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Abstract

A covering group of an elementary abelian group of order p(n) is a group G of order

pn+(
n
2) consisting of the following data:

• G has generators x1, . . . , xn.

• The commutator subgroup of G is equal to the centre and is an elementary abelian

group of order p(
n
2) or rank

(
n
2

)
generated by

(
n
2

)
simple commutators [xi, xj].

• G/Z(G) is an elementary abelian group of order p(n), generated by x̄1, . . . , x̄n,

where x̄ denotes the coset xZ(G) of Z(G) in G.

In general, an elementary abelian group has many non-isomorphic covering groups

whose enumeration and/or classification is a difficult problem. Different covering

groups are determined by specifying the pth powers of the generators x̄i as elements

of the elementary abelian group G ′. For an odd prime p, the problem can be expressed

purely in terms of linear algebra, because the mapping from G to G’ that takes every

element to its pth power is a linear transformation of Fp-vector spaces, from G/G ′ to

G ′. For p = 2, this is not the case, and the subject has more of a combinatorial flavour.

An invariant of covering groups of Cn2 is the minimum number k of distinct squares

of elements in a generating set. If k = 1, the corresponding covering groups are called

uniform and it is known that their isomorphism types are in bijective correspondence

with the isomorphism types of simple undirected graphs on n vertices. The goal of

this thesis is to extend this graph correspondence to the case k = 2, which is called

2-uniform. Graphs that encode 2-uniform covering groups are equipped with vertex

and edge colourings, both with two colours. We again obtain a correspondence be-

tween group and graph isomorphism types. Theorem 3.12 presents a class of graphs

that includes at least one representative of every isomorphism type of covering groups.

Many groups are represented by a single graph in this class, and the exceptions are ex-

plored in Chapters 4 through 8. For a 2-uniform covering group G of Cn2 , the uniform

rank ρ(G) ofG is defined as the maximum number of elements with the same square in

a minimal generating set, and the uniform corank is n− ρ(G). Theorem 3.8 establishes
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that covering groups whose uniform corank is at least 4 are almost always repre-

sented by exactly one graph in the class described in Theorem 3.12. The exceptions to

this are investigated in Chapter 4, and the main results are documented in Theorems

4.6, 4.8 and 4.10. Further failures of bijectivity in the correspondence between group

isomorphism types and the graphs of Theorem 3.12 occur for all covering groups of

uniform corank 1, some of uniform corank 2 or 3, and some whose uniform rank is at

most 3. These cases are explored in Chapter 5 (on groups of corank 3), Chapter 6 (on

corank 2), and Chapter 7 (on corank 1). Chapter 7 presents a refinement of the corre-

spondence of Theorem 3.12, for the special case of covering groups of uniform corank

1. Finally, groups whose uniform rank is at most 3 are considered in Chapter 8.
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Chapter 1

Introduction

For a finite group G, a Schur cover or covering group or stem cover of G is a finite group

H with a normal subgroup N ⊆ Z(H) ∩ H ′ with H/N ∼= G, that has maximal order

amongst all groups with this property. A pair of groups (H,N) with N ⊆ Z(H) ∩ H ′

andH/N ∼= G is referred to as a stem extension ofG. Thus a covering group corresponds

to a stem extension with groups of maximal possible order. A group may have multiple

non-isomorphic covering groups, but in all cases the normal subgroupN is isomorphic

to the Schur Multiplier M(G) of G. If G ∼= F/R for a free group F of finite rank, and

if (H,N) is a stem extension of R, then H is the image of F under a homomorphism

whose kernel contains [F,R], and which maps F ′∩R ontoN. In this situation, the Schur

Multiplier of G is given by

M(G) ∼= (F ′ ∩ R)/[F,R]. (1.1)

Furthermore, (F ′ ∩ R)/[F,R] is the torsion subgroup of the abelian group R/[F,R], and

every covering group of G may be realized as (F/[R, F])/C, where C is a torsion-free

complement of (F ′ ∩ R)/[F,R] in R/[F,R]. We refer to Chapter 7 of [4] for an account

of these points, and of the general theory of covering groups. The study of covering

groups was initiated by Schur in the early years of the 20th century, in his development

of the projective representation theory of finite groups [5, 6].

If H is a covering group of G, with H/N ∼= G, where N ⊆ Z(H) ∩ H ′, then the

Schur multiplier of G captures the connection between expressions for the identity

element of G as products of commutators, and the analogous expressions involving
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Chapter 1 – Introduction

representatives of the corresponding cosets of N in H. A non-identity element of (F ′ ∩

R)/[F,R] corresponds to a product of commutators in F that maps to a non-identity

element of N in a mapping from F/[F,R] onto H.

Example 1.1. IfG is a finite cyclic group of order k, then we may take F to be an infinite

cyclic group generated by X, with R = 〈Xk〉. Then F ′ is trivial, M(G) is trivial, and

(G, id) is the only stem extension of G. This is consistent with the observation that if

H/A is cyclic for a central subgroup A of any finite group H, then H is abelian and H ′

is trivial.

Example 1.2. Suppose that G ∼= C2 × C2 and let (H,N) be a stem extension of G. Let x

and y be elements of Hwith H/N = 〈xN,yN〉. Then

[x,y] = x−1y−1xy ∈ N,

and since N ⊆ Z(H), we have [x,y] = yx−1y−1x also. Moreover, y2 ∈ N, x2 ∈ N, and

[x,y]2 = (x−1y−1xy)(yx−1y−1x)

= x−1y−1xy2x−1y−1x

= y2x−1y−1xx−1y−1x

= y2x−1y−2x

= id.

Since no other non-identity commutators can occur in H, it follows that |N| = 1 or 2,

and H has order 4 or 8. The two non-abelian groups of order 8 are covering groups of

C2 × C2.

The theme of this thesis is the classification, up to isomorphism, of covering groups

of elementary abelian 2-groups. For a prime p and positive integer n, the elementary

abelian p-group of order pn is the direct product of n copies of the cyclic group Cp

of order p. Written additively, it is the vector space of dimension n over the field Fp
of p elements. Elementary abelian groups possess a particular abundance of distinct

covering groups.
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Chapter 1 – Introduction

In [7], Ursula Martin Webb investigates the number A(p,n) of all isomorphism

types of covering groups of Cnp for odd p, and shows that it is bounded below by

pn(
n
2)

|GL(n,p)|

(
p−3n2/2+9n/2−4(pn − 1)(p+ pn−1 − 1)(p− 1) + 1

)
.

This result alone shows that the elementary abelian group of order 81 has at least 12555

distinct covering groups.

In [3], it is shown that the isomorphism classes of covering groups of Cn2 that pos-

sess a generating set consisting of n elements all having the same square, are in bi-

jective correspondence with the isomorphism types of simple undirected graphs on n

vertices. These uniform examples represent a tiny proportion of all covering groups of

Cn2 .

Our aim in this thesis is not to attempt an complete enumeration of all isomor-

phism types, but to extend this connection between groups and graphs. We study

another class of covering groups of elementary abelian 2-groups, namely those with a

generating set including elements with exactly two distinct squares. We refer to such

groups as 2-uniform, and they are the main object of attention.

The thesis is organised as follows. Chapter 2 contains some essential ideas from

group theory that are used throughout the thesis, and explains the main themes. The

detailed study of 2-uniform covering groups commences in Chapter 3, where the main

theoretical machinery is developed, including a method of representing these groups

with 2-coloured graphs. The remainder of the thesis is devoted to the analysis of var-

ious special cases, involving groups that admit multiple non-isomorphic graph repre-

sentations according to our scheme.
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Chapter 2

Background

In this chapter we present some group theory definitions and properties that are essen-

tial to our study.

Definition 2.1. The centre of a groupG is the set of elements that commute with every element

of G. It is denoted by Z(G).

Z(G) = {z ∈ G | ∀g ∈ G, zg = gz}.

Definition 2.2. For elements x, y of a group G, the commutator of x and y is the element

[x,y], defined by

[x,y] = x−1y−1xy.

We observe that [x,y]−1 = [y, x], for all group elements x,y.

Definition 2.3. The commutator subgroup of a group G is the subgroup generated by the

commutators of its elements, and is denoted by G ′.

G ′ = [G,G] = 〈x−1y−1xy | x,y ∈ G〉.

The commutator subgroup G ′ is the unique smallest normal subgroup of G for

which G/G ′ is abelian. It can range from the identity subgroup to the whole group (in

the case of a perfect group).

We refer to any element of G ′ that has the form [x,y] for some x,y ∈ G, as a simple

commutator. Every element of G ′ can be written as a product of simple commutators.
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Chapter 2 – Background

The length of a commutator is the least number of simple commutators required to

write the element.

Definition 2.4. A group G is nilpotent of class 2 if G is not abelian and G ′ ⊆ Z(G). This

means that every element of G of the form x−1y−1xy belongs to the center.

For any elements x and y of any group G, the elements xy and yx are related by the

equation

yx = xy(y−1x−1yx) = xy[y, x].

This means that we can rearrange any appearance yx to xy[y, x] and this introduces

the commutator [y, x] to the expression. Working with commutators is generally a

complicated matter, but in a group that is nilpotent group of class 2, all commutators

belong to the centre of G, so they commute with all elements of the group.

We will list here some properties of the commutator algebra in a nilpotent group of

class 2, that will be used throughout this thesis.

Lemma 2.5. Let G be a nilpotent group of class 2. For any integer k

[x,y]k = [xk,y] = [x,yk], ∀x,y ∈ G.

Proof. This can be proved by induction on k, using the fact that all commutators belong

to the center.

1. Base case k = 1 : [x,y]1 = [x1,y] = [x,y1].

2. Induction hypothesis: Suppose that the result holds for [x,y]k−1: [x,y]k−1 =

[xk−1,y] = [x,yk−1].
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Chapter 2 – Background

3. We now consider [x,y]k.

[xk,y] = x−ky−1xky

= x−ky−1xk−1xy

= = x−ky−1xk−1yx[x,y]

= x−1x−(k−1)y−1xk−1yx[x,y]

= x−1[xk−1,y]x[x,y]

= x−1x[x,y]k−1[x,y]

= [x,y]k.

A similar argument shows that [x,yk] = [x,y]k.

The following lemma is an extension of Lemma 2.5.

Lemma 2.6. Let G be a nilpotent group of class 2 and let x, y, z be elements of G. Then

1. [x, z][y, z] = [xy, z]

2. [z, x][z,y] = [z, xy]

Proof. For 1.,

[xy, z] = (xy)−1z−1xyz

= y−1x−1z−1xyz

= y−1x−1z−1xzy[y, z]

= y−1[x, z]y[y, z]

= y−1y[x, z][y, z]

= [x, z][y, z]

We can prove 2. in a similar way.

We now consider powers of products in nilpotent groups of class 2.

Lemma 2.7. Let G be a nilpotent group of class 2. For all x,y ∈ G and all positive integers k:
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Chapter 2 – Background

(xy)k = xkyk[y, x]
k(k−1)

2 .

Proof. We prove the lemma by induction on k.

1. Base case k = 2 : (xy)2 = xyxy = xxy[y, x]y = x2yy[y, x] = x2y2[y, x].

2. Induction hypothesis: We assume that

(xy)k−1 = xk−1yk−1[y, x]
(k−1)(k−2)

2 .

3. Now we consider (xy)k:

(xy)k = (xy)k−1(xy) = xk−1yk−1[y, x]
(k−1)(k−2)

2 (xy)

= xk−1yk−1(xy)[y, x]
(k−1)(k−2)

2

= xk−1xyk−1[yk−1, x]y[y, x]
(k−1)(k−2)

2

= xkyk[yk−1, x][y, x]
(k−1)(k−2)

2

= xkyk[y, x](k−1)[y, x]
(k−1)(k−2)

2

= xkyk[y, x]
k(k−1)

2 .

Next we introduce some objects that have a central role in our study.

Definition 2.8. A group G is a p−group if every element of G, except the identity, has order

equal to a power of the same prime p.

Definition 2.9. The elementary abelian group of order pn, for a prime p, is the direct product

of n cyclic groups of order p.

Cnp
∼= Cp × Cp × · · · × Cp.

If the ith copy of Cp is generated by xi, then the elements of the elementary abelian

group have the form: xi1
1 x

i2
2 ....xinn ; 0 6 ik < p.

The group operation is commutative and is given by:
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Chapter 2 – Background

(xi1
1 x
i2
2 . . . xinn ) · (xj11 x

j2
2 . . . xjnn ) = xi1+j1

1 xi2+j2
2 . . . xin+jnn ; ik + jk is modulo p.

If the group operation is written additively, Cnp is just the vector space of dimension n

over the field Fp of p elements.

Example 2.10. For p = 3 and n = 2, the elementary abelian group of order 32 is < x1 >

× < x2 >with the elements:

Id, x1, x2, x2
1, x2

2, x1x2, x2
1x2, x1x

2
2, x2

1x
2
2.

Recalling the general description of a covering group of finite groups in Chapter 1,

we now give a description of covering groups of elementary abelian groups. Covering

groups of elementary abelian 2-groups are the focus of attention in this study.

Definition 2.11. A covering group of an elementary abelian group of order pn is a group G of

order pn+(
n
2) consisting of the following data:

• G has generators x1, . . . , xn.

• The commutator subgroup of G is equal to the centre and is an elementary abelian group

of order p(
n
2) or rank

(
n
2

)
generated by

(
n
2

)
simple commutators [xi, xj].

• G/Z(G) is an elementary abelian group of order pn, generated by x̄1, . . . , x̄n, where x̄

denotes the coset xZ of Z in G.

The below example shows that an elementary abelian group can have multiple non-

isomorphic covering groups.

Example 2.12. The dihedral group D8 is a non-abelian group of order 8 and it is a

covering group of C2 × C2, since:

• D8 has a generating set {x,y}, where x4 = y2 = 1.

• The commutator subgroup ofD8 isG ′ = {1, x2} ∼= Z(D8), where [x,y] = x−1y−1xy =

x3yxy = x3x−1yy = x2. G ′ is an elementary abelian group of order 2.

• D8/Z(D8) is an elementary abelian group of order 4.

13



Chapter 2 – Background

Also, the quaternion groupQ8 is a non-abelian group of order 8 and it is a covering

group of C2 × C2, since:

• Q8 has a generating set {x,y}, where x4 = y4 = 1.

• The commutator subgroup ofQ8 isG ′ = {1, x2} ∼= Z(Q8), where [x,y] = x−1y−1xy =

x3y3xy = x3xyy = y2 = x2. G ′ is elementary abelian group of order 2.

• Q8/Z(Q8) is an elementary abelian group of order 4

Since any covering group of C2 × C2 is a non-abelian group of order 23 = 8, we

conclude that the group C2 × C2 has two distinct covering groups D8 and Q8. These

are the two non-isomorphic non abelian groups of order 8.

Now, we introduce a description for the elements ofG, whereG is a covering group

of an elementary abelian p− group generated by {x1, x2, . . . , xn}. The commutator sub-

group of G is equal to the center and is an elementary abelian group of order p(
n
2),

generated by
(
n
2

)
simple commutators [xi, xj]. This means that for every element of G

expressed as a word of the generators, we can rearrange it into the form

xi1
1 x
i2
2 . . . xinn z; 0 6 ij 6 p− 1, (2.1)

where z is an element of the commutator subgroup of G. Since G/Z(G) has exponent

p, then xpi belongs to the commutator subgroup for every i. This means that in the

expression (2.1), we can adjust so that each ij is in the range 0 to p − 1 and reach the

conclusion that every element of G has a unique expression of the form of (2.1).

We can describe the binary operation of multiplication inG as follows: for elements

(xi1
1 x
i2
2 . . . xinn z1) and (xj11 x

j2
2 . . . xjnn z2) of G,

(xi1
1 x
i2
2 . . . xinn z1) · (xj11 x

j2
2 . . . xjnn z2) = x

[i1+j1]p
1 x

[i2+j2]p
2 . . . x[in+Jn]pn z3, (2.2)

Where:

• [ik + jk]p denotes the remainder on dividing ik + jk by p.

• z3 is not the product of z1 and z2, it involves z1 and z2, various commutators of the

xi, and any pth powers of xi that are arising from cases which [ik + jk]p exceeds

p.
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Chapter 2 – Background

We now let G be a covering group of Cnp . We will refer to any minimal generating

set of G as a basis of G. We say that a subset of G is independent if its elements are

linearly independent in G/G ′, regarded as a vector space over Fp. Thus a basis is a

maximal independent set.

Let F be a free group of rank n, with generators X1, . . . ,Xn. Let G be a covering group

of Cnp with basis {x1, . . . , xn}. Then there is an epimorphism φ : F→ G with φ(Xi) = xi

for each i. Since G has exponent p2 or p, G ′ has exponent p, and all commutators and

squares are central in G, the kernel R of φ contains the subgroup H of F generated by

all elements of the forms

Xp
2
, [Xp, Y], [X, Y]p, [[X, Y],Z], for X, Y,Z ∈ F.

We note that the above forms are preserved under conjugation, so H is normal in F.

We write X̄i for the element of F/H represented by Xi. The centre of the group F/H is an

elementary abelian of order p(
n
2)+n, generated by X̄p1 , . . . , X̄pn and the

(
n
2

)
simple com-

mutators [X̄i, X̄j]i<j. See [2] for a discussion of this point. Since the centre of F/H strictly

contains the commutator subgroup, F/H is not a covering group of Cnp . However, ev-

ery covering group of Cnp may be realized as a quotient of F/H, modulo a subgroup C

of order pn that is a complement of (F/H) ′ in Z(F/H). Such a subgroup is elementary

abelian, generated by elements of the form Xp1 c1, . . .Xpncn, where each ci belongs to

(F/H) ′ and has a unique expression as a product of the [X̄i, X̄j]. If ci = θi(X̄i, . . . , X̄n)

and G = (F/H)/C, then xpi = θi(x1, . . . , xn) in G. Choosing a complement C of (F/H) ′

in Z(F/H) amounts to designating the pth power of each of the generators x1, . . . , xn of

G as a product of the basic simple commutators [xi, xj]. This can be done freely and

independently for each xi, with different choices corresponding to different choices

of C. Different choices for the pth power map on generators may lead to isomorphic

covering groups, and determining when this occurs is a difficult problem in general.

The basic arithmetic of (2.2) is the same for all covering groups, and we need to

specify how the xpi is written as an element of G ′. If G is a covering group of elemen-

tary abelian group Cnp , generated by {x1, x2, . . . , xn}, then Z(G) is generated by the
(
n
2

)
simple commutators [xi, xj]; 1 6 i < j 6 n. Designating a particular covering group of

15



Chapter 2 – Background

C
(n)
p amounts to writing the pth power of the generator xk for (k = 1, . . . ,n) explicitly

in the form

xpk =
∏
i<j

[xi, xj]eijk ; 0 6 eijk < p

Since |G ′| = p(
n
2), for each i we have p(

n
2) choices for how to assign xpi and since

the xi are independent, we can make these choices independently for each i. The num-

ber of ways to write down the pth power mapping on the generators {x1, x2, . . . , xn}

is pn(
n
2). However the pn(

n
2) choices do not all determine non-isomorphic covering

groups, and the key problem is to determine when they do.

This choice on generators determines the ”pth power map”, defined by:

φ : G→ G ′, x→ xp.

If p is odd, and x,y are elements of a covering group G of Cnp , then from lemma 2.7

and the fact that [x,y]p = id, we can write

(xy)p = xpyp[x,y]
p(p−1)

2 = xpyp.

This means that for a covering group G of Cnp for an odd prime p, the mapping from G

toG ′ that takes x to xp is a group homomorphism. The kernel of this mapping contains

G ′, and the image is a subgroup of G ′ which is elementary abelian group of order pk

for some k in the range 0 to n. We call k the rank of the covering group.

The pth power mapping on G may be regarded as a group homomorphism from

G/G ′ to G ′. Since G/G ′ is an elementary abelian group of order pn, so G/G ′ may

be considered as a vector space of dimension n over the field Fp. Moreover, G ′ is an

elementary abelian group of order p(
n
2) and may be considered as a vector space of

dimension
(
n
2

)
over the field Fp. Therefore, the pth power mapping on G is a linear

transformation from Fnp to F(
n
2)
p and its rank is defined as the dimension of its image.

Definition 2.13. For odd p, the rank of a covering group G of Cnp is the rank of φ, considered

as a linear transformation from Fnp to F(
n
2)
p .
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Chapter 2 – Background

When the rank is 0 then xpi = id for all x, which means that the group G has ex-

ponent p. There is exactly one covering group of Cnp of exponent p when p is odd ,

corresponding to the choice of the trivial homomorphism as the pth power mapping.

The classification of the covering groups of rank 1 of Cnp up to isomorphism was

discussed in the article [1]. If G is a covering group of Cnp of rank 1, we can choose a

generating set {x1, x2, . . . , xn} for G with the property that xpi = 1 for i > 2, so the only

element of the generating set that is not in the kernel of the pth power map is x1. If we

write xp1 = r, then r is a non-identity element in the group of pth powers in G. This

means that rmust be a generator of this group, since it is cyclic of a prime order. Since

r ∈ G ′, we can write r as a product of expressions of the form [xi, xj]kij where i < j and

0 6 kij < p. The following theorem appears in [1].

Theorem 2.14. The group Cnp for odd p has n − 1 isomorphism types of covering groups of

rank 1.

This theorem was proved by showing that a covering group G of Cnp for an odd p

has a basis {x1, x2, . . . , xn} where 〈x2, x3, . . . , xn〉 is the kernel of the pth power map and

xp1 has one of the following forms:

1. xp1 = [x2, x3][x4, x5] . . . [x2k, x2k+1]

2. xp1 = [x1, x2][x3, x4] . . . [x2k−1, x2k]

The two conditions determine non-isomorphic covering groups. For a given k and

n, with 2k 6 n, there are at most two non-isomorphic covering groups of Cnp of rank 1,

in which non-identity pth powers have commutator length k. If n = 2k, there is only

one. This accounts for the n− 1 in the statement of Theorem 2.14.

In this study, our main theme is to develop an analogous theory for case of cover-

ing groups of elementary abelian 2-groups, where the squaring map is not a homomor-

phism. If x and y are non-commuting elements in a covering groupG of an elementary

abelian 2-group, then (xy)2 = x2y2[x,y] 6= x2y2. Thus the squaring map in a covering

group of Cn2 does not induce a linear transformation. This means that the linear alge-

bra methods that apply to the case of odd p do not extend to p = 2, and the subject has
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more of a combinatorial flavour. Nevertheless, we aim to adapt the concept of rank to

the case of 2-groups, and consider analogues of Theorem 2.14.

Definition 2.15. A covering group G of Cn2 is uniform if it has a generating set consisting of

n elements all having the same square. Such a generating set is called a uniform basis.

Uniform covering groups were defined and discussed in [3]. We present some im-

portant concepts and theorems relating to the uniform case. It is apparent that a uni-

form covering group has many non-uniform bases. Given a covering group of Cn2 in

terms of a generating set, there is no quick way to decide if this group is uniform, un-

less the generating set that we are given happens to have the uniform property. In this

respect the concept of “uniform” for p = 2 differs from the concept of ”rank 1” for odd

p.

Example 2.16. A covering groupG ofC2×C2 has generating set {x,y}, and commutator

subgroup of order 2, generated by [x,y]. As noted in Example 2.12, choosing x2 = y2 =

[x,y] gives Q8; other three options all give D8.

1. x2 = y2 = [x,y]

In this case x4 = y4 = Id and yx = x3y. This is a non abelian group of order 8 that

is generated by two elements both of order 4. It is the quaternion group of order

8.

Q8 = {Id, x, x2, x3,y, xy, x2y, x3y}

Since x2 = y2 = [x,y], we observe that {x,y} is a uniform basis and that Q8 is a

uniform covering group of C2
2.

2. x2 = y2 = id

In this case x = x−1 and y = y−1, then (xy)2 = xyxy = x−1y−1xy = [x,y]. This is

a non-abelian group of order 8 generated by a pair of elements both of order 2. It

is the Dihedral group of order 8.

D8 = {Id, x, xy, (xy)2, (xy)3, (xy)x, (xy)2x, (xy)3x}
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Since x2 = y2 = Id, we observe {x,y} is a uniform basis and D8 is uniform.

Thus both Q8 and D8 are uniform covering groups of C(2)
2 . The quaternion group

Q8 is generated by two elements whose square is the unique non-identity commutator

and the dihedral group D8 is generated by two elements whose square is the identity.

For the other two choices of the squaring map, the related basis for the dihedral group

D8 are not uniform. On the other hand, every basis of Q8 is uniform.

We now let B = {x1, . . . , xn} be a basis of G, and introduce a set V of n vertices

labelled by the elements of B. For 1 6 i < j 6 n, the basic simple commutator [xi, xj]

is represented by the edge comprising the two vertices labelled by xi and xj. Every

element of G ′ has a unique expression as a product of basic simple commutators, and

is represented by the graph on V whose edges correspond to the commutators that

occur in this expression. Subject to the choice of a basis of G, we have a one-to-one

correspondence between the set of all graphs on n labelled vertices and the elements

of G ′. Also, the uniform covering group of Cn2 with a uniform basis can be associated

with a graph as follows.

Let B = {x1, . . . .xn} be a uniform basis of a covering groupG of Cn2 , where x2
i = r for

1 6 i 6 n. Then r has a unique expression as a product of some of the
(
n
2

)
commutators

[xi, xj]. We use this fact to define a graph ΓB(G) of order n , as follows. The order of a

graph is its number of vertices.

• The vertex set of ΓB(G) consists of n vertices X1, . . . ,Xn (corresponding to the

basis elements x1, . . . , xn).

• A pair of vertices is adjacent via an edge if the commutator of their corresponding

elements appears in the expression for r as a product of commutators of elements

of B.

Therefore, if r = 1, then ΓB(G) is the null graph on n vertices.

Returning to Example 2.16 for the case of covering groups of C2×C2, we introduce

a pair of vertices corresponding to the elements x and y of a uniform basis. The quater-

nion group Q8 is generated by two elements whose square is the unique non-identity
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commutator and the dihedral group D8 is generated by two elements whose square is

the identity. Therefore we can associate the following two graphs to these two uniform

covering groups as follows.

1. For Q8, x2 = y2 = [x,y], and a uniform basis for Q8 corresponds to the following

graph.

x y

2. ForD8, x2 = y2 = id, for any uniform basis {x,y}. The corresponding graph is the

null graph on two vertices.

x y

Also, it in shown in [3] that the isomorphism type of ΓB(G) does not depend on the

choice of uniform basis B. This means that if a covering group G has a uniform basis

B that corresponds to a graph ΓB(G), then every uniform basis of G corresponds to

a graph isomorphic to ΓB(G). In view of this, we may refer to the graph of a uniform

covering group without reference to a particular basis, and write Γ(G) instead of ΓB(G).

The following theorem is one of the main results of [3].

Theorem 2.17. Let G1 and G2 be uniform covering groups for Cn2 . Then G1
∼= G2 if and

only if Γ(G1) and Γ(G2) are isomorphic graphs. The number of isomorphism types of uniform

covering groups for Cn2 is equal to the number of isomorphism types of graphs of order n.

Given a simple graph Γ with vertex set {v1, . . . , vn}, a uniform covering group G of

Cn2 corresponding to Γ is determined as follows. For generators {x1, . . . , xn}, we de-

fine the common square of all the xi to be the element
∏
i<j[xi, xj]

eij , where eij is 1

or 0 according as the vertices vi and vj are adjacent in Γ , or not. The simple commu-

tators [xi, xj] are central in G, and Z(G) is generated by the
(
n
2

)
simple commutators

[xi, xj]; 1 6 i < j 6 n, and the common square of all the xi is an element of Z(G).

Comparing Theorem 2.17 and Theorem 2.14, we note that the number of isomor-

phism types of uniform covering groups of Cn2 greatly exceeds the number of covering

groups of rank 1 of Cnp , where p is odd.
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Example 2.18. Ifn = 6 and p is odd, then from Theorem 2.14, the groupC6
p hasn−1 = 5

isomorphism types of rank 1 covering groups. The group C6
2 has 156 isomorphism

types of uniform covering groups, corresponding to the 156 isomorphism classes of

simple undirected graphs on six vertices.

Subject to the choice of a basis B for a covering group G of Cn2 , any element of G ′

may be described, as outlined above, by a graph on a set of n vertices labelled by the

elements of B. The distinguishing feature of uniform covering groups is that a single

such graph is sufficient to fully specify the group. Our theme in this thesis is to explore

the case of covering groups that are not uniform but possess a basis whose elements

have only two distinct squares. Such groups will be called 2-uniform, and they can be

described using graphs with a 2-colouring of both their vertex and edge sets.

One invariant that can distinguish non-isomorphic covering groups of Cn2 is the

minimum number of distinct squares of elements of a generating set. In the next chap-

ter we will define the concept of an 2-uniform covering group of an elementary abelian

2-group and establish a correspondence between 2-uniform covering groups ofCn2 and

a certain class of graphs of order nwith two edge colours.

21



Chapter 3

2-uniform groups

In this chapter, we discuss an extension of the graph representation of uniform cov-

ering groups, to the case of non-uniform covering groups possessing bases whose el-

ements have two distinct squares instead of one, which we call 2-uniform. This is the

core subject of the thesis. The main results of this chapter are

• Theorem 3.8, which establishes that in many cases, there is only one possibility

for the two squares of the elements in such a basis;

• Theorem 3.12, which presents a class of graphs encoding all 2-uniform covering

groups.

We show in this chapter that a 2-coloured graph with at least three blue vertices,

and at least as many blue as red, is 2-uniform if and only if it satisfies the conditions of

Theorem 3.12.

Definition 3.1. We will say that a covering group G of Cn2 is 2-uniform if it is not uniform,

and it has a basis B with the property that

|{x2 : x ∈ B}| = 2.

We will refer to a basis of the type described in Definition 3.1 as a 2-square basis ofG.

Any covering group that possesses a 2-square basis is either 2-uniform or uniform. We

may use a 2-square basis to associate a graph to G, by extending the graph interpreta-

tion of a uniform basis as used in Chapter 2. We use vertex colours to distinguish the
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elements of a 2-square basis according to their two distinct squares, and corresponding

edge-colours to distinguish their respective squares. By a 2-coloured graph, we mean

a loopless undirected graph in which every vertex is coloured either blue or red, and

every edge is coloured either blue or red. A pair of vertices may be adjacent via a blue

edge and a red edge, but multiple edges of the same colour cannot occur. We say that

two 2-coloured graphs are isomorphic if there is a bijection between their vertex sets

that preserves adjacency and non-adjacency, and either preserves the colours of both

vertices and edges, or switches the colours of all vertices and all edges.

Definition 3.2. Let G be a covering group of Cn2 with a basis B, and let c ∈ G ′. We define

ΓB(c) to be the graph whose vertices represent the elements of B, in which two vertices are ad-

jacent if and only if the commutator of the corresponding elements of B occurs in the expression

for c as a product of commutators of elements of B.

Let B = {x1, . . . , xk,yk+1, . . . ,yn} be a 2-square basis of a covering group G of Cn2 ,

where x2
i = r for i 6 k, y2

j = s for j > k, and r and s are distinct elements of G ′. We

define the 2-coloured graph ofGwith respect to the basis B, denoted ΓB(G), as follows.

• The vertex set of ΓB(G) consists of k blue vertices, corresponding to the basis

elements x1, . . . , xk and n − k red vertices, corresponding to the basis elements

yk+1, . . . ,yn;

• The blue edges of ΓB(G) comprise the edge set of the graph ΓB(r).

• The red edges of ΓB(G) comprise the edge set of the graph ΓB(s).

Example 3.3. Let G = 〈x1, x2, x3, x4,y1,y2〉, where

• x2
1 = x

2
2 = x

2
3 = x

2
4 = r = [x1, x2][x1, x4][x2,y1][x3, x4],

• y2
1 = y

2
2 = s = [x2, x3][x1, x4][x3,y2].

The graph that represents the group G is below:
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x2

x3
x4

y1

y2
x1

On the other hand, if Γ is a 2-coloured graph on n vertices, we may associate a cover-

ing group G to Γ as follows. A generating set of G consists of n elements X1, . . . ,Xn,

corresponding to the vertices of Γ . The following set of relators specifies G (see [2]):

• The square of each generator that corresponds to a blue vertex is the element of

G ′ represented by the blue edges.

• The square of each generator that corresponds to a red vertex is the element ofG ′

represented by the red edges.

• All elements of the forms X4
i, [X2

i,Xj], [Xi,Xj]2 and [[Xi,Xj],Xk] are equal to the

identity element in G.

We say that 2-coloured graphs are isomorphic if there is a bijection between their ver-

tex sets that preserves adjacency and non-adjacency, and either preserves the colours

of both vertices and edges, or switches the colours of all vertices and all edges.

Definition 3.4. Suppose that Γ1 and Γ2 are 2-coloured graphs of order n. Then Γ1 and Γ2 are

isomorphic if there is a bijection φ : V(Γ1)→ V(Γ2) with the following properties:

1. φ(u) and φ(v) have the same colour in Γ2 if and only if u and v have the same colour in

Γ1. This means that φ either maps all blue vertices of Γ1 to blue vertices of Γ2 (and red to

red) or it maps all blues to reds and all reds to blues. The latter case can only occur if n is

even and exactly half of the vertices in each graph are blue and half red.

2. If φ preserves blue vertices, then it also preserves blue edges. This means that φ(u)φ(v)

is a blue edge in Γ2 if and only if uv is a blue edge in Γ1. Same for red edges.
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3. In the special case where φ sends blue vertices to red vertices, it also sends blue edges to

red edges (and red to blue). In this case φ(u)φ(v) is a blue edge of Γ2 if and only if uv is

a red edge in Γ1. Also φ(u ′)φ(v ′) is a red edge in Γ2 if and only if u ′v ′ is a blue edge in

Γ1.

Also, a 2-uniform group may have multiple 2-square bases, and may be represented

by non-isomorphic 2-coloured graphs, as the following example shows.

Example 3.5. LetG be the 2-uniform covering group ofC4
2 with 2-square basis {x1, x2,y3,y4},

where x2
1 = x2

2 = [x1, x2][y3,y4], and y2
3 = y2

4 = [x1,y3]. Then (x1y3)
2 = x2

1y
2
3[x1,y3] = x

2
1.

It follows that {x1, x2, x1y3,y4} is another 2-square basis of G, in which

x2
1 = x

2
2 = (x1y3)

2 = [x1, x2][x1y3,y4][x1,y4],

and y2
4 = [x1, x1y3]. Thus the following nonisomorphic 2-coloured graphs both repre-

sent this 2-uniform covering group G of C4
2.

Example 3.5 shows that, even for bases consisting of elements with the same pair

of squares, some variation is possible in the numbers of blue and red vertices in the

corresponding graphs. This difficulty will be resolved by refining the concept of a 2-

square basis to that of a 2-uniform basis, which is one which maximizes the number of

elements having a single square.

Definition 3.6. For any covering group G of Cn2 , the uniform rank of G, denoted ρ(G), is

the maximum k with the property that k independent elements of G have the same square. The

uniform corank of G, denotedΦ(G), is defined as n− ρ(G).

In a 2-uniform covering group of Cn2 , the uniform rank is at least bn2 c and at most

n− 1.
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Definition 3.7. Let G be a 2-uniform covering group of Cn2 . A 2-uniform basis of G is a

generating set {x1, . . . , xn} with the following properties:

• x1, . . . , xk have the same square r.

• xk+1, . . . , xn have the same square s, where s 6= r.

• k is the uniform rank of G.

We now establish that every 2-uniform covering group of an elementary abelian 2-

group possesses a 2-uniform basis. This allows us to restrict our attention to 2-coloured

graphs that arise from 2-uniform bases. We will refer to such graphs as 2-uniform

graphs, and give a descriptive characterisation of them in terms of their graph-theoretic

properties. We also establish conditions for the existence of a unique 2-uniform ba-

sis in a covering group. This step identifies a large class of covering groups that are

represented by a unique 2-uniform graph. The exceptions to this situation will be cate-

gorised in this chapter, and analysed later. Theorem 3.8 is the main technical ingredient

required to establish that every covering group possesses a 2-uniform basis. The fol-

lowing notation, which will be used throughout the paper, occurs in the proof.

If X is a subset of a covering group G of Cn2 , we write C(X) for the element of G ′

that is given by the product of the commutators [x,y], over all unordered pairs {x,y} of

distinct elements of X. If X = {x1, x2, . . . , xt} we write C(x1, . . . , xt) for C(X). If the ele-

ments of X are independent in G and are included in a basis B, then ΓB(C(X)) consists

of a clique on those vertices representing the elements of X, with remaining vertices

isolated.

Theorem 3.8. Let G be a 2-uniform covering group of Cn2 , where n > 4, and let B =

{x1, . . . , xk,yk+1, . . . ,yn} be a generating set of G, where x2
i = r for i = 1, . . . ,k, and y2

j = s

for j = k + 1, . . . ,n, and where k > n − k. Then no element of G ′\{r, s} is the square of

elements of four independent cosets of G ′ in G.

Proof. Let t ∈ G ′\{r, s}, and suppose that t is the square of elements from four inde-

pendent cosets of G ′ in G. Each of these cosets has a unique representative that is a
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product of elements of the ordered basis B, appearing in the same order as they do in

B. Let these four elements be z1, z2, z3, z4, and for i = 1, . . . , 4 let Xi and Yi respectively

denote the sets of elements of {x1, . . . , xk} and {yk+1, . . . ,yn} that occur in zi. We note

that |Xi ∪ Yi| > 2 in each case, since z2
i 6∈ {r, s}. Then

r|X1|s|Y1|C(X1 ∪ Y1) = r
|X2|s|Y2|C(X2 ∪ Y2) = r

|X3|s|Y3|C(X3 ∪ Y3) = r
|X4|s|Y4|C(X4 ∪ Y4).

In each case, the expression r|Xi|s|Yi| is either equal to id, r, s or rs. No two of these

can coincide, since the four elements C(Xi ∪ Yi) of G ′ are distinct. After relabelling if

necessary we write

C(X1 ∪ Y1) = rC(X2 ∪ Y2) = sC(X3 ∪ Y3) = rsC(X4 ∪ Y4), (3.1)

where |X1|, |Y1|, |Y2| and |X3| are even, and |X2|, |Y3|, |X4| and |Y4| are odd. Multiplying

the expressions in (3.1) together, we obtain

C(X1 ∪ Y1)C(X4 ∪ Y4) = C(X2 ∪ Y2)C(X3 ∪ Y3). (3.2)

Let V be a set of vertices corresponding to the elements of B, and for i = 1, . . . , 4, let

Vi be the subset of V corresponding to Xi ∪ Yi. Let Γi be the graph on vertex set V ,

whose edges form a complete graph on Vi. The sets V1, . . . ,V4 are distinct, and each

has at least two elements since t 6∈ {r, s}. The statement (3.2) translates to the following

equality involving edge sets.

E(Γ1)4E(Γ4) = E(Γ2)4E(Γ3).

We write Γ for the graph induced by the edges in E(Γ1)4E(Γ4). We note that Γ has at

least three vertices, and that Γ is not a complete graph.

Let u and v be a pair of non-adjacent vertices in Γ . Then either u and v both belong

to V2 ∩ V3, or one of these vertices belongs to V2\V3 and the other to V3\V2.

Suppose the former case. Then u and v have the same set of neighbours in Γ , and

this set is V24V3. The subgraph of Γ induced on V24V3 is complete (if V2 ⊇ V3 or

V3 ⊇ V2) or consists of two complete components, on the sets V2\V3 and V3\V2. The

set consisting of u, v and their non-neighbours in Γ is V2 ∩ V3. Thus the sets V2 and V3
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are determined by the non-adjacent pair {u, v} and the hypothesis that {u, v} ⊆ V2 ∩ V3.

If, in addition, {u, v} ⊆ V1 ∩ V4, then the same reasoning leads to the contradiction that

{V1,V4} = {V2,V3}. Thus if {u, v} ⊆ V2 ∩ V3, then we may assume that u ∈ V1\V4 and

v ∈ V4\V1.

Similar reasoning leads from the hypothesis u ∈ V2\V3 and v ∈ V3\V2 to the con-

clusion that {u, v} ∈ V1 ∩ V4. In this case V2 consists of u and its neighbours in Γ , and if

u 6∈ V1 ∩ V4 then either V1 = V2 or V4 = V2.

We proceed with u ∈ V1\V4, v ∈ V4\V1, and {u, v} ⊆ V2 ∩ V3. The vertices u and v

have the same set of neighbours in Γ , which is V24V3. It follows that V1\V4 = {u} (since

any other vertex in V1\V4 would be adjacent to u but not v in Γ ) and that V4\V1 = {v}.

If any vertex of Γ belongs to all four of the Γi, then its neighbour set is simultane-

ously equal to V14V4 and V24V3. Since these two sets are different, it follows that

V1 ∩ V2 ∩ V3 ∩ V4 is empty, and V2 ∩ V3 ⊆ V14V4 = {u, v}. Hence V2 ∩ V3 = {u, v}.

Moreover, V1 ∩ V4 = V24V3. We may assume that V2\V3 includes an element x, since

V24V3 is not empty. Then x ∈ V1 ∩ V4, and N(x) = {u, v}. It follows that V2\V3 = {x}.

Similarly V3\V2 has at most one element. We have two possibilities.

1. V1 = {u, x}, V4 = {v, x}, V2 = {u, v, x}, V3 = {u, v}. In this case Γ is a path on three

vertices, with edges ux and vx.

2. There is a single vertex y in V3\V2. In this case V1 = {u, x,y}, V4 = {v, x,y}, V2 =

{u, v, x}, V3 = {u, v,y}. The graph Γ is a cycle of length 4, and it has two different

representations as the symmetric difference of two copies of K3.

Neither of these solutions satisfies the parity requirements in (3.2), and we conclude

that no element of G ′\{r, s} can occur as the square of elements from more than three

independent cosets of G ′ in G.

Suppose now that G is a 2-uniform covering group of Cn2 whose uniform rank is

at least 4. Suppose that {x1, . . . , xm,ym+1, . . . ,yn} is a generating set of G, x2
i = r for

i ∈ {1, . . . ,m}, and y2
j = s 6= r, for j ∈ {m + 1, . . . ,n}. If ρ(G) ∈ {m,n − m}, then

this generating set is a 2-uniform basis of G. If not, let S be a set of ρ(G) independent

elements of G all having the same square. By Theorem 3.8, this common square must
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either be r or s, and after relabelling the elements of the generating set if necessary, we

may assume that it is r. Then we may extend the set {x1, . . . , xm} to a set {x1, . . . , xρ(G)}

of independent elements ofGwith square r, discarding an element yi from the original

generating set for each of the newly introduced elements xm+1, . . . , xρ(G). The result is

a 2-uniform basis of G.

It remains to consider the case where G is a 2-uniform covering group of C(n)
2 with

ρ(G) 6 3. In this case n 6 6. Both covering groups of C2
2 are uniform, so the cases of

interest occur when n ∈ {3, 4, 5, 6}. We first observe that if ρ(G) = n − 1, then any set

of n − 1 independent elements with the same square can be extended to a 2-uniform

basis by adding one further element. On the other hand if ρ(G) = dn2 e, then every

minimal generating set of G, whose elements have two distinct squares, must have

ρ(G) elements with one square and n − ρ(G) elements with the other. Such a set is

therefore a 2-uniform basis. This observation accounts for the remaining cases, which

occur when (ρ(G),n) ∈ {(2, 4), (3, 5), (3, 6)}. We have proved the following statement.

Theorem 3.9. If n is a positive integer and G is a 2-uniform covering group of Cn2 , then G

possesses a 2-uniform basis.

If G is a 2-uniform covering group of Cn2 , then the graph that represents G with

respect to a 2-uniform basis has ρ(G) vertices of one colour, and n − ρ(G) of the other.

We will adopt the convention that the colour blue is used for ρ(G) vertices representing

basis elements with the same square, and red for the remainder. From now on, we will

only consider graphs that are written with respect to 2-uniform bases, and thus only

graphs that have at least as many blue as red vertices.

Definition 3.10. A 2-uniform graph is a 2-coloured graph that represents a 2-uniform covering

group with respect to a 2-uniform basis.

The remainder of this chapter discusses how to recognize a 2-uniform graph. We

consider the question of how a 2-coloured graph with at least n2 blue vertices, could fail

to be 2-uniform. Suppose that B = {x1, . . . , xk,yk+1, . . . ,yn} is a 2-square basis of a cov-

ering group G of Cn2 , where k > n
2 , x2

i = r for each xi, y2
j = s for each yj, and s 6= r. We

write X for {x1, . . . , xk} and Y for {yk+1, . . . ,yn}. If B is not a 2-uniform basis of G, then
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k < ρ(G). If ρ(G) > 4, then it follows from Theorem 3.8 that a 2-uniform basis ofG pos-

sesses ρ(G) elements with square r, or ρ(G) elements with square s. This means either

that g2 = r for some g ∈ G\〈x1, . . . xk〉, or that h2 = s for some h ∈ G\〈yk+1, . . . ,yn〉,

and in the latter case that G contains enough independent elements h of this type to

extend {yk+1, . . . ,yn} to a set of ρ(G) elements. Our next lemma establishes the circum-

stances under which such adjustments are possible.

Lemma 3.11. Let G be a 2-uniform covering group of Cn2 , with a 2-square basis B as above. If

none of the following conditions holds, then the maximum number of independent elements of

G having square r is k. If exactly one of them holds, this number is k + 1. If (b) and (c) hold

with Sb ∩ Y = Sc ∩ Y, it is k + 1. In other cases where two of the three conditions hold, it is

k+ 2.

(a) r = C(Sa) for some subset Sa of B, with |Sa ∩ X| and |Sa ∩ Y| > 0 both even.

(b) s = C(Sb), for some subset Sb of B, with |Sb ∩ X| and |Sb ∩ Y| both odd.

(c) rs = C(Sc), for some subset Sc of B, where |Sc ∩ X| is even and positive, and |Sc ∩ Y| is

odd.

Proof. The maximum number of independent elements of G that have square r is the

dimension of the vector subspace of G/G ′ spanned by all cosets consisting of elements

with square r. Since the set of cosets represented by elements of X extends to a basis

of this space, it is sufficient to consider whether G can include elements with square r

that do not belong to the subgroup generated by X and G ′.

If such an element x exists, we may assume that x = s1s1 . . . sm; where the si are

elements of B and we write S = {s1, . . . , sm}. Then

r = x2 = resfC(S),

where e = |S ∩ X|, f = |S ∩ Y|, and f > 1 since x 6∈ 〈X,G ′〉. This equation is satisfied if

and only if one of the following occurs

(a) e and f are both even and r = C(S);

(b) e and f are both odd and r = rsC(S), so s = C(S);
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(c) e is even, f is odd and r = sC(S), so rs = C(S).

We now show that at most two of these three conditions can hold simultaneously. Sup-

pose that the first two both hold, for subsets Sa and Sb of B in place of S, each having at

least two elements. If |Sa∩Sb| > 2, let x and y be elements of Sa∩Sb and let z ∈ Sa4Sb.

Then [x, z] and [y, z] occur in rs, but [x,y] does not, so rs cannot be represented by a

clique as in (c). If Sa ∩ Sb = {x}, then Sa\Sb and Sb\Sa are non-empty, with respective

elements y and z. Then [x,y] and [x, z] occur in rs but [y, z] does not, which is again

inconsistent with (c). Finally if Sa ∩ Sb = ∅, let x,y ∈ Sa and z,w ∈ Sb. Then [x,y] and

[z,w] occur in rs but [x, z] does not, so rs does not have the form described in (c).

Each of the three conditions that holds in G yields an element of square r that is

independent of the x1, . . . , xk. If both (b) and (c) hold with Sb ∩ Y = Sc ∩ Y then the

process yields only k + 1 independent elements that can occur together in a basis.

Otherwise, if two of the three conditions hold, we obtain k + 2 independent elements.

Applying Lemma 3.11 to the element s instead of r, we note the maximum number

of independent elements of G whose square is s is at most n − k + 2, and the value of

this number is determined by the conditions (a), (b), (c) in the statement of the lemma,

with the roles of X and Y reversed. The conditions of Lemma 3.11 may be expressed

as properties of the graph ΓB(G) and used to characterize 2-uniform graphs. Before

proceeding with this description, we introduce some notation that will apply to 2-

coloured graphs in general.

For a 2-coloured graph Γ , we write ΓB and ΓR respectively for the subgraphs in-

duced by the sets of blue and red edge in Γ . We write ΓB4R for the subgraph of Γ

induced by the edge set E(ΓB)4E(ΓR), with each edge retaining its colour in Γ . We

write Γ? for the colour opposite of Γ , which is obtained from Γ by switching the colour of

every vertex and every edge, from blue to red or from red to blue. It is clear that Γ and

Γ? represent the same group G, with respect to the same two-square basis.

The following statement of properties of 2-uniform graphs is a consequence of

Lemma 3.11.
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Theorem 3.12. Let Γ be a 2-coloured graph with at least as many blue vertices as red. If Γ is a

2-uniform graph, then the following conditions hold.

(a) ΓB is not a clique on an even number of blue vertices and a positive even number of red

vertices;

(b) ΓR is not a clique on an odd number of blue vertices and an odd number of red vertices;

(c) ΓB4R is not a clique on an even number of blue vertices and an odd number of red vertices;

(d) If the numbers of blue and red vertices in Γ are equal, then items (a),(b) and (c) above

apply to the colour opposite Γ? of Γ .

(e) If the number of blue and red vertices in Γ differ by 1, then the colour opposite Γ? fails at

most one of conditions (a),(b),(c), or fails both (b) and (c) with cliques involving the same

set of red vertices.

Example 3.13. These three 2-coloured graphs, each having more blue than red vertices,

all fail to be 2-uniform graphs, respectively on the basis of items (b), (c) and (e) of

Theorem 3.12.

We now consider when the necessary conditions listed in Theorem 3.11 are suffi-

cient to guarantee that a graph is 2-uniform.

Let Γ be a 2-coloured graph on n vertices, with t > 3 blue vertices, where t >

n − t. Then Γ determines a covering group G of Cn2 , and Γ is a 2-uniform graph if and

only if t is equal to the uniform rank k of G. Let B be a 2-square basis of G whose

elements correspond to the vertices of Γ . Let r and s be the elements of G ′ determined

respectively by blue and red edges of Γ . If the uniform rank of G exceeds t, then it

follows from Theorem 3.8 that either r or s is the square of four independent elements

of G. In this case at least one of the conditions of Theorem 3.12 does not hold for Γ .
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We conclude that a 2-coloured graph with at least three blue vertices, and at least

as many blue as red, is 2-uniform if and only if it satisfies the conditions of Theorem

3.12. In particular, Theorem 3.12 fully characterizes 2-uniform graphs on five or more

vertices.

If n 6 4, it is possible for a 2-uniform covering group G to have a 2-square basis B

comprising elements with squares r and s, both occurring with multiplicity strictly less

than the uniform rank ofG, and neither occurring as the square of an element of any 2-

uniform basis. The following example shows a graph which satisfies all the conditions

of Theorem 3.12 but is not 2-uniform.

Example 3.14. Let G be the covering group of C3
2 determined by the graph Γ shown

below. Let {x1, x2,y} be the 2-square basis of G determined by the vertices of Γ , where

x1 and x2 correspond to the blue vertices with blue degrees of 2 and 1 respectively. The

squares of the basis elements are

x2
1 = x

2
2 = [x1, x2][x1,y],y2 = [x1,y][x2,y].

Also,

(x1x2)
2 = [x1, x2]

(x1x2y)
2 = [x1, x2]

(x2y)
2 = [x1, x2].

We notice that this graph represents a uniform covering group with the uniform basis

{x1x2, x1x2y, x2y}. Therefore, it is not a 2-uniform graph.
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Exchange operations on 2-uniform

graphs

Our ambition is to construct a bijective correspondence between isomorphism classes

of 2-uniform covering groups ofCn2 , and an appropriate collection of 2-coloured graphs

of order n. A graph is constructed not intrinsically from a group, but from a 2-square

basis. As Example 3.5 indicates, a covering group of Cn2 may have multiple 2-square

bases, possibly even corresponding to graphs whose vertex colourings partition n dif-

ferently.

Theorem 3.12 gives a full description of 2-uniform graphs of order 5 or greater. We

now consider the question of when non-isomorphic 2-uniform graphs describe isomor-

phic groups. This requires that the number of blue (resp. red) vertices in each graph

are equal, since the number of blue vertices is the uniform rank, an invariant of the

group. The remainder of the thesis is devoted to the question of when a 2-uniform

covering group of an elementary abelian 2-group has multiple 2-uniform bases, deter-

mining non-isomorphic 2-uniform graphs. We remark that this always occurs in the

case of a 2-uniform graph of Cn2 of uniform corank 1, since a set of n − 1 independent

elements can be extended to a 2-uniform basis by the addition of any element from

outside their span. The special case of corank 1 will be discussed in Chapter 7; in the

meantime we restrict attention to 2-uniform covering groups whose uniform corank is

at least 2.

34



Chapter 4 – Exchange operations on 2-uniform graphs

The theme of Chapter 4 is the possibility that a covering group could have multiple

2-uniform bases involving elements with the same two squares. The main results of

this chapter are Theorem 4.6, Theorem 4.8 and Theorem 4.10, which detail the condi-

tions under which multiple bases of this type exist, and the relationships between their

corresponding 2-uniform graphs.

Let G be a covering group of Cn2 , with a basis B. Before considering multiple 2-

uniform bases, we discuss the effect on the graph of a single element of G ′ of changing

one or two elements of B. These details will be applied to our analysis of 2-uniform

bases later in this chapter.

For an element c of G ′, the graph of c with respect to B will be denoted by ΓB(c).

Its vertices are labelled by the elements of B, and its edges are those pairs of basis

elements that appear as commutators in the unique expression for c as a product of

basic simple commutators from B. One may consider the relationships between the

graphs that represent c with respect to different bases of G. The case of a pair of bases

that differ only in one or two elements will be of particular interest, and we conclude

this section by noting the graph transformations that correspond to basis changes of

this nature. We now let B ′ be a basis of G that differs from B in either exactly one or

exactly two elements. We assume that ΓB(c) and ΓB ′(c) have the same vertex set, with

the relevant vertex or pair of vertices relabelled in the transition from one graph to the

other.

If the element c is a non-identity commutator in G, then c = [p,q]. Since c depends

only on the cosets pG ′ and qG ′, we may assume that each of p and q are products

of elements of B. Let P and Q respectively denote the sets of vertices of ΓB(c) that

represent the basis elements that occur in p and q. Expanding the expression [p,q]

in terms of the basis elements, we observe that the edges of ΓB(c) and their incident

vertices comprise a complete tripartite graph with parts P\Q, Q\P and P ∩ Q, or a

complete bipartite graph if one of these three sets is empty. It follows that a graph

represents a simple commutator (i.e. an element of G ′ of the form [p,q]) if and only

if it has a connected component that is complete tripartite or complete bipartite, with

remaining vertices isolated. This situation will arise frequently in our analysis, so we
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introduce the following notation for the set of edges that represents the commutator of

a pair of elements from specified cosets of G ′ in G.

Definition 4.1. For sets of vertices P and Q, we denote by E(P,Q) the set of edges of the

complete tripartite (or bipartite or null) graph whose parts are P\Q, Q\P and Q ∩ P.

In general, we write E(Γ) for the edge set of a graph Γ . For a pair of sets A and B,

A4B denotes the symmetric difference of A and B.

Theorem 4.2. Suppose that B and B ′ = B\{x}∪{y} are bases ofG, and let c ∈ G ′. Let v be the

vertex that represents x in ΓB(c) and y in ΓB ′(c). Let P be the set of neighbours of v in ΓB(c),

and let Q be the set of vertices representing elements of B\{x} that occur in the expression for

y as a product of elements of B (modulo G ′). Then

E(ΓB ′(c)) = E(ΓB(c))4E(P,Q).

Proof. Let q and p respectively denote the products (in some specified order) of the

elements of B represented by the vertices of P and of Q. Then

c = [x,p]c ′ = [yq,p]c ′ = [q,p][y,p]c ′,

where c ′ is a product of simple commutators involving the elements of B ∩ B ′.

Since c ′ is represented by the same set of edges in both graphs, and the edges that

represent [y,p] with respect to B ′ coincide with those that represent [x,p] with respect

to B, it follows that the graph ΓB ′(c) is obtained from ΓB(c) by switching the status of

all edges that represent commutators that occur in the expansion of [q,p] in terms of

elements of B\{x}. These edges are exactly those of the set E(P,Q).

If the sets P and Q coincide in the situation of Theorem 4.2, then the graphs ΓB(c)

and ΓB ′(c) also coincide. We note the following special case of this situation, which

will arise in our analysis.

Corollary 4.3. Let c be an element of G ′ whose graph with respect to the basis B consists of

a clique on k > 2 vertices, with any remaining vertices isolated. Let x be the product in G,

in some order, of those basis elements x1, . . . , xk that are represented by non-isolated vertices.

Then the graphs ΓB(c) and ΓB ′(c) coincide, where B ′ is a basis obtained from B by replacing

any of x1, . . . , xk with x.
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We now consider the relationship between ΓB(c) and ΓB ′′(c), where c ∈ G ′ and

the basis B ′′ is obtained from B by replacing two elements x1 and x2 with y1 and y2.

Since B and B ′′ are both generating sets of G, we may assume that the expression

for y1 as a product of elements of B (modulo G ′) involves x1 but not x2, and that the

corresponding expression for y2 involves x2. We write P1 and P2 respectively for the

sets of neighbours of the vertices representing x1 and x2 in ΓB(c). We write Q1 and

Q2 for the respective sets of vertices representing elements of B\{x1} and B\{x2} that

appear in the expressions for y1 and y2 as products of elements of B. We will prove the

following theorem through two applications of Theorem 4.2.

Theorem 4.4. The edge set of ΓB ′′(c) depends on c and y2 as follows:

1. If the vertices representing x1 and x2 are not adjacent in ΓB(c), and the expression for y2

as a product of elements of B does not include x1, then

E(ΓB ′′(c)) = E(ΓB(c))4E(P1,Q1)4E(P2,Q2).

2. If the vertices representing x1 and x2 are adjacent in ΓB(c), and the expression for y2 as

a product of elements of B does not include x1, then

E(ΓB ′′(c)) = E(ΓB(c))4E(P1,Q1)4E(P24Q1,Q2).

3. If the vertices representing x1 and x2 are not adjacent in ΓB(c), and the expression for y2

as a product of elements of B includes x1, then

E(ΓB ′′(c)) = E(ΓB(c))4E(P1,Q1)4E(P2,Q24Q1).

4. If the vertices representing x1 and x2 are adjacent in ΓB(c), and the expression for y2 as

a product of elements of B includes x1, then

E(ΓB ′′(c)) = E(ΓB(c))4E(P1,Q1)4E(P24Q1,Q24Q1).

Proof. We write B ′ for the basis of G that results from replacing x1 with y1 in B. From

a direct application of Theorem 4.2,

E(ΓB ′(c)) = E(ΓB(c))4E(P1,Q1).
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We now write P ′2 for the set of neighbours of the vertex representing x2 in ΓB ′(c), and

Q ′2 for the set of vertices representing elements of B ′\{x2} that occur in the expression

for y2 as a product of elements of the basis B ′. By applying Theorem 4.2 again, we

may describe the edge set of ΓB ′′ in terms of the sets P1,Q1,P ′2 and Q ′2. To describe it in

terms of the original data pertaining to B, we need to consider how P ′2 and Q ′2 depend

of P1,P2,Q1,Q2 and the edges of ΓB(c).

If the commutator [x1, x2] occurs in the description of c in terms of simple commu-

tators involving elements of B, then the vertex representing x2 belongs to P1\Q1, and

P ′2 = P24Q1. Otherwise P ′2 = P2.

If x1 is involved in the expression for y2 as a product of elements of B, then the

vertex representing x1 belongs to Q2, and Q ′2 = Q24Q1. Otherwise Q ′2 = Q2.

We now return to considering the possibility that a group has multiple distinct 2-

uniform bases involving elements with the same pair of squares r and s.

Lemma 4.5. Let G be a covering group, with 2-square basis B = {x1, . . . , xk,yk+1, . . . ,yn},

where x2
i = r, y2

j = s 6= r, and suppose that k and n − k are both at least 2. Suppose that

another 2-square basis B ′ can be obtained by including the element z = x1 . . . xpyk+1 . . .yk+q,

where z2 ∈ {r, s}, and eliminating some element w of S = {x1, . . . , xp,yk+1, . . . ,yk+q}. Then

z2 = rpsqC(S),

z2 is either equal to r or s, and one of the following occurs.

1. If p and q are both even, then C(S) is either equal to r or s. This occurs if either ΓBB or ΓRB
is a clique on an even number of blue and and even number of red vertices.

2. If p and q are both odd, then C(S) is either equal to r or s. This occurs if either ΓBB or ΓRB
is a clique on an odd number of blue and odd number of red vertices.

3. If p is even and q is odd, then sC(S) is either equal to r or s. Since sC(S) = s is

impossible, this occurs if C(S) = rs, which means that ΓB4RB is a clique on an even

number of blue and odd number of red vertices.
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4. If p is odd and q is even, then rC(S) is either equal to r or s. Since rC(S) = r is

impossible, this occurs if C(S) = rs, which means that ΓB4RB is a clique on an odd

number of blue and an even number of red vertices.

In each of these four cases, any element w of S can be eliminated from B ∪ {z}

to form the alternative 2-square basis B ′. If B ′ = (B ∪ {z})\{w}, a description of the

relationship between the edge sets of the graphs ΓB ′ and ΓB is provided by a direct

application of Theorem 4.2. The vertex sets may differ by the colour of a single vertex,

if the elements w and z have different squares. These general considerations may be

applied to all 2-square bases. Our interest however is in the case of 2-uniform graphs,

in which the number of blue vertices coincides with the uniform rank of the associated

group, and is thus maximal among all 2-coloured graphs representing that group. If

ΓB is a 2-uniform graph, a basis change of the type described above cannot replace a

red vertex with a blue one; graphs that admit this possibility are excluded by Theorem

3.12. Basis changes that replace a blue vertex with a red one do not preserve the 2-

uniform property and are thus not of interest (except in the case where the numbers of

blue and red vertices differ by 1, which is considered below).

For a 2-uniform graph of uniform corank at least 2, we refer to the operation of

adjusting one 2-uniform basis to another, by replacing a single element, as an exchange

operation. We refer to the transition between their corresponding graphs as an ex-

change operation of graphs, where we assume that both graphs have the same vertex

set, with a single vertex relabelled in the transition. In Theorem 4.6, we give a graph-

theoretic description of the exchange operations on 2-uniform graphs that preserve the

colour of the relabelled vertex (and hence preserve the 2-uniform property). We refer

to exchanges of this type as simple exchanges.

Before stating Theorem 4.6, which describes the effect of a simple exchange on a

2-uniform graph, we introduce some notation for the neighbour set of a vertex, via

coloured or uncoloured edges.

For a vertex v of a 2-coloured graph Γ , we write E(v) for the set E(NB(v),NR(v)),

where NB(v) and NR(v) respectively denote the sets of neighbours of v in Γ , via blue

and red edges. IfNB\R(v) denotes the set of vertices of Γ that are adjacent to v via blue

39



Chapter 4 – Exchange operations on 2-uniform graphs

edges only, and NR\B(v) and NR∩B(v) are similarly defined, then E(v) is the edge set

of the complete tripartite (or bipartite or null) graph with parts NB\R(v), NR\B(v) and

NB∩R(v). We consider E(v) itself to be a set of uncoloured edges, and write ER(v) and

EB(v) respectively for the same set of edges, all coloured red or all blue.

In the statement of Theorem 4.6 below, we consider that the graphs Γ ′ and Γ have

the same vertex set, with a single vertex relabelled in the transition from one graph to

the other.

Theorem 4.6. Let Γ be a 2-uniform graph of order n, with at least two red vertices, describing

a 2-uniform covering group G of Cn2 , with respect to a basis B. If Γ ′ is a 2-uniform graph

describing G with respect to a basis obtained from B by a simple exchange operation, then at

least one of the following occurs.

1. (Type 1) ΓB is a clique on an even number of blue vertices, and E(Γ ′) = E(Γ)4ER(v), for

some vertex v of the clique.

2. (Type 2) ΓR is a clique on an even number of blue vertices and a positive even number of

red vertices, and E(Γ ′) = E(Γ)4EB(v), for some red vertex v of the clique.

3. (Type 3) ΓB is a clique on an odd number of blue and an odd number of red vertices, and

E(Γ ′) = E(Γ)4ER(v), for some red vertex v of the clique.

4. (Type 4) ΓB4R is a clique on an odd number of blue and an even number of red vertices,

and E(Γ ′) = E(Γ)4ER(v)4EB(v), for some red vertex v of the clique.

Proof. We consider how each of the exchanges described in Lemma 4.5 affects a 2-

uniform graph. By Theorem 3.12, only certain cases of items 1., 2. and 4. of Lemma 4.5

can occur in a 2-uniform graph. Item 1. occurs if ΓB is a clique on an even number of

vertices(Type 1), or ΓR a clique on even number of blue and a positive even number of

red vertices (Type 2). Item 2. occurs if ΓB a clique on an odd number of blue and an

odd number of red vertices (Type 3). Item 4. occurs if ΓB4R a clique on an odd number

of blue vertices and an even number of red vertices (Type 4).

In each case, the effect on the graph of the basis adjustment described in Lemma

4.5 follows from application of Theorem 4.2 and Corollary 4.3. For example, in an
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exchange of Type 1 above, it follows from Corollary 4.3 that Γ and Γ ′ have the same set

of blue edges. By Theorem 4.2, the set of red edges of Γ ′ differs from that of Γ by the

set E(P,Q), where P and Q are the sets of neighbours of the exchanged vertex v in ΓR

and ΓB respectively. Thus E(P,Q) = E(v), and ER(Γ ′) = ER(Γ)4ER(v). Since the blue

edges are identical in Γ and Γ ′, it follows that E(Γ ′) = E(Γ)4ER(v).

The statements for Types 2, 3 and 4, are obtained by similar reasoning.

Example 4.7. We present here examples of simple exchange operations of each of the

types in Theorem 4.6. We show their alternative graphs.

1. Let Γ1 be the following 2-uniform graph.

Γ1

Since ΓB1 is a clique on four blue vertices, by Theorem 4.6, we may apply a type

1 exchange and Γ ′1 is given by E(Γ1)4ER(X1) for the vertex X1 of the clique that is

distinguished by size.

Γ ′1

2. Let Γ2 be the following 2-uniform graph.

Γ2

Since ΓR2 is a clique on two blue vertices and two red vertices, by Theorem 4.6,

we may apply type 2 exchange and Γ ′2 may be given by E(Γ2)4EB(Y1), for the red

vertex Y1 of the clique that is distinguished by size.
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Γ ′2

3. Let Γ3 be the following 2-uniform graph.

Γ3

Since ΓB3 is a clique on one red and three blue vertices, then Γ ′3 may be given by

E(Γ3)4ER(Y1), for the red vertex Y1 of the clique that is distinguished by size.

Γ ′3

4. Let Γ4 the 2-uniform graph that represent the group G.

Γ4

Since ΓB4R4 is a clique on one blue and two red vertices, then Γ ′4 may be given by

E(Γ4)4ER(Y1)4EB(Y1), for the red vertex Y1 of the clique that is distinguished by

size.

Γ ′4
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It remains to consider exchange operations that switch the vertex colours. If the

uniform rank k of G exceeds the uniform corank n−k by only 1 or 2, then Lemma 3.11

gives conditions under which G may possess a 2-uniform basis having k elements of

square s and n− k of square r. We conclude this chapter by giving a description of the

corresponding graph operations in such cases.

Theorem 4.8. Let Γ be a 2-uniform graph of order n = 2k− 1, with k blue vertices and k− 1

red vertices, describing a 2-uniform covering groupG ofCn2 with respect to a basis B consisting

of k elements with square r and k− 1 elemnents with square s. Suppose that Γ ′ is a 2-uniform

graph that describesGwith respect to a basis obtained from B by replacing an element of square

r with an element of square s. Then at leat one of the following occurs.

1. ΓR is a clique on a positive even number of blue vertices and an even number of red

vertices, and Γ ′ is the colour opposite of the graph Γ1 defined as follows for some blue

vertex v of this clique. The vertex v is coloured red in Γ1, and E(Γ1) = E(Γ)4EB(v).

2. ΓB is a clique on a odd number of blue vertices and an odd number of red vertices, and

Γ ′ is the colour opposite of the graph Γ1 defined as follows for some blue vertex v of this

clique. The vertex v is coloured red in Γ1, and E(Γ1) = E(Γ)4ER(v).

3. ΓB4R is a clique on an odd number of blue vertices and an even number of red vertices,

and Γ ′ is the colour opposite of the graph Γ1 defined as follows for some blue vertex v of

this clique. The vertex v is coloured red in Γ1, and E(Γ1) = E(Γ4ER(v)4EB(v).

Proof. As noted in the proof of Theorem 4.6, it follows from Theorem 3.12, that only

items 1., 2. and 4. of Lemma 4.5 can arise in the 2-uniform graph Γ . By Item 1. of

Lemma 4.5, an additional red vertex can replace a blue vertex if ΓR is a clique on an

even number of red vertices and a positive even number of blue vertices. Item 2. occurs

if ΓB is a clique on an odd number of blue and an odd number of red vertices; in this

case a blue vertex of this clique may be replaced with a red one. Item 4. occurs if ΓB4R

is a clique on an odd number of blue and and even number of red vertices; again a blue

vertex of this clique can be replaced with a red one in this case.

Each of these exchanges produces a graph with k red vertices and k−1 blue vertices,

whose edge set is described by application of Theorem 4.2 and Corollary 4.3, as in the
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proof of Theorem 4.6. The colour opposite of such a graph is an alternative 2-uniform

graph representing the same group.

Theorem 4.8 is proved by direct application of Theorem 4.2 and Corollary 4.3.

Example 4.9. We will present here examples of 2-uniform graphs that satisfies the con-

ditions of the Theorem 4.8 and show their alternative graphs.

1. Let Γ1 be the following 2-uniform graph.

Γ1

Since ΓR1 is a clique on a two blue and two red vertices, we may choose the blue

vertex X1 of this clique that is distinguished by size, transform Γ1 to Γ ′1 by switch-

ing the colour of X1 from blue to red, and then define Γ ′′1 to be the colour opposite

of the graph with edge set E(Γ ′1)4EB(X1).

Γ ′1

Γ ′′1

2. Let Γ2 be the following 2-uniform graph.

Γ2
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Since ΓB2 is a clique on one red and three blue vertices, we may choose the blue

vertex X1 of this clique,that is distinguished by size, transform Γ2 to Γ ′2 by switch-

ing the colour of X1 from blue to red, and then define Γ ′′2 to be the colour opposite

of the graph with edge set E(Γ ′2)4ER(X1).

Γ ′2

Γ ′′2

3. Let Γ be the following 2-uniform graph.

Γ3

Since ΓB4R3 is a clique on one blue and two red vertices, we may choose the blue

vertex X1 of this clique, that is distinguished by size, transform Γ3 to Γ ′3 by switch-

ing the colour of X1 from blue to red, and then define Γ ′′3 to be the colour opposite

of the graph with edge set E(Γ ′3)4ER(X1)4EB(X1).

Γ ′3
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Γ ′′3

Finally, if k = (n − k) + 2, and exactly two of the three conditions of Theorem

4.8 hold in Γ (involving different sets of blue vertices), we can increase the number of

independent elements of square s by 2, to obtain a 2-uniform basis in which the number

of elements of square s is the uniform rank k. We refer to a change of basis of this nature

as a double exchange. Let the 2-uniform graph Γ , with vertex set V , corresponding to a

2-uniform basis of a covering group G, with k elements of square r represented by

the blue vertices, and k − 2 vertices of square s represented by the red vertices. Let

Γ1 and Γ2, with vertex sets V1 and V2 respectively, be the edge-induced subgraphs of

Γ that respectively satisfy two of the three conditions in Theorem 4.8, and let c1 and

c2 be the elements of G ′ represented by the edge sets of the cliques Γ1 and Γ2. Then

{c1, c2} ⊂ {r, s, rs}.

A double exchange operation from Γ to Γ ′ begins with the selection of a blue vertex

v1 of the clique Γ1, and a blue vertex v2 of the clique Γ2, representing elements x1 and x2

of a basis B. In the alternative basis B ′, x1 and x2 are respectively replaced by z1 and z2,

which are the products of the elements of B represented respectively by the vertices of

Γ1 and Γ2. A necessary condition for B ′ to generate the group is that the vertices v1 and

v2 do not both belong to both Γ1 and Γ2. We may assume that Γ1 includes the vertex v1

and not v2.

Since v2 is incident with no edge of Γ1, it follows from Corollary 4.3 that the set of

edges representing c1 is the same for both bases. We apply Theorem 4.4 to c2. The sets

P2 Q2 coincide, both are equal to V2\{v2}. If v1 is incident with no edge of Γ2, then P2 is

empty and c2 is described by the same set of edges with respect to both bases, by item

1. of Theorem 4.4.

If the vertex v1 belongs to the clique Γ2, then Item 4 of Theorem 4.4 applies, and

(since P2 = Q2), it asserts that edge sets that represent c2 with respect to the two bases

differ by E(P1,Q1) = E(v1), where P1 and Q1 are respectively the sets of neighbours of

v1 in Γ1 and Γ2. The colour(s) of the adjusted edges depends on whether c2 coincides

with the element r, s or rs.

The following statement summarizes the double exchange operation on graphs.
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Theorem 4.10. Let Γ be a 2-uniform graph satisfying exactly two of the three conditions of

Theorem 4.8, on cliques Γ1 and Γ2, with vertex sets V1 and V2 respectively, involving different

sets of red vertices. Let v1 and v2 be blue vertices of Γ1 and Γ2 respectively, where v2 does not

belong to Γ1. LetΦ be the graph obtained from Γ by recolouring the vertices v1 and v2 from blue

to red, and adjusting the edge set as follows:

1. If v1 does not belong to Γ2, then E(Φ) = E(Γ).

2. If v1 belongs to Γ2 and Γ2 = Γ
R, then E(Φ) = E(Γ)4ER(v1).

3. If v1 belongs to Γ2 and Γ2 = Γ
B, then E(Φ) = E(Γ)4EB(v1).

4. If v1 belongs to Γ2 and Γ2 = Γ
B4R, then E(Φ) = E(Γ)4ER(v1)4EB(v1).

Then the colour opposite Γ ′ ofΦ is a 2-uniform graph representing the same covering group as

Γ .

Example 4.11. Let Γ be a 2-uniform graph satisfying first two conditions of Theorem

4.8, on cliques Γ1 and Γ2, with vertex sets X1 and X2 respectively, involving different sets

of red vertices. X1 and X2 are the blue vertices of Γ1 and Γ2 respectively, that they are

distinguished by size and where X2 does not belong to Γ1.

Figure 4.1: Γ

By Theorem 4.10, the graph Φ can be obtained from Γ by recolouring the vertices

X1 and X2 from blue to red, and since X1 belongs to Γ2 and Γ2 = Γ
R, the edge set of Φ is

E(Φ) = E(Γ)4ER(X1).
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Figure 4.2: Φ

Therefore the colour opposite ofΦ is a 2-uniform graph Γ ′ that represents the same

covering group as Γ .

Figure 4.3: Γ ′
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Chapter 5

Groups of uniform corank 3

Chapter 4 gives an account of those 2-uniform covering groups of Cn2 that admit multi-

ple 2-uniform bases consisting of elements with the same pair of squares. By Theorem

3.8, if r and s are the squares of the elements of a 2-uniform basis of a covering groupG

of corank at least 4, then every 2-uniform basis of G consists of elements with squares r

and s, and may be obtained from B through a sequence of exchange operations of the

types described in Chapter 4. In the case of a 2-uniform covering group of Cn2 whose

uniform rank k is at least n − 3, a 2-uniform basis consists of k elements with square r

and up to three elements with a different square s. If k > 4, Theorem 3.8 asserts that

only one choice is available for element r, but multiple choices may exist for s (and

certainly do in the case k = n − 1). In this section we consider this possibility in the

case of uniform corank 3. Our analysis is presented with the assumption that n > 7,

but can easily be extended to the case of groups whose uniform rank and corank are

both equal to 3. In this case all considerations apply to the colour opposite of all graphs

in question, as well to the graphs themselves.

The main result of this chapter is Theorem 5.1, which establishes necessary condi-

tions for a covering group of uniform corank 3, and uniform rank at least 4, to possess

multiple 2-uniform bases involving elements with different squares.

Let G be a 2-uniform covering group of Cn2 of uniform corank 3, where n > 7. Let

B = {x1, . . . , xk,y1,y2,y3} be a 2-uniform basis of G, where x2
i = r and y2

i = s, r 6= s.

We write X and Y for the subsets {x1, . . . , xk} and {y1,y2,y3} of B. By Theorem 3.8, no
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element of G ′, except r and possibly s, is the square of more than three independent

elements of G ′. We now establish the conditions under which B may be adjusted to

a new 2-uniform basis B ′, by replacing y1,y2,y3 with independent elements z1, z2, z3

having the same square s ′, where s ′ 6= s.

Suppose that z1, z2, z3 are elements of G with these properties. Since the squaring

map inG is constant on cosets ofG ′, we may assume that each of z1, z2, z3 is the product

of some elements of B. We write Zi for the set of elements of B that occur in zi. For

each i, we may write

s ′ = z2
i = r

|Zi∩X|s|Zi∩Y|Ci, (5.1)

where Ci = C(Zi). Since C1,C2 and C3 are distinct elements of G ′, their prefixes

r|Zi∩X|s|Zi∩Y| must also be distinct for i = 1, 2, 3.

After relabelling if necessary, we may assume that |Z1∩Y| and |Z2∩Y| have the same

parity. Then |Z1∩X| and |Z2∩X| have opposite parity. Comparing the descriptions of z2
1

and z2
2 in (5.1), we find that r = C1C2, whereC1 andC2 are elements ofG ′whose graphs

with respect to B are nontrivial cliques, whose numbers of blue vertices have opposite

parity, and whose numbers of red vertices have the same parity. Now |Z3 ∩ X| has the

same parity as exactly one of |Z1 ∩ X| and |Z2 ∩ X|; we may assume this to be |Z1 ∩ X|,

after relabelling again if necessary. Then |Z3 ∩ X| and |Z2 ∩ X| have opposite parity.

Comparing the expressions for z2
2 and z2

3 in (5.1) gives s = C2C3, where C3 ∈ G ′ is

represented on the vertex set of ΓB by a clique whose numbers of blue and red vertices

are respectively of the same and opposite parity to those of the graph representing C2.

The following Theorem notes the meaning of these observations in terms of a 2-

uniform graph representing G. We note that a graph satisfying the conditions of Theo-

rem 5.1 cannot also satisfy the conditions in any of Theorem 4.6, Theorem 4.8 or Theo-

rem 4.10. If a 2-uniform covering group of corank 3 that has multiple 2-uniform bases

related by exchange operations of the types described in chapter 4, the same group

cannot have multiple 2-uniform bases related by the considerations in this section.

Theorem 5.1. Let Γ be a 2-uniform graph of order n > 7, with three red vertices. Let G be

the 2-uniform covering group of Cn2 with basis B determined by Γ . Then G contains elements
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z1, z2, z3 representing different cosets of G ′ and all having the same square s ′, with s ′ 6∈ {r, s}

if and only if the following conditions hold in Γ .

1. E(ΓB) = E(Φ1)4E(Φ2), whereΦ1 andΦ2 are nontrivial cliques whose numbers of blue

vertices have opposite parity and whose numbers of red vertices have the same parity,

and;

2. E(ΓR) = E(Φ2)4E(Φ3), where Φ3 is a nontrivial clique whose numbers of blue and red

vertices respectively have the same and opposite parity to the corresponding numbers in

Φ2.

If these conditions are satisfied, let zi be the product in G of the basis elements represented by

the vertices ofΦi (in any order). Then z2
1 = z

2
2 = z

2
3.

For a graph Γ satisfying the conditions of Theorem 5.1, it is not automatic that the

elements z1, z2, z3 are independent of the n− 3 basis elements represented by blue ver-

tices in Γ . This requires a linear independence condition which we express in matrix

terms as follows. Let v1, v2, v3 be labels on the red vertices of Γ . Define a 3 × 3 matrix

B ∈ M3(F2) whose (i, j) entry is 1 if the vertex vj occurs in the clique Φi, and 0 other-

wise. Then {z1, z2, z3} extends the set of elements of B represented by blue vertices in Γ

to a 2-uniform basis B ′ of G, if and only if B is nonsingular inM3(F2).

Our theme for the remainder of this section is a description of the relationship be-

tween the graphs determined by the 2-uniform bases B and B ′ of G, when the matrix

B is nonsingular.

We begin with some remarks on the uniqueness of Φ1,Φ2 and Φ3, under the con-

ditions of Theorem 5.1. This involves the application of Theorem 3.8 and its proof. It

was shown there that the edge set of any graph has at most one expression as the sym-

metric difference of the edge sets of two cliques, with the two exceptions of the path P3

on 3 vertices, and the cycle C4 on four vertices. Each of these has two expressions as

the symmetric difference of a pair of cliques. Under the conditions of Theorem 5.1, the

question of alternative possibilities for the Φi (and hence the zi) arises if ΓB or ΓR is a

copy of P3 or C4. For both P3 and C4, it is routine to check that there is no colouring of
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the vertices that yields a decomposition satisfying both the parity conditions of Theo-

rem 5.1 and the requirement that the 3× 3 matrix B is nonsingular. We conclude that if

B = {x1, . . . , xn−3,y1,y2,y3} is a 2-uniform basis of a covering group G of Cn2 of corank

3, with x2
i = r and y2

i = s 6= r, then there is at most choice for a set {z1G
′, z2G

′, z3G
′},

with the property that B ′ = {x1, . . . , xn−3, z1, z2, z3} is an alternative 2-uniform basis of

G ′, where z2
i = s

′ 6= s.

We now assume that G is a covering group of corank 3 of Cn2 , possessing 2-uniform

bases B and B ′ as above. We write P for the change of basis matrix from B ′ to B, whose

jth column records the B-coordinates of the jth element of B ′. The first n− 3 columns

of P coincide with those of the identity matrix, and the last three columns respectively

correspond to z1, z2, z3, which we assume to be ordered according to the description in

Theorem 5.1. Thus P has the following form, where v1, v2, v3 are vectors in Fn−3
2 , with

the property that the numbers of entries equal to 1 in v1 and v2 have opposite parity,

and the numbers of entries equal to 1 in v2 and v3 have the same parity. The lower

right block B is a non-singular matrix in M3(F2), with the property that the numbers

of entries equal to 1 in its first two columns have the same parity, and the number of

entries equal to 1 in its third column has the opposite parity to these.

P =



| | |

In−3 v1 v2 v3

| | |

0(n−3)×3 B3×3


. (5.2)

The graph of ΓB(G) can be constructed from P as follows. For i = 1, 2, 3, we write Ei for

the edge set of the clique on the set of vertices representing those elements of B where

a 1 occurs in column (n − 3) + i of P; i.e. those elements of B that occur in zi. The set

of blue edges in ΓB(G) is E14E2, and the set of red edges is E24E3. The change of basis
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matrix from B to B ′ is the inverse of P inMn(F2), given by

P−1 =



| | |

In−3 v1B
−1 v2B

−1 v3B
−1

| | |

0(n−3)×3 B−1
3×3


. (5.3)

The graph ΓB ′ that represents Gwith respect to B ′ can be constructed from P−1 as ΓB is

from P. The edge-induced subgraph Γ ′BB comprising its blue edges has the formΨ14Ψ2,

where Ψ1 and Ψ2 are cliques whose numbers of red vertices have the same parity and

whose numbers of blue vertices have opposite parity. If we assume ΓB and Γ ′B to have

the same vertex set (with the red vertices labelled differently), the vertices of the cliques

Ψ1 and Ψ2 are written in some pair of the last three columns of P−1; these are the two

columns in which the numbers of 1s among the last three entries have the same parity.

Similarly, Γ ′RB = Ψ24Ψ3, where the clique Ψ3 is described by the remaining columns of

P−1, which also contains the information to distinguish Ψ1 from Ψ2, on the basis that

that the numbers of blue vertices in Ψ2 and Ψ3 have the same parity.

We now detail the transformations from ΓB to Γ ′B corresponding to the distinct pos-

sibilities for the matrix B in the lower right 3× 3 block of the matrix P. In the following

analysis of these cases, we write S, T ,U respectively for the vertex sets of the cliques

Φ1, Φ2 and Φ3, and use the superscripts B and R to denote their sets of blue and red

vertices.We may reorder the elements y1,y2,y3 in B as necessary, to ensure that the

3 × 3 matrix B in the lower right block of P has one of the following standard forms.

Each of these forms occurs in two versions, depending on whether |SB|, which is the

number of 1s in v1, is even or odd. We have a total of 16 cases, some pairs of which are

equivalent under the the transition between the two bases. Distinguishing the cases

on the basis of graph ΓB generally requires the expression for the sets of blue and red

edges as symmetric differences of cliques.
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1. B =


1 0 1

1 1 0

0 1 0

 . Case 1.(a): |SB| is odd. Case 1.(b): |SB| is even.

2. B =


1 0 0

1 1 1

0 1 0

 . Case 2.(a): |SB| is odd. Case 2.(b): |SB| is even.

3. B =


1 0 0

1 1 0

0 1 1

 . Case 3.(a): |SB| is odd. Case 3.(b): |SB| is even.

4. B =


1 0 1

1 1 1

0 1 1

 . Case 4.(a): |SB| is odd. Case 4.(b): |SB| is even.

5. B =


1 0 1

0 1 0

0 0 1

 . Case 5.(a): |SB| is odd. Case 5.(b): |SB| is even.

6. B =


1 0 0

0 1 1

0 0 1

 . Case 6.(a): |SB| is odd. Case 6.(b): |SB| is even.

7. B =


1 1 1

0 1 0

0 1 1

 . Case 7.(a): |SB| is odd. Case 7.(b): |SB| is even.

8. B =


1 1 1

1 0 0

1 0 1

 . Case 8.(a): |SB| is odd. Case 8.(b): |SB| is even.

We now analyse the transformation between ΓB and ΓB ′ in all cases.
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1. In Case 1, we write P as in (5.2) and observe

P−1 =



| | |

In−3 v3 v1 + v3 v1 + v2 + v3

| | |

0 1 1

0(n−3)×3 0 0 1

1 1 1


.

After reordering the last three columns and last three rows to obtain a standard

form as above, we have the following descriptions of the change of basis matrix

from B to B ′ respectively for Cases 1(a) and 1(b).

1.(a)



| | |

In−3 v3 v1 + v2 + v3 v1 + v3

| | |

1 1 1

0(n−3)×3 0 1 0

0 1 1


1.(b)



| | |

In−3 v1 + v2 + v3 v3 v1 + v3

| | |

1 1 1

0(n−3)×3 1 0 0

1 0 1


The matrices above are of types 7(b) and 8(b) respectively, and we conclude that

Cases 1(a) and 1(b) are respectively equivalent to 7(b) and 8(b), in terms of the

covering groups that they describe.

2. In Case 2,

P−1 =



| | |

In−3 v1 + v3 v3 v2 + v3

| | |

1 0 0

0(n−3)×3 0 0 1

1 1 1


.

After reordering the last three columns and last three rows to obtain a standard

form as above, we have the following descriptions of the change of basis matrix

55



Chapter 5 – Groups of uniform corank 3

from B to B ′ respectively for Cases 2(a) and 2(b).

2.(a)



| | |

In−3 v1 + v3 v2 + v3 v3

| | |

1 0 0

0(n−3)×3 1 1 1

0 1 0


2.(b)



| | |

In−3 v2 + v3 v1 + v3 v3

| | |

1 0 0

0(n−3)×3 1 1 1

0 1 0


The matrices above are again of types 2(a) and 2(b) respectively, for these cases

the graphs with respect to both B and B ′ are of the same type, 2(a) or 2(b). In

these cases, the graphs ΓB and ΓB ′ are related in Case 2(a) by

V(Ψ1) = V(Φ1)4VB(Φ3),V(Ψ2) = V(Φ2)4VB(Φ3), V(Ψ3) = V(Φ3)

and in Case 2(b) by

V(Ψ1) = V(Φ2)4VB(Φ3),V(Ψ2) = V(Φ1)4VB(Φ3), V(Ψ3) = V(Φ3)

3. In Case 3,

P−1 =



| | |

In−3 v1 + v2 + v3 v2 + v3 v3

| | |

1 0 0

0(n−3)×3 1 1 0

1 1 1


.

In Cases 3(a) and 3(b), this may be adjusted to the following standard forms

3.(a)



| | |

In−3 v1 + v2 + v3 v3 v2 + v3

| | |

1 1 1

0(n−3)×3 1 0 0

1 0 1


3.(b)



| | |

In−3 v3 v1 + v2 + v3 v2 + v3

| | |

1 1 1

0(n−3)×3 0 1 0

0 1 1


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The matrices above are of types 8(a) and 7(a) respectively, and we conclude that

Cases 3(a) and 3(b) are respectively equivalent to 8(a) and 7(a), in terms of the

covering groups that they describe.

4. In Case 4,

P−1 =



| | |

In−3 v2 + v3 v1 + v2 + v3 v1 + v3

| | |

0 1 1

0(n−3)×3 1 1 1

1 0 1


.

In Cases 4(a) and 4(b), this may be adjusted to the following standard forms

4.(a)



| | |

In−3 v2 + v3 v1 + v3 v1 + v2 + v3

| | |

1 0 1

0(n−3)×3 1 1 1

0 1 1



4.(b)



| | |

In−3 v1 + v3 v2 + v3 v1 + v2 + v3

| | |

1 0 1

0(n−3)×3 1 1 1

0 1 1


The matrices above are again of types 4(b) and 4(a) respectively; the graphs that

represent 4(a) and 4(b) are equivalent.
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5. In Case 5,

P−1 =



| | |

In−3 v1 v2 v1 + v3

| | |

1 0 1

0(n−3)×3 0 1 0

0 0 1


.

In Cases 5(a) and 5(b), this may be adjusted to the following standard forms

5.(a)



| | |

In−3 v2 v1 v1 + v3

| | |

1 0 0

0(n−3)×3 0 1 1

0 0 1


5.(b)



| | |

In−3 v2 v1 v1 + v3

| | |

1 0 0

0(n−3)×3 0 1 1

0 0 1


The matrices above are again of types 6(b) and 6(a) respectively, and we conclude

that Cases 5(a) and 5(b) are respectively equivalent to 6(b) and 6(a), in terms of

the covering groups that they describe.

If n > 7, a 2-uniform covering group of corank 3 of Cn2 that satisfies the conditions

of Theorem 5.1 possesses exactly two 2-uniform bases B and B ′, up to coset represen-

tatives modulo G ′. The graphs corresponding to the two bases are encoded by the

change of basis matrices P and P−1, and are typically non-isomorphic. The conclu-

sion of this section is that in order to list all isomorphism types of such groups, it is

sufficient to consider matrices of types 1(a), 1(b), 2(a), 2(b), 3(a), 3(b), 4(a), 5(a) and

5(b). The associated graphs capture every group isomorphism type once, except for

those encoded by matrices of types 2(a) and 2(b), which are generally represented by

two different graphs. Since the three columns in the upper right (n − 3) × 3 region

can be chosen independently, the number of matrices of each of these types is (2n−4)3.

Most isomorphism types of groups of types 2 are counted twice by this count of dis-

tinct matrices, but on all other cases, the distinct matrices correspond bijectively with
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the isomorphism classes of groups. The number of isomorphism types of 2-uniform

covering groups of Cn2 and uniform corank 3, that admit two different choices for the

common square of exactly three elements of a 2-uniform basis, is bounded above by

8× (2n−4)3 = 23n−9.

Example 5.2. Let Γ be the 2-uniform graph in Figure 5.1. Let G be the 2-uniform cov-

ering group of C7
2 detemined by Γ , with 2-uniform basis B = {x1, x2, x3, x4,y1,y2,y3}

corresponding to the vetices of Γ . The graoh Γ satisfies the following conditions.

1. E(ΓB) = E(Φ1)4E(Φ2), where Φ1 is a clique on one blue and three red vertices

andΦ2 is a clique on two blue and one red vertices, and;

2. E(ΓR) = E(Φ2)4E(Φ3), where Φ3 is a nontrivial clique one two blue and two red

vertices.

Figure 5.1: Γ

Therefore, by Theorem 5.1, G contains elements z1, z2, z3 where zi are product in G

of the basis elements of B represented by the vertices of Φi and z2
1 = z2

2 = z2
3 = s ′; s ′ 6∈

{r, s}. The alternative 2-uniform basis is B ′ = {x1, x2, x3, x4, z1, z2, z3}, and the change of

59



Chapter 5 – Groups of uniform corank 3

basis matrix P from B ′ to B is

P =



1 0 0 0 1 0 0

0 1 0 0 0 0 1

0 0 1 0 0 1 1

0 0 0 1 0 1 0

0 0 0 0 1 0 0

0 0 0 0 1 0 1

0 0 0 0 1 1 1


.

The change of basis matrix from B to B ′ is the inverse of P inM7(F2), given by

P−1 =



1 0 0 0 1 0 0

0 1 0 0 1 1 0

0 0 1 0 1 0 1

0 0 0 1 0 1 1

0 0 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 1 1 0


.

Hence, the alternative 2-uniform graph of G that corresponds to B
′ is given in Figure

5.2.

Figure 5.2: Γ ′

Moreover, Γ is of Case 8(a) which is equivalent to the case 3(a).
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Let G be a 2-uniform covering group of Cn2 of uniform corank 2, where n > 6. Let

B = {x1, . . . , xk,y1,y2} be a 2-uniform basis of G, where x2
i = r and y2

i = s, r 6= s. We

write X and Y for the subsets {x1, . . . , xk} and {y1,y2} of B. By Theorem 3.8, no element

ofG ′ apart from r and possibly s is the square of more than three independent elements

of G ′, but it is possible that y1 and y2 can be replaced in B by elements z1 and z2, to

form an alternative 2-uniform basis B ′. In this situation, B ′ = {x1, . . . , xk, z1, z2}, where

z2
1 = z2

2 = s ′ and s ′ 6∈ {r, s}. In this chapter, we consider the conditions on ΓB(G) which

admit this possibility. As in Chapter 5, we consider the change of basis matrix P from

B ′ to B, whose columns list the coordinates of the elements of B ′ with respect to B.

Unlike the case of uniform corank 3, this matrix does not fully determine the group.

We discuss the relationship between the graphs ΓB(G) and ΓB ′(G).

We assume thatG contains elements z1 and z2 as described above, and as in Chapter

5 we write X and Y for the subsets {x1, . . . , xk} and {y1,y2} of B. We may assume that

each of z1 and z2 is a product of elements of B, and we write Z1 and Z2 respectively for

the sets of elements of B that occur in z1 and z2. We note that each of Z1 and Z2 has at

least two elements. That X∪ {z1, z2} generates G requires that the sets Z1 ∩Y and Z2 ∩Y

are distinct and non-empty. Comparing the expressions for z2
1 and z2

2 in terms of the

elements of B, we observe that z2
1 = z2

2 if and only if one of the following conditions

holds.

Case 1 r = C1C2, where C1 and C2 are elements of G ′ represented with respect to B
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by cliques on the sets of vertices corresponding to Z1 and Z2 respectively. This

occurs if |X ∩ Z1| and |X ∩ Z2| have opposite parity, and |Y ∩ Z1| and |Y ∩ Z2| have

the same parity (which must be odd). After relabelling, we may interpret this last

condition as saying that y1 ∈ Z1\Z2, y2 ∈ Z2\Z1, |Z1| is odd and |Z2| is even.

Case 2 s = C1C2, where C1 and C2 are elements of G ′ represented with respect to B by

cliques on the sets of vertices corresponding to Z1 and Z2 respectively. This occurs

if |X∩Z1| and |X∩Z2| have the same parity, and |Y∩Z1| and |Y∩Z2| have opposite

parity. After relabelling, we may infer from this last condition that y1 ∈ Z1 ∩ Z2,

and y2 ∈ Z2\Z1. We distinguish the following subcases:

Case 2(a) |X ∩ Z1| and |X ∩ Z2| are odd.

Case 2(b) |X ∩ Z1| and |X ∩ Z2| are even.

Case 3 rs = C1C2, where C1 and C2 are elements of G ′ represented with respect to B by

cliques on the sets of vertices corresponding to Z1 and Z2 respectively. This occurs

if |X∩Z1| and |X∩Z2| have opposite parity, and |Y∩Z1| and |Y∩Z2| have opposite

parity. As in the second case above, we may assume in this situation that both y1

and y2 occur in Z2 and that only y1 occurs in Z1. Again we consider two subcases,

depending on the numbers of blue vertices in the cliques describing C1 and C2.

Case 3(a) |X ∩ Z1| is odd and |X ∩ Z2| is even.

Case 3(b) |X ∩ Z1| is even and |X ∩ Z2| is odd.

It is possible for more than one of Cases 1, 2 and 3 to occur simultaneously, so that

there may be multiple choices for the pair of elements {z1, z2}. It is even possible, with

Case 3(b), that the same graph may admit two different choices for C1 and C2, in a

case where rs is represented by a 4-cycle that has two different descriptions as the

symmetric difference of two copies of the complete graph K3. In all other cases, it

follows from Theorem 3.8 and the parity restrictions that there is only one possible

choice for the pair (C1,C2) corresponding to the description of r, s or rs as a product of

two elements represented by complete graphs.
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In each of the three cases, we write B ′ for the basis obtained from B by replacing

y1 and y2 by z1 and z2, and consider the relationship between the graphs ΓB and ΓB ′ .

We consider these two graphs to have the same vertex set, where the red vertices that

represent y1 and y2 in ΓB respectively represent z1 and z2 in ΓB ′ . In all cases, Theorem

4.4 provides a template for the description of the relationship between the two graphs.

As in Chapter 5, we may consider the change of basis matrix P from B ′ to B, whose

columns list the coordinates of the elements of B ′ with respect to B. Unlike the case

of uniform corank 3, this matrix does not fully describe the group, but only one of the

three elements r, s and rs. The matrix P, and its inverse, have the following forms.

P =



| |

In−2 v1 v2

| |

1 e

0(n−2)×2 0 1


, P−1 =



| |

In−2 v1 ev1 + v2

| |

1 e

0(n−2)×2 0 1


,

where e = 0 or 1, and v1 and v2 are columns with entries in F2. We write n(v) for the

number of non-zero entries in the column vector v of the top right block of the matrix

P. If e = 0, then n(v1) is even and n(v2) is odd. The condition that z2
1 = z2

2 means that

the above cases and subcases are encoded in the matrix P as in the following table.

e n(v1) n(v2)

Case 1 0 even odd

Case 2(a) 1 odd odd

Case 2(b) 1 even even

Case 3(a) 1 odd even

Case 3(b) 1 even odd

From the description of P−1 in terms of P, we note that if P describes an instance of Case

2(a), then P−1 describes one of Case 3(a), and vice versa. Hence every 2-uniform graph

that satisfies condition 2(a) is equivalent to one that satisfies condition 3(a), and it is

sufficient to consider one of these conditions in a description of graphs that describe

2-uniform covering groups of uniform corank 2, up to isomorphism.
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In all other rows of the table above, the matrices P and P−1 correspond to the same

row of the table. In these cases, the relationship between the 2-uniform graphs ΓB(G)

and ΓB ′(G) is described by Theorem 4.4.

1. In Case 1, we have s ′ = z2
1 = sC1. By Corollary 4.3, the graphs representing C1

and C2, and hence r, are the same with respect to both bases, so ΓB(G) and ΓB ′(G)

have the same sets of blue edges. We write Q1 and Q2 for the respective sets of

blue vertices in the cliques representing the elements C1 and C2 with respect to

B, and we write P1 and P2 for the sets of neighbours of y1 and y2 in ΓB(s). Then

the set of red edges of ΓB ′(s ′), hence of ΓB ′(G), is given by E(ΓB ′(s))4E(C1), and

from Theorem 4.4 we have

E(ΓB ′(s
′)) =


E(ΓB(s))4E(P1,Q1)4E(P24Q1,Q2) if the red vertices of ΓB(G) are

adjacent via a red edge

E(ΓB(s))4E(P1,Q1)4E(P2,Q2) otherwise

2. In Case 2(b), s ′ = z2
2 = C2. By inspecting the entries of the last two columns of P−1

(or by applying Theorem 4.4 to the graph ofC2 with respect to B), we observe that

the set of red edges in ΓB ′(G) is the symmetric difference of the edge sets of the

cliques on the sets of vertices representing Z1 and (Z14Z2)∪ {z1}. The blue edges

of ΓB(G) are independent of the red edges and of condition 2(a), and Theorem 4.4

describes how they change under the change of basis. We write P1 and P2 for the

sets of neighbours in ΓB(r) of the vertices representing y1 and y2 respectively, and

Q1 and Q2 for the sets of vertices respectively representing Z1\{y1} and Z2\{y2}.

Then the set of blue edges of ΓB ′(G) is given by

E(ΓB ′(r)) =


E(ΓB(r))4E(P1,Q1)4E(P24Q1,Q2) if the red vertices of ΓB(G) are

adjacent via a blue edge

E(ΓB(r))4E(P1,Q1)4E(P2,Q2) otherwise

3. In case 3(b), s ′ = z2
2 = sC1. From the matrix P−1 we note that ΓB ′(rs ′) is the

symmetric difference of the cliques on the sets of vertices representing Z1 and
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(Z14Z2) ∪ {z1}, which respectively involve an even and odd number of blue ver-

tices. The set of blue edges in ΓB ′(G) is given, as in Case 2(b), by

E(ΓB ′(r)) =


E(ΓB(r))4E(P1,Q1)4E(P24Q1,Q2) if the red vertices of ΓB(G) are

adjacent via a blue edge

E(ΓB(r))4E(P1,Q1)4E(P2,Q2) otherwise

where P1,P2,Q1,Q2 have the same definitions as in Case 2(b). Finally, the set of

red edges in ΓB ′(G) is the symmetric difference of the edges sets of the graphs

representing rs ′ and r.

Example 6.1. Let G be a 2-uniform covering group of C6
2 of uniform corank 2. Let

B = {x1, x2, x3, x4,y1,y2} be a 2-uniform basis of G, where x2
i = r and y2

i = s, r 6= s. Let

r = C1C2 where C1 and C2 are elements of G ′ represented with respect to B by cliques

on the sets of vertices corresponding to Z1 and Z2 respectively

z1 = x1x2x4y1

z2 = x3x4y2

The 2-uniform graph that represents G and corresponds to B is

Figure 6.1: Γ

The alternative basis B ′ of the group G is obtained from B by replacing y1 and

y2 by z1 and z2. The change of basis matrix P from B ′ to B, whose columns list the

coordinates of the elements of B ′ with respect to B and the inverse matrix P−1 are

equal
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P = P−1 =



1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

0 0 0 0 1 0

0 0 0 0 0 1


.

We have s ′ = z2
2 = sC2 and r, are the same with respect to both bases, so ΓB(G) and

ΓB ′(G) have the same sets of blue edges. We writeQ1 = {x1, x2, x4} andQ2 = {x3, x4} for

the respective sets of blue vertices in the cliques representing the elements C1 and C2

with respect to B, and we write P1 = {y2} and P2 = {x2,y1} for the sets of neighbours

of y1 and y2 in ΓB(s). Then the set of the red edges is E(P1,Q1)4E(P24Q1,Q2), and the

the alternative 2-uniform graph of G that corresponds to B
′ is

Figure 6.2: Γ ′
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In this chapter, we suppose that G is an 2-uniform covering group of Cn2 , with ρ(G) =

n − 1 where n > 5. Let x1, . . . , xn−1 be independent elements of G all with square r.

Then {x1, . . . , xn−1} may be extended to a 2-uniform basis of G by the addition of any

element y of G that does not belong to the subgroup X = 〈x1, . . . , xn−1〉, and every

uniform basis includes n − 1 elements with square r, by Theorem 3.8. Having chosen

y, we write Γ(y) for the graph of Gwith respect to the basis {x1, . . . , xn−1,y}, which has

n− 1 blue vertices representing x1, . . . , xn−1, and a single red vertex representing y.

We show in Lemma 7.2 and Lemma 7.3 that it is possible to choose y so that the

graph Γ(y) has a particular form, referred to as standard form. In the special case of

corank 1, a 2-coloured graph in standard form may be taken as a refinement of the

concept of a 2-uniform graph. The remainder of the chapter is devoted to the question

of when non-isomorphic graphs in standard form represent isomorphic groups.

Lemma 7.1. The neighbours in Γ(y) of the red vertex, via blue edges, do not depend on the

choice of y.

Proof. Suppose that y and y ′ are different elements of G\X. Then y ∈ y ′xG ′ for some

x ∈ X. After relabelling the elements of B we may suppose that

r = [y, x1 . . . xp]c,

where c ∈ X ′. Then

r = [y ′x, x1 . . . xp]c = [y ′, x1 . . . xp]c ′,
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where c ′ ∈ X ′. Hence the neighbours of the red vertex in the blue parts of both Γ(y)

and Γ(y ′) are the vertices representing xi1 , . . . , xip .

We continue to write {x1, . . . , xp} for the set of neighbours of the red vertex via blue

edges, in a 2-uniform graph representing G.

Lemma 7.2. If p is even, then for every subset S of {x1, . . . , xn−1}, there is exactly one choice

of y for which the red vertex is adjacent via red edges in Γ(y) precisely to those vertices repre-

senting elements of S. In particular there is exactly one choice of y for which the red vertex is

incident with no red edge in Γ(y).

Proof. We assume that p is even, and choose z ∈ G\X. If xj1 , . . . , xjq are the basis el-

ements representing the neighbours of the red vertex via red edges in Γ(z), we may

write

z2 = [z, xj1 . . . xjq] c,

where c ∈ X ′. Define y by

y =

 zxj1 . . . xjq if q is even

zxj1 . . . xjqx1 . . . xp if q is odd

For even q, y2 = z2rqC(z, xj1 , . . . , xjq) ∈ [z, xj1 . . . xjq]
2X ′, and the red vertex in Γ(y) is

incident with no red edge.

For odd q, y2 = z2rq[z, xj1 . . . xjqx1 . . . xp]C({xj1 . . . , xjq}4{x1, . . . , xp}). Since rq = r ∈

[z, x1 . . . xp]X ′, again in this case we have y2 ∈ X ′, and the red vertex in Γ(y) is incident

with no red edge.

For any subset S = {xi1 , . . . , xit} of {x1, . . . , xn−1}, we may define yS by

yS =

 yxi1 . . . xit if t is even

yxi1 . . . xitx1 . . . xp if t is odd

Then it is easily confirmed that the neighbours via red edges of the red vertex in Γ(yS)

are exactly those blue vertices that represent elements of S. Moreover every possi-

ble neighbour set occurs for exactly one choice of an element of G/G ′ that completes

{x1G
′, . . . , xn−1G

′} to a basis of G/G ′.
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The following lemma deals with the alternative case, where the red vertex is adja-

cent via blue edges to an odd number of blue vertices.

Lemma 7.3. If p is odd, then the red degree of the red vertex is either even for every choice of y

or odd for every choice of y. Furthermore,

1. If this degree is even for all y, then for every subset S of even cardinality of {x1, . . . , xn−1},

there are exactly two choices of yG ′ for which the neighbours via red edges of the red

vertex in Γ(y) are precisely those vertices representing elements of S. These two choices

of y differ from each other (modulo G ′) by the element x1 . . . xp, the product of the basis

elements represented by the neighbours of the red vertex via blue edges. In particular, in

this case there are two choices of yG ′ for which the red vertex is incident with no red edge

in Γ(y).

2. If this degree is odd for all y, then for every subset S of odd cardinality of {x1, . . . , xn−1}

there are exactly two choices of yG ′ for which the neighbours via red edges of the red

vertex in Γ(y) are precisely those vertices representing elements of S. These two choices

of y differ from each other (modulo G ′) by the element x1 . . . xp. In particular, there are

two choices of yG ′ for which the red vertex in Γ(y) has the same neighbour set via red

and blue edges.

Proof. We assume that p is odd and choose z ∈ G\X. We write

z ′ = zx1 . . . xp.

Then

(z ′)2 = z2rpC(z, x1, . . . , xp)

= [z, x1 . . . xp]r[z, x1 . . . xp]c,

= rc.

where c ∈ X ′. Thus the red vertex has the same set of neighbours in Γ(z) and Γ(z ′),

whenever z ′ and z are related by z ′ ∈ zx1 . . . xpG ′.

Now let S be any subset of x1, . . . , xn−1 and let x be the product of the elements of

S (in some order). Choose y ∈ G\〈X〉, and let Ny be the set of neighbours of the red

69



Chapter 7 – Groups of uniform corank 1

vertex via red edges in Γ(y). Then

(yx)2 = y2r|S|[yx, x].

Thus the set of neighbours via red edges of the red vertex in Γ(yx) is

• Ny4S, if |S| is even;

• Ny4S4{x1, . . . , xp}, if |S| is odd.

Since p is odd, the red degree of the red vertex has the same parity in Γ(y) and Γ(yx),

for all choices of x. Since the symmetric difference is a group operation on the power

set of {x1, . . . , xn−1}, every subset whose cardinality has the same parity as Ny occurs

(as the neighbour set via red edges of the red vertex) for two choices of S, one with odd

and one with even cardinality.

In particular, if |Ny| is even, then {x1, . . . , xn−1} may be extended (in two ways) to a

2-uniform basis of G whose graph has the property that its red vertex is incident with

no red edge. If |Ny| is odd, the {x1, . . . , xn−1} may be extended (in two ways) to a 2-

uniform basis whose graph has the property that the neighbours of the red vertex via

red edges coincide with those via blue edges.

It remains to consider the relationship between the two 2-uniform graphs repre-

senting G, and having the properties described in Lemma 7.3, in the case that p is odd.

Suppose thatG is a group satisfying the hypotheses of Lemma 7.3, and that the element

y of G\〈x1, . . . , xn−1〉 has been chosen so that the red vertex in graph Γ(y) is either in-

cident with no red edge, or has the same set of nB neighbours via both blue and red

edges.

Theorem 7.4. If x1, . . . , xp are the basis elements represented by the neighbours of the red

vertex in Γ(y), where p is odd, let y ′ = x1 . . . xpy. Then the graph Γ(y ′) that represents G

with respect to the basis {x1, . . . xn−1,y ′} is related to Γ(y) as follows:

• The two graphs are considered to have the same vertex set, where the red vertex represents

y in Γ(y) and y ′ in Γ(y ′);

• Γ(y) and Γ(y ′) have the same set of blue edges;
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• The set of red edges in Γ(y ′) is given by ER(Γ(y)4S4T , where S and T respectively

denote the set of blue edges amongst the blue vertices of Γ(y) and the edge set of the

complete graph on the vertices representing x1, . . . , xp.

Proof. That the sets of blue vertices coincide in Γ(y) and Γ(y ′) follows from the fact that

r = [y, x1 . . . xp]C = [y ′, x1 . . . xp]C,

where C is a product of commutators involving the elements x1, . . . , xn−1, which is

represented by the same set of edges in both graphs.

That the sets of red edges are related as described above follows from the observa-

tion that

(y ′)2 = (x1 . . . xpy)2

= rps[x1 . . . xp,y]
∏

16j<k6p

[xij , xik ]

= rs[x1 . . . xp,y ′]
∏

16j<k6p

[xij , xik ].

The red edges of Γ(y ′) are those that represent commutators that occur in the element

s ′ = (y ′)2 of G ′, with respect to the basis {x1, . . . , xn−1,y ′}. For 1 6 j 6 p, the commuta-

tors [y ′, xij ] all occur in r, and either all or none of them occur in s. Hence they occur in

s ′ if and only if they occur in s, and the sets of red edges incident with the red vertex

coincide in Γ(y) and Γ(y ′). For basis elements xi and xj represented by blue vertices,

the commutator [xi, xj] occurs in s ′ if and only if it occurs in exactly one of s, r and∏
16j<k6p[xij , xik ] or in all three of them, hence the conclusion.

In order to classify 2-uniform covering groups of Cn2 uniform corank 1 with 2-

uniform graphs, it is sufficient to consider 2-uniform graphs with a single red vertex,

which is either incident with no red edge, or has the same set of neighbours, of odd

cardinality, via both red and blue edges. We refer to such graphs as being in standard

form. Such a graph could admit a simple exchange operation of Type 1 in Theorem

4.6, if its blue edges form a clique on an even number of blue vertices. This can occur

only if If n > 5, no other graph transformations can arise, that preserve the property of

being in standard form and the isomorphism type of the group.
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Assume that n > 5 and let G be a covering group of Cn2 of uniform corank 1. If G is

represented by a 2-uniform graph in standard form, in which the red vertex is incident

with a positive even number of blue edges, then this is the only example in standard

form that represents G. If G is represented by a 2-uniform graph in standard form

where the red vertex is isolated, then this is the only graph in standard form that rep-

resents G, unless it admits exchange operations as mentioned above. If the red vertex

is incident with an odd number of blue edges in a standard 2-uniform graph repre-

senting Γ , then it follows from Theorem 4.6, that no exchange operations preserving

the property of being in standard form are possible. However, each group of this type

is represented by two generally non-isomorphic graphs in standard form, as described

in Theorem 7.4. The collection of all standard 2-uniform graphs in which the red ver-

tex is incident with an odd number of blue edges has two graphs representing each of

the groups that occur, with exceptions only in cases where the two graphs described

in Theorem 7.4 are isomorphic. Graphs in this collection have a natural occurrence

in pairs; corresponding to each example in which the red vertex is incident with no

red edge, is one in which the red vertex has the same neighbours via red edges as blue.

Those graphs in which the red vertex is incident with no red edge account for half of all

graphs in this collection, and their number approximates (and slightly overestimates)

the number of isomorphism types of covering groups involved. We conclude that for

n > 5, the number of isomorphism types of covering groups of uniform corank 1 of

Cn2 is closely approximated by the number of 2-uniform graphs of standard form on n

vertices, in which the red vertex is incident with no red edge.
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Small special cases

Let G be a 2-uniform covering group of Cn2 , having a 2-uniform basis consisting of

elements with squares r and s in G ′. Theorem 3.8 asserts that no element of G ′, except

possibly r and s, can be the square of four independent elements ofG. Consequently, if

the uniform rank ρ(G) ofG exceeds 3, the square of the ”blue” elements of a 2-uniform

basis is almost fully determined by G. Unless the uniform rank and corank coincide

or almost coincide, it is the unique element of G ′ that occurs as the square of ρ(G)

independent elements. In any case, it occurs as the square corresponding to either the

blue or red vertices in the graph determined by every uniform basis.

It remains to consider 2-uniform covering groups of uniform rank at most three,

where more choices potentially exist for a 2-uniform basis. That is the theme of this

chapter. We consider 2-uniform covering groups of uniform rank 2, with uniform

corank 1 or 2, and groups of uniform rank 3, with uniform corank 1, and 2.

8.1 Uniform rank 2, corank 1

The goal of this section is to enumerate the isomorphism types of 2-uniform covering

groups of C3
2 of uniform rank 2. Let G be a 2-uniform covering group of C3

2 of uniform

rank 2. We consider the problem of distinguishing the possible isomorphism types of

G via 2-uniform graphs.

Since not every 2-coloured graph with one red and two blue vertices is a 2-uniform
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graph, by Theorem 3.12 we need only consider 2-coloured graphs Γ that satisfy the

following conditions.

(a) ΓR is not a clique on one blue vertex and one red vertex.

(b) ΓB4ΓR is not a clique on two blue vertices and one red vertex.

Moreover, by Lemma 7.2 and Lemma 7.3, we may assume that the red vertex is iso-

lated in the red part of the graph, or that in both the red and blue parts the red vertex

has the same single blue neighbour. There are only 9 graphs on three vertices satisfying

all of these properties. They are presented below.
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

75



Chapter 8 – Small special cases

(9)

Table 8.1

Every 2-uniform covering group of C3
2 of uniform rank 2 is represented by one of these

graphs. Now the question is whether any pairs of these graphs represent the same

group. In this case and since n = 3, it is feasible to analyze each graph explicitly and

investigate the alternative 2-uniform bases that represent the same group.

In the analysis below we assume in each case that the two blue vertices represent ele-

ments x1 and x2 and that the red vertex represents an element called y.

1. Graph (1) represents a group that has

x2
1 = x

2
2 = [x1, x2], y2 = 1.

Then

(x1y)
2 = [x1, x2y]

(x2y)
2 = [x2, x1y]

(x1x2)
2 = [x1, x2]

(x1x2y)
2 = [x1x2, x2y]

The only alternative 2-uniform basis (for which the red vertex is incident with no

red edges) comes from replacing either x1 or x2 with x1x2. This does not change

the graph. So no other of these 9 graphs represents the same group as the first

one.

2. Graph (2) represents a group that has

x2
1 = x

2
2 = [x1,y],y2 = 1.
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Then

(x1y)
2 = 1

(x2y)
2 = [x1x2,y]

(x1x2)
2 = [x1, x2]

(x1x2y)
2 = [x1x2, x2y]

We may replace x1, x2, and y by x1y, y, and x1x2 respectively, this results in a

representation of the same group as graph (5). So graphs (2) and (5) represent the

same group.

3. Graph (3) represents a group that has

x2
1 = x

2
2 = [x1, x2y],y2 = 1.

Then

(x1y)
2 = [x1, x2]

(x2y)
2 = [x1y, x2y]

(x1x2)
2 = [x1, x2]

(x1x2y)
2 = [x1y, x2y]

We may replace y in the 2-uniform basis with the element x1y, this results in a

representation of the same group as graph (7). So graphs (3) and (7) represent the

same group.

We may also notice thatG has other 2-uniform bases such as {x1x2, x1y,y}, but the

graph with respect to each of these is isomorphic to (3) or (7).

4. Graph(4) represents a group that has

x2
1 = x

2
2 = [x1x2,y],y2 = 1.
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Then

(x1y)
2 = [x2,y]

(x2y)
2 = [x1,y]

(x1x2)
2 = [x1, x2]

(x1x2y)
2 = [x1y, x2y]

We notice that there is no adjustment to the basis can give the same group that

graph (4) represents.

5. As noted earlier, the group represented by graph (5) is isomorphic to that repre-

sented by graph (2).

6. Graph (6) represents a group that has

x2
1 = x

2
2 = [x1,y],y2 = [x1, x2].

Then

(x1y)
2 = [x1, x2]

(x2y)
2 = [x1y, x2y]

(x1x2)
2 = [x1, x2]

(x1x2y)
2 = [x1x2,y]

We notice that graph (6) represents a uniform covering group with the uniform

basis {x1x2, x1y,y}. Also, we may replace x1, x2 and y with the element x1x2, x1y,

and x1x2y respectively this results in a representation of the same group as graph

(9).

7. As noted earlier, the group represented by graph (7) is isomorphic to that repre-

sented by graph (3).

8. Graph (8) represents a group that has

x2
1 = x

2
2 = [x1y, x2y],y2 = [x1, x2].
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Then

(x1y)
2 = [x1, x2y]

(x2y)
2 = [x1y, x2]

(x1x2)
2 = [x1, x2]

(x1x2y)
2 = [x2,y]

We notice that there is no alternative 2-uniform basis in this case.

9. Graph (9) represents a group that has

x2
1 = x

2
2 = [x1, x2y],y2 = [x1,y].

Then

(x1y)
2 = [x1, x2y]

(x2y)
2 = [x1,y]

(x1x2)
2 = [x1, x2]

(x1x2y)
2 = [x1x2,y]

We notice that graph (9) represents a uniform covering group with the uniform basis

{x1, x2, x1y}. As noted earlier, the group represented by graph (9) is isomorphic to that

represented by graph (6).

We conclude that there are 5 different isomorphism types of 2-uniform covering

groups of C3
2 of uniform rank 2.

8.2 Uniform rank 3, corank 1

We now consider 2-uniform covering group of C4
2 of uniform rank 3. Every such group

is represented by a 2-uniform graph with three blue vertices and one red, in standard

form in the sense of Chapter 7. In view of the number of graphs involved, it is not feasi-

ble to conduct an exhaustive manual search of alternative 2-uniform bases within each

group as in Section 8.1. This section presents an account an account of all 2-uniform
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graphs in standard form, on three blue vertices and one red vertex. We note pairs of

such graphs that represent the same group, according to the equivalence described in

Theorem 7.4, or under the exchange operations in Chapter 4. The outcome is an up-

per bound on the number of isomorphism types of 2-uniform covering groups of C4
2 of

uniform rank 3.

As in Section 8.1, it follows from Theorem 3.12 that we need only consider graphs

Γ satisfying the following conditions.

(a) ΓR is not a clique on one blue and one red vertices.

(b) ΓB4ΓR is not a clique on two blue vertices and one red vertex.

By Lemma 7.2 and Lemma 7.3, we may assume that the red vertex is isolated in the

red part of the graph, or that in both the red and blue parts the red vertex has the same

single blue neighbour or three blue neighbors.

Also we need to apply Theorem 7.4 on the graphs that already satisfy the above

mentioned Lemmas in order to figure out the graphs that represent the same group. It

is obvious that Theorem 7.4 can be applied on the graphs where the red vertex has one

or three blue neighbors via red and blue edges.

We notice that after adding one isolated blue vertex to the graphs that represent

the uniform rank 2 and corank 1 case, these graphs will represent some of the uniform

rank 3 and corank 1 case graphs. Those 5 graphs are listed in the table below.

(1)

80



Chapter 8 – Small special cases

(2)

(3)

(4)

(5)

Table 8.2

Now, in the table below, we present pairs of graphs that represent the same group

according to Theorem 7.4.

(1-a) (1-b)
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(2-a) (2-b)

(3-a) (3-b)

(4-a) (4-b)

(5-a) (5-b)

(6-a) (6-b)
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(7-a) (7-b)

(8-a) (8-b)

(9-a) (9-b)

(10-a) (10-b)

(11-a) (11-b)
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(12-a) (12-b)

(13-a) (13-b)

(14-a) (14-b)

(15-a) (15-b)

(16-a) (16-b)
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(17-a) (17-b)

(18-a) (18-b)

(19-a) (19-b)

(20-a) (20-b)

(21-a) (21-b)
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(22-a) (22-b)

(23-a) (23-b)

(24-a) (24-b)

(25-a) (25-b)

(26-a) (26-b)
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(27-a) (27-b)

(28-a) (28-b)

(29-a) (29-b)

(30-a) (30-b)

(31-a) (31-b)
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(32-a) (32-b)

(33-a) (33-b)

(34-a) (34-b)

(35-a) (35-b)

(36-a) (36-b)
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(37-a) (37-b)

(38-a) (38-b)

(39-a) (39-b)

(40-a) (40-b)

(41-a) (41-b)
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(42-a) (42-b)

(43-a) (43-b)

(44-a) (44-b)

Table 8.3

We can apply exchange operations of Types 1 and 4 in Theorem 4.6, when ΓB is a clique

on an even number of blue vertices and when ΓB4R is a clique on three blue vertices

and zero red respectively. It is obvious that types 2 and 3 do not arise in the uniform

rank 3 and corank 1 case, since we only have one red vertex, which is either incident

with no red edge, or has the same neighbours via both red and blue edges, in which

case the number of such neighbours is odd.

In the table below, we present the pairs of graphs that are equivalent under ex-

change operations of Types 1 and 4, and represent the same group.
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(1-a) (1-b)

(2-a) (2-b)

Table 8.4

Since the uniform rank and corank differ by 2, the double exchange operation can be

applied on the graphs that satisfy two of three conditions of Theorem 4.8. We only have

two such graphs. We list below the two pairs of graphs that we obtained by applying

Theorem 4.10. We notice that the graphs (1-a) and (1-b) in the below table represent a

uniform covering group.

(1-a) (1-b)
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(2-a) (2-b)

Table 8.5

Finally, we list below table the remaining 2-uniform graphs on three blue vertices and

one red, each of which is the unique 2-uniform graph representing the corresponding

group.

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)
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(13) (14) (15) (16)

(17) (18) (19) (20)

(21) (22) (23) (24)

(25) (26) (27) (28)

(29) (30) (31) (32)
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(33) (34) (35) (36)

(37) (38) (39) (40)

(41) (42) (43) (44)

(45) (46) (47) (48)

(49) (50) (51) (52)

94



Chapter 8 – Small special cases

(53) (54) (55) (56)

(57) (58) (59) (60)

Table 8.6

We conclude that there are at most 113 different isomorphism types of 2-uniform

covering groups of C4
2 of uniform rank 3.

8.3 Uniform rank 2, corank 2

Let G be a 2-uniform covering group of C4
2 of uniform corank 2. Let B = {x1, x2,y1,y2}

be a 2-uniform basis of G, where x2
i = r and y2

i = s, r 6= s. We write X and Y for the

subsets {x1, x2} and {y1,y2} of B. Our concern is the 2-uniform graphs that represent

the covering group G of C4
2. Since not every 2-coloured graph with two red and two

blue vertices is a 2-uniform graph, therefore we need to exclude the graphs that are

not 2-uniform. First we exclude the graphs that are not satisfying the conditions in

Theorem 3.12, so every graph that represents the covering groups of C4
2 must satisfy

the following conditions:

(a) ΓB is not a clique on two blue vertices and two red vertices.

(b) ΓR is not a clique on an one blue vertex and one red vertex.
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(c) ΓB4ΓR is not a clique on two blue vertices and one red vertex.

(d) since nB(Γ) = nR(Γ) = 2 , therefore ΓR is not a clique on two blue vertices and

two red vertices, ΓB is not a clique on an one blue vertex and one red vertex, and

ΓB4ΓR, is not a clique on two red vertices and one blue vertex.

Now from the graphs that satisfy the above conditions, we need also to exclude the

graphs that are not uniform because they have a uniform rank 3 not 2, these cases arise

from the fact that we could have some element t ∈ G ′ , other than r and s, that is the

square of three independent elements of G. Suppose G contains independent elements

z1, z2, and z3, where t = z2
1 = z2

2 = z2
3. We may assume that each of z1, z2, z3 is the

product of some elements of B.

We write Zi for the set of elements of B that occur in zi. For each i, we may write

t = z2
i = r

|Zi∩X|s|Zi∩Y|Ci, (8.1)

where Ci is the element of G ′ whose graph with respect to B is the clique on those

vertices that correspond to elements of Zi. Since C1,C2 and C3 are distinct elements of

G ′, their prefixes r|Zi∩X|s|Zi∩Y| must also be distinct for i = 1, 2, 3.

After relabelling if necessary, we obtain the following descriptions for r, s, rs:

• |Z1 ∩ X| and |Z2 ∩ X| have the opposite parity, and |Z1 ∩ Y| and |Z2 ∩ Y| have the

same parity, then r = C1C2.

• |Z1∩X| and |Z2∩X| have the same parity, and |Z1∩Y| and |Z2∩Y| have the opposite

parity, then s = C2C3.

where C3 ∈ G ′ is represented on the vertex set of ΓB by a clique whose numbers of

blue and red vertices are respectively of the same and opposite parity to those of the

graph representing C2. We notice that for the above description rs = C1C3. In the

following table we are presenting all possibilities for C1, C2, and C3 that satisfying the

parity conditions mentioned above. The edges color in these graphs is black in the

first three columns, where the fourth column contains the graphs that represent the

group where the blue graph is the symmetric difference of the graphs of C1 and C2,
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and the red graph is the symmetric difference of the graphs of C2 and C3, these graphs

represent uniform rank 3 groups. Therefore we will omit every graph Γ that has any

of the descriptions below from the 2-uniform graph collection describing groups of

uniform rank 2 and uniform corank 2.
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C1 C2 C3 Γ
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Table 8.7

We now consider graphs that are equivalent under the exchange operations of The-

orem 4.6. By Theorem 4.6, alternative 2-uniform graphs Γ and Γ ′ corresponding to

exchange operations arise in the following ways.

1. (Type 1) If ΓB is a clique on an two blue vertices, then Γ ′may be given by Γ4KR(W)

for any vertexW of the clique.

2. (Type 2) If ΓR is a clique on either two blue vertices and a two red vertices or a

clique on two red vertices , then Γ ′ may be given by Γ4KB(W), for any red vertex

W of the clique.

3. (Type 3) If ΓBB is a clique on an one blue and one red vertices, then Γ ′ may be given

by Γ4KR(W), for any red vertexW of the clique.
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4. (Type 4) If ΓB4R is a clique on one blue and an two red vertices, then Γ ′ may be

given by Γ4KR(W)4KB(W), for any red vertexW of the clique.

Listed below are pairs and triples of graphs representing the same group. We note that

(since the uniform rank and corank coincide), the colour opposite of each graph in this

section represents the same group as the graph itself.
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Table 8.8
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8.4 Uniform rank 3, corank 2

LetG be a 2-uniform covering group ofC5
2 of uniform corank 2. Let B = {x1, x2, x3,y1,y2}

be a 2-uniform basis of G, where x2
i = r and y2

i = s, r 6= s. By Theorem 3.8, it is

possible that y1 and y2 can be replaced in B by elements z1 and z2, to form an alterna-

tive 2-uniform basis B ′. In this situation, B ′ = {x1, . . . , xk, z1, z2}, where z2
1 = z2

2 = s ′

and s ′ 6∈ {r, s}. Also, it is possible that x1, x2 and x3 can be replaced in B by ele-

ments w1, w2 and w3, to form an alternative 2-uniform bases B ′′ . In this situation,

B ′ = {w1,w2,w3,y1,y2}, where w2
1 = w2

2 = w2
3 = r ′ and r ′ 6∈ {r, s}. Moreover, other

combinations with x1, yj, and wk can form alternative bases for the same group.

In addition, alternative graphs to the ΓB that represent the same group can poten-

tially be obtained by applying exchange operations as outlined in Theorems 4.6. We

observe that the exchange operations of Chapter 4 cannot be applied to groups that

also possess multiple 2-uniform bases involving elements with different squares.

We presenting the examples below, to show how multiple graphs representing the

same group can arise in different ways in the case of 2-uniform graphs of uniform

rank 3 and corank 2. An enumeration of the groups of this type is not within reach at

present.

Example 8.1. LetG be the 2-uniform covering group ofC5
2 with 2-uniform basis {x1, x2, x3,y1,y2},

where x2
1 = x2

2 = x2
3 = r, and y2

1 = y2
2 = s, r 6= s. Let ΓB be the 2-uniform graph that

represents the group G.

Figure 8.1: ΓB

Since ΓRB is a clique on two blue and two red vertices, by Theorem 4.6, we may apply
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a type 2 exchange, for example to obtain the graph ΓB1 below. This graph is given by

Γ4KB(Y1) for the red vertex Y1 of the clique that has a blue degree of 2.

Figure 8.2: ΓB1

Alternatively, we can apply a type 2 exchange to the other red vertex of the clique,

to obtain the graph ΓB2 as follows.

Figure 8.3: ΓB2

By Theorem 4.8, and since ΓRB is a clique on two blue and two red vertices, we can

apply the exchange operation separately on the two blue vertices of ΓRB. We write X1

for the vertex that has a blue degree of one, and X2 for the other blue vertex. For X1,

we transform Γ to Γ1 by switching the colour of X1 from blue to red, and then define

ΓB3 to be the colour opposite of Γ14KB(X1). A similar exercise for X2 yields the graph

ΓB4 below.
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Figure 8.4: ΓB3

Figure 8.5: ΓB4

The graphs ΓB, ΓB1 , ΓB2 , ΓB3 , ΓB4 all represent the same group G.

The second example describes a case that admits changes of basis of the type de-

scribed in Chapter 5.

Example 8.2. Let G be the the 2-uniform covering group of C5
2 with 2-uniform basis

B = {x1, x2, x3,y1,y2}, where x2
1 = x2

2 = x2
3 = r, and y2

1 = y2
2 = s, r 6= s. Let ΓB the

2-uniform graph that represents the group Gwhere

1. ΓB = Φ14Φ2, where φ1 is a clique on one two red and two blue vertices and Φ2

is a clique on two blue vertices and one red vertex and;

2. ΓR = Φ24Φ3, whereΦ3 is a clique on one blue and one red vertices.

104



Chapter 8 – Small special cases

Figure 8.6: ΓB

Let zi be the product in G of the basis elements represented by the vertices of Φi as

follows:

z1 = x1x2y1y2

z2 = x2x3y1

z3 = x1y2

where z2
1 = z2

2 = z2
3 = s ′. Listing the basis elements of B1 in the order y1,y2, z1, z2, z3,

the change of basis matrix from B1 to B is

P =



1 0 1 1 0

0 1 1 0 1

0 0 1 0 1

0 0 1 1 0

0 0 0 1 0


.

Therefore, the change of basis matrix from B to B1 is the inverse of P, given by

P−1 =



1 0 0 0 1

0 1 0 1 0

0 0 1 1 1

0 0 1 0 0

0 0 1 0 1


.
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The graph ΓB1 is

Figure 8.7: ΓB1

Now, we use the matrix description of change of 2-uniform basis, as described in

Chapter 5 to present the alternative graphs that correspond to the possible alternative

2-uniform bases. Let AB and AR be the matrices inMn(F2) whose (i, j)-entry is 1 if the

commutator of the ith and the jth elements appears in the unique expression for r and

s respectively. Consequently the adjacency matrices AB and AR for the blue and red

graphs in ΓB that correspond to r and s respectively are

AB =



0 0 0 0 1

0 0 1 1 0

0 1 0 1 0

0 1 1 0 0

1 0 0 0 0


.

AR =



0 1 0 1 1

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

1 1 0 1 0


For the basis B2 = {x1, x2, x3, z1, z2}, where x2

1 = x2
2 = x2

3 = r and z2
1 = z2

2 = s ′, the
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change basis matrices from B to B2 is

Q =



1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 1 1 0 1

1 0 1 1 1


Therefore, the matrix for B2 that correspond to r is given by

QTABQ =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 1 1 0 1

1 0 1 1 1



T 

0 0 0 0 1

0 0 1 1 0

0 1 0 1 0

0 1 1 0 0

1 0 0 0 0





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 1 1 0 1

1 0 1 1 1


=



0 0 1 1 1

0 0 1 0 1

1 1 0 0 1

1 0 0 0 0

1 1 1 0 0


Since z2 = x2x3y1, then s ′ = sC2 where C2 = [x2, x3][x2,y1][x3,y1]. The matrix of C2

with respect to B2 is

K2 =



0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 0 0 0 0

0 1 1 0 0


Therefore, the matrix of s ′ with respect to B2 is given by
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QTARQ+ K2 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 1 1 0 1

1 0 1 1 1



T 

0 1 0 1 1

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

1 0 1 1 0





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 1 1 0 1

1 0 1 1 1


+



0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 0 0 0 0

0 1 1 0 0



=



0 0 1 1 1

0 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0


.

The graph ΓB2 is

Figure 8.8: ΓB2

We apply the same method for the bases B3 = {x1, x2, x3, z2, z3} and B4 = {x1, x2, x3, z1, z3},

where x2
1 = x2

2 = x2
3 = r and z2

1 = z2
2 = z2

3 = s ′, and find the corresponding graphs ΓB3

and ΓB4 respectively, as shown below.

Figure 8.9: ΓB3
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Figure 8.10: ΓB4

Finally, the graph ΓB5 corresponds to the basis B5 = {z1, z2, z3, x1, x2}, where z2
1 =

z2
2 = z

2
3 = r

′ and x2
1 = x

2
2 = s.

Figure 8.11: ΓB5

The graphs ΓB, ΓB1 , ΓB2 , ΓB3 , ΓB4 , and ΓB5 all represent the same group G.

This concludes our analysis for covering groups of uniform rank at most 3. The

case of groups of uniform rank 3 and uniform corank 3 differs from the general corank

3 considerations of Chapter 5 only by the possibility of colour switches, so we do not

include a detailed analysis for this case.
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Chapter 9

Conclusion

Our goal was to construct a bijective correspondence between isomorphism classes of

2-uniform covering groups of Cn2 , and an appropriate collection of 2-coloured graphs

of order n. We now report on the extent to which this goal has been achieved, and

mention some possible avenues for further investigation.

Lemma 3.11 presents a description of 2-uniform graphs of order 5 or greater, which

include at least one graph representing every isomorphism type of group. Groups of

uniform corank 4 or greater are represented by a unique 2-uniform graph, with a few

exceptions that are considered in Chapter 4. The collection of 2-uniform graphs with at

least four red vertices provides a correspondence of the desired type, with a few cases

where the bijectivity fails, which have been documented in detail.

The case of covering groups of uniform corank 1, 2 or 3 is more complicated, due

to Theorem 3.8, which is the essential driver of our analysis. In these cases, the more

extensive possibilities for a 2-uniform basis mean that more mechanisms occur for a

group to have multiple non-isomorphic representations by 2-uniform graphs. Never-

theless, in the case of coranks 2 and 3 (and uniform rank at least 4), most 2-uniform

group are represented by a unique 2-uniform graph. The exceptions are discussed in

detail in Chapters 5 and 6.

The case of corank 1 (and rank 4 or greater) is particularly interesting, because of

the much greater number of choices for a 2-uniform basis. In this case, we were able

to refine the concept of a 2-uniform graph by specializing to graphs in standard form.
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Graphs of standard form can admit at most one type of the exchange operations of

Chapter 4. Thus, it is arguably in the case of groups of uniform corank 1 that we come

closest to achieving the goal of exhibiting a bijective correspondence between isomor-

phism types of groups and a collection of 2-coloured graphs. With a few exceptions,

groups of corank 1 are represented either by exactly one or exactly two graphs in stan-

dard form.

In Chapter 8, we discussed isomorphism types of 2-uniform covering groups of

uniform rank at most three, where more choices potentially exist for a 2-uniform basis.

We gave a complete enumeration in the case of uniform rank 2 or 3 and corank 1. In the

case of uniform rank and corank both equal to 2, we gave a complete account of those

groups with multiple graph representations. A complete enumeration for groups of

uniform rank 3 and corank 2 or 3 remains out of our reach at present.

We have not discovered an analogue of Theorem 2.17 for 2-uniform covering groups,

that can be stated in a succinct way. We suspect that no such neat statement exists,

given the complexity of 2-uniform bases.

It would be of interest to determine the number of isomorphism types of covering

groups of rank 2 of an elementary abelian group of specified odd order. As noted in

Chapter 2, this is a problem of linear algebra that would involve different techniques

from those employed here. Another direction of possible further investigation would

be to apply our methods to other families of 2-groups of nilpotency class 2.
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