for

evaluation containing 2000 images of even ratio between the four classes with 500

examples from each class. The model is then trained again on an 80/20 split with

the samples shuffled a further 9 times. This process is visualised in Figure 6.4.

Accur ac y = T P +T N

T P +T N +F P +F N
(6.1)

F 1 = 2×T P

2×T P +F P +F N
(6.2)

Pr eci si on = T P

T P +F P
(6.3)

Recal l = T P

T P +F N
(6.4)
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Fig. 6.4 System of training and evaluation of models

Table 6.1 Comparison of preexisting image classification models and two non-
CNN based models

Model Accuracy (%) F1 (%) Precision (%) Recall (%)

MobileNetV2[70] 95.66 95.79 95.85 95.66
ResNet50[65] 98.03 97.29 98.13 97.93

SqueezeNet[66] 98.44 97.12 98.49 98.44
VGG16[64] 97.48 96.92 97.62 97.43

Xception[68] 98.34 97.78 98.43 98.24
MLP 73.76 62.04 74.44 72.60

LSTM 91.98 81.92 92.21 91.32

From the results shown in Table 6.1, all five CNNs achieve high results across

the four metrics. The LSTM achieves good accuracy; however, the lower F1 score

suggests a higher number of false classifications. The MLP performs significantly

worse than the other models. We believe the further exemplifies how effective

CNNs are compared to these neural networks. Any of the five pre-designed net-
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works would make good candidates for implementation in a deployable detection

system, given the high results demonstrated. However, we observe that the net-

work with a much more simplistic architecture, VGG16, performs almost as well

as three of the higher-complexity networks and better than MobileNetV2.

6.3.2 Creation of a Domain Specific Model

As the problem domain of detecting DoW attacks, at present, is limited to the three

proposed basic attack patterns [129], it is unnecessary to employ the networks

discussed above. We deduce that the use of one of these networks designed to

classify 1000 classes (from the ImageNet dataset) is excessive. As such, in this

section, we outline the design and performance of a model of significantly lower

complexity.

We shall henceforth refer to our proposed model as Denial-of-Wallet Network

(DoWNet). The network architecture is shown in Figure 6.5. Inspired by the

architecture of VGG16, DoWNet comprises 3 convolution layers and 4 dense

layers. Pooling is performed after each convolution layer, and a dropout layer is

included before the dense layers to prevent overfitting. Each convolution layer

uses Rectified Linear Unit (ReLU) activation and filters of size 3. The output layer

uses softmax activation for multiclass classification. Images are loaded in their

original 24×30 size and as a single channel image. This further reduces complexity

by not requiring the search for cross-channel correlation.

The results shown in Table 6.2 demonstrate that DoWNet performs almost

as well as the top three classification models in Section 6.3.1, and outperforms

VGG16 and MobileNetV2. We do not claim that DoWNet is a better performing

model than these models. However, since this classification task is not as difficult

as the ILSVRC, we have shown that a more simple model can achieve similar

performance. The advantage of this is that there is less time required to train

and use the model. SqueezeNet was the model that performed best in our tests

with a classification accuracy of 98.44%. It took 777.79 seconds to train the model.

Whereas, DoWNet with an accuracy of 97.68% took 11.8 seconds. There is great

importance in these short training times, as this attack is so new, it is constantly

evolving, and retraining will be continuous beyond the attack patterns demon-

strated in this chapter. The size of the files created when saving the models for

use in further applications was also notably different with SqueezeNet generating
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Fig. 6.5 DoWNet layer architecture

a 1081 KB file and DoWNet generating a 231 KB file. The reduced size and time

overhead make our simple model more suitable for use in a lightweight detection

system that would sit on top of a serverless application. Figure 6.6 demonstrates

DoWNet’s classification on the holdout test dataset.

Where there were misclassifications, they were predominantly heat maps that

had such little attack traffic that it looks like a normal traffic heat map. These low

attack rate heat maps were generated as a result of the range of rph for attacks

starting at 0. We believe these examples are important as they make the model

more robust and capable of detecting attacks that are not just incredibly high rate

(that emulate DoS flooding attacks). We relate this to cat vs. dog classification

where there may be images of dogs that look like cats and visa versa.
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Table 6.2 DoWNet performance metrics

Model Accuracy (%) F1 (%) Precision (%) Recall (%)

DoWNet 97.98 97.92 97.98 97.98

Fig. 6.6 DoWNet successful classification of test data

6.4 Implementation of Model in Deployed Application

Scenario

DoWNet is capable of accurate classification on heat maps that represent one

month’s worth of request traffic. As such, this approach is limited to checking if an

application is under attack once a month, as you would need to have gathered the

request log data to compose a new heat map. In order to address this limitation,

we propose a method of utilising DoWNet that allows for daily assessment of

request traffic for signs of attack.
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6.4.1 Pixel Streaming Heat Map

As DoWNet is trained on images of a month’s worth of request traffic represented

as a heat map, it must be supplied with a full image to perform classification. Our

solution is to continually update the image pending new values from the recorded

traffic of the previous hour. We term this pixel streaming as our images are 24×30

pixels images where each pixel represents an hour’s traffic intensity at a specific

time during the month. By continually streaming in new values for pixels in a

sliding-window fashion, we can update the image to represent the traffic trends in

the heat map. There are two key aspects that allow this to work:

1. There must be a baseline month of data for the first use. A heap map must

be generated for the updates to take place on. Upon this heat map, the

streaming will commence and from then will continue to use the previously

streamed data as the historical traffic values.

2. All values for each pixel in the image are re-normalised with each timestep.

The actual count of rph that dictate the image’s pixels is separate from the

normalised values represented in the heat map. As new requests come

in on each hour, those values are updated, and a new normalised array is

generated for composition of the heat map.

Figure 6.7 demonstrates how pixel streaming and DoWNet are used together

for DoW classification. The top-left heat map is determined to be normal traffic.

In this example, this happens to be the initial baseline traffic required for the pixel

streaming. However, it could also be the product of months of streaming where

there were no attacks taking place. The top-right heap map is the result of 10 days

of streaming. As each pixel represents an hour, there have been 243 iterations of

updates and normalisation to the heat map. Visually, we can see that a faint line is

developing and DoWNet is now classifying the traffic as a random increase rate

attack. In this example, an geometric increase attack is being launched at this time.

The bottom-left heat map shows further updates to the heat map after 18 days.

DoWNet had previously been classifying the attack as random and then linear

increase rate until the features present were enough to be classified as geometric.

The final heat map is after the full run of one month with the geometric attack.

This solution serves as an early warning system that an attack is taking place.

At the 10 day mark where DoWNet first became suspicious of the traffic, an ap-
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Fig. 6.7 Progression of streaming the total number of requests for each hour and
normalising the data to create a new heat map for analysis. The scenario shown is
an geometric attack that starts roughly on day 5 and increases the rate of requests
for 20 days. The detection model initially classifies the attack traffic as random
until more data is available before it is correctly identified as an geometric attack.

plication owner can take appropriate measures to investigate and secure their

endpoints before the full damage of the attack can occur, such as the mitigation

approaches discussed in Chapter 3.
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6.4.2 Application of Solution on Deployed Service

We believe that an appropriate deployment of DoWNet should have as little impact

on the architecture of an application as possible, since it should only run once an

hour. As such, it is a prime candidate for being written as a serverless function

itself. Deploying DoWNet into a function that lives within the same space as the

rest of the application means that there is no requirement to parse data to a third

party, thus mitigating potential breaches in privacy. Another great advantage is

that the whole system runs on the developers cloud platform, allowing for ease of

maintenance and setup.

We present a proof-of-concept system that operates on the OpenFaaS server-

less platform. Our testbed follows the isolation zone for serverless attack testing

outlined in Chapter 5. An additional MongoDB database was used for persistent

storage of the traffic count at each hour.

DoWNet was written into a function that executes Python code. The function

was written in such a way that it could be translated to other serverless platforms,

remaining as platform agnostic as possible. The operation of the function is as

follows:

Prerequisites

1. NoSQL database. Each major platform offers its own solution. Our example

uses MongoDB.

2. Data collection of 720 hours (24hour s ×30d ay s) of traffic counts. This is

required to generate the first heat map.

3. Document that contains the current hour number and previous total invo-

cations.

Function

1. Connect to the database and get the current hour and the previous total for

the new value overwrite.

2. Utilising the platform’s provided metrics system, fetch the total count of

function invocations. OpenFaaS uses Prometheus, whereas AWS uses its

own product, CloudWatch. These metrics are available via API requests.
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Fig. 6.8 Operation of proof-of-concept deployment of DoWNet.

3. Calculate the total for that hour using the previous total. Update hour

invocation count, new total and new current hour in database.

4. Shape the data with the new hour count into the 24×30 grid and normalise

into heat map.

5. Apply the DoWNet model to heat map.

6. Report results.

The operation of this system is shown in Figure 6.8
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6.4.3 Results

An experimental testbed was set up that consisted of:

• A dummy application to represent an application

• The deployment of DoWTS

• A traffic generator utilising the same synthetic traffic generator as in DoWTS

• A pre-loaded collection of a months traffic with the usage set to not exceed

2500 requests per hour. This is a low-scale example to avoid the need to use

a botnet for sending attack requests. As DoWNet is trained on normalised

data, the reduced scale should not affect the results.

Two control tests were run to establish that the traffic generator when execut-

ing only normal traffic does not trigger false positive detections. The system ran

for 24 hours with the synthesised traffic starting on hour 48 (in order to emulate

a system that has already been running for a period of time). Figure 6.9 shows

the change in the heat maps over 24 hours in both tests. Figure 6.10 shows the

prediction values for each traffic classification over the 24-hour period.

An attack was then launched on the dummy application, starting on hour 115

of the month, and used the random rate increase attack vector. The attack was

detected successfully after 5 hours. Figure 6.11 demonstrates the effect of the

attack on the generated heat map and Figure 6.12 graphs the prediction values of

DoWNet.

The results show a clear success in detecting DoW attacks. The function

running DoWNet executes in under 2 seconds, thus requiring little to no cost over

head to run given its low-frequency invocation (once an hour).

6.5 Discussion

6.5.1 Challenges of Denial-of-Wallet Detection

As discussed in this chapter and in previous literature [83, 129], external DoW

attacks need not simply be DoS style flooding attacks. The threat of lower inten-

sity leeches would not be detectable by traditional DoS mitigation’s such as rate
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Fig. 6.9 Change in the heat maps over 24 hours in control runs

limiting or packet analysis as individually they would be indistinguishable from

normal traffic. Therein lies the initial challenge with DoW detection that we have

set out to solve.

Through the translation of traffic into small heat map images, we were able

to effectively represent long spans of data to facilitate training our CNN. As with

leech attacks, they are most effective over these long time spans. The heat map

representation is also robust in that since the values are normalised, DoWNet is

trained to recognise patterns rather than suspicious values. This would be the
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Fig. 6.10 Prediction value of each class over 24 hours in control runs

Fig. 6.11 Resulting heat map after the 24 hour attack scenario. Note: 1.0/1.00 is
how Tensorflow represents 100% when displaying results from classification.

case if we treated the requests individually. Reoccurring IP addresses could be

easily detected via ML using a clustering algorithm. However, this would not be
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Fig. 6.12 Prediction value of each class for 24 hours in attack scenario

a robust system for further attack detection as it could lead to blacklisting entire

regions from access to an application.

Our proposed detection system using DoWNet is successful in providing early

warning to an application owner. It is also lightweight in that it is only ever

analysing one image. Since that one image is continuously updated, there is no

need for storage of multiple heat maps.

6.5.2 Effective Use of DoWNet

DoWNet need only be used where the pixel streaming analysis takes place. We

recommend that it be deployed also in a serverless function to be executed every

hour. It may gather request traffic data via the serverless platform’s inbuilt accessor

functions. However, in order to avoid vendor lock-in, a small helper script can

be appended to each function in the application that will update a document

containing the number of invocations of the functions. This document should

then be accessible to the pixel streaming code. We advocate for the deployment

of DoWNet on a serverless function operating within the existing application’s

serverless infrastructure rather than centralising the detection within the firewall

offering of the cloud provider. We believe in security driven development, where

developers should be coding with security in mind. By providing an open source

Python package that is easy to deploy, we are putting the power in the hands of

the developer allowing them to be in control of their security without the need

to enlist third party services for scrubbing of traffic, storing data etc. This is

especially important as serverless computing becomes increasingly popular and

is adopted by solo-operator developers as the paradigm of choice when creating

their products. A free to use open source package will serve these budget conscious

users to secure their functions. DoWNet is a detection system for early warning
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of potential attacks. Its value is that it provides objective interpretation of the

traffic to the application owner to avoid cases where they may have been fooled

into thinking the traffic is normal or are not monitoring it rigorously enough.

A detection from DoWNet should be followed up with appropriate mitigation

depending on the serverless platform in operation and the requirements of the

application owner. Mitigation can vary from shutting the functions down to wide-

scale IP address blocking. The former, however, is effectively DoS, and the latter

may be difficult if a large botnet with changing IP addresses is being used.

6.6 Summary

In summary, we have applied the novel method of representing request traffic as

heat maps for training a DoW classification algorithm. This method overcomes the

hurdles obstructing the application of ML to DoW detection that are, enormous

volumes of data and difficulty in distinguishing individual requests as malicious

or benign. The CNN we trained for the purpose of DoW classification, DoWNet,

achieved consistent results in detecting hypothetical attacks proposed [129], with

accuracy, F1 score, precision, and recall of approximately 97%. As such, we an-

swered RQ3 “Can an attack that so closely mimics regular traffic be detected and

mitigated against?”. This model was then successfully applied to a system that

streams incoming request traffic numbers for the re-drawing of heat maps with

respect to historical values. These heat maps undergo analysis by DoWNet which

will report on the status of the traffic at a given hour to serve as an objective early

warning system for application owners. This system was then shown to be capable

of being deployed within a serverless function. This lowers the barrier of difficulty

in implementing such a detection system on an existing application as it would

not require any adaption of existing functions.
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CHAPTER 7

Conclusion

This chapter concludes the work presented with a summary of the main contri-

butions and further discussions on the impact, limitations, and potential future

work arising from this thesis.

7.1 Summary of Research Contributions

In summary the main contributions of this thesis are as follows:

7.1.1 Formal Definition and Analysis of DoW

As stated throughout Chapter 3, prior to our publication on DoW there was no

formal discussion on DoW in the academic literature, discourse was limited to

blogs and technology forums. By providing a formal definition we have opened

the subject to the wider academic community and have seen interest in the topic

rise through mainstream media [56] and research papers directly citing our work

as the de facto definition of the attack [58, 57].

Beyond the definition, we also provided the most in depth analysis of theoreti-

cal damage potential on the three largest serverless platforms. We also theorise a

new vector of attack we term a leech attack, which we believe is a true threat to
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serverless applications. This work addresses RQ1 and confirms our first hypoth-

esis. We hope this discussion on DoW will encourage developers to be actively

aware of the threat and attempt to mitigate against it.

7.1.2 Creation of a System that Addresses the Lack of Data for

Expanded Research

This research has been an opportunity for the preemptive analysis of a looming

cyber threat. To this end, expanded research on the topic requires the use of

synthetic datasets. Our system, DoWTS, presented in Chapter 5, solves that issue.

Our heuristic for modelling normal traffic data serves as a good baseline for any

future research on advanced attack strategies until such time that historical traffic

logs are available. The creation of DoWTS confirms our second hypothesis and

answers RQ2.

Also in Chapter 5, we describe how an isolated analogue of a commercial

platform can be devised for testing of attack vectors and deployable mitigation

solutions. This system is invaluable for further research without the need to inflict

real financial damage on oneself.

7.1.3 Development of a Novel Means of Attack Detection with a

Proposed Deployment Method

The final major contribution of this thesis is the culmination of all the prior work to

the development of a proposed mitigation approach to DoW. This system blends

the realms of cyber security with machine learning through a novel approach

to attack visualisation. The use of image representations of application traffic

allowed for the training of DoWNet, a CNN that can distinguish between expected

normal traffic and three early hypothesised attack vectors of DoW. This detection

system addresses the concerns raised in our definition of DoW of the new vector

of attack, the leech attack. We believe this is incredibly important as it is a first

solution to this unknown threat. DoWTS affirms RQ3 and confirms our third and

final hypothesis.

This model can be deployed to a serverless function that sits within the ap-

plication structure, requiring little processing or cost overhead to provide vastly

improved protection.
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7.2 Limitations

Despite the contributions outlined above, this work does have limitations, as

outlined below:

7.2.1 Synthetic Data Robustness

The presented system for generating synthetic usage traffic, DoWTS, utilises a

heuristic for best approximation of traffic loads over a 24 hour period given a

known rough usage base. The heuristic is based on examples of traffic to real

ecommerce websites, where there were clear trends in usage, with dips at night

and peaks during the day. We concluded that our synthetic data closely follows this

example data. However, the load patterns DoWTS replicates are not conducive of

an exhaustive sample of normal traffic. Therefore, in the training of DoWNet, we

are aware that its classification of normal traffic may not be sufficient.

We believe that DoWTS provides a perfectly usable dataset for development of

mitigation strategies. However, in order to create more robust classifiers, reliance

on said synthetic data is not ideal. Instead, a wider sample of example data of

normal traffic patterns is required. Upon which the use of more complex forms of

synthetic data generation such as the previously discussed GAN and VAE should

be considered.

7.2.2 Willingness of Data Sharing

Building on the previous limitation, datasets of normal usage on a serverless

application and suspected DoW attacks are required for further research. Normal

usage data may become more available over time, just as there are traffic logs of

traditional web applications.

However, the biggest hurdle in terms of data acquisition will be recordings of

suspected attacks. Unlike DoS where customers are impacted by the attack and

therefore a statement must be made by the service owner, DoW only affects the

owner. As such there would be no requirement to publicly disclose that they were

a victim as this may make investors and other stakeholders uneasy. Data would

need to be willingly published for the research community in a selfless pursuit of

furthering knowledge on the subject.
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7.2.3 Feasibility of Attack

The greatest limitation of this research is the double edged nature of what makes

it unique. By being a preemptive analysis of an unrealised attack, it brings into

question the viability of the attack entirely. This research has categorically proven

that the attack is possible and is indeed a threat to serverless computing if it is

executed correctly. However, with a lack of historical examples, the feasibility of

the attack comes into play. We are of the opinion that regardless of this limitation,

research on the topic should be conducted so that if the attack is realised, there is

a body of work to fall back on when devising means of defence. We have outlined

potential motivations to conduct DoW and rudimentary attack vectors that bad

actors may utilise. Also, it is important to look at existing attack types like DDoS.

While no one has publicly admitted to performing a DDoS attack on serverless

functions to cause a DoW, it is entirely feasible to have happened. Until there is

a major occurrence made public, this limitation will remain at the forefront of

future researchers minds.

7.3 Future Work

Following from the investigations in this thesis, there are a number of promising

avenues for future research:

7.3.1 The Future of Denial of Wallet

The initial investigation into DoW presented in the thesis serves as the starting

point of continued research on the attack. We have covered the basics of how it

may manifest itself and a first proposal of how to address it. However, as we have

alluded to in Chapter 3 when defining DoW, this research focused on serverless

function abuse only. Many aspects of cloud computing are moving to a pay-per-

invocation pricing model. Therefore, there is an ever increasing number of attack

surfaces for DoW to hit. We believe the future of DoW research should build on

our specific serverless model and begin to encompass protection for these other

services.

The means of attack should also be expanded beyond HTTP trigger abuse.

Work has already begun on other vectors of attack [58], and until attacks begin
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appearing in the wild, researchers must put on their black hats and theorise how

pay-per-use systems could be abused in order to preemptively protect them.

Continued research will need to migrate to actual deployments of applications.

Our isolated zone for testing serves as a great starting point for mitigation system

validation. However, before any product of research is accepted for use in the field,

it will need to prove itself on commercial platforms. To this end, collaboration

with the commercial platforms is imperative so that the financial damage caused

through testing is not a factor that would cause research teams to avoid this area.

Finally, the issue of data acquisition must be addressed. If there are suspected

attacks taking place they must be reported. Whether an anonymous means of

reporting is required or collaboration with large companies utilising serverless

computing needs to be setup, somehow the veil must be lifted on DoW in order

for the research community to properly tackle the attack.

7.3.2 Image Processing and Classification in Cybersecurity

This research, along with the related work presented in Chapter 2, has shown that

image classifiers are a powerful tool for cyber threat detection. A great deal of

information can be conveyed within an image and given the current spike in the

effectiveness of image classification algorithms (as demonstrated by the ILSVRC),

this method of threat detection shows strong promise.

Image classification proved especially powerful in our use case as we were

translating log files that would total over 20GB in size to images that are barely

over a kilobyte. This drastically more efficient means of storing information would

prove useful for analysis of other attacks, especially those that execute over long

time spans. It may also prove effective in related fields such as bot detection, click

fraud and espionage detection with potential additions to the image generation

process such as Gramian angular field generation [140].

As image recognition packages become more streamlined, it brings with it the

possibility of utilising image classification cyber threat detectors in low processing

power deployments, such as serverless functions. This may be an avenue that

could disrupt the current cyber security market where clients are reliant on out-

sourcing their data to an external service for processing, rather than running their

security solution on their hardware or cloud.
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7.3.3 Beyond Computer Science

Our research is primarily focused on the technical side of DoW, both in its execu-

tion and damage it may cause. We alluded to potential motivations for conducting

such an attack and theoretical ramifications for the damage it can cause. However,

this topic may go beyond the remit of computer science.

From a psychology point of view, further research may be conducted on:

• The mindset of an application owner in distinguishing between an attack

or natural growth of traffic. At what point does doubt set in? Are there

governing factors in how a victim can be fooled into believing a spike in

traffic is legitimate?

• Continued discussion on the motivation behind such an attack.

• How can an attacker use the psychology of the victim to better design attack

vectors that maximise damage?

From a business and economics perspective, further research on the ramifica-

tions of DoW attacks of varying success on a business would add to discussion on

this topic. We have demonstrated the immediate damage of DoW, though there is

certainly more at stake when finances are involved.

7.4 Final Remarks

As serverless computing and other pay-per-invocation services become the norm

in application development, the DoW attack may become more and more in-

evitable. The community has been slow to accept this either because it was

assumed traditional mitigation methods for similar attacks such as DoS were

enough, or they simply believe it is an operational cost. However, this thesis has

demonstrated that there is more to DoW than initially thought, and by bringing

it into the academic community we hope it will serve as a starting point for any

future research on the topic.
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APPENDIX A

DoWTS Normal Traffic Synthesis

A.1 Methodology

Baseline traffic is generated by a random number generator using a Poisson distri-

bution, where the users per time step value is used as lambda in equation A.1. The

resulting traffic is noisy and random about that value (Figure A.2).

P (x) = e−λλx

x!
(A.1)

Through visual analysis of the e-commerce datasets’ number of requests per

hour over the course of a month long period, we observed a number of patterns in

the data (Figure A.1). Firstly, there appeared to be fluctuations in traffic amounts

roughly every seven days. We can infer that this corresponds to increased traffic

on weekends. To achieve this fluctuation, a sinusoidal pattern with a period of

seven days was added to the Poisson distribution traffic (Figure A.3). This subtly

causes the traffic to oscillate.

The next pattern we observed was obvious dips in traffic during late night

hours. Again, a sinusoidal pattern was added to the traffic timings in order to

achieve stark fluctuations in day/night traffic (Figure A.4).
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A.1 Methodology

Fig. A.1 Visual analysis of sample data highlighting characteristics replicated by
DoWTS.

Fig. A.2 Baseline traffic generated by Poisson distribution

Fig. A.3 Addition of sinusoidal pattern to represent increased traffic around a
weekend

Fig. A.4 The addition of a sinusoidal pattern to represent decreased traffic at night
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A.1 Methodology

Fig. A.5 Clipping peaks and adding noise for daytime traffic

Fig. A.6 Adding noise to night traffic

Fig. A.7 Amplifying traffic outside late-night traffic

Daytime traffic did not follow the regular repeating values of a sine wave in

the e-commerce data. We observed clipping of the peaks and the traffic at that

clipping threshold was noisy. We synthesise this behaviour by setting the traffic to

another randomly generated number based on a Poisson distribution when the

ratio of pre-augmented traffic to augmented traffic (that is, traffic before and after

the day/night sine augmentation) is less than 2 (Figure A.5).

Similarly, to reduce traffic that followed a perfect sine wave, minor noise was

introduced to the troughs of the wave (Figure A.6).

The final observation of our graphical analysis of the ecommerce datasets was

that there was less downtime than up time in the traffic, i.e. the peaks are wider

than the troughs. By amplifying the traffic between the zones of clipping the peaks

and adding noise to the troughs, the effect can be achieved (Figure A.7).
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A.1 Methodology

Fig. A.8 Smoothing traffic

Finally, a smoothing algorithm was applied that interpolates the distance

between subsequent values should the difference between them be too much.

This is required to avoid overly jagged traffic (Figure A.8).
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