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Abstract 

The market for District Cooling Systems (DCS) is increasing in Europe as well as other parts 

of the world due to climate change and higher demand for thermal comfort in the buildings. 

The DCS have come into attention for their role in the energy efficient operation of buildings 

and districts. Many attempts have been made to operate the District Energy Systems (DES) 

more efficiently; however, a change in the method of modelling, simulation and control can 

bring further improvements in the energy performance of DES. The DCS has its challenges 

including low temperature differentials at the generation level, and optimal operation of the 

overall system which require specific modelling and control techniques to overcome.  

In this thesis, the literature is critically reviewed to find out the role of modelling and simulation 

with respect to DCS. As a result, the current shortcomings in modelling and control of DCS 

are investigated. Then, an integrated modelling and simulation framework is developed for 

energy efficient and optimal operation of DCS. The predictive control approaches have proved 

to be effective in the control of DES in recent years. The Model Predictive Control (MPC) 

algorithms are exploited in a virtual testbed to increase the energy efficiency of District Cooling 

Generation Systems (DCGS). This thesis was performed as part of the EU H2020 INDIGO 

(2016-2020) project; the testbed and data used in the implementation of this thesis are provided 

through EU H2020 INDIGO (2016-2020). Furthermore, the MPC solution is analysed 

mathematically to prove its performance. The virtual testbed for modelling and control of the 

DCGS is tested on the Basurto hospital building in Spain as a part of EU H2020 INDIGO 

(2016-2020) project; the results are compared to the current control setup in the DCGS of 

Basurto to show the effectiveness of the MPC framework in energy efficiency of the DCGS. 

The comparisons show a theoretical 30% decrease in energy use using the MPC 

implementation of this thesis on each chiller in DCGS while the desired temperature is 

achieved for thermal comfort. 

 

Keywords: Energy Efficiency, Optimal Operation, District Energy Systems (DES), District 

Cooling Systems (DCS), District Cooling Generation Systems (DCGS), Model Predictive 

Control (MPC). 
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1 Introduction 
1.1 Energy Use in Buildings 

The primary reason to develop the Heating, Ventilation, and Air-Conditioning (HVAC) 

systems is to construct buildings with high level of thermal comfort for human beings [1]. An 

assessment of the cost of air conditioning in buildings shows that the energy use is growing in 

Europe in the last decades [2]. The studies on energy efficiency reveals that 46% of the total 

worldwide energy use and 40% of total energy use in Europe is in the buildings [3], [4]. These 

buildings also contribute to 36% of carbon dioxide emission in the European Union [4].  

Numerous studies have been conducted to construct and maintain energy efficient buildings 

[5],[6],[7]. A main goal of the research in this area is to reduce the CO2 [8], [9] and greenhouse 

gas emissions, enhance thermal comfort in buildings, increase indoor air quality [10], minimize 

energy costs, and reduce energy use in any form. The energy efficiency goals are realized 

through state-of-the-art technologies in buildings such as District Energy Systems (DES). The 

DES has come into consideration for their high efficiency and economical costs in districts 

[11].  

1.2 District Cooling Systems Growth 

The history of DCS dates back to 1800s when plans were made to use underground pipes to 

distribute clean, cold air to buildings [12]. The Colorado Automatic Refrigerator Company was 

the first cooling company which was launched in 1889. Later, a large cooling system were 

established in the Rockefeller Centre in New York City and the United States Capital buildings. 

The first DCS in Europe was the district heating and cooling system of the La Defense office 

complex in Paris in 1967. Later in 1990s, DCS was developed in Scandinavia for example the 

DCS of the city of Stockholm [13].  

In Europe, it is estimated that the installed cooling systems will increase by approximately 55-

60% from 2010 to 2025 [2]. District cooling demand increase in Europe is shown in Figure 1. 

Studies show that the electricity peak loads appear in city centres and commercial areas, even 

in northern countries, during summertime [14]. A significant part of this energy use is in DCS 

[15]. The DCS has been pointed out by the EU Energy Efficiency Directive (EED) [16] as one 

of the important means for accomplishing the energy efficiency goal of reducing primary 

energy use by 20%.  
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Figure 1: DCS demand increase (Retrieved from INDIGO project [17]) 

The need for cooling has risen because of novel building designs, heat loads that are internal 

in the buildings, urban heat island effects, and thermal comfort issues. Further application of 

small-scale and distributed conventional air conditioners results in a substantial rise in peak 

electricity demand which turns into the need to have higher capacity electricity distribution 

systems operating at a lower efficiency [18]. Considering these consequences, DCS are being 

studied as they have the potential to offer solutions with 5 to 10 times higher efficiency 

compared to individual cooling systems. [18]. The decrease in building energy use through 

heating and cooling systems directly affects the amount of power and fuels being used, this 

makes the buildings more environmentally friendly. 

1.3 DCS components 

The DCS is composed of generation, distribution, and use sites (Figure 2). The generation site 

is where chilled water is produced in chillers and the heat is rejected through heat rejection 

circuits and cooling towers. The chilled water is then carried to the distribution system and 

through the pipelines to the consumption site and end-users. The consumption site consists of 

the Heating, Ventilation, and Air-Conditioning (HVAC) equipment in the buildings. 

 

 

 

 

 

 

 

 

Figure 2: DCS Components (Photos taken from Alice Perry Engineering Building HVAC in NUIG) 
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1.4 Problem Statement 

DCS offers higher efficiency compared to individual conventional cooling systems and has 

several other advantages in terms of reducing greenhouse gas emissions and space 

requirements. However, due to the costs of modification of existing DCS and corresponding 

built environment, there is great difficulty in achieving energy efficient operation of DCS with 

design optimisation. The basic issue is the fact that overall efficiency of DCS depends on the 

efficiency of its components. Besides, the efficiency of the components depends on how they 

are modelled and controlled based on the actual physical system and data. Thus, another 

method for maximizing the energy efficiency and minimizing the costs of already existing DCS 

is by means of control techniques using prediction models and actual data. However, the 

modelling and control techniques are studied separately in the literature but not as an integrated 

tool for DCS (The focus is on design optimisation rather than control optimisation [19]). 

1.5 Research Question 

The research question of this thesis is: For existing District Cooling Generation Systems 

(DCGS), can an integrated modelling and control method be developed that 

• Delivers required temperatures demand for thermal comfort 

• And reduces the energy use? 

1.6 Objectives 

This thesis aims to push the DCS Generation technology one step further by providing the 

integrated modelling and predictive control methods. The main objective of this research is the 

development of a more efficient DCS Generation by improving system modelling and control. 

This thesis contributes to the following key areas: 

• The existing literature on DCS have been systematically reviewed. It’s been found that 

there is not enough literature on enhancing DCS operation using MPC technologies. 

MPC is an advanced, well-developed method in the currently existing industry and 

academia; However, it is not exploited in DCS. The literature review process is where 

the gaps in modelling and control of DCS are identified and how these gaps affect the 

energy efficiency of DCS. By finding the gaps, a new strategy is proposed to integrate 

models with control and take advantage of the latest MPC technologies to achieve 

optimal and efficient performance of DCS.  

• Research has shown that advanced building control techniques, including MPC, can 
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significantly reduce energy use and greenhouse gas emissions. Despite numerous 

research papers and several pilot installations, the adoption of this technology in the 

building market is still in its early stages. One of the main challenges facing the building 

sector is that engineers responsible for Building Management Systems (BMS) lack 

advanced education in modern optimal control methods and tools, unlike control 

engineers in other industries where MPC has been successful, such as the process 

industry. Furthermore, unlike the design and production of cars or electronic devices, 

building and HVAC system design and production are not standardized. Each building 

is unique and requires customized modelling and control design, which increases 

engineering time and cost, especially for advanced control strategies. In addition, a 

limiting factor is the inadequate information and communication technology (ICT) 

infrastructure in pre-existing buildings [20]. 

• This research is focused on providing optimal solutions for DCS Generation. These 

optimal solutions are based on dynamic models and dynamic behaviour of generation 

components; Therefore, the solutions allow for adaptive operation. 

• Model Predictive Control (MPC) is used in the control of chilled water generation 

systems, i.e., chillers and cooling towers. This control approach has proved to be 

effective to handle the constraints of the system. In addition, the objective function of 

the optimisation problem includes energy efficiency objectives such as electricity use 

and thermal comfort in the control problem formulation. 

• This study implements optimized predictive controllers for components to minimize 

cost or maximize energy efficiency while addressing the DCS challenges. To test the 

effectiveness of the methodology, the results are implemented on an existing hospital 

building in Spain in a real-life setting. 

• The result of the thesis is an integrated DCS Generation modelling and control to 

facilitate the implementation of MPC on DCS. This methodology is applicable to any 

DCGS. 

1.7 Thesis Outline 

The chapters of the thesis are as follows: 

• Chapter 1 – Introduction will focus on problem statement, research question, and the 

objectives of this thesis. 

• Chapter 2 – The Background and Literature Review on DCS modelling and control, the 

importance, and the reasons behind studying DCS, and the possibilities for 
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improvement considering the current literature. The main purpose of this chapter is to 

critically review the current literature in DCS modelling and control and identify the 

gaps that needs to be addressed. 

• Chapter 3 – Overview of the proposed methodology including the detailed description 

of prediction models of DCG, MPC of the generation system for chilled water, MPC 

problem formulation with energy efficiency objective, and obtaining a mathematical 

solution for the MPC problem using optimisation algorithms. 

o Preparation: Overall Engineering of DCG and the data collection 

o DCS Modelling: The application of modelling tools and techniques in 

generating a prediction model for the MPC of DCS 

o DCS Control: The use of MPC in improving energy efficiency of DCG, as well 

as the mathematical analysis of MPC solution 

o Integration of the modelling and control in a virtual testbed for the MPC of 

DCG. 

• Chapter 4 – Overview of the case study including the MPC of DCG and the 

technicalities of the test site; Then, the results of the application of the developed 

methodologies and algorithms in real-life demonstrator are presented. 

• Chapter 5 – Research conclusions and directions for future work 

1.8 Publications 

1.8.1 Peer-reviewed journals invitation to publications 

Adeleh Mohammadi, R. Sterling, J. Febres, Marcus M. Keane, “Model Predictive Control for 

Efficient Operation of Cool Generation Systems”, Invited to be submitted to The Energies journal. 

 

Adeleh Mohammadi, R. Sterling, M. Keane, “Integration of Modelling, Simulation and Control 

Methodologies in District Cooling Systems”, Invited to be submitted to the Special Issues in 

Energy. 

1.8.2 Peer-reviewed conference publications 

Adeleh Mohammadi, R. Sterling, J. Febres, Marcus M. Keane, “Model Predictive Control for 

Efficient Operation of Cool Generation Systems”, Published in Proceedings of The Sustainable 

Energy and Environmental Protection (SEEP) conference, Nov. 2019, Sharjah, UAE.  
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Adeleh Mohammadi, R. Sterling, M. Keane, “Model Predictive Control of Cool Generation 

Systems based on Modelica models”, Published in Proceedings of International Building 

Performance Simulation Association (IBPSA) Conference, September 2019, Rome, Italy. 

 

Raymond Sterling, Jesús Febres, Andrea Costa, Adeleh Mohammadi, Rafael E. Carrillo, Baptiste 

Schubnel, Yves Stauffer, Pietro De Cinque, Krzysztof Klobut, Marcus M. Keane, “A virtual test-bed for 

building Model Predictive Control developments”, Published in Modelica conference proceeding 2019, 

March 2019 Germany. 

 

Adeleh Mohammadi, R. Sterling, M. Keane, “The Path to the Development of an Integrated Tool 

for District Cooling Systems Modelling, Simulation, and Control”, Published in the Proceedings 

of the Sustainable Energy and Environmental Protection (SEEP) conference, May 2018, UWS, 

UK. 

1.8.3 Presentation 

Adeleh Mohammadi, R. Sterling, M. Keane, “Energy Efficient Buildings through State-of-the-art 

HVAC Systems Modelling and Control”, presentation in GENSIM Scientific School, October 2016, 

Corsica, France. 
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2  Literature Review 

The literature in the context of modelling and control of DCS is studied with a focus on model-

based approaches to efficient operation of DCS Generation. The literature is studied critically 

and systematically to distinguish the efficient, and applicable techniques to model and to 

control the DCS and propose the methodology for modelling, simulation technology, and 

control of DCS. This systematic method ensures that the results are comprehensive, replicable, 

and un-biased [21]. 

2.1 Literature Review Procedure 

The following questions are posed that lead us to address the research question described in 

chapter 1. 

• What is DCS and what are its components? 

• What are the current control strategies in DCGS?  

• What is model-based control? 

• What is the current development and literature on the model-based control of DCGS? 

• What is MPC? 

• Why is MPC used to control DCGS? 

• What are the difficulties and challenges of applying MPC in DCGS? 

• How does the model-based control of DCGS effect the energy efficiency and optimal 

operation of DCGS? 

• How effective are the current model-based control in real-life applications of DCGS? 

The literature review map is illustrated in Figure 3. 
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Figure 3: Literature Review Map 

Figure 3 is a schematic of how the literature review is mapped. First, a comprehensive 

description of DCS components that compromise a working DCS is provided. The specific 

focus of this literature review is on the DCS control strategies and their practical 

implementation. 

2.1.1 Filters to Find the Relevant Literature 

The criteria and filters that are applied to identify the most relevant literature in the modelling 

and control of DCS are explained here. Based on the questions above and the introduction in 

Chapter 1, below is a list of related issues that make the literature relevant to the research 

question of this review: 

• Relevant lessons from DHS in DCS; DCS versus DHS 

• Energy efficiency of DCS 

• Low temperature differentials in DCS 

• Simulation and modelling technologies of DCS 

• Control of DCS generation components 

• Predictive control methods in DCS 

Model-based 

Control Strategies 

DCS 

Model Predictive 

Control 

DCS Control 

Strategies 
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The research strategy is to explore the main databases in the modelling and control of DCS. 

The flow diagram in Figure 4 is a visualization of the literature review procedure. The 

Databases to review include ScienceDirect, IEEE, Web-of-Science, and Scopus. 

 

To find the related literature, the keywords “District Cooling” AND “Model” OR “Modelling” 

have been searched in data bases ScienceDirect, IEEE, Web-of-Science, Scopus starting from 

1990 to 2021. The year 1990 is particularly interesting because of two major events; first, the 

air-conditioning systems and energy policy management have been widely changed after the 

1970s energy crisis and the oil price increased in 1990s. Second, the advancements in MPC in 

the industry commenced during the late 1980s. Thus, 1990 is the time of introduction of MPC 

in the energy industry. The references reviewed below are the most relevant literature to 

modelling and control of DCS after filtering the papers according to the review procedure.  

2.2 Physical DCS 
 

Understanding the physical system is essential in determining an effective control strategy for 

DCS. Thus, the physical components of a DCS are discussed here. The DCS is comprised of 

generation, distribution, and consumption sites (Figure 5). 

What is the current literature in the Modelling and control of DCS? 

(DC Modelling, DC control) 

Remove Duplicates 

Review papers based on energy efficiency, cost 

minimization, load calculation, control of components of 

DCS, ΔT challenge, DCS or related lessons from DHS, 

simulation, and modelling platforms, MPC in DCS. 

Review all the relevant papers, Discard the irrelevant 

Figure 4: Flow diagram of the review procedure 
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Figure 5: Engineering viewpoint of DCS (Retrieved from INDIGO project [17]) 

The Generation is the site where chilled water is produced in chillers and the heat is rejected 

through heat rejection circuits and cooling towers. The chilled water is then carried to the 

distribution system and through the pipelines to the consumption site and end-users. The 

consumption site consists of the Heating, Ventilation, and Air-Conditioning (HVAC) 

equipment including Air Handling Units (AHU) in the buildings depicted in Figure 6.  
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Figure 6: Schematic of DCS in Basurto hospital (Produced by Veolia in INDIGO project [17]) 

The heat exchangers transfer heat between the chilled water supply of DCS and the air-

conditioning system of the user building and the end user equipment such as AHUs and fan 

coils. A summary of DCS components is provided in Table 1. 

Table 1: DCS components 

DCS components Components of DCS components 

Generation Chillers 

Cooling Towers 

Storage Units 

Distribution Pumps 

Supply and return pipelines 

Consumption Air Handling Units, Fan coils 

Heat Exchangers 

Chilled water piping in the building 

 

2.2.1 DCS Versus Individual Cooling System 

Major studies have been performed to prove the effectiveness of DCS plants over individual 

conventional cooling plants in premises in terms of space and energy efficiency [18], [22], [23], 

[24], [25], [26], [27], [28]. Palm et al. [29] discussed the barriers to and the enablers of DC 
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expansion in Sweden. The discussion shows that lack of information among the public is the 

main barrier to DC expansion which can be surmounted by marketing the benefits through 

public-private collaborations. Chan et al., [30] mentioned in their study of DC plant with ice 

storage that the efficiency of the overall system of DCS is higher than the individual chiller 

plants in buildings. 

Shimoda et al., [31] defined an Energy Efficiency Ratio (EER) to compare DHC and a 

conventional heat source system in individual building and observed the result through a case 

study of 9 DHC plants and 19 individual buildings in Japan. The conclusion was that the 

efficiency of the components of DHC and the part-load operation of chillers, pumps, and fans 

affect the overall efficiency of the DHC. This observation strengthens the importance of our 

studies on the efficiency of District Cooling Generation (DCG) components efficiency. 

Shimoda et al. [31] approached the problem from a design optimisation perspective. However, 

in this thesis the existing DCS was studied to improve its efficiency by control optimisation 

methods [19]. 

2.2.2 Benefits of DCS 

In practice, DCS has several advantages:  

• Lowering CO2 and greenhouse gas emissions [12] 

• Lowering the maintenance and operation costs by installing centralized generation site 

for the whole district [32] 

• Improving the balance on energy peaks and regulating demand capacity [33] 

• Integrating of renewables and new technologies into DCS [32] 

• Avoiding individual distributed air conditioning installations 

• Reducing space requirements and providing more space on rooftops and basements 

In addition, developing the DCS technology reduces the transportation costs as the combustion 

system is at a central location and there is no need to transport the fuel to the end users. 

According to [32], peak load time planning in DCS generation and storage can lead to a 27% 

increase in energy efficiency at the city-scale, as seen in the case of Hong Kong. Regarding the 

size of the district, the research in [12] pointed out that DES were beneficial to large public 

buildings such as commercial complexes. 
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2.2.3 Renewable Energy in DCS 

Another way to tackle the energy efficiency of DCS is to integrate renewable energy 

technology into DCS [11], [30], [34]. Renewable energy is usually incorporated into the 

generation site of the district cooling. The cold-water sources in some European countries are 

lake, ground water, and rivers; For e.g., the DCS of Paris benefits from the cold water energy 

source of Seine river [35]. The researchers in Austria developed a roadmap for solar thermal 

cooling [36] which contributed to less carbon emission while used for DHC applications in 

small and large districts. 

2.2.4 DCS Challenges 

The literature is studied to understand the technical barriers to develop DCS. The available 

literature is mainly on DHS and fewer studies have been conducted on DCS compared to DHS. 

DHS is already well-developed and used in most parts of the world [5], [16], while DC became 

popular especially in the European market [14].  

The main challenge in DC compared to DH is the low temperature differentials between the 

supply and return water. This difference is around 8°C (supply at 4°C approximately and return 

at 12°C approximately), while in DHS, this difference is usually greater than 40°C. The cost 

of pumping, the piping system, the consumption, and end-user equipment also grows because 

of these low differentials. Danfoss reported that “1°C deviation lower than desired temperature 

will cause energy costs to increase by 10-16%; 1°C lower return temperature will result in up 

to 20% higher flow, increasing pumping costs with 73% and reducing chiller efficiency” [13]. 

Maximization of the temperature difference is mentioned as the key to the quick growing of 

DCS and the energy efficiency in DCS regardless of the type of the distribution system [37].  

Other challenges in DCS include the cold demand prediction compared to heat demand, the 

friction in the distribution pumps which results in more energy loss, and the large variation in 

daily cooling load. The cold demand imposes some constraints to the system such as thermal 

comfort boundaries and economical strategies for energy saving [38].  

2.2.5 Issues with Energy Efficiency and Optimal Operation in DCS 

As discussed in DCS opportunities and benefits, DCS is a solution to the increasing demand 

for cooling, however: 

• The efficiency of the DCS generation components directly affects the overall efficiency 

of the DCS [31]. 
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• Modifying the existing DCS equipment in cities and districts may be cost-prohibitive 

due to the built-in controls in these systems, making it impossible to upgrade them [19]. 

Consequently, the focus here is on improving the efficiency of existing DCS through 

modelling and control techniques. 

• Optimisation methods in DHS are not directly applicable to DCS due to the specific 

challenges (mentioned above) in DCS. The main challenge is the temperature 

differential between supply and return water. In addition, the supply water temperature 

is close to freezing temperature which makes DCS more challenging. 

In the following section, the modelling and control methods are categorized based on their 

application in DCS through the literature. Consequently, the grounds for the methodology of 

this thesis are set. 

2.3 Control Strategies of DCS 

In this section, the literature of the control of DCS is reviewed. Research has been done in the 

area of design and operation management of DCS [39] from a higher level. However, the focus 

of this section is on the control design at a component level rather than management, planning, 

or supervisory from a higher level (Figure 7). This is because the individual components of the 

DCS contributes to the overall optimal operation of DCS; for e.g., chillers are the most energy 

consuming components in DCS. In addition, the exchangeable control ideas between DHS and 

DCS [40] are also reviewed where the focus is on the challenges of control of DCS with 

existing methods. 
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Two general groups of control techniques are noticed in the literature: Machine Learning 

methods such as Fuzzy Logic, Neural Networks (NN), or Genetic Algorithms (GA) where the 

control method is to learn the system dynamic behaviour through one of these algorithms and 

control the system based on the learning process. The other class of methods are based on 

mathematical models derived from first principles (Figure 7). The different blocks of Figure 7 

are discussed below based on the current literature.  

2.3.1 Design and Management 

An extensive body of literature exists on the planning and management of various components 

of DCS. Jing et al., provided a comprehensive dynamic model of a small-scale DHCS based 

on their physical models and operations [41]. This paper can be used as a basis to solve the 

modelling problem of DCS in a large scale. The models were simplified to describe heat 

exchanges in Linear Equation dynamics. However, the simplifying assumptions that all the 

buildings have the same heating capacity takes away the challenge of district cooling. Practical 

aspects of modelling and control of HVAC systems have been thoroughly considered in [42] 

where the importance of models has been noticed in the control process. It is mentioned that 

careful modelling of the HVAC system promises a more straightforward control and fault 

detection; furthermore, a low-performance controller usually reveals an issue in the modelling. 

The purpose of [43] is to schedule the operations of DHC to minimize the costs based on 

Energy Efficiency & Optimal Operation of DCS 

Design & Management 

Integration 

with 

Renewables 

Load 

Scheduling/ 

Calculations 

System Design 

& 
Management 

Control & optimization 

Model-based Machine 
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Figure 7: The existing methods in energy efficiency and optimal operation of DCS 
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component operation optimisation; this is done through providing optimisation models of the 

storage and consumption components. In [30] simulations are performed to test the energy use 

of the plant in different ice-storage scenarios. Gao et al. in [39] studied the energy performance 

and the impact of DCS in a DES on the grid in subtropical weather. One characteristic of DCS 

is that it has multiple buildings as users. If taking each building as an agent, multi-agent concept 

can be implemented in the DCS to improve the operation of the DCS from a global viewpoint. 

Looking at DCS as a multi-agent system has been studied in the building energy system in 

[44]–[46]. 

2.3.1.1 Demand Side and Load Prediction 

Another area that has been studied in DCS literature is the load calculation and demand 

management in DCS. The load scheduling using GA and optimisation techniques [47], hourly 

load prediction [48], predictions of the cooling load using NN [33], and building design load 

computation [23] have been used in cost minimization and efficient distribution of chilled water 

through the district. Khir et al. [49] minimized the operation costs of DCS by scheduling the 

operation time of the different components of DCS and solving a linear constraint problem 

based on the demand. In addition, DCS with ice-storage systems based on load-levelling 

methods could save around 4% of the annual operation costs, which were recommended in the 

design of DCS in [32]. These methods looked at DCS from a high-level point-of-view to 

schedule the load and model the energy use of buildings. However, in this research the aim is 

to model the DCS from a dynamic system and component-level point-of-view because 

chillers are the most energy consuming components in DCS.   

The review of the DCS in the introduction of [49] also confirmed the lack of literature in 

optimizing the operation of DCS. Since chillers are the most energy consuming components in 

DCS, the variables of the chilled water generation system were studied. The generation system 

variables are the supply water temperature and flow rate, the return water temperature, and the 

supply and return water temperature differentials. Zhang et al. [50] considered the DCS 

temperature differentials and focused on the economic benefits of optimizing the temperature 

differentials based on the time of the year. The temperature of the return water and its effects 

on the DCS output have been studied in [51]. In [52], the authors introduced a method to deliver 

constant flow rate temperature difference in the DC Network based on the cooling load 

calculations. The result was that the efficiency of the chilled water distribution can be improved 

by adjusting the temperature difference flow rate in the central cooling network. The results 
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presented in [52] reveal a proportional relationship between temperature difference and cooling 

load under a constant supply water flow rate. 

2.3.2 Control and Optimisation 

The static control approach calculates the control signal based on a fixed objective function 

that is not updated at every instant. Therefore, these methods are not suitable for systems with 

significant changes in dynamic and physical constraints. Since the objective function of static 

control remains fixed even as the system dynamics change, it does not reflect changes in the 

system dynamics in the optimisation problem. Model Predictive Control (MPC) is a technique 

that takes advantage of mathematical models and considers constraints at every sampling. In 

this way, changes in system dynamics are reflected in the objective function at every current 

simulation period. The following subsections provide further details on these methods through 

the literature [53]. 

2.3.3 Machine Learning Methods 

Skawa et al. [54] formulated the operation of DHCS as a linear programming problem and 

solved this problem using a GA method. A self-tuning PID control is considered to adjust the 

temperature of supply water in DCS generation [55]. The chillers and cooling towers in the 

generation site of a DCS consume a considerable amount of energy to produce chilled water 

for the district [56], [57]. May et al. [58] use Fuzzy Logic to control the energy efficient 

performance of chiller systems; however, this paper is based on the fundamental evolution of 

control methods, such as fuzzy control, at that time. The authors do not provide any dynamic 

equation for the chillers and control variables. This means the chillers are considered as 

components with constant dynamics which does not reflect the actual physical system of a 

chiller which is dynamic. 

There are several reasons for using Machine Learning approaches in DCS operation:  

• There is one or more optimisation problems to solve. 

• There is access to large amount of data from the physical system. 

• There are too many variables involved in the modelling of the physical system and it is 

difficult to find explicit equations which relate the variables to each other. This makes 

the modelling cumbersome. 

NN has been used for optimal control of DCS in [59]. The authors use a NN as the DCS plant 

under study is complicated; In addition, they have continuous measured data from the plant. 
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2.4 Model-based Control of DCS 

The emergence of state-space models by Kalman in 1960 and the wide-spread use of optimal 

control techniques in 1970s gave rise to model-based control strategies. Model-based control 

strategies such as robust, optimal and predictive control require identifying a model for the 

plant and then designing the control based on that model [60]. 

Predictive control strategies such as MPC rely on dynamic models of the system to be 

controlled. These models are used to predict the response of the system to a control signal 

inside the optimisation algorithm. As a result, the role of modelling with respect to DCS control 

needs to be further investigated. 

2.4.1 Role of Modelling with Respect to DCS Control 

Models represent the dynamic behaviour of the system. In practice, the model is at the heart of 

the operation of a system because the physics of the system can be brought into simulation 

through a model. Figure 8 is a graphical relationship of the modelling and control in Dynamic 

System Theory. 

 

In this study, the dynamic model refers to the model that is represented by mathematical 

equations that relate the variables and parameters of the system to each other. 

To study the energy efficiency and performance of DCS using model-based control strategies, 

the practice of DCS modelling in the current literature is identified (Figure 9). 

Modelling    

 

  Control       

Model 

Figure 8: Relationship between modelling and control in DCS 

 

          DCS 
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Modelling based on the physical characteristics of the system and measured input/output data 

was performed to adjust the parameters or system configuration in a way that it best represents 

the data. For example, Bacher et al. [61] identified models for the heat dynamics of buildings. 

These models were based on both the physical knowledge of the system and the 

measurement data [62]. The complexity of the model could also be tuned based on the 

statistical significance of the parameters. In addition, an interpretation of the model and its 

uncertainties was presented using the Maximum Likelihood Estimation. However, the 

evaluation of these models still highly relied on the modeler's judgment in choice of the 

minimum accepted error, degree of the complexity of the model, and trial and error. 

These methods are not suitable for all DCS systems because they require specifications for 

every single system and case-to-case system configuration. 

On the other hand, first principles are the basis to create the models for DCS. In [63] and [64], 

energy balance equations were used to derive the dynamic equations of the air-to-air plate heat 

exchanger, and water-to-air coil without condensation. Using the first principles to model the 

components of HVAC systems is valuable for design purposes; However, to control these heat 

exchangers, a simplified dynamic model is needed [65].  

According to [65], modelling of HVAC equipment was performed to provide either a Reference 

Model to consider the physical system and mathematical derivations in continuous time or a 

Lumped Model with simplifications such as discretization of time and space and dynamic 

models in the form of Ordinary Differential Equations (ODE); the latter is of our interest in 

Modelling DCS 

Data-driven Physical Modelling 

(Training a NN, GA) 
Mathematical modelling  

Figure 9: Modelling methods for DCS 

Black-Box Grey-Box Detailed Model 

Calibration 
System 

Identification 

First 
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this thesis. The mathematical modelling approach using the first principles can include the 

constraints and physical limitations of the system in the models.  

Tashtoush et al. [66] modelled the HVAC system of a zone in a building using energy balance 

equations and thermodynamic laws. However, many simplifications have been made, which 

reduces the reliability of the model and therefore the basis of control. Despite all these 

simplifying assumptions, no uncertainty quantification has been studied. To validate the model, 

the authors studied the Step Response (output of the system in response to a step signal) and 

the transient behaviour of the system which does not include all system dynamics due to the 

poor excitation of the step signal. As a result, the derived model lacks the significant 

frequencies of the system. However, this model can still be used to initialize the simulation in 

model-based controllers. 

The distribution pipelines, the insulation thickness, and the cold energy wasted by the friction 

between the chilled-water and the pipes have been discussed in [67], [68], [69]. In addition, an 

optimal design of the DCS piping network using genetic algorithm was proposed in [70]. In an 

attempt to optimize the supply cold-water, the optimal choice of supply equipment in a DHC 

using dynamic programming approach was discussed in [71]. These papers focused on the 

optimal operation of the distribution and piping network of the DCS using Machine Learning 

methods. 

A review of modelling methods of DHS have been discussed in [72]. Then, the thermo-

hydraulic models of DH were presented by Ordinary Differential Equations (ODE) and 

simulated in Modelica. The paper suggested a modelling and simulation approach that needs 

to be adapted to DCS to be practical. The models in all the above researches were validated 

based on either real data measurements or through a Virtual Data Model [60]. These models 

are approximations of the actual system, so the errors are unavoidable. These validated models 

then facilitate the control algorithm; thus, the control results need to be validated against the 

errors in the modelling process too. The physical chillers and cooling towers in the DCS 

generation should also obey this process. 

A summary of the modelling approaches for DCS as well as the modelling platform and tools 

used in each article of the reviewed literature are provided in Table 2. 
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Table 2: Modelling approaches for DCS operation 

Reference Modelling Platform  Remarks 

[35] Modelica Validated Modelica models of DCS of East-Paris  

[61]  MATLAB Stochastic models 

[66] MATLAB Energy balance equations and thermodynamic laws 

[63], [64] Modelica Energy balance equations for air-to-air plate heat 

exchanger and water-to-air coil 

[47] DOE-2 building 

energy simulation 

software 

Genetic algorithm DCS load scheduling 

[49] Optimisation 

software package 

ILOG CPLEX 

Optimize the operation time of DCS components, 

Mixed integer programming 

[72] Modelica ODE models and thermo-hydraulic simulation of DH 

 

According to Table 2, the most widely used technology in modelling DCS for control are 

Modelica and MATLAB. Both these technologies take advantage of the dynamic model of the 

system which is based on mathematical equations. 

2.5 Technology Framework 

Various tools exist to simulate the energy systems and buildings operations depending on the 

purpose of the developer, such as EnergyPlus [73], TRNSYS [74], MATLAB and Modelica 

[75].  

According to the review in [19] of model-based techniques, TRNSYS and EnergyPlus are 

energy system simulation tools. EnergyPlus is a whole building energy simulation software, 

whose development is funded by the U.S. Department of Energy – Building Technologies 

Office. It is free, open-source, and cross-platform. In EnergyPlus, many physical-mathematical 

models relative to the building physics (as well as to the HVAC systems) are already available 

and validated. The input data are inserted in EnergyPlus through “objects” that can be 

considered as vectors containing information, divided in alpha and numeric fields. The input 

information can be relative to the control for the simulation (e.g. calculation time steps), or to 

physical phenomena (e.g. air infiltration), or to elements (e.g. a wall). EnergyPlus is useful for 
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modelling the details of the different energy/HVAC systems in a building and evaluating the 

building performance in long periods of simulations.  

TRNSYS is a system simulation program with a modular structure which implements a 

component-based simulation approach. TRNSYS can be used for building energy simulations. 

Furthermore, TRNSYS requires long simulation times because of employing a fixed time step 

length. Another important point to consider is that the initial state values need to be updated in 

every optimisation of the MPC problem. This feature is not available in these tools without 

updating the code [19].  

The data exchange and the integration of models of dynamic systems have been performed 

through Functional Mock-up Interfaces (FMI) standards [76] through the literature. FMI is a 

tool to standardise data exchange and model integration among simulation software packages. 

The authors provide a comprehensive technology framework to model and simulate the energy 

systems and buildings based on equation-based and open source modelling language of 

Modelica in [77]. The authors explain the recent developments in the Buildings library of 

Modelica. Buildings is a library in Modelica with a focus on modelling thermal zones, air-flow, 

heat transfers (conduction, convection, radiation) in a zone, HVAC systems, and thermal 

comfort factors in a building in [78].  

Wetter et al. [78] focus on modelling and simulation of a room, the boundaries of a thermal 

zone, and the extension to model the electricity distribution system. These extensions are very 

important as this allows the developer to have a complete model of the building with all its 

components ranging from electrical distribution system to HVAC and thermal boundaries. In 

addition, the extensions are intended to model the building for HVAC control purposes which 

makes it very useful in our study. The Buildings library in Modelica has been motivated by the 

need to have an integrated library which could simulate the various systems in a building and 

provide a comprehensive model of all the equipment and units in a building. 

One benefit of Modelica which makes it easy and accessible to use is that it is open-source, 

freely available and non-proprietary. Developers from around the world have contributed their 

own libraries to extend and enhance Modelica, further transforming it into a user-friendly 

simulation and modelling language. Modelica library developers have written various libraries 

on building and thermodynamic systems modelling which can be used to model the HVAC 

systems of a building; examples are heat transfer and solid materials thermal modelling library, 

building Systems library, Buildings, IEA and IBPSA-1 Annex 60 library for simulation of 

building and community energy systems [77]. This is all because Modelica designed to support 
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effective library development and model exchange among various environments. A summary 

of the technology framework for simulation and implementation of DCS is in Table 3. 

Table 3: Buildings and energy systems technology framework 

Modelling Software  Main features 

Ansys Design analysis and modelling, advanced computation tools 

EnergyPlus Energy load simulation, well linked to other simulation environments, 

simulation of the lighting/heating/weather data related to the buildings 

MATLAB and 

SIMULINK 

Dynamic system analysis and control tools, computation, and 

optimisation tools available 

Modelica Explicit simulation of complex dynamical equations, component-

based graphical interface for system simulation, ability to integrate the 

models with control systems. 

 

According to Table 3, the key strength of Modelica is that it simulates dynamical equations 

without prior mathematical manipulation into an explicit equation and no variable is required 

to be solved for manually (as opposed to other simulation environments like MATLAB). This 

decreases the manual errors in the calculations and avoids cumbersome manipulations to derive 

explicit equations of variables. 

2.5.1 Model Validation and Calibration 

Following the simulation of the dynamic model of DCS in the appropriate simulation program, 

the model parameters need to be calibrated based on the physical data and validate the 

performance of the model through simulations.  

Werner [14] described the lack of validated and trustworthy data on European cooling systems 

and demand, and as a remedy, provided data on recent cooling demands in Europe based on 

the aggregated data from different countries. This information about the demand site can be 

used in strategic management and planning of DCS and validation and calibration of the 

models. 

Gang et al. [24] proposed a design methodology for DCS that considered uncertainty in the 

DCS variables such as load, weather data, and demand. The method then considered an 

optimised design of the DCS. The results are of the case study in Hong Kong show that DCS 

can be modelled in size and configuration against the uncertainty analysis. Damien et al. [35] 
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presented the Modelica simulations and model validation of the cooling system of a region in 

Paris. The paper was a case study of the application of Modelica in modelling DCS and the 

validation of the identified model using real data. These results can be beneficial in evaluating 

our future case study; However, the authors did not discuss the control techniques of DCS. In 

[79] the central chilling system of a building in Hong Kong has been mathematically modelled 

and validated in terms of dynamic equations and software simulations which backs up a 

mathematical approach to DCS simulations. 

Coakley et al. [80] provided comprehensive reviews on the recent calibration methods in 

building simulations and modelling. The calibration methods have been classified into 

“manual” and “automated” methods, where manual represent the iterative, trial-and-error 

methods while automated involves statistical analysis. The uncertainty arising from the 

mismatch between model and physical plant is also mentioned. It was noted that due to the 

presence of uncertainty in the system, the model cannot fully represent the reality. Although, 

the authors of [80] looked at the problem from a general point of view of building simulation 

rather than detailing the challenges of DCS. The focus of their work was mainly on the 

calibration methodology to build more accurate models representing reality, while the 

emphasis in this thesis is on how this accuracy can be beneficial for control purposes in DCS.   

2.5.2 Model Predictive Control 

The purpose of controlling the DCS is to satisfy the desired conditions in the environment by 

setting the amount of cooling [42]. These methods range from conventional control techniques 

such as PID control [66] to recent advancements in MPC in the industry [81]. MPC has been 

used in control of DCS systems as a replacement for former control methods like PIDs or on-

and-off controllers since it allows to introduce the constraints of the system and optimises the 

solution subject to constraints with desired objective. 

Ma et al. [6] formulated an MPC problem to minimize the energy use and to maximize the 

Coefficient of Performance (COP) of an office building based on the predictions of the thermal 

load model. First, they provided and validated the models of chillers, storage tanks, fan coils, 

and the building load model; then designed a model predictive controller which considered the 

constraints of the system. The objective of the control problem was to minimize the electricity 

bills and maximize the plant efficiency. The load has been overpredicted because of the 

parameters chosen for the model. In addition, the model of the chillers and cooling towers have 

not been incorporated in the MPC formulation and predictions. Later in [82] they improved the 
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results by incorporating the chillers and cooling towers models and introducing a terminal 

constraint for the stability analysis of the MPC solutions. However, the models are still at a 

very simple stage while proved to work in the application of the algorithm in the office building 

of the case study.  

In [83], the state estimation and MPC of a building zone air-conditioning system has been 

studied. The building zone was modelled in Modelica using a famous Resistance-Capacitance 

(RC) model of a zone in the building [84]. This model was then used as an emulator which is 

validated using the measurements data from the building. A Moving Horizon Estimation 

(MHE) approach was applied for state estimation and the measurement data is adapted to the 

RC model. The validated model served as the basis for model-based control. The objective of 

the modelling and control was to achieve more efficient buildings, with lower energy use and 

costs, and a higher level of thermal comfort. These factors have been incorporated into the 

objective function of the MPC problem.  

A summary of the control methodologies for DCS is provided in Table 4.  

Table 4: DCS Control Methods in the literature 

Reference  Control Method Remarks 

[66] PID Dynamic modelling of HVAC system for control, PID 

control to reduce energy use, Ziegler-Nichol’s rule to tune 

PID 

[55] Self-tuning PID  PID to adjust the temperature of supply water 

[43] Linear 

programming 

Minimize the operating cost of the plants, handle thermal 

storage tanks 

[6] MPC Simplified models of HVAC components, real-time 

implementation of MPC, validated control strategy, 

reduction of electricity cost, efficiency improvement of 

power generation plant  

[54] GA, Linear 

programming  

Operation planning, scheduling of demand, cooling, and 

heating demand response analysis   

[58] Fuzzy control Operation of a chiller system controlled by fuzzy logic and 

compared to conventional Programmable Logic Controllers 

(PLC)  



40 
 

[82] Robust MPC   Design and analysis of MPC on a real-life application of 

DCS generation 

[83] MPC, MHE State estimation, use of real-time data to validate the MPC 

controller 

 

Table 4 shows that most of the research in DCS control have taken advantage of the model-

based control strategies that facilitates the control of DCS based on validated mathematical 

models.  However, most of these control techniques are still at the simple stages of using PID 

or optimal control rather than predictive control. In the next section, the generation component 

literature is investigated to find the recent advances in predictive control in DCG.

2.6 Generation Component 

The components in the generation are chillers, cooling towers, and storage units. Chillers are 

the most energy consuming components in DCS. Chillers and cooling towers together in a loop 

generate chilled water (Figure 10). 

 

Figure 10: Schematic of chillers and cooling towers in LaMarina of INDIGO project (Retrieved from INDIGO project [17]) 

The chillers (Figure 11) remove the heat from water in inner chiller loop which can be 

absorption [85], [86] or vapor-compression [87]. The heat is then rejected through the heat 
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rejection circuit between the chiller and cooling tower to the ambient. A fan at the outer circle 

of the cooling tower is responsible for heat rejection to the environment.  

 

Figure 11: BROAD chiller in Basurto Hospital of INDIGO project (Retrieved from INDIGO project [17]) 

The generation components in the case study of this thesis are not currently operating in optimal 

mode because the modelling and technology framework to control these components are at a 

simple stage. In addition, chillers and pumps are generally controlled via classical control 

methods, with some planning or sequencing strategies applied in an ad-hoc or non-automated 

manner [88]. More novel methodologies have rarely been extended to general industrial 

applications. 

2.6.1 Physical control parameters of DC Generation 

The chiller and the cooling tower are working together in a heat rejection circuit. The chilled 

water from the cooling tower flows through the condenser in the chiller with a given 

temperature and flow rate. For each generation site, an assessment of the plant’s sub-systems 

has been carried out. The entire Generation plant must be decoupled into sub-systems, and the 

main sub-systems need to be identified. This results in a set of groups of components. The main 

criteria for defining the component groups are the independency of operation. It means that 

components that interoperate between each other must be part of the same group. For instance, 

if a cooling tower is serving two chillers, the components (cooling tower and two chillers) 

would be in the same group. In this way, an MPC is developed for each component group. The 

physical control parameters are supply and return temperature and supply flow rate in the 

chiller. The idea is to optimize the group operation by modifying each component’s setpoints. 



42 
 

2.6.2 DC Generation control literature 

The chillers and cooling towers in the generation site of a DCS consume a considerable amount 

of energy to produce chilled water for the district [57]. Thus, chillers are one important part of 

the objective function in operation optimisation of DCS. The power use of the fan is usually 

another objective function term to be considered in generation operation efficiency. 

Since our purpose is optimal operation and efficiency of DCS, for the above reason, we need 

to study the current approaches that are taken for optimal operation of generation component. 

In this section, the same approach for systematic literature review of DCS is taken for its 

generation component. The latest methods of MPC in controlling chillers and cooling towers 

are reviewed (Figure 12). 

 

Review the abstract and title of all 125 articles. 

Duplicates excluded 

20 ScienceDirect, 105 IEEE = 125 articles 

 

21 papers were relevant. 

 

24 articles including cross references. 

Cross-reference 

 

Full text analysis 

 

Figure 12: Systematic Literature Review of MPC of chillers and cooling towers 
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Systematic Literature Review of “Model Predictive Control” AND [“chiller” OR “Cooling 

tower”] keywords  

Some research have been conducted to control the generation of chilled water in efficient ways 

[58], [89]–[91]. The central chilling system of a building in Hong Kong has been 

mathematically modelled and validated in terms of dynamic equations and software 

simulations [79].  

Ma et al. [6] formulated an MPC problem to minimize the energy use and to maximize the 

COP of an office building based on the predictions of the thermal load model. The load has 

been overpredicted because of the parameters chosen for the model. In addition, the model of 

the chillers and cooling towers have not been incorporated in the MPC formulation and 

predictions. Later, Ma et al. [82] modelled and designed a chilled water storage and then 

implement a predictive controller for the simple model. First, they provided and validated the 

models of chillers, storage tanks, fan coils, and the building load model; then designed a model 

predictive controller which considers the constraints of the system. The objective of the control 

problem was to minimize the electricity bills and maximize the plant efficiency. The focus of 

[82] is on the modelling and control of the generation and distribution sites which is mainly 

storage units and tanks.  

Schalbart et al. [92] used predictive control for the energy efficient operation of food storage. 

The optimal operation of DCG was discussed in [93]. Bau et al. [94] designed a linear gradient-

based optimisation problem for optimal control of an absorption chiller. The authors verified 

the results by a case study of a solar cooling absorption chiller. Antonov et al. [95] presented a 

robust MPC strategy for absorption chillers and increased the produced cooling energy by 

21.6%. The focus of [95] was on system robustness to state estimation uncertainty. Lara et al. 

[96] integrated the building simulation tool with real data of a hotel building and proposed a 

model for the cooling dynamics of a central chiller plant.  

Feng et al. [97] implemented an MPC for a radiant slab cooling system and presented a case 

study to compare MPC with rule-based control methods. Deng et al. [98] considered the On/Off 

scheduling problem of a central chiller plant by formulating an MPC and mixed integer 

programming problem; The result was reduced electricity use costs. They later expanded the 

results in [91] and established a bilinear model to schedule the chillers operation and satisfy 

the cooling demands of a university campus case study.  
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Yan et al. [99] investigated the energy efficiency of chiller operation by genetic algorithm 

optimisation. Kane et al. [44] focus on the design parameters of the MPC and analyse the form 

of the objective function and structure of the model used for optimisation.  

The current practice in the field of energy efficiency of DCG is summarized in Table 5. 

Table 5: Literature review of DCG modelling and control 

Reference  Methodology Impact 

[79] Mathematical modelling 

of central chilling 

system 

Application of DCS in subtropical weather 

[6], [100] Prediction of thermal 

load model using MPC 

MPC to maximize efficiency and minimize cost 

[94] Gradient-based 

optimisation  

Optimal control of absorption chiller 

[95] State estimation and 

robust performance 

Uncertainty evaluation 

[96] Data-driven modelling 

of chiller 

Modelling the cooling dynamic including a case study 

[97] MPC implementation 

for a case study 

Comparison of MPC and static control 

[98] ON/OFF scheduling of 

central chilling system 

Reducing energy costs using MPC 

 

According to Table 5, there is a gap in the literature regarding the integration of simulation 

tools studied in the last section with the optimal operation of chillers. In addition, the models 

are at a simple stage. MPC is a newly exploited technology in the control and operation of 

DCG, and the gap exists in an integrated framework for modelling and control of DCG. 

2.6.3 Theoretical Solution to DCG Control 

The reviewed literature generally provides a case study of district cooling components to prove 

the methodology under study; However, in this thesis, the study is on the cool generation 

system from a mathematical point of view to provide not only the case study but a firm and 

concrete mathematical derivation for the optimal solution of chiller energy use. The idea has 

been noticed in theoretical works in other fields such as MPC for engine control [101], or 
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building energy storage units [102]. Ma et al. introduce a moving or receding horizon control 

strategy in [103] which used Gradient methods [104] to solve the optimisation problem.  

In the theoretical framework, the goal is to solve the MPC optimisation problem using 

optimisation theory and generate theorems for MPC optimality and performance which can be 

applied to similar MPC problems in other building components.  

2.7 Literature Review Conclusions 

This review was conducted systematically with a focus on identifying gaps in the modelling 

and control methodologies of DCS. Here are some key findings of this review: 

• DCS can be 5 to 10 times more energy efficient than individual distributed cooling 

systems. However, the effectiveness of DCS depends on the modelling and control 

methodologies that are used for its optimal operation and energy efficiency. Gang et al. 

[105] performed a review of DCS including the history of DCS, optimisation, planning, 

and integration of DCS with renewable energies. The future work of the review article 

[105] suggests that there is a gap in the optimal performance of DCS and the integration 

of DCS with new technologies. This was a key result that leads this research thesis. 

• DCS has been mentioned as one of the pillars of energy efficiency goals in the EU 

energy efficiency directives [4]. DCS has proved to be more energy efficient than 

distributed cooling system in different case studies in the literature [105] because 

distributed cooling requires individual cool water generation and storage for every 

section of the district. In addition, DCS has come into consideration for reducing CO2 

emission. This thesis includes CO2 emission reduction implicitly by reducing the energy 

use as well as choosing an optimal set-point for the thermal comfort. 

• The work on Distributed Energy Systems (DES) needs to be expanded with a focus on 

DCS because of DCS specific challenges: Low temperature differences (ΔT) between 

the supply and return water and the large energy use in components like chillers [106]. 

These challenges make many developed methods in DH inapplicable in DC. 

• A systematic review is developed focusing on modelling technology framework and 

model-based control techniques in DCS and specifically DCG. This review is beneficial 

to expand the work in [82] regarding modelling the components of DCS and developing 

advanced MPC theory for DES. This systematic Literature review ensures that the 

outcomes are un-biased and replicable. 
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• DCS is composed of generation, distribution, and consumption components. Chillers in 

generation consume a large percentage of energy in DCS. Most of the studies examine 

the chiller as an individual component rather than in a district generation component.  

• A review of the modelling and simulation technology framework of DCS confirms that 

the Modelica language is an appropriate tool to simulate the DCS models [107]. 

Modelica is an object-oriented, open-source, equation-based language to model 

dynamical systems. It has become one of the key tools used in modelling and simulation 

of energy systems and buildings for energy analysis, thermal load calculation, and 

control design. 

• Several studies have been performed on design and management of DCS to optimize 

its operation by scheduling the load, however, the efficient control algorithms of DCS 

have been less-studied. So, the control of chillers in DCS needs further study. 

• A gap exists in applying MPC in practice and real-life applications of DCS. Although 

MPC is a developed technology among control theory researchers, there is still a gap in 

applying MPC theories in energy systems like DCG. MPC can be exploited to control 

the different components of DCS as well as its overall management. In this thesis, MPC 

is applied to the components of generation as chillers are the most energy consuming 

components of DCS. The overall management of DCS is studied further within the EU 

H2020 INDIGO (2016-2020) project [17]. 

• The work in the field of control of DCG also exploit the machine learning or static 

control approaches. However, advanced MPC technologies have only been applied in 

the work of Ma et al. [103] by using a predictive knowledge of weather and occupancy 

to regulate the building temperatures. 

• There is lack of a concrete mathematical analysis of the MPC solution of DCG. The 

mathematical analysis sheds lights on the optimality and performance of the MPC and 

strengthens the reasons for using MPC on the real-life applications of DCG [104]. 

• The proposed approach in this thesis integrates the tools to model and control the DCG. 

While current modelling tools are useful for simulating the physical behaviour of DCS, 

they do not take into account the implementation of control strategies for optimizing 

performance. As a result, more advanced modelling tools are needed that can integrate 

both the physical and control aspects of DCS for effective MPC. FMIs combine the 
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different software and platforms in dynamic simulation and in implementation and 

provide data exchange among them. 

• Many reviewed articles focused on either modelling or design optimisation of DCS. 

There is a lack of connection between the modelling and control of DCS: How the 

details and methods of modelling affect the control performance and energy efficiency 

of the overall system?  

This study aims to contribute to the integration of the latest control technologies, such as 

predictive control, and Modelica simulations into DCS, as identified in previous literature [81] 

, [108]. As these model-based controllers rely on the dynamic model of the system, this thesis 

aims at reviewing the current technologies in modelling and then developing an integrated 

modelling and control path for energy efficient and optimal operation of DCS (summary in 

Table 6).  

Table 6: Literature Review conclusion and proposed methodology 

Main result Current state After this thesis 

DCS optimisation and 

planning 

Gap identified in the optimal 

performance of DCS and the 

integration of DCS with new 

technologies. 

 

DCS optimisation with 

novel predictive control and 

mathematical justification 

Model-based approach to 

DCS  

Application of the 

technology for DCS is still 

at research level with 

reduced size test cases being 

reported in the scientific 

literature.  

 

The mathematical modelling 

approach can include the 

constraints and physical 

limitations of the system in 

the models. 

Predictive Controllers 

implementation for DCG 

in real-life 

 

Predictive controllers have 

been widely used in 

different applications, even 

in some DC components 

(e.g., generators). However, 

chillers and pumps are 

generally controlled via 

classical control methods, 

with some planning or 

sequencing strategies 

applied in an ad hoc or non-

automated manner. More 

Predictive control is 

designed and applied to real-

life case of DCG. 
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novel methodologies have 

rarely been extended to 

general industrial 

applications.  

 

Technology Framework The current modelling tools 

are not appropriate for MPC 

because they are only made 

for modelling the physical 

system but not the control 

process implementation. 

The use of Modelica in 

modelling DCS is at a very 

early stage. 

 

Use of Modelica and 

MATLAB as the technology 

framework for modelling 

and control of DCG. 

Mathematical Analysis of 

MPC solution 

Lack of a concrete 

mathematical analysis of the 

MPC solution. 

The mathematical analysis 

casts clarity on the 

optimality and performance 

of the MPC and strengthens 

the reasons for using MPC 

on the real-life applications 

of DCG. 
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3 Chapter 3: Methodology 

3.1 Introduction 

This chapter is dedicated to explaining the methodology of optimal operation of DCS. To 

deliver high efficiency, DCS needs the support of the modelling and simulation in buildings 

which should improve their operations and energy use to the maximum. Consequently, in this 

research the aim is to improve the energy efficiency and optimizing energy use in DCGS which 

is the most energy consuming component of DCS. More efficient, intelligent, and economical 

cohort of DCG based on the real-life implementation of optimal and model predictive control 

is developed. As predictive controllers rely on the dynamic model of the system for predictions, 

models that consider the main characteristics and the inherent uncertainties of the system for a 

more reliable control performance are presented.  

Based on the literature review conclusions, the methodology consists of the following sections: 

• Overall Engineering of the DCG (based on section 2.2) 

o Chiller’s dynamics 

• Data Collection (based on section 2.5.1) 

o Requirements of the data 

o Statistical Analysis of the data 

• Modelling methodology (based on section 2.5) 

o Model simulation and implementation 

o Model validation and calibration 

• Control methodology (based on section 2.3) 

o Optimal operation 

o MPC formulation 

o Validation of MPC solution based on Key Performance Indicators (KPI) 

• Integration of modelling and control (based on 2.6.2) 

o Integrated District Cooling Generation (IDCG) 

o Challenges 

After proposing the modelling and control methodologies, the performance of the MPC 

solution is validated using mathematical theorems and proof (based on section 2.6.3). This 

methodology follows the literature review results in Chapter 2 i.e., modelling and control 
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methodologies are developed that fill the gaps in the current literature of optimal operation of 

DCG (Figure 13). 

 

Figure 13: Methodology Flowchart 

It is important to note that the type of models derived in modelling methodology and the 

availability of the data collected at the Basurto hospital leads the flow of methodology to follow 

a mathematical validation of the control methods. This is discussed in section 3.4 to 3.7. 

3.2 Methodology Overview 

The methodology of this thesis provides the details of modelling approach starting from the 

data collection procedure to validation of the simulated models. This process has several steps 

that are detailed in the sections 3.3 to 3.6 of this chapter.  

First, the data is collected from the physical system of Basurto hospital building; then, several 

tools and methods of simulation and modelling and the reason for choosing them is discussed. 

Second, a predictive control algorithm specific to the needs, issues, and challenges of DCG is 

developed. At the end, the modelling and control methodologies are integrated as a tool for 

optimal operation and energy efficiency of DCG. 

A comprehensive methodology is presented in this study, which is divided into several sections, 

as follows: 

• Technicalities of DCG: This section elaborates on the engineering aspects of the 

generation component of DCG. 

MPC Formulation 

(Control 

methodology) 

Chiller Model 

(Modelling 

methodology) 

Mathematical 

Validation of MPC 

Data Collection 
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• Data collection process: This section explains the data collection process and the type 

of data required for effective DCG control. 

• Modelling approach: This section details the development of a prediction model for 

DCG. 

• Tools for simulation: This section outlines the different simulation tools used in the 

study. 

• Model Predictive Control: This section describes the implementation of the MPC 

algorithm and its constituent building-blocks. 

• Integration of modelling and control methodologies: This section explains how 

modelling and control technologies are integrated into a tool for DCG operation. 

• Validation of the developed methodology of integrated modelling and control of DCG: 

This section validates the proposed methodology through case studies results. 

The detailed building-blocks of the methodology are shown in Figure 14. The tools depicted 

(MATLAB, Modelica) are attached to the block where they are used. In the next sections, the 

details of each component of this methodology schematic are explained. The methodology 

starts from implementation of the prediction model by using the data collected from the DCGS, 

while the optimal operation block gives the set-point for thermal comfort temperature. The 

result of the prediction model goes into the MPC problem formulation block to calculate the 

desired controls. The MPC solution is then validated using mathematical validation block and 

the validated controls are applied to the DCGS. 
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3.3 Overall Engineering of DCG 

To maximize the performance of the DCG, the technicalities of the generation components and 

how these components are connected to the rest of the DCS are studied. Below, the dynamics 

and the inner workings of the chiller and cooling tower as the two main parts of the generation 

component are discussed. The generation plant under study is located inside the Basurto 

hospital (as part of the EU H2020 INDIGO (2016-2020) project pilot [17]) and includes 

chillers, storage, pumping, and control. The DC physical plant is a combination of generation 

plant which is marked by a dark blue arrow and the connected buildings by white arrows in 

Figure 15.  

 

Figure 15: Basurto hospital DC main layout (Retrieved from INDIGO project [17]) 

3.3.1 Chiller and cooling tower as a generation system 

The chiller and cooling tower are the main components of the DCG. The cooling water goes to 

the AHU in the building (Figure 16). The detailed working principles of the components are 

explained in the next sections. 
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Figure 16: Chiller and Cooling tower in heat rejection circuit (Retrieved from www.energy-models.com). 

3.3.2 Chillers 

A chiller is a large machine that is used to generate cool water which is used to provide air-

conditioning in buildings. Chillers are the most energy consuming components of a DCS 

(Figure 17).  

 

Figure 17: McQuay chiller in Basurto hospital 
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There are four parts to the chiller. The inner components of the chiller are as follows: 

1. Evaporator is where the “chilled water” is generated; Also, the refrigerant absorbs the 

heat. The setpoint for the chilled water temperature is given as an input to the 

evaporator. In addition, this temperature is in a very limited range to avoid the water 

from freezing. This is one of the main challenges of cooling systems compared to 

heating. 

2. Condenser is the part in chiller where the unwanted heat is collected and sent to the 

cooling tower; the refrigerant leaves back toward the compressor to continue the 

evaporation and condensation loop. 

3. Compressor is the part where refrigerant is compressed and goes back to the evaporator 

to continue the cycle. 

4. Expansion valve is in the inner loop of the chiller between the condenser and the 

evaporator. This valve transfers the refrigerant back to the evaporator.  

Figure 18 shows the three loops where the chiller is involved: 

1. Chilled water loop: The loop where the chilled water from the chiller goes to the 

building where it is demanded. 

2. Refrigerant loop: This is the inner loop of the chiller where the refrigerant is 

continuously evaporated, condensed, and compressed to cool the adjacent water for the 

first loop. 

3. Heat rejection loop: This is the connection loop between the chiller and the cooling 

tower. The refrigerant is condensed and leaves its heat to the cooling tower through the 

condenser. 
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Figure 18: Inner loops of a Chiller (Retrieved from Wikipedia) 

The components of the chiller work in the three abovementioned loops and send the cold 

water to the building where the cooling is demanded. 

There are different types of chillers which work with somewhat different principles. The 

conventional chillers are either water-cooled or air-cooled. Another type of chiller is absorption 

chiller. Absorption chillers [95] are thermally driven chillers that employ a heat source (hot 

water, steam, direct combustion, exhaust gas) for producing cold water. Commonly employed 

absorption chillers are based on a Lithium Bromide (LiBr)-Water working pair where the water 

acts as a refrigerant (chilled water above 5ºC). Apart from that, these chillers are single stage 

which means lower temperature for running (hot water as heat source) and lower performance 

(COP) in comparison with multi stage absorption chillers [109]. 

3.3.3 Cooling tower 

As explained above, the cooling tower is connected to the chiller through the heat rejection 

circuit. The dry air with specific humidity and flow rate is in touch with the warm water. The 

dry air collects the heat from the warm water. The warm, moist air dissipates into the 

atmosphere. The air is blown from the lower part through the tower, and it cools the water 

sprayed at the top of the tower (Figure 19). 
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Figure 19: Cooling tower schematic (Retrieved from Wikipedia) 

The cold water is collected at the bottom of the tower and sent to the condenser of the chiller 

unit. 

The heat rejection circuit connects the two systems. The warm water goes through the 

refrigeration cycle in the chiller to get cooled in the inner cycle of chiller. The heat from the 

refrigerant is dumped through the water that goes to the condenser toward the cooling tower. 

3.3.3.1 Complexity of chiller and cooling tower in terms of modelling and control 

In this sub-section, the requirements of the DCG models to enable the right choice of tools for 

modelling and control of DCG are studied. 

The thermo-fluid dynamic equations can be used to model the chiller and cooling tower. The 

modelling is based on the heat transfers in the two following loops in the chiller: 

• Refrigeration cycle 

• Heat rejection circuit 

The heat rejection circuit is the loop between the chiller and the cooling tower. In most cases, 

there is no direct actuation (control valve) on the cooling tower. Thus, the outputs of the cooling 

tower are controlled by the desired output signals in the chiller condenser.  
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3.3.3.1.1 Chiller 

To identify an input-output model from the thermo-fluid dynamics in simulation tools, the 

inputs, disturbances, and outputs of chiller are defined in Figure 20. Notice that Figure 20  is 

the representation of the chiller input and output without a control loop. Figure 21 shows the 

variables in the schematic. 

 

Figure 20: Chiller inputs and outputs without control loop 

 

Figure 21: Inputs and outputs of chiller 
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• Chiller Inputs  

o Evaporator inlet water temperature (𝑇𝑅 , 𝐾) 

o Evaporator inlet water mass flow rate (�̇�, 𝑘𝑔/𝑠) 

o Chiller power use (𝑃, 𝑊) 

• Chiller Disturbances  

o Condenser inlet water temperature (𝑇𝐸 , 𝐾) 

o Condenser inlet water mass flowrate (𝑚𝐶̇ , 𝑘𝑔/𝑠) 

o Ambient temperature (𝑇𝐴, 𝐾) 

• Chiller Outputs 

o Evaporator outlet water temperature (𝑇𝑜𝑢𝑡, 𝐾)  

o Evaporator Inlet water Temperature (𝑇𝐶 , 𝐾) 

The inputs and outputs of the chiller in a control loop are defined in Figure 22. 

 

Figure 22: Chiller inside the control loop 

• Chiller Inputs in control loop 

o Supply water temperature reference (𝑇𝑠𝑒𝑡, 𝐾) 

o Evaporator inlet water mass flow rate (�̇�, 𝑘𝑔/𝑠) 

• Chiller Disturbances  

𝑇𝑠𝑒𝑡 
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𝑚 ̇  

𝑇𝐸   𝑚𝐶̇  
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Controller 
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o Condenser outlet water temperature (𝑇𝐶 , 𝐾) 

o Condenser inlet water temperature (𝑇𝐸 , 𝐾) 

• Chiller outputs in control loop 

o Evaporator outlet water temperature (𝑇𝑜𝑢𝑡, 𝐾)  

o Power use (𝑃, 𝑊) 

3.3.3.1.2 Cooling Tower 

The inputs, disturbances, and outputs of cooling tower in control loop are shown in Figure 23. 

 

Figure 23: Cooling tower without control loop 

The inputs, disturbances, and outputs of cooling tower in control loop are shown in Figure 24. 

 

Figure 24: Cooling tower in the control loop 
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Figure 25:  Inputs and outputs of cooling tower 

The inputs, outputs, and disturbances according to the variable names in Figure 25 are: 

• Cooling tower inputs 

o Inlet flowrate into the condenser (�̇�𝑐, 𝑘𝑔/𝑠)  

o Set-point temperature of the inlet water from the chiller into the cooling tower 

(𝑇𝑟𝑒𝑓_𝑤𝑎𝑡𝑒𝑟 , 𝐾)  

• Cooling tower disturbance  

o Temperature of the inlet water from heat rejection (𝑇𝑖𝑛_𝑤𝑎𝑡𝑒𝑟 , 𝐾) 

o Relative Humidity (RH) of the inlet air to the fan (Weather data 

𝑅𝐻𝑖𝑛_𝑎𝑖𝑟 , 𝑘𝑔−1) 

o Temperature of the inlet air to the fan (Weather data 𝑇𝑖𝑛_𝑎𝑖𝑟,K) 

• Cooling tower outputs 

o Fan power use (𝑃𝑓𝑎𝑛, 𝑊) 

o Pump power use (𝑃𝑝𝑢𝑚𝑝, 𝑊) 

o Outlet temperature of the condenser (𝑇𝑜𝑐 , 𝐾)  

Both chiller and cooling tower are nonlinear systems, i.e., there is a nonlinear relationship 

between the outputs and inputs of these systems. Cooling tower is a highly nonlinear system; 

The number of control inputs is less than the number of degrees of freedom to control the 

system, i.e., the system is under-actuated. In other words, the operation and efficiency of the 

cooling tower is highly affected by the ambient temperature and relative humidity. The output 



62 
 

of the chiller into the cooling tower cannot be manipulated. The only manipulated variable is 

the flow rate of the condenser water from the cooling tower into the chiller. Chiller is connected 

to cooling tower through the heat rejection circuit; Thus, the cooling tower can only be 

controlled through the chiller. 

As a result of these complexities in the generation system, simulation tools are required that 

can represent the model and the physical complexities of chiller and cooling tower. In addition, 

the model should be reduced to a form that well represent the physical reality of the system and 

could be used for the MPC. 

The choice of simulation tools requires the following: 

• The tool should be compatible with the already-installed tools in the DCG plant in 

Basurto hospital. 

• The ODE solvers should be able to solve the dynamic thermo-fluid equations of the 

interactions between the DCG components. 

In the next section, the data collection for the validation and calibration of the chiller models 

and control are discussed. This will complete the puzzle of the requirements of the modelling 

and control approach for DCG. 

3.4 Data collection 

The data is collected from a real-life application of the Basurto hospital building to examine 

the effectiveness of the designed MPC methods. 

There are specific hardware and software involved in data collection process which we will 

present their details in the case study chapter. However, we present the data collection 

methodology in this chapter. 

Data collection methodology is developed in the following steps:  

• Instruments and hardware for reading the data 

• Software for recording the data 

• Frequency of the readings and recording of the data 

• Statistical analysis of the data 

3.4.1 Instruments and hardware 

The required input, output, and disturbance signals are presented to the company who is 

responsible for the instrumentation and hardware installed in Basurto hospital DCG (Veolia). 
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Veolia then provided some guidelines to connect to the DCG database in Basurto hospital. The 

details of the software package to extract the data is presented in the case study chapter. The 

required signals are recorded through installed sensors. Then, the following process in the 

software package determines if the data is qualified in terms of the collection hardware.  

3.4.2 Software Package 

The data collection facility in Basurto hospital has a “DataQuality” information column in its 

Microsoft SQL management database. This column is a reality check to find out if the data is 

faulty or not (Figure 26). If the value: 

• Is zero, then there has been a fault in data collection and data is not reliable. 

• Is 1, then the data is reliably measured and recorded. 

 

 

Figure 26: Software to record the data 

Below, the next piece of data collection methodology is presented, reading and recording the 

data. 

3.4.3 Frequency 

Data collection requires a chosen frequency of recording the data by the sensors. The data is 

collected based on the frequency of the following variables: 

• Dynamic changes in the system in time, e.g., the rate of change of the mass flow in the 

evaporator. 

• Frequency of applying a new control signal, i.e., how often a control signal with a new 

value is applied to the system. 

• How chiller and cooling tower as the generation is connected to other parts of the DC 

system? (The initial values and the setpoints for some variables (𝑇𝑠𝑒𝑡 , �̇� ) come from 
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the manager level.)  

3.4.4 Statistical analysis of the data 

The data quality can be compromised either because of the hardware that collects the data, or 

the software that processes it. In this thesis, the two following measures are set up to ensure 

the quality of the data that will be later used in the MPC development. 

The extracted data is ensured based on the following measures: 

3.4.4.1 Errors 

Different types of errors can be calculated: 

Absolute error   
𝐸𝑟𝑟𝑜𝑟 =  𝑓(𝑦𝑖 −  �̂�𝑖) 

Equation 1: Absolute error 

Relative error  

 

Then, the error values are checked in the simulations. The numerical error values and graphs 

are presented in the results and discussions. 

3.4.4.2 Outliers 

After the unfaulty data is separated from the faulty data (using the DataQuality column), there 

may still some outlier data be present in the data vectors. The outliers are removed using 

MATLAB function “rmoutliers”, and the associated MATLAB algorithms. 

As these two measures have been applied to the data, it is concluded that:  

• The six chiller variables (two inputs, two disturbances, and the two outputs) have 

outliers and faulty measurements at different time steps of the measurement process.  

• In addition, most of the variables (two inputs, two disturbances, and the two outputs of 

the chiller) are missing the measurements for a big range of time (Figure 27). As a 

result, this data cannot be used to run a continuous simulation of the system 

(unreliability of the data), however this data can still be used to find out the ranges of 

change of the variables. 

This data quality is a major issue which gives a new direction to the methodology.  

∑ |𝑦𝑖 − �̂�𝑖|

𝑛
 

Equation 2: Relative error 
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Figure 27: Fault in data measurements or recording (mass flow rate vs time in minutes) 

Remark 3.1: This result is the steppingstone to change the methodology of validation of MPC 

from the traditional case study simulation to a method which is a combination of case study 

simulations and mathematical validation of the MPC solution. 

3.5 DCG Modelling Approach 

The purpose of this section is to develop a modelling methodology specific to the challenges 

mentioned in the literature review and the complexities of generation components. The final 

goal of modelling methodology is to generate the prediction models for MPC of DCS.  

3.5.1 Requirements of the Model 

What are the requirements of the model to be used in DCG control? 

The final goal of this thesis is the predictive control of DCG. Therefore, the needs of control in 

terms of models are considered here. MPC requires the estimation of the state at every sampling 

instant for the discrete-time simulation of the DCG.  

3.5.2 State Estimation 

The estimation of the states is available through one or combination of the following methods: 

1. State estimation methods such as Kalman Filter [101] or Moving Horizon Estimation 

(MHE) [81], [83]. 

2. Estimation through direct measurements of the data [22]. 
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The first method is generally used when there is no access or partial access to actual physical 

data. The second method is fit to the systems that have actual physical measurements and the 

purpose of the model is to set up a control on a living lab or an application.  

In this methodology, the estimation of the states come from the measurements collected at the 

case study building. This is because there is access to the data from Basurto hospital. 

Furthermore, the state estimation from the state space models is used to compensate for the 

unreliability of the data. 

In this thesis, state feedback MPC is considered which means that exact knowledge of the 

system state is assumed. From a practical point of view, this implies that any errors that are 

introduced by a state estimator (used to estimate the states based on output measurements) are 

assumed to be sufficiently small and are hence neglected.  

The available data from DCG plant is described in the form of an input-output model at a 

sampling time that can capture the dynamics of the system. The sampling time and the type of 

model are two factors that affect the modelling results (discussed below in further details).  

3.5.2.1 Sampling time 

In Basurto, the DCG is operating and generating continuous values for the inputs and outputs 

of the DCG. However, the data measurement devices installed on the case study building have 

their own sampling time to read and record the measurements. 

The system dynamics in continuous-time is observed. The dynamics are important in choosing 

the appropriate sampling time for both the measurement readings and discretization method in 

the simulation tools.  

Some systems are fast, meaning the input-output relationship is changing in a matter of 

milliseconds, e.g., an inverted pendulum. However, the DCG which is studied in this thesis is 

a slow system, i.e. the input-output relationship changes in a matter of 5-15 minutes.  

The choice of sampling time also affects the computational complexity; The lower the sampling 

time, the higher the computational burden of solving the MPC problem. One requirement for 

the DCG models for MPC is that they provide the states with lower computational complexity. 
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3.5.2.2 Types of Models 

3.5.2.2.1 Equation based models 

3.5.2.2.1.1 Auto-Regressive Exogenous  

Linear systems are considered whose dynamics can be represented by Auto-Regressive 

Exogenous (ARX) models of the form 

𝑦𝑘 = ∑ 𝑎𝑖𝑦𝑘−𝑖

𝑛𝑦

𝑖=1

+ ∑ 𝑏𝑖𝑢𝑘−𝑗

𝑛𝑢

𝑗=1

                               

Equation 3: ARX model 

In Equation 3, 𝑦𝑘, 𝑢𝑘 ∈ ℝ denote respectively the model output and input at time 𝑘. 

Coefficients 𝑎𝑖, 𝑖 = 1, … , 𝑛𝑦, and 𝑏𝑗 , 𝑗𝑖 = 1, … , 𝑛𝑢 are the parameters of the system. According 

to equation (1), the output at time 𝑘 depends on the previous 𝑛𝑦 outputs and 𝑛𝑢 inputs through 

the parameters 𝑎𝑖, and 𝑏𝑗.  

3.5.2.2.1.2 State Space Representation (SSR) 

ARX represents the relationship of each output with inputs and outputs in previous time steps, 

However, State Space Representation (SSR) represents the relationship between the input and 

outputs of the system in explicit equations. For the explicitly represented equations, SSR are 

favourable compared to ARX models in this application.  

In this thesis, the equivalent SSR of the ARX model [110] is used. It is more convenient and 

common to formulate the MPC problem using the SSR due to the explicit relationship of the 

consecutive states; It can easily be simulated in various simulation tools as most coding 

structures prefer an explicit relationship. In the following sections, the discrete-time linear state 

space model is used.  

3.5.2.2.2 Data-driven models 

ARX models is changed into SSR using the algorithm explained in [110] or MATLAB System 

Identification toolbox. The development of a virtual test-bed for MPC has been discussed in 

[111], [112]. These developments of the partners in EU H2020 INDIGO (2016-2020) project 

[17] are models of generation system that are driven from the input-output data (data-driven 

models). The virtual test-bed developed in collaboration with the authors of [111], [112] from 

EU H2020 INDIGO (2016-2020) project is used as the basis for the prediction models of this 

thesis. 
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3.5.3 Modelica Models 

In this subsection, the role of Modelica models in the process of modelling and control of DCG 

is explained. The results of this modelling methodology are also published in [112].  

Modelica models are the detailed nonlinear representation of the physical system behaviour 

and dynamics, also a connection from the real world to the simulation tools. The main benefit 

of Modelica models is that the equations can be coded explicitly in Modelica. Basically, the 

thermodynamic equations for the heat exchanges in chillers and cooling towers are coded 

exactly as they are written as ODEs in continuous time. Additionally, Modelica offers two 

options for modelling DCS components: pre-defined elements such as pumps and fans that can 

be accessed through a graphical user interface, or writing equations based on heat exchange 

principles in chillers, cooling towers, and heat rejection circuits. The internal control of the 

systems can also be included with their respective equations. The Annex 60 library and 

buildings library for building and district energy systems [34] is used in [112] for pre-defined 

elements of DCG.  

The physical system of DCG consist in different components like sensors, valves, and pumps; 

These are all included in Modelica models. The Modelica models generated in EU H2020 

INDIGO (2016-2020) DCOL [113] are validated using the real data from the system of chiller 

and cooling tower. However, these models are not still ready to be used in MPC because of its 

high computational complexity. This model should be simplified to a lower-complexity 

equation-based model or serve as a foundation for developing data-driven models [111]. 

However, the Modelica model is used for the following purposes:  

• Generation of virtual input-output data 

• Validation data for the reduced model 

In summary, the detailed Modelica models are used to generate the validation data. In addition, 

these models are used as the basis to generate the reduced models in the SSR format [112]. 

3.5.4 Prediction model 

Prediction model is the model that is used in MPC to predict the output at the current time step 

for the whole prediction horizon. The MPC solution (to follow the reference trajectory) yields 

the control action based on the minimizing the error between reference and control variable. 

The control action is applied to the prediction model to generate the next control variable; The 

loop then continues at every new time step according to Figure 28 [114]. At each simulation 
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time, the MPC controller solves an optimisation problem to determine the optimal control 

action for the next time step based on the current state of the system and the predicted future 

behaviour of the system. This process is repeated at each time step to update the control input 

as the system evolves. In this way, the MPC controller adjusts the control inputs in real-time 

to ensure that the system is operating as desired. 

 

Figure 28: MPC prediction model 

3.5.4.1 Choosing the Prediction model 

There are several points to consider in choosing the prediction model: 

• The model should be able to provide the (control and output) predictions for the MPC. 

• The type of model affects the computational complexity of the MPC problem. 

• The prediction model affects the solver that is used to solve the MPC problem. 

• The prediction model can be a state space model that is already identified (before the 

control process starts) or re-calculated in each time step (Moving Horizon Estimation). 

Considering the complexities of the DCG mentioned in section 3.3.3.1, a fixed validated model 

is chosen for the predictions. So, the prediction model is the resulting state space model in 

[112].  

The Linear-Time-Invariant (LTI) state space models are presented as 

                              �̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)  

                             𝑦 = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

Equation 4: State space model 

In Equation 4, 𝑥 ∈ 𝑅𝑛 and 𝑢 ∈ 𝑅𝑚 are the state vector and the input vector respectively with 

dimension 𝑛 and 𝑚 in the space of Real numbers 𝑅, and 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×𝑚, 𝐶 ∈ 𝑅𝑚×𝑛, 
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and 𝐷 ∈ 𝑅𝑚×𝑚 are matrices of mentioned dimensions in the space of the Real numbers. In the 

second equation, 𝑦 is the output of the system. There is a linear relationship between the states 

𝑥 and its derivatives. In addition, the matrices 𝐴, 𝐵, 𝐶, 𝐷 are invariant in time. That is the reason 

this model is called LTI. 

The state space model for the chiller in the case study of this thesis was generated according to 

[111] (Figure 29). 

 

Figure 29: Generating an SSR from the Modelica model 

3.6 Control Methodology 

In the literature review of this thesis, the available control methods that have been used in the 

control of DCS are studied. In this section, the focus is on the MPC. Classic optimal control 

method solves one optimisation problem to find the optimal value for the control variables over 

an infinite horizon and then applies this control input for the whole finite duration of the 

problem. This means that if the system has any uncertainty, it can only be dealt with once and 

in one optimisation problem. As a result, these methods are not adaptive to changes in the 

system, nor robust to the uncertainties that may arise. However, in MPC, the optimisation 

problem is repeated every sampling time, so if any disturbance arises in the duration of the 

operation of the system, or if there is a fault that detected at any point, the disturbance or the 

fault can be adapted accordingly. This inherent adaptive feature of MPC makes it very useful 

and efficient especially in the operation of slow and industrial processes and applications. 

MPC methods were proposed and implemented for the DCG of Basurto hospital. During the 

development of the control methods, it was ensured that:  

• The internal and installed control of the physical system is not interfered with.  

• The control method can be implemented online and in real-time for the case study 
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without requiring high computational capacity. 

3.6.1 Model Predictive Control 

MPC solves an optimal control problem while predicting the future behaviour of a dynamic 

system on a finite time horizon based on the current state measurement [81]. The corresponding 

optimal control input is then applied to the real process until the next measurement arrives and 

the process is repeated. MPC relies on the dynamic models of the system and these models are 

used to predict the behaviour of the system in the next sampling instant (prediction model). 

The implementation of such controllers is based on having an accurate system model; that is, 

the future of the system is optimized as if there were neither external disturbances nor model-

plant mismatches present, although these disturbances and model inaccuracies are the only 

reason why feedback is needed at all. The main advantage of this assumption is that the 

corresponding online optimisation problems can often be solved efficiently and in real time 

[115]. The prediction model for the MPC has already been discussed in section 3.5.4. The 

subsequent sections explain the fundamental components of the MPC problem. 

3.6.1.1 Optimisation Problem 

The purpose of the MPC controller is to solve an optimisation problem to get the feedback 

control 𝑢𝑘 =  𝒦𝑥𝑘 at each sampling instant 𝑘 for the states to track a set-point 𝑥𝑟𝑒𝑓. The input 

values are adjusted towards the reference values, denoted as 𝑢𝑟𝑒𝑓.  

3.6.1.1.1 Objective function 

The MPC formulation is based on solving an optimisation problem with a goal which can be 

minimize/maximize the value of the function. The performance of this optimisation is validated 

by observing the decrease/increase of consecutive function value. Calculating the value of the 

objective function is called function evaluation in the optimisation theory [104]. The 

complexity of solving the optimisation problem is usually defined by the number of function 

evaluations at each operating point. 

This equation represents a quadratic objective function. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    ∑(𝑥𝑘 − 𝑥𝑟𝑒𝑓)
𝑇

𝑄

𝑁−1

𝑘=0

(𝑥𝑘 − 𝑥𝑟𝑒𝑓) + (𝑢𝑘 − 𝑢𝑟𝑒𝑓)
𝑇

𝑅(𝑢𝑘 − 𝑢𝑟𝑒𝑓)             

Equation 5: MPC generic objective function 

In Equation 5 𝑁 is a prediction horizon, and 𝑄, R are the weighting matrices for the states and 

inputs respectively; 𝑥𝑘 is a vector which shows the values of states at time k; 𝑢𝑘 is a vector that 
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shows the value of input at time 𝑘 and the size of ; 𝑢𝑘 corresponds to the number of control 

variables; 𝑅 is a square matrix and its size equals the number of inputs.  

In the DCGS application, the two goals are: 

• Minimize energy use. 

• Track the desired Temperature set-point (defined by 𝑇𝑠𝑒𝑡) based on the demand from 

manager level. 

The cost function is defined as: 

q ∗  (𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑠𝑒𝑡(𝑡))2 + 𝑟 ∗ (𝑃(𝑡) − 0)2 

Equation 6: Objective function of DCGS application 

In Equation 6, 𝑇𝑜𝑢𝑡(𝑡) is the water outlet temperature of the evaporator, 𝑃(𝑡) is the power use 

in the chiller, and q, r are the weights of temperature error and power use 

respectively. 

3.6.1.2 Constraints 

The constraints in the optimisation problem are state constraints, input constraints, and the 

output constraints 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈, 𝑦 ∈ 𝑌. Constraints may arise due to limitations or saturation 

in the control devices of the physical system. Since the exact state knowledge is available 

(assumption in section 3.5.2), the output constraints can be represented using the output state 

relation in ARX or SSR.  

3.6.1.3 MPC Algorithm Implementation 

MPC solves an online optimisation problem in finite-horizon at every sampling instance. The 

optimisation is formulated to be solved in the interval [𝑘, 𝑘 + 𝑁] where 𝑘 is the current time 

and 𝑁 is the prediction horizon of the optimisation problem. The first resulting control input 

from the optimisation is usually applied to the system at current time and the rest of the input 

sequence is discarded. The optimisation process is repeated at each subsequent sampling time 

until the desired objectives are achieved and the system reaches stability [116]. The algorithm 

can be summarized in the following steps: 

1. Measure the current state at time 𝑘 (Measure xk) based on the model. 

2. Generate the objective function and constraints. 

3. Solve the optimisation problem and find the optimal control input sequence (𝑢𝑘
∗ ). 

4. Apply 𝑢𝑘
∗  and discard the rest of the optimized input sequence. 
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5. Repeat steps 1 to 4 until the system reaches stability and the desired objectives are 

achieved. 

The graph in Figure 30 is a general configuration of an MPC loop to control the DCG. The 

set-points of variables and the initial values of the parameters of the generation system are set 

in the block of “Setpoints/initials” from a higher manager level. This information is then 

given to the MPC-controller block. 

 

Figure 30: MPC Feedback Control Loop 

The controller block follows these steps: 

The result for the values of the control signal (𝑢𝑘
∗ ) is given to the DCG plant through the arrow 

which goes from the controller block to the DCG plant. This optimal value of control signal is 

applied to the DCG plant in its block. The state and output values are recorded and fed back to 

the controller block as the previous values of the states. The arrow from the plant back to the 

controller shows this feedback. This feedback constitutes a closed loop system for calculating 

and validating the control signal which is called Control Loop in system control theory [81]. 

Solvers 

Considering the structure of the cost function and the constraints, the problem is a Quadratic 

Programming (QP) problem. Although there are numerous solvers available for solving QP 

problems, not all of them can meet the computational demands and constraint handling 

requirements of the generation MPC in this case study. The data and set-point values are 

extracted and entered at every single sampling time in real-time which requires high 

computational capacity for the solver and the optimisation modelling system. This is also a 

trial-and-error issue that different QP solvers are used, and the information of the optimisation 

problem is looked at (speed of solving, hessian matrix of the optimisation, how much the cost 
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function is minimized at each step of the optimisation). This information is discussed in the 

result chapter of this thesis. 

3.6.1.4 Timings 

3.6.1.4.1 Sampling Time 

Although the data is recorded every second, it is resampled according to the needs of the 

modelling or control algorithm. The sampling time of the optimisation problem is the time 

between the two consecutive optimisation problems in the MPC optimisation loop. This 

variable needs to be chosen in a way that considers the dynamics of the system (how fast/slow 

it is) and the intervals that the cost function is evaluated. 

Another important thing to consider is the sampling time of the discrete-time model. A 

sampling time is used to discretize the continuous-time model. The sampling time of the 

optimisation problem needs to be compatible with this later. 

3.6.1.4.2 Horizon 

The horizon of the MPC problem is the interval that each optimisation problem is solved at. 

This variable needs to be long enough to consider the changes in the behaviour of the system 

dynamics (oscillations, instability), and short enough to reduce the computational burden of 

solving a large Quadratic Programming with many variables. 

The control horizon is the duration for which the control signal is computed, while the 

prediction horizon is the duration for which the simulation is performed. In current MPC 

practice, the control horizon is commonly set equal to the prediction horizon, and the general 

term 'horizon' is used to refer to both. 

3.7 Mathematical Formulation of MPC 

Following the steps mentioned in the modelling and control methodology, the MPC problem 

is formulated for efficient operation of DCG as below: 
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In Equation 7, the term 𝐸𝑣(𝑡) is added to the states equation to represent the disturbances (to 

separate the disturbances from the inputs). The 𝑣(𝑡) is the disturbance vector at time t, and 𝐸 

is a matrix that represents the relationship between the states and the disturbances. 

The different components of the MPC formulation are explained below: 

• The water temperature values are subject to upper and lower bound constraints (𝑇𝑚𝑖𝑛 ≤

𝑇𝑠𝑒𝑡 ≤ 𝑇𝑚𝑎𝑥), which are derived from the Basurto data. 

• The mass flow rate of the chilled water supply is subject to upper and lower bound 

constraints (�̇�𝑚𝑖𝑛 ≤ �̇� ≤ �̇�𝑚𝑎𝑥), which are based on the Basurto data. 

The six variables of the chiller are measured and used as inputs to the MPC formulation, linking 

the real-life application to the control approach. However, as discussed in section 3.4.4, the 

reliability of the data varies among the different variables in the Basurto database. Furthermore, 

the quality of the Basurto dataset does not permit a continuous case study to be conducted. 

Therefore, it has been decided to solve the MPC problem explicitly using optimisation 

algorithms. Additionally, the literature on the theoretical solution of MPC has been reviewed 

in chapter 2. 

3.7.1 Optimisation Methods to Solve MPC 

In this section, a solution to the MPC problem is presented using optimisation methods. This 

method analyses the MPC problem from an equation-based mathematics problem and 

identifies an explicit solution based on optimisation theory and techniques [104]. In order to 

analyse the performance of the MPC problem, the authors in  [101], [103], [117] take a 

Basurto Data 

Minimize  ∑ {q ∗  (𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑠𝑒𝑡(𝑡))2 + 𝑟 ∗ (𝑃(𝑡) − 0)2}𝑁−1
𝑡=0  

Subject to �̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑣(𝑡) 

                                           𝑦 = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

     𝑢(𝑡) = ቂ
𝑇𝑠𝑒𝑡

�̇�
ቃ , 𝑣(𝑡) = 

𝑇𝐸

𝑇𝐶
൨    ,  𝑦 = ቂ

𝑇𝑜𝑢𝑡

𝑃
ቃ 

                                              𝑇𝑚𝑖𝑛 ≤ 𝑇𝑠𝑒𝑡 ≤ 𝑇𝑚𝑎𝑥 

                      �̇�𝑚𝑖𝑛 ≤ �̇� ≤ �̇�𝑚𝑎𝑥 

                                                     0 ≤ 𝑃   

Equation 7: MPC problem formulation 
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mathematical approach to show that an explicit optimal solution exists for the system under 

study. In this section, a similar approach is considered to show that an explicit solution for the 

chiller MPC exists and can be derived using optimisation theory. 

The idea is to solve the MPC problem using the optimisation methods and find an explicit 

solution to the optimisation problem above. According to the measured and estimated data from 

the hospital and models, we know that the decision variables are in specific ranges of values. 

The data is then collected in the case study and the bounds of the variables are tested to be in 

the stability range according to the mathematical derivation below. 

The first problem is called “MPC” and the second problem is called “QP” in Equation 8. 

 

Equation 8: Equivalent representation of MPC problem into a QP 

If the QP problem is a convex problem, then its explicit solution can be derived using the 

“strong duality” [104]. The mathematical solution of a generic QP is already found and the 

Minimize  ∑ {q ∗  (𝑇𝑜𝑢𝑡(𝑡) − 𝑇𝑠𝑒𝑡(𝑡))2 + 𝑟 ∗ (𝑃(𝑡) − 0)2}𝑁−1
𝑡=0  

Subject to  

 �̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑣(𝑡) 

                                𝑦 = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)                   

        𝑢(𝑡) = ቂ
𝑇𝑠𝑒𝑡

�̇�
ቃ , 𝑣(𝑡) = 

𝑇𝐸

𝑇𝐶
൨    ,  𝑦 = ቂ

𝑇𝑜𝑢𝑡

𝑃
ቃ 

                              𝑇𝑚𝑖𝑛 ≤ 𝑇𝑠𝑒𝑡 ≤ 𝑇𝑚𝑎𝑥 

          �̇�𝑚𝑖𝑛 ≤ �̇� ≤ �̇�𝑚𝑎𝑥 

                                            0 ≤ 𝑃   

 𝑝∗ = minimize𝑤∈𝑅𝑛             𝑐Tw +
1

2
𝑤T𝐹𝑤 

   Subject to      𝐺𝑤 − 𝑏 = 0    

    H𝑤 − 𝑑 ≥ 0  
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method is explained in the literature. So, if an equivalent representation of the MPC problem 

into a QP is found, the explicit solution of the MPC problem will also be available.  

Remark 3.2: The main objective is to redefine the decision variables of the MPC problem and 

formulate it as a QP that can be solved. 

3.7.2 Mathematical Derivation of Explicit Solution 

The optimisation problem is solved as follows: 

1. The state space model of the system in differential continuous form is linearized using 

Euler method in Equation 9. 

 

and yields the Equation 10: 

A linear discrete-time approximation of the system equations is considered. 

2. The Dual problem [104] of the discrete time problem is formulated by constructing the 

dual of the standard QP: 

If the Primal problem is a convex Quadratic Programming, then 𝑝∗ = 𝑑∗ [104].  

The following variables are redefined in Equation 11: 

 

 

 

 

Thus, the cost function translates into Equation 12: 

�̇� =
𝑥(𝑘 + 1) − 𝑥(𝑘)

∆𝑡
 

Equation 9: Estimation of derivatives using Euler method 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐸𝑣(𝑘) 

              𝑦(k) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) 

�̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑣(𝑡) 

                            𝑦 = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

Equation 10: Linearization of state space model 

𝑧(𝑘) = [

𝑇𝑠𝑒𝑡(𝑘)
�̇�(𝑘)

𝑇𝑜𝑢𝑡(𝑘)
𝑃(𝑘)

] = [

𝑧1

𝑧2

𝑧3

𝑧4

] 

Equation 11: Redefining variables 
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Equation 12: Cost function in redefined format 

and the constraints are translated to Equation 13: 

 

Equation 13: Constraints in redefined format 

3. Using the results from strong duality, the primal optimisation is solved by finding the 

explicit solution to the dual problem that is redefined by the cost function and 

constraints in Equation 12 and Equation 13 respectively [104]. Matrices of the primal 

problem are redefined in Equation 14: 

∑ {q ∗  (𝑇𝑜𝑢𝑡(𝑘) − 𝑇𝑠𝑒𝑡(𝑘))
2

+ 𝑟 ∗ (𝑃(𝑘) − 0)2}

𝑁−1

𝑘=0

 

= (𝑧3 − 𝑧1)T𝑞(𝑧3 − 𝑧1) + 𝑧4
T𝑟𝑧4 

= q(𝑧3 − 𝑧1)2 + 𝑟𝑧4
2 

= q(𝑧3)2 − 2𝑞𝑧3𝑧1 + q(𝑧1)2 + 𝑟𝑧4
2 

= [𝑧1, 𝑧2, 𝑧3, 𝑧4] [

𝑞 0 0 0
0 0 0 0

−2𝑞 0 𝑞 0
0 0 0 𝑟

] [

𝑧1

𝑧2

𝑧3

𝑧4

]  

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐸𝑣(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) 

      −𝑇𝑠𝑒𝑡 ≥ −𝑇𝑚𝑎𝑥 

𝑇𝑠𝑒𝑡 ≥ 𝑇𝑚𝑖𝑛 

−𝑚(𝑡)̇ ≥ −�̇�𝑚𝑎𝑥 

𝑚(𝑡)̇  ≥ �̇�𝑚𝑖𝑛 

𝑃 ≥ 0 



79 
 

 

Equation 14: Redefined matrices of primal problem 

This redefinition of variables gives an explicit solution to the generic chiller MPC problem 

under the following circumstances: 

• The Hessian of Matrix F is positive semi-definite: F ≥ 0 (essential feature for 

convexity) 

• The constraints are linear equality and inequality equations of the optimisation 

variables.  

• The cost function is quadratic. 

• The problem is thus convex, quadratic and has an explicit solution. 

• A Piecewise affine (PWA) discrete-time approximation of the system equations is 

considered. 

• The Disturbance can be either measured or estimated.  

o  For the chiller, all data collected from Basurto are measurements. 

o  The data from simulation of the Modelica model is estimated.  

• CPU power for computing QP and memory for storing the explicit solution is needed. 

These requirements are examined for the chiller problem in the next chapter. 

𝑐T = [0 0 0 0] 

𝐹 = [

𝑞 0 0 0
0 0 0 0

−2𝑞 0 𝑞 0
0 0 0 𝑟

] 

G = ቂ
𝐹 0
0 𝐺

ቃ 

𝑏 = −𝑥(𝑘 + 1) + 𝐴𝑥(𝑘) + 𝐸𝑣(𝑘) 

𝐻 = ቂ
−1 −1
1 1

    
0 1
0 0

ቃ 

𝑑 = 
𝑇𝑚𝑎𝑥 �̇�𝑚𝑎𝑥

−𝑇𝑚𝑖𝑛 −�̇�𝑚𝑖𝑛
    

0 0
0 0

൨ 
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3.8 Integrated District Cooling Generation (IDCG) Methodology 

The modelling and simulation of DCG, the corresponding tools, MPC, and how to formulate 

an MPC solution for DCG are discussed. However, the modelling and control methods need to 

work for a single DCS and be compatible with each other. The integration requires that the 

modelling and control sampling times be compatible in the MPC algorithm and MPC runs in 

real-time. In addition, the model should provide the predictions for MPC. In this section, the 

modelling and control methodologies are integrated for DCS. The result is a united framework 

toward modelling and control of DCS as demonstrated in Figure 31. Figure 31 shows the 

relationship between each group of the methodologies developed in this thesis. The data of the 

variables and parameters of DCG are shown as a cloud inside the DCS. The modelling methods 

receive the information of the plant. The DCS plant performance is feedback for the control 

method and the control methodology gives the control signal to the plant. This whole 

configuration contributes to the energy efficiency and optimal operation of DCS. 

 

Figure 31: Integration of modelling and control methodologies in DCS 

This methodology combines the modelling methodology that is performed in the first block 

with the control methodology that is implemented in the third block. As highlighted in the 

literature review chapter, the integration of modelling and control of DCG presents one of the 

primary gaps in the literature. This integration is faced with several challenges: 

• Simulation platform that can represent the model and the physical complexities of DCS. 
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• Different optimisation solvers used for solving the MPC or the operation management 

optimisation. The solvers are not necessarily tailor-made for DCS applications and need 

to be adapted in simulations. 

• Big data in operation of the district. The issue can be addressed by real-time MPC; This 

method receives the DCS data at every sampling time. This prevents the need for a 

long-term memory to save all the data.  

• Recording the values of the cool generation components at every second and looking 

at the significance regarding the changes in the dynamics. 

• Uncertainty in DCS. Liao et al. [65] introduced methods to enhance robustness of a 

chiller against uncertainties. Uncertainties in a DCS may arise from various sources, 

including inaccurate load calculations, deviations from the actual layout of the network 

and buildings in the model, and errors in the modeling and control methods used. For 

instance, uncertainties in the load calculations may arise from incorrect assumptions or 

data input, while discrepancies in the layout of the network and buildings may stem 

from variations in the actual physical environment compared to the simulated model. 

Additionally, errors in the modelling and control methods may arise from 

approximations, simplifications, or assumptions made in the model or control 

algorithm. It is important to handle these uncertainties and ensure a robust performance 

for the DCS. MPC offers an inherent robustness due to solving an optimisation at every 

sampling instant, however, robust control techniques need to be studied. This challenge 

is an area for further research in DCS. 

3.9 Conclusions 

This chapter is the methodology for DCG modelling and control based on the gaps identified 

in the literature. This methodology is composed of some of the already existing methods in the 

literature and adapting and developing a method by extending the concepts to the DCG. 

Figure 32 presents the relationship between DCS plant and modelling and control of DCS. The 

data of DCS is given to the simulation and validation of modelling methodology, and the model 

is updated based on real-time data from the system. The control technique receives the data 

and the model for predictions. The control method can act real-time based on the feedback 

received from DCS.  



82 
 

 

Figure 32: Integration algorithm for DCS generation 
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This thesis introduces several novel contributions to the field of DCG control, which are 

summarized as follows: 

• The modelling is focused on DCG and how it can provide better solutions for MPC 

predictions. Therefore, this methodology can be used for any DCG modelling problem 

with MPC technologies. 

• Prediction model of the MPC is based on developed Modelica models of DCG. 

• An MPC problem with the constraints and limitation of the DCG in Basurto hospital is 

formulated. 

• A methodology for the validation of results of model reduction and MPC algorithms is 

developed. 

• MPC optimality and performance in DCG is theoretically analysed. 

• Finally, the modelling and control methodologies are integrated into an algorithm that 

can be used in a generic way, providing a versatile and adaptable solution for a range 

of industrial applications. 

To demonstrate the implementation of this methodology, the case study chapter for Basurto 

hospital building is presented in the next chapter.
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4 Chapter 4: Case Study 

This chapter is a description of the case study and consists of the background information of 

the DCG plant, measured data, the simulation methods, and tools. The description of the DCS 

test-site and generation plant are given below. 

4.1 Description of Test Site  

The test site is in Basurto Hospital in Bilbao, Spain (Figure 33).  

 

Figure 33: Basurto Hospital (Retrieved from INDIGO project website [17]) 

The hospital was constructed during the first decade of 20th century in the city of Bilbao and 

consists of 15 buildings now. Heating and cooling demand of the hospital is satisfied by a DHC 

installation connected to a trigeneration plant (the generation plant that feeds the DHC grid 

includes a Combined Heat and Power (CHP) based on a pair of gas engines). The CHP and 

DHCS were erected inside the hospital area in 2003 by VEOLIA and extended in 2011. This 

company currently operates the complete DHCS and the HVAC in the buildings. Nowadays, 

the trigeneration plant consists of two 2 MW natural gas internal combustion engines, two 

natural gas backup boilers, two absorption chillers and four conventional chillers. The gas 

engines generate electricity that is sold by VEOLIA to the Electric Grid. This way VEOLIA 

can offer cheaper electricity prices to the hospital than the usual market. Heat from the CHP is 

employed for DH supply as well as for feeding absorption chillers for DC supply. Apart from 

the heat coming from gas engines there are some gas boilers and conventional chillers for DH 
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and DC supply, respectively. DH temperature level is  80ºC in supply and 65 ºC to 70 ºC in 

return while DC temperature level is 7ºC in supply and 10 ºC to 12ºC in return [109]. 

4.1.1 DCS Generation plant 

The generation plant is located inside the hospital and includes chillers, storage, pumping and 

control. 

4.1.1.1 Chilled water production 

Figure 34 shows the layout of generation plant in Basurto Hospital. The chillers in the system 

are installed in parallel and are connected to supply and return circuits.   

 

Figure 34. Generation plant simplified layout (Retrieved from INDIGO project [17]) 

Water-cooled chillers are connected to cooling towers from EVAPCO. Five cooling towers are 

connected to three chillers. BROAD absorption chiller is connected to a twin open cooling 

tower. YORK absorption chiller and TRANE conventional chiller ( with heat rejection circuit 

in series) are connected to three closed cooling towers connected in parallel [109]. Table 7 is a 

summary of the characteristics of the six chillers. 
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Table 7. Characteristics of the chillers (Retrieved from INDIGO project [17]) 

Chiller type (Manufacturer) Cooling capacity Heat rejection 

Single stage absorption chiller (YORK) 650 kWt Water-cooled 

Single stage absorption chiller (BROAD) 1 MWt Water-cooled 

Electrical chiller (TRANE) 1,5 MWt Water-cooled 

Electrical chiller (TRANE) 730 kWt Air-cooled 

 2 x Electrical chiller (McQUAY) 974 kWt Air-cooled 

Table 8 is a summary of the characteristics of the installed absorption chillers. 

Table 8. Characteristics of the absorption chillers (Retrieved from INDIGO project [17]) 

Model of 

chiller 

Hot water 

in/out 

Chilled water 

in/out 

Heat rejection 

water in/out 

Cooling 

capacity 

COP 

BROAD 

BDH86X 

39.7m3/h 

102.5ºC/72.5ºC 

172 m3/h 

12ºC/7ºC 

333 m3/h 

35ºC/29ºC 

1000 kW 0.75 

YORK 

YIA-HW-

3B2 

26 m3/h 

105ºC/65ºC 

149 m3/h 

12ºC/7ºC 

222.6 m3/h 

35ºC/29ºC 

650 kW 0.69 

Commonly maximum driven temperature during operation for these chillers in the installation 

is 105ºC. The rated conditions of the conventional chillers are shown in Table 9: 

Table 9. Characteristics of the conventional chillers (Retrieved from INDIGO project [17]) 

Model of chiller Chilled water 

in/out 

Condenser inlet air 

temperature 

Cooling capacity COP or 

EER 

McQuay 

AWS-XE-280.2 

12ºC/7ºC 35ºC 974 kW 3.15 

TRANE 

RTAC-200 

(Low noise and 

High Eff. 

version) 

12ºC/7ºC 35ºC 730 kW 2.85 
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MODEL CHILLED 

WATER 

IN/OUT 

HEAT REJECTION 

WATER IN/OUT 

COOLING 

CAPACITY 

COP 

or 

EER 

TRANE 

RTHC-E3 

12ºC/7ºC 29ºC/35ºC 1360-1560 kW 5.6-7 

Regarding conventional chillers, there are four chillers that work with “R134a” as refrigerant. 

One of them is water-cooled and the other three are air-cooled (Air-cooled chillers are a safer 

option than water-cooled ones in terms of the possible health risks caused by Legionella 

bacteria.). Two air-cooled McQuay chillers were installed in 2011 while TRANE chillers are 

operating from the beginning [109]. 

 

Figure 35. McQuay conventional chiller at its location in the roof of the generation plant (Retrieved from INDIGO project 

[17]) 
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Figure 36. TRANE air-cooled conventional chiller on the roof of the generation plant (Retrieved from INDIGO project [17]) 

 

Figure 37. TRANE water-cooled conventional chiller in the generation plant (Retrieved from INDIGO project [17]) 
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The cold energy produced by each chiller is recorded by an energy meter installed in the 

corresponding cold-water circuit. Similarly, the total cold energy produced by the plant is also 

recorded in another energy meter connected to the main pipes of the district cooling network 

[109]. This recorded information can be used to measure the energy efficiency of the new 

algorithm compared to the conventional ones.      

4.2 System structure, Monitoring, and Control 

In terms of monitoring and control, the Basurto Hospital DC network is divided in Generation, 

water distribution, and Consumption (Buildings). The control systems of these two sites are 

different. The monitoring and control installed in the generation site is Supervisory Control 

And Data Acquisition (SCADA) modules programmed by Veolia and Genelek (local company 

with expertise in automation) with the architecture in Figure 38 [109]: 

 

Figure 38: Genelek customized PLC topology (Retrieved from INDIGO project [17]) 
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4.2.1.1 Chillers cascade control 

Depending on cold demand from the hospital, the regulation will be starting machines in 

cascade so that the driving flow temperature never rises the established maximum temperature 

(ideally 12ºC for maximum performance). 

The control logic is: Cold water theoretically is always sent to the hospital at 7 ºC and returns 

at 10/12 ºC, so the only variable is the flow that is sent to the hospital. When cold demand in 

the buildings rises, the regulation will increase the supply flow and inversely, when the demand 

goes down, it is a lower flow distribution. The six chillers work always between 7-12ºC. The 

number of running chillers must be such that the sum of the flows from the active chillers is 

greater than or equal to the flow rate that is sent to the hospital. Again, we can differentiate 

between two different ways of working: 

Winter stage (December-April): As said before, Cogeneration engines are key in the cold-water 

production through the absorption chillers, so when they start, they fill up the hot storage tanks. 

In the meanwhile, in the first hours of the morning, if cold water is needed and absorption 

chillers are not ready, the McQuay electric chillers will supply water to the network. At 12:00, 

the BROAD absorption chiller will start, and the first McQuay will stop running. The first 

McQuay will run again if needed after the BROAD absorption chiller has started. Then, the 

second electric McQuay will start, followed by the air-cooled TRANE RTAC chiller. Neither 

TRANE RTHC nor YORK absorber chiller are programmed to work in winter stage. 

Summer stage (May-November): In summer stage, as there is not much need for hot water for 

the hospital, hot water provided by co-generators can be fully used for the absorption chillers. 

So, at 7:00 the BROAD will start, followed by the YORK, followed by the two McQuay (2 x 

1000 kW). If more cold water needed, this McQuay will start again, being the last one in use 

the TRANE RTAC due to be the oldest machine in place with the worse COP. 

4.2.2 Available monitoring data in Generation 

Regarding the generation plant, available data corresponds to every minute measurements of 

the next values since August 2016: 

• Cold water produced in each chiller (energy meter) 

• Hot water employed for feeding each absorption chiller (energy meter) 

• Power use in each chiller 

• Gas use of cogeneration engines 
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• Supply and return temperature of the cold-water circuit produced by each chiller  

• Supply and return temperature of the driving hot water circuit of each absorption chiller 

• Supply and return temperature of heat rejection water circuits (cooling towers)  

• Water temperature in the supply and return manifolds 

• Water pressure in supply and return of cooling ring (DC) 

• Water temperatures at the top and the bottom of the buffer tank  

• Ambient temperature (surroundings of the generation plant building)  

4.3 Data collection from Basurto  

This section is based on the data collection methodology that was explained in chapter 3. The 

project partner Veolia provides the connection to the Basurto hospital database through the 

following tool chain in Figure 39. The connection to the database was required to be set up 

every time when access was needed. In addition, the data was extracted in the form of arrays 

in a daily period for each signal. 

 

 

Figure 39: Toolchain for data collection 

The data collection started in August 2017 and continued until August 2020 as new simulations 

were performed. The data was collected and recorded for whole day simulations. 

The following steps were taken to collect the data for each of the inputs and outputs of DCG. 
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1. Connection to GlobalProtect64 software. 

2. Connection to Remote Desktop in Veolia with Username & password dedicated to 

University of Galway using Windows Remote Desktop Connection 

3. Open the Microsoft SQL server software & Open a ‘New query’ 

4. SELECT * FROM [Runtime_IDi].[dbo].[TagHistValues] 

WHERE TagName = 'BASURT_T_SAL_AGUA_EVAP_MCQUAY_2’ 

GO 

The code to collect the data from the SQL management can be changed in a way to include 

certain time of the year or the desired sampling times. 

The tag-names for each input and output are taken from Veolia datasheets mentioned in Table 

10. 

Table 10: Tag names for chiller inputs and outputs 

Variable  Tag-Name in Basurto database 

Electrical power use BASURT_MBUS6_ENERGIA 

Evaporator cold water outlet 

temperature 

BASURT_T_SAL_AGUA_EVAP_MCQUAY_2 

Evaporator cold water mass flow rate BASURT_E2_CAUDAL_PRODUCC_FRIO 

Cold water outlet temperature reference BASURT_SPRem_T_SAL_AGUA_EV_MCQ2 

Condenser cooling air inlet temperature BASURT_T_EXTERIOR_FRIO_TT104 

Evaporator cold water inlet temperature BASURT_T_ENT_AGUA_EVAP_MCQUAY_2 

 

Executing the SQL code for each tag name generates the values of the inputs/outputs based on 

the measurements of sensors (Figure 40).  
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Figure 40: Basurto SQL database 

4.4 MPC Implementation on DCG Case Study 

MPC is an online optimisation algorithm that solves an optimisation problem at every single 

sampling time of the evolution of the system to optimize the cost function (e.g., minimize the 

error) based on the predictions from a model. A main advantage of MPC is that the physical 

constraints of the system can be considered directly in the problem formulation. In this 

subsection, the different parts of an MPC problem formulation in the context of the generation 

system of our case study are explained. 

The following steps are taken to formulate the integrated modelling and control of DCG: 

1. Define the decision variables including the optimisation variable.  

2. Define the cost function and constraints. 

3. Find out the type of optimisation problem (Linear, QP…) 

4. Define MPC Horizon based on system dynamic and computational capacity. 

5. Set the Solver and optimizer based on 3. 

6. Let the solver run and obtain the solution. 

7. Analyse the solution based on speed and value of cost function; Then against Basurto’s 

physical data. 
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The chillers and cooling towers in the generation site of a DCS consume a considerable amount 

of energy to produce chilled water for the district. This case study aims at reducing this energy 

use by the application of the methodology explained in chapter 3. The two main goals are to 

minimize the energy use and to track the desired Temperature set-point based on the cooling 

water demand required from manager level. 

After explaining the configuration of the existing equipment in the generation sites in the last 

section, the chillers and corresponding cooling tower to implement the MPCs for maximizing 

energy efficiency in the DCG are distinguished. 

4.4.1 MPC Prediction Models 

In this section, the case study results of the MPC of DCG are presented to validate the 

algorithms described in chapter 3.  

4.4.1.1 Conventional Chiller Model 

Figure 41 is the Modelica model available in EU H2020 INDIGO (2016-2020) project, DCOL 

Library [112]. EU H2020 INDIGO (2016-2020) – DCOL Library is Public and for each 

component, the following information is available: 

• Detailed model calibration based on manufacturer’s datasheet and data collected from 

Basurto Hospital  

• Automated calibration code in Python 

• Virtual Data generation (with random input with uniform distribution) along their valid 

range and with the frequency expected in the real system which characterises each 

component over the whole input ranges. 
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Figure 41: Graphical simulation of conventional chiller in Modelica 

Inputs/Outputs/Disturbance of McQuay chiller: 

• Chiller Inputs in control loop 

o Supply water temperature reference (𝑇𝑠𝑒𝑡, 𝐾) 

o Evaporator inlet water mass flow rate (�̇�, 𝑘𝑔/𝑠) 

• Chiller Disturbances  

o Condenser outlet water temperature (𝑇𝐶 , 𝐾) 

o Condenser inlet water temperature (𝑇𝐸 , 𝐾) 

• Chiller outputs in control loop 

o Evaporator outlet water temperature (𝑇𝑜𝑢𝑡, 𝐾)  

o Power use (𝑃, 𝑊) 

4.4.1.2 Cooling Tower Model 

Figure 42 is the Modelica model of the cooling tower available in EU H2020 INDIGO (2016-

2020) project, DCOL Library. The variables and parameters of the cooling tower of the case 

study are given below. The power use of the fan and the input and output of the cooling tower 

to the chiller’s condenser are shown in Figure 43, Figure 44. 
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Figure 42: Graphical simulation of cooling tower in Modelica 

Model structure: SSR LTI 

Inputs/Outputs/Disturbance of the cooling tower 

• Cooling tower inputs 

o Inlet flowrate into the condenser (�̇�𝑐, 𝑘𝑔/𝑠)  

o Set-point temperature of the inlet water from the chiller into the cooling tower 

(𝑇𝑟𝑒𝑓_𝑤𝑎𝑡𝑒𝑟 , 𝐾)  

• Cooling tower disturbance  

o Temperature of the inlet water from heat rejection (𝑇𝑖𝑛_𝑤𝑎𝑡𝑒𝑟 , 𝐾) 

o Relative Humidity (RH) of the inlet air to the fan (Weather data 

𝑅𝐻𝑖𝑛_𝑎𝑖𝑟 , 𝑘𝑔−1) 

o Temperature of the inlet air to the fan (Weather data 𝑇𝑖𝑛_𝑎𝑖𝑟,K) 

• Cooling tower outputs 

o Fan power use (𝑃𝑓𝑎𝑛, 𝑊) 

o Pump power use (𝑃𝑝𝑢𝑚𝑝, 𝑊) 

o Outlet temperature of the condenser (𝑇𝑜𝑐 , 𝐾)  
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Figure 43: Power use of the cooling tower fan (W) in Time(s)   

 
Figure 44: Input and output temperature of the condenser in heat rejection circuit of cooling tower (C) in Time(s)    

The Modelica model is verified against the actual data. The prediction model is validated 

against the data available from the simulation of detailed Modelica models (Virtual data). This 

validated state space model is then used as prediction model in the MPC simulation [119]. 
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Figure 45 summarizes the identification and validation process of the prediction model in a 

flowchart. 

 

 

Figure 45: MPC prediction Model 

4.4.2 MPC Optimisation Problem 

4.4.2.1 Set-points 

The setpoints of the variables of DCG are given from the SCADA. These setpoints are defined 

based on the steps in Figure 46. The manager decides on the value of the temperature at each 

sampling time (based on the cooling needs of the buildings) and communicates this value to 

the MPCs at the DCG component level at chillers. This given setpoint satisfies the thermal 

comfort requirements in the Surgical Block (BQ) building in Basurto Hospital based on the 

developments in INDIGO project [113].  
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Figure 46: Set-point requirements from the MPC at the Manager level 
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Remark 4.1: The predictive controllers are at the component level while the ranges of setpoints 

are defined from a higher level (the DCG manager) thus the ranges cannot be changed in this 

MPC implementation (hard constraint). 

The power use is monitored at every sampling instant and is recorded in SQL database by 

Veolia. 

4.4.2.2 Cost function 

In the MPC formulation, the cost function includes the terms to minimize the energy use of the 

chiller and to maximize the thermal comfort (by tracking a desired setpoint temperature).  

The two variables appearing in the cost function are: 

• Electric power use of the chiller. 

• Evaporator outlet water temperature setpoint. 

The cost function is the sum of two quadratic terms of the difference of the variables and their 

desired value as in Equation 15: 

𝑐𝑜𝑠𝑡 = α ∑(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 − 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2 

Equation 15: Cost function in error calculation format 

We can regulate the terms of the objective function by weighting parameter α. The cost function 

is a quadratic function of the above two variables and thus leads to a Quadratic Programming 

(QP) problem. 

4.4.2.3 Constraints 

In generation systems, there are typically constraints on the rate of flow and the temperatures 

of the running fluids. These are hard constraints that need to be considered in designing the 

controllers, i.e., the system design implies these values, and we must consider them in 

implementing the optimisation problem. In this case study, we have two forms of constraints: 

• The rate of change of a variable (e.g., water flow rate in the evaporator) 

• The minimum and maximum of a variable (e.g., water flow rate in the evaporator) 

Both these constraints are linear equations of the optimisation variables. In this case study, we 

have upper and lower bounds on the temperature values. 
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4.4.3 MPC Implementation Tools 

We have so far implemented and formulated the DCG MPC problem. In this section, we present 

the tools and platforms that are used to solve the MPC problem in simulations. 

4.4.3.1 Modelling the Optimisation Problem 

Among various platforms available to solve optimisation and MPC problems, YALMIP 

modelling system is chosen. YALMIP is a modelling system that allows us to code the 

dynamics of a system and define the optimization problem, including cost and constraints, in a 

pre-specified format that is compatible with MATLAB. Furthermore, we can utilize different 

solvers within the YALMIP code by assigning the solver in the options of this platform.  

• MATLAB R2020b – student License from the University of Galway and its updates. 

• Optimisation Modelling System: YALMIP (https://yalmip.github.io/) 

4.4.3.2 Solvers 

The following QP solvers are used:  

• Quadprog 

• Fmincon 

• Cplex 

• MOSEK V8 (https://www.mosek.com/) 

• SDPT3 

Free academic Licenses are available for MOSEK, Cplex, and sdpt3. Quadprog and Fmincon 

can be called as functions inside a MATLAB code. 

4.4.4 MPC Implementation Data 

4.4.4.1 Verification of the McQuay chiller model 

The detailed Modelica model has been verified against the actual data [112]. The data used in 

these simulations is the data that is derived from the simulations of the detailed Modelica 

models presented in [112]. This extracted data has its own sampling time of 1 second. The state 

space model of the chiller has also the sampling time of 1 second. The state-space model is 

validated by comparing it to the data from the detailed Modelica model simulation and 

calculating the corresponding errors using a virtual testbed.  

The chiller’s outlet temperature and power use are obtained from both the Modelica model 

(blue line), and the SS model (red line). The simulation of the models was performed for 24 h, 

and they led to similar graphs (Figure 47). 

https://yalmip.github.io/
https://www.mosek.com/
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Figure 47: Results from the verification of the models for the McQuay chiller  

The details of the validation of simulation models are given in article [112] as a joint work 

between EU H2020 INDIGO (2016-2020) partners. 

As explained in the previous chapter, it is necessary to adjust the sampling time of the model, 

or the discretization step. The dynamics of the generation components are typically much 

slower and cannot be observed in 1 second. Therefore, the virtual data and the state-space 

models are resampled with a sampling time of 5 minutes. This allows for a longer MPC horizon 

of 15-30 minutes. With this validated data and state-space model (as the prediction model), we 

can now proceed with the MPC design. 

4.5 Results of MPC of DCG 

The described methodology is implemented in MATLAB using YALMIP with “Mosek” solver 

on a 64-bit windows 10 machine with intel core i5 at 1.6GHz, 8GB RAM, and 64-bit 

MATLAB, the computation times were about 1.2s YALMIP parsing time and 1.5s “Mosek” 

solving time. 
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1. The dynamics of the chiller are quite slow, so the state-space matrices are sampled with 

time steps of 5 minutes.  

2. The resampled state-space model is introduced to the MPC to use as prediction model. 

3. Define the weighting 𝑞, 𝑟 for the outputs and inputs, respectively. 

 
Table 11: Variable description for the chiller MPC problem 

Variable Description 

Matrix 𝑹 Output weighting matrix 

Matrix 𝑸 Input weighting matrix 

𝑻_𝒐𝒖𝒕_𝒆𝒗𝒂_𝒎𝒂𝒙 

𝑻_𝒐𝒖𝒕_𝒆𝒗𝒂_𝒎𝒊𝒏 

 

Bounds on outlet temperature of the chilled water 

𝑷_𝒐𝒖𝒕_𝒎𝒂𝒙 

𝑷_𝒐𝒖𝒕_𝒎𝒊𝒏 

Bounds on consumed power 

N MPC horizon 

Nsim Simulation time  

𝒎_𝒇𝒍𝒐𝒘_𝒆𝒗𝒂_𝒎𝒂𝒙 

𝒎_𝒇𝒍𝒐𝒘_𝒆𝒗𝒂_𝒎𝒊𝒏 

Bounds on evaporator water flow rate 

𝑻_𝒔𝒆𝒕_𝒆𝒗𝒂_𝒎𝒂𝒙 

𝑻_𝒔𝒆𝒕_𝒆𝒗𝒂_𝒎𝒊𝒏 

Bounds on water setpoint temperature 

 

Remark 4.2: (Comparison of Solvers) Quadprog was unable to solve the QP because it cannot 

deal with the big data involved in the implementation of the cost function, Cplex was slow and 

cannot continue to solve the problem after horizon 5 as the problem grows, ‘sdpt3’ ran into 

numerical issues in real-time predictions, but ‘MOSEK’ solved the optimisation problems of 

chiller MPC in real-time and for the full simulation horizon. 

Figure 48 shows the chiller input signals in a one-day simulation. The inputs stay in the 

constraint bounds. 
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• Chiller Inputs  

o Cold water Temperature Reference (𝑇𝑠𝑒𝑡, 𝐾) 

o Evaporator Inlet water mass flow rate (�̇�, 𝑘𝑔/𝑠) 

• Chiller Disturbances  

o Ambient temperature (𝑇𝐶 , 𝐾) 

o Inlet temperature into the chiller from cooling tower (𝑇𝐸 , 𝐾) 

 

Figure 48: Inputs of chiller - MPC problem 

Figure 49 is the demonstration of the outputs 𝑇𝑜𝑢𝑡 and 𝑃 in a one-day simulation time. The 

output temperature follows the setpoint, and the thermal comfort conditions are satisfied. In 

addition, the power is minimized. 

Chiller Outputs 

• Water Outlet temperature of the evaporator (𝑇𝑜𝑢𝑡, 𝐾)  

• Power use (𝑃, 𝑊) 
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The actual power consumption of the chiller (measured data) without MPC (with conventional 

PID) is shown on the bottom. The output water temperature (𝑇𝑜𝑢𝑡) follows the setpoint water 

temperature (𝑇𝑠𝑒𝑡). In addition, the power is minimized and stays in the bound.  

Remark 4.3: Depending on the importance or preference of the temperature setpoint or energy 

efficiency goal, we could adjust the weighting factor 𝑟, 𝑞 to emphasize one of the objective 

terms. 

Result: The absolute error of the setpoint temperature tracking is calculated and shown in 

Figure 50 (below 0.1%).  

Result: The power use is minimized by a factor of 1.5 compared to the actual chiller use without 

MPC (magnitude of 5 × 105 in the MPC compared to 7.5 × 105 in the actual measured data). 

In other words, the MPC achieved a theoretical 30% reduction in power consumption by 

calculating the sum of the absolute error between the power consumption in the MPC and 

measured data point by point during a one-day simulation and normalising it by the MPC 

absolute values. 

Figure 49: Outputs of chiller - MPC problem 
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Figure 50: Tracking error of outlet water temperature of the evaporator by applying the MPC controller 

Result: This MPC implementation is a generic code that can be used for other real-life 

applications of chillers with minor modifications depending on the objectives of the new 

problem. The tools used in this work are available online and they are open-source. These 

results are scalable and reusable in other applications of generation systems because the 

algorithm separates the model and optimisation problem structure, and the optimisation solving 

parts. 

4.6 MPC Results Verification 

This chapter presents the simulation results of a case study of a chiller to demonstrate the 

effectiveness of the proposed controller design methodology and mathematical solution. The 

following results are verified: 

• The Hessian of Matrix F is positive semi-definite: F ≥ 0 (essential feature) 
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• The constraints are linear equality and inequality equations of the optimisation 

variables.  

• The cost function is quadratic. 

• The problem is thus Convex, quadratic and has an explicit solution. 

• The Disturbances are measured and estimated.  

o  The chiller measurement data is extracted from Basurto. 

o  The data used for the prediction model is estimated from the simulation of the 

Modelica model.  

• To solve the QP and store the explicit solution, a reasonable CPU power and sufficient 

memory are required.  'MOSEK' was used to solve the optimization problems of the 

generation MPC in real-time and for the full simulation horizon. Details regarding the 

specifications of the CPU, RAM, and solver can be found in the simulation remarks. 

Remark 4.4: The fact that the problem is convex and has an explicit solution gives the option 

to use various solvers while the explicit solution makes it easier for the solver to perform a 

numerical analysis of the solution. 

4.6.1 Key Performance Indicators 

The Key Performance Indicators (KPI)s are:  

• Error in the supplied temperature (To minimize error between the setpoint and the 

evaporator outlet water temperature) 

• Power use (To achieve lower power use) 

The goal is to evaluate the performance of the MPC controller based on the supplied cooling 

temperature and power use objectives at every iteration k =1…, N. 

Objective function= ∑ {(𝑇𝑜𝑢𝑡(𝑘) − 𝑇𝑠𝑒𝑡(𝑘))2 + (𝑃(𝑘) − 0)2}
N−1

k=1
 

And to compare: 

o Standard PI Controller (current installation) 

o MPC 

Remark 4.5: 

• The already existing PID controls of the generation plant remain unchanged. The set-

points of the cooling demand to be covered by each generation system are provided by 
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the Management Controller, developed within work package 4 of INDIGO project [17]. 

• The manager decides on the value of the temperature at each sampling time and 

communicates this value with the MPCs at the component level. 

• This is also a trial issue that we must use different QP solvers and look at the 

information of the optimisation problem when it is solved (speed of solving, hessian 

matrix of the optimisation, how much the cost function is minimized at each step of the 

optimisation). 

• Weights of each term (supply temperature and consumed power) are set to one, i.e., 

model will emulate both outputs equally. 

• The simulations are performed for 24 hours to include a full day study of the 

performance of the chiller. 

• The mean absolute error of the temperature over the prediction horizon is below 1.5 

degrees for at least 90% of the time. 
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5 Chapter 5: Conclusions and Future Work 

In this chapter, the main conclusions of this thesis are presented. The results are discussed 

based on what was achieved in the methodology and case study of this thesis. The chapter 

concludes by providing recommendations for future work of this thesis based on the obtained 

results. 

5.1 Conclusions 
 
The literature review revealed the need for an integrated modelling and control approach to 

apply effective MPC algorithms on models of DCS. The methodology provided a detailed 

implementation of MPC for solving the optimal operation of the chillers and mathematical 

proof of the optimal solution. 

Based on the studies performed in this thesis, the following conclusions can be drawn: 

1. The literature review showed that a gap existed in applying MPC in practice and real-

life applications of DCS. Although MPC is a developed technology among control 

theory researchers, MPC can be exploited to control the different components of DCS 

as well as its overall management. In this thesis, MPC was applied to the components 

of generation as chillers are the most energy consuming components of DCS.  

2. The modelling was focused on DCG and how modelling techniques could provide 

better solutions for MPC prediction models. The prediction model is at the heart of the 

MPC implementation i.e., the prediction model affects the performance of the MPC 

controller. The modelling methodology was applied on a real-life application of DCG 

to provide prediction models. Therefore, the modelling methodology developed in this 

thesis can be used for any DCG modelling problem which will be used to apply MPC 

technologies.  

3. An MPC problem with the constraints and limitation of the DCG in Basurto hospital is 

formulated. The data and the MPC testbed are extracted and simulated from a real-life 

application. The MPC algorithm presented in this thesis is a general formulation for 

control design of DCG components’ controllers. The same MPC algorithm can be used 

for further applications of DCG with modifications based on the objective of the 

problem in other real-life applications. 

4. It is important to see that the data-inefficiency scenario which occurred in this study 

was a significant barrier to achieve optimal operation of generation in terms of energy 
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use and thermal comfort through simulations. However, the theoretical analysis of the 

MPC optimal solution removed that barrier. The theoretical analysis ensured that the 

MPC solution exists and satisfies the constraints of the DCG. 

5. Modelling and control methodologies are integrated into IDCG methodology 

(explained in section 3.8) that can be used in a generic way. The studies of this thesis 

were based on the fact that the modelling and control are inseparable and thus should 

be dealt with in an integrated way (resulted in IDCG). This paved the way for generating 

a prediction model that was used in the control algorithm. The IDCG methodology 

allows the user to take advantage of a full package of modelling and MPC technologies 

in the respective real-life application. 

6. Regarding the tools used in the modelling and simulations, Modelica is an open-source 

language, and anyone can purchase a Modelica license online. YALMIP is also 

available on its website which is accessible by everyone. This means everyone can 

access the tools that are used for the modelling and simulations of this thesis. This 

makes the IDCG methodology scalable and reusable in other applications of DCG 

because the algorithms developed in this thesis are toolchains of the models developed 

in Modelica. The MPC problem is structured in MATLAB and the MPC optimisation 

is solved in YALMIP (Scalability and Reusability).  

7. A theoretical 30% reduction in energy use of one chiller in the DCG component is a 

significant number that can be applied to any other DCG. This achievement is a 

steppingstone to replace the traditional PID controls with advanced yet computationally 

attainable MPC algorithms in the real-life DCG systems in the buildings and districts. 

5.2 Future works 

Suggestions for future work include the areas discussed below. 

5.2.1 Robust MPC 

Uncertainties in a DCS may arise from load calculations, layout of the network and the 

buildings in the model, and modelling and control methods. It is important to consider these 

uncertainties and ensure a robust performance for the DCS. Otherwise, these uncertainties can 

result in a prediction model which is not representative of the actual physical system of DCS 

and thus poor MPC controller performance. MPC has an inherent robustness in its algorithm 

because the MPC optimisation is solved at every sampling instant of the prediction model and 

provides a new actuation signal for the actuators at every sampling instant. However, the MPC 

optimisation does not distinguish where the source of uncertainty is or at which stage of IDCG 
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the uncertainty has occurred (e.g., uncertainty in the measurements, prediction model, or load 

calculation). Robust MPC techniques ensure that any type of uncertainty arising at different 

stages of IDCG methodology can be dealt with individually. Thus, the future work of this thesis 

suggests including uncertainty in the data and/or prediction model (based on the source of 

uncertainty in DCS) and designing a robust MPC that deals with the uncertainties that may 

arise in DCS. 

5.2.2 Adaptive MPC 

The prediction model of the MPC of this thesis was based on developed Modelica models of 

DCG. This prediction model was developed and simulated once and then was used in the whole 

MPC prediction duration, i.e., the prediction model was fixed before the MPC implementation 

started. However, an advanced version of the prediction model can be an adaptive prediction 

model which reflects the dynamic changes of the model at every sampling instant. The adaptive 

prediction model evolves as the MPC algorithm is implemented and updates at every sampling 

instant. The advanced prediction model is that the prediction model would update at every 

simulation instant reflecting the disturbances that affect the system at any instant (not known 

beforehand), or the inherent uncertainties that arise in the physical system at any instant (not 

necessarily known beforehand). This idea is developed through MHE technique (or sometimes 

referred to as Adaptive MPC). The prediction model is estimated based on the measurements 

from the physical system as the MPC horizon moves further (Moving Horizon). The estimation 

of an adaptive prediction model at every sampling instant might require further measurements 

from the physical system. 

5.2.3 Improving the Physical Setup 

In the case study presented in this thesis at Basurto Hospital, the cooling tower had no actuation 

variable. This means that the setup of the chiller and cooling tower in the building was such 

that we could not intervene in the internal controls of the chiller's refrigeration cycle nor the 

control of the cooling tower's heat rejection circuit. In other cases, if the cooling tower can be 

actuated, it will create a Degree of Freedom (DOF) for the MPC controller. The extra DOF (the 

actuation potential) adds respective control variables in the MPC implementation and thus the 

physical setup allows an effective implementation of an adaptive MPC which was discussed in 

5.2.2. Consequently, adding to the current actuation capacity (e.g., an actuated valve in the heat 

rejection circuit to actuate the inlet flowrate into the cooling tower condenser (�̇�𝑐, 𝑘𝑔/𝑠)) in 
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the actual physical system of chillers and cooling towers can allow for adaptive MPC which is 

a suggestion for future work. 

5.2.4 Application in a DCS 

As a result of the suggestions made in 5.2.1, 5.2.2, 5.2.3, the future work would be to apply the 

developed Adaptive MPC to the components of a DCG in a full district. The analysis can be 

performed on a large-scale scenario where chillers and cooling towers have more DOF, the 

prediction model is adaptive and changing at a moving horizon, and the prediction model is 

estimated through the measurements provided from the actual physical model. 

5.2.5 Flexibility services 

Another idea for future work is the utilization of chiller power consumption optimisation results 

in providing flexibility services and participating in power price markets. This will involve 

evaluating the potential benefits of using chiller systems as a flexible resource to support the 

integration of renewable energy sources into the grid, as well as exploring the potential revenue 

streams available through participation in demand response programs and energy markets. 

Additionally, the effectiveness of different optimisation algorithms and control strategies could 

be examined to determine the most efficient and cost-effective approach for achieving the 

desired outcomes. Overall, the future work of this thesis aims to provide a deeper understanding 

of the role of chiller systems in the evolving energy landscape and identify new opportunities 

for maximizing their value and contribution to a more sustainable and resilient energy system. 
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