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Abstract

Proteomics involves the identification and analysis of proteins, therefore providing valu-
able insight into ecosystem functioning. In this methodology, protein sequences are typi-
cally identified using a bottom-up approach whereby short subsequences called peptides
are matched to experimental mass spectra using a database search. However, it is reported
that on average, 75% of the spectra recovered from experiments remain unidentified. De
novo peptide identification is an alternative approach to database searching that uses only
the spectrum to identify the peptide sequence. This method has undergone significant
recent improvements, in part due to the integration of machine learning models into the
algorithms.

This thesis explores the strengths and weaknesses of many of the current state-of-
the-art de novo peptide identification algorithms through an extensive evaluation. As
understanding the underlying data is key to this analysis, a comprehensive survey of
the characteristics of tandem mass spectra is included alongside the performance of the
algorithms. An alternative machine learning architecture is then proposed to address the
weaknesses found. The proposed novel CNN-GNN peptide ion encoding module was able
to identify more peptide ions than the encoding modules used by state-of-the-art de novo
peptide identification algorithms in all datasets tested. Finally, the utility of artificial data
in the context of de novo peptide identification is explored. Artificial spectra were found
to be missing critical noise that was present in real data. However, the quantification and
introduction of this noise into to artificial spectra increased their similarity to real spectra,
significantly improving their potential for use in the training and testing of models. Based
on the results of this thesis we recommend specific research avenues for the design and
development of the next generation of de novo peptide identification algorithms. This
thesis not only demonstrates the challenges facing de novo peptide identification, but also
takes the critical first steps toward overcoming them.



Acknowledgements

Firstly I would like to thank my two supervisors, Dr Enda Howley and Dr Florence
Abram. Your advice, support and guidance throughout the last few years has been
invaluable. I would also like to thank you for the fun and enthusiasm you brought to the
whole process. I hope that this is only the start of our collaboration together.

To those who have passed through Room 307 during my time there, I would like to
thank you all. The journey was made much more enjoyable by your friendship and discus-
sion. I was also fortunate to have the support of those in the FEM Lab in Microbiology.
The long debates and discussions we had at meetings were always entertaining.

Finally I would like to thank my family. To my parents Geraldine and Michael, I am
forever grateful for the love and support you have given me. I could not have not have
completed this without you. To Marie and John, thank you for always being there for
me and looking out for your little brother.

ii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Proteomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Peptide Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Database Searching . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.6 De Novo Peptide Identification . . . . . . . . . . . . . . . . . . . . 14
2.1.7 Benchmarking Performance . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Bias and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Decision Trees and Random Forests . . . . . . . . . . . . . . . . . 20
2.2.5 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.6 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 23
2.2.7 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . 25
2.2.8 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



2.2.9 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.10 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.11 Noise and Artificial Data . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 ML for De Novo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Novor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 DeepNovo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 PointNovo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Artificial MS/MS Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 The Impact of Noise and Missing Fragmentation Cleavages on De Novo
Peptide Identification Algorithms 38
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Peptide peak and noise assignment . . . . . . . . . . . . . . . . . . 42
3.3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Confirmatory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Missing fragmentation cleavage sites are prevalent in mass spectra 45
3.4.2 Noise peaks outnumber peptide peaks . . . . . . . . . . . . . . . . 48
3.4.3 De Novo algorithm performance exponentially decreases with in-

creasing peptide length . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.4 Increasing number of missing fragmentation cleavage sites exponen-

tially decreases de novo peptide algorithm accuracy . . . . . . . . 50
3.4.5 Impact of noise changes with the number of fragmentation cleavages

that are missing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.6 De novo algorithms can correctly predict amino acids missing from

spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Application of a Novel Hybrid CNN-GNN for Peptide Ion Encoding 61
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iv



4.4.1 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Peak Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 Artificial Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.4 Ion Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.5 Model Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.6 Random Forest Model . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.7 CNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.8 T Net Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.9 CNN-GNN Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.10 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.11 Hardware Specifications . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.12 Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5.1 Performance on Benchmark Datasets . . . . . . . . . . . . . . . . . 75
4.5.2 The Effect of Missing Peaks . . . . . . . . . . . . . . . . . . . . . . 76
4.5.3 The Effect of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.4 CNN-GNN Hyperparameter Comparison . . . . . . . . . . . . . . . 78
4.5.5 Problems with AUC . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.6 Time Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Critical Evaluation of the Use of Artificial Data for Machine Learning
Based De Novo Peptide Identification 84
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Real Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 Artificial Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.3 Peak Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.4 Random Peptides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.5 Data Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.6 PointNovo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.7 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 Classification of Peaks . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Distribution of m/z Error . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.3 Abundance of Different Ion Types . . . . . . . . . . . . . . . . . . 97
5.4.4 Differences in Peak Intensity . . . . . . . . . . . . . . . . . . . . . 98

v



5.4.5 Quantifying Internal Fragments . . . . . . . . . . . . . . . . . . . . 99
5.4.6 Identification of Unknown Peaks . . . . . . . . . . . . . . . . . . . 99
5.4.7 Evaluation of Modified Artificial Training Data . . . . . . . . . . . 102

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion 109
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.1 Main Challenges to De Novo Peptide Identification . . . . . . . . . 110
6.1.2 CNN-GNN Peptide Ion Encoding . . . . . . . . . . . . . . . . . . . 110
6.1.3 Utility of Artificial Spectra in De Novo Peptide Identification . . . 111

6.2 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Computational Cost of Full Spectrum Encoding . . . . . . . . . . 112
6.3.2 Peptide Ion Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.3 Artificial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.4 Random Peptide Model . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.5 Noise Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.1 Complete Spectrum Encoding and Graph Neural Networks . . . . 114
6.4.2 Database Peptide Scoring . . . . . . . . . . . . . . . . . . . . . . . 115
6.4.3 Artificial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Appendices 117
A Supplementary Information (Ch. 3) . . . . . . . . . . . . . . . . . . . . . 117
B Supplementary Information (Ch. 4) . . . . . . . . . . . . . . . . . . . . . 123

B.1 Further Discussion on AUC . . . . . . . . . . . . . . . . . . . . . . 127
C Supplementary Information (Ch. 5) . . . . . . . . . . . . . . . . . . . . . 128

C.1 Estimating Random Matches . . . . . . . . . . . . . . . . . . . . . 128

vi



List of Figures

2.1 The different levels of protein structure. . . . . . . . . . . . . . . . . . . . 6
2.2 Common nomenclature for the possible backbone ions from peptide frag-

mentation. The chemical structure of a four amino acid peptide is shown.
The dotted lines indicate the possible cleavages. N-terminus fragments
are listed along the bottom with C-terminus fragments along the top. Rn

indicates the side chain of the nth amino acid in the sequence. . . . . . . . 9
2.3 Tandem mass spectrum of the TPVTIAK peptide. The peptide and possi-

ble cleavages is shown above the spectrum. Matched ions are labelled with
the corresponding fragment. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Trade-off between bias and variance. Models with low complexity will have
high bias while models with high complexity will have high variance. The
ideal model will find a balance which minimizes the prediction error. . . . 19

2.5 Artificial neural network structure. A, A fully connected neural network
with two hidden layers (black). Only connections going to the first node
in each layer are shown. B, A depiction of a single node in a neural network. 22

2.6 Convolutional neural network (CNN) model architecture. The kernels of
the CNN act like feature detectors. The fully connected layers interpret
these features to make a prediction. . . . . . . . . . . . . . . . . . . . . . 24

2.7 Flow diagram of the Novor algorithm. . . . . . . . . . . . . . . . . . . . . 32
2.8 Flow diagram of the DeepNovo algorithm. . . . . . . . . . . . . . . . . . . 33
2.9 Flow diagram of the PointNovo algorithm. . . . . . . . . . . . . . . . . . . 35

vii



3.1 Number of cleavage sites present in the spectra. Box plots show the num-
bers of fragmentation cleavage sites present in the spectra for peptides of
length 6 to 30. The combined results of all the CID spectra from this study
are shown in A, with the HCD spectra from this study shown in B. The
relative numbers of spectra per length are indicated by the blue dots, and
the mean number of fragmentation cleavage sites present is shown by the
blue line. The mode of each peptide length is highlighted by the green bar
and the maximum number that could be present (peptide length - 1) is
shown by the red line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Fraction of spectra with one or more ions at each cleavage position. The
figure shows the fraction of spectra, for length 20 peptides, that contain one
or more ions at each fragmentation cleavage site. A contains all peptides of
length 20 from the four CID datasets used in this study with B containing
all peptides of length 20 from the four HCD datasets. Numbers on top of
the bars indicate their relative frequency. . . . . . . . . . . . . . . . . . . 47

3.3 Scatter plot of noise and peptide peaks. Scatter plot of the distribution of
peak m/z and normalised intensities for both the four CID (A) and four
HCD (B) datasets. Peaks attributable to each peptide are shown in blue
with noise peaks shown in orange. . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Correct peptide prediction distribution. Distribution of the correct peptide
predictions of both algorithms for the four CID (A) and four HCD (B)
datasets. The total number of peptides in the data of each length is shown
in blue, with the number containing a fragment ion from each cleavage site
shown by the hatching. Numbers of correct Novor predictions are shown
in magenta with correct DeepNovo predictions shown in green . . . . . . . 49

3.5 Algorithm performance for increasing numbers of missing fragmentation
cleavage sites. Bar plot showing the total number of spectra (blue), the
total number of peptides correctly predicted by Novor (magenta) and the
total number of peptides correctly predicted by DeepNovo (green) for each
number of missing fragmentation cleavage sites. The combined CID data
are shown in A with the combined HCD data shown in B. . . . . . . . . . 51

3.6 Peptide accuracy and amino acid recall. Plots show both algorithms for the
different fragmentation types; CID (A) and HCD (B). Peptide accuracy is
shown by solid lines with amino acid (AA) recall shown by dotted lines.
95% confidence intervals surround each point with some too small to see. 52

viii



3.7 Amino Acid recall as a function of the number of missing fragmentation
cleavage sites and the Noise Factor. Higher amino acid (AA) recall is
shown in pink, with lower recall shown in cyan. Performance of Novor
across the two fragmentation types are shown on the left (A and C) with
the performance of DeepNovo shown on the right (B and D). CID data are
shown on top (A and B) with HCD data shown on the bottom (C and D). 54

3.8 Algorithm cleavage site predictions compared to missing cleavage sites.
The hatched blue bars represent the fraction of spectra that contain an
ion from that cleavage site in the peptide. The magenta (Novor) and green
(DeepNovo) bars show the fraction of peptides predicted by each algorithm
that contained that same cleavage site. Numbers on top of the bars indicate
their value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Diagram of the CNN-GNN Hybrid Model . . . . . . . . . . . . . . . . . . 74
4.2 Performance of models with respect to the fraction of peptide peaks present

and noise ratio. Average precision is shown for spectra matching the dif-
ferent grading of both features. . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Performance of models with respect to the fraction of peptide peaks present
and noise ratio. AUC is shown for spectra matching the different grading
of both features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Comparison of the training times of the seven models. . . . . . . . . . . . 82

5.1 Fraction of peaks accounted for a sample of 50,000 HCD spectra. Per-
centages indicate the fraction of the total number of peaks each segment
represents. Hatching indicates the proportion of each ion type estimated
to have been matched by chance. The data are from 9 different organisms
and research groups, collated by Tran et al. [241]. . . . . . . . . . . . . . 95

5.2 Distribution of error in matched peak m/z for singly charged b and y
ions from a sample of 50,000 HCD spectra. The data are from 9 different
organisms and research groups, collated by Tran et al. [241]. A shows
the error distribution of matched b ions. B shows the error distribution of
matched y ions. Error for ions from the real peptides are shown in green,
with errors from the random peptides in black hatching. . . . . . . . . . 96

ix



5.3 Comparison of the distribution of 12 different ion types in real versus ar-
tificial spectra for length 10 peptides in a sample of 50,000 HCD spectra.
Frequency denotes the fraction of spectra where each ion was present. The
real data (A) are from 9 different organisms and research groups, collated
by Tran et al. [241]. The artificial spectra (B) are from a duplicate dataset
created using Prosit [89]. Ions of the same type share the same base colour
with different colour hatching indicating different charge states or neutral
losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 The number of b-type internal fragments matched by length in a sample of
50,000 HCD spectra. The data are from 9 different organisms and research
groups, collated by Tran et al. [241]. A shows the counts of possible
unique internal fragment masses (blue), matched internal masses (green),
matched random internal masses (black hatch). B shows the fraction of the
total number of possible internal fragments matched by the actual peptides
(green) and the random peptides (black). Each individual line represents
a different peptide length. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Distribution of m/z values vs m/z modulo 1 for peptide fragment peaks
and unknown peaks in a sample of 50,000 HCD spectra. The data are from
9 different organisms and research groups, collated by Tran et al. [241].
A shows the distribution of the m/z values from peaks attributable to the
database assigned peptide. B shows the distribution of the m/z from all
other peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Change in performance of PointNovo [199] when trained on artificial spec-
tra and tested on real spectra. The labels on the x-axis indicate the addi-
tions to the Prosit [89] generated training data. The real test spectra are
from the yeast partition dataset, collated by Tran et al. [241]. Jitter signi-
fies addition of m/z noise. IF indicates the addition of internal fragment
noise peaks. Ukn indicates the addition of random peptide fragment noise
peaks. RemPeaks indicates the removal of some of the lowest intensity
peaks. The dashed line shows the performance of PointNovo trained on
real spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

x



A.1 Algorithms’ cleavage predictions for length 11 peptides compared to cleav-
ages in spectra. 11 was found to be the most common peptide length. The
hatched blue bars represent the fraction of spectra that contain an ion from
that cleavage site in the peptide. The magenta (Novor) and green (Deep-
Novo) bars show the fraction of peptides predicted by each algorithm that
contained that same cleavage site. Numbers on top of the bars indicate
their value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2 Algorithms’ cleavage predictions for length 14 peptides compared to cleav-
ages in spectra. 14 was found to be the median peptide length. The hatched
blue bars represent the fraction of spectra that contain an ion from that
cleavage site in the peptide. The magenta (Novor) and green (DeepNovo)
bars show the fraction of peptides predicted by each algorithm that con-
tained that same cleavage site. Numbers on top of the bars indicate their
value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 Algorithms’ cleavage predictions for length 30 peptides compared to cleav-
ages in spectra. The hatched blue bars represent the fraction of spectra
that contain an ion from that cleavage site in the peptide. The magenta
(Novor) and green (DeepNovo) bars show the fraction of peptides predicted
by each algorithm that contained that same cleavage site. Numbers on top
of the bars indicate their value. . . . . . . . . . . . . . . . . . . . . . . . . 119

A.4 Intensity distributions spectra peaks. Distributions of the normalised in-
tensities of both noise and peptide peaks for CID (A) and HCD (B) data. 119

A.5 Peptide accuracy of the algorithms vs peptide length. Peptide accuracy of
Novor and DeepNovo for all peptide lengths. A shows peptide accuracy in
CID data while B shows peptide accuracy in HCD data. 95% confidence
intervals surround each point. . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.6 Peptide accuracy of the algorithms vs peptide length when no cleavages are
missing. Peptide accuracy of Novor and DeepNovo for all peptide lengths
and when each cleavage in the peptide has at least one ion in the spectrum.
A shows peptide accuracy in CID data while B shows peptide accuracy in
HCD data. 95% confidence intervals surround each point. . . . . . . . . . 120

A.7 Algorithm performance for increasing numbers of missing cleavages in high
scoring peptides. Bar plot showing the number of correctly predicted high-
scoring peptides by Novor (magenta) and DeepNovo (green) as well as the
total number of high-scoring peptides returned by each algorithm (blue
with surrounding colour) for each number of missing cleavage sites. High-
scoring CID peptides are shown in A with high-scoring HCD peptides
shown in B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xi



A.8 Algorithm performance on artificial HCD data. Bar plot of algorithm per-
formance with respect to missing fragmentation cleavages in artificial data
is shown in A. The plot shows the total number of spectra (blue), the to-
tal number correctly identified by Novor (magenta) and the total number
correctly identified by DeepNovo (green) for each number of missing cleav-
ages. The performance of the algorithms with respect to increasing levels
of random noise in artificial data is shown in B. Solid lines indicate peptide
accuracy while dashed lines show amino acid (AA) recall. . . . . . . . . . 121

A.9 Peptide accuracy as a function of the number of missing cleavages and the
Noise Factor. Higher peptide accuracy is shown in pink, with lower accu-
racy shown in cyan. Performance of Novor across the two fragmentation
types are shown on the left (A and C) with the performance of DeepNovo
shown on the right (B and D). CID data are shown on top (A and B) with
HCD data shown on the bottom (C and D). . . . . . . . . . . . . . . . . . 122

B.1 Correlation of features in real tandem MS data. The correlation between
the fraction of peaks present and the noise ratio in the real data used in
this study is shown in A. The correlation between the length of the peptide
and the noise ratio in the spectra for the same data is shown in B. Box
plots indicate the distribution of spectra while the blue line indicates the
mean and the green lines indicate the modes. . . . . . . . . . . . . . . . . 123

B.2 Impact of noise on the TPR and FPR of the GNN+F in artificial and real
data. The average TPR is shown in green and the average FPR is shown
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.3 Impact of noise on the TPR and FPR of the GNN in artificial and real
data. The average TPR is shown in green and the average FPR is shown
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.4 Impact of noise on the TPR and FPR of the CNN+F in artificial and real
data. The average TPR is shown in green and the average FPR is shown
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.5 Impact of noise on the TPR and FPR of the CNN in artificial and real
data. The average TPR is shown in green and the average FPR is shown
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.6 Impact of noise on the TPR and FPR of the RF+F in artificial and real
data. The average TPR is shown in green and the average FPR is shown
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.7 Impact of noise on the TPR and FPR of the Tnet8+F in artificial and real
data. The average TPR is shown in green and the average FPR is shown
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xii



B.8 Impact of noise on the TPR and FPR of the Tnet12+F in artificial and
real data. The average TPR is shown in green and the average FPR is
shown in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.1 Distribution of the presence of 12 different ion types in real and artificial
spectra for length 16 peptides. Ions of the same type share the same base
colour with different colour hatching indicating different charge states or
neutral losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C.2 Distribution of the presence of 12 different ion types in real and artificial
spectra for length 22 peptides. Ions of the same type share the same base
colour with different colour hatching indicating different charge states or
neutral losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

C.3 Distribution of the presence of 12 different ion types in real and artificial
spectra for length 28 peptides. Ions of the same type share the same base
colour with different colour hatching indicating different charge states or
neutral losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.4 Distribution of the difference in relative intensity predicted by Prosit and
the observed value for length 10 peptides. All real intensities are normalised
to the maximum fragment ion intensity matched. . . . . . . . . . . . . . . 133

C.5 Distribution of the difference in relative intensity predicted by Prosit and
the observed value for length 16 peptides. All real intensities are normalised
to the maximum fragment ion intensity matched. . . . . . . . . . . . . . . 134

C.6 Distribution of the difference in relative intensity predicted by Prosit and
the observed value for length 22 peptides. All real intensities are normalised
to the maximum fragment ion intensity matched. . . . . . . . . . . . . . . 135

C.7 Distribution of the difference in relative intensity predicted by Prosit and
the observed value for length 28 peptides. All real intensities are normalised
to the maximum fragment ion intensity matched. . . . . . . . . . . . . . . 136

C.8 Distribution of m/z values vs relative intensity values for peaks in a sample
of 50,000 spectra. A shows peaks with m/z values between 100 and 120.
B shows peaks with m/z values between 1100 and 1120. . . . . . . . . . . 136

C.9 Distribution of m/z values vs m/z modulo 1 for molecules with different
ratios of hydrogen, carbon, nitrogen, oxygen and sulphur. . . . . . . . . . 137

C.10 Distribution of m/z values vs m/z modulo 1 for random peptide fragment
peaks of different charges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.11 Distribution of m/z values vs m/z modulo 1 for human metabolites of
different charges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xiii



C.12 The number of a-type internal fragments matched by length. A shows the
counts of possible unique internal fragment masses (blue), matched internal
masses (green), matched random internal masses (black hatch). B shows
the fraction of the total number of possible internal fragments matched
by the actual peptides (green) and the random peptides (black). Each
individual line represents the different peptide lengths. . . . . . . . . . . . 139

xiv



List of Tables

2.1 Amino acid masses and chemical composition. . . . . . . . . . . . . . . . . 11
2.2 Mass calculation for the different peptide fragment ion types present in

tandem mass spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Confusion matrix for binary classification. The rows represent the classes

predicted by the model while the columns represent the actual classes. TP
stands for true positive, FP stands for false positive, FN stands for false
negative and TN stands for true negative. P represents the total number
of observations in the actual positive class while N represents the number
in the negative class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Overview of the datasets and processing steps used in this study. . . . . . 43
3.2 The number of peptides matched at the 1% FDR level for both X!Tandem

and MS-GF+, as well as how many of those were in agreement (Overlap) 44

4.1 Summary of real datasets used. FPP is the Fraction of peptide Peaks
Present in the spectra. NR is the ratio of noise peaks to peptide peaks. . 69

4.2 Structure of each CNN module as used by DeepNovo . . . . . . . . . . . . 72
4.3 Average precision values for each model on all 9 real datasets . . . . . . . 76
4.4 Average precision values for all artificial datasets. FPP stands for Fraction

of peptide Peaks Present and NR stands for Noise Ratio . . . . . . . . . . 78
4.5 Average precision values for different GNN+F models on the yeast dataset.

The number of aggregation layers is denoted by #Layers, the aggregation
function is specified under Aggregation Fn and the directions information
could flow is highlighted under Direction. . . . . . . . . . . . . . . . . . . 79

4.6 AUC values for all artificial datasets. FPP stands for Fraction of peptide
Peaks Present and NR stands for Noise Ratio . . . . . . . . . . . . . . . . 80

xv



5.1 Details of nine real datasets used. Accession indicates the PRIDE accession
number. FragTol indicates the error tolerance for fragment ions used by
Tran et al. in the database search [241]. . . . . . . . . . . . . . . . . . . . 89

5.2 Performance of PointNovo [199] on real and artificial spectra. The real
spectra are from the yeast partition dataset collated by Tran et al. [241].
The artificial spectra are from a duplicate dataset created using Prosit [89].
Test data are composed of Saccharomyces cerevisiae spectra with training
data made up of spectra from 8 other organisms. AA stands for amino acid. 92

5.3 The number of matched peaks of different ion types in a sample of 50,000
HCD PSMs with a matching tolerance of 0.05 Da. The data are from
9 different organisms and research groups, collated by Tran et al. [241].
Columns indicate the number of possible ions of each type from the as-
signed peptides (#Possible), the number of these possible ions that were
matched in the spectra (#Matched), the fraction of the possible ions that
were matched (Fraction Matched), the number of ions from random pep-
tides that were matched (#Random), and the ratio of the number of ions
matched from the random peptides to the number of ions matched from
the assigned peptides (#Random/#Matched). . . . . . . . . . . . . . . . 94

5.4 Performance of PointNovo [199] when trained using modified real spectra.
The training data had noise removed from the four different spectrum at-
tributes separately. The data are from the yeast partition dataset, collated
by Tran et al. [241]. Test data are composed of Saccharomyces cerevisiae
spectra with training data made up of spectra from 8 other organisms. . . 102

A.1 Database details. Breakdown of the protein databases downloaded from
Uniprot used in this research. . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1 AUC values for each model on all 9 real datasets . . . . . . . . . . . . . . 126
C.1 Estimates of the number of randomly matched peaks of different ion types

in a sample of 50,000 HCD PSMs with a matching tolerance of 0.05 Da.
The data are from 9 different organisms and research groups, collated by
Tran et al.. Columns indicate the number of ions from each method that
were matched (#R_Type), and the ratio of the number of ions matched
from the random peptides to the number of ions matched from the assigned
peptides (#R_Type/#Matched). R_NoShare: Random sample of amino
acids not present in assigned peptide, R_Scramble: Assigned peptides are
scrambled while keeping the same last amino acid, R_Spectrum: Assigned
peptides are compared to randomly selected spectra. . . . . . . . . . . . . 129

xvi



C.2 The number of arginine and lysine y1 fragments matched in a sample of
50,000 HCD PSMs with a matching tolerance of 0.05 Da. The data are
from 9 different organisms and research groups, collated by Tran et al.. . 129

xvii



Declaration

This thesis has not previously been accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree other than Doctor of Philosophy of
the University of Galway. This thesis is the result of my own investigations.

Some of the material contained in this thesis has appeared in the following published
papers:

1. McDonnell, K., Howley, E., and Abram, F. The impact of noise and missing frag-
mentation cleavages on de novo peptide identification algorithms. Computational
and Structural Biotechnology Journal 20 (2022).

2. McDonnell, K., Abram, F., and Howley, E. Application of a novel hybrid CNN-GNN
for peptide ion encoding. Journal of Proteome Research (2022).

3. McDonnell, K., Howley, E., and Abram, F. Critical evaluation of the use of artificial
data for machine learning based de novo peptide identification. Computational and
Structural Biotechnology Journal (2023)

xviii



Chapter 1

Introduction

1.1 Motivation

Proteomics provides insight into the functional profile of a microbial system through
the analysis of proteins [14]. Proteins perform almost all of the functions of a cell from
signalling to providing structure [187]. Changes in protein abundance can indicate changes
in the environment such as stress to a microbial system [94]. As such, identifying what
proteins are being expressed in a cell can help in our understanding of diseases such as
cancer [46]. Fundamental to this approach is the quality of the data and the accuracy of
the tools used to analyse it [191]. In a proteomics analysis pipeline, proteins are typically
digested down into smaller subsequences called peptides before being analysed via tandem
mass spectrometry. These smaller sequences have several advantages such as being easier
to both fragment and ionise [272]. The spectra which are recovered in this bottom-
up approach are then matched to peptides in a protein database [265]. This database
contains the possible proteins from organisms that could be present in the sample. The
protein sequences in the database are then subjected to in silico enzymatic digestion. For
each resulting peptide, a list of all possible fragment ions is generated, thereby creating
a theoretical spectrum. Observed spectra are labelled with a peptide by finding the
closest matching theoretical spectrum and using a scoring function to distinguish the
true matches from the false matches [181]. This database search methodology has its
limitations however, as on average only 25% of spectra acquire significant peptide matches
[95]. This is in part due to the fact that larger protein databases have a greater chance
of leading to a random peptide match [150]. Conversely, if a database is too small, the
significance estimate can be inaccurate leading to an overestimation of significant matches
[176].

De novo peptide identification is a database free alternative whereby algorithms pre-
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dict the associated peptide using the spectrum alone [56]. Not being reliant on a database
means it has important applications where no reference peptide sequence is available, such
as the identification of neoantigens that can be used in immunotherapies [240].

While database searching is still the more popular approach, de novo identification
has had a lot of recent growth, stimulated in part by improvements in performance due to
machine learning [177]. De novo peptide identification does not face the same bottlenecks
as database searching and so if the current trend continues it could soon become a com-
petitive alternative. It can also be combined with database search methods to improve
sensitivity [271].

Machine learning is a process whereby models are designed to learn from data without
being explicitly programmed to do so [170]. Prediction tasks generally involve supervised
machine learning where the model is trained to predict the desired label/output given
an associated set of features. In the context of peptide identification, machine learning
models have been used to both predict the spectrum given the peptide sequence [237] as
well as identify the peptide sequence given the tandem mass spectrum [241]. These two
applications involve the same data but with their features and labels exchanged. Spectrum
prediction models have been used to increase the sensitivity of database searches by
providing more realistic theoretical spectra with which to compare to the observed spectra
[89]. Machine learning models that help to predict the peptide from the spectrum are
incorporated all of the current state-of-the-art de novo peptide identification algorithms
[153, 241, 199]. Novor [153] uses random forests to identify fragmentation sites while
DeepNovo [241] and PointNovo [199] employ deep learning to predict the next amino acid
in the sequence.

Despite there being different algorithms and approaches for de novo peptide identi-
fication, there have been very few independent evaluations. Self reported performance
is typically limited to a small set of metrics with little exploration on the strengths and
limitations of the different algorithms. There is therefore little information available for
new research groups to develop novel de novo peptide identification algorithms. With
machine learning advancing at an exponential rate, the integration of newly developed
approaches to de novo algorithms will be key to the field’s continued improvement. For
that to happen, researchers must have an understanding of the algorithms, the data, and
how they both interact.

The focus of this thesis is to identify and address some of the challenges associated
with de novo peptide identification. Specifically, it is to characterise tandem mass spec-
tra in the context of de novo peptide identification and understand how we can design
better algorithms to perform this task in the future. Understanding the data is key to
the design of effective de novo peptide identification algorithms and so analysis of real
spectra is fundamental to this work. Furthermore, the analysis described in this thesis is
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extended to artificial spectra and how they can be used to benefit de novo peptide identi-
fication. Artificial spectra have previously been used to evaluate de novo algorithms but
the significance of these results to real data performance has not yet been established.
The thesis also includes the first use of graph neural networks (GNNs) in the context of
de novo peptide identification. A novel architecture, incorporating GNNs, is proposed for
the encoding of peptide ions in tandem mass spectra. The performance of this model is
then compared to the encoding modules of three state-of-the-art de novo peptide identi-
fication algorithms. With many diverse and important applications, improvements to de
novo peptide identification will increase both the utility and adoption of this methodology
in future. This thesis provides a foundation for the development of new and improved
approaches to de novo peptide identification.

1.2 Research Questions

The aim of this thesis is to address the following research questions:

1. What are the main challenges to de novo peptide identification?

2. Can we design better encoding modules to address these challenges?

3. Can artificial spectra be leveraged to aid the training and evaluation of de novo
peptide identification algorithms?

1.3 Hypotheses

Based on the research questions described above I expect to show that:

1. Missing fragmentation cleavages are a major challenge to current de novo peptide
identification algorithms.

2. Combining the graph-like structure of the data with deep learning through GNNs
can provide better peptide ion encoding.

3. Introducing noise to artificial spectra can provide ground truth data for de novo
peptide identification algorithm evaluation. It could also provide difficult-to-classify
examples which are currently rare in the training data.

1.4 Thesis Overview

The next chapter presents a comprehensive summary of the research topics relevant to
this research. It provides a background in proteomics and de novo peptide identification
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as well as machine learning.
Chapter 3 explores the prevalence of noise peaks and missing fragment ion peaks in

tandem MS spectra, two of the biggest challenges in peptide identification. An evaluation
of current state-of-the-art de novo peptide identification algorithms is performed including
an analysis of how these challenges affect their performance. Possible solutions to the
limitations observed are also proposed.

Chapter 4 presents a novel peptide ion encoding module based on graph neural net-
works (GNNs). The proposed module is compared to encoding modules employed by
other state-of-the-art de novo peptide identification algorithms over a range of datasets.

The focus of chapter 5 is to perform a critical evaluation of artificial peptide spectra
and their use in the training and evaluation of de novo peptide identification algorithms.
This includes the quantification of the different types of noise and variability in real
spectra and how they could be used to improve the utility of artificial spectra.

Chapter 6 concludes the thesis with a summary of the main contributions as well as a
discussion of the limitations of this work and an outline of potential directions for future
research.
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Chapter 2

Background

2.1 Proteomics

2.1.1 Background

Proteins are large molecules that act like molecular machines and are essential to life on
earth [82]. They help carry out numerous functions such catalysing reactions, providing
structure to cells and transporting molecules [149]. The information needed to create
proteins is coded for by genes in DNA. Following the activation of transcription regulators,
sequences of DNA are transcribed into a complementary RNA strand [186]. The nucleic
acids that make up the RNA strand are then translated into a protein sequence. Proteins
are made up of long chains of building blocks called amino acids. It takes three nucleic
acids in a coding region of a gene to encode one amino acid.

There are twenty different types of amino acid, each with unique properties defined
by a distinct side chain called an R-group. The amino acids bind together to form
long chains. Each protein is defined by the specific order of its constituent amino acids
called its primary sequence. The order is defined from the NH2 (N-terminus) end to the
COOH (C-terminus) end. These long chains fold into secondary structures such as helices
or sheets (Figure 2.1). The interactions between the amino acids form these secondary
bonds creating a unique structure for each unique sequence [11]. The secondary structures
further fold up into a protein’s tertiary shape. Many proteins can also then interact and
bond with one another to give what is known as a quaternary structure. The final 3-
dimensional shape of a protein defines its function.

The protein expression of a cell is directly correlated to its environment and the
associated stresses [4]. Therefore protein expression profiling can provide a snapshot
into ecosystem functioning. Furthermore, in complex environments where many different
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Figure 2.1: The different levels of protein structure.

types of organisms are present protein identification can inform both what functions
are being carried out as well as the organism responsible [1]. Just as the genome is
the full complement of genetic information of an organism, the proteome is the protein
complement expressed by the genome [255]. Similarly, the analysis of the proteome is
known as proteomics.

As proteins perform so many molecular functions, understanding and characterising
the proteome is a key part of understanding biological systems. Proteomics has therefore
applications in a huge variety of areas. For example, the alteration of a system’s proteome
could be a sign of disease or stress [207]. In the area of healthcare, proteomics can aid in
the understanding and diagnosis of many diseases including IBD [62], Alzheimer’s disease
[244], general morbidity [233] and many heart conditions [147, 156, 6]. It can also be used
to identify disease causing bacteria and their antibiotic resistance [29, 217] as well as the
interaction between a virus and its host [242, 61]. This kind of research has had huge
implications in terms of public health with the recent COVID-19 pandemic caused by the
SARS-CoV-2 virus [142].

Proteomics is particularly useful in cancer research where the altered genome of the
cancer cell will express a different proteomic profile [137]. Protein biomarkers can be used
to help diagnose cancer [210] while cancer cells will respond differently to a drug depending
on their profile of expressed proteins [49]. Cancer immunotherapy is a treatment whereby
the body’s own immune system is used to target the cancer cells [213]. Identification of
proteins unique to the cancer cell have been shown to provide a viable target to trigger
an immune response [127].

Most microorganism do not live in isolation but as part of complex communities
[212]. Meta-omics technologies involve the analysis of these complex communities where
the many different types of organisms both compete and cooperate [214]. As proteins
are expressed by a cell in response to stimuli and the current needs of the cell, their
characterisation allows researchers to see what cells are doing at a particular moment in
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time. This is particularly useful in complex communities. While they may perform similar
functions, proteins expressed by different organisms vary slightly. Proteomic profiling can
therefore show both the constituents of a community alongside the functions each taxon
is performing [1]. It may happen that the taxonomic profile remains constant under some
stress but the functional profile changes significantly [163].

2.1.2 Methodology

Proteomics can be performed in both a top-down and bottom-up approach. In top down
proteomics, proteins are isolated intact before analysis. Then tandem mass spectrometry
(MS) is used to fragment the proteins and create a fragmentation spectrum. Proteins can
then be identified based on the characteristics of these spectra. However, this strategy is
not straightforward due to difficulties in the fractionation, ionization and fragmentation
of complete proteins [272].

Bottom-up proteomics has therefore become the more popular approach. It is also
called shotgun proteomics, based on its similarities to shotgun sequencing where small
DNA fragments are recombined to determine the sequence [91]. In shotgun proteomics
and in contrast to the top-down approach, proteins are first digested down into smaller
fragments called peptides. The proteins are typically digested using trypsin but other
enzymes can also be used [243]. Trypsin cleaves the protein at the C-terminus side
of arginine (R) and lysine (K) except when either is followed by a proline (P). This
results in a set of peptides where the majority are less than 30 amino acids in length
[239]. After digestion, the peptides are fractionated by liquid chromatography (LC).
Here the peptides are separated based on their affinity to the mobile phase of the LC
column [225]. Similar peptides will therefore pass through at similar rates before entering
the next phase. Following the LC column, the now separated peptides enter into a
tandem mass spectrometer. This further isolates the peptides by mass before they are
fragmented and a unique signature for each acquired [265]. Tandem mass spectrometry
will be further discussed in the next section. The spectra produced must then be matched
to the originating peptide sequence. This is typically done by comparing the observed
spectra to theoretical spectra created from the possible peptides in a protein database.

Shotgun proteomics is the preferred method of analysis as peptides are more soluble
and easier to separate than intact proteins [38]. The technique makes it possible to
produce large amounts of high quality data but the approach has some computational
bottlenecks. The top down approach of proteomics aims to match the observed mass
spectra to theoretical spectra created using a protein database. The bottom-up approach
introduces another layer of complexity as spectra need to first be mapped to peptides and
then to proteins. Two problems that arise from this are the uncertainty when reconnecting
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the identified peptides to proteins as well as the amplification of error rates when going
from peptide to protein level identification [181]. While the list of peptides is created
from a protein database, there is not necessarily a unique mapping between the two [181].
A Peptide can be shared between multiple proteins leading to ambiguity as to which it
belongs to. Some peptides are unique to one protein. However, a match with such a
peptide does not guarantee the presence of the protein as the algorithms used are far
from perfect [118]. Improvements to analysis pipelines are evidently needed, however
understanding of the data and how it is created is an essential first step in this process
[166].

2.1.3 Mass Spectrometry

Mass spectrometry is now the method of choice for proteomics analysis [181]. New tech-
nologies have seen the quality, scale and diversity of the data explode recently. This
however has led to challenges, as the analysis pipelines have yet to catch up [253].

Mass spectrometers are a well established technology and have been used in research
for many decades [27]. There are now many different types available but they all work
on roughly the same principle [277]. A sample is first converted to a gas and ionised
(charged) so that it can be accelerated using an electromagnetic field. The acceleration
due to the field is inversely proportional to the mass-to-charge ratio (m/z ) of the ion.
Given the same electromagnetic field heavier ions will accelerate more slowly than lighter
ions. Similarly, ions with lower charge will accelerate more slowly than ions with greater
charge. These properties are utilised to separate the ions by their m/z value. A detector
then measures the different ion abundances and converts them into a spectrum.

The spectrum is a 2-dimensional representation of the observations of the detector
with m/z units on the x-axis and intensity on the y-axis. The intensity (height) of the
peak indicates the frequency/relative abundance with which that m/z value was detected.
No measurement is perfect and so raw MS spectra will not appear as perfect zero-width
peaks. Instead, raw spectra must be converted into a list of m/z values corresponding
to the centroid of each observed peak. Spectra can also be filtered by eliminating low
intensity peaks that are indistinguishable from random noise [10]. The preprocessing
method performed can have a large influence on the quality of the results [203]. Following
this, mass spectra are then represented by a 2-dimensional list of m/z and intensity pairs.

Tandem mass spectrometry, as the name suggests, uses two mass analysers in series
[164]. A sample is ionised and passed into the first mass analyser. Here the ions are
separated by m/z so that specific m/z values can be targeted. Using the first mass
analyser a specific m/z range is isolated so that only ions within this range remain. This
generally targets a singular peak which is then called the parent ion. In the context
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of bottom-up proteomics, a peak in the initial mass scan can represent a single peptide
due to the combined separation of both the LC column and mass analyser. The isolated
peptides then pass to a collision chamber where they are fragmented (see Section 2.1.4).
Finally, these fragments pass through a second mass analyser to create a tandem mass
spectrum. The peaks now represent the relative abundance of the different fragments
of the parent ion. The spectrum also has associated meta data including the m/z and
charge of the parent ion, which can also be used by to infer the originating peptide.

2.1.4 Peptide Fragmentation

Peptide fragmentation happens in the collision chamber of a tandem mass spectrometer,
between the two mass analysers. It can be done through collision induced dissociation
(CID) where the peptides are accelerated into, and collided with, neutral molecules caus-
ing them to break into smaller fragments [252]. New technologies provide much greater
m/z precision through higher-energy dissociation (HCD) [185]. This method of fragmen-
tation typically results in cleavage at the peptide (CO-NH) bonds in the amino acid chain.
As shown in Figure 2.2, these fragments are called b and y ions. Other ions (a,c,x and
z) can also occur through the cleavage of different bonds in the chain, but do so in lower
frequencies in HCD data. Fragment ions can also lose neutral molecules such as water or
ammonia shifting their m/z value by the corresponding mass.

Figure 2.2: Common nomenclature for the possible backbone ions from peptide fragmen-
tation. The chemical structure of a four amino acid peptide is shown. The dotted lines
indicate the possible cleavages. N-terminus fragments are listed along the bottom with
C-terminus fragments along the top. Rn indicates the side chain of the nth amino acid in
the sequence.

While the collision of molecules with the peptide during fragmentation is random, the
spectrum that is created is dependant on features of both the data and the experimental
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setup. The length of a peptide sequence, its sequence of amino acids, and the position of
the bond along the sequence where the cleavage occurs all influence the relative abundance
of fragment ions [189, 237]. Fragmentation will occur more often in more energetically
favourable scenarios [189]. These will be observed as higher intensity spectrum peaks.
Furthermore, the type of mass spectrometer and fragmentation method will also change
the fragmentation patterns observed with different mass ranges preferred by different
setups [57, 73].

Due to these dependencies, peptides will exhibit partially consistent fragmentation
patterns unique to their amino acid sequence and the experimental setup. The spectrum
will contain high intensity peaks corresponding to the fragments created from the different
cleavages of the peptide (Figure 2.3). These can then be used to deduce the unique
sequence of the originating peptide.

Figure 2.3: Tandem mass spectrum of the TPVTIAK peptide. The peptide and possible
cleavages is shown above the spectrum. Matched ions are labelled with the corresponding
fragment.

As the mass of each amino acid is known the theoretical m/z values for each fragment
can be calculated (Table 2.2). Theoretical spectra can be created from query peptides
in a database and compared to the observed spectrum. The peptide can also be recon-
structed de novo, without the use of a database by identifying the fragment ions through
their mass differences alone. However, adding to the complexity of the problem is the
possibility of the peptide to undergo post-translational modifications (PTMs). PTMs are
alterations to the chemical makeup of a protein [151]. For example, methylation involves
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the addition of a methyl group to the side chain of an amino acid. PTMs expand the
functional capabilities of proteins beyond the standard amino acids and can be reversible
or irreversible. Recent studies have shown that they are involved in the regulation of
almost all cellular events [251]. Detection of PTMs from tandem MS is possible but dif-
ficult as increasing the number of possible amino acid masses exponentially expands the
search space [45].

Amino Acid Symbol Mass (Da) Composition
Glycine G 57.02146 C2H3NO
Alanine A 71.03711 C3H5NO
Serine S 87.03203 C3H5NO2

Proline P 97.05276 C5H7NO
Valine V 99.06841 C5H9NO
Threonine T 101.04768 C4H7NO2

Cysteine C 103.00919 C3H7NO2S
Isoleucine I 113.08406 C6H11NO
Leucine L 113.08406 C6H11NO
Asparagine N 114.04293 C4H6N2O2

Aspartic Acid D 115.02694 C4H5NO3

Glutamine Q 128.05858 C5H8N2O2

Lysine K 128.09496 C6H12N2O
Glutamic Acid E 129.04259 C5H7NO3

Methionine M 131.04049 C5H9NOS
Histidine H 137.05891 C6H7N3O
Phenylalanine F 147.06841 C9H9NO
Arginine R 156.10111 C6H12N4O
Tyrosine Y 163.06333 C9H9NO2

Tryptophan W 186.07931 C11H10N2O

Table 2.1: Amino acid masses and chemical composition.

2.1.5 Database Searching

Database searching is currently the most popular way of identifying peptides in tandem
mass spectra. With the exponential increase in the availability of genome sequences,
there is now an abundance of protein sequences available [50]. The first step in a database
search pipeline is the selection of the appropriate protein sequence database. The database
should include all possible proteins that could be found in the sample [180]. For example,
for a sample from a pure culture of human cells, one could use the complete human
proteome as a database. For unknown samples, one could choose a more general database
containing proteins form hundreds or even thousands of different organisms. Databases
can be downloaded from online collections such as UniProt which contains millions of
proteins and thousands of proteomes, both reviewed and unreviewed [50].
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Ion type Mass Calculation
a

∑
AAs - CO + H

b
∑

AAs + H
c

∑
AAs + NH3 + H

x
∑

AAs + CO + OH
y

∑
AAs + OH

z
∑

AAs - NH3 +OH
Ion Loss
H2O ion - H2O
NH3 ion - NH3

Internal
Fragments
a

∑
AAs - CO + H

b
∑

AAs + H

Table 2.2: Mass calculation for the different peptide fragment ion types present in tandem
mass spectra.

Once a database is defined, the proteins in the database are used to create all possible
peptides through an artificial enzymatic digestion. For example, if trypsin was used in the
experiment, the proteins would be digested using the known rules outlined earlier. The
mass of each of the peptides is also calculated. For a given spectrum, a list of possible
peptides is generated from the database by extracting those that match the parent ion
mass within a given tolerance [130]. The possible fragment ion peaks for each of the
candidate peptides are calculated to create a theoretical spectrum for each peptide. The
peaks in each theoretical spectrum are compared to the peaks in the real spectrum with
each peptide given a score based on their similarity [69]. Peptides whose theoretical
spectra score sufficiently high enough are considered correct matches.

While the technology used in creating the data has seen revolutionary changes in the
last 20 years, the methodology and algorithms used have remained largely the same [249].
X!Tandem is one such database search algorithm [52]. It calculates a hyperscore for each
peptide-spectrum pair to differentiate correct matches from incorrect ones [72]. For each
theoretical peptide, the set of possible peaks P ∈ {0, 1} is predicted. The correlation
between the theoretical peaks and the spectrum is calculated by summing the intensities
I of the real peaks that match within a given threshold. This is equivalent to a dot
product between the two spectra. Finally, this product is multiplied by the factorial of
both the number of matched b ions (nb) and the number of matched y ions (ny).

hyperscore = (nb!ny!)

n∑
i=0

IiPi (2.1)
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A survival function is then defined based on the distribution of the hyperscores of all
possible peptides with a particular spectrum [72]. This defines the probability that a
spectrum’s hyperscore will be higher than a given value by random matching. Using the
survival function, the highest scoring peptide for each spectrum is given an expectation
value (e-value). The e-value is an indication of how many peptides would have at least that
score. Therefore lower e-values indicate that the hyperscore is less likely to have occurred
by chance. This can be used to differentiate random matches from true matches.

Databases have seen a large increase with more and more genomes being sequenced.
Large databases are a problem for database searches as they increase the probability of
a random match [150]. A good scoring function should separate random matches from
true matches with correct matches scoring higher. Ideally, a score threshold could then
be set above which a match is deemed correct. However, the exact error rate is difficult
to determine and so the ideal threshold is not known.

This problem is addressed by estimating the false discovery rate (FDR) by using the
scoring function on a decoy database [121]. A decoy database is created by reversing or
shuffling the sequences of the actual database being used. This creates a database with
the same distribution of peptide lengths and masses but which share few or no peptide
sequences [67]. The theoretical spectra from the decoy peptides are then scored against
the observed spectra as before. As these decoy peptides are known not to exist, the
distribution of scores from the decoy database is assumed to match that of the random
false peptide matches. A score threshold is then typically set so that only 1% of peptides
above this come from the decoy database giving an estimated FDR of 1%. Large databases
increase chance of a random match meaning for the same score threshold there will be
more incorrect matches. Therefore to maintain a 1% FDR the minimum threshold must
be increased. Correctly matched peptides will then be discarded as they now fall below
the accepted threshold. On average, as little as 25% of spectra obtain significant peptide
matches [95]. This problem is even more profound for metaproteomics analysis [178].
Metaproteomics involves the functional profiling of mixed communities, where the the
databases are much larger due to the increased species diversity.

As the difficulty in search spaces increases exponentially with greater numbers of
options, only limited amino acid modifications are considered in database searches. This
is despite the fact that PTMs are are ubiquitous in proteins [251]. Increasing the number
of amino acids to look for increases both the FDR and runtime of search algorithms
[5]. Typically only common modifications such as oxidation (+16 Da) of methionine are
considered. The amino acid cysteine is generally modified through carbamidimethylation
(+57 Da) during the experimental process and so is only considered in this form [30].
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2.1.6 De Novo Peptide Identification

De novo peptide sequencing is the identification of peptides without the use of a database
[56]. This strategy relies on the spectrum alone, using the relationship between peaks to
deduce the amino acid sequence. Singly charged ions of the same type from neighbouring
cleavages will produce peaks separated by the mass of the amino acid between them
(Figure 2.2). Ions of different types can be used also (Table 2.2). Moving from peak to
peak, the peptide can be built up, one amino acid at a time.

The practice of de novo peptide identification started out as the manual labelling
of fragment ions. Researchers would assemble the ion series, and therefore the peptide,
using a set of learned rules. This process was eventually automated but would still require
manual checking due to the inconsistencies of the results particularly at the ends of the
peptide [216].

Since then there have been multiple algorithmic approaches to the de novo peptide
identification problem. Many of these approaches try to model the fragmentation process
to aid in their attempt to identify the peptide sequence [7]. If the mapping from peptide
to spectrum can be learned, that information can then be used in the reverse mapping
using the spectrum to recreate the peptide.

Bartels [18] introduced the idea of modelling the mass spectrum as a graph. In this
approach, nodes corresponding to the different ion types are created for each peak. Edges
are created between nodes where the mass difference between them is equal to that of
an amino acid. As the series of peptide fragment ions are separated by the mass of
the constituent amino acids, ions from neighbouring cleavages will be connected in the
graph. Provided all cleavages are represented by fragments in the spectrum, the edges
of a path through the graph will give a candidate peptide. If peaks are missing they
can be represented by a mass-gap. Each node in the graph is given a score based on the
fragmentation probability of the associated cleavage [223]. Dynamic programming is then
used to find the highest scoring path through the graph. The edges of the highest scoring
path will describe the most likely amino acid sequence.

PepNovo updated this methodology with an improved probabilistic scoring function
[78]. In this method a probabilistic network is created to model the interaction between
amino acids and peaks. The model was trained using database PSMs to learn the weights
in the network. Again, a spectrum graph was created, however this time with each vertex
scored using the probabilistic network. Finally dynamic programming was used to find
the highest scoring antisymmetric path in the graph. The authors require the path to be
antisymmetric as it may be possible in the graph to travel partly along the b-ion series
before travelling back along the y-ion series created by the same cleavages [57].

NovoHMM is a method of de novo peptide sequencing using hidden markov models
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[75]. In this method, spectrum peaks are the observable random variables while the
originating amino acid sequence is represented by the hidden variables. The hidden
markov model consists of a learned set of transition and emission probabilities between
the states allowing the it to model the peptide fragmentation process. The best sequence
given the observed peaks is then found using the viterbi algorithm [76].

One of the difficulties of the de novo sequencing problem is the size of the search
space. Unlike database searching, there is no a priori knowledge of the sequence and
so for a peptide of just length 10, there are 2010 possible amino acid combinations to
be considered. If internal fragments are included, finding the optimal sequence has been
shown to be NP-complete [260].

A common feature of all of the above algorithms is peak scoring using only a small sub-
set of local features such as peaks from neighbouring fragments, followed by a step-by-step
approach and dynamic programming. However, peptide fragmentation is a complicated
process with the complete amino acid sequence influencing the likelihood of each cleav-
age [237]. Unfortunately these methods do not therefore effectively model the peptide
fragmentation process. The algorithms are forced to employ approximate solutions due
to the complexity of the problem [152]. The development of more complicated models is
prohibitively computationally expensive. Yet, despite the large size of the search space,
de novo identification can still include PTMs into the search space [7]. Previous analysis
has shown that the integration of PTMs into de novo algorithms has a much smaller effect
on the running time than that of database methods [81].

The ultimate goal of proteomics is the characterisation of the proteome. However,
de novo identification of peptides makes it difficult to map the predicted peptides back
to proteins. In database methods each matched peptide is mapped to one or several
proteins. While this has its own difficulties as outlined earlier, all predicted peptides
could possibly exist and are linked to proteins. However, peptides predicted using de
novo algorithms may not even exist in the protein database. Missing peaks in a spectrum
may lead to ambiguity in parts of the predicted peptide, causing a partial match. Instead
of looking for direct matches, de novo peptides therefore can be matched using the Basic
Local Alignment Search Tool (BLAST) [175]. BLAST is a powerful tool that compares
the similarity between biological sequences [8]. It can be used to predict the function of
a protein by finding other proteins of similar sequence. The tool is unsuitable for short
sequences such as peptides and so a more specific alternative, MS BLAST, was developed
[219]. Shevchenko et al. showed how the tool could be combined with de novo peptide
identification to characterise the proteomes of organisms without sequenced genomes.
Many other tools are also available that perform similar tasks [116, 155]. However, as
these methods only use the predicted sequence, information from the spectrum is lost
which could be critical to accuracy of the peptide [174]. Furthermore the accuracy of de
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novo algorithms has also limited the utility of this approach.
Until recently, de novo strategies have lagged behind database searching in terms of

outright accuracy with the latter consequently vastly more popular. Instead of been used
to identify all the peptides in a sample, de novo methods have been more commonly used
to identify sequence tags used to filter databases or process spectra missed by database
searches [231, 230, 220, 101]. Combining de novo methods with database searches provides
a potential solution to the aforementioned issues with large databases. Most de novo
algorithms provide a confidence score in each of the amino acids they predict. Short
high-scoring sub-sequences can then be used alongside the parent ion mass to filter the
database, lowering the chance of a random assignment [181].

De novo peptide identification algorithms are also used when there is no reference
database available. This could be because the genome of an organism is not yet se-
quenced, or the proteins in question have mutations such as the case in certain cancers.
Neoantigens are small peptides that can be recognised by the body’s immune system.
The identification of neoantigens specific to a cancer can therefore be used to develop
highly specific immunotherapies [87]. These are types of treatment whereby the immune
system is triggered to fight the disease itself. De novo peptide identification algorithms
offer a viable way of sequencing these peptides [240].

While de novo peptide identification has its limitations there is still room for opti-
mism. Machine learning has recently being applied to the area leading to an explosion in
algorithm development and accuracy. With continued improvements it may soon become
an alternative to the database search approach [177].

2.1.7 Benchmarking Performance

There is no universal benchmark for de novo peptide identification algorithm evaluation.
Evaluation of models is performed on data from different experimental setups and different
research groups with no agreed upon standard [7]. This means the characteristics of
the data being used can vary widely. Furthermore, there is also no guarantee that the
peptide assignments used in the evaluation are correct. The data is usually obtained
from a database search using a specified FDR, however incorrect implementation of the
approach can underestimate the error rate by a significant amount [121, 58].

Evaluation is also typically performed by the research group that designed the algo-
rithm. Performance of algorithms can vary widely from dataset to dataset and one cannot
assume that the algorithm that performs best on data from one experimental setup will
perform best overall [7]. Each algorithm is based on a different learning model which will
have its own strengths and weaknesses. While the performance of models is generally
reported in papers using amino acid precision and recall as well as peptide accuracy, the
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reasons why one algorithm performs better or worse, or the where each model struggles
is not explored. Unfortunately, there have been very few independent evaluations of de
novo peptide identification algorithms to account for this. Muth et al. [177] performed
one such study where they identified common errors made by state-of-the-art algorithms.
The scarcity of independent evaluations means researchers are using tools that lack rig-
orous analysis. Furthermore, with such limited data on where algorithms go wrong it is
difficult for improvements to be made.

Overall, the benefits of proteomics and peptide identification are clear, despite their
many limitations outlined earlier. Better benchmarks and standards will help identify
and address these limitations, leading to further improvements in the field. With many
of the issues relating to data quality having been addressed, computational challenges are
now central to the advancement of peptide identification [113]. As is currently the case
in many fields of research, machine learning is sure to play a central role in this process.

2.2 Machine learning

2.2.1 Background

The field of machine learning dates back to the mid-twentieth century but has seen an
explosion recently with the availability of more powerful hardware and an abundance
of data [274]. It now permeates almost all aspects of our lives from healthcare [42],
entertainment [23], agriculture [144] and security [259].

Machine learning involves the development of models that can learn patterns from
data without explicit direction [169]. Following experience (E) on a given task (P), the
model updates its parameters to improve its future performance (P). Data are typically
made up of many observations of a particular phenomenon. Each observation will have
the same feature types but a unique set of values [274]. Depending on the data used
and the requirements of the task, different types of machine learning may be used. In
unsupervised learning the model seeks to discern patterns from unlabelled data. An
example of unsupervised learning is cluster detection, whereby a model tries to identify
observations that are similar to one another in feature space [104].

Supervised learning involves labelled data whereby the model is given a set of features
and an output it must predict. The model then tries to replicate the function mapping
the features to the desired output. One of the simplest supervised learning models is
the k-nearest neighbour model [131]. Prediction of new observations can be done by
simply taking a weighted vote of the nearest k labelled observations in feature space.
Other models need to iterate over the data multiple times. Linear regression by gradient
descent is one such example [84]. First, a random model is created and its performance
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measured. The parameters of the model are then updated to reduce its error and the
process is repeated. The model continues to iterate over the labelled data until the error
stops decreasing.

2.2.2 Data

Data is the cornerstone of machine learning. Much of the success of machine learning
in recent years is due to the explosion in quality and scale of available datasets [125].
The quality of any machine learning model produced is reliant on the quality of the data
available. Common issues with data include noisy or incorrect labels, missing values,
imbalanced classes or bias [97, 40]. Ideally, given enough data a model will generalise
over some of these issues. However this is not always possible and steps must then be
taken to mitigate them.

Typically in machine learning, datasets are split into three parts; a training set, a
validation set and a test set [93]. The training set is used by the model to learn a mapping
from input features to output labels. The validation set is not used for training the model
but for evaluation. During training, it gives an unbiased indication of the performance
of the model. The model can then iterate over the training data until the validation
performance stops increasing. The hyperparameters of the model can also be adjusted to
maximise the validation performance [48]. These are non-trainable parameters within the
model that affect its performance. Only once the training and validation are complete
should the model be tested on the test set. This gives an estimate of the real performance
of the model as this dataset is completely independent of the training process. It should
be noted that the terms test set and validation set can sometimes be interchanged in the
literature but the process remains the same.

2.2.3 Bias and Variance

The prediction error of a machine learning model has two main components; bias and
variance [136]. The bias can be interpreted as the average error between a model’s pre-
dictions and actual labels over all possible training sets. It is the error due to the inherent
inabilities of the model. The variance is the error caused by differences between models
for different training sets. Highly complex models will vary if trained on different sub-
sets of a dataset. The design and choice of a machine learning algorithm often results
in a trade-off between bias and variance [65]. Simple models will produce similar results
regardless of the training data used (low variance). However, the algorithm may have
insufficient degrees of freedom to adequately model the data and so have high bias. This
is called underfitting. Alternatively, complex models will have low bias as each model fits
the training data very well. They will also have high variance, as the prediction is highly
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dependant on the training set and each model may not generalise well. This is called
overfitting.

Ideally a model will have low bias and low variance. However, this can be difficult
as modifications to a model that decrease one often increase the other [136]. The ideal
model is one that balances this trade-off (Figure 2.4). There are steps one can take to
identify these issues and to find an adequate model. It is easy to identify overfitting as
the performance between the training and validation sets should be similar. If a model
performs much better on the training set than the validation set it has overfit and will
not be very useful. The model is unable to generalise what it has learned to new data.
This can happen when a machine learning model has too many parameters so that it
can completely recreate the training data. A model that has underfit can be difficult to
recognise as both training and validation error will be similar. However, performance will
be poor for both. In such cases, one can try to increase model complexity to see if it leads
to increased general performance.

Figure 2.4: Trade-off between bias and variance. Models with low complexity will have
high bias while models with high complexity will have high variance. The ideal model
will find a balance which minimizes the prediction error.

There can also be bias in the data used to train models. Each dataset is only a
small proportion of the total population of possible observations. Misleading relationships
between features and labels may appear in the data due to imbalanced sampling, biased
labelling or selection bias and therefore not accurately reflect the population [47, 269,
24, 103]. It is important that the training data provides a true representation of the
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problem domain as bias in the training data will lead to bias in the model [132]. It is
therefore imperative that researchers identify bias in their data and take steps to mitigate
it. A simple example is ensuring that the training set is a random sample of the total
population. If the data does not contain a complete or accurate representation of the
problem domain it is almost impossible for a model to compensate. Understanding the
data and its bias is an essential part of creating a machine learning model.

2.2.4 Decision Trees and Random Forests

Decision trees are a type of supervised machine learning algorithm whereby the data
is continuously split based on simple rules that the model learns. A metric such as
information gain, is used to decide which feature is used to split the data [201]. Using the
feature and value that provide the most information gain, the data is divided into two
parts. The process of calculation of information gain and feature selection is repeated
recursively each time the data is split forming a "tree" of decisions. While this process
can be repeated until each dataset contains only one class, this may lead to overfitting.
A maximum tree depth can be defined to help ensure the model can generalise to new
data. As the rules learned by a decision tree can be easily extracted and visualised the
models are highly interpretable and therefore popular for medical applications [245].

This methodology can also be expanded to create an ensemble of decision trees called a
random forest (RF) [35]. The first step in this methodology is to create random samples of
the data with replacement. This is called bootstrap aggregation (bagging). Also, a subset
of the features is randomly sampled for each dataset [110]. A decision tree model is then
fit to each data sample. Each of the trees in the collection (forest) give a prediction for a
given observation. The class with the majority vote is then assigned to the observation.

Random forests have been applied to a variety of areas from Alzheimer’s disease
prediction [138] to intruder detection [204]. As they are an ensemble of many decision
trees, they are robust to overfitting. While a single tree may have high variance, the
collection of trees as a whole will not [234]. They are especially useful when the number
of features exceeds the number of observations. As such have been used to help predict
survival rates post-cancer using microarray data, where the number of features (genes)
may be an order of magnitude larger than the sample size [246].

2.2.5 Artificial Neural Networks

Artificial neural networks (ANNs) have been at the forefront of machine learning’s recent
success. Like decision trees and random forests, they are a supervised learning algorithm.
ANNs are loosely inspired by the neurons of the brain and are made up of layers of nodes
with connections that can pass a signal between them [93]. Each node receives multiple
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inputs hi, which are multiplied by respective trained weights wi (Figure 2.5). These are
then summed along with a bias term b before passing through a non-linear activation
function f to give the output of that node. This can be then fed into the next layer of
the network. Layers of nodes can be stacked so that the output of one provides the input
to the next. With inputs h(0) we can define the output of the lth layer as follows:

h(l) = f(W(l)h(l−1) + b(l)) (2.2)

Activation functions must be non-linear to allow the model to interpret non-linear rela-
tionships in the data. Rectified Linear Units (ReLU) have become the method of choice in
many state-of-the-art deep learning models [183]. For values greater than zero that pass
through a ReLU function, the value remains unchanged with values below zero set to zero.
While also being quicker than many other activation functions, a ReLU’s partial linearity
helps with vanishing gradients [154]. Vanishing gradients occur in deep networks, where
the backpropagated error can decay to zero as the number of layers increases [112]. The
final layer of an ANN is called the output layer, and has a single node for each possible
class. The final activation function can then be used to output a probability distribution
over the possible classes. For binary or multi-label classification the sigmoid function
maps each value between zero and one as follows:

σ(x) = (1 + e−x)−1 (2.3)

For multi-class single label problems a general form of the sigmoid function called a
softmax is used. The softmax scales a vector such that its sum equals one as follows:

σ(xi) =
exi∑
j e

xj
(2.4)

Neural networks are sometimes referred to as deep learning as layers can be stacked
on top of one another to increase model complexity and create a deep network. However
this means they can be computationally expensive as well as not being easy to interpret.
With hundreds or thousands of parameters as well as multiple non-linear functions it is
difficult to understand how a model makes a decision. Furthermore, models that are too
complex for the problem at hand will tend to overfit.

ANNs typically update their parameters (θ) using gradient descent [209]. The gradient
of a function is the partial derivative of the function with respect to all of its parameters.
In the case of a neural network, the parameters are the weights of the connections between
nodes. The function we want the derivative of is called the cost function J(θ) and it sums
the error over all predictions which are calculated using a loss function L(θ). The gradient
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Figure 2.5: Artificial neural network structure. A, A fully connected neural network with
two hidden layers (black). Only connections going to the first node in each layer are
shown. B, A depiction of a single node in a neural network.

shows the direction in parameter space which will give the greatest increase in the function
output value. The parameters in the model are adjusted in the opposite direction to try
minimise the cost/error.

Equation 2.5 shows the cross entropy loss for a set of binary labels y and predictions
ŷ [93].

J(θ) =
1

N

N∑
i

L(θ) = −
N∑
i

yilog(ŷi) + (1− yi)log(1− yi) (2.5)

ANNs the require the gradient of the function J(θ).

∇θJ(θ) =
1

N
∇θ

N∑
i

L(θ) (2.6)

Using gradient descent with a given a learning rate η, the parameters are updated
using the following [209]:

θ = θ − η · ∇θJ(θ) (2.7)

As modern datasets can have millions of observations, calculating the gradient can be
extremely computationally expensive. A simple alternative is stochastic gradient descent
(SGD) [32]. In SGD, the model updates its parameters after calculating the error in a
randomly selected observation. This provides an estimate of the true gradient with a
much simpler calculation meaning the model can be updated more frequently. This is
repeated until the model converges to an optimum. However, as SGD only computes an
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approximation of the true gradient there will be a certain amount of error/noise in its
gradient prediction [33].

Modern ANNs generally use a compromise between the two approaches by calculating
the approximate gradient using a batch of observations. The optimal size of this batch
is dependent on the resources available, the architecture of the model, as well as the
problem in question and its choice is therefore an important step in algorithm design
[16]. Also, the size of the batch and the learning rate are closely linked, as the learning
rate defines how much the model parameters change in response to the batch gradient.
The interaction and optimisation of these two hyperparameters are the subject of much
research [224, 135, 105].

Other hyperparameters include the number of nodes and layers in the network. For
more complex ANNs, there are even more model hyperparameters. As many of these
change the ANN architecture, they cannot be tuned during training. Traditionally, a
grid search is performed, where many models are trained with different combinations
of hyperparameters to look for an optimal choice [145]. This can be computationally
expensive as many different networks need to be trained.

ANNs have been around for decades with their popularity initially stemming from
their ability to easily model many non-linear processes with a simple model [28]. Early
applications provided modest results on simple datasets such as zip code recognition
[139]. However, increased data availability, increased computational resources as well
as the creation of novel architectures have seen the field explode in recent years [222].
Simple fully connected networks are now rarely used but these alternative architectures
now dominate the area of machine learning.

2.2.6 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a different type of deep learning architecture,
this time inspired by human vision models [86]. Instead of fully connected layers, nodes
are only locally connected. Furthermore, weights are shared between nodes, thereby
reducing the complexity of the model and increasing its ability to generalise [140]. While
this architecture has a lower capacity than a similar ANN, the shared weights mean
that the same weight matrix (kernel) effectively passes over the entire input acting like a
feature detector. The locally connected nodes mean that this type of network is especially
proficient for a euclidean feature space such as images where neighbouring features are
related.

CNNs can use multiple kernels that can identify different features. For example, each
kernel wl

k in the lth layer of the network, is passed over the input moving one pixel at a
time (assuming a stride length of 1), performing a convolution on each neighbourhood of
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pixels from the previous layer. The value at the position (i, j) in the kth feature map of
the lth layer of the network hl

i,j,k can be defined as follows [96]:

hl
i,j,k = f(wl

kx
l−1
i,j + blk) (2.8)

where xl
i,j is the patch centred at location (i, j), b is a bias term and f() is a non-linear

function, generally a ReLU.

Figure 2.6: Convolutional neural network (CNN) model architecture. The kernels of the
CNN act like feature detectors. The fully connected layers interpret these features to
make a prediction.

These filters act as feature detectors which is particularly useful for task such as object
detection. In this manner, the kernel passes over the entire input producing a feature map
(Figure 2.6). This can be interpreted as whether or not that feature was detected at that
neighbourhood of pixels on the previous layer. Given the multiple kernels, each "pixel"
in output will be represented by a vector with elements defined by the product of each
kernel. Initial CNN layers typically learn low level features such as contrasts or lines.
When stacked on top of one another, CNNs can combine the information from the lower
level features to learn higher level features [270]. Convolutional layers can also be followed
by pooling layers that reduce the dimensionality of the output. As in ANNs, many of
these layers can be stacked together. Typically the convolutional layers are followed by
fully connected layers as above. These transform the CNN layers into the desired output.
This characteristic of CNNs have seen them become hugely successful in recent years,
particularly in the area of computer vision. A pioneering example of CNNs was LeNet
[140] which introduced basic idea of a convolution followed by a non-linear activation and
pooling. Since then this basic structure has remained but has increased in depth [109],
differentially sized kernels [229], and residual connections [106] among many others.

CNNs are one of the most popular neural network architectures due to their remarkable
performance and the abundance of vision tasks they can be applied to. For instance they
can be used to help diagnose cardiac arrhythmia [2], cancer [236] and pneomonia [227].
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They also have applications in a range of other areas from autonomous driving to fraud
detection [85].

2.2.7 Recurrent Neural Networks

Many types of data have a particular sequence to their features such as text or speech
data. This proves to be a problem for contemporary neural networks who treat the inputs
independently [268]. Furthermore, the desired output of a machine learning model may
also be sequential, for example in text translation. In this case it is important that the
model knows what it has previously predicted in the sequence as that will influence the
next prediction. Recurrent neural networks (RNNS) were developed for this purpose.

The key to RNNs is they have the capability of memory or context given the previous
sequence [68]. This is done through the addition of a hidden state vector to the simple
ANN (equation (2.2)). Given an input x(t) for each time t and an initial hidden state h0

at time t = 0, the hidden state is updated as follows:

h(t) = f(Wh(t−1) +Ux(t) + b) (2.9)

where W and U are trainable parameter matrices and f() is a non-linear function. The
hidden state encodes the context of the sequence and can be used as the feature vector
for another ANN layer to make predictions.

One issue with early RNNs was vanishing gradients [111]. As the size of the sequence
gets large the gradients tend to zero making the learning process slow. It also makes it
difficult to learn long range dependencies between different tokens in the sequence. More
recent RNNs such as long short-term memory networks (LSTMs) use multiple hidden
states and more complex update functions to mitigate against the vanishing gradient
problem [112]. Due to their capability to encode long range interactions, LSTMs are now
ubiquitous in natural language processing and sequential data [268]. They have helped
achieve state-of-the-art performance in tasks such as language translation [15], image
captioning [262] and playing video games [250].

2.2.8 Graph Neural Networks

Other types of structured data require a different type of network. Graph neural networks
(GNNs) are locally connected networks that operate on non-euclidean data that can be
structured as graphs [257]. Unlike CNNs, the local connections are defined by connections
in the graph instead of proximity in the feature space. GNNs are therefore able to
encapsulate and model complex relationships and interdependancies [211]. For a lot of
data, relationships between objects is known but cannot be represented easily by an input
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vector. The use of GNNs means the connections themselves are part of the model and
can then be used to propagate information throughout the graph.

GNNs have been used in a variety of applications with structured data containing
complex relationships. They have been shown to be effective in many domains from
recommendor systems [172] to the prediction of molecular properties [90]. The complex
networks associated with biology are also an area of research where they have a lot of
potential. As such, GNNs have being used to predict the interface of proteins [77] and to
classify the sub-type of breast cancer using gene expression profiles [206].

A simple GNN can be defined as follows using an update function and an aggrega-
tion function [99]. The aggregation function defines how the embeddings of each node’s
neighbours are combined. This can be as simple as summing the list of vectors or taking
their mean to create a new vector. The update function specifies how this new vector
is combined with each node’s own embedding to create a new embedding. For each it-
eration/layer of the GNN, the embedding of each node is updated by aggregating its
neighbours’ embeddings from the previous layer and combining them with its own using
the update function. Just like the other neural networks, these layers can be stacked
on top of one another. As each aggregation step passes information a distance of one
connection, the number of layers in the network can be thought of as the depth of the
search space [98]. With each additional layer in the GNN, the embedding of each node
incorporates information from a larger and larger neighbourhood.

Giving a formal definition, we define a graph as G = (V, E), where V is the set of nodes
and E the set of edges. With GNNs, each node u ∈ V, has an input embedding h

(0)
u . Each

node also has a list of neighbours N (u). The embedding h
(k)
u of node u is updated by

aggregating its previous embedding h
(k−1)
u , with the embedding of u’s neighbours N (u),

where k is the number of message passing layers i.e. update steps. The simplest GNN
takes the sum of the neighbour embeddings for each node, given by the following equation;

h(k)
u = f

W
(k)
selfh

(k−1)
u +W

(k)
neigh

∑
v∈N (u)

h(k−1)
v + b(k)

 (2.10)

One issue with sum aggregation is its instability and sensitivity to node degree [99].
Alternative aggregation functions to combine the neighbour embeddings can also be used
such as mean aggregation or pooling. This will normalise the effects of node degree but
thereby may result in a loss of information.

2.2.9 Dynamic Programming

Dynamic programming is a type of optimisation whereby large complex problems can be
solved by being broken down into smaller simpler sub-problems. It can be applied to
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problems that satisfy the following assumptions [22]:

• Each sub-problem uses the same metric

• The result of one sub-problem is independent of the others

• The result of the complete problem is equal to the sum of the results of the sub-
problems

One application of this is in the knapsack problem. For a given capacity and mass-
value pairs, the goal is to select the pairs that maximise the value while keeping the total
mass below the capacity.

Dynamic programming can also be used to find the longest path in a directed acyclic
graph. For a graph with weighted nodes or edges the longest path is equivalent to the
highest scoring path. For large graphs it may be computationally impractical or even
impossible to compare all possible paths. However, the problem can be broken down into
smaller sub-problems. The longest path to a given vertex v can be computed by adding
v’s score to the highest scoring vertex that points to it. This is repeated for all vertices,
starting at nodes with no incoming edges. The highest scoring path is then found by
starting at the vertex with the largest path score, and moving to the vertex connected to
it with the largest path score.

2.2.10 Metrics

Comparison of machine learning models relies on a choice of metric over which they will
be evaluated. Different metrics focus on different types of error. Therefore, the choice of
metric should reflect the problem space and the requirements of the user [102].

In a binary classification problem each observation belongs to one of two possible
classes which the model can predict. This leaves four possible outcomes. Given two
classes called the positive class (P) and the negative class (N), true positives (TP) are
observations where the model correctly identifies them as the positive class and true
negatives (TN) are when the model correctly classifies observations into the negative
class. Conversely, false positives (FP) are where the model incorrectly identifies a negative
observation as a positive while false negatives (FN) are when a model misclassifies positive
observations as belonging to the negative class.

Different metrics take different combinations of the above values into consideration.
This is useful when some of these are deemed more important than others. For example,
in a medical setting, a model may accept a false positive over a false negative so that
fewer actual cases are missed.

Historically, accuracy was the most popular metric for the evaluation of machine
learning models [197]. It is defined as follows:
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True class
Positive Negative Total

Predicted class Positive TP FP TP+FP
Negative FN TN FN+TN

Total P N

Table 2.3: Confusion matrix for binary classification. The rows represent the classes
predicted by the model while the columns represent the actual classes. TP stands for
true positive, FP stands for false positive, FN stands for false negative and TN stands for
true negative. P represents the total number of observations in the actual positive class
while N represents the number in the negative class.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.11)

However, this assumes that the cost of misclassification for both classes is equal. Also,
it is only defined at a particular threshold. Models generally output a continuous value
between 0 and 1 for binary classification. Values greater than a given threshold are
assigned to the positive class and lower than the threshold to the negative class. Different
models may be preferred for different thresholds.

Using confusion matrix shown in Table 2.3, one can calculate the true positive rate
(TPR) and false positive rate (FPR) as follows:

TPR = Recall =
TP

P
=

TP

TP + FN
(2.12)

FPR =
FP

N
=

FP

TN + FP
(2.13)

A way of comparing models over all thresholds is to use a receiver operating charac-
teristic (ROC) curve. It is defined as the plot of a model’s FPR vs TPR for all thresholds.
The ROC curve shows how the performance of models change as the threshold changes.
An ideal classifier will have a convex curve that passes through the point (0,1). Con-
versely, a model that makes predictions at random will have a curve that is a straight
line from (0,0) to (1,1).

The performance of a model with respect to this curve can be captured in a single
statistic by taking the area under the ROC curve (AUC/AUROC) [235]. This can be
interpreted as the probability that the model will score a randomly selected observation
from the positive class higher than a randomly selected observation from the negative
class. However, for a dataset with a large proportion of negative observations, a large
change in the number of false positives will only produce a small change in the FPR due
to the denominator N .

Davis et al. proposed using the area under the precision-recall curve (AUPR) instead
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for this reason [59]. Recall is equal to TPR defined above, with precision defined as
follows:

Precision =
TP

TP + FP
(2.14)

The precision-recall (PR) curve also shows the performance over the complete range
of thresholds. In PR space an ideal classifier is one that produces a convex curve through
the point (1,1). A model that predicts classes at random will have a curve that is a
straight line from (0,0) to (1,0). As seen in equations (2.14) and (2.12), AUPR is not
directly related to the size of the negative class, N .

The dynamic of the above metrics changes for multiclass classification. Recall becomes
the number of correct predictions over the total number of actual observations. Precision
is the number of correct predictions over the total number of predictions. In the context
of de novo peptide prediction, the total number of predictions and observations may not
be the same. An amino acid can be considered matched between the real and predicted
peptide if mass of the previous amino acids agree within 0.5 Da and the mass of the
predicted amino acid agrees with the actual amino acid within 0.1 Da [153, 241, 200, 199].
As shown in Table 2.1 on page 11, there are many amino acids that are quite similar in
mass. Amino acid recall is then defined as the number of correctly predicted amino
acids over the total number of actual amino acids. Precision is defined as the number of
correctly predicted amino acids over the total number of predicted amino acids. Peptide
recall/accuracy is then the total number of correct peptides over the total number of
actual peptides/spectra. As de novo algorithms give a confidence score with each peptide
prediction, the number of predicted peptides may differ from the total number of spectra
if a score threshold is implemented. Given the definition of amino acid precision and
recall AUPR can also be calculated.

2.2.11 Noise and Artificial Data

Noise can be defined as anything that obscures the relationship between features and
class labels [108]. This may be due to incomplete or missing features (attribute noise) or
erroneous class labels (class noise) [275]. The presence of noise therefore makes supervised
learning more difficult as the relationship the model is trying to learn is unclear. However,
removal of noise is not necessarily the correct option. If noise is present in the data of
interest, removing noise from the training data may lead to worse performance, despite
the relationship being clearer [201].

Class noise can pose difficulties when present in training data as it forces the model to
try to learn untrue relationships. This can be mitigated by filtering the data to remove
false positives thereby reducing the FDR and creating more accurate training data [89].
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Generally, attribute noise is not as great a problem as class noise but still severely impacts
training [275]. Attribute noise may be caused by measurement error of the feature in
question or just random perturbations in the data itself [83].

As noise is naturally present in real data, introducing it artificially can be used to
mask the introduction of synthetic artefacts to real data [100]. Addition of noise can also
be added to real data to increase performance. In this context it may be used to increase
the size of the training set by altering current examples or improve performance through
regularisation of the model [39, 258].

Noise also plays an important role in the creation of realistic synthetic data. These
are data generated through artificial processes and may not contain the natural noise and
variability of real data [190]. Once a relationship between features and classes is learned,
artificial data can be generated which inherit the same characteristics [202]. For a given
class label, a set of features can be defined which indicate the same relationship as is
found in the real data. However, generation of artificial data may be deterministic as it
lacks the noise present in real data.

There are multiple ways of generating artificial data. Ideally artificially generated
data will share the same statistical properties of the real data [3]. One way of achieving
this is to train a model to learn to generate the data from observing the real data [55].
In what can be thought of as the reverse problem of supervised machine learning, models
can learn to generate a set of features for a given output. More advanced methods
train two networks in opposition, a generator and a discriminator [53]. The generator
starts off generating random examples. The discriminator is taught to learn between real
and generated examples. However, the error signal from the discriminator is given to
the generator so that it can learn to "fool" the discriminator. Given the right set up,
the generator learns to create artificial examples indistinguishable from real examples,
without ever encountering them.

A major benefit of using artificial data for model testing is that experimental condi-
tions can be controlled allowing for a more systematic evaluation [21]. This can facilitate
gaining a better understanding of a model’s strength’s and weaknesses [31]. Artificially
generated data can also be used to train machine learning models [167]. As the training
data can be fully controlled, observations can be generated with enough variability to
span the complete space of features and labels [238]. The utility of these artificially gen-
erated data can be measured by comparing the performance of a model trained on them
versus real data. If the performance of the model trained on artificial data is similar to
the performance of a model trained on real data it can be assumed the former includes
the same patterns and diversity of the latter [221]. Similarly, a artificial data can be eval-
uated by being used as test data. For a model trained on real data, high test performance
on artificial data indicates they are of sufficient precision [221]. While both of these two
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properties are highly desirable, they may not always be present together if at all.

2.3 Machine Learning for De Novo Peptide Identifi-

cation

The rise in the capabilities of machine learning in recent years has seen it spread to many
areas of science, with proteomics being no exception. The proteomics pipeline has many
complex classification problems, alongside large datasets, that make it an ideal candidate
for the application of machine learning [129]. Examples include trypsin proteolysis mod-
elling [71] and retention time prediction [89], with the fundamental problem of protein
folding recently receiving a lot of attention [126].

Machine learning has also been revolutionary in the task of peptide identification. The
Percolator algorithm is a popular machine learning model that helps distinguish correct
PSMs from incorrect ones [128]. It is performed as a post-database search step to improve
the rate of correct peptide assignment in proteomics pipelines. Percolator uses a support
vector machine to differentiate the high-scoring incorrect matches from the high-scoring
correct matches.

De novo peptide identification has also greatly benefited from the introduction of
machine learning. All state-of-the-art de novo peptide identification algorithms now in-
corporate machine learning models into their pipeline, generally alongside dynamic pro-
gramming [153, 241, 200, 199]. Spectra labelled with peptides through a database search,
typically with a stringent FDR, are used as training data for the algorithms. The machine
learning models are then used to identify likely fragmentation sites in the spectrum, or
to predict amino acids directly. Three such algorithms will now be described.

2.3.1 Novor

Novor is a de novo peptide sequencing algorithm that combines multiple RF models with
dynamic programming [153]. Each spectrum is first converted into a mass array. For
a given tolerance δ and peptide mass M , the size of the array is defined as M × δ + 1.
Novor uses an RF model to score the probability that a mass in the array defines a
fragmentation site. They consider nine possible ion types resulting from each possible
fragmentation site. If matched to real peaks, their intensities are used as features for the
model. The ions include singly charged b and y ions, their neutral losses of H2O and
NH3 and their doubly charged version, alongside singly charged a ions. For each ion type
the model also includes some expert defined features, namely the number of peaks in the
spectrum that have a greater intensity than the current peak (rank), the number of peaks
with an intensity greater than half the current intensity (half rank), the number of peaks
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in a 50 Da radius that have a greater intensity than the current peak (local rank) and
the number of peaks in a 50 Da radius with an intensity greater than half the current
intensity (local half rank). Novor uses dynamic programming to identify which collection
of fragmentation sites that span the peptide mass return the highest score. These sites
are used to indicate an amino acid sequence.

Fragmentation Scoring


Dynamic Programming and 

Candidate Sequence Prediction

Mass Spectrum

Mass Vector

AA AA AA AA

Peptide Sequence

Random Forest (1)


Residue Scoring


Random Forest (2)


Figure 2.7: Flow diagram of the Novor algorithm.

Novor then uses another RF model to measure the correctness of the amino acid
residues in a candidate sequence. This RF used to refine the top scoring sequence pre-
dicted using the fragmentation scores. The algorithm greedily selects the top scoring
residues based on this second RF and splits the sequence into mass segments surrounding
them. For each segment this process is repeated until the remaining mass is small enough
that less than 100 possible sequences could account for it. A residue score is calculated for
all of these possible sequences with the maximum for each segment kept. The combination
of the maximum scoring sub-sequence for each mass gap defines the peptide.

2.3.2 DeepNovo

Another approach was proposed by Tran et al. [241]. In their paper their they describe
DeepNovo, a deep learning based approach to de novo peptide sequencing. They in-
corporate multiple deep learning modules into their algorithm. Firstly the spectrum is
converted into a mass array similar to Novor. Each peak in the spectrum is placed into
its encompassing bin.

They then define an ion-CNN which can encode prospective neighbouring ions from
the possible next cleavage, given the amino acids already predicted. For a given position
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in the spectrum, windows of size 10 of the mass array are extracted for all possible b,
y, b-H2O, y-H2O, b-NH3, y-NH3, b(2+) and y(2+) ions, for all possible amino acids.
This results in input tensor of shape 26×8×10. This is then transposed to an 8×10×26
tensor before being transformed by a 1×3×26×32 kernel used by the ion-CNN. A second
CNN kernel of shape 1×3×26×32 is then used followed by a ReLU activation function.
The resulting tensor is passed through a max-pooling step to take on the shape 8×5×64.
Finally a fully connected ANN layer converts this tensor into a 512 vector encoding.

DeepNovo uses another convolutional network called the spectrum-CNN. The spec-
trum CNN encodes the complete spectrum array. It uses two 1×4 convolutions, both
with 4 different filters. These are followed by a ReLU function before the output passes
through a max-pooling layer. A fully connected layer then transforms the pooled data
into a 512 vector. This vector is used as the initial state of the LSTM, the final deep
learning module in the algorithm.
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CNN
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Figure 2.8: Flow diagram of the DeepNovo algorithm.

The LSTM controls the sequence prediction phase for DeepNovo. At each prediction
step, the ion-CNN looks for the next possible cleavage site and the output encoding is
passed to the LSTM. The LSTM encodes the ion-CNN output along with the previous
two amino acid predictions and provides a probability distribution over all possible amino
acids with the maximum selected. While LSTMs can encode long sequences, the authors
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found this to be the best setup to create a model capable of working for a diverse range of
species. However, they also concede that this is an area that requires additional analysis.
After each amino acid prediction, the position of the ion-CNN in the spectrum is updated
to reflect the predicted sequence and the process is repeated. DeepNovo moves through
the spectrum in this step-by-step manner until the complete peptide mass is accounted
for. As the difference between the peptide mass and the mass of the predicted gets smaller,
there will be a limited combination of amino acids that will equal this value. DeepNovo
uses dynamic programming, similar to the knapsack problem, to limit the amino acid
predictions to those that will satisfy the mass requirement. It also employs a beam-
search which looks at multiple sequences through the spectrum. As the algorithm moves
through the spectrum it keeps hold of the top 5 sequences. The probability distribution
for each amino acid is calculated for each of the 5 sequences. Of the now 130 (26×5)
sequences the 5 highest scoring are retained. Finally, DeepNovo performs the above
search beginning at both ends of the spectrum each producing 5 sequences. The amino
acid probability distributions of both directions are combined to give 25 sequences. The
top scoring sequence of these 25 is then returned as the prediction.

2.3.3 PointNovo

An updated version of DeepNovo has been developed recently, improving upon the per-
formance of its predecessor [200]. It has subsequently been released under the name
PointNovo [199]. The new approach is very similar to DeepNovo with the main update
coming from the ion-CNN encoding module with some architectural changes. PointNovo
draws its inspiration from PointNet, a deep learning architecture for point cloud classifi-
cation [198]. For PointNet, Qi et al. developed a T net module which encodes points from
continuous space, negating the need for pixelation. PointNovo uses the T Net module
instead of the standard CNN allowing the model to encode exact m/z values instead of
the mass bins of the original version. Alongside improved performance, this makes the
model readily adaptable to increased precision of future mass spectrometers [199].

Instead of spectrum windows, PointNovo uses the difference between the theoretical
ions and the spectrum peaks. Given its current position in the spectrum, PointNovo
calculates the location of the possible ions from the next amino acid for all possible
amino acids resulting in 26×8 values. This matrix is then subtracted from all the peaks
in the spectrum to create a 26×8×N tensor, where N is the maximum number of peaks
in the spectrum. The peak intensities are then concatenated to this tensor before being
fed to the T Net. The T Net performs a 1-dimensional convolution across this tensor
before a fully connected layer transforms the output into a 512 vector. This output
encoding is fed to an LSTM for the sequence prediction. Unlike DeepNovo, the initial
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Figure 2.9: Flow diagram of the PointNovo algorithm.

state for PointNovo’s LSTM is not provided by a CNN but using positional encodings
[247]. This is done by transforming the m/z of each peak in the spectrum into a sinusoidal
wave and multiplying each by their intensity before they are all summed. Another fully
connected layer transforms this into a 512 vector to provide the initial hidden state. Also
unlike DeepNovo, PointNovo’s LSTM includes all previous amino acid encodings for each
prediction. The LSTM encodes the initial hidden state, the previous predictions and the
output of the T Net before producing a probability distribution over all amino acids. After
each amino acid prediction the algorithm updates its position and repeats the process.
PointNovo also uses the same beam search and dynamic programming as DeepNovo to
improve performance.

2.4 Artificial MS/MS Spectra

Although peptides can be fragmented using the collision of particles, the frequency with
which peptide bonds break is not random. The abundance of fragment ions is dependent
on the size of the fragments, the peptide length, the amino acid sequence, the type of
mass spectrometer and the fragmentation method used [189, 237]. Attempts have been
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made to model this relationship and therefore predict the relative intensities of fragment
ions in tandem MS spectra. Early attempts used strictly mathematical models with very
few parameters [273]. Then, advances in database search methods provided sufficient
labelled data for machine learning to be applied. Two such machine learning models that
have been used to predict peptide fragmentation spectra include bayesian decision trees
[66] and neural networks [13]. These models have been very effective when integrated
with database search methods. Database search algorithms typically compare the m/z
values of theoretical fragment ions to the observed spectra [181]. Correlation between
these two is based on the assumption that more intense peaks are better [72]. However,
this is not always the case as ions from less energetically favourable cleavages will have a
relatively lower intensity [189]. To account for this, the theoretical spectra generally used
in a database search can be replaced by artificial spectra with predicted intensities. With
accurate prediction of fragmentation patterns, these spectra can by compared by both the
m/z and intensity of the peaks, thereby increasing the sensitivity of the database search
[66].

The accuracy of spectrum prediction models has increased alongside the advancement
of machine learning methods. A recent example, Prosit, reports greater quality fragment
ion intensity than experimental spectra [89]. By using the predicted spectra in a database
search, the authors were able to increase the peptide identification rate in notoriously
difficult metaproteomics data [89]. Prosit consists of two main parts; an encoder and
a decoder. The model first encodes the amino acid sequence of the peptide using a
bi-directional RNN with gated recurrent memory unit (GRU) cells. This encoding is
combined with the output of a dense ANN that encodes the the peptide charge and
collision energy. Another bi-directional RNN with GRU cells is used as a decoder. At
each step the decoder model uses an attention mechanism to combine the encodings of
the peptide sequence so it can focus on particular areas relevant to the particular ion it
is predicting. Prosit can predict 6 different ion types (b and y ions from singly to triply
charged) for peptides of up to 30 amino acids in length.

The focus of fragment ion intensity prediction so far has been on the improvement of
database search accuracy [66, 89, 237]. The additional benefits of being able to match
both peak position and height have allowed more peptides to be recalled given the same
FDR threshold. However, this research has implications beyond database methods [177].

The field of de novo peptide identification is heavily reliant on database peptide iden-
tification to create both training and evaluation datasets. However, due to the limitations
of this process the data is not 100% accurate. Furthermore, database scoring functions,
such as hyperscore, will favour spectra with more fragment ions present [72]. This causes
a bias in the training data as high scoring spectra, with more ions matched, are more
likely to be present. Data labelled in this way will therefore not be an accurate represen-

36



2.4. ARTIFICIAL MS/MS SPECTRA CHAPTER 2. BACKGROUND

tation of the entire population of spectra recovered from the sample. If training data are
biased this can be learned by the model creating a biased classifier [132]. However, if the
test data are generated in the same way, this may be difficult to detect.
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Chapter 3

The Impact of Noise and Missing Fragmentation
Cleavages on De Novo Peptide Identification Al-

gorithms

The work outlined in this chapter was published in:

McDonnell, K., Howley, E., and Abram, F. The impact of noise and missing frag-
mentation cleavages on de novo peptide identification algorithms. Computational and
Structural Biotechnology Journal 20 (2022), 1402–1412

3.1 Abstract

To enable de novo peptide sequencing to realise its full potential, it is critical to explore
the mass spectrometry data underpinning peptide identification. In this research we
investigate the characteristics of tandem mass spectra using 8 published datasets. We then
evaluate two state of the art de novo peptide sequencing algorithms, Novor and DeepNovo,
with a particular focus on their performance with regard to missing fragmentation cleavage
sites and noise. DeepNovo was found to perform better than Novor overall. However,
Novor recalled more correct amino acids when 6 or more cleavage sites were missing.
Furthermore, less than 11% of each algorithms’ correct peptide predictions emanate from
data with more than one missing cleavage site, highlighting the issues missing cleavages
pose. We further investigate how the algorithms manage to correctly identify peptides
with many of these missing fragmentation cleavages. We show how noise negatively
impacts the performance of both algorithms, when high intensity peaks are considered.
Finally, we provide recommendations regarding further algorithms’ improvements and
offer potential avenues to overcome current inherent data limitations.
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3.2 Introduction and Related Work

Proteomics has become an indispensable tool for biologists in the last few decades with
its ability to identify system-wide protein expression. [180]. Its application is wide rang-
ing and encompasses the identification of cancer biomarkers [210] and antigens for im-
munotherapy [19], as well as mechanisms underlying drought resistance in crops [9] and
virulence factors in human pathogens [196, 143]

In proteomics, protein extracts are typically enzymatically digested and analysed using
mass spectrometry. The corresponding mass spectra are then matched to peptides, which
are short sequences of amino acids. Database search algorithms are commonly used in
proteomics and aim to match theoretical peaks predicted from all possible peptides in the
relevant protein databases to the peaks in actual spectra. Although database searching
is the most popular technique used in protein identification, improved data quality and
algorithm design mean de novo peptide sequencing is becoming increasingly popular in
proteomics [175].

Recent advances in mass spectrometry (MS) have considerably raised the level of data
resolution and acquisition in the field of proteomics [253], while the same database search
algorithms have dominated the field for the last 20 years [249]. Typically, for shotgun
proteomics, following the enzymatic digestion of proteins, the resulting complex peptide
mixture is fractionated using liquid chromatography. The corresponding peptide fractions
are then analysed using tandem mass spectrometry (MS/MS). Peptides are separated by
mass and charge (m/z ) in the first mass analyzer. Then, peaks from the resulting spectra
are isolated and the associated peptides are passed through a fragmentation chamber
to be charged and broken down into smaller pieces (fragment ions). These fragments
pass through the second mass analyzer producing fragmentation patterns as the ions
are separated. A database search or de novo peptide sequencing is then conducted to
establish the most likely peptide sequence corresponding to each fragmentation pattern.
Two common methods of fragmentation include collision induced dissociation (CID) and
higher-energy dissociation (HCD). While similar in methodology, HCD fragmentation
provides greater resolution and mass accuracy than CID [185]. Both of these methods
fragment peptides by colliding them with gas molecules. This causes the cleavage of
the amino acid sequence typically at a peptide (amide) bond resulting in two possible
fragments; b and y ions [232]. While b and y ions themselves are the most common,
peptide fragments can also suffer neutral losses of ammonia and water molecules producing
different peaks with a shifted m/z value. Conventional notation enumerates the b ions
according to their fragmentation site from the N-terminus to the C-terminus. Conversely,
y ions are numbered from the C-terminus to the N-terminus. Although both ion types
are ordered by increasing mass, it means for a peptide of length 20, the b1 ion is created

39



3.2. INTRODUCTION AND RELATED WORKCHAPTER 3. MAIN CHALLENGES

from the same cleavage as the y19 ion. As the peptide mass is known, the mass of the
corresponding y ion can be easily calculated given a b ion and vice versa. As these
ions contain equivalent information about amino acid composition they can be grouped
together. We refer to missing fragmentation cleavages from here on to indicate that
neither a b or y ion, or their neutral losses, is present for a given fragmentation/cleavage
site along the peptide chain. To refer to our example again, if for a peptide of 20 amino
acids, neither the b1 or y19 ions were present, or peaks indicating the loss of ammonia or
water from these ions, we would then consider that the first cleavage is missing.

Although popular, database searching is not straightforward due to the irregularity
and incompleteness of the peptide fragmentation process which effectively means there
is never a perfect match between predicted and actual peaks in the mass spectra. Even
with recently developed algorithms and up-to-date, tailored databases, on average, only
25% of spectra are identified leaving the remaining 75% unclassified and thereby discarded
[80, 95]. This can be partly attributed to the size of the databases, where a larger number
of possible matches increases the false discovery rate [181]. This is particularly problem-
atic for metaproteomics, where databases typically span large species diversity. Peptide
identification from mass spectra can also be performed de novo, where peptides are iden-
tified based on the spectrum alone, thus removing the need for a database. Historically
this approach has had a much lower sensitivity than database search methods but recent
advances in machine learning and mass spectrometry have seen it become a competitive
alternative [177]. Without the use of a database, de novo methods are not limited in the
same way as matching algorithms are, while also being able to identify post-translational-
modifications (PTMs) relatively easily [152]. PTMs expand protein function beyond the
standard amino acids by both reversible and irreversible modifications. The importance
of PTMs is only starting to be uncovered as evidence suggests they are involved in the
regulation of almost all cellular events [251].

When database search algorithms include variable modifications, reflective of PTMs,
it exponentially increases their search space as the m/z value of any peak including the
modified amino acid will be shifted accordingly. This has the effect of increasing both
the FDR and running time of the algorithm [5]. This is not the case for de novo peptide
sequencing where the number of PTMs being searched may have little or no effect on run
time [81].

Although the current state of the art de novo algorithms are still not as effective as
database searching, the recent availability of big data, and the simultaneous explosion
in machine learning means the field is on an upward curve. Two algorithms leading the
way are Novor [153] and DeepNovo [241]. They use machine learning and dynamic pro-
gramming to both learn patterns within the data and simplify the prediction process
respectively. How they implement these techniques is quite different however. Novor
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models the spectrum as a graph, a traditional approach to de novo peptide sequencing
[57]. Each node in the graph, which corresponds to a peak in the spectrum, is scored
using a random forest model, trained on thousands of other spectra. Edges are created
between nodes whose associated masses differ by that of an amino acid. Using dynamic
programming, Novor then finds the highest scoring path through the graph, whose edges
will classify the amino acids of the peptide. DeepNovo’s approach to the problem in-
volves progressing through the spectrum step-by-step using two different deep learning
architectures combined. Based on the mass of the predicted sequence so far, a convolu-
tional neural network (CNN) is trained to encode the parts of the spectrum where the
next fragment ions might appear. A long short-term memory (LSTM) recurrent neural
network uses this encoding, along with all the encodings from the previous predictions,
to determine the next amino acid in the sequence. DeepNovo uses dynamic programming
to limit the number of possible amino acids it can predict to those that would satisfy the
remaining mass of the peptide, given those already predicted.

While de novo algorithms continue to improve, their possible uses continue to increase.
De novo peptide sequencing has been used successfully to both aid and confirm database
search results [133, 271, 79]. To aid database methods it can be used to identify amino
acid “tags” from a spectrum that can then be used to limit the size of the search space
to entries that only include them, thereby decreasing the false discovery rate (FDR).
More recently, advanced de novo sequencing algorithms like DeepNovo, have been used
for neoantigen detection [240]. Antigens are used by the immune system to recognise
pathogens and trigger a response [276]. Neoantigens are antigens previously unseen by
the immune system, which may be caused by genetic mutations [87]. Identification of
these neoantigens is important for the development of cancer immunotherapies as they
are not expressed by healthy tissue [193].

If the continual increase in the accuracy of de novo sequencing can be sustained, it
may also open up the possibility of re-mining available data. The PRIDE Repository [157]
contains data from thousands of proteomics experiments and improvements in machine
learning and de novo peptide sequencing could uncover new insights from previous studies.
To enable de novo peptide identification to reach its full potential, it is vital to understand
the underlying data [166], in order to best design de novo algorithms.

Previous studies of de novo algorithms have sought to show how these algorithms per-
form on different datasets while investigating what errors they are making [177, 37]. Here,
we investigate the prevalence and effects of missing fragmentation cleavage sites and noise
on de novo peptide sequencing using real labelled data as well as artificial data. Specifi-
cally, we address the following research questions; How prevalent are occurrences of noise
and missing fragmentation cleavages in tandem MS data? What are the effects of noise
and missing fragmentation cleavages on the performance of de novo peptide sequencing
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algorithms? How do the current state of the art approaches cope with noise and miss-
ing fragmentation cleavages? Finally, based on our findings, we propose approaches that
could be implemented in the future to improve de novo peptide sequencing algorithms.

3.3 Methods

3.3.1 Data

We analysed data from eight different datasets downloaded from their respective archive
on the PRIDE Public Repository [157]. A summary of each is provided in Table 3.1.
These include the four used by Muth and Renard (2018) [177]. The eight datasets are
made up of six different organisms, distributed between the two fragmentation types, CID
and HCD.

To obtain the labelled data required for this research we performed a database search
using two popular search algorithms. For each organism, a protein database was down-
loaded from UniProt (Appendix A Table 1). Just as was done by Muth and Renard (2018),
all prokaryotic data were searched against the yeast proteome as well as their own. Accu-
rate FDR estimation requires each spectrum to be compared to multiple peptides [51]. If
this condition is not satisfied it can lead to an overestimation of identifications in smaller
databases [176]. Therefore the small databases of prokaryotic organisms were augmented
to circumvent this issue [177].

MS-GF+ [134] and X!Tandem [52] were used to search the databases through the
SearchGUI platform [17]. Carbamidomethylation of cysteine was set as a fixed modifi-
cation and oxidation of methionine was set as a variable modification. A maximum of
two missed tryptic cleavages were allowed. b and y ions were considered with precur-
sor charge bounded between 2 and 4 inclusive. MS-GF+ was set to HCD or CID mode
depending on the data being used. Using an FDR of 1%, we extracted the top scoring
peptide spectra matches (PSMs) from each dataset. Furthermore, we then selected from
these PSMs only those for which MS-GF+ and X!Tandem agreed. The results of these
conditions can be found in Table 3.2. The data were then collated into two groups, one
for each fragmentation type. This resulted in a split of 25007 HCD spectra and 23821
CID spectra. For the remainder of this research, CID data refers to the four combined
CID datasets listed and HCD data refers to the four HCD datasets.

3.3.2 Peptide peak and noise assignment

Using the peptides assigned to the spectra following the database search, each peak was
labelled as either a peptide peak or noise. To do this the assigned peptides were artificially
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Table 3.1: Overview of the datasets and processing steps used in this study.

Dataset Pride Archive Organism Original
Format

Mass Spectrometer Frag
Type

PrecTol FragTol

MouseCID PXD000790 M. musculus MGF LTQ Orbitrap Elite CID 5 ppm 0.50 Da
YeastCID PXD002726 S. cerevisiae MGF LTQ Orbitrap Velos CID 10 ppm 0.80 Da
EcoliCID PXD016825 E. coli RAW LTQ Orbitrap Velos CID 20 ppm 0.50 Da
StaphAurCID PXD017932 S. aureus RAW LTQ Orbitrap Velos CID 5 ppm 0.60 Da
HeLaHCD PXD000674 H. sapiens RAW Q Exactive HCD 10 ppm 0.02 Da
PyroHCD PXD001077 P. furiosus RAW LTQ Orbitrap Velos HCD 10 ppm 0.06 Da
EcoliHCD PXD008685 E. coli MGF Q Exactive HCD 10 ppm 0.02 Da
StaphAurHCD PXD023039 S. aureus RAW Q Exactive HCD 10 ppm 0.06 Da

Frag Type: Fragmentation Type
PrecTol: Precursor Mass Tolerance
FragTol: Fragment Mass Tolerance

fragmented to create b and y ions along with their neutral losses of ammonia (NH3) and
water (H2O) using the Pyteomics framework [141]. These are the ion types used by both
Novor and DeepNovo. If possible these were matched to peaks in the spectra and labelled
as peptide peaks with a tolerance of 0.5 Da for CID data and 0.05 Da for HCD data.
Thereby the ions and hence cleavage sites which were not represented in each spectrum
were identified and peaks that could not be matched to a fragment ion were classified
as noise. For clarity, noise was also considered in its proportion to peptide peaks [177].
When low intensity noise peaks were found not to affect performance, only those above
the median of the distribution of noise peaks were included. A median normalised noise
intensity value of approximately 7.2e-3 was observed for the CID data and a median of
approximately 2.1e-2 for the HCD data. The number of noise peaks above this threshold
was recorded for each spectrum. The noise factor was then defined as the number of
high intensity noise peaks divided by the number of peptide peaks in each spectrum
(#NoisePeaks / #PeptidePeaks).

3.3.3 Algorithms

DeepNovo was downloaded from https://github.com/nh2tran/DeepNovo. Two models
were then trained, one for CID data and one for HCD data. These two models used
the parameters specified for low resolution and high resolution data in the original paper
respectively [241]. The models were also trained using the same data as the original paper
found at ftp://massive.ucsd.edu/MSV000081382/. The algorithm was then run through a
linux terminal using Python 2.7.17. Novor was operated through the DenovoGUI interface
[179] in CID or HCD mode depending on the data. Precursor precision and fragmentation
tolerance were kept the same as DeepNovo for a fair comparison. Both algorithms were
set to consider carbamidomethylation of cysteine as a fixed modification and oxidation of
methionine as a variable modification.
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Table 3.2: The number of peptides matched at the 1% FDR level for both X!Tandem and
MS-GF+, as well as how many of those were in agreement (Overlap)

Dataset Overlap X!Tandem MS-GF+
MouseCID 12132 15586 13345
YeastCID 534 650 1519
EcoliCID 5716 7210 7752
StaphAurCID 5439 6020 6363
HeLaHCD 4061 4973 4167
PyroHCD 9719 12080 10172
EcoliHCD 5180 5279 5257
StaphAurHCD 6047 8279 6850

3.3.4 Metrics

Amino acid match

For the CID data, two amino acids are considered a match if the prefix mass of the
peptide before the prediction is correct to within 0.5 Da and the masses of the amino
acids predicted are within 0.1 Da. For HCD data, the tolerance is lowered with an amino
acid match requiring the prefix mass of the peptide before the prediction to be correct
within 0.05 Da and the masses of the amino acids predicted to be within 0.01 Da.

AA recall

Amino acid recall is defined as the number of amino acids matched divided by the total
number of amino acids in the database assigned peptide.

Peptide accuracy

Peptide accuracy corresponds to the number of peptide predictions that correctly match
those assigned to the spectra divided by the total number of spectra.

Peak recall

We compare the cumulative masses generated by the amino acids in the PSM’s peptide
sequence and the predicted peptide sequence which are akin to the position of cleavage
sites along the peptide. For CID data a predicted fragmentation cleavage is considered
correctly matched if its mass differs by less than 0.5 Da from the corresponding true
peptide cleavage. We also compare if the true peptide’s cleavage sites are represented
with a b or y ion in the spectrum with a tolerance of 0.5 Da. For HCD data the tolerance
for both matches is reduced to 0.05 Da.
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3.3.5 Confirmatory Analysis

High scoring spectra and artificial spectra were also used in a complementary analysis to
confirm the trends observed when evaluating the algorithms with respect to all of the real
data.

For high scoring spectra, de novo peptides above an acceptable score were extracted
for both algorithms separately. High scoring spectra are defined as those with scores
above a threshold which gives 90% amino acid recall. This standard was used by Tran et
al. (2019) when using DeepNovo for antigen identification. Also, similar levels of peptide
accuracy or higher amino acid recall were not possible for both algorithms. 90% amino
acid recall was achieved in CID data with a score threshold of 0.89 (2740 peptides) and
0.74 (10295 peptides) for Novor and DeepNovo respectively. The thresholds for Novor and
DeepNovo in HCD data were 0.67 (13493 peptides) and 0.73 (16898 peptides) respectively.

Artificial data were created to match the distribution of peptides found in the real data.
Prosit was downloaded from https://github.com/kusterlab/prosit. A trained HCD Prosit
model was then downloaded from https://figshare.com/projects/Prosit/35582. The over-
lapping HCD peptides matched by both database algorithms were extracted and artificial
spectra were created for each using this Prosit model. CID peptides were not considered
as there was no available model.

The artificial data were duplicated four more times with each duplicate given a differ-
ent level of noise. Therefore, for each duplicate each spectra was given additional random
noise peaks corresponding to the respective noise factor of that duplicate. Noise factors
of 0,4,8,12 and 16 were considered.

3.4 Results

3.4.1 Missing fragmentation cleavage sites are prevalent in mass
spectra

It can be difficult to evaluate de novo algorithms as there is no such thing as real data that
is 100% correctly labelled. Instead we use the results of two database search algorithms
that agree at a 1% FDR. We evaluate two state of the art de novo algorithms by comparing
the database PSMs to their de novo predictions. Given the assigned peptide from the
database search, we establish which peaks in the spectrum are fragment ions. Those that
cannot be attributed to the peptide are classified as noise. We can then quantify what
fragmentation cleavage sites are present and how many are missing from the spectrum.
Models are also available to create high quality artificial data [89, 237], although they
only predict peaks at precise locations directly derived from the peptide sequences. They
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Figure 3.1: Number of cleavage sites present in the spectra. Box plots show the numbers
of fragmentation cleavage sites present in the spectra for peptides of length 6 to 30.
The combined results of all the CID spectra from this study are shown in A, with the
HCD spectra from this study shown in B. The relative numbers of spectra per length are
indicated by the blue dots, and the mean number of fragmentation cleavage sites present
is shown by the blue line. The mode of each peptide length is highlighted by the green
bar and the maximum number that could be present (peptide length - 1) is shown by the
red line.

also do not include noise peaks, which affect performance when present in large volumes.
We also evaluate the algorithms using these artificial data with additional random noise
as a complementary analysis to provide a deeper insight into their performance.

De novo sequencing relies solely on the individual spectrum to identify the peptide
that produced it. In contrast to database searching that can match peaks independently,
de novo algorithms must predict and recreate each cleavage, even if no peaks from it
exist in the spectrum. When available, many different fragment ions from one cleavage
site serve as stronger evidence for that particular fragment as being correct. When no
fragment ions from a cleavage site are present there is no direct evidence for the adjacent
amino acids in the spectrum and so these are more difficult to determine.

Figure 3.1 shows the distribution of fragmentation cleavage sites present for all peptide
lengths in both CID and HCD data. For both data types, shorter peptides matched by
the database search are more likely to have a fragment ion from each cleavage in the
spectrum. As the length of the peptide increases the mean number of fragmentation
cleavages in the spectra (blue line) deviates from the maximum number possible (red
line). The variance, indicated by the box plots, also increases as peptide length increases.
This effect is more evident in HCD data. HCD provides higher resolution peaks and
the ability to use smaller fragment mass tolerance for the database search. This means
random matches are less likely and so fewer matching peaks are needed by the database
search algorithms for a significant match.
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Figure 3.2: Fraction of spectra with one or more ions at each cleavage position. The
figure shows the fraction of spectra, for length 20 peptides, that contain one or more ions
at each fragmentation cleavage site. A contains all peptides of length 20 from the four
CID datasets used in this study with B containing all peptides of length 20 from the four
HCD datasets. Numbers on top of the bars indicate their relative frequency.

Both Novor and DeepNovo look for b and y ions, as well as peaks created from their
neutral losses of both ammonia and water, to identify peptides. Using chains of fragment
ions they can identify amino acids through their mass differences. For both the CID and
HCD data, we consider the frequency with which spectra contain any fragment ion from
the possible cleavage positions along the peptide backbone. Figure 3.2 shows how likely
each cleavage position in a peptide of length 20 identified through database search is to
be represented by an ion in the spectra.

Length 20 was chosen as it revealed some interesting patterns with other peptide
lengths available in Appendices (Appendix A Figures 1-3). Just 2% of CID spectra and
6% of HCD spectra of peptides of length 20 had an ion from the first fragmentation
cleavage site. The first cleavage site also had a below average rate of occurrence in other
length peptides (Appendix A Figures 1-3). For peptides of length 14, the median peptide
length, fragment ions from the first cleavage appeared in 37% of CID spectra and 33% of
HCD spectra (Appendix A Figure 2). While 74% of HCD spectra of length 20 peptides
had at least one ion from the last (19th) cleavage site, this number fell to 18% for CID
spectra. Fragmentation cleavage sites closer to the centre of the peptides had a much
better chance of being represented in the spectra. This trend was shared among all
peptide lengths (Appendix A Figures 1-3). For both CID and HCD peptides of length
20, each cleavage site from position 3 to 18 and 2 to 19 respectively, was represented over
74% of the time.
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3.4.2 Noise peaks outnumber peptide peaks

Further complicating the identification process is the abundance of peaks in the spectrum
which do not belong to the peptide and are classified as noise [173].

The distribution of all peaks in the data is shown in Figure 3.3. Each point represents
the mass-to-charge ratio (m/z ) and normalised intensity values of a peak in the data. A
random selection of 1% of all peaks were used to make the plot readable. The peaks are
categorised by those that can be explained by the assigned peptide (peptide peaks) and
those that cannot (noise). Both distributions are skewed to the right with very few peaks
greater than 1500 m/z. This trend is still observed even when controlling for peptide
mass. Noise peaks outnumber those from the peptide approximately 15:1 in the CID
data with the ratio being approximately 7:1 in the HCD data. While higher intensity
ions are generally seen as more likely to come from a peptide, Figure 3.3 shows how this
alone is insufficient evidence. The quantity of noise peaks is equal to or above the quantity
of peptide peaks at all intensity levels (Appendix A Figure 4).

Only 6.3% of peaks in the CID data were attributable to the peptide assigned by the
database search. Although this number more than doubled to 13% for HCD data as the
number of noise peaks reduced, the noise peaks that were present were of a higher average
intensity.

Figure 3.3: Scatter plot of noise and peptide peaks. Scatter plot of the distribution
of peak m/z and normalised intensities for both the four CID (A) and four HCD (B)
datasets. Peaks attributable to each peptide are shown in blue with noise peaks shown
in orange.
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3.4.3 De Novo algorithm performance exponentially decreases
with increasing peptide length

Figure 3.4A shows the peptide length distribution of the total CID dataset, the number
of peptides that had each fragmentation cleavage site represented in the spectrum and
the number of peptides that each algorithm predicted correctly. In total, Novor predicted
5768 (24%) of the 23821 peptides correctly while DeepNovo managed 7870 (33%). Deep-
Novo performed better than Novor for all peptide lengths. Of the 2798 CID peptides
of length 11, the most common length, DeepNovo correctly predicted 1243 (44%), while
Novor correctly predicted 929 (33%). For length 8 peptides, the shortest peptides in the
data, Novor correctly predicted 68% of the peptide sequences correctly while DeepNovo
correctly predicted 76%. Novor successfully predicted just 5 peptides of length greater
than 20 and none greater than 24. DeepNovo predicted 175 peptides with length greater
than 20 and 37 greater than 24.

Figure 3.4: Correct peptide prediction distribution. Distribution of the correct peptide
predictions of both algorithms for the four CID (A) and four HCD (B) datasets. The
total number of peptides in the data of each length is shown in blue, with the number
containing a fragment ion from each cleavage site shown by the hatching. Numbers of
correct Novor predictions are shown in magenta with correct DeepNovo predictions shown
in green

The same distributions are shown for HCD data in Figure 3.4B. DeepNovo predicted
more peptides than Novor correctly for almost all peptide lengths. Novor did perform
better for lengths 6 and 29, but due to the small sample size at these lengths this cannot
be considered as significant. Of the 25007 HCD peptides, DeepNovo predicted 11705
(47%) correctly whereas Novor predicted 9710 (39%) correctly. The accuracy of both
algorithms was greater across all peptide lengths compared to the CID data, highlighting
how technological advances directly impact on algorithm performance. There were 2262
HCD peptides of length 11, again the most common length, of which DeepNovo correctly
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predicted 1305 (60%) and Novor correctly predicted 1202 (53%). DeepNovo and Novor
correctly predicted 1564 (85%) and 1485 (81%) of the 1844 length 8 peptides respectively.
The relative frequency of correct peptides across the different peptide lengths is shown
in Appendix A Figure 5. Here an exponential decrease in peptide accuracy for both
fragmentation types is observed as the peptide length increases.

The trends shown in Figure 3.4 are not only the result of the decreased prevalence of
fragmentation cleavage sites as peptide length increases. As the number of amino acids
in a peptide sets the upper limit on the number of cleavages that can be missing, the two
variables are correlated. However, when controlling for the number of missing cleavages,
increased peptide length still negatively impacts performance. When the number of frag-
mentation cleavage sites that are missing is held constant, both algorithms show a linear
decrease in peptide accuracy as peptide length increases for both data types (Appendix
A Figure 6). For HCD data, Novor correctly predicted 86% of peptides of length 8 when
no fragmentation cleavages were missing. It only predicted 36% of peptides of length 16
for the same criterion. DeepNovo’s accuracy dropped from 91% to 69% over the same
interval when there were no missing fragmentation cleavages.

3.4.4 Increasing number of missing fragmentation cleavage sites
exponentially decreases de novo peptide algorithm accu-
racy

Peptide ion peaks may be missing in the MS spectra for a variety of reasons. These include
the random nature of the fragmentation collisions, the cut-off of the mass spectrometer
or how unfavourable fragmentation at a cleavage site is given the amino acid sequence of
the peptide [119, 237].

As shown in Figure 3.5, the majority of the correctly identified peptides had at most
one fragmentation cleavage site missing from the spectrum. Fewer than 3.6% of CID
peptides correctly identified by Novor and 10% of CID peptides correctly identified by
DeepNovo had more than one fragmentation cleavage missing. Novor did not predict any
peptide correctly with more than 5 cleavage sites missing. CID spectra with more than
one missing fragmentation cleavage account for over 36% of the total number of spectra.
For HCD data, spectra with more than one missing fragmentation cleavage accounted for
11% of Novor’s correct predictions and 12% of DeepNovo’s. HCD spectra with more than
one cleavage site missing account for 40% of the total.

To more easily compare the performance of the algorithms we also evaluate them using
the relative frequency of the correct peptides. Figure 3.6 shows the peptide accuracy and
amino acid recall for the data bins shown in Fig 3.5. For both CID and HCD data, there is
an exponential decrease in the peptide accuracy of the algorithms as the number of miss-
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Figure 3.5: Algorithm performance for increasing numbers of missing fragmentation cleav-
age sites. Bar plot showing the total number of spectra (blue), the total number of pep-
tides correctly predicted by Novor (magenta) and the total number of peptides correctly
predicted by DeepNovo (green) for each number of missing fragmentation cleavage sites.
The combined CID data are shown in A with the combined HCD data shown in B.

ing fragmentation cleavage sites increases. DeepNovo consistently outperformed Novor in
peptide accuracy for both fragmentation types and all numbers of missing cleavage sites.
For CID data with 0 missing fragmentation cleavages, DeepNovo predicted 61% of the
peptides correctly while Novor only predicted 51% correctly. Neither algorithm predicted
any CID peptide with 9 or more missing fragmentation cleavages correctly. The accu-
racy of both algorithms was higher for HCD data. DeepNovo predicted 83% of peptides
correctly while Novor predicted just 71% when no fragmentation cleavages were missing.
For 3 missing cleavages the accuracy was 13% and 11% respectively. Once the number
of fragmentation cleavage sites that are missing exceeded 3 in CID data, the probabil-
ity of either algorithm correctly predicting a peptide fell below 4.3% with Novor fairing
significantly worse. With HCD data, the peptide accuracy of DeepNovo fell below 7.9%
and Novor below 5.0% when more than 3 fragmentation cleavage sites were missing and
continued to decrease for greater numbers of missing cleavages.

To further evaluate the performance of the models, we also compare them using amino
acid recall. While related to peptide accuracy, amino acid recall gives a finer resolution
view of how the algorithms are dealing with missing fragmentation cleavage sites. This
is particularly useful for spectra where there are many missing cleavages and peptide
accuracy is extremely low.

A clear correlation can be seen in Figure 3.6 between the amino acid recall of both
algorithms and the number of fragmentation cleavage sites that are missing. The amino
acid recall of both algorithms decreases almost continuously for both fragmentation types
as the number of missing cleavages increases.
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Figure 3.6: Peptide accuracy and amino acid recall. Plots show both algorithms for
the different fragmentation types; CID (A) and HCD (B). Peptide accuracy is shown by
solid lines with amino acid (AA) recall shown by dotted lines. 95% confidence intervals
surround each point with some too small to see.

When no cleavage sites were missing, DeepNovo had an amino acid recall of 84% in CID
data and 94% in HCD data. For the same data, Novor had amino acid recalls of 80% and
91% respectively. When there are 4 or fewer missing fragmentation cleavages, DeepNovo
outperforms Novor with a greater amino acid recall for both fragmentation types. In
contrast, when 5 or more cleavage sites were missing Novor was found to perform best.
For spectra with 8 missing fragmentation cleavages, Novor correctly recalled 17% and
37% of the amino acids in CID and HCD data respectively. DeepNovo only recalled 15%
and 31% of the amino acids correctly for the same respective data.

When these algorithms are used by researchers, only high-scoring peptides are in-
cluded in the analysis. Therefore, we also performed a brief analysis using only these
high scoring de novo peptides. We extracted all peptides above a threshold that gives
90% amino acid recall. The distribution of missing fragmentation cleavage sites in these
peptides (Appendix A Figure 7) does not match that of the complete data (Figure 3.5)
as both algorithms favour peptides with fewer missing cleavages. Just 1.2% and 11% of
Novor’s high scoring peptides in CID and HCD data respectively had more than 1 missing
fragmentation cleavage site while 9.7% and 18% of DeepNovo’s high scoring peptides had
more than 1 missing cleavage site for the respective fragmentation types.

To eliminate interactions between features, a further complementary analysis was
carried out on artificial HCD data. The distribution of missing fragmentation cleavages
in the data is shown in Appendix A Figure 8. Novor correctly predicted 8792 (88%) out
of the 9839 artificial peptides with no missing cleavage site. DeepNovo correctly predicted
9342 (95%) of these peptides. Differences in the performance of the algorithms between
artificial data and real data may be due to both the more accurate peak placement and
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lack of noise in the artificial data. It is difficult to give accurate predictions of peptide
accuracy when more than 3 fragmentation cleavages are missing due to the lack of artificial
spectra fitting this description.

3.4.5 Impact of noise changes with the number of fragmentation
cleavages that are missing

The effect of noise on the accuracy of de novo peptide sequencing algorithms is sometimes
difficult to elucidate. When viewed alone, the amount of noise in a spectrum did not show
a clear negative correlation to performance. This is due to the much stronger influence of
the number of missing fragmentation cleavages on algorithm accuracy. Also, much of the
noise is at such low intensities that it does not affect the performance of the algorithms.
To account for this, in the following analysis we only consider noise above a specific
threshold, determined as the median of the noise distribution. We then define the noise
factor as the ratio of these high intensity non-peptide noise peaks to peptide peaks. For
example, a noise factor of 10 means there are 10 times as many noise peaks as peptide
peaks in the spectrum.

Figure 3.7 shows amino acid recall as a function of both the number of fragmentation
cleavage sites that are missing and the noise factor for both algorithms and both fragmen-
tation types. Amino acid recall was chosen over peptide accuracy as correct peptides were
concentrated to where only zero or one fragmentation cleavage was missing (Figure 3.5).
Appendix A Figure 9 shows a similar plot for peptide accuracy. In Figure 3.7 the number
of missing cleavage sites increases from top to bottom while the noise factor increases
from left to right. As expected, both algorithms perform best when there are very few
missing fragmentation cleavages and the noise factor is low.

The distribution of the number of spectra in Figure 3.7 is not uniform. Data points
toward the extreme right and bottom of the graph have fewer and fewer spectra in them
as these combinations of missing fragmentation cleavages and noise factor are less likely
following the database search. White squares are data points where no spectra meet that
particular combination. A few outliers near the white squares exhibit unusually high
recall, inconsistent with the rest of the graph. These are data points where sample sizes
are small and so do not reflect the trends seen in the rest of Figure 3.7.

The relationship between noise and amino acid recall is linked with the absence of
fragmentation cleavage sites. As the number of missing cleavage sites increases, fewer and
fewer amino acids are correctly recalled from spectra with high noise factors. Performance
decreases from where noise peaks and missing fragmentation cleavages are few (top left) to
where both noise and missing fragmentation cleavages are more prevalent (bottom right)
for each algorithm and fragmentation type. For both fragmentation types, DeepNovo is
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Figure 3.7: Amino Acid recall as a function of the number of missing fragmentation
cleavage sites and the Noise Factor. Higher amino acid (AA) recall is shown in pink, with
lower recall shown in cyan. Performance of Novor across the two fragmentation types are
shown on the left (A and C) with the performance of DeepNovo shown on the right (B
and D). CID data are shown on top (A and B) with HCD data shown on the bottom (C
and D).

less affected by noise than Novor. Amino acid recall does not fall as sharply as with Novor
as the noise factor increases. As seen in Appendix A Figure 9, the peptide accuracy of
Novor also decreases rapidly as the noise factor increases for both CID and HCD data.
The effect is less acute for DeepNovo but still present. The trend is also much stronger for
both algorithms in HCD data where the noise considered is of a higher average intensity
and so has a much stronger influence on algorithm prediction.

To isolate the effect of noise from missing fragmentation cleavages we also analysed
artificial data with additional noise peaks. To eliminate confounding factors, the artificial
data were duplicated and each spectrum in a duplicate was given the same factor of
random noise. Appendix A Figure 8 B shows the linear decrease in performance as the
noise factor was increased. Again, Deepnovo was less affected than Novor by the increased
noise.
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3.4.6 De novo algorithms can correctly predict amino acids miss-
ing from spectra

Earlier analyses showed the ability of both algorithms to correctly predict peptides when
fragmentation cleavage sites are missing from the spectra (see Figure 3.6). Although the
performance of the algorithms is severely affected as the number of missing fragmentation
cleavages increases, the algorithms are still able to make some accurate predictions. When
one fragmentation cleavage is missing Novor had a CID peptide accuracy of 22% and a
HCD peptide accuracy of 46%, while DeepNovo had a CID peptide accuracy of 35%
and HCD peptide accuracy of 56%. To investigate how algorithms deal with missing
fragmentation cleavages we compared how often each cleavage site was represented by
a fragment ion in the spectra to how often it was correctly identified by the de novo
algorithms (Figure 3.8).

Figure 3.8: Algorithm cleavage site predictions compared to missing cleavage sites. The
hatched blue bars represent the fraction of spectra that contain an ion from that cleavage
site in the peptide. The magenta (Novor) and green (DeepNovo) bars show the fraction
of peptides predicted by each algorithm that contained that same cleavage site. Numbers
on top of the bars indicate their value.

As can be seen in Figure 3.8A, CID peptides of length 20 are more likely to be missing
a fragmentation cleavage site nearer the end of the peptide. This peptide length was
selected as it highlights some interesting characteristics of the two algorithms. Other
peptide lengths can be found in Appendices (Appendix A Figures 1-3). As mentioned
previously, only 2% of peptides of length 20 in CID data have an ion from the first
cleavage position (b1 or y19) in the spectrum. However, both algorithms account for this
fragmentation cleavage with their predicted peptides far more often than it appears in the
data. Novor correctly identifies this cleavage position 29% of the time whereas DeepNovo
correctly identifies it 27% of the time. Novor correctly predicted the 19th cleavage position
in 63% of the peptides while DeepNovo predicted it correctly in 61%. This cleavage site
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was represented in only 18% of CID peptides of length 20. Even though both algorithms
appear to perform similarly in Figure 3.8A, DeepNovo predicted more than three times
as many length 20 CID peptides correctly, when compared to Novor.

The corresponding graph for HCD data is shown in Figure 3.8B. The first cleavage
site is only present in 6% of spectra. Yet, Novor accounts for this site in 40% of the
data and DeepNovo in 32%. Novor performs better than DeepNovo on the first and last
cleavage sites in both HCD and CID data despite DeepNovo performing better overall.
DeepNovo’s correct predictions are less evenly spread than Novor among all the peptides
with a small subset containing most of the recalled amino acids. Other peptide lengths
can be found in Appendices for which similar trends were observed (Appendix A Figures
1-3).

3.5 Discussion

De novo peptide sequencing is a growing field with machine learning fuelling its devel-
opment. Historically, effective design of de novo algorithms was difficult with previous
methods relying on human expert knowledge. Including this knowledge in the design
of machine learning algorithms is not straightforward as it is difficult to capture and
may significantly increase the complexity of the corresponding algorithms [153]. In fact,
most of the fragmentation rules identified by researchers are not included in proteomics
identification tools [166]. Machine learning may allow algorithms to learn these features
automatically as they uncover patterns in the data. However, the design of algorithm
architectures that would facilitate this learning is non-trivial and requires a deep under-
standing of the data and fragmentation process.

As shown in our analysis and others [177], the performance of modern algorithms on
artificial data far exceeds that of real data. Not only does this mean that analysis of
algorithms on artificial data is not directly applicable to real data but it also highlights
how the current bottlenecks lie with features of the data and the algorithms’ inability to
cope with them. To elucidate some of these data features and show how they might be
addressed, we evaluated two state of the art de novo sequencing algorithms on both real
and artificial MS/MS data. We determined both the prevalence and effects of missing
fragmentation cleavages and noise on de novo sequencing algorithms. We also investigated
how the state of the art algorithms overcome these features.

We firstly analysed the performance of DeepNovo and Novor with respect to peptide
length to ensure it did not confound later observations. Like in previous studies [37, 177],
an increase in peptide length was found to negatively affect performance. Furthermore,
we demonstrate the peptide accuracy exponentially decreases in response to an increase
in length. This is likely due to the fact that de novo algorithms must predict each amino
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acid, meaning the likelihood of at least one incorrect prediction increases with the number
of amino acids.

Missing fragmentation cleavages were found to be the main problem with the data
which de novo sequencing algorithms must overcome. The vast majority of peptides
correctly identified come from spectra with zero or one missing fragmentation cleavages
(Figure 3.5). As the number of missing cleavage sites increases, identification becomes
more difficult with correct peptides from both algorithms becoming non-existent. Conse-
quently, almost all of the peptides scored highly by the de novo algorithms have zero or
one missing fragmentation cleavage sites (Appendix A Figure 7). Fragmentation cleavages
were found to be more likely to be missing for longer peptides with larger mass values
(Appendix A Figure 3) and toward the ends of the peptide.

Similar to other studies [37], we found amino acid recall tended to be better toward the
middle of the peptide. Figure 3.8 shows that the reduced cleavage prediction accuracy is a
result of the reduced prevalence of fragment ions from those cleavages. This in turn leads
to reduced amino acid recall. A clear relationship can be seen between the presence of a
fragmentation cleavage in the spectra and the presence of that cleavage in the predicted
peptide. These missing cleavages explain the equal mass multi-amino acid substitutions
observed by these studies [37, 177]. A missing cleavage leaves a mass-gap in the chain of
peptide fragments which can be filled by a number of equal mass amino acid sequences.

Noise has historically been seen as a major problem in de novo peptide sequencing
[171]. For graph based methods in particular it also increases the complexity of the de
novo sequencing problem exponentially by increasing the number of nodes and edges [44].
These additional peaks only become a major problem when present in large quantities
and if of high intensity. We found that DeepNovo is better able to deal with high intensity
noise compared to Novor in both real and artificial data.

Novor and DeepNovo employ a range of techniques including machine learning and
dynamic programming as they attempt to overcome these challenges.

Both algorithms step through the spectrum one amino acid at a time. Using ma-
chine learning they try to learn what function of the features at that particular point
distinguish peptide peaks from non-peptide peaks. The success of this approach is seen
in their effectiveness against noise. Also, DeepNovo only considers nearby peaks when
making each amino acid prediction, meaning many of the noise peaks are inconsequen-
tial. Similarly, Novor scores each peak independently thus limiting the effect of noise.
Unlike DeepNovo however, Novor creates a graph of all peaks. As with all graph based
de novo algorithms, this increases the complexity of the solution space. The difference in
approaches is highlighted by DeepNovo’s greater performance with respect to noise.

A major strength of Novor’s graph based approach is its amino acid recall when
many fragmentation cleavages are missing, where it outperforms DeepNovo. When many
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cleavage sites are missing, it is almost guaranteed that the highest scoring path in the
graph does not reflect the correct peptide. This is shown by Novor’s low peptide accuracy
in this range. However, the algorithm still manages to incorporate short subsequences of
fragment ions that are present into the highest scoring path. While the complete path
may not be present, these short subsequences will still be scored highly by the algorithm
and so are likely to appear in the highest scoring path giving rise to a partially correct
peptide. DeepNovo, on the other hand, has no means of rejoining the correct path once
an incorrect step is made and so has more complete matches but fewer partial matches
than Novor for this type of data. This is the reason DeepNovo maintains a higher peptide
accuracy than Novor while having a lower amino acid recall at greater numbers of missing
fragmentation cleavages.

The independent scoring of graph nodes means Novor cannot encapsulate the long
range relationships of peptide fragmentation. Tiwary et al. (2019) showed that the entire
peptide composition will have an impact on the peak intensity of each fragment ion [237].
Therefore accurate amino acid prediction will require the consideration of fragment ions
from the entire peptide. DeepNovo uses an LSTM to keep track of fragment ions already
encountered. It can then take advantage of their encodings for aiding the prediction
of amino acids further along the peptide. This is particularly useful when DeepNovo is
presented with a mass-gap caused by missing fragmentation cleavages. It can leverage the
information encoded from the spectrum it has already encountered to replace the absence
of peaks in its current position and make accurate predictions. The largest mass-gap
correctly traversed by DeepNovo in this research spanned seven cleavage sites compared
to a maximum of three for Novor. DeepNovo also uses dynamic programming, similar to
the knapsack problem, to make up for the fact it can only see as much as one amino acid
ahead at a time. As the true mass of the correct peptide is known, DeepNovo limits the
number of amino acids to consider at each step by only allowing those that are possible
given the remaining mass of the peptide. This is particularly useful at the end of the
peptide where the number of options will be significantly reduced.

While algorithms are improving, our analysis has uncovered some limitations in their
approaches. Unlike their database counterparts, the performance of the algorithms is
not independent of the peptide length as both algorithms build the peptides up from
individual components. Step-by-step predictions and independent peak scoring simply do
not encapsulate all the necessary information from the fragment process. The whole of the
peptide, and hence the whole of the spectrum is needed for exact amino acid prediction
[237]. DeepNovo does incorporate some long range interactions, but only for the final
amino acids predicted and only if those already predicted are correct. Graphs are the
most suitable way to capture all the complex interactions but Novor’s machine learning is
not applied over the graph but only on the peak scores. Thus, complete spectrum encoding
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would encapsulate the complex nature of peptide fragmentation leading to more accurate
predictions. The combination of the strengths of these two aforementioned models can
be harnessed using graph neural networks (GNNs) [211]. In GNNs, features of each
node, such as its m/z value and intensity, can be encoded with a neural network and
passed along the edges of the graph to other nodes. Through this mechanism, peaks
from one end of the graph could influence the prediction of amino acids at the other.
Similar applications have been shown such as the Graph2Seq model [263]. This model
was shown to be extremely effective in tasks such as path finding, where an optimal
sequence is predicted from a complex graph. This is similar to de novo sequencing where
the sequence would be the peptide. Graph2Seq uses a GNN to encode the graph before
an attention based LSTM is used to predict each element in a sequence. While each node
will share information with its neighbours, the use of attention means the model can focus
on multiple relevant parts of the graph at one time. In that way, a de novo peptide model
could learn to focus on those peaks shown to be related to the sequence [237].

De novo algorithms may also benefit from a pre-processing step that removes noise
peaks. Previous noise removal algorithms focus on a peak’s intensity and its rank among
the other peaks [173, 64]. As shown in Figure 3.3, intensity alone is an insufficient dis-
criminator and peak interactions must be considered. Denoising spectra needs the same
long range interactions, amino acid predictions does. Both tasks are essentially trying
to find a function that distinguishes between peptide peaks and non-peptide peaks. Ma-
chine learning can learn such functions as shown by the performance of both algorithms.
However, the noise peaks causing the problems for these algorithms are still scored highly
and their removal requires more intelligent systems. The incorporation of long range in-
teractions into a noise removal model would provide increased resolution, which in turn
should improve the de novo algorithms’ performance in their current state.

3.6 Conclusion

The availability of large datasets and the addition of machine learning has led to notable
advances in de novo peptide sequencing algorithms. Real data analyses revealed that
noise peaks are far more abundant than peptide peaks while most peptides have miss-
ing fragmentation cleavages. DeepNovo was found to perform best overall with Novor
surpassing it only for amino acid recall when many cleavages were missing. Missing frag-
mentation cleavages were found to be the biggest obstacle for both algorithms with both
peptide length and noise also affecting performance. DeepNovo’s recurrent neural net-
work helped counteract the effect of missing fragmentation cleavages. Future de novo
algorithms may benefit from a complete spectrum encoding that encapsulates the long
range dependencies of peptide fragmentation. While the quality of data is increasing,
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improvements in de novo peptide identification algorithms could allow new insights from
past research. Future de novo algorithms will also benefit from the advances in the field of
machine learning. Recently developed machine learning algorithms, such as graph neural
networks, may help better capture the intricate relationships of peptide fragmentation
thereby advancing performance in this space.
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Chapter 4

Application of a Novel Hybrid CNN-GNN for
Peptide Ion Encoding

The work outlined in this chapter was published in:

McDonnell, K., Abram, F., and Howley, E. Application of a novel hybrid CNN-GNN for
peptide ion encoding. Journal of Proteome Research (2022).

4.1 Abstract

Almost all state-of-the-art de novo peptide sequencing algorithms now use machine learn-
ing models to encode fragment peaks and hence identify amino acids in MS spectra. Pre-
vious work has highlighted how the inherent MS challenges of noise and missing peptide
peaks detrimentally affect the performance of these models. In the present research we
extracted and evaluated the encoding modules from 3 state-of-the-art de novo peptide
sequencing algorithms. We also propose a CNN-GNN machine learning model for encod-
ing peptide ions in tandem MS spectra. We compared the proposed encoding module
to those used in the state-of-the-art de novo peptide sequencing algorithms by assessing
their ability to identify b ions and y ions in MS spectra. This included a comprehensive
evaluation in both real and artificial data across various levels of noise and missing pep-
tide peaks. The proposed model performed best across all datasets using two different
metrics (AUC and average precision). The work also highlighted the effect of including
additional features such as intensity rank in these encoding modules as well as issues with
using the AUC as a metric. This work is of significance to those designing future de novo
peptide identification algorithms as it is the first step towards a new approach.
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4.2 Introduction

Proteins are large macromolecules which perform essential functions for all life on earth
[82]. They are composed of long chains of amino acids which define their structure and
consequently their function. As they are fundamental to all living organisms, the ac-
curate identification of these proteins has wide ranging significance from the detection
of cancer [114] to the optimisation of resource recovery from food waste products [184].
When profiling protein expression (proteomics), the identification process typically in-
volves the enzymatic digestion of the proteins down into smaller sequences of amino acids
called peptides. These peptides are then characterised using liquid chromatography tan-
dem mass spectrometry (LC-MS/MS). In this process, peptides of a particular sequence
are separated and isolated using liquid chromatography and a mass analyzer. They are
then fragmented using collision based methods such as high energy collision dissociation
(HCD). For each fragmented peptide sequence, the resulting fragments pass through a
second mass analyzer, producing spectra with a unique fragmentation pattern for that se-
quence. The originating peptides can then be identified from the spectra using a database
search.

During the fragmentation process the peptides are generally split between amino acids
at the peptide (amide) bonds [232]. Cleavage at a peptide bond results in b ions and y
ions. Other ions, such as a ions, appear when cleavage occurs at other bonds along the
amino acid chain. Fragment ions can then suffer neutral losses of both ammonia and
water thereby shifting the m/z of their peaks. Ions can also be doubly charged resulting
in m/z values approximately half that of their singly charged counterparts. As they are
made up of subsequences of amino acids, two singly charged peaks of the same ion type
from neighbouring peptide bonds will be separated in the spectrum at a distance equal
to the mass of the amino acid between them. Database search methods work by creating
the theoretical peaks for each peptide in the database given the possible fragmentation
sites. They then compare these to the peaks in the spectra. A peptide is assigned to a
spectrum if its set of theoretical peaks significantly matches the observed array of peaks
in that spectrum.

Although widely used, database search methods may only utilise a small fraction of the
MS spectra recovered during an experiment [80, 95]. This is partly due to the large protein
databases needed to cover the complete set of proteins being investigated [181]. Larger
databases increase the probability of a false positive peptide match therefore increasing
the false discovery rate (FDR). To account for this, search algorithms must adopt more
stringent criteria for a positive match, thereby excluding many correct but lower scoring
matches. For metaproteomics experiments, where there are a large number of possible
organisms and therefore even larger databases, the problem is even worse[107].
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De novo peptide sequencing is becoming a competitive alternative to these database
search methods [177]. In this strategy, peptides are identified using the spectra alone.
This alleviates the need for a database and its associated challenges. An important use of
de novo peptide sequencing is the identification of neoantigens for cancer immunotherapy
[70], where peptides specific to a tumour may not be available in a database. The field
has benefited tremendously from advancements in machine learning in recent years, with
machine learning models now incorporated into almost all state-of-the-art de novo identi-
fication algorithms due to their unrivalled pattern recognition capabilities [153, 241, 199].
In this context, machine learning models encode meaningful parts of the spectrum which
may help infer the amino acid sequence. The models can learn to differentiate between
peptide ions and noise peaks which could be up to 28 times as prevalent [161]. From this,
the algorithms infer the fragmentation sites and thereby the amino acid sequence. How-
ever, previous analysis has shown how difficult this inference is due to the aforementioned
levels of noise and the even greater challenge of missing ion peaks [161]. McDonnell et
al. found that increasing numbers of fragmentation sites without any representative ion
caused an exponential decrease in the accuracy of de novo algorithms.

Three such state-of-the-art de novo peptide sequencing algorithms that use machine
learning are Novor, DeepNovo and PointNovo [153, 241, 199]. Novor uses a random forest
(RF) model to score likely fragmentation sites using ions from neighbouring cleavages.
DeepNovo and PointNovo use convolutional neural networks (CNNs) to encode these
neighbouring ions to infer the next amino acid in the sequence. However, as shown in our
previous work, these algorithms do not fully encapsulate the fragmentation process [161].
This is in part due to limitations of their encoding modules. New approaches are needed
that can account for this shortcoming.

With many types of machine learning models available to encode peptide ions and
each part of a large and complex algorithm, it can be difficult to select the appropriate
one when designing de novo peptide sequencing algorithms. Therefore we extract the
encoding models from DeepNovo, PointNovo and Novor and perform a comprehensive
evaluation on their ability to identify peptide ions. Also, we propose a novel encoding
module, a hybrid CNN-GNN and compare it to the modules used in these state-of-the-
art algorithms. This is the first step towards a new de novo sequencing approach. The
impact of neighbour independent features on these models is also investigated. Finally
we identify issues with the common evaluation metric Area Under the receiver operating
characteristic Curve (AUC).
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4.3 Background and Related Work

Peptides are made up of building blocks called amino acids and when they are fragmented
using HCD, they generally cleave between these amino acids at the peptide bonds [218].
Fragmentation at a peptide bond results in b ions and y ions, depending on which side
of the cleavage the fragment is from. The amino acid sequence of proteins, and hence
peptides, are by convention always ordered from the N-terminus to the C-terminus with b
ions relating to the N-terminus fragment and y ions relating to the C-terminus fragment.
Fragmentation sites are also ordered from the N-terminus to the C-terminus. Fragmen-
tation along the peptide chain means that the peaks of fragment ions of the same type
appear at intervals from one another, equal to the mass of the constituent amino acids.
Through this relationship, the sequence of amino acids can be identified by looking for
a sequence of spectrum peaks separated by amino acid masses. Identification of these
fragment ions is therefore essential to the de novo prediction of peptides.

As they cannot rely on a database to know which spectrum peaks correspond to
fragment ions, de novo algorithms look at features of each peak as well as their relationship
to other peaks to distinguish likely candidates. The amino acid sequence is then built
up by moving from one peptide peak (fragment ion) to the next. The step size between
peaks indicates the amino acid in the sequence.

Before fragmentation the ionised peptides are separated by their mass in the first mass
analyzer. The ions that are selected for fragmentation are called the "parent ions" as they
are broken down into fragment ions. While the peptide sequence is not known, its mass
can be inferred from the parent ion. The mass of complementary b ions and y ions that
came from the same fragment site can then be identified using the following formulae:

y = (M +H)1+ − b+H (4.1)

b = (M +H)1+ − y +H (4.2)

where y is the mass of the y ion, b is the mass of the b ion, M is the mass of the peptide
and H is the mass of a hydrogen atom.

These can be generalised to the formula:

m(ioni) = M −m(comp_ioni) + 2H (4.3)

where m(ioni) is the mass of an ion from the ith fragmentation site and m(comp_ioni)

is the mass of the complementary ion from the ith fragmentation site.
Ions of the same type from neighbouring fragmentation sites can be identified using
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the following formula:
m(ioni+1) = m(ioni) +m(AA) (4.4)

where m(AA) is the mass of an amino acid.
Combining equations (4.3) and (4.4) to look for complementary ions from a neigh-

bouring fragmentation site we get the following:

m(ioni+1) = M −m(comp_ioni) + 2H +m(AA) (4.5)

Some ions lose a neutral molecule of H2O or NH3. While the charge is maintained the
resulting m/z is shifted by the corresponding mass of the lost molecule. This can then be
incorporated into the above equations by subtracting this mass from the ion in question.
The following shows the case for the loss of H2O:

m(ioni+1 −H2O) = m(ioni) +m(AA)−H2O (4.6)

Ions can also be doubly charged (ion2+). To convert a doubly charged peak to its
singly charged form one only needs to double its m/z value and subtract the mass of the
extra hydrogen nucleus (proton):

m(ioni) = 2× (m(ion2+
i ))−H (4.7)

Ions of other types can occur if fragmentation occurs at bonds other than the amide
bond. While these are less likely to occur under HCD conditions, they can easily be
incorporated into the search space. N-terminus ions can be calculated with respect to
the b ion by taking into account the relevant atomic differences. For instance a ions can
be identified by subtracting the mass of CO (28 Da) from the corresponding b ion. In a
similar way, the other C-terminus ions can be identified with respect to the corresponding
y ion.

The de novo peptide identification problem can be solved by creating a graph with
every peak as a node [18]. The above equations are then used to create connections
between nodes from potential neighbouring fragmentation sites. Passing through the
graph from zero to the mass of the parent ion, a peptide sequence will emerge from the
amino acid connections used to create the path.

De novo peptide sequencing is not without its difficulties however. Peaks not at-
tributable to the peptide (noise) account for the vast majority of peaks in tandem MS
spectra [161]. Furthermore, peaks corresponding to all possible fragment ions from a
peptide may not appear in the spectrum. This is particularly problematic when no ion
from a fragmentation site is present leading to ambiguity in the order or identification of
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the amino acids. The absence of fragment ions can be partly attributed to the fact that
the cleavage of some peptide bonds may be less energy favourable than others [123].

The machine learning modules of de novo peptide sequencing algorithms create en-
codings which are used to indicate the likelihood of a fragmentation site or particular
amino acid at that position. The modules encode the intensity of the peaks and those
near them defined by equations (4.4) and (4.5) as well as other features in the spectrum.

Tiwary et al. [237] showed that there is a significant relationship between the ion
intensity and the complete amino acid sequence, not just the neighbouring cleavages.
However, in many de novo algorithms, only peaks from possible neighbouring peptide
bond cleavages are considered as the number of possible locations grows exponentially
for cleavages farther away. These long-range interactions should be considered in future
de novo peptide identification algorithms. Graph neural networks (GNNs) are a great
way to encapsulate the long chain-like structure of the peptide without an exponential
increase in complexity, but so far no algorithm has utilised them in the context of de novo
peptide identification [161].

Novor is a de novo peptide sequencing algorithm that uses an RF machine learning
model [153]. The RF model encodes related peaks to score the likelihood of a fragmen-
tation site. It also uses other features of peaks such as their intensity rank to influence
its decision. Using the above equations, the mass difference between fragmentation sites
can be used to identify amino acids. Novor then uses dynamic programming to find the
highest scoring combination of fragmentation sites that fulfil the peptide mass.

DeepNovo is a more recent de novo algorithm using both CNNs and a long short-term
memory network (LSTM) to encode peptide ion peaks as it steps through the spectrum
[241]. Starting at one end of the peptide, the algorithm looks to identify each amino acid
in the sequence one-by-one. Given its current position, the CNN encodes the sections of
the spectra where the next possible peptide peaks may occur (equations (4.4) and (4.5)).
The output of the CNN is then passed to an output layer or LSTM to identify next most
likely amino acid. Dynamic programming is also used to limit the number of possible
amino acids that can be predicted. Following this, the current position is updated to
either that of the bn ion or yn ion given the n amino acids already predicted and the
direction of prediction. While DeepNovo’s LSTM can use information from previously
traversed peaks, its encoding module does not have any way of looking more than 1
amino acid ahead. Also, as stated in the original paper, the LSTM only uses the previous
two amino acids to influence its decision. This is done by resetting the LSTM using the
output of a second CNN which transforms the spectrum into a vector encoding. At each
prediction step, this vector is then used to initialise the LSTM before the previous two
amino acid predictions are encoded. This was found by the authors to reduce overfitting
[241]. Although DeepNovo does use a beam search to explore a greater number of possible
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sequences, each is generated using this limited information.
An updated version of DeepNovo has been released called PointNovo [199]. The

methodology of this approach is very similar to its predecessor. However, the CNN
used to encode the spectrum windows is replaced by a T Net which uses absolute peak
differences and not spectrum sections. The T Net is essentially a 1-dimensional CNN
with a kernel size of 1. The T Net encodes both the difference between each peak and the
theoretical position of neighbouring fragment ions as well as the intensity of each peak.
Again, this encoding can be either passed to an LSTM or an output layer to predict the
next amino acid in the sequence. Unlike its predecessor, the LSTM used by PointNovo
encodes all previous amino acid predictions. Also, as it uses the difference values and not
discretised windows, PointNovo is more robust to different resolution mass spectrometers
[199].

Our previous work showed limitations in the approaches of modern algorithms [161].
The peptide accuracy of the models was found to decrease exponentially with increasing
numbers of missing fragmentation cleavages. Also, DeepNovo showed a much steeper
decline in amino acid recall than Novor as the number of missing fragmentation cleavages
increased. This led to Novor performing better for spectra with more than 4 missing
cleavages. This previous work highlighted the need to explore different methodologies to
address the problems of de novo peptide sequencing while also showing a potential avenue
of exploration.

The work described here constitutes the first step in the exploration of such new
methodologies with the use of graph neural networks (GNNs) for peptide ion encoding.
GNNs can capture the graph like structure of the peptide fragmentation process as well
as having the pattern recognition capabilities of neural networks. Therefore their archi-
tecture can encode more spectrum information than CNNs alone. However the following
evaluation does not involve the integration of GNNs into the aforementioned algorithms.
The GNN module proposed updates all nodes simultaneously. This is in contrast to
the step-like architecture of DeepNovo and PointNovo and so it does not easily fit into
their algorithm. Furthermore, the code of Novor is not open source and so we cannot
integrate our model into their architecture either. Nevertheless we wish to benchmark
this approach against other encoding modules used in this space. As such we compare
a novel CNN-GNN approach with the encoding modules of the three state-of-the-art de
novo peptide sequencing algorithms on their ability to identify peptide ions.

This means that the encoding modules employed by DeepNovo and PointNovo will not
be doing exactly what they were designed to do. While it may seem likely that peptide
ion identification and amino acid identification are related, this has not been explicitly
shown in this research. Nonetheless, de novo encoding modules should be designed to
learn features of spectra that link observed fragmentation patterns to the corresponding
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peptides. As outlined earlier, identification of the chain of backbone ions can elucidate
the peptide. Therefore, effective encoding modules should be able to identify ions from
this chain. While a step-by-step approach is currently the state of the art, perhaps a
more complete spectrum encoding is required. This research proposes integrating the
long-range relationships between backbone ion peaks into the encoding process through
the use of GNNs. The aim is to highlight the potential of GNNs in the context of peptide
ion identification and hence de novo peptide identification.

4.4 Methods

4.4.1 Benchmark Datasets

Real HCD tandem mass spectra, collated by Tran et al. [241], were used in this evaluation.
HCD data provides greater resolution and mass accuracy than other fragmentation meth-
ods [185]. The data are available to download at ftp://massive.ucsd.edu/MSV000081382/.
The data are made up of tandem mass spectra from 9 different organisms from 9 different
research groups [188, 182, 41, 205, 194, 159, 215, 115, 54]. The spectra were labelled by
Tran et al. with peptides using a database search with a 1% FDR threshold against the
UniProt database [12]. These peptides are assumed to be correct, with their fragment
ions serving as ground truth labels in this research (see next section). Table 4.1 shows a
summary of the datasets. More details including the precursor and fragment tolerances
used are available in the original paper [241].

Data partitioning into training, validation and test sets was also carried out Tran
et al.. This was done by having separate partitions for each organism. The training
and validation data for each organism type were made up of spectra from the other 8
datasets. Then, testing was then done on spectra from the organism itself, essentially
performing a leave-one-out cross-validation. Each test set was made up of approximately
10000 spectra from a single organism. 9 models were trained for each encoder type tested
in this evaluation, one for each organism type.

4.4.2 Peak Classification

Theoretical peaks were created for each peptide using the Pyteomics module [141]. These
were then compared to the peaks in the corresponding spectra. Peaks were labelled as
peptide peaks if they matched the theoretical peaks within a tolerance of 0.05 Da.

The ions considered were b ions, y ions, b-H2O ions, y-H2O ions, b-NH3 ions, y-NH3

ions, b(2+) ions and y(2+) ions. Peaks that could not be assigned to one of these ion
types were labelled as noise. If multiple peaks fell within the tolerance only the peak with
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the smallest error was assigned an ion. The number of possible/theoretical peaks, given
these ion types, is known for each peptide. Each spectrum was then classified by the
Fraction of theoretical peptide Peaks Present (FPP) by matching them to the observed
spectrum peaks. The number of peaks that remained unmatched (noise) were compared
to the number of identified peaks. The relative proportion of these for each individual
spectrum we define as the Noise Ratio (NR).

Dataset Organism Mean FPP Mean NR
Yeast Saccharomyces cerevisiae 0.37 6.3
Human Homo sapiens 0.24 5.0
Mouse Mus musculus 0.21 4.1
Bacillus Bacillus subtilis 0.35 6.4
ClamBacteria Candidatus Thiodiazotropha endoloripes 0.22 3.7
Honeybee Apis mellifera 0.35 7.4
Ricebean Vigna mungo 0.28 6.0
Tomato Solanum lycopersicum 0.30 4.4
M. mazei Methanosarcina mazei 0.31 6.5
All Data 0.29 5.6

Table 4.1: Summary of real datasets used. FPP is the Fraction of peptide Peaks Present
in the spectra. NR is the ratio of noise peaks to peptide peaks.

4.4.3 Artificial Datasets

Additionally, models were also evaluated on artificial data created using the Prosit pipeline
[89]. Prosit creates artificial spectra with accurate representations of both the mass and
intensities of peptide peaks. As it is a well studied model organism, Saccharomyces cere-
visiae was selected as the basis for the artificial data. The yeast proteome (UP000002311)
was downloaded from Uniprot on 02/07/2021 [12]. Protein sequences were artificially di-
gested using the Pyteomics parser [141]. Artificial spectra were created for each unique
peptide (188694) using the Prosit pipeline. To create a manageable dataset size and
match the real data test set sizes, a random sample of 10000 spectra were selected as the
artificial dataset.

The artificial dataset has a mean fraction of peaks present (FPP) equal to 0.36. The
FPP of the artificial dataset is not 1.0 as Prosit does not predict peaks that would be very
unlikely to appear in real spectra. However, while the value closely matches that of the
real Yeast dataset (0.37), the distribution of ion types and numbers matched are quite
different (data not shown). The models were then evaluated on the artificial data with
adjusted levels of noise. The Prosit dataset was duplicated 5 times. As it was duplicated
the peaks present were the same for each dataset with only the level of noise changing.
Then to span the range of values in real data, additional noise was added at ratios to the
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peptide peaks of 0, 1, 5, 10 and 15.
The m/z values of the artificial noise peaks were randomly sampled from a uniform

distribution between zero and the mass of the peptide attributed to the spectrum. The
intensity values of the artificial noise peaks were randomly sampled from a distribution
approximating the noise intensity values in the real yeast dataset. This approximation
is a log-normal distribution. The mean and standard deviation of the natural log of this
distribution is -4.4 and 1.5 respectively.

4.4.4 Ion Identification

Machine learning modules in Novor, DeepNovo and PointNovo all encode fragment ions
in reference to the positions of possible b ions and y ions. These encodings then inform
either the likelihood that the current peak is from a fragmentation site or the prediction
of the next amino acid in the sequence. In the case of DeepNovo and PointNovo, their
algorithms move to the position of the next b ion and y ion in the spectrum depending on
the latest amino acid predicted and the direction of prediction. In this research, models
are evaluated on their ability to identify these b ions and y ions using the features listed
in the next section. Each module was used to encode the relevant spectrum sections
to vector of length 512, the same size used as DeepNovo. This was then followed by a
single output node to give a score to each peak that it is one of the two ions. Models
that could encode more information should learn to better distinguish these ions from the
other peaks.

4.4.5 Model Features

Features used by the state-of-the-art models were extracted from the spectra as follows.
Assuming each peak corresponds to a b ion or y ion, sections of the spectrum surrounding
the following locations were identified; the location of all possible peptide ion peaks from
cleavages in front of the current ion (equations (4.4) and (4.5)), the location of all possible
peptide ion peaks from cleavages behind the current ion (equations (4.4) and (4.5) with
changed signs), and the location of the possible complementary ion peak in the spectrum
(equation (4.3)). Neutral loses of H2O and NH3 as well as double protonation were
considered for each ion type. To align with the precision of the algorithms, 0.1 Da
windows surrounding the exact positions (0.05 Da each side) were extracted and peaks
were placed into the relevant bins, each of size 0.01 Da. The forward and backward ion
features have the shape (#AA, #ion types, window size) where #AA is the number of
possible amino acids and their modifications (26), #ion types is the number of ion types
(8; b ions, y ions, b-H2O ions, y-H2O ions, b-NH3 ions, y-NH3 ions, b(2+) ions and
y(2+) ions) and window size is 10 (0.1/0.01). The features used by the T Net are slightly
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different in that instead of discretised windows the absolute difference is used. This is to
correspond with the features and module used in the original paper [199].

Alongside neighbouring peaks, Novor also uses expert selected features to enhance
model accuracy [153]. These include the peak intensity rank, peak intensity half rank,
local intensity rank and local intensity half rank. The addition of these features was
included in the models denoted by "+F". For more information on these features see the
original paper [153].

4.4.6 Random Forest Model

An RF model was created to emulate the scoring function of the Novor algorithm [153].
The RF model is used by Novor to measure the probability each peak is from a real
fragmentation site. The RF evaluated in this research is an approximation of the model
used by Novor as the source code is not released. A further description of the Novor
algorithm can be found in the original paper [153]. The RF model was trained with the
above features (see previous section) as input and a single variable output. It was created
using the scikit-learn [192] library. The number of trees in the model was set to 1000.
There was no maximum depth for the trees. As Novor uses the additional features in its
algorithm, the RF model was only evaluated with these features included (RF+F).

4.4.7 CNN Model

Similarly a CNN model was created to emulate the encoding module of DeepNovo’s
algorithm [241]. The original code can be found at https://github.com/nh2tran/Dee

pNovo. A complete description of the DeepNovo algorithm can be found in the original
paper [241]. Table 4.2 shows a summary of the CNN module. Just like DeepNovo, the first
convolution layer in the module has a 1×3 filter and a stride of 1 in both directions. The
second layer has a 1× 2 filter again with a stride of 1 in both directions. the Max_pool
layer has a filter size of 1 × 3 and strides of (1,2). Finally the layers are flattened and
passed to two consecutive dense layers of size 512. It should be noted that in addition
to the amino acids, DeepNovo encodes Start, End and Pad tokens. These are set to zero
and ignored.

Three of these CNN modules were used in the the complete model, one for each
spectrum window (forward, backward and complementary). The output of the three
CNNs are concatenated and passed to a 512 dense layer before a single node output layer.
The model was created with (CNN+F) and without (CNN) the additional Novor features.
The CNN models were trained using focal loss[146] as recommended by Tran et al.[240],
and the Adam optimisation algorithm.
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Layer Output Shape
Input Window (None,26,8,10)
Transpose (None,8,10,26)
Conv2D_1 (None,8,10,64)
Conv2D_2 (None,8,10,64)
Max_pool (None,8,5,64)
Dense (None,512)
Dense (None,512)

Table 4.2: Structure of each CNN module as used by DeepNovo

4.4.8 T Net Model

A T Net module was created to emulate the encoding module of PointNovo [199]. Code for
the original implementation can be found at https://github.com/volpato30/DeepNov
oV2 with further information in the original paper [199]. While PointNovo essentially uses
the same features as DeepNovo it formats them differently. Instead of spectrum windows
the T Net model uses the differences from the theoretical values of each possible amino
acid. The T net encodes the differences and intensities of all the possible amino acids
with each peak in the spectrum. A sequence of three one-dimensional CNNs converts the
input into a 64 dimensional vector followed by two consecutive dense layers of size 512.

Three T Net modules were combined with one each for forward, backward and com-
plementary ions. These were then combined and condensed using a further 512 dense
layer as with the CNN above.

PointNovo uses 12 ions which includes a ions, a-H2O ions, a-NH3 ions and a(2+) ions in
addition to the 8 ions listed above. Therefore the T Net was included in both 8 (Tnet8+F)
and 12 (Tnet12+F) ion versions. Both versions include the additional features denoted
by "+F". All T Net models were trained using focal loss and the Adam optimisation
algorithm.

4.4.9 CNN-GNN Hybrid Model

The proposed encoding module uses a graph neural network (GNN) to capture the long-
range interactions of tandem peptide spectrum graphs (Figure 4.1). In a GNN with a
graph G = (V, E), the embedding for each node u ∈ V, is defined as h

(k)
u , where k is the

number of message passing layers i.e. update steps. The embedding h
(k)
u is updated by

aggregating the embedding of u’s neighbours N (u). The proposed GNN uses a mean
aggregation of the neighbour embeddings for each node, given by the following equation;
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h(k)
u = ReLU

(
W

(k)
selfh

(k−1)
u +W

(k)
neigh

∑
v∈N (u) h

(k−1)
v

|N (u)|
+ b(k)

)
(4.8)

Where W is a weight matrix and b is bias vector. The architecture was inspired by
the encoder module of the Graph2Seq model [263].

The CNNs described above are used to create the node embeddings. As before, at
each peak, spectrum windows which encompass the possible neighbouring amino acids are
passed to the three CNNs. Again, the output of the three CNNs is concatenated before
passing through a 512 dense layer. This provides the initial node embeddings h

(0)
u . A

graph is then created with a node for each peak and edges between nodes where equations
(4.4) and (4.5) are satisfied. An aggregate path length of 4 is used as a compromise
between complexity and performance. At each node the embeddings of its neighbour and
itself are combined and then updated using the above formula (equation (4.8)), specifying
the new embeddings for each node. The process is repeated 4 times resulting in a 512
vector encoding for each node. These GNN encodings are then passed to a single node
output layer to provide the peak score. The CNN node embedding and aggregation
steps of the GNN are all trained together. For simplicity, the CNN-GNN hybrid will
be referred to as just GNN for the rest of the paper. The model was created both
withRealDataAUPR (GNN+F) and without (GNN) the additional Novor features. Like
the other neural network models, all GNN models were trained using focal loss and the
Adam optimisation algorithm.

4.4.10 Model Evaluation

Both the area under the precision-recall curves (AUPR) and the area under the receiver
operating characteristic curve (AUC) were considered as metrics in this research. AUPR
summarises the precision-recall curve into a single number. Both recall (equation (4.9))
and precision (equation (4.11)) are independent of the number of true negatives (TN). This
makes AUPR a more informative metric when the negative class (noise) vastly outnumber
the positive class (peptide ions) [59]. AUPR is difficult to calculate however, as a linear
interpolation between points in PR space leads to an overestimation of performance [59].
Therefore we use an approximation of the AUPR, namely the average precision over all
score thresholds [266]. Average precision was calculated using the the metrics module for
Scikit-learn [192].

AUC was also used in the evaluation. The receiver operating characteristic (ROC)
is the plot of the true positive rate (TPR; equation (4.9)) against the false positive rate
(FPR; equation (4.10)). AUC, the area under this curve, is a popular metric for binary
classification tasks such as those described in this research as it also captures the perfor-
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Figure 4.1: Diagram of the CNN-GNN Hybrid Model

mance of a model in a single statistic [158]. AUC can be interpreted as the probability
that a model will score a randomly selected positive example higher than a randomly
selected negative example.

Recall = TPR =
TP

P
=

TP

TP + FN
(4.9)

FPR =
FP

N
=

FP

TN + FP
(4.10)

Precision =
TP

TP + FP
(4.11)

4.4.11 Hardware Specifications

All models were trained on a 16 GB linux machine with an Intel(R) Core(TM) i7-9750H
CPU @ 2.60 GHz and Nvidia GeForce GTX 1650 4 GB GPU. Random forest models were
created using the Scikit-learn 0.24.1 module while deep learning models were created using
Tensorflow 1.13.1.
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4.4.12 Code Availability

The artificial data and deep learning models used in this research are available at https:
//github.com/KevinMcDonnell6/MSencoding.

4.5 Results and Discussion

4.5.1 Performance on Benchmark Datasets

All models were evaluated on 9 real tandem MS datasets from 9 different organisms.
Table 4.3 shows the average precision of the models on all 9 datasets. The GNNs with
and without the additional features were the top two performing models in all datasets.
The GNN+F was found to perform best in 8 of the 9 datasets with the standard GNN
performing slightly better on the Tomato data. The RF+F was the worst performing
model in all but one of the 9 datasets with the CNN marginally worse on the Human
dataset.

The results demonstrate the strength of the graph approach in assisting peptide peak
identification. The graph can encapsulate more information as long range interactions
are passed through and encoded by the model. The GNN maintained a significantly
higher average precision than the other models despite the variation between the datasets
of organism type, FPP and NR (Table 4.1). This indicates a robustness in the GNN
architecture regardless of the data characteristics it is faced with. However, as of yet they
are unused in the context of de novo peptide identification. The advantage of GNNs is
that they can capture the inherent graph-like nature of peptide fragmentation patterns.
Consequently, these results suggest their utility in de novo peptide sequencing should be
explored further.

The results also show the utility of Novor’s additional features. These expert features
devised by Novor include intensity rank, intensity half rank, local intensity rank and
intensity half rank. The CNN+F performed substantially better than the standard CNN
for all datasets. The superiority of models that utilise these features highlight that there
is still a place for expert knowledge in the field of de novo peptide sequencing. Machine
learning is often seen as being able to provide a solution to all problems. However, care
must be taken when designing architectures and/or features that best fit the problem
at hand. In this context area experts can still play an integral part in machine learning
algorithm design. Also, while these features are useful in distinguishing peptide peaks
from noise, it is unclear whether or not they can assist in amino acid prediction as well.
The features were designed and utilised by Novor to identify fragmentation sites. Future
algorithms similar to DeepNovo may benefit from expert features designed for their step-
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Dataset RF+F CNN CNN+F Tnet8+F Tnet12+F GNN GNN+F
Yeast 0.7170 0.7368 0.7873 0.8110 0.8092 0.8612 0.8853
Human 0.7235 0.7234 0.7926 0.8048 0.8081 0.8472 0.8679
Mouse 0.6848 0.7287 0.7648 0.7942 0.8041 0.8466 0.8641
Bacillus 0.6572 0.6878 0.7558 0.7619 0.7759 0.8333 0.8567
ClamBacteria 0.7049 0.7146 0.7864 0.7872 0.8070 0.8290 0.8548
Honeybee 0.6375 0.6563 0.7248 0.7418 0.7660 0.8004 0.8299
Ricebean 0.6636 0.6754 0.7435 0.7408 0.7534 0.8249 0.8516
Tomato 0.7403 0.7666 0.8246 0.8365 0.8428 0.9017 0.9002
M. mazei 0.6613 0.6901 0.7529 0.7693 0.7813 0.8490 0.8586

Table 4.3: Average precision values for each model on all 9 real datasets

by-step amino acid prediction approach.

4.5.2 The Effect of Missing Peaks

To further investigate the above results, the performance of the models was compared for
spectra with varying amounts of noise and peptide peaks present. In our previous work
these were found to be the main challenges when identifying peptides de novo [161].

To do so, all 9 real datasets were merged and each spectrum was assigned a Noise
Ratio (NR) and Fraction of theoretical Peaks Present (FPP) based on the amount of
ion peaks identified (see section Peak Classification). The FPP values spanned the range
from 0 to 0.8 with spectra grouped into bins encompassing each 0.1 span. The NR values
ranged from 0 to 30 with spectra grouped into the designated bin for each 1.0 increase.
The final bin encompasses the NR range from 14 to 30 as very few spectra matched this
range.

Figure 4.2A shows how the performance of the models changes with respect to the
fraction of possible peptide peaks present. Spectra were grouped into bins corresponding
to fraction of peaks present. Average precision was then calculated for each bin as shown.
When many peptide peaks are missing, the performance of the models is worst. As the
fraction of peptide peaks present increases, so does the average precision.

Consistent with the overall results from the 9 datasets, the GNNs were the best per-
forming models across all of the data. Even when many peaks were missing (FPP<0.1)
the graph approach performed best. While the complete chain of ions may not be avail-
able, partial chains help inform ion identification. This aligns with our previous findings
where despite many fragmentation sites not being represented in the data, Novor was
able to make use of the partial sequences of sites that were [161]. De novo algorithms
should be designed so that they can utilise partial sequences and not rely on complete
ion chains to be present as these data account for only a fraction of the total.

The advantage of the additional expert features is again evident with those models
utilising them performing better than their counterparts for almost all of the data. The
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Figure 4.2: Performance of models with respect to the fraction of peptide peaks present
and noise ratio. Average precision is shown for spectra matching the different grading of
both features.

CNN+F performs better than the CNN for all data across the range of peptide peak
prevalence. The GNN without these features surpasses the GNN+F only when very few
peaks are missing. While there is very little data in this range the performance of these
models converges as the fraction of peaks present increases. The advantage of the features
becomes minimal when the graph is almost complete and information can pass between
peaks instead of relying on the independent features. Conversely, the CNN+F maintains
its advantage over the CNN in the same range. These models are not able to encode the
long range interactions and hence the additional features have a greater impact.

4.5.3 The Effect of Noise

The models were also evaluated with respect to the ratio of noise to peptide peaks in
the spectra (Figure 4.2B). Noise is defined as any peak that could not be attributed to
a b ion or y ion in the database assigned peptide, either singly or doubly charged, or
singly charged with a neutral loss of water or ammonia. Spectra were again binned, this
time corresponding to their noise ratio. Average precision was calculated for each bin as
shown.

The GNN+F was found to be the best performing model for almost all noise ratios
with the GNN without additional features the next best. The increase in precision of the
GNNs over the other models was greatest when noise ratios were high.

When many noise peaks are present, some of them may appear by chance at mass
values equal to an amino acid away from a peptide peak. It is very difficult for the
CNN, T Net and RF to distinguish these from actual peptide peaks. The GNNs have
the advantage of being able to encapsulate long-range relationships between peaks in the
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spectrum and so are better able to distinguish the real peptide peaks from noise. Real
peptide peaks are likely to appear as part of a chain of peaks, which is extremely rare for
noise.

Dataset RF+F CNN CNN+F Tnet8+F Tnet12+F GNN GNN+F
FPP0.36 NR0 0.9865 0.9972 0.9972 0.9948 0.9974 0.9984 0.9981
FPP0.36 NR1 0.9805 0.9943 0.9947 0.9964 0.9966 0.9964 0.9977
FPP0.36 NR5 0.9341 0.9759 0.9727 0.9875 0.9791 0.9866 0.9915
FPP0.36 NR10 0.8749 0.9403 0.9268 0.9648 0.8091 0.9702 0.9791
FPP0.36 NR15 0.8191 0.8937 0.8774 0.9223 0.6163 0.9491 0.9611

Table 4.4: Average precision values for all artificial datasets. FPP stands for Fraction of
peptide Peaks Present and NR stands for Noise Ratio

The effect of noise was also investigated using artificial data (Table 4.4). Artificial
data provide a way to evaluate the models on the same data while changing only the
number of non-peptide peaks. The yeast proteome downloaded from Uniprot [12] was
used to create a list of peptides. A dataset of the corresponding spectra was created
using the Prosit pipeline [89]. This dataset was duplicated and then the noise ratio was
artificially set to the specified levels for each duplicate. The noise ratio of each spectra was
artificially assigned thereby controlling for the correlations between variables observed in
real data (Appendix B Figure 1). The models prepared for the real yeast data, which
were therefore not trained on any yeast spectra or peptides, were used in the evaluation.

Table 4.4 shows the average precision values for the yeast models on the 5 artificial
datasets. Like the real data, the GNNs were the top two performing models for each
dataset. The GNN+F was the best model for all datasets except when there was no
additional noise and the GNN performed marginally better.

4.5.4 CNN-GNN Hyperparameter Comparison

The GNN+F model was also trained and tested with different hyperparameters, such as
the number of message passing layers, the direction of neighbouring nodes to aggregate
and the aggregation function.

Table 4.5 shows how average precision increases with increasing numbers of message
passing layers but with decreasing magnitude. The GNN model is designed such that
setting the model to have 0 message passing layers is equivalent to the CNN model. As
shown in Table 4.5 increasing the the number of layers from 0 to 2 gives an initially large
increase in average precision of 11%. Further increases from 2 to 4 and 4 to 6 give more
modest improvements of 1.2% and 0.88% respectively.

Table 4.5 also shows how mean aggregation was found to give better average precision
than sum aggregation when there are 4 message passing layers. Mean aggregation is more
stable to differing node degrees as it normalises the inputs maintaining the same scaling.
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Models also tended to converge to their optimum quicker using mean aggregation (data
not shown).

Models with 4 layers were also also trained using only the forward or backward con-
nections in the graph. In this context, forward connections refer to nodes from the ap-
parent succeeding cleavage (equations (4.4) and (4.5)), with backward connections from
the preceding cleavage. The results show that both 4 layer unidirectional models exhib-
ited similar average precision to each other but lower than the 4-layer model using both
directions. The average precision of the 4-layer single direction models is very similar to
that of the model utilising both directions over only 2 layers. For any given peak, each of
these 3 models are using neighbour encodings that span a distance of 4 hops. Although
each model would ultimately be using different neighbours the results remain consistent.

#Layers Aggregation Fn Direction Average Precision
0 Mean Fw & Bw 0.7873
2 Mean Fw & Bw 0.8748
4 Mean Fw & Bw 0.8853
6 Mean Fw & Bw 0.8931
4 Sum Fw & Bw 0.8759
4 Mean Fw 0.8766
4 Mean Bw 0.8740

Table 4.5: Average precision values for different GNN+F models on the yeast dataset.
The number of aggregation layers is denoted by #Layers, the aggregation function is
specified under Aggregation Fn and the directions information could flow is highlighted
under Direction.

4.5.5 Problems with AUC

During the evaluation of the models, AUC was also used as a metric to compare their
performance across the different datasets. However, this analysis resulted in some unusual
findings.

Figure 4.3 shows how the AUC changes for each model on the real data when binned
by the fraction of peptide peaks present and the noise ratio. There is an initial increase
in AUC as the noise ratio increases from 0 to 5 for all models (Figure 4.3B). This is
in contrast to previous findings which showed increasing noise levels resulted in worse
performance [161, 177].

Upon further investigation it was found that this portion of the data had a much lower
than average fraction of peptide peaks present, which may contribute to the lower than
expected performance overall (Appendix B Figure 1A). As shown in the Figure 4.2A,
lower levels of peptide peaks present correlate to lower overall performance. However, if
this was the case it did not affect the average precision (Figure 4.2B).
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Figure 4.3: Performance of models with respect to the fraction of peptide peaks present
and noise ratio. AUC is shown for spectra matching the different grading of both features.

To account for these correlations the AUC was calculated for each model on the
artificial data where only the noise level was changed (Table 4.6). Again an initial increase
in the AUC was observed for each model as noise was added to the data.

Dataset RF+F CNN CNN+F Tnet8+F Tnet12+F GNN GNN+F
FPP0.36 NR0 0.9609 0.9918 0.9916 0.9841 0.9920 0.9954 0.9946
FPP0.36 NR1 0.9861 0.9960 0.9961 0.9973 0.9974 0.9969 0.9984
FPP0.36 NR5 0.9813 0.9941 0.9924 0.9964 0.9951 0.9948 0.9976
FPP0.36 NR10 0.9736 0.9896 0.9839 0.9917 0.9863 0.9918 0.9957
FPP0.36 NR15 0.9670 0.9836 0.9758 0.9875 0.9762 0.9883 0.9932

Table 4.6: AUC values for all artificial datasets. FPP stands for Fraction of peptide Peaks
Present and NR stands for Noise Ratio

Investigation into the definition of AUC provided some insights as to why this is the
case. The additional noise introduces many easy to classify negative examples. This
increases the size of the negative class (N) while having little effect on the number of false
positives (FP) (see equation (4.10)). This lowers the false positive rate thereby inflating
the AUC. Conversely, neither the precision or recall are proportional to the size of the
negative class (equations (4.9) and (4.11)). This is why average precision does not show
similar trends. Further discussion can be found in Appendix B.

4.5.6 Time Evaluation

Increased performance may come at a cost as models become more complex. The training
times of all the models were compared with respect to the training time per spectra. This
did not include time taken to process the data.

Figure 4.4 shows the results of the time evaluation. RF was the most efficient algo-
rithm taking 14 µs per spectrum. Both CNNs showed similar results to each other. The
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addition of the added features increased training time by 1 µs per spectrum from 38 µs per
spectrum to 39 µs per spectrum. Both took over twice as long as the RF. The GNNs took
longer to train both due to their added complexity and the difficulty in parallelising their
computation. Again the addition of the extra features resulted in a 1 µs per spectrum
increase in training time. Both GNNs took over 3 times longer per spectrum to train
than the RF. The T Net models took substantially longer to train than any of the other
models with Tnet8+F and Tnet12+F taking 236 µs and 354 µs per spectrum respectively.
This is due to the different way the models interpret the spectra. The other deep learning
models take in candidate ion windows which are processed outside the model. Instead the
T Net models use the difference from the expected ion values with some of the processing
taking place inside the model itself. While this means the T Net models are slower, it
shortens their data processing time making the combined time comparable to the CNNs
and GNNs. The T Net data processing took approximately 2.8 µs per spectrum whereas
the CNN and GNN data processing took approximately 97 µs per spectrum.

The added features caused marginal increases in training times. However, as shown in
the performance evaluations earlier, they can cause large increases in prediction accuracy
(Table 4.3). This was particularly evident for the CNN which showed a substantial
improvement with the addition of the extra features. Due to their increased complexity,
the GNN and GNN+F took longer to train. However, there was a substantial difference
in performance (Table 4.3). For most accurate identification, the GNN is shown to be
best suited. Nonetheless, for real-time peptide identification, the RF may be preferable
due to its increased speed. When choosing the appropriate encoding module for their de
novo algorithm, researchers must decide on the trade-off between accuracy and training
time.

4.6 Conclusion

We propose a new CNN-GNN hybrid module for peptide ion encoding. Our model was
found to be more effective at identifying peptide peaks in MS spectra than the encoding
modules used by the state-of-the-art algorithms, Novor, DeepNovo and PointNovo. The
CNN-GNN was better able to distinguish peptide peaks than the other modules over all
levels of noise and peptide peaks present in the data. The ability of our GNN based model
to incorporate long range ion relationships yielded significantly increased performance
over the other models in all datasets.

Our results suggest that there is potential for exploring the use of GNNs in de novo
peptide sequencing algorithms. However, it is still unknown if this will improve peptide
identification rates of current, state-of-the-art algorithms. To test this the encoding mod-
ule described here would need to be integrated within an architecture capable of sequence
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Figure 4.4: Comparison of the training times of the seven models.
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prediction. One option would be combining it with an LSTM, although LSTMs require
sequential vector inputs while GNNs produce an encoding for each node which do not
have a natural order. Therefore, another module, such as an attention mechanism, would
be required to allow the model to condense the collection of node encodings into the
required sequence. Again, there are multiple ways in which this could be done, and their
investigation requires further research.

The GNN module proposed in this work shows a considerable improvement in average
precision (>20%) over the RF used by Novor for all datasets. These results would suggest
that Novor’s methodology may become more competitive if the random forest scoring
module was replaced with a more effective machine learning algorithm such as a CNN-
GNN hybrid.

Finally, this research also showed the utility of Novor’s additional expert features for
peptide ion identification when peaks are isolated and there are few if any connections
between them. Hence our work highlights the importance of expert domain knowledge
in the design of de novo sequencing models. Overall this research uncovers limitations in
peptide ion encoding from state-of-the-art de novo algorithms and the presented CNN-
GNN hybrid model offers a promising alternative by embedding spectral features more
comprehensively.
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Chapter 5

Critical Evaluation of the Use of Artificial
Data for Machine Learning Based De Novo Pep-

tide Identification

The work outlined in this chapter was published in:

McDonnell, K., Howley, E., and Abram, F. Critical evaluation of the use of artificial
data for machine learning based de novo peptide identification. Computational and
Structural Biotechnology Journal (2023)

5.1 Abstract

Peptide identification in proteomics typically relies on matching high resolution tandem
mass spectra to a protein database but can also be performed de novo. While artificial
spectra have been successfully incorporated into database search pipelines to increase
peptide identification rates, little work has been done to investigate the utility of artificial
spectra in the context of de novo peptide identification. Here, we perform a critical
analysis of the use of artificial data for the training and evaluation of de novo peptide
identification algorithms. First, we classify the different fragment ion types present in real
spectra and then estimate the number of spurious matches using random peptides. We
then categorise the different types of noise present in real spectra. Finally, we transfer this
knowledge to artificial data and test the performance of a state-of-the-art de novo peptide
identification algorithm trained using artificial spectra with and without relevant noise
addition. Noise supplementation increased artificial training data performance from 30%
to 77% of real training data peptide recall. While real data performance was not fully
replicated, this work provides the first steps towards an artificial spectrum framework
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for the training and evaluation of de novo peptide identification algorithms. Further
enhanced artificial spectra may allow for more in depth analysis of de novo algorithms as
well as alleviating the reliance on database searches for training data.

5.2 Introduction and Related Work

Proteomics can provide valuable insight into the functional profile of a biological system
through the identification of the proteins present at the time of sampling [26]. This
process is typically performed using a bottom-up strategy, whereby proteins are first
digested down in smaller sub-sequences of amino acids called peptides [272]. Peptides
are then detected using tandem mass spectrometry (MS) before being mapped back to
the corresponding protein. Peptide identification using tandem MS can be accomplished
through two main algorithmic approaches; database searching or de novo identification
[181]. Database searching has been the dominant method for the last few decades, with
a higher peptide identification rates than its alternative. In this approach, theoretical
spectra are first created for each peptide in the protein database. Each peptide is then
given a score based on the similarity between its theoretical spectrum and the observed
spectrum. Finally, significant peptide spectrum matches (PSMs) are used to infer proteins
identification. Database searching is not without its limitations however. In this approach
only 25% of spectra receive significant matches [95]. This is partly because larger database
sizes lead to an increased probability of random matches [150]. To limit the number
of these false positives, the score threshold for an acceptable PSM must be increased,
meaning many correct matches are lost. In this context, de novo peptide identification
offers a promising database free alternative.

De novo peptide identification relies on the spectrum alone to determine the originat-
ing peptide sequence [152]. Models are designed to recognise the patterns associated with
peptide fragmentation, such as mass differences between ions, to identify amino acids.
With an abundance of data now available on repositories such as PRIDE [124], training
complex machine learning models for de novo peptide identification has become the norm.
Indeed, machine learning models are now an integral part of all current state-of-the-art de
novo peptide identification algorithms [241, 199, 153]. The aim of these models is to learn
the fragmentation patterns from the observed spectra that are indicative of the labelled
peptide. They are generally trained and tested on real tandem MS spectra, labelled using
a database search. However, database searches can be prone to errors meaning the quality
of the training data may be suboptimal. Even though target-decoy methods are used to
estimate the false discovery rate of database searches, this strategy can still underestimate
the number of incorrect matches [121]. This means that de novo methods lack ground
truth data with which they can be evaluated.

85



5.2. INTRODUCTION AND RELATED WORK CHAPTER 5. ARTIFICIAL DATA

Peptide identification is not straightforward due to the complexity of the peptide
fragmentation process. Different fragmentation patterns are observed depending on a
multitude of factors such as the amino acid composition of the peptide, the peptide
length, the peptide charge and the method of excitation [189]. Between each two amino
acids along the peptide chain, there are three different bonds where cleavage can occur.
Cleavages at these bonds vary in frequency depending on how energetically favourable
they are [189]. For common collision based fragmentation methods such as higher energy
collisional dissociation (HCD), cleavage at the amide bond is most common, resulting in
b and y ions [63]. Depending on their charge state, fragment ions will be observed at
different mass-to-charge ratios (m/z ). They can also lose neutral molecules of ammonia
or water causing a further shift in their observed m/z. The b ions are conventionally
numbered from N-terminus to C-terminus, with y ions numbered from C-terminus to
N-terminus.

The score a PSM receives through a database search is dependent on the number
of fragment ions matched [72]. The PSMs that receive the highest scores and are used
will therefore be biased toward those with greater numbers of matched ions. This means
the training data for de novo models, which are labelled using a database search, will
tend to have fewer fragmentation cleavages missing. In our previous research missing
fragmentation cleavages were found to pose a significant challenge to de novo algorithms
[161]. While spectra with many missing cleavages will inevitably be more difficult to
characterise, a lack of these spectra in the training set will exacerbate the problem.

Artificial data may provide a solution to this issue. In many areas of machine learning
artificial data are used to train models where data are scarce, low in diversity or biased
[226, 43, 261]. This allows for full control over the creation of the data, and therefore over
what a model learns from. Artificial data are created such that they match the statistical
properties of real data and in doing so, capture the patterns present in the real data [3].
Shmelkov et al. developed a method to evaluate the utility of artificially generated data
[221]. They trained a classification model on synthetic data created using a generative
adversarial network (GAN) and compared the performance to a model trained on real
data. Artificial training data that could best replicate the performance of the real data
and could therefore replicate the inherent relationships were deemed to be the most useful.
Similar methods have been employed by other groups to measure artificial data quality
[261, 264, 34].

Artificial data can also be used for evaluation purposes [254, 20]. For example, artificial
test data can be designed to contain scenarios which are unlikely to appear in a real
dataset. This is extremely useful to test a system against important but rare events
[117]. Furthermore, the flexibility of artificial data means the performance of models can
be tested across a wide range of scenarios.
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In the context of peptide identification, there are many models available to create
artificial peptide spectra [66, 13, 60]. Prosit is a state-of-the-art, open-source, spectrum
prediction model [89]. It uses machine learning to capture the relationship between frag-
ment ion intensity and peptide sequence, producing high quality artificial spectra. The
model is capable of predicting the b and y ion fragment peaks of peptides up to length
30. While the theoretical spectra traditionally used in a database search only contain the
m/z location and an arbitrary intensity, Prosit’s spectra are highly correlated to the ob-
served fragmentation pattern. The authors successfully used this additional information
to increase the number of identified peptides by up to 35% compared to the m/z alone
[89].

To advance the field of de novo peptide identification, a greater understanding of
both the strengths and limitations of current algorithms is required. Artificial test data
would facilitate this by providing spectra with specific characteristics allowing researchers
to understand how their algorithms perform for varying levels of complexity and noise.
Artificial data have previously been used to evaluate peptide identification models but
only to a limited degree and are generally used as a secondary analysis with unvalidated
additions of noise [25, 177, 161]. While artificial spectra have proven useful for database
identification, their relevance to de novo identification has never been addressed. Further-
more, using artificial spectra as training data for de novo models may help circumvent the
current bias associated with database labelling. To address the knowledge gaps, we eval-
uate the utility of artificial data in the context of de novo peptide identification. We first
analyse real data and categorise the different forms of noise which can be present. We also
estimate the rate of spurious ion matches in the mass spectra using random non-matching
amino acid sequences. Then, through the addition of noise, we modify artificial spectra
to increase its similarity to real spectra. Finally, we assess the utility of the modified
artificial spectra by using them to train the state-of-the-art de novo peptide sequencing
model PointNovo [199], and compare the difference in performance to the model trained
on real spectra.

5.3 Methods

5.3.1 Real Spectra

The real spectra used in this research come from 9 different organisms and 9 different
research groups (Table 5.1) [188, 182, 41, 205, 194, 159, 215, 115, 54]. All experiments
were conducted with a Thermo Scientific Q-Exactive mass spectrometer by the respective
research groups. The raw data were combined and processed by Tran et al. [241] using
the PEAKS DB software [271] with their respective proteome database. The data were
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then filtered using a 1% false discovery rate threshold. More information on the data
processing and experiments can be found in the original papers [188, 182, 41, 205, 194,
159, 215, 115, 54, 241]. As processing of the MS/MS spectra was carried out prior to this
research, the effect of this on the subsequent analysis is not considered.

The spectra were also partitioned into different datasets by Tran et al. [241] to create
9 separate training, validation and testing sets, one for each organism. Each test set
consists of spectra from the respective organism while the training and validation sets for
each organism are composed of spectra from the other 8. The resulting MGF files were
downloaded from ftp://massive.ucsd.edu/MSV000081382/.

In this research, the characteristics of real data were derived from a subsample of
50,000 spectra from the nine organisms, while model training was conducted on the
entire yeast partition. These choices were made to limit computational resources while
still addressing our research aims. The yeast partition was selected as Saccharomyces
cerevisiae is a model organism and well characterised.

To allow for a meaningful comparison, the real data were then filtered to exclude
spectra which could not be replicated by Prosit. The Prosit pipeline considers car-
bamidomethylation of cysteine as a fixed modification and oxidation of methionine as
the only variable modification. It also cannot predict spectra for peptides with more
than 30 amino acids. Hence, PSMs in the datasets longer than this or containing other
modifications were removed prior to analysis.

5.3.2 Artificial Spectra

Artificial spectra in this experiment were created using the Prosit pipeline [89]. The
source code was downloaded from https://github.com/kusterlab/prosit. A pretrained
model was downloaded from https://figshare.com/projects/Prosit/35582. The precursor
charges and peptide sequences of the spectra were extracted from each dataset. These
were then used by Prosit to create an artificial copy of the real datasets used in this study
(Table 5.1).

5.3.3 Peak Matching

Theoretical fragment ions were created for each of the database assigned peptides using
the Pyteomics Python module [141]. These were then compared to the observed peaks
in the spectra collated and processed by Tran et al. [241]. Observed peaks that fell
within 0.05 Da of a theoretical peak were considered matched (maximum from Table
5.1). If multiple observed peaks satisfied this condition, the peak with the smallest mass
difference from the theoretical ion was considered to be the correct match.

88



5.3. METHODS CHAPTER 5. ARTIFICIAL DATA

Dataset Organism Accession FragTol (Da) Reference

Yeast Saccharomyces
cerevisiae PXD003868 0.05 Seidel

et al. [215]

Human Homo sapiens PXD004424 0.02 Cypryk
et al. [54]

Mouse Mus musculus PXD004948 0.05 Nevo
et al. [182]

Bacillus Bacillus subtilis PXD004565 0.05 Reuß
et al. [205]

ClamBacteria
Candidatus

Thiodiazotropha
endoloripes

PXD004536 0.05 Peterson
et al. [194]

Honeybee Apis mellifera PXD004467 0.05 Hu
et al. [115]

Ricebean Vigna mungo PXD005025 0.05 Paiva
et al. [188]

Tomato Solanum lycopersicum PXD004947 0.05 Mata
et al. [159]

M. mazei Methanosarcina mazei PXD004325 0.05 Cassidy
et al. [41]

Table 5.1: Details of nine real datasets used. Accession indicates the PRIDE accession
number. FragTol indicates the error tolerance for fragment ions used by Tran et al. in
the database search [241].

Fragment ions can occur from single bond cleavages along the backbone of the peptide.
In this research, three such backbone ion types were considered (a, b and y) and are
referred to as backbone ions for the remainder of this manuscript. These ions can also
lose neutral molecules of NH3 and H2O which we refer to as neutral losses. Therefore we
consider twelve ion types in total, namely a ions, b ions, y ions, a-H2O ions, b-H2O ions,
y-H2O ions, a-NH3 ions, b-NH3 ions, y-NH3 ions, a(2+) ions, b(2+) ions and y(2+) ions.
Loss of H2O was only considered for C-terminus ions as well as others containing aspartic
acid, glutamic acid, serine or threonine [189, 228]. Loss of NH3 was only considered for
fragments containing the amino acids arginine, lysine, glutamine or asparagine [189, 228].

Internal fragments were also created for each peptide. These are defined as the amino
acid sequence arising from two backbone cleavages and can occur in two possible types;
a and b [120]. To this end, all k-mers from the second amino acid to the second last
were identified and the sum of their masses calculated. The mass of a hydrogen atom
was added to give the mass of b-type internal fragments [166]. These masses were then
duplicated with the combined mass of a carbon and oxygen removed to create the set of
a-type internal fragments.
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5.3.4 Random Peptides

The number of peaks matched in the spectra that may have occurred by chance was
estimated by creating a random peptide for each spectrum. Peptides of the same length
were generated by randomly sampling amino acids with probabilities proportional to their
prevalence in the set of assigned peptides used in this study (data collated by Tran et
al. [241]). To generate tryptic peptides the final amino acid in each sequence was set to
arginine or lysine, alternative to the last amino acid of the database assigned peptide.
This method was used to ensure as little overlap in fragment ion masses as possible while
generating random tryptic peptides with the same distribution of amino acids as those
observed in real data. Alternative methods explored can be found in Appendix C with
results in Appendix C Table 1. Theoretical backbone ions and internal fragments were
then created for each random peptide, as was done with the real peptides (see section
Peak Matching). These were then matched to the spectra with a tolerance of 0.05 Da.

5.3.5 Data Modification

During this research both real and artificial spectra were modified. Four different spec-
trum features that can contain noise or variability in their observation were identified;
m/z, intensity, presence/absence of fragment ions and unknown peaks. The effect of the
addition and removal of each of these noise types was analysed.

In real data, removal of m/z jitter was performed by resetting each peak to its expected
value. To do this the m/z value for each theoretical ion of the assigned peptide was
calculated using the Pyteomics package [141]. The m/z of the closest matched peak was
then assigned the theoretical m/z value (see section Peak Matching).

The m/z jitter was reintroduced using two different methods, each approximating the
real noise distribution. Method one consisted of a mixture distribution of two normal
distributions, both with means of 0 and standard deviations of 1e-2 and 1e-3 respectively
in a 1:1 ratio. Method two consisted of a mixture distribution of a Laplace distribution
with a mean of 0 and a scale parameter of 2.5e-3 as well as a uniform distribution between
-0.05 and 0.05 with a 12:1 ratio. Jitter in the m/z values was introduced to peaks by
taking random samples from the respective distributions and adding them to the expected
theoretical m/z.

When real intensity was modified it was replaced by the Prosit predicted value. How-
ever, Prosit did not predict an intensity for all peaks matched in the real data. If a
fragment ion was considered unlikely enough Prosit would not create a corresponding
peak. If this occurred and the peak was matched in the real spectrum the intensity was
left unchanged.

With peaks ordered by intensity, we found there was a linear relationship between
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the number of peaks to be removed from the Prosit spectra to match the number of
missing fragmentation cleavages in real spectra and the peptide length. Using a linear
regression model we could approximate the mean number to remove by length using the
formula n = max(l − 5, 0), where n is the number of peaks removed and l is the length
of the peptide. Peaks were removed with the lowest intensity first as these were the least
abundant ions and therefore most likely to be missing.

Unknown peaks were introduced using three different methods. These methods in-
troduced peaks as singly charged ions as these account for most of the observed peaks.
The first method involved the creation of random combinations of amino acids and cal-
culating the sum of their masses. These were introduced as singly charged peaks with
their m/z value equal to their mass. The second method involved the creation of inter-
nal fragments from the peptide assigned to the spectrum. For each peptide, all possible
internal fragments of type a and b were created (see section Peak Matching). This cre-
ated a population of m/z values equal to their masses as these were also only considered
as singly charged peaks. The third method introduced peaks as a combination of the
above methods. For each method, the number of peaks introduced to each spectrum was
set equal to the number observed in the equivalent real spectrum for a fair comparison.
Unknown peaks were then introduced by randomly sampling from the respective set of
created peaks. In the case of the combined method, the number of internal fragments was
defined to match their observed occurrence while random combinations of amino acids
made up the remaining amount. Intensity values for artificial non-peptide peaks were
sampled from a log-normal distribution estimated from unknown peaks in real data in
our previous research [160]. The natural log of this distribution has a mean of -4.4 and a
standard deviation of 1.5.

5.3.6 PointNovo

PointNovo is the current state-of-the-art in de novo peptide identification [199]. It was
used to evaluate the utility of modified and unmodified spectra for training de novo mod-
els. PointNovo is the updated version of DeepNovo [241] and was previously released as
DeepNovoV2 [200]. The source code was downloaded from https://github.com/volpato30/DeepNovoV2.
Models were trained on the Yeast partition of the labelled data collected by Tran et al..
In this partition the test data come from Saccharomyces cerevisiae while the training
and validation data come from the other 8 organisms. The models were trained with
validation testing occurring every 300 steps as per the original code and the parameters
were saved for the lowest validation loss.
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5.3.7 Metrics

The metrics used to evaluate the trained models are those used by PointNovo [199].
Firstly, the predicted amino acid and the actual amino are required to have a mass
difference of less than 0.1 Da. If this condition is met and the difference between the
combined mass of the previously predicted amino acids and the combined mass of the
previous actual amino acids is less than 0.5 Da, then an amino acid is considered matched.
Amino acid precision is then defined as the total number of matched amino acids over the
total number predicted. Amino acid recall is the total number of matched amino acids
over the total number of actual amino acids. Similarly, peptide recall is the total number
of correct peptides over the total number of spectra.

5.4 Results

A comparison between the performance of a model trained using real and artificial data
can be used as an indicator of the quality of the latter [221]. Table 5.2 shows the per-
formance of PointNovo given three different training and test set combinations of real
and artificial spectra. The artificial data are duplicates of the real data, generated using
Prosit [89]. The performance of the model when trained and tested on real spectra is the
baseline for this research. It provides a reference with which to compare to the model
performance when trained using artificial spectra. If artificial training data can reproduce
the test performance of real training data it can be considered an adequate replacement
[264]. It should be noted that the performance reported here using real training data
differs slightly from that reported in the original paper [199] as the real data used in this
experiment has been filtered to match the capabilities of Prosit (see Section Real Spectra)

Train Data Test Data AA Recall AA Precision Peptide Recall
Real Spectra Real Spectra 0.7160 0.7158 0.4971
Prosit Spectra Real Spectra 0.3764 0.3743 0.1487
Real Spectra Prosit Spectra 0.9277 0.9286 0.7238

Table 5.2: Performance of PointNovo [199] on real and artificial spectra. The real spectra
are from the yeast partition dataset collated by Tran et al. [241]. The artificial spectra
are from a duplicate dataset created using Prosit [89]. Test data are composed of Saccha-
romyces cerevisiae spectra with training data made up of spectra from 8 other organisms.
AA stands for amino acid.

When PointNovo was trained on artificial spectra created using Prosit, its test per-
formance on real data dropped dramatically (Table 5.2). Peptide recall fell by 70% with
amino acid recall and precision falling by 47% and 48% respectively (Table 5.2). In con-
trast, a model trained on real data and tested on artificial data appears to perform much
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better than the baseline of real test data. For the artificial test set created using Prosit,
peptide recall was 46% greater than the real data test performance with both amino acid
recall and precision both increased by 30% (Table 5.2). These results indicate that cur-
rent artificial spectra models are not an adequate representation of tandem mass spectra
for de novo evaluation. While they may provide accurate predictions of fragment ions,
they lack the noise and random variation associated with real spectra. Artificial spectra
provide a much simpler representation for the model to learn which is highlighted by
the reduced performance when used for training, and the increased performance when
used for testing. We therefore examined the distinctive characteristics of real spectra to
appropriately modify artificial spectra.

5.4.1 Classification of Peaks

Due to the complexity of tandem mass spectra resulting from peptide fragmentation,
many algorithms and models only consider backbone ions attributable to the peptide.
Likewise, artificial spectra prediction algorithms, such as Prosit, only train their models
to predict b and y fragment ions [89]. While these ions are important as they can reveal
the peptide, they make up only a fraction of the total number of peaks [161]. Little
work has been done to classify the other peaks in the spectra in the context of de novo
peptide identification, despite their overwhelming majority. Here we aim to classify as
many peaks as possible using the data collated by Tran et al. [241].

Not all possible peptide fragments will appear in the matched spectra. This is because
the creation of some fragments will be more energetically favourable than others [189].
Table 5.3 shows the numbers of fragment ions matched in a sample of 50,000 spectra.
This sample size was used to limit computational resources. The number of possible ions
were calculated for each ion type using the peptides assigned during the database search
conducted by Tran et al. [241].

As with any matching task there is a probability that some of the matches will occur
by chance through the random alignment of a non-fragment peak with the position of an
expected fragment ion peak. To estimate the occurrence of this phenomenon, a random
peptide was created for each spectrum and all matching fragment ions identified. The
most abundant ions were b and y backbone ions as expected (Table 5.3) [63]. They
accounted for approximately 3% and 6% of the total peaks in the spectra respectively.
Both of these ion types also matched the largest fraction of their possible peaks. 42% of
all possible b ions were matched as well as 78% of all possible y ions (Table 5.3). Of the
b and y ion matches observed, we estimate the fraction of random matches to be 11%
and 10% respectively. The other backbone ion type analysed, a ions, were matched in
much smaller numbers accounting for 1.8% of all peaks as they only matched 24% of those
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Ion Type #Possible #Matched Fraction
matched #Random

#Random
#Matched

Backbone 1934880 929072 48% 117596 13%
a 644960 154436 24% 35959 23%
b 644960 272490 42% 29728 11%
y 644960 502146 78% 51909 10%
Charge 2+ 1934880 160515 8% 78457 49%
a(2+) 644960 43336 7% 19616 45%
b(2+) 644960 50799 8% 16811 33%
y(2+) 644960 66380 10% 21224 32%
Ion Loss 1842317 497932 27% 57651 12%
a-H20 143726 26641 19% 7138 27%
b-H20 143726 51607 36% 5050 10%
y-H20 644960 216682 34% 43334 20%
a-NH3 303529 39709 13% 8372 21%
b-NH3 303529 65583 22% 6093 9%
y-NH3 302847 97710 32% 8471 9%
Int. Frag. 7755678 1661562 21% 934571 56%
b 3877839 1031737 27% 474481 46%
a 3877839 629825 16% 460090 73%

Table 5.3: The number of matched peaks of different ion types in a sample of 50,000 HCD
PSMs with a matching tolerance of 0.05 Da. The data are from 9 different organisms and
research groups, collated by Tran et al. [241]. Columns indicate the number of possible
ions of each type from the assigned peptides (#Possible), the number of these possible ions
that were matched in the spectra (#Matched), the fraction of the possible ions that were
matched (Fraction Matched), the number of ions from random peptides that were matched
(#Random), and the ratio of the number of ions matched from the random peptides to
the number of ions matched from the assigned peptides (#Random/#Matched).

possible (Table 5.3). The estimate for the fraction of matches which occurred randomly
was also higher for a ions at 23%.

Fragment ions attributable to the database assigned peptide make up only a fraction
of the peaks in MS/MS spectra (Figure 5.1). Backbone ions (a,b,y), both singly and
doubly charged, were found to account for approximately 12% of all the peaks in the
spectra. Of this 12%, 18% were estimated to be random (2% of the total). The fraction
of peaks accounted for by backbone ions is almost half of what was estimated in previous
work for HCD spectra from an LTQ Orbitrap Velos mass spectrometer [168]. Similarly,
fewer matches were also observed for neutral loss ions in our experiment. Backbone ions
with a neutral loss of a water or ammonia molecule accounted for just 5% of the total
(Figure 5.1).

A substantial proportion of the peaks in the spectra could be attributable to internal
fragments (18%, Figure 5.1). This is in part due to the large number of possibilities for
this ion type; for a peptide of length 10 with 10 unique amino acids, there are 28 possible
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Figure 5.1: Fraction of peaks accounted for a sample of 50,000 HCD spectra. Percentages
indicate the fraction of the total number of peaks each segment represents. Hatching
indicates the proportion of each ion type estimated to have been matched by chance. The
data are from 9 different organisms and research groups, collated by Tran et al. [241].

unique internal fragments of each ion type. This is compared to 9 possible backbone
fragments of each ion type for the same peptide length. Also, the number of possible
internal fragments grows exponentially for longer peptides. Furthermore, we consider
two ion types (a and b) for each internal fragment which will double the number of
possible peaks [166, 165]. Table 5.3 shows that 21% of the possible internal fragments
were matched to a peak in the spectra. However, many of the internal fragments from the
random peptides were also matched in the spectra. By comparing the number of internal
fragments matched for both the assigned and random peptides, 49% of the actual internal
fragment matches were estimated to have occurred by chance (Figure 5.1).

5.4.2 Distribution of m/z Error

The observed m/z values of peptide fragment ions may differ slightly from their theo-
retical values. These errors may be random or systematic [36]. Systematic errors are
caused by biased measurements that result in repeatedly observed errors. To quantify
the measurement error of the matched peaks, the mass difference between each matched
ion and its expected value was recorded. A mass tolerance of 0.05 Da was used, so each
peak matched fell within this error range [161]. Figure 5.2 shows the distribution of
the difference in mass between the observed and theoretical values for singly charged, b
and y ions. It also shows the error distribution for the peaks matched to the randomly
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generated peptides. In general the real peptide jitter is centered around zero indicating
random measurement error.

Figure 5.2: Distribution of error in matched peak m/z for singly charged b and y ions
from a sample of 50,000 HCD spectra. The data are from 9 different organisms and
research groups, collated by Tran et al. [241]. A shows the error distribution of matched
b ions. B shows the error distribution of matched y ions. Error for ions from the real
peptides are shown in green, with errors from the random peptides in black hatching.

There is a considerable difference between the error distributions of matched peaks
from real and random peptides (Figure 5.2). It should be noted figure uses a log scale on
the y axis. The b ions from real peptides had a mean squared error over 4 times lower
than the random peptides (1.6e−4 vs 7.1e−4). The y ions from the real peptides had a
mean squared error of 3.4−5 with random peptides over 9 times larger at 3.2−4. Notably,
the random distribution matches the real distribution at the tails, especially for the b
ions. This suggests that many of the real matches have occurred by chance. A similar
method to estimate the number of spurious matches has been used by Goloborodko et
al. [92]. Without using random peptides, they assumed the spurious matches formed a
uniform distribution over the entire window below which the frequency never fell. Our
random peptide matches show a similar distribution with a constant rate across the whole
window, validating their approach.

The random distribution of y ions in Figure 5.2 B shows a very large spike at 0.00 m/z
error. This is partially attributable to the prevalence of y1 ions of arginine and lysine
present in most spectra (Appendix C Table 2). The random distribution in Figure 5.2 B
also has higher tails compared to the distribution of real y ions. However, we were unable
to account for this difference.

For both plots in Figure 5.2, multiple significant secondary peaks in the error dis-
tribution can be observed along the x-axis, in addition to the peak at zero. These are
particularly pronounced in Figure 5.2A showing the b ions. The two largest secondary
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peaks in the distribution occur around 0.036 Da each side of the origin. This is approxi-
mately the mass difference between lysine (K) and glutamine (Q) which may explain this
phenomenon. While they share most of their constituent atoms, lysine has an additional
CH4 while glutamine has an additional oxygen. Actual spectrum peaks and the possible
fragment peaks that share a similar difference in chemical composition and consequently
mass, will therefore produce the observed secondary peak in the distribution.

5.4.3 Abundance of Different Ion Types

Missing peaks, and hence missing fragmentation cleavages were found to be the greatest
challenge de novo peptide identification algorithms must overcome [161]. Missing peaks
occur when the abundance of a fragment ion, which is represented by peak intensity,
is below the detection limit. The abundance of a fragment ion is dependent on how
energetically favourable the corresponding cleavage is, which in turn depends on the
cleavage position, peptide sequence and method of fragmentation [189, 237].

Figure 5.3 shows a comparison of the distribution of the presence and absence of
fragment ions from 12 different ion types in both real and artificial spectra with assigned
peptides of length 10 (median length of the data used).

On average, the artificial data were found to have more fragment ions present than
the real data for the ion types that are predicted by Prosit [89]; b and y ions, both
singly and doubly charged. In particular, b ions are much more prevalent in the artificial
spectra. For y ions, low ion numbers are consistently more prevalent in artificial spectra
while some higher ion numbers are more prevalent in real spectra (Figure 5.3). Both of
these differences contribute to the observation that artificial spectra have fewer missing
cleavages than real spectra [161], as at least one fragment ion is present for most cleavage
sites. The reason for the increased number of fragments in artificial spectra may be partly
due to the fact that artificial data do not contain measurement error or background noise
meaning low intensity fragment ions are not lost. Hence, each ion predicted by Prosit
will be present in the artificial spectra.

The overall trends for the b and y ion series share some similarities between the real
and artificial data (Figure 5.3). For both data types in the b ion series, the b1 ion has a
low frequency before a large increase to the frequency of the b2 ion. The frequency of the
b ions then decreases for increasing ion numbers. Also, both data types show a generally
decreasing frequency in the y ion series with the y1 ion as the most frequently observed
and the y9 ion as the least frequently observed.

The difference in the number of missing peaks between artificial and real data was
found to be related to the length of the peptide. A greater deviation in ion distributions
was observed between real and artificial spectra for longer peptides (Appendix C Figures
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Figure 5.3: Comparison of the distribution of 12 different ion types in real versus artificial
spectra for length 10 peptides in a sample of 50,000 HCD spectra. Frequency denotes the
fraction of spectra where each ion was present. The real data (A) are from 9 different
organisms and research groups, collated by Tran et al. [241]. The artificial spectra (B) are
from a duplicate dataset created using Prosit [89]. Ions of the same type share the same
base colour with different colour hatching indicating different charge states or neutral
losses.

1-3).

5.4.4 Differences in Peak Intensity

Prosit produces extremely accurate fragment ion intensity predictions with a reported
median spectral angle of 0.92 [89]. It uses a deep learning model composed of multiple
recurrent neural network layers and fully connected layers to encode the peptide sequence
and make the prediction. However, the Prosit model is deterministic and so for a partic-
ular amino acid sequence, it will produce the exact same spectrum every time. This is
not the case in real spectra where variability is typically observed between spectra of the
same peptide [248].

We compared the intensity predictions of Prosit to those observed in the real spectra
for peptides of length 10 (Appendix C Figure 4) by determining the distribution of differ-
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ences in intensity between Prosit and the real spectra. Only b and y ions both singly and
doubly charged were used as these are the only frequently observed ion types predicted
by Prosit. All intensities in real data were normalised to the maximum intensity of the
fragment ions and not the spectrum, to provide a fair comparison with Prosit. However,
in real data, a fragment ion may be the most intense peak in approximately half of the
spectra [161]. The median difference between the artificial and real intensity values was
less than 0.05 for all ion types from length 10 peptides, indicating a very low prediction
error. Similar trends were observed for other length peptides (Appendix C Figures 5-7).
This evaluation confirms the high accuracy reported by Prosit in the original manuscript
[89].

5.4.5 Quantifying Internal Fragments

Internal fragments are caused by the cleavage at two or more backbone bonds in a peptide
[189]. This results in fragments whose amino acids are not a sequence beginning at one end
of the peptide, but instead are an internal sequence. Internal fragments have not yet been
utilised in de novo peptide identification algorithms as their inclusion was found to make
algorithms prohibitively complex [260]. This is despite their prevalence in tandem mass
spectra as shown in Figure 5.1. Here we analyse which internal fragments are observed
in real spectra and which may have been matched by chance.

Figure 5.4A shows the frequency of occurrence of different length b-type internal
fragments in real spectra, and the estimated frequency of randomly matched internal
fragments using random peptides. Internal fragments of length two had the greatest
frequency of all internal fragment lengths for both the actual and random peptides. The
fraction of possible unique length two internal fragments matched by the actual peptides
(60%) was also greater than any other internal fragment length for all peptide lengths
(Figure 5.4B).

Notably, the fraction of b-type internal fragments of length one that were matched
for the assigned peptides (21%) was almost exactly the same as the fraction of length
one fragments that were matched for the random peptides (21%). This trend was also
observed for a-type internal fragments (Appendix C Figure 8).

5.4.6 Identification of Unknown Peaks

Most of the peaks in tandem MS spectra come from ions of unknown origin (Figure
5.1). These peaks are generally referred to as noise which can be chemical or electrical in
nature [122]. The molecular structure of these ions can be used to investigate their origin.
As molecules are made of atoms, most of their mass comes from protons and neutrons,
together known as nucleons. The dalton (Da) is defined as 1/12th the mass of a carbon-12
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Figure 5.4: The number of b-type internal fragments matched by length in a sample
of 50,000 HCD spectra. The data are from 9 different organisms and research groups,
collated by Tran et al. [241]. A shows the counts of possible unique internal fragment
masses (blue), matched internal masses (green), matched random internal masses (black
hatch). B shows the fraction of the total number of possible internal fragments matched
by the actual peptides (green) and the random peptides (black). Each individual line
represents a different peptide length.

atom, the average mass of one of its nucleons. Therefore, if chemical noise is present, it
should appear at roughly integer multiples of the dalton while electrical noise will not.
Very few peaks were found to fit the criteria for electrical noise and instead almost all
appeared to cluster at approximately integer multiples as expected for chemical noise
(Appendix C Figure 9A). However, the clusters drifted off the integer units for larger m/z
values (Appendix C Figure 9B).

To investigate the nature of this phenomenon in tandem mass spectra from shotgun
proteomics we looked at the distribution of m/z values when plotted against the m/z
modulo 1 (Figure 5.5). The modulo operation shows the remainder of the division after
the modulus (in this case 1) has been divided in evenly.

The distribution of m/z versus m/z modulo 1 shows clear patterns for both the
matched and unmatched peaks (Figure 5.5). There are two clear streaks in Figure 5.5A
that wrap around from the top of the plot to the bottom. The wrapping is caused by
the modulo operator. If the mass of these ions were integer multiples of the dalton, there
would be a horizontal line across the plot. However, the streaks appear at a slope of ap-
proximately 1.0005. While this is only a slight deviation, it is consistent meaning larger
ions appear significantly far from the integer values. This value agrees with previous
reports of the average distance between peaks in tandem mass spectra [88, 74].

The binding energy of atoms can differ depending on the make-up of their nucleus.
This means their masses can deviate from these integer values of the dalton. The dalton
is normalised to the binding energy of carbon. With different binding energies for differ-
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Figure 5.5: Distribution of m/z values vs m/z modulo 1 for peptide fragment peaks
and unknown peaks in a sample of 50,000 HCD spectra. The data are from 9 different
organisms and research groups, collated by Tran et al. [241]. A shows the distribution of
the m/z values from peaks attributable to the database assigned peptide. B shows the
distribution of the m/z from all other peaks.

ent atoms, almost all areas of the plot could be reached using different combinations of
atomic masses. However, most of these atoms are extremely rare so instead we checked
if these unknown peaks come from atoms common in biological molecules; i.e. molecules
composed mostly of hydrogen, carbon, nitrogen, oxygen and sulphur. Appendix C Figure
10 is an m/z vs m/z modulo 1 plot showing random masses using equal ratios of these
atoms, peptide ratios of these atoms, and carbohydrate ratios of these atoms using the
formula Cn(H2O)x [195]. The relative ratios of hydrogen, carbon, nitrogen, oxygen and
sulphur in peptides were calculated using the Pyteomics module [141]. The streak shown
in the real data matches the distribution of the peptide ratio (Appendix C Figure 10).
This would suggest that the noise observed in the real data is composed of peptide-like
fragments. Calculating the average mass per nucleon given the ratio of these elements
observed in peptides equates to 1.0005, equal to the slope we calculated earlier.

The parallel streaks observed in these distributions are caused by different charges
(Appendix C Figure 11). As only two charge types are considered for the peptide ions
in Figure 5.5A, only two streaks are found. Conversely, there are more streaks in Figure
5.5B showing the presence of (3+) ions. Figure 5.5B has also a background level of noise
which does not fit into any of the streaks which may be electrical in nature.

Finally we check to see if the observed streaks could also be obtained by contaminant
metabolites. The human metabolome was downloaded from https://hmdb.ca/downlo

ads [256]. Appendix C Figure 12 shows the ions of these metabolites for different charges.
While there is an overlap between the metabolites and our observed peaks, the pattern
is clearly different. While peptides have a limited set of possible masses corresponding
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to combinations of the 20 amino acids, metabolites have much greater variety leading to
the wider observed streaks. Again, this suggests that the unknown peaks are of peptide
origin, albeit not the assigned peptide.

5.4.7 Evaluation of Modified Artificial Training Data

We then aimed to improve the similarity between Prosit generated spectra and real spec-
tra through the addition of artificial noise. First real training data were modified to
observe the effect of each noise type on PointNovo performance [199]. Table 5.4 shows
the performance of the model when the different types of noise and variability, not present
in artificial data, are removed from the real training data.

Noise Type
Removed AA Recall AA Precision Peptide Recall

m/z Jitter 0.6503 0.6497 0.4274
Intensity Variation 0.7150 0.7149 0.4916
Missing Peaks 0.6578 0.6547 0.4436
Non-Backbone Peaks 0.4957 0.4872 0.2452

Table 5.4: Performance of PointNovo [199] when trained using modified real spectra. The
training data had noise removed from the four different spectrum attributes separately.
The data are from the yeast partition dataset, collated by Tran et al. [241]. Test data
are composed of Saccharomyces cerevisiae spectra with training data made up of spectra
from 8 other organisms.

The removal of variation associated with the intensity of a peptide peak had the least
effect with peptide recall decreasing by just 1% (Table 5.4). For this analysis, intensity
values for the matched fragment ions were replaced with the Prosit equivalent. The small
reduction indicates the high quality of the predicted intensity, agreeing with our earlier
analysis (Appendix C Figures 4-7). As the reduction in performance was so small we did
not try to modify the intensity further.

Artificial spectra generated by Prosit only contain backbone ions [89]. The removal
of non-backbone peaks from real spectra, leaving only these backbone ions, resulted in a
decrease in peptide recall of 51% (Table 5.4). These peaks account for over two thirds of
the total number of peaks in tandem MS spectra (Figure 5.1). Without them, the model
only needs to learn a mapping from the backbone peaks to the peptide, making the task
much simpler. The model then overfits the data leading to reduced test performance.
This supports the results observed for artificial training data (Table 5.2).

To test if the pattern for non-backbone peaks was unique to the assigned peptide,
the non-backbone peaks were then shuffled between spectra of similar parent mass. The
spectra were grouped into 100 bins of approximately 25 Da each. Non-backbone peaks
were then swapped between spectra in the same bin. Although there are many duplicate

102



5.4. RESULTS CHAPTER 5. ARTIFICIAL DATA

spectra in the dataset, this resulted in non-backbone peaks being reassigned to spectra
of the same peptide in <1% of cases. Training PointNovo on these data resulted in a
reduction in peptide recall of 7% when testing on unmodified real data (Appendix C
Table 3). While this reduction in performance is much less than the reduction caused
by removing all non-backbone peaks from the training data, it does suggest that some
relationship exists between the assigned peptide and the non-backbone peaks.

Three different models of artificial non-backbone peaks were tested. These models
were used to reintroduce the peaks back into the real data after they were removed. The
performance of PointNovo was then compared using training data with non-backbone
peaks removed versus training data with non-backbone peaks reintroduced artificially.
Firstly, the non-backbone peaks were modelled as ions resulting from random peptide
fragments since non-backbone peaks of unknown origin were found to be made up of amino
acids (Figure 5.5B). To create a non-backbone peak, a random number and selection of
amino acids was sampled, with their combined mass defining the m/z value. The peak
intensity was sampled from the distribution reported in our previous work [160]. The
artificial addition of these peaks to the training data increased the peptide recall by 43%
on real test data compared to training data with these peaks removed (Appendix C Table
3). Non-backbone peaks were also modelled solely as internal fragments as these also
account for a large proportion of the non-backbone ions in tandem mass spectra (Figure
5.1). Initially, all internal fragments were created for the matched peptide. Then a random
sample of these were used to define the m/z values of the new peaks and the intensity
values were sampled using the previously described distribution. Addition of these peaks
to the training data with non-backbone peaks removed increased the peptide recall by
49% (Appendix C Table 3). Finally, non-backbone ions were introduced as a mixture of
both random amino acids and internal fragments. Internal fragments were again sampled
randomly but only enough to match their observed frequency. The remaining peaks were
then added as random selections of amino acid sequences as before. Addition of non-
backbone peaks using this combined method increased peptide recall by 58% compared
to the training data with none present (Appendix C Table 3).

The presence or absence of a peak is related to its intensity as lower intensity ions
are by definition less likely to appear in spectra. While the intensities of the peaks were
found to be accurate, many peaks predicted by Prosit did not appear in real spectra.
The addition to the training data of the peaks predicted by Prosit but absent from the
real data caused an 11% reduction in peptide recall when tested on unmodified real data
(Table 5.4).

The removal of m/z jitter associated with peptide peaks from the training data caused
a 14% reduction in peptide recall (Table 5.4). As shown in Figure 5.2, peaks do not appear
exactly at the expected value. To remove the associated jitter, matched peaks were set
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to the expected m/z value. The m/z jitter was then reintroduced using two different
distributions. The first is a mixture distribution of two normal distributions centered at
zero with means of 1e-2 and 1e-3 in a 1:1 ratio. The reintroduction of this artificial jitter
to the real training data resulted in a 6% increase in peptide recall (Appendix C Table
3). The jitter was also reintroduced using a mixture distribution of a Laplace distribution
with a scale parameter of 2.5e-3 and a uniform distribution between -0.05 and 0.05 with
a 12:1 ratio. The introduction of this jitter resulted in a 5% increase in peptide recall
(Appendix C Table 3).

Using the understanding gained from modifying the real data by removing and replac-
ing the different types of noise, the artificial spectra were then modified to improve their
utility. The performance of PointNovo was assessed using real test data and modified
artificial spectra as training data (Figure 5.6).

Figure 5.6: Change in performance of PointNovo [199] when trained on artificial spectra
and tested on real spectra. The labels on the x-axis indicate the additions to the Prosit
[89] generated training data. The real test spectra are from the yeast partition dataset,
collated by Tran et al. [241]. Jitter signifies addition of m/z noise. IF indicates the
addition of internal fragment noise peaks. Ukn indicates the addition of random peptide
fragment noise peaks. RemPeaks indicates the removal of some of the lowest intensity
peaks. The dashed line shows the performance of PointNovo trained on real spectra.

Modifying the artificial training data with each of the different types of artificial noise
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improved the peptide recall by 156% compared to the unchanged artificial training data
(Figure 5.6). To put this in reference to real data, the peptide recall using artificial
training data increased from 30% of the real training data value to 77% by adding these
changes. Notably, not all of the introductions of variability improved performance when
introduced alone. Both the introduction of jitter and the removal of peaks reduced per-
formance by 1% and 19% respectively when they were the only changes to the artificial
data. However, combined with the addition of internal fragments and unknown peaks
they make significant improvements (Figure 5.6).

Furthermore, it should be noted that PointNovo takes 12 ion types into account; a,
b, y, a-H2O, b-H2O, y-H2O, a-NH3, b-NH3, y-NH3, a(2+), b(2+) and y(2+) ions. Only
4 of these overlap with the ion types predicted by Prosit; b, y, b(2+) and y(2+) ions.
The peptide recall reached using artificial spectra in Figure 5.6 is over 3/4 of the peptide
recall reached when using real spectra, despite only using 1/3 of the fragment types.
Further extension of the ion types predicted by Prosit would likely yield an increase in
performance.

5.5 Discussion

Artificial data have been used extensively in machine learning to both train and test
different models. In the context of de novo peptide identification it has only been used
in the evaluation of models [25, 177, 161]. However, how applicable this approach is to
real data performance has never been fully analysed.

In this research, PointNovo was first trained and tested on different combinations
of unmodified real and artificial data. Testing on artificial data compared to real data
testing reported greatly inflated performance. The artificial spectra had more peaks
corresponding to fragment ions as well as no noise when compared to real spectra. This
meant that the artificial spectra were much easier to classify than real spectra. Conversely,
when training on artificial data the model began to overfit as the data had a much
lower level of complexity. Testing this model on real data showed markedly decreased
performance as the model was unable to deal with the noise of real spectra. It is evident
from these tests that artificial spectra do not currently replicate the true complexity of
real spectra.

To quantify these differences, the peaks attributable to the database assigned peptide
in real tandem MS spectra were first classified. Previous studies have also aimed to cat-
egorise these peaks [168, 218]. However, the work presented here describes different data
from a different mass spectrometer. Furthermore, random peptides were used to esti-
mate the number of spuriously matched peaks and include quantification of the different
forms of noise associated with real spectra. The real data were also compared to artificial
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spectra created using the Prosit pipeline.
By matching the peaks to fragment ions attributable to the assigned peptides from a

database search, 36% of peaks in the spectra were accounted for (Figure 5.1). However,
13% of peaks in the spectra were also matched to fragment ions attributable to a random
peptide (Figure 5.1). Random peptides were used in this research to provide an estimate
of the number of spurious fragment ion matches. Taking this into consideration, 77% of
the peaks in the spectra could not be attributed to the database assigned peptides.

The creation of random peptides also allowed us to estimate the number of spurious
matches for each ion type. This should guide informed selection of ion types that should
be included in future de novo models. If an ion does not appear very often and is likely
to be matched by chance, it may not be very useful for peptide prediction. While an ion
type that appears more often than chance can still provide additional information toward
the peptide prediction process, it must be balanced, however, with a trade-off in model
complexity. Indeed, the inclusion of each additional ion type increases the model com-
plexity, making training and prediction slower, as well as requiring more computational
resources.

Internal fragments are not currently utilised in de novo peptide identification algo-
rithms. However, 60% of all possible internal fragments of length 2 were matched in the
spectra. While further research is required to assess how this might be realised, the inclu-
sion of internal fragments could be explored in future de novo algorithms. Previous work
highlighted the need for complete spectrum encoding to counteract missing fragmentation
cleavages [161], a strategy that would inherently include internal fragments into the pre-
diction process. A recent approach to de novo peptide identification using transformers,
Casanovo, encodes every peak in the spectrum thereby also including internal fragments
[267]. With this additional information Casanovo reported a mean improvement of 1.3%
over PointNovo in peptide precision [267].

The creation of representative artificial data necessitates the inclusion of all peaks
present in the spectra, not only backbone ions. Liu et al. created a model, PredFull, that
attempted to completely recreate tandem MS spectra [148] using a bin size of 0.1 Da,
which is large in light of the precision of modern mass spectrometers. The Q-exactive used
to create the data for this research has a maximum precision of <1 ppm [208]. Training
PointNovo using PredFull spectra and testing on real spectra resulted in a peptide recall
of 0.20. This was better than Prosit alone (0.15) but not better than the peptide recall
achieved in this work through our modifications (0.38).

As artificial data are synthetic, they lack much of the noise associated with real data.
In this research, four types of noise that only appear in real data were categorised; m/z
jitter, missing peaks, intensity and unknown peaks. Despite being deterministic, Prosit
was found to predict the intensity with a mean error of less than 0.05. Using this de-
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terministic artificial intensity in the training data was found to have very little effect
on model performance (1% reduction). Therefore the artificial intensity was not further
modified. As there is such a large diversity of peptides in the training data, variability in
intensity between spectra of the same peptide is of minimal importance.

Using a novel plot of m/z versus m/z modulo 1, this work was able to provide evidence
as to the origin of the unknown peaks in MS/MS spectra. The mean m/z to nucleon ratio
of the unknown peaks was found to be indicative of molecules made of amino acids. This
suggests that the unknown peaks in tandem MS spectra are due to peptide contaminants
or coeluting peptides. This information was then used to create a model to recreate these
peaks in artificial spectra.

Finally, the models of three different types of noise were combined with the Prosit
predicted spectra. This increased the peptide recall of a model trained on artificial spectra
from 30% to 77% of the peptide recall of a model trained on real spectra. While substantial
improvements are still required to realise the full potential of artificial data in the context
of de novo peptide identification, this work has made significant progress in this area.

Continued improvements would transform artificial spectra into a tool for the sys-
tematic and comprehensive analysis of de novo algorithms. Artificial data can facilitate
evaluation at adjustable levels of data complexity such as increased noise. Observing how
the performance of a model is impacted by changes in specific data characteristics would
provide valuable insights into its strengths and weaknesses. Currently, models must be
tested on real spectra where the effects of different data characteristics are difficult to sep-
arate [161]. Furthermore, supplementing the training data with these modified spectra
may also help reduce the bias associated with database labelled spectra. While artificial
spectra may not completely replace real training data, they can provide diverse or rare
examples to the model to help improve performance. Difficult to classify spectra will by
definition appear less often in the training data obtained using a database search. This
will in turn make it difficult for de novo models to learn to classify such spectra. Also, as
de novo performance is always benchmarked using this subset of high-scoring spectra, the
extent of this issue is not easy to quantify. The artificial generation of difficult-to-classify
spectra, those with many missing fragmentation cleavages [161], may offer both a way to
identify this bias as well as alleviate it through supplementation of the training data. A
problem to note here is that models used to generate artificial spectra also currently rely
on database labelled spectra as training data. These models will therefore likely have
their own bias. Further research is needed to see if the addition of noise will diversify
these artificially generated spectra enough to mitigate against their own inherent bias
when used as training or test data for de novo peptide identification models.
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5.6 Conclusion

This work provides a critical analysis of artificial data in the context of de novo peptide
identification algorithms. It presents a comprehensive survey of the different peptide
fragment ions matched in tandem MS spectra and provides evidence for the origins of
unmatched peaks. While this research shows the current limitations of using artificial
data to train or evaluate de novo peptide identification algorithms, it also highlights its
future potential. The inclusion of additional noise was shown to significantly increase the
utility of artificial spectra for model training. High quality artificial spectra could help
alleviate the reliance of current algorithms on a database search for generating training
data. Furthermore, such artificial spectra could allow for the quantification of the effects
of specific data characteristics on de novo peptide identification. A greater understanding
of the challenges facing de novo algorithms is necessary to he design of more robust future
models. This work represents the first step toward such a new approach to de novo peptide
identification model training and evaluation.
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Conclusion

De novo peptide identification has many applications in proteomics and has recently
experienced substantial growth. The adoption of machine learning has led to a reinvig-
oration of the field, with several new algorithms and approaches being published. The
field however, is lacking critical independent analyses of these many approaches.

The aim of this thesis was to address the following research questions:

1. What are the main challenges to de novo peptide identification?

2. Can we design better encoding modules to address these challenges?

3. Can artificial spectra be leveraged to aid the training and evaluation of de novo
peptide identification algorithms?

From the research described in this thesis we can answer these questions with the
following responses:

1. Through the analysis of different data characteristics and their effects on perfor-
mance, missing fragmentation cleavages were found to be the greatest challenge
facing current state-of-the-art de novo algorithms.

2. A novel CNN-GNN encoding module proposed in this thesis was evaluated on its
ability to identify peptide ions. It was shown to perform better than the encoding
modules used in the current state-of-the-art de novo algorithms for both increased
noise and missing cleavages.

3. Artificial spectra were determined to be missing the noise and variability of real
spectra that would make them useful for de novo peptide identification. However,
augmentation of the artificial spectra through addition of this noise improved their
utility significantly.
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6.1 Summary of Contributions

6.1.1 Main Challenges to De Novo Peptide Identification

This thesis presented a comprehensive evaluation of two state-of-the-art de novo peptide
identification algorithms (Chapter 3). This included an exploration and description of the
characteristics of database assigned PSMs which are used for the training and evaluation
of de novo algorithms. The data were found to be heavily biased toward spectra with
very few missing fragmentation cleavages. The study also showed missing fragmentation
cleavages to be the feature of the data that de novo algorithms found most challenging
(RQ1). This was in part due to the algorithms’ step-by-step approach. The number of
noise peaks observed in the spectra dwarfed those attributable to the assigned peptide.
While this noise also negatively affected performance, the effect was difficult to quantify
due to the dominating effect of the missing cleavages. Prior to this research there were
no independent evaluations that looked specifically at the characteristics of real data
and how they affect de novo peptide identification performance. This thesis provides an
instructive insight into the challenges and limitations currently facing de novo algorithms.
The understanding gained from this work of the data and algorithms used in de novo
peptide identification may help researchers develop new approaches in the future. It may
also provide insight into the limitations of current tools to those researchers looking to
use them to analyse their data. Furthermore, the findings of this research serve as the
foundation for the other contributions described in this thesis.

6.1.2 CNN-GNN Peptide Ion Encoding

Different machine learning encoding modules were explored in this thesis with the aim
of addressing the challenges to de novo peptide identification. GNNs were proposed as a
model as they are capable of encoding long range relationships such as those present in
MS/MS spectra. This includes the relationship between fragment ion abundance and the
complete peptide sequence. This research represents the first step toward GNN peptide
identification by demonstrating the ability of this architecture for peptide ion encoding
(Chapter 4). A CNN-GNN hybrid model was shown to outperform encoding modules
used by all state-of-the-art de novo algorithms at peptide ion identification. The proposed
model performed best over the complete range of missing cleavages and noise present in
the data (RQ2). Before this, the utility of GNNs in the context of de novo peptide
identification had not yet been shown. While more work is needed to incorporate the
encoding module into a complete peptide prediction model, the potential of GNNs is
now clear. Furthermore, despite the increased performance of the GNN, including expert
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selected features as an input resulted in greater average precision. In fact, the inclusion
of these expert features increased the performance of all models, showing the importance
of expert knowledge in de novo peptide identification algorithm design. Even when using
complex machine learning models there is still a need to understand both the data and
the problem domain when designing de novo peptide identification algorithms.

6.1.3 Utility of Artificial Spectra in De Novo Peptide Identifica-
tion

Previous to the research described in this thesis (Chapter 5), there did not exist an
extensive comparison of real and artificial spectra in the context of de novo peptide iden-
tification. Models that produce artificial spectra provide the means of generating high
quality test data that can be used to evaluate models. However, how reflective such
analysis is of real data performance has not previously been shown. This research iden-
tified key differences between real and artificial spectra which influence the performance
of de novo peptide identification models (RQ3). Underpinning this analysis was a sur-
vey, not only of the fragment ions present in each, but also the noise present in the real
spectra and absent from the artificial spectra. Four types of noise were identified and
classified for four respective features of the spectra; peak m/z, peak intensity, missing
fragment ions and unassigned peaks. A novel plot was introduced to identify the source
of unassigned peaks in the spectra, which showed that the vast majority are of peptide
origin. A random peptide model was also used to estimate the number of spurious pep-
tide ion matches in the data. This highlighted which ion types were most likely to be
matched at random and so were less effective in the identification of peptides. Compared
to real spectra, evaluation of models on artificial spectra showed inflated performance.
Training of models on artificial spectra before testing on real spectra resulted in much
lower performance, further highlighting their differences. This research demonstrated how
unaugmented artificial spectra are not representative enough of real spectra for use in de
novo peptide identification. However, by introducing models of the four noise types into
artificial spectra, the performance of a de novo peptide identification model trained on
these artificial data and tested on real data was increased by 142%. This was despite
only using stochastic models of noise and a limited number of ion types. While the work
showed that artificial spectra in their current form cannot be used to make inferences
about real data performance, it also demonstrated how they could be improved through
the introduction of noise.
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6.2 Impact

This thesis as a whole provides a foundation in both the underlying data as well as the
key algorithms for de novo peptide identification. The contributions of the thesis outline
some of the current limitations and challenges facing the field as well as how they might
be addressed. The work also provides a fundamental understanding of de novo peptide
identification and so could be used by research groups looking to break into the field.
The current state-of-the-art de novo algorithms are all based on approaches from the
same research groups that have been incrementally improved over time. Opening the
field to new research groups increases the likelihood of new innovation and development
in algorithm design.

This thesis shows how step-by-step approaches struggle with missing fragmentation
cleavages. Groups developing new approaches should look toward full-spectrum encoding
as recommended in Chapter 3. A new GNN based encoding module is then proposed in
Chapter 4 that can deal with these missing cleavages more easily than other methods.
With all source code available, research groups could build their new de novo algorithm
around this model thereby capitalising on its superior peptide ion encoding ability. Fi-
nally, the current limitations of artificial data in the context of de novo peptide identi-
fication and how its utility could be improved are highlighted in Chapter 5. The work
provides a warning to research groups looking to use presently available artificial spectra
as a means of testing their models. However, it also provides a framework whereby arti-
ficial spectra can be augmented to improve their likeness to real spectra and thus their
utility.

Clearly, innovation is required for the development of the next generation of de novo
peptide identification algorithms as shown by the limitations of current approaches ex-
posed in this work. However, this thesis also provides insight into the possible solutions
to these limitations as well as models that do not suffer from the same constraints. With
many new areas of research exposed and the first steps taken toward a new methodology,
this work provides a foundation for other research groups to develop new approaches that
will help de novo peptide identification realise its full potential.

6.3 Limitations

6.3.1 Computational Cost of Full Spectrum Encoding

Through this research it is recommended that future de novo algorithms should consider
complete spectrum encoding. This is in contrast to algorithms such as DeepNovo that only
focus on small sections of the spectrum at one time [241]. However, such an architecture
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would come at a much greater computational cost. The current step-by-step approaches
are successful as they simplify the peptide prediction problem to amino acid prediction,
one at a time. While we have shown this to be limiting in terms of accuracy, it makes
the algorithms very efficient. Learning a mapping from the complete spectrum to the
complete peptide is much more challenging and so it may require more complex models,
more training time and more computational resources. However, this assumes the use of
similar machine learning models to those currently employed. If more innovative models
could be devised that better encode the spectrum than are currently available, perhaps
the increase in model complexity could be mitigated.

6.3.2 Peptide Ion Encoding

The CNN-GNN model proposed in this research was only evaluated on its ability to
distinguish fragment ions from noise. The proposed model is incompatible with the other
step-by-step de novo algorithms considered as there is no natural order for the nodes
in the graph. Hence, it was not incorporated into any of these algorithms for testing.
While the problem of ion identification is related to peptide prediction, the utility of
the proposed model on the latter remains untested. It is therefore an open problem to
incorporate this module into a de novo peptide prediction model. One possible approach
would be to use an attention mechanism combined with an LSTM. Again, as they do
not have a natural ordering, the output of a GNN does not easily fit with an LSTM for
sequence encoding or prediction. However, an attention mechanism allows the LSTM to
focus on relevant nodes at each prediction step, thus removing the need for an order. A
CNN-GNN encoder coupled to an LSTM with attention decoder is an architecture for de
novo peptide identification that could be explored.

6.3.3 Artificial Data

The results of this research indicate the potential to improve the performance of models
trained on artificial spectra. However, as the data augmentation presented was unable
to completely replicate the observed noise, it is still unclear if training with augmented
artificial spectra can compete with the performance of models trained on real spectra.
Instead of completely replacing real spectra datasets, artificial spectra might only be
useful to supplement them. In this context they could provide training examples of
spectra with characteristics that are scarce following a database search. Furthermore, the
artificial spectra were only evaluated when training PointNovo [199]. Current step-by-
step de novo algorithms, such as PointNovo, rely on relatively simple models that may see
a benefit from the inclusion of artificial spectra in their training dataset. As algorithms
evolve and become more complex it may be increasingly difficult to create spectra with
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sufficient fidelity to encapsulate the patterns which these new models will be capable of
learning.

6.3.4 Random Peptide Model

The random peptide model used to estimate the number of spurious matches will only
provide information at the dataset level. As only a single random peptide is used per
spectrum it does not provide spectrum specific information. Creating multiple random
peptides per spectrum could help provide a peak specific matching probability but this
would require a lot of computational resources and is beyond the scope of this research.

6.3.5 Noise Models

The noise models used in this research to augment the artificial spectra were stochastic
in nature. This means that the added noise was randomly sampled so that the overall
distributions of both the real and artificial data features were similar. The additional noise
was therefore independent of the spectra. While this improved the utility of the artificial
spectra significantly, this approach is incapable of capturing more complex relationships
if they are present. Only the internal fragments were spectrum specific as they were
created using the assigned peptide. A more accurate model of the noise in peptide spectra
would require a learned model that could predict the spectrum entirely and not just the
fragment ions. PredFull [148] is such an algorithm that predicts the spectrum in its
entirety. However, as shown in Chapter 5, this model has a low resolution which limits its
utility in this context. As PredFull uses a discretised spectrum, increasing the resolution
would make the model prohibitively complex. For more precise ion prediction, a model
would need to be capable of making these predictions without a limit on their number.
This would indicate the need for sequential models, such as LSTMs or transformers, that
have this capability to be incorporated into the prediction stage of the algorithm.

6.4 Future Work

6.4.1 Complete Spectrum Encoding and Graph Neural Networks

Since the publication of the work presented in Chapter 3, a model has been developed
using a complete spectrum encoding for de novo peptide prediction as was recommended.
Casanovo is a transformer based encoder-decoder model for de novo peptide prediction
[267]. The model outperformed both DeepNovo [241] and Pointnovo [199] in peptide
precision, by 8% and 1% respectively. While the margin is small, Casanova achieved this
without the use of dynamic programming. In their approach, peaks are encoded using a
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positional embedding before they are inputted into the transformer model. This converts
the peaks into a series of sinusoidal waves. The long range interactions and possible
links between peaks are therefore lost when using this approach. In contrast, GNNs can
capture these specific interactions, providing a simpler problem for the model to learn.
While our work on GNN encodings shows their potential in this area, more work is needed
to incorporate them into a complete peptide prediction algorithm.

6.4.2 Database Peptide Scoring

The structure of the GNN encoding model lends itself for use as a database scoring model.
By trying to identify fragment ions every peak is given a score. These could be then used
to distinguish between true and false PSMs. During this research preliminary tests were
performed where the sum of the scores of the matched peaks for each peptide was used
as a PSM score (data not shown). The number of peptides recovered using this score
with a 1% FDR threshold was then calculated. While the results were indeed better
than summing the intensities alone, and similar to current simpler scoring models such
as hyperscore, this methodology was not successful in retrieving more significant peptide
matches than the popular database search algorithm X!Tandem [52]. However, these
tests were performed on limited data and a more rigorous evaluation would be required
to explore this in greater detail. For example, different ways of combining the scores could
be explored. Furthermore, our model was optimised to distinguish between peptide and
non-peptide peaks and not to distinguish between correct and incorrect peptides. A more
specific training pipeline, focused on peptide spectrum matching, may help improve the
model’s ability at this task.

6.4.3 Artificial Data

A model capable of creating realistic artificial spectra could provide training examples
with many missing cleavages, the type of spectra de novo algorithms struggle with the
most [162]. This in turn may help improve the accuracy of these algorithms for such
difficult cases. It would also provide a means of generating quality PSMs for model
evaluation. However, despite the improvements presented in this thesis, artificial spectra
are still not representative enough for use in the evaluation or training of de novo peptide
identification models. If models trained on artificial data cannot replicate the performance
of real data then they do not capture the same complex patterns. Therefore, it cannot be
assumed that trends observed when evaluating models on artificial data will be relevant
to real data performance. The work in improving artificial spectra utility could be built
upon in the future by designing a model that can learn to completely replicate the tandem
MS spectra, including the noise. The design of such a model could allow the adjustment
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of the levels of the different noise types and provide a framework where models could
be fairly evaluated under all possible feature combinations. Such data may also alleviate
the dependence of de novo models on training data obtained through a database search.
The feature distribution of current training data is limited by the characteristics of the
spectra matched by the database search. As shown in this research, this is heavily skewed
towards spectra with few missing fragmentation cleavages.

6.5 Final Remarks

De novo peptide identification has seen significant recent improvements as it is benefiting
from increasing data quality and the incredible capacity of current machine learning
models to perform pattern recognition. However, care must be taken when implementing
such models as the requirements of the task and the characteristics of the data must be
fully understood. Future de novo peptide identification algorithms need to be designed
with a clear understanding of the data and how best it can be modelled. This research
provides a foundation for understanding the challenges de novo peptide identification
currently faces. Furthermore, the work presented in this thesis on encoding modules and
artificial data provide the first step towards new approaches to this problem. Overall, this
thesis illuminates the path toward the development of a new generation of de novo peptide
identification models that will increase their potential for use in proteomics research.
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Appendices

A Supplementary Information (Ch. 3)

Dataset Organism Database Size
(Protein Number)

Date
Downloaded

Yeast
Control

MouseCID Mus musculus 17082 01/07/20 No
YeastCID Saccharomyces cerevisiae 6049 01/07/20 No
EcoliCID Escherichia coli 4438 28/02/21 Yes
StaphAurCID Staphylococcus aureus 2607 12/07/21 Yes
HeLaHCD Homo sapiens 20286 28/06/20 No
PyroHCD Pyrococcus furiosus 4020 01/07/20 Yes
EcoliHCD Escherichia coli 4438 28/02/21 Yes
StaphAurHCD Staphylococcus aureus 2607 12/07/21 Yes

Table A.1: Database details. Breakdown of the protein databases downloaded from
Uniprot used in this research.
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Figure A.1: Algorithms’ cleavage predictions for length 11 peptides compared to cleavages
in spectra. 11 was found to be the most common peptide length. The hatched blue bars
represent the fraction of spectra that contain an ion from that cleavage site in the peptide.
The magenta (Novor) and green (DeepNovo) bars show the fraction of peptides predicted
by each algorithm that contained that same cleavage site. Numbers on top of the bars
indicate their value.

Figure A.2: Algorithms’ cleavage predictions for length 14 peptides compared to cleavages
in spectra. 14 was found to be the median peptide length. The hatched blue bars represent
the fraction of spectra that contain an ion from that cleavage site in the peptide. The
magenta (Novor) and green (DeepNovo) bars show the fraction of peptides predicted
by each algorithm that contained that same cleavage site. Numbers on top of the bars
indicate their value.
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Figure A.3: Algorithms’ cleavage predictions for length 30 peptides compared to cleavages
in spectra. The hatched blue bars represent the fraction of spectra that contain an ion
from that cleavage site in the peptide. The magenta (Novor) and green (DeepNovo)
bars show the fraction of peptides predicted by each algorithm that contained that same
cleavage site. Numbers on top of the bars indicate their value.

Figure A.4: Intensity distributions spectra peaks. Distributions of the normalised inten-
sities of both noise and peptide peaks for CID (A) and HCD (B) data.
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Figure A.5: Peptide accuracy of the algorithms vs peptide length. Peptide accuracy of
Novor and DeepNovo for all peptide lengths. A shows peptide accuracy in CID data while
B shows peptide accuracy in HCD data. 95% confidence intervals surround each point.

Figure A.6: Peptide accuracy of the algorithms vs peptide length when no cleavages are
missing. Peptide accuracy of Novor and DeepNovo for all peptide lengths and when each
cleavage in the peptide has at least one ion in the spectrum. A shows peptide accuracy
in CID data while B shows peptide accuracy in HCD data. 95% confidence intervals
surround each point.
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Figure A.7: Algorithm performance for increasing numbers of missing cleavages in high
scoring peptides. Bar plot showing the number of correctly predicted high-scoring pep-
tides by Novor (magenta) and DeepNovo (green) as well as the total number of high-
scoring peptides returned by each algorithm (blue with surrounding colour) for each
number of missing cleavage sites. High-scoring CID peptides are shown in A with high-
scoring HCD peptides shown in B.

Figure A.8: Algorithm performance on artificial HCD data. Bar plot of algorithm per-
formance with respect to missing fragmentation cleavages in artificial data is shown in
A. The plot shows the total number of spectra (blue), the total number correctly identi-
fied by Novor (magenta) and the total number correctly identified by DeepNovo (green)
for each number of missing cleavages. The performance of the algorithms with respect
to increasing levels of random noise in artificial data is shown in B. Solid lines indicate
peptide accuracy while dashed lines show amino acid (AA) recall.
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Figure A.9: Peptide accuracy as a function of the number of missing cleavages and the
Noise Factor. Higher peptide accuracy is shown in pink, with lower accuracy shown in
cyan. Performance of Novor across the two fragmentation types are shown on the left (A
and C) with the performance of DeepNovo shown on the right (B and D). CID data are
shown on top (A and B) with HCD data shown on the bottom (C and D).
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B Supplementary Information (Ch. 4)

Figure B.1: Correlation of features in real tandem MS data. The correlation between the
fraction of peaks present and the noise ratio in the real data used in this study is shown
in A. The correlation between the length of the peptide and the noise ratio in the spectra
for the same data is shown in B. Box plots indicate the distribution of spectra while the
blue line indicates the mean and the green lines indicate the modes.

Figure B.2: Impact of noise on the TPR and FPR of the GNN+F in artificial and real
data. The average TPR is shown in green and the average FPR is shown in blue.
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Figure B.3: Impact of noise on the TPR and FPR of the GNN in artificial and real data.
The average TPR is shown in green and the average FPR is shown in blue.

Figure B.4: Impact of noise on the TPR and FPR of the CNN+F in artificial and real
data. The average TPR is shown in green and the average FPR is shown in blue.
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Figure B.5: Impact of noise on the TPR and FPR of the CNN in artificial and real data.
The average TPR is shown in green and the average FPR is shown in blue.

Figure B.6: Impact of noise on the TPR and FPR of the RF+F in artificial and real data.
The average TPR is shown in green and the average FPR is shown in blue.
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Figure B.7: Impact of noise on the TPR and FPR of the Tnet8+F in artificial and real
data. The average TPR is shown in green and the average FPR is shown in blue.

Figure B.8: Impact of noise on the TPR and FPR of the Tnet12+F in artificial and real
data. The average TPR is shown in green and the average FPR is shown in blue.

Dataset RF+F CNN CNN+F Tnet8+F Tnet12+F GNN GNN+F
Yeast 0.9231 0.9354 0.9525 0.9527 0.9557 0.9702 0.9776
Human 0.9127 0.9193 0.9454 0.9449 0.9467 0.9585 0.9655
Mouse 0.8638 0.8977 0.9168 0.9221 0.9277 0.9452 0.9511
Bacillus 0.9078 0.9258 0.9466 0.9407 0.9454 0.9660 0.9725
Clam Bacteria 0.8969 0.8996 0.9337 0.9299 0.9373 0.9453 0.9568
Honeybee 0.8958 0.9125 0.9393 0.9329 0.9396 0.9552 0.9654
Ricebean 0.9092 0.9205 0.9419 0.9361 0.9431 0.9646 0.9719
Tomato 0.9036 0.9267 0.9464 0.9484 0.9512 0.9726 0.9729
M. Mazei 0.9006 0.9230 0.9436 0.9415 0.9466 0.9673 0.9713

Table B.1: AUC values for each model on all 9 real datasets
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B.1 Further Discussion on AUC

Appendix B Figure 2A shows the average FPR and TPR for the GNN+F as noise was
increased in the artificial data. It shows a sharp decrease in the FPR when noise is initially
increased. The additional noise gives "easy" to classify examples to the models, thereby
increasing AUC. Further additional noise does not keep having the same magnitude of
an effect on the FPR and it levels off. The TPR drops consistently as the noise ratio
increases. Additional noise makes the prediction of the positive class more difficult leading
to this decrease. The decreasing TPR dominates the trends in AUC as the FPR levels
off leading to the observed decrease in AUC for ratios of additional noise greater than 1.
Corresponding trends were found for the other algorithms (Appendix B Figures 3-8). A
somewhat similar pattern was observed when investigating real data (Appendix B Figure
2B). Decreases in the FPR are present at low noise followed by a levelling off just like in
the artificial data for almost every model (Appendix B Figures 3-8). Unlike the artificial
data however, an increase in the TPR is observed at low noise ratios. This could be due
to the aforementioned difference in the fraction of peptide peaks present for these data
(Appendix B Figure 1A). These low noise data are also correlated with increased peptide
length which the models find more difficult to successfully classify (Appendix B Figure
1B). For noise ratios above 5 when the fraction of peaks present stops increasing, TPR
decreases just as it did in the artificial data for increasing noise. While these AUC results
may not have been expected, the rank order of the models remained fairly consistent with
that of average precision (Appendix B Table 1). This suggests AUC did a reasonable job
at sorting the models based on competence. However, the analysis shows how care should
be taken when comparing AUC across datasets, particularly if the class distribution is
different between datasets.
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C Supplementary Information (Ch. 5)

C.1 Estimating Random Matches

Alongside the method used to estimate the number of random matches in the main
manuscript, we also investigated several others. The first of these involved the generation
of a random peptide from amino acids not present in the database assigned peptide but
of the same length (R_NoShare). This generates highly unlikely, non-tryptic peptides
which give a lower bound estimate of how often fragment ions are assigned by chance.
This is shown by the relatively lower values observed in Supplementary Table C.1.

The second method was the scrambling of database assigned peptide but maintaining
the last amino acid (R_Scramble). This is a method used in the generation of decoy
databases and maintains the same amino acid composition as the original set of peptides.
With the same amino acids used, this may lead to an overestimation of the randomly
matched internal fragments. Indeed this method matched the largest number of internal
fragments of those used (Supplementary Table C.1). With many ions shared with the
original peptide, this likely gives an upper bound to the number of randomly matched
ions.

Finally, we also randomly shuffled the spectra while maintaining the original peptides
to estimate the spurious matches (R_Spectrum). This method has the advantage of
searching for the same theoretical fragment ions as the original search. Database assigned
peptides were compared to the spectra of peptides of similar mass (∆m < 25Da) so that
the fragment ions spanned the same m/z range as the observed ions.

Randomly generated tryptic peptides had a larger relative amount of y ion matches
than non-tryptic peptides, even though the last amino acid in the sequences were different
to those of the assigned peptides. This is partly explained by the frequency with which
both arginine and lysine y1 ions are matched in the spectra (Supplementary Table C.2).
Despite the assigned peptides only ending with in R or K (excluding rare exceptions), y1

ions for both amino acids were present in almost all spectra. Similar to Figure 5 in the
main manuscript, this would indicate that more peptides are present in the spectra than
those detected by the database search.
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Ion Type #R_NoShare
#R_NoShare

#Matched
#R_Scramble

#R_Scramble
#Matched

#R_Spectrum
#R_Spectrum

#Matched
Backbone 45373 5% 169940 18% 128288 14%
a 20765 13% 47786 31% 39176 25%
b 13146 5% 45971 17% 32020 12%
y 11462 2% 76183 15% 57092 11%
Charge 2+ 24405 15% 103154 64% 84001 52%
a(2+) 9379 22% 22438 52% 20312 47%
b(2+) 7444 15% 18763 37% 17468 34%
y(2+) 7582 11% 24524 37% 22536 34%
Ion Loss 27124 5% 65725 13% 60316 12%
a-H20 1047 4% 8782 33% 6876 26%
b-H20 573 1% 7348 14% 4837 9%
y-H20 12580 6% 56065 26% 45880 21%
a-NH3 5436 14% 10324 26% 9647 24%
b-NH3 3465 5% 7694 12% 6839 10%
y-NH3 4023 4% 12941 13% 9923 10%
Int Frags 626938 38% 1075432 65% 957554 58%
b 274051 27% 562521 55% 485171 47%
a 352887 56% 512911 81% 472383 75%

Table C.1: Estimates of the number of randomly matched peaks of different ion types in
a sample of 50,000 HCD PSMs with a matching tolerance of 0.05 Da. The data are from
9 different organisms and research groups, collated by Tran et al.. Columns indicate the
number of ions from each method that were matched (#R_Type), and the ratio of the
number of ions matched from the random peptides to the number of ions matched from
the assigned peptides (#R_Type/#Matched). R_NoShare: Random sample of amino
acids not present in assigned peptide, R_Scramble: Assigned peptides are scrambled
while keeping the same last amino acid, R_Spectrum: Assigned peptides are compared
to randomly selected spectra.

K R
Last AA in Assigned Peptide 28948 19557
y1 Ion Matched in Spectrum 47957 45928

Table C.2: The number of arginine and lysine y1 fragments matched in a sample of 50,000
HCD PSMs with a matching tolerance of 0.05 Da. The data are from 9 different organisms
and research groups, collated by Tran et al..

129



C. SUPPLEMENTARY INFORMATION (CH. 5) CHAPTER 7. APPENDICES

Figure C.1: Distribution of the presence of 12 different ion types in real and artificial
spectra for length 16 peptides. Ions of the same type share the same base colour with
different colour hatching indicating different charge states or neutral losses.
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Figure C.2: Distribution of the presence of 12 different ion types in real and artificial
spectra for length 22 peptides. Ions of the same type share the same base colour with
different colour hatching indicating different charge states or neutral losses.
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Figure C.3: Distribution of the presence of 12 different ion types in real and artificial
spectra for length 28 peptides. Ions of the same type share the same base colour with
different colour hatching indicating different charge states or neutral losses.
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Figure C.4: Distribution of the difference in relative intensity predicted by Prosit and the
observed value for length 10 peptides. All real intensities are normalised to the maximum
fragment ion intensity matched.
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Figure C.5: Distribution of the difference in relative intensity predicted by Prosit and the
observed value for length 16 peptides. All real intensities are normalised to the maximum
fragment ion intensity matched.
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Figure C.6: Distribution of the difference in relative intensity predicted by Prosit and the
observed value for length 22 peptides. All real intensities are normalised to the maximum
fragment ion intensity matched.
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Figure C.7: Distribution of the difference in relative intensity predicted by Prosit and the
observed value for length 28 peptides. All real intensities are normalised to the maximum
fragment ion intensity matched.

Figure C.8: Distribution of m/z values vs relative intensity values for peaks in a sample
of 50,000 spectra. A shows peaks with m/z values between 100 and 120. B shows peaks
with m/z values between 1100 and 1120.
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Figure C.9: Distribution of m/z values vs m/z modulo 1 for molecules with different ratios
of hydrogen, carbon, nitrogen, oxygen and sulphur.
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Figure C.10: Distribution of m/z values vs m/z modulo 1 for random peptide fragment
peaks of different charges.
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Figure C.11: Distribution of m/z values vs m/z modulo 1 for human metabolites of
different charges.

Figure C.12: The number of a-type internal fragments matched by length. A shows
the counts of possible unique internal fragment masses (blue), matched internal masses
(green), matched random internal masses (black hatch). B shows the fraction of the total
number of possible internal fragments matched by the actual peptides (green) and the
random peptides (black). Each individual line represents the different peptide lengths.
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