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A B S T R AC T

Artificial intelligence and Natural Language Processing (NLP) are becoming integral parts of modern tech-
nologies and amenities starting from the adaptation of Amazon Alexa to automatic chatbots in different
industries. Though earlier NLP algorithms were developed mainly for tasks in the English language, re-
searchers have taken a step to adapt these to different languages around the globe. Despite many advance-
ments in the NLP domain, these algorithms have quite poor performance in low-resource scenarios. The
state-of-the-art multilingual language models suffer due to a lack of high-quality annotated training datasets
for low-resource languages and applications. Therefore there is a need of designing efficient automatic NLP
systems for low-resource languages and applications to achieve state-of-the-art performances on the down-
stream NLP tasks.

In this thesis, we introduce novel state-of-the-art deep models which capture global and contextual
semantic representations of sentences in a document. We focus on building unsupervised deep models to
efficiently exploit the existing unlabelled datasets for feature extraction. Our contribution also includes
designing state-of-the-art unsupervised sentence embedding models capable of performing a wide range of
cross-lingual tasks for low-resource scenarios. We raise several research questions at the start of the thesis
and we provide answers supported by state-of-the-art experimental results.

While training deep representation models for low-resource languages, one of the key challenges was
to recognize the closely-related languages in a code-mixed corpus having short texts in the NLP pipeline.
Existing language identification models support a limited set of languages thus we have come up with a
novel idea of building an unsupervised language identification system by capturing the global sentence
representations of the languages. Our experimental results highlight the efficiency of the framework across
different language families including a challenging task, dialect identification. We then turn our interest
to explore the capacity of building a cross-lingual contextual sentence embedding framework to be trained
on non-parallel sentences. To this extent, we designed an unsupervised sentence embedding framework
trained using a dual-encoder architecture in a multitask setup. During training, we also inject the word-
level semantic knowledge to preserve the relative semantic distance between input sentences. We propose
to train this model using a new machine-learning framework called the anchor-learner framework. During
evaluations, on a few benchmark experiments, the unsupervised model has outperformed some of the state-
of-the-art supervised sentence embedding models. While we can capture better cross-lingual contextual
sentence representations, there is still a big performance gap for the natural language understanding tasks
in comparison with the large language models. By our novel, unsupervised projection methodology of
embedding space, the sentence embedding models learn the semantic understanding of a big language
model with fewer structural parameters. This produces rich semantic sentence embedding, which in a low-
resource domain and applications, produces better results for the classification of NLP tasks. Finally, we
worked on improving the sentence embeddings for closely-related languages by injecting the knowledge
of cognates. One of the hard tasks is to identify cognates. For low-resource languages it is very hard to
get annotated cognate pairs, thus we proposed a novel unsupervised cognate detection framework which
exploits the grammatical and structural knowledge of the words of a language to be transferred to closely-
related languages of the same language family. The introduction of these cognates to sentence embedding
frameworks during training enhanced the efficacy of the models in cross-lingual tasks.
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Our contribution also includes the introduction of several unsupervised loss functions that can be applied
to different NLP domains and tasks. The methods and frameworks that are developed in this thesis can be
implemented to a wide range of low-resource languages and applications with minimum training datasets
required.
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1 I N T R O D U C T I O N

Natural Language Processing (NLP) has transformed the field of Artificial Intelligence (AI) with the abil-
ity to understand and communicate in human languages. Language understanding is a very complicated
task as there are more than 7000 languages (Abney & Bird, 2010; Hauksdóttir, 2014) in the world and
each language has its own semantic and syntactic structures. With the introduction of deep learning us-
ing high quality annotated training datasets immense developments happened in the field of NLP starting
from enhancing the efficiency of Part-Of-Speech (POS) taggers (Kanakaraddi & Nandyal, 2018) to build-
ing well-established chatbot systems (Caldarini et al., 2022). Intelligent NLP systems are also playing
key roles while it comes down to the development of under-resourced languages in the modern technology
driven world (Cunliffe et al., 2022).

Designing and developing high-quality NLP systems requires lots of high-quality annotated training
datasets or corpora along with high-end computing resources. To design the most accurate automatic NLP
systems for different complex languages, linguistic expertise is needed (Meurers, 2021). For example,
while building automatic machine translation systems for morphologically rich languages, grammatical
knowledge of the source and target languages has become a must skill to have (Bisk & Tran, 2018). State-
of-the-art large language models are often seen to produce enhanced performances on different NLP tasks.
Reimers and Gurevych, 2020 proposed a state-of-the-art supervised sentence embedding model capable of
identifying efficient parallel sentences between two corpora. State-of-the-art multilingual language model
XLM-R (Conneau et al., 2020) has high efficacy for different downstream token classification tasks includ-
ing named-entity recognition. These systems need very high-quality massive corpora to be trained. This
highlights the fact that NLP systems are dependent on good quality and amount of training datasets.

Accumulation of high quality training resources to train NLP systems is very expensive and time con-
suming. Annotation requires releasing refined annotator guidelines, choosing high knowledgeable annota-
tors of the specific fields, and managing them to produce and test resources within specific times (Tauch-
mann, 2021). Recently there are tools to do crowd sourcing annotations like Amazon Mechanical Turk
(MTurk) (Crowston, 2012), but these are quite expensive to be used for a small scale organisations. On
the other hand, since it is very expensive and challenging to get high quality annotated texts to train a
NLP systems, the state-of-the-art high performing NLP systems are very much restricted to “high-resource”
languages (e.g., English, Spanish, Chinese etc.) or scenarios (e.g., movie domain, internal product review
domain, classification tasks on big training datasets including news articles etc.). As a result, designing
NLP systems for “under-resource languages” or “low-resource applications” is quite challenging.

Most of the state-of-the-art NLP systems for downstream NLP applications are supervised models which
means they rely heavily on high-quality annotated training data or massive training corpus. Thus these sys-
tems are not quite efficient when it comes down to “low-resource” NLP systems. Inspite of the existence
of 7000 languages in the world, only a small fraction of these languages (roughly 20) are considered as
“high-resource” languages (Baumann & Pierrehumbert, 2014). Recently researchers have tried to extend
the usability of NLP systems to be adopted widely by the “low-resource” community (Hedderich et al.,
2021). For example Cardenas et al., 2019 proposed an unsupervised parts-of-speech tagging system which

1
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achieved high performance for different low-resource languages. Kakwani et al., 2020 designed IndicNLP-

Suite trained on ALBERT language model to achieve comparable results for different downstream NLP tasks
for Indian languages. Despite the fact that many languages like Bengali, Assamese, Bhojpuri, Vietnamese
are widely spoken by millions of people on the web, digitization of these languages is quite low which
demands the need of better adaptability of NLP systems around the globe. Knowledge based systems such
as knowledge graphs (either domain specific or language specific) (Abu-Salih, 2021; Sharma et al., 2019),
wordnets (Bosch & Griesel, 2018; Kanojia et al., 2018; Rahit et al., 2018), dictionaries (Mati et al., 2021)
are becoming very rich resources for building low-resource NLP applications. It is established that getting
information or lexical content about a language is comparatively easy using dictionaries and thus it can be
used as a resource to train NLP models (Duan et al., 2020; Mikolov et al., 2013b). Many researchers are
trying to build rich resources by creating dictionaries or wordnets for these low-resource languages (Bosch
& Griesel, 2018; Kanojia et al., 2018). But creating these link-based resources can be very tedious work and
most often it needs domain or linguistic expertise. One the other hand, one of the prime examples of open
source resource creation is Wiktionary1. It is a widely used open source resource. Recently researchers
used the Wiktionary resources to train models for different NLP applications (Segonne et al., 2019). These
resources of Wiktionary help to construct unlabelled corpora. For most of the low-resourced languages or
domains, unlabelled corpora can be collected using some web-based scraping tools. Many such resources
can be found in social media posts or in reviews posted by customers (Chakravarthi et al., 2020b). Around
the globe, official documents of countries can also be found documented in their own languages which
are great multilingual resources to train distributional models (Koehn, 2005). The sentence structures of
these documents convey lots of structural and semantic information. Thus injecting the sentence represen-
tations of the document can be helpful while designing NLP systems for the languages or resources where
annotated data is not found.

1.1 M OT I VAT I O N A N D A I M

1.1.1 Motivation behind Deep Representation Learning

Capturing an efficient document representation includes understanding the underlying semantic informa-
tion about the language or the domain. Recently document representation has been explored for different
NLP applications starting from information retrieval (H. Tang et al., 2021) to designing question-answering
(Zayats et al., 2021) systems. Traditionally documents are represented using one-hot word vectors present
in the vocabulary set (Xu & Rudnicky, 2000). But this methodology has major disadvantages. It does
not consider the word order in a sentence or paragraph to be encoded and suffers from data sparsity and
high dimensionality. Moreover, the semantic relatedness between the words or sentences is not preserved.
Later, deep model based distributed representation learning learns (refer to Section 2.3.2) the word level
semantics, thus encoding the documents becomes more meaningfully. Deep learning systems overcome
the issue of curse of dimensionality by mapping the objects to low-dimensional vectors as dense represen-
tations of the inputs. The learning of these systems is hierarchical in nature (Z. Liu et al., 2020) and the
non-linear mapping through the deep layers captures the structural and semantic representation of the inputs.
Mostly, modern deep representation based systems are designed to capture the context of the word based
on the surroundings as vector based systems (Turney & Pantel, 2010). These are known as embeddings.
Popular neural word embedding techniques (Mikolov et al., 2013b; Pennington et al., 2014) preserve the

1 https://hi.wiktionary.org/wiki/Hindi – The Hindi Wiktionary

https://hi.wiktionary.org/wiki/Hindi
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semantic relation and information about entities (Goldberg, 2017). These systems have been shown to cap-
ture the word analogy on different hierarchy providing word level semantics for different NLP applications
(Mikolov et al., 2013c). Later, transformer (Vaswani et al., 2017a) based large language models like BERT

(Devlin et al., 2019) were developed that learn the positional and contextual representation of the words
and capture the syntactic regularities as well as semantic relatedness. Researchers have tried to encode
paragraphs of a document via deep neural network systems (D. Wang et al., 2020; Q. Xie et al., 2021), but
the word-level encoding process of these paragraphs are less efficient for complex NLP applications. In
fact, Prasad et al., 2019 studied the ability of these language models to preserve the syntactic regularities on
the sentence level rather than word level. Reimers and Gurevych, 2020 also highlighted that the sentence
representations of these language models are more efficient for mapping the cross-lingual documents in the
same vector space. But, this system does not perform well for low-resourced languages. Conneau et al.,
2020 highlighted the absence of efficient training datasets for most of the low-resource languages and thus
an unsupervised or semi-supervised training methodology has to be adopted. Thus the open question is
what are the best possible ways to design unsupervised frameworks? In this thesis I dive deeper into the
design of unsupervised deep neural systems, which can efficiently capture the sentence representations of
the documents in low-resourced languages.

1.1.2 Aim of the Thesis

I aim to build novel deep learning frameworks for low-resource languages or other low-resource NLP ap-
plications. As we discussed, recently NLP has progressed quite rapidly and quite efficient systems are
designed, though these systems are mainly designed for high-resourced languages like English, Spanish,
Chinese etc. For these languages there exist efficient processing tools for the downstream tasks like part-
of-speech tagging, machine translation, named-entity recognition, word-segmentation, natural language
generation, word sense disambiguation, and natural language understanding tasks. These tools are being
developed based on better adaptability of syntactic or semantic features of the individual languages. Most
of these tools are designed based on annotated data or with the help of linguists. When it comes to low-
resourced languages for different language families, it is not practical to hire linguists for every task. On the
other hand, even for high-resource languages, short text classification across diverse domains and applica-
tions in low-resourced scenarios still have quite poor performance using base language models. Large lan-
guage models like XLM-R-large (Conneau et al., 2020) currently provide state-of-the-art results on several
benchmark tasks, but involve an architecture with a staggering 550 million parameters. Adapting such large
multi-lingual language models to classification tasks requires appropriate fine-tuning. The requirement of
sufficient annotated training data to properly tune such models further complicates their deployment in the
production pipeline. Thus, our decision of designing efficient multilingual unsupervised deep neural sys-
tems can be the solution to tackle these problems by exploiting the existing unlabeled data and produce
better downstream tasks.

In this thesis, we aim to work on two main tasks for cross-lingual representation learning

● Unsupervised Cross-lingual Sentence Representation Learning: For most of the downstream
cross-lingual tasks like parallel sentence matching tasks, understanding the contextual and semantic
representations of the cross-lingual sentences is important. Existing cross-lingual sentence embed-
dings (Hirota et al., 2020; Reimers & Gurevych, 2020) are trained to map contextual embeddings in
the shared vector space based on parallel sentences, which is a hard task for low-resource languages.
Thus to tackle this problem, we aim to design a novel unsupervised sentence embedding framework
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trained with no parallel training dataset. Our goal is to capture the semantic relatedness between the
source and target sentence pairs by utilizing the semantic knowledge of the contextual words as a
knowledge injector. Being fully unsupervised the applicability of the sentence embedding framework
increases for diverse low-resource languages of different language families. Though the cross-lingual
sentence embedding frameworks achieve state-of-the-result in different cross-lingual tasks, there is a
big difference in performance between large language models and the sentence embedding methods
for natural language understanding tasks. Thus, state-of-the-art methodologies include fine-tuning
the large language models on downstream tasks. But for low-resource NLP applications, the large
language models are hard to be fine-tuned due to a lack of annotated datasets and parameter tuning.
We claim that by injecting the knowledge of the contextual word embeddings of the large language
models into the sentence embedding model in an unsupervised way the performance of the sentence
embedding model can be improved. When it comes to learning contextual unsupervised cross-lingual
sentence embeddings, collecting and building a cross-lingual dataset for low-resourced languages is
itself a challenging task. Conneau et al., 2020 highlighted the challenges while collecting datasets
for most of the low-resource languages and the need of identifying these languages using a language
identification tool. Chakravarthi et al., 2020b designed a corpus for Dravidian languages scraping
user comments from social media site YouTube. An open sourced twitter-scraper like APIFY2 can
scrape the tweets and build a multilingual corpus. But these corpora are inter-sententially code-mixed
and identifying languages is the primary step before training embedding models. Existing language
identification tools like FastText Language Identifier3 cover limited languages. The task becomes
harder for closely-related languages due to orthographic and syntactic similarities. We argue that un-
derstanding the global representation of sentences provides a better understanding of these languages.
Thus, we aim to learn the sentence representations of a language in an unsupervised way and cluster
them.

● Enhancing Sentence Representations for Closely-related Languages: In this task, we aim to im-
prove the efficiency of sentence embedding frameworks for low-resourced closely related languages.
We aim to exploit the similarities between words of the low-resourced closely-related languages.
Words with similar meanings and spellings (cognates) often convey the similar contextual informa-
tion of cross-lingual sentences (Fourrier & Montariol, 2022). Thus we claim that cognate pairs can
help to improve the semantic understanding of the sentences between two closely-related languages.
But identifying cognates itself is a very hard task for low-resource languages due to the lack of an-
notated cognate datasets. Thus, we investigate the possibility of building an unsupervised cognate
detection system and whether these cognates enhance the performance of the cross-lingual sentence
embedding frameworks. To this end, we use the grammatical and structural knowledge of the words
to capture the similarity between closely-related languages.

1.2 R E S E A R C H Q U E S T I O N S

Designing efficient NLP systems for low-resource languages or scenarios is an active area of research in
the community. As we discussed, we aim for unsupervised deep sentence representation learning to over-
come the problem of lack of annotated training datasets. However, the performance of the state-of-the-art
unsupervised methods drops with respect to the supervised models for different downstream NLP tasks.

2 https://apify.com/vdrmota/twitter-scraper#what-data-can-twitter-scraper-extract
3 https://fasttext.cc/docs/en/language-identification.html

https://apify.com/vdrmota/twitter-scraper##what-data-can-twitter-scraper-extract
https://fasttext.cc/docs/en/language-identification.html
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Early research on unsupervised representation learning of sentence or word level constructions involved
much user interventions for feature selection which confined the implementation of these methods in wider
scenarios. In this thesis, I tried to investigate how unsupervised representation learning can be designed ef-
ficiently using novel deep learning algorithms. These algorithms will capture language features of different
language families to produce better results for downstream tasks. The research questions are framed to solve
the above tasks by first identifying languages of a document followed by understanding the structures and
contexts of sentences in the document to capture global and local semantic and syntactic representations.

The research questions are:

● RQ1. Is an unsupervised deep sentence embedding framework capable of identifying languages as
accurately as supervised language identification models for code-mixed under-resourced and closely-
related languages?

● RQ2. Does an unsupervised deep sentence embedding framework generate efficient sentence embed-
dings in cross-lingual domains for under-resourced languages without the use of parallel corpora for
downstream natural language tasks? Does unsupervised projection of efficient word representations
improve sentence embeddings in cross-lingual domains?

● RQ3. Does effective cross-lingual word representations learning improve unsupervised cognate de-
tection without any language information for closely related and low-resourced languages? Having
detected cognates, does this assist in producing better sentence embeddings for NLP applications?

These research questions are arranged to address different research challenges while learning the seman-
tic representation of the cross-lingual sentences efficiently. Generally speaking, the first research question
is concerned with identifying the languages or dialects in an inter-sentential code-mixed corpus capturing
global representations of the sentences. The answer to the second research question produces a novel un-
supervised sentence embedding framework which captures the contextual semantic representation of the
cross-lingual sentences without the need for parallel corpora. Thus it opens up the applicability of this
framework to a wide range of language families including different under-resourced languages. Moreover,
through this research question, we find a novel solution for capturing sentence representations for low-
resourced natural language processing applications. While we work on capturing the representation of the
sentences, we argue that for closely-related languages better understanding of similar words can improve the
performance of the cross-lingual sentence embedding models. So, we structure the third research question
aiming to find an answer to how to efficiently find words with similar meaning of two closely-related lan-
guages and whether these word representations improve the cross-lingual sentence embedding performance
for the downstream tasks.

1.3 C O N T R I B U T I O N S O F T H E T H E S I S

During my research, I have proposed novel deep learning algorithms for each task which cover the pro-
posed research questions. The algorithms mainly exploit the domain of unsupervised machine learning
algorithms. The research contributions span from designing new encoding methods to new loss function
for backpropagation during unsupervised training. The summary of contributions for the research questions
are documented below.
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1.3.1 Unsupervised Language and Dialect Identification

RQ1. Is an unsupervised deep sentence embedding framework capable of identifying languages as ac-
curately as supervised language identification models for code-mixed under-resourced and closely-related
languages?

Automatic Language Identification (LI) or Dialect Identification (DI) of short texts of closely related
languages or dialects, is one of the primary steps in many natural language processing pipelines and is part
of tasks such as language modelling, categorization and analysis of these code-mixed datasets. Language
identification is considered a solved task in many cases; however, in the case of very closely related lan-
guages, or in an unsupervised scenario (where the languages are not known in advance), performance is
still poor. Traditionally the LI methods are explored in monolingual documents (Hughes et al., 2006a). In
supervised monolingual settings, there are some efficient document based LI methods available (McNamee,
2005). But to train these models a large amount of annotated datasets is required and these methods are still
very much confined to the large documents sets and high-resource languages. Later researchers started to
explore the multilingual document sets where language and dialect identification is a quite hard task to be
solved. Martins and Silva, 2005 have worked on the language identification of web page contents. Linguini

(Prager, 2000) is one of the famous LI methods for multilingual documents. In relation to this, we have dis-
cussed attempts researchers made for the LI and DI for code-mixed documents which are quite inefficient
for low-resource languages. In chapter 4, we propose the Unsupervised Deep Language and Dialect Iden-
tification (UDLDI) method, which can simultaneously learn sentence embeddings and cluster assignments
from short texts. The UDLDI model understands the sentence constructions of languages by applying at-
tention to character relations which helps to optimize the clustering of languages. We have performed our
experiments on three short-text datasets for different language families, each consisting of closely related
languages or dialects, with very minimal training sets. Our experimental evaluations on these datasets have
shown significant improvement over state-of-the-art unsupervised methods and our model has outperformed
state-of-the-art LI and DI systems in supervised settings.

Publications: Research Question 1

● Goswami, Koustava, et al. "Unsupervised deep language and dialect identification for short texts."
Proceedings of the 28th International Conference on Computational Linguistics. 2020.

1.3.2 Sentence Representation Learning

RQ2. Does an unsupervised deep sentence embedding framework generate efficient sentence embeddings
in cross-lingual domains without the use of parallel corpora for downstream natural language tasks? Does
unsupervised projection of efficient word representations improve sentence embeddings in cross-lingual
domains?

Multilingual sentence embeddings capture rich semantic information not only for measuring similarity
between texts but also for catering to a broad range of downstream cross-lingual NLP tasks. State-of-the-art
multilingual sentence embedding models require large parallel corpora to learn efficiently, which confines
the scope of these models. Paragraph vectors were first proposed as sentence embeddings for comput-
ing document similarity (Le & Mikolov, 2014). Capturing document representation based on paragraph
encoding often misses semantic understanding between sentences. Later researchers have proposed multi-
lingual sentence embeddings (Schwenk, 2018; Schwenk & Douze, 2017) to achieve better neural machine
translation in bilingual settings. Recently, multilingual sentence embedding techniques based on parallel
sentences are designed to solve broader NLP tasks (Reimers & Gurevych, 2019). But these systems are
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supervised sentence embedding techniques and are ineffective when it comes to low-resourced languages.
While we have identified the sentences for low-resourced languages on the collected dataset using RQ1, the
sentences can be used to train an efficient sentence embedding model. In Chapter 5 we will introduce a new
unsupervised sentence embedding technique which is very efficient at capturing sentence representation for
low-resource languages. We propose a novel sentence embedding framework based on an unsupervised

loss function for generating effective multilingual sentence embeddings, eliminating the need for parallel
corpora. We capture semantic similarity and relatedness between sentences using a multi-task loss function

for training a dual encoder model mapping different languages onto the same vector space. We demonstrate
the efficacy of an unsupervised as well as a weakly supervised variant of our framework on different down-
stream NLP benchmark datasets including parallel sentence matching and bitext mining. The proposed
unsupervised sentence embedding framework outperforms even supervised state-of-the-art methods for cer-
tain under-resourced languages on the parallel sentence matching benchmark dataset. We also showcase the
capability of capturing sentence representation for monolingual sentences for better semantic understand-
ing. Further, we show enhanced zero-shot learning capabilities for more than 50 languages. This model
can be extended to a wide range of languages from any language family, as it overcomes the requirement of
parallel corpora for training.

While we work on sentence representation learning for low-resource languages another aspect of this
thesis is to build better an algorithm to capture sentence representations for low-resource NLP tasks. With
the advancements of Natural Language Understanding (NLU), diverse industrial applications like user intent
classification, smart chatbots, sentiment analysis and question answering have become a primary paradigm.
Transformers-based multi-lingual language models such as XLM-large (Conneau et al., 2020) have per-
formed significantly well in diverse semantic understanding and classification tasks. However, fine-tuning
such large pre-trained architectures is resource and compute intensive, limiting its wide adoption in enter-
prise environments. We present a novel efficient and light-weight framework based on sentence embeddings
to obtain enhanced multi-lingual text representations for domain-specific NLU applications. Our framework
combines the concepts of up-projection, alignment and meta-embeddings enhancing the textual semantic
similarity knowledge of smaller sentence embedding architectures. Extensive experiments on diverse cross-
lingual classification tasks showcase the proposed framework to be comparable to state-of-the-art large
language models (in mono-lingual and zero-shot settings), even with fewer training and resource require-
ments.

Publications: Research Question 2

● Goswami, Koustava, et al. "ULD@ NUIG at SemEval-2020 Task 9: Generative Morphemes with
an Attention Model for Sentiment Analysis in Code-Mixed Text." Proceedings of the Fourteenth
Workshop on Semantic Evaluation. 2020.

● Goswami, Koustava, et al. "Cross-lingual sentence embedding using multi-task learning." Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.

● Goswami, Koustava, et al. "Mufin: Enriching Semantic Understanding of Sentence Embedding using
Dual Tune Framework." 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021.

1.3.3 Identifying Cognates using Cross-lingual Word Representation Learning

RQ3. Does effective cross-lingual word representations learning improve unsupervised cognate detection
without any language information for closely related and low-resourced languages? Having detected cog-
nates, does this assist in producing better sentence embeddings for NLP applications?
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Each language has their own morphological rules to construct a word. Combination of these mean-
ingful words with the help of different grammatical rules, form a sentence which eventually forms a doc-
ument. Humans understand these word representations to gain knowledge of a language. Therefore bet-
ter word representation learning for language models can lead to a better sentence representation for the
downstream NLP tasks. Multilingual or cross-lingual sentence encoders are being trained on big datasets
consisting of multiple languages. Often these sentences have similar meaningful words called cognates
(Crystal, 2011). Moreover, it is said that most of the bilingual corpora will have cognates (Kondrak et al.,
2003). So, language-agnostic cognate detection is becoming very important for sentence encoder based
cross-lingual text understanding discussed in RQ2. It helps to improve unsupervised machine translation,
named entity recognition and information retrieval. Previous approaches mainly focused on supervised cog-
nate detection tasks based on orthographic, phonetic or state-of-the-art contextual language models, which
underperformed for most under-resourced languages. In Chapter 6, we propose a novel language-agnostic
unsupervised deep cognate detection framework for under-resourced languages using morphological knowl-
edge from closely related languages. We train an encoder to gain morphological knowledge of a language
and transfer the knowledge to perform unsupervised cognate detection tasks with and without the pivot lan-
guage for the closely-related languages. Being fully unsupervised, it overcomes the need for hand-crafted
annotation of “cognates”. We performed our experiments on different published cognate detection datasets
across language families and observed significant improvement over the state-of-the-art supervised and
unsupervised methods.

Publications: Research Question 3

● Goswami, Koustava, et al. "Unsupervised Deep Cognate Detection Framework for Low-Resourced
Languages Using Morphological Knowledge of Closely-Related Languages." Submitted and under
review.

1.4 O U T L I N E

In this thesis, we aim to capture efficient sentence representations of a document in an unsupervised way
for low-resource languages and applications. We started by capturing the global sentence structural repre-
sentations to identify languages in a code-mixed corpus. We then aim to capture the efficient contextual
sentence representations in an unsupervised way which is followed by improving these representations for
closely-related languages by learning word representations of similar words in a cross-lingual document.
This comprises seven chapters including the introduction chapter where we introduce the motivation behind
our work in this thesis.

In Chapter 2 we study the background behind low-resource languages and applications as well as the
basic introduction of the generic machine learning and deep learning methodologies. We also provide a
brief study of existing works on representation learning from document level to word level. In the end, we
highlight the key transfer learning concepts used in different novel deep learning algorithms designed in
this thesis.

In Chapter 3, we study the existing works related to the tasks we worked on in this thesis. We started with
a detailed study on language identification and dialect identification tasks using different neural and classic
algorithms. Then we studied the existing supervised and unsupervised sentence embedding frameworks.
We have given an overview of how these models are trained and how they are semantically different from



1.5 P U B L I C AT I O N S 9

other models. At the end of the chapter, we study how existing works study the word-pair relations to
identify cognates which can potentially be used in the different downstream tasks.

In Chapter 4, we introduce a new unsupervised language and dialect identification model capable of
clustering sentences according to languages. This framework is designed based on a novel unsupervised
sentence embedding framework which is capable of capturing the global context of the sentences. Our
introduction of a new loss function named Maximum Likelihood Clustering Loss (MLC Loss) helps during
unsupervised representation learning without any prior linguistic information. The identified sentences
for different low-resource languages can be used as a training dataset for the novel unsupervised sentence
embedding framework introduced in Chapter 5.

In Chapter 5, we introduce a novel unsupervised sentence embedding framework capable of getting
trained without any parallel sentences. The newly designed Anchor-learner framework injects word-level
semantic information while mapping semantically similar sentences in the shared multilingual vector space.
We introduced a novel unsupervised loss function which minimises the distance between the semantically
similar sentences between two languages having semantic information of the words using word movers’
distance. We further investigate whether an unsupervised projection of these sentence embeddings to the
larger word vector space can improve the performance of the multilingual natural language understanding
tasks. We justify our claim by producing state-of-the-art results with our newly introduced frameworks on
different downstream tasks. But still, for closely-related low-resource languages, these sentence embed-
dings perform less efficiently due to limited knowledge about the similar words in cross-lingual sentences,
which we address in Chapter 6.

In Chapter 6, we investigate how to identify and learn representations of similar meaningful words for
the closely-related low-resource languages. We claim that these word representations can boost the sentence
embedding performance for different cross-lingual tasks. To design the system, we capture morphology
information of a pivot language and transfer the knowledge to perform unsupervised cognate detection
for closely-related languages of the same language family using shared encoders. We use the MLC loss
introduced in Chapter 4 to cluster the cognates. Our experimental results highlight the efficacy of this
unsupervised framework on different language families. Moreover, this helps to improve the efficiency of
the sentence embedding frameworks on different cross-lingual tasks. At the time of thesis submission, the
work is submitted and under review in ACL Rolling Review system.

Finally, in Chapter 7, we summarize the conclusions of the works and highlight how our contributions
can benefit the low-resource NLP tasks. We also mention some future works related to this thesis.

1.5 P U B L I C AT I O N S

Other publications I published during my PhD tenure:

● Goswami, Koustava, et al. "SwitchPrompt: Learning Domain-Specific Gated Soft Prompts for Clas-
sification in Low-Resource Domains" Submitted and under review.

● Rani, Priya, Shardul Suryawanshi, Koustava Goswami, Bharathi Raja Chakravarthi, Theodorus Fransen,
and John Philip McCrae. "A comparative study of different state-of-the-art hate speech detection
methods in Hindi-English code-mixed data." In Proceedings of the second workshop on trolling,
aggression and cyberbullying, co-located with 12th Edition of Language Resources and Evaluation
Conference, pp. 42-48. 2020.
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● Sarkar, Rajdeep, Koustava Goswami, Mihael Arcan, and John Philip McCrae. "Suggest me a movie
for tonight: Leveraging Knowledge Graphs for Conversational Recommendation." In Proceedings of
the 28th International Conference on Computational Linguistics, pp. 4179-4189. 2020.

● Ojha, Atul Kr, Priya Rani, Koustava Goswami, Bharathi Raja Chakravarthi, and John P. McCrae.
"ULD-NUIG at Social Media Mining for Health Applications (SMM4H) Shared Task 2021." NAACL-
HLT 2021 2021 (2021): 149-152.

● McCrae, John P., Theodorus Fransen, Sina Ahmadi, Paul Buitelaar, and Koustava Goswami. "To-
wards an Integrative Approach for Making Sense Distinctions." Frontiers in Artificial Intelligence
(2022): p.3.



2 B AC K G R O U N D

In this chapter, we will discuss the background information of relevance to the rest of the thesis. The
discussion will include low-resourced languages and applications as well as some details on representation
learning for NLP applications using machine learning and deep learning algorithms.

2.1 L OW- R E S O U R C E N L P

Recently, algorithm developments for low-resource natural language processing have drawn the attention
of the NLP community. In the current era, widely used applications and systems are preferred to be in-
corporated with artificial intelligence-driven bots. Most of these applications require efficient knowledge
of natural language understanding to interact with humans. For example, one of the widely used natural
language applications is a conversational AI system where an agent interacts with humans. State-of-the-art
Amazon Alexa, Google assistant, and Apple Siri are becoming very popular because of their increasing
range of capabilities (Ram et al., 2018). These systems are capable of understanding human instructions
in multiple domains and activities starting from playing music to navigating to a destination address. Over
time, these AI agents are being incorporated into multiple devices which are being used in daily households
globally. But due to limited language understanding of these systems, it is still a quite hard task to reach
different corners of the globe. In fact, in many languages and domains, these systems are very hard to
develop due to a lack of training data.

Abney and Bird, 2010 have highlighted the existence of more than 7000 languages around the globe.
What should be the parameters to describe a language as low-resource is a hard research question itself.
The availability of resources for these languages in different forms can be a parameter to define whether
a language is low-resourced or high-resourced. Most of the NLP applications are driven by popular lan-
guages like English or Chinese. Interestingly some languages do not have resources to be considered at
all. In fact, most of these languages do not have a standard writing system or are not encoded in Unicode
(Maxwell & Hughes, 2006). The US government project LORELEI1 has defined those languages as low-
resource languages which do not have automated human language technology (Duong, 2017). On this note,
languages which do not have adequate support to build an essential natural language processing task can be
called low-resource languages. This includes a syntactically annotated corpus which often is at the heart of
building statistical or classical NLP applications. If we take an example of a popular syntactic annotated cor-
pus like the universal dependency treebank2, it only supports over 100 languages. Thus languages outside
this dataset might be considered low-resourced languages. But this hypothesis might be argued as in recent
times language specific WordNets are introduced. WordNet is a large lexical database of languages grouped
into synsets. Having said that the WordNet development for many different language families is still in a
very elementary stage, they thus cannot contribute to building datasets for every low-resource language.

1 https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
2 https://universaldependencies.org/

11
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Alegria et al., 2011 describe six levels of language typology to develop human language technologies.
These levels are being defined based on the availability of data sources over the internet. The first level
describes the most data-rich languages while the second level consists of the top 10 most used languages.
The third level considers the languages which have some amount of training data whereas the fourth level
talks about languages that consist of lexical resources. The fifth and sixth level describe languages which
do not have digitized datasets or do not have standard writing scripts at all. On this note, Jimerson and
Prud’hommeaux, 2018 considered languages as low-resourced languages which do not have extensive par-
allel corpora in digitized form for their work. According to Berment, 2004, languages which have resources
like tools, and digitized corpora less than a threshold can be considered low-resource languages. But the
concept of digitized resources is very much time-dependent. Because even for a high-resource language
like English, in the domain of automatic hate-speech detection, before the introduction of social media
sites, it was hard to get adequate training datasets. But now, it is quite possible to build these systems
for many languages including English, Chinese, German etc. Cieri et al., 2016 also describe languages as
low-resourced languages which have few computational data sources. So, based on the theories of Berment,
2004 and Alegria et al., 2011 for this thesis we consider languages as low-resourced if there exist a small
amount of parallel corpora and few monolingual computational data resources to train a distributional NLP
system along with the development of very few human language technologies.

While we talk about low-resourced languages, there are multiple domain-based NLP applications which
are low-resourced. Duong, 2017 explained a language can be considered as low-resourced based on differ-
ent existing NLP applications. While this hypothesis can be argued with the introduction of multilingual
language models that maps languages in a shared vector space, in some domains like medical or material
sciences, NLP applications are still explored majorly in English. Haffari et al., 2018 organized a dedicated
workshop where researchers expressed their concerns on multilingual domain adaptability of NLP applica-
tions other than the English language. Most of the multilingual distributional models are quite inefficient
in these domains due to a lack of multilingual training resources even in some high-resource languages.
For example, it is quite challenging to build a material science domain NLP application in Arabic due to
the lack of annotated training datasets available (Almansor et al., 2019). Following these theories, in our
thesis, we have identified applications as low-resource multilingual NLP applications if there are very few
annotated parallel or monolingual training datasets available to train distributional models.

This thesis is about designing novel deep learning algorithms to achieve high performance in different
low-resource scenarios. On this note, instead of concentrating on a particular language family or domain, we
design algorithms which can be deployed to a wide range of low-resource NLP applications and languages.

2.2 M AC H I N E L E A R N I N G

In this section, we will elaborate on the machine learning methodologies. According to Bhavsar et al., 2017,
“Machine learning is a collection of methods that enable computers to automate data-driven model building

and programming through a systematic discovery of statistically significant patterns in the available data”.
In textual NLP, machine learning algorithms are trained to capture the relation between words or sentences.
In recent times, NLP problems are either being tackled with classical machine learning algorithms or using
advanced neural network algorithms called deep learning. Throughout the thesis, we will use different
fundamental aspects of machine learning techniques to build our novel deep learning models. Moreover,
we have also used some classical and statistical machine learning algorithms as baseline models in the
thesis.
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Machine learning algorithms encode the textual or other forms of information as vectors3 x ∈ Rd where
d denotes features of the dataset. In a general setup, the row vectors represent the full information in a
dataset whereas the column vectors denote the features of each information in the dataset. At the time of
training, this information is passed as matrices and is divided into batches4. Machine learning algorithms
are organized in mainly three categories:

● Supervised Learning, is when the desired training dataset consists of both inputs and labels. The
supervised training algorithms demand gold standard labels as classes annotated by annotators. In
this training process, a function is learnt based on the features and annotated classes to predict the
output of an unseen input. The effectiveness of the model is determined by the accuracy of predicting
the output of the new input. These algorithms are mostly probabilistic and the effectiveness depends
on the data distribution of the classes in the training set. In low-resource NLP application training
such supervised algorithms is problematic because of the scarcity of the annotated training datasets
as well as the amount of effort of the annotators needed for the dataset creation. For example, there
exist supervised semantic labelling tasks in English trained on Penn Treebank (Marcus et al., 1993),
but annotation of these 4.5 million tokens required over 3 years. Moreover, for many low-resourced
languages collecting and building such a tree-bank is a quite hard task to complete. On this note, in
Chapter 5, we observed that some state-of-the-art supervised models are comparatively less effective
on low-resourced languages.

● Unsupervised Learning, is when the desired training dataset only consists of inputs. The algorithms
are designed to learn the structural or other meaningful features in the dataset. While seeing new
inputs, the algorithms try to find commonalities of the features with the training datasets and group
them accordingly. Mostly unsupervised algorithms are designed to perform clustering or feature
grouping of the dataset. The mathematical base of these algorithms is mostly based on finding the
probability density functions for events. The probability density function can be defined as providing
a probabilistic likelihood of the closeness of a random variable to a sample space (Grinstead & Snell,
2009). Researchers used unsupervised learning in many linguistic applications including grouping
words based on morphosyntactic features (Biemann, 2006b; Christodoulopoulos et al., 2010). Un-
supervised learning algorithms for most of the NLP applications are not as efficient as supervised
learning algorithms (Blunsom & Cohn, 2011). But for low-resourced languages developing efficient
unsupervised algorithms can be beneficial for many NLP applications (Aharoni & Goldberg, 2020).
In this thesis, we have explored and designed novel unsupervised algorithms which are probabilistic,
to produce efficient results for low-resource NLP applications and languages using limited training
resources.

● Semi-Supervised Learning, is when the algorithms are trained using unlabelled and some of the
labelled training dataset. This opens up the possibility of using the semi-supervised learning in some
NLP applications having a small amount of training datasets. Recently data augmentation methods
are explored for semi-supervised learning in NLP applications (J. Chen et al., 2020). These algo-
rithms are also used to produce self-training methods for NLP which opens up another domain of
NLP which is transfer learning (Blitzer & Zhu, 2008). In Chapter 6, we have implemented the the-
ory of this self-training (or self-learning) methodology for the training of our algorithms. We will
describe the background behind transfer learning in the later part of this chapter.

3 Different machine learning frameworks represent the vectors differently. For example, Pytorch encodes the information as a tensor
where as Keras framework encodes it as a numpy array.

4 https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a

https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
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There is another type of machine learning methodology that is getting used in NLP applications called
weakly-supervised learning. These algorithms use noisy, limited labelled resources as a training dataset to
train the models. Unlike semi-supervised learning, these algorithms can exploit the different types of lim-
ited supervision including the semantically related word or sentence mapping. In recent times, researchers
have designed algorithms for different NLP applications using the semantic relatedness between sentences
with the help of weak supervision. Min et al., 2019 have designed a question-answering system which
understands the relation between questions and answers of the training dataset with the help of weak super-
vision. The trained model then generates answers for the unseen questions. Qin et al., 2021 also proposed
an automatic question-answering system based on weakly-supervised question-answer semantic relatedness
without defining gold standard examples. Inspired by these algorithms in Chapter 5, we designed a weakly-
supervised cross-lingual sentence embedding framework without having any parallel training dataset.

With the advancement of machine learning algorithms, the implementation in the NLP domain has been
applied to many tasks including classification and regression. Some other types of NLP applications include
text generation and cross-lingual text matching for information retrieval applications. In this thesis, we
mainly focused on classification and cross-lingual text matching tasks. We will discuss the brief descriptions
of these tasks below:

● Classification: These tasks are designed to predict gold standard label y based on input features x.
The label y belongs to the existing classes or categories. Mostly classification tasks are restricted to a
defined set of training dataset. Classification tasks can be further sub categorized into two categories:
(i) binary classification, when there are only two classes as gold standard labels, (i) multi-class
classification, when more than two classes are considered as labels. For multi-class classification, in
best case scenarios, every input feature x is mapped to one gold standard label y.

● Cross-lingual text matching: The cross-lingual text matching task is defined as identifying the best
match target parallel sentence t for the source language s. In some of the previous works, the accuracy
of these matching tasks is defined by Spearman rank correlation (Reimers & Gurevych, 2020).

In this thesis we have tackled mostly cross-lingual multi-class classification tasks and cross-lingual text
matching tasks.

2.2.1 Loss Functions

The learning methodology of the above-mentioned tasks for different machine learning algorithms is mostly
dependent on how close the machines can predict the output with respect to the gold standard sets. Mostly
in classification tasks the supervised and semi-supervised models estimate the probability p(x) of a given
input x and evaluate the deviation from the gold standard labels y using loss functions. With the help of
different optimization techniques, the algorithms then learn to reduce the error while predicting the output.
In this section we will introduce readers to the different loss function techniques:

● Mean Squared Error Loss (MSE): Mean squared error is computed to understand how far the
estimated probability y ′ differs from the true values y. It is computed irrespective of the direction
and focused on the average magnitude of the error. The advantage of computing MSE loss is that
highly deviated estimated values are heavily penalized due to the calculation of the square between
the distance. The MSE loss is defined as

MSE =
1

n

n

∑
i=1

(y ′ −y)2 (2.1)
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● Mean Absolute Error (MAE): Mean absolute error is absolute the measurement calculation of the
deviation of the estimated probability y ′ with respect to the true values y. Like MSE, in this case,
the distance calculation does not need to take the direction into account while calculating the loss. In
theory, the MAE loss is more suitable and effective to define the outliers as it does not calculate the
square of the distance. The MAE loss is defined as

MAE =
1

n

n

∑
i=1

∣(y ′ −y)∣ (2.2)

● Mean Bias Error (MBE): This error function gives us an understanding of how biased the system is
with respect to the true values y while predicting y ′. This is somewhat similar to MSE loss but the
major difference is the distance is not squared which also asks the researchers to be cautious about
the negative loss value. The MBE loss is defined as

MBE =
1

n

n

∑
i=1

(y ′ −y) (2.3)

● Hinge Loss: One of the widely used loss functions for boundary-based classical machine learning
algorithms is Hinge loss. This pushes the model to represent the positive examples with a higher score
than the negative examples. This is controlled by a margin function δ. As a result, this loss function
is used mostly for the margin-classification tasks and is widely used by classical machine learning
algorithm Support Vector Machine (SVM). This loss function is used on some of the very notable
NLP tasks including learning cross-lingual word embeddings. Though this is not differentiable, the
convex characteristics of the loss function increase the usability in the machine learning domain. The
loss function is defined as

HLoss =max(0,δ−yp +yn) (2.4)

● Cross-entropy Loss: Cross-entropy loss is designed as a logarithmic loss to calculate the difference
between the predicted value y ′ with respect to the true value y. The loss function is mostly designed
for classification tasks. The multi-class classification tasks have more than two classes whereas binary
classification tasks have two classes having values of 0 or 1. The cross-entropy loss is defined as

l =
1

n

n

∑
i=1

yilog(y
′
i) (2.5)

When there are two classes the loss is calculated with binary cross entropy loss which can be calcu-
lated as

lb =
1

n

n

∑
i=1

yilog(y
′
i)+ (1−yi)log(1−y

′
i) (2.6)

While we have discussed the loss functions for model training, the training of these models use gradient
descent methodology which we will discuss in the next section.

2.2.2 Gradient Decent

The gradient descent is defined as “an optimization algorithm for finding a local minimum of a differentiable

function” (Donges, 2019). This is one of the most popular and effective optimization techniques to train a
machine learning algorithm. Mathematically it can be described as minimizing an objective function J(θ)
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while updating the model parameter θ in the opposite direction of the gradient of the function. As the
gradient is the partial derivative of the function, the i-th element is the partial derivative of the function
J(θi) (Ruder, 2019). Updating the model parameter θ can be achieved using Equation 2.7

θ = θ− λ ⋅ ∇θJ(θ) (2.7)

where λ is the learning rate which decides the magnitude while updating the model parameter. In naive
terminology, the above equation gives the direction for the steepest descent until it reaches the position to
get the lowest cost function while training the machine learning model. In real-world training examples,
one of the most important factors for efficient learning is to set the ∇ correctly. Often to avoid the models
getting stuck into local minima points of gradient descent, the learning rate needs to be reduced or increased.
In our training methodologies (refer to Chapters 4, 5, 6), we have set the learning rate based on validation
results. There are mainly three types of gradient descent:

● Batch gradient descent: Batch gradient descent is the vanilla gradient descent where parameters of
the models are updated after the loss is calculated and accumulated on the total training dataset. The
disadvantage of this process is clearly the amount of memory it demands while updating. Also, it
takes more time for one cycle to complete. On the other hand, it produces stable and more accurate
gradient as it sees all the training sets in one cycle. It results in a stable convergence. The batch
gradient descent can be calculated as

∇θJ(θ) =
1

n

n

∑
i=1

∇θl(x,y,y ′,θ) (2.8)

● Stochastic Gradient Descent: Stochastic gradient descent calculates gradient and updates for each
example in the training set. This makes the stochastic gradient descent faster than batch gradient
descent methodology while demanding less computational memory to perform calculations. Due
to single example updating, it is easier to track the changes in parameters. The stochastic gradient
descent can be calculated as

∇θJ(θ) = ∇θl(xi,yi,y
′
i,θ) (2.9)

● Mini-batch gradient descent: Mini-batch gradient descent is widely used to train neural networks.
It combines the concept of both stochastic gradient descent and batch gradient descent which ensures
efficient performance and stability. It splits the training dataset into mini-batches (the size of the
mini-batch depends on the size of the training dataset) and performs updates on the batches. In real-
world applications, mini-batch is used as the default settings to train complex models. The mini-batch
gradient descent can be calculated as

∇θJ(θ) =
1

m

m

∑
i=1

∇θl(xi,yi,y
′
i,θ) (2.10)

where m is the size of the mini-batch.

2.2.3 Clustering

Ezugwu et al., 2022 state clustering technique “deals with the data structure partition in an unknown area.”
It further can be described as an algorithm to group similar objects together. Unlike supervised classification
techniques, clustering algorithms do not consider gold standard levels while training and can be considered
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an unsupervised machine learning technique. Ideally, every cluster should contain data points having the
same characteristics and similarities. There are various types of clusters. Mostly these algorithms calculate
distances between data points to construct the clusters. The most common clustering techniques include:

● Hierarchical Clustering: This algorithm is designed to consider the hierarchical relationship be-
tween the data points to group them. There are mainly two types of approach: top-down approach

and bottom-up approach. In the top-down approach the central cluster is divided by selecting the
furthest data point from the centre as the second cluster centre. The data points are then assigned
to close centres as two different clusters. This process happens in a finite number of cycles to form
other clusters. In bottom-up approach, the close clusters are merged and produce a new cluster. This
process helps to reduce the number of clusters keeping the groups of data points distinguishable from
each other. Hierarchical clustering is a tree structure-based method and is mostly suitable for hierar-
chical data points. BIRCH (T. Zhang et al., 1996), CURE (Guha et al., 2001), and ROCK (Guha et al.,
1999) clustering algorithms are some of the examples of this category. The advantage of using these
clustering techniques is the scalability is high and it is comparatively easy to find the hierarchical
relationship between data points.

● Partitioning Clustering: Partition-based clustering is a well-known clustering technique in the NLP
community. At the start of the algorithm, a finite number k is defined and the data points are then
divided into this k cluster centres. The aim is to construct the clusters in such a way that the metric of
data points to the nearest cluster is minimized. In this process, the cluster centres are shifted until the
convergence. A very common partition-based clustering algorithm is k-means clustering (MacQueen,
1967). In this algorithm, the mean of all the data points in a cluster is considered the cluster centre and
this centre is updated through iterative calculations. In this thesis, we have used k-means clustering
techniques to group the language data points (refer to Chapter 4).

● Density-based clustering: The idea behind this algorithm is data points with high data density should
be placed in the same cluster. Very popular clustering algorithms based on such methodology are
DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al., 1999) and Mean-Shift (Comaniciu & Meer,
2002). Among them, the DBSCAN method is widely used across domains. In this algorithm, prede-
fined neighbouring k data points are objectified and they form a cluster if they have a smaller distance
than threshold value ϵ. In the iterative clustering process the data points that are close to the cluster
centre, are added to the cluster. On the other hand, the OPTICS algorithm is an improvement over
DBSCAN and has overcome the sensitivity of using these two parameters k and ϵ. These algorithms
are highly efficient clustering techniques and can be used widely in any data format. But one of the
major setbacks is that they require huge computation memory to perform the calculations and are not
very effective when it comes down to low-resource data clustering.

2.2.4 Neural Networks

Neural network (NN) has now become the most popular methodology for NLP applications. This is also
known as Artificial Neural Network (ANN). Mathematically, neural networks can be considered complex
calculations of many functions. A vanilla neural network system consists of an input layer, hidden layer
and output layer. A big resemblance can be found with the classical machine learning algorithm logistic

regression. In logistic regression, we compute a function f(x) over the input x multiplied by randomly
initialized weights W using

f(x) =Wx+b (2.11)
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On the output layer, we compute the probability of the function f(x) using a softmax function to predict
the output. The hidden layers in a neural network consist of such functions mapped through an activation

function to achieve the non-linearity of the inputs. The hidden layers have multiple neurons which are
initialized with a random weight matrix W. On the output layer to obtain categorical distribution, the
commonly used function are softmax or sigmoid. A neural network having a single hidden layer is known
as one-layer feed-forward neural network whereas a network having multiple hidden layers is called Multi-

layer Perceptron (MLP). The function f(x) over the input x can be calculated as

f(x) = a(Wx+b) (2.12)

where a is the activation function, W is the weight matrix and b is bias. This non-linear output is then
passed through softmax or sigmoid to get the output y using

y = softmax(W ′f(x)+b ′) (2.13)

For binary classification, two classes are considered as gold standard classes, 0 and 1. To keep the probabil-
ity of output y in between (0,1), the non-linear output is passed through the sigmoid function, which can
be defined as

σ(x) =
1

1+ e−x
(2.14)

One of the advantages of using multiple layers is that they can share parameters among themselves injecting
the option of having inductive biases. The introduction of these inductive biases helps to generalize better.
Such parameter sharing technique we have used in our thesis using multi-task learning (Chapter 5) or
transfer learning (Chapter 6). Mapping inputs through hidden layers to get output y from the output layer is
known as forward propagation. Throughout the thesis, we will see multiple test case results obtained from
a single forward propagation. There are some other activation functions including ReLU and tanh. The
ReLU activation function pulls out the max between 0 to value x using

a(x) =max(0,x) (2.15)

The advantage of using a piece-wise linear ReLU activation function can be seen to give either 0 or the input
value which makes data point characteristics more usable. But it is hard to map the negative data points as
ReLU outputs negative values as zeros. On the other hand tanh function, being a sigmoidal shaped, keeps
the range between (−1,1). This function is differentiable. tanh maps the negative data inputs strongly
negative whereas the zero inputs will be mapped near to zero. The tanh function can be calculated as

a(x) =
ex − e−x

ex + e−x
(2.16)

Over time, different neural network models including Recurrent Neural Network, Convolution Neural Net-

work, Transformer Architecture have become widely used in the NLP community. In this thesis, we have
used these methodologies to build different NLP applications. Before that, we will discuss another impor-
tant methodology to train the neural network, backpropagation.
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2.2.5 Backpropagation

Backpropagation (Rumelhart et al., 1986) is at the heart of neural networks. As we discussed in Section
2.2.2, in practice the neural networks are trained using stochastic gradient descent. While training, the
gradients of the loss are calculated with respect to the gold standard labels using the methodology called
backpropagation. The idea behind the backpropagation algorithm is the chain rule of mathematics. Given
output y and input x, if we want to calculate the derivative of z with respect to x where z = f(g(x)) and
y = g(x) is satisfied, then the chain rule says

dz

dx
=
dz

dy

dy

dx
(2.17)

This rule is also applied when it comes to the partial derivative of z with respect to x. This partial derivative
can be considered as the gradient of z with respect to x (the partial derivative of z is calculated with respect
to each xi) (Goodfellow et al., 2016; Ruder, 2019) and can be written as

∂z

∂xi
=∑

j

∂z

∂yj

∂yj

∂xi
(2.18)

Let us take the model produced output y ′ and gold standard values y. The initial loss function obtained by
the model from the first feed forward path can be presented as L = l(y ′,y). As we mentioned in Section
2.2.2, the gradient can be represented with∇ and the gradient of the loss with respect to y ′ can be calculated
as

∇
′
yL = ∇

′
yl(y

′,y) (2.19)

Following the rule of backpropagation, this calculation starts from the loss function with respect to the
produced output y ′ and follows the chain rule as shown in Equation 2.18. It then calculates the gradient
on the hidden layer representations and parameters and goes until the input layer. The chain rule-based
computed gradients are then used to update the parameters of each layer using methodologies introduced in
Section 2.2.2.

2.2.6 Recurrent Neural Network (RNN)

Recurrent neural networks or RNNs (Elman, 1990) are one of the most widely used methodologies for
different NLP applications. Texts are sequential in nature and carry meaningful information over different
timesteps. An RNN encodes the information sequentially keeping the link between words or characters.
It also shares parameters among the different hidden layers which helps to carry the semantic meaning of
the words in a sentence. Rather than accepting inputs at first like a vanilla neural network, RNN encodes
inputs at each layer over the time period. The hidden states of RNN ht over the time step t act as “internal
memory”, which helps to keep the information of the previous timestep. Thus while predicting the next
word of a sentence, the semantic and syntactic relationship between each component of a sentence helps to
produce meaningful sentence representations. Considering t as a timestep, the operation of RNN can be
calculated as

ht = a(Whxt +Uhht−1 +bh) (2.20)

yt = a
′
(Wyht +by) (2.21)
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where a and a ′ are the activation functions. The previous hidden step information ht−1 is added with
the current timestep input xt to get the current hidden step ht. This highlights the capability of RNN of
keeping the previous semantic information intact while generating the current hidden step. For each input,
there is an output yt which helps to implement many NLP applications including token classification. The
backpropagation methodology of RNN to compute the gradients is called backpropagation through time

(Werbos, 1988). In this process, the gradient computation considers the past time step path. This leads
to one of the major shortcomings of RNN called vanishing gradient. During backpropagation the hidden
representations are multiplied with the same weight matrices multiple times over the time step which makes
the gradient values very small. As a result, the model is unable to learn during training. To solve this,
researchers have designed the well-known deep network called LSTM.

2.2.7 Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, 1997a proposed the Long Short Term Memory (LSTM) architecture for better
understanding of sequential data over recurrent neural networks. LSTM has produced efficient results for
the NLP applications where long-term dependencies need to be preserved (Rohit et al., 2017). LSTM
is an improved variant of RNN architecture having the capability of remembering or forgetting hidden
representations. The LSTM network has a forget gate ft, an input gate it and an output gate ot. The
gates interact with the inputs xt, old cell state ct−1 and current cell state ct. The forget gate is used to
decide which non-essential information can be omitted during training. The design of forget gate includes
a sigmoid layer as an activation function which works as a binary gate of 0 or 1. The forget gate can be
calculated as

ft = σ(Wf[ht−1,xt]+bf) (2.22)

where ht−1 is the previous hidden representation and W is the weight matrix. The input gate selects the
information to be updated. This also has a sigmoid layer like a forget gate, but at the same time it also
generates a candidate cell state c ′ which will be added to the previous cell state value to update the current
cell state ct. The previous cell state gets updated using the forget gate ft whereas the new input gate will
work on the new candidate cell state c ′. The current cell state, candidate cell state and the input gate can be
calculated as

it = σ(Wi[ht−1,xt]+bi) (2.23)

c ′t = tanh(Wc[ht−1,xt]+bc) (2.24)

ct = ft ⊙ ct−1 + it ⊙ c
′
t (2.25)

Finally, the output gate decides the output after the cell filtration. The output gate obtains the information
from the previous representation ht−1 and the current input xt and updates the current cell state ct obtained
previously using tanh activation function to push the value range between (−1,1). The output gate can be
calculated as

ot = σ(Wo[ht−1,xt]+bo) (2.26)

ht = ot ⊙ tanh(ct) (2.27)

There are other variants of the LSTM including stacked LSTM and bidirectional LSTM. In bidirectional
LSTM (Graves et al., 2013), the representations are calculated separately from the forward (hfor) and



2.2 M AC H I N E L E A R N I N G 21

backward (hback) directions after which the representations are concatenated over the timestep to obtain
the final representation using

ht = [hfor;hback] (2.28)

In all of the above equations, ⊙ denotes element-wise multiplication. In Chapter 5, we introduce a new
model as sentence embedding technique where we have implemented the bidirectional LSTM to get the
sentence representations.

2.2.8 Convolution Neural Network (CNN)

Convolution neural networks (CNN) (LeCun et al., 1998) are widely used in character based NLP applica-
tions. Primarily CNN was proposed for computer vision tasks; however, CNN produced efficient results
for different NLP applications (Kim, 2014). The CNN architecture consists of the differently defined size
of filters which works as a sliding window to get the textual representations. On a user-defined k-sized
window for input x, each filter generates the new features c using the following Equation,

ci = σ(wxi+k−1 +b) (2.29)

where w is the weight matrix and ci is the generated features on i-th input. The sliding window then gener-
ates the final feature vector c after calculating over each window of k size using the following Equation,

c = [c1, ....., cn−k+1] (2.30)

Entries in the feature map contain the representation of the different segments of textual inputs. For dif-
ferent NLP applications, these feature inputs are then fed to another neural network system to get the final
representation (refer to Chapter 5, where we have fed the features to a bidirectional LSTM network to get
sentence representation) or commonly the min or max important feature output of these features are consid-
ered as the final representation of the input x (Kalchbrenner et al., 2014). The CNN architecture has some
advantages over other sequential neural networks for representation-based NLP applications. It opens up
the idea of designing sentence representations as the combinations of different n-gram units using differ-
ent pretrained word embeddings for classification-based tasks (Dahou et al., 2016). These methodologies
are also fast in calculation and require less memory for the computations. In our thesis we used CNN
architectures to design deep algorithms (refer to Chapters 4,5,6).

2.2.9 Transformers

Vaswani et al., 2017a proposed a revolutionary methodology for NLP applications called Transformer. It
is designed to solve sequence-to-sequence tasks. Due to the design of the architecture, it handles the long-
term dependencies of the inputs while requiring less computational memory. Unlike LSTM, the transformer
model only relies on a self-attention mechanism to compute the representations of the words or characters.
In Figure 2.1, we can observe that the transformer architecture has two main modules: encoder and decoder.
The main driving factor of this model is the multi-head attention mechanism. This multi-head attention
block is the combination of multiple self-attention blocks. According to Vaswani et al., 2017b “Self at-

tention, sometimes called intra-attention is an attention mechanism relating different positions of a single

sequence in order to compute a representation of the sequence”. This implies within the same sentence
self-attention helps to capture the semantic relationship between the context word and the target word. This
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Figure 2.1: The architecture of the Transformer model (Vaswani et al., 2017b)

helps in different token based NLP applications including machine translation, token classification, content
identification (Sarkar et al., 2021) etc. The driving parameters of calculating the self-attention mechanism
in transformers are query (Q), key (K) and value (V). Dot products between the query and key vectors are
calculated to figure out the most similar keys based on queries. Softmax probability of this dot product push
the closest probable values close to 1 and dissimilar values close to 0. Then it is multiplied with the value
vector to get the attention values of the inputs and outputs. All the queries, keys, and values are packed in
matrices and can be calculated as

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (2.31)

where dk is the dimension of the query and key. Instead of calculating a single self-attention function, differ-
ent learned linear projections of dimension dk, dk and dv are calculated in parallel as a multi-head attention
process. Then all the calculated attention values are concatenated to get the multi-head attention values. In
the decoder layer, a masked multi-head self-attention mechanism is calculated of the previous iterations
which are then processed through a point-wise fully connected feed-forward neural network. The vanilla
transformer architecture consists of 6 layers of the encoder-decoder stack whereas some of the state-of-the-
art transformer applications like XLM-R (Conneau et al., 2020) have more than 12 layers. The transformer
architecture is faster than the sequential LSTM calculation and handles the long-term dependencies more
efficiently. In our thesis, we have used different variants of state-of-the-art transformer architectures for
different NLP application experiments.
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2.3 R E P R E S E N TAT I O N L E A R N I N G I N N L P

Natural language processing exploits unstructured information to teach machines the characteristics of the
languages. NLP systems either can be designed based on template-based feature engineering techniques
(Hull, 1999; Prager et al., 1999; Y. Tang et al., 2020; Van-Tu & Anh-Cuong, 2016), or can be learnt using
representation learning to overcome the shortcomings of feature engineering (Babic et al., 2020). In this
section, we will highlight some of the representation-based development in the NLP field.

Representation learning helps to extract useful information from the data. Recently, the state-of-the-art
deep neural systems, introduced in Section 2.2, help to extract the representations of the input dataset as
features. These feature representations of input data enhanced the efficiency model performance in differ-
ent NLP applications including unstructured text and image relation extraction (Jayagopal et al., 2022), and
speech recognition (Srinivasan et al., 2022). Often NLP applications have multiple granularities. In this
thesis, we consider the inclusion of multiple levels of language entries including character-based represen-
tations (Chapter 4), word-based representations (Chapter 6) or sentence-based representations (Chapter 5).
Understanding the representation helps to get the semantic relation between these entries in the same vector
space resulting in a complex semantic space. Jurgens, 2021 highlights the importance of capturing word
representation using word embeddings for different NLP applications. Not only the languages but also
different domain-specific NLP tasks demand semantic relation extraction across documents. Hussein and
Hajj, 2022 highlight that representation learning can benefit domain base adaptations using non-linear map-
pings. Knowledge transfer between similar domain texts helps to capture semantic relatedness where the
vocabulary is shared. In this thesis, we learn these representations using distributed representation learning,
commonly known as embeddings.

2.3.1 Approaches for Representation Learning

Here we highlight some of the well known methodologies involved in representation learning for NLP:

● Statistical Representation Learning: The classical NLP techniques are enriched with statistical
feature extraction techniques. In NLP applications the semantic and syntactic relations are extracted
using different statistical calculations including frequency-based methods. The popular bag-of-words

model represents the occurrence of all the words in a document (Goldberg & Hirst, 2017). It high-
lights the vocabulary structure of a document as well as defines the frequency of these words. The
downside of the model is that it gives an overall structure of the vocabulary but is unable to describe
the position of these words in the sentences of a document. The intuition behind finding this vo-
cabulary set involves comparing different documents based on the existence of the common words.
For large documents, scoring and collecting these vocabulary sets can be tricky and demand well-
established statistical scoring techniques to perform the action. One of the popular scoring techniques
is TF-IDF (Manning et al., 2008; Salton et al., 1975). In the normal frequency calculation of the bag-
of-words model, words carrying less information, often the stop words, are pointed out as the most
frequent words which do not carry any information or carry little information. The TF-IDF method
helps to rank the informative words in a document. This TF-IDF method is called Term-Frequency

Inverse Document-frequency, where Term-frequency scores the frequency of the words in the current
document and Inverse Document-frequency measures distribution across documents. Despite these
scoring techniques, the bag-of-words methodology is less efficient when it comes to long document
calculations due to sparsity. Also, it fails to convey the semantic relations of the words in a document.
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Another common approach to statistical word representation is n-gram representations of a word. An
n-gram is the sequence of different n numbers of words. When n is 2, then it is called bigram, when
n is 3, then it is called trigram and so on. Using the conditional probability, the probability of oc-
currence of a word is calculated base on other n words. For example, if a diagram is “he is”, the
probability of “is” will be P(is∣he). The probabilistic dependency of one word on the previous word
is referred to Markov assumption (Jurafsky & Martin, 2009). To generalize, the occurrence of a word
can be represented with the previous n− 1 words in a sentence using

P(wn∣w1∶n−1) (2.32)

The main difference between bag-of-word methodology and n-gram methodology is, bag-of-words
disregard word order while n-gram models consider word order. Though the statistical representation
of words can be effective for many NLP applications, it is often hard to work with long documents.
Moreover, these systems are not able to carry the meaning of the words and thus confine the usability
of these systems to small NLP domains.

● Distributed Representation Learning: Distributed representation learning involves machine learning
and state-of-the-art deep learning models to capture the hidden features in a text document (Ferrone &
Zanzotto, 2019). All the algorithms we proposed in this thesis are based on distributed representation
learning. We have introduced some of the state-of-the-art deep learning methodologies in Section 2.2
to learn the representations. We will go through the state-of-the-art representation learning method-
ologies along with self-supervised learning in Section 2.3.2

2.3.2 Distributed Representation Methodologies

Distributed representation learning involves state-of-the-art deep learning or machine learning techniques
as feature extractors from the inputs. Using different optimization techniques the hidden representations
from hidden layers of neural networks are considered as the final representation of the words or the sen-
tences. Before going into the details of distributed learning, we will talk about one of the most widely used
techniques called one-hot encoding. As for the bag-of-words methodology, one-hot encoding encodes a
word w with a ∣V ∣ dimensional vector w, where V is the vocabulary set and each dimension of w represents
binary number 0 or 1. If the word is present then it will be encoded as 1 otherwise it will be 0. The words
are mapped to an index of the vocabulary and can be represented with the mentioned binary numbers. But,
the one-hot encoding, as we discussed in the statistical representation learning methodology, does not con-
vey any semantic or contextual information about the words in a sentence or document. Thus though the
one-hot encoded vectors can be considered as embedding inputs to a shallow neural network, the models
are unable to produce efficient outputs for the unseen dataset (Babic et al., 2020). Thus the semantic infor-
mation about the words needs to be carried through the neural network to get efficient representations from
the hidden layers.

The word representation learning techniques are trained using a self-supervised methodology. While
learning word representation, the main bottleneck is there are no gold standard labels. To get the repre-
sentations of the vocabulary words from the hidden layers of the neural network, labels are required to
calculate the loss and backpropagate through the network. Using the self-supervised methodology, labels
are constructed from the existing training dataset. Thus this methodology helps to understand the hidden
representation of the texts without any manual intervention and prior knowledge. Most of the state-of-
the-art semantic and contextual word embedding techniques are designed based on this self-supervision
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methodology. In the next section, we will talk about different word-representation techniques present in the
NLP community.

2.3.2.1 Word2Vec Technique

Mikolov et al., 2013a designed the Word2Vec methodology to learn efficient word representations from a
large corpus. There are two methodologies to learn these representations called Continuous Bag-Of-Words

(CBOW) and Skip-gram.

● Continuous Bag-Of-Words (CBOW): In this methodology, the representation of the input words
can be learned based on the context words. The idea is to predict the target word vt based on the
context words window C as self-supervised learning by minimizing

l = −
1

∣C∣

∣C∣

∑
t=1

logP(vt∣vt−C, ...,vt−1,vt+1, ...,vt+C) (2.33)

where the probability of the target word with respect to the context words windows can be calculated
as

P(vt∣vt−C, ...,vt+C) =
exp(ṽTt vs)

∑
∣V ∣
i=1 exp(ṽ

T
i vs)

(2.34)

where vs is the sum of the word embeddings of the context words.

● Skip-gram: The skip-gram methodology does the opposite of CBOW methodology. Here the context
word is predicted using the other information in the sentence. The context word embedding vj can be
calculated with respect to vi as

P(vj∣vi) = softmax(Wvi) (2.35)

Similar to CBOW the model is trained by minimizing the loss function

l = −∑
i

∑
j(∣j−i∣≤C,j≠i)

logP(vj∣vi) (2.36)

where C is the window of context words. The skip-gram model can be considered as a single layer
neural network without any hidden layer where the word embeddings of the input word vi is fed
into the softmax layer without passing though any hidden layer (refer to Figure 2.2). The skip-gram
model is trained using negative sampling methodology. Negative sampling, during training, forces
the model to distinguish a target word vj from negative samples. These negative samples are drawn
from a noisy distribution which is calculated as the unigram distribution of the words to the power of
3
4 . The fractional number was adopted based on the experimental results.

2.3.2.2 Glove Embeddings

Being a shallow window-based architecture, the CBOW and skip-gram model fail to accumulate global
information for the context word from the corpus (Z. Liu et al., 2020). To capture the global information,
Pennington et al., 2014 have proposed Glove word embeddings. The model is trained to minimize the
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Figure 2.2: The architecture of the skip-gram model (Ruder, 2019)

difference between the dot product of the input and context words and the logarithmic value of the number
of co-occurrences of these words in a fixed context window using

l =
∣V ∣

∑
i,j=1

f(Cij)(v
T
i ṽj +bi + b̃j − log(Cij))

2 (2.37)

where bi and b̃j are the biases of the input word and the context word respectively. Cij denotes the co-
occurrence of the input word vi and context word vj in a fixed size context window and f acts as a scoring
function to assign weights to the input and context word co-occurrences based on their frequency.

2.3.2.3 FastText Embeddings

The previous two static embedding methods described in Section 2.3.2.1, 2.3.2.2 fail to understand the
internal structure of the word. Moreover, there exists one major shortcoming of these methods with out-of-

vocabulary words. Bojanowski et al., 2017 proposed a new methodology called FastText, which is capable
of capturing the sub-word level information of a word, resulting in injecting structural information of the
words in the shared embedding space. The words are divided into subwords using user-defined n-grams
and then trained using a skip-gram model to learn the word embeddings. This n-gram methodology works
as a sliding window feature extractor of the words. Dividing the words into different subwords also helps
to encode rare words which are not in the vocabulary.

2.3.2.4 Contextual Embeddings

Understanding the context of the words in a sentence is very important for different downstream NLP
applications. The static word embedding techniques we discussed so far are unable to convey the contextual
meaning of the words with respect to the surrounding words in a sentence. The training methodology of
these models captures a unique representation of each word in the corpus and is thus unable to understand
the semantic meaning of the words. However, the contextual word embedding methodologies can represent
the words according to their contexts in the sentence. Peters et al., 2018 proposed ELMo, a contextual word
embedding technique designed using bidirectional LSTMs. It converts the words into low-dimensional
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word vectors using the context word and the surrounding words of a sentence. It captures the conditional
probable representation of each word with respect to the previous words using

P(w1,w2, ...,wn) =
n

∑
i=1

P(wi∣w1,w2, ...,wi−1) (2.38)

The bidirectional LSTM captures the contextual meaning of the word with respect to the forward and
backward surrounding words in a sentence. It combines all layer representations of the LSTM to compute
the task-specific weighting of all the layers using

wk = α
task

L

∑
j=0

staskj hLM
k,j (2.39)

where wk is the representation for each word in the sentence, αtask is the task-specific weight of the word
vectors and staskj is the softmax normalized weights of the layers. The hLM

k,j is the context-dependent
word representation generated by the bidirectional LSTM as described (the working process of LSTM is
described in Section 2.2.7). The word representation is generated by j-th layer of the LSTM for the word
wk.

Later Devlin et al., 2019 has come with an improved contextual language model called BERT. BERT

is based on transformer architecture (refer to Section 2.2 for transformer architecture) and trained in a self-
supervised way. It uses the masked-language-model pretraining objective. During training, it randomly
masks some of the words in the sentence and forces the model to predict the masked words based on the
context. In addition to this, it also incorporates “next sentence prediction” methodology to capture the
interrelation between the sentences. BERT, being a bidirectional transformer architecture, is able to capture
the left and right contexts of a word in the sentence.

Figure 2.3: The architecture of the BERT model (Devlin et al., 2019)

Figure 2.3 depicts the architecture of the BERT model which consists of positional embeddings, token
embeddings and segment embeddings. With the next sentence prediction methodology, the BERT architec-
ture consists of two sentences named SA and SB. The segment embeddings are initialized with EA and
EB respectively. These embeddings are trainable embeddings which along with position and token embed-
dings provide contextual information of a word in a sentence. The special token [CLS] denotes the start of
the sentence whereas the [SEP] token highlights the end of each sentence. The training strategy of BERT
consists of two stages, pre-training and fine-tuning. In this thesis, we followed these steps while training
our novel algorithms. The pre-training step trains the model on a big corpus in a self-supervised setup. In
the fine-tuning stage, the pretrained generic language model is further tuned with the desired application-
specific training dataset. Thus the contextual word embeddings carry the semantic meaning and relatedness
of the words for different sentence structures. Interestingly the [CLS] is used as a sentence representation
while finetuning on the downstream tasks. However, researchers have argued about the efficiency of this
sentence representation and proposed some other methods including max-pooling and mean-pooling of the
final layer of the BERT representation (Reimers & Gurevych, 2019). Later, based on the BERT architecture
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some other contextual word embedding techniques were proposed which includes RoBERTa (Y. Liu et al.,
2019), DistilBERT (Sanh et al., 2019b).

2.3.2.5 Cross-lingual Embeddings

Cross-lingual word embeddings map multiple languages in the same vector space identifying the semantic
similarities and relatedness between them (Ruder et al., 2019). In this thesis, we talk about low-resourced
NLP applications and languages, and cross-lingual embedding methodologies play a significant role in
that. It also enables the linguistic knowledge transfer between languages to perform downstream NLP
tasks. Researchers in the past have has developed language-specific word embeddings (Cui et al., 2021;
Douka et al., 2021; Tanvir et al., 2021) using the methodologies we described above. But the monolingual
embeddings are unable to connect the semantic relationship between the languages in the same vector
space. Later, using different parallel mapping and alignment techniques, the languages are mapped to
the same space. In a traditional approach, high-dimensional context counting vectors of the co-occurring
multilingual words are mapped into a single vector space using a bilingual dictionary (Gaussier et al., 2004;
Tamura et al., 2012). Artetxe et al., 2016 proposed a bilingual dictionary mapping based bilingual word
embedding generation technique which preserves the monolingual invariance. Their learning methodology
is mostly based on the CBOW method. These methods still require an efficient annotated parallel dataset or
bilingual dictionaries which mostly are not available for low-resource languages. Later the self-supervised
method based static word mapping technique, commonly known as vecmap, was trained using large corpora
and somewhat helped to generate word embeddings for the low-resourced languages (Artetxe et al., 2016).
But these models are unable to capture the contextual relatedness of multiple languages in the same vector
space.

Later based on the BERT language model, Devlin et al., 2019 published a multilingual BERT model
called mBERT. The model is trained for more than 100 languages on a corpus consisting of Wikipedia
articles of these languages. The vocabulary is shared across languages. However, the most efficient multi-
lingual language model which suppressed the performance of mBERT model was XLM-R (XLM-Roberta)

(Conneau et al., 2020). The model is trained with the “masked-language-modeling (MLM)” objective. But
unlike the BERT model, it does not consider “next sentence prediction” methodology as the experimental
results without next sentence prediction task highlight the improvement in the efficiency of the model for
downstream tasks. It follows the architecture of the predecessor model XLM (Conneau & Lample, 2019)

Figure 2.4: The architecture of the XLM model (Conneau & Lample, 2019)

(refer to Figure 2.4) with some conditional changes during training. Unlike XLM, it does not encode the
language embeddings which increases the efficiency of the model during intra-sentential code-switching.
The shared vocabulary is created using the Byte Pair Encoding (BPE) methodology (Sennrich et al., 2016).
The model accepts text streams of sentences of size 256 tokens as input during training. The training dataset
consists of a common crawl dataset for 100 languages. The authors used an in-house language identifica-
tion model to identify language-specific training dataset. The model has produced state-of-the-art results
for different benchmark sentence and token classification datasets. In all the cases, by default, the authors
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have chosen the [CLS] token as the sentence representation. In our thesis, we incorporated the XLM-R

(XLM-Roberta) model while designing our sentence representation model in Chapter 5.

2.3.2.6 Sentence Representations

Sentence encoders represent sentences by encoding the contextual or static word embeddings into a single
vector x. Different machine learning models, introduced in Section 2.2, produce sentence embeddings
differently. CNN networks accept the contextual or static word embeddings as inputs and extract local
features by different sizes of filters. On a vector sequence w, the convolution operation y can be encoded
as

y = CNN(w) (2.40)

Mostly a max-pooling operation on the feature y will produce the sentence embedding by selecting the
maximum element from the region of the feature map using

x =max(y) (2.41)

On the other hand using the LSTM network, the temporal features of the input word embeddings can
be extracted. Each input word embedding will be put through the LSTM cells step by step. At every time
stamp, the LSTM will produce the hidden representation of each word having the semantic understanding
of the previous words using

ht = RNN(wt,ht−1) (2.42)

where wt is the weight of the t timestep and ht−1 is the hidden representation of the previous word. The
sentence embedding can be achieved by either accessing the last hidden representation ht or by extracting
the mean or max hidden representation of total timesteps using

x =max(h) (2.43)

For contextual language models including BERT, mBERT, XLM-R, the special token [CLS] is considered as
the representation of the sentence. Reimers and Gurevych, 2019 proposed that the maximum or mean of the
word embeddings of the last layer can be considered as the more efficient representation of the sentences.

2.3.2.7 Document Representations

Document representation aims to encode the whole document in a real-valued representation vector. Re-
cently, document encoding have become popular for many NLP applications including document sum-
marization, question answering, and paragraph summarization. Traditional document encoding technique
include one-hot vector representation and achieved effective results for NLP tasks (Takase & Kobayashi,
2020). But this methodology has disadvantages and thus the modern neural model techniques (described in
Section 2.2) are adopted to encode documents. In the next section we will discuss one-hot vector represen-
tation.
One-hot Vector Representation: Documents can be represented with a bag-of-words. Following the
standard one-hot vector representation technique, for a document dv consisting of vocabulary set V =
[v1,v2, ...,v∣V ∣], the one-hot vector of a word v can be represented as v = [0,0,1, ....,0]. Based on this
assumption a document with V vocabulary can be represented as

d =
n

∑
i=1

vi (2.44)
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where n is the length of the document. But this methodology does not take into account how important the
word is in the document. That is, the word frequency in the vocabulary is ignored. Therefore, the Inverse

document frequency (IDF) method can be adopted to understand the importance of a word in the document
using

idfv = log
∣d∣

dfv
(2.45)

where ∣d∣ is the number of all documents in the corpus and dfv represents the document frequency of the
word v. Thus a document can be represented using

d = d⊙ idf (2.46)

This methodology has the advantage of being simple and efficient in many small NLP applications. More-
over, this can be used as a feature extractor from a document. But this has some major disadvantages. The
word order and context, in this case, are not considered. Moreover, the absence of semantic meaning in the
words makes this methodology less efficient in many real-time NLP applications.

Figure 2.5: The architecture of the Latent Dirichlet Allocation (Z. Liu et al., 2020)

Latent Dirichlet Allocation (LDA): One of the popular traditional algorithm to understand document’s
structural features is based on probabilistic topic modelling (Hua et al., 2020). The statistical algorithms
are designed to extract the thematic feature of the documents including the connection between themes
and with the time how they change. One of the very popular probabilistic topic modelling methodology is
Latent Dirichlet Allocation (Blei et al., 2003). LDA methodology is designed based on Probabilistic Latent

Semantic Indexing method (pLSI) (Hofmann, 1999) by injecting a Dirichlet to the model. It considers that
a document has multiple topics in it. A topic can be considered as the distribution over the vocabulary.
as LDA is a generative probabilistic modelling, the data comes from generative process includes hidden

variables (Z. Liu et al., 2020). The generative process produces joint probability distribution for observed
and hidden variables. The conditional probability distribution which is also called posterior distribution, is
calculated on the hidden variables. In LDA methodology the observed variables are the word vocabulary
whereas the hidden variables are the topics. The LDA methodology (refer to Figure 2.5) can be described
by the following joint distribution

P(β1∶K,Θ1∶D, z1∶D,v1∶D) =
k

∏
i=1

P(βi)
D

∏
d=1

P(Θd)(
N

∏
n=1

P(zd,n∣Θd)P(vd,n∣β1∶K, zd,n)) (2.47)

where βK is distribution over vocabulary, θd is the topic proportion for the d-th document, θdk is the
topic proportion for the topic k in the document d, zd,n is the topic assignment of n-th word in document
d, vd,n is the n-th word from the vocabulary in document d. These various dependencies are specified
by different distributions from LDA. These are encoded using different statistical methodologies using
different mathematical and graphical forms. On the other hand, the conditional probability distribution is
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calculated using the posterior distribution given the observed documents. The posterior distribution can be
calculated as

P(β1∶K,Θ1∶D, z1∶D∣v1∶D) =
P(β1∶K,Θ1∶D, z1∶D,v1∶D)

P(v1∶D)
(2.48)

The numerator can be calculated as the joint distribution of the random variables where as the denominator
is the probability of the observed variables.

Topic modelling algorithms are mainly of two types:

● Sampling Algorithms: The algorithm is designed by collecting samples from the posterior. The
popular sampling method includes Gibbs sampling for LDA methodologies (Gao et al., 2016). The
working methodology includes Markov Chain consisting of connected random variables with an inter-
dependency.

● Variational Algorithms: The variational algorithms structure a parameterized family of distributions
over the hidden structure and the closest unit to the posterior family member is selected.

2.3.2.8 Paragraph Vectors

While the probabilistic and bag-of-words model encodes small documents efficiently, the semantic relation-
ship between words and sentences in the document is missing. Dai et al., 2015 proposed a paragraph vector

methodology to map every paragraph to an unique vector (refer to Figure 2.6).

Figure 2.6: The architecture of the Paragraph vector (Dai et al., 2015)

The next context word vector prediction is designed to be calculated with respect to the previous words
or paragraphs using the following Equation

y = Softmax(h(vt−k, ...,vt+k;E,P)) (2.49)

where each word maps to a vector represented by the column in the word embedding matrix E, P is a matrix
containing unique vector representations of paragraphs and h denotes the concatenation or average of the
word vectors in the paragraph. On the other hand, the model tries to maximize the average log probability
of the word vectors with respect to the training words using

Θ =
1

l

l−k

∑
i=k

logP(vi∣vi−k, ...,vi+k) (2.50)

The last is a softmax layer used to predict the word using

P(vi∣vi−k, ...,vi+k) =
eywi

∑eyj
(2.51)



32 B AC K G R O U N D

The paragraph token is considered as a word and thus it is used as memory function to remember the missing
topic of the paragraph.

The paragraph vector has another type of methodology called Distributed Bag-of-Words version of Para-

graph Vector (PV-DBOW).

Figure 2.7: The architecture of the PV-DBOW of Paragraph vector (Dai et al., 2015)

As shown in Figure 2.7, the model is forced to predict the words from a paragraph. In a neural network-
based training system, a text window is sampled and a random word from the chosen sample window is
predicted as a classification task given the paragraph.

2.3.2.9 Document-Context Language Model

Recurrent architecture-based document representation learning produced efficient results for different NLP
tasks. But backpropagation through timestep in RNN systems is quite tricky and can produce problems
like vanishing gradient (as discussed in Section 2.2). To avoid this issue, Ji et al., 2015 proposed a new
framework by capturing the context of the documents using a multilevel recurrent structure while encoding
the vector space. Their Context-to-Context Document Context Language Model (ccDCLM) has the under-
standing of short-circuiting the RNN structure with the help of the sentence from the previous timestep to
generate the words of the longer texts. The generation of the current timestep hidden state can be calculated
as

ht,n = a(ht,n−1, f(wt,n, ct−1)) (2.52)

where a is the activation function, ht,n−1 is the hidden state obtained from the previous timestep and ct−1

is the representation of the sentence for t − 1 timestep. With the input of t timestep xt,n, the previous
timestep sentence representation is simply concatenated using

f(xt,n, ct−1) = [xt,n; ct−1] (2.53)

The final prediction yt,n is computed using the last step representation ht,n. The overview of the architec-
ture can be found in Figure 2.8.

While the authors have worked on context-to-context model, they have proposed another variant called
Context-to-Output Document-Context Language Model (coDCLM) (refer to Figure 2.9).

In this architecture the context is captured at the output level instead of the hidden state of the RNN.
The hidden state representation of the timestep t can be calculated as

ht,n = a(ht,n−1,xt,n) (2.54)
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Figure 2.8: The architecture of the ccDCLM (Ji et al., 2015)

Figure 2.9: The architecture of the coDCLM (Ji et al., 2015)

where a is the activation function. At the output level the context vector ct−1 is added and then predicted
using

yt,n = softmax(Whht,n +Wcct−1 +b) (2.55)

2.3.3 Transfer Learning Based Approach

In the classical representation learning algorithms we discussed so far, the learning is based on the in-
domain training datasets. For example, if we want to learn representations using different machine learning
algorithms for a task or language X, then we need a training dataset for the same task or language. The
trained model is expected to perform efficiently for the unseen dataset of the same task or language at the
test time. The same procedure needs to be adopted for some other task or language Y to be trained. But this
can be challenging when the task has fewer training examples. “Transfer Learning” gives the freedom to
train models for low-resource tasks or languages while having semantic or syntactic knowledge of similar
tasks or languages (Ruder, 2019). The transfer of knowledge can be observed from the “source” domain or
task to “target” domain or task (refer to Figure 2.10) .

Figure 2.10: The knowledge flow of transfer learning (Ruder, 2019)
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Mathematically for the target domain DT if the input is XT and output is YT , then the transfer learning
learns the conditional probability for the target domain task P(YT ∣XT ) having the representation knowledge
of the source domain DS.

Ruder, 2019 has defined the taxonomy for transfer learning which includes multi-task learning and
sequential learning. In our thesis, in Chapter 5, we have used multi-task learning to train our sentence
embedding framework. In Chapter 6, our transfer learning process is a sequential transfer learning method-
ology while injecting morphological knowledge of the pivot language into the cognate detection task.

2.3.3.1 Multi-task Learning

Multi-task learning has become very successful in the NLP domain, mainly in machine learning based
representation learning (Collobert & Weston, 2008). Individual representation learning techniques (intro-
duced in 2.3) often miss out on the semantic or syntactic relatedness between related tasks or languages.
Models trained in a multi-task setup are capable of preserving shared representations between these related
languages or tasks, resulting in producing better generalized distributed models (Ruder, 2017). Multi-task
learning can be performed in two ways

● Hard Parameter Sharing: This is one of the most frequent approaches taken by researchers to train
the model. In the case of neural network-based frameworks, the hidden layers are common between
different tasks whereas the output layer is task-specific. The benefit of using this architecture is it
reduces the chance of overfitting (Baxter, 1997). As multiple tasks use the same hidden layers, the
model learns more generic representations while capturing semantic or syntactic relatedness.

● Soft Parameter Sharing: In this methodology, each task uses different models with individually
initialised parameters. To ensure the parameters similarity, the distance between parameters are con-
trolled and tuned (Duong et al., 2015; Y. Yang & Hospedales, 2017).

Multi-task learning setup involves multiple tasks with parameter sharing and is able to capture the common
representations. Thus it can be called efficient feature extractors (Lee et al., 2021). In low-resource NLP
tasks where the training dataset is noisy or limited, the traditional deep learning approaches fail to capture
relevant features as representations which lead to poor performance. In a multi-task setup due to higher
generalisation, the model can identify and give more weight to the relevant features. The introduction of
inductive biases projects multi-task learning as an efficient regularizer. It ensures that there is no overfitting
while training with limited noisy training sets and reduce the complexity of the model (Søgaard & Goldberg,
2016).

2.3.3.2 Sequential transfer learning

Sequential transfer learning is a common transfer learning approach used in different scenarios. In this
setting the source and target tasks are different and unlike multi-task learning, the knowledge is shared
sequentially from source to target. The goal is to improve the performance of the target task with the
knowledge of the source task. Thus D. Wang and Zheng, 2015 have named it model transfer. Having the
capability of sequential knowledge transfer, this transfer learning approach is quite effective in the case of
low-resourced scenarios. T. Q. Nguyen and Chiang, 2017 have described how low-resourced language tasks
can be improved using the knowledge of the pre-trained model on a high-resource language. Zoph et al.,
2016 highlighted that machine translation for a less-resourced dataset can be improved using the sequential
transfer learning methodology. Sequential transfer learning has two phases
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● Pretraining Phase: In the pretraining phase, the models are capable of capturing the generic prop-
erties and the representations of the dataset that might be useful for the different language-specific
or domain-specific downstream tasks. The efficient pretraining phase demands a good amount of
training data and some amount of supervision (Ruder, 2019). Among them the self-supervision tech-
niques produced effective models as we discussed in Section 2.3.2. Another dominant supervision
technique is distant supervised pretraining. Mintz et al., 2009 proposed the methodology to train a re-
lation extraction model. In social media data analysis, this pretraining strategy is also adopted. Sahni
et al., 2017 proposed a model to predict sentiments of the tweets trained on a large twitter corpus.
Recently Felbo et al., 2017 has proposed a system to analyse Twitter emoticons trained on a huge
Twitter dataset. Later, this model is used to predict the sentiment and sarcasm of the tweets as down-
stream tasks. These pretraining and experiment strategies highlight the capability of understanding
the representation of the source task which can be used as a knowledge transfer to the target tasks.
For small language models, distant supervision learning is proven to be effective in capturing the
word or sentence structural representations. Ziser and Reichart, 2018 used this strategy for unigram
and bigram prediction. When we talk about supervision and pretraining, for many NLP tasks super-

vised pretraining is the common approach to be taken. For example in machine translation (Zoph
et al., 2016) or in POS tagging (J. Yang et al., 2017), supervised pretraining on high-resource lan-
guage and transferring the knowledge to low-resource languages can be seen frequently. Moreover,
recently, researchers have trained language-specific models using supervised pretraining on a large
dataset to capture semantic representations of the sentences to perform various downstream tasks in-
cluding natural language inference (Conneau et al., 2017), image captioning (Kiela et al., 2018) and
paraphrasing task (Wieting et al., 2016).

● Adaptation Phase: After the pretraining phase, the model learns the characteristics of the down-
stream tasks or languages. The pretrained models are often used as a feature extractor to be run on
the tasks-specific dataset. Koehn et al., 2003 have proposed to keep the pretrained model frozen and
use the learned weights as the initial features while training for other similar datasets. Recently Miao
et al., 2021 designed a Dual Neural Network Classification for Authorship Verification where the pre-
trained BERT model is used as a feature extractor. In the small-scale environment, feature extraction
has the advantage as it requires less computational memory to perform and an existing model can be
reused. On the other hand, by fine-tuning a pretrained model, the weights get updated according to
the dataset. Practically during fine-tuning, the weight parameters of the model are considered as a
tested initialization phase to be tuned according to needs. While both the adapting processes have
their advantages, Peters et al., 2019 argued the effectiveness of these two methods in different scenar-
ios. In this thesis, we adapted the fine-tuning of pretrained model for the downstream tasks. However,
the training in this fine-tuning phase is very critical and sensitive to different scenarios. Varying the
learning rate up or down has a substantial impact on the performance of the model. Howard and
Ruder, 2018a proposed slanted triangular learning rates to adapt the parameters of the model ac-
cording to the task-specific features. Ge et al., 2019 proposed step decay schedule, a geometrical
learning rate decay scheduler. For our experiments in Chapter 4, we have opted for the step decay
scheduling while finetuning the feature layers using a self-learning approach. Another way of control-
ling the fine-tuning phase is by regularization. Wiese et al., 2017 injected a L2 regularizer between
the parameters of the pretrained and the fine-tuning model. We have also opted for and controlled our
unsupervised training by regularizing the learning of the model. Our newly introduced loss function
(refer to Chapter 4) has a regularization term to control the degree of clustering and finetuning.



36 B AC K G R O U N D

2.4 C H A P T E R W R A P U P

In this chapter, we have started by defining the definition of “low-resourced languages” and “low-resourced
applications” in this thesis. In Section 2.2, we have highlighted the fundamental details of machine learning.
We have covered different types of machine learning techniques and the training process. The fundamen-
tals of the training machine learning process consist of loss functions and gradient descent methodology
observed in this section. One of the primary unsupervised machine learning methodologies is Clustering,
covered in Section 2.2.3. From Section 2.2.4 and onward, we have studied the fundamentals of the “neural
networks” as well as different types of “deep neural systems”. Later in Section 2.3, we talked about “Rep-
resentation learning in NLP”, one of the basics of the thesis. Then we described the existing representation
learning approaches from word level to document level either as distributed learning or statistical represen-
tation learning. In the next chapter, we will talk about related work for the different tasks investigated in
this thesis.
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The existing state-of-the-art cross-lingual sentence embeddings (Hirota et al., 2020; Reimers & Gurevych,
2020) are trained to map contextual embeddings in the shared vector space based on parallel sentences.
However, training these models for low-resource languages is a challenging task due to the lack of paral-
lel and annotated training datasets. The existing large language models like XLM-R-large (Conneau et al.,
2020) have somehow boosted the efficacy of different downstream NLP tasks for a few low-resource lan-
guages but that require fine-tuning huge set of 550 parameters, which is a trivial task. Moreover, extending
the large language models for diverse low-resource languages requires sufficient training datasets to be col-
lected from different sources. Conneau et al., 2020 highlighted the challenges while collecting datasets
for most of the low-resource languages and highlighted the need of identifying these languages using a
language identification tool. Thus our decision of designing the efficient multilingual unsupervised deep
neural system to capture cross-lingual sentence representations requires deep dive analysis of existing sen-
tence embedding frameworks. It is also important to study the existing language identification tools capable
of identifying the languages in a corpus. Recently, Kanojia et al., 2020b in their study, highlighted that in-
jecting cognates in a parallel sentence enhances the efficacy of pre-trained machine translation models by
capturing the semantic relativeness between the similar word pairs. In our study, we investigate whether
injecting cognates in the training dataset can improve the efficacy of the cross-lingual sentence embedding
models. But identifying cognates is a hard task. Researchers have designed different systems to identify
cognates which we learn as a part of our literature survey.

In this chapter, we will talk about the related works on language identification (refer 3.1), sentence
representation learning (refer 3.2) and cognate detection (refer 3.3).

3.1 L A N G UAG E A N D D I A L E C T I D E N T I F I C AT I O N

Language identification (LI) and dialect identification (DI) for short texts or closely-related languages have
been investigated by many researchers using different methodologies. Most of the works are geared towards
supervised methodologies. Unsupervised LI is a challenging task and very few works can be found in this
area. Jauhiainen et al., 2019 have surveyed different approaches to language identification methodologies.

3.1.1 Language Identification for Short Texts

Hammarström, 2007 has investigated the LI task of short texts as a word classification methodology. He
creates a frequency table consisting of each seen word of the training corpus along with the frequencies.
The word-to-frequency table is considered the most powerful component for the LI task. The model then
performs unsupervised affix extraction detection and this component plays a crucial role in the probabilistic
guessing of unseen words. Vatanen et al., 2010 developed a system which considers messages of 5-21 char-
acters long. The system uses a n-gram language model on the dataset created from Universal Declaration

37
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of Human Rights (UDHR) 1. While these methods considered domain-specific datasets, Konstantopoulos,
2007 investigated language identification for names. The author has created and published a corpus contain-
ing names mapped with languages. During the evaluation, they used different name-only language models
and general language models to identify the languages of the names. There exist language identification
systems capable of identifying languages of single words in a document. The work involves annotating
these words with a specific language in a single document. Singh and Gorla, 2007 explored how a multi-
lingual document can be segmented into monolingual documents using language identification on words.
Bergsma et al., 2012 explored LI for Twitter data. Their work covers nine languages of Cyrillic, Arabic
and Devanagari scripts. They have published a large corpus of tweets annotated with language IDs. Along
with the corpus, their experimental results include two LI methodologies. One of the models is built with a
discriminative classifier which accepts tweets along with the metadata. The tweet metadata has user names,
locations, and URLs for the respective pages. The character features of this model encode the characters of
the tweets and metadata. The n-gram character sequence is restricted to four characters. The second system
is built with an efficient language model. The methodology is based on the “prediction by partial matching
(PPM) family” of algorithms and in this work, the authors have chosen the PPM-A variant (Cleary & Witten,
1984). To be precise, the algorithm determines the number of bits required to encode each character of a
string. The only required parameter for the model is the maximal order. Lui and Baldwin, 2014 analysed
Twitter data identification systems by their evaluation methodologies. They have produced a language-
labelled Twitter dataset for 65 languages. The dataset is constructed in a mostly-automated approach and
they provide the algorithm for the dataset creation. They claim that a voting-based ensemble of different
language identification systems for Twitter messages outperforms individual systems. King and Abney,
2013 tackled the language identification problem as a word labelling task in a multilingual document. They
have applied weakly-supervised methods and solved the task as a sequence labelling problem. They built
an annotated corpus having more than 250,000 words collected from the web. From their experiments, they
have concluded that the Conditional Random Fields (CRF) (Lafferty et al., 2001) trained with generalized
expectation criteria is the most efficient methodology for the task. D. Nguyen and Doğruöz, 2013 also in-
vestigate what the best approach to tag individual words in a document is. They tag the words with the help
of a n-gram language model and a dictionary. In the first pass, they try to find a word in the dictionary and
if the search is unsuccessfully then the language model conveys the decision. Along with this, they inject
the local context of the words to further improve the identification model. Finally, they consider the task as
a sequence labelling problem and they used CRF for predictions, but they have only considered the Turkish-
Dutch corpus during experiments. Giwa and Davel, 2013 investigated language identification with code-
switching. They implemented a Naive Bayes (NB) classifier and a Support Vector Machine (SVM). They
also implemented an n-gram smoothing techniques to improve the efficacy of the Naive Bayes classifier.
They have tested their approach on 11 South-African languages having 15-300 characters long sentences.
Dongen, 2017 in the study performed language identification on English-Dutch code-switching. She has
used different machine learning algorithms to perform experiments including SVM, decision tree, and CRF
models. She claims that the chain CRF produces the most effective results in comparison to other methods.

These methods are all supervised and this does not allow them to exploit a large amount of unlabelled
data and situations where the languages are not known in advance. Unsupervised LI is a challenging task.
Next, we will discuss the existing unsupervised language identification methodologies.

1 Can be obtained from https://huggingface.co/datasets/udhr.

https://huggingface.co/datasets/udhr


3.1 L A N G UAG E A N D D I A L E C T I D E N T I F I C AT I O N 39

3.1.2 Unsupervised Language Identification

Hughes et al., 2006b in their study have highlighted some of the major challenges regarding the language
identification task and one of them is about performing language identification on languages having no train-
ing data or little training data. Researchers have tried to tackle this problem by conducting unsupervised
language identification tasks. Mather, 1998 has approached language identification as a clustering problem.
The clusters contain information from the multilingual corpus according to languages. To identify the words
that help to discriminate documents, a Singular Value Decomposition (SVD) methodology is used followed
by separating the terms into groups. The documents from the same group are then merged. Selamat and
Ching, 2008 used Fuzzy ART NNs (Carpenter et al., 1991) for clustering documents written in Arabic,
Persian, and Urdu. In Fuzzy ART, they have shown how to update clusters dynamically. Amine et al., 2010
used a character n-gram representation for text. Later k-means algorithm followed by particle-swarm opti-
mization is applied to cluster the languages which result in different small clusters. Shiells and Pham, 2010
worked on unsupervised tweet LI with the Chinese Whispers algorithm of Biemann, 2006a and Graclus
clustering (Dhillon et al., 2007). The authors found that by applying purity and authority weighting in the
cluster assignment, the efficacy of the algorithm increased. Amine et al., 2010 used a character n-gram
representation for sentences. In their experiment, they used the combination of n = (2,3,4,5) character
sequences using a moving window. They record frequencies of all possible n-grams in a matrix. Later the
k-means algorithm followed by particle-swarm optimization is applied to cluster the languages which result
in different small clusters. C.-C. Lin et al., 2014 performed word-level language identification on code-
switched datasets using conditional random field autoencoders. They also used word vectors and word lists
on unlabelled data to increase the efficiency of the proposed language identification system. Results show
that the injection of the word lists during training helps to capture word similarities. Wan, 2016 proposed a
data-driven cluster and label-based approach to identify words in a multilingual diachronic corpus. In their
approach, the PPMI (positive point-wise mutual information) matrix is combined with a constant-sized
weighted context window to extract features from the text. With the help of Truncated Singular Value De-
composition (TSVD), they have reduced the dimension of the word vectors. Finally, they perform k-means
clustering on the word vectors to perform language-based clustering of the words. Rijhwani et al., 2017
researched short-text tweets for unsupervised language detection which mainly focuses on seven languages.
They consider word-level language identification to identify code-switching. The system uses the Viterbi
algorithm with Hidden Markov Model (HMM) parameters and like previous works, they have considered it
as a sequence labelling task. Poulston et al., 2017 used Word2Vec word embeddings and k-means clustering
to make their LI model. Another approach to performing unsupervised language identification exploits the
idea of topic modelling. Voss et al., 2014 used Latent Direchlet Allocation (LDA) methodology to cluster
tweets. From their manual observation, the LDA models with 5 topics were the most efficient while separat-
ing the languages. They have experimented on Darija, French, and English. W. Zhang et al., 2016a capture
n-gram representations of the text as features and perform language identification using Latent Direchlet
Allocation. They have used Gibbs sampling model for training. The languages of the topics are finally
chosen manually by the authors. During this process, the topics from the same language are merged.

3.1.3 Dialect Identification

There is some research on dialect identification (DI). C.-R. Huang and Lee, 2008 experimented with text
classification of a corpus having three varieties of Chinese from Mainland China, Singapore, and Taiwan.
Their approach implements the top-bag-of-word similarity metric for making similarity measures of words.



40 R E L AT E D W O R K

Considering the corpus as bag-of-words, the highest frequent words are chosen to be features of the lan-
guage based on which they calculate the similarity to do further classification. Zampieri and Gebre, 2012
studied the automatic identification of Portuguese language varieties. In their work, they propose to use
both character n-grams and word n-grams to capture linguistic features. The word n-gram captures the lex-
ical differences whereas character n-grams capture the orthographic differences and similarities between
language varieties. Later Zampieri et al., 2016 further studied the variants of the Portuguese language
from the newspapers printed in Brazil, Macau, and Portugal. They have implemented the SVM classifier
to capture representations using unigram and bigram language models. Trieschnigg et al., 2012 compared
different language identification methodologies on the Dutch Folktale Database which contains fairy tales
written in different Dutch dialects. They claim that the classification accuracy of similar languages having
very little training data is low. Zečević and Vujicic-Stankovic, 2013 studied dialect identification using
different language identification tools for Serbo-Croatian dialects. The experiments are performed on a col-
lection of Ecavian and Ijekavian documents. They have tested three language identification tools including
Langid.py (Lui & Baldwin, 2012), Content Language Detection (CLD)2 and the classifier developed by
Tiedemann and Ljubesic, 2012. They have concluded that it is difficult to identify the Ijekavian variant as
no observation tools are trained for it.

Another interesting dialect identification work was carried out for Spanish variants (Zampieri et al.,
2013). For feature extraction, the classical characters and word n-gram language models are considered
along with the morphological information and parts-of-speech tags. The experiment aimed to understand
whether only grammatical information can convey linguistic features for dialect identification. Diwersy
et al., 2014 have explained a multivariate approach to the study of a language variation of French. In
their experiments, they have applied visualization and semi-supervised examination of the feature space.
Some researchers have explored language identification methodologies for Romanian dialect identification.
Ciobanu and Dinu, 2016 explained how the orthographic and phonetic features of the words help to design
dialect identification systems for Romanian dialects. Using the Needleman-Wunsch alignment algorithm
(Needleman & Wunsch, 1970) they have aligned the words followed by extracting features of the words
using different n-grams. For classification, they have used logistic regression. Many researchers have per-
formed dialect identification for Arabic dialects. Elfardy and Diab, 2013 proposed a supervised sentence
level dialect identification system for Arabic. The sentence-level features are derived from the tokens. With
the help of these features, a generative classifier model was trained to predict the dialect for each sentence.
O. Zaidan and Callison-Burch, 2014 released a large corpus of Arabic online commentary annotated with
different dialects. With different experimental results, they claim that the classifier trained with Arabic di-
alects outperforms the systems trained on Modern Standard Arabic (MSA). Tillmann et al., 2014 identified
Arabic dialects using a sentence-level dialect classifier based on binary feature functions. They have trained
a linear classifier linear support-vector machine (linear SVM). Wray, 2018 implemented a multi-class lin-
ear kernel support vector machine for Arabic dialect identification. As a feature extractor, the author has
used character n-grams ranging from unigram to 5-gram. Along with that, the author has also captured
word-level features using unigram to trigram. From the experiments, the author has deduced the classifier
performance while having different types of feature extractors.

In Chapter 5 we will discuss our proposed unsupervised sentence representation learning frameworks
for low-resourced language and applications. Up until now most researchers have designed supervised
sentence embedding frameworks for cross-lingual learning. Very few works exist in unsupervised cross-
lingual sentence embedding learning. In Section 3.2, we will discuss the related works for cross-lingual
sentence embedding frameworks efficient for downstream cross-lingual NLP tasks.

2 Can be used from https://github.com/mikemccand/chromium-compact-language-detector.
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3.2 C R O S S - L I N G UA L S E N T E N C E R E P R E S E N TAT I O N

The majority of the current multilingual sentence embedding methods are supervised approaches. There
exist some unsupervised sentence embedding frameworks (Pagliardini et al., 2018; Y. Zhang et al., 2020),
but they are mostly for English sentence embeddings. Kiros et al., 2015a proposed the SkipThought model
trained as an encoder-decoder model to reconstruct the surrounding sentences given a passage. The recon-
struction captures the semantics and syntactic properties of the sentences, thus mapping closely into the
shared vector space. The encoder-decoder model is constructed using recurrent neural networks. Later
FastSent (Hill et al., 2016), a log-linear bag-of-words model, was proposed. The model is trained to predict
the adjacent sentences given the source unlabelled sentences. The model was trained on the Toronto Books
Corpus dataset. Kenter et al., 2016 proposed Siamese C-BOW, where they average word embeddings out
to construct sentence embeddings. The model has used a Siamese architecture to predict surrounding sen-
tences during training. Y. Zhang et al., 2020 has proposed the Sent2Vec model which allows the extraction
of sentence embeddings using word vectors along with n-gram embeddings. The model is inspired by the
bilinear models and matrix factor models. Due to simplicity in the design of the model, it requires less com-
putational power and memory than other deep learning models. The model is trained on the Toronto book
corpus, Wikipedia sentences and tweets. Recently Y. Zhang et al., 2020 produced sentence embedding us-
ing mutual information maximization. To capture global sentence representation, the sentence embeddings
are extracted using convolutional neural network (CNN) layers on top of the BERT language model. While
extracting sentence representations, mean-over-time pooling is used. Their introduction of self-supervised
training maximises the mutual information (MI) between all local context embeddings and the global sen-
tence embedding. J. Huang et al., 2021 proposed WhiteningBERT, where final sentence embeddings are
produced by normalizing initial sentence embeddings with whitening. Extensive experiments on different
benchmark evaluation datasets highlight the efficacy of the strategy over others.

When we talk about cross-lingual sentence embeddings, existing models are mostly supervised sentence
embedding models. Initial methods generated sentence embeddings based on a neural machine translation
system with a shared encoder. España-Bonet et al., 2017 studied the efficacy of the sentence embeddings
generated using the encoders of the neural machine translation (NMT) model. They have trained the system
with four language pairs German– English, French–English, Spanish–English and Spanish–French. The
encoder-decoder model is designed using a recurrent neural network with attention mechanisms. Extensive
experiments on semantic textual similarity (STS) tasks and neural machine translation task showcase the
efficacy of the multilingual sentence embeddings generated from encoders. Schwenk and Douze, 2017
learned multilingual sentence representations of six languages using a neural machine translation model.
They claim the model can capture the underlying semantics of the sentences irrespective of language as the
sentences are the same in meaning. In their work, they have also introduced a sentence similarity mechanism
to compare about 1.4 million cross-lingual sentences and studied the characteristics of the closely-related
sentences. Schwenk, 2018 learned joint multilingual sentence embeddings for parallel sentence mining in
a large news collection. The bilingual sentences are chosen based on the distance between the source and
target sentences in the shared embedding space. Manually a threshold value is considered to decide the
minimal distant bilingual sentences. The model was trained on nine languages of the Europarl corpus with
almost 2 million sentences each. Subsequently, the LASER (Artetxe & Schwenk, 2019; Schwenk et al.,
2019) framework considered a sequence-to-sequence architecture using bidirectional LSTM networks with
a shared BPE vocabulary, and was trained on parallel corpora designed for neural machine translation across
93 languages. They aim to enhance the efficiency of low-resource languages by joint learning of many
languages in a neural translation setup. During training, the semantically similar sentences across languages
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are close in shared multilingual vector space. Their model was trained on the parallel dataset collected from
the Europarl, United Nations, OpenSubtitles2018, Global Voices, Tanzil and Tatoeba corpora.

Expanding beyond translation-based approaches, researchers have designed sentence embedding sys-
tems without considering encoder-decoder-based machine translation strategy. The maximization of dot
products between source and target language parallel sentences was studied by Guo et al., 2018 using a
dual encoder architecture. During the training, they injected hard negatives by considering sentence pairs
which are not a direct translation of each other but carry some degree of semantic similarity. The sentence
embeddings are obtained by averaging the word and bi-gram level embeddings learned during backpropa-
gation. The model was trained on two language pairs English-French (en-fr) and English-Spanish (en-es).
Experimental results highlight the performance improvement of this model over the previous cross-lingual
translation-based sentence embedding models. Y. Yang et al., 2019 generated sentence embeddings for the
bitext retrieval task using a bidirectional dual encoder with additive margin softmax. Like the previous work,
they have injected hard negatives as a translation ranking problem along with the true translation pairs in the
batch-wise training. Their introduction of margin efficiently captures the separation between translations
and nearby non-translations. The system was trained on English-French, English-Spanish, English-German,
English-Russian and English-Chinese language pairs with nearly 400 million sentences. Chidambaram et
al., 2019 proposed Multilingual Universal Sentence Encoder (mUSE), a dual-encoder model trained on
large web-mined translation parallel corpora, along with data from Reddit, Wikipedia, and Stanford Natu-
ral Language Inference (SNLI) (Bowman et al., 2015) to learn more context, supporting 16 languages. A
translation ranking task was used to identify a correct translation pair, and the architecture assumes 5 hard
negative pairs for each sample while training. Y. Yang et al., 2020 trained multilingual sentence embedding
model for semantic retrieval on three different tasks: multi-feature question-answer prediction, translation
ranking, and natural language inference (NLI). In their experiments they have used two models to extract
sentence embeddings, one is the transformer architecture and another one is a convolutional neural network
(CNN). The use of a CNN architecture enhances the inference in terms of computation and time but reduced
the accuracy. In both cases, the sentence embeddings are obtained by averaging the token embeddings. The
model supports 16 languages from different language families. Recently, Z. Yang et al., 2020 proposed
Conditional Masked Language Modeling (CMLM) to generate sentence embeddings, by co-training the
system with bi-text retrieval and Natural Language Inference (NLI) tasks. Their integration of sentence
representations into masked language model training conditions on sentence level representations while
considering the adjacent sentences. For evaluation, they have also proposed a new multilingual evaluation
benchmark corpora called XEVAL that consists of translated sentences of the English SentEval corpus.
The translation was in-house and collected using the Google-translate API. From their experimental results,
they concluded that models trained with multilingual natural language inference datasets have increased
the efficiency for zero-shot multilingual classification tasks. To generate sentence embeddings beyond the
naïve CLS token and simple pooling strategies of language models, sentence transformer architectures were
proposed (Reimers & Gurevych, 2019). For multilingual S-BERT models, Reimers and Gurevych, 2020 uti-
lized the teacher-student model where the student model is tuned with a parallel corpus from 50 languages
based on knowledge transfer from a fine-tuned teacher model developed by Reimers and Gurevych, 2019.
During training, the student model tries to mimic the teacher model, trained on the English natural language
inference (NLI) dataset. The methodology is easy to be trained and needs less computational power and
memory during training. The authors also showcased in cross-lingual space, that the student model is capa-
ble of identifying the semantic relatedness between languages. Thus, this methodology is very efficient for
semantic textual similarity understanding between two language pairs. LaBSE (Feng et al., 2020) was de-
signed on the BERT architecture and trained on 6 billion sentence pairs by use of additive margin softmax
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loss with in-batch negative sampling. The model is trained on 109 languages and produces state-of-the-
art results for bitext mining for most of the high-resourced languages across language families. To train
the model they have used monolingual as well as bilingual datasets. The monolingual dataset is collected
from CommonCrawl and Wikipedia whereas the bilingual datasets are constructed using translation pairs
collected from the web.

Another trend of research for sentence embedding involves improving the alignment of contextual em-
beddings into a shared vector space using iterative self-supervised learning or tuning with synthetic parallel
corpora. Hirota et al., 2020 introduced the Enhancing Multilingual Sentence Embeddings (EMU) frame-
work which tries to semantically enhance pre-trained multilingual sentence embeddings. That is, instead of
building sentence embeddings from scratch, EMU fine-tunes pre-trained multilingual sentence embeddings
with two major components: enhancement of semantic similarity and multilingualism of sentence embed-
dings using multilingual adversarial training. Cao et al., 2020 used a parallel corpus as an anchor to align
representations in a multilingual language model. The degree of alignment is based on the contextual seman-
tic similarities of the words. While word alignment captures the word semantics, the sentence embeddings
are then computed by concatenating the average, maximum and minimum pooling of the word vectors to
understand sentence semantics. Recently, Kvapilı́ková et al., 2020 proposed an unsupervised method for im-
proving pre-trained cross-lingual context vectors using synthetic parallel sentences and extracted sentence
embeddings via mean pooling. However, the use of machine translation to generate synthetic parallel data
for such methods fails to generalize to low-resourced languages for which translations might be erroneous.

While we now have discussed existing sentence embedding frameworks, in Chapter 6 we propose a state-
of-the-art cognate detection framework for low-resourced languages. We also highlight the importance of
cognates to train cross-lingual sentence embedding frameworks. While we mostly talk about the unsuper-
vised cognate detection framework, researchers have identified some neural and traditional methodologies
to identify cognates. In Section 3.3, we will discuss related work on cognate detection.

3.3 AU TO M AT I C C O G N AT E D E T E C T I O N

Algorithms for automatic cognate detection (ACD) are mostly based on phonetic or orthographic similarity
measures and often language-dependent or supervised approaches. Covington, 1996 developed an algo-
rithm to align words for historical comparison by their phonetic similarity. The algorithm is designed to
consider surface forms instead of phonetic rules and sound laws. During alignment, the aim is to minimize
the distance between similar words. The author designed a “no-alternating-skips rule” which restricts the
algorithm from skipping the strings during one-to-one matching. A penalty score is assigned to every skip
or match to find the best possible alignment. The best match gets 0.0 penalty score whereas a total mismatch
gets 1.0 penalty score. The experiments were performed on 82 cognate pairs in various languages. Kondrak,
2000 released a novel algorithm for aligning phonetically similar sequences. The methodology is a combi-
nation of different state-of-the-art sequence comparison methodologies. It assigns a score on the phonetic
similarities of the words based on multivalued features. It records the operations of the insertions and dele-
tions while comparing the individual phones. A rule-based distance metric was established to understand the
similarity between the phones. Similarity-based algorithms follow these works to identify cognates between
a language pair of different families. The orthographic similarity-based works calculate distances or string
similarities between word pairs and define similarity scores to identify cognates. Melamed, 1999 proposed
an algorithm for bitext mapping and alignment. In their implementation, the orthographic similarity match-
ing threshold is the longest common subsequence ratio (LCSR). The ratio is calculated using the longest
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common subsequence between a cognate pair and the length of the longer token. The method is imple-
mented on cognate pairs of three languages French-English, Spanish-English, and Korean-English. Some
researchers have also taken parallel datasets into account to identify cognates. Distance measurement-based
scores have become the feature set to identify cognates in these cases. Tiedemann, 1999 has investigated
whether capturing the similarity of bilingual corpora boosts the efficacy of cognate identification. A similar-
ity matrix was applied to every possible word pair of the list. For this study, the author has extracted word
pairs from aligned technical sentences collected from the PLUG corpus. Similar to bitext mapping and
alignment (Melamed, 1999), the author relied on extracting the longest common subsequence followed by
statistical scores to perform string matching. Mann and Yarowsky, 2001 studied methods to build a lexicon
between languages using cognates. During the experiments, they identified bilingual dictionaries to select
cognates. They have proposed an induction algorithm based on string edit distance to learn similarities be-
tween cognates. The distances below the threshold value are considered cognates. to calculate the distances,
the authors have chosen three functions: Levenshtein distance, a stochastic transducer-based cost function,
and a hidden Markov model-based function. From their experiments, they have concluded that neither of
these functions can capture the correct cognate pairs having surface form relationships but these functions
are efficient to capture the similarity between cognate pairs having the same orthographic or phonological
similarity.

Later, Mulloni and Pekar, 2006 designed a method that induces rules capturing regularities of ortho-
graphic mutations of words to define cognate pairs. These orthographic mutations of words can be seen as
a part of the structural change when migrating from one language to the other. The algorithm has two major
operations: (i) it tracks the edit operations between two cognate pairs and then calculates the normalized
edit distance (NED) between each pair which assigns a score to each cognate pair, (ii) it extracts candi-
date rules based on the edit operations and assigns statistical scores to the rules. The candidates having
scored more than a threshold value, are considered cognate pairs. The algorithm was tested on English-
German cognate pairs. Rama, 2016 has released a convolutions-based model which also takes phonetic
similarity-based scores into account to detect cognates for word pairs. The framework considers words as
two-dimensional matrices and is trained using a Siamese network architecture. The deep model understands
the phoneme level feature representations and language relatedness from the cross-lingual word pairs in a
supervised setup. The CNN network is also able to capture the non-monotonic shared features of two words
during backpropagation. The authors also investigate whether the CNN network can capture the patterns
of sound change from underlying phonetic representations to be used for cognate identification. Along
with phonetic representations, the language relatedness between the cognate pairs are also injected. The
architecture was evaluated on Austronesian, Indo-European, and Mayan language families. Kanojia et al.,
2019a performed a cognate detection task on Indian languages, but this included a large amount of manual
intervention during identification. To perform cognate identification, a dataset was collected from publicly
available IndoWordnet 3 (Bhattacharyya, 2010). Manually, cross-lingual word alignment was performed
using concept ID. Using string similarity methods and XDice (Brew et al., 1996), the initial cognates were
detected. To collect more cognates, orthographic similarity measurements between strings (alignment of
substrings) with an SVM classifier were used. During training, they also injected the phonetic features of
the words.

While we are talking about identifying cognates using string-based similarity, Kanojia et al., 2019b
introduced a character sequence-based recurrent neural network for identifying cognates between Indian
language pairs. Like the previous work, they have taken word pairs from IndoWordnet and experimented to
identify four types of cognates: true cognates, false cognates, false friends and non-cognates. Along with

3 Can be obtained from https://www.cfilt.iitb.ac.in/indowordnet/.
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the Wordnet dataset, they have extracted words from parallel datasets for better word alignment. As a part
of their framework, first similarity scores between word pairs are documented using orthographic similarity-
based methods. As a part of the experiments, three different similarity measures were used: normalized edit
distance (NED) method, cosine similarity, and Jaro-Winkler similarity (JWS). Obtained similarity scores
are treated as labels for a cognate detection recurrent neural network model. The last sequence output of
the recurrent neural network considered passes through the softmax layer for the classification.

The influence of classical machine learning and dynamic programming-based approaches defines auto-
matic cognate detection tasks as semi-supervised approaches. Hauer and Kondrak, 2011 trained a linear
SVM based on word similarity and language-pair features to detect cognates. The word similarity features
are calculated using edit distance, longest common prefix length, commonality in bigrams, and commonal-
ity in length difference between short and long words. As capturing the word feature only demonstrate the
local context, the injection of language features highlights the commonality between language pairs. Dur-
ing training, the model learns the weights of language-pair features highlighting the language relatedness
along with the word features. Finally, the cognate groups are clustered using average similarity between
clusters. The methodology was tested on the Indo-European, Austro-Asiatic, Hmong-Mien, Mixe-Zoque,
Sino-Tibetan, and Tai-Kadai cognate datasets. Ciobanu and Dinu, 2015 implemented SVM on the ortho-
graphic similarity-based word features. Inspired by the previous research works, the words are first aligned
using the string alignment algorithm. From the aligned words, characters n-grams are extracted as features
and used as input to the SVM classifier to identify cognates. Phonetic alignment-based SVM models per-
formed quite efficiently on different language families while detecting cognates. Jäger et al., 2017 proposed
classification of cognates using phonetic alignment of words using an SVM classifier. The SVM primarily
operated on string similarity measures. As a feature input, auxiliary features of the string pairs obtained
from string similarity are used. The inferred similarities are then used as inputs to perform unsupervised
clustering.

Another thread of research for cognate detection recently involved multilingual contextual knowledge
injection methods. Merlo and Rodriguez, 2019b explored the effect of cross-lingual features on bilingual
lexicon building, which was later implemented in Indian language cognate detection methods. They study
whether cross-lingual word embedding space can learn feature representation like human bilingual be-
haviour. The evaluation was done on two cross-lingual word embeddings VECMAP (Artetxe et al., 2018)
and M2VEC (H. Wang et al., 2019). The experimental evaluation highlights the capability of the cross-
lingual word vectors to identify the cognates efficiently because of their semantic knowledge in the shared
vector space. Recently, Kanojia et al., 2020b injected cross-lingual semantic features for cognate detec-
tion tasks using newly trained language models, which showed better results than state-of-the-art methods.
Extending the work, Kanojia et al., 2021 proposed incorporating gaze features in the context-aware cog-
nate detection task, which improved results for Hindi-Marathi language pairs. These methods may produce
better results; however, the main disadvantages lie in the training of these models as they are data-hungry
models. Thus, incorporating the manually annotated gaze features and newly generated cross-lingual con-
textual embeddings becomes an impossible solution for many under-resourced languages.

3.4 C H A P T E R W R A P U P

In this chapter, we provided a detailed overview of the related work. We first reviewed the language and
dialect identification systems. Moving to the next section, we gave a detailed overview of the existing mul-
tilingual sentence embedding frameworks. Lastly, we have talked about the existing models for the cognate
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detection task. Although our brief survey showed that there exist sentence representation frameworks which
capture contextual and structural information, the experimental results highlight the lower efficacy of these
models for low-resource languages and applications than for high-resource languages and applications due
to the absence of high-quality training datasets. Most of the language and dialect identification frameworks
rely on word-level information. In this thesis, we aim to capture better sentence representations of the dif-
ferent low-resourced languages and applications. During language identification, existing researchers have
relied on word-level orthographic and phonetic information whereas, in our thesis, we capture the global
sentence representations of each of the languages by understanding the linguistic features on the character
level. While we learn the global sentence representations, we then focus on capturing the contextual sen-
tence representations. Our approach differs from the existing contextual sentence representation learning
as we introduce unsupervised multilingual sentence embedding learning to eliminate the need for parallel
corpora during training. Also, we considered the word semantics during training which helps to preserve
the relative semantic distance between the input sentences. Thus, our proposed model outperformed the
other existing works for the downstream NLP tasks for low-resource language and applications. In the
end, we aim to improve the sentence embedding frameworks for closely-related languages by injecting the
cognate information during training. This work requires cognates to be correctly identified. The existing
systems mostly rely on efficient cognate-pair annotations during training which confines the applicability
of these systems to a small number of languages. The majority of the systems are designed to capture
string similarities using orthographic or phonetic statures of the words. Some of them have used classical
machine learning classifiers for cognate detection. Recently, researchers explored the possibility of design-
ing contextual word embeddings-based classifiers to detect cognates. Most of them have worked in Indian
languages. In our work, we propose an unsupervised cognate detection framework to eliminate the need
for cognate-pair annotations. We capture the grammatical and structural word representations of a language
and transfer that knowledge to the closely-related languages of the same language family during the cognate
detection task. Our approach of injecting the word level knowledge helps to identify the linguistic similarity
between closely-related language pairs.
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F O R C O D E - M I X E D D O C U M E N T S

4.1 I N T R O D U C T I O N

In the previous chapter, we have discussed about the background of different existing deep neural models
for NLP applications and literature related to deep neural architectures as well as representation learning
for document understanding. In this chapter, we introduce a novel unsupervised deep language and dialect
identification framework, which can exploit very minimal training sets of closely related under-resourced
languages or dialects and identify texts from the same languages.

Data collection is the primary step in training distributed deep neural architectures for any under-
resourced languages. The sources of the datasets are primarily social networking sites or crawled web
pages. Most often these datasets are inter-sentential code-mixed datasets. Inter-sentential code-mixed doc-
uments contain sentences from different languages (Barman et al., 2014). For example :

● Abalandeli bembangi yakhe enkulu uMathandeni Manqele kepha bayakuphikisa lokhu -> [Zulu]

● Aditif kadaharan nyaéta bahan kimia tambahan nu biasa digunakeun dina industri kadaharan ->
[Sundanese]

For most under-resourced languages, it is very hard to find a well-defined corpus which forces us to rely
on datasets created by volunteers. The collected datasets can contain either user comments from movie
sites in their native languages or stories (Chakravarthi et al., 2020b). These documents are more prone
to contain sentences in different dialects. In the absence of linguistic knowledge, it is often very hard to
identify sentences for closely-related languages or dialects.

This identifies automatic language identification (LI) and dialect identification (DI) as a crucial part of
natural language processing (NLP) pipelines and is part of tasks such as language modelling, categorization
and analysis of these code-mixed datasets. Many researchers have carried out experiments in these domains
both in speech and texts starting from House and Neuburg, 1977. Unsupervised LI is an under-explored
area, but is highly useful as it can exploit the large amount of unlabelled data and, more importantly, can
be employed when the languages to be identified are not known in advance. However, unsupervised LI for
short texts is a very difficult task, for which performance is still comparatively poor. W. Zhang et al., 2016b
have explored unsupervised language identification but this does not work well with short texts for closely
related languages. O. F. Zaidan and Callison-Burch, 2014 have worked on the identification of Arabic
dialects. Ciobanu et al., 2018 studied German dialect identification. These works are mostly supervised
works. The task is even harder when it comes to unsupervised DI.

In this chapter we will answer our first research question:

● RQ1: Is an unsupervised deep sentence embedding framework capable of identifying languages as
accurately as supervised language identification models for code-mixed under-resourced and closely-
related languages?

47
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While designing novel deep neural architecture to answer RQ1, we encountered another sub-research ques-
tion which opens up the broader aspect of designing a novel language clustering technique for different
under-resourced languages:

● RQ1.1: What is the best way to construct sentence embeddings and how to cluster them efficiently
for short texts when there is no labelled training data?

In this chapter, we have answered both the research questions by designing a novel deep learning framework
for unsupervised language and dialect identification. Our framework is designed by taking inspiration from
iterative clustering (W. Zhang et al., 2016b) and self-attention-based sentence embeddings from Z. Lin et al.,
2017. Both of the papers have shown good results on unsupervised clustering and sentence embeddings for
a single language dataset whereas our goal is to design a system which can work on different short texts of
closely related languages and understand every distinct feature. Our system takes different n-gram character
features of a sentence and computes attention weights based on their importance in sentence construction.
We then fine-tune sentence embeddings with an iterative clustering process with the help of the Stochastic
Gradient Descent (SGD) and backpropagation. We call the approach Unsupervised Deep Language and
Dialect Identification (UDLDI). One of the main challenges of the model is to get sentence embeddings.
As we do not have any labels here, we cannot use typical loss functions to update character-to-sentence
embeddings. Further, as the datasets are small short text datasets, there is much less information to learn
features to construct efficient sentence embeddings. To overcome this challenge we propose a loss function
which considers the probability distribution of assigning sentences in each cluster and tries to maximize the
unique sentence assignments in each cluster. These sentence embeddings define the initial cluster centre
assignments, which we then fine-tune with the iterative clustering learning process. Our method is tested
against three different datasets consisting of under-resourced and closely related languages, the language
families and/or varieties in question being South African, Dravidian and Swiss German. The South African
dataset consists of languages from different language families, some of which are similar. We have achieved
good results on each dataset and the results are better than baseline apporaches. We have also compared
our sentence-embedding model to supervised LI and DI methods which outperformed other state-of-the-art
models. The model is robust as it does not require any manual intervention and it works well for short texts
in any dataset consisting of closely related languages, for any language family.

In a nutshell, our contributions are:

● The aforementioned UDLDI model for language and dialect identification in short texts of closely
related languages,

● Efficient sentence embedding construction for short texts,

● Efficient clustering of closely related languages with a very small dataset,

● Designing an probabilistic unsupervised loss function to produce efficient sentence embeddings.

4.2 O U R A P P R O AC H

Unsupervised Deep Language and Dialect Identification (UDLDI) clusters the short texts of closely re-
lated languages in an efficient way using character-to-sentence embeddings with self-attention, based on
an unsupervised loss function and an iterative clustering method (refer to Figure 4.1). The model uses an
unsupervised loss function to build the character-to-sentence embeddings. The iterative clustering process
fine-tunes the sentence embedding and enhances the cluster assignment.
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Figure 4.1: Unsupervised deep LI and DI model. The left-hand side shows the architecture design of the UDLDI
mechanism; the sentence embedding mechanism is explained on the right-hand side

4.2.1 Sentence Embedding

The sentence-embedding model has two parts. The first one is an n-gram character-level CNN and the
second one is a self-attention mechanism, which gives the weighted summed features of sentences based on
n-gram (n ∈ {2,3,4,5,6}) characters. The attention weights are then multiplied with the feature vectors of
the CNN to get the sentence embedding. The different character-level features are achieved with the help
of 1-dimensional CNN (X. Zhang et al., 2015). The sentence embeddings are then fed into a dense layer to
get the language level probability distribution of the sentence.

The 1-dimensional CNN accepts an input sequence as a character sequence. If a sentence has m char-
acters then the input sequence would be S = [w1,w2, ...,wm], where wi is a character in the sentence
(including spaces). The one-dimensional convolution implements 1-dimensional filters which slide over the
sentences as a feature extractor. Let the filters have a shape of 1 × k where k is the filter size. Filter sizes
are the same with different n-grams. Let xi ∈ Rd denote the d-dimensional character embedding of the
i-th character considering the character vocabulary size is n. For each position j in the sentence, we have a
window vector wj with k consecutive character vectors, as denoted in Equation 4.1.

wj = [xj,xj+1, .....,xj+k−1] (4.1)

The 1-dimensional k-sized filters slide over the window vector wj to create the feature map s where s ∈

Rm−k+1 and m is the input size. Each element sj of the feature map for window vector wj is produced
according to Equation 4.2,

sj = a(wj ⋅m+bj) (4.2)

where vector m is a filter for convolution operation, bj is the bias for the j-th position and a is the non-linear
function. The new feature representation F after rearranging will be represented as F = [s1, s2, ..., sn],
where n is the number of convolution filters, si is the feature map generated with i-th filter and F ∈

R(m−k+1)×n.

To understand the different n-gram feature representation of the sentences, multiple k-sized filters are
used which is represented as Fk where k ∈ {2,3,4,5,6}.

We aim to get sentence embeddings from different n-gram representations. We have achieved this by
getting the weighted summation of T elements of new feature representation F. We perform this for each Fk
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separately. To achieve this, we use a self-attention mechanism. The attention mechanism takes the feature
representation as input and gives a as an output weight vector, as shown in Equation 4.3,

a = softmax(tanh(Wh ⋅ F
T
+bh)) (4.3)

where Wh is the weight matrix and bh is the bias for the attention mechanism. The use of softmax is to
ensure that the summation of attention weights (a1,a2, ..,aT ) are non-negative and sum up to 1. Then
we sum up the elements of feature representation F according to the weight vectors provided by a to get a
vector representation r of the input sentence by Equation 4.4,

r =
T

∑
i=1

ai ⋅ Fi (4.4)

where ai is the attention weights for each element of the feature representation, and ⋅ is the element-wise
product between elements.

Different n-gram representations carry different weighted sentence embeddings. To capture all the
representations, the final representation is a concatenated vector r = [r2, r3, r4, r5, r6] (where n-grams
∈ {2,3,4,5,6}), which is then passed to the fully connected layer to get the probability distribution of there
being one language or dialect.

The sentence embeddings are used in two phases. The first phase is the pre-training phase which can be
obtained as described in section 4.2.2; the second phase is the fine-tuning of sentence embeddings based on
self-training with the clustering algorithm, described in section 4.2.4.

4.2.2 Dense Layer and Loss function

The sentence embeddings r ∈ RN×M are passed to a fully connected (FC) layer which gives the output
z ∈ RN×K and then a softmax layer (p ∈ RN×K) returning the probability distribution of all classes, as per
Equation 4.5,

pij =
exp(zij)

∑
K
t=1 exp(zik)

(4.5)

where K is the number of languages or dialects and pij gives the probability that sample i belongs to class
j (j ∈ {1,2,...,K}).

Maximum Likelihood Clustering Loss (MLC Loss): The loss function maximizes the same feature
sentence assignment to one language. It can be considered as maximizing cluster purity based on the
probability distribution. The loss function can be computed by means of Equation 4.6,

Lu =
N

∑
i=1

i
max
j=1

pij −
N

max
i=1

i

∑
j=1

p2ij (4.6)

where N is the batch size.

4.2.3 Intuition Behind MLC Loss

In contrast to existing loss functions, our loss function does not depend on entropy-based calculation as
there is no label. Instead the loss function is trying to maximize the probability distribution function based
on the feature assignments on each class (or cluster) and minimize the maximum summation of the squared
probability distribution of all the languages assigned to one class. The maximization of the probability
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function ensures the best possible assignment of the features in each individual class. But in this process,
there is a chance of biased feature assignments (for the datasets where features of data points are very near
in distance) to a single class. To overcome this trivial situation, the model is penalised with the maximum
summation of the feature assignments over all samples. This stabilizes the system by assigning features to
different classes in the best possible way.

After training the character embeddings and sentence embedding we cluster the dataset. J. Xie et al.,
2016 have shown in the Deep Embedding for Clustering (DEC) architecture how to use clustering as self-
training (Nigam & Ghani, 2000) and how to fine-tune the mapping and do the clustering. The DEC frame-
work uses the idea of parameterized non-linear mapping from the data space X to a lower-dimensional
feature space Z to optimize a clustering objective. It uses stochastic gradient descent (SGD) via backprop-
agation on the clustering objective to learn the mapping, which is parameterized by a deep neural network.
In our case, we have made use of this iterative clustering process to fine-tune the sentence embeddings; this
methodology improves the clustering.

4.2.4 Self Training and Clustering

The initialization of this phase starts by obtaining initial cluster centroids uj
k
j=1

by applying the cluster
algorithm to the sentence embeddings from the pre-training phase, where k is the set of cluster centres. The
self-training phase has the following two steps: (i) the soft assignment between sentence embedding and
initial cluster centroids, and (ii) fine-tuning sentence embeddings and cluster centroids using the auxiliary
target distribution.

As a first step, we calculate the soft assignment between the cluster centroid uj and sentence embedding
zi based on Student’s t-distribution (Maaten & Hinton, 2008) with a single degree of freedom (α = 1), as
per Equation 4.7,

qij =
(1+ ∥zi −uj∥

2
)
−1

∑j ′ (1+ ∥zi −uj ′∥
2
)
−1

(4.7)

where zi ∈ {Z} and qij can be considered as the probability of assigning sample i to cluster j.

The second step involves refining the cluster learning from their high confidence assignments with the
help of an auxiliary target distribution (J. Xie et al., 2016). The auxiliary target distribution (pij) helps to
improve cluster purity and puts more emphasis on data points assigned with high confidence. The pij can
be calculated by means of Equation 4.8,

pij =
q2
ij/∑i qij

∑j ′ (q
2
ij/∑i qij ′)

(4.8)

where ∑i qij is the frequency of the soft clusters.

The training loss is then designed based on KL divergence loss between the soft assignments qi and the
auxiliary distribution pi, as shown in Equation 4.9.

L = KL (P∣∣Q) =∑
i

∑
j

pij log
pij

qij
(4.9)



52 L A N G UAG E A N D D I A L E C T I D E N T I F I C AT I O N F O R C O D E - M I X E D D O C U M E N T S

4.3 E X P E R I M E N TA L S E T U P

4.3.1 Data

We have taken three different datasets for the training and testing of our model, for the following languages
and dialects.

South African languages. This dataset was used by Duvenhage et al., 2017 and consists of short texts
for 11 South African languages, many of which are related; these are the Nguni languages (zul, xho, nbl,
ssw), Afrikaans (afr) and English (en), the Sotho languages (nso, sot, tsn), tshiVenda (ven) and Xitsonga
(tso). The texts are on average 15-20 characters long. We have taken 15,000 samples for training and 5,000
for testing.

Dravidian languages are under-resourced languages spoken mainly in the southern part of India. This
dataset contains the languages Tamil, Telugu, Malayalam and Kannada (Chakravarthi et al., 2018). They
have different orthographies with a unique script for each language (Chakravarthi et al., 2019a). The training
set contains a total of around 14,000 instances and the test set contains a total of 3,000 instances.

Swiss German. This dataset is based on the ArchiMob corpus (Samardžić et al., 2016) and is used for
dialect identification. It contains transcriptions of 34 interviews with native speakers of various German
dialects spoken in Switzerland. The subset used for German Dialect Identification contains 18 interviews
(14 for training and 4 for testing) from four Swiss German dialect areas, i.e., Basel, Bern, Lucerne, and
Zurich, with each interview being transcribed using the ‘Schwyzertutschi Dialäktschrift’ writing system
(Dieth, 1986). The training set contains a total of around 14,000 instances and the test set contains a total
of 3,638 instances.

Details of the distribution of the data across three different datasets can be found in 4.1

Data-Type South-African Languages Dravidian Languages Swiss-German Dialect
Train 15000 14000 14000
Test 5000 3000 3638

Table 4.1: Data distribution of three different datasets

4.3.2 Evaluation metrics

We have used the standard cluster performance evaluation process. The number of clusters is set to the same
number as the original number of classes in the data and evaluated with unsupervised cluster accuracy, as
shown in Equation 4.10,

ACC =maxm
∑

n
i=1 1(li =m(ci))

n
(4.10)

where li is the ground truth label, ci is the cluster assignment produced by the algorithm and m ranges over
all possible one-to-one mappings between clusters and labels.

The number of clusters is also an evaluation process in case of unsupervised clustering. The accuracy is
determined with the same number of clusters as the ground truth data. But in general, the number of clusters
also needs to be optimised and evaluated. It is evaluated by Normalized Mutual Information (NMI). The
NMI is useful for comparing the clustering results with different cluster numbers. It is shown in Equation
4.11,
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NMI(l, c) =
I(l, c)

√
H(l)H(c)

(4.11)

where l is the ground truth label and c is the predicted cluster. I is the mutual information and H is entropy.
When data is partitioned perfectly, the NMI score is 1, and when l and c are independent, it becomes 0.

4.4 R E S U LT S A N D D I S C U S S I O N S

We have compared our results with various baselines, both for supervised and unsupervised setup, which
are provided in Table 4.2 and Table 4.3.

Model South African Dataset Dravidian Dataset Swiss German Dataset

AE + Kmeans 19.04% 51.00% 14.00%
Fasttext +Kmeans 21.00% 67.94% 20.00%
LDA (W. Zhang et al., 2016b) 21.56% 69.34% 19.00%
Skip-Thought (Kiros et al., 2015b) + Kmeans 24.67% 71.00% 20.35%
AE + DEC (J. Xie et al., 2016) 25.00% 74.97% 22.35%
LSTM (Z. Lin et al., 2017) + DEC 31.67% 81.50% 26.00%
UDLDI 37.00% 82.00% 30.00%

Table 4.2: Accuracy of different models for unsupervised LI and DI

Unsupervised setup. The model is compared with one of the most well known unsupervised clustering
methods Auto-encoder based k-means clustering. The sentences are projected in a latent space Z from
the feature space X and then clustered it applying k-means. Our second baseline model is fasttext1 word
embeddings and k-means. The sentence embedding is the average of word embeddings. We have also
compared our experimental results with the LSTM sentence-embedding model (Z. Lin et al., 2017) along
with the DEC framework (Table 4.2). Our model performed substantially better than other state-of-the-
art models, achieving 37% accuracy (16.82% improvement upon the LSTM model) for the South African
dataset. It has also achieved 82% accuracy (.6% improvement upon the LSTM model) in the Dravidian
dataset. For the Swiss German dataset, 30% accuracy (15.83% improvement upon the LSTM model) was
achieved; the latter DI task can be considered one of the toughest tasks to perform, as the dialects are
very similar. It means that the model is well capable of identifying important character n-gram features in
sentence construction. Details about the attention weights distribution are discussed in the section 4.4.1.

Supervised setup. Table 4.3 shows different baseline models including previously published systems in
the Swiss German DI shared tasks. Our model has outperformed all the state-of-the-art methods achieving
99%, 99.34% and 81% accuracy for the South African dataset, Dravidian dataset and Swiss German dataset,
respectively. Though it has outperformed both the LI and DI method, significant efficiency can be observed
in DI which has outperformed the highest performing system (Zampieri et al., 2019) by 8%.

4.4.1 Discussion and Analysis

To analyze sentence embeddings we will refer to the Swiss German DI which can be considered the
hardest task. The dialects are very closely related from four different parts of the country —Basel (BS),
Bern (BE), Lucerne (LU), and Zurich (ZH). Some of the sentence constructions are very similar to each
other. For example we can take two sentences of Bern and Lucerne which are “aber dää ìsch emaal dä”

1 https://fasttext.cc/docs/en/unsupervised-tutorial.html

https://fasttext.cc/docs/en/unsupervised-tutorial.html
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Model South African Dataset Dravidian Dataset Swiss German Dataset

BRNN (Kocmi & Bojar, 2017) 89.00% 93.50% —
NB+Lex (Duvenhage et al., 2017) 96.00% 97.34% —-
CLUZH (Clematide & Makarov, 2017) — — 67.00%
MAZA (Malmasi & Zampieri, 2017) — — 68.00%
tearsofjoy (Zampieri et al., 2019) — — 75.00%
LSTM (Z. Lin et al., 2017) 96.67% 98.51% 68.67%
CharCNN (X. Zhang et al., 2015) 98.00% 96.56% 66.09%
UDLDI 99.01% 99.34% 81.00%

Table 4.3: Accuracy of different models for supervised LI and DI

and “aber dää ìsch seer schträng ggsìì mit öis” respectively. In the sentence constructions, we can see
the first three words are exactly the same consisting of the same characters even though they represent
two different dialects. Without extensive morphological and linguistic knowledge, it is very difficult to
separate sentences spoken by people from these regions. Character n-grams represent distinct features of
sentences of a particular region. Our model is also able to identify dialectal (pronunciation) variants for an
inflected form of a verb. We can see this in Figure 4.2. There are two sub-columns under the “Text” column
which consist of different sentences formed with the same verb in different contexts. The red colour is the
importance degree of the attention weight and light blue is a less important part. The English word “have”
has different forms in different dialects. For example, in case of BE, it is written as “hei” whereas in LU it
is written as “hend”.

Figure 4.2: Attention visualization of dialect-specific words pointed out by the model. Text1 and Text2 are randomly
chosen sentences from the dataset

The verb form is used in different contexts in different sentences. In the first example in the Text1
column, a sentence is shown with words “mir hei” which means “we have”. But the “mir” word is the same
in different dialects. Our model has given less attention weight to this word whereas the highest attention
weight is given to “hei”. The character n-gram considered space as well. So in the Text2 column, though the
sentence does not contain the word “mir”, depending on the “hei” word with space, the sentence is classified
as BE. Here the word “söimer” is also given the highest attention weight as the word only appeared in BE.
The same can be observed in other sentences as well for other dialects. Conjunctions like “und” (“and”) are
very common in sentences and are often written the same. As shown in Figure 4.2, this word occurs both
in BS and ZH, and as such has very low significance in terms of dialect identification. Consequently, our
model has assigned it a low attention weight.

As Scherrer et al., 2019 have pointed out, the ArchiMob corpus shows variation on different levels. Not
only are different lexical items pronounced and hence written differently across dialects, the data addition-
ally incorporates intra-speaker variability (i.e., slight variation in the pronunciation of the same word by the
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same speaker) and even shows transcriber-related variation. These factors may overestimate the distinctive
features as identified by the model. Moreover, the attention weights in our model may point to yet another
type of variability, namely, idiosyncratic features of certain speakers such as the repetition of words (idi-
olect). In Figure 4.3 dialects are compared with each other in pairs. The word “ùùnd” (standard German
“und”) in the second example is common in both LU and BS. But in the case of LU, the word followed
by “ùnd” whereas in case of BS it followed by other words, so the character attention distribution gives
the highest attention weights to the n-gram “ùnd ùn”. Though the word “ùnd” (like “und”) has very low
significance in dialect identification as an individual word, in the Swiss German dataset this n-gram is a
distinctive feature, although probably being more indicative of idiolect than dialect. The n-gram “im va”
carries very little distinctiveness in case of LU, so it has the lowest attention score.

Figure 4.3: The attention visualization for the Swiss German dataset

Figure 4.4: Error analysis for the Swiss German dataset

There are possibilities of very small differences in sentence construction for DI or LI. Our model effi-
ciently captures these differences. In Figure 4.3 the character n-gram “u nä” exists in BE. Even in word
“nächer”, the first two letters are “nä”, which leads to the n-gram “u nä”. In case of BS, the construction
is different and the n-gram “u nä” does not exist. Thus in the case of BE, the highest attention weight is
assigned to “u nä” which makes the sentence embedding more robust and efficient.

4.4.2 Error analysis in the model

The UDLDI works efficiently in comparison to other state-of-the-art methods. However, there are some
challenges. As can be seen in Figure 4.4, the sentence construction “a de gränze” can be found both in
Zurich and Bern region. Though the sentences consist of other words, our methods are unable to differ-
entiate between sentence-level features as the character n-grams are also common in different dialects; for
example, the word “gsii” also exists in the Lucerne region. This leads to an insufficient attention weights
distribution for common character n-grams. The same is true for the word sequence “aber es isch”. These
lead to biased clustering. This observation is supported by the NMI score of the clustering.

Figure 4.5 shows that the NMI is highest when the number of clusters is 3 (blue line). We suspect
that in the case of overlapping word sequences with a non-distinctive right context, the model is wrongly
classifying sentences as belonging to the same cluster (dialect). We can compare this with the Dravidian
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Figure 4.5: NMI Score vs Number of Clusters graph

dataset. The graph shows that the NMI score is highest for 4 clusters (red line), which is equal to the number
of languages present in the dataset. Though the Dravidian languages are very similar, they have different
orthographies with a unique written script for each language. Thus the model can easily identify the script,
directly captured by linguistic features on the character level. The somewhat unstable characterisation of the
number of clusters as shown in the NMI graph for Swiss German dataset may to some extent be caused not
only by linguistic features transcending one dialect area, but also, as mentioned in 4.4.1, by intra-speaker
variation, transcriber-related variation and idiolect.

4.5 C H A P T E R W R A P - U P

In this chapter, we propose a novel character attention based unsupervised deep language and dialect identifi-
cation (UDLDI) model for short texts of closely related languages. The research questions that were raised
in the early part of the chapter can be concluded on a positive note. Our proposed sentence embedding
technique is able to capture local and global character level contexts in a sentence. Moreover, it is able to
identify the importance character sequences which makes a sentence distinguishable for different languages.
The proposed maximum likelihood clustering loss function is able to maximize the probability distribution
function based on the feature assignments on each class (or cluster) and minimize the maximum summation
of the squared probability distribution of all the languages assigned to one class. The maximization of the
probability function ensures the best possible assignment of the features in each individual classes. More-
over, the regularization function stabilizes the system by assigning features to different classes in the best
possible way.

We have performed our experiments on three different language families and outperformed other state-
of-the-art models both as a supervised and an unsupervised model. We have also achieved promising results
for dialect identification which is considered to be one of the hardest tasks in NLP. Our experiments show
that UDLDI is capable of doing language or even dialect identification irrespective of language families.
The results in Section 4.4.1 show that the model is able to correctly identify some of the verbs which are
distinguishable in different dialects. We have also shown that, based on NMI, our unsupervised model is
correctly predicting the number of languages that are present in a dataset, opening up interesting applica-



4.5 C H A P T E R W R A P - U P 57

tions to large-scale multilingual dataset processing. Our future work will be the improvement of clustering
efficiency for closely related languages and dialects. Though the model has outperformed other state-of-the-
art models, there is a lot of scope to improve the unsupervised learning model. In this model, for example,
co-occurrence of words in different contexts has not yet been considered. In the future, we will aim to
capture word contexts along with n-grams in sentence embeddings.
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5.1 I N T R O D U C T I O N

In the previous chapter, we have discussed a novel methodology of identifying languages and dialects in
a big inter-sentential code-mixed corpus in an unsupervised way. In this chapter, we will discuss how to
efficiently design unsupervised sentence embedding frameworks which can be trained on unlabelled corpora
after performing language identification. We have showed our frameworks efficiently understands sentence
representations, achieving state-of-the-art results on different downstream NLP tasks for low-resourced
languages and low-resourced NLP applications.

Documents consist of sentences which convey the linguistic aspects of the languages. Understanding
sentence representation is a key aspect in performing different natural language understanding tasks like sen-
timent analysis, summarizing, sentence inference etc. Multilingual sentence representation understanding
is achieved by encoding sentences from different languages in a shared vector space based on their seman-
tic and syntactic similarity, called multilingual sentence embedding. Sentences with similar meanings are
very close to each other in the shared vector space. With the abundance of data in diverse languages, cross-
lingual sentence embeddings enable the mapping of multilingual texts into a single unified vector space for
a wide range of Natural Language Processing (NLP) tasks (refer to Figure 5.1). In multilingual settings, to
train an efficient sentence embedding model, a large amount of training data is required.

Figure 5.1: Multilingual sentence embedding

While working with low-resourced languages or low-resource natural language applications, there is a
big drop in the amount of training datasets which emphasize the need for unsupervised or self-supervised
representation learning frameworks. Researchers represented sentences with traditional TF-IDF vectors
on top of bag-of-words (Arroyo-Fernández et al., 2019). In this process sentences are represented with the
vocabulary sized vectors and each of these vectors convey information about the importance of each word in
a corpus. But this method does not consider the structural or semantic information of the sentence, resulting
in producing less efficient sentence embeddings. It also makes the vector very sparse because the vector
size is equivalent to the big vocabulary size of a document. To capture semantic information, researchers

59
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have introduced novel deep learning architectures for sentence representation learning including capturing
sequential information with LSTM models (Palangi et al., 2016) using mostly word vectors like the GloVe
embeddings (Pennington et al., 2014) or the fastText embeddings (Bojanowski et al., 2017). But producing
these static word vectors are difficult, as to train these models a large corpus is required which is difficult
for many low-resource languages. Moreover, these sequential supervised sentence embedding methods
require a good amount of training data to produce efficient results on NLP tasks. Recently large language
model based multilingual sentence embedding methods (Feng et al., 2022; Reimers & Gurevych, 2020)
have been proposed but these methods do not produce efficient results in low-resourced scenarios. We
focus on bridging this gap by designing novel unsupervised sentence embedding frameworks to capture
sentence representations in low-resourced scenarios.

In this chapter we aim to answer our second research question:

● RQ2. Does an unsupervised deep sentence embedding framework generate efficient sentence embed-
dings in cross-lingual domains without the use of parallel corpora for downstream natural language
tasks? Does unsupervised projection of efficient word representations improve sentence embeddings
in cross-lingual domains?

Current sentence embedding methods are predominantly monolingual systems, geared mainly towards
English (Conneau et al., 2017; X. Yin et al., 2020). While there exist multilingual sentence embedding
frameworks, they are mostly supervised methods requiring a large parallel corpus for training. For under-
resourced languages, there is not sufficient training data to effectively learn a model and we show that our
unsupervised approach can better exploit the available unsupervised data, and thus produce better results
for under-resourced languages. This is achieved by using a dual-encoder architecture based on word-level
semantic similarity score (via Word Mover’s Distance) and learning to embed this into a single vector
for sentences. Supervised sentence embedding approaches map parallel sentences from source and target
languages into the same vector space by either maximising their cosine similarity or minimising the dis-
tance between the generated embeddings (Artetxe & Schwenk, 2019; Reimers & Gurevych, 2020). For
example, recent supervised methods using a parallel corpus rely on a teacher-student model to minimize
cross-lingual embedding distance (Reimers & Gurevych, 2020) or an additive margin softmax function
based dual sentence encoder to maximally separate the sentences that are true translations from similar
overlapping sentences (Y. Yang et al., 2019). Although such methods produced good results, the use of
these loss functions in unsupervised settings fails to efficiently capture cross-lingual semantic similarities
across sentences. The state-of-the-art unsupervised approach relies on automated machine translation to
generate a “pseudo parallel corpus” (Kvapilı́ková et al., 2020) for training. This method is affected by the
presence of translation errors and fails to generalize to low-resource languages for which translations are
not available. This highlights our first part of the research question:

● RQ2.1. Does an unsupervised deep sentence embedding framework generate efficient sentence em-
beddings in cross-lingual domains without the use of parallel corpora for downstream natural lan-
guage tasks?

To answer, we propose DuEAM, a cross-lingual sentence embedding framework based on a novel dual

encoder architecture with an unsupervised joint loss function using an anchor-learner approach, a variant
of the teacher-student model. We also depict the performance of a weakly-supervised variant of our unsu-
pervised DuEAM architecture (obtained by simply changing the training dataset). The weakly-supervised
framework to learn semantic relationship between cross-lingual sentences is motivated by the existence of
the multilingual natural language inference dataset (XNLI) (Conneau et al., 2018), and the possible creation
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of such a dataset from existing comparable corpora. The unsupervised DuEAM framework learns from ran-
domly chosen sentence pairs from the XNLI dataset. Thus, we overcome the need for parallel sentences
for multilingual sentence embedding generation. To understand the degree of similarity between monolin-
gual and multilingual sentence pairs during training, the anchor module uses the Word Mover’s Distance
(WMD) (Kusner et al., 2015) (used as a scalar value during backpropagation), while the learner module is
trained to generate sentence embeddings. Thus, we learn a low-dimensional embedding of the sentences
from the more complex encoding generated by WMD. We show that our joint loss formulation effectively
captures cross-lingual semantic similarity between sentences by preserving distances between points across
languages.

Extensive experiments on multilingual sentence similarity and parallel sentence mining tasks have show-
cased the efficacy of our sentence embedding framework. For example, on the cross-lingual STS benchmark
(Reimers & Gurevych, 2020) (Sentence Similarity Benchmark), our unsupervised approach achieves state-
of-the-art average Spearman rank correlation score of 62.1, comparable to the supervised sentence embed-
ding approach of LASER (Artetxe & Schwenk, 2019) with an average of 65.8. In fact, for certain languages,
our models are even seen to outperform LASER (e.g., for EN-DE our unsupervised model achieves a Spear-
man rank correlation score of 64.6 and weakly-supervised model achieves a Spearman rank correlation
score of 69.4 compared to 64.2 for LASER). On the BUCC task (bitext mining task) (Zweigenbaum et al.,
2017) our model achieves a better F1 score compared to the existing unsupervised model of Kvapilı́ková
et al., 2020. Interestingly, for certain under-resourced languages, we outperform both LASER and multilin-
gual S-BERT (Reimers & Gurevych, 2020) by an average of 10% on the Tatoeba benchmark (cross-lingual
parallel sentence matching benchmark). We also show better or comparable performance to LASER even
on monolingual classification benchmark tasks. Thus, our model is robust across diverse language families
for multilingual sentence embeddings. Details of our results are described in the experiment section later.

To this end, we propose:

● DuEAM, a novel dual encoder based on an anchor-learner architecture for unsupervised and weakly-
supervised multilingual sentence embedding generation,

● A joint loss function coupling word mover’s distance and cosine similarity to capture the degree of
text similarity and relatedness between sentence pairs,

● Experimental evaluations on monolingual as well as several cross-lingual benchmark tasks depict
that our model effectively captures semantic similarity across languages and provides state-of-the-art
unsupervised performance, comparable with supervised models,

● Robustness in zero-shot transfer learning for low-resource languages across language families, out-
performing state-of-the-art supervised approaches on sentence matching tasks in certain scenarios.

Though the DuEAM methodology has achieved state-of-the-art performance when it comes to multilin-
gual sentence alignment including parallel sentence matching, parallel bitext mining and sentence similarity
matching for low-resourced languages, there is a gap when it comes down to the multilingual classification
tasks for low-resource NLP applications both for low-resource and high-resource languages. Sentence or
short text classification plays a crucial role in a plethora of modern NLU and information retrieval ap-
plications, such as automated chatbots and personal digital assistants (L. Chen et al., 2021), email intent
identification (W. Wang et al., 2019), business intelligence (Qazi et al., 2014), user feedback analytics (Sal-
inca, 2016), and domain-specific question answering (Sánchez-Pi et al., 2013). Understanding of structured
as well as unstructured text has become pivotal in driving organizational efficiency and augmented assis-
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tance for improving user experience and quality-of-service (QoS) (Navigli, 2018) across diverse domains
and applications.

The presence of domain-specific terminologies has necessitated generic NLU methodologies to be fur-
ther fine-tuned to the specific use-cases. Thus, domain adaptation of pre-trained models, known as gen-

erative pre-training (Howard & Ruder, 2018b), has been extensively studied. In this context Transformer
(Vaswani et al., 2017b) based language models are trained on a huge unsupervised text corpus and the whole

architecture is fine-tuned on specific down-streaming applications like classification task in different lan-
guages. Multi-lingual language models like mBERT (Pires et al., 2019) and XLM-R (Conneau et al., 2020)
allow effective cross-lingual knowledge transfer. XLM-R-large currently provides state-of-the-art results on
several benchmark tasks, but involves an architecture with a staggering 550 million parameters.

Adapting such large multi-lingual language models to classification tasks requires appropriate fine-
tuning.The current trend of fine-tuning bigger models raises several concerns and challenges – more so
in enterprise settings:

● First, fine-tuning of such large models is extremely resource intensive with demanding memory re-
quirements (Sanh et al., 2019a). Moreover, precise parameter setting (like learning rate) is essential
for convergence and in zero-shot setups may result in over-fitting as shown in Casanueva et al., 2020,

● Second, re-training such large models with the emergence of new data poses a significant effort and,

● Third, the requirement of sufficient annotated training data to properly tune such models further
complicates their deployment in the production pipeline. This also confines the implementation of
these large models for low-resourced NLP languages and applications.

Sentence embedding architectures providing fixed-length dense vectors, have been introduced as “generic”
text representation to address unsupervised learning use cases, like semantic search, and have been shown
to perform relatively well on Semantic Textual Similarity (STS) tasks. Existing sentence embedding frame-
works (Artetxe & Schwenk, 2019; Chidambaram et al., 2019; Pagliardini et al., 2018; Reimers & Gurevych,
2020) produce efficient multi-lingual sentence embeddings. For example, SBERT (Reimers & Gurevych,
2020) uses knowledge distillation to train a smaller student model from a larger teacher model, while
LASER (Artetxe & Schwenk, 2019) relies on training an encoder-decoder on parallel data in multiple
languages. Our proposed DuEAM framework maps cross-lingual sentences in a anchor-learner setup while
considering the word level contexts between source and target sentences from the anchor.

It is suggested that sentence embeddings are not particularly suited for transfer learning for classification
tasks (Reimers & Gurevych, 2020) 1. The absence of model fine-tuning (termed as “frozen”) of generic
sentence embedding architecture, leads to significant performance loss compared to the fine-tuned language
models.

This motivates the following research question

● RQ2.2. Does unsupervised projection of efficient word representations improve sentence embeddings
in cross-lingual domains?

To answer this, we propose the Meta Embedding with Up-Projection and Fine-Tuning (MUFIN) frame-
work to learn enhanced sentence representation geared towards text classification applications, predominant
in industrial settings. We showcase that MUFIN enables better understanding of cross-lingual textual se-
mantic similarity by leveraging the knowledge of both the large language models and sentence embeddings.

1 EMU (Hirota et al., 2020) sentence embedding was proposed for such semantic specialisation tasks, but the performance was not
observed to be comparable to that of the language models.
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We show that our framework is practical and light-weight with faster and robust training, lesser memory
footprint, along with competitive performance to large language models. To the best of our knowledge, this
is the first work that successfully bridges the classification performance gap between sentence embeddings
and language models.

To this end, we propose:

● MUFIN – an effective and light-weight framework to extract task-specific multi-lingual sentence

embeddings for enhanced textual semantic understanding,

● A novel methodology based on the combination of unsupervised up-projection, sentence embedding

alignment, and meta-embeddings – capturing the knowledge of large language models and sentence
embeddings within a single representation,

● Experimental results showcasing comparable performance of MUFIN to large language models, albeit
with lower training time and lesser memory requirement – amenable to deployment even in smaller
enterprises.

We will describe the details of the architectures and experiments in two parts:

● Unsupervised Sentence Embedding Framework: In this part we will introduce our novel work on
building an unsupervised sentence embedding framework trained on unlabelled corpora mitigating
the need of parallel corpora for multilingual sentence embedding framework training

● Enhancing Semantic Understanding of Sentence Embedding Frameworks: In this part we will
explain our work on unsupervised projection of this sentence embedding framework for better seman-
tic understanding of downstream natural language understanding tasks.

5.2 U N S U P E RV I S E D S E N T E N C E E M B E D D I N G F R A M E W O R K

5.2.1 Our Approach

In this section, we describe the components and working of the proposed Dual Encoder with Anchor Model

(DuEAM) architecture for multilingual sentence embeddings, trained using an unsupervised multi-task joint
loss function.

5.2.1.1 Dual Encoder with Anchor-Learner

Figure 5.2 depicts the dual-encoder based anchor module, where the same sentence pair is fed as inputs into
both the anchor and the learner components. Note that these sentence pairs are not considered to be parallel
translations and can even be from either the same language or different languages. Such architectures are
well suited to capture semantically and contextually similar sentences and map them close to each other in
a shared vector space.

We use word-level semantic knowledge from pre-trained multilingual language models in the anchor
module to gauge the semantic similarity between the source (si) and target (ti) sentences. Subsequently,
embeddings for si and ti are generated by the learner such that their vector space distances reflect their
degree of semantic relatedness. Inspired by MoverScore measure (Zhao et al., 2019), using the pre-trained
multilingual word-embeddings, the anchor module computes the semantic similarity between source and
target sentences by use of Word Mover’s Distance (WMD) (Kusner et al., 2015).
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Figure 5.2: DuEAM: Proposed Dual Encoder based Anchor-Learner model with multi-task learning. For training, in
our anchor module as well as our learner model, we use the XLM-RoBERTa-base (XLM-R-base) language
model (Conneau et al., 2020).

The learner module is then trained to generate source and target sentence embeddings such that their
Euclidean distance closely approximates the WMD obtained from the anchor. We force the system to
consider the knowledge of our anchor system about the semantic relationships of the sentences at the word-
level, which also helps to stabilize the training process as the pre-trained anchor model is fixed and the
WMD score is considered as a scalar. Thus, during training, we generate embeddings to minimize the

semantic loss, LA as:

LA =
1

N

N

∑
i=1

exp∣exp−deuc(s ′i ,t ′i) −exp−dwmd(si ,ti)∣ (5.1)

where dwmd (si, ti) = WMD(si, ti) is the Word Mover’s Distance between the input source and target

sentences si and ti, while deuc (s ′i, t ′i) =
√
∑j (s ′ij − t

′
ij
)
2

is the Euclidean distance between the generated
embeddings s ′i and t ′i (by the learner) corresponding to the source and target sentences respectively. The use
of our WMD based semantic loss factor enables DuEAM to capture a more compact representation between
the sentence embeddings, better capturing cross-lingual semantic relationships in the shared vector space.

5.2.1.2 Dual Encoder with Translation Mining

While mapping semantically similar sentences close to each other in the shared vector space, an effective
embedding framework should also address the translation ranking problem to efficiently map correct trans-
lations of source-target sentence pairs within a compact zone of the vector space. Y. Yang et al., 2019
addressed this problem by introducing hard negative sentence pairs along with parallel data during the train-
ing process. Since DuEAM is an unsupervised approach, we introduce translation mining based loss, LB,
using the cosine similarity score between source and target sentences, to handle translation mining, as:
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LB =
1

N

N

∑
i=1

cossim(s ′i, t ′i) (5.2)

5.2.1.3 Multi-Task Dual Encoder Learning

To bring both loss functions under the same umbrella, we construct a multi-task learning setup where we
minimize Eq. 5.1 while maximizing Eq. 5.2. Hence, to efficiently generate sentence embeddings, the final
multi-task loss function for training DuEAM is given by: minimize L = LA − λLB , where λ is the weight
parameter.

This multi-task joint learning enables DuEAM to effectively capture both cross-lingual semantic simi-
larity and text translation ranking relationship.

Overall, our unsupervised loss function aims to learn sentence embeddings such that the Euclidean dis-
tance between them are proportional to the semantic distance obtained from WMD, thereby providing a
low-dimensional embedding from the more complex word-level similarity space (using Eq. (5.1)). Addi-
tionally, Eq. (5.2) enables our framework to align sentence embeddings in the cosine space for translation
understanding.

5.2.2 Intuitions behind Loss Function

In DuEAM, WMD is computed between the contextual token embeddings (of the pair of input sentences)
obtained from anchor encoders, without any stopword removal (as standard while using language models
(Conneau et al., 2020)). While multi-lingual language models capture different languages in a common
space, WMD captures the contextualized semantic distance between the multi-lingual input sentences. Our
use of WMD is motivated by MoverScore (Zhao et al., 2019). Specifically, the use of WMD and cosine in
the loss function of DuEAM is based on the following intuitions:

● The learner module is trained to generate sentence embeddings such that the Euclidian distance be-
tween the learnt sentence embeddings closely approximates the WMD (calculated using token em-
beddings by anchor) between sentence pairs. This tends to preserve the “relative semantic distance”
between the input sentences, enabling DuEAM to capture the “semantic relation at word level” within
the sentence embeddings obtained.

● Existing methods using parallel sentences for training effectively teach the architecture to learn simi-
lar embeddings for similar context – however, the distance in the embedding space between dissimilar
sentences are not considered. By using WMD, DuEAM generates closer representations for similar
sentences, while at the same time forcing dissimilar sentences to have embeddings that are apart
in the embedding space. This provides better semantic understanding for improved performance in
downstream tasks, as observed in our experiments. For example, the WMD between the German
sentence “Sie ist keine Lehrerin” (‘She is not a teacher’) and the English sentence “She is a teacher”
is more than that between the German sentence “Sie ist eine Lehrerin” and the English sentence that
is a direct translation, “She is a teacher”. Thus, the embeddings are different, and DuEAM is able to
capture negation and other semantic information for better performance.

● The cosine loss enables DuEAM to align the learnt sentence embeddings in the cosine space, based
on the cosine similarity between the source and target train sentence pairs, to address the translation
ranking problem. The weight parameter λ in the final multi-task loss function further controls its
effect.
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5.2.3 Training Dataset

Following Chidambaram et al., 2019, we train our DuEAM architecture on the natural language inference
dataset – using only the XNLI dataset (Conneau et al., 2018) on 13 languages, without any parallel corpora
2. We do not consider the entailment-contradiction labels in XNLI during training.

Unsupervised Data. To create the training dataset for unsupervised training of DuEAM, we randomly
pick sentences from the premises and hypothesis of XNLI dataset and form the input sentence pairs. Hence,
this random shuffling along with the absence of sentence pair labels provides no supervision during the
training procedure.

Weakly Supervised Data. This training data contains both monolingual and cross-lingual sentence
pairs, where the monolingual sentence pairs are the same as those of XNLI (without annotated labels). To
create cross-lingual sentence pairs, we keep the premises from the source language and replace the hypoth-
esis with target language hypothesis sentences, and vice-versa. Note that this dataset does not contain any
parallel cross-lingual sentences, but contains semantically related monolingual and cross-lingual sentences
– providing weak supervision. Example can be shown in table 5.1, for language pair EN-DE, the premise is
taken from English while the hypothesis is from German and vice-versa. We do not consider any labels to
train our model.

Our model supports 53 languages

Premise Hypothesis Type
How do you know? All this This information belongs Monolingual (EN-EN)is their information again. to them.
- woher weißt du das ? All Diese Information gehört Monolingual (DE-DE)das sind ihre Informationen. Ihnen.
How do you know? All this Diese Information gehört Cross-lingual (EN-DE)is their information again. Ihnen.
- woher weißt du das ? All This information belongs Cross-lingual (DE-EN)das sind ihre Informationen. to them.

Table 5.1: Weakly-supervised training dataset example from XLNI for English-German.

Validation (using accuracy of finding parallel sentences) is done on held out 1K parallel sentences
(across languages pairs) from the TED2020 corpus. The DuEAM models trained on the above unsupervised
and weakly supervised datasets are henceforth denoted as DuEAMunsupv and DuEAMwklysupv respectively.

Our model support 53 languages from diverse language families. The supported languages and their
language codes are given in Table 5.2.

5.2.4 Experimental Evaluation

We evaluate the performance of our proposed DuEAM framework on the following 3 benchmark tasks: (a)
STS: monolingual and cross-lingual semantic textual similarity; (b) BUCC: bitext mining to extract parallel
sentences; and (c) Tatoeba: cross-lingual parallel sentence matching.

5.2.4.1 Baseline Models

We have compared the performance of DuEAM on benchmark datasets with multiple supervised and unsu-
pervised baseline models which are as follows:

2 Trained on EN, BG, DE, EL, ES, FR, HI, RU, TH, TR, UR, VI, ZH
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Language Code Language Language Code Language Language Code Language Language Code Language

bul Bulgarian dan Danish mkd Macedonian epo Esperanto

cmn Mandarin Chinese est Estonian mon Mongolian eus Basque

deu German fin Finnish nob Norwegian Bokmål gla Scottish Gaelic

ell Greek glg Galician pes Persian isl Icelandic

fra French heb Hebrew por Portuguese jav Javanese

hin Hindi hrv Croatian ron Romanian khm Khmer

rus Russian hun Hungarian slk Slovak lat Latin

spa Spanish hye Armenian slv Slovenian swg Swabian

tur Turkish ita Italian sqi Albanian swh Swahili

tha Thai jpn Japanese srp Serbian uzb Uzbek

urd Urdu kat Georgian pol Polish war Waray

vie Vietnamese kor Korean ind Indonesian xho Xhosa

ara Arabic lit Lithuanian bre Breton yid Yiddish

cat Catalan lvs Latvian ceb Cebuano

ces Czech mar Marathi cym Welsh

Table 5.2: List of supported languages and their codes.

● mBERT / XLM-R mean: We use publicly available mBERT and XLM-RoBERTa (XLM-R) lan-
guage models trained on large datasets (no parallel sentences considered during pre-training phase).
We consider mean pooling of the output layer as the sentence embedding.

● mUSE: Multilingual Universal Sentence Encoder uses a dual-encoder transformer architecture to
generate sentence embeddings trained using parallel corpora for 16 languages.

● LASER: Language Agnostic Sentence Representation is designed based on an encoder-decoder ar-
chitecture using LSTM networks. The model is trained with big parallel datasets and performs max-
pooling to get the sentence embedding from the stacked network. It supports 93 languages.

● LaBSE: Language-agnostic BERT Sentence Embedding (LaBSE) is a dual-encoder model based on
BERT. The model was trained on 6 billion parallel sentence pairs over 109 languages.

● XLM-R ← SBERT-nli-stsb / XLM-R ← SBERT-paraphrases: The sentence transformer mod-
els generate sentence embeddings using the teacher-student architecture, where the XLM-R student
model is trained with parallel sentences for across languages with knowledge transfer from the fine-
tuned English SBERT-nli-stsb or SBERT-paraphrases as the teacher model.

We have also given the source of the baseline models which can be found in Table 5.3

Datasets Link
mBERT https://huggingface.co/bert-base-multilingual-cased
XML-R https://huggingface.co/transformers/model_doc/xlmroberta.html
LASER https://tfhub.dev/google/LaBSE/1
XLM-R← SBERT-nli-stsb / XLM-R← SBERT-paraphrases https://www.sbert.net/docs/pretrained_models.html
mUSE https://tfhub.dev/universal-sentence-encoder-xling/many

Table 5.3: Source of the competing approaches and models used as baselines.

5.2.4.2 Multilingual Semantic Textual Similarity

Understanding semantic textual similarity between monolingual and cross-lingual datasets is one of the
major tasks for a sentence embedding model. We evaluate our model against the STS benchmark dataset
(Cer et al., 2017), containing sentence pairs with scores indicating how semantically similar the sentences
are. The SemEval dataset consists of annotated sentences for EN-EN, AR-AR, ES-ES, EN-AR, EN-ES,
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and EN-TR language pairs. Further, we also use the EN-DE, EN-IT and EN-NL test sets from multilingual
SBERT (Reimers & Gurevych, 2020). For evaluation, we compute the cosine similarity between sentence
pair embeddings and obtain the Spearman rank correlation, ρ across the computed similarities and gold
scores.

Approaches / Languages EN-
EN

ES-
ES

EN-
DE

EN-
TR

EN-
ES

EN-
FR

Supervised Methods

XLM-R← SBERT-nli-stsb 82.5 83.5 78.9 74.0 79.7 78.5
XLM-R← SBERT-paraphrases 88.8 86.3 84.0 80.9 83.1 84.9
LASER 77.6 79.7 64.2 72.0 57.9 69.1
LaBSE 79.4 80.8 73.8 72.0 65.5 77.0
mUSE 86.4 86.9 82.1 75.5 79.6 82.6

Unsupervised Methods

mBERT mean 54.4 56.7 33.9 16.0 21.5 33.0
XLM-R mean 50.7 51.8 21.3 9.2 10.9 16.6

Proposed methods

DuEAMwklysupv 81.9 83.1 69.4 68.6 64.6 69.6
DuEAMunsupv 80.2 81.5 64.6 63.7 58.2 62.1

Table 5.4: Spearman rank correlation (ρ) results for Semantic Textual Similarity (STS) datasets. The results are re-
ported as ρ× 100, with baseline performances as reported in Reimers and Gurevych, 2020.

As shown in Table 5.4, the unsupervised baselines based on the language models (mBERT and XLM-R)
perform quite poorly, suggesting that the obtained cross-lingual sentence embeddings are not well aligned
in the vector space. While trained with multi-task learning, DuEAM achieved a significant improvement
both for monolingual and cross-lingual datasets. For cross-lingual settings, both the DuEAM models sig-
nificantly outperform the unsupervised models, with an average improvement of 41.9 and 37.2 respectively
on Spearman rank correlation (ρ) score. Similarly, on the monolingual datasets (EN-EN and ES-ES), our
models achieve an improvement of 26.9 and 21.4 points (on average), based on the rank correlation score.

It is interesting to note that DuEAM achieves better results, compared to the supervised LASER and
LaBSE approaches, for both the monolingual datasets (EN-EN and ES-ES). In cross-lingual settings, in
certain cases, both DuEAMunsupv and DuEAMwklysupv are seen to outperform LASER (e.g., EN-DE and
EN-ES language pairs).

5.2.4.3 Zero Shot Testing on Semantic Textual Similarity benchmark

An important property of the embedding techniques is “zero shot learning”, i.e., to robustly generalize to
languages that the model has not been trained on, by inherent knowledge transfer from the other languages.
To study the efficiency of DuEAM in zero-shot scenarios, in this setting, we train the weakly-supervised
model only on the EN-DE (English-German) training dataset (as in Section 5.2.3) and test on the other
language pairs, including monolingual sentence similarity for ES-ES and AR-AR.

Models ES-ES AR-AR EN-ES EN-AR EN-TR EN-FR EN-NL EN-IT

mBERT mean 56.7 50.9 21.5 16.7 16.0 33.0 35.6 34.0
XLM-R mean 51.8 25.7 10.9 17.4 9.2 16.6 26.0 22.9
DuEAMwklysupv 78.64 69.67 56.54 54.29 58.35 62.03 67.61 59.8

Table 5.5: Zero-shot Spearman rank correlation ρ results for Semantic Textual Similarity (STS) datasets, where mod-
els are trained on EN-DE non-parallel data.

From Table 5.5, we can see that even for zero shot learning DuEAM outperforms the unsupervised
baseline models, across all the monolingual and cross-lingual STS datasets, with improvements in Spear-
man rank correlation score of around 20. Thus, our architecture based on dual encoder with multi-task
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learning provides better cross-lingual sentence embeddings, making it robust across diverse languages with
improved performance.

5.2.4.4 Bitext Mining Task

Efficient multilingual sentence embeddings should have a good understanding of sentence parallelism and
should be able to retrieve good translation pairs across corpora in different languages. Intuitively, sentence
translation pairs should be equivalent in terms of semantic similarity, and hence their cross-lingual embed-
dings should be very similar.

To evaluate the performance of our method, we conduct experiments on the BUCC benchmark mining
task – parallel sentence extraction from two different monolingual corpora. We use the data available from
the 2018 shared task, consisting of corpora for four language pairs (FR-EN, DE-EN, RU-EN, and ZH-EN),
with a subset of parallel sentences demarked as the gold mapping for each language pair. The data is split
into train and test set, and the training data is used to find a threshold for the scoring function, such that
sentence pairs above the threshold are returned as parallel sentences. Performance is measured using F1

score. Similar to Reimers and Gurevych, 2020, in this setting, we use the margin scoring function as:

score(x,y) = margin(cos(x,y), cos∗(x,y)), with

cos∗(x,y) = ∑
z∈NNk(x)

cos(x, z)
2K

+ ∑
z∈NNk(y)

cos(y, z)
2K

where x, y are the sentence embeddings, NNk(x) is the k nearest neighbours of x in other languages
excluding duplicates, and margin(a,b) = a

b .

Approaches / Languages DE-EN FR-EN RU-EN ZH-EN

Supervised Methods

XLM-R← SBERT-nli-stsb 86.8 84.4 86.3 85.1
LASER 95.4 92.4 92.3 91.7
LaBSE 95.9 92.5 92.4 93
mUSE 88.5 86.3 89.1 86.9

Unsupervised Methods

mBERT mean 44.1 47.2 38 37.4
XLM-R mean 5.2 6.6 22.1 12.4
Kvapilı́ková et al., 2020 80.2 78.8 77.1 67.0

Proposed Methods

DuEAMwklysupv 84.9 81.3 82.0 78.6
DuEAMunsupv 80.9 79.3 78.4 70.0

Table 5.6: F1 score on BUCC bitext mining task. Baseline results taken from Reimers and Gurevych, 2020.

Table 5.6 shows the performance of the approaches on the BUCC task. For the unsupervised setting, we
observe that for all language pairs DuEAM performs significantly better than XLM-R mean and mBERT
mean methods, with an improvement of nearly 35.6 F1 score over mBERT. Additionally, we compare our
model with the recent approach by Kvapilı́ková et al., 2020, specifically trained for bitext mining task with
synthetic parallel data. We see that DuEAM also outperforms these unsupervised models across all language
pairs.

Further, our weakly-supervised model achieves competitive results compared to the supervised model
of XLM-R← SBERT-nli-stsb, trained with large parallel datasets. Observe that LASER and LaBSE achieve
high accuracy, as they are specifically designed and trained to identify translations between languages. On
the other hand, although DuEAM is not trained with any parallel data, we are able to effectively extract
parallel sentences (bitext mining task) owing to our multi-task learning.
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5.2.4.5 Cross-lingual Parallel Sentence Matching

In this section, we compare the performance of the approaches in extracting parallel sentences using the
Tatoeba benchmark of (Artetxe & Schwenk, 2019). From Table 5.7, on well-resourced languages, we
observe DuEAM to perform significantly better than the unsupervised approach of Kvapilı́ková et al., 2020,
with results comparable to the supervised methods of SBERT and LASER – similar as above – efficiently
extracting parallel sentences.

Model DE HI ZH EL

XLM-R← SBERT-paraphrases 98.7 96.4 95.0 95.5
LASER 99.0 94.7 95.4 95.0
Kvapilı́ková et al., 2020 83.1 53.4 - 51.3
DuEAMwklysupv 96.0 92.9 90.2 87.4
DuEAMunsupv 93.4 83.5 85.2 82.0

Table 5.7: Average accuracy on Tatoeba dataset in both directions (EN to target language and vice-versa). Here
DE,HI,EL,ZH refer to German, Hindi, Greek and Mandarin Chinese respectively. Baseline results taken
from Reimers and Gurevych, 2020.

5.2.4.6 Tatoeba Under-Resourced Languages

We now evaluate the robustness of the approaches for extracting parallel sentences for under-resourced
languages on the Tatoeba benchmark. In this setting, we consider two scenarios – (i) zero-shot learning

and (ii) training on small scale non-parallel datasets. We compare the results with the supervised models of
SBERT (Reimers & Gurevych, 2020) and LASER (Artetxe & Schwenk, 2019) respectively, with different
baseline languages for LASER for which it has been pre-trained and results have been published.

Zero-shot Transfer. We perform zero-shot transfer on different under-resourced languages: (i) Telugu (TE,
Dravidian family), (ii) Tagalog (TL, Malayo-Polynesian family), (iii) Irish (Gaelic) (GA, Celtic family),
and (iv) Afrikaans (AF, Germanic family).

Model AF TE TL GA Model KA AM

XLM-R← SBERT-para 84.2 89.1 32.4 18.6 LASER 35.9 42.0
DuEAMwklysupv 84.8 90.6 60.6 42.0 DuEAMwklysupv 76.4 56.0
DuEAMunsupv 79.9 78.6 56.8 35.0 DuEAMunsupv 70.7 46.4

(a) (b)

Table 5.8: Average accuracy on Tatoeba data in both directions (EN to target language and vice versa) for (a) zero-shot
learning, and (b) small training set. Baseline results as in Reimers and Gurevych, 2020.

We observe from Table 5.8(a) that for Tagalog and Irish (Gaelic) both DuEAM models performed sig-
nificantly better than the supervised multilingual S-BERT with an improvement of around 25% on average
for weakly-supervised model and 21% on average for unsupervised model, while for Afrikaans and Telugu,
we achieved 1.5% better accuracy on average for weakly-supervised model. These results show that, even
without explicit learning for different under-resourced languages, our models can robustly handle zero-shot
learning across different language families for generating efficient sentence embeddings.

Small Scale Dataset Training. To explore the model performance while trained on small datasets (for
scenarios where limited data is available for under-resourced languages), we experiment on two under-
resourced languages: Georgian (KA, Kartvelian family) and Amharic (AM, Ethio-Semitic family). We train
DuEAM with only 20K non-parallel EN-KA and EN-AM sentence pairs, whereas the baseline supervised
model LASER is trained with 296K and 88K parallel sentence pairs respectively. In Table 5.8(b), we see
that our models outperform LASER for both Georgian and Amharic, achieving higher accuracy on under-
resourced languages even when trained on a much smaller non-parallel dataset. In fact, weakly-supervised
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DuEAM performs better than SBERT (Reimers & Gurevych, 2020), producing an accuracy of 72.4% on
KA. The anchor-learner architecture with the unsupervised joint loss function provides such robustness and
better cross-lingual understanding in DuEAM.

5.2.4.7 Tatoeba Benchmark Results on 58 Languages

We have performed all our experiments on the 58 languages of Tatoeba test datasets. Evaluation for the
parallel sentence matching task is done by finding the most similar sentence between two languages based
on their cosine similarity. We have calculated accuracy in both directions (English to target language and
vice versa), and have reported the average accuracy of the two. We have reported performance results of
the different approaches based on three settings:

● Model performance on languages that it has been trained,

● Zero-shot model performance on untrained languages, while compared with supervised trained mod-
els,

● Model performance on under-resourced languages for which it is untrained.

Performance on Trained Languages: Table 5.9 reports the performance of the models across 12
languages. We have compared our model with supervised baseline and unsupervised baseline models. We
can see that across all 12 languages our model achieved high accuracy compare to unsupervised model. Our
model also achieved comparative results with supervised model XLM-R← SBERT-nli-stsb and LASER for
some languages.

Model / Languages bul cmn deu ell fra hin rus spa tur tha urd vie

Supervised Approaches

XLM-R← SBERT-paraphrases 94.0 95.0 98.7 95.5 94.7 96.4 93.5 98.0 97.2 96.3 92.2 97.2
LASER 95.0 95.4 99.0 95.0 95.6 94.7 94.6 98.0 97.5 95.4 81.9 96.8

Unsupervised Approaches

(Kvapilíková et al., 2020) 56.0 – 83.1 51.3 – 53.4 – – – – 43.7 –

Proposed Approaches

DuEAMwklysupv 86.0 90.2 96.0 87.4 91.5 92.9 90.0 93.0 89.6 90.1 77.8 92.0
DuEAMunsupv 82.5 85.2 93.4 82.0 87.7 83.5 85.5 89.5 84.1 82.4 67.9 89.6

Table 5.9: Average accuracy on the Tatoeba test set in both directions (en to target language and vice versa) on trained
languages.

Zero-shot Transfer: We have compared our model accuracy on 30 untrained languages and compared
with baseline models. Table 5.10 shows that, for all 30 languages our model has achieved state-of-the-art
unsupervised results. While the supervised models are trained on the parallel datasets for these languages,
for some languages our model achieved comparative results even in zero-shot settings.

Zero-shot Transfer on Under-Resourced Languages: While our model has achieved high accuracy on
a wide range of languages, we have compared our model with a supervised baseline on 16 under-resourced
languages from different language families for zero-shot transfer. From Table 5.11 we see that, across
all languages, the weakly-supervised DuEAM achieved higher accuracy than the supervised baseline of
XLM-R← SBERT-paraphrases. In fact our unsupervised DuEAM performed better than XLM-R← SBERT-
paraphrases for most of the languages.

Overall, our unsupervised and weakly-supervised DuEAM perform significantly better than the existing
unsupervised approach, and is comparable with the supervised models across diverse languages. Our model
also efficiently supports zero-shot transfer learning and is robust for under-resourced languages.
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Model / Languages ara cat ces dan est fin glg heb hrv hun hye

Supervised Approaches

XLM-R← SBERT-paraphrases 87.7 96.4 96.3 96.2 95.8 96.4 96.0 88.4 97.0 94.7 91.3
LASER 92.0 95.9 96.5 96.0 96.7 96.3 95.5 92.2 97.2 96.0 36.1

Unsupervised Approaches

(Kvapilíková et al., 2020) 41.1 66.9 53.5 – 39.0 47.5 66.9 – 68.2 – –

Proposed Approaches

DuEAMwklysupv 70.7 83.3 85.3 92.3 73.0 88.70 85.0 73.1 88.7 86.1 79.0
DuEAMunsupv 61.6 80.0 79.80 90.0 70.0 83.7 80.7 69.0 84.3 81.5 74.1

Model / Languages ita jpn kat kor lit lvs mar mkd mon nob pes

Supervised Approaches

XLM-R← SBERT-paraphrases 94.9 90.7 91.4 90.1 95.8 96.4 91.0 92.2 91.7 98.0 94.8
LASER 95.3 94.2 35.9 88.9 96.2 95.4 91.5 94.7 8.2 98.8 93.4

Unsupervised Approaches

(Kvapilíková et al., 2020) – 54.4 41.4 – 43.9 37.3 – 29.0 – –

Proposed Approaches

DuEAMwklysupv 85.7 84.2 71.7 81.3 83.2 81.2 78.9 75.2 74.7 94.8 88.9
DuEAMunsupv 83.1 77.4 68.2 75.8 78.9 76.6 73.4 71.2 71.5 93.2 83.4

Model / Languages por ron slk slv sqi srp pol ind

Supervised Approaches

XLM-R← SBERT-paraphrases 94.8 96.4 96.2 95.5 97.5 93.8 97.0 94.1
LASER 95.2 97.4 96.6 95.9 98.0 95.3 97.8 94.5

Unsupervised Approaches

(Kvapilíková et al., 2020) – – – – – – – 64.9

Proposed Approaches

DuEAMwklysupv 91.2 88.5 86.2 80.5 79.9 83.7 90.4 89.5
DuEAMunsupv 89.5 87.0 80.2 77.2 76.6 80.3 88.4 87.7

Table 5.10: Average accuracy on the Tatoeba test set in both directions (en to target language and vice versa) on
untrained languages. All the baseline models are trained on parallel training datasets.

5.2.4.8 Monolingual Classification Performance

A multilingual sentence embedding framework is expected to produce efficient results in monolingual set-
tings. To evaluate the performance on monolingual classification tasks, we now study the performance of
the unsupervised variant of DuEAM on the SentEval benchmark (Conneau & Kiela, 2018). We compare
DuEAM to other sentence embedding frameworks on four tasks :

● MR: Movie reviews positive/negative sentiment analysis (Pang & Lee, 2005)

● SUBJ: Subjectivity/objectivity prediction of reviews (Pang & Lee, 2004)

● TREC: Question type classification on six classes (Li & Roth, 2002)

● SST2: Stanford binary sentiment classification (Reimers & Gurevych, 2019; Socher et al., 2013)

In Table 5.12, we can see quite satisfactory results produced by our DuEAM framework. On every task,
the DuEAMunsupv model surpasses the performance of the supervised LASER model whereas in case of the
TREC task the results are better than even the supervised multilingual S-BERT model.

Overall, the monolingual and multi-lingual experimental results depict DuEAM to effectively capture
cross-lingual semantic understanding (without parallel training data) to generate efficient sentence embed-
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Model / Languages bre ceb cym epo eus gla isl jav khm lat swg

XLM-R← SBERT-paraphrases 10.1 11.7 34.9 68.8 48.6 7.5 75.8 37.0 64.8 28.0 33.9
DuEAMwklysupv 11.5 14.8 52.7 79.2 66.0 21.9 81.9 40.2 65.7 44.0 33.9
DuEAMunsupv 9.8 12.3 46.0 74.0 58.2 16.0 78.5 36.1 52.7 38.9 31.2

Model / Languages swh uzb war xho yid

XLM-R← SBERT-paraphrases 27.6 32.6 11.4 11.6 52.7
DuEAMwklysupv 40.2 40.1 13.0 15.5 53.7
DuEAMunsupv 33.3 35.5 10.8 14.9 46.7

Table 5.11: Average accuracy on the Tatoeba test set in both directions (en to target language and vice versa) on
untrained under-resourced languages.

Model MR SUBJ TREC SST2

XLM-R← SBERT-paraphrases 81.26 93.89 91.2 87.7
LASER 75.29 92.07 91.0 79.9
DuEAMunsupv 76.28 92.86 92.2 81.1

Table 5.12: Evaluation accuracy on a subset of SentEval benchmark (results based on 10-fold cross-validation).

dings by alignment of multiple languages in the same vector space. Observe that DuEAM is trained on only
1GB of data, while other supervised techniques are trained on around 10x or more data.

5.2.5 Ablation Study

Necessity of Multi-task Learning. One of the important features of DuEAM is multi-task joint learning

via the dual-encoder based anchor-learner architecture. To explore the necessity of the different factors for
our learning loss function, we use the Tatoeba dataset for DE-EN, FR-EN, and HI-EN language pairs. We
train weakly-supervised DuEAMwklysupv in three variants:

● With only the anchor module loss term LA (Eq. 5.1), which considers semantic similarity between
sentences,

● Using only the translation mining loss term LB (Eq. 5.2), which identifies the best translation pairs,

● The full multi-task learning objective L.

From Figure 5.3, we observe that the learning objective factors LA and LB individually perform quite
poorly. However, the proposed multi-task training performs efficiently providing a high accuracy in the
range of 92% to 96%. Similar results are observed across the language pairs considered.
Training Dataset Size. Table 5.8(b) depicts that DuEAM outperforms LASER on under-resourced lan-
guages with minimal training. To understand the impact of the size of the training dataset, we evaluated the
performance of DuEAM on Tatoeba data for Georgian (KA), with varying training sizes.

Zero-Shot 1K 5K 10K 15K 20K 25K 30K

71.8 72.9 73.5 74.8 75.9 76.41 76.40 76.42

Table 5.13: Average accuracy of DuEAMwklysupv on Tatoeba (in both directions) for Georgian language (KA) with
varying training data sizes.

In Table 5.13 we see a healthy performance improvement when our weakly-supervised model is trained
with the language-specific dataset, with around 4.5% improvement over zero-shot learning given training
data of size 20K sentences. Thereafter, the improvement is seen to be incremental. Thus, although DuEAM

demonstrates zero-shot learning capabilities, a small amount of language-specific data further boosts the
performance.
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Figure 5.3: Average accuracy on Tatoeba across language pairs with individual objectives of mutli-task learning.

Dataset DE FR ES

25K XNLI dataset 88.7 82.6 86.5
25K TED2020 parallel dataset 89.2 83.8 86.9
12.5K XNLI + 12.5K parallel dataset 90.2 85.1 89.5

Table 5.14: Average accuracy of DuEAMwklysupv on Tatoeba (considering both directions).

Training Dataset Type. We explore the performance of the unsupervised loss function in DuEAM on
various training data scenarios. We consider EN, DE, FR, and ES languages under 3 training settings:

● 25K sentences from XNLI (weakly supervised),

● 25K parallel sentences from TED2020 (supervised),

● 12.5K sentences from each of the datasets.

Table 5.14 depicts similar performances when trained on XNLI or on a parallel corpus alone, while a
combination outperforms the others – showcasing the stability of our proposed unsupervised loss joint loss

function (on training data), removing the dependency on parallel training datasets.

Weight Parameter Value Selection. Weight parameter selection while training the multi-task model is very
important. We experimented with the weight parameter over a range of values and set to the value for which
the model has performed best while training. We have given a snapshot of the model performances over
the different weight parameters in Figure 5.4. We have calculated the average Spearman rank correlation
(ρ) results for STS datasets for six language pairs. From the figure we can see that the best model perfor-
mance achieved with weight parameter 0.003. Higher weight parameter value decreased the performance.
This helps us to understand the importance of the weight parameter while training the model in multi-task
settings.
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Figure 5.4: Average Spearman rank correlation (ρ) results for Semantic Textual Similarity (STS) datasets for six
language pairs.

Cos. Simi. Sentence pairs Results

0.9961 DE: das ist der Geburtstag von Muiriel!
EN: it is Muiriel’s birthday! True

0.9465 DE: das ist der Geburtstag von Muiriel! Positives
EN: Happy birthday, Muiriel!

0.9870 DE: Das Wesen der Freiheit leigt in der Mathematik.
EN: The essence of Mathematics is liberty. False

0.9860 DE: Das Wesen der Freiheit leigt in der Mathematik. Positives
EN: The essence of liberty is mathematics.

(0.9971) (Correct EN Translation: The essence of freedom lies in Mathematics.

Table 5.15: Raw cosine similarity value on the Tatoeba DE-EN dataset.

5.2.6 Discussion: Semantic Similarity

In general, applications use cosine similarity between sentence embeddings to gauge semantic textual sim-
ilarity. We provide a performance analysis of DuEAM based on the raw cosine similarity score on Tatoeba
DE-EN data. For example, the German sentence “das ist der Geburtstag von Muiriel!” (“That is the birth-
day of Muiriel”) has the highest cosine similarity with its English translation “it is Muiriel’s birthday!”,
although the sentence “Happy birthday, Muiriel!” is very similar. The detailed result can be found in Table
5.15. This depicts that DuEAM can capture fine-grained semantic difference among similar sentences.

On the other hand, for the German sentence “Das Wesen der Freiheit liegt in der Mathematik.” we
obtain a higher cosine similarity score for the English sentence “The essence of mathematics is liberty.”.
In fact, the true translation “The essence of freedom lies in mathematics” (achieving the highest cosine-
similarity but absent in the Tatoeba dataset) is closer to “The essence of liberty is mathematics.”. Although
the similarity score is almost equal, our model is unable to identify the correct word ordering in highly
overlapping sentences as the WMD measure is inherently word-order agnostic. Multilingual SBERT too
fails in this scenario, but with a higher difference in cosine-similarity between sentences, 0.01 compared to
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Figure 5.5: Overall architecture of MUFIN framework for learning multi-lingual task-specific sentence embeddings.

0.001 in DuEAM (using the translation mining LB loss factor). Use of Wikipedia dumps for training such
sentence embedding models forms an interesting future study.

In the next section we will describe our proposed MUFIN which enhances the performance of the
multilingual sentence embedding frameworks on the multilingual classification tasks.

5.3 E N H A N C I N G S E M A N T I C U N D E R S TA N D I N G O F S E N T E N C E

E M B E D D I N G F R A M E W O R K S

5.3.1 Our Approach

This section describes the workings of the proposed MUFIN framework for enhanced multi-lingual task-
specific sentence embedding generation. It consists of two main components:

● Unsupervised up-projection of fixed-length sentence embeddings to incorporate additional knowl-
edge from language models,

● Alignment of the new projected embedding space for domain-specific task.

The overall architecture comprises 4 modules (shown in Fig. 5.5).

Consider, the training dataset T to be a collection of short text or sentences {s1, s2,⋯, sn} with associ-
ated labels or categories {c1, c2,⋯, cn}. Similarly, the test or inference dataset I consists of sentences but
without any knowledge of the labels. The objective here is to assign the sentences in I to the predefined
categories or labels present in the training set.

5.3.1.1 Unsupervised Embedding Up-Projection Module

The first module of MUFIN performs dimensionality expansion on the fixed-length sentence embeddings,
termed as up-projection, using a larger “un-fine-tuned” pre-trained language model. Assume S to be a
sentence embedding framework providing vector representation of N dimensions, while L is a pre-trained
language model providing vector representation of M dimensions (M >N).
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As shown in Fig. 5.5, we consider the SBERT-XLM-R-paraphrase sentence embedding model 3 to
provide sentence vectors of size N = 768, and pre-trained XLM-R-large-XNLI language model (with vector
size M = 1024) is used for up-projecting the sentence embeddings.

1. The up-projection is achieved with the help of a fully connected neural network via self reconstruction

of data based on back-propagation (Rumelhart et al., 1986) through the network layers. An input
sentence embedding si ∈ RN is passed through the neural network which learns to output higher-
dimensional embedding s ′i ∈ RM via a non-linear transformation f ∶ RN → RM.

2. The projected embeddings are then transferred to the same vector space as that of the large language
models by minimising the the mean-squared loss between their sentence embeddings. Thus for a
given batch size of β sentences, we optimize Equation 5.3 :

1

β

β

∑
i=0

[S(si)−L(si)]
2 (5.3)

where L(si) is the sentence embedding obtained from the language model, S(si) is the embeddings
obtained from sentence embedding model, and si ∈ T .

In our setting, the 768 dimension SBERT embeddings (of the training data) are up-projected and
transferred to the 1024 dimensional representation space of the XLM-R-large language model. This up-
projection stage helps to supplement sentence embeddings from S by extracting additional semantic knowl-
edge from the language model L, and represent them together in a common space. One of the main ad-
vantages of our framework is that this module is unsupervised, which eliminates the need for expensive
fine-tuning of the pre-trained large language model.

5.3.1.2 Domain Alignment of Up-Projected Embedding

Since, MUFIN aims to learn task specific sentence embeddings, in this module, the up-projected sentence
embeddings are aligned to the downstream application domain using the task specific training dataset T .
To this end, we refine the obtained embeddings (from the previous step) using the training sentences and
associated labels.

The up-projected sentence embeddings s ′i ∈ RM are provided to another fully connected neural network
with an output softmax layer, which learns to predict the label or category probability distribution (for an
input embedding) across the n training labels, using Equation 5.4:

pij =
exp(zj)

∑
n
t=1 exp(zt)

(5.4)

where n is the number of classes, zi provides the hidden layer representation provided to softmax, and pij

gives the probability that sentence embedding si belongs to class cj.
This enables domain adaptation and aligns the embeddings to be tuned specifically for the downstream

task at hand. This is akin to the process of language model fine-tuning – and gears the obtained text
representations in MUFIN for the specific application needs.

5.3.1.3 Meta Embedding Using Aligned Sentence Embedding

This diversity of different sentence embedding techniques captures different aspects of semantics, and
demonstrates varying degrees of success on different classes of tasks. As such, meta embedding studies

3 Obtained from www.sbert.net/docs/pretrained_models.html.

www.sbert.net/docs/pretrained_models.html


78 S E N T E N C E R E P R E S E N TAT I O N L E A R N I N G

different combinations of embeddings from multiple sources (Coates & Bollegala, 2018). In this module,
we adopt the concept of meta embedding on the sentence embeddings obtained from the previous layer. The
intuition here is that various aligned sentence encoders (which differ in architecture and pre-training data)
demonstrate complementary strengths, which upon being fused together provides improved performance –
further enabling MUFIN to bridge the gap with fine-tuned large language models.

To this end, we combine aligned up-projected embeddings obtained from two different SBERT models,
namely XLM-R-paraphrases and XLM-R-NLI-STSB. To demonstrate the flexibility of our framework and
to also incorporate diversity, we further combine text representations from LASER (Artetxe & Schwenk,
2019) (in its native form, i.e., without any projection or alignment). The choice to using “frozen” generic
LASER embeddings is to enable generalized semantic knowledge to also be integrated within our frame-
work, along with the domain semantic understanding obtained from the aligned up-projected encodings.
The final sentence representation is obtained by concatenating the 3 vectors obtained from LASER and two
aligned SBERT models.

Note, other sentence embedding models can easily be incorporated. However, addition of more sentence
embedding models and use of other meta embeddings techniques (using Singular Value Decomposition
(SVD) (Klema & Laub, 1980; W. Yin & Schütze, 2016) and Autoencoders (AE) (Baldi, 2012; Bollegala &
Bao, 2018)) have not been considered in the current setting for two reasons:

● The proposed framework is meant to be light-weight in terms of training time and model complexity,
hence adding more complexity will impact these parameters

● Analyzing different combinations of available sentence encoders (there are 10s of such pre-trained
models) and finding the best, is orthogonal to our contribution.

5.3.1.4 Sentence Meta Embedding Classification

The final module is used to learn to classify the sentence meta-embeddings obtained from the above step.
We use a shallow fully connected neural network with a softmax layer (similar to Sec. 5.3.1.2), trained to
classify the input sentence meta-embeddings to their corresponding labels.
Inference. Upon arrival of a new test sentence to classify, its SBERT embeddings are obtained from the
already trained aligned up-project models (see Sec. 5.3.1.2) along with its “frozen” LASER representations,
to create the meta-embedding. This final meta embedding is fed to the final trained classifier layer to
infer the class or label of the test sentence. Given, the embedding models are already trained and the final
classification module is a small shallow network, the inference time is in the order of milliseconds per
sample – making it practical for enterprise settings.

5.3.2 Aligned Individual Sentence Embedding Framework

We showcase the performance of individual supervised and unsupervised sentence embedding frameworks
using our proposed methodology on:

● Aligned DuEAM UP – Classification based on the aligned and up-projected unsupervised sentence
embedding framework DuEAM proposed in Section 5.2.1.

● Aligned SBERT-XLM-R-paraphrases UP – Classification based on the aligned and up-projected
supervised sentence embedding framework SBERT-XLM-R-paraphrases.

While training the models individually, the aligned sentence embedding models individually are passed
through the softmax layer as described in Step 5.3.1.4.
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5.3.3 Empirical Evaluation

We evaluate the proposed MUFIN framework on different benchmark classification tasks, modelling differ-
ent applications. Considering the lack and/or expense of multi-lingual training data, we adopt a zero-shot

scenario – wherein the framework is trained only on a single language (e.g., English) but evaluated on dif-
ferent languages. We compared the performance of the algorithms using the standard accuracy measure for
classification tasks.

5.3.3.1 Datasets

We consider the different application scenarios for dataset selection:

● Applications like question matching (for FAQ retrieval Assem et al., 2021) involve understanding
semantic similarity between pairs of short text (or sentence-pairs),

● Automated chatbots and digital assistants involve precise understanding of user intents and parsing
of relevant information for the associated actions and,

● Analyzing user feedback and reviews for identifying user pain-points and improving operational pro-
cesses.

To this end, we have evaluated MUFIN on the following datasets:

● PAWS-X - This is a paraphrase identification extending the Wikipedia portion of PAWS (Y. Zhang
et al., 2019) to four languages for evaluation - English (EN), German (DE), Spanish (ES), and French

(FR).

● Query-Ad Matching (QADSM) – This task aims to predict whether an advertisement is relevant to
an input query, having two labels - Good and Bad and is evaluated on English, German, and French.

● Multilingual Amazon Review – Consists of product reviews across different Amazon products
across a time span of four years (from 2015 to 2019). The dataset has total five classes based on
the user rating provided, with 200,000 reviews for training and 5000 reviews for testing on different
languages. We evaluate on German, Spanish, and French, while train only on English.

● Natural Language Understanding (NLU) – The in-house translated dataset is designed based on
the existing benchmark for intent classification (X. Liu et al., 2019) consisting of user utterances
with 64 unique intents. The dataset consists of English training dataset and is tested on machine
translations to Arabic (AR) and Spanish.

● MTOP – Multilingual Task-Oriented Semantic Parsing Benchmark data released by Facebook, con-
tains a combination of utterances from 11 domains and 117 user intents. This data consists of 22,288
utterances for English to train, and is tested on German, Spanish, and French.

Observe that PAWS-X and QADSM are text-pair classification tasks, while NLU and MTOP involve
single sentence classification. Further, the text size in QADSM and Amazon Review datasets are larger than
the others – capturing diverse industrial application settings for NLU.
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Table 5.16: Accuracy on PAWS-X dataset.

Approaches / Languages EN DE ES FR

Baseline Methods

XLM-R-large 93.5 87.8 88.4 87.2
Aligned SBERT-XLM-R-paraphrases (NP) 86.2 74.6 81.2 78.7
Aligned DuEAM (NP) 84.2 70.4 78.1 73.5
Aligned Meta-embedding (NP) 87.9 78.6 81.7 80.5

Proposed Methods

Aligned SBERT-XLM-R-paraphrases (UP) 88.7 79.1 82.4 81.5
Aligned DuEAM (UP) 87.6 76.8 81.4 79.2
MUFIN 90.5 82.1 83.6 82.2
Here UP denotes up-projection and NP denotes no projection.

5.3.3.2 Baselines

We compare the classification accuracy performance of MUFIN against the following baselines:

● XLM-Roberta-large: We have used the large pre-trained language model XLM-R-large (Conneau
et al., 2020) as baseline system. We fine-tune the language model to the different datasets – an
expensive process that we wish to alleviate through our contribution.

● SBERT-XLM-R-paraphrases: The state-of-the-art sentence transformer trained on large parallel
corpus for more than 50 languages using teacher-student architecture (Reimers & Gurevych, 2020).

● DuEAM: We also compared with our proposed unsupervised sentence embedding model DuEAM.

5.3.4 Experimental Evaluation

We have evaluated MUFIN on the above mentioned cross-lingual benchmarks. In all experiments the model
is trained on English and tested on other languages. In each experiment we also compared MUFIN with
our baseline meta embedding framework, consists of state-of-the-art two SBERT models (SBERT-XLM-R-
NLI-STSB / SBERT-XLM-R-paraphrases) and LASER (Artetxe & Schwenk, 2019) model.

5.3.4.1 PAWS-X

Understanding semantic similarity between sentence pairs while doing sentence classification is one of
the important tasks of sentence embedding frameworks. We have evaluated our model on the sentence
pairs classification dataset PAWS-X (Liang et al., 2020). Observe, in Table 5.16 the aligned non-projected
SBERT-XLM-R-paraphrases and DuEAM model perform less effectively in comparison to the XLM-R-
large model. As expected, the baseline non-projected meta-embedding variant outperformed the aligned
non-projected SBERT-XLM-R-paraphrases and DuEAM model, but there is a big performance gap with
XLM-R-large. The proposed method MUFIN framework has significantly outperformed the baseline mod-
els and achieved comparative performance with respect to XLM-R-large model. Moreover, our proposed
variant projected aligned SBERT-XLM-R-paraphrases has achieved better performance than both the base-
lines aligned SBERT model and aligned non-projected meta-embedding variant, both in monolingual and
zero-shot settings. Interestingly, the projected aligned DuEAM not only outperformed the non-projected
aligned base variants including the supervised SBERT-XLM-R-paraphrase model, but also it has achieved
comparative results with respect to the supervised aligned non-projected meta embedding model for the
language English, Spanish and French.
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5.3.4.2 Query-Ad Matching (QADSM)

In the recent times, users tend to post queries irrespective of domain. Business sectors try to promote
their products by reaching the maximum number of users with advertisements of their products, which
emphasizes the importance of producing efficient match between query and advertisement using semantic
similarity between sentences. We have evaluated our system MUFIN on the benchmark binary classifi-
cation dataset. We observe from Table 5.17 that projected aligned SBERT-XLM-R-paraphrases variant

Table 5.17: Accuracy on QADSM dataset.

Approaches / Languages EN DE FR

Baseline Methods

XLM-R-large 71.9 69.6 71.7
Aligned SBERT-XLM-R-paraphrases (NP) 66.9 62.0 63.0
Aligned DuEAM (NP) 64.7 61.2 61.3
Aligned Meta-embedding (NP) 68.0 64.2 64.2

Proposed Methods

Aligned SBERT-XLM-R-paraphrases (UP) 68.1 64.1 64.5
Aligned DuEAM (UP) 67.7 63.8 64.3
MUFIN 69.7 66.2 66.7
Here UP denotes up-projection and NP denotes no projection.

outperformed the baseline method, aligned SBERT-XLM-R-paraphrases, with an average improvement of
4.5 in accuracy score. The similar kind of results can be observed for the aligned projected DuEAM variant
outperforming the baseline models by on an average 3.9 accuracy score. It even outperformed the non-
projected meta-embedding model for the French language. Our proposed meta-embedding method MUFIN

has outperformed the aligned non-projected meta-embedding variant with an average accuracy of 2.5. This
indicates robustness of the proposed model. It understands semantic similarity between sentence pairs and
achieve better sentence embeddings for sentence pairs for classification.

5.3.4.3 Multilingual Amazon Review

In the real world, user commented sentences tend to be long, noisy and hard to understand. The zero-
shot evaluation result on this dataset gives an understating of how the model understands noisy sentence
construction of target languages when trained only on English. From Table 5.18 we see that on an average
the proposed MUFIN has outperformed the baseline variants with almost 2.3 point of accuracy. For this
dataset this is a commendable gain in performance as the margin between baseline SBERT and DuEAM
variants is very small. In the very noisy in-domain dataset, the performances of the supervised (SBERT)
and unsupervised (DuEAM) aligned up-projected variants are increased, which highlights the stability of
the framework. Also, the MUFIN model has achieved comparable results in comparison to the XLM-R-
large model which highlights, in practical industrial settings in-domain alignment with our approach for the
noisy datasets can easily be adaptable rather than training big language models with much more memory
and time.

5.3.4.4 Natural Language Understanding (NLU)

While understanding semantic relatedness between sentence pairs for classification is an important task
for sentence embeddings frameworks, efficiently classifying single sentences is also very important in real
world scenario. We evaluate MUFIN on the natural language understanding benchmark data where user
utterances are annotated with intents. To understand the model efficiency in zero-shot settings, the target
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Table 5.18: Accuracy on Multilingual Amazon Review Dataset.

Approaches / Languages EN DE FR ES

Baseline Methods

XLM-R-large 67.7 64.6 59.2 60.0
Aligned SBERT-XLM-R-paraphrases (NP) 65.1 59.6 54.9 55.5
Aligned DuEAM (NP) 64.6 58.9 54.3 54.8
Aligned Meta-embedding (NP) 65.9 61.7 56.2 57.0

Proposed Methods

Aligned SBERT-XLM-R-paraphrases (UP) 65.7 60.5 55.5 56.7
Aligned DuEAM (UP) 65.2 59.9 54.8 55.9
MUFIN 66.9 63.0 58.0 58.4
Here UP denotes up-projection and NP denotes no projection.

language test datasets are in-house machine translated. Observe, in Table 5.19 MUFIN has comparable re-

Table 5.19: Accuracy on Multilingual NLU dataset.

Approaches / Languages EN AR ES

Baseline Methods

XLM-R-large 92.7 82.7 86.4
Aligned SBERT-XLM-R-paraphrases (NP) 89.0 80.0 83.0
Aligned DuEAM (NP) 88.2 78.6 82.8
Aligned Meta-embedding (NP) 90.1 80.7 84.7

Proposed Methods

Aligned SBERT-XLM-R-paraphrases (UP) 91.2 80.3 84.8
DuEAM (UP) 90.4 79.6 83.3
MUFIN 92.1 81.5 85.0
Here UP denotes up-projection and NP denotes no projection.

sults with XLM-R-large in case of monolingual settings. In case of zero-shot as well as monolingual results,
it outperforms the SBERT-XLM-R-paraphrases and non-projected aligned SBERT meta-embedding model.
Interestingly in case of monolingual settings, the aligned projected SBERT-XLM-R-paraphrases variant out-
performed non projected aligned SBERT meta-embeddings, and in the case of zero-shot settings it produced
comparable results. This is significant as the aligned projected SBERT-XLM-R-paraphrases takes less time
than the non projected aligned SBERT based meta-embedding model for training and inference, but pro-
duces more effective embeddings for single sentence classification. Moreover, the unsupervised aligned

projected DuEAM model outperformed the baseline variants and it highlights that the models trained with
low-resource settings can be deployed with high efficacy.

5.3.4.5 MTOP Dataset

While working with mixed domain single sentence classification datasets, understanding semantic similar-
ity with respect to the annotated classes often hard task to solve. To evaluate the performance of the model
MUFIN in mixed domain datasets, we have compared MUFIN with baseline systems for zero-shot learn-
ing and on English. Here the classes are annotated intents. In Table 5.20 we can see that the proposed
variant projected aligned SBERT-XLM-R-paraphrases outperformed the state-of-the-art SBERT-XLM-R-
paraphrases model in both monolingual and zero-shot settings. Similarly the projected aligned DuEAM

outperformed the baseline version in both monolingual and zero-shot settings. In fact the projected aligned

DuEAM model has outperformed the projected aligned SBERT-XLM-R-paraphrases model for the French
language. Though, it is expected to get better result with the large language model, XLM-R-large, while
trained on an in-domain dataset, our proposed framework MUFIN has achieved comparative performance to
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Table 5.20: Accuracy on MTOP dataset.

Approaches / Languages EN DE FR ES

Baseline Methods

XLM-R-large 98.1 94.3 94.0 93.5
Aligned SBERT-XLM-R-paraphrases (NP) 95.7 90.7 90.9 92.0
Aligned DuEAM (NP) 95.2 89.8 90.1 91.4
Aligned Meta-embedding (NP) 96.2 92.7 92.4 92.9

Proposed Methods

Aligned SBERT-XLM-R-paraphrases (UP) 96.0 91.2 91.7 92.4
Aligned DuEAM (UP) 95.8 90.8 91.1 92.6
MUFIN 97.5 93.4 93.7 93.1
Here UP denotes up-projection and NP denotes no projection.

that, highlighting the efficiency of the model. In fact it has outperformed the non projected aligned SBERT
based meta-embedding model with on average 1.8% increase in accuracy.

5.3.5 Qualitative Study

Training on Additional In-domain Dataset. In real world scenarios, the quality of in-domain classifica-
tion dataset is sometimes very hard to get. But, if the training dataset size is increased, the aligned sentence
embedding model, if trained with additional dataset, should give better performance. To understand the
efficiency of MUFIN in these scenarios, we have studied model performance after doing data up-sampling.
The multilingual NLU dataset is up-sampled by 30% by copy-paste technique. We have compared our
model with non-projected aligned meta-embedding. The models trained in Section 5.3.4.4 retrained with
the up-sampled dataset. Observe, though there is a performance boost for the baseline model in comparison

Table 5.21: Accuracy on 30% up-sampled NLU dataset.

Model EN AR ES

Aligned Meta-embedding (NP) 92.5 84.0 85.2
MUFIN 94.1 85.6 87.2
Here NP denotes no projection.

to the accuracy reported in Table 5.21, MUFIN has outperformed quite significantly having healthy perfor-
mance improvement. This leads to the conclusion that small in-domain data size increment can boost the
performance of MUFIN quite significantly.

Alignment on Small Training Datasize. One of the challenges for multilingual sentence embedding frame-
works or language models poses is unstable training convergence, while trained on small scale in-domain
datasets. Stable training of sentence embedding models, is very important for less-resourced scenarios. We
have evaluated proposed MUFIN framework on sub-sampled data from Amazon review datasets and com-
pared the performance with XLM-R-large model. We have randomly picked 2000 training samples from
each classes resulting a total of 10000 training samples and tested on provided test datasets. From Table

Table 5.22: Accuracy on 10k sampled Amazon Review Dataset.

Model EN DE FR ES

XLM-R-large 46.6 44.6 42.2 43.2
MUFIN 51.1 48.2 48.9 47.4

5.22, it can be observed that MUFIN has outperformed the large language model with an average 4.5%
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increase in accuracy. Thus MUFIN is more effective and easier to train with smaller datasets, giving the
opportunity to implement for wide range of natural language processing tasks in industrial settings.

Until now we have discussed about sentence representation learning for low-resourced NLP applications
containing of inter-sentential code-mixed sentences or monolingual sentences. But in the current era, recent
advances in public communication over different social media sites have led to an increase of another type
of sentence construction called intra-sentential code-mixed sentences. In the next section we will talk about
learning sentence representations for the intra-sentential code-mixed sentences.

5.4 I N T R A - S E N T E N T I A L C O D E - M I X E D S E N T E N C E R E P R E -

S E N TAT I O N L E A R N I N G

Intra-sentential code mixing is a common phenomena in multilingual societies where people switch from
one language to another in the same sentence. In some cases, the words in a code-mixed sentences can be
identified by native speakers by orthographic differences. For example in Figure 5.6, the Hindi words are
written in Devanagari script where as English words are in Roman scripts.

Figure 5.6: Hindi-English code-mixed tweet

Researchers have designed language identification tool to identify languages written in different scripts
in a code-mixed sentence and encoded with the pretrained word vectors like aligned Fasttext embeddings
(Bojanowski et al., 2017). These word embeddings are then fed into sequential deep neural networks to
obtain the sentence representation. Rani et al., 2022 performed language identification using our novel lan-
guage identification method introduced in Chapter 4 on word level for code-mixed Hindi-English sentences.

But quite often the code-mixed sentences are written in the same script in a sentence. We can see in
Figure 5.6 the Hindi and English code-mixed sentence “blessing chahiye bht sari msg dikhani h” is written
in Roman script. In this sentence the words “blessing” and “msg (message)” are English words whereas the
sentence is actually a Hindi sentence. Language identification gets tougher due to the usage of abbreviation
words like “msg” which is not an English dictionary word. State-of-the-art language models often do not
have these kind of words in their vocabulary which reduce their efficiency for different NLP tasks. On
the other hand, often the multilingual language identification models failed to identify words written in non-
native scripts (in this case for English the standard language identification models are trained on Devanagari
script). In this section we have introduced a novel deep learning framework which addresses these problems
and generates efficient sentence embeddings for these intra-sentential code-mixed sentences.

To design intra-sentential code-mixed sentence representation learning, we have worked on one of the
recent issues of understanding user sentiments from tweets. Analysis of short texts from micro-blogging
platforms such as Twitter is in high demand as the analysis of these texts distill and evaluate the moods
and the sentiment of the users and are very useful for different organisations, be it government, business
or NGO. Sentiment analysis for Indian code-mixed languages is relatively new (Chakravarthi et al., 2020a;
Chakravarthi et al., 2020b; Jose et al., 2020; Rani et al., 2020). The significant difference in style of
language, orthography (Chakravarthi et al., 2019b) and grammar used in tweets presents specific challenges
for English-Hindi code-mixed data. In this part, we introduce a novel deep neural network (DNN) system
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English-Hindi code-mixed dataset (Patwa et al., 2020). The details of the dataset are described later (refer
to 5.4.1. We also compare the system with other state-of-the-art systems and describe how the system has
outperformed others. During the training process the absence of word level language tags highlights the
novelty of this work for generating sentence representations.

5.4.1 Dataset

The provided dataset consists of English-Hindi code-mixed tweets annotated with sentiment labels: positive,
negative, or neutral. Besides the sentiment labels the dataset also includes mixed, and univ (symbols, @
mentions, hashtags). As it is very common for Twitter data to have other forms of text such as URLs
and emoticons, this data-set too contains emojis such as , / and URLs. The distribution of labels and
sentences for the train and development set can be found in Table 5.23. In the experiments, the model has
been trained with the training set and validated with the development set. Both the train and development
sets contain higher number of neutral tweets than positive and negative.

Data-set Neutral Negative Positive
Train 5264 4102 4634
Dev 1128 890 982

Table 5.23: Data-set distribution

Three different data processing pipeline were used as we have trained three different models for the
experiment. We normalize the data for training the Support Vector Machine (SVM) and deep neural network
(DNN), by lower-casing all the tweets and removing punctuation, emojis and URLs. After converting all the
tweets into lower case, extra spaces were removed from the tweets. The tweets are tokenized into characters,
where each character has been mapped to an index number. The character-index mapping is created with
the help of the Keras tokenizer package4. As the tweets are of different lengths, we have padded each
tweets with maximum length of the sequence using keras padsequences function5. We have assigned a new
numeric value to each of the sentiment labels for our experiments. Neutral, Negative and Positive has been
converted to 0, 1 and 2 consecutively.

5.4.2 System Description

We trained three different models including our own proposed deep learning model. The first experiment
started with linear Support Vector Machine (SVM). For our second experiment, we used a state-of-the-
art character-level Convolution Neural Network (CNN) model for sentence classification (X. Zhang et al.,
2015). The third experiment was carried out using our own proposed GenMA Model, which has outper-
formed the other two models on the data-set.

4 https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer
5 https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/pad_sequences

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/sequence/pad_sequences
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5.4.2.1 Support Vector Machine

SVM is an algorithm which maximizes a particular mathematical function with respect to a given collection
of data (Noble, 2006). In our experiment, we have focused on the linear SVM methodology. The objective
of linear SVM optimization problems is to maximize the given equation:

maxα
l

∑
i=1

αi −
1

2

l

∑
i=1

l

∑
j=1

yiyjαiαj(xixj) (5.5)

where αi is the weight of the examples, x is the input and y is the label. After pre-processing the data, we
experimented with the most basic input feature TF-IDF, which was created with the help of TfidfVectorizer6

of the Scikit Learn package. The minimum document frequency for the vocabulary building has been set to
3 and maximum document frequency has been set to 8.

5.4.2.2 Convolution Neural Network (CNN)

In this experiment, we have followed the CNN model described by X. Zhang et al., 2015, which has a
one-character embedding layer and four convolution (CONV1D) layers. For the first three convolution
layers, one max-pooling layer has been added, after each convolution layer. The final convolution layer is
followed by one hidden layer, which in turn is followed by one softmax layer. The model accepts sentences
as sequence, and characters as input. The character embedding is a one-hot embedding (1-to-n embedding)
where the number of unique characters is n. The shape of the filter is one-dimensional in size k. The filter
slides over the input sequence matrix to create the feature map of dimension b× f× s where b is the batch
size, f is the number of filters used, and s is determined by the formula m− k+ 1 where m is the input size.
Stride 1 is used to calculate features based on each character including spaces and special characters.

5.4.2.3 Generative Morphemes with Attention (GenMA) Model

We propose an artificial morphemes generative system with Self Attention (SA) layer. The model takes the
input sequence as a character sequence. The model has one character-embedding layer and two convolution
(CONV1D) layers. Each convolution layer has one max-pooling layer. After the convolution layers, there
is one bidirectional LSTM layer, followed by one self-attention layer. The model has one hidden layer and
one softmax layer. Z. Liu et al., 2018 designed a network which is based on the Chinese character attention
model for sentence classification. We have taken inspiration from that model. Z. Liu et al., 2018 rely on
capturing the local context of sentences based on a single convolution layer whereas GenMA is capable of
generating new artificial morphemes and framing a sentence as a group of new morphemes irrespective of
the language identification of source words. The combination of two CNN layers helps to generate new
morphemes based on deep relative co-occurring characters (3 characters frame), and the LSTM layer helps
to capture the global information of sentences based on newly generated features. The SA layer helps
to construct sentence-level information. It also captures relativity strength among different co-occurring
character features. The model architecture can be found in Figure 5.7.

A Convolution Neural Network layer is used as a feature extractor of the sentences. The one-
dimensional convolution implements one-dimensional filters which slides over the sentences as a feature
extractor. Let the filters have a shape of 1× k where k is the filter size. Let xi ∈ {0,1}n denote the one-hot
representation of the i-th character considering character vocabulary size is n. For each position j in the

6 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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Figure 5.7: Relative Character Attention Model; the input is the character embeddings which is mentioned with phys-
ical characters; boxes filled with blue colour are the concatenated outputs of the BiLSTM.

sentence, a window vector wj is developed with k consecutive character vectors (Zhou et al., 2015) denoted
as

wj = [xj,xj+1, .....,xj+k−1] (5.6)

The one-dimensional k-sized filters slide over the window vector wj to create the feature map s where
s ∈ Rm−k+1, and where m is the input size. Multiple filters are used to generate different feature maps
for each window wj. The resulting new feature representation, Wj, represents a new feature map vector
for the j-th position of the sentence. The second convolution layer will take feature representations as
input and generate a high-order feature representation of the characters. The max-pooling network after
each convolution network helps to capture the most important features of size d. The new high-order
representations are then fed to the LSTM (Long Short Term Memory Network) as input.

Long Short Term Memory (LSTM) Network layer takes the output of the previous CNN layer as in-
put. The LSTM layer produces a new representation sequences in the form of h1,h2, ....hn where ht is the
hidden state of the LSTM of time step t, summarising all the information of the input features (morphemes)
of the sentences. An LSTM unit is composed of one memory cell and three gates (input gate, forget gate and
output gate) (Hochreiter & Schmidhuber, 1997b). At each time step t, the hidden state takes the previous
time step hidden state ht−1 and characters (xt) as input. Let us denote memory cell, input gate, forget gate
and output gate as ct,it,ft,ot. The output hidden state ht and the memory cell ct of timestep t are defined
by Equation 5.7

it = σ(Wi ⋅ [ht−1,xt]+bi) , ft = σ(Wf ⋅ [ht−1,xt]+bf)

ot = σ(Wo ⋅ [ht−1,xt]+bo) , ft = σ(Wf ⋅ [ht−1,xt]+bf)

ct = ft ⊙ ct−1 + it ⊙qt , ht = ot ⊙ tanh(ct)

(5.7)
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Here ⊙ is the element-wise multiplication operation; Wi,Wf,Wo,Wq are the weights of the matrices;
bi,bf,bo,bq are the biases; and σ denotes the logistic sigmoid function. A Bidirectional LSTM (BiLSTM)
network has been used, which has helped us to summarise the information of the features from both di-
rections. The Bidirectional LSTM consists of a forward pass and a backward pass which provides two
annotations of the hidden state hfor and hback. We obtained the final hidden state representation by con-
catenating both hidden states hi = hi−for ⊕hi−back, where hi is the hidden state of the i-th timestep and
⊕ is the element-wise sum between the matrices.

The Attention layer helps to determine the importance of one morpheme over others while building
sentence embeddings for classification. The LSTM layer will have the hidden states containing the informa-
tion of time step t and its previous time steps. But all morphemes are not equally important while building
a sentence (taking into consideration that sentence is build by sequence of characters including space and
special characters). A self-attention mechanism has been adopted from Baziotis et al., 2018, which will help
to identify the morphemes that are important for capturing the sentiment of the sentence. The self-attention
mechanism is built on the attention mechanism developed by Bahdanau et al., 2015. The mechanism as-
signs weight ai to each feature’s annotation based on output hi of the LSTM’s hidden states, with the help
of the softmax function as illustrated in Equation 5.8

ai = tanh(Wh ⋅hi +bh) , ai =
exp(ai)

∑
T
t=1 exp(at))

(5.8)

The new representation will give a fixed representation of the sentence by taking the weighted sum of all
feature-label annotations as shown in Equation 5.9

r =
T

∑
i=1

ai ⋅hi (5.9)

where Wh and bh are the attention weights and bias respectively.
The Output layer consists of one fully-connected layer with one softmax layer. The sentence represen-

tation after the attention layer is the input for the dense layer. The output of the dense layer is the input of
the softmax which gives the probability distribution of all the classes with the help of the softmax function
as shown in Equation 5.10

pi =
exp(ai)

∑
T
t=1 exp(at)

(5.10)

where ai is the output of the dense layer.

5.4.3 Results

Overall, the classifiers exhibit varying performance, with some performing much better out-of-sample than
others. Table 5.24 shows the class-wise macro F1-score of different models on the test-set.

Model Pos Class Neg Class Neut Class Score
SVM 0.64 0.62 0.57 0.61
Char-CNN 0.68 0.65 0.56 0.63
GenMA 0.73 0.67 0.63 0.68

Table 5.24: F1-scores of three algorithms on dataset

The state-of-the-art character CNN model has performed better than the SVM model. One of the main
reasons for this is that a CNN is capable of identifying the features of the sentence with the help of a neural
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model weight distribution. It also takes special characters into account which make the sentence embedding
more robust to work on. On the other hand, the hyper-tuning settings of the TF-IDF vectors could be the
cause of the lower performance of the SVM.

Our GenMA model has outperformed all classical models as well as the state-of-the-art character CNN
model as it considers a sentence composed of a different set of morphemes. The individual results on
three different sentiment classes show that the model outperforms the other two models while recognizing
individual classes, whereas the SVM model recognizes neutral classes better than the CNN model. Our
model has achieved 0.68 F1-score in the test set which is seven percent better than the SVM and five
percent better than the character CNN model.

5.4.4 Discussion

The proposed GenMA model outperforms other models as it is capable of generating new morphemes out
of neighboring characters and it identifies the essential morphemes to classify a sentence. The two main
advantages of our model are:

● The model can construct sentence embeddings based on the new generative morphemes which are
created artificially in a combination of both Hindi and English. These morphemes carry the features
of both languages. As illustrated in figure 5.8, the new morpheme avo generated by the model (this
is weighted .021 by the model). Here the character “a” belongs to the Hindi word “Ka” and the
character sequence “vo” belongs to the English word “vote”. This shows that these new artificial gen-
erative morphemes have features of both Hindi and English. Thus, multilingual word-level language
identification annotations are not required.

● The model is able to correctly identify the co-occurring character sets with highest importance in
terms of sentiment analysis. The attention mechanism is visualized in Figure 5.8. The red characters

Figure 5.8: Character of tweets (English-Hindi) with attention scores

are the most important characters for sentence classification. The blue characters also contribute
significantly; the black characters contribute least significantly to the sentence classification. Some of
the generated artificial morphemes put more emphasis on sentence polarity (An example is morpheme
“ote”, which is weighted approximately five times (0.061) higher than the normal morpheme “arn”
(0.011)). The model enables softmax attention weights to rank characters high to low.

5.5 C H A P T E R W R A P - U P

In this chapter, we have discussed efficient sentence representation learning frameworks for inter-sentential
as well as intra-sentential code-mixed sentences. Our approaches include capturing better semantic repre-
sentation of sentences which enhances the efficacy of sentence encoders for downstream NLP tasks.

First we proposed an unsupervised loss function based DuEAM framework for multilingual sentence em-

beddings based on dual encoder with anchor-learner model via multi-task learning. The joint loss function
coupling word mover’s distance and cosine similarity to capture the degree of text similarity and related-
ness between sentence pairs. This enhances the ability of understanding the syntactic and semantic meaning
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of languages, producing better results for low-resourced languages. Our experiments on monolingual and
cross-lingual benchmarks showcase the efficacy of our sentence embeddings in capturing semantic simi-
larities across 58 languages. We demonstrate that DuEAM significantly outperforms existing unsupervised
models for textual similarity understanding. We also depicts robustness in zero-shot learning and limited

training, for catering to under-resourced languages, and achieve results better or comparable to existing
supervised methods in certain cases.

Secondly, our proposed Meta Embedding with Up-Projection and Fine-Tuning (MUFIN) framework
learns enhanced sentence representation geared towards text classification applications. Experiments on
cross-lingual benchmarks demonstrates the efficiency of the model while aligned with low-resourced in-
domain datasets. We demonstrate that the MUFIN framework successfully outperforms the state-of-the-art
multilingual sentence embedding models. Moreover, it achieves comparative performance to large language
model XLM-R-large while doing different classification with less memory and time to train. We also depict
robustness in limited training, for catering to limited in-domain training datasets and achieve better results
to large language models.

Lastly, we made steps towards designing an efficient sentence encoder which can handle intra-sentential
code-mixed datasets. Our motivation is to encode the code-mixed sentences, delivering better results to
downstream NLP tasks. Our proposed novel deep neural model GenMA has outperformed the state-of-
the-art models on code-mixed data proposed in Patwa et al., 2020 as discussed in Section 5.4.3. Our
model is capable of classifying the sentiment of the sentences without considering language difference
between words in the sentences with an F1-score of 0.68 on the test data. This reduces the need of gathering
orthographic language-dependent knowledge, which opens up the chances of deploying this system widely.



6 I D E N T I F Y I N G C O G N AT E S F O R

C L O S E LY- R E L AT E D L A N G UAG E S

6.1 I N T R O D U C T I O N

In the previous two chapters, we discussed our contribution towards research questions RQ1 and RQ2.
In chapter 4 and 5 we have discussed novel methods for getting sentence representations for both low-
resourced languages and low-resourced NLP applications. Our discussion of the novel language identifica-
tion method enhances the possibility of getting sufficient training datasets for different languages to train
unsupervised cross-lingual sentence embedding frameworks on different corpora. But often the training
datasets in different scenarios are created using automatic machine translation tools (we obtained machine-
translated NLU datasets in Section 5.3.4.4). Thus the generation of sentence embeddings is dependent on
the quality of these datasets. Often these cross-lingual sentences consist of words having similar meaning
and spelling called “cognates”, which influence the quality of sentence embeddings. In this chapter, we
will introduce a novel unsupervised cognate detection methodology which exploits the understanding of
grammatically related word representations between closely-related languages and we will study whether
this enhances the sentence representation learning for downstream NLP tasks.

Cognates are etymologically related word pairs across languages (Crystal, 2011). However, cognates
are defined in much broader terms in many different fields, including natural language processing (NLP) or
psycholinguistics (Labat & Lefever, 2019). In these areas, word pairs with similar meanings and spelling
are also considered cognates. In the recent development of automatic machine translation (AMT), auto-
matic cognate detection is found to be a very effective aid for similar language translation (Kondrak, 2005;
Kondrak et al., 2003). Moreover, it helps to efficiently perform cross-lingual information retrieval (Makin
et al., 2007; Meng et al., 2001) from different sources. Very often, words that have similar spelling are
recognised as cognates (Example: the Latin and the English word pair “cultūra” and “culture”). Automatic
machine-translated sentences also consist of cognates which on the contextual word level convey the se-
mantic meaning of the sentences (Example: the English sentence “he met an accident” will be translated
to Spanish sentences “se encontró con un accidente” where “accident” and “accidente” are cognates). Nev-
ertheless, there are word pairs which are false friends or partial cognates (Kanojia et al., 2020c). Partial
cognates are similar words across languages but carry different meanings in different contexts (Kanojia
et al., 2019b), thus making automatic cognate detection hard and challenging. Identifying these cognates
requires extensive linguistic knowledge across languages, which is quite hard and expensive to annotate.
While cross-lingual automatic cognate detection systems (Kanojia et al., 2020a) exist, they have primarily
been supervised methods requiring labelled data or language-specific linguistic rules. For under-resourced
languages, finding annotators or linguists is a challenging task. This highlights the need for an efficient
unsupervised language-agnostic cognate detection framework. Our approach involves designing the frame-
work with the help of grammatical word representation knowledge of the languages.

In this chapter we aim to answer our third research question:

91
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● RQ3. Does effective cross-lingual word representations learning improve unsupervised cognate de-
tection without any language information for closely related and low-resourced languages? Having
detected cognates, does this assist in producing better sentence embeddings for NLP applications?

We will address the first part of the research question first:

● RQ3.1. Does effective cross-lingual word representations learning improve unsupervised cognate
detection without any language information for closely related and low-resourced languages?

Cross-lingual or multi-lingual word representation commonly known as multilingual word embeddings
represent words from diverse languages into the same shared vector space. Researchers have proposed dif-
ferent word embedding techniques over the year starting from static word embeddings like the GloVe word
embeddings (Pennington et al., 2014) to contextual word embedding techniques like the XLM-Roberta
model (Conneau et al., 2020). Often two closely-related languages have many structural and grammatical
similarities in the words. The traditional character-based word embedding techniques help to highlight the
orthographic similarities between the languages, resulting in a cross-lingual orthographic aligned shared
vector space (Severini et al., 2020). But this technique is not very efficient when there are orthographic dif-
ferences. Moreover, it fails to capture the grammatical relatedness between languages of the same language
families.

On the other hand, it can be argued that word embeddings infused with morphological knowledge of
languages are mapped to related words efficiently in a shared vector space (Cotterell & Schütze, 2015).
Morphological learning helps to capture the internal structures of a word of a language. Thus learning
of morphological word representations helps to form a one-to-one mapping between the closely-related
languages. As cognates are etymologically related word pairs, we believe infusion of deep morphological
knowledge in a cognate detection framework can boost the efficiency of the model. We show that our
unsupervised approach can better exploit the available data than existing supervised methods and thus
produce better results for under-resourced languages. The method transfers the morphological knowledge
of a shared encoder in the unsupervised cognate detection framework into a Siamese network setting, where
the framework simultaneously learns word representation and cluster assignments in a self-learning setup.

The supervised cognate detection framework understands the relationship between word pairs by either
concentrating on their phonetic similarity or lexical similarities based on their annotated positive or nega-
tive labels (Jäger et al., 2017; Rama, 2016). Recently, researchers tried to exploit contextual multilingual
word embedding techniques to identify cognates which produced better results than only concentrating on
phonetic transcriptions (Kanojia et al., 2020a). Although such methods produced good results, for most of
the languages the annotation is quite expensive and tedious. Moreover, producing multilingual contextual
word embeddings is a challenging task for these languages due to fewer data sources on the web. Merlo and
Rodriguez, 2019a highlighted that based on bilingual lexicon matching between two known languages, the
similarity score produced by contextual word embeddings could differentiate between true or false cognate
pairs. Though this technique is label independent, the framework is very much dependent on the bilingual
lexicon availability of the known language pairs.

To alleviate the above challenges, in this chapter, we propose a language-agnostic unsupervised cognate

detection framework based on Siamese architecture with an iterative clustering approach (J. Xie et al., 2016)
during back-propagation. Our encoder design is inspired by our proposed methodology in chapter 4, where
we learnt the n-gram character features of a sentence with attention. We introduce a positional encoder on
n-gram features which, in combination with the attention mechanism, learns sub-words representation of
a word. We also depict the performance of our morphological knowledge-based unsupervised framework.
This variant gives a better understanding of the grammar and structural analysis of the words of a language.
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Thus transferring this knowledge with the help of a shared encoder to closely-related languages enhances the
understanding of structural and grammatical relatedness between cross-lingual word pairs. Moreover, our
word encoding method helps to produce better supervised cognate detection results, which outperform the
state-of-the-art supervised results on various language pairs. We present both supervised and unsupervised
results in this chapter.

The extensive experiments on three different cognate detection datasets across language families have
showcased the efficacy of our unsupervised and supervised cognate detection framework. For example, on
six different Indian language pairs, our unsupervised model (with morphological knowledge) has outper-
formed the state-of-the-art supervised model proposed by Kanojia et al., 2020a by an average of 9 points of
F-score whereas for Celtic language pairs, it outperformed by 8.6 points of F-score. At the same time, our su-
pervised framework has produced a state-of-the-art performance by outperforming the existing supervised
model by an average of 16 points of F-score. Thus, our model is robust across diverse language families
for the supervised and unsupervised cognate detection task. Interestingly, our experiments show that on
Indian language pairs like Hindi-Punjabi and Hindi-Marathi, an encoder with morphological knowledge
of the Hindi language performed better than an encoder with morphological knowledge of their ancestral
language Sanskrit by an average of 1.5 points of F-score. However, the performance of the unsupervised
framework for the language pair Marathi-Bengali has improved by 2 points of F-score.

To this end, we propose:

● A language-agnostic unsupervised cognate detection framework without the need for labels;

● Efficiently transferring morphological knowledge of a low-resourced language to closely-related
under-resourced languages with or without the need for the pivot language for better cognate de-
tection;

● Introduction of positional embedding along with attention to different n-grams of a word for better
understanding of word structures;

● Robustness in unsupervised and supervised cognate detection for low-resource languages across
three different datasets of different language families, outperforming state-of-the-art supervised ap-
proaches.

6.2 C O G N AT E D E T E C T I O N F R A M E W O R K

In this section, we describe the components and working of the proposed Language Agnostic Unsupervised

Cognate Detection Architecture Using Morphological Knowledge, trained using an unsupervised loss func-
tion and iterative clustering method. The iterative clustering process enhances the understanding of word
representation and cluster assignment.

Figure 6.1 depicts the shared word encoder based framework. It consists of two parts - (i) a Morphology

Learner, which gathers the morphological knowledge of a language and (ii) an Unsupervised Cognate De-

tector, which uses the morphological knowledge learnt using a shared word encoder to cluster the cognates
between word pairs.
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Figure 6.1: Unsupervised Cognate Detection Framework with Morphology Learner and Unsupervised Cognate De-
tector. For training we pass monolingual word-pairs into morphology learner (coloured in green) and
bilingual cognate candidates (coloured in blue) into unsupervised cognate detector.

6.2.1 Word Encoder

The word encoder consists of n-gram character-level CNN and a positional embedding layer, followed by a
self-attention layer.

Character Encoding. The character level CNN layer generates word representations on n-gram (n ∈
{2,3,4,5,6}) characters, which helps to understand the representation of words on different subword level
(Goswami et al., 2020). The different subword level representations of a word are achieved using a 1-
dimensional CNNs (X. Zhang et al., 2015). The characters of a word are fed as input sequence S =

[w1,w2, ...,wm] to the 1-dimensional CNN, where m is the number of characters present in the word
and wi is a character in the word. Considering the 1-dimensional CNN as a feature extractor, it slides over
characters to create a window vector wj with consecutive character vectors, as denoted in Equation 6.1.

wj = [xj,xj+1, .....,xj+k−1] (6.1)

where k is the size of the feature extractor filter and xi ∈ Rd is the d-dimensional character embedding of
the i-th character, where character vocabulary size is n. Thus this k-sized filters create the the feature map
s (s ∈ Rm−k+1) from the window vector wj according to Equation 6.2,

sj = a(wj ⋅m+bj) (6.2)

where vector m is a filter for convolution operation, bj is the bias for the j-th position and a is the non-
linear function. Thus the new feature representation of the word F (F ∈ R(m−k+1)×n) will be expressed as
F = [s1, s2, ..., sn], where n is the number of filters and m is the total input size. Observe, the different filter
size k ∈ {2,3,4,5,6} represents the n-gram features of the word, which will be represented as Fk.
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Positional Encoding of Features. While getting n-gram features of the word representation, the char-
acter sequence order carries a significant role in word construction. We try to learn the different n-gram
positions in a word with the help of our new introduction of positional encoding. Transformer architectures
(Vaswani et al., 2017a) enforce the trainable positional embedding on the input word pieces to understand
the position of the words in a sentence. In our input words the same character can appear in multiple posi-
tions, which makes positional embedding on each character irrelevant. Rather, our approach of learning the
n-gram sequence in a word helps to understand the grammatical and morphological differences from the
structural perspective of a word. Following the learning process of the positional embedding of transformer
architecture, we encode the trainable positional encoding of different n-gram features to Fk according to
Equation 6.3

pei,2k = sin(i/10002k/d)

pei,2k+1 = cos(i/10002k+1/d)
(6.3)

where d is the dimension of the output in the embedding space and k is the position of an object in input
sequence.

Attention of Features. The new encoded feature representation Fk produces the ultimate word embed-
ding which is achieved by giving weight to n-grams according to their importance in word construction. A
self-attention mechanism takes the feature representation as input and produces output weight vector a for
every feature representation F using the following Equation 6.4

a = softmax(tanh(Wh ⋅ F
T
+bh)) (6.4)

The summation of feature representation F according to the weight vectors provided by a generates vector
representation r of a word by Equation 6.5

r =
T

∑
i=1

ai ⋅ Fi (6.5)

where ai is the attention weights, and ⋅ is the element-wise product between elements. The final vec-
tor representation r is the concatenation of different n-grams ∈ {2,3,4,5,6}, which is represented as r =

[r2, r3, r4, r5, r6].

6.2.2 Morphology learner

We learn the morphological relationship between two words ri and rj of the same language in a Siamese
setting (details of the morphological training dataset building with an example is given in Section 6.3). The
encoded vector representations then passed through a fully connected (FC) layer which gives two vector
representations zl ∈ RN×K and zr ∈ RN×K. The morphological learner model is then trained to minimize
the mean-squared loss between two word representations such that their vector space distances reflect their
degree of morphological relatedness in Equation 6.6

1/N
N

∑
i=1

(zli − zri)
2 (6.6)

where N is the mini-batch size.
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6.2.3 Unsupervised Cognate Detector

The encoder with morphological knowledge accepts two word representations ri and rj from two different
languages as input in a Siamese setting. The encoded vector representations then passed through a fully
connected (FC) layer which gives two vector representations u ∈ RN×K and v ∈ RN×K. We concatenate the
word representations u and v with their cosine similarity score and pass it through a sense layer to achieve
the combined representation z ∈ RN×K. It is then passed through a softmax layer to get the probability
distribution of all classes p ∈ RN×K, as per Equation 6.7

pij =
exp(zij)

∑
K
t=1 exp(zik)

(6.7)

where k is the number of classes. We train the unsupervised model based on the maximum likelihood
clustering loss proposed in Chapter 4, where we try to maximize the probability distribution function for
each class and at the same time try to minimize the probability of getting on all the datasets assigned to one
class using Equation 6.8.

Lu =
N

∑
i=1

i
max
j=1

pij −
N

max
i=1

i

∑
j=1

p2ij (6.8)

While the unsupervised loss function helps us to get word embeddings and an initial cluster assignment,
it is important to improve cluster purity according to datasets. J. Xie et al., 2016 proposed a self learning
based deep clustering technique. The framework learns the clustering based on stochastic gradient descent
(SGD) during backpropagation. We finetune our word embedding to learn better clustering using this
iterative clustering technique. The initial sets of cluster centroids uj

k
j=1

is obtained from the pre-training
phase using Equation 6.8. In this self training phase, we assign word embeddings to initial cluster centroid
and then fine-tune the word embeddings and cluster centroids using auxiliary target distribution.

The assignment of cluster centroids (uj) and word embeddings (zi) are calculated based on Student’s
t-distribution (Maaten & Hinton, 2008) as per Equation 6.9

qij =
(1+ ∥zi −uj∥

2
)
−1

∑j ′ (1+ ∥zi −uj ′∥
2
)
−1

(6.9)

where qij is the probability of sample i to cluster j assignment.

We now refine the cluster learning from their high confidence assignments using auxiliary target distri-
bution pij (J. Xie et al., 2016). This helps to improve cluster purity putting more emphasis on data point
assignment, as per Equation 6.10

pij =
q2
ij/∑i qij

∑j ′ (q
2
ij/∑i qij ′)

(6.10)

where ∑i qij is the frequency of clusters.

The cluster assignment self-learning process is trained based on KL divergence loss between assign-
ments qi and pi, as shown in Equation 6.11.

L = KL (P∣∣Q) =∑
i

∑
j

pij log
pij

qij
(6.11)
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Word1 Word2
nuachtán. nuachtáin
eolas. a eolais.
síceolaí. leis an síceolaí.
Críostaí. Críostaithe.

Table 6.1: Morphology Learning Dataset for Irish Language

Word1 (Hindi) Word2 (Marathi) Label
Ghrina [Hate] Ghrina [Hate] Positive
Prerit [Inspired] Bahan [Vehicle] Negative
Akshyam [Unable] Vyasana [Addiction] Negative
Akashbani [Predict] Akashbani [Predict] Positive

Table 6.2: Cognate Detection Dataset for Hindi-Marathi Language pairs

6.3 T R A I N I N G DATA S E T

The framework has two parts: (i) Morphology Learner and (ii) Unsupervised Cognate Detector.

Morphological training is based on UniMorph (McCarthy et al., 2020) datasets. As shown in Table 6.1,
our Siamese network accepts two words as input. The inputs are the monolingual word pairs of the pivot
language in UniMorph data (as shown in Figure 6.1, we train the encoder of the morphological learner on the
Hindi dataset in a supervised manner and transfer the knowledge to the unsupervised cognate detector for
Marathi-Gujrati word pairs). Though our model is trained with the supervised dataset from UniMorph, we
do not consider the annotated morphological class while training the morphological learner. The statistics
of datasets for three pivot languages and Sanskrit are given in Table 6.3.

Cognate Detection Task We have evaluated our models on three different datasets for the cognate
detection task: Indian, Celtic, and South African languages. For under-resourced Indian language pairs,
we have followed the work of Kanojia et al., 2020c. For South African and Celtic languages, as there are
no easily available datasets for the cognate detection task, we have built the dataset from the open-source
cognate database CogNet (Batsuren et al., 2019). The true cognates are directly taken from the dataset
and false cognate pairs are randomly shuffled word-pairs with a 60-40 split of the total dataset available
in the database for each language pair. We experiment with both supervised and unsupervised learning of
these cognate classifiers, based on the encoder that was learned in the previous step. During the training
procedure of the unsupervised cognate detector, no word pair labels of cognate datasets are considered. An
example of the dataset can be found in Table 6.2.

6.4 E X P E R I M E N TA L E VA L UAT I O N

We evaluated our framework on three different datasets in three different scenarios: (a) Language pairs
with pivot language and its morphological knowledge, (b) Language pairs without the pivot language but
with the shared encoder having morphological knowledge of the pivot language and (c) The effect of the
historical language morphological knowledge transfer on the language pairs.

We compare our models with the following supervised state-of-the-art cognate detection frameworks:
(i) CNN based model Siamese CNN based approach by Rama, 2016, (ii) Orthographic similarity based
approach from Labat and Lefever, 2019, (iii) Recurrent Neural Network based approach proposed by
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Dataset Hindi Irish Zulu Sanskrit
Training Dataset. 42200 2579 49696 437675

Table 6.3: Morphological Training Dataset of Three Pivot Languages and Sanskrit

Kanojia et al., 2019b, (iv) Contextual Word Embedding based approach with XLM-R (Conneau et al.,
2020) proposed by Kanojia et al., 2020a.

6.4.1 Pivot Language based Cognate Detection

Understanding word representation is the key to the state-of-the-art deep learning frameworks for different
cross-lingual cognate detection tasks. Supervised models rely on distributional learning based on the anno-
tated labels. In contrast, the unsupervised frameworks should be able to learn the structural and syntactical
representations of words to do clustering. We have evaluated our model on different language families
including Indo-Aryan, Dravidian (Kanojia et al., 2020c), Celtic and South-African languages.

Approaches / Languages Hi-
Mr

Hi-
Gu

Hi-
Pa

Hi-
Bn

Hi-
Ta

Hi-
As

Orthographic Similarity 0.21 0.23 0.21 0.36 0.20 0.34
(Rama, 2016) 0.69 0.67 0.47 0.65 0.53 0.71
(Kanojia et al., 2019b) 0.72 0.76 0.74 0.68 0.53 0.71
XLM-R + FFNN 0.73 0.76 0.73 0.78 0.56 0.71

Proposed Supervised Methods

Proposed-method 0.81 0.79 0.80 0.79 0.69 0.78
Proposed-methodwithknowledge 0.91 0.87 0.88 0.86 0.77 0.82

Proposed Unsupervised methods

Proposed-method 0.72 0.73 0.74 0.75 0.67 0.69
Proposed-methodwithknowledge 0.85 0.84 0.81 0.82 0.74 0.79

Table 6.4: Results of supervised and unsupervised cognate detection task based on F-Score for Indian languages. The
baseline performances are as reported in Kanojia et al., 2020a

As shown in Table 6.4, we have evaluated our model on six different language pairs. Our baseline model
is based on the orthographic similarity approach. As expected, it does not perform well (Example: Word
pair “Alankar (Ornament)” in Hindi, and “Alankaaram (Ornament)” in Tamil with similar word structures
classified wrongly). The character-based CNN method proposed by Rama, 2016 followed by the recurrent
network-based solution proposed by Kanojia et al., 2019b increases the model efficiency by quite a margin
while detecting cognates. The contextual word embedding XLM-R based baseline model gives the best
score compared to the previous models’ score. This model is capable of injecting contextual knowledge
of words from a sentence. Our proposed approach has outperformed all of these baseline frameworks
and achieved state-of-the-art results for supervised and unsupervised frameworks. For the language pairs
Hindi-Marathi, as they are very closely related, transferring the learnt Hindi morphological knowledge has
increased the efficiency of the model by 18 points of F-score. We observed that our unsupervised framework
with morphological knowledge outperformed the state-of-the-art supervised baseline system by 13 points of
F-score. It is interesting to note that our supervised and unsupervised frameworks achieved state-of-the-art
results by outperforming the baseline systems by 21 and 18 points of F- score, respectively, for the language
pair Hindi-Tamil. Hindi and Tamil come from different language families, Indo-Aryan and Dravidian,
significantly boosting the efficacy of the cognate detection framework. On average, our supervised and
unsupervised system has achieved an improvement of 16.8 and 9 points of F- score, respectively, on Indian
language pairs.
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Approaches / Languages Zu-
Ss

Zu-
Xh

Ga-
Gd

Ga-
Gv

Orthographic Similarity 0.21 0.31 0.29 0.22
(Rama, 2016) 0.24 0.61 0.64 0.59
(Kanojia et al., 2019b) 0.23 0.74 0.72 0.61

Proposed Supervised Methods

Proposed-method 0.65 0.76 0.77 0.69
Proposed-methodwithknowledge 0.72 0.87 0.88 0.74

Proposed Unsupervised methods

Proposed-method 0.69 0.73 0.71 0.62
Proposed-methodwithknowledge 0.78 0.79 0.81 0.71

Table 6.5: Results of supervised and unsupervised cognate detection task based on F-Score for South African and
Celtic languages.

Table 6.5 shows the performances of the South African and Celtic language pairs. For South African
languages, we have Zulu (Zu), Swati (Ss) and Xhosa (Xh). Irish (Ga), Manx (Gv), and Scottish Gaelic
(Gd) are part of the Celtic languages. We transferred morphological knowledge of Zulu and Irish to other
South African and Celtic languages, respectively. Our proposed supervised and unsupervised framework
outperformed the state-of-the-art baseline models. We reported poor performance of the baseline models
for the language pairs Zulu and Swati. Due to very few training datasets availability of Zulu-Swati (only
23 cognate pairs are available), the models cannot be trained effectively. On the other hand, our proposed
approaches performed better than the baseline models by a large margin and very interestingly, our unsu-
pervised model is better than the supervised model by 6 points of F-score. Relatively complex word pairs
such as “umgqibelo (Saturday)” in Zulu, and “úm-gcibélo (Saturday)” in Swati are correctly identified as
cognate pairs.

These results show that the proposed cognate detection framework can efficiently detect cognates across
language pairs with the morphological knowledge of the pivot language. Moreover, with fewer training data,
the proposed unsupervised framework with or without morphological knowledge is an efficient solution for
cognate detection.

6.4.2 Absence of Pivot Language

We now evaluate the robustness of our transfer learning approach on the cross-lingual language pairs in the
absence of the pivot language. For Indian language pairs, our pivot language is Hindi (Hi), whereas for the
Celtic language pairs pivot language is Irish (Ga). From Table 6.6, we observe that the transfer learning
approach is still very efficient when the pivot language is absent. As we can see, for the language pairs Gd-
Gv, without knowledge transfer in supervised learning, the recurrent neural network approach by Kanojia
et al., 2019b is better than our approach. However, with the morphological knowledge encoded, for both
supervised and unsupervised methods, our model outperforms by 11 and 9 points of F-score, respectively.
On average, our transferred knowledge-based unsupervised method has outperformed the baseline method
by 8.6 points of F-score. Thus, we can see a steady performance across all language pairs, showing the
stability of the proposed morphological knowledge transfer supervised and unsupervised framework.

6.4.3 Knowledge of Historical Language

In this section, we will discuss the effect of transferring knowledge from the historical language Sanskrit.
In terms of cognate detection, using Sanskrit as the pivot language for transfer learning is well motivated
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Approaches / Languages Mr-
Gu

Pa-
Gu

Mr-
Pa

Mr-
Bn

Gd-
Gv

Orthographic Similarity 0.22 0.26 0.21 0.32 0.19
(Rama, 2016) 0.64 0.65 0.69 0.61 0.49
(Kanojia et al., 2019b) 0.72 0.75 0.77 0.68 0.64

Proposed Supervised Methods

Proposed-method 0.79 0.79 0.78 0.74 0.62
Proposed-methodwithknowledge 0.91 0.88 0.87 0.86 0.75

Proposed Unsupervised methods

Proposed-method 0.72 0.71 0.74 0.70 0.59
Proposed-methodwithknowledge 0.86 0.83 0.84 0.80 0.73

Table 6.6: Results of supervised and unsupervised cognate detection task based on F-Score for Indian and Celtic
languages in absence of Pivot Languages.

since it is the historical ancestor of almost all Indo-Aryan languages. We have studied the model’s efficiency
while transferring the knowledge of Sanskrit to modern languages. In this experiment, we have taken Indian
language pairs Hindi-Punjabi, Hindi-Marathi and Marathi-Bengali. Comparing the results of the models
given in Table 6.7, we can observe a slight dip in model efficiency in both supervised and unsupervised
frameworks while transferring the knowledge from Sanskrit compared to transferring the knowledge from
Hindi to the language pairs Hindi-Punjabi and Hindi-Marathi. However, the performance for the language
pair Marathi-Bengali has improved on an average of 1.5 points of F-score. We believe its performance
can be attributed to the closeness and preserving more similarities in the characteristics of the language
pairs Marathi and Bengali to Sanskrit than Hindi. Sanskrit is considered a highly agglutinating and mor-
phologically rich language (Kumar, 1975), thus it is hard to parse it computationally. Though Marathi and
Bengali are not as morphologically complex as Sanskrit, the languages in this pair are more agglutinating
and morphologically richer than Hindi and Punjabi.

Approaches / Languages Hi-
Mr

Hi-
Pa

Mr-
Bn

Proposed Supervised Methods

With Hindi Knowledge 0.91 0.88 0.86
With Sanskrit Knowledge 0.90 0.86 0.87

Proposed Unsupervised methods

With Hindi Knowledge 0.85 0.81 0.80
With Sanskrit Knowledge 0.83 0.80 0.82

Table 6.7: Results of supervised and unsupervised cognate detection task based on F-Score for Indian languages trans-
ferring knowledge from Hindi and Sanskrit.

6.4.4 Improved Sentence Embedding

While we have designed the novel unsupervised cognate detection methodology, in this section we have
responded to the second part of our RQ3 which is:

● RQ3.2. Having detected cognates, does this assist in producing better sentence embeddings for NLP
applications?

Meng et al., 2001 argued that cognate detection helps to perform cross-lingual information retrieval. Re-
cently Y. Yang et al., 2020 proposed multilingual sentence embedding for semantic retrieval task. The State-
of-the-art LASER model (Artetxe & Schwenk, 2019) trained with large parallel corpora is said to be the best
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performing sentence encoder for parallel sentence matching. This helps to gather different cross-lingual in-
formation from the web for different domain specific tasks including question-answer retrieval. We argue
that by injecting automatically detected cognates as training dataset, our newly introduced DuEAM model
(refer to Chapter 5) can outperform LASER. We also argue that in this training process, the DuEAM model
demands a lower amount of training data than LASER.

To perform the experiment we have taken reference of the training methodology of DuEAM model
on 25K parallel sentences from TED2020 (refer to Section 5.2.5 in Chapter 5). TED2020 is a corpus
containing translated subtitles for about 4000 TED talks and available for almost 100 languages (Reimers
& Gurevych, 2020). We have trained the model on Hindi-Marathi and Hindi-Bengali dataset and tested on
the same language pairs. For testing we have held out 1K parallel sentences (across languages pairs) from
TED2020 and evaluated models performances based on accuracy of finding parallel sentences. We injected
the cognate pairs detected by our unsupervised methodology with the 25K parallel sentence pairs as single
word sentences for each language pair.

Model HI BN MR

DuEAMwithoutcognate 88.7 82.6 86.5
LASER 91.2 86.8 87.9
DuEAMwithcognate 93.4 87.1 89.5

Table 6.8: Average accuracy on TED2020 (considering both directions).

From Table 6.8, we can see that the DuEAM framework trained with parallel sentences along with cog-
nates outperformed the state-of-the-art method LASER by on average 14% in accuracy while trained on
comparatively lesser training datasets for each language pairs. If we compare the vanilla DuEAM method-
ology with our proposed training process, our theory of injecting cognates in the training corpora improves
the model efficiency for parallel sentence matching. This also proves the hypothesis of capturing better
semantic understanding of cross-lingual sentences by a sentence encoder while having the knowledge of
cognate pairs between languages.

6.4.4.1 Cross-lingual Parallel Sentence Matching

In this section, we compare the performance of the approaches in extracting parallel sentences using the
Tatoeba benchmark of Artetxe and Schwenk, 2019. Our aim is to evaluate the performance of both super-
vised (Reimers & Gurevych, 2020) and unsupervised (DuEAM model introduced in Chapter 5) sentence em-
bedding frameworks when fintuned on cognates. We trained the model with Hindi-Marathi, Hindi-Bengali
Indo-Aryan cognate pairs. Evaluation for the parallel sentence matching task is done by finding the most
similar sentence between two languages based on their cosine similarity. We have calculated accuracy in
both directions (English to target language and vice versa), and have reported the average accuracy of the
two.

Model HI BN MR

XLM-R← SBERT-paraphrases 96.4 77.6 91.0
DuEAM 83.5 67.7 73.4
XLM-R← SBERT-paraphrases 97.1 79.2 91.7
DuEAM 85.4 70.1 77.5

Table 6.9: Average accuracy on Tatoeba dataset in both directions (EN to target language and vice-versa). Baseline
results taken from Reimers and Gurevych, 2020.

From Table 6.9, we can observe performance improvement for both the models in comparison to the
vanilla models. Across languages the supervised model gained an improvement of around 1.7%. On the
other hand, the unsupervised framework DuEAM has achieved 2.8% better accuracy on average for all three
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languages. These results show that the semantic information flow with cognates between similar languages
is able to produce a better shared vector space having similar sentences close to each other.

6.5 A B L AT I O N S T U DY

We now study the effects of the morphological learner on the efficiency of unsupervised cognate detection.

Effect of morphological training datasize. One of the challenges of morphological knowledge transfer
is the efficient learning of word structure in the presence of few morphological training datasets. As Irish
has a few training datasets, we have evaluated the proposed framework on different samples of the Irish-
Manx dataset (Refer to 6.4). We have down-sampled and up-sampled the morphology training set to 30%
compared to the existing datasets. From Figure 6.2, we can observe that the best F-score 0.79 is achieved
when the morphological learner model is trained with 30% more data size than the original size. This
emphasizes our claim of the model’s efficacy even with a slight increase in the morphological training
datasets, which opens up the opportunity of implementing the unsupervised cognate detection framework
using different sets of under-resourced languages.

Figure 6.2: F-Score for Irish-Manx language pairs transferring knowledge from different morphological learners

6.6 C H A P T E R W R A P - U P

In this chapter, we have discussed a novel methodology for identifying cognates between closely-related
languages. The model is a language-agnostic cognate detection framework trained using a Siamese archi-
tecture. Experiments on three different datasets consisting of Indian languages, Celtic languages and South-
African languages showcase the efficacy of our framework in understanding the structural relations between
cognate words across languages. We also show that transferring morphological knowledge to the closely-
related word pairs with the help of a shared encoder improves the model’s efficacy in different scenarios.
Our study on knowledge transfer from historical language depicts changes in the word structures of mod-
ern languages. We demonstrate that our approach outperforms the existing supervised and semi-supervised
frameworks and establishes state-of-the-art supervised and unsupervised results for the cognate detection
task. We also showcase the stability of learning morphology on a small number of training datasets which
opens up the possibility of deploying the system across language families. Later, our experimental results
on parallel sentence matching and parallel sentence mining tasks showcase the improvement of sentence
embedding frameworks while trained using these cognate pairs. Thus, with the help of efficient cognate
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pairs, learned representations of different applications for low-resource languages can be improved in a
limited infrastructure.





7 C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter, we will provide the conclusions of the previous chapters and will revisit the research ques-
tions we raised in Chapter 1. We will then describe the answers we provided for the research questions.
Moreover, we will also highlight the research contributions in this thesis. Lastly, we will point out various
possible future research directions in line with the contributions in this thesis.

7.1 R E S E A R C H Q U E S T I O N S A N D C O N C L U S I O N S

To be trained effectively, a state-of-the-art distributional model requires a large amount of training dataset
for different natural language understanding tasks. The training of these models is also dependent on the
quality of the training datasets. Moreover, the multilingual sentence embedding or word embedding models
rely on parallel training datasets. Often the low-resourced languages do not have sufficient parallel training
datasets or may contain only monolingual datasets. Different low-resource NLP applications irrespective of
domains suffer from having a low amount of annotated training datasets or noisy training datasets. Recently,
datasets from social media sites are being considered for low-resourced languages. Thus, the efficiency of
the language models can be improved after training. But these are mostly intra-sentential or inter-sentential
code mixed datasets which are hard to be identified. Existing language identification tools like the FastText
language identification tool are very limited to some of the well-resourced languages. Thus efficiently
identified sentences can be considered unlabelled training datasets. This thesis is written to tackle these
problems by designing state-of-the-art algorithms to capture the inner representation of the sentences or
words for low-resourced languages and applications. For this, we have identified three research questions:

● RQ1. Is an unsupervised deep sentence embedding framework capable of identifying languages as
accurately as supervised language identification models for code-mixed under-resourced and closely-
related languages?

● RQ2. Does an unsupervised deep sentence embedding framework generate efficient sentence embed-
dings in cross-lingual domains for under-resourced languages without the use of parallel corpora for
downstream natural language tasks? Does unsupervised projection of efficient word representations
improve sentence embeddings in cross-lingual domains?

● RQ3. Does effective cross-lingual word representations learning improve unsupervised cognate de-
tection without any language information for closely related and low-resourced languages? Having
detected cognates, does this assist in producing better sentence embeddings for NLP applications?

We started by designing the state-of-the-art language and dialect identification framework for short texts
of closely-related low-resourced languages in Chapter 4. We argued that the research question RQ1 can be
answered by capturing the global relationships between characters in a sentence. The research question we
aimed to solve was
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● RQ1.1: What is the best way to construct sentence embeddings and how to cluster them efficiently
for short texts when there is no labelled training data?

To answer, we designed a system which considers a sentence as a character sequence instead of a word
sequence. The system is capable of capturing the different n-gram relationships globally and locally high-
lighting the inner syntactic and semantic representation of the sentence. Moreover, the system scores the
n-grams according to their importance for language-specific sentence construction. We train the system
to capture the sentence representation during the back-propagation. Though there exist entropy-based loss
functions to train the system (refer to Section 2.2), in this case, the training is unsupervised and thus the
gold standard labels are absent. The newly designed Maximum Likelihood Clustering Loss (MLC Loss)

function described in Section 4.6, can maximize the probability distribution function based on the feature
assignments on each class (or cluster). We tested this methodology on three different language families and
in the Table 4.2, observed substantial improvement in language and dialect identification. Therefore, we
conclude that the newly designed unsupervised language and dialect identification framework is capable of
identifying the under-resourced closely-related languages and dialects in a code-mixed text. This work is
also applicable to supervised settings with limited pre-processing and few resource requirements.

After the language identification, the dataset having sentences from low-resource languages can be
used by the distributional sentence or document embedding models for downstream tasks. But most of the
these datasets do not contain efficient parallel sentences which is a bottleneck for the existing sentence or
document embedding models to be trained. We try to tackle this challenge in Chapter 5 and drafted answer
for the research question RQ2.

In Chapter 5, we tackled two problems. First

● RQ2.1. Does an unsupervised deep sentence embedding framework generate efficient sentence em-
beddings in cross-lingual domains without the use of parallel corpora for downstream natural lan-
guage tasks?

The existing sentence embedding frameworks are designed to be trained on parallel sentences which is hard
for low-resource languages. Our goal was to design an unsupervised sentence embedding framework to
be trained with non-parallel datasets. In relation to that, we have come up with a novel idea of a dual en-
coder based unsupervised and weakly-supervised sentence embedding framework which produces efficient
sentence embeddings for low-resourced languages as well as high-resource languages and does not require
a parallel training dataset. The framework is called DuEAM. To design the same we have introduced a
new machine learning framework called Anchor-learner architecture. The dual encoder with anchor model,
trained in a multi-task setup with a newly introduced unsupervised semantic loss function and a transla-
tion mining based loss function. The learner module is trained to generate sentence embeddings such that
the Euclidian distance between the learnt sentence embeddings closely approximates the word mover’s
distance (WMD) (calculated using token embeddings by anchor) between sentence pairs. We obtain word-
level semantic knowledge of the source and target sentences from pretrained multilingual language models.
Subsequently, embeddings for source and target are generated by the learner such that their vector space
distances reflect the degree of semantic relatedness. This tends to preserve the “relative semantic distance”
between the input sentences, enabling DuEAM to capture the “semantic relation at word level” within the
sentence embeddings obtained. Forcing the system to consider the knowledge of our anchor system about
the semantic relationships of the sentences at the word-level, helps to stabilize the training process as the
pre-trained anchor model is fixed and the WMD score is considered as a scalar. On the other hand, while
mapping semantically similar sentences close to each other in the shared vector space, an effective embed-
ding framework should also address the translation ranking problem to efficiently map correct translations
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of source-target sentence pairs within a compact zone of the vector space. Since DuEAM is an unsupervised
approach, we introduce translation mining based loss, using the cosine similarity score between source and
target sentences, to handle translation mining. Our experimental results show that the framework has out-
performed supervised state-of-the-art sentence embedding frameworks on different NLP tasks including
parallel sentence matching, semantic textual similarity and monolingual classification tasks. Extensive
experiments for parallel sentence matching task on diverse low-resource languages of different language
families highlight the model efficacy even in zero-shot settings. From Table 5.8, the small scale training
results on low-resourced languages Georgian (KA, Kartvelian family) and Amharic (AM, Ethio-Semitic
family) encouraged us to apply the DuEAM framework in the wide range of NLP applications with limited
amount of training datasets. Moreover, the results documented in Section 5.2.4.8 depict the model stabil-
ity in wide range of monolingual classification tasks while achieving better performance than supervised
framework LASER.

Secondly we have answered the second sub research question:

● RQ2.2. Does unsupervised projection of efficient word representations improve sentence embeddings
in cross-lingual domains?

In the Section 5.3.1 we designed the MUFIN framework which enhances the classification accuracy of
multilingual sentence embedding models. We introduce a novel methodology which works in four phases:

● In the first phase MUFIN performs dimensionality expansion on the fixed-length sentence embed-
dings by upprojecting the pre-trained sentence embeddings to the vector space of large language
models. The up-projection is performed in two steps: The up-projection is achieved with the help of
a fully connected neural network via self reconstruction of data based on back-propagation through
the network layers. An input sentence embedding is passed through the neural network which learns
to output higher-dimensional embedding via a non-linear transformation shown in the slides. The pro-
jected embeddings are then transferred to the same vector space as that of the large language models
by minimising the mean-squared loss between their sentence embeddings. This up-projection stage
injects semantic information of large language models trained on a generic dataset to the sentence em-
bedding model and represents them together in the common space. One of the main advantages of our
framework is that this module is unsupervised, which eliminates the need for expensive fine-tuning
of the pre-trained large language model.

● In phase two the up-projected sentence embeddings are aligned to the downstream application do-
main using the task specific training dataset. The up-projected sentence embeddings are provided to
another fully connected neural network with an output softmax layer, which learns to predict category
probability distribution (for an input embedding) across the n training labels. This enables domain
adaptation and aligns the embeddings to be tuned specifically for the downstream task.

● In phase three we used the idea of meta-embedding techniques. The different sentence embed-
ding techniques capture different aspects of semantics, and demonstrates varying degrees of suc-
cess on different classes of tasks. Also, various aligned sentence encoders demonstrate complemen-
tary strengths, which upon being fused together provides improved performance – further enabling
MUFIN to bridge the gap with fine-tuned large language models. To this end, we combine aligned
up-projected embeddings and add the frozen LASER model to it. The choice to use “frozen” generic
LASER embeddings is to enable generalized semantic knowledge to also be integrated within our
framework, along with the domain semantic understanding obtained from the aligned up-projected
encodings.
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● Finally in phase four, the model learns to classify the sentence constructions using sentence meta-
embedding obtained from the above step.

Along with that, we also showcase the performance of individual sentence embedding models (supervised
and unsupervised) using only phase one, two and four. Extensive experiments highlight the efficacy of
this framework on different domain specific or mixed-domain natural language understanding benchmarks.
We observe that MUFIN has outperformed the baseline systems and produced comparable results to large
pretrained language models. In fact, our proposed unsupervised model DuEAM has outperformed the state-
of-the-art supervised sentence embedding models on the benchmark tasks. Moreover, for the in-domain
classification dataset, for some languages it has achieved comparable performance to the supervised vanilla
meta embedding models. These results advocate our intuition of improving the performance of the sentence
embedding models for natural language understanding tasks by an unsupervised embedding up-projection.
The capability of our unsupervised model also opens up the applicability of this methodology in small
computational and training environments.

While DuEAM has achieved state-of-the-art performance in different downstream tasks, for different
closely-related languages the quality of the training datasets are the key factor while training. The sen-
tences often contain etymologically related word pairs called “cognates”. For different natural processing
tasks including information retrieval or translation mining the words with similar meaning are often also
considered as cognates. We argue that these cognates have a direct impact on the sentence embedding
models for low-resource languages. Thus it raises the following research question:

● RQ3. Does effective cross-lingual word representations learning improve unsupervised cognate de-
tection without any language information for closely related and low-resourced languages? Having
detected cognates, does this assist in producing better sentence embeddings for NLP applications?

In Chapter 6, we introduced a novel unsupervised cognate detection framework. The model has two com-
ponents in which one component is morphological representation learner. This component is trained on
the morphological dataset of each pivot language for each language families to learn the grammatical word
representations. The second component is a shared encoder based unsupervised cognate learner which clus-
ters the cognate pairs of closely-related languages in an iterative approach. The shared encoder has the
knowledge of the grammatical word structures of the pivot language for each language family. We intro-
duce the positional encoder on the sub-word level to capture the structural similarity between cognate pairs.
We reuse the MLC loss introduced in Chapter 4 to learn the word representations. We tested our approach
on three different language families choosing one language from each of the language family as pivot lan-
guage. We also tested the performance of the framework in the absence of the pivot languages for cognate
detection. It can be observed that the framework has outperformed all the state-of-the-art approaches across
language pairs as well as proven to be a stable network without the knowledge transfer. Moreover, we stud-
ied the morphological influence of the historical languages on the closely-related modern languages while
detecting the cognates. As we argue that these cognates can improve the performance of the supervised and
unsupervised sentence embedding frameworks, in Section 6.4.4, we tested the efficacy on parallel sentence
matching and parallel sentence extraction. Observe, the efficacy of the sentence embedding methodologies
have increased while trained on the identified cognate pairs. Thus it can be concluded that our novel method-
ology successfully answered the questions we raised. This methodology is also applicable to supervised
settings with limited pre-processing and resource requirements.
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7.2 F U T U R E W O R K

We believe our contributions in this thesis highlight the answers to the research questions we raised. In this
section, we will introduce some of the possible future research directions and works

● We have contributed towards one of the very important tasks in the NLP pipeline, namely language
and dialect identification. We have learnt the global representation of the sentences by understanding
the linguistic features on the character level. While the proposed method produced state-of-the-art re-
sults in supervised and unsupervised methods, we believe the injection of grammatical and structural
word representations of closely-related languages in the framework will also convey the word-level
semantics. We would like to conduct experiments by extending our transfer learning approach in-
troduced in Chapter 6 in the proposed language and dialect identification framework introduced in
Chapter 4 on a wide range of low-resource languages from diverse language families. We plan to
release a pre-trained language identification model for a diverse set of languages from different lan-
guage families.

● While we talk about injecting the grammatical and structural knowledge into the language identifica-
tion framework, we plan to conduct experiments on whether the injection of the word-level structural
knowledge into the unsupervised sentence embedding framework can produce better sentence em-
beddings. In Chapter 6, we capture the structural and grammatical knowledge of the words of the
pivot language by imposing positional encoding on the subword level. These subword level informa-
tion maps the semantically similar words very close to each other in the shared vector space. While
our proposed unsupervised loss function in Chapter 5 can capture the semantic relations at the word
level within the sentence embeddings obtained, for closely-related languages the structural and gram-
matical information of words along with word-level semantics may carry better information during
training. Thus, the sentence embedding framework will be more efficient in understanding the cross-
lingual sentence similarities.

● We would also like to explore unsupervised instructional learning using soft prompts for better multi-
lingual sentence representation learning. Using soft or discrete prompts, the existing works improve
the efficiency of the language models for different low-resource downstream NLP tasks. In our re-
cent work (Goswami et al., 2023), we showcased a new prompting methodology to be adapted to new
low-resourced domains without explicit pre-training. Sreedhar and Parisien, 2022 in their work high-
lighted that using prompts language models can be adapted to perform well on new-domain dialogue
systems. Because these prompts are task-specific, we would like to explore whether using different
linguistic features as prompts can improve generic multilingual sentence representation learning. In
Chapter 6, we inject cognates as training datasets to further improve the efficiency of the sentence
embedding models. We believe using such cross-lingual linguistic features including morphological
similarities of two closely-related languages as prompts can provide information about language relat-
edness. We plan to conduct these experiments on a diverse set of closely-related languages including
Indo-European, Celtic and South African language families.
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Dual Sentence Encoders. 2nd Workshop on Natural Language Processing for Conversational AI,
38–45.

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., & Specia, L. (2017). SemEval-2017 Task 1: Semantic
Textual Similarity Multilingual and Crosslingual Focused Evaluation. SemEval-2017, 1–14.

Chakravarthi, B. R., Arcan, M., & McCrae, J. P. (2018). Improving Wordnets for Under-Resourced Lan-
guages Using Machine Translation. Proceedings of the 9th Global WordNet Conference.

Chakravarthi, B. R., Arcan, M., & McCrae, J. P. (2019a). Comparison of Different Orthographies for Ma-
chine Translation of Under-Resourced Dravidian Languages. 2nd Conference on Language, Data

and Knowledge (LDK 2019), 70, 6:1–6:14. https://doi.org/10.4230/OASIcs.LDK.2019.6
Keywords: Under-resourced languages, Machine translation, Dravidian languages, Phonetic tran-
scription, Transliteration, International Phonetic Alphabet, IPA, M

Chakravarthi, B. R., Arcan, M., & McCrae, J. P. (2019b). Comparison of Different Orthographies for Ma-
chine Translation of Under-Resourced Dravidian Languages. 2nd Conference on Language, Data

and Knowledge (LDK 2019), 70, 6:1–6:14. https://doi.org/10.4230/OASIcs.LDK.2019.6

https://doi.org/10.18653/v1/w18-2704
http://jmlr.org/papers/v3/blei03a.html
https://aclanthology.org/P08-5003/
https://aclanthology.org/P11-1087
https://doi.org/10.1162/tacl\_a\_00051
https://aclanthology.org/2018.gwc-1.36
https://aclanthology.org/2018.gwc-1.36
https://doi.org/10.3390/info13010041
https://doi.org/10.18653/v1/N19-1252
https://doi.org/10.1016/0893-6080(91)90056-B
https://doi.org/10.1016/0893-6080(91)90056-B
https://doi.org/10.4230/OASIcs.LDK.2019.6
https://doi.org/10.4230/OASIcs.LDK.2019.6


114 B I B L I O G R A P H Y

Keywords: Under-resourced languages, Machine translation, Dravidian languages, Phonetic tran-
scription, Transliteration, International Phonetic Alphabet, IPA, M

Chakravarthi, B. R., Jose, N., Suryawanshi, S., Sherly, E., & McCrae, J. P. (2020a). A Sentiment Analysis
Dataset for Code-Mixed Malayalam-English. Proceedings of the 1st Joint Workshop on Spoken

Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing

for Under-Resourced Languages (CCURL), 177–184. https://www.aclweb.org/anthology/2020.
sltu-1.25

Chakravarthi, B. R., Muralidaran, V., Priyadharshini, R., & McCrae, J. P. (2020b). Corpus Creation for Sen-
timent Analysis in Code-Mixed Tamil-English Text. Proceedings of the 1st Joint Workshop on Spo-

ken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Com-

puting for Under-Resourced Languages (CCURL), 202–210. https://www.aclweb.org/anthology/
2020.sltu-1.28

Chen, J., Wang, Z., Tian, R., Yang, Z., & Yang, D. (2020). Local Additivity Based Data Augmentation
for Semi-supervised NER. Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 1241–1251. https://doi.org/10.18653/v1/2020.emnlp-main.95
Chen, L., Garcia, F., & Kumar, V. (2021). Industry Scale Semi-Supervised Learning for Natural Language

Understanding. NAACL HLT, 311–318.
Chidambaram, M., Yang, Y., Cer, D., Yuan, S., Sung, Y., Strope, B., & Kurzweil, R. (2019). Learning Cross-

Lingual Sentence Representations via a Multi-task Dual-Encoder Model. RepL4NLP@ACL 2019,
250–259.

Christodoulopoulos, C., Goldwater, S., & Steedman, M. (2010). Two Decades of Unsupervised POS In-
duction: How Far Have We Come? Proceedings of the 2010 Conference on Empirical Methods in

Natural Language Processing, 575–584. https://aclanthology.org/D10-1056
Cieri, C., Maxwell, M., Strassel, S. M., & Tracey, J. (2016). Selection Criteria for Low Resource Language

Programs. In N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mar-
iani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Tenth International

Conference on Language Resources and Evaluation LREC 2016, Portorož, Slovenia, May 23-28,

2016. European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/
lrec2016/summaries/1254.html

Ciobanu, A. M., & Dinu, L. P. (2015). Automatic discrimination between cognates and borrowings. Pro-

ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 431–
437.

Ciobanu, A. M., & Dinu, L. P. (2016). A Computational Perspective on the Romanian Dialects. Proceedings

of the Tenth International Conference on Language Resources and Evaluation (LREC’16), 3281–
3285. https://aclanthology.org/L16-1522

Ciobanu, A. M., Malmasi, S., & Dinu, L. P. (2018). German dialect identification using classifier ensembles.
Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial

2018), 288–294.
Cleary, J. G., & Witten, I. H. (1984). Data Compression Using Adaptive Coding and Partial String Matching.

IEEE Trans. Commun., 32(4), 396–402. https://doi.org/10.1109/TCOM.1984.1096090
Clematide, S., & Makarov, P. (2017). CLUZH at VarDial GDI 2017: Testing a Variety of Machine Learning

Tools for the Classification of Swiss German Dialects. In P. Nakov, M. Zampieri, N. Ljubesic, J.
Tiedemann, S. Malmasi, & A. Ali (Eds.), Proceedings of the Fourth Workshop on NLP for Similar

https://www.aclweb.org/anthology/2020.sltu-1.25
https://www.aclweb.org/anthology/2020.sltu-1.25
https://www.aclweb.org/anthology/2020.sltu-1.28
https://www.aclweb.org/anthology/2020.sltu-1.28
https://doi.org/10.18653/v1/2020.emnlp-main.95
https://aclanthology.org/D10-1056
http://www.lrec-conf.org/proceedings/lrec2016/summaries/1254.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/1254.html
https://aclanthology.org/L16-1522
https://doi.org/10.1109/TCOM.1984.1096090


B I B L I O G R A P H Y 115

Languages, Varieties and Dialects, VarDial 2017, Valencia, Spain, April 3, 2017 (pp. 170–177).
Association for Computational Linguistics. https://doi.org/10.18653/v1/w17-1221

Coates, J. N., & Bollegala, D. (2018). Frustratingly Easy Meta-Embedding – Computing Meta-Embeddings
by Averaging Source Word Embeddings. NAACL-HLT, 194–198.

Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: deep neural
networks with multitask learning. In W. W. Cohen, A. McCallum, & S. T. Roweis (Eds.), Ma-

chine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki,

Finland, June 5-9, 2008 (pp. 160–167). ACM. https://doi.org/10.1145/1390156.1390177
Comaniciu, D., & Meer, P. (2002). Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE

Trans. Pattern Anal. Mach. Intell., 24(5), 603–619. https://doi.org/10.1109/34.1000236
Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M.,

Zettlemoyer, L., & Stoyanov, V. (2020). Unsupervised Cross-lingual Representation Learning at
Scale. In D. Jurafsky, J. Chai, N. Schluter, & J. R. Tetreault (Eds.), Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020

(pp. 8440–8451). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.
acl-main.747

Conneau, A., & Kiela, D. (2018). SentEval: An Evaluation Toolkit for Universal Sentence Representations.
Proceedings of the Eleventh International Conference on Language Resources and Evaluation,

LREC 2018, Miyazaki, Japan, May 7-12, 2018.
Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2017). Supervised Learning of Univer-

sal Sentence Representations from Natural Language Inference Data. Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen,

Denmark, September 9-11, 2017, 670–680.
Conneau, A., & Lample, G. (2019). Cross-lingual Language Model Pretraining. In H. M. Wallach, H.

Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, & R. Garnett (Eds.), Advances in Neural

Information Processing Systems 32: Annual Conference on Neural Information Processing Sys-

tems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada (pp. 7057–7067). https:
//proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html

Conneau, A., Rinott, R., Lample, G., Williams, A., Bowman, S. R., Schwenk, H., & Stoyanov, V. (2018).
XNLI: Evaluating Cross-lingual Sentence Representations. In E. Riloff, D. Chiang, J. Hocken-
maier, & J. Tsujii (Eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, Brussels, Belgium, October 31 - November 4, 2018 (pp. 2475–2485). Asso-
ciation for Computational Linguistics. https://doi.org/10.18653/v1/d18-1269

Cotterell, R., & Schütze, H. (2015). Morphological Word-Embeddings. In R. Mihalcea, J. Y. Chai, & A.
Sarkar (Eds.), NAACL HLT 2015, The 2015 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA,

May 31 - June 5, 2015 (pp. 1287–1292). The Association for Computational Linguistics. https:
//doi.org/10.3115/v1/n15-1140

Covington, M. A. (1996). An algorithm to align words for historical comparison. Computational linguistics,
22(4), 481–496.

Crowston, K. (2012). Amazon Mechanical Turk: A Research Tool for Organizations and Information Sys-
tems Scholars. In A. Bhattacherjee & B. Fitzgerald (Eds.), Shaping the Future of ICT Research.

Methods and Approaches - IFIP WG 8.2, Working Conference, Tampa, FL, USA, December 13-14,

2012. Proceedings (pp. 210–221). Springer. https://doi.org/10.1007/978-3-642-35142-6\_14
Crystal, D. (2011). A dictionary of linguistics and phonetics. John Wiley & Sons.

https://doi.org/10.18653/v1/w17-1221
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1109/34.1000236
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://doi.org/10.18653/v1/d18-1269
https://doi.org/10.3115/v1/n15-1140
https://doi.org/10.3115/v1/n15-1140
https://doi.org/10.1007/978-3-642-35142-6\_14


116 B I B L I O G R A P H Y

Cui, Y., Che, W., Liu, T., Qin, B., & Yang, Z. (2021). Pre-Training With Whole Word Masking for Chinese
BERT. IEEE ACM Trans. Audio Speech Lang. Process., 29, 3504–3514. https://doi.org/10.1109/
TASLP.2021.3124365

Cunliffe, D., Vlachidis, A., Williams, D., & Tudhope, D. (2022). Natural language processing for under-
resourced languages: Developing a Welsh natural language toolkit. Computer Speech Language,
72, 101311. https://doi.org/https://doi.org/10.1016/j.csl.2021.101311

Dahou, A., Xiong, S., Zhou, J., Haddoud, M. H., & Duan, P. (2016). Word Embeddings and Convolutional
Neural Network for Arabic Sentiment Classification. In N. Calzolari, Y. Matsumoto, & R. Prasad
(Eds.), COLING 2016, 26th International Conference on Computational Linguistics, Proceedings

of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan (pp. 2418–2427). ACL.
https://aclanthology.org/C16-1228/

Dai, A. M., Olah, C., & Le, Q. V. (2015). Document Embedding with Paragraph Vectors. CoRR, abs/1507.07998.
http://arxiv.org/abs/1507.07998

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. In J. Burstein, C. Doran, & T. Solorio (Eds.), Proceedings of

the 2019 Conference of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,

Volume 1 (Long and Short Papers) (pp. 4171–4186). Association for Computational Linguistics.
https://doi.org/10.18653/v1/n19-1423

Dhillon, I. S., Guan, Y., & Kulis, B. (2007). Weighted Graph Cuts without Eigenvectors A Multilevel
Approach. IEEE Trans. Pattern Anal. Mach. Intell., 29(11), 1944–1957. https://doi.org/10.1109/
TPAMI.2007.1115

Dieth, E. (1986). Schwyzertütschi Dialäktschrift (2nd ed.) [Edited and published by Christian Schmid-
Cadalbert]. Verlag Sauerländer.

Diwersy, S., Evert, S., & Neumann, S. (2014). A weakly supervised multivariate approach to the study of
language variation. Aggregating dialectology, typology, and register analysis. linguistic variation

in text and speech, 174–204.
Dongen, N. (2017). Analysis and Prediction of Dutch-English Code-switching in Dutch Social Media Mes-

sages.
Donges, N. (2019). Gradient descent: an introduction to 1 of machine learning’s most popular algorithms.

source: https://builtin. com/data-science/gradient-descent.
Douka, S., Abdine, H., Vazirgiannis, M., Hamdani, R. E., & Amariles, D. R. (2021). JuriBERT: A Masked-

Language Model Adaptation for French Legal Text. CoRR, abs/2110.01485. https://arxiv.org/abs/
2110.01485

Duan, X., Ji, B., Jia, H., Tan, M., Zhang, M., Chen, B., Luo, W., & Zhang, Y. (2020). Bilingual Dictionary
Based Neural Machine Translation without Using Parallel Sentences. In D. Jurafsky, J. Chai, N.
Schluter, & J. R. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, ACL 2020, Online, July 5-10, 2020 (pp. 1570–1579). Association for
Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-main.143

Duong, L. (2017). Natural language processing for resource-poor languages. University of Melbourne.
Duong, L., Cohn, T., Bird, S., & Cook, P. (2015). Low Resource Dependency Parsing: Cross-lingual Parame-

ter Sharing in a Neural Network Parser. Proceedings of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th International Joint Conference on Natural Language

Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015,

Beijing, China, Volume 2: Short Papers, 845–850. https://doi.org/10.3115/v1/p15-2139

https://doi.org/10.1109/TASLP.2021.3124365
https://doi.org/10.1109/TASLP.2021.3124365
https://doi.org/https://doi.org/10.1016/j.csl.2021.101311
https://aclanthology.org/C16-1228/
http://arxiv.org/abs/1507.07998
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/TPAMI.2007.1115
https://doi.org/10.1109/TPAMI.2007.1115
https://arxiv.org/abs/2110.01485
https://arxiv.org/abs/2110.01485
https://doi.org/10.18653/v1/2020.acl-main.143
https://doi.org/10.3115/v1/p15-2139


B I B L I O G R A P H Y 117

Duvenhage, B., Ntini, M., & Ramonyai, P. (2017). Improved text language identification for the South
African languages. 2017 Pattern Recognition Association of South Africa and Robotics and Mecha-

tronics (PRASA-RobMech), 214–218.
Elfardy, H., & Diab, M. T. (2013). Sentence Level Dialect Identification in Arabic. Proceedings of the 51st

Annual Meeting of the Association for Computational Linguistics, ACL 2013, 4-9 August 2013,

Sofia, Bulgaria, Volume 2: Short Papers, 456–461. https://aclanthology.org/P13-2081/
Elman, J. L. (1990). Finding Structure in Time. Cogn. Sci., 14(2), 179–211. https : / / doi . org /10 .1207 /

s15516709cog1402\_1
España-Bonet, C., Varga, Á. C., Barrón-Cedeño, A., & van Genabith, J. (2017). An Empirical Analysis of

NMT-Derived Interlingual Embeddings and Their Use in Parallel Sentence Identification. IEEE J.

Sel. Top. Signal Process., 11, 1340–1350.
Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise. In E. Simoudis, J. Han, & U. M. Fayyad (Eds.), Proceedings

of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96),

Portland, Oregon, USA (pp. 226–231). AAAI Press. http://www.aaai.org/Library/KDD/1996/
kdd96-037.php

Ezugwu, A. E., Ikotun, A. M., Oyelade, O. N., Abualigah, L. M., Agushaka, J. O., Eke, C. I., & Akinyelu,
A. A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning
applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell., 110,
104743. https://doi.org/10.1016/j.engappai.2022.104743

Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., & Lehmann, S. (2017). Using millions of emoji occurrences
to learn any-domain representations for detecting sentiment, emotion and sarcasm. In M. Palmer,
R. Hwa, & S. Riedel (Eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017 (pp. 1615–
1625). Association for Computational Linguistics. https://doi.org/10.18653/v1/d17-1169

Feng, F., Yang, Y., Cer, D., Arivazhagan, N., & Wang, W. (2020). Language-agnostic BERT Sentence
Embedding. CoRR, abs/2007.01852.

Feng, F., Yang, Y., Cer, D., Arivazhagan, N., & Wang, W. (2022). Language-agnostic BERT Sentence
Embedding. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022,

Dublin, Ireland, May 22-27, 2022 (pp. 878–891). Association for Computational Linguistics. https:
//aclanthology.org/2022.acl-long.62

Ferrone, L., & Zanzotto, F. M. (2019). Symbolic, Distributed, and Distributional Representations for Natural
Language Processing in the Era of Deep Learning: A Survey. Frontiers Robotics AI, 6, 153. https:
//doi.org/10.3389/frobt.2019.00153

Fourrier, C., & Montariol, S. (2022). Caveats of Measuring Semantic Change of Cognates and Borrowings
using Multilingual Word Embeddings. In N. Tahmasebi, S. Montariol, A. Kutuzov, S. Hengchen, H.
Dubossarsky, & L. Borin (Eds.), Proceedings of the 3rd Workshop on Computational Approaches

to Historical Language Change, LChange@ACL 2022, Dublin, Ireland, May 26-27, 2022 (pp. 97–
112). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.lchange-1.10

Gao, Y., Chen, J., & Zhu, J. (2016). Streaming Gibbs sampling for LDA model. arXiv preprint arXiv:1601.01142.
Gaussier, É., Renders, J., Matveeva, I., Goutte, C., & Déjean, H. (2004). A Geometric View on Bilingual

Lexicon Extraction from Comparable Corpora. In D. Scott, W. Daelemans, & M. A. Walker (Eds.),
Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, 21-26

July, 2004, Barcelona, Spain (pp. 526–533). ACL. https://doi.org/10.3115/1218955.1219022

https://aclanthology.org/P13-2081/
https://doi.org/10.1207/s15516709cog1402\_1
https://doi.org/10.1207/s15516709cog1402\_1
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
https://doi.org/10.1016/j.engappai.2022.104743
https://doi.org/10.18653/v1/d17-1169
https://aclanthology.org/2022.acl-long.62
https://aclanthology.org/2022.acl-long.62
https://doi.org/10.3389/frobt.2019.00153
https://doi.org/10.3389/frobt.2019.00153
https://doi.org/10.18653/v1/2022.lchange-1.10
https://doi.org/10.3115/1218955.1219022


118 B I B L I O G R A P H Y

Ge, R., Kakade, S. M., Kidambi, R., & Netrapalli, P. (2019). The Step Decay Schedule: A Near Opti-
mal, Geometrically Decaying Learning Rate Procedure For Least Squares. In H. M. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, & R. Garnett (Eds.), Advances in Neu-

ral Information Processing Systems 32: Annual Conference on Neural Information Processing

Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada (pp. 14951–14962).
https://proceedings.neurips.cc/paper/2019/hash/2f4059ce1227f021edc5d9c6f0f17dc1-Abstract.
html

Giwa, O., & Davel, M. H. (2013). N-gram based language identification of individual words.
Goldberg, Y. (2017). Neural Network Methods for Natural Language Processing. Morgan & Claypool Pub-

lishers. https://doi.org/10.2200/S00762ED1V01Y201703HLT037
Goldberg, Y., & Hirst, G. (2017). Neural network methods in natural language processing. morgan & clay-

pool publishers (2017). zitiert auf, 69.
Goodfellow, I. J., Bengio, Y., & Courville, A. C. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.

org/
Goswami, K., Lange, L., Araki, J., & Adel, H. (2023). SwitchPrompt: Learning Domain-Specific Gated

Soft Prompts for Classification in Low-Resource Domains. CoRR, abs/2302.06868. https:/ /doi.
org/10.48550/arXiv.2302.06868

Goswami, K., Sarkar, R., Chakravarthi, B. R., Fransen, T., & McCrae, J. P. (2020). Unsupervised Deep Lan-
guage and Dialect Identification for Short Texts. In D. Scott, N. Bel, & C. Zong (Eds.), Proceedings

of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona,

Spain (Online), December 8-13, 2020 (pp. 1606–1617). International Committee on Computa-
tional Linguistics. https://doi.org/10.18653/v1/2020.coling-main.141

Graves, A., Jaitly, N., & Mohamed, A. (2013). Hybrid speech recognition with Deep Bidirectional LSTM.
2013 IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech Re-

public, December 8-12, 2013, 273–278. https://doi.org/10.1109/ASRU.2013.6707742
Grinstead, C. M., & Snell, J. L. (2009). Conditional probability–discrete conditional. Grinstead & Snell’s

introduction to probability Orange Grove Texts.
Guha, S., Rastogi, R., & Shim, K. (1999). ROCK: A Robust Clustering Algorithm for Categorical Attributes.

In M. Kitsuregawa, M. P. Papazoglou, & C. Pu (Eds.), Proceedings of the 15th International Con-

ference on Data Engineering, Sydney, Australia, March 23-26, 1999 (pp. 512–521). IEEE Com-
puter Society. https://doi.org/10.1109/ICDE.1999.754967

Guha, S., Rastogi, R., & Shim, K. (2001). Cure: An Efficient Clustering Algorithm for Large Databases. Inf.

Syst., 26(1), 35–58. https://doi.org/10.1016/S0306-4379(01)00008-4
Guo, M., Shen, Q., Yang, Y., Ge, H., Cer, D., Hernandez Abrego, G., Stevens, K., Constant, N., Sung, Y.-H.,

Strope, B., & Kurzweil, R. (2018). Effective Parallel Corpus Mining using Bilingual Sentence
Embeddings. Proceedings of the Third Conference on Machine Translation: Research Papers, 165–
176.

Haffari, R., Cherry, C., Foster, G., Khadivi, S., & Salehi, B. (Eds.). (2018). Proceedings of the Workshop

on Deep Learning Approaches for Low-Resource NLP. Association for Computational Linguistics.
https://aclanthology.org/W18-3400

Hammarström, H. (2007). A fine-grained model for language identification. Proceedings of iNEWS-07

Workshop at SIGIR 2007, 14–20.
Hauer, B., & Kondrak, G. (2011). Clustering semantically equivalent words into cognate sets in multilingual

lists. Proceedings of 5th international joint conference on natural language processing, 865–873.

https://proceedings.neurips.cc/paper/2019/hash/2f4059ce1227f021edc5d9c6f0f17dc1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2f4059ce1227f021edc5d9c6f0f17dc1-Abstract.html
https://doi.org/10.2200/S00762ED1V01Y201703HLT037
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://doi.org/10.48550/arXiv.2302.06868
https://doi.org/10.48550/arXiv.2302.06868
https://doi.org/10.18653/v1/2020.coling-main.141
https://doi.org/10.1109/ASRU.2013.6707742
https://doi.org/10.1109/ICDE.1999.754967
https://doi.org/10.1016/S0306-4379(01)00008-4
https://aclanthology.org/W18-3400


B I B L I O G R A P H Y 119

Hauksdóttir, A. (2014). An Innovative World Language Centre : Challenges for the Use of Language Tech-
nology. Proceedings of the Ninth International Conference on Language Resources and Evaluation

(LREC’14), 2194–2198. http://www.lrec-conf.org/proceedings/lrec2014/pdf/795_Paper.pdf
Hedderich, M. A., Lange, L., Adel, H., Strötgen, J., & Klakow, D. (2021). A Survey on Recent Approaches

for Natural Language Processing in Low-Resource Scenarios. In K. Toutanova, A. Rumshisky,
L. Zettlemoyer, D. Hakkani-Tür, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, & Y. Zhou
(Eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June

6-11, 2021 (pp. 2545–2568). Association for Computational Linguistics. https://doi.org/10.18653/
v1/2021.naacl-main.201

Hill, F., Cho, K., & Korhonen, A. (2016). Learning Distributed Representations of Sentences from Un-
labelled Data. In K. Knight, A. Nenkova, & O. Rambow (Eds.), NAACL HLT 2016, The 2016

Conference of the North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, San Diego California, USA, June 12-17, 2016 (pp. 1367–1377). The
Association for Computational Linguistics. https://doi.org/10.18653/v1/n16-1162

Hirota, W., Suhara, Y., Golshan, B., & Tan, W. (2020). Emu: Enhancing Multilingual Sentence Embeddings
with Semantic Specialization. AAAI, 7935–7943.

Hochreiter, S., & Schmidhuber, J. (1997a). Long Short-Term Memory. Neural Comput., 9(8), 1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Hochreiter, S., & Schmidhuber, J. (1997b). Long short-term memory. Neural computation, 9(8), 1735–
1780.

Hofmann, T. (1999). Probabilistic latent semantic indexing. Proceedings of the 22nd annual international

ACM SIGIR conference on Research and development in information retrieval, 50–57.
House, A. S., & Neuburg, E. P. (1977). Toward automatic identification of the language of an utterance.

I. Preliminary methodological considerations. The Journal of the Acoustical Society of America,
62(3), 708–713.

Howard, J., & Ruder, S. (2018a). Universal Language Model Fine-tuning for Text Classification. In I.
Gurevych & Y. Miyao (Eds.), Proceedings of the 56th Annual Meeting of the Association for Com-

putational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers

(pp. 328–339). Association for Computational Linguistics. https://doi.org/10.18653/v1/P18-1031
Howard, J., & Ruder, S. (2018b). Universal Language Model Fine-tuning for Text Classification. ACL, 328–

339.
Hua, T., Lu, C., Choo, J., & Reddy, C. K. (2020). Probabilistic Topic Modeling for Comparative Analysis

of Document Collections. ACM Trans. Knowl. Discov. Data, 14(2), 24:1–24:27. https://doi.org/10.
1145/3369873

Huang, C.-R., & Lee, L.-H. (2008). Contrastive approach towards text source classification based on top-
bag-of-word similarity. Proceedings of the 22nd pacific asia conference on language, information

and computation, 404–410.
Huang, J., Tang, D., Zhong, W., Lu, S., Shou, L., Gong, M., Jiang, D., & Duan, N. (2021). WhiteningBERT:

An Easy Unsupervised Sentence Embedding Approach. In M. Moens, X. Huang, L. Specia, &
S. W. Yih (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual

Event / Punta Cana, Dominican Republic, 16-20 November, 2021 (pp. 238–244). Association for
Computational Linguistics. https://doi.org/10.18653/v1/2021.findings-emnlp.23

Hughes, B., Baldwin, T., Bird, S., Nicholson, J., & MacKinlay, A. (2006a). Reconsidering Language Identi-
fication for Written Language Resources. In N. Calzolari, K. Choukri, A. Gangemi, B. Maegaard,

http://www.lrec-conf.org/proceedings/lrec2014/pdf/795_Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/2021.naacl-main.201
https://doi.org/10.18653/v1/n16-1162
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.1145/3369873
https://doi.org/10.1145/3369873
https://doi.org/10.18653/v1/2021.findings-emnlp.23


120 B I B L I O G R A P H Y

J. Mariani, J. Odijk, & D. Tapias (Eds.), Proceedings of the Fifth International Conference on

Language Resources and Evaluation, LREC 2006, Genoa, Italy, May 22-28, 2006 (pp. 485–488).
European Language Resources Association (ELRA). http : / / www. lrec - conf . org / proceedings /
lrec2006/summaries/459.html

Hughes, B., Baldwin, T., Bird, S., Nicholson, J., & MacKinlay, A. (2006b). Reconsidering Language Iden-
tification for Written Language Resources. Proceedings of the Fifth International Conference on

Language Resources and Evaluation (LREC’06). http://www.lrec-conf.org/proceedings/lrec2006/
pdf/459_pdf.pdf

Hull, D. A. (1999). Xerox TREC-8 Question Answering Track Report. In E. M. Voorhees & D. K. Har-
man (Eds.), Proceedings of The Eighth Text REtrieval Conference, TREC 1999, Gaithersburg,

Maryland, USA, November 17-19, 1999. National Institute of Standards; Technology (NIST). http:
//trec.nist.gov/pubs/trec8/papers/xerox-QA.pdf

Hussein, A., & Hajj, H. M. (2022). Domain Adaptation with Representation Learning and Nonlinear Re-
lation for Time Series. ACM Trans. Internet Things, 3(2), 12:1–12:26. https://doi.org/10.1145/
3502905

Jäger, G., List, J.-M., & Sofroniev, P. (2017). Using support vector machines and state-of-the-art algorithms
for phonetic alignment to identify cognates in multi-lingual wordlists. Proceedings of the 15th

Conference of the European Chapter of the Association for Computational Linguistics: Volume 1,

Long Papers, 1205–1216. https://aclanthology.org/E17-1113
Jauhiainen, T. S., Lui, M., Zampieri, M., Baldwin, T., & Lindén, K. (2019). Automatic language identifica-

tion in texts: A survey. Journal of Artificial Intelligence Research, 65, 675–782.
Jayagopal, A., Aiswarya, A. M., Garg, A., & Nandakumar, S. K. (2022). Multimodal Representation Learn-

ing With Text and Images. CoRR, abs/2205.00142. https://doi.org/10.48550/arXiv.2205.00142
Ji, Y., Cohn, T., Kong, L., Dyer, C., & Eisenstein, J. (2015). Document Context Language Models. CoRR,

abs/1511.03962. http://arxiv.org/abs/1511.03962
Jimerson, R., & Prud’hommeaux, E. (2018). ASR for documenting acutely under-resourced indigenous

languages. Proceedings of the Eleventh International Conference on Language Resources and

Evaluation (LREC 2018).
Jose, N., Chakravarthi, B. R., Suryawanshi, S., Sherly, E., & McCrae, J. P. (2020). A Survey of Current

Datasets for Code-Switching Research. 2020 6th International Conference on Advanced Comput-

ing and Communication Systems (ICACCS), 136–141.
Jurafsky, D., & Martin, J. H. (2009). Speech and language processing: an introduction to natural language

processing, computational linguistics, and speech recognition, 2nd Edition. Prentice Hall, Pearson
Education International. https://www.worldcat.org/oclc/315913020

Jurgens, D. (2021). Learning about Word Vector Representations and Deep Learning through Implementing
Word2vec. Proceedings of the Fifth Workshop on Teaching NLP, 108–111. https : / /doi .org /10.
18653/v1/2021.teachingnlp-1.19

Kakwani, D., Kunchukuttan, A., Golla, S., N.C., G., Bhattacharyya, A., Khapra, M. M., & Kumar, P. (2020).
IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Lan-
guage Models for Indian Languages. Findings of the Association for Computational Linguistics:

EMNLP 2020, 4948–4961. https://doi.org/10.18653/v1/2020.findings-emnlp.445
Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A Convolutional Neural Network for Modelling

Sentences. Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-

guistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, 655–665.
https://doi.org/10.3115/v1/p14-1062

http://www.lrec-conf.org/proceedings/lrec2006/summaries/459.html
http://www.lrec-conf.org/proceedings/lrec2006/summaries/459.html
http://www.lrec-conf.org/proceedings/lrec2006/pdf/459_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/459_pdf.pdf
http://trec.nist.gov/pubs/trec8/papers/xerox-QA.pdf
http://trec.nist.gov/pubs/trec8/papers/xerox-QA.pdf
https://doi.org/10.1145/3502905
https://doi.org/10.1145/3502905
https://aclanthology.org/E17-1113
https://doi.org/10.48550/arXiv.2205.00142
http://arxiv.org/abs/1511.03962
https://www.worldcat.org/oclc/315913020
https://doi.org/10.18653/v1/2021.teachingnlp-1.19
https://doi.org/10.18653/v1/2021.teachingnlp-1.19
https://doi.org/10.18653/v1/2020.findings-emnlp.445
https://doi.org/10.3115/v1/p14-1062


B I B L I O G R A P H Y 121

Kanakaraddi, S. G., & Nandyal, S. S. (2018). Survey on Parts of Speech Tagger Techniques. 2018 Inter-

national Conference on Current Trends towards Converging Technologies (ICCTCT), 1–6. https:
//doi.org/10.1109/ICCTCT.2018.8550884

Kanojia, D., Dabre, R., Dewangan, S., Bhattacharyya, P., Haffari, G., & Kulkarni, M. (2020a). Harnessing
Cross-lingual Features to Improve Cognate Detection for Low-resource Languages. In D. Scott,
N. Bel, & C. Zong (Eds.), Proceedings of the 28th International Conference on Computational

Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020 (pp. 1384–1395).
International Committee on Computational Linguistics. https://doi.org/10.18653/v1/2020.coling-
main.119

Kanojia, D., Dabre, R., Dewangan, S., Bhattacharyya, P., Haffari, G., & Kulkarni, M. (2020b). Harnessing
Cross-lingual Features to Improve Cognate Detection for Low-resource Languages. Proceedings

of the 28th International Conference on Computational Linguistics, 1384–1395. https://doi.org/10.
18653/v1/2020.coling-main.119

Kanojia, D., Kulkarni, M., Bhattacharyya, P., & Haffari, G. (2020c). Challenge Dataset of Cognates and
False Friend Pairs from Indian Languages. In N. Calzolari, F. Béchet, P. Blache, K. Choukri, C.
Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk,
& S. Piperidis (Eds.), Proceedings of The 12th Language Resources and Evaluation Conference,

LREC 2020, Marseille, France, May 11-16, 2020 (pp. 3096–3102). European Language Resources
Association. https://aclanthology.org/2020.lrec-1.378/

Kanojia, D., Kulkarni, M., Bhattacharyya, P., & Haffari, G. (2019a). Cognate Identification to Improve
Phylogenetic Trees for Indian Languages. Proceedings of the ACM India Joint International Con-

ference on Data Science and Management of Data, 297–300. https://doi.org/10.1145/3297001.
3297045

Kanojia, D., Patel, K., & Bhattacharyya, P. (2018). Indian Language Wordnets and their Linkages with
Princeton WordNet. In N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H.
Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, & T. Tokunaga
(Eds.), Proceedings of the Eleventh International Conference on Language Resources and Evalu-

ation, LREC 2018, Miyazaki, Japan, May 7-12, 2018. European Language Resources Association
(ELRA). http://www.lrec-conf.org/proceedings/lrec2018/summaries/936.html

Kanojia, D., Patel, K., Kulkarni, M., Bhattacharyya, P., & Haffari, G. (2019b). Utilizing Wordnets for Cog-
nate Detection among Indian Languages. Proceedings of the 10th Global Wordnet Conference,
404–412.

Kanojia, D., Sharma, P., Ghodekar, S., Bhattacharyya, P., Haffari, G., & Kulkarni, M. (2021). Cognition-
aware Cognate Detection. Proceedings of the 16th Conference of the European Chapter of the

Association for Computational Linguistics: Main Volume, 3281–3292. https://doi.org/10.18653/
v1/2021.eacl-main.288

Kenter, T., Borisov, A., & de Rijke, M. (2016). Siamese CBOW: Optimizing Word Embeddings for Sen-
tence Representations. Proceedings of the 54th Annual Meeting of the Association for Computa-

tional Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. https:
//doi.org/10.18653/v1/p16-1089

Kiela, D., Conneau, A., Jabri, A., & Nickel, M. (2018). Learning Visually Grounded Sentence Representa-
tions. In M. A. Walker, H. Ji, & A. Stent (Eds.), Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers)

(pp. 408–418). Association for Computational Linguistics. https://doi.org/10.18653/v1/n18-1038

https://doi.org/10.1109/ICCTCT.2018.8550884
https://doi.org/10.1109/ICCTCT.2018.8550884
https://doi.org/10.18653/v1/2020.coling-main.119
https://doi.org/10.18653/v1/2020.coling-main.119
https://doi.org/10.18653/v1/2020.coling-main.119
https://doi.org/10.18653/v1/2020.coling-main.119
https://aclanthology.org/2020.lrec-1.378/
https://doi.org/10.1145/3297001.3297045
https://doi.org/10.1145/3297001.3297045
http://www.lrec-conf.org/proceedings/lrec2018/summaries/936.html
https://doi.org/10.18653/v1/2021.eacl-main.288
https://doi.org/10.18653/v1/2021.eacl-main.288
https://doi.org/10.18653/v1/p16-1089
https://doi.org/10.18653/v1/p16-1089
https://doi.org/10.18653/v1/n18-1038


122 B I B L I O G R A P H Y

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. In A. Moschitti, B. Pang, &
W. Daelemans (Eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-

guage Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a

Special Interest Group of the ACL (pp. 1746–1751). ACL. https://doi.org/10.3115/v1/d14-1181
King, B., & Abney, S. (2013). Labeling the languages of words in mixed-language documents using weakly

supervised methods. Proceedings of the 2013 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, 1110–1119.
Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R. S., Urtasun, R., Torralba, A., & Fidler, S. (2015a). Skip-

Thought Vectors. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.),
Advances in Neural Information Processing Systems 28: Annual Conference on Neural Informa-

tion Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada (pp. 3294–3302).
https://proceedings.neurips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.
html

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., & Fidler, S. (2015b). Skip-
thought vectors. Advances in neural information processing systems, 3294–3302.

Klema, V., & Laub, A. (1980). The singular value decomposition: Its computation and some applications.
IEEE Transactions on Automatic Control, 25(2), 164–176. https://doi.org/10.1109/TAC.1980.
1102314

Kocmi, T., & Bojar, O. (2017). LanideNN: Multilingual Language Identification on Character Window.
Proceedings of the 15th Conference of the European Chapter of the Association for Computational

Linguistics: Volume 1, Long Papers, 927–936. https://www.aclweb.org/anthology/E17-1087
Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Translation. Proceedings of Machine

Translation Summit X: Papers, 79–86. https://aclanthology.org/2005.mtsummit-papers.11
Koehn, P., Och, F. J., & Marcu, D. (2003). Statistical Phrase-Based Translation. In M. A. Hearst & M.

Ostendorf (Eds.), Human Language Technology Conference of the North American Chapter of the

Association for Computational Linguistics, HLT-NAACL 2003, Edmonton, Canada, May 27 - June

1, 2003. The Association for Computational Linguistics. https://aclanthology.org/N03-1017/
Kondrak, G. (2000). A new algorithm for the alignment of phonetic sequences. 1st Meeting of the North

American Chapter of the Association for Computational Linguistics.
Kondrak, G. (2005). Cognates and word alignment in bitexts. Proceedings of Machine Translation Summit

X: Papers, 305–312.
Kondrak, G., Marcu, D., & Knight, K. (2003). Cognates Can Improve Statistical Translation Models. In

M. A. Hearst & M. Ostendorf (Eds.), Human Language Technology Conference of the North

American Chapter of the Association for Computational Linguistics, HLT-NAACL 2003, Edmon-

ton, Canada, May 27 - June 1, 2003. The Association for Computational Linguistics. https : / /
aclanthology.org/N03-2016/

Konstantopoulos, S. (2007). What’s in a Name? CoRR, abs/0710.1481. http://arxiv.org/abs/0710.1481
Kumar, C. S. (1975). Origin and Development of the Bengali Language.
Kusner, M. J., Sun, Y., Kolkin, N. I., & Weinberger, K. Q. (2015). From Word Embeddings To Document

Distances. In F. R. Bach & D. M. Blei (Eds.), Proceedings of the 32nd International Conference

on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 (pp. 957–966). JMLR.org. http:
//proceedings.mlr.press/v37/kusnerb15.html

Kvapilı́ková, I., Artetxe, M., Labaka, G., Agirre, E., & Bojar, O. (2020). Unsupervised Multilingual Sen-
tence Embeddings for Parallel Corpus Mining. In S. Rijhwani, J. Liu, Y. Wang, & R. Dror (Eds.),
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student

https://doi.org/10.3115/v1/d14-1181
https://proceedings.neurips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://doi.org/10.1109/TAC.1980.1102314
https://doi.org/10.1109/TAC.1980.1102314
https://www.aclweb.org/anthology/E17-1087
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/N03-1017/
https://aclanthology.org/N03-2016/
https://aclanthology.org/N03-2016/
http://arxiv.org/abs/0710.1481
http://proceedings.mlr.press/v37/kusnerb15.html
http://proceedings.mlr.press/v37/kusnerb15.html


B I B L I O G R A P H Y 123

Research Workshop, ACL 2020, Online, July 5-10, 2020 (pp. 255–262). Association for Computa-
tional Linguistics. https://doi.org/10.18653/v1/2020.acl-srw.34

Labat, S., & Lefever, E. (2019). A Classification-Based Approach to Cognate Detection Combining Or-
thographic and Semantic Similarity Information. Proceedings of the International Conference on

Recent Advances in Natural Language Processing (RANLP 2019), 602–610. https://doi.org/10.
26615/978-954-452-056-4_071

Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data. In C. E. Brodley & A. P. Danyluk (Eds.), Proceedings

of the Eighteenth International Conference on Machine Learning (ICML 2001), Williams College,

Williamstown, MA, USA, June 28 - July 1, 2001 (pp. 282–289). Morgan Kaufmann.
Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents. Proceedings of

the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June

2014, 32, 1188–1196. http://proceedings.mlr.press/v32/le14.html
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document

recognition. Proc. IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
Lee, S.-w., Lee, R., Seo, M.-s., Park, J.-c., Noh, H.-c., Ju, J.-g., Jang, R.-y., Lee, G.-w., Choi, M.-s., & Choi,

D.-g. (2021). Multi-Task Learning with Task-Specific Feature Filtering in Low-Data Condition.
Electronics, 10(21), 2691.

Li, X., & Roth, D. (2002). Learning Question Classifiers. 19th International Conference on Computational

Linguistics, COLING 2002, Howard International House and Academia Sinica, Taipei, Taiwan,

August 24 - September 1, 2002.
Liang, Y., Duan, N., Gong, Y., Wu, N., Guo, F., Qi, W., Gong, M., Shou, L., Jiang, D., Cao, G., Fan, X.,

Zhang, R., Agrawal, R., Cui, E., Wei, S., Bharti, T., Qiao, Y., Chen, J.-H., Wu, W., . . . Zhou, M.
(2020). XGLUE: A New Benchmark Datasetfor Cross-lingual Pre-training, Understanding and
Generation. EMNLP.

Lin, C.-C., Ammar, W., Levin, L., & Dyer, C. (2014). The CMU Submission for the Shared Task on Lan-
guage Identification in Code-Switched Data. Proceedings of the First Workshop on Computational

Approaches to Code Switching, 80–86. https://doi.org/10.3115/v1/W14-3909
Lin, Z., Feng, M., dos Santos, C. N., Yu, M., Xiang, B., Zhou, B., & Bengio, Y. (2017). A Structured Self-

Attentive Sentence Embedding. 5th International Conference on Learning Representations, ICLR

2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. https://openreview.net/
forum?id=BJC%5C_jUqxe

Liu, X., Eshghi, A., Swietojanski, P., & Rieser, V. (2019). Benchmarking Natural Language Understanding
Services for Building Conversational Agents. IWSDS, 165–183.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov,
V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR, abs/1907.11692.
http://arxiv.org/abs/1907.11692

Liu, Z., Wang, X., Chen, Q., & Tang, B. (2018). Chinese Clinical Entity Recognition via Attention-Based
CNN-LSTM-CRF. 2018 IEEE International Conference on Healthcare Informatics Workshop

(ICHI-W), 68–69.
Liu, Z., Lin, Y., & Sun, M. (2020). Representation Learning for Natural Language Processing. Springer.

https://doi.org/10.1007/978-981-15-5573-2
Lui, M., & Baldwin, T. (2012). langid.py: An Off-the-shelf Language Identification Tool. The 50th Annual

Meeting of the Association for Computational Linguistics, Proceedings of the System Demonstra-

tions, July 10, 2012, Jeju Island, Korea, 25–30. https://aclanthology.org/P12-3005/

https://doi.org/10.18653/v1/2020.acl-srw.34
https://doi.org/10.26615/978-954-452-056-4_071
https://doi.org/10.26615/978-954-452-056-4_071
http://proceedings.mlr.press/v32/le14.html
https://doi.org/10.1109/5.726791
https://doi.org/10.3115/v1/W14-3909
https://openreview.net/forum?id=BJC%5C_jUqxe
https://openreview.net/forum?id=BJC%5C_jUqxe
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/978-981-15-5573-2
https://aclanthology.org/P12-3005/


124 B I B L I O G R A P H Y

Lui, M., & Baldwin, T. (2014). Accurate Language Identification of Twitter Messages. Proceedings of the

5th Workshop on Language Analysis for Social Media (LASM), 17–25. https://doi.org/10.3115/v1/
W14-1303

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research,
9(Nov), 2579–2605.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceed-

ings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statis-

tics, 281–297. https://projecteuclid.org/euclid.bsmsp/1200512992
Makin, R., Pandey, N., Pingali, P., & Varma, V. (2007). Experiments in cross-lingual ir among indian

languages. Proceedings of the International Workshop on Cross Language Information Processing

(CLIP).
Malmasi, S., & Zampieri, M. (2017). German dialect identification in interview transcriptions. Proceedings

of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial), 164–169.
Mann, G. S., & Yarowsky, D. (2001). Multipath Translation Lexicon Induction via Bridge Languages. Sec-

ond Meeting of the North American Chapter of the Association for Computational Linguistics.
https://aclanthology.org/N01-1020

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge
University Press. https://doi.org/10.1017/CBO9780511809071

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a Large Annotated Corpus of En-
glish: The Penn Treebank. Comput. Linguistics, 19(2), 313–330.

Martins, B., & Silva, M. J. (2005). Language identification in web pages. In H. Haddad, L. M. Liebrock,
A. Omicini, & R. L. Wainwright (Eds.), Proceedings of the 2005 ACM Symposium on Applied

Computing (SAC), Santa Fe, New Mexico, USA, March 13-17, 2005 (pp. 764–768). ACM. https:
//doi.org/10.1145/1066677.1066852

Mather, L. A. (1998). A Linear Algebra Approach to Language Identification. Proceedings of the 4th Inter-

national Workshop on Principles of Digital Document Processing, 92–103.
Mati, D. N., Hamiti, M., Susuri, A., Selimi, B., & Ajdari, J. (2021). Building Dictionaries for Low Resource

Languages: Challenges of Unsupervised Learning. Annals of Emerging Technologies in Computing

(AETiC), 5(3), 52–58.
Maxwell, M., & Hughes, B. (2006). Frontiers in linguistic annotation for lower-density languages. Proceed-

ings of the workshop on frontiers in linguistically annotated corpora 2006, 29–37.
McCarthy, A. D., Kirov, C., Grella, M., Nidhi, A., Xia, P., Gorman, K., Vylomova, E., Mielke, S. J., Nico-

lai, G., Silfverberg, M., Arkhangelskiy, T., Krizhanovsky, N., Krizhanovsky, A., Klyachko, E.,
Sorokin, A., Mansfield, J., Ernštreits, V., Pinter, Y., Jacobs, C. L., . . . Yarowsky, D. (2020). Uni-
Morph 3.0: Universal Morphology. Proceedings of the 12th Language Resources and Evaluation

Conference, 3922–3931. https://aclanthology.org/2020.lrec-1.483
McNamee, P. (2005). Language identification: a solved problem suitable for undergraduate instruction. Jour-

nal of computing sciences in colleges, 20(3), 94–101.
Melamed, I. D. (1999). Bitext Maps and Alignment via Pattern Recognition. Computational Linguistics,

25(1), 107–130. https://aclanthology.org/J99-1003
Meng, H., Lo, W.-K., Chen, B., & Tang, K. (2001). Generating phonetic cognates to handle named entities in

English-Chinese cross-language spoken document retrieval. IEEE Workshop on Automatic Speech

Recognition and Understanding, 2001. ASRU ’01., 311–314. https://doi.org/10.1109/ASRU.2001.
1034649

https://doi.org/10.3115/v1/W14-1303
https://doi.org/10.3115/v1/W14-1303
https://projecteuclid.org/euclid.bsmsp/1200512992
https://aclanthology.org/N01-1020
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1145/1066677.1066852
https://doi.org/10.1145/1066677.1066852
https://aclanthology.org/2020.lrec-1.483
https://aclanthology.org/J99-1003
https://doi.org/10.1109/ASRU.2001.1034649
https://doi.org/10.1109/ASRU.2001.1034649


B I B L I O G R A P H Y 125

Merlo, P., & Rodriguez, M. A. (2019a). Cross-Lingual Word Embeddings and the Structure of the Human
Bilingual Lexicon. In M. Bansal & A. Villavicencio (Eds.), Proceedings of the 23rd Conference

on Computational Natural Language Learning, CoNLL 2019, Hong Kong, China, November 3-4,

2019 (pp. 110–120). Association for Computational Linguistics. https://doi.org/10.18653/v1/K19-
1011

Merlo, P., & Rodriguez, M. A. (2019b). Cross-lingual word embeddings and the structure of the human bilin-
gual lexicon. Proceedings of the 23rd Conference on Computational Natural Language Learning

(CoNLL), 110–120.
Meurers, W. D. (2021). Natural Language Processing and Language Learning. The Encyclopedia of Applied

Linguistics.
Miao, X., Qi, H., Zhang, Z., Cao, G., Lin, R., & Lin, W. (2021). Dual Neural Network Classification Based

on BERT Feature Extraction for Authorship Verification. In G. Faggioli, N. Ferro, A. Joly, M.
Maistro, & F. Piroi (Eds.), Proceedings of the Working Notes of CLEF 2021 - Conference and

Labs of the Evaluation Forum, Bucharest, Romania, September 21st - to - 24th, 2021 (pp. 2069–
2072). CEUR-WS.org. http://ceur-ws.org/Vol-2936/paper-182.pdf

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient Estimation of Word Representations in
Vector Space. In Y. Bengio & Y. LeCun (Eds.), 1st International Conference on Learning Repre-

sentations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings.
http://arxiv.org/abs/1301.3781

Mikolov, T., Le, Q. V., & Sutskever, I. (2013b). Exploiting Similarities among Languages for Machine
Translation. CoRR, abs/1309.4168. http://arxiv.org/abs/1309.4168

Mikolov, T., Yih, W., & Zweig, G. (2013c). Linguistic Regularities in Continuous Space Word Represen-
tations. In L. Vanderwende, H. D. III, & K. Kirchhoff (Eds.), Human Language Technologies:

Conference of the North American Chapter of the Association of Computational Linguistics, Pro-

ceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA (pp. 746–751).
The Association for Computational Linguistics. https://aclanthology.org/N13-1090/

Min, S., Chen, D., Hajishirzi, H., & Zettlemoyer, L. (2019). A Discrete Hard EM Approach for Weakly
Supervised Question Answering. In K. Inui, J. Jiang, V. Ng, & X. Wan (Eds.), Proceedings of the

2019 Conference on Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,

November 3-7, 2019 (pp. 2851–2864). Association for Computational Linguistics. https://doi.org/
10.18653/v1/D19-1284

Mintz, M., Bills, S., Snow, R., & Jurafsky, D. (2009). Distant supervision for relation extraction without
labeled data. In K. Su, J. Su, & J. Wiebe (Eds.), ACL 2009, Proceedings of the 47th Annual Meeting

of the Association for Computational Linguistics and the 4th International Joint Conference on

Natural Language Processing of the AFNLP, 2-7 August 2009, Singapore (pp. 1003–1011). The
Association for Computer Linguistics. https://aclanthology.org/P09-1113/

Mulloni, A., & Pekar, V. (2006). Automatic Detection of Orthographics Cues for Cognate Recognition. Pro-

ceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06).
http://www.lrec-conf.org/proceedings/lrec2006/pdf/676_pdf.pdf

Navigli, R. (2018). Natural Language Understanding: Instructions for (Present and Future) Use. IJCAI,
5697–5702.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453. https:
//doi.org/https://doi.org/10.1016/0022-2836(70)90057-4

https://doi.org/10.18653/v1/K19-1011
https://doi.org/10.18653/v1/K19-1011
http://ceur-ws.org/Vol-2936/paper-182.pdf
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1309.4168
https://aclanthology.org/N13-1090/
https://doi.org/10.18653/v1/D19-1284
https://doi.org/10.18653/v1/D19-1284
https://aclanthology.org/P09-1113/
http://www.lrec-conf.org/proceedings/lrec2006/pdf/676_pdf.pdf
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4


126 B I B L I O G R A P H Y
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