
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-24T10:03:01Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Signal processing and machine learning algorithms for stress
monitoring using wearable sensor technologies

Author(s) Iqbal, Talha

Publication
Date 2023-03-30

Publisher NUI Galway

Item record http://hdl.handle.net/10379/17720

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


 

 

 

Signal Processing and Machine 

Learning Algorithms for Stress 

Monitoring using Wearable Sensor 

Technologies 

 

A dissertation presented by: 

Talha Iqbal, M.Sc., B.Eng. 

to: 

 

School of Medicine, 

College of Medicine, Nursing and Health Sciences, 

University of Galway. 

in fulfilment of the requirements for the degree of 

Doctor of Philosophy. 

Supervised by: 

Prof. William Wijns, Dr Atif Shahzad and Dr Adnan Elahi 

March 2023 



 

II 

 

Table of Contents 

1 Introduction .............................................................................................................. 1 

1.1 Stress and Stress Triggers/Stressors ........................................................................................ 1 

1.2 Clinical Need ........................................................................................................................ 3 

1.3 Literature Survey ................................................................................................................... 4 

1.4 Challenges in the Development of Stress Monitoring Devices .................................................... 6 

1.5 Objectives ............................................................................................................................... 8 

1.6 Thesis Contributions .............................................................................................................. 9 

1.6.1 Publications ................................................................................................................. 12 

1.7 Thesis Organisation ............................................................................................................ 13 

2 Stress Monitoring Background ............................................................................... 14 

2.1 Review of Physiological and Biochemical Indicators of Stress ................................................. 16 

2.1.1 Introduction ................................................................................................................ 16 

2.1.1.1 Stress Assessment Tests .................................................................................... 21 

2.1.2 Biophysiological Indicators ....................................................................................... 23 

2.1.3 Biochemical Indicators .............................................................................................. 27 

2.1.4 Conclusion - Review of Physiological and Biochemical Indicators .................... 29 

2.2 Review of different machine Learning Algorithm used for Stress Classification ...................... 31 

2.2.1 Introduction ................................................................................................................ 31 

2.2.2 Inducing Stress using Questionnaire Methods ...................................................... 34 

2.2.3 Review of Stress Classification Machine Learning Algorithms ........................... 36 

2.2.3.1 Decision Tree Classifier .................................................................................... 37 

2.2.3.2 Artificial Neural Network Classifier ................................................................ 38 

2.2.3.3 Bayesian Network Classifier ............................................................................. 39 

2.2.3.4 Naive Bayesian Classifier .................................................................................. 39 

2.2.3.5 k-Nearest Neighbour Classifier ....................................................................... 40 

2.2.3.6 Nearest Cluster Classifier .................................................................................. 40 

2.2.3.7 Learning Vector Quantization Classifier ........................................................ 41 



 

III 

 

2.2.3.8 Kohonen Self-Organizing Map Classifier ...................................................... 42 

2.2.3.9 Principal Component Analysis ........................................................................ 43 

2.2.3.10 Linear Discriminant Analysis ........................................................................... 44 

2.2.3.11 Logistic Regression ............................................................................................ 45 

2.2.3.12 ZeroR and OneR classifier ............................................................................... 45 

2.2.3.13 Multi-Layer Perceptron Classifier .................................................................... 46 

2.2.3.14 Genetic Algorithm ............................................................................................. 47 

2.2.3.15 Decision Forest .................................................................................................. 48 

2.2.3.16 Decision Jungle .................................................................................................. 48 

2.2.3.17 Random Forest ................................................................................................... 49 

2.2.3.18 One vs All Multiclass Model ............................................................................ 49 

2.2.3.19 Ada-boost............................................................................................................ 50 

2.2.3.20 Hidden Markov Model ..................................................................................... 51 

2.2.3.21 Support Vector Machine Classifier ................................................................. 52 

2.2.4 Conclusion - Review of different Machine Learning Algorithms ....................... 54 

2.3 A Comprehensive Review of Cortisol Detection Methods for Stress Monitoring ..................... 56 

2.3.1 Introduction ................................................................................................................ 56 

2.3.2 Feasibility of different Sources for Cortisol Sampling .......................................... 59 

2.3.2.1 Salivary cortisol .................................................................................................. 60 

2.3.2.2 Hair cortisol ........................................................................................................ 61 

2.3.2.3 Urine cortisol ...................................................................................................... 61 

2.3.2.4 Blood (serum and plasma) cortisol.................................................................. 62 

2.3.2.5 Interstitial fluid cortisol ..................................................................................... 62 

2.3.2.6 Sweat cortisol ...................................................................................................... 63 

2.3.3 Perceived Stress and Cortisol levels: Correlation Analysis................................... 63 

2.3.4 Application of cortisol detection in clinical research and practice ..................... 65 

2.3.4.1 Cardiometabolic status ...................................................................................... 65 

2.3.4.2 Chronic stress ..................................................................................................... 66 

2.3.4.3 Psychopathology factors ................................................................................... 66 

2.3.5 Cortisol assessment in laboratory settings .............................................................. 67 

2.3.5.1 Summary ............................................................................................................. 68 

2.3.6 Cortisol assessment in point-of-care/ambulatory settings ................................... 68 

2.3.6.1 Summary ............................................................................................................. 70 



 

IV 

 

2.3.7 Conclusion - Review of Cortisol Detection Methods .......................................... 71 

2.4 Chapter Conclusion ............................................................................................................. 72 

3 Statistical Analysis of Stress Indicators .................................................................. 74 

3.1 A Sensitivity Analysis of Biophysiological Responses of Stress for Wearable Sensors in 

Connected Health ............................................................................................................................ 76 

3.2 Introduction ........................................................................................................................ 76 

3.3 Related Work ..................................................................................................................... 78 

3.4 Methodology ........................................................................................................................ 83 

3.4.1 Study Participants ....................................................................................................... 83 

3.4.2 Features Related to Stress ......................................................................................... 83 

3.4.3 Setup and Placement of Sensors .............................................................................. 84 

3.4.4 Study Protocol ............................................................................................................ 85 

3.4.5 Signal Processing and Feature Extraction .............................................................. 86 

3.4.6 Statistical Features ...................................................................................................... 88 

3.4.7 Stress Evaluation Methodology: Questionnaire .................................................... 89 

3.4.8 Statistical Analysis ...................................................................................................... 91 

3.4.8.1 A two-sample t-test ........................................................................................... 92 

3.4.8.2 Deviance analysis ............................................................................................... 92 

3.4.8.3 Classification Methodology .............................................................................. 92 

3.5 Results and Discussion ........................................................................................................ 93 

3.5.1 A Two-Sample t-Test ................................................................................................ 93 

3.5.2 Deviance Analysis ...................................................................................................... 94 

3.5.3 Classification Methodology ...................................................................................... 96 

3.5.4 General Discussion .................................................................................................... 96 

3.6 Analysis of Biochemical Indicators of Stress ......................................................................... 98 

3.7 Conclusion .......................................................................................................................... 99 

4 Machine Learning Classification Methods for Stress Detection .......................... 101 

4.1 Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress 

Detection ....................................................................................................................................... 103 



 

V 

 

4.2 Introduction ...................................................................................................................... 103 

4.3 Related Work; Unsupervised Learning Classification ........................................................ 105 

4.4 Material and Methods ...................................................................................................... 106 

4.4.1 Performance Assessment Matrices ........................................................................ 107 

4.4.2 Data Collection ......................................................................................................... 107 

4.4.2.1 Stress Recognition in Automobile Drivers Dataset .................................... 108 

4.4.2.2 SWELL-KW Dataset ...................................................................................... 108 

4.5 Unsupervised Classification Algorithms ............................................................................. 109 

4.5.1 Affinity Propagation ................................................................................................ 109 

4.5.2 BIRCH Classifier ...................................................................................................... 109 

4.5.3 K-Mean Classifier ..................................................................................................... 109 

4.5.4 Mini-Batch K-Mean Classifier ................................................................................ 110 

4.5.5 Mean Shift Classifier ................................................................................................ 110 

4.5.6 DBSCAN Classifier ................................................................................................. 110 

4.5.7 OPTICS Classifier .................................................................................................... 110 

4.6 Supervised Classification Algorithms ................................................................................. 110 

4.6.1 Logistic Regression Classifier ................................................................................. 111 

4.6.2 Gaussian Naïve Bayes Classifier ............................................................................ 111 

4.6.3 Decision Tree Classifier .......................................................................................... 111 

4.6.4 Random Forest Classifier ........................................................................................ 111 

4.6.5 AdaBoost Classifier .................................................................................................. 111 

4.6.6 K-Nearest Neighbours Classifier ........................................................................... 112 

4.7 Results and Discussions .................................................................................................... 112 

4.7.1 Stress Recognition in Automobile Drivers Dataset ............................................ 115 

4.7.2 SWELL-KW Dataset ............................................................................................... 116 

4.7.3 Summary .................................................................................................................... 121 

4.8 Conclusion ........................................................................................................................ 122 

5 Photoplethysmography (PPG)-Based Respiratory Rate Estimation Algorithm .. 124 

5.1 Photoplethysmography-Based Respiratory Rate Estimation Algorithm for Health Monitoring 

Applications .................................................................................................................................. 126 

5.2 Introduction ...................................................................................................................... 127 



 

VI 

 

5.3 Proposed Algorithm .......................................................................................................... 129 

5.3.1 Pre-processing steps ................................................................................................ 129 

5.3.1.1 Signal interpolation .......................................................................................... 130 

5.3.1.2 Digital filtering ................................................................................................. 130 

5.3.1.3 Peak enhancement ........................................................................................... 131 

5.3.1.4 Outlier detection .............................................................................................. 132 

5.3.1.5 Entropy-based signal quality index (ESQI) ................................................. 133 

5.3.2 Signal analysis and respiratory rate estimation ..................................................... 134 

5.3.2.1 Peak detection .................................................................................................. 134 

5.3.2.2 Respiratory rate estimation ............................................................................. 135 

5.3.3 Post-processing steps............................................................................................... 135 

5.4 Validation of Proposed Algorithm .................................................................................... 136 

5.4.1 BIDMC Dataset Overview ..................................................................................... 136 

5.4.2 Performance evaluation metrics ............................................................................. 137 

5.5 Results and Discussion ...................................................................................................... 138 

5.5.1 Performance evaluation ........................................................................................... 138 

5.5.2 Selection of best window size ................................................................................ 139 

5.5.3 Comparison with state-of-the-art respiratory rate estimation algorithms........ 140 

5.6 Conclusion ........................................................................................................................ 141 

6 A Pilot Study using Non-Invasive Wearable Device and Stress-Predict Dataset . 143 

6.1 Stress Monitoring Using Wearable Sensors: A Pilot Study and Stress-Predict Dataset ...... 145 

6.2 Introduction ...................................................................................................................... 145 

6.2.1 Related Work ............................................................................................................ 146 

6.2.2 Study Objectives ....................................................................................................... 148 

6.2.3 Key Contributions.................................................................................................... 149 

6.3 Material and Methods ...................................................................................................... 149 

6.3.1 Study design .............................................................................................................. 149 

6.3.2 Selection and Recruitment of Participants ........................................................... 149 

6.3.3 Study Methodology and Protocol .......................................................................... 150 

6.3.4 Study Sample Size Calculation................................................................................ 151 

6.3.5 Data Acquisition ....................................................................................................... 151 



 

VII 

 

6.3.5.1 Empatica E4 photoplethysmogram (PPG) sensor ..................................... 152 

6.3.6 Data Analysis Matrices ............................................................................................ 153 

6.3.6.1 Linear Mixed Model analysis .......................................................................... 153 

6.3.6.2 Adaptive reference range analysis.................................................................. 153 

6.4 Data Features included in Stress-Predict Dataset .............................................................. 154 

6.4.1 Blood Volume Pulse ................................................................................................ 154 

6.4.2 Inter-Beat-Intervals .................................................................................................. 155 

6.4.3 Heart Rate ................................................................................................................. 156 

6.4.4 Labels ......................................................................................................................... 156 

6.4.5 Estimation of Respiratory Rate data ..................................................................... 156 

6.5 Analysis and Results ........................................................................................................ 157 

6.5.1 Population-based analysis using Linear Mixer Model ......................................... 158 

6.5.2 Individual Participant’s analysis using Adaptive Reference Range ................... 159 

6.6 Discussion and Conclusion ................................................................................................ 161 

7 Improved Stress Classification using Automatic Feature Selection from Heart 

Rate and Respiratory Rate Time Signals: Application to Stress-predict Dataset ... 168 

7.1 Improved Stress Classification using Automatic Feature Selection from Heart Rate and 

Respiratory Rate Time Signals....................................................................................................... 170 

7.2 Introduction ...................................................................................................................... 171 

7.2.1 Related Work ............................................................................................................ 172 

7.2.1.1 Motivation and contribution .......................................................................... 173 

7.3 Material and Methods ...................................................................................................... 174 

7.3.1 Stress-Predict dataset ............................................................................................... 174 

7.3.1.1 Study methodology and protocol .................................................................. 174 

7.3.1.2 Data acquisition ............................................................................................... 174 

7.3.2 Feature extraction and selection ............................................................................ 175 

7.3.2.1 tsfresh library .................................................................................................... 176 

7.3.2.2 Principal Component Analysis (PCA) .......................................................... 176 

7.3.2.3 Correlation analysis .......................................................................................... 177 

7.3.2.4 Machine learning classification ...................................................................... 179 

7.3.2.5 Data Split for Training and Testing .............................................................. 179 



 

VIII 

 

7.3.2.6 Performance validation methods ................................................................... 179 

7.4 Results and discussions ...................................................................................................... 180 

7.4.1.1 Correlation analysis .......................................................................................... 180 

7.4.1.2 Machine learning classifications ..................................................................... 181 

7.4.1.3 Standard Statistical Features ........................................................................... 182 

7.4.1.4 Selected features after correlation analysis ................................................... 184 

7.4.1.5 Summary ........................................................................................................... 184 

7.5 Conclusion ........................................................................................................................ 184 

8 Conclusion and Future Work ................................................................................ 186 

8.1 Conclusion ........................................................................................................................ 186 

8.2 Future Work .................................................................................................................... 193 

8.2.1 Towards future stress monitoring clinical device ................................................ 195 

9 References .............................................................................................................. 197 

10 Appendix ............................................................................................................. 236 

10.1 Chapter 3: A Sensitivity Analysis of Biophysiological Responses of Stress for Wearable Sensors 

in Connected Health ...................................................................................................................... 236 

10.2 Chapter 5: Photoplethysmography-Based Respiratory Rate Estimation Algorithm for Health 

Monitoring Applications ................................................................................................................ 237 

 

  



 

IX 

 

Declaration of Originality 

 

I, the Candidate Talha Iqbal, certify that this thesis entitled “Signal Processing and 

Machine Learning Algorithms for Stress Monitoring using Wearable Sensor 

Technologies”: 

 

 is all my work. 

 has not been previously submitted for any degree or qualification at this University 

or any other institution. 

 and where any work in this thesis was conducted in collaboration, an appropriate 

reference to published work by my collaborators has been made and the nature and 

extent of my contribution have been clearly stated. 

 

 

 

Name: 

Talha Iqbal  



 

X 

 

Abstract 
In recent years, there has been a notable increase in depression, anxiety, pathological stress, 

and other stress-related diseases. Stress is a known contributor to several life-threatening 

medical conditions and triggers acute cardiovascular events, as well as one of the root causes 

of several social problems. According to the statistics from the World Health Organization, 

stress is associated with several medical and social problems, and these problems are seriously 

affecting the health and well-being of not only adults but also children and youngsters. The 

recent development of miniaturized and flexible biosensors has enabled the development of 

connected wearable solutions to monitor stress and intervene in time to prevent the 

progression of stress-induced medical conditions. Therefore, a vast interest has been 

developed to investigate the underlying mechanisms of stress and monitor various 

biophysiological and biochemical responses of the body to stress. The review of the literature 

on different physiological and chemical indicators of stress, which are commonly used for 

quantitative assessment of stress, and the associated sensing technologies shows that 

prolonged exposure to stress triggers the adrenocorticotrophic hormonal (ACTH) system 

and causes the release of cortisol hormones from the adrenal cortex that boosts the alertness 

of the body. As a result, there is an increase in blood supply to muscles, heart rate, respiratory 

rate, and cognitive activity, along with several other responses. The variable and 

contradictory evidence in the literature on the use of either physiological or biochemical 

stress markers leads to the conclusion that neither of these biomarkers in isolation can 

provide sufficient means of monitoring stress. Therefore, a combination of physiological and 

chemical stress biomarkers, with contextual information, can be a more reliable solution for 

stress monitoring.  

The current standard for stress evaluation is based on self-reported questionnaires and 

standardized stress scores. There is no gold standard to independently evaluate stress levels 

despite the availability of numerous biophysiological stress indicators. Moreover, there is no 

clear understanding of the relative sensitivity and specificity of these stress-related 

biophysiological indicators of stress in the literature. An extensive statistical analysis and 

classification modelling of biophysiological data gathered from healthy individuals, 

undergoing various induced emotional states was performed to assess the relative sensitivity 

and specificity of common biophysiological indicators of stress. The key indicators of stress, 

such as heart rate, respiratory rate, skin conductance, RR interval, heart rate variability in the 
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electrocardiogram, and muscle activation measured by electromyography, are evaluated as 

gathered from an already existing, publicly available WESAD (Wearable Stress and Affect 

Detection) dataset. Respiratory rate and heart rate were the two best features for 

distinguishing between stressed and unstressed states. Both parameters can be estimated 

using a single photoplethysmography (PPG) sensor. The heart rate is estimated by counting 

the number of peaks in the PPG signal.  Most of the existing algorithms for the estimation 

of respiratory rate using photoplethysmography (PPG) are sensitive to external noise and 

may require the selection of certain algorithm-specific parameters, through the trial-and-error 

method. Thus, a new algorithm to estimate the respiratory rate using a 

photoplethysmography sensor signal for health monitoring is proposed. The algorithm is 

resistant to signal loss and can handle low-quality signals from the sensor. The results endorse 

that integration of the proposed algorithm into a commercially available pulse oximetry 

device would expand its functionality from the measurement of oxygen saturation level and 

heart rate to the continuous measurement of the respiratory rate with good efficiency at 

home and in a clinical setting. 

Additionally, as the public availability of datasets for the development of stress monitoring 

devices is limited, a clinical study was performed. The dataset created is an open-access 

dataset named Stress-Predict dataset. The inclusion of an additional feature, i.e., respiratory 

rate data along with stress and baseline labels within the dataset, makes the dataset more 

desirable and unique from all the other publicly available Empatica E4-based datasets. The 

dataset and outcomes of this study contribute to understanding any accuracy gaps in current 

stress monitoring and help improve these technologies or develop new technologies for 

stress monitoring. Most wearable stress monitoring systems are built on a supervised learning 

classification algorithm trained on simple statistical features. For accurate stress monitoring, 

it is essential that these features are not only informative but also well-distinguishable and 

interpretable by the classification models. Thus, a correlation-based time-series feature 

selection algorithm is proposed and evaluated on the stress-predict dataset. The outcome of 

the study suggests that it is vital to have better analytical features rather than conventional 

statistical features for accurate stress classification.  

One of the most challenging tasks in physiological or pathological stress monitoring is the 

labelling of the physiological signals collected during an experiment. Commonly, different 

types of self-reporting questionnaires are used to label the perceived stress instances. These 

questionnaires only capture stress levels at a specific point in time. Moreover, self-reporting 
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is subjective and prone to inaccuracies. Traditional supervised machine learning classifiers 

require hand-crafted features and labels while on the contrary, the unsupervised classifier 

does not require any labels of perceived stress levels and performs classification based on 

clustering algorithms. The analysis and results of this comparative study demonstrate the 

potential of unsupervised learning for the development of non-invasive, continuous, and 

robust detection and monitoring of physiological and pathological stress. 
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Chapter 1  

Introduction  

This chapter provides an overview of the proposed PhD thesis. It provides an introductory 

discussion about real-life stress, different stress triggers, a problem statement, a proposed 

solution, a brief literature survey, and discovered challenges in the development of a real-

time stress monitoring system. The chapter also highlights the key contributions of this 

PhD to the stress monitoring field.  

1.1  Stress and Stress Triggers/Stressors 

Any stimulus or threat that causes physical, emotional, and/or psychological strain can be 

called stress [1]. It is a feeling of being surprised or unable to deal with emotional or mental 

pressure. The stimuli that cause stress are called stress triggers or stressors. These triggers 

can be divided into two groups: one includes emotional triggers while the other includes 

physical triggers [2]. Emotional triggers include events such as depression, divorce, fear of 

speech, death of any family member, being involved in a car or road accident, arguing with 

a landlord or partner, and natural disasters. There are also some happy emotional triggers 

such as winning a jackpot, the birth of a child and a wedding. On the other hand, physical 

triggers of stress include stroke, migraine, asthma attack, giving birth, cancer, 

chemotherapy, wound infection, kidney failure or surgery, among others. Figure 1.1 

summarizes different emotional and physical triggers. All these triggers or stressors affect 

the daily lifestyle and well-being of individuals and all of us as a community as well. 

Generally, stress cannot be recognised easily. Several signs can indicate one might be 

expressing stress. Sometimes the stress is induced due to some obvious reason but 

sometimes even small daily-life stress from work, family, or friends could induce stress. 

Stress can be for a short time (called acute stress) or can last for a long time (resulting in 

chronic stress). Our body automatically responds to both types of stress and releases 

adrenaline and noradrenaline in the case of short-term/acute stress while releasing cortisol 

in the case of long-term/chronic stress. Stress hormones such as adrenaline/noradrenaline 

and cortisol are released into the body to regulate blood flow and blood pressure. The 
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release of these hormones due to sympathetic excitement causes an abrupt change in blood 

pressure, and high blood pressure can cause some plaque events. Figure 1.2 shows the 

response of our body to a stress condition.  

 

 

 

 

(b) Emotional triggers of stress 

(a) Physical triggers of stress 

Figure 1.1 Physical and emotional triggers/stressors in real-life. 
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1.2 Clinical Need 

In recent years, there has been a noticeable increase in pathological stress, anxiety, 

depression, and other stress-related diseases [3]–[5]. There is a vast literature present that 

concludes that physical and emotional stress is strongly related to heart failure and 

hypertension which may by themselves result in stroke or heart attack. According to the 

World Health Organization1, the physical and mental health, as well as the overall well-

being of a person, are compromised by stress [6]. According to the British Health and Safety 

Executive (HSE), 50% of all work-related illnesses in 2021 were due to stress [7]. Stress can 

be of two types: short-term stress also known as acute stress and long-term stress known 

as chronic stress. Acute stress may not cause severe health issues in young and healthy 

individuals, but if a stressor (a stimulus that causes stress) remains too persistent, then this 

                                                 
1 Available: https://www.hse.gov.uk/statistics/causdis/. 

Figure 1.2 The response of our body to different stress conditions. 
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chronic stress might lead to anxiety and depression, not only in young people but in children 

too [8]. Chronic stress is also a well-known contributor to several life-threatening diseases 

such as different heart diseases, diabetes, high blood pressure, and obesity and an acute 

episode of stress might cause stroke or heart attack due to arterial inflammation [9], [10]. 

In clinical settings, stress monitoring is performed using self-reporting questionnaires, 

surveys, or daily diaries of an individual [11]. These detection methods have several 

drawbacks including: 

 Bias: The reported stress levels might not be truly indicative of stress as individuals 

can underreport their stress level due to social desirability or can over-report stress 

for gaining attention and sympathy. 

 Accuracy: These reports cannot be considered an accurate reflection of an 

individual’s stress levels as they might not be aware of certain stressors or might 

not be able to demonstrate their emotional state. The language used in the 

questionnaires might also be not fully understandable by the individual and thus 

results in inaccurate ratings. 

 Generalizability: Most of these questionnaires are often based on a certain time 

frame and cannot be generalizable to other time frames. Moreover, the individual 

might not remember the event or feelings that occurred in past which results in 

recall bias. 

Thus, new approaches are required to develop a stress monitoring system that can perform 

timely detection, continuous monitoring, and management of stress levels to provide a 

healthier lifestyle. 

1.3 Literature Survey 

Continuous stress monitoring can provide detailed information about the stress levels of 

an individual, helps in identifying stress patterns and lead to early detection as well as 

intervention for stress-related diseases.  There has been a vast interest in investigating the 

underlying techniques of detection, monitoring and management of various 

biophysiological as well as biochemical responses of the body to stress [12]. Determination 

of a reliable and specific indicator or biomarker of stress is a critical step toward accurate 

monitoring of stress, which will potentially enable the mitigation of pathological conditions 
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at fairly early stages. In the last two decades, there has been a significant improvement in 

the development of physiological and biochemical sensing methods that can be used to 

detect and monitor stress. 

To develop a reliable stress monitoring device, it is important to understand how our body 

responds physiologically and biochemically to stress triggers. Stress can be interpreted as a 

disturbance in the homeostatic balance of an individual, through which the body tries to 

cope with the stressor and is called a stress response [13]. The stress response might be 

different in some cases, but generally, under the influence of stressors, the stress response 

triggers the sympathetic nervous system and inhibits the parasympathetic nervous system. 

The sympathetic nervous system releases different hormones such as cortisol, alpha-

amylase, and adrenaline [14], [15] that result in the change in overall respiratory rate, heart 

rate, blood pressure, skin temperature, muscle tension, and cognitive activity, along with 

several other biochemical markers. These hormonal changes and changes in biomarkers 

prepare an individual for a fight-or-flight reaction in response to stress [16].  

Biochemical markers, such as cortisol and alpha-amylase [17] have high sensitivity to stress 

detection and offer ease of collection. However, several studies have demonstrated the 

potential of using different physiological signals such as skin temperature (TEMP), 

electromyography (EMG), blood volume pulse (BVP) and electrodermal activity (EDA) in 

response to stress [18]. The current standard clinical practice for stress detection is based 

on self-reporting visual scales (such as Visual Analogue Scale, VASS) or self-reporting 

questionnaires (such as the Perceived Stress Scale, PSS) [19]. Recent development in the 

field of wearable biosensor technology has made the measurement of biophysiological 

signals of the body for the detection and evaluation of stress more interesting, as these 

indicators can be continuously measured through non-invasive wireless systems. 

Many research studies have explored the relationship between biophysiological signal 

variation and stress levels [20]–[23]. Most studies use machine learning methods to classify 

stressed physiological signals from nonstress signals. The commonly used physiological 

signals in these studies include respiratory rate (RESP) and electrocardiogram (ECG) 

signals combined with activity monitoring sensors (such as an accelerometer (ACC), 

gyroscope (GYRO), and global positioning system (GPS)). There are some less frequently 

used stress-indicating signals that can also be recorded and used for stress monitoring. 
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These indicators include photoplethysmogram (PPG), TEMP, EMG, BVP and EDA [24]–

[27]. All these biophysiological indicators are not specific to stress and can be affected by 

other conditions such as when a person is happy, sad, in anger or excited [28]. Thus, varying 

stress detection accuracies can be observed in the published literature. 

1.4  Challenges in the Development of Stress Monitoring 

Devices 

Despite all advances, there is no single clinically validated stress monitoring device that can 

be used clinically to monitor continuous stress in daily life. Some commercially available 

devices claim to detect stress levels in users. Peake et al. [29] have reviewed these devices 

and have discussed their strengths and effectiveness in stress monitoring. It is important to 

note that these devices are not clinically tested and lack accuracy as they are trained on 

limited available data due to privacy concerns. Calibration for stress detection is done using 

self-reporting questions and does not consider self-report bias [30]. The detection of stress 

levels based on a single physiological measurement such as heart rate variation is also a 

problem as measured signals can be affected by other confounding factors (for example, 

happiness, exercise, or shock) [31].  

This lack of a reliable stress monitoring device can be explained by several key challenges 

that need to be addressed to develop and clinically validate a stress monitoring model. 

Firstly, there is no universally accepted definition of stress. According to the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-5), stress is the physiological and 

psychological response towards a perceived change that threatens the well-being or survival 

of someone, resulting in a series of physiological responses and adaptations [32]. 

Philosophers define the concept of stress from various perspectives. According to Martin 

Heidegger, stress is not merely a physiological or psychological response, but a fundamental 

aspect of our existence [33]. Michel Foucault saw stress as a product of societal power 

structure [34]. Overall, there is no one definition of stress. The above-mentioned stress 

definitions could be revised and used clinically for understanding and assessing patient 

experiences.  

Secondly, there is a lack of corresponding gold-standard reference/ground-truth values that 

can be somehow associated with stress definition. For example, biochemical researchers 
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report cortisol as a vital stress detection hormone. In most of these studies, questionnaire-

based self-reporting has been the ground truth to assess the stress levels of the subjects 

[35], [36]. However, the correlation value between the self-reporting questionnaire and the 

cortisol level is reported to be in the range of 0.26 to 0.36 [37], [38]. This poor correlation 

could be associated with poor reporting in the questionnaires as quantifying stress levels is 

difficult and thus leads to difficulties in the prediction accuracy of cortisol levels. 

The third challenge is recording the different biophysiological data, especially in the natural 

environment [39]. Data collection in the presence of different sources of noise and errors 

is a significantly challenging task. For example, to record a day-long ECG data, ECG 

electrodes must be connected to the body of the subject for the whole day. The adhesion 

of electrodes will degrade over time, thus producing a lot of noisy signals. The movement 

of the subject will alter the electrode connection and will also cause noisy spikes in the 

signal. Moreover, there is a probability of losing data during wireless transmission. The 

same problems (of connection with the body, noise due to movement, and chances of data 

loss) are also incurred while recording other signals such as respiratory rate, EMG, EDA, 

skin temperature and BVP. The fourth challenge is handling the confounding variables. 

The stimulus that is indicative of induced stress in an individual can easily be obfuscated by 

a movement of the limb, a change in posture, or any other physical movement that results 

in an altered low-quality signal. For example, respiratory-induced amplitude variation in the 

PPG signal is caused by inhale and exhale cycle. Separating a good/high-quality signal from 

a low-quality signal for stress analysis and diagnosis is, therefore, a challenging task. 

The fifth challenge is to identify and calculate discriminative features that are specific to the 

stressed condition and can easily be characterized as a stress response from all other 

physiological stimuli. The final challenge is the development of a classification technique 

that computes all the stress-related features, trains, and validates the model for real-time 

stress monitoring. This is the most difficult challenge to solve as no reference/gold 

standard dataset is available that could be used for the training and validation of any stress 

classification models. Currently, self-reporting questionnaires are the only clinically 

accepted method to determine the labels for stressed signals. If self-reporting 

questionnaires are used to determine the labels of stress, then for consistency analysis the 
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threshold is set at 0.7 to declare the concordance [24]. This thresholding also reflects 

inherited variabilities and biases in the self-reported data. 

Thus, it is essential to overcome the above-mentioned challenges and develop an accurate 

stress monitoring device to improve the overall quality of life by providing in-time 

interventions. 

1.5 Objectives 

The objectives of this thesis are designed to consider the gaps in the available literature and 

to mitigate the above-mentioned challenges. The challenge of having a universal definition 

of stress and a standard reference dataset still exists and can be solved by the collaborative 

efforts of researchers and clinicians.  

The challenges of dealing with noisy, motion-affected, and low-quality signals can be solved 

by investigating a device that is less effected by noise, could be worn easily and can provide 

readings even during motion. One of the possible solutions is the use of PPG wrist-worn 

devices. The PPG device works on light reflections and does not need a firm connection 

with the body.  However, an algorithm is also required to extract/filter the signal from 

noise and motion artefacts and accurately estimate the stress-related features.  

As cofounding variables and features are also found in the recorded signals, a time-series 

feature selection algorithm is required for mitigating this problem. For accurate stress 

monitoring, it is essential that these features are not only informative but also well-

distinguishable and interpretable by the classification models. 

The accessibility of continuous signal from a wearable device, an accurate stress-features 

estimation and a feature selection algorithm will certainly improve the overall stress-

predictive model’s performance and partially, address the last challenge of having an 

accurate classification model. 

The thesis objectives are as follows: 

1. Literature reports different physiological and biochemical indicators of stress but 

lacks a quantitative measure of those indicators. Thus, review different 

biophysiological and biochemical indicators of stress to determine quantitatively 

measurable stress indicators. 
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2. Several machine learning classifiers for stress classification have been reported in 

the literature. As accurate stress classification is highly dependent on these 

classifiers, review the different machine learning algorithms used as predictive 

models for stress detection and identify the shortcomings resulting in different 

predictive accuracies. 

The effectiveness of stress detection is dependent on the detection methodology and 

analysed parameter/indicator, as every method and parameter has its strengths and 

limitations. Thus,  

3. Investigate the most promising techniques used for biochemical indicator (cortisol) 

detection. Discuss the challenges and the device’s sensitivity, and specificity in the 

detection of cortisol presence. 

4. Investigate and shortlist the biophysiological indicators as well as predictive 

algorithms to get the most sensitive and specific indicators of stress (that are less 

affected by other factors). 

Studies report that most of the stress indicators (parameters) derived from physiological 

signals are noisy, of low quality, and have correlated features. These problems result in 

decreased classification accuracies as well as raise a question about the generalizability of 

the model. Thus, 

5. Develop and evaluate an algorithm that can extract the stress-specific information 

from a physiological signal, which should be able to deal with low-quality signals 

and deals with other co-founding factors to detect and classify stress accurately. 

6. Investigate and provide a solution for the identification and calculation of 

discriminative features of the stressed condition which should easily be 

characterized as a stress response from all other physiological stimuli. 

1.6  Thesis Contributions 

This PhD is a translational research and tech innovation project with software as a core 

part. The aim is to alleviate the above-mentioned challenges and propose a feasible solution 

for real-time stress management. 

The specific novel contributions of this thesis are summarised and listed below: 
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1. The literature on different physiological and chemical indicators of stress used for 

quantitative measurement of stress and associated sensing technologies was reviewed 

to formulate the list of physiological and biochemical indicators of stress (objective 1). 

This contribution aimed to find approximated quantitative measures of a person’s 

homeostatic imbalance and discuss any cofounders that might have caused variation 

in the reported results. 

Publication: Talha Iqbal, Adnan Elahi, Pau Redon, Patricia Vazquez, William Wijns, 

and Atif Shahzad. "A review of biophysiological and biochemical indicators of stress 

for connected and preventive healthcare." Diagnostics 11, no. 3 (2021): 556. 

2. Different machine learning algorithms that are used for stress prediction were gathered 

and compared as accurate stress detection is vastly dependent on the predictive model 

(objective 2). This contribution gives a better in-look into state-of-the-art machine 

learning algorithms, their use as stress level classifiers and trade-offs (between 

computation time vs accuracy vs price of the device) that are to be made while using 

these algorithms. 

Publication: Talha Iqbal, Adnan Elahi, Atif Shahzad, and William Wijns. “Review on 

Classification Techniques used in Biophysiological Stress Monitoring.” Arivx (2022). 

3. Cortisol is considered the most vital and potentially clinically useful biomarker for 

stress monitoring and estimation. This contribution provides an overview of the most 

promising techniques currently used for cortisol detection and the challenges 

associated with them. This work helped in determining the best possible wearable 

method/technology to collect and analyse cortisol levels (objective 3). 

Publication: Talha Iqbal, Adnan Elahi, William Wijns, and Atif Shahzad. “A 

Comprehensive Review of Cortisol Detection Methods for Stress Monitoring in 

Connected Health.” Health Sciences Review (2023): 100079. 

4. A statistical and classification analysis of all the stress physiological and biochemical 

indicators reported in the literature was performed. This contribution identified the 

indicators that are more specific for stress monitoring and are less affected by any other 

physiological and emotional events. The respiratory rate and heart rate were the two 

best stress indicators for distinguishing between stressed and unstressed states 

(objective 4).  
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Publication: Talha Iqbal, Pau Redon-Lurbe, Andrew J. Simpkin, Adnan Elahi, Sandra 

Ganly, William Wijns, and Atif Shahzad. "A sensitivity analysis of biophysiological 

responses of stress for wearable sensors in connected health." IEEE Access 9 (2021): 

93567-93579. 

5. A comparative analysis of unsupervised versus supervised machine learning algorithm 

for stress state classification. This contribution explores the potential feasibility of 

unsupervised learning classifiers to be implemented in stress-monitoring wearable 

devices, as most wearable stress-monitoring systems are built on a supervised learning 

classification algorithm (objective 4). 

Publication: Talha Iqbal, Adnan Elahi, William Wijns, and Atif Shahzad. "Exploring 

Unsupervised Machine Learning Classification Methods for Physiological Stress 

Detection." Frontier in Medical Technology - Diagnostic and Therapeutic Devices 4 

(2022). 

6. Development of a novel algorithm for estimation of respiratory rate from raw 

Photoplethysmography (PPG) signal (objective 5). This contribution proposed a new 

algorithm that could accurately estimate the respiratory rate from raw PPG signals. 

Additionally, the impact of different window sizes on the estimation of respiratory rate 

was also determined in this study.  

Publication: Talha Iqbal, Adnan Elahi, Sandra Ganly, William Wijns, and Atif 

Shahzad. "Photoplethysmography-based respiratory rate estimation algorithm for 

health monitoring applications." Journal of Medical and Biological Engineering 42 

(2022): 242–252. 

7. Perform a clinical study to evaluate the proposed respiratory rate estimation algorithm 

and publish the developed dataset of healthy volunteers (objective 5). The dataset and 

outcomes contribute to understanding any accuracy gaps in current stress monitoring 

solutions and help improve these technologies or develop new technologies for stress 

monitoring. 

Publication: Talha Iqbal, Andrew Simpkin, Davood Roshan, Nicola Glynn, John 

Killilea, Jane Walsh, Gerard Molloy, Adnan Elahi, Sandra Ganly, Hannah Ryman, 

Eileen Coen, William Wijns, and Atif Shahzad. “Stress Monitoring Using Wearable 

Sensors: A Pilot Study and Stress-Predict Dataset.” Sensors 22, no. 21 (2022): 8135. 
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8. Proposed an optimised time-series feature extraction algorithm for accurate stress 

classification (objective 6). This contribution aims to explore the efficacy of a time-

series feature extraction algorithm applied to the heart rate and respiratory rates of 

healthy volunteers (Stress-Predict dataset) and propose an optimised featured 

engineering algorithm for accurate stress classification. 

Publication: Talha Iqbal, Adnan Elahi, Atif Shahzad, and William Wijns, “Improved 

Stress Classification using Automatic Feature Selection from Heart Rate and 

Respiratory Rate Time Signals.” Applied Sciences 13, no. 5 (2023): 2950. 

1.6.1 Publications 

There are 8 deliverables of this PhD (all published) excluding the thesis, listed: 

[1] Iqbal, Talha, Adnan Elahi, Pau Redon, Patricia Vazquez, William Wijns, and Atif 

Shahzad. "A review of biophysiological and biochemical indicators of stress for connected 

and preventive healthcare." Diagnostics 11, no. 3 (2021): 556. 

[2] Iqbal, Talha, Adnan Elahi, Atif Shahzad, and William Wijns. “Review on Classification 

Techniques used in Biophysiological Stress Monitoring”, Arvix (2022).  

[3] Iqbal, Talha, Adnan Elahi, William Wijns, and Atif Shahzad. “A Comprehensive 

Review of Cortisol Detection Methods for Stress Monitoring in Connected Health.”, 

Health Sciences Review (2023): 100079. 

[4] Iqbal, Talha, Pau Redon-Lurbe, Andrew J. Simpkin, Adnan Elahi, Sandra Ganly, 

William Wijns, and Atif Shahzad. "A sensitivity analysis of biophysiological responses of 

stress for wearable sensors in connected health." IEEE Access 9 (2021): 93567-93579. 

[5] Iqbal, Talha, Adnan Elahi, William Wijns, and Atif Shahzad. "Exploring Unsupervised 

Machine Learning Classification Methods for Physiological Stress Detection." Frontier in 

Medical Technology - Diagnostic and Therapeutic Devices 4 (2022). 

[6] Iqbal, Talha, Adnan Elahi, Sandra Ganly, William Wijns, and Atif Shahzad. 

"Photoplethysmography-based respiratory rate estimation algorithm for health monitoring 

applications." Journal of Medical and Biological Engineering 42 (2022): 242-252. 

[7] Iqbal, Talha, Andrew Simpkin, Nicola Glynn, John Killilea, Jane Walsh, Gerard 

Molloy, Adnan Elahi, Sandra Ganly, Hannah Ryman, Eileen Coen, William Wijns, and Atif 



 

13 

 

Shahzad. “Stress Monitoring Using Wearable Sensors: A Pilot Study and Stress-Predict 

Dataset.” Sensors 22, no. 21 (2022): 8135.  

[8] Iqbal, Talha, Adnan Elahi, Bilal Amin, Atif Shahzad, and William Wijns, “Improved 

Stress Classification using Automatic Feature Selection from Heart Rate and Respiratory 

Rate Time Signals.” Applied Sciences 13, no. 5 (2023): 2950. 

1.7 Thesis Organisation 

The rest of the thesis is organised as follows: Chapter 2 describes the background of stress 

monitoring and stress triggers, evaluation of stress monitoring methods in terms of 

biophysiological and biochemical indicators of stress, comparison of different stress 

prediction and classification techniques used in the field of biophysiological stress 

monitoring, and a comprehensive review of cortisol detection as a method of stress 

monitoring. The chapter concludes with a discussion on the grey areas identified after the 

literature survey toward accurate and reliable stress monitoring devices. Chapter 3 presents 

the statistical analysis of biophysiological and biochemical indicators of stress to determine 

the most specific indicator of stress. The chapter also explains the publicly available dataset 

used in the study and how it was composed. The shortlisted indicators are selected based 

on univariant and multivariant analysis results. Chapter 4 is about an optimised 

unsupervised machine learning algorithm for accurate stress classification and discusses the 

results on publicly available datasets.  A novel algorithm and the reason for the 

development of a new algorithm to estimate the respiratory rate using 

photoplethysmography for health monitoring are discussed in Chapter 5. To test the 

developed algorithm, we planned and conducted a clinical trial. All the details of the clinical 

trial and developed dataset (named a stress-predict dataset) are presented in chapter 6. 

Chapter 7 explores the potential time-series features for an accurate stress classification and 

proposes an optimised feature engineering algorithm. Lastly, the overall conclusion of 

cardio-predict; stress monitoring solution and future directions are provided in chapter 8.   
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Chapter 2  

Stress Monitoring Background 

This chapter2 presents: 

 A review of the literature on different physiological and chemical indicators of stress, 

which are commonly used for quantitative assessment of stress, and the associated 

sensing technologies. It provides a list of different biophysiological along with 

biochemical signals/indicators associated with stress detection and is used in literature. 

(Section 2.1) 

 A review of commonly used machine learning classification techniques and a 

discussion on choosing a classifier, which depends upon several factors other than 

accuracies, such as the number of subjects involved in an experiment, type of signal 

processing, and computational limitations. (Section 2.2) 

 Finally, it gives a detailed overview of the most promising techniques currently used 

for biochemical indicator (cortisol) detection. It discusses the challenges such as the 

feasibility of the device used for cortisol collection, the correlation of cortisol levels 

with stress, invasive and non-invasive device’s sensitivity, and specificity in the 

detection of cortisol presence and other issues associated with cortisol detection. 

(Section 2.3) 

The work presented in this chapter achieved the first three objectives of the thesis (related 

to the review /investigation of existing technologies for stress monitoring in the literature) 

and helped in: 

 Gaining an understanding of current research knowledge, key findings, and research 

gaps in the field of stress monitoring. 

                                                 
2 The following body of the chapter is copy of the papers published in parts in Diagnostics 2021 (Section 2.1), ArviX 
2022 (Section 2.2) and in Health Science Review 2022 (Section 2.3). I am the first lead author in the papers, which 
is co-authored with my supervisors. The conceptualization, formal analysis, investigation and visualization were also 
done by me. Designed methodology and validation were led by my supervisors and me. I led all parts of the work with 
the support of my supervisors. 
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 Identifying trends such as types of studies and methods used in the research field of 

stress monitoring. 

 Identifying potential ethical issues that are associated with the data collection and 

processing, and steps to address them. 

 Finally, enhancing the quality of research by designing future studies to avoid 

duplication of the already existent work which eventually led to saving time and effort. 
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2.1 Review of Physiological and Biochemical Indicators of 

Stress 

Stress is a known contributor to several life-threatening medical conditions and a risk factor 

for triggering acute cardiovascular events, as well as a root cause of several social problems. 

The burden of stress is increasing globally and, with that, is the interest in developing 

effective stress-monitoring solutions for preventive and connected health, particularly with 

the help of wearable sensing technologies. The recent development of miniaturized and 

flexible biosensors has enabled the development of connected wearable solutions to 

monitor stress and intervene in time to prevent the progression of stress-induced medical 

conditions. This section presents a review of the literature on different physiological and 

chemical indicators of stress, which are commonly used for quantitative assessment of 

stress, and the associated sensing technologies. 

2.1.1 Introduction 

In recent years, we have seen a notable increase in anxiety, depression, pathological stress, 

and other stress-related diseases. Generally, stress harms the physical and mental health and 

well-being of a human [3]–[5]. In particular, chronic stress increases the chances of 

cardiovascular disease [40], diabetes, stroke, and obesity [9], [41]. According to the statistics 

from the World Health Organization, stress is associated with various medical and social 

problems, and these problems seriously affect the health and well-being of not only adults 

but also children and young people [42]. Therefore, a vast interest has been developed to 

investigate the underlying mechanisms of stress and monitor various biophysiological and 

biochemical responses of the body to stress [12]. A reliable biomarker or indicator of stress 

could provide accurate monitoring of stress, potentially enabling the prevention of 

pathological conditions at the early stages. In the past two decades, there has been 

significant development in physiological and biochemical sensing technologies. These 

sensors provide an excellent platform for connected health solutions and preventive care 

for various conditions caused by or associated with stress [8], [43]. 

Stress can be defined as a disturbance in an individual’s homeostatic balance, with which 

the body attempts to cope, and this is known as the stress response [13]. Stress can be acute, 

i.e., an immediate response to a stressor, or chronic, i.e., a state caused by a constant stress 
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stimulus [44]. Chronic stress can lead to a stage where the body can no longer achieve 

homeostatic balance and the individual can no longer deal with the stressors. Activation of 

the stress response triggers a variety of changes in the body, caused by the stimulation of 

the sympathetic nervous system and the inhibition of the parasympathetic system. The 

stress response can vary but generally includes the release of stress hormones that increase 

the alertness of the body. As a result, there is an increase in heart rate, the blood supply to 

the muscles, respiratory rate, skin temperature (due to higher blood circulation), and 

cognitive activity, among several other responses. Stress-specific hormonal responses and 

other biomarkers affected by the stress response are commonly used to quantitively assess 

or monitor stress [5], [12], [13]. 

Most of the studies reported in the literature on stress monitoring follow a similar 

experimental approach, where sensors collect biophysiological data in the stress and non-

stress states. First, stress is induced in a controlled environment (laboratory) [45] or real life 

[46] using mental arithmetic, the TSST, or the Stroop test. Then, various features are 

extracted from the sensors’ data and machine learning (ML), or pattern recognition is used 

to differentiate the stress state from the non-stress state (or baseline). Machine learning 

algorithms can be divided into two basic types. The first is supervised learning, in which 

input is fed along with the classification labels to the model for prediction and classification. 

The second is unsupervised learning, in which no labels are given at the input and the model 

is designed to group the input data based on some inherent patterns or similarities. Usually, 

the data from the sensors are recorded on the device and then transferred to a computer 

or the cloud for processing and analysis. In some cases, especially in a simulated driving 

scenario, participants’ wearable sensors are directly connected to a computer, and real-time 

analysis is performed during the experiment. Various ML techniques have been used for 

classification, for example, support vector machine (SVM) [27], Bayesian networks (BN), 

artificial neural network (ANN) [47], fuzzy logic, decision tree (DT) [48], and other 

computer-aided diagnostics (CAD) tools [49]. A detailed review of the most frequently used 

machine learning algorithms is provided in the next section. 

 
The aforementioned ML methods are benchmarked against the reference obtained via the 

subject’s self-reported assessment form or a psychometric questionnaire. The commonly 

used questionnaires are the Perceived Stress Scale (PSS), Stress Response Inventory (SRI) 
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[50], Holmes and Rahe Stress Inventory (Life Events), and COPE inventory. These 

techniques obtain emotional, behavioural, and cognitive stress responses, and they are used 

as ground truth. Ground truth is a reference or baseline value that helps in differentiating 

the stress state of the subject from a non-stress state. This is valuable for developing 

classification models because it makes it much easier to objectively compare two different 

states. The drawback of using questionnaires as ground truth is that they are designed for 

dedicated events and are highly subjective. Moreover, these conventional questionnaires 

rely on events that occurred previously; thus, they lack generalization. 

There is vast literature available that shows the association of a higher heart rate with stress. 

This change in heart rate changes the blood flow within the body. Heart rate and heart rate 

variability can be monitored using an electrocardiogram (ECG) signal, while the change in 

blood flow can be measured through blood volume pulse (BVP), derived from a 

photoplethysmography (PPG) signal [51], [52]. Some studies have discussed sweat released 

during stress, which changes the skin conductance measured by the electrodermal activity 

(EDA) measurement device [48]. Muscle tension is also related to stress and is monitored 

using electromyography (EMG) [53], [54]. Sometimes, chronic stress can also cause mild 

fever (between 99 and 100 °F), as well as anxiety and restlessness. Thus, skin temperature 

(ST) and accelerometer (ACC) sensors can also help in detecting stress [55]–[57]. 

During the stress period, the body prepares itself for a ‘fight or flight’ response and 

catecholamines are released within the body to cope with stress. Thus, measuring plasma 

catecholamines can also help in the assessment of stress [58]. The role of arginine 

vasopressin (AVP) during the acute stress response has also been widely discussed in the 

literature. Copeptin is considered a stable biomarker of AVP release. Copeptin increases 

significantly with the increase in cortisol, prolactin, and adrenocorticotropic hormones, 

which are directly related to the stress response of the human body. Therefore, monitoring 

the level of copeptin and prolactin hormones in the blood can help detect stress [59]. Alpha-

amylase is one of the major salivary enzymes and is secreted in saliva in response to 

psychological stressors [60]. Cortisol is a primary stress hormone released in the 

bloodstream during stress and causes an increase in glucose levels [61]. Thus, monitoring 

cortisol levels in the blood also helps to monitor stress levels. All the above-mentioned 



 

19 

 

hormones are measured using different available enzyme-linked immunosorbent assay 

(ELISA) kits. 

There is a considerable body of literature available on stress monitoring using physiological 

or biochemical responses of the human body. However, there is no consensus on the 

sensitivity and specificity of these biophysiological and biochemical responses for stress 

identification. This sensitivity and specificity may be associated with the sensitivity of the 

response to stress, the sensitivity of sensors, the type of stimulators, the sample size in the 

study, the design of the experiment, and other variables [62]. Nevertheless, the sensitivity 

and specificity of measurable responses to stress are critical for long-term monitoring of 

stress in the context of preventive and personalized care. This study presents an up-to-date 

review of the literature on biophysiochemical indicators of stress with a focus on connected 

and preventive healthcare. In this study, we provide summaries of the available literature 

on stress indicators and a critical review addressing the sensitivity and specificity of the 

sensors, as well as indicators of stress, in the discussion section.  

Table 2.1 shows the bio-signals that are mostly used for stress monitoring, which include 

biophysical and biochemical markers. Figure 2.1 shows the placement of different 

biosensing devices used for stress monitoring, while Figure 2.2 presents a list of 

biophysiological and biochemical indicators of stress.  

 

 

 

 

 

 

 

 



 

20 

 

Table 2.1 Most used bio-signals for stress monitoring. 

 

 

S. 
No. 

Bio-signals Ref Units* 

1 Skin conductance (also known as electrodermal 
Activity, EDA) 

[48], [63]–
[66] 

µS 

2 Electrocardiography (ECG)  [27], [65], 
[67], [68] 

mV 

3 Electroencephalograph (EEG) [69], [70] µV 

4 Respiration rate (Resp), blood pressure (BP), and 
blood volume pulse (BVP) using 
photoplethysmography (PPG)  

[63], [71]–
[73] 

Breaths/min, 
mmHg and 
mV 

5 Skin temperature (ST)  [63], [70], 
[74] 

°C 

7 Electromyography (EMG) [65], [67], 
[71] 

µV 

8 Plasma catecholamines, copeptin and prolactin, 
steroids samples  

[75]–[77] mcg/24-h, 
ng/mol, ng, 

9 α-amylase samples  [75], [77] µL 

10 Cortisol samples  [78]–[80] nmol/L 

  * Here, µS is micro siemens, mV is millivolts, µV is microvolts, °C is degrees centigrade, mcg 
is micrograms, ng is nanograms, µL is microliters, and nmol/L is nanomoles per litre. 

Figure 2.1 Possible sites for placement of smart sensors. 
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2.1.1.1 Stress Assessment Tests 

Stress can be assessed subjectively via structured questionnaires (and self-reporting forms), 

which is also standard clinical practice, or objectively by measuring various responses of 

the body to stress [81]. The most used tools in clinical stress assessment are based on self-

reported questionnaires (for example, Cohen’s Perceived Stress Scale, PSS) or self-reported 

visual scales (for example, Visual Analogue Scale for Stress, VASS). Biomedical researchers 

are more interested in using biochemical markers for detecting stress, such as cortisol and 

α-amylase [17], and they trigger a stress state in the subjects under test via the Trier Social 

Stress Test (TSST) [82]. On the other hand, there are various studies available that assess 

stress by measuring physiological signals of the body in response to stress [18]. Details of 

some commonly used stress assessment tests and questionnaires are presented in Table 2.2.  

Table 2.2 Stress assessment test and brief details. 

Test Name Stress Assessment Method 

Mental Arithmetic Test 
Participants are asked to solve arithmetic questions (subtraction, 
multiplication) within a time frame to induce stress. 

Trier Social Stress Test (TSST) 

Requires participants to deliver a speech on any given topic in a 
short time to prepare. After the speech, the participants are also 
asked to perform some verbal calculations. Both tasks are 
performed in the presence of an evaluating audience. 

Stroop Test 
Participants are shown the names of different colours written in 
various font colours and are asked to tell the font colour rather 
than reading the word. 

Perceived Stress Scale (PSS) 
Participants fill out the questionnaire by rating the questions about 
their feelings and thoughts. The total score varies from 0 (no 
stress) to 40 (highest stress). 

Visual Analogue Scale for 
Stress (VASS) 

In this test, participants are asked different questions during a 
given task or experiment to rate their stress on the scale as no 
stress, moderate stress, or high stress rather than a numerical 
value. Most of the time, a 5-point (smiley) scale is used for stress 
assessment.  

Stress Response Inventory 
(SRI) 

The Stress Response Inventory consists of 39 questions scored in 
the range of 0 to 156. These questions are categorized into 7 
factors, i.e., tension, fatigue, depression, aggression, anger, 
somatization, and frustration. A high score means high perceived 
stress. 

COPE Inventory 

There are 28 items of self-reporting questions designed to measure 
the efficiency of how participants cope with a stressful event. A 
score is given to each question on a scale of 1 (low stress) to 4 
(high stress). The total scoring determines the participant's stress 
coping style, i.e., approach coping or avoidant coping.  



 

22 

 

Holmes and Rahe Stress 
Inventory 

Measures the amount of stress incurred within the past year. 
Participants select events that occurred in their life from the 43 life 
stress-related events. Each event has different scores. Participants 
accumulating a score greater than 300 are at a higher risk of illness, 
while a score lower than 150 suggests a slight risk of illness. 

State-Trait Anxiety Inventory 
(STAI) 

Participants validate 20 questions that measure the state and trait 
of anxiety. Participants respond to the questions on a scale of 1 to 
4, where 1 denotes the least stress while 4 denotes a high-stress 
state. 

Montreal Imaging Stress Task 
(MIST) 

MIST consists of three stages, i.e., rest, control, and experiment. 
In the resting stage, the participant looks at the static screen of the 
computer. In the control stage, the participant is asked to solve a 
series of mathematical problems, while in the experiment stage, 
some difficult and time-constrained arithmetic tasks are given to 
induce high stress. 

Perceived Stress Questionnaire 
(PSQ) 

Participants fill out two types of questionnaires consisting of 30 
questions; the first questionnaire has questions about stressful 
experiences and feelings over the last two years, while the second 
one has questions about stress during the last month. Participants 
must score each question from 1 (no stress) to 4 (stressed). 

 

 
Figure 2.2 Types of stress indicators: physiological (left column) and biochemical (right column). 
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2.1.2 Biophysiological Indicators 

In the literature, most of the studies related the increased heart rate and abrupt changes in the skin 

conductance, respiratory rate, and blood pressure with stress and used them as ground truth. It can 

be observed that some studies measured the same signal(s) and used the same stressor(s) and the 

same ground truth (method), but the reported results showed significant differences. Figure 2.3 

shows the reported prediction accuracies versus the prediction algorithm using different stress 

indicators/markers. For prediction, most of the authors used SVM (with different kernels) as a 

predictor, while the highest prediction accuracy was achieved using an artificial neural network 

predictor. Table 2.1 summarizes the different biophysiological indicators-based studies and their 

conclusions. 

  

Table 2.1 Biophysiological parameters (sorted year-wise). 

Ref Year Signals 
No. of 

subjects 
Stressors Conclusion 

Features extracting 
Methodology/ Classifier 

[66] 2020 
Galvanic skin 

response 
(GSR) 

10 

Predefined 
PYSIONET 
dataset and 

driving on the 
highway, in the 

city 

For the classification, the 
authors designed a binary 

logistic regression model and 
achieved an overall accuracy 

of 85.3% on data from 
PYSIONET, while they 

achieved 83.2% accuracy on 
the validation data, analysed 

through cross-validation. The 
authors also proposed that 

their developed model can be 
embedded in existing 

wearable GSR sensor devices 

GSR from the Empatica 
E4 watch and binary 

logistic regression-based 
classifier along with cross-

validation technique 

Figure 2.3 Reported prediction accuracies of various prediction algorithms using different stress 

indicators/markers. In the figure, SVM is a support vector machine, RF is random forest, kNN 

is a k-nearest neighbour, ANN is an artificial neural network, LDA is a linear discriminator 
analysis, and PC is a principal component analysis. *Reference number in legend are from paper [27]. 
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and, thus, can enable the 
detecting and monitoring the 

driving stress in real-time. 

[83] 2019 
PPG, EDA, 
GSR, and 

ACC 
21 

Summer camp 
(training, the 
contest, and 

free day) 

If individual data of each 
person are enough to design 

a person-based model, it 
should be developed; 

otherwise, each person 
should be clustered in 
accordance with their 

behaviour under stress and 
then a clustering model 
should be developed to 

increase the classification 
accuracy of the general 

model. 

Clustering models such as 
kNN 

[84] 2019 EDA 1 
Driving on the 
highway, in the 

city 

From the experiment, the 
authors concluded that their 
classification results indicate 

that road type and traffic 
conditions are important 
features related to driving 

stress. The authors reported 
an accuracy of 80.3% with a 

sensitivity of 85%, a 
specificity of 78%, and 

positive predictivity of 70% 
while using logistic regression 

as a classifier. 

EDA from Empatica E4 
watch and logistic 

regression-based classifier 

[85] 2018 ECG 1 Daily life stress 

The variation of the stress 
index shows high 

concordance with the work 
schedule of the subject and, 

thus, can provide an 
acceptable solution for the 

comparison of stress levels of 
different individuals. 

By combining time- and 
frequency-domain 
nonlinear features 

[73] 2018 
PPG, Temp, 

ACC, and 
EDA 

28 
City Car 
Driving 

simulator 

An accuracy of 68.31% for 
four states (i.e., normal, 

stressed, drowsiness, and 
fatigue) and an accuracy of 
84.46% for three states (i.e., 

normal, stressed, and 
drowsiness or fatigue) 

classification. 

Used pulse intervals and 
compared their values with 

standard pulse interval 
values. Winner-takes-all 
(WTA) and max-wins 

voting (MWV) methods 
were used along with an 

SVM classifier for 
classification 

[86] 2018 

EDA only 
(ECG, EMG, 

and 
respiratory) 

11 
Driving on the 
highway, in the 

city 

After using Fisher projection 
and linear discriminant 

analysis (LDA) on the data 
collected from the dataset, 

the authors claimed to 
achieve a classification 
accuracy of 81.82%. 

Fisher projection and 
linear discriminant analysis 

(LDA) 
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[65] 2017 
ECG, EDA, 

and 
respiratory 

14 
Real driving 
environment 

Using a full feature set, SVM 
with linear kernel gave the 

highest inter-drive 
classification precision. For 
the cross-drive level, SVM 

with RBF kernel gave a 
precision score of 89.7%. 

SVM with linear kernel, 
SVM with RBF kernel 

[48] 2017 
EDA, ST, 
ACC, and 

PPG 
5 

Randomly 
generated 
equations 
(solved 

verbally) 

Without contextual 
information, the stress 

detection was not in the 
range of acceptable accuracy, 
while, when they included the 

context information, the 
detection F-score jumped to 
0.9 from 0.47 and precision 
increased to 95% from 7%. 

Time-domain features 
such as mean inter-beat 

interval (IBI) of a sample, 
standard deviation, square 

root of the mean of the 
squares of the differences 

between adjacent IBI 
samples, and the 
percentage of the 

differences between 
adjacent IBI samples that 
are greater than x ms (x = 

20, 50, 70) along with 
SVM classifier 

[27] 2017 
ECG and 
respiratory 

39 
Montreal 

Imaging Stress 
Task (MIST) 

An accuracy of 84% using 
random forest features and 

SVM classifier in 
discriminating three stages of 

stress, while, for binary 
classification, i.e., rest and 
stress, they achieved an 

accuracy of 94%. 

Random forest features 
and SVM classifier 

[87] 2017 

PPG and 
inertial 

motion and 
driver 

behaviour 

28 

Euro truck 
driving 

simulator 
version 2 

Sequential feature selection 
with RBF kernel SVM 

classifier was able to achieve 
a classification accuracy of 

95%, which shows the 
suitability of their glove as 
the driver’s stress detection 

device. 

RBF kernel-SVM classifier 

[88] 2016 

EDA, PPG, 
and 

sociometric 
badge for 
recording 

18 

STAI (State-
Trait Anxiety 

Inventory) and 
TSST 

Achieved higher accuracy, 
i.e., 92%, with SVM (RBF 

kernel) classifier, as compared 
to linear kernel SVM (80%), 
AdaBoost (67%) and KNN 

(62%), when using a selected 
set of features. 

SVM (RBF kernel) 
classifier, linear kernel 
SVM, AdaBoost, and 

KNN 

[72] 2015 
EDA and 

PPG 
5 

Trier Scope 
Stress Test 

(TSST) 

Detected stress of each 
participant with an average 

accuracy of 78.98%, i.e., 
combining all five 

participants’ stress detection 
accuracies using SVM. 

Support vector machine 
(SVM) classifier 
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[89] 2015 
ECG and 

TEB 
measurements 

40 
Films, and 

games based on 
the addition 

The measurement showed 
high potential in the use of 
ECG and skin activation 

(TEB) signals for the 
detection of long periods of 

stress or sudden increment in 
mental work overload or 

emotional responses of the 
people. With the MLP 

classifier, authors achieved an 
error rate of 21.23%, 4.77%, 

and 32.33% for activity 
identification, emotional 
state, and mental activity, 

respectively. 

Low-pass filtering and 
decimated intermediate 

frequency-based 
algorithms along with 
multilayer perceptron 

classifier 

[90] 2014 

ECG, 
respiratory, 
body temp, 

GSR 

10 Hajj pilgrimage 

During sleep, the activity of 
the upper body and the 

duration of sleep contributed 
most to the detection of 

stress. The body temperature 
can be neglected as it did not 

contribute anything. The 
stress state was classified with 

an accuracy of 73% using 
SVM as a classifier. 

Support vector machine 
(SVM) classifier 

[91] 2013 

ECG, EMG, 
GSR, and ST 
(only concern 
on ECG and 

HRV) 

60 
Stroop word–

colour test 

The optimum features of 
ECG were extracted through 

a fast Fourier transform 
(FFT). Accuracy of 91.66% 
and 94.66% was achieved 
using probabilistic neural 

network (PNN) and k-nearest 
neighbour (kNN) classifier, 

respectively. 

Fourier transform (FFT) 
along with PNN and kNN 

classifier 

[64] 2012 
ECG, EDA, 

and ACC 
20 

Stroop color 
test and mental 

arithmetic 
problems based 

on Montreal 
Imaging Stress 
Task (MIST) 

The inclusion of 
accelerometer data improved 
the stress detection process 

(92.4%) in a mobile 
environment. 

Decision tree classifier, 10-
fold validation, and least 

complex classifier 

[71] 2011 

ECG, 
respiratory, 
EDA, and 

EMG 

18 
Perceived stress 

scale (PSS) 
questionnaire 

80% accuracy indicates the 
suitability of used features for 

the detection of stress in a 
subject. 

Principal component 
analysis (PCA) technique 

[70] 2010 
ECG, PPG, 

EDA, and ST 
22 

Public speaking, 
mathematics, 
mental, social, 
and physical 
challenges 

The SVM-based model 
detects stress with high 

precision and recall rate (68% 
accuracy), especially when 

they used personalized 
information with SVM. 

Support vector machine 
(SVM) classifier-based 

model 
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[92] 2010 
EEG, EDA, 

PPG, and 
respiratory 

15 

International 
Affective 

Picture System 
(IAPS) 

Characteristics of the EEG 
signal were extracted by 
wavelet coefficients and 

Higuchi’s algorithm, as well 
as correlation dimension. An 
accuracy of 82.7% using the 

Elman classifier was 
achieved. 

Wavelet coefficients and 
Higuchi’s algorithm, as 

well as correlation 
dimension with the Elman 

classifier 

[93] 2009 

ECG, ACC, 
GPS, EDA, 

and 
respiratory 

3 

Mental 
arithmetic test, 
Stroop colour-

word test 

The PDM algorithm shows 
lower inter-subject variance 

and interestingly showed 
some comparable 

performance between and 
within subjects, where PSD 

performance decreased when 
used between subjects. 

Principle dynamic modes 
(PDM) algorithm 

[68] 2004 
ECG, EMG, 

EDA, and 
respiratory 

24 

Some audio, 
visual, and 
cognitive 
stimuli 

Achieved a classification 
accuracy of 97.4% using data 
intervals of 5 min and found 

the highest correlation 
between heart rate and skin 

conductance metrics. 

Artificial neural networks 
(ANN) 

[63] 2004 
ECG, PPG, 

EDA, and ST 
50 

Rest, highway 
drive, and city 

drive 

Achieved a recognition rate 
of 78.4% for three emotional 
and 61.8% for four emotional 

states. 

Support vector machine 
(SVM) classifier 

[67] 2000 
ECG, EMG, 

EDA, and 
respiratory 

10 

Garage exit, city 
road, toll booth, 

highway 
driving, ramp 
turnaround, 

two-lane merge, 
bridge crossing, 
and entering the 

garage 

The combination of all 
features from the four types 

of sensors had an overall 
accuracy of 86.6%. 

K-nearest neighbours (k-
NN) classifier 

2.1.3 Biochemical Indicators 

The biochemical indicators of stress provide better detection and monitoring of stress, but most of 

these indicators can only be measured invasively. If measured noninvasively, as in some cases, the 

extraction of the required hormone from the sample collected takes time and, thus, cannot be used 

in real-time stress-monitoring devices. There is also scope for integrating some of the biochemical 

indicators, such as cortisol level measurement, with physiological indicators, such as heart rate, 

respiratory rate, and activity monitoring, to develop a more robust and accurate device for stress 

monitoring. Table 2.2 summarizes the biochemical indicators-based studies and their conclusions. 

 
Table 2.2 Biochemical parameters (sorted year-wise). 

Ref Year Signals 
No. of 

subjects 
Stressors Conclusion 

[77] 2019 
ST, HR, pulse wave 
(EDA, ECG, PPG), 

40 
Trier Social Stress 

Test (TSST) 
There was no clear correlation between 

physiological parameters and perceived stress 
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copeptin, prolactin 
(blood), cortisol, and 
alpha-amylase (saliva) 

levels. Moreover, alpha-amylase peak level 
time is 10 to 15 min after stress onset and, 
thus, should be measured within that time 
frame. Alpha-amylase and cortisol were 

measured in the morning (at that time, intra-
individual variability is high). 

[94] 2019 
PPG and endocrine 

(salivary) cortisol 
32 

Childhood 
Trauma 

Questionnaire 
(CTQ) 

No significant effect of early life stress on 
heart rate (autonomic indicator) and salivary 

cortisol (endocrine indicator), but the authors 
suggested that heart rate is a better indicator 
(of stress) than salivary cortisol as it is more 
sensitive to individual stress reactivity than 

salivary cortisol. 

[95] 2019 
Oxy-haemoglobin 

(oxy-Hb) 
4 

Decision-making 
and memory 
recall tests 

Whenever high stress occurred, the average 
difference value of oxy-haemoglobin (oxy-Hb) 

increased. 

[96] 2018 

Biochemical (salivary 
cortisol) and 
physiological  

(HRV measures) 
domains 

30 

Academic final 
examination, 
Psychological 

Stress Response 
Inventory 

The salivary cortisol levels were negatively 
correlated with the HRV indicator of 

parasympathetic activity, while they were 
positively related to the HRV indicator of 

sympathetic activity. The results also showed 
that the value of the mental stress index (MSI) 

was very sensitive to acute stress and could 
predict stress with an accuracy of 97%. 

[76] 2016 
Steroid hormones in 

hair 
40 

Perceived Stress 
Questionnaire 

(PSQ) 

The concentrations of steroids in the hair 
were a decisive predictor of the increased 
long-term HPA axis. Furthermore, this 

biomarker could capture stress even after 
burdening events or any physical activity was 

finished. 

[97] 2013 
Sweat and saliva 

samples 
17 Intense exercise 

Intense exercise could increase the 
concentration of cortisol in hair, which was 

not decreased by hair washing. 

[98] 2012 Hair cortisol - 
Daily life stress (3 

months) 

Identified some gaps in the currently available 
literature: firstly, to clarify the mechanism 
underlying cortisol incorporation into hair, 
and, secondly, to determine the factors that 
cause variation in hair cortisol such as the 

effect of hair washing.  

[75] 2010 

Salivary alpha-
amylase, plasma 

catecholamines, BP, 
and HR 

33 
College academic 

final exam 

The salivary alpha-amylase level changed 
significantly, but a partial correlation was 

found, statistically, between salivary alpha-
amylase and blood pressure, heart rate, and 

plasma catecholamines. 

[80] 2008 
Cortisol level and 

EMG 
16 

Arithmetic 
problems, 

tasteless gum 

Fast chewing had a greater effect on the stress 
release than a slow chewing rate, while the 

integration of EMG signals did not show any 
major difference in the 3 chewing rates. 
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[79] 2004 
Salivary cortisol (in 

the blood) 
12 

The psychosocial 
stress test, Trier 

social test (TSST), 
and reading test 

The level of salivary alpha-amylase was 
significantly lower in smoking females than 

non-smokers, while it was higher in smoking 
males than in non-smokers.  

Identified that the production of salivary 
cortisol affected the association of 

norepinephrine and amylases. Activation of 
the parasympathetic nervous system decreased 

the overall saliva production and volume. 
Therefore, the volume of saliva and amylase 

levels should be measured relative to the saliva 
produced. 

[99] 2004 
BP, pulse rate (PPG), 

and saliva 
58 

Vertical Visual 
Analogue Scale 
(V-VAS) and 

State-Trait 
Anxiety Inventory 

There was a positive correlation between 
salivary cortisol and 24 h blood pressure. 

[78] 2003 

Total testosterone, 
free testosterone, 

oestradiol, 
androstenedione, and 

cortisol 

30 
Early follicular 

phase 

Women with low levels of testosterone and 
androstenedione presented less competitive 
feelings. Moreover, oestradiol levels were 

unrelated to any competitive feeling. 

 

2.1.4 Conclusion - Review of Physiological and Biochemical Indicators 

Table 2.1 and Table 2.2 summarized the types of stressors used in each study reviewed in 

this study, along with the types of bio-signals collected by the authors to measure and 

monitor stress. It can be observed that some studies measured the same signals and used 

the same stressors, but the reported results showed significant differences. For example, 

the measured signals were the same in [67], [68], [71]; however, the classification accuracy 

achieved by each study is different (highest: 97.4%, lowest: 80%). Furthermore, the studies 

[63] and [70] also used the same signal for stress detection but reported a classification 

accuracy of 78.4% and 68%, respectively. In [48], the authors concluded that the 

physiological signals alone cannot provide acceptable accuracy for stress detection and that 

contextual information should also be included during the data collection. This was also 

evident in the results by [64],  with improved accuracy of 92.4% when using contextual 

information. On the other hand, [86] achieved an accuracy of 81.82% by using only EDA 

(skin conductance), and, similarly, [65] reported an accuracy of 89.7% by using four 

physiological parameters and no context information. 

The possible reasons for this variation in prediction accuracies can be due to the variations 

in the experimental setup (real and controlled environment), use of different features 

extracted from the raw data (time- and frequency-domain features), different lengths of 
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recorded data (varied from 5 min to 1.5 h), different placement of sensors (chest worn, 

wrist-worn, and foot-worn), and the different number of subjects recruited for the 

experiment. 

Despite the abovementioned high classification accuracies using biophysiological 

parameters, some studies, for example, [77] and [94], reported that there is no clear 

correlation between perceived stress and biophysiological parameters. Additionally, these 

studies suggested that biochemical markers of stress should be considered when designing 

a stress monitoring system. Interestingly, in [94], the authors suggested that 

biophysiological markers of stress (heart rate) can be a better indicator than biochemical 

markers (salivary cortisol, a most frequently used biochemical indicator of stress). Contrary 

to this, [75]  and [99] suggested a positive or partial correlation of salivary cortisol with 

physiological stress indicators (i.e., heart rate, heart rate variability, respiratory rate). 

Reported accuracies are collected and plotted in Figure 2.3. It is important to note that 

there are different methods of feature extraction from a raw signal, as well as different ways 

of calculating accuracies. Commonly used tools, along with accuracy, to evaluate the 

performance of the different indicators and classifiers include confusion matrix, specificity, 

sensitivity, recall, f-score, the area under the curve, positive predictive value, negative 

predictive value, and likelihood ratio (positive and negative), as described in [100]–[102]. In 

the literature reviewed, authors might have used different matrices for stress-relevant 

feature extraction and classification; thus, reported accuracies may not be comparable. 

The variable and contradictory evidence in the literature on the use of either physiological 

or biochemical stress markers leads to a conclusion that neither of these biomarkers in 

isolation can provide sufficient means of monitoring stress. Therefore, a combination of 

physiological and chemical stress biomarkers, with contextual information, can be a more 

reliable solution for stress monitoring. A multisensory platform with data-driven personal 

insights can help track and intervene in cases of stress in the high-risk population. There is 

still a need for a novel, more sensitive, and more specific stress monitoring system that 

should be easily implemented and adopted by medical professionals and home-based 

consumers. 
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2.2 Review of different machine Learning Algorithm used for 

Stress Classification 

Cardiovascular activities are directly related to the response of a body in a stressed 

condition. Stress, based on its intensity, can be divided into two types i.e., Acute stress 

(short-term stress) and Chronic stress (long-term stress). Repeated acute stress and 

continuous chronic stress may play a vital role in inflammation in the circulatory system 

and thus leads to a heart attack or a stroke. In this study, we have reviewed commonly used 

machine learning classification techniques applied to different stress-indicating parameters 

used in stress monitoring devices. These parameters include Photoplethysmography (PPG), 

Electrocardiograph (ECG), Electromyograph (EMG), Galvanic Skin Response (GSR), 

Heart Rate Variation (HRV), skin temperature, respiratory rate, Electroencephalograph 

(EEG) and salivary cortisol, used in stress monitoring devices. This study also provides a 

discussion on choosing a classifier, which depends upon several factors other than accuracy, 

such as the number of subjects involved in an experiment, type of signals processing and 

computational limitations. 

2.2.1 Introduction 

Stress can be of two types, Physical Stress and Mental Stress. Physical stress is often caused 

by a poor diet, sleep deprivation, too much work or may be due to illness. Mental stress is 

triggered due to worrying about the illness of a loved one, the death of close ones, 

retirement or money or being fired from work [3]. Generally, most of the stress comes 

from our daily responsibilities. Work pressure and obligations, which are mental and 

physical, are not always noticeable to us. In response to stress, incurred in daily life, our 

body automatically alters our blood pressure, respiration, heart rate, blood flow to muscles 

and metabolism. The response tries to help our body to react fast, yet efficiently, to a high-

pressure situation [4]. 

Stress situation can become a threat to our well-being and health. If no adjustments are 

made in time to cope with its effects. It is very important to realize all the external events. 

It does not matter how we are perceiving those events. These events can cause stress and 

may cause you to feel ‘out of control’. 
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Fatigue, headaches, sleeping problems, digestive problems, and muscle tension are some 

most common effects of stress. A long term and unmanaged stress may cause heart disease, 

high blood pressure, diabetes, and obesity [103]. Stress may also cause anxiety, restlessness, 

and inability to focus. These mental and physical changes may affect our weight loss 

progress as eating junk food can be used to cope with stressful situations [5]. Several people 

get addicted to tobacco or illegal drugs as they use it as a stress management mechanism. 

If the stress state period goes on for a very long time, it does increase the chances of having 

a heart attack, hypertension, or stroke in a person [40]. 

According to American Psychological Association (APA), stress is linked to 6 leading 

causes of death including heart disease, depression, anxiety disorder, diabetes etc. Centre 

for Disease Control and Prevention reported that 110 million people die every year as a 

direct result of stress i.e., 7 people in every 2 seconds. 

One needs to realize that without proper monitoring and management of stress, the 

situation will get more difficult to contain. People are getting depressed, are very easily 

angered, and have started to withdraw from themselves. As stress is becoming one of the 

movers, the performance of people has declined. People think this economic recession will 

stay such as this and there is no way to fight it. All these situations can be avoided if people 

knew how they can fight and win from the effects of stress. 

Recognition of a high-stress state is very essential. For this purpose, one can monitor stress 

using physiological indicators of stress such as increased heart rate, blood pressure, 

respiratory rate, sweaty hands, and fast pulse rate. Unfortunately, most people, cannot 

recognize these physical symptoms. Such people can use stress monitoring devices that will 

inform them in time about an increase in their stress level and thus they will be able to 

control it beforehand by either doing meditation or exercise. Literature suggests that the 

following parameters, individually or with different combinations, can be considered for 

stress monitoring and are discussed below: 

 PPG: A Photoplethysmography (PPG) is a light-based plethysmogram which is used 

to detect changes in the volume of the blood running in the micro-vascular system 

of the body.  Usually, a pulse oximeter is used to obtain PPG.  A pulse oximeter 

illuminates skin using a light-emitting diode (LED) and calculates the change in 
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absorption of light through a photodiode. As the flow of blood to the skin is 

modulated with different types of other physiological systems, thus, we can use PPG 

to monitor hypovolemia, breathing and conditions of other circulatory systems [104]. 

For monitoring of the stress, a PPG signal obtained from a pulse oximeter is used to 

calculate the oxygen level within the body of the human, often called oxygen 

saturation. For a normal person, this oxygen saturation level is between 95 to 100%. 

A saturation level below 90% is considered abnormal and can lead to a clinical 

emergency [105]. The waveform of the PPG signal differs from patient to patient 

and to the location as well as the way the pulse oximeter is attached. 

• ECG: Electrocardiography (ECG, also known as EKG) is a method used to record 

the electrical activities of the heart with respect to time by placing electrodes on the 

skin. These electrodes detect small electrical changes under the skin that are generated 

by depolarization and re-polarization of heart muscles in electrophysiologic patterns 

for each heartbeat. ECG is commonly used to detect cardiac problems. In stress 

monitoring applications, an ECG signal is used to calculate Heart Rate Variation 

(HRV). In a stress state, the heart rate varies significantly and thus can be monitored 

by using HRV. 

• EMG: Electromyography (EMG) is a technique for recording and evaluating the 

electrical activities produced by muscles of the skeleton. An instrument called an 

electromyograph is used to generate a record called electromyogram. EMG is the 

recording of the muscle cells whenever these cells are activated electrically or 

neurologically. Medical abnormalities such as Polymyositis and Muscular dystrophy, 

recruitment order, and activation levels can be analysed using EMG signals. 

Moreover, we can also analyse the biomechanics of animal or human movement. 

 GSR: Galvanic Skin Response (GSR) is used to measure skin’s electrical 

conductance. The sympathetic nervous system can be triggered through strong 

emotion, which results in more sweat being released by sweat glands. The signal is 

obtained using two electrodes attached to two fingers of the same hand and is often 

used to monitor the quality of sleep. 

• EEG: Electrophysiological method for monitoring and recording electrical activities 

of the brain is called electroencephalography (EEG). It is, most of the time, a non-

invasive method with electrodes located on the scalp but sometimes we can use 
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invasive electrodes. Voltage fluctuations are measured through EEG which causes 

the ionic current in the neurons of the brain. These readings are analysed with respect 

to a period and diagnosis are made on spectral content or event-related potentials. 

 Respiratory Rate: Respiration rate is defined as the number of times someone takes 

a breath in 60 seconds, mostly calculated by observing the rise and fall of the subject’s 

chest. Measuring the respiration rate while the person is sleeping is the most difficult 

task and cannot be done using general lab devices. Respiratory rate can also be 

measured from blood volume pulses. There are two ways to do so; by calculating the 

time change in-between two successive heartbeats and the change in the amplitude 

of the blood volume. The infrared sensor on the ring takes samples at 250 Hz from 

arteries and capillaries of the finger and thus does not disturbs the sleeping subject 

[106]. The collected samples show inter-beat-interval, yielding data on heart rate 

variability, heart rate and respiratory rate. 

 Salivary Cortisol: Cortisol is a steroid hormone, which is produced in the adrenal 

gland by zona fasciculata in response to stress. For a normal person, the 

concentration of salivary cortisol ranges from 10.2 to 27.3 with +/   0.8 nmol/L   in 

the morning and ranges from 2.2 to 4.1 with +/ 0.2 nmol/L at night [107]. A high 

level of cortisol circulating in the human body shows the sustained stressed condition 

of the human and may create an allostatic load. This allostatic load can cause various 

physical changes in the body. Changed levels of cortisol can be observed in form of 

mood disorders, anxiety disorders, illness, stomach pain, fear, and other physiological 

and psychological disorders [108]. Collection protocols and approved collection 

methods of salivary cortisol are defined by Salimetrics USA [109]. 

Stress can be triggered by using a questionnaire or can be caused due to physio- and 

sociological factors. Different classification algorithms are used to recognize stress states. 

In this study, we will focus more on different machine learning techniques as these 

algorithms are more accurate and popular as well as state-of-the-art ways of monitoring and 

recognizing stress in humans. 

2.2.2 Inducing Stress using Questionnaire Methods 

A questionnaire method is mostly used to measure mental stress. In this method, stress is 

triggered in the subject using some questions and recording their response time along with 
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PPG and EEG signals. These response signals are then fed to a neural network to classify 

the stress states into low, normal, and highly stressed states. Such an assessment of stress 

is often called a subjective assessment. Most of the research community uses a ‘Stroop test’ 

to measure the mental health of the subject. The Stroop test is a colour-naming activity, 

mostly designed on a computer as a game. In this game, subjects are asked to call the name 

of the colour irrespective of what is written with that colour. For example, the word BLUE 

is written with PURPLE colour, so the subject has to say PURPLE as an answer to this 

question. Stroop test designed by Nagananda et al. in [110] uses five colours; BLUE, 

YELLOW, GREEN, RED and PURPLE and classifies stress into low, medium, and high-

stress levels using a simple neural network. 

Besides the Stroop test, several research fellows designed their test questionnaires. Kallus 

et al. [111] designed a RESTQ that measured the frequency of stress and activities related 

to stress recovery. The authors designed five different versions of RESTQ based on the 

types of subjects one wants to use. RESTQ-Basic for general usage and had seven stress 

scales. RESTQ-Sport for athletes with five recovery scales. RESTQ- Coach for coaches, 

RESTQ-CA for adolescents and RESTQ- Work for the subject’s work context. Every 

version had its time frame of three days/nights or seven days and nights. The output is 

indicated on a scale of 0 to 6 i.e., never to always, respectively. 

Boynton et al. [112] presented a very interesting study about the selection, design, and 

development of a self-defined questionnaire. The authors argued that anyone can design a 

list of questions and print it but designing a well effective and generalized questionnaire 

needs creative imagination and careful planning. The authors also discussed different 

perspectives on a questionnaire that should be considered while designing or developing it. 

A new questionnaire often fails to provide high-quality generalized data, thus, whenever 

possible one should use previously validated questionnaires and rephrase them 

appropriately for their targeted audiences and the information they require. The authors 

conclude that a nicely explained and carefully designed questionnaire will always lead to 

improved response rates. 
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2.2.3 Review of Stress Classification Machine Learning Algorithms 

Recently, the development of different machine learning algorithms has greatly helped to 

develop tools that assist doctors to support patient care and predicting any mental 

disorders. Machine learning techniques are widely used as a decision boundary-making tool 

in complex data analysis of health. Supervised machine learning algorithms produce general 

hypotheses from externally supplied labelled features. These hypotheses are then used to 

make predictions about new incoming features [113]. The literature included in this review 

is measured on the following criteria: 

 Should be frequently used classification methods. 

 Should have achieved good classification accuracy (>50%). 

 Should be about the classification of physical and mental stress states. 

The selection of a learning algorithm is a critical step. Usually, an algorithm is evaluated 

based on its number of correctly predicted outcomes over the total number of prediction 

attempts (which is called prediction accuracy). There are three ways to test a classifier. One 

is by splitting the training set into training and evaluation sets. The ratio of the split should 

be at least 70% and 30%, respectively. Cross-validation is the second option to test the 

performance of the classifier. Here training set is split into mutually exclusive and equal-

sized subsets. A classifier is then, for every subset, trained on the union of all subsets. An 

error rate of every subset is calculated, and the average error rate determines the classifier's 

performance. There is a special type of cross-validation called Leave-one-out.  

Computationally this method of cross-validation is expensive but is used whenever we 

require greater accuracy in terms of an error rate of a classifier. Error rate does depend 

upon the number of parameters such as the size of the training set, a dimension of the 

problem, hyper-parameters tuning and use of relative features of the problem. The third 

and final way to measure the performance of the classifier is a statistical comparison of the 

classifier’s accuracies when trained on specific datasets [114]. 

Machine learning methods can be divided into four major types: Logic-based Algorithms, 

Perceptron-based Methods, Statistical learning Techniques and Support Vector Machines 

(SVM) [115]–[118]. Each type of algorithm has different sub-learning algorithms. Some of 

these learning algorithms are illustrated as follows: 
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2.2.3.1 Decision Tree Classifier 

The decision tree classifies by sorting input instances based on feature values [119]. Each 

node of the decision tree shows a classified feature from an input instance while each 

branch shows an assumed nodal value. Classification of instances starts from the root and 

is sorted depending on their feature values. The best divisor of input training data becomes 

the root node of the decision tree. Figure. 2.4 shows the steps involved in classification 

using a decision tree. This divide-and-conquer strategy is efficient and fast and can be an 

Figure 2.4 Flowchart of C.45 decision tree algorithm. 
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important classifier if we have hundreds of thousands of input instances. A pseudo-code 

for designing a decision tree is presented in [120].  

2.2.3.2 Artificial Neural Network Classifier 

Artificial Neural Network (ANN) is used for classification whenever instances in the 

training dataset cannot be linearly separated [121], [122]. An overview of the Artificial 

Neural Network (ANN) is provided in [123]. ANN is created by the connection of many 

neurons (units) patterned as shown in Figure. 2.5.  

Neurons of the network are divided into three layers: an input layer, which receives 

incoming information from the training dataset; an output layer, which gives us processed 

results (most of the time probabilities); and a hidden layer, which is in-between the input 

and output layer. If there is one-way communication between neurons of the network i.e., 

only from input to output, then the network is called a feed-forward network. The outcome 

of an ANN depends upon three factors: the architecture of the network, weights associated 

with each neuron in the network, and input along with activation functions used for each 

neuron. 

 

 

 All weights are updated in such a way that it brings the outcome (a result of the classifier) 

nearer to the desired output. The most popular algorithm for updating weights is known as 

the Back Propagation (BP) algorithm and is defined as (see equation 2.1): 

∆Wji = η δj Oi (2.1) 

Where W is the weight, δj is the next level neuron while Oi output of the previous node. η 

is the learning rate. 

Figure 2.5 Feedforward Artificial Neural Network. 
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2.2.3.3 Bayesian Network Classifier 

To represent probability relationships of input instances (features) in form of graphs, 

Bayesian Network is used. The structure of the Bayesian Network (BN) is a Directed Acyclic 

Graph (DAG) and there is a one-to-one correspondence between its nodes. Arcs in DAG 

show the influence of different features on each other. Conditional independence can be 

detected if there is no arc representing casual influences in-between features or are no 

descendants’ nodes from this node (feature).  

 

Typically, learning a Bayesian network is a two-fold task: first, learn the DAG structure and 

how the BN structure is created using DAG, then determine BN parameters. Pseudo-code 

for training BN is presented in [120]. Figure. 2.6 shows the structure of a general Bayesian 

network.  

2.2.3.4 Naive Bayesian Classifier 

A naive Bayesian classifier is a very simpler form of a Bayesian network. Naive Bayesian 

(NB) has only one parent node in its DAGs, which is an unobserved node, and has many 

children nodes, representing observed nodes (Figure. 2.7). NB works with a strong 

assumption that all the child nodes are independent of their parent node and thus, one may 

say that Naïve Bayesian classifier is a type of estimator.  

Figure 2.6 Structure of Bayesian Network. 
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Mathematically, 

𝑅 =  
𝑃(𝑖|𝑋)

𝑃(𝑗|𝑋)
=

𝑃(𝑖)𝑃(𝑋|𝑖)

𝑃(𝑖)𝑃(𝑋|𝑗)
=  

𝑃(𝑖) 𝛱 𝑃(𝑋𝑟|𝑖)

𝑃(𝑗) 𝛱 𝑃(𝑋𝑟|𝑗) 
 (2.2) 

From equation 2.2, one can conclude that a larger probability value will indicate that the 

class label assigned to a feature (child node) is its actual label. The threshold for 

classification is as; if the value of R > 1 then predicts i otherwise predict j.  

2.2.3.5 k-Nearest Neighbour Classifier 

k-Nearest Neighbour (kNN) is one of the simplest instance-based learning algorithms. The 

working of kNN is as; it classifies all the proximity instances, in a database, into a single 

group and then when a new instance (feature) comes, the classifier observes the properties 

of the instance and places it into the closest matched group (nearest neighbour). Figure. 2.8 

shows a flowchart for working the kNN classifier. For accurate classification, initializing a 

value to k is the most critical step in the kNN classifier.  

2.2.3.6 Nearest Cluster Classifier 

Nearest Cluster Classifier is a classification technique proposed to reduce the training set 

of k-Nearest Neighbour (kNN) and enhance its performance by using the clustering 

method, (proposed in [124]). The main goal of this method is to classify the given test 

samples according to their nearest neighbour tag. This algorithm first clusters the given 

(training) set into many different partitions. After getting these partitions, different 

clustering algorithms are executed to eliminate many clusters from those partitions. Then, 

the central label of previously produced clusters is calculated using the majority vote 

method between patterns of class labels in the cluster. A set of the most accurate clusters 

Figure 2.7 Structure of Naive Bayesian. 
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are used as a training set for the final 1-NN classifier. In last, the class label of the upcoming 

test sample is calculated according to the class label of his nearest cluster centre [124].  

 

2.2.3.7 Learning Vector Quantization Classifier 

The Learning Vector Quantization (LVQ) algorithm is an artificial neural network-based 

algorithm that enables us to choose the number of training features and learns what those 

features should look such as. LVQ is more likely a collection of codebook vectors. These 

vectors are consisting of a list of numbers that have the same input as well as output features 

as their training set. In this form of the neural network, every vector of the codebook is 

considered a neuron, each feature on the codebook vector is considered weight and the 

collection of vectors of the codebook makes a network [125]. The prediction procedure of 

LVQ is the same as that used in the kNN (k-Nearest Neighbour) algorithm. For prediction, 

all the vectors in the codebook are searched and the most similar K is found. Then the 

output is summarized for those selected K instances. By default, the value of K is 

Figure 2.8 Flowchart of kNN classifier. 
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considered as 1 and the best-matched vectors in the codebook are called Best Matching 

Units (BMU). Figure. 2.9 shows the general architecture of the LVQ classifier.  

 

2.2.3.8 Kohonen Self-Organizing Map Classifier 

The Kohonen Self-Organizing Map (KSOM) learning algorithm is originally presented in 

1982 and uses vector quantization with similarities to patterns [126]. This algorithm is 

generally used for clustering problems having very complex datasets. Sizes of topology 

maps and learning are the two parameters that should be considered before designing a 

KSOM-based classifier.  

 

The complete dataset is repeatedly trained using different-sized maps and a suitable size is 

found for accurate cluster classification. The Euclidean Distance model is used to calculate 

the distance between two nodes. Even grouping and clustering done by KSOM is quite 

Figure 2.9 LVQ network architecture. 

Figure 2.10 Result of (a) Original KSOM (b) Revised KSOM algorithm on Iris dataset. 
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accurate but as every clustered group lies close to another group, it sometimes leads to 

overlapping of clusters and the problem of non-linear separation. To tackle this problem, 

[104] presents a variant of the original KSOM classification algorithm. They used a different 

approach for distance calculation and Figure. 2.10 shows a result comparison of the original 

and revised KSOM classifier. The steps used for designing the KSOM network for 

classification are shown in Figure. 2.11.  

 

2.2.3.9 Principal Component Analysis 

Principal Component Analysis (PCA) is generally used to reduce the dimensions of a high-

dimension dataset to a small subspace before using it to train any learning or classification 

algorithms. PCA transforms data into a new coordinate system having a low-dimension 

Figure 2.11 Steps in original KSOM learning algorithm. 
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subspace. In this coordinate system, the first axis represents the first principal component 

that represents the greatest aggregate of variance in a dataset [127]. From Figure. 2.12, we 

can see that by calculating two principal components, we can cover the variance of the 

whole dataset and all captured elements are independent of each other. 

 

 

2.2.3.10 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is the most used dimensionality reduction algorithm. 

LDA is used during a pre-processing step in pattern classification and other machine-

learning applications. LDA is calculated by following the steps in [128]; compute d-

dimensional mean vectors for each class in a given dataset,  compute the in-between-class 

scatter matrix and within-class scatter matrix, then compute Eigenvectors and their 

corresponding eigenvalues for both scatter matrices, select linear discriminants for the new 

feature subspace by sorting the eigenvectors in descending order using eigenvalues, and on 

the final step, transforming the samples onto new subspace by simply doing matrix 

Figure 2.12 Two Principal Components of a dataset having two variables X1 and X2. 

Figure 2.13 Comparison of PCA and LDA. 
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multiplication. Generally, LDA calculates an extra axis that shows a maximum separation 

between the two classes, as shown in Figure. 2.13.  

2.2.3.11 Logistic Regression 

Logistic Regression is one of the simplest machine learning algorithms mostly used for 

binary classification problems. This algorithm can be implemented easily and is used as a 

baseline algorithm for other two-class classifiers. There are three types of logistic regression 

algorithms [129]: 

 If the targeted features have only two outcomes such as Spam or Not spam emails 

or Diabetic or Not diabetic, then this problem is solved by using binary logistic 

regression. 

 If the targeted features have three or more nominal categories, then multinomial 

logistic regression. For example, the prediction of the type of clothing. 

 If the targeted features have three or more ordinal categories, then ordinal logistic 

regression is such as rating any product between 1 to 5. 

Logistic regression estimates and describes the relationship between independent and 

dependent binary features within a dataset. Figure. 2.14 shows a classification boundary 

calculated by a logistic regression algorithm.  

 

2.2.3.12 ZeroR and OneR classifier 

ZeroR is the simplest classification technique, also known as the Zero Rule algorithm, that 

relies only on the target and ignores all predictors. This algorithm only predicts the majority 

Figure 2.14 Classification using Logistic Regression on Iris dataset. 
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class of the given dataset. It is used for determining a baseline performance as a benchmark 

for other classification methods, although there is no predictability power in ZeroR. This 

algorithm constructs a frequency table for the target and selects its most frequent value 

[130]. 

OneR is an abbreviation of One Rule. It is a simple yet accurate classification technique 

that can produce one rule for every predictor present in the data. Then rule with the smallest 

error rate is selected and named ’one rule’. The rule for the predictor is created by the 

construction of a frequency table having two columns: target and its frequency. OneR has 

slightly less accurate as compared to state-of-the-art algorithms used for classification but 

is too easy for humans to interpret. Following is the pseudo-code for designing an oneR 

algorithm [131]: 

1. For every predictor, 

2. For every value of predictor, make the following rule. 

a. Count the appearance of each target value. 

b. Find the most frequently appearing class. 

c. Make the rule assignment of the selected class to the predictor value. 

d. Calculate the error rate for each predictor. 

3. Choose the predictor with the smallest error rate. 

 

2.2.3.13 Multi-Layer Perceptron Classifier 

The multilayer perceptron is built using several neurons connected in different layers, 

mostly to solve a non-linear classification problem. Each perceptron is used to categorize 

Figure 2.15 Structure of MLP Classifier. 
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small linearly discrete regions of the input problem while the output of each perceptron is 

integrated to generate the final output. Neurons in multilayer perceptron are organised as 

the input layer, one or more hidden layers and the output layer, as shown in Figure. 2.15. 

The learning rule for this technique is called the backpropagation rule or generalised delta 

rule. 

2.2.3.14 Genetic Algorithm 

A Genetic Algorithm (GA) is an optimization technique that follows principles of natural 

selection and genetics. This technique is frequently used for finding an optimal or nearer 

optimal solution to complex problems that otherwise may take a long time to get solved. 

Genetic algorithms have a pool of possible solutions to a given problem. These solutions 

undergo mutation and recombination just as in natural genetics, making new children, and 

this process recurs again and again over different generations. Every individual or candidate 

solution is provided with a fitness value (label) depending upon their objective function. 

The fittest individual is given more chances to mate and produces fitter offspring 

(individual). Figure. 2.16 shows the general steps involved in the Genetic Algorithm.  

 
Figure 2.16 Steps involved in Genetic Algorithm. 
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2.2.3.15 Decision Forest 

The decision Forest classification technique is a supervised learning technique. This 

classifier performs best if we must predict only two target classes at the output. Decision 

forest is typically implemented using the multiple decision trees model. Hyper-parameters 

of each decision tree model are tuned before training and testing the decision forest 

classifier. When combined, each decision tree votes for the popular output class, which is 

mostly used whenever we have an ensemble model. 

Working off decision forest is as [132]; it creates many individual trees using the whole 

dataset, keeps starting point of each tree different (usually this selection is random), and 

every tree in the decision forest gives a non-normalized histogram of frequency labels at 

the output, these histograms are then summed up and normalized to get a probability of 

each label, and at last, the tree having highest confidence value is given higher weight in the 

last decision of the forest. 

2.2.3.16 Decision Jungle 

Decision Jungles is an extension of the decision forest. A jungle is consisting of an ensemble 

decision Directed Acyclic Graph (DAG). Hyper-parameters to be initialized are [133] 

resampling method; you should know how you want to create each tree (could either be 

begging or replicate technique), specify how to train your model; either you want to train 

your model using a single parameter or you want to train it via parameter range, the number 

of decision DAGs; define a maximum number of graphs which will be created, maximum 

depth of the decision DAGs; determine maximum depth allowed for each graph, a 

maximum width of the decision DAGs; determine maximum width allowed for each graph, 

the maximum number of iteration per decision DAGs; determine the number of iterations 

over given dataset to build each DAG. 

Decision jungle allows branches of the trees to merge thus this algorithm can be 

generalized. Moreover, this algorithm can create non-linear boundaries during classification 

and is robust to noisy features. 
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2.2.3.17 Random Forest 

Random Forest is a supervised machine learning algorithm. This algorithm creates random 

trees (forests) that are somewhat such as decision trees and the training method selected is 

always begging, as in begging we combine learning models linearly to increase the overall 

accuracy. While growing new trees, a random forest adds more randomness to the existing 

model. Instead of finding the most important target feature for node splitting, this 

algorithm searches for the best feature in the random subset of target features. In this way, 

we get wide diversity which in-return results in a better model. So, as a random forest only 

considers a random subset of features for splitting a node, we can make the trees of the 

model more random by using random thresholding of every feature rather than looking for 

the best threshold value [134]. Figure. 2.17 shows the classification of an input instance 

(feature signal) using a random forest classifier. 

2.2.3.18 One vs All Multiclass Model 

This model is used for the prediction of three or more three classes, specifically when the 

target outcome is dependent on categorical or continuous prediction variables. This 

algorithm can also be used for binary classification that needs multiple classes at the output 

[135]. The model is created using binary classifiers for each of the multiple class outputs. 

Every binary classifier is assigned to individual classes as a complement to all other classes 

present in the model.  The final prediction is done by running all the binary classifiers and 

selecting the prediction having the highest probability score. A group of individual models 

is made, and results are then merged at the end, to create a single model which can predict 

Figure 2.17 Simplified Random Forest Classification, classifying stress and non- stress. 
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all classes. Therefore, we can choose any binary classifier as a basic classifier for the one-

vs-all model. To configure such a model, one should know that there are no configurable 

parameters of this model. So, optimization should be done in the binary classifier which is 

to be provided as the input for building this model. 

2.2.3.19 Ada-boost 

Boosting refers to a group of techniques that creates a strong classifier using many weak 

classifiers. To find a weak classifier, a different machine learning-based algorithm having 

varied distribution is used. Each learning algorithm generates a new weak classification rule. 

This process is iterated many times and at the end, a boosting algorithm is formed by 

combining all newly generated weak classifiers rules to make a strong rule for prediction. A 

few steps should be followed for the selection of the right distribution [136]: 

 Step 1: Give all the distributions to the base learner and assign equal weights to 

every observation. 

 Step 2: If the first base learner gives any prediction error, then pay more attention 

to the observations causing this prediction error. Then, apply a new base learner. 

 Step 3: Until the base learning limit is reached, or the desired accuracy is achieved, 

keep repeating Step 2. 

Adaboost is usually used along with decision trees. The Adaboost model is created 

successively one after another, and the weight of every training instance (feature) is updated 

which affects the overall learning performed by the next tree in the line. After the 

generation of the first tree, for each training instance (feature), the performance of the tree 

is weighted i.e., how much consideration the next incoming instance (feature) will get from 

the newly generated tree up next. After creating all the trees, a prediction is made for new 

data. Figure. 2.18 shows classification done through the Ada-boost technique. 
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2.2.3.20 Hidden Markov Model 

The hidden Markov Model (HMM) is a statistical version of the Markov model and is 

assumed to be a Markov method having unobserved (hidden) states. In a simple Markov 

model, an observer can see the states directly and that is why the Markov model has only 

parameters related to state transitional probabilities. On the other hand, in HMM the 

transitional states are not directly visible but output, which is dependent on the states, is 

visible. As every state has a specific probability distribution over possible output tokens, 

the sequence of the tokens produced by HMM gives information about the state 

arrangements. This phenomenon is known as pattern theory. The word hidden does not 

refer to the parameters of the model. It refers to the sequence of the states through which 

the model passes. The parameters of the Hidden Markov Model are exactly known. HMM, 

the framework contains the following components [137]: 

Figure 2.18 Working of AdaBoost Classifier. 

Figure 2.19 Transition and Emission probabilities in the Hidden Markov Model. 
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 States, e.g., labels. Usually denoted by T = t1, t2, ..., tN. 

 Observations, e.g., words.  Usually denoted by W   = w1, w2, ..., wN. 

 Two Special States: tstart and tend. These states are not directly associated with 

observations. 

The states and observation-related probabilities are an initial probability distribution over 

states, a final probability distribution over states, a matrix with the probabilities going from 

one state to another state, called transition probability, and a matrix with the probabilities 

of an observation generated from a state called emission probability. Figure. 2.19 shows 

probabilities incurred in HMM.  

2.2.3.21 Support Vector Machine Classifier 

The Support Vector Machine (SVM) classification technique is the most precise method of 

solving a classification problem. These are built around a perception of margin i.e., data is 

separated into two classes, on each side of the hyperplane. SVM classifier is a binary 

classifier, so for the multi-class classification problem, multiple machines are trained [138]. 

SVM aims maximization of the margin between instances (features) of the two classes and 

to minimize generalization error, usually incurred in other classifiers. Figure. 2.20 shows 

how two different sets of features are classified using SVM. 

Data points that lie on the margin of an optimized hyperplane are called support vector 

points and linear combinations of these points from solutions to the classification problem; 

all other points are ignored. Mathematically, SVM uses the QP (quadratic problem) with N 

dimensions, where N shows training samples.  

Table 2.3 show 21 algorithms reviewed for the task of stress level monitoring. 

 



 

53 

 

 

Table 2.3 Comparison Table of Machine Learning Approach for Stress Monitoring and 

Identification. 

S.No. Method/Technique Ref No. of 
subjects Signals/Devices Used Accuracy 

(%) 

1 
AdaBoost 

[19] 15 Motion as well as physiological data using 
sensors 77.2 

2 [88] 18 Physiological and social responses 94.3 

3 
 

ANN 

[139] 10 ECG and PPG 82.5 

4 [140] 20 ECG and PPG 98.8 

5 [8] 55 Leaf node evidence, context, workload, and 
student health trait. 85.3 

 
6 

 
Decision Forest 

 
[141] 

 
30 

ECG, Body Temperature, Pulse Oximeter, 
GSR, Blood Pressure, and Glucometer 

 
96 

8 
 

Decision Tree 

[19] 15 Motion as well as physiological data using 
sensors 74 

9 [142] 34 Blood Volume Pulse, GSR, Skin Temperature 
and Pupil Diameter 88.02 

10 [143] 42 Heart Rate Variability (HRV) 79 

11 Genetic Algorithm [144] 60 Pupil diameter (PD), ECG and PPG signals N/A 

12 HMM [145] 60 
Salivary cortisol, heart rate, and self-report 
ratings + moment of eyebrows and mouth 75-88 

13 

 

kNN 

[19] 15 Motion as well as physiological data using 
sensors 70.5 

14 [140] 20 ECG and PPG 97.5 

15 [88] 18 Physiological and social responses 87.3 

16 [146] 11 EEG signals + salivary cortisol 63.46 

17 KSOM [147] 20 GSR, PPG (Respiration rate), ECG and HRV. 81.6 

18 LVQ [148] 50 Skin conductance, electrocardiogram, and 
respiration rate 86.8 

 
19 

LDA 

 
[19] 

 
15 

Motion as well as physiological data using 
sensors 

 
78.05 

20 [149] 21 Heart Rate (HR) and Pulse Transit Time 
(PTT) 60.8* 

21 [150] 33 Electrodermal activity (EDA) 78.35* 

22 Logistic Regression [151] 42 Electroencephalogram (EEG) signals 89* 

23 
MLP 

[89] 40 ECG and electrical bio-impedance (TEB) 
signals 67.7 

24 [152] 3 ECG, EMG, and GSR 95.2* 

Figure 2.20 Maximum margin hyperplane for SVM trained model. 
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Note: * means it is an average of all the accuracies achieved by the author/s in different scenarios. OneR and ZeroR have 
accuracies of less than 50% (selection criteria) but are baseline algorithms which is why they are included here. 

2.2.4 Conclusion - Review of different Machine Learning Algorithms 

This study focused on the classification of stress states. In total, 20 different machine 

learning algorithms are discussed in this review study that uses different parameters for 

training and prediction of stress, refer to Table 2.3. All the parameters considered, are 

correlated with the stress. Few of them are distinct parameters, for example, GSR and HR, 

while some are in conjunction with other parameters to monitor and recognize stress, for 

example, Skin temperature (ST) and EMG. But only using the parameters shown in Table 

2.3, stress cannot be defined. We also require information about the context to interpret 

the data collected from the sensors and to understand what was going on at the time of 

reading collection. This context information can be gathered using mobile phones (IoT 

based) or from computers as both devices are been used frequently during our daily life 

work. 

The study also gave a better look at state-of-the-art machine learning algorithms and their 

use as stress-level classifiers. We can see that only 6 out of 20, namely, SVM, Random 

25 
Naïve Bayes 

[142] 33 Blood Volume Pulse, GSR, Skin Temperature 
and Pupil Diameter 78.65 

26 [152] 3 ECG, EMG, and GSR 64* 

 
27 Nearest Class Centre [150] 33 Electrodermal activity (EDA) 74.52* 

28 OneR [152] 3 ECG, EMG, and GSR 49.35* 

29 One-v-all [141] 30 
ECG, Body Temperature, Pulse Oximeter, 

GSR, Blood Pressure and Glucometer 72 

30 PCA [153] 25 
Heart rate monitor, respiration rate monitor 

and electrodermal activity sensors 60 

 
31  

Random Forest 

 
[19] 

 
15 

 
Motion as well as physiological data using 

sensors 

 
77.21 

32 [154] 20 Heart Rate Variation (HRV) and simple heart 
rate signals. 97.2 

33 

 
 
 

SVM 

[142] 32 Blood Volume Pulse, GSR, Skin Temperature 
and Pupil Diameter 90.1 

34 [149] 21 Heart Rate (HR) and Pulse Transit Time 
(PTT) 62.3* 

35 [144] 60 Pupil diameter (PD), ECG and PPG signals 90.1 

36 [155] 50 
Heart rate monitoring sensor (ECG, PPG), 

skin conductance (GSR) and skin temperature 
monitoring  

91.26 

37 [156] 15 ECG, EEG and EDA signals + Salivary 
samples 86 

38 [8] 55 Leaf node evidence, context, workload, and 
student health trait. 90.8 

39 [152] 3 ECG, EMG, and GSR 95.2* 

40 [146] 11 EEG signals + salivary cortisol 71.72 

41 ZeroR [152] 3 ECG, EMG, and GSR 12.5* 
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Forest, kNN, MLP, Ada-Boost and Decision Forest machine learning algorithms were able 

to recognize and classify the stress state of a subject with an accuracy of more than 90%. 

In terms of a consistently higher classification rate, the SVM classifier can be considered 

the best classifier for stress monitoring procedures, but one must see the number of 

subjects and type of sensors (signals) required for training and testing of the classifier. The 

question that which classification algorithm is best for utilization in stress monitoring 

devices remains in place as different people have different perceptions about the usage of 

machine learning algorithms. There is a trade-off that must be considered between 

computation time, accuracy, and the cost of the device. It is a matter of balancing the 

computational time versus the accuracy versus the price of the device while selecting an 

algorithm.  
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2.3 A Comprehensive Review of Cortisol Detection Methods 

for Stress Monitoring 

Everyday responsibilities and lifestyle issues are the main cause of physical and 

psychological stress, which deteriorates the individual’s health. Prolonged exposure to 

stress triggers the adrenocorticotrophic hormonal (ACTH) system and causes the release 

of cortisol hormones from the adrenal cortex [157], [158]. Many other biomarkers are 

affected by stress, but cortisol is considered the most vital and potentially clinically useful 

biomarker for stress estimation and monitoring. Accurate and timely detection of increased 

cortisol levels might improve the diagnosis, treatment, and prevention of stress-related 

diseases such as anxiety disorders, metabolic dysregulation, and cardiovascular diseases. 

Unfortunately, most of the cortisol assessments are currently performed only in 

laboratories and there is no point-of-care solution for ambulatory/real-time cortisol 

assessment. This review aims to provide an overview of the most promising techniques, 

currently used for cortisol detection and the challenges associated with them. The review 

also provides a feasibility report about measuring cortisol levels in different bio-fluids (for 

example, urine), a correlation of perceived stress with cortisol levels, and methods/devices 

used in the laboratory as well as in the ambulatory environment for cortisol detection. The 

overall conclusion suggests that significant research efforts and investments are required 

for the development of an accurate, rapid, and repeatable cortisol measuring device that 

can be used for connected health applications.  

2.3.1 Introduction 

Stress is a physical, emotional, and physiological response of the body to an internal or 

external stimulus, categorizing it as one of the major threats to mental health [159]. The 

increasing psychological stress levels due to an altered lifestyle, globalization, and 

competition are of serious concern, causing life-threatening diseases such as depression, 

heart attacks and stroke  [160]. Thus, the accurate and precise detection of physiological as 

well as psychological stress is gaining the attention of researchers and investigators for 

personalized health monitoring and diagnostics [161]. Current stress diagnostic approaches 

include the measurement of stress effects, stress exposure, self-reporting questionnaires 

and assessment of different biomarkers [162]. Among these approaches, an effective 
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interpretation of a biosensor in a biomarker-based stress assessment system is considered 

unequivocal for an effective diagnostic approach [163].  

In recent years, wearable stress monitoring devices have been developed to relate stress 

with abnormalities in the environment and to gain vital information for real-time diagnosis 

and treatment. Since the development of the Trier Social Stress Task (TSST) [164] in the 

year 1993, our knowledge about the neuro-endocrine processes associated with 

physiological and/or psychological stress has increased significantly. Research with 

laboratory-based stress induction tests such as TSST aims to understand the impact of 

stress on the hormonal stress responses of the human body under controlled conditions 

[82]. The TSST emphasizes the critical role of cortisol blood levels in the detection of stress 

[165]. Several studies have performed experiments with students, police officers, nurses, 

and athletes to link the levels of cortisol with stress and have classified cortisol as the most 

prominent biomarker for stress detection [166]–[173]. 

 

Cortisol (C21H30O5), is a steroid hormone with a molecular weight of 362.46 g/mol. It is a 

well-known biomarker of psychological and physiological stress [174], [175] (Figure 2.21). 

The level of cortisol plays an important part in regulating blood pressure, carbohydrate 

metabolism and glucose levels. It also contributes to the homeostasis of cardiovascular, 

renal, immune, endocrine and skeletal systems [166], [167], [176]. Abnormally increased 

levels of cortisol interfere with blood amino acid and fatty acid levels, resulting in 

Figure 2.21 Molecular and 3D structure of Cortisol (C21H30O5). In (a) C is for Carbon, H is for 

Hydrogen and O is for Oxygen molecule. In (b) Black shows Carbon, Grey shows Hydrogen and 

Red shows Oxygen molecule. (Generated using: https://molview.org/?cid). 

(a) (b) 
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depression of the immune system and causing inflammation. Severely increased levels of 

cortisol contribute to the development of Cushing’s disease along with symptoms of 

obesity, bone fragility and fatigue [177], while decreased levels of cortisol lead to Addison’s 

disease manifested by arterial hypotension, weight loss and darkened scars/skinfolds [178]. 

The most dominating effects of cortisol are indicative of emotional or psychological stress 

and that is why cortisol is also called the ‘stress hormone’ [179].  

Currently, in the clinic, total cortisol (i.e., the sum of protein-bound and free fractions) is 

measured. Free cortisol is the only biologically active fraction and is liable for all cortisol-

related effects in the body and could be found in blood (serum and plasma), saliva, urine 

and other biological fluids [180]. Although the reference values of cortisol levels that could 

be translated to an individual’s physical or psychological stress are yet to be determined, it 

would be of value to develop an accurate diagnostic system that allows repeated 

measurements of free cortisol [181]. The currently available methods for the determination 

of free cortisol levels are mostly laboratory-based. These strategies require large samples, 

are time-consuming, laborious as well as expensive and are not suitable for point-of-care 

diagnostics [182]–[184]. Furthermore, these current set-ups only provide a glimpse at 

cortisol levels within the sample submitted to the laboratory and do not provide a realistic 

representation of its variations. There is also an influence of the time of the day on the 

cortisol levels within the body. Thus, one tends to rely upon 24 h urine analysis of cortisol 

metabolites, instead of cortisol sampling. Nevertheless, nearly continuous, and real-time 

monitoring of cortisol levels is essential to provide a more reliable assessment for better 

diagnosis and treatment of stress-related conditions. Recent advances in technology have 

shown prominent results in the development of such systems.  

To review the existing technologies developed to self-test cortisol levels, this section 

highlights the recent efforts made to develop strategies for the detection of cortisol in a 

laboratory and in point-of-care/ambulatory (where healthcare is provided close to the 

patient, for example at home) settings. Moreover, this review discusses the correlation of 

cortisol levels with induced stress, the comparison of different cortisol detection techniques 

and provides future directions regarding the development of a real-time cortisol measuring 

stress monitoring device. In the present literature, most of the review papers are specific to 

either cortisol detection in the laboratory or cortisol detection in point-of-care/ambulatory 
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settings. In comparison with previously published reviews, shown in Table 2.4, this review 

will answer the following questions (that no other single review covers): 

  The correlation between induced stress and cortisol levels. 

 The feasibility of cortisol detection using invasive and non-invasive methods. 

 The devices/techniques used for detecting cortisol in laboratory settings. 

 The devices/techniques used for detecting cortisol in point-of-care diagnostic 

settings.  

 The current research status regarding developing a real-time cortisol measuring 

stress monitoring device and the future direction. 

 Table 2.4 Comparison of recent review papers with the proposed review  

 

2.3.2 Feasibility of different Sources for Cortisol Sampling  

The cortisol hormones are secreted by adrenal glands located above our kidneys. It is the 

end-product of an important component of the human’s body adaptive system called the 

hypothalamic-pituitary-adrenal (HPA) axis. HPA regulates the physiological processes of 

the body under different environmental factors [189]. In response to triggers, the 

hypothalamus in the brain releases a corticotrophin-releasing hormone (CRH) acting at the 

pituitary glands. The pituitary glands release adrenocorticotrophic hormones (ACTH) into 

the blood that travels to the adrenal cortex. The adrenal cortex responds to ACTH by 

increasing the production of cortisol, which then participates in modulating several 

Ref 

Correla
tion of 
cortisol 

with 
stress 

Feasibility 
(invasive/ 

non-
invasive) 

Techniques 
Ambulatory 

settings 

Techniques 
Laboratory 

settings 

Future 
Stress 

manage
ment 

Cortisol 
measuring 
methods 
reviewed 

Kaushik et al.  
(2014) [161] 

     5 

Hogenelst et al. 
(2019) [181] 

     3 

Steckl et al. 
(2018) [185] 

     4 

Parlak et al. 
(2021) [186] 

     6 

Zhang et al. 
(2022) [187] 

     5 

Zea et al. (2022) 
[188] 

     6 

Proposed      6 
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physiological processes. The secreted cortisol steers its way to the circulatory system and 

can be found in several biological fluids in detectable quantities. Figure 2.22 illustrates the 

process of the body’s response to a stressor (a stimulus that induces stress). This section 

assesses the feasibility, advantages, and disadvantages of sampling different sources of 

cortisol based on literature data.  

 

2.3.2.1 Salivary cortisol 

Over recent years, salivary cortisol detection has gained considerable attention for the 

development of stress monitoring systems. This is mainly due to the advantages associated 

with saliva as a convenient bio-fluid. The first and most important fact is the well-

documented literature that shows a strong correlation between blood and salivary cortisol 

concentrations [190]. The other important advantage of salivary cortisol is that it is entirely 

in a free state. Harvesting salivary cortisol samples is also a completely non-invasive and 

painless process. A standard operating procedure has been established for saliva collection, 

which leads to reduced variability of measurements. Along with the above-mentioned 

Figure 2.22 Illustration of cortisol production as a response to long-term stress. 
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advantages, there are some drawbacks as well. The nominal values of salivary cortisol during 

the diurnal cycle vary from 0.5µg/dL to 0.05 µg/dL [191]. Thus, a highly sensitive assay 

with the ability to detect low ranges of cortisol is required. Also, the salivary cortisol is 

highly unstable at room temperature causing problems with storage throughout the on-site 

sampling and processing period. In the mornings, the mean salivary cortisol concentration 

is in the range of 3.6 nmol/L to 8.3 nmol/L while at late nights the concentration drops to 

2.95 nmol/L to 2.1 nmol/L [192].  

2.3.2.2 Hair cortisol 

Human hair grows at a predictable rate of almost 1cm per month. The cortisol hormone is 

known to be found in the shaft of the hair. Also, the proximal 1cm segment of hair (closer 

to the scalp) approximates the previous month’s cortisol production [193]. The hair cortisol 

is hypothesized to reflect the free cortisol fraction rather than the total cortisol 

concentration in the blood plasma and serum. The hair cortisol reference values vary from 

1.7 to 153.2 pg/mL (1.7x 10-6 µg/mL to 0.0001532 µg/mL) [194]. The hair cortisol 

measurement is a non-invasive way of obtaining a biological sample. Hair cortisol levels are 

representative of long-term exposure to stress. Because the data are “collected” over several 

months, determining the association of hair cortisol with stress will require careful 

correlation with frequently obtained clinical data, not available so far in the literature. 

2.3.2.3 Urine cortisol 

Cortisol levels measured in urine are referred to as 24h urinary-free cortisol (UFC). Only 

free and active cortisol is present in the human urine, qualifying urine samples as a relevant 

bio-fluid for cortisol detection. The normal range of UFC levels is 36 µg/24h to 137 µg/24h 

[195]. Although the collection of 24h urine for the UFC test is a non-invasive and painless 

method, it also poses some issues regarding convenience and reliability. Since the sample is 

collected over 24 hours, the patient must carry a special urine collecting container all day 

and must be relatively confined to a given location for 24 hours. Also, the container needs 

to be stored in a refrigerator from the time of collection to its delivery to the laboratory. 

Moreover, with the entire volume (24h urine), creatinine is also needed to be measured to 

verify that the collection is complete. Factors such as pregnancy and medication (such as 

ketoconazole, adrenalux and metyrapone) can alter the concentration of cortisol in the urine 
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sample. The requirement for 24h collection of urine renders the UFC measurement unfit 

for real-time cortisol detection in point-of-care settings.  

2.3.2.4 Blood (serum and plasma) cortisol 

The assays used to measure cortisol levels in the blood measure the sum of bound and free 

cortisol, the latter being the active form. The Cortisol Free Index (CFI) is calculated using 

Coolen’s equations [180]. Under non-stress conditions, 10 to 15% of the blood cortisol is 

bound to serum albumin while 80 to 90% is bound to corticosteroid-binding globulin 

(CBG). The remaining 5-10% is in a biologically active state and participates in cortisol-

initiated effects [196]. The normal range of blood cortisol varies from morning to evening. 

The nominal value of total blood cortisol level is 0.05 µg/mL to 0.25 µg/mL (25 µg/dL at 

9 am versus 2 µg/dL at midnight) [161]. There are several drawbacks to sampling cortisol 

from blood, making it a suboptimal sampling site. The main drawbacks are listed below:  

 Collecting blood samples requires trained staff and sterilized equipment with the 

potential effect of stress, fear, and pain on cortisol levels.  

 Cortisol molecules are unstable at room temperature and the plasma requires special 

handling and storage environments.  

 Sampling blood needs vein puncturing which can be painful and is often perceived 

as stressful.  

 Although the typical time of cortisol spiking after a stressful event is 10 to 15 

minutes in humans, venepuncture and the apprehension that is associated with the 

need for blood sampling can initiate stress-induced cortisol spiking.  

 The time of the day needs to be considered for the interpretation of the result and 

a standardized sampling technique in a quiet environment is desirable. 

The cost of equipment, staff, handling and storage makes blood cortisol sampling a 

shunned option.  

2.3.2.5 Interstitial fluid cortisol 

Interstitial fluid (ISF) is the extracellular fluid that envelops cells in the tissues. ISF is similar 

to blood plasma in composition. Generally, small to moderate-sized molecules (0.5-5nm), 

such as ethanol, glucose, and cortisol (362.46 g/mol) are found in ISF in the same ratio as 

in blood plasma. The use of microneedles to obtain ISF in a painless, minimally invasive 
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manner, has been successfully developed [197]–[200]. For cortisol detection, ISF needs to 

be harvested at a very slow rate of 10 µL/h which limits its applicability in the point-of-

care/ambulatory setting. The concern regarding biodegradation and biocompatibility of 

microneedles, risk of infection, continuous extraction of body fluid and other sterilization 

issues need to be addressed carefully for the successful implementation of the ISF cortisol 

detection approach. 

2.3.2.6 Sweat cortisol 

Sweat cortisol measurements have found reference values of cortisol concentration in the 

sweat, ranging from 8.16 ng/mL to 141.7 ng/mL (0.00816 µg/mL to 0.1417 µg/mL) [97]. 

For sweat collection, sweat patches are frequently used which is an effective non-invasive 

method to do so. However, due to very limited knowledge of cortisol correlation in sweat 

and several other factors such as humidity, temperature, physical activity, geographic 

condition, and individual genetic factors, there are inherent limitations to the development 

of a reliable and repeatable sweat sampling device for cortisol detection.   

 

 

2.3.3 Perceived Stress and Cortisol levels: Correlation Analysis  

To determine the correlation between stress and cortisol levels there is vast literature 

available on non-invasive methods of cortisol detection, such as cortisol in saliva, hair, 

Figure 2.23 The number of reviewed literatures reporting positive, negative and no significant 

correlation of cortisol level, measured via different technique, with induced stress. 
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urine, sweat and fingernails while limited literature is available on invasive methods of 

cortisol detection (such as, in plasma and serum). The following literature has been 

reviewed to determine the true relationship between stress-induced cortisol levels in 

different biospecimens.  Figure 2.23 illustrates the number of reviewed literature reporting 

positive, negative and no significant correlation of cortisol level, measured via different 

techniques, with induced stress. 

Overall, the most frequently used cortisol for monitoring and detection of physiological as 

well as psychological stress is salivary cortisol. The literature review also revealed that, in 

most cases, cortisol levels within the body are either positively or negatively related to stress. 

This correlation highly depends on the source that is used to measure cortisol levels. Stress 

is mostly positively related to cortisol levels determined in hair, saliva, and serum. 

Alternatively, there is also some contrary relationship reported in the previously reported 

literature. For example, Schmalbach et al. [201] reported a negative correlation between 

stress with cortisol levels in saliva. When determining correlation using plasma and urinary 

cortisol, different studies report contradictory results i.e., 19 reported positive, 4 negative 

and 9 reported no significant relationship of stress with cortisol levels. Table 2.5 

summarizes the studies reviewed to determine the correlation between cortisol levels and 

stress in this section.  

Table 2.5 Summary of studies determining the correlation between cortisol levels and stress. 

Cortisol Ref Year 
Sample 

size 
Measurement Technique Correlation 

Salivary 

[202] 2019 250 Radioimmunoassay Positive 

[203] 2005 64 Radioimmunoassay Positive 

[204] 2002 40 
Radioimmunoassay with a time-resolved 
fluorometric detection 

Positive 

[205] 2016 31 Cotton Salivettes (Salivette kit) Positive 

[201] 2020 52 Salivette kit No significant 

[206] 2020 12 Salivette Code Blue Positive 

[207] 2020 112 Salivette kit negative 

[208] 2020 79 ELISA kit Positive 

[209] 2020 42 ELISA kit No significant 

[210] 2020 53 Salivette kit Positive 

Hair 

[211] 2019 57 
Salimetrics high-sensitivity cortisol EIA 
kit 

No significant (less or 
low stress) / Positive 
(high stress) 

[212] 2016 270 
Liquid chromatography-tandem mass 
spectrometry (LCTMS) 

Positive 

[213] 2015 174 
Liquid chromatography-tandem mass 
spectrometry (LCTMS) 

Positive 
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[214] 2013 55 
Enzyme-linked immunoassay (ELISA) 
kit 

Positive 

[215] 2019 75 ELISA kit Positive 

Urinary 

[216] 2003 32 Radioimmunoassay Negative 

[217] 2016 110 Polypropylene container Positive 

[218] 2006 28 Polypropylene container No significant 

[219] 2014 80 ELISA kit No significant 

[220] 2011 104 Radioimmunoassay No significant 

[221] 2021 6878 
Liquid-Chromatography Mass 
Spectrometry (LC-MS/MS) 

Positive 

Plasma 

[222] 2001 102 
From a cannula inserted in the forearm 
vein 

No significant 

[223] 2006 68 Radioimmunoassay Positive 

[224] 2017 91 Intravenous catheter Negative 

[225] 2016 85 Radioimmunoassay No significant 

Serum 

[226] 2017 21 
Commercial enzyme-linked 
immunosorbent assay (ELISA) kits 

Positive 

[227] 2016 44 Chemiluminescence assay Positive 

[228] 2020 34 Chemiluminescence assay Positive 

[229] 2021 106 
Electrochemiluminescence 
immunoassay 

Negative 

Sweat [230] 2020 48 ELISA kit Positive 

Fingernails 

[231] 2018 47 ELISA kit No significant 

[232] 2018 51 ELISA kit 
No significant (15 
days) / 
Positive (45 days) 

 

2.3.4 Application of cortisol detection in clinical research and practice 

Cortisol concentration in the body is associated with many clinical outcomes such as 

hypertension, dyslipidemia, depression, and anxiety. There are several somatic health 

factors, chronic and acute stressors, and psychopathological factors that affect the 

concentration level of cortisol.  A detailed list of these factors has been reviewed by Wester 

et al. [233]. In terms of stress monitoring, the different concentrations of cortisol can be 

indicative of cardiometabolic status, chronic stress, and/or psychopathology factor. Each 

factor is discussed in detail as follows. 

2.3.4.1 Cardiometabolic status 

Cardiometabolic factors (such as obesity, hypertension, diabetes, and dyslipidemia) are 

highly associated with increased levels of cortisol [234]. Manenschijn et al. [235] and Feller 

et al. [236] found a positive correlation between cortisol levels with diabetes type 2 disease 

in an elderly population. Increased level of cortisol is also found in patients with myocardial 
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infarction as determined by Pereg et al. [237]. Stalder et al. [238] showed the relationship 

between higher cortisol levels and adverse metabolic syndrome. Several studies [239]–[242] 

have shown a positive correlation between cortisol levels and obesity.  

Altogether, these findings strongly suggest that long-term cortisol exposure increases the 

risk of worsening cardiometabolic status and needs to be monitored thoroughly. 

2.3.4.2 Chronic stress 

Both psychological and physical stress can result in hyperactivation of the HPA axis which 

results in the release of cortisol hormones in the body. The relationship between HPA 

activation and perceived stress is complex as conflicting results are reported in the literature. 

Kalra et al. [243] reported a negative relationship while Karlen et al. [244] reported a positive 

association of cortisol concentration with perceived stress. On the contrary, [245] and [246] 

reported no significant correlation between cortisol levels with stress.  

Thus, further research is required to determine the true relation between perceived stress 

and cortisol concentration. The effect of factors such as sex, region, age, and sample size 

on cortisol concentration should also be investigated. 

2.3.4.3 Psychopathology factors  

Anxiety and mood disorders are linked to cortisol levels in the body. Burke et al. [247] 

determined that cortisol levels take a long time to return to baseline levels in people with 

depression as compared to the non-depressed population. Veldhorst et al. [248] conducted 

a small study with patients with major depression disorder and matched the cortisol levels 

with the control group. The authors found increased cortisol concentrations in the 

depressed patient's group compared to the control group. Traumatic event and post-

traumatic stress disorder (PTSD) is also associated with the triggering of the HPA axis. In 

the literature, mixed results are found about the association of cortisol levels with PTSD 

condition. Studies such as [249] and [250] showed no significant relationship between 

cortisol and PTSD while [251] and [252] reported significant changes in cortisol 

concentration in PTSD and non-PTSD groups. 

The literature review shows that the association between cortisol levels and PTSD depends 

on the type of traumatic event, sample characteristics examined and the timespan between 

trauma and cortisol assessment. 
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2.3.5 Cortisol assessment in laboratory settings 

Many immuno-sensing applications of cortisol using anti-cortisol antibodies have been 

developed for the diagnosis of stress in laboratory settings. In this section, we have 

reviewed some state-of-art methods of cortisol measurement for stress detection in 

laboratory settings. Table 2.6 summarizes the different methods of anti-bodies-based 

cortisol mechanisms along with their minimum limit-of-detection, advantages, and 

limitations. Figure 2.24 illustrates the different laboratory-based sensors and their 

functionality. 

Table 2.6 List of anti-bodies-based cortisol mechanisms along with their minimum detection limit, 

advantages, and drawbacks. 

Method References 
Lowest Detection 

Limit 
Advantages Drawbacks 

Enzyme-Linked 

Immunosorbent 

Assay (ELISA) 

[253]–[255] 0.25 pg/ml 

Highly sensitive, 

stable reagents and 

robust 

Requires enzyme 

labelling 

Polyaniline-

protected gold 

nanoparticles 

(PPAuNPs) 

[256], [257] 1 pM 

Oxidation-

reduction stability 

and sensitive 

pH value of the 

PBS solution 

might affect the 

detection 

accuracy 

Lateral Flow 

Immunosensor 

(LFI) 

[258]–[260] 3.5 µg/L 

Highly sensitive and 

selective, easy to 

use/interpret, kit 

available, no special 

training requires 

Semi-quantitative, 

Uncertain sample 

size reduces 

accuracy and 

precision 

Quartz Crystal 

Microbalance 

(QCM) 

[261], [262] 11 pg/ml 
High sensitivity and 

specificity 

Environmental 

noises affect 

measurements 

Chemiresistor 

Immunosensor 
[263]–[265] 1 pg/ml 

Excellent binding 

label-free selectivity 

of cortisol 

Non-specific 

adsorption of 

high molecular 

weighted 

hormone from a 

saliva sample 

Surface Plasmon 

Resonance (SPR) 
[182], [266] 1 µg/L 

Highly sensitive, 

robust, simple, 

reproducible 

A pre-treatment 

procedure such as 

partial 

purification is 

required for 

accuracy 
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2.3.5.1 Summary 

All these systems are portable, highly sensitive, smaller in size than conventional sensors, 

low cost and provide comparable results with standard electrochemical analyzers. Among 

the mentioned cortisol measurement methods, the ELISA has the highest sensitivity (can 

detect the presence of cortisol as low as 0.25 pg/ml), great reagent stability and is easily 

reproducible. Along with all these advantages, these systems require multiple steps that 

should be performed carefully for accurate detection thus making them less reliable, non-

user-friendly and not suitable for home base care systems, thus far.  

 

2.3.6 Cortisol assessment in point-of-care/ambulatory settings 

In this section, we reviewed the literature investigating ambulatory cortisol measurement 

methods and devices. Most of the proposed devices are only a proof-of-concept and have 

either ability or potential to assess the stress on the go in a real-life environment. Thus, 

there is a lot to improve before these methods could be translated to point-of-care or home-

based devices. Following are some cortisol assessment technologies categories based on the 

Figure 2.24 (a) Shows the fabrication schematics of PPAuNP electrode; reproduced from 

[256] (b) Represents the schematics of LFI mechanism; reproduced from [259] (c) illustrates 

the graphical abstract of working of QCM; reproduced from [262] (d) is schematics of 

chemiresistor sensor fabrication; reproduced from [264] and (e) shows the steps involve in the 

sampling and detection of salivary cortisol using SPR; reproduced from [266]. 
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cortisol immobilizing method used for point-of-care analysis along with their properties, 

advantages, and limitations. Table 2.7 summarizes all the literature reviewed in this section. 

Figure 2.25 shows the most popular techniques in the literature for real-time cortisol 

detection.  

 

Table 2.7 List of Immobilizing Matrix-based cortisol detecting mechanisms along with their 

properties, advantages, and drawbacks for ambulatory assessment. 

Immobilizing 

Matrix 
Ref 

Detection 

technique 
Range 

Response 

time 
Advantages limitations 

Self-Assembled 
Monolayer 

(SAM) 
membrane and 

variants 

[267] 

Electrochemical 
immunosensor 

0.1 to 10 
ng/ml 

35 min 
Portable, 

highly 
sensitive, 
smaller in 
size, low 

Require 
multiple steps 
for accurate 
detection, 

expert needed, 
[268] 

0.036 to 
36 

ng/ml 
30 min 

Figure 2.25 A platinum based transdermal device with an O ring, membrane, collection 

chamber and ultrasound delivery device and use of the device in human is shown in (a); 

reproduced from [276]. (b) demonstrates the working principle of an immune-

chromatographic chip; reproduced from [277]. (c) shows the proposed schematics of patch 

type wearable sweat cortisol sensor; reproduced from [282]. 
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[269], 
[270] 

10 pM to 
500 nM 

30-35 min 
cost and 
accurate 

not user-
friendly 

Nitrocellulose 
membrane and 

variants 

[271] 
Lateral flow 

immunoassay 
(LFIA) 

3.5 
ng/ml to 

1280 
ng/ml 

5 min 
Portable, 
handheld 

devices with 
highly 

correlated 
results 

For 
quantification, 
bulky reading 
equipment is 

required [272] 
0.9 ng.ml 

to 25 
ng/ml 

20 min 

[273], 
[274] 

Colorimetric 
LFIA 

0.3 
ng/ml to 

60 
ng/ml 

30 min 

Simple, 
portable, 

easy to use 
and best for 
ambulatory 

settings 

Require 3D 
printer for a 
printer the 
adapter and 

cartridge 
holder 

Platinum 
Electrode 

[275], 
[276] 

Electrochemical 
immunosensor 

0.1 
ng/ml to 

100 
ng/ml 

5 min 

Portable, 
handheld 

devices with 
highly 

correlated 
results 

Require the 
application of 
9V onto the 
skin for 2 
minutes 

Immune-
chromatographic 

chip 

[277] 
Calorimetric 

chromatography 

1 ng/ml 
to 10 
ng/ml 

25 min 

Portable, 
handheld, 

and reusable 
with a 

monitor and 
disposable 
test strips 

Indirect 
measurement 
of the cortisol [278], 

[279] 
Colorimetric 

LFIA 

1 ng/mL 
to 70 

ng/mL 
15 min 

Polystyrene pad [280] 
Electrochemical 
immunosensor 

0.4 
ng/ml to 

11.3 
ng/ml 

15 min 

A reusable 
sensor as 
having a 

disposable 
disk 

Bulky reading 
equipment is 

required 

Without any 
immobilizing 
antibody or 

enzyme 

[281] 
Functionalized 
nanoparticles 

30 
pg/ml to 
10 µg/ml 

2.5 min 
Highly 

sensitive 
against 
cortisol 

hormone 
and provides 

a strong 
correlation 

with the 
ELISA kit 

Only proof-
of-concept 
devices, not 
available to 
end-users [282] 

MIP-based 
electrochemical 

transistor 

0.01 µM 
to 10 µM 

<1 min 

 

2.3.6.1 Summary 

Among the mentioned cortisol detection techniques, the functionalized nanoparticles and 

MIP-based electrochemical transistors are the fastest results-producing devices that can 

provide results of cortisol levels within 1 minute. These techniques are highly sensitive to 

cortisol and provide strongly correlated results with an ELISA kit. The only drawback is 

no such device (using these detection methods) is commercially available and is a proof-of-

concept. Among the commercially available devices, the platinum electrode-based 
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electrochemical immunosensor has the highest sensitivity (can measure cortisol levels 

between 0.1 ng/ml to 100 ng/ml) and is an easily portable handheld device that provides 

highly accurate results. 

2.3.7 Conclusion - Review of Cortisol Detection Methods 

This review highlights the current efforts made in recent years to develop cortisol detection 

technologies for stress monitoring in real-life. This section (section 2.3) presents the 

feasibility report of cortisol extraction using different bio-fluids, the correlation of cortisol 

levels in different body fluids, the status of laboratory-based reliable cortisol assessment 

methods and ambulant cortisol measurement techniques along with their analytics. The 

study showed that the non-invasive methods (such as saliva, urine and sweat) of sampling 

and quantifying the cortisol levels are more feasible than invasive methods (plasma or 

serum) as invasive interventions induce extra stress and thus affect the true value/state of 

stress. Furthermore, cortisol secretion is highly correlated to physical and psychological 

stress, with scarce contrary results. To determine the true relationship between stress and 

cortisol, further high-quality analysis is required. The effect of sex, ethnicity, and treatments 

on the association between stress and cortisol levels must also need to be investigated. 

The literature search also resulted in several promising strategies, technologies, and devices 

for cortisol assessment in daily life. Many studies reported a good sensitivity and specificity 

of cortisol sampling and showed comparable accuracies in cortisol detection when 

compared to gold-standard or conventional methods. Some of the devices (such as [273], 

[274], [282]) are portable, rapid, and easy to use. However, it is be noted that all the devices 

or technologies discussed in section 2.3 are not commercially available and are only proof-

of-concept.  

At present, there is no single best analytical method for the development of ambulatory 

cortisol technology and thus, this field appears to be relatively immature and novel. With 

significant research efforts and additional investments in the future years, we are hopeful 

to overcome the remaining procedural and technological hurdles and make a true 

ambulatory corticosteroid diagnostic wearable stress monitoring device for a home-based 

care system.   
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2.4 Chapter Conclusion 

In mental health research, psychological and sociological stress is considered one of the 

most important as well as most complex areas of the current century. High stress does 

become a threat to the health of a person. The reasons behind this extensive stress are 

complex personal, social, and ecological environments, diversity in expressing stress as well 

as multiple transactions of humans due to his/her surroundings. Even though stress is a 

routine characteristic of life, nowadays, if it becomes continuous and increasing, an 

individual might show problematic symptoms which threaten their health as well as people 

in their surroundings. 

Stress arises from events that threaten the homeostatic stability of a person. The human 

biological system is very complex, and stress evokes different physiological and cognitive 

reactions in the human body [87]. For this reason, stress markers established until now do 

not provide any reliable assessment of the quantitative stress response. To the best of our 

knowledge, there is no easily applicable and repeatable method available that can compare 

the stress response levels of one person in different situations. Moreover, the stress 

response of two different persons is also different. The goal of this review study was to 

find approximated quantitative measures of a person’s homeostatic imbalance, determine 

the feasible sensory technology and understand the trade-off required while using a 

machine learning classifier for stress monitoring. 

Generally, in a stress induction experiment, questionnaires are used as a standard stress 

state reference. These psychometric questionnaires are not designed to be used in general 

applications. Moreover, these questionnaires are subject to individual variability and depend 

upon the person’s self-perception about their condition. Among the research community 

and professionals in the medical field, there is no agreement on the reference standards for 

monitoring stress levels and measurement methods. This lack of a standard for stress 

evaluation can be due to the variability in stimuli of stress, to which each human reacts 

differently. Furthermore, the available literature aimed to address one or few stress 

responses in an individual study rather than comprehensively describing the physiological 

stress response. The use of biochemical markers may result in better and more promising 

results in the detection of stress, but one of the biggest drawbacks of biochemical markers 

of stress levels is their relationship with the intensity of perceived stress. The reason is that 
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this relationship between biochemical hormones and stress is both complex and 

understudied. 

The literature presents a variable and conflicting conclusion regarding the use of 

physiological or biochemical stress markers. A multisensory platform with data-driven 

personal insights can help track and intervene in cases of stress in the high-risk population. 

Integrating all the available sensors on to one platform is unrealistic. Thus, further analysis 

is required to determine the most sensitive and specific indicator/s of stress, which are 

susceptible to other physical or emotional stimuli. 

Moreover, the review also showed that accurate stress monitoring is highly dependent on 

the selection of a stress classifier. It is important to consider the classifier’s training 

performance and the trade-off between computational time, accuracy, and price of the 

device while selecting a predictive classification model. The use of questionnaires score for 

stress labelling is a difficult and inaccurate process. Thus, investigating the use of 

unsupervised machine learning algorithms for stress monitoring is deemed useful.  

The review also revealed two major reasons behind the degraded classification performance 

of the stress classifiers. These reasons are; the lack of features that could translate/show 

the well-distinguishable patterns between stress and baseline readings and the presence of 

highly correlated features within the dataset results in compromised generalizability and 

overfitting. For accurate classification, the stress-related features should not only be 

informative but should also be well-distinguishable and interpretable by the classification 

models. Thus, further studies are required to develop feature extraction and feature 

selection models that can accurately estimate stress-related indicators/features and are well-

understandable by the classifiers. 
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Chapter 3  

Statistical Analysis of Stress 

Indicators 

The literature review revealed a long list of different signals/indicators of stress with 

different conclusions for each as well as a combination of these indicators. Most stress 

detection and monitoring studies report only the classification results and lack a statistical 

analysis of the extracted features. Also, there is no clear understanding of the relative 

sensitivity and specificity of these stress-related indicators of stress in the literature. Thus 

further statistical analysis and classification modelling of these signals/indicators were 

required to assess the relative sensitivity and specificity of common physiological as well as 

biochemical indicators of stress. 

This chapter3 presents a statistical and classification analysis, performed on the list of 

biophysiological indicators of stress to determine the most specific and sensitive stress 

indicator/s using the WESAD dataset [283]. This work covers the fourth objective of the 

thesis which was investigating and shortlisting the stress indicators that are more sensitive 

and specific for stress monitoring and are less affected by other environmental factors. 

The analyzed physiological indicators included heart rate, respiratory rate, skin 

conductance, RR interval, heart rate variability in the electrocardiogram, and muscle 

activation measured by electromyography. A comparative analysis has been performed by 

applying a deviance analysis and t-test to validate the hypothesis that the physiological data 

for each variable for the stress and non-stress (baseline) states is statistically differentiable, 

and logistic regression was applied to identify the strongest predictor of stress. The results 

of the study suggest that respiratory rate is the strongest (stand-alone) predictor while heart 

rate emerged as the second-best predictor of stress.  

                                                 
3 The following body of the chapter is exact copy of the paper published  in IEEE Access (2021). I am the first lead 
author in the paper, which is co-authored with my supervisors. The conceptualization, formal analysis, investigation 
and visualization are done by me. Methodology design and validation were led by my supervisors. I led all parts of 
the work with the support of my supervisors. 
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An analysis of different biochemical indicators is also presented (Section 3.6). The analysed 

biochemical indicators included adrenaline, noradrenaline, copeptin, prolactin, plasma 

catecholamines, alpha-amylase, estradiol, testosterone, and cortisol. The investigation of 

different biochemical parameters revealed that there is a gap in determining an accurate 

way of stress detection. However, the detection of cortisol levels in the sweat showed the 

potential of being the most significant stress indicator due to its characteristics of the non-

invasive collection, risk-free and no pain while collecting the sample. The sweat 

colourimetric sensors are frequently developing and have shown great potential of 

becoming the only method of detecting stress in real-time using the biochemical parameter. 
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3.1 A Sensitivity Analysis of Biophysiological 

Responses of Stress for Wearable Sensors in 

Connected Health 

ABSTRACT: Stress is known as a silent killer that contributes to several life-threatening 

health conditions such as high blood pressure, heart disease, and diabetes. The current 

standard for stress evaluation is based on self-reported questionnaires and standardized 

stress scores. There is no gold standard to independently evaluate stress levels despite the 

availability of numerous biophysiological stress indicators. With an increasing interest in 

wearable health monitoring in recent years, several studies have explored the potential of 

various biophysiological indicators of stress for this purpose. However, there is no clear 

understanding of the relative sensitivity and specificity of these stress-related 

biophysiological indicators of stress in the literature. Hence this study aims to perform 

statistical analysis and classification modelling of biophysiological data gathered from 

healthy individuals, undergoing various induced emotional states, and to assess the relative 

sensitivity and specificity of common biophysiological indicators of stress. In this chapter, 

several frequently used key indicators of stress, such as heart rate, respiratory rate, skin 

conductance, RR interval, heart rate variability in the electrocardiogram, and muscle 

activation measured by electromyography, are evaluated based on a detailed statistical 

analysis of the data gathered from an already existing, publicly available WESAD (Wearable 

Stress and Affect Detection) dataset. Respiratory rate and heart rate were the two best 

features for distinguishing between stressed and unstressed states.  

INDEX TERMS: Stress monitoring, biophysiological stress response, sensitivity analysis, 

heart rate, respiratory rate, skin conduction, electrocardiogram, electromyograph. 

 

3.2 Introduction 

It is well understood that every human being is exposed to some level of stress more than 

once in their lifetime. Stress can be defined as a non-specific response of our body to meet 

a certain demand in extreme conditions [19]. It has been seen that stress generally has 

negative effects on the mental health and well-being of a person [284]. Acute stressors 
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(stimuli that cause stress) may not impose any health burden on young and healthy people 

having an adaptive and good coping response, but if the stressors are too persistent or too 

strong, these stressors may lead to depression and anxiety [77]. Chronic stress is known to 

contribute to life-threatening conditions such as heart disease, high blood pressure, 

diabetes, and obesity, and an acute episode of stress can trigger a heart attack or stroke by 

causing arterial inflammation [285]. 

The current standard for clinical evaluation of stress is based on self-reported 

questionnaires or standardized stress scores, such as the Perceived Stress Scale (PSS) [19]. 

However, with the recent development in wearable biosensor technologies, a huge interest 

has been seen in measuring biophysiological responses to stress for the evaluation and 

monitoring of stress. To develop a reliable device for stress monitoring, it is important to 

understand how stress affects the human body from a physiological and biochemical point 

of view. Under the influence of a stressor, the stress triggers the sympathetic nervous 

system, causing the release of various hormones such as adrenaline or cortisol [14], [15]. 

The release of these hormones leads to changes in heart rate, and respiratory rate, and 

causes muscle tension among other physiological responses. These changes in the body 

prepare the individual for a physical fight or flight reaction. The changes caused in both the 

biochemical and physiological state of the human body in response to stress can be 

observed and used as an indicator of stress. Physiological indicators are of particular interest 

due to the possibility of measuring these indicators non-invasively.   

The wearable sensor technology has progressed to the level that several physiological 

parameters can be measured continuously as well as wirelessly. Some real-time stress-

detecting models have been described [37], [38], [286]. Many sensor-based stress 

monitoring devices and research studies exploited the relationship between stress and 

resulting physiological variations [20]–[23], [287]. These include machine learning 

techniques to detect stress from physiological and activity data collected from respiration 

(RESP), electrocardiogram (ECG) and accelerometer (ACC) sensors [24], [25]. Other less 

frequently used indicators are blood volume pulse (BVP), skin temperature (TEMP), 

electromyography (EMG), photoplethysmogram (PPG) and electrodermal activity (EDA), 

which have also been recorded and used for stress monitoring [26], [27]. These 

physiological indicators are not specific to stress response, therefore, the stress prediction 
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based on the physiological indicators may have varying accuracy, be it for any individual 

indicator or a combination of these indicators. 

Besides the physiological indicators, several biochemical indicators are also used for stress 

detection. In humans, these indicators include the level of cortisol, adrenaline, alpha-

amylase, copeptin and prolactin [76], [77], [288]. Among these indicators, cortisol is 

considered the primary stress hormone [60]. Several techniques have been proposed to 

measure cortisol levels in saliva, sweat and hair [289]–[291]. This chapter is intended to 

focus on and provide a sensitivity analysis of biophysiological indicators of stress rather 

than biochemical ones. A comprehensive review of biochemical stress indicators can be 

found elsewhere [292].  

3.3  Related Work  

Han et al. [27] proposed a stress detection technique that detects three levels of stress i.e. 

no stress, moderate stress, and high perceived stress using ECG and PPG signals. The 

authors collected data from 39 subjects and reported a classification accuracy of 84% using 

a random forest and support vector machine (SVM) classifier for the three-stage 

classification of stress. For binary classification i.e. rest and stress, an accuracy of 94% was 

achieved. Choi et al. [73] proposed a wearable device to measure the stress, drowsiness, and 

fatigue of vehicle drivers. Stress indicators they measured were (Galvanic Skin Response) 

GSR, activity data from the accelerometer, skin temperature, and PPG signals of 28 drivers. 

The authors reported an accuracy of 68.3% for four classes i.e. normal, stressed, 

drowsiness, and fatigue and an accuracy of 84.5% for three classes i.e. normal, stressed, 

drowsiness or fatigue classification. Mohino-Herranz et al. [89] assessed the mental fitness 

of different subjects. They used ECG and Thoracic Electrical Bioimpedance (TEB) signals 

to monitor the stress of 40 subjects. The authors achieved error rates of 21.2%, 32.3%, and 

4.8% for activity identification, mental activity, and emotional state, respectively. Liu et al. 

[86] determined the feasibility of the EDA signal parameter and developed a stress-

monitoring device. The authors used only EDA signals for the detection of the stress of 11 

drivers. After computing Fisher projection and Linear Discriminant Analysis (LDA), the 

authors reported a classification accuracy of 81.8% by only using EDA.  
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Lee et al. [87] and Healey et al. [67] wanted to develop a wearable glove that could detect 

the stress of drivers and collect data from 28 and 10 drivers, respectively. The authors of 

both studies recorded PPG signals for analysis. Lee et al. achieved a classification accuracy 

of 95% while Healey et al. reported an accuracy of 62.2% using only PPG signal (respiratory 

rate) recorded through sensors on the driver’s gloves. Similarly, Wijsman et al. [71] and 

Healey et al. [67] developed an algorithm for detecting mental stress using physiological 

signals. These signals included ECG, PPG, EMG, and EDA from 18 and 10 subjects, 

respectively. Wijsman et al. [71] claimed to reach 80% accuracy for two-class (i.e. rest and 

stress) classification and concluded that the accuracy indicates that these features are 

suitable to be used for an individual’s stress detection while Healey et al. reported a 

classification accuracy of 86.6% using the same physiological signals. 

Chen et al. [65],  Shi et al. [70] and Kim et al. [63] developed a stress detection system based 

on multimodal features and kernel-based classifiers using ECG, EDA and PPG signals. 

The studies collected data from 14, 22, and 175 subjects, respectively. Chen et al. analysed 

the data in terms of precision, sensitivity and specificity. While using a full feature set, SVM 

with a linear kernel gave the highest inter-drive classification precision. For the cross-driver 

analysis, the SVM with radial basis function (RBF) kernel gave a precision score of 89.7%. 

Shi et al. concluded that the SVM-based model detected stress with high precision and recall 

rate and classification accuracy of 68%. Kim et al. reported that they achieved a classification 

accuracy of 78.4% for three emotional states classification problems and an accuracy of 

61.8% for four-state classification problems. Sun et al. [293] determined the mental as well 

as the physical stress of 20 subjects during different physical activities. The authors used 

ECG, EDA, and accelerometer signals. They reported a classification accuracy of 92.4% 

using accelerometer data along with ECG and EDA physiological signals. The inter-subject 

classification accuracy was reported to be 80.9%.  

Mozos et al. [88] and Sandulescu et al. [72] presented a stress detection methodology for 

people who suffer from stress in social situations. Both studies used EDA and PPG signals 

for stress detection collected from 5 and 18 subjects, respectively. After experimentation, 

Mozos et al. reported an accuracy of 92 % with the SVM (RBF kernel) classifier, in 

comparison to Linear kernel SVM (80%), AdaBoost (67%) and k-nearest neighbours  

(KNN) (62%), when using a selected set of features. Sandulescu et al. were successful in 
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classifying the stress of each participant with an average accuracy of 79%. The authors 

concluded that their approach is a good starting point for the detection of a subject’s stress 

state in real-time. Such detection alongside some intervention in real-time may improve 

quality of life. 

Muaremi et al. [294] presented a stress detection system using a smartphone and wearable 

chest belt. The authors evaluated their system in a real-world environment with 35 test 

subjects studied for 4 months. The prediction accuracy was calculated using the leave-one-

out-cross-validation (LOOCV) method. The system achieved a 55% accuracy using mobile 

phone features only (accelerometer) while a 59% prediction accuracy was obtained using 

the heart rate variability (HRV) feature. The combination of both features gave a prediction 

accuracy of 61%. Lai et al [295] described an intelligent stress monitoring assistant (SMA) 

prototype and used a deep learning-based method for stress detection using the WESAD 

dataset. The authors used Residual-Temporal Convolutional Network (Res-TCN) to 

recognise and detect stress states with an accuracy of 86% and 96%, respectively. Smets et 

al [296] used a data-driven approach for stress detection, using real-life data obtained from 

1002 subjects in five consecutive, free-living days. The authors found a significant 

difference between the ECG, skin conductance and skin temperature for different stress 

levels. They compared their self-reported data with the standard digital phenotypes-based 

wearable device and achieved the F1-score (a measure of test accuracy using precision and 

recall) of 0.43, which suggests that the physiological stress response varies greatly between 

individuals. Thus, stress detection systems should apply personalised models for accurate 

stress detection.  
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From a review of the related literature, it can be noticed that the best features for stress 

detection and monitoring are still unclear. Several studies have used the same physiological 

parameters and have implemented the same classifier, yet reported different accuracies. It 

is important to note that no study has previously tried to find what parameter is the best 

predictor for stress. The first step should be to establish a statistically significant difference 

between the baseline and stress state before developing any machine learning model. Most 

Figure 3.1 Block diagram of the proposed Study. 
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studies have reported machine learning models for stress identification using various 

features available from the sensor that was used to collect the data.  

The results reported in these studies may only apply to those particular features or sensors. 

The main objective of this study is to analyze the relative importance of the most common 

and clinically relevant biophysiological stress indicators and identify the most useful specific 

indicators for a wearable sensor-based stress monitoring solution. Most previous studies 

have focused on the determination of sensor/signal ratios. Our study ranks 

biophysiological stress indicators in order of diagnostic performance using single and 

multivariable (deviance) analysis. This is a commonly used approach to assess the predictive 

model, in this case, the stress state response. Figure 3.1 summarizes the pipeline of the 

proposed work. 

 The only other study closest to this work is by Zhen et al. [297]. According to the authors, 

the improper imposition of workload on pilots is the most critical cause of human error. 

Thus, the authors studied different physiological responses of pilots during flight. These 

parameters included eye blinking, saccade, pupil diameter, fixation, respiratory rate, and 

heart rate. They performed statistical analysis to check the sensitivity and diagnostic ability 

of the aforementioned physiological parameters. They collected data from 12 healthy 

student pilots and applied a one-way ANOVA test to the collected data. After the 

experiment, they concluded that from all the physiological parameters, pupil diameter and 

respiratory rate turned out to be the most sensitive parameters in distinguishing different 

stages. The diagnostic capability of the parameters was different. Respiratory rate and eye 

blinking were directly related to the difficulty of the task (stress) while other parameters 

were affected by external factors, for example, fatigue and attention.  

The advantages of our study over the Zhen et al. study are three-fold. First, the set of stress-

measuring features analysed in their study is different from ours. Secondly, we have 

performed descriptive and regression analyses. Thirdly, we developed a classification task 

to evaluate the sensitivity and specificity of selected biophysiological parameters for stress 

detection. The analysis was performed on a publicly available dataset collected in the 

Wearable Stress and Affect Detection (WESAD) project [19]. The main objectives of this 

study are: 
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 Descriptive analysis of the commonly used stress monitoring features. 

 Regression analysis for the selection of the most important features that can be used 

for stress monitoring devices in the future. 

 Implementation of a uni-variable and multi-variable classification model (using 

logistic regression) to classify the stress state from the non-stress state of an 

individual.   

 

3.4 Methodology 

3.4.1 Study Participants 

The data were collected using two multimodal devices: a chest-worn device (BioSignalPlux 

RespiBAN Professional); and a wrist-worn device (Empatica E4). Some recent studies that 

have used WESAD datasets are Reiss et al. [298], Jiang et al. [299], Aridas et al. [300] and 

Taufeeq et al. [301]. The data included a high-resolution measurement of BVP, EMG, EDA, 

ECG, RESP, TEMP, and movement from ACC. All the participants were healthy graduate 

students of the University of Siegen, Germany [19]. Study participants with mental 

disorders, heavy smoking, pregnancy, or those suffering from any cardiovascular and other 

chronic diseases were excluded from the study. A total of 17 individuals participated in the 

study but the data of two participants were incomplete due to the malfunctioning of sensors 

and were therefore removed from the dataset. There were 12 males and 3 females in the 

remaining 15 subjects with a mean age of 27.5 ± 2.4 (SD) years. Some of the variables were 

missing in the data from subject no. 11. Thus, all analyses for this study were completed 

using 14 subjects. In the dataset, there are 11,500,000 baseline (non-stress) samples and 

6,400,000 stress samples. 

3.4.2 Features Related to Stress 

During stress, the heart rate usually increased, thus causing more blood to flow within the 

body. This change in blood flow can be measured through BVP, which is derived from a 

PPG signal. Changes in heart rate and heart rate variability can also be monitored using 

ECG signals [51], [52]. Stress also causes the release of sweat, thus changing skin 

conductance properties. This change is measured by the EDA device. There is vast 

literature available that demonstrates the association of muscle tension with stress. Muscle 

tension changes are measured using EMG signals [53], [54]. In some people, chronic stress 

causes a low-grade fever (between 99𝑜 to 100𝑜F) and may also cause anxiety as well as 
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restlessness. Thus, Temperature (TEMP) sensors and accelerometer (ACC) readings can 

also be used to monitor stress [55]–[57]. 

3.4.3 Setup and Placement of Sensors 

The chest-worn device, RespiBAN Professional, was used to record ECG, EMG, EDA, 

TEMP, and RESP along with additional ACC data. The placement of the device control 

unit and sensors is shown in Figure 3.2. The data from RespiBAN Professional was 

sampled at 700Hz. The ECG signal was recorded using a standard 3-lead approach (as 

shown in Figure 3.2) and an inductive respiration sensor was used to record the RESP 

signals.  

 The EDA signals were recorded from the abdomen and EMG was recorded from the 

muscles of the upper trapezius on both sides of the spine. In addition, Empatica E4 was 

worn on the dominant hand by all subjects, and BVP, EDA, TEMP, and ACC signals were 

recorded at the sampling rate of 64Hz, 4Hz, 4Hz, and 32Hz, respectively. All the participant 

data were recorded on the devices and then transferred to a computer through a wired 

connection. On the day of the study, upon arrival, participants were equipped with chest 

and wrist-worn sensors. A functionality test was performed to test the working of the 

sensors. After that, both devices were synchronised using a double-tap gesture, manually.  

 

(a) Front View 

 

EMG 
(on the back) 

(b) Back View 

Figure 3.3 Placement of RespiBAN Professional Device (a) shows the placement of different sensors 

on the front of the human body (b) shows the placement of EMG sensors on the back of the body. 
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3.4.4 Study Protocol 

The study protocol was designed to record readings of 3 different states of the participants, 

i.e. baseline, amusement, and stress. Participants were also asked to complete a self-

reporting questionnaire after each session and undergo a guided meditation session to get 

de-excited after amusement and stress conditions. Participants could not intake tobacco or 

caffeine one hour before the study commenced. Moreover, the participants were asked to 

avoid strenuous exercise on the day of the study. All study participants signed informed 

consent before commencing. A short sensor test was conducted while equipping the 

participants. Finally, both the devices (RespiBAN Professional and Empatica E4) were 

manually synchronized. 

For baseline readings, participants were asked to stand or sit at a table and read a magazine. 

Baseline readings were recorded for 20 minutes and were labelled as a baseline state. An 

amusement state was induced by showing eleven different funny clips with a gap of 5 

seconds between them. The total length of the amusement state was 392 seconds for each 

participant. 

The stress condition was induced using the Trier Social Stress Test (TSST) [164]. TSST 

consists of mental arithmetic and a public speaking task. Both tasks are considered reliable 

to evoke stress [25] as they inflict a high mental load and are categorized as a social-

evaluative threat to subjects. The participants had to deliver a speech for five minutes on 

their strengths and weaknesses in front of a panel. Participants were told that the judging 

panel is from the human resource department and that impressing them will increase their 

hiring chances. After the speech, the panel asked each participant to count backwards, with 

a gap of 17, from 2023 to 0. If the participant makes any mistake while counting, they had 

to start over. This exercise following the speech also lasted for five minutes. So, TSST was 

conducted for a total of 10 minutes. After TSST, participants were given a rest period of 

10 minutes. After the amusement and stress period, participants were asked to perform 

some predefined meditation steps to de-excite and bring them back to a neutral state. 

Meditation included controlled breathing instructed through an audio track. After removing 

the sensors, participants were told that the panel was of normal researchers so that they can 

recover from the test-induced stress. 
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As humans are naturally good at adapting to different situations quickly, two study 

protocols were designed for this study to keep the randomness and collect the true feelings 

of the subjects. The two protocols are shown in Figure 3.3. Half of the subjects followed 

the version 1 protocol while the other half followed the version 2 protocol.  

3.4.5 Signal Processing and Feature Extraction 

Raw data from all the sensors (ECG, EDA, EMG, and RESP) were collected using a 0.2-

second non-overlapping sliding window, and all physiological features, except EMG, were 

computed using a 60-second non-overlapping sliding window. The window sizes were 

chosen following the recommendations of Koelstra et al. [302]. 

From raw signals of ECG, the heart rate was calculated using the Hamilton peak detection 

algorithm [303]. Moreover, heart rate variability (HRV) was derived from the locations of 

the peaks in ECG. Figure 3.4 shows the block diagram of the Hamilton peak detection 

algorithm. The algorithm works on the detection of the QRS complex in the ECG signal. 

The preprocessing steps involve rectification of the signal rather than squaring the signal 

as in [304], averaging sliding windows, and low and high pass filtering followed by some 

QRS detection rules. Rectification of the signal gives us better sensitivity to the detection 

algorithm, which is also indicated in [305]. The QRS complex detection rules are as follows: 

• Ignore all the detected peaks preceding or following larger peaks by less than 200 

milliseconds. 

• If the peak is detected, check whether the signal contains both positive and negative 

peaks. If not, the detected peak represents a baseline shift.  

Figure 3.4 The two distinct protocol versions for the proposed study. The dark boxes indicate 

filling out self-reporting questionnaires. 
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• If a peak is detected within 360ms of the previously detected peak and had a 

maximum slope less than 50% of the maximum slope of the previous peak then 

assume it is a T-wave. 

• If the detected peak is larger than the detection threshold then consider it a QRS 

complex otherwise consider it noise.  

The detection threshold is calculated using estimates of QRS peaks and noise peaks heights 

and is mathematically represented as:  

Detection_threshold = average_noise_peak + TH * (average_QRS_peak-

average_noise_peak)  (3.1) 

In equation 3.1, TH denotes the threshold coefficient between 0.3124 and 0.475. Each time 

the QRS complex is detected, it is stored in a buffer with the previous eight most recent 

peaks while every non-QRS complex is stored in a buffer that contains the previous eight 

non-QRS peaks also called noise peaks. Through equation 1, we set the detection threshold 

between the mean or median of QRS and noise peaks. The noise detection is done similarly 

to [306]. The algorithm characterizes low-frequency noise by the interval between the end 

T-wave and the start of the P-wave while high-frequency noise by bandpass filtered beats 

outside the QRS complex. In this study, we have used the heart rate and RR interval 

extracted from the ECG signal using the above-mentioned algorithm.  

The sympathetic nervous system controls the EDA response that provides high arousal 

states with high sensitivity. EDA signals were first passed through a low-pass filter with a 

critical frequency of 5 Hz, similar to work reported in [307], [308] and phasic (skin 

conductance response) and tonic (skin conductance level) components were extracted. The 

phasic component is a short-term response due to some stimulus while the tonic 

component shows a slow variation in baseline conductance. EDA features can be found in 

[309], [310]. In this study, we used phasic components.  



 

88 

 

 

The raw EMG signal was processed in two steps. In the first step, the DC component was 

removed using a high-pass filter and the peak frequency was calculated from the filtered 

signal by applying a 5-second window. In the second step, a raw EMG signal was passed 

through a low-pass filter with a cut-off frequency of 50 Hz, to suppress the power line 

noise, and features were extracted using the method described in [311]. A normalized root 

means squared (RMS) value of EMG voltage amplitude is used as a feature in this study.  

The RESP signal was used to extract the respiratory rate (RspR). Before computing the 

features of respiration, the raw signal was filtered using a band-pass filter with critical 

frequencies of 0.1 and 0.35 Hz. A peak detection algorithm was used to identify minima 

and maxima in the signal and inspiration volume, respiration duration, respiration rate, and 

inhalation and exhalation ratio were derived as in [25]. 

3.4.6 Statistical Features 

We normalized the data from the phasic component of skin conductance, muscle 

activation, heart rate (HR), RR-interval (RRI), heart rate variability (HRV) and respiratory 

rate (RspR) using min-max normalization to eliminate initial variation in the readings. Data 

for each are summarized using the mean and standard deviation separately for stress and 

 

Figure 3.4. Steps to detect QRS complex using Hamilton peak detection algorithm. 
Figure 3.5 Steps to detect QRS complex using Hamilton peak detection algorithm. 
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baseline scenarios. All features along with their mathematical representation are listed in 

the next subsections. 

Let us suppose the above physiological signals are x and xi is an i-th sample of the signal 

within the sliding window, where i= 1,…, n. Then: 

1) MEAN: Mean is denoted by �̅� and represents the mean value of a raw signal within 

a sliding window. The mean is calculated by the following equation:  

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1    (3.2) 

2) STANDARD DEVIATION: Standard deviation is denoted by S and represents 

the deviation of raw signal around the mean of the signal within the sliding window. 

Standard deviation is calculated using the following equation: 

𝑺 =  √
𝟏

𝒏−𝟏
∑ (𝒙𝒊 − �̅�)𝟐𝒏

𝒊=𝟏            (3.3) 

3)  MEDIAN: Median corresponds to the cumulative percentage of 50% i.e. middle 

reading in a dataset. It is calculated using the equation: 

𝒎𝒆𝒅𝒊𝒂𝒏 = (
𝒏+𝟏

𝟐
)
𝒕𝒉

𝒗𝒂𝒍𝒖𝒆 (3.4) 

 Here n is the total number of entries in a dataset. 

3.4.7 Stress Evaluation Methodology: Questionnaire 

To validate the protocol, four different self-reports were filled out by each participant after 

every session. First, participants filled out a Positive and Negative Affect Schedule, also 

known as PANAS. In the second place, six items were picked from the State-Trait Anxiety 

Inventory (STAI) to measure the anxiety level of each participant. Thirdly, a Self-

Assessment Manikins questionnaire (SAM) was used to generate labels in the valence 

arousal space. Finally, nine items were included in a questionnaire from the Short Stress 

State Questionnaire (SSSQ) to identify the type of stress that prevailed [19]. The outcome 

of these questionnaires can be considered as subjective reports showing how the 

participants felt during the test and can be used to train any personalized model. However, 

for the defined dataset, the study protocol was used to differentiate between the three states 
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and therefore contribute to labelling different readings. The options of answers were given 

for each questionnaire. The PANAS questionnaire was answered using 5 points scale (1 = 

not at all and 5 = extremely). The questionnaire asked the subjects about their emotional 

state i.e. stressed, happy, sad, or frustrated. STAI questionnaire was answered on 4 points 

scale (1= not at all, 4= very much so) and included questions about the subject’s feelings 

i.e. were they feeling nervous, relaxed, worried, pleasant, jittery, or at ease. Valance and 

arousal were scored on a scale from 1 = low to 9 = high. The SSSQ questionnaire included 

questions about what the subject’s mindset was while answering the questionnaire. Subjects 

answered on 5 points scale where 1=not at all and 5=extremely.    

The self-reports were also analysed to make sure that the designed experiment was suitable 

for inducing stress and manipulating the subject’s affective states. Authors in [19] calculated 

the mean and standard deviation of the anticipated self-reports of three states i.e. baseline, 

amusement, and stress states along with their subscales. The result of the analysis is shown 

in Figure 3.5. After baseline and amusement states, the comparison of self-reports revealed 

that the amusement state had the desired effect on the subject i.e. the subject reported score 

was high in valence and arousal (dimensional approach, DIM) and less in STAI (anxiety).  

 
Figure 3.6 Analysis result of self-reported questionnaires. 
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The impact of induced stress was noticeably pronounced across all the questionnaires. 

Analysis of the SSSQ score revealed that the subjects felt more worried and engaged as 

compared to distressed during the Trier Social Stress Test (TSST) tasks. The score 

calculated is worrying = 10.6, engaged = 11.7 and stressed = 6. The higher value of the 

positive affect (PA) score shows that the subject felt energetic and concentrated during the 

TSST tasks which also resulted in a higher engagement score in SSSQ. The elevated score 

of negative affect (NA) indicated an increased level of the subject’s stress. The dimensional 

approach (DIM) score also supports these observations by indicating an increase in arousal 

score and a decrease in valence score. We had a higher STAI score after TSST, as expected 

for a subject in a stressful state. Overall, the analysis of self-reported questionnaires revealed 

that the designed experimental protocol was suitable to induce desired effective stress in 

the subjects, especially in stress conditions.  

 

3.4.8 Statistical Analysis 

For the statistical analysis, only two-state data (Baseline and Stressed states) were used to 

evaluate the relative importance of each physiological indicator of stress for prediction. 

Two types of analysis were performed: 1) an independent analysis for each biophysiological 

indicator via a two-sample t-test under the null hypothesis that the mean biophysiological 

indicator is equal during the Baseline and the Stressed States; 2) a multivariable (deviance) 

analysis to rank the contribution of each biophysiological indicator in a logistic regression 

model, defined as follows: 

𝑙𝑜𝑔 (
𝑝(𝑆𝑡𝑟𝑒𝑠𝑠)

𝑝(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
) = 𝑐0 + 𝑐1𝐸𝐷𝐴 + 𝑐2𝐸𝑀𝐺 + 𝑐3𝑅𝑅𝐼 + 𝑐4𝐻𝑅 + 𝑐5𝑅𝑠𝑝𝑅   + 𝑐 6𝐻𝑅𝑉    (5) 

The logit link function 𝑙𝑜𝑔 (
𝑝(𝑆𝑡𝑟𝑒𝑠𝑠)

𝑝(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
) is used (p is the probability) to relate the log odds 

of being stressed to the linear predictor where (c0,c1,c2,c3,c4,c5 and c6 are the coefficients 

showing the direction of the relationship); 3) logistic regression classification analysis with 

30-70 split, 4-fold cross-validation and leave-one-out cross-validation to determine the 

mean absolute error, root mean square error, classification accuracy, sensitivity and 

specificity of the model. 



 

92 

 

3.4.8.1 A two-sample t-test  

The data statistics and the results of the t-test are provided in Table 3.1. The units of each 

feature are RspR (breaths per min), HR (beats per min), RRI (milli-sec), Phasic EDA (micro-

siemens), and EMG (micro-volts) and HRV (milli-sec). The p-value > 0.05 shows the 

relevant feature has a non-significant mean difference between stress and baseline state 

values while the p-value <0.05 shows a significant difference in the mean values of stress 

and baseline condition. 

3.4.8.2 Deviance analysis 

In logistic regression, deviance can be used to assess how good the model is to predict the 

response (which in this case is stress state) – the lower the deviance, the better the fit to the 

sample data. To analyze the independent effect of the variables in determining stress, 

separate regression models were constructed for combinations of indicators, and the 

deviance is then used to measure the strength of the relationship between the response and 

independent variables. Deviance analysis using logistic regression was performed using 

MATLAB’s statistics toolbox while the classification model was developed using Python 

code. 

Table 3.1 Statistical analysis result of physiological parameters. 

Features Mean Standard Deviation Median 
t-test 

(p-values) 

 Baseline Stress Baseline Stress Baseline Stress  

RspR 15.51 12.35 2.48 2.43 15.65 12.22 6.02e-08 

HR 66.9 95.35 20.01 20.45 68.8 90.66 0.0003 

RRI 871 710 157 132 863 702 0.003 

Phasic EDA 3.75 5.24 2.92 4.27 2.58 3.89 0.310 

EMG 9.5e-5 1.1e-4 5.3e-5 10.8e-5 8.1e-5 8.8e-5 0.660 

HRV 51.13 46.97 25.79 22.92 44.33 42.95 0.668 

*Units: RspR (breaths/min), HR (beats/min), RRI (milli-seconds), Phasic EDA (micro-siemens), EMG 
(micro-volts) and HRV (milliseconds) 

 

3.4.8.3 Classification Methodology  

For the regression model, logistic regression was selected instead of linear regression since 

our dependent variable in this study is binary i.e. Stress vs No-stress/Baseline. Logistic 

regression uses the maximum likelihood method to arrive at the solution. Also, the logistic 
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loss function causes large errors to be penalized to an asymptotically constant. The dataset 

has baseline (11,500,000 per subject) and stress (6,400,000 per subject) samples of the 14 

subjects. Given that the number of subjects in the dataset is small, we used stratified k-

fold cross-validation with k=14, to ensure that the results achieved are generalizable. 

Stratified k-fold cross-validation ensures the selection of the same proportion of samples 

of each class in each fold. The time complexity of the k-fold is measured by 𝑂(𝐾𝑛), where 

𝑛 is the number of samples. The 𝑂(𝐾𝑛) means that the experiment is repeated 𝐾 time. 

When 𝐾 approaches 𝑛, the time complexity becomes 𝑂(𝑛2). So, it can be concluded that 

as the value of k increases, the systems become complex and computationally expensive. 

We evaluated the classification model using leave-one-out cross-validation (LOOCV) to 

have an unbiased estimate of the model performance. Stratified k-fold cross-validation 

differs from simple k-fold cross-validation by splitting the dataset in such a way that the 

mean values of all the splits are almost equal.  

3.5  Results and Discussion 

The data from 14 participants were used in the analysis, as some of the variables were 

missing in the data from subject no. 11. Figure 3.6 shows the distribution of the data in two 

states for each variable on boxplots. The data statistics and the results of the t-test are 

provided in Table 3.1. Logistic regression is used whenever the outcomes of the analysis 

are limited, which in this case is stress and baseline (unstress). Thus, logistic regression is 

used to perform a deviance analysis. Similarly, for the classification task, the response 

variables (classes) are categorical (yes/no or true/false), so the logistic regression classifier 

fits best for such type of classification problem and is used as a stress versus non-stress 

classifier.  

3.5.1  A Two-Sample t-Test  

Based on the analysis of the p-values, the magnitudes of the coefficients in the logistic 

regression, and the effect of each variable on deviance, it can be concluded that respiratory 

rate (RspR) is the best predictor of stress among these six variables. This result re-enforces 

the outcome of Zhen et al. [297] that respiratory rate is the most specific and sensitive 

parameter out of all the other physiological parameters and could be used as a stand-alone 

parameter to detect stress in the lab as well as in the natural environment. Heart rate (HR) 
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combined with respiratory rate can provide a slight improvement in the evaluation or 

monitoring of stress using wearable sensors. On the other hand, electrodermal activity and 

electromyograms are poor predictors of stress and may not add value to the wearable stress 

monitoring system.  

3.5.2  Deviance Analysis 

Table 3.2 shows the results of the deviance analysis of the fit for single and multi-variant 

logistic regression models. The values are sorted in decreasing deviance order. The lowest 

value model is the best. The deviance decreases when the model includes RspR compared 

to those without RspR. Interestingly, a single variable model, comprising only the RspR, 

fits better than the multivariable model using EDA, EMG, HR and RRI together. Using 

any other feature in combination with RspR achieves deviance of close to 0, suggesting a 

perfect fit for these 14 individuals. Without further samples, it is unclear which combination 

is optimal.  

The box plot of six variables (EMG, EDA, RspR, RRI, HRV and HR) shows that there 

was evidence of a difference in mean values of RspR, RRI, HRV and HR between baseline 

and stress states. On the other hand, there was a little difference in mean EMG and EDA 

for stress and baseline states (see Figure 3.6), which is also evident in the results of the t-

test (see Table 3.1).  

From the above-mentioned results, it can be concluded that the data of EDA and EMG 

cannot be separated easily, which reinforces our p-value (i.e., the p-value is greater than 

0.05) and deviance analysis (Table 3.2) results. The data of respiratory rate can easily be 

separated using any logistic fitting curve and thus, qualifies as a most distinctive feature to 

distinguish baseline state from stress state.  

Table 3.2 Logistic regression model fitting (largest to smallest). 

Features Deviance 

HRV 39.00 

EMG 38.60 

EDA 37.65 

EDA + EMG 37.62 

RRI 25.00 

HR 23.73 

EDA+EMG+HR 21.49 
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EDA+EMG+HR+RRI 21.06 

RspR 4.70 

All 0.00001 

Figure 3.7 Boxplots of the data from two states (Baseline and Stress) for EDA, EMG, HR, RRI, 

RspR, and HRV, respectively. 
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3.5.3 Classification Methodology 

The result of the logistic regression classification model is shown in Table 3.3, Table 3.4 

and Table 3.5. The table shows the test-train split for classification, classification accuracy, 

sensitivity, specificity, 95% confidence interval of sensitivity and specificity along with 

likelihood ratios of the developed model. Table 3.3 shows the results of a single Test-Train 

run. As the results achieved may not be generalizable due to a small number of training and 

testing samples, therefore cross-validation is performed. Firstly, k-fold cross-validation is 

performed using k=4. However, since the number of subjects in the dataset is very small 

(n=14), 4-fold cross-validation may still be not generalizable. Therefore, leave-one-out-

cross-validation is also performed to obtain a more robust estimate of the model 

performance. From the tables, we can see that among the analysed physiological 

parameters, respiration rate and heart rate give better accuracy than RR interval, skin 

conductance, muscle activation and heart rate variation. The combination of respiratory 

rate, heart rate and heart rate variability gives us almost the same accuracy as the 

combination of all six parameters. So, we can conclude that the combination of respiratory 

rate, heart rate and heart rate variability, which can be calculated using a single PPG sensor, 

is the best predictor of stress. 

3.5.4 General Discussion 

While these classification results indicate the potential of the logistic regression (machine 

learning) technique to predict stress using the above features, there is still a question of 

generalizability due to the very small size of the dataset, despite rigorous cross-validation. 

Therefore, these results need to be validated using a larger dataset. The main conclusion 

from all three analysis results is that RspR is the best singular feature for detecting stress 

(from the tables) while the combination of RspR and HR (RRI) are key multi-features of 

stress, with HRV emerging as the next best. 

 
Table 3.3 Logistic regression classifier results (using 4-fold): Accuracy, Sensitivity, Specificity and 

Confidence Intervals, Likelihood ratio. 

Features Test- Train Split Accuracy (%) Sensitivity Specificity LR+ LR- 

EMG 

30-70 % 

64.91 1.00 0.00 1.00 inf 

EDA 63.82 0.93 0.09 1.03 0.73 

RspR 77.21 0.87 0.59 2.11 0.22 

RRI 76.40 0.91 0.49 1.78 0.18 

HR 77.10 0.89 0.56 2.12 0.21 
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HRV 66.73 1.00 0.51 2.12 0.00 

HR +RspR 83.82 0.90 0.72 3.25 0.14 

HR+ RspR +HRV 88.88 1.00 0.83 6.00 0.00 

All combined 88.90 1.00 0.86 7.00 0.00 

 
Table 3.4 Logistic regression classifier results (using 4-fold): Accuracy, Sensitivity, Specificity and 

Confidence Intervals, Likelihood ratio, Variance, and Standard Deviance. 

Featur

es 

Test- 

Train 

Split 

Accura

cy (%) 

Sensitiv

ity 

Specific

ity 

95% 

Confidence 

Intervals of 

sensitivity 

and 

specificity 

LR

+ 

LR

- 

Varian

ce 

Standa

rd 

devian

ce 

Low

er 

Upp

er 

EMG 

4-fold 

Cross 

Validati

on 

64.96 1.00 0.00 
[1.00, 

 0.00] 

[1.00, 

 0.00] 
1.0 Inf 0.00 0.00 

EDA 59.23 0.87 0.88 
[0.86, 

0.08] 

[0.86, 

0.088

] 

0.9

5 

1.5

5 
0.01 0.10 

RspR 77.00 0.87 0.59 
[0.87, 

0.59] 

[0.87, 

0.59] 

2.1

1 

0.2

2 
0.00 0.01 

RRI 71.37 0.85 0.47 
[0.75, 

0.49] 

[0.75, 

0.48] 

1.5

9 

0.3

3 
0.01 0.10 

HR 73.55 0.85 0.53 
[0.85, 

0.53] 

[0.85, 

0.53] 

1.8

0 

0.2

9 
0.01 0.09 

HR 

+RspR 
79.89 0.86 0.69 

[0.86, 

0.69] 

[0.86, 

0.69] 

2.7

9 

0.2

1 
0.00 0.06 

HR + 

RspR 

+HRV 

82.14 0.79 0.86 
[0.57, 

0.67] 

[1.00, 

1.04] 

5.5

1 

0.2

5 
0.03 0.18 

All 

combin

ed 

82.14 0.79 0.86 
[0.57, 

0.67] 

[1.00, 

1.04] 

5.5

1 

0.2

5 
0.03 0.18 

 
Table 3.5 a. Logistic regression classifier results (using 14-fold/LOOC validation): Accuracy, 
Sensitivity, Specificity and Confidence Intervals. 

Features 
Test- Train 

Split 
Accuracy 

(%) 
Sensitivity Specificity 

95% Confidence 
Intervals of sensitivity 

and specificity 

Lower Upper 

EMG 

Leave One 
Out Cross 
Validation 

64.96 1.00 0.00 
[1.00,  
0.00] 

[1.00,  
0.00] 

EDA 63.07 0.93 0.07 
[0.93. 
0.072] 

[0.93, 
0.07] 

RspR 76.96 0.87 0.59 
[0.87, 
0.57] 

[0.87, 
0.57] 

RRI 75.35 0.89 0.50 
[0.89, 
0.50] 

[0.89, 
0.50] 
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Table 3.5 b. Logistic regression classifier results (using 14-fold/LOOC validation): Likelihood 

ratio, Variance, Standard Deviance and ROC AUC score. 

 

3.6 Analysis of Biochemical Indicators of Stress 

Different biochemical parameters were analysed based on their useability in a real-time 

environment. The levels of chemical hormones such as adrenaline, nor-adrenaline, 

copeptin, prolactin, and plasma catecholamines could be used for stress monitoring but the 

collection of all these hormones require invasive procedures or 24-hour urine collection. 

The levels of alpha-amylase in the saliva are also indicative of stress but require careful 

handling of the sample and an incubation time of 3 to 5 minutes. The levels of Estradiol 

and testosterone also decrease when stressed. The collection of these hormones is also non-

feasible for real-time stress monitoring.  

Recently, there have been ground-breaking advancements made in the field of cortisol 

detection for stress monitoring. Cortisol hormone can be collected non-invasively, risk-

free, and almost with no pain through saliva, hair and sweat. A special Enzyme-Linked 

Immunosorbent Assay (ELISA) kit is commercially available that can be used for screening 

the levels of cortisol in saliva or hair and determining stress levels, but it is a long process 

HR 76.38 0.88 0.55 
[0.88,  
0.55] 

[0.88, 
0.55] 

HR +RspR 82.81 0.89 0.72 
[0.89, 
0.71] 

[0.89, 
0.72] 

HR + RspR + 
HRV 

85.70 0.86 0.86 
[0.67, 
0.67] 

[1.04, 
1.04] 

All combined 85.71 0.86 0.86 
[0.67, 
0.67] 

[1.04, 
1.04] 

Features 
Test- Train 

Split 
LR+ LR- Variance 

Standard 

deviance 

ROC 

AUC 

EMG 

 

Leave One 

Out Cross 

Validation 

1.00 inf 0.00 0.00 0.50 

EDA 1.00 0.94 0.01 0.11 0.71 

RspR 2.12 0.22 0.00 0.06 0.83 

RRI 1.78 0.22 0.01 0.11 0.86 

HR 1.95 0.22 0.01 0.11 0.88 

HR + RspR 3.12 0.16 0.00 0.06 0.93 

HR + RspR + 

HRV 
5.97 0.16 0.51 0.22 0.93 

All combined 6.00 0.16 0.52 0.23 0.93 
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and cannot be repeatable (within 24 hours). The detection of sweat cortisol is still an active 

research topic. Sweat colourimetric sensors are frequently developing and have shown great 

potential of becoming the only method of detecting stress in real-time using the 

biochemical parameter. Table 3.6 summarizes the feasibility and usability of different 

biochemical parameters. 

Table 3.6 Analysis of biochemical hormones/parameters, remarks, and feasibility. 

3.7 Conclusion 

Several human biophysiological variables have been explored to evaluate and monitor both 

physical and mental stress levels in recent literature. Many of these variables have been 

independently used in wearable sensor-based devices. This study is particularly focused on 

a comparative analysis of these variables in terms of sensitivity and prediction specificity 

for stress monitoring. The comparative analysis has been performed by applying a t-test to 

validate the hypothesis that the physiological data for each variable for the stress and non-

stress (baseline) states is statistically differentiable, and logistic regression was applied to 

identify the strongest predictor of stress.  

A logistic regression-based classifier was also trained and validated during this study to 

determine the classification accuracy of the model. The results of two types of statistical 

analysis and classification model suggest that respiratory rate is the strongest (stand-alone) 

Type Hormone/Parameter Remarks Reason 

Bio-
chemical 

Adrenaline & 
noradrenaline 

not significant Blood/urine (invasive and not feasible) 

Copeptin & prolactin not significant Blood/urine (invasive and not feasible) 

Plasma catecholamines not significant Blood/urine (invasive and not feasible) 

Alpha-amylase not significant Saliva (3 to 5 min incubation) 

Estradiol & testosterone not significant Sex hormones (invasive and not feasible) 

Saliva and hair cortisol semi-significant 
non-invasively, risk-free, and almost with no 

pain but lengthy procedure (ELISA)* 

Sweat cortisol significant 
non-invasively, risk-free, and almost with no 

pain (colourimetry techniques) 

*Enzyme-Linked Immunosorbent Assay (mostly used for saliva testing but with modification can be used 
for hairs)  

 Immersed in a 50-ng/mL hydrocortisone solution for periods lasting 15 minutes to 24 hours 
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predictor of stress compared to other commonly used physiological variables that include 

heart rate, RR interval, heart rate variability in the ECG/PPG, skin conductance 

(electrodermal activity) and muscle activation (electromyogram). Heart rate (RRI) emerged 

as the second-best predictor of stress. The prediction model, consisting of the combination 

of respiratory rate, heart rate and heart rate variation, derived from a single sensor, gives 

accurate classification results as a combination of  EDA, EMG, RspR, HR (RRI), and HRV. 

The latter is a more complex sensory system, prone to motion artefacts. The investigation 

of different biochemical parameters revealed that there is a gap in determining an accurate 

way of stress detection. Recently, cortisol levels have emerged as a stress hormone but 

research is needed to develop an accurate, real-time and non-invasive method of cortisol 

collection. 

Furthermore, in the case of biophysiological parameters analysis, it is important to note 

that all efforts were focused to provide a fair comparison by using data from the same 

device and participants. However, there may be other excitation sources (of similar 

responses) that these experiments failed to capture. Therefore, including context to the 

data, for example, physical activity, will be key to effective monitoring of stress daily. 
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Chapter 4   

Machine Learning Classification 

Methods for Stress Detection 

From the literature review, it could be concluded that most of the studies in the literature 

use supervised machine learning methods to build a predictive model for stress 

classification while very few studies proposed the use of unsupervised machine learning as 

a predictive model. The supervised learning algorithms heavily rely on the reference data 

labelled during the recording phase. Commonly, different types of self-reporting 

questionnaires or diaries of an individual are used to label the perceived stress instances. 

These questionnaires/diaries only capture stress levels at a specific point in time, are 

subjective and prone to inaccuracies as an individual might under-report stress levels due 

to social pressure or might over-report stress to gain sympathy.  

Conversely, unsupervised learning algorithms perform clustering and do not need labels 

for training, which makes them more suitable for the development of a robust and 

continuous stress monitoring device. Thus, this chapter4 provides a comparative study of 

unsupervised machine learning (clustering) algorithms with supervised machine learning 

(linear, ensembles, trees, and neighbouring models) algorithms. The finding enhances the 

understanding of implementing the unsupervised learning classifiers in wearable devices 

and confirms that respiratory rate and heart rate are the potential indicators for accurate 

stress detection and backs the results found in chapter 3. 

 The study used two publicly available datasets i.e., Stress Recognition in 

Automobile Drivers Dataset and SWELL-KW Dataset.  

 The unsupervised machine learning algorithms used for comparison included (1) 

Affinity Propagation, (2) Balanced Iterative Reducing and Clustering using 

Hierarchies (BIRCH), (3) K-mean, (4) Mini-Batch K-mean, (5) Mean Shift, (6) 

                                                 
4 The following body of the chapter is exact copy of the paper published in Frontiers in Medical Technology (2022). 
I am the first lead author in the paper, which is co-authored with my supervisors. The conceptualization, formal 
analysis, investigation and visualization were also done by me. Designed methodology and validation were led by my 
supervisors and me. I led all parts of the work with the support of my supervisors. 
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Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and (7) 

Ordering Points to Identify the Clustering Structure (OPTICS).  

 While the supervised machine learning algorithms included (1) Logistic Regression, 

(2) Gaussian Naïve Bayes, (3) Decision Tree, (4) Random Forest, (5) AdaBoost and 

(6) K-Nearest Neighbours classifiers. 

The study concluded that although the classification accuracy achieved by supervised 

machine learning algorithms is better than unsupervised algorithms, the use of an 

unsupervised classifier is important for the development of a non-invasive, robust, and 

continuous stress monitoring device since labelling the physiological signal in the 

ambulatory environment is a difficult and inaccurate task. Furthermore, these unsupervised 

machine learning algorithms require further investigation and modification to discover the 

hidden patterns and structures within the data. This will help these (unsupervised) 

algorithms to surpass the accuracies provided by supervised learning algorithms. This is an 

open-research topic and needs big data (non-existent, yet) to formulate a high-performance 

unsupervised learning model. For this thesis, supervised classification techniques were used 

in further analysis for stress detection and monitoring. This work covers thesis objective 4 

of investigating the machine learning predictive models for accurate stress detection.   
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4.1 Exploring Unsupervised Machine Learning 

Classification Methods for Physiological Stress Detection 

Abstract: Over the past decade, there has been a significant development in wearable 

health technologies for diagnosis and monitoring, including application to stress 

monitoring. Most wearable stress monitoring systems are built on a supervised learning 

classification algorithm. These systems rely on the collection of sensor and reference data 

during the development phase. One of the most challenging tasks in physiological or 

pathological stress monitoring is the labelling of the physiological signals collected during 

an experiment. Commonly, different types of self-reporting questionnaires are used to label 

the perceived stress instances. These questionnaires only capture stress levels at a specific 

point in time. Moreover, self-reporting is subjective and prone to inaccuracies. This chapter 

explores the potential feasibility of unsupervised learning clustering classifiers such as 

Affinity Propagation, Balanced Iterative Reducing and Clustering using Hierarchies 

(BIRCH), K-mean, Mini-Batch K-mean, Mean Shift, Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) and Ordering Points To Identify the Clustering 

Structure (OPTICS) for implementation in stress monitoring wearable devices. Traditional 

supervised machine learning (linear, ensembles, trees, and neighbouring models) classifiers 

require hand-crafted features and labels while on the other hand, the unsupervised classifier 

does not require any labels of perceived stress levels and performs classification based on 

clustering algorithms. The classification results of unsupervised machine learning classifiers 

are found comparable to supervised machine learning classifiers on two publicly available 

datasets. The analysis and results of this comparative study demonstrate the potential of 

unsupervised learning for the development of non-invasive, continuous, and robust 

detection and monitoring of physiological and pathological stress.  

Keywords: Machine learning, unsupervised learning, supervised learning, stress 

monitoring, physiological signals, heart rate, respiratory rate. 

4.2 Introduction 

There has been a notable increase in depression, anxiety, stress and other stress-related 

diseases, worldwide [3]–[5]. Stress deteriorates the physical and mental well-being of a 

human. Particularly, chronic stress leads to a weakened immune system, substance 
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addiction, diabetes, cancer, stroke and cardiovascular disease [292]. Thus, it is of utmost 

importance to develop robust techniques that can detect and monitor stress continuously, 

in real-time. The concept of detecting stress is quite complex, as stress has physiological as 

well as psychological aspects to it. Furthermore, both these aspects are triggered by multiple 

factors and are difficult to capture [312]. The recent development of wearable sensor 

technology has made it easier to collect different physiological parameters of stress in daily 

life.  

The use of psychological assessment questionnaires, filled out on different instances in a 

day, is the most common technique to determine human stress. These questionnaires are 

limited to capturing stress at a particular time and do not allow continuous as well as real-

time stress monitoring [313]. The time-bound nature of these questionnaire-based 

assessments unveils a major problem for the validation of new stress monitoring systems 

as there is no precise recording of which task or activity caused the participants’ stress. To 

develop an acceptable standard for continuous stress monitoring, Hovsepian et al. [24] used 

wearable devices and proposed a data-driven stress assessment model, called the cstress 

model. To collect the data in this study, the participants were asked to fill out an Ecological 

Momentary Assessment (EMA) questionnaire 15 times a day, at random hours. The 

collected EMA self-report acted as the reference value for stress validation. The cstress 

model compensated for the unpredictable lag that occurred between the stressor and its 

logging in the EMA self-report. 

In the literature, several supervised learning algorithms have been utilised for the detection 

and classification of stress [19], [314], [315]. These machine learning algorithms include 

logistic regression, Gaussian Naive Bayes, Decision Tree, Random Forest, AdaBoost, K-

Nearest Neighbours and many others [292]. Dalmeida and Masala [316] investigated the 

role of electrocardiograph (ECG) features derived from heart rate variation (HRV) for the 

assessment of the stress of drivers. A set of different supervised machine learning 

algorithms were implemented, and the best recall score achieved was 80%. Similarly, Wang 

et al. [317] combined the supervised ensemble classifier with an unsupervised learning 

classifier and used the driver’s galvanic skin response (GSR) data to detect stress. Their 

proposed model was able to detect stress with an accuracy of 90.1%.  
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The physiological parameters that are frequently used for stress analysis are respiratory rate, 

heart rate, skin conductance, skin temperature, and galvanic skin response [283]. As 

supervised learning requires training labels for training the classifier, in most cases, either 

the labels are unavailable or inaccurate, in the real-time data collection [318]. Several studies 

have reported the challenges of labelling the stress states and the importance of addressing 

these issues for the further development of sensor-based stress monitoring systems [319]–

[321]. The challenges of poor-quality reference data and human bias encourage the 

exploration of unsupervised machine learning algorithms for stress detection and 

monitoring, as the unsupervised algorithms do not require reference data. 

4.3 Related Work; Unsupervised Learning Classification 

Throughout the literature, most authors are dedicated to the use of techniques based on 

supervised learning classification while the use of unsupervised learning methods is 

relatively new in the stress monitoring field. Rescio et al. [322] implemented the k-means 

clustering algorithm for stress classification using heart rate (HR), galvanic skin response 

(EDA) and electrooculogram (EOG) signals of 11 volunteers. To induce stress, the 

participants were asked to perform a mental arithmetic task and complex LEGO assembly 

without instruction. Authors have reported a classification accuracy of 70.6% with heart 

rate, 74.6% with EDA and 63.7% with EOG used as a single variable unsupervised 

classification model. Huysmans et al. [312] proposed a Self-Organizing Maps (SOM) based 

mental stress detection model that uses skin conductance (SC) and the electrocardiogram 

(ECG) of the test subjects. The authors recruited a group of 12 subjects and asked them to 

complete three stress-related tasks (each of 2 minutes). The first task was the Stroop Word 

Color test, in which subjects had to select the colour of the word rather than the written 

word. The second task was the mental arithmetic task, in which the subjects had to count 

backwards from 1081 with a difference of 7. The final task was to talk about a common 

stressful event that ever happened to them. The authors reported the average test accuracy 

of 79.0% using the proposed SOM based classifier. 

Ramos et al. [323] used Naïve Bayes and logistic regression models to classify the stress 

outside the laboratory settings. They collected the heart rate, breathing rate, skin 

temperature and acceleration data from 20 volunteers while they were performing physical 

activity (such as walking, cycling, or sitting). To induce stress, the authors used random 
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noises, verbal mathematical questions, and a cold-water test. The activity data was ignored 

and an accuracy of 65% was achieved by the authors. Maaoui et al. [321] investigated the 

use of three unsupervised learning classification methods (K-mean, Gaussian Mixture 

Model (GMM) and SOM) to determine the stress levels using a low-cost webcam. Along 

with the webcam, the authors also collected the heart rate (extracted seven attributes) of 12 

student volunteers. The authors reported the classification error rate of the three algorithms 

as 13.05% (K-means), 44.04% (GMM) and 36.57% (SOM) classifier. Similarly, Fiorini et al. 

[324] compared the performance of three unsupervised classification techniques (K-means, 

K-medoids and SOM) with three supervised learning techniques (Support Vector Machine 

(SVM), Decision Tree (DT), and K-nearest neighbours (K-NN)). They collected ECG, 

EDA, and electric brain activity signals from 15 healthy individuals. The authors designed 

the study to induce three different emotional states (i.e., relaxed, positive and negative) by 

the means of social interaction. The reported classification accuracy for the best-performing 

unsupervised classifier (K-means) was 77% while for the same model the best-performing 

supervised classifier (K-NN) was 85%. 

This chapter explores the possible use of unsupervised classification methods for 

physiological stress detection. To perform a comparative analysis of the performance of 

unsupervised learning algorithms against supervised learning algorithms, two publicly 

available datasets were used. A total of seven most common supervised and seven 

unsupervised learning algorithms were implemented in Python Programming Language. 

The implemented unsupervised algorithms are Affinity Propagation [325], Balanced 

Iterative Reducing and Clustering using Hierarchies (BIRCH) [326], K-Mean, Mini-Batch 

K-Mean [327], Mean Shift, Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) [328] and Ordering Points To Identify the Clustering Structure (OPTICS) 

[329]. For comparison, supervised learning algorithms such as logistic regression, Gaussian 

naïve Bayes, decision tree, random forest, AdaBoost and K-nearest neighbours, are 

implemented.   

4.4 Material and Methods  

To address the challenge of manual annotation and labelling of the physiological signal as 

stress or non-stress in a supervised learning setup, we investigated the efficiency of the 

commonly used unsupervised machine learning algorithms, illustrated in the literature. For 
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assessment of the efficiency of these methods and comparative analysis, two publicly 

available datasets were downloaded. The first dataset is provided by the Massachusetts 

Institute of Technology (MIT), named Stress Recognition in Automobile Drivers by Healey 

[330], and is available on Physionet, while the second dataset is called the SWELL-KW 

dataset, available on Kaggle [331]. Both datasets contain heart rate variation features and 

provide labelled heart rate and respiratory rate parameters. The efficiencies of the 

supervised and unsupervised learning algorithms were benchmarked and are provided using 

standard measures of accuracy, precision, recall, and F1-score matrices of each classifier. 

4.4.1 Performance Assessment Matrices  

The performance of the classifier is assessed using the following metrics: 

 The accuracy of a classifier is defined as the percentage of total correctly predicted 

labels in the test dataset, given mathematically as (equation 4.1): 

Accuracy =
true positive labels+true negative labels

total readings
         (4.1) 

 The precision and recall are calculated using equations 4.2 and 4.3: 

Precision =
true positive labels

true positive labels+false positive labels
       (4.2) 

Recall =
true positive labels

true positive labels+false negative labels
         (4.3) 

 The F1-score of a classifier is the harmonic mean of its precision and recall. 

Equation 4.4 shows how the F1 score is calculated, mathematically: 

F1 − Score = 2 ∗
Precision−Recall

Precision+Recall
                      (4.4) 

4.4.2 Data Collection 

To explore the usability of unsupervised machine learning classifiers in stress monitoring 

and comparison with supervised learning methods, two publicly available datasets were 

downloaded. Details of both datasets are described below.  
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4.4.2.1 Stress Recognition in Automobile Drivers Dataset 

The dataset is developed by Healey [68], [332] during her PhD program at MIT. The dataset 

consists of the electrocardiogram (ECG), galvanic skin response (GSR), electromyogram 

(EMG), respiratory rate and heart rate measured using wearable sensors along with 

stress/non-stress labels generated from a combination of questionnaires and captured 

videos of the drivers. A total of 18 young drivers were asked to drive in different stress-

inducing scenarios, such as on highways, during rush hours and at red lights, as well as a 

non-stress scenario (marked as non-stress or baseline readings). To rate the driver’s stress 

levels, three different methods were used. These methods included self-reporting 

questionnaires, experimental design and metrics defined by independent annotators based 

on the video recording of the drivers. The dataset has baseline readings along with three 

different stress level readings (low, medium, and high stress). 

4.4.2.2 SWELL-KW Dataset 

The SWELL-Knowledge Work (SWELL-KW) dataset [331] provides heart rate variability 

(HRV) indices from sensor data for stress monitoring in an office work environment. The 

experiment was conducted on 25 subjects, performing typical office work such as preparing 

presentations, reading emails, and preparing work reports. Three different working 

conditions were defined by the authors: 

 Neutral/no-stress: the subjects were allowed to complete the given task with no 

time boundary. 

 Time pressure (a stress condition): the time to complete the given task was reduced 

to 2/3 of the time the subject took in the neutral condition. 

 Interruption (a stress condition): during this time, subjects received 8 different 

emails. Some of the emails were related to their task and were asked to take specific 

action while some emails were not related to their task. 

The experiment recorded data on facial expression, computer logging, skin conductance 

and ECG signal. For labelling, the Rating Scale Mental Effort (RSME) [333] and Self-

Assessment-Manikin Scale (SAMS) [334] were used. Moreover, all subjects were also asked 

to report their perceived stress on a 10-point scale (from not-stressed to very stressed) using 

a visual analogue scale. 
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4.5 Unsupervised Classification Algorithms  

Most of the unsupervised classification algorithms are based on clustering algorithms. 

Clustering algorithms find best-suited natural groups within the given feature space. In this 

study, the sensor data for stress and non-stress states of the participants are considered as 

the feature vector. The most widely used unsupervised classifiers implemented in this study 

are introduced in the following subsections.  

4.5.1 Affinity Propagation 

Affinity propagation takes the input data points as a measure of similarity between two data 

points. Each data point within the dataset sends a message to all other data points about 

the target's relative attractiveness. Once the sender is associated with its target (stress/no 

stress), the target becomes an exemplar. All the points with similar exemplars are combined 

to form one cluster. The classifier finds a set of different exemplars (representative points 

of each cluster) that best summarises the data points within the dataset [325].  

4.5.2 BIRCH Classifier 

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) classifier constructs 

tree structure from which classification cluster centroids are obtained. The BIRCH 

classification algorithm utilises the tree structure to cluster the input data. The tree structure 

is called a clustering feature tree (CF Tree). Each node of the tree is made of a clustering 

feature (CF). The BIRCH clusters multi-dimensional input data entities to produce the best 

number of clusters with the available memory and time constraints. The algorithm typically 

finds good clusters within a single scan but can improve the quality with some additional 

scans [326]. 

4.5.3 K-Mean Classifier 

The K-mean classifier is one of the most frequently used, unsupervised learning classifiers. 

The algorithm assigns the group label to each data point to minimise the overall variance 

of each cluster [327]. The algorithm starts with a random group of centroids, considering 

each centroid as a cluster, and performs repetitive calculations to adjust the position of 

centroids. The algorithm stops the optimization of clusters when the centroids are stable 

(no change in their values) or a defined number of iterations is achieved. 
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4.5.4 Mini-Batch K-Mean Classifier 

Mini-Batch K-mean classifier is a modified version of the K-mean classifier. The classifier 

clusters the dataset using mini-batches of the data points rather than using whole data. This 

classifier is also robust to statistical noise and performs the classification of a large dataset 

more quickly [327]. 

4.5.5 Mean Shift Classifier 

The mean shift classifier finds the underlying density function and classifies the data based 

on the density distribution of the data points in feature space [335]. The mean shift 

classification algorithm tries to discover different blobs within a smooth density of the 

given dataset. The algorithm updates the candidates for centroids that are then considered 

as the mean of the points with the given region. These candidates are filtered to eliminate 

near-duplicate centroids to form the final set of centroids, that form the clusters. 

4.5.6 DBSCAN Classifier 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) finds the highest 

density areas in the given feature domain and expands those areas, forming clusters of 

feature space (stress/non-stress) [328]. The DBSCAN finds neighbourhoods of a data 

point exceeding a specified density threshold. This threshold is defined by the minimum 

number of data points required within a radius of the neighbourhood (minPts) and the 

radius of the neighbourhood (eps). Both the parameters are initialised manually at the start 

of the algorithm. 

4.5.7 OPTICS Classifier 

Ordering Points To Identify the Clustering Structure (OPTICS) is derived from the 

DBSCAN classifier, where a minimum of samples are required as a hyper-parameter to 

classify the data as a cluster (feature) [329]. 

4.6 Supervised Classification Algorithms 

This study also implemented supervised classifiers, logistic regression, Gaussian naïve 

Bayes, decision tree, random forest, AdaBoost and K-nearest neighbours for comparison 

of results with the unsupervised classifiers. All these algorithms are briefly defined below. 

Interested readers are referred to Chaitra and Kumar et al. [336] for details.  
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4.6.1 Logistic Regression Classifier 

Logistic Regression is one of the simplest machine learning algorithms mostly used for 

binary classification problems. Logistic regression estimates and classifies based on the 

relationship between independent and dependent binary features within a dataset.  

4.6.2 Gaussian Naïve Bayes Classifier 

The Naive Bayesian classifier is a probabilistic classifier. Naive Bayesian (NB) has only one 

parent node in its Directed acyclic graphs (DAGs), which is an unobserved node and has 

many children nodes, representing observed nodes. NB works with a strong assumption 

that all the child nodes are independent of their parent node and thus, one may say that the 

Naïve Bayesian classifier is a type of estimator. 

4.6.3 Decision Tree Classifier 

The Decision tree classifies by sorting input instances based on feature values. Each node 

of the decision tree shows a classified feature from an input instance while each branch 

shows an assumed nodal value. Classification of instances starts from the root and is sorted 

depending on their feature values. 

4.6.4 Random Forest Classifier 

The Random Forest is a supervised machine-learning algorithm. This algorithm creates 

random trees (forests) that are somewhat such as decision trees and the training method 

selected is always begging, as in begging learning models are linearly combined to increase 

the overall accuracy. While growing new trees, a random forest adds more randomness to 

the existing model. Instead of finding the most important target feature for node splitting, 

this algorithm searches for the best feature in the random subset of target features. In this 

way, we get wide diversity which in-return results in a better model. So, as a random forest 

only considers a random subset of features for splitting a node, we can make the trees of 

the model more random by using random thresholding of every feature rather than looking 

for the best threshold value. 

4.6.5 AdaBoost Classifier 

Boosting refers to a group of techniques that creates a strong classifier using many weak 

classifiers. To find a weak classifier, a different machine learning-based algorithm having 
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varied distribution is used. Each learning algorithm generates a new weak classification rule. 

This process is iterated many times and at the end, a boosting algorithm is formed by 

combining all newly generated weak classifiers rules to make a strong rule for prediction. A 

few steps should be followed for the selection of the right distribution: 

 Step 1: Give all the distributions to the base learner and assign equal weights to 

every observation. 

 Step 2: If the first base learner gives any prediction error, then pay more attention 

to the observations causing this prediction error. Then, apply a new base learner. 

 Step 3: Until the base learning limit is reached, or the desired accuracy is achieved, 

keep repeating Step 2. 

4.6.6 K-Nearest Neighbours Classifier 

The k-Nearest Neighbour (kNN) is one of the simplest instance-based learning algorithms. 

The working of kNN is as follows. It classifies all the proximity instances, in a database, 

into a single group and then when a new instance (feature) comes, the classifier observes 

the properties of the instance and places it into the closest matched group (nearest 

neighbour). For accurate classification, initializing a value to k is the most critical step in 

the kNN classifier.  

4.7 Results and Discussions 

All the algorithms are implemented in python using the scikit learn library. Table 4.1 shows 

the hyper-parameter settings of all the classifiers discussed above. Figure. 4.1 demonstrates 

the overall steps involved in the implementation of the supervised and unsupervised 

classifiers.  
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In the pre-processing stage, the heart rate, respiratory rate, and stress/non-stress label data 

are accumulated from the dataset. In the second step, the collected data is split into 70-30% 

or k-folds to have the training and testing sets. In the classification stage, the supervised 

learning classifiers are trained and tested to classify the input data into stress/non-stress 

using boundary fitting while in the case of unsupervised learning classifiers, clustering is 

performed on the input data and two clusters are formed corresponding to stress and non-

stress data. In the final stage (post-processing), different performance evaluation metrics 

(accuracy, recall, precision, f1-score, standard deviation and 95% confidence intervals) are 

calculated and reported.   

The performance of unsupervised and supervised learning algorithms was tested on the 

two datasets. The Stress Recognition in Automobile Drivers Dataset was a smaller dataset 

with 4,129 data points for each feature, i.e., heart rate and respiratory rate, along with 

stress/non-stress labels. The SWELL-KW dataset was a relatively larger dataset with a total 

of 204,885 data points for the heart rate feature along with stress/non-stress conditions. 

Each data point is considered a separate sample and is selected randomly for test and train 

sets, for supervised learning classifiers.  

 

Figure 4.1 Block diagram of the implemented classification methods illustrating pre-processing, 

classification, and post-processing stages. 
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Table 4.1 Hyper-parameters settings and python library used for implementation. 

Algorithm 

Type 
Classifiers 

Train-

test Split 
Hyper-parameters Python Library 
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Logistics 

Regression 

70-30%  

and  

10-fold 

cross-

validation 

 Solver = ‘lbfgs’ 

 Penalty = ‘l2’ 
sklearn.linear_model 

Gaussian 

Naïve 

Bayes 

 Variance smoothing = 1e-09  sklearn.naive_bayes 

Decision 

Tree 

 Quality of split criterion = ‘gini’ 

 The value of max_depth was 
varied between range (1 to 11 with 
an increment of 1) 

 Maximum number of features to 
consider = ‘auto’ 

sklearn.tree 

Random 

Forest 

 Quality of split criterion = ‘gini’ 

 Maximum depth of trees = 11 

 Maximum number of features to 
consider = ‘auto’ 

 Number of trees in the forest = 10 

sklearn.ensemble 

AdaBoost 

 The learning rate varied in range 
(0.01 to 1.1 with an increment of 
0.01) 

 The maximum number of 
estimators at which boosting is 
terminated was varied between the 
range (of 50 to 200 with an 
increment of 10) 

 Algorithm = ‘SAMME.R’ 

sklearn.ensemble 

K-Nearest 

Neighbours 

 The number of neighbours 
required was set to 2 

sklearn.neighbours 

K-Nearest 

Neighbours 

 The number of neighbours 
required to be set at 5 

sklearn.neighbours 
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Affinity 

Propagation 

70-30%  

and  

10-fold 

cross-

validation 

 The damping factor was set at 0.8 
to maintain the current value 
relative to the incoming value 
(weight 1 – damping)  

 Maximum iteration = 200 

 Maximum number of iterations 
with no change in the number of 
estimated clusters  = 15  

sklearn.cluster 

BIRCH 

 The threshold from which the 
radius of the subcluster should be 
lesser = 0.5 

 Number of clusters = length of 
unique ids in the training set 
(default =2) 

sklearn.cluster 

DBSCAN 
 Maximum distance between two 

samples for consideration as 
neighbours (eps) = 0.50 

sklearn.cluster 
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 Minimum samples in the 
neighbourhood of a point to 
consider it as a core point = 9 

 Distance calculation method = 
‘euclidean’ 

K-Mean 
 The number of neighbours 

required was set to 2 
sklearn.cluster 

Mini-Batch 

K-Mean 

 The number of neighbours 
required was set to 2 

sklearn.cluster 

Mean Shift 
 Number of clusters = length of 

unique ids in the training set 
(default =2) 

sklearn.cluster 

OPTICS 

 Maximum distance between two 
samples for consideration as 
neighbours (eps) = 0.80 

 Minimum samples in the 
neighbourhood of a point to 
consider it as a core point = 10 

sklearn.cluster 

In real-time, the unsupervised classifier is fed with control data and asked to classify the 

data into stress and non-stress condition. Then new data point is passed to the classifier 

and based on the centroids calculated using the control data, the new data point is placed 

in a specific cluster. For the comparison, a set of different supervised learning classifiers 

were also implemented, and the performance of the classifiers was evaluated using 

classification accuracies, precision, recall, and F1-scoring matrices. The results of the 

classifiers are discussed below. 

4.7.1 Stress Recognition in Automobile Drivers Dataset   

It is a well-known fact that all the traditional machine learning classifiers are data-hungry. 

As the Stress Recognition in Automobile Drivers dataset is a smaller dataset, the highest 

classification accuracy achieved (with 70-30% train-test split) using combined heart rate and 

respiratory rate along with supervised learning algorithm is 66.8% (AdaBoost classifier) 

while for single feature model i.e., heart rate and respiratory rate separately, the highest 

classification accuracy is 61.9% (Decision Tree classifier) and 66.8% (AdaBoost classifier), 

respectively. These results are better than previously reported accuracy values (52.6% and 

62.2% for heart rate and respiratory rate models) [330]. Similarly, when combined heart rate 

and respiratory rate are used along with unsupervised learning classification, the highest 

classification accuracy achieved is 63.8% (Affinity Propagation classifier). If a single feature 

model is used, the highest accuracy for the heart rate feature model becomes 59.7% while 

for the respiratory rate feature model, it is 65% using the Affinity Propagation classifier. K-
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fold cross-validation (with k = 10) was also performed using supervised learning models. 

The highest achieved accuracies for a single feature model are 59.9% for heart rate and 

63.9% for respiratory rate while two feature models (heart rate and respiratory rate 

combined) gave an accuracy of 65.6%. Detailed analyses of different supervised and 

unsupervised learning algorithms are illustrated in Tables 4.2(a), 4.2(b) and 4.3.  

4.7.2 SWELL-KW Dataset 

The results of different supervised and unsupervised learning algorithms using the SWELL-

KW dataset are illustrated in Table 4.4 (a), Table 4.4 (b) and Table 4.5. The highest 

classification accuracy achieved (with 70-30% train-test split) using a supervised learning 

algorithm is 74.8% (Decision Tree/Random Forest classifier), which is better than 

previously reported results for one physiological modality (accuracy = 64.1%) in [337] while 

for unsupervised learning is 68.3% (Mean shift classifier). The overall classification 

accuracies of the supervised classifiers do not change significantly with k-fold cross-

validation applied to the data. The highest classification accuracy achieved using 10-fold 

validation is 75.0%.  

The other performance matrices, precision, recall, and F1-score, of both datasets, follow 

similar performance trends as the accuracy for comparison of algorithms. 

Table 4.2a. Results of supervised learning algorithms on Stress Recognition in Automobile Drivers 

Dataset. 

Datasets Classifiers Feature 

Test-
Train 
Split 

Classification 
Accuracy 

Precision Recall 
F1-

score 

Stress 

Recognition in 

Automobile 

Drivers Dataset 

Logistic Regression 

Heart rate and 

Respiratory 

rate 

70-30 % 

59.3% 0.59 0.59 0.59 

Gaussian Naive 

Bayes 
56.5% 0.60 0.59 0.59 

Decision Tree 63.4% 0.64 0.64 0.63 

Random Forest 65.0% 0.65 0.66 0.65 

AdaBoost 66.8% 0.67 0.66 0.65 

KNN=5 63.7% 0.63 0.63 0.63 

KNN=2 58.1% 0.60 0.57 0.56 

Stress 

Recognition in 

Automobile 

Drivers Dataset 

Logistic Regression 

Heart rate 

58.4% 0.59 0.58 0.58 

Gaussian Naive 

Bayes 
56.0% 0.59 0.56 0.55 
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Decision Tree 61.9% 0.66 .062 0.57 

Random Forest 56.2% 0.56 0.56 0.56 

AdaBoost 61.5% 0.61 0.61 0.60 

KNN=5 54.4% 0.54 0.54 0.54 

KNN=2 51.7% 0.55 0.52 0.50 

Stress 

Recognition in 

Automobile 

Drivers Dataset 

Logistic Regression 

Respiratory 

rate 

63.2% 0.70 0.63 0.55 

Gaussian Naive 

Bayes 
63.4% 0.72 0.63 0.55 

Decision Tree 62.4% 0.64 0.62 0.63 

Random Forest 56.9% 0.57 0.57 0.57 

AdaBoost 66.8% 0.66 0.67 0.67 

KNN=5 59.5% 0.59 0.60 0.59 

KNN=2 54.0% 0.58 0.54 0.53 

 

Table 4.2b. Results of supervised learning algorithms on Stress Recognition in Automobile Drivers 

Dataset (K-fold Cross Validation). 

Datasets Classifiers Feature 

Test-
Train 
Split 

Classification 
Accuracy 

Standard 
Deviation 

Confidence 
Limits 

Lower Upper 

Stress 

Recognition in 

Automobile 

Drivers Dataset 

Logistic Regression 

Heart rate and 

Respiratory 

rate 

10-fold 

cross-

validation 

61.5% 0.038 58.8% 64.2% 

Gaussian Naive 

Bayes 
61.6% 0.022 58.9% 64.3% 

Decision Tree 64.1% 0.047 61.5% 66.8% 

Random Forest 64.0% 0.029 61.3% 66.6% 

AdaBoost 65.6% 0.036 62.9% 68.2% 

KNN=2 54.9% 0.051 52.2% 57.6% 

KNN=5 58.6% 0.034 55.9% 61.3% 

Stress 

Recognition in 

Automobile 

Drivers Dataset 

Logistic Regression 

Heart rate 

58.7% 0.20 57.2% 60.2% 

Gaussian Naive 

Bayes 
56.4% 0.024 54.9% 57.9% 

Decision Tree 59.9% 0.019 58.4% 61.4% 
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Random Forest 57.5% 0.027 56.0% 59.0% 

AdaBoost 59.9% 0.016 58.4% 61.4% 

KNN=5 52.0% 0.023 50.4% 53.5% 

KNN=5 56.1% 0.024 54.6% 57.6% 

Stress 

Recognition in 

Automobile 

Drivers Dataset 

Logistic Regression 

Respiratory 

rate 

58.3% 0.037 55.6% 61.0% 

Gaussian Naive 

Bayes 
58.7% 0.038 56.0% 61.4% 

Decision Tree 61.4% 0.053 58.7% 64.0% 

Random Forest 59.4% 0.50 56.7% 62.1% 

AdaBoost 63.9% 0.036 61.2% 66.5% 

KNN=2 54.6% 0.039 51.9% 57.4% 

KNN=5 59.0% 0.052 56.3% 61.7% 

 

Table 4.3 Results of unsupervised learning algorithms on Stress Recognition in Automobile 

Drivers Dataset. 

Datasets Classifiers Feature 
Test-Train 

Split 
Classification 

Accuracy 
Precision Recall 

F1-
Score 

Stress 

Recognition 

in 

Automobile 

Drivers 

Dataset  

Affinity 

Propagation 

Heart rate 

and 

Respiratory 

rate 

70-30 % 

63.8% 0.65 0.64 0.62 

BIRCH 54.9% 0.62 0.57 0.50 

DBSCAN 53.8% 0.56 0.54 0.41 

K-Mean 55.7% 0.62 0.56 0.52 

Mini-Batch 

K-Mean 
53.0% 0.28 0.53 0.37 

Mean Shift 53.0% 0.28 0.53 0.37 

OPTICS 54.1% 0.54 0.54 0.53 

Stress 

Recognition 

in 

Automobile 

Drivers 

Dataset 

Affinity 

Propagation 

Heart rate 

59.7% 0.60 0.82 0.69 

BIRCH 49.1% 0.66 0.49 0.38 

DBSCAN 54.7% 0.30 0.55 0.39 
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K-Mean 55.5% 0.61 0.55 0.53 

Mini-Batch 

K-Mean 
54.8% 0.61 0.55 0.52 

Mean Shift 54.7% 0.30 0.55 0.39 

OPTICS 51.6% 0.51 0.52 0.51 

Stress 

Recognition 

in 

Automobile 

Drivers 

Dataset 

Affinity 

Propagation 

Respiratory 

rate 

65.0% 0.77 0.65 0.57 

BIRCH 57.4% 0.33 0.57 0.42 

DBSCAN 60.6% 0.62 0.61 0.53 

K-Mean 59.8% 0.63 0.60 0.60 

Mini-Batch 

K-Mean 
60.3% 0.6 0.60 0.60 

Mean Shift 57.4% 0.33 0.57 0.42 

OPTICS 54.6% 0.49 0.55 0.46 

Table 4.4a. Results of supervised learning algorithms on SWELL-KW Dataset. 

Datasets Classifiers Feature 
Test-
Train 
Split 

Classification 
Accuracy 

Precision Recall 
F1-

score 

SWELL-
KW 

Dataset 

Logistic 
Regression 

Heart 
rate 

70-30 % 

70.2% 0.70 0.70 0.64 

Gaussian 
Naive 
Bayes 

70.3% 0.70 0.70 0.64 

Decision 
Tree 

74.8% 0.74 0.75 0.73 

Random 
Forest 

74.8% 0.74 0.75 0.73 

AdaBoost 74.6% 0.75 0.75 0.71 

KNN=5 71.8% 0.71 0.72 0.71 

KNN=2 62.7% 0.68 0.63 0.64 
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Table 4.4b. Results of supervised learning algorithms on SWELL-KW Dataset (K-fold Cross 

Validation). 

Datasets Classifiers Feature 

Test-
Train 
Split 

Classification 
Accuracy 

Standard 
Deviation 

Confidence 
Limits 

Lower Upper 

SWELL-
KW 

Dataset 

Logistic 
Regression 

Heart 
rate 

10-fold 
cross-

validation 

70.2% 0.002 70.0% 70.4% 

Gaussian Naive 
Bayes 

70.3% 0.002 70.4% 70.5% 

Decision Tree 74.8% 0.002 74.6% 75.0% 

Random Forest 75.0% 0.003 74.8% 75.2% 

AdaBoost 74.6% 0.003 74.4% 74.8% 

KNN=2 62.8% 0.002 62.6% 63.0% 

KNN=5 72.0% 0.003 71.8% 72.2% 

Table 4.5 Results of unsupervised learning algorithms on SWELL-KW Dataset. 

Datasets Classifiers Feature 
Test-
Train 
Split 

Classification 
Accuracy 

Precision Recall F1-Score 

SWELL-
KW 

Dataset 

Affinity 
Propagation 

Heart 
rate 

70-
30 % 

66.5% 0.44 0.67 0.53 

BIRCH 68.1% 0.66 0.68 0.60 

K-Mean 66.7% 0.45 0.67 0.53 

Mini-Batch 
K-Mean 

66.7% 0.45 0.67 0.53 

Mean Shift 68.3% 0.69 0.68 0.60 

DBSCAN 66.7% 0.45 0.67 0.53 

OPTICS 66.7% 0.45 0.67 0.53 

Table 4.6 Results Comparison of supervised learning algorithms on datasets with previously 

reported work. 

Datasets 
Classifier 

Type 
Ref Feature 

Highest 
Reported 

Classification 
Accuracy 

Highest 
Achieved 

Classification 
Accuracy 

[This Study] 
with 70-30% 

SPLIT 

Highest 
Achieved 

Classification 
Accuracy 

[This Study] 
with K-fold 
Validation 

Stress 
Recognition 

in 
Automobile 

Drivers 
Dataset 

Supervised 
learning 

algorithms 

Table 
5.8 of 
[23] 

Respiratory 
Rate 

62.2% 66.8% 63.9% 

Heart rate 52.6% 61.9% 59.9% 

SWELL-
KW Dataset 

Table 4 
of [31] 

Heart rate 64.1% 74.8% 75.0% 
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4.7.3 Summary 

The results of the supervised learning classification algorithm are better than the previously 

reported results [330], [337] using the same datasets, see Table 4.6. As both datasets have 

real-time physiological signals, there are some outliers and noisy signals within the signal. 

Thus, intense pre-processing and outlier detection was performed to cleanse the dataset for 

better training of the classification algorithm. The achievement of better results than the 

previously published results reflects that our performed pre-processing step (thresholding 

and filtering) does help in developing a better classification model. 

Figure 4.2 Bar-plot of classification accuracies of supervised and unsupervised classification 

algorithms using (A) Stress Recognition in Automobile Drivers Dataset and (B) SWELL-KW 

Dataset. 
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The authors acknowledge that these accuracies are not indicative of good performance but 

motivate the researchers to propose better supervised as well as unsupervised learning 

classification models for improved stress monitoring. Figure. 4.2 shows the bar plot of 

classification accuracies of supervised and unsupervised classification algorithms using 

Stress Recognition in Automobile Drivers Dataset (Figure. 4.2A) and SWELL-KW Dataset 

(Figure. 4.2B). The use of an unsupervised classifier is important for the development of a 

non-invasive, robust, and continuous stress monitoring device since labelling the 

physiological signal in the ambulatory environment is a difficult and inaccurate task. The 

results in Tables 4.2 to 4.5 show the comparison of classification efficiencies of supervised 

and unsupervised classification algorithms. The difference in the highest classification 

accuracies is comparable, i.e., for the Stress Recognition in Automobile Drivers dataset is 

1% for the respiratory rate-based model and 3% for two feature-based models. While for 

the SWELL-KW dataset, the difference is 6.5%. The overall accuracies of the supervised 

classifiers are better than the unsupervised classifier but as an unsupervised machine 

learning classifier does not require any intense pre-training as well as stress/non-stress 

labels, these results are encouraging the researchers to use the unsupervised models in stress 

monitoring wearable devices. Further improvements in unsupervised algorithms to 

optimise use in stress monitoring can potentially provide even better detection accuracies.  

4.8 Conclusion 

Stress detection in a real-world environment is a complex task as labelling of the collected 

physiological signals is often inaccurate or non-existing. The questionnaires and self-reports 

are considered the only established way of getting the reference state of the participant's 

emotions. The supervised machine learning classifiers have been able to accurately classify 

the stress state from the non-stress state. The problem of stress level labelling has already 

been reported in many studies but has rarely been addressed.  

One possible solution is the use of an unsupervised machine learning classifier as such 

algorithms do not require labelled data. In this study, we have implemented different 

unsupervised classification algorithms to explore the feasibility of unsupervised stress 

detection and monitoring in different stress-monitoring scenarios. For comparison, a set of 

different supervised learning algorithms was also implemented.  
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We have also performed an analysis to investigate the significant difference in the model 

performance using the standard deviations and confidence intervals. The performance of 

some models differs significantly from others. For instance, the performances of decision 

tree classifiers compared to k-nearest neighbours (k=2) on Stress Recognition in the 

Automobile Drivers dataset and random forest classifier compared to the logistic regression 

classifier on the SWELL-KW dataset are quite different. This leads us to the conclusion 

that a careful selection of classification models is required when aiming to develop an 

accurate stress detection system. The selection of the classifier is dependent on the type 

and shape of the data. It also depends upon the number of data points within the dataset. 

The classification results indicate that unsupervised machine learning classifiers can show 

good performance in terms of classification accuracy, precision, recall and F1-score, 

without any training phase which is usually time-consuming and inaccurate. The findings 

enhance our understanding of the feasibility of unsupervised learning classifiers in wearable 

devices. Furthermore, these findings also may inform further approaches for the detection 

and monitoring of stress in an ambulatory environment. 
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Chapter 5   

Photoplethysmography (PPG)-

Based Respiratory Rate Estimation 

Algorithm 
 

The finding of the previous two chapters (Chapter 3 and Chapter 4) suggest that respiratory 

rate along with heart rate is indeed the best predictor of stress conditions. In the literature, 

most of the studies estimate (extract) the information on respiratory and heart rates using 

ECG signals. The ECG devices come with a lot of drawbacks including the adhesiveness 

of electrodes, motion artefacts and a controlled environment (cannot be used 24/7). The 

use of a PPG signal (optical sensor) can be an alternative and has shown a good correlation 

with ECG signals (0.7). A PPG sensor comes in most smart wrist-worn watches and is 

feasible for long-time continuous data recording (as they have longer battery life).  

The heart rate estimation is relatively easier (counting the number of peaks in a minute) but 

extraction of respiratory rate information from the PPG signal is a complex task. Most of 

the existing algorithms for the estimation of respiratory rate using PPG signal are sensitive 

to external noises and may require the selection of certain algorithm-specific parameters, 

through the trial and error method. Thus, this chapter5 presents the newly developed 

algorithm to estimate the respiratory rate using a PPG sensor signal for health monitoring. 

The algorithm is resistant to signal loss and can handle low-quality signals from the sensor, 

which completes the fifth objective (first half) of the thesis.  

It combines selective windowing, pre-processing and signal conditioning, modified Welch 

filtering and postprocessing to achieve high accuracy and robustness to noise. The 

proposed algorithm was developed and evaluated using the BIDMC dataset (containing 53 

subjects’ data, each recorded for 8 minutes). The results endorse that integration of the 

                                                 
5 The following body of the chapter is exact copy of the paper published in the Journal of Medical and Biological 
Engineering, JMBE (2022). I am the first lead author in the paper. The conceptualization, formal analysis, 
investigation and visualization were also done by me. Designed methodology and validation were led by my supervisors 
and me. I led all parts of the work with the support of my supervisors. 
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proposed algorithm into a commercially available PPG device would expand their 

functionality from the measurement of oxygen saturation level and heart rate to the 

continuous measurement of the respiratory rate.  
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5.1 Photoplethysmography-Based Respiratory Rate 

Estimation Algorithm for Health Monitoring Applications 

Abstract: Purpose: Respiratory rate can provide auxiliary information on the physiological 

changes within the human body, such as physical and emotional stress. In a clinical setup, 

the abnormal respiratory rate can be indicative of the deterioration of the patient's 

condition. Most of the existing algorithms for the estimation of respiratory rate using 

photoplethysmography (PPG) are sensitive to external noise and may require the selection 

of certain algorithm-specific parameters, through the trial-and-error method. Methods: This 

chapter proposes a new algorithm to estimate the respiratory rate using a 

photoplethysmography sensor signal for health monitoring. The algorithm is resistant to 

signal loss and can handle low-quality signals from the sensor. It combines selective 

windowing, pre-processing and signal conditioning, modified Welch filtering and 

postprocessing to achieve high accuracy and robustness to noise. Results: The Mean 

Absolute Error and the Root Mean Square Error of the proposed algorithm, with the 

optimal signal window size, are determined to be 2.05 breaths count per minute and 2.47 

breaths count per minute, respectively, when tested on a publicly available dataset. These 

results present a significant improvement in accuracy over previously reported methods. 

The proposed algorithm achieved comparable results to the existing algorithms in the 

literature on the BIDMC dataset (containing data from 53 subjects, each recorded for 8 

minutes) for other signal window sizes. Conclusion: The results endorse that integration of 

the proposed algorithm into a commercially available pulse oximetry device would expand 

its functionality from the measurement of oxygen saturation level and heart rate to the 

continuous measurement of the respiratory rate with good efficiency at home and in a 

clinical setting. 

 

Keywords: photoplethysmography, respiratory rate, adaptive estimation, wearable sensors, 

health monitoring, algorithms.  
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5.2 Introduction 

In recent years, respiratory rate (RespR), blood pressure (BP) and heart rate (HR) 

monitoring are considered essential for continuous and primary assessment of the patient’s 

well-being [338]. The inhalation and exhalation processes can increase or decrease the 

blood flow within the body. Therefore, respiratory rate can be determined by measuring 

the changes in the heartbeats or blood flow [339]–[342]. There is significant evidence in the 

literature to suggest that irregular respiration is an imperative indicator of some serious 

illnesses [343]–[345]. The normal range of respiratory rate for children (1-5 years) is above 

24 and less than 40 breaths per min while above 5 years, the normal range is between 12 to 

25 breaths per minute. Any deviation from the normal range is an indicator of respiratory 

distress and requires instant clinical intervention [346], [347]. According to the World 

Health Organisation (WHO), elevated respiratory rate is observed in cases of chronic 

obstructive pulmonary disease, asthma, hypoxia, and pneumonia [348], [349].  

In hospitals, respiratory rate is monitored using thoracic/abdominal plethysmography belts, 

oral/nasal pressure transducers, capnography, and transthoracic impedance pneumography 

[350], [351]. However, these devices are not as user-friendly as mobile wearable devices. 

Most smartwatches use a photoplethysmography signal to extract only the heart rate even 

though the PPG signal can also be used to extract RespR [352], [353]. While algorithms 

have been proposed in the literature to extract respiratory rates from PPG signals, each 

algorithm has certain limitations. Estimation of respiratory rate from a PPG signal can be 

done by using digital signal processing (DSP) techniques. Among these techniques, digital 

filters are commonly used to remove noise and extract variables of interest from the raw 

signals. However, the performance of DSP filters is highly dependent on the cut-off 

frequency of the filter. Other techniques include analytical methods, which are very 

sensitive to noise and result in very poor respiratory rate detection in presence of motion 

artefacts. Time-frequency analysis-based methods such as Wavelet transform addresses 

most of the common problems of filtering and analytical methods. It is less sensitive to 

noise and motion artefacts but requires the selection of more than one parameter such as 

the mother wavelet function and the total number of decomposition levels, which in 

practice are unknown [354], [355]. A list of various categories of respiratory rate estimation 

methods and their limitations is provided in Table 5.1. 
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One of the major challenges in respiratory rate estimation from PPG signal is respiratory-

induced amplitude variation [356]. During the inhale cycle, the intra-thoracic pressure 

changes cause decreased stroke volume of the left ventricle, which leads to a smaller PPG 

amplitude. Similarly, during expiration, the left ventricle stroke volume increases, which 

results in increased pulse amplitude. In the literature, a variety of methods have been 

proposed for the estimation of RespR from a PPG signal. Liu et al. [352] have highlighted 

the merits and demerits of different respiratory rate estimation algorithms. Another key 

challenge in developing a respiratory rate extraction algorithm is the estimation of optimal 

window size for the segmentation of the signal. A shorter time window provides high 

resolution, low computational cost, and better real-time performance. In contrast, a longer 

window size provides better estimation accuracy [357]. The proposed algorithm is 

developed considering all the major limitations including noise and poor signal quality, the 

effect of window size, and the cut-off frequencies of the filters.  

For evaluation of the proposed algorithm, the estimated respiratory rate is compared with 

the reference respiration data provided in the publicly available dataset called BIDMC 

dataset. The dataset is available at PhysioNet [332] while for filtering and signal processing, 

an open-source toolkit Heartpy [358] with some modifications was used. The performance 

of the proposed algorithm was benchmarked using accuracy assessment metrics against 

published results of existing algorithms.  

Table 5.1 Respiratory rate estimation methods and their limitations. 

Methods Limitations 

Digital 

Method 

The digital technique (FFT, Welch, Notch) 

[359]  

Highly dependent on the selection of 

cut-off frequencies. 

Wavelet 

methods 

Wavelet transforms [360], [361]  Requires the selection of more than one 

parameter such as the mother wavelet 

function and the total number of 

decomposition levels. 
Smart fusion [357]  

Adaptive 

estimations 

Adaptive respiratory rate estimators [359], 

[362]  
Very sensitive to noise and results in very 

poor respiratory rate estimation if there 

are any motion artefacts in the signal. Empirical mode decomposition (EMD) 

[363], [364]  

Autoregression [365], [366]  
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Analytical 

Methods 

Artificial neural networks [367]  

Often requires a relatively long time to 

converge and give an accurate estimation 

of respiratory rate. 

Principal component analysis (PCA) [368]  

Complex demodulation [369]  

Independent component analysis (ICA) [370]  

 

5.3  Proposed Algorithm 

Figure 5.1 shows the pre-processing, signal analysis and post-processing steps of the 

proposed respiratory rate estimation algorithm.  

5.3.1 Pre-processing steps 

For pre-recorded datasets, there is one additional step of signal interpolation is included in 

the pre-processing stage and is explained below. All the other steps shown in Figure 5.1 are 

the same for pre-recorded as well as real-time PPG signals.  

 

Figure 5.1 Pre-processing, signal analysis and post-processing steps of the respiratory rate 

estimation algorithm. 
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5.3.1.1 Signal interpolation 

The first step in the pre-processing stage for a pre-recorded dataset is to extract the raw 

PPG signal values from the dataset and reference respiratory rate values. In the literature, 

several techniques have been proposed to address the problem of a missing signal [371], 

[372]. The simplest and easiest way to tackle this problem is to remove the signal points 

with missing values. However, eliminating the signal points from the dataset is not 

encouraged by statisticians as it comes under signal manipulation and leads to signal loss. 

It is recommended to interpolate for missing data as eliminating or inserting zeros causes a 

complete loss of the data (information or signal). This loss of data might play an important 

role in deriving conclusions or in determining any statistical outcome. Thus, replacing the 

missing signal, generally marked as NaN (not a number), with the mean value of two 

neighbouring signal samples, might not affect the overall signal behaviour and derived 

conclusions/results can be considered valid.   

5.3.1.2 Digital filtering 

The raw PPG signal has information on heart rate and respiratory rate as well as noise. The 

digital filtering method is used to remove the noise and extract the relevant information. 

The raw PPG signal is passed through a bandpass Butterworth filter to allow only the 

frequencies within the range of minimum and maximum respiratory rate (i.e., 0.1-0.4Hz or 

6-24 breaths per minute), as shown in Figure 5.2. 



 

131 

 

  

5.3.1.3 Peak enhancement 

To enhance the signal-to-noise ratio and to get better detection of the peaks, the algorithm 

performs peak enhancement using the peak enhancement algorithm. This function makes 

the higher peaks more dominant while suppressing the smaller peaks, for better detection 

of the peaks. This function scales the signal to the specified lower and upper range. The 

formula is as in equation (5.1): 

𝑃𝑒𝑛ℎ =  𝑟𝑏 ∗  ((𝑥 − 𝑚𝑖𝑛 (𝑥))/𝑟𝑎𝑛𝑔𝑒(𝑥))  +  𝑙_𝑙𝑡  (5.1) 

(a) (b) 

(c) (d) 

Figure 5.2 Extraction of respiratory rate signal from raw PPG signal. (a) shows the raw PPG 

signal imported from the dataset (b) is the frequency domain signal of the same raw PPG signal. 

(c) illustrates the filtered signal passed through band pass Butterworth filter with a cut-off 

frequency of 0.1-0.4 Hz while (d) is the frequency domain representation of the filtered signal. 

Note that only the frequencies between 0.1 and 0.4 are passed and all others are blocked (showing 

flat line). 
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Where 𝑃𝑒𝑛ℎ is peak enhancement, 𝑥 is the raw signal, 𝑟𝑏 is the range of upper limit and 

𝑙_𝑙𝑡 (lower limits), given by the user (by default it is set at 1024 and 0, respectively). The 

𝑟𝑎𝑛𝑔𝑒(𝑥) is a valued range calculated by subtracting the maximum value of the analysed 

signal from the minimum value.  

5.3.1.4 Outlier detection 

Most of the time, PPG devices have loose contact with the body causing abrupt changes, 

possibly due to sudden moves of the finger or for other unknown reasons, in the raw signal. 

An outlier detection function is required to eliminate these baseline abrupt changes. These 

changes could not be completely removed by general digital filters as they contain wide-

band frequency components. In the developed algorithm, the outlier can be removed using 

the Hampel filtering technique [373], [374].  

The goal of the Hampel filter is to identify and replace outliers in each window analysed. It 

uses a sliding window of configurable width to go over the signal. The median and the 

standard deviation are calculated for each window, of x seconds, and expressed as the 

median absolute deviation (MAD).  For each sample of x, the algorithm computes the 

median of a window composed of the sample and its six surrounding samples (if window 

size = 6), three per side. If a sample differs more than the median + three standard 

deviations, it is replaced with the median. As the algorithm uses 6 neighbouring samples 

(data point +3 per side) to cover most of the signal, only the last two sample/data points 

are left at the end. To include them for outlier detection, padding is performed. Figure 5.3 

shows a sample example of how outlier removal works. Figure 5.3(a) exemplifies an outlier 

present in a PPG signal while Figure 5.3(b) shows the output of the Hampel filter and 

interpolated PPG signal after the removal of the outlier.  
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5.3.1.5 Entropy-based signal quality index (ESQI) 

One of the objectives of the proposed algorithm is to accurately extract the respiratory rate 

even from a low-quality signal. Entropy Signal Quality Index (ESQI) scoring was proposed 

by Selvaraj et al. [375]. It quantifies the difference in the probability distribution (PDF) of 

raw signal from the uniform (normal) distribution and provides a measure of uncertainty 

present in the analysed signal [376]. The equation to calculate ESQI is as: 

𝐸𝑆𝑄𝐼 = − ∑ 𝑥[𝑖]2𝑁
𝑖=1  𝑙𝑜𝑔𝑒(𝑥[𝑖]

2)   (5.2) 

In equation 5.2, 𝑥 is the raw PPG signal and N is the number of points within the analysed 

raw PPG signal. The signal quality assessment revealed that for some portion of the signal, 

𝑥[𝑖]2  → 0 (no or fewer fluctuations) then 𝑙𝑜𝑔𝑒(𝑥[𝑖]
2) → 𝑛𝑎𝑛. Thus, the ESQI value 

(a) 

 

(b) 

 Figure 5.4 Outlier removal using Hampel filter with window size = 6. 
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returns as undefined. The algorithm skips the further computation for respiratory rate 

estimation if the ESQI is undefined (𝑛𝑎𝑛).  

5.3.2 Signal analysis and respiratory rate estimation 

5.3.2.1 Peak detection 

The next step is to analyse the signal. The algorithm detects peaks within the peak-enhanced 

signal. This is a crucial step as all the further calculations will be dependent on the detected 

peak. Once peaks are detected, the algorithm calculates the systolic peak interval or RR 

interval. Peak detection can be done by using a moving average. An intersection threshold 

is made, and a Region of Interest (ROI) is selected between two intersection points where 

the signal amplitude is the highest, as shown in Figure 5.4(a). If the raw PGG signal had a 

clipped signal, the algorithm uses cubic spline interpolation to interpolate the missing signal 

before peak detection as shown in Figure 5.4(b). The red circles in Figure 5.4(a) mark ROI 

and two intersecting points are used to determine the peak while in Figure 5.4(b) they show 

the clipped signal (in blue) and cubic spline interpolated signal (in black).  

 

(a) An example of peak detection using moving average from raw PPG signal 

(b)  An example of interpolation of clipped signal using cubic spline interpolation from raw PPG signal 

Figure 5.5 Peak detection and interpolation of the clipped signal. 
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5.3.2.2 Respiratory rate estimation 

Sometime after the detection of R-R peaks, there is a possibility of the detection of false 

peaks [377], [378]. The proposed algorithm looks for any anomalies in the detected peak 

array using RR intervals. The R-R peaks were not considered if the interval between two 

adjacent peaks is less than 30% of the mean interval of the analysed signal, as mentioned in 

[358]. Based on updated R-R peaks, new RR intervals are calculated. The new values of the 

RR interval are then used to calculate different time-series measurements. These 

measurements include heart rate in beats per minute (BPM), RR intervals or inter-beat 

intervals (IBI) and estimated respiratory rate in breaths per min. The respiratory rate is 

calculated by estimating power spectrum density (PSD) and respiratory frequency band 

(breaths/min) using Welch’s method [379], [380]. Welch’s method divides the inter-beat 

intervals (signal) into overlapping segments and computes a modified periodogram for each 

segment. Then an average of all periodograms along with an array of respiratory frequency 

bands are returned at the output. Table 5.2 describes the parameter initialisation values used 

in the proposed algorithm. The respiratory rate is the maximum frequency within the 

respiratory frequency band (breaths/min) that is, where PSD is maximum. 

Table 5.2 Welch filter parameters for respiratory rate estimation. 

S. No. Parameter Value/Method 

1 Sampling frequency 125 

2 Window Hann Window 

3 Number of overlapping points 50% 

4 Length of FFT Length of data 

5 Scaling Density 

6 Averaging periodogram Mean 

 

5.3.3 Post-processing steps 

Usually, the PPG waveform varies in synchrony with the respiratory cycle [381]. During 

the inhale cycle, the intra-thoracic pressure changes causing decreased stroke volume of the 

left ventricle, which leads to a smaller amplitude (PPG) pulse. Similarly, during expiration, 

the left ventricle stroke volume increases, which increases the pulse amplitude. This 

phenomenon is known as amplitude modulation of cardiac synchronous pulsatile 

waveform or respiratory-induced amplitude variation [356].  
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As in the prior stages, the proposed algorithm does not account for amplitude variation, 

due to active filtering and peak enhancement steps, which is essential for accurate peak 

detection; In the post-processing stage, the estimated respiratory rate is scaled based on the 

variation (changes) in the amplitude of the PPG signal. The scaling is essential as the 

proposed (and most of the existing algorithms) does not account for amplitude variation 

in the pre-processing stage. Thus, a separate scaling is applied to the estimated respiratory 

rate. This scaling factor depends on the range (difference between maximum and minimum 

value) of the signal and defined window size (of 𝑥 seconds).  

The proposed scaling method is generalisable and can work for a variety of PPG datasets. 

Nevertheless, there might be scenarios where some fine-tuning may be required for better 

estimation. As the last step, the algorithm makes sure the estimated values of the respiratory 

rate are within a specific threshold and do not exceed the maximum physiologically possible 

breathing rate.   

5.4 Validation of Proposed Algorithm 

To validate the proposed algorithm and assess its performance, a publicly available dataset, 

known as Berth Israel Deaconess Medical Centre (BIDMC) dataset, was used. The 

proposed algorithm was applied to the PPG data in the BIDMC dataset for the estimation 

of respiratory rate and the performance was benchmarked against various existing 

algorithms using the most common performance evaluation metrics.   

5.4.1 BIDMC Dataset Overview 

The dataset consists of electrocardiogram (ECG), photoplethysmogram (PPG) and 

impedance pneumogram respiratory signals of patients in the intensive care unit at Berth 

Israel Deaconess Medical Centre (BIDMC), Boston, USA [332], [382]. The presented 

dataset was proposed to evaluate the performance of any newly developed respiratory rate 

algorithm and reflect its potential usability in a real-world critical care environment. Table 

5.3 shows the key statistical features of the BIDMC dataset. The dataset is comprised of 53 

patients’ recordings, each of 8-minute duration, containing:  
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Table 5.3 Key statistical features of the respiratory rate in the BIDMC dataset (unit = breaths per 

minute). 

N 
Validated 53 

Outlier 2 (Subject 13 and 33) 

 With Outlier Without Outlier 

Mean 17.42 17.63 

Median 17.89 17.89 

Standard Deviation 3.22 2.62 

Variance 10.39 6.86 

Minimum 3.71 10.47 

Maximum 24.67 24.67 

 

 Physiological signals; were sampled at 125 Hz. 

 Physiological parameters: such as respiratory rate, blood oxygen saturation levels 

and heart rate sampled at 1 Hz. 

 Age and gender; are fixed parameters. 

 Manually annotated individual breaths, annotated independently by two 

researchers.   

 

5.4.2 Performance evaluation metrics 

For the evaluation of the developed algorithm, Mean Absolute Error (MAE) and Root 

Mean Square Error (RMSE) metrics were used, and the performance of the proposed 

algorithm was compared with existing algorithms.  

 The mean absolute error (MAE) is an average measure of difference (error) between the 

reference value and the algorithm’s estimated value of that observation. Mathematically, 

MAE is calculated using equation 5.3 and is as follows: 

MAE = ∑
|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑣𝑎𝑙𝑢𝑒𝑖−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖|

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

𝑁
𝑖=1     (5.3) 

 The root means square error (RMSE) is a square root of the mean of the square of 

estimation error. The RMSE shows the standard deviation of the estimation error and is 

considered a good measure of accuracy. Equation 5 illustrates RMSE mathematically. 
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RMSE = √∑
|((𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑣𝑎𝑙𝑢𝑒𝑖−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖)|

2

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
𝑁
𝑖=1    (5.4) 

In Equations 5.3 and 5.4, the reference value denotes the real respiratory rate reported in the 

BIDMC dataset while the estimated value denotes the calculated respiratory rate.   

5.5  Results and Discussion 

To estimate the respiratory rate and perform estimation error analysis, data from 51 patients 

in the BIDMC dataset were used, discarding the two outliers mentioned in Table 5.3. The 

two patients that are excluded from this study are patient 13 and patient 33. Reference 

respiratory rate values of patient 13 are missing in the dataset while the raw data of patient 

33 are too distorted to extract any meaningful information. The respiratory rate was 

calculated using window sizes of 10, 20, 30, 45, 60, 90, and 120 seconds, defined at pre-

processing step. For comparison of the developed algorithm with other state-of-the-art 

algorithms [357], [382]–[384], a window size of 32 and 64 seconds was also used to estimate 

the respiratory rate to match the window sizes with the previously published algorithms.  

The smaller window size yields less processing and computation time, but it can give 

inaccurate readings of respiratory rate. While using a larger window size, the overall 

accuracy of the estimation can be improved but it is difficult to estimate the lowest 

detectable respiratory rate [357]. Thus, a careful trade-off is needed while selecting any 

specific window size for the analysis.  

5.5.1 Performance evaluation 

The proposed algorithm was able to estimate the respiratory rate accurately for all the 

subjects within the BIDMC dataset excluding subject 18, see supplementary tables Chapter 

5 S1 and Chapter 5 S2, in appendix chapter 5 (Appendix 9.2). Figure 5.4 shows the error in 

the estimation of respiratory rate using different window sizes with and without Entropy-

based signal quality (ESQI) assessment. ESQI is generally used in offline data processing 

to select good-quality signals from raw data, and it improves estimation accuracy, as the 

poor-quality data is rejected. However, ESQI will result in a loss of data in online/real-time 

applications and may not be applicable in many cases. We wanted to assess whether the 

proposed algorithm can produce acceptable results without ESQI. The MAE and RMSE 
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values (in terms of breaths per minute) are close to each other endorsing the claim of 

accurate estimation of respiratory rate even using a low-quality signal.  

 

From Figure 5.5, it can also be noticed that the minimum mean absolute error (MAE) and 

root mean square error (RMSE) are achieved by using a window size of 90 seconds for all 

the subjects. The error rate continues to decrease till a window size of 90 seconds 

(highlighted by the red box) and increases for a window size of 120 seconds.  

5.5.2 Selection of best window size 

The best window size for respiratory rate estimation varies from subject to subject. In the 

real-world scenario, the user can calibrate the respiratory rate monitoring device beforehand 

by taking regular breaths and manually entering them into the device. The device will then 

compare the estimated respiratory rate with the manually entered value and determine the 

suitable window size for respiratory rate estimation.  

When MAE and RMSE are calculated using the best window size for each subject, the 

overall error decreases from 3.32 (breaths per minute) and 3.67 (breaths per minute) to 2.15 

(breaths per minute) and 2.56 (breaths per minute) (without any signal quality assessment) 

while from 3.29 (breaths per minute) and 3.59 (breaths per minute) to 2.05 (breaths per 

Figure 5.6 Error analysis of estimated respiratory rate (breaths per minute) using different 

window sizes, with and without ESQI. 
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minute) and 2.47 (breaths per minute) (with ESQI assessment), respectively, as shown in 

Table 5.4. This improvement results in an over 35% reduction in mean estimation error. 

Table 5.4 Error in respiratory rate estimation using 90 sec and best-suited window sizes (unit for 

MAE and RMSE = breath per minute). 

Metrics (without ESQI criteria) Metrics (with ESQI criteria) 

Window 90 sec Best suited Window 90 sec Best suited 

MAE 3.32 2.15 MAE 3.29 2.05 

RMSE 3.67 2.56 RMSE 3.59 2.47 

 

Table 5.5 Comparison of proposed respiratory rate estimation algorithm: Mean Absolute 

Error (MAE) and Window Sizes. 

Algorithm MAE (breaths per minute) Window Size 

Karlen et al.     [357] 5.80 

 
32 

Pimentel et al. [382] 4.00 

Nilsson et al.   [383] 5.40 

Fleming et al.  [384] 5.20 

Proposed 3.97 

Karlen et al.     [357] 5.70 

64 

Pimentel et al. [382] 2.70 

Nilsson et al.   [383] 4.60 

Fleming et al.  [384] 5.50 

Proposed 3.35 

Proposed 2.05 Best Window Size* 
*Calculation is done using the best window size for each subject; see Table S2 (Appendix Chapter 4, 

appendix 9.2) 

 

5.5.3 Comparison with state-of-the-art respiratory rate estimation 

algorithms 

The performance of the proposed algorithm was compared with Karlen et al. [357], 

Pimentel et al. [382], Nilsson et al. [383] and Fleming et al. [384]. These algorithms are 

representative of key studies that are either state-of-the-art or considered benchmark 

investigations. Table 5.5 shows the values of MAE for each algorithm using a window size 

of 32 and 64 seconds. The proposed algorithm gives compatible accuracy to the existing 

algorithms with the MAE of 3.97 (breaths per minute) and 3.35 (breaths per minute) for 

each window, respectively. The algorithm also gives the lowest MAE value i.e., 2.05 if the 

best window size for each subject is used.  
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5.6 Conclusion 

In this study, we proposed an algorithm to extract the respiratory rate from a PPG signal. 

The algorithm is based on three steps that are pre-processing, signal analysis, and post-

processing. In the pre-processing stage, the signal is analysed for required signal extraction, 

filtration of the signal above and below the expected range, and peak enhancement for 

increasing the signal-to-noise ratio. In the signal analysis stage, peak detection, peak-to-peak 

interval, error in peak detection and correction, updated peak-to-peak interval, calculation 

of different time-series measurements and estimation of respiratory rate is done. As the 

amplitude of the PPG signal is affected by respiratory rate, in the final stage, scaling is 

performed based on amplitude variation.  

For the validation of the proposed algorithm, we used the BIDMC signal set and calculated 

the mean absolute error and root mean squared error. One of the aims of this study was to 

determine the impact of different window sizes on the calculation of respiratory rate in real-

time. The results in Figure 5.5 suggest that a window size of 90 seconds is best for the 

estimation of respiratory rate using the BIDMC signal set, as it gives minimum MAE and 

RMSE values. The best window size to estimate the respiratory rate differs from person to 

person. If the best window size for each subject is used for the error analysis, then the 

maximum MAE and RMSE of our algorithm decrease to 2.05 and 2.47, respectively (see 

Table 5.3).  

In the future, the scaling technique will be improved which will eventually improve the 

estimation accuracy furthermore. The scaling value is the only hyperparameter that might 

need to be determined empirically. The default method of scaling does work for most of 

the PPG data but may require improvement in some cases. To solve this problem, the 

algorithm needs to be evaluated on different datasets to determine a more generalizable 

scaling value to estimate the respiratory rate accurately.  

The developed algorithm can estimate the respiratory rate from the PPG signal collected 

through a pulse oximeter to provide a simple, cheap, and signal-sensor solution. Integration 

of the proposed algorithm to a commercially available pulse oximetry device would expand 

its functionality from the measurement of oxygen saturation level (SpO2) and heart rate to 
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the continuous measurement of the respiratory rate with great efficiency in the clinical 

setting as well as in the ambulatory home-based environment.  

Supplementary Files 

In the appendix Chapter 5, Fig. Chapter 5 S1 to Chapter 5 Fig. S9 shows the Bland-Altman 

plot of all the subjects using a window size of 10, 20, 30, 32, 45, 60, 64, 120 and the best 

window in seconds. According to the United States Food and Drug Administration (FDA), 

repeated measurements through a device must lie within the allowed 3Ϭ (± 3* standard 

deviation) range to be classified as a Class II medical device [385]. In the proposed case, 

the bias values of all the Bland-Altman plots in the supplementary figures are near zero 

while 95% of the data lies within the limits of agreement (±1.96 * standard deviation), 

Tabulated in Table Chapter 5 A1 (Appendix Chapter 5). These results endorse that the 

developed algorithm can estimate respiratory rate close to the reference respiratory rate and 

thus can be implemented in the commercially available devices that collect PPG signals for 

long-term continuous respiratory rate measurements.  
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Chapter 6 

A Pilot Study using Non-Invasive 

Wearable Device and Stress-

Predict Dataset 

While performing studies presented in Chapter 3, Chapter 4 and Chapter 5, a gap of limited, 

well-annotate, publicly available stress-related datasets was identified. Most of the publicly 

available datasets did not provide annotation of stress and baseline data readings, which 

made them difficult to use for the research. Moreover, if they had annotations, they lack 

the respiratory rate reading (which is determined to be the most sensitive and specific 

indicator of stress). Thus, a clinical study was designed to fill this gap by developing a 

publicly available stress-predict dataset and validating the developed algorithm (Chapter 5) 

on the healthy volunteer’s data (to complete the fifth objective of the thesis). 

This study6 monitored the stress levels of healthy subjects using wrist-worn watches i.e, 

Emaptica E4. The optical sensor (PPG sensor) detected the signals corresponding to blood 

volume changes under the human skin and records them on the watch. While wearing these 

watches, the 35 healthy volunteers underwent a series of tasks and answered questionnaires 

designed to induce a level of everyday stress for 60 minutes. The changes in the blood flow 

during each task were recorded by the watch and were labelled as occurring during a stress-

induced activity or a rest period (no stress). The information gathered from the watches 

                                                 
6 The following body of the chapter is exact copy of the paper published in Sensors (2022). I am the first lead author 

in these papers, which is co-authored with my supervisors. The clinical study is been approved by Clinical Research 

Ethics Committee, Merlin Park Hospital, Galway, Ireland on 19th January 2022 as: “Ref: C.A. 2731 - Stress 

levels monitoring using sensor-derived signals from non-invasive wearable device and dataset development” (approval 

letter attached in Chapter 5 Appendix). All the authors have a substantial contribution to preparing ethics 

applications. Nicola Glynn and John Killilea helped me in volunteer recruitment and data collection. Formal analysis 

and visualization were done with the help of Andrew Simphkin and Davood Roshan. Designed protocol and outcome 

validation was led by my supervisors. I led all parts of the work with the support of my supervisors. 
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and the questionnaires is compiled together as Stress-Predict Dataset. The dataset is 

consisting of heart rate and estimated respiratory rate readings, performing three stress-

inducing tasks (i.e., Stroop colour test, interview session and hyperventilation) along with a 

rest period in between each task.  

Most stress detection and monitoring studies report only the classification results and lack 

a statistical analysis of the extracted features. Moreover, the studies that report statistical 

analysis results perform a group analysis (considering all participants as a single group). The 

limitation of the group analysis is that, within a group (each participant), the variability of 

stress-related parameters is quite high. For example, the normal heart-rate values of one 

participant could overlap with the stressed heart-rate value of another participant and vice 

versa. The group analysis exploits this variability and thus results in biased outcomes. In 

this study, an individual analysis was also performed, along with a group analysis to get 

better insightful information.  

To validate that the difference in the stress versus baseline readings is significant, the linear 

mixed model was implemented for group analysis while the development of a personalized 

adaptive reference range allowed for individual-level monitoring of heart rates and 

respiratory rates. Both models validated the hypothesis that the physiological data collected 

during stress and non-stress/baseline task are statistically differentiable. 
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6.1 Stress Monitoring Using Wearable Sensors: A Pilot Study 

and Stress-Predict Dataset 

Abstract: With the recent advancement in the field of wearable technologies, the 

opportunity to monitor stress continuously using different physiological variables has 

gained significant interest. The early detection of stress can help improve healthcare and 

minimizes the negative impact of long-term stress. This chapter reports the outcomes of a 

pilot study and associated stress monitoring dataset, named “Stress-Predict Dataset", 

created by collecting physiological signals from healthy subjects using wrist-worn watches 

with a photoplethysmogram (PPG) sensor. While wearing these watches, 35 healthy 

volunteers underwent a series of tasks (i.e., Stroop colour test, Trier Social Stress Test and 

Hyperventilation Provocation Test) along with a rest period in between each task. They 

also answered questionnaires designed to induce stress levels compatible with daily life. The 

changes in the blood volume pulse (BVP) and heart rate were recorded by the watch and 

were labelled as occurring during stress-inducing tasks or a rest period (no stress). 

Additionally, the respiratory rate was estimated using the BVP signal. Statistical models and 

personalised adaptive reference ranges were used to determine the utility of the proposed 

stressors and extracted variables (heart rate and respiratory rate). The analysis showed that 

the interview session was the most significant stress stimulus causing a significant variation 

in heart rate of 27 (77%) participants and respiratory rate of 28 (80%) participants out of 

35. The outcomes of this study contribute to understanding the role of stressors and their 

association with physiological response and provide a dataset to help develop new wearable 

solutions for more reliable, valid, and sensitive physiological stress monitoring. 

Keywords: Stress-predict dataset; photoplethysmogram (PPG); biomedical signal 

processing; adaptive reference ranges; non-invasive devices; health monitoring; heart rate; 

respiratory rate. 

6.2 Introduction 

Stress is known as a silent killer that contributes to several life-threatening health conditions 

such as high blood pressure, heart disease, and diabetes. According to the British Health 

and Safety Executive, 50% of all work-related illnesses in 2021-22 are due to stress [7]. 

Stress has negative effects on mental health as well as the overall well-being of a person 
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[284]. Short-term stress may not impose any threat to young and healthy people who have 

an adaptive coping response, but if the stressful experience is too persistent or too strong, 

it may increase the risk of developing chronic conditions associated with depression and 

anxiety [77]. Long-term stress is also known to increase the risk of life-threatening illnesses 

such as heart disease, high blood pressure, diabetes, and obesity while an acute episode of 

stress can potentially trigger a heart attack or stroke [285]. In clinical settings, the subjective 

experience of stress is evaluated from psychometric methods such as self-reported 

questionnaires e.g. the Perceived Stress Scale (PSS) [386] and/or State-Trait Anxiety 

Inventory (STAI) [88].  

To develop a reliable objective stress monitoring device, it is essential to understand the 

effects of stress from the perspective of changes in the relevant physiological and 

biochemical variables. During standardized stress inducting procedures, the sympathetic 

nervous system of the body is triggered causing the release of different hormones (such as 

cortisol or adrenaline) [14], [15]. These hormones lead to changes in respiratory rate, and 

heart rate and trigger muscle tension among other physiological responses that prepare the 

body for fight or flight reactions. Both physical and biochemical changes can be used as 

indicators of stress and measured using different wearables. Some real-time stress 

monitoring devices/models are described in [308]–[310], [387]–[389]. There are multiple 

reasons behind the lack of a reliable objective stress monitoring device/model. Foremost 

of which is the absence of a universally acceptable definition of stress. Moreover, lack of 

gold standard ground-truth/reference values or data, collection of stress data in the natural 

environment, different confounding variables, identification of discriminative/specific 

stress features, and development of an accurate classifier model to classify stress data from 

baseline/normal are also contributing reasons for lack of unswerving stress monitoring 

device. Further details are explained in [283].  

6.2.1 Related Work 

The proposed study is inspired by several existing works in the field of wearable devices 

for stress detection and monitoring. The WESAD (Wearable Stress and Affect Detection) 

dataset [19] was created by using RespiBAN and Empatica E4 as wearables. The authors 

monitored the stress levels of 15 students while they were watching movies and taking a 

trier social stress test (TSST). The random forest classifier achieved an accuracy of 75.2% 
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using blood volume pulse (BVP), electrodermal activity (EDA) and temperature readings 

while distinguishing between three classes (baseline vs stress vs amusement). The SWELL-

KW dataset [331] used video (for facial expression), computer logging, and Kinect (3D 

sensor for body posture) to monitor the stress levels of 25 people while they were 

performing typical knowledge work (making a presentation, reading, writing reports, email) 

under time pressure. The author reported averaged subjective experience scores using task 

load, mental effort, emotion, and perceived stress questionnaires for all the subjects. The 

study concluded that based on subjective scores, there was no significant effect of work 

conditions on perceived stress levels. The Affective-Road dataset [390] used Zephyr 

Bioharness 3.0 and Empatica E4 to study the stress levels under different driving conditions 

for 10 drives. The data were collected during driving for 1 hour 26 minutes on different 

types of roads and traffic conditions and no statistical or classification analysis was 

performed on the dataset. The author suggested that their prototype provides an accurate 

collection of different signals. Thus, vehicle manufacturing companies can embed the 

system into their vehicle and provide a real-world experimental dataset for studying the 

effect of road type on drivers’ stress levels. Healey et al. [391] developed a wearable glove 

with a photoplethysmogram (PPG) sensor embedded, to monitor the stress levels of 10 

drivers while they drove on different routes. Stress vs normal state classification was 

performed using electrocardiogram (EKG), electromyography (EMG), Respiratory rate 

and galvanic skin response (GSR) signals. An accuracy of 62.2% was reported by the 

authors using a sequential forward floating selection (SFFS) k-NN classifier. Shi et al. [70] 

developed a multi-node stress monitoring system based on ECG, EDA and PPG signals. 

They collected data from 22 subjects and reported that a support vector machine (SVM) 

model gave the highest accuracy of 68% in distinguishing stressed conditions from normal. 

Similarly, Muaremi et al. [294] were able to detect different stress levels using a smartphone 

and Wahoo wearable chest belt. They experimented on 35 subjects, collecting heart rate 

variability and smartphone application (questionnaires) data for 4 months. The 

combination of both information resulted in the highest three stress levels (low, moderate 

and high) classification accuracy of 61% using logistic regression-based leave-one-outcross-

validation. Hosseini et al. [392] created a multi-sensor dataset of nurses working in the 

hospital during the COVID-19 outbreak. They used Empatica E4 watches to collect 

information about the electrodermal activities, heart rate, and skin temperature of the 
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subjects. The authors concluded that the device was unable to detect physiological 

differences across the various stress exposures.   

From the literature review, it can be concluded that the optimal measurement approach for 

physiological stress monitoring is still unclear. Different studies have used the same 

physiological variables and classifiers but have reported significantly different classification 

accuracies. Furthermore, there is no clear understanding of the relative sensitivity and 

specificity of stress-related biophysiological indicators of stress (such as heart rate and 

respiratory rate) in the literature [283], [292]. All the above-mentioned datasets have a 

relatively small sample size and are more focused on performing classification analysis with 

reported accuracies in the range of 60 to 70% rather than performing statistical analysis of 

the dataset. These analyses are critical in understanding the relative importance of the most 

common and clinically relevant physiological stress indicators as well as in identifying the 

most specific indicators of stress for the development of a reliable stress monitoring device. 

6.2.2 Study Objectives 

Accurate monitoring of physiological stress levels has the potential to assist physicians in 

guiding their patients to adapt their lifestyle decisions e.g., individual occupational contexts, 

inform personalised treatment plans and ultimately improve their overall health. Therefore, 

this study aims to develop a stress-predict dataset and perform statistical analysis of 

biophysiological data collected from healthy individuals, who underwent induced 

psychological stress, to assess the relative sensitivity and specificity of common 

biophysiological indicators of stress and provide a stepping-stone towards the development 

of an accurate stress monitoring device. In this study, 35 healthy volunteers performed 

three different stress-inducing tasks (i.e., Stroop colour word test, Trier Social Stress Test 

and Hyperventilation Provocation Test session) with a baseline/relax period in between 

each task. Blood volume pulse (BVP), inter-beat-intervals (in milliseconds), and heart rate 

(in beats per min) were continuously recorded using Empatica watches. The key objectives 

of the study are as follows: 

 Collect physiological data for wearable stress monitoring (Stress-Predict dataset). 

 Perform statistical analysis and analyse the dataset to study the association of 

various physiological variables and stress levels. 

 Assess the effectiveness of stress-inducing activities for experimental studies. 
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6.2.3 Key Contributions 

The key contributions of this study are as follows: 

 Collected PPG signals using an Empatica E4 watch (a wrist-worn device) and 

developed an open-access dataset. 

 Estimated respiratory rate readings from the raw signal using a novel PPG-based 

respiratory rate estimation algorithm [393] and included them in the dataset. 

 Performed individual-level statistical analysis using a novel method based on the 

Bayesian framework and time-efficient approximate Expectation-Maximisation (EM) 

algorithm [394]. 

The rest of the chapter is organised as follows: Section 6.3 provides an overview of the 

proposed protocol and data analysis metrics; Section 6.4 presents details of data features 

included in the dataset; Detailed analysis and results are provided in Section 6.5 while 

Section 6.6 concludes the chapter and discusses protocol limitations and provides future 

directions towards the development of an accurate stress monitoring device. 

6.3 Material and Methods 

6.3.1 Study design 

This was a research study aimed at providing useful information and facts on stress in 

healthy individuals from recorded data using a wrist-worn watch. The study was a quasi-

experimental repeated measures design where participants were assessed across a set of 

standardised psychological stress induction protocols over a 60-minute laboratory-based 

testing session. There was no longer-term follow-up on the participants involved. It was an 

opportunity to sample from a healthy individual population. 

6.3.2 Selection and Recruitment of Participants 

All study participants were selected and consecutively enrolled in the study based on the 

inclusion/exclusion criteria specified in Table 6.1. If the participant is eligible for inclusion 

and informed consent is obtained, the participants were entered into the study enrolment 

log and assigned a unique subject ID number. This healthy volunteer study was advertised 

via brochures and posters at the University Hospital Galway (UHG) and the University of 

Galway. The clinical research team also helped recruit volunteers. The study protocol and 
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patient informed consent forms were approved by the local Ethics Committee (on 19 

January 2022 Ref: C.A. 2731). 

Table 6.1 Selection Criteria. 

Inclusion Criteria Exclusion Criteria 

Healthy (no underlying health condition) No consent 

Age between 18 and 75 years Unhealthy 

English-speaking (all ethnicities) Breastfeeding mothers, pregnant women 

Give consent Colour-blind 

 

6.3.3 Study Methodology and Protocol 

The study, adapted from [395], was completely non-invasive and took approximately 60 

minutes to complete for each participant. The consent form was given to the interested 

participant who was given sufficient time (2 days) to read, understand, and ask any question 

to the Lead Researcher/Investigator. During this period, the participants had to decide 

whether they wanted to participate in a research study. All participants were asked to read 

and sign the consent form before the start of the study. Moreover, at the beginning of the 

experiment, each participant was reminded of the order of phases, the duration of each 

phase, and what they were required to do in each phase. 

It is well established that social evaluative acute stressors such as the colour word (Stroop-

CW) test and the Trier Social Stress Test elicit the strongest physiological responses in 

laboratory settings when compared to cognitive challenges [82], [396]. There is also the 

argument that conducting interviews is a more ecologically valid analogue of real-world 

social stressors that we are interested in [397]. The two questionnaires (The PSS and STAI) 

are the most popular ways of assessing stress [387], [398]–[400]. These questionnaires help 

us to understand how different situations affect participants' feelings and anxiety. 

Furthermore, to estimate the respiratory rate from the PPG signal, a 2-minute 

Hyperventilation Provocation Test task was also performed to obtain a reference reading. 

After each task, the participant was asked to relax for 5 minutes. The following protocol, 

illustrated in Figure 1, was followed in the proposed study. 

Stress-inducing tasks might induce some degree of lasting stress. If participants felt stressed 

during or after the study, the research team including clinical nurses made sure that they 

get enough time to relax before starting a new task or going home. Furthermore, the 
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participants were instructed to contact the Clinical Research Facility Galway, University 

Hospital Galway or the Student Health Unit, the University of Galway in the event of 

persistent stress. 

 

6.3.4 Study Sample Size Calculation 

Previously, in a detailed literature survey and statistical analysis to determine the most 

sensitive and specific parameters for stress monitoring, we concluded that the respiratory 

rate (RR) is the most important parameter for the detection of stress conditions [19], [283], 

[297]. The results of these statistical analyses were published in [283]. For this study, an 

easier and quicker option would be to have power for a paired sample comparison, i.e., 

comparing RR within individuals when they are stressed vs not stressed. We have a within-

person or paired design, as each person will undergo periods of stress and no stress.  

A clinically significant difference in stressed vs. unstressed respiratory rate is a 10% 

difference [401]. The control respiratory rate and variability reported in [283] was 12.35, so 

a 10% increase is 13.58. The variability in Respiratory Rate from the same paper was 2.5. 

Using these summary statistics, a sample size of n=34 participants is required to achieve 

80% power to detect a 10% change in RR, at the alpha 0.05 significance level. Thus, a total 

of 35 healthy volunteers (females and males) aged between 18 and 75 years old were 

recruited for the study, to allow for attrition.  

6.3.5 Data Acquisition  

In this study, an Empatica E4 watch (Figure 6.2) was used to measure individual 

physiological changes based on PPG, which has been previously used in several similar 

studies [19], [390], [392], [402]–[405]. The watch is a medical-grade device that is classified 

Figure 6.1 Study Protocol of the stress monitoring study including 3 stress-inducing tasks/sessions, 

2 self-reporting questionnaires sessions and in-between rest sessions. 
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as Class IIA Medical Device according to the 93/42/EEC Directive. Empatica E4 is a 

wireless multi-sensory platform designed to acquire real-time physiological data with ease.  

 

6.3.5.1 Empatica E4 photoplethysmogram (PPG) sensor 

The PPG sensor embedded in the watch has a sampling rate of 64 Hz. The raw PPG signal 

is filtered to get a clean blood volume pulse (BVP) signal, which is then passed to the heart 

rate (HR) and inter-beat intervals (IBI) estimation algorithm. There are 2 green and 2 red 

light-emitting diodes (LEDs) that transmit light onto the skin. To receive the reflected light, 

2 photodiodes in place have an area of sensitivity of 14 mm2. 

The output of the PPG sensor is digital and has a resolution of 0.9nW/Digit. Exposure to 

green light contains information about heartbeats, whereas exposure to red light assists in 

reducing noise or motion artefacts by dynamical compensation performed by the built-in 

firmware. The accuracy of Empatica E4 heart rate readings is highly comparable with the 

standard ambulatory monitory system. A detailed comparison of Empatica E4 readings 

with ambulatory monitoring systems is provided in [406].  

The participants were asked to wear the watch on the non-dominant wrist. The watch can 

be operated in memory mode. In this mode, the data is stored on the built-in memory of 

the watch and once the session is completed, the data is uploaded to the ’Connect’ cloud 

via personal computer or laptop using Empatica E4 manager software. Data can be 

Figure 6.2 Empatica E4 watch. 
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visualized in the cloud for visual analysis and could be downloaded from the cloud in .csv 

format. The data of each sensor, as well as estimated heart rate and inter-beat intervals, are 

downloaded as separate files. In our case, the start and end of each task were labelled by 

clicking the button on the watch, thus along with the physiological data, corresponding tags 

were also generated.   

To induce stress, the participant performed the Stroop Colour-Word task, Trier Social 

Stress Test, and Hyperventilation Provocation Test tasks. From the start of the experiment 

to the end of the recording, each section was labelled using a built-in function (pressing the 

button on the watch once). Labelling helped us identify whether any stressor had a 

prolonged reaction even after the stimulus. 

6.3.6 Data Analysis Matrices 

Two statistical analyses are used to determine the utility of the stress-predict dataset: 

6.3.6.1 Linear Mixed Model analysis 

A linear mixed model was implemented for population-based analysis to determine the 

effect of stressors on HR and RR while accounting for the correlation of these variables 

within each person over time. A separate model was run for RR and HR, with random 

intercepts and slopes included for each participant to allow for within- and between-subject 

variability. The binary group variable is included as a fixed effect, and the coefficient of this 

variable in the model describes the average difference in the result between stress and 

normal situations. An interaction term between time and group (stress/normal) is also 

included, with the coefficient of this providing an estimate for the difference in change in 

outcome over time between stress and normal situations. Results are reported as 

coefficients, with 95% confidence intervals and p-values from linear mixed models.  

6.3.6.2 Adaptive reference range analysis 

For the development of an extensive understanding of changes in participants’ responses 

over the study time, an individual-level statistical analysis was performed through the 

development of personalised adaptive referencing ranges, proposed by Davood et al. [394]. 

In this method, to see if there are any meaningful changes in a particular participant’s 

response over time, individualised reference ranges are developed which adapt successively 
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whenever a new measurement is recorded for the individual. In the context of this work, 

adaptive reference ranges are generated sequentially according to normal physiological rates 

at each resting phase and then the following stress data are included for comparisons. Any 

value outside the developed adaptive reference range can be considered as an ‘alert’ that 

requires further consideration. The adaptive referencing range method works using a 

Bayesian framework and time-efficient approximate Expectation-Maximisation (EM).  

6.4 Data Features included in Stress-Predict Dataset 

The created dataset consists of physiological data collected from 35 students and employees 

of the University of Galway, Ireland, and the University Hospital Galway, Ireland. The 

participant performed three stress-inducing tasks along with 4 rest periods. All the readings 

have been tagged as the duration of the stress-inducing task and baseline/rest period. The 

time of each tag is available in the tag.csv file in the dataset. In all other files, the first row 

shows the timestamps in Unix timestamp UTC format, while the second column shows the 

sampling rate in Hz. The collected data starts from the third row and continues till the end. 

The data in the given Stress-Predict dataset is expressed as: 

6.4.1 Blood Volume Pulse  

This file has data collected by a PPG sensor. Typically, a BVP signal is obtained by passing 

the PPG through a high-pass filter. The cut-off frequency of this filter can be arbitrary but 

typically set between 0.05 and 0.5 Hz. The data in the file represent the BVP value calculated 

by the built-in algorithm in units of nanowatt units (nWatt). Figure 6.3 shows the typical 

PPG signal and its significant points.  

In the PPG signal: 

 The diastolic point is the local minima point, used to calculate the inter-beat-

interval. 

 The systolic point is a local maxima point, used to calculate the vasoconstriction of 

the participant. 

 The presence of a dicrotic notch is observed in the study of different types of 

cardiac diseases. 

 The dicrotic wave is the effect of the dicrotic notch and is referred to as the second 

wave. 
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6.4.2 Inter-Beat-Intervals  

The file contains time intervals between two consecutive heartbeats. The IBI values in the 

dataset are obtained by processing the BVP signal, with an algorithm that already eliminates 

the incorrect peaks in the signal generated due to noise. Figure 4 shows the PPG/BVP 

signal with some motion artefacts. The green dots show correct heartbeats while the red 

dots show incorrect heartbeats, corresponding to the time of movement. The timing of 

incorrect beats is not included in the IBI file, as demonstrated in Figure 6.4. The first row 

shows the timestamps in UNIX format, while the first column (excluding the first row) 

illustrates the time of detected inter-beat-intervals in seconds (s). The second column shows 

the distance in seconds (s) from the previous beat (the detected IBI); see Table 6.2. 

 

Table 6.2 Inter-beat-intervals in IBI.csv file (unit = µS). 

UNIX Start t IBI 

t0 d0 

t1 d1 

t2 d2 

 

 

Figure 6.3 PPG signal obtained in typical condition, from the green and red light. 
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6.4.3 Heart Rate  

The file has average heart rate values calculated by the watch from the raw BVP signal. The 

heart rate in this file is calculated with a 10-second sliding window. It is created only when 

the session is completed and uploaded to the Empatica ‘connect’ cloud. The unit of each 

heart rate is beats per minute (BPM). Instantaneous heart rate can only be viewed during 

stream mode or online (in view session).  

6.4.4 Labels 

The file contains time marks when an event is marked. Each row corresponds to the 

physical button pressed on the watch. The time is presented in form of Unix timestamps 

in UTC and is synchronized with the initial time of the session indicated in the related data 

file.  

6.4.5 Estimation of Respiratory Rate data  

The created dataset is different from all existing public datasets, as it included information 

on the estimated RR for each participant. As explained in [393], the study proposed a novel 

RR estimating algorithm that worked on raw PPG signals. As BVP is a filtered form of raw 

PPG signal, the developed algorithm was able to estimate the RR of the participants during 

stress as well as rest/baseline time. The algorithm was implemented in three-fold steps (pre-

processing, signal analysis, and post-processing).  

Figure 6.4 Inter-beat-intervals calculation. The green dots show valid peaks while red dots 

show the discarded peaks. 
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Figure 6.5 explains the steps of the proposed RR estimation algorithm. In the pre-

processing stage, peak enhancement was performed to increase the signal-to-noise ratio 

and better signal information extraction. Peak detection, peak-to-peak interval, error and 

correction in peak detection, calculation of time-series measurement and estimation of RR 

were done during the signal analysis stage. Usually, the BVP waveform is synchronised with 

the respiratory cycle [48], thus there is an amplitude variation induced in the raw signal. In 

the post-processing stage, the estimated RR is scaled based on the range (maximum-

minimum value) and defined window size of the signal. The data of the estimated 

respiratory rate is included in the dataset as a separate file. 

6.5 Analysis and Results 

There were 25 women and 10 men participants (mean age = 32 ± 8.2 years) in the created 

dataset. The data collection protocol was not followed properly for one (1) participant and 

their data were removed from further analysis. The average number of entries per 

participant is presented in Table 6.3.   

Table 6.3 The average number of entries (per participant). 

Features Samples 

Blood Volume Pulse (BVP)  212234 

Heart Rate (beats per min) 3308 

Respiratory Rate (breaths per minute) [Calculated using sliding window of 10 sec] 3308 

Figure 6.5 Pre-processing, signal analysis and post-processing steps of the RR estimation 

algorithm. 
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During the study, the participants were asked to fill out STAI and PSS questionnaires to 

rate their stress levels and were also asked during the Trier Social Stress Test that was they 

felt stressed out at any point in the study. Figure 6.6 shows the number of participants those 

had increased stress levels after the study (a) based on questionnaire scores and (b) based 

on the verbal query. 

 

6.5.1 Population-based analysis using Linear Mixer Model 

According to the results in Table 6.4, during the stress state, the HR was 1.40 beats per 

minute higher on average compared to normal state HR (95% CI 1.10, 1.71; p < 0.001). 

Participants also experienced a 5.05 bpm higher change in HR per hour compared to during 

a normal state (95% CI 4.36, 5.74 bpm/hour; p < 0.001). 

Table 6.4 Linear Mixer Model Results for Heart Rate Parameter. 

Predictors Estimates 
Confidence Intervals 

p-value 
Lower Higher 

(Intercept) 80.36 76.85 83.88 <0.001 

Time -2.65 -5.85 0.55 0.105 

Group [Stress] 1.40 1.10 1.71 <0.001 

Time * Group [Stress] (beats per hour) 5.05 4.36 5.74 <0.001 

Observations 112472 
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Figure 6.6 Participants with increased stress levels (a) Based on Questionnaire score (b) Asked 

during Interview. 
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When exposed to stress, participants' average RR increased by 0.20 breaths per minute 

compared to their normal state (95% CI 0.16, 0.24 breaths per minute; p < 0.001), see Table 

6.5. Participants also experienced -1.11 breaths per minute lower change in respiratory rate 

per hour compared to during a normal state. The drop in the RR can be related to sighs 

(deep breaths when under stress). 

Table 6.5 Linear Mixer Model Results for Respiratory Rate Parameter. 

Predictors Estimates 
Confidence Intervals 

p-value 
Lower Higher 

(Intercept) 12.68 11.98 13.39 <0.001 

Time -0.30 -1.02 0.41 0.408 

Group [Stress] 0.20 0.16 0.24 <0.001 

Time * Group [Stress] (breaths per hour) -1.11 -1.19 -1.03 <0.001 

Observations 112472 

Although the change in average HR and RR during the stress period is statistically 

significant (***p<0.001) when compared to the average value of the normal/baseline state, 

the difference may not be large enough for clinical decision-making.  

6.5.2 Individual Participant’s analysis using Adaptive Reference 

Range 

In this method, each stress period is compared with the last reference range generated from 

the previous normal period to allow early detection of abrupt physiological changes.  

Figure 6.7 (a) and (b) illustrate the developed reference ranges for HR and RR of participant 

23, respectively. As can be seen from Figure 6.7(a), there are a number of atypical HR 

measurements for participant 23 in all three phases of this study. This is particularly true 

for the two Trier Social Stress Test and Hyperventilation Provocation Test sessions. This 

is where none of the respiratory rates goes outside the developed reference range during 

the Stroop colour test session, Figure 6.7(b).  

It should be noted that the developed adaptive reference ranges are not a classification 

algorithm but are capable of triggering ‘alerts’ and should be used as an early warning system 

that warrants further attention and review.   
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Summative results of individual participants’ analysis on HR and RR parameters are 

presented in Table 6.6. 

 

Table 6.6 Summary of Statistical Analysis (adaptive reference range). 

Heart Rate Respiratory Rate Heart Rate 

Test Stress (Outside Baseline Values) 
Stress (Outside Baseline 

Values) 

Stroop Test 24/34 19/34 

Trier Social Stress Test 28/34 27/34 

 
(a) (b) 

Figure 6.7 Statistical Analysis of Participant 23: Adaptive referencing range (shaded region) 

calculated by using approximate EM. (a) Heart rate reading: baseline (green) vs. stress (red) task (b) 

Respiratory rate: During each baseline (green) vs. stress (red) task. 
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Hyperventilation 
Provocation Test 

18/34 16/34 

6.6  Discussion and Conclusion 

The Stress-Predict dataset was developed using a commercially available wearable E4 watch 

by Empatica [407]. The purpose of developing this dataset was to analyse and identify 

different patterns of stress. 

Most stress detection and monitoring studies report only the classification results and lack 

a statistical analysis of the extracted features. Moreover, the studies that report statistical 

analysis results perform a group analysis (considering all participants as a single group). The 

limitation of the group analysis is that, within a group (each participant), the variability of 

stress-related parameters is quite high. For example, the normal heart-rate values of one 

participant could overlap with the stressed heart-rate value of another participant and vice 

versa. The group analysis exploits this variability and thus results in biased outcomes. In 

this study, an individual analysis was also performed, along with a group analysis (linear 

mixed model), to get better insightful information. To validate that this difference in the 

readings is significant, the linear mixed model was implemented for group analysis while 

the development of a personalized adaptive reference range allowed for individual-level 

monitoring of heart rates and respiratory rates. Both models validated the hypothesis that 

the physiological data collected during stress and non-stress/baseline task are statistically 

differentiable. Table 6.7 provides a comparison of the proposed dataset with the state-of-

the-art publicly available dataset. 

 

 

 

 

Table 6.7 Summary: Comparison of Proposed Dataset with Existing State-Of-The-Art Datasets. 

Study 
Devices 

Used 
No. of 

Subjects 
Methods Features Limitations Pros 

[19] 

RespiBAN 
and 

Empatica 
E4 

15 

BVP, EDA, 
EMG and 

Temperature 
sensors 

Heart rate, skin 
conductance, 

respiratory rate, 
muscle activation 

and skin 
temperature 

Uses a chest 
band. 

Subjects must 
remain immobile. 

Not a 
translational 

(practical) model 

Data gather through 
chest bands is highly 

accurate. 
Respiratory rate data 

obtained by chest band 
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(use of chest 
band) 

No justification 
for the selected 

sample size 

[331] 

Video 
camera, 

computer 
logging and 

Kinect 
device 

25 

Task load, 
mental effort, 
emotion, and 

perceived 
stress 

questionnaires 

Facial expression, 
computer logging 

and 3D body 
posture 

monitoring 

Need control 
environment. 

Not a 
translational 

(practical) model 
(3D Kinect). 

No justification 
for the selected 

sample size 

Provided subjective 
(personalized) results 
(stress versus work 

conditions) 

[390] 

Zephyr bio 
harness and 
Empatica 

E4 

10 
EDA, 

temperature, 
BVP, camera 

Skin conductance 
and temperature, 

heart rate, 
respiratory rate, 

and hand 
movements 

Not a 
translational 

(practical) model 
(use of chest 

band) 
No justification 
for the selected 

sample size 

Data gathered through 
chest bands are highly 

accurate. 
Respiratory rate data 

obtained by chest band 

[294] 

Smart-
phone and 

Wahoo 
chest belt  

35 

Number of 
calls, sleep 

length, 
distance, 

audio length, 
heart rate 
variation 

Inter-beat-
inter/heart rate 

Not a 
translational 

(practical) model 
(use of chest belt) 
No justification 
for the selected 

sample size 

Big data (4 months) 

This 
Work 

Empatica 
E4 

35 
BVP 

(wristband) 
Heart rate and 
respiratory rate 

Limited (approx. 
60 min) data 

Small subject age 
window  

A translational (practical) 
model 

Justification of selected 
sample size 

Only Empatica E4 
dataset with respiratory 

rate data 
Provides subjective 

outcomes 

The dataset is an open-access dataset named Stress-Predict dataset. The inclusion of an 

additional feature, i.e., respiratory rate data, along with stress and baseline labels within the 

dataset, makes the dataset more desirable and unique from all the other publicly available 

Empatica E4-based datasets. Additionally, the developed dataset will also help to evaluate 

proposed PPG-based feature extraction algorithms. The current dataset will certainly attract 

the attention and interest of researchers in the field of psychological, clinical, and 

biomedical research, as well as prevention, medicine, and connected health systems. 

There were also some limitations to the study. First, at the start and end of the stress task, 

the HR and RR gradually changed, but there is no accurate way to determine this gradual 
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change. Thus, labelling was performed without considering these delayed changes. 

Secondly, sometimes there was more than one participant in the room where the study was 

conducted. The crosstalk, and especially the questions asked during the Trier Social Stress 

Test to induce stress, might be learned by the other participant during the resting/baseline 

period. Therefore, the effectiveness of the stress-inducing interview questions could have 

been decreased. Third, the interviewees were friendly and kind to the participant. They kept 

the overall interview environment friendly rather than mimicking a strict interview session, 

which might have resulted in less induced stress. Thus, there was less variation in the 

readings of stress versus non-stress parameters. To translate the proposed model to an 

ambulatory environment, the inclusion of activity data is also essential. In future studies, all 

these shortcomings should be considered to obtain an improved stress-monitoring model. 

Moreover, to obtain an accurate real-time stress monitoring system, accelerometer data 

might play an essential role in excluding the period of physical exercise, which causes 

changes in HR and RR. In future, the developed dataset might help in exploring, 

optimizing, and developing supervised and unsupervised machine-learning classifiers for 

the detection of physiological signal-based stress monitoring. 

Supplementary Tables: 
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Descriptive Analysis: Variance in Heart Rate Readings During Each Task  

Table S6.1. Stress vs non-stress based on a variance in the heart rate signal during each task – 

Descriptive analysis 

Participant 

Stress or not (based on heart rate variance) 

Y for Yes; N of No 

Stroop Colour Word Interview Hyperventilation 

2 N Y N 

3 N N N 

4 Y Y Y (delayed) 

5 Y Y N 

6 N N Y (delayed) 

7 Y Y Y (delayed) 

8 N Y Y 

9 Y Y Y (delayed) 

10 Y Y Y (delayed) 

11 Y Y Y 

12 N Y Y (delayed) 

13 N N Y 

14 Y Y Y 

15 Too Much Variation 

16 Too Much Variation 

17 Y Y Too much variation 

18 Y Y Y 

19 N Y N 

20 N Y Y 

21 Y Y Y (delayed) 

22 Y Y Y (delayed) 

23 Y Y Y (delayed) 

24 Y Y too much variation 

25 Y Y Y (delayed) 

26 N N N 

27 Y Y Y 

28 Too Much Variation 

29 Too Much Variation 

30 Too Much Variation 

31 N Y Y (delayed) 

32 Y Y Y (delayed) 

33 N Y Y 

34 Y Y Y (delayed) 

35 Y Y N 

Total (Y) 18/34 25/34 8/34 (21/34 with delay) 
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Statistical Analysis: Adaptive Reference Ranging (RR) Heart Rate Readings During 

Each Task 

Adaptive Reference Range is generated sequentially according to normal heart rate and then the stress data are included 

for comparisons. In particular, each stress period is compared with the last RR generated from the previous normal 

period. 

  

Table S6.2. Stress vs no-stress based on heart rate values outside the adaptive reference range during 

each task – Statistical analysis 

Participant 

Stress or not (based on heart rate outside normal/baseline value) 

Y for Yes; N of No 

Stroop Colour Word Interview Hyperventilation 

2 N Y N 

3 Y Y Y 

4 Y Y N 

5 Y Y N 

6 Y Y N 

7 Y Y N 

8 N Y Y 

9 Y Y Y 

10 N Y Y 

11 N N Y 

12 N N N 

13 N N N 

14 Y Y N 

15 N N N 

16 Y N N 

17 N Y N 

18 Y Y N 

19 N Y N 

20 N Y N 

21 Y N N 

22 Y Y N 

23 Y Y Y 

24 N Y Y 

25 Y Y Y 

26 N N N 

27 Y Y N 

28 N N N 

29 Y Y N 

30 Y Y N 

31 Y Y N 

32 Y Y N 

33 N Y Y 

34 Y N N 

35 Y Y N 

Total (Y) 20/34 25/34 9/34 



 

166 

 

Descriptive Analysis: Variance in Respiratory Rate Readings During Each Task 

 

  

Table S6.3. Stress vs no-stress based on the variance in the respiratory rate signal during each task –  

Descriptive analysis 

Participant 

Stress or not (based on respiratory rate variance) 

Y for Yes; N of No 

Word Stroop Test Interview Hyperventilation 

2 Y Y Y 

3 N Y Y 

4 Y Y N 

5 Y Y N 

6 Y Y N 

7 Y Y Y 

8 Too Much Variation Y  

9 Y Y Y (delayed) 

10 Y Y Y (delayed) 

11 Too Much Variation 

12 N N Too Much Variation 

13 Y N Y 

14 Y N Y 

15 Y Y N 

16 Y + Delay N N 

17 Too Much Variation 

18 Too Much Variation 

19 N Y Y (delayed) 

20 N Y N 

21 Y Y N 

22 Y Too Much Variation Too Much Variation 

23 Y Y Y 

24 Y N Y 

25 Y Y Y 

26 Y (delayed) Y (delayed) Y (delayed) 

27 Y (delayed) Y Y (delayed) 

28 Y Y Too Much Variation 

29 Too Much Variation 

30 Y Y Y 

31 N Y Y (delayed) 

32 Y Y Y (delayed) 

33 Y Y Y 

34 Y Y Y (delayed) 

35 Too Much Variation Y Too Much Variation 

Total (Y) 20/34 (23/34 with delay) 
23/34 (24/34 with 

delay) 
10/34 (18/34 with delay) 
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Statistical Analysis: Adaptive Reference Ranging Respiratory Rate Readings During Each 

Task 
In this report, adaptive reference ranges (RR) are generated for each phase of the study. By phase, it means each round 

of the Normal –> Stress period. In particular reference ranges were calculated for each Normal phase and then Stress 

data were compared with the last reference range calculated from Normal data. 

 

Table S6.4. Stress vs no-stress based on respiratory rate values outside the adaptive reference range 

during each task – Statistical analysis 

Participant 

Stress or not (based on respiratory rate outside normal/baseline value) 

Y for Yes; N of No 

Word Stroop Test Interview Hyperventilation 

2 Y Y Y 

3 Y Y N 

4 Y N N 

5 N Y N 

6 N Y Y 

7 Y Y Y 

8 N Y Y 

9 Y Y N 

10 Y Y Y 

11 Y Y N 

12 Y Y Y 

13 Y Y Y 

14 N N Y 

15 Y Y Y 

16 Y Y N 

17 Y Y N 

18 Y Y N 

19 Y Y N 

20 N N Y 

21 Y Y N 

22 N N N 

23 N Y Y 

24 Y N N 

25 Y Y N 

26 Y Y N 

27 N N Y 

28 Y Y N 

29 Y Y N 

30 Y Y Y 

31 Y Y Y 

32 Y Y Y 

33 N Y Y 

34 Y Y Y 

35 N Y Y 

Total (Y) 24/34 28/34 18/34 
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Chapter 7 

Improved Stress Classification 

using Automatic Feature Selection 

from Heart Rate and Respiratory 

Rate Time Signals: Application to 

Stress-predict Dataset 

The conventional statistical features (such as mean, variance, standard deviation, mean 

absolute deviation) of respiratory and heart rate do help in distinguishing between stress 

versus baseline readings but the reported accuracy (in literature and determined by 

experimentation in chapter 3 and Chapter 4) is low i.e., around 75%. There could be two 

major reasons behind the lower classification performance of the classifiers: 

1. Lack of features that could translate/show the well-distinguishable patterns 

between stress and baseline readings. 

2. The presence of highly correlated features within the dataset results in 

compromised generalizability and overfitting. 

Thus, this chapter7 proposed an optimized feature engineering algorithm to determine well-

distinguishable features with high classification accuracy, using the Stress-Predict dataset 

(explained in Chapter 6). The algorithm calculates a list of 1578 features of heart rate and 

respiratory rate (combined) using the python library (tsfresh). These features are then 

shortlisted to the more specific time-series features using Principal Component Analysis 

(PCA) and correlation ranking techniques. A comparative study of conventional statistical 

features versus correlation-based selected features was performed using linear (logistic 

                                                 
7 The following body of the chapter is exact copy of the preprint paper which is published in Applied Sciences (2022). I am the 

first lead author in the paper, which is co-authored with my supervisors. I implement all the machine learning algorithms for 
comparison and led all parts of the work with the support of my supervisors. 
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regression), ensemble (random forest), and clustering (k-nearest neighbours) predictive 

models. 

Overall, the classification accuracy increased drastically (over 95%) as compared to the 

conventional statistical feature’s 67.4%., when correlation-based time-series features are 

used. The respiratory signal pattern, based on the number of peaks that is greater than its 

3 neighbours, was determined to be the best distinguishable time-series feature. This finding 

is perfectly correlated with the previous studies (presented in Chapter 3, Chapter 4, and 

Chapter 5) and is true, as the breathing pattern is supposed to vary significantly during 

stress conditions when compared to baseline/normal conditions. This work completes the 

final objective of the thesis i.e., providing a solution that calculates the well-distinguishable 

time-series features that could provide high accuracy while classifying stress conditions 

from no-stress/baseline condition and can be characterized as a stress response from any 

physiological stimuli. 
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7.1 Improved Stress Classification using Automatic Feature 

Selection from Heart Rate and Respiratory Rate Time 

Signals 
Abstract: For accurate stress monitoring, it is essential that stress-related features are not 

only informative but also well-distinguishable and interpretable by the classification models. 

Time-series features are the characteristics of data collected periodically over time. The 

calculation of time-series features helps in understanding the underlying patterns and 

structure of the data as well as in visualising the data. The manual calculation and selection 

of time-series features, from a large temporal dataset, is a time-consuming process. It 

requires researchers to consider several signal-processing algorithms and time-series 

analysis methods to identify and extract meaningful features from the given time-series 

data. These features are the core of a machine learning-based predictive model and are 

designed to describe the informative characteristics of the time-series signal. Recently, a lot 

of work has been done on automating the extraction and selection of times-series features. 

In this chapter, a correlation-based time-series feature selection algorithm is proposed and 

evaluated on the stress-predict dataset. The algorithm calculates a list of 1578 features of 

heart rate and respiratory rate signals (combined) using the tsfresh library. These features are 

then shortlisted to the more specific time-series features using Principal Component 

Analysis (PCA) and Pearson, Kendall and Spearman correlation ranking techniques. A 

comparative study of conventional statistical features (such as, mean, standard deviation, 

median, and mean absolute deviation) versus correlation-based selected features is 

performed using linear (logistic regression), ensemble (random forest), and clustering (k-

nearest neighbours) predictive models. The correlation-based selected features achieved 

higher classification performance with an accuracy of 98.6% as compared to the 

conventional statistical feature’s 67.4%. The outcome of the proposed study suggests that 

it is vital to have better analytical features rather than conventional statistical features for 

accurate stress classification. 

Keywords: Time-series, distinctive features, respiratory rate, heart rate, feature engineering, 

stress, classification.  
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7.2 Introduction 

In recent years, sensor technologies have been developed significantly to help generate large 

data at relatively low-cost [3]. A time-series data is a sequence of 

measurements/observations taken sequentially in time [408]. In the context of stress, time-

series data are referred to as a collection of data points over time that measure the 

psychological or physiological responses of an individual to any applied stressor. These data 

points are collected at regular intervals (per second, per minute or per hour) and include 

measurement of respiratory rate, heart rate, cortisol levels, blood pressure or a self-

reporting stress level. The time-series data are analysed to understand the stress patterns 

over time, which provides better insights into how an individual’s stress levels change in 

response to different stressors and interventions. The learnings can be then used to develop 

algorithms or classification models to predict individuals’ stress conditions based on their 

response to stress. 

The field of the Internet of Things (IoT) [409], precision medicine [410], and industry 4.0 

[411] produce advanced large temporally annotated data. The analysis of this large temporal 

data, as it is, is a dilemma for researchers and data scientists. Thus, encourages the reduction 

of large time-series data into smaller series, capturing ample characteristics of primary data, 

for enhanced analysis. The resulting time series is the basis of machine learning applications, 

such as analysis of heartbeat [412] and respiratory rate [393], identification of high-risk 

patients who are at increased risk of infection [413], optimization of a production line [414], 

incident detection over cloud [415]. The reduction of large data to feature-based 

representation is crucial, as the implementation of the machine learning algorithm is 

straightforward, but the selection of well-discriminating features is a challenging task [4]. 

Considering 𝑇 as a set of time-series data, where 𝑇 =  {𝐹𝑖}𝑖=1
𝑛 . To use 𝑇 set as an input to 

supervised or unsupervised classification algorithms, each time-series 𝐹𝑖 must be mapped 

to a well-defined feature vector with 𝑋 dimensions (𝐹𝑖⃗⃗ = (𝐹𝑖,1, 𝐹𝑖,2, … , 𝐹𝑖,𝑋)) [416]. The 

most efficient and effective way of feature extraction is to characterize the time-series data 

into a distribution of data, stationarity, correlation properties, entropy, and non-linear time-

series analysis [417]. The extraction of only significant features is vital for both regression 
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and classification tasks, as the irrelevant features will weaken the algorithm’s ability to 

generalize beyond the training set and cause overfitting [418]. 

7.2.1 Related Work 

Many existing stress classification studies use trivial feature extraction and selection 

methods. These studies use either raw data (data collected through the sensors) [419], [420] 

or common features of the collected data [421]–[423] such as rate of change, mean, 

standard deviation, variance, mean absolute deviation, and skewness. This set of features 

does not describe the characteristics of the dataset fully and is also unable to be generalised 

to another time-series dataset. This is because the underlying patterns and characteristics 

of a particular dataset are specific to itself and cannot be applied to another dataset. 

Furthermore, the above-mentioned features are also affected by the conditions under which 

data are collected and pre-processing steps performed on them.   

Christ et al. [416] proposed tsfresh, a machine-learning time-series feature extraction library 

that has been used in several studies. The library uses the method called AutoTS (Automatic 

Time-Series Feature Extraction) and is based on some pre-defined feature estimation 

algorithms. It estimates the trends, seasonality, periodicity, and volatility of the time-series 

data and applies the feature selection method to select the most relevant features for further 

modelling or analysis. Several studies use the tsfresh library for feature engineering. Ouyang 

et al. [424] used the tsfresh feature extraction library to detect anomalous power consumption 

by users. They extracted 794 features that were used as input to the supervised binary 

classification (to detect abnormalities). However, the authors did not perform any feature 

selection, which makes their approach computationally expensive and not feasible to be 

implemented in real-time. Zhang et al. [425] proposed unsupervised anomaly detection 

using DBSCAN and feature engineering. The authors used the tsfresh library in their feature 

engineering process. They performed features selected based on Maximum-Relevance 

Minimum-redundancy and variance technique along with Maximal Information 

Coefficient. However, the proposed approach works best with historical data (as the 

calculation of relevance, redundancy and information coefficient is performed on complete 

data) and cannot be applied to real-world or streaming data. In the field of healthcare, Liu 

et al. [426] recommended a solution for the classification of flawed sensors using tsfresh 

feature extraction and selection. The algorithm automatically calculated and selected 
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features using univariate hypothesis tests with a controlled false discovery rate [427]. The 

selected features were fed to Long-Short-Term Memory (LSTM) model for classification. 

However, the extracted features were still over hundreds of features. 

Thus, further research is required to obtain a well-generalizable feature engineering 

algorithm that can calculate and provide well-distinguishable features from large time-series 

data for an accurate and efficient classification (monitoring) system. 

7.2.1.1 Motivation and contribution 

For extremely large data, the current automated feature estimation algorithms are not able 

to capture sufficient valuable information about the feature dynamics [428]. The research 

aims of this study are to implement and explore the efficacy of heart rate and respiratory 

rate signal-based (time-series) features extraction algorithm for accurate stress classification, 

using a stress-predict dataset [429]. The study also determines the best (well-distinguishable) 

time-series feature from respiratory and heart rate signals for accurate stress monitoring. 

The algorithm calculates several time-series features using the tsfresh library and then 

performs feature reduction using principal component analysis (PCA) and correlation co-

efficient analysis (Pearson, Spearman, and Kendall) to shortlist the most discriminative 

features.  

For the validation of the proposed method, a combination of different extracted features 

is fed into supervised linear, ensemble and clustering classifiers. The proposed method of 

time-series features estimation/extraction and feature selection, due to its fast computation 

and selection of well-distinguishable stress features, can potentially be deployed on 

photoplethysmography (PPG) sensor-based watches and can detect the anomalies (stress) 

in real-time. 

The rest of the chapter is organised as Section 7.3 discusses stress-predict dataset and 

methods implemented for time-series features extraction and selection; Section 7.4 reports 

the detailed analysis and results of supervised machine learning classification and provides 

discussion around the results; Section 7.5 concludes the chapter and provides future 

direction towards the development of the reliable stress-monitoring device.  
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7.3 Material and Methods 

7.3.1 Stress-Predict dataset 

The stress-predict dataset consists of BVP signal, Inter-beat-intervals, heart rate, respiratory 

rate, and accelerometer data collected from 35 healthy volunteers who performed three 

stress-inducing tasks (i.e., Stroop colour word test, interview session, and hyperventilation 

period) with baseline/normal period. Empatica E4 was used to collect all the information 

while the overall study lasted for 60 minutes per participant [429]. A brief introduction of 

the dataset is presented as follows: 

The study was designed to be a cross-sectional study that collected data on exposure and 

outcome in a short time window, in a controlled laboratory setting. The study aimed to 

understand the behaviour, attitudes, and prevalence to estimate health needs.  

 

7.3.1.1 Study methodology and protocol 

The study took 60 minutes per participant and was completely non-invasive. The protocol 

followed is illustrated in Figure 7.1. The protocol and clinical study were approved by 

Clinical Research Ethics Committee, Merlin Park Hospital, Galway, Ireland as: “Stress levels 

monitoring using sensor-derived signals from non-invasive wearable device and dataset development (Ref: 

C.A. 2731)”. For sample size calculation, authors followed sensitivity analysis outcomes 

reported in [283].  

7.3.1.2 Data acquisition 

The study used an Empatica E4 wrist-worn watch to measure the physiological changes 

based on the PPG signal. Labelling of the data was done using tags generated by pressing 

the button on the watch at the start and end of each task.  

Figure 7.1 Study Protocol of the stress monitoring study including 3 stress-inducing tasks/sessions, 2 

self-reporting questionnaires sessions and in-between rest sessions. 
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Table 7.2 summarizes the number of data entries per participant for each signal recorded. 

The total recording time reported is approximately around 50 minutes. The heart rate and 

respiratory rate signals are generated using 10 seconds windows (averaged over 10 seconds) 

with a window step (slide) of 1 second. Figure 7.2 shows the number of participants who 

reported higher stress levels during the study based on respiratory and heart rate signal 

gradients. 

 

Table 7.1 The Average Number of Entries (Per Participant) 

Time Series Signals Data Points Recording Time 

Blood Volume Pulse (BVP)  212234  

~ 50 minutes Heart Rate (beats per min) 3308 

Respiratory Rate (breaths per minute) 3308 

 

7.3.2 Feature extraction and selection 

Recently, efforts are made to automate the time-series feature extraction methods and 

calculate hundreds of different features [418], [430]. However, these high dimensional 

features lead to challenges when calculating, predicting, storing, and even understanding 

the correlation of data with the target/outcome [431]. A common technique used for time-

series feature extraction is windowing (data is divided into smaller windows and features 

Figure 7.2 Participants with increased stress levels (a) Asked during Interview (b) Based on 

Questionnaire score. 
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are extracted for each window) [10]. Feature such as mean can reduce the signal noise but 

averages the overall signal. On the contrary, some features such as maximum can be unduly 

affected by noise [430]. As automated feature extraction has limitations and motivates the 

need for a systematic process of feature selection along with feature extraction [416]; thus, 

this study implements a three-stage feature extraction and selection algorithm. Each stage 

is explained in the following subsection, illustrated in Figure 7.3.  

 

7.3.2.1 tsfresh library 

Features were extracted using a Python library tsfresh [432]. The library is composed of a 

combination of 63 time-series characterization techniques. The library calculates 794 

features (based on estimating trends, seasonality and periodicity of the data) by default and 

shortlists the features based on automatically configured hypothesis tests [416]. The library 

uses standard APIs of time-series (pandas) and machine learning (scikit-learn) packages and 

provides exploratory analyses. A list of the calculated features and their respective runtime 

is documented in [433]. 

7.3.2.2 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a statistical method that is generally used to reduce 

the dimensionality of high-dimensional data [115]. PCA projects the multidimensional data 

into a new reduced linear coordinate system using Singular Value Decomposition (SVD). 

The coordinates of this system represent the largest aggregate of variance within a time-

Figure 7.3 Stages of feature extraction and feature selection. tsfresh library calculates and 

shortlist the hundreds of time-series features, PCA is applied to reduce the feature dimension, 

to select well-distinguishable features correlation coefficients are calculated using the three 

methods. 
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series dataset and are useful for better visualization and interpretation of complex 

multivariable data. The dimensionality reduction so helps to observe trends, clusters, and 

outliers within data [434]. In the proposed study, principal components were selected based 

on the explained variance of the features. All features that had explained the proportion of 

variance exceeding 85% were selected for further analysis. 

7.3.2.3 Correlation analysis 

The tsfresh and PCA eliminate calculated time-series features based on the hypothesis testing 

(feature vs target significance) and explain the variance of the features. For a classification 

problem, it is vital to remove the highly correlated features as they can introduce bias in the 

training of the model, makes the model computationally expensive (as the model learns the 

same information after skimming several different correlated features), reduces the 

precision of coefficient estimation and effects the interpretability [435], [436]. Thus, this 

study makes use of correlation analysis to ensure the selection of weakly correlated, well-

distinguishable features for an accurate, precise, and easily interpretable classification 

model. The three commonly used methods for correlation analysis are described below: 

7.3.2.3.1 Pearson correlation coefficient 

The Pearson correlation coefficient [437], [438] is a statistical test that measures the ratio 

between the covariance of two features and their standard deviations. The coefficients show 

the magnitude of correlation/association and the direction (positive or negative) of the 

relationship. The value of the Pearson coefficient varies between -1 and +1 and is calculated 

as: 

𝑟 =  
∑(𝑥𝑖− �̅�)(𝑦𝑖− �̅�)

√∑(𝑥𝑖− �̅�)2(𝑦𝑖− �̅�)2
   (7.1) 

In eq. 7.1, 𝑟 is the Pearson correlation coefficient, 𝑥𝑖 and 𝑦𝑖 is the 𝑖th value of two features 

while �̅� and �̅� is the mean value of the 𝑥 and 𝑦 features. 

7.3.2.3.2 Spearman ranking correlation coefficient 

The Spearman ranking correlation [439], [440] is a statistical test that measures how closely 

two features fluctuate. The features are ranked based on their similarity and dissimilarity 

and then correlation/association between the features is calculated using the following 

equation (eq. 7.2): 
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𝜌 = 1 − 
6 ∑𝑑𝑖

2

𝑛(𝑛2−1)
  (7.2) 

Where 𝜌 is the Spearman coefficient, 𝑑𝑖 is the difference between each feature rank while 

𝑛 is the total number of observations. The value of the Spearman coefficient also varies 

between -1 to +1.  

7.3.2.3.3 Kendall ranking correlation coefficient 

The Kendall ranking correlation [441], [442]  analysis is a statistical method of measuring 

the rank association of the two measured features. The correlation is determined based on 

the concordance and discordance values and is determined as: 

𝜏 =
2 (𝑛𝑐− 𝑛𝑑)

𝑛(𝑛−1)
  (7.3) 

In eq. (7.3), 𝜏 is the Kendall coefficient, 𝑛𝑐 is the number of concordant values (i.e., 𝑥2 −

 𝑥1 and 𝑦2 − 𝑦1 has the same sign), 𝑛𝑑 is the number of discordant values (i.e., 𝑥2 −

 𝑥1 and 𝑦2 − 𝑦1 has an opposite sign) while 𝑛 is the total number of observations and 𝑥,𝑦 

are the two features. The correlation coefficient calculated using the Kendall method could 

vary between -1 and +1.  

Table 7.3 provides a guideline [443] on the interpretation of the correlation coefficient and 

the association of features with each other. In this study, all the features with a correlation 

coefficient between -0.4 to 0.4 were chosen for further analysis. 

Table 7.2 Correlation Coefficients and Their Interpretation 

Correlation Coefficient Value Association 

+1.0 Perfect positive 

+0.8 to +1.0 Very strong positive 

+0.6 to +0.8 Strong positive 

+0.4 to +0.6 Moderate positive 

+0.2 to +0.4 Weak positive 

0.0 to +0.2 Very weak positive 

0.0 to -0.2 Very weak negative 

-0.2 to -0.4 Weak negative 

-0.4 to -0.6 Moderate negative 

-0.6 to -0.8 Strong negative 

-0.8 to -1.0 Very strong negative 

-1.0 Perfect negative 
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7.3.2.4 Machine learning classification 

Machine learning classifiers are computer-based models that can learn and adapt without 

any explicit instructions using statistics and algorithms rules. The machine learning classifier 

must be generalizable (measurement of the trained classifier's ability to classify the unseen 

data accurately). A generalized model presents the best trade-off between bias and variance 

and provides the best prediction performance [444]. In this study, three commonly used 

supervised machine learning classifiers i.e., logistic regression classifier, random forest 

classifier and k-nearest neighbour classifier are implemented [445], [446]. Each of these 

classifiers is representative of their classification categories (linear, ensemble, and 

clustering). The selection of these classifiers is based on their simplicity, efficiency, 

interpretability, robustness, and regularization when used for binary classification of 

categorical-natured data, in this case, stress versus non-stress conditions.  

7.3.2.5 Data Split for Training and Testing  

For the classification analysis, the dataset needs to be divided into test and train sets. 

Splitting the dataset helps to evaluate the performance of the model on unseen data. The 

training set will allow the model to fit and adjust the weights of the model while the test set 

evaluates the model performance on the new dataset, prevents overfitting, and ensures the 

model’s generalizability. The stress-predict dataset is an imbalanced dataset, with more 

baseline readings than stress readings. As a result, conventional classification methods focus 

on minimizing the error rate and exhibit a bias towards the minority class. Also, the random 

split of the imbalanced data might have negligible or no data from the minority class, thus 

resulting in biased classification results. The solution to the problem is the use of a stratified 

k-fold classification split. Stratified sampling ensures that splitting is performed randomly 

and that the same imbalance class distribution is maintained for each subset (fold). Thus, 

to get an unbiased model performance, stratified 10-fold cross-validation was implemented. 

7.3.2.6 Performance validation methods 

The performance of the classifier is validated based on accuracy, standard deviation, 

precision, recall, f1-score, sensitivity, and specificity. These matrices are described in [283], 

[388]. Accuracy is defined as the ability of the classifier to correctly predict the label of the 

data point within the test dataset. Precision is the classifier’s ability to predict a data point 

belonging to a certain class, while Recall is the classifier’s ability to identify all the data points 
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within a certain class. The F1-score is a combination of precision and recall using a harmonic 

mean. The Sensitivity of a classifier is metric that shows its ability to predict true positives 

within each class, and Specificity is the evaluation metric that measures the ability to predict 

true negatives with each class. Table 7.4 shows the confusion matrix used to determine true 

positive and true negative readings.  

Table 7.3 Confusion Matrix 

  Actual Labels 

  Positive Negative 

Predicted Labels 
Positive True Positive False Positive 

Negative False Negative True Negative 

 

7.4 Results and discussions 

Figure 7.3 demonstrates the steps of feature extraction and selection. For the stress-predict 

dataset, the tsfresh library calculates 1578 trends, seasonality, periodicity, and volatility-based 

features for heart rate (789) and respiratory rate (789) signals, combined. The hypothesis 

test (p-value) is performed within the library to check the independence between each 

feature and label (target variable) and selects 314 features out of 1578 features. For further 

dimensionality reduction, PCA using singular value decomposition (SVD) was performed. 

For comparison, PCA resulted in 37 features when implemented on a full feature set (1578), 

while selecting only 19 features with the feature set obtained after Kruskal-Wallis’s 

hypothesis test (314). As the selected features might still have correlated features, a 

correlation analysis was performed using Pearson, Kendall, and Spearman methods to 

determine the most specific features of heart rate and respiratory rate signals to accurately 

distinguish stress conditions.  

7.4.1.1 Correlation analysis 

Table 7.5 summarises the number of calculated and selected features at each stage. 

Table 7.4 Calculated Features and Correlation Analysis Results 

  Correlation Analysis 

Features Total Pearson  Kendall Spearman 

Full 1578 148 450 201 

Filtered (p-test) 314 3 2 1 

PCA on Full 37 3 2 1 

PCA on filtered 19 3 2 1 
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Correlation analysis shortlisted similar features even though they were provided with a 

different number of features (Filtered, PCA on full and PCA on filtered features). The 

selected features are tabulated and described in table 7.6, detailed in [447]. 

Table 7.5 Calculated Features and Description 

Selected features Description 
Correlation 

method  

Number of peaks in baseline versus the 
number of peaks in stress periods  

(In respiratory signal) 

This feature calculates the number of peaks that 
is greater than its n neighbours (left and right) 

Pearson, 
Kendall, 

Spearman 

Changes in the variance with higher 
and lower quantile ranges  

(In respiratory signal) 

This feature fixes a corridor given by lower and 
higher quantiles and then calculates the 
variance of the absolute change of the time 
series inside that corridor. 

Pearson 

Lag in partial correlation 
(In Heart rate signal) 

This feature calculates the value of partial 
autocorrelation at the given lag 

Pearson 

Coefficient of the imaginary part after 
Fast Fourier Transform (FFT)  

(In respiratory signal) 

This feature calculates the value of the 
imaginary part of the Fourier coefficient. 

Kendall 

It can be noted that all three (Pearson, Kendall, and Spearman) correlation analysis methods 

resulted in selecting the number of peaks within the time series specifically of respiratory 

rate as the most well-distinguishable feature for accurate stress monitoring. This finding is 

perfectly correlated with our previously published literature [283], [292], [393], [429] and is 

true, as the breathing pattern is supposed to vary significantly during stress conditions when 

compared to baseline/normal conditions.  

As most of the shortlisted features belong to the respiratory rate signal, this study also 

performed a univariable time-series correlation analysis on the heart rate signal (feeding 

only the heart rate signal along with labels to the algorithm) to determine the most specific 

heart rate-related features. The Pearson, Kendall, and Spearman correlation analysis 

method determined that the ‘number_cwt_peaks_n_5’ feature (number of peaks that are at 

enough width (time) scale (here 5) and have high signal-to-noise ratio) is the most specific 

feature of heart rate to distinguish stress from the baseline readings. 

7.4.1.2 Machine learning classifications 

For classification analysis, the commonly used statistical features (mean, standard deviation, 

median, median absolute deviation) and the selected features after correlation analysis were 

used to train supervised machine learning classifiers. For supervised learning, logistic 
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regression, random forest, and K-nearest neighbours (KNN) were selected from linear, 

ensemble and clustering models, respectively. The results of each classification analysis are 

reported as follows:  

7.4.1.3 Standard Statistical Features 

Using standard statistical features, the highest classification performance was achieved 

using the logistic regression model with an accuracy of 67.4%. Figure 7.4 illustrates the 

accuracy, standard deviation, precision, recall, f1-score, specificity, and sensitivity of the 

reported classifiers.  

 

 

Figure 7.4 Standard statistical features-based stress versus baseline classification using 

logistic regression, random forest, and K-nearest neighbours classifiers. 
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(a) 

 

(b) 

(c) 

Figure 7.5 Shortlisted features-based stress versus baseline classification using logistic 
regression, random forest, and K-nearest neighbours classifiers. (a) Using Pearson 
shortlisted features (b) using Kendall shortlisted features and (c) using Spearman shortlisted 
features. 
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7.4.1.4 Selected features after correlation analysis 

Figure 7.5 illustrates the classification performance of the supervised classifiers using 

Pearson (figure 7.5(a)), Kendall (figure 7.5(b)) and Spearman (figure 7.5(c)) selected 

features. The inclusion of the selected features with the standard statistical features 

improves the classification performance significantly. The best classification performance 

is achieved using Pearson and Spearman-based features with a classification accuracy of 

98.6% using the KNN classifier. Moreover, the other performance matrices such as 

standard deviation, precision, recall, f1-score, sensitivity, and specificity of the models have 

also improved drastically achieving values well above 95%. 

7.4.1.5 Summary 

Automated feature extraction and selection help in the development of a highly accurate 

classification model that could be generalizable to new, unseen time-series data. Time-series 

feature engineering is a substantial component of machine learning classification analytics. 

The irrelevant features within the training dataset overfit the model to a specific dataset and 

are not well generalizable. Thus, systematic time-series feature engineering allows 

automation of the overall classification process and easy-off the difficulties faced during 

manual feature estimation and selection. In the context of stress classification, feature 

engineering plays a vital role in improving classification performance. The careful selection 

and estimation of the time-series features do help in achieving higher classification accuracy 

with better interpretability of the classifier’s decision and achieved results. The 

dimensionality reduction also helps the predictive model to be computationally efficient 

especially if required to run on resource-constraint devices.  

7.5 Conclusion 

In this study, three-fold feature extraction and selection steps are proposed. In the first 

step, the tsfresh library is used to calculate 1578 time-series features of heart rate and 

respiratory rate (789 features each) signals, which are then shortlisted to 314 features after 

the hypothesis test. In the second stage, PCA is applied to further reduce the feature 

dimensions from 314 to only 19 feature components. To detect and eliminate the most 

correlated features with the estimated feature list, a correlation analysis (with a threshold 

coefficient value of ±0.4) is performed using three different methods. The Pearson, Kendall 

and Spearman correlation analysis determined the count of peaks within the respiratory rate 
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reading to be the best and well-distinguishable feature among all other heart rate and 

respiratory rate-related features. For the univariate (heart rate signal) analysis, the number 

of CWT peaks was the most specific feature to distinguish the stress state from the baseline 

state. 

Furthermore, this study also trained and validated different supervised machine-learning 

classification models using the K-fold cross-validation technique. The performance of the 

classification models has been measured in terms of classification accuracy, standard 

deviation (of the model’s accuracy), precision, recall, f1-score, sensitivity, and specificity. 

The general statistical features (mean, standard deviation, median, mean absolute deviation) 

that are frequently used in the literature give only an accuracy of 67.4%. The proposed 

correlation-based time-series feature selection algorithm has resulted in more accurate 

classification performance compared to conventional statistical features. The time-series 

correlation analysed feature set when used in conjunction with the statistical features 

improves the performance of the classifiers significantly and resulted in high-stress 

classification accuracies, the highest being 98.6% using the KNN classifier.  

Future work includes the translation of the proposed algorithm as an online feature learning 

system for real-time scenarios. The objective will be to update the selected features based 

on the updated data received. This would eventually lead to a more robust and accurate 

stress detection system. Additionally, there is a need for dynamic thresholding for PCA as 

different time-series features (such as heart rate, respiratory rate, skin conductance, muscle 

activation, and skin temperature) have different PCA subspaces. Thus, requires the 

estimation of best-suited thresholding levels when applying PCA. Furthermore, a 

comparison of other supervised and unsupervised machine learning classification models 

is also the prospect of future work.  
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Chapter 8  

Conclusion and Future Work 
 

This chapter summarises the conclusions and findings of the thesis. Section 8.1 summarizes 

the motivation and findings while the future work to extend and improve the findings of 

this thesis is discussed in Section 8.2. 

8.1 Conclusion  

Stress arises from events that threaten the homeostatic stability of a person [13]. According 

to the World Health Organisation, stress is directly related to several social and mental 

problems and these problems seriously affect the health of not only adults but also 

youngsters [42]. Stress can be acute (state immediate response to the stressor) or chronic 

(caused by a constant stimulus) [44]. The reasons behind the extensive stress are complex 

personal, social, and diversity in expressing stress, ecological environment, as well as 

multiple transactions of humans due to his/her environments. Even though stress is a 

routine trait of life, nowadays, if it becomes continuous and increasing, an individual might 

show problematic symptoms which threaten their health as well as people in their 

surroundings.  

Prolonged exposure to stress triggers the adrenocorticotrophic hormonal (ACTH) system 

and causes the release of cortisol hormones from the adrenal cortex. The human biological 

system is very complex, and stress evokes different physiological and cognitive reactions in 

the human body [448]. Therefore, stress markers established until now do not provide any 

reliable assessment of the quantitative stress response. To the best of our knowledge, no 

easily applicable and repeatable method can compare the stress response levels of one 

person in different situations. Moreover, the stress response of two different persons is also 

distinct. 

In chapter 2 (section 2.1), a literature review was performed to find approximated 

quantitative measures of a person’s homeostatic imbalance. This review aimed to provide 

an overview of the most promising techniques, currently used for stress detection and the 

challenges associated with them. The review also provides a feasibility report about 
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measuring different physiological and biochemical levels, a correlation of perceived stress 

with different indicators, and methods/devices used in the laboratory as well as in the 

ambulatory environment for stress detection. This work met the first objective of the thesis 

i.e., review and determine the biophysiological and biochemical indicators of stress. 

Chapter 2 (section 2.2) provides a literature review of different machine learning algorithms 

and their reported classification accuracies. It can also be observed that there is a significant 

difference in the prediction accuracies in stress classification using a similar set of 

parameters/indicators along with the same models. The possible reasons for this variation 

in prediction accuracies can be due to the variations in the experimental setup (real and 

controlled environment), use of different features extracted from the raw data (time- and 

frequency-domain features), different lengths of data recordings, different placement of 

sensors (chest worn, wrist-worn, and foot-worn), the different number of subjects recruited 

for the experiment, and different stress-perceived questionnaire for labelling.  

Theses psychometric questionnaires used for labelling the stress period/instances are not 

designed to be used in conventional applications. Moreover, these questionnaires are 

subject to individual variability and depend upon the person’s perception of their condition. 

Among the research community in the medical field, there is no agreement on the reference 

criteria for monitoring stress levels and measurement techniques. This lack of standard 

criteria for stress evaluation is due to the variability in stimuli of stress, to which each human 

reacts differently. Additionally, the available literature aimed to address one or few stress 

responses in an individual study rather than systematically describing the physiological 

stress response. The literature review completed the second objective of the thesis i.e., 

Review the different machine learning algorithms used as predictive models for stress 

detection and identify the shortcomings resulting in different predictive accuracies. 

Chapter 2 (section 2.3) suggested that the use of biochemical indicators may result in better 

and more promising results in the detection of stress, but one of the biggest shortcomings 

of biochemical markers of stress levels is their correlation with the intensity of perceived 

stress. The reason is that this relationship between biochemical hormones and stress is both 

complex and understudied. The detection of cortisol level was shortlisted as a single 

biochemical indicator that can provide better detection of stress among all other 

biochemical indicators. This work met the third objective of the thesis i.e., Investigating the 
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different detection methods of shortlisting the biochemical indicators to get more sensitive 

and specific indicators of stress and are less affected by other factors. 

In summary, the literature review helped in enlisting different physiological and biochemical 

indicators of stress along with their sensory technologies. The review also enlisted different 

machine learning algorithms used as predictive models for stress monitoring. From the 

literature surveys, it can be concluded that a system with a combination of physiological 

and biochemical stress biomarkers detection can be a more reliable solution for stress 

monitoring.  

There are several different physiological and biochemical indicators of stress, such as heart 

rate, respiratory rate, skin temperature, skin conductance, muscle activation, cortisol levels 

and many others. The development of a system that could detect all these indicators is 

unrealistic. Thus, a comparative analysis was performed in chapter 3 to determine the 

relative sensitivity and specificity of these stress-related biophysiological and biochemical 

indicators of stress in the literature.  

The analysis has been performed by applying a t-test and deviance analysis to validate the 

hypothesis that the physiological data for each variable for the stress and non-stress 

(baseline) states is statistically differentiable, and logistic regression was applied to identify 

the strongest predictor of stress. The results of two types of statistical analysis and 

classification model suggest that respiratory rate is the strongest (stand-alone) predictor of 

stress compared to other commonly used physiological variables while Heart rate (RRI) 

emerged as the second-best predictor of stress. The prediction model, consisting of the 

combination of respiratory rate, heart rate and heart rate variation, derived from a single 

sensor (PPG), gives accurate classification results as a combination of heart rate, respiratory 

rate, RR interval, heart rate variability, skin conductance and muscle activation. The latter 

is a more complex sensory system, prone to motion artefacts. This work met the fourth 

objective of investigating and shortlisting the biophysiological indicators as well as 

predictive algorithms to get more sensitive and specific indicators of stress (that are less 

affected by other factors). 

While the work of the previous chapter identified the most effective physiological signals 

(HR, PPG), there is still a challenge of the accurate and robust measurement devices to 
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record these signals and in particular labelling the recorded data. Commonly, different types 

of self-reporting questionnaires are used to label the perceived stress instances. These 

questionnaires only capture stress levels at a specific point in time. Moreover, self-reporting 

is subjective and prone to inaccuracies. Also, the existing literature lacks the evidence to 

suggest whether unsupervised learning classification methods are either feasible or not for 

stress monitoring devices, specifically regarding stress management in an ambulatory 

environment. A study considering the above-mentioned gap was designed (presented in 

chapter 4) in such a way that it not only explores unsupervised machine learning 

classification methods for stress detection but also provides evidence that with some 

improvement the unsupervised learning methods have great potential to replace the 

supervised learning classification methods for the development of non-invasive, 

continuous, and robust detection and monitoring of physiological or pathological stress.  

This study provides a fair comparison of unsupervised and supervised learning algorithms 

to bring the attention/focus of the researcher community towards unsupervised learning 

methods for stress monitoring. This study explores the potential feasibility of unsupervised 

learning clustering classifiers such as (1) Affinity Propagation, (2) Balanced Iterative 

Reducing and Clustering using Hierarchies (BIRCH), (3) K-mean, (4) Mini-Batch K-mean, 

(5) Mean Shift, (6) Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

and (7) Ordering Points to Identify the Clustering Structure (OPTICS) for implementation 

in stress monitoring wearable devices. The classification results of unsupervised machine 

learning classifiers are found comparable to supervised machine learning classifiers on two 

publicly available datasets, i.e., the SWELL-KW dataset and Stress recognition in the 

automobile driver’s dataset. The findings enhance our understanding of the feasibility of 

unsupervised learning classifiers in wearable devices. Furthermore, these findings also 

confirmed that respiratory rate and heart rate are the potential indicators for accurate stress 

detection and back the results found in chapter 3. This work was also performed under the 

fourth objective of the thesis i.e., Investigate and shortlist the biophysiological indicators 

as well as predictive algorithms to get more sensitive and specific indicators of stress (that 

are less affected by other factors). 

The respiratory rate and heart rate were found to be the most effective stress-related signals 

in Chapter 3. Both respiratory rate and heart rate can easily be extracted using a single 
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wearable sensor i.e., a PPG sensor. The easiest way of recording a PPG signal is through 

watches. Watches are easy to wear, at feasible locations (at the wrist), have longer battery 

life and recorded data can easily be accessed for analysis. Most smartwatches use a 

photoplethysmography signal to extract only the heart rate, as it is the count of the number 

of peaks in the signal (per minute) [352], [353]. While few algorithms have been proposed 

in the literature to extract respiratory rates from PPG signals, each algorithm has certain 

limitations. Such as: 

 Estimation of respiratory rate from a PPG signal achieved using digital signal 

processing (DSP) techniques is highly dependent on the cut-off frequency of the 

filter. 

 The analytical methods are very sensitive to noise and result in very poor respiratory 

rate detection in presence of motion artefacts.  

 Time-frequency analysis-based methods such as Wavelet transform addresses most 

of the common problems of filtering and analytical methods. It is less sensitive to 

noise and motion artefacts but requires the selection of more than one parameter, 

such as the mother wavelet function and the total number of decomposition levels, 

which in practice are unknown [354], [355].  

Other key challenges in respiratory rate estimation are coping with respiratory-induced 

amplitude variability caused due changes in intra-thoracic pressure during inhale and exhale 

cycle, and estimation of optimal window size for segmentation of the signal as a shorter 

window size provides better real-time performance and high resolution while larger window 

size provides better accuracy [357]. Thus, in Chapter 5, a novel PPG-based respiratory rate 

estimation algorithm is developed considering all the major limitations including noise, 

motion artefacts, poor signal quality, the effect of window size, and the cut-off frequencies 

of the filters. The algorithm is based on three steps: 

 The pre-processing steps perform signal extraction, filtration, and peak 

enhancement for increasing the signal-to-noise ratio.  

 The signal analysis stage, peak detection, peak-to-peak interval, error in peak 

detection and correction, calculation of different time-series measurements and 

estimation of respiratory rate are performed.  
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 As the amplitude of the PPG signal is affected by respiration, thus in the final stage, 

scaling is performed based on the induced amplitude variation.  

The estimated respiratory rate is compared with the reference respiration data provided in 

the publicly available dataset called BIDMC dataset. The results achieved by the proposed 

algorithm endorse the integration of the proposed algorithm into a commercially available 

pulse oximetry device would expand its functionality from the measurement of oxygen 

saturation level (SpO2) and heart rate to the continuous measurement of the respiratory 

rate with great efficiency in the clinical setting as well as in the ambulatory home-based 

environment. This work met the fifth objective of the thesis which was to develop and 

evaluate an algorithm that can extract the stress-specific information from a physiological 

signal, should be able to deal with low-quality signal and deals with other co-founding 

factors to detect and classify stress accurately. 

To make the developed respiratory rate estimation algorithm more generalizable, it needed 

to be tested on another stress-related dataset. The availability of open-source public datasets 

in the field of biomedical research is always a challenge. This might be because of data 

privacy and effort put into the manual annotation of the signal by experts which incur high 

costs and time consumption. Thus, in Chapter 6, a clinical study was performed to develop 

a stress-predict dataset for the identification and analysis of different patterns of stress-

induced while performing specific tasks. Along with dataset development, this study 

primarily focused on further validation of the developed algorithm (Chapter 5) and a 

comparative analysis of the features collected in terms of prediction specificity and 

sensitivity for stress monitoring. The results of statistical analysis (linear mixer model and 

adaptive reference range) showed that, in the Stress-Predict dataset, the respiratory rate is 

the best predictor of the stress state.  

The stress-predict dataset is an open-access dataset and is made publicly available. The 

inclusion of an additional feature, i.e., respiratory rate data along with stress and baseline 

labels within the dataset, makes this dataset more desirable and unique from all the other 

publicly available Empatica E4-based datasets and will certainly attract the attention and 

interest of researchers in the all the field of psychological, clinical, and biomedical research, 

as well as prevention, medicine, and connected health systems.  
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Furthermore, the developed respiratory rate estimation algorithm was evaluated on the 

dataset and was successful in estimating accurate respiratory rate (when compared to 

breathing rate during the hyperventilation period). Moreover, the stress versus baseline 

state classification was also performed and the highest accuracy of 67.4% was achieved. 

While the conventional statistical features (such as mean, variance, standard deviation, and 

mean absolute deviation) of respiratory and heart rate do help in distinguishing between 

stress versus baseline readings but the reported accuracy (determined by experimentation 

in Chapter 3 and Chapter 4) is low i.e., around 75%. The stress classification is highly 

dependent on the classification model and features fed to the model. For accurate stress 

monitoring, it is essential that these features are not only informative but also well-

distinguishable and interpretable by the classification models. Chapter 7 implemented a 

time-series feature engineering algorithm that extracts well-distinguishable time-series 

features from a physiological signal and helped in achieving high-stress detection 

performance. The algorithm extracts 1578 features using the tsfresh library on the stress-

predict dataset. These features are then reduced to more specific time-series features using 

principal component analysis (PCA) along with Pearson, Kendall and Spearman correlation 

ranking techniques. The comparative analysis of conventional features versus correlation-

based features is performed using logistic regression, random forest, and k-nearest 

neighbour models. The outcome of the proposed study concludes that it is vital to have 

better analytical features rather than conventional statistical features for accurate stress 

classification.  

The work presented in chapters 6 and 7 was performed to achieve the sixth and final 

objective of the thesis, which was to investigate and provide a solution of identification and 

calculation of discriminative features of the stressed condition and should easily be 

characterized as a stress response from all other physiological stimuli. 

This thesis provides feasibility studies about different biophysiological and biochemical 

indicators of stress and determines the most sensitive and specific indicators of stress that 

are less likely to be affected by another stimulus. Moreover, a novel PPG-based respiratory 

rate estimation algorithm was developed to accurately estimate breathing rate even from 

low-quality, distorted PPG signals. Additionally, a clinical study was also conducted to 

propose a new dataset, named Stress-Predict Dataset, and further evaluate the developed 
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estimation algorithm. Finally, different time-series feature engineering parameters were 

investigated to find the best parameter which improves the overall performance of stress 

detection. The work presented in this thesis is a stepping-stone toward the clinical 

evaluation of stress monitoring technology. 

 

8.2 Future Work 

The work presented in this thesis can be further extended to the potential of designing a 

non-invasive, continuous, and robust wearable real-time stress monitoring device for the 

detection and prediction of biophysiological and psychological stress based on 

photoplethysmography (PPG) signals. The suggestions for future work in the field of stress 

monitoring are presented in this section.  

The presented work can be extended in several ways to further accelerate the translation of 

stress-monitoring prototypes from the research to patients. The recommendations related 

to future work are listed below:  

1. The field of detecting biochemical indicators for stress monitoring is relatively 

novel and immature. Many studies reported a good sensitivity and specificity of 

cortisol sampling and showed comparable accuracies in cortisol detection when 

compared to gold-standard or conventional methods. Thus, in future, a wearable 

biochemical sensor could be developed but there is a need of determining the true 

relationship between stress and cortisol, through accurate, reliable, and valid 

analysis. These analyses should be based on robust methodologies and should be 

well-documented, transparent, and easily understandable by the intended audience. 

Additionally, the data used for the investigation should be of high quality, which 

includes proper collection, cleaning, and pre-processing in such a way that their 

results provide valuable insights about the research question. Furthermore, the 

effect of sex, ethnicity, and treatments on the association between stress and 

cortisol levels must also need to be investigated. 

2. Currently, in the respiratory rate estimation algorithm, the scaling value to cope 

with the amplitude variation of the PPG signal is the only hyperparameter that 

might need to be determined empirically. The default method of scaling does work 

for most of the PPG data but may require improvement in some cases. In future, 
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the scaling technique can be improved which will eventually improve the estimation 

accuracy furthermore. To determine a more generalizable scaling value 

automatically for accurate estimation of the respiratory rate, the algorithm needs to 

be evaluated on adequate datasets having the following characteristics: 

a.  Large and diverse dataset: the dataset should have large enough numbers 

of data points to represent the sampled population and should be diverse 

to test the algorithm’s performance on different types of inputs. 

b. Balanced: the dataset should have balanced distributions to avoid bias in 

the algorithm’s performance. 

c. Clean and pre-processed: the dataset should be clean of any errors and 

should have suitable data format for the algorithm testing. 

d. Annotated: The dataset should be well annotated with labels and other 

relevant information. 

e. Representative and publicly available: The dataset should be publicly 

available so that other researchers could evaluate their algorithms and 

compare them with existing ones. 

The dataset with such characteristics gives more confidence in the results and allows 

the algorithm to be tested in different scenarios. 

3. The classification results indicate that unsupervised machine learning classifiers can 

achieve comparable performance in terms of classification accuracy, precision, 

recall and F1-score, without any training phase which is usually time-consuming 

and inaccurate. The findings enhance our understanding of the feasibility of 

unsupervised learning classifiers in wearable devices.  These unsupervised machine 

learning algorithms require further investigation and modification to discover the 

hidden patterns and structures within the data which will help these algorithms to 

surpass the accuracies provided by supervised learning algorithms. The 

modification includes the use of clustering, dimensionality reduction, generative 

models, anomaly detection, self-organizing maps, and/or deep learning. 

4. The inclusion of an additional feature, i.e., respiratory rate data along with stress 

and baseline labels within the dataset, makes the dataset unique from all the other 

publicly available Empatica E4-based datasets.  There were also some limitations to 

the study.  
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a. First, at the start and end of the stress task, the heart rate and respiratory 

rate change gradually, but there is no accurate way to determine this gradual 

change. Thus, labelling is performed without considering these (actual) 

delayed changes.  

b. Secondly, sometimes there is more than one participant in the room where 

the study was conducted. The crosstalk and, especially, the questions asked 

during the interview to induce stress were learned by the other participant 

while the resting/baseline period. Therefore, the effectiveness of the stress-

inducing interview questions was decreased.  

c. Third, the interviewees were friendly and kind to the participant. They kept 

the overall interview environment friendly rather than mimicking a strict 

interview session which might have resulted in less induced stress. Thus, 

there was less variation in the readings of stress versus non-stress 

parameters.  

All these factors must have been related to the (relatively low) classification 

accuracies achieved. In future studies, all these shortcomings should be 

considered to obtain an improved stress monitoring model. In future, a 

standard respiratory and heart rate measuring chest-worn band could be used 

to accurately detect the gradual changes in these parameters at the start and end 

of each stress-inducing task. Furthermore, data recording could be done in two 

separate rooms if more than one participant is interviewed. Efforts should also 

be made to strict the overall environment to get the participants pressured and 

stressed by either asking rapid questions or by asking them to perform a difficult 

task such as talking in a non-native language or giving them complex 

mathematics questions. All these steps will benefit in collecting high-quality 

stress-induced data which will eventually help in the development of an accurate 

stress monitoring device. 

8.2.1 Towards future stress monitoring clinical device 

Future stress-monitoring clinical devices will have the following features: 
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1. Non-invasive and continuous: will be able to monitor biophysiological and 

biochemical signals (such as respiratory rate, heart rate and cortisol levels) 

continuously and without any surgery, as illustrated in this thesis. 

2. Multimodal sensing: will be able to utilize optical, electrical, and mechanical sensors 

to measure the stress-specific indicators (determine in this thesis) and provide 

comprehensive and accurate data.  

3. Real-time analysis: will analyse the measured signal (as proposed in the thesis) and 

provide instant interventions to users on the go, allowing them to react immediately 

and reduce their stress either by meditation or talking to their loved ones. 

4. Personalised: will have built-in unsupervised (investigated in this thesis) or 

reinforcement learning algorithm in the device, enabling it to learn from the user’s 

unique stress response and make a recommendation when stress is detected. 

5. Wearable and portable: this will be a small (wrist-worn) device that can easily be 

worn for a long time, will have long battery life and is easy to carry in daily routine. 

6. Last but not the least, Affordable and accessible: will be affordable and accessible 

to a large range of users and could be easily used by clinicians as well as non-

clinicians. 

Some of the features discussed above have already been developed and are available but 

still further technological advancement and research is needed to have a multimodal sensory 

wearable device. At present, there is no single best analytical method for the development 

of ambulatory stress monitoring technology, and thus, this field appears to be relatively 

immature and engrossing. In the future years, with the help of the proposed algorithms and 

stress-predict dataset presented in this thesis, I am hopeful to overcome the remaining 

procedural and technological hurdles and make a true ambulatory bio-physiological and 

biochemical diagnostic wearable stress monitoring device for a home as well as a clinic-

based healthcare system. 

 

 

 

  



 

197 

 

References 

[1] F. M. Reis, L. M. Coutinho, S. Vannuccini, S. Luisi, and F. Petraglia, “Is stress a cause or a 

consequence of endometriosis?,” Reprod. Sci., vol. 27, pp. 39–45, 2020. 

[2] U. Pluntke, S. Gerke, A. Sridhar, J. Weiss, and B. Michel, “Evaluation and classification of 

physical and psychological stress in firefighters using heart rate variability,” in 2019 41st 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 

2019, pp. 2207–2212. 

[3] L. Richard, T. Hurst, and J. Lee, “Lifetime exposure to abuse, current stressors, and health 

in federally qualified health center patients,” J. Hum. Behav. Soc. Environ., vol. 29, no. 5, pp. 

593–607, 2019. 

[4] G. S. Everly and J. M. Lating, “The anatomy and physiology of the human stress response,” 

in A clinical guide to the treatment of the human stress response, Springer, 2019, pp. 19–56. 

[5] E. Hemmingsson, “Early childhood obesity risk factors: socioeconomic adversity, family 

dysfunction, offspring distress, and junk food self-medication,” Curr. Obes. Rep., vol. 7, no. 

2, pp. 204–209, 2018. 

[6] D. Carneiro, P. Novais, J. C. Augusto, and N. Payne, “New Methods for Stress Assessment 

and Monitoring at the Workplace,” IEEE Trans. Affect. Comput., vol. 14, no. 8, pp. 1–1, 2017, 

doi: 10.1109/taffc.2017.2699633. 

[7] H. S. Executive, “Work-related ill health and occupational disease in Great Britain.” 

[Online]. Available: https://www.hse.gov.uk/statistics/causdis/. 

[8] P. Verma and S. K. Sood, “A comprehensive framework for student stress monitoring in 

fog-cloud IoT environment: m-health perspective,” Med. Biol. Eng. Comput., vol. 57, no. 1, 

pp. 231–244, 2019, doi: 10.1007/s11517-018-1877-1. 

[9] K. L. Tamashiro, R. R. Sakai, C. A. Shively, I. N. Karatsoreos, and L. P. Reagan, “Chronic 

stress, metabolism, and metabolic syndrome,” Stress, vol. 14, no. 5, pp. 468–474, 2011. 

[10] A. Golgouneh and B. Tarvirdizadeh, “Fabrication of a portable device for stress monitoring 

using wearable sensors and soft computing algorithms,” Neural Comput. Appl., pp. 1–23, 

2019. 

[11] P. Suresh, A. Matthews, and I. Coyne, “Stress and stressors in the clinical environment: a 



 

198 

 

comparative study of fourth-year student nurses and newly qualified general nurses in 

Ireland,” J. Clin. Nurs., vol. 22, no. 5–6, pp. 770–779, 2013. 

[12] J. Aguiló et al., “Project ES3: attempting to quantify and measure the level of stress,” Rev 

Neurol, vol. 61, no. 9, pp. 405–415, 2015. 

[13] B. S. McEwen, “Stressed or stressed out: what is the difference?,” J. Psychiatry Neurosci., vol. 

30, no. 5, p. 315, 2005. 

[14] E. G. Brown, A.-M. Creaven, and S. Gallagher, “Loneliness and cardiovascular reactivity to 

acute stress in younger adults,” Int. J. Psychophysiol., vol. 135, pp. 121–125, 2019. 

[15] M. al’Absi, D. Hatsukami, G. L. Davis, and L. E. Wittmers, “Prospective examination of 

effects of smoking abstinence on cortisol and withdrawal symptoms as predictors of early 

smoking relapse,” Drug Alcohol Depend., vol. 73, no. 3, pp. 267–278, 2004. 

[16] S. Ranabir and K. Reetu, “Stress and hormones,” Indian J. Endocrinol. Metab., vol. 15, no. 1, 

p. 18, 2011. 

[17] L. Petrakova, K. Boy, L. Mittmann, L. Möller, H. Engler, and M. Schedlowski, “Salivary 

alpha-amylase and noradrenaline responses to corticotropin-releasing hormone 

administration in humans,” Biol. Psychol., vol. 127, pp. 34–39, 2017. 

[18] A. Alberdi, A. Aztiria, and A. Basarab, “Towards an automatic early stress recognition 

system for office environments based on multimodal measurements: A review,” J. Biomed. 

Inform., vol. 59, pp. 49–75, 2016. 

[19] P. Schmidt, R. Duerichen, K. Van Laerhoven, C. Marberger, and A. Reiss, “Introducing 

WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection,” pp. 400–408, 

2018, doi: 10.1145/3242969.3242985. 

[20] M. J. H. Begemann, E. J. R. Florisse, R. Van Lutterveld, M. Kooyman, and I. E. Sommer, 

“Efficacy of EEG neurofeedback in psychiatry: A comprehensive overview and meta-

analysis,” Transl. Brain Rhythm., vol. 1, no. 1, pp. 19–29, 2016. 

[21] J. Sánchez-Molina, J. J. Robles-Pérez, and V. J. Clemente-Suárez, “Assessment of 

psychophysiological response and specific fine motor skills in combat units,” J. Med. Syst., 

vol. 42, no. 4, pp. 1–7, 2018. 

[22] R. Delgado-Moreno, J. J. Robles-Pérez, and V. J. Clemente-Suárez, “Combat stress 

decreases memory of warfighters in action,” J. Med. Syst., vol. 41, no. 8, pp. 1–7, 2017. 



 

199 

 

[23] V. J. Clemente-Suárez, J. J. Robles-Pérez, and J. Fernández-Lucas, “Psychophysiological 

response in parachute jumps, the effect of experience and type of jump,” Physiol. \& Behav., 

vol. 179, pp. 178–183, 2017. 

[24] K. Hovsepian, M. Al’Absi, E. Ertin, T. Kamarck, M. Nakajima, and S. Kumar, “cStress: 

towards a gold standard for continuous stress assessment in the mobile environment,” in 

Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing, 2015, 

pp. 493–504. 

[25] J. Rodr\’\iguez-Arce, L. Lara-Flores, O. Portillo-Rodr\’\iguez, and R. Mart\’\inez-

Méndez, “Towards an anxiety and stress recognition system for academic environments 

based on physiological features,” Comput. Methods Programs Biomed., vol. 190, p. 105408, 2020. 

[26] M. Gjoreski, H. Gjoreski, M. Luštrek, and M. Gams, “Continuous stress detection using a 

wrist device: in laboratory and real life,” in proceedings of the 2016 ACM international joint 

conference on pervasive and ubiquitous computing: Adjunct, 2016, pp. 1185–1193. 

[27] L. Han, Q. Zhang, X. Chen, Q. Zhan, T. Yang, and Z. Zhao, “Detecting work-related stress 

with a wearable device,” Comput. Ind., vol. 90, pp. 42–49, 2017, doi: 

10.1016/j.compind.2017.05.004. 

[28] M. Chesnut et al., “Stress markers for mental states and biotypes of depression and anxiety: 

A scoping review and preliminary illustrative analysis,” Chronic Stress, vol. 5, p. 

24705470211000336, 2021. 

[29] J. M. Peake, G. Kerr, and J. P. Sullivan, “A critical review of consumer wearables, mobile 

applications, and equipment for providing biofeedback, monitoring stress, and sleep in 

physically active populations,” Front. Physiol., vol. 9, no. JUN, pp. 1–19, 2018, doi: 

10.3389/fphys.2018.00743. 

[30] T. Hao, K. N. Walter, M. J. Ball, H.-Y. Chang, S. Sun, and X. Zhu, “StressHacker: towards 

practical stress monitoring in the wild with Smartwatches,” in AMIA Annual Symposium 

Proceedings, 2017, vol. 2017, p. 830. 

[31] S. Lee et al., “Mental stress assessment using ultra short term HRV analysis based on non-

linear method,” Biosensors, vol. 12, no. 7, p. 465, 2022. 

[32] D. American Psychiatric Association, A. P. Association, and others, Diagnostic and statistical 

manual of mental disorders: DSM-5, vol. 5, no. 5. American psychiatric association Washington, 

DC, 2013. 



 

200 

 

[33] K. M. Parker and S. A. Smith, “Aquatic-aerobic exercise as a means of stress reduction 

during pregnancy,” J. Perinat. Educ., vol. 12, no. 1, p. 6, 2003. 

[34] M. E. Colbaugh, Whirl-Winded: Stressed and Coping. Indiana University of Pennsylvania, 2014. 

[35] B. Østerås, H. Sigmundsson, and M. Haga, “Psychometric properties of the perceived stress 

questionnaire (PSQ) in 15--16 years old Norwegian adolescents,” Front. Psychol., vol. 9, p. 

1850, 2018. 

[36] C. Emmanouil, F. Bacopoulou, D. Vlachakis, G. P. Chrousos, and C. Darviri, “Validation 

of the Stress in Children (SiC) Questionnaire in a Sample of Greek Pupils,” J. Mol. Biochem., 

vol. 9, no. 1, p. 74, 2020. 

[37] K. Plarre et al., “Continuous inference of psychological stress from sensory measurements 

collected in the natural environment,” in Proceedings of the 10th ACM/IEEE international 

conference on information processing in sensor networks, 2011, pp. 97–108. 

[38] Y. S. Can, B. Arnrich, and C. Ersoy, “Stress detection in daily life scenarios using smart 

phones and wearable sensors: A survey,” J. Biomed. Inform., vol. 92, p. 103139, 2019. 

[39] S. Gradl, M. Wirth, R. Richer, N. Rohleder, and B. M. Eskofier, “An overview of the 

feasibility of permanent, real-time, unobtrusive stress measurement with current wearables,” 

in Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for 

Healthcare, 2019, pp. 360–365. 

[40] M. Kivimäki and A. Steptoe, “Effects of stress on the development and progression of 

cardiovascular disease,” Nat. Rev. Cardiol., vol. 15, no. 4, p. 215, 2018. 

[41] A. Mariotti, “The effects of chronic stress on health: new insights into the molecular 

mechanisms of brain--body communication,” Futur. Sci. OA, vol. 1, no. 3, 2015. 

[42] W. H. Organization and others, “World Health Statistics data visualizations dashboard,” 

Obtenido World Heal. Stat. data Vis. dashboard http//apps. who. int/gho/data/node. sdg, pp. 3–4. 

[43] A. Golgouneh and B. Tarvirdizadeh, “Fabrication of a portable device for stress monitoring 

using wearable sensors and soft computing algorithms,” Neural Comput. Appl., vol. 32, no. 

11, pp. 7515–7537, 2020. 

[44] D. H. Hellhammer, A. A. Stone, J. Hellhammer, and J. Broderick, “Measuring stress,” Encycl. 

Behav. Neurosci., vol. 2, pp. 186–191, 2010. 

[45] B. Cvetković et al., “Real-time physical activity and mental stress management with a 



 

201 

 

wristband and a smartphone,” in Proceedings of the 2017 ACM International Joint Conference on 

Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on 

Wearable Computers, 2017, pp. 225–228. 

[46] F. Seoane et al., “Wearable biomedical measurement systems for assessment of mental stress 

of combatants in real time,” Sensors (Switzerland), vol. 14, no. 4, pp. 7120–7141, 2014, doi: 

10.3390/s140407120. 

[47] C. D. Katsis, N. S. Katertsidis, and D. I. Fotiadis, “An integrated system based on 

physiological signals for the assessment of affective states in patients with anxiety 

disorders,” Biomed. Signal Process. Control, vol. 6, no. 3, pp. 261–268, 2011. 

[48] M. Gjoreski, M. Luštrek, M. Gams, and H. Gjoreski, “Monitoring stress with a wrist device 

using context,” J. Biomed. Inform., vol. 73, pp. 159–170, 2017, doi: 10.1016/j.jbi.2017.08.006. 

[49] E. L. van den Broek, F. van der Sluis, and T. Dijkstra, “Cross-validation of bimodal health-

related stress assessment,” Pers. Ubiquitous Comput., vol. 17, no. 2, pp. 215–227, 2013. 

[50] S.-H. Seo, J.-T. Lee, and M. Crisan, “Stress and EEG,” Converg. hybrid Inf. Technol., vol. 27, 

2010. 

[51] P. Zontone, A. Affanni, R. Bernardini, A. Piras, and R. Rinaldo, “Stress detection through 

electrodermal activity (EDA) and electrocardiogram (ECG) analysis in car drivers,” in 2019 

27th European Signal Processing Conference (EUSIPCO), 2019, pp. 1–5. 

[52] A. Affanni, “Wireless sensors system for stress detection by means of ECG and EDA 

acquisition,” Sensors, vol. 20, no. 7, p. 2026, 2020. 

[53] G. Giannakakis, D. Grigoriadis, K. Giannakaki, O. Simantiraki, A. Roniotis, and M. 

Tsiknakis, “Review on psychological stress detection using biosignals,” IEEE Trans. Affect. 

Comput., 2019. 

[54] S. Pourmohammadi and A. Maleki, “Stress detection using ECG and EMG signals: A 

comprehensive study,” Comput. Methods Programs Biomed., vol. 193, p. 105482, 2020. 

[55] T. Oka, “Psychogenic fever: how psychological stress affects body temperature in the 

clinical population,” Temperature, vol. 2, no. 3, pp. 368–378, 2015. 

[56] K. A. Herborn et al., “Skin temperature reveals the intensity of acute stress,” Physiol. Behav., 

vol. 152, pp. 225–230, 2015. 

[57] F. de Arriba-Pérez, J. M. Santos-Gago, M. Caeiro-Rodr\’\iguez, and M. Ramos-Merino, 



 

202 

 

“Study of stress detection and proposal of stress-related features using commercial-off-the-

shelf wrist wearables,” J. Ambient Intell. Humaniz. Comput., vol. 10, no. 12, pp. 4925–4945, 

2019. 

[58] H. Reims, K. Sevre, E. Fossum, A. Høieggen, I. Eide, and S. Kjeldsen, “Plasma 

catecholamines, blood pressure responses and perceived stress during mental arithmetic 

stress in young men,” Blood Press., vol. 13, no. 5, pp. 287–294, 2004. 

[59] J. B. Drummond et al., “Copeptin response to hypoglycemic stress is linked to prolactin 

activation in children,” Pituitary, vol. 23, no. 6, pp. 681–690, 2020. 

[60] B. Valentin et al., “Cortisol and alpha-amylase as stress response indicators during pre-

hospital emergency medicine training with repetitive high-fidelity simulation and scenarios 

with standardized patients,” Scand. J. Trauma. Resusc. Emerg. Med., vol. 23, no. 1, pp. 1–8, 

2015. 

[61] L. Thau and S. Sharma, “Physiology, cortisol,” StatPearls [Internet], 2020. 

[62] N. Hjortskov, A. H. Garde, P. Ørbæk, and Å. M. Hansen, “Evaluation of salivary cortisol 

as a biomarker of self-reported mental stress in field studies,” Stress Heal. J. Int. Soc. Investig. 

Stress, vol. 20, no. 2, pp. 91–98, 2004. 

[63] K. H. Kim, S. W. Bang, and S. R. Kim, “Emotion recognition system using short-term 

monitoring of physiological signals,” Med. Biol. Eng. Comput., vol. 42, no. 3, pp. 419–427, 

2004, doi: 10.1007/BF02344719. 

[64] F.-T. Sun, C. Kuo, H.-T. Cheng, S. Buthpitiya, P. Collins, and M. Griss, “Activity-aware 

mental stress detection using physiological sensors,” in International conference on Mobile 

computing, applications, and services, 2010, pp. 282–301. 

[65] L. lan Chen, Y. Zhao, P. fei Ye, J. Zhang, and J. zhong Zou, “Detecting driving stress in 

physiological signals based on multimodal feature analysis and kernel classifiers,” Expert Syst. 

Appl., vol. 85, pp. 279–291, 2017, doi: 10.1016/j.eswa.2017.01.040. 

[66] J. Kim, J. Park, and J. Park, “Development of a statistical model to classify driving stress 

levels using galvanic skin responses,” Hum. Factors Ergon. Manuf. Serv. Ind., vol. 30, no. 5, pp. 

321–328, 2020. 

[67] J. Healey and R. Picard, “SmartCar: detecting driver stress,” in Proceedings 15th International 

Conference on Pattern Recognition. ICPR-2000, 2000, vol. 4, pp. 218–221. 



 

203 

 

[68] J. A. Healey and R. W. Picard, “Detecting stress during real-world driving tasks using 

physiological sensors,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 2, pp. 156–166, 2005. 

[69] R. Mahmoud, T. Shanableh, I. P. Bodala, N. V Thakor, and H. Al-Nashash, “Novel 

classification system for classifying cognitive workload levels under vague visual 

stimulation,” IEEE Sens. J., vol. 17, no. 21, pp. 7019–7028, 2017. 

[70] Y. Shi et al., “Personalized stress detection from physiological measurements,” Int. Symp. 

Qual. Life Technol., pp. 28–29, 2010, doi: 10.1.1.207.8062. 

[71] J. Wijsman, B. Grundlehner, H. Liu, H. Hermens, and J. Penders, “Towards mental stress 

detection using wearable physiological sensors,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. 

Soc. EMBS, pp. 1798–1801, 2011, doi: 10.1109/IEMBS.2011.6090512. 

[72] V. Sandulescu, S. Andrews, D. Ellis, N. Bellotto, and O. M. Mozos, “Stress detection using 

wearable physiological sensors,” in International work-conference on the interplay between natural and 

artificial computation, 2015, pp. 526–532. 

[73] M. Choi, G. Koo, M. Seo, and S. W. Kim, “Wearable Device-Based System to Monitor a 

Driver’s Stress, Fatigue, and Drowsiness,” IEEE Trans. Instrum. Meas., vol. 67, no. 3, pp. 

634–645, 2018, doi: 10.1109/TIM.2017.2779329. 

[74] C. H. Vinkers et al., “The effect of stress on core and peripheral body temperature in 

humans,” Stress, vol. 16, no. 5, pp. 520–530, 2013. 

[75] M. Uesato et al., “Salivary amylase activity is useful for assessing perioperative stress in 

response to pain in patients undergoing endoscopic submucosal dissection of gastric tumors 

under deep sedation,” Gastric Cancer, vol. 13, no. 2, pp. 84–89, 2010. 

[76] E. Ullmann, A. Barthel, K. Petrowski, T. Stalder, C. Kirschbaum, and S. R. Bornstein, “Pilot 

study of adrenal steroid hormones in hair as an indicator of chronic mental and physical 

stress,” Sci. Rep., vol. 6, no. October 2015, pp. 1–7, 2016, doi: 10.1038/srep25842. 

[77] A. Arza et al., “Measuring acute stress response through physiological signals: towards a 

quantitative assessment of stress,” Med. Biol. Eng. Comput., vol. 57, no. 1, pp. 271–287, 2019, 

doi: 10.1007/s11517-018-1879-z. 

[78] E. Cashdan, “Hormones and Competitive Aggression in Women,” Aggress. Behav., vol. 29, 

no. 2, pp. 107–115, 2003, doi: 10.1002/ab.10041. 

[79] N. Rohleder, U. M. Nater, J. M. Wolf, U. Ehlert, and C. Kirschbaum, “Psychosocial stress-



 

204 

 

induced activation of salivary alpha-amylase: An indicator of sympathetic activity?,” Ann. N. 

Y. Acad. Sci., vol. 1032, pp. 258–263, 2004, doi: 10.1196/annals.1314.033. 

[80] A. Tasaka, Y. Tahara, T. Sugiyama, and K. Sakurai, “Influence of chewing rate on salivary 

stress hormone levels.,” Nihon Hotetsu Shika Gakkai Zasshi, vol. 52, no. 4, pp. 482–7, 2008, 

[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19037143. 

[81] A. Goyal, S. Singh, D. Vir, and D. Pershad, “Automation of stress recognition using 

subjective or objective measures,” Psychol. Stud. (Mysore)., vol. 61, no. 4, pp. 348–364, 2016. 

[82] A. P. Allen, P. J. Kennedy, J. F. Cryan, T. G. Dinan, and G. Clarke, “Biological and 

psychological markers of stress in humans: Focus on the Trier Social Stress Test,” Neurosci. 

Biobehav. Rev., vol. 38, pp. 94–124, 2014. 

[83] Y. S. Can, N. Chalabianloo, D. Ekiz, and C. Ersoy, “Continuous Stress Detection Using 

Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study,” Sensors, vol. 

19, no. 8, p. 1849, 2019, doi: 10.3390/s19081849. 

[84] O. V. Bitkina, J. Kim, J. Park, J. Park, and H. K. Kim, “Identifying traffic context using 

driving stress: A longitudinal preliminary case study,” Sensors (Switzerland), vol. 19, no. 9, pp. 

1–16, 2019, doi: 10.3390/s19092152. 

[85] T. Li, Y. Chen, and W. Chen, “Daily Stress Monitoring Using Heart Rate Variability of 

Bathtub ECG Signals,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2018-

July, pp. 2699–2702, 2018, doi: 10.1109/EMBC.2018.8512767. 

[86] Y. Liu and S. Du, “Psychological stress level detection based on electrodermal activity,” 

Behav. Brain Res., vol. 341, no. November 2017, pp. 50–53, 2018, doi: 

10.1016/j.bbr.2017.12.021. 

[87] D. S. Lee, T. W. Chong, and B. G. Lee, “Stress Events Detection of Driver by Wearable 

Glove System,” IEEE Sens. J., vol. 17, no. 1, pp. 194–204, 2017, doi: 

10.1109/JSEN.2016.2625323. 

[88] O. M. Mozos et al., “Stress Detection Using Wearable Physiological and Sociometric 

Sensors,” Int. J. Neural Syst., vol. 27, no. 02, p. 1650041, 2017, doi: 

10.1142/s0129065716500416. 

[89] I. Mohino-Herranz, R. Gil-Pita, J. Ferreira, M. Rosa-Zurera, and F. Seoane, “Assessment of 

mental, emotional and physical stress through analysis of physiological signals using 



 

205 

 

smartphones,” Sensors (Switzerland), vol. 15, no. 10, pp. 25607–25627, 2015, doi: 

10.3390/s151025607. 

[90] A. Muaremi, A. Bexheti, F. Gravenhorst, B. Arnrich, and G. Troster, “Monitoring the 

impact of stress on the sleep patterns of pilgrims using wearable sensors,” 2014 IEEE-

EMBS Int. Conf. Biomed. Heal. Informatics, BHI 2014, pp. 185–188, 2014, doi: 

10.1109/BHI.2014.6864335. 

[91] P. KARTHIKEYAN, M. MURUGAPPAN, and S. YAACOB, “Detection of Human Stress 

Using Short-Term Ecg and Hrv Signals,” J. Mech. Med. Biol., vol. 13, no. 02, p. 1350038, 

2013, doi: 10.1142/s0219519413500383. 

[92] S. A. Hosseini and M. A. Khalilzadeh, “Emotional stress recognition system using EEG and 

psychophysiological signals: Using new labelling process of EEG signals in emotional stress 

state,” 2010 Int. Conf. Biomed. Eng. Comput. Sci. ICBECS 2010, pp. 1–6, 2010, doi: 

10.1109/ICBECS.2010.5462520. 

[93] J. Choi and R. Gutierrez-Osuna, “Using heart rate monitors to detect mental stress,” in 2009 

Sixth International Workshop on Wearable and Implantable Body Sensor Networks, 2009, pp. 219–

223. 

[94] L. Bönke et al., “Examining the effect of Early Life Stress on autonomic and endocrine 

indicators of individual stress reactivity,” Neurobiol. Stress, vol. 10, no. November 2018, p. 

100142, 2019, doi: 10.1016/j.ynstr.2018.100142. 

[95] K. Sunthad, Y. Niitsu, M. Inoue, and T. Yokemura, “Brain’s Stress Observation System 

Using 2-Channels NIRS Based on Classroom Activity,” in 2019 IEEE International Conference 

on Consumer Electronics (ICCE), 2019, pp. 1–4. 

[96] W. Wu, S. Pirbhulal, H. Zhang, and S. C. Mukhopadhyay, “Quantitative Assessment for 

Self-Tracking of Acute Stress based on Triangulation Principle in a Wearable Sensor 

System,” IEEE J. Biomed. Heal. Informatics, vol. PP, no. c, p. 1, 2018, doi: 

10.1109/JBHI.2018.2832069. 

[97] E. Russell, G. Koren, M. Rieder, and S. H. M. Van Uum, “The detection of cortisol in 

human sweat: implications for measurement of cortisol in hair,” Ther. Drug Monit., vol. 36, 

no. 1, pp. 30–34, 2014. 

[98] E. Russell, G. Koren, M. Rieder, and S. Van Uum, “Hair cortisol as a biological marker of 

chronic stress: current status, future directions and unanswered questions.,” 



 

206 

 

Psychoneuroendocrinology, vol. 37, no. 5, pp. 589–601, 2012, doi: 

10.1016/j.psyneuen.2011.09.009. 

[99] N. Ahmed, B. De La Torre, and N. G. Wahlgren, “Salivary cortisol, a biological marker of 

stress, is positively associated with 24-hour systolic blood pressure in patients with acute 

ischaemic stroke,” Cerebrovasc. Dis., vol. 18, no. 3, pp. 206–213, 2004, doi: 

10.1159/000079943. 

[100] P. Redon, A. Shahzad, T. Iqbal, and W. Wijns, “Development of a New Detection 

Algorithm to Identify Acute Coronary Syndrome Using Electrochemical Biosensors for 

Real-World Long-Term Monitoring,” Bioengineering, vol. 8, no. 2, p. 28, 2021. 

[101] S. Minaee, “popular machine learning metrics. part 1: Classification & regression evaluation 

metrics,”,” Mediu. url https//towardsdatascience. com/20-popular-machine-learning-metrics-part-1-

classification-regressionevaluation-metrics-1ca3e282a2ce, 2019. 

[102] J. Jordan, “Evaluating a machine learning model.”,” DATA Sci. url 

https//www.jeremyjordan.me/evaluating-a-machine-learning-model/, 2017. 

[103] M. C. Staff, “Stress symptoms: Effects on your body and behavior.” 2016. 

[104] A. Reisner, P. A. Shaltis, D. McCombie, H. H. Asada, D. S. Warner, and M. A. Warner, 

“Utility of the photoplethysmogram in circulatory monitoring,” J. Am. Soc. Anesthesiol., vol. 

108, no. 5, pp. 950–958, 2008. 

[105] Z. Villines and S. Flack, “Why do we use pulse oximetry?” 2017. 

[106] O. Crew, “How And Why To Track Respiratory Rate Trends With the Oura Wellness Ring.” 

2017. 

[107] M. H. Laudat, S. Cerdas, C. Fournier, D. Guiban, B. Guilhaume, and J. P. Luton, “Salivary 

cortisol measurement: a practical approach to assess pituitary-adrenal function,” J. Clin. 

Endocrinol. \& Metab., vol. 66, no. 2, pp. 343–348, 1988. 

[108] P. Braveman and L. Gottlieb, “The social determinants of health: it’s time to consider the 

causes of the causes,” Public Health Rep., vol. 129, no. 1\_suppl2, pp. 19–31, 2014. 

[109] S. Salimetrics USA, “SALIVARY CORTISOL.” 2019. 

[110] F. N. U. Apoorvagiri and M. S. Nagananda, “Quantization of mental stress using various 

physiological markers,” 2015. 



 

207 

 

[111] K. W. Kallus and M. Kellmann, The recovery-stress questionnaires: user manual. Pearson London, 

UK:, 2016. 

[112] P. M. Boynton and T. Greenhalgh, “Selecting, designing, and developing your 

questionnaire,” Bmj, vol. 328, no. 7451, pp. 1312–1315, 2004. 

[113] E. G. Pintelas, T. Kotsilieris, I. E. Livieris, and P. Pintelas, “A review of machine learning 

prediction methods for anxiety disorders,” in Proceedings of the 8th International Conference on 

Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, 2018, 

pp. 8–15. 

[114] R. R. Bouckaert, “Choosing between two learning algorithms based on calibrated tests,” in 

ICML, 2003, vol. 3, pp. 51–58. 

[115] T. Iqbal, A. Elahi, A. Shahzad, and W. Wijns, “Review on Classification Techniques used in 

Biophysiological Stress Monitoring,” arXiv Prepr. arXiv2210.16040, 2022. 

[116] Y. Ye, T. Hu, A. Nassehi, S. Ji, and H. Ni, “Context-aware manufacturing system design 

using machine learning,” J. Manuf. Syst., vol. 65, pp. 59–69, 2022. 

[117] G. R. S. Reddy, B. Srinivasulu, M. Roshini, and V. R. Lakshmi, “The Study of Supervised 

Classification Techniques in Machine Learning using Keras,” i-Manager’s J. Futur. Eng. 

Technol., vol. 15, no. 3, p. 20, 2020. 

[118] C. Dadhirao and R. Sangam, “Localization techniques using machine learning algorithms,” 

Archit. Wirel. Networks Solut. Secur. Issues, pp. 175–193, 2021. 

[119] S. K. Murthy, “Automatic construction of decision trees from data: A multi-disciplinary 

survey,” Data Min. Knowl. Discov., vol. 2, no. 4, pp. 345–389, 1998. 

[120] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine learning: a review of 

classification and combining techniques,” Artif. Intell. Rev., vol. 26, no. 3, pp. 159–190, 2006. 

[121] A. Guarino and G. Spagnuolo, “Automatic features extraction of faults in PEM fuel cells 

by a siamese artificial neural network,” Int. J. Hydrogen Energy, vol. 46, no. 70, pp. 34854–

34866, 2021. 

[122] R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P. Campbell, 

“Introduction to machine learning, neural networks, and deep learning,” Transl. Vis. Sci. \& 

Technol., vol. 9, no. 2, p. 14, 2020. 

[123] G. P. Zhang, “Neural networks for classification: a survey,” IEEE Trans. Syst. Man, Cybern. 



 

208 

 

Part C (Applications Rev., vol. 30, no. 4, pp. 451–462, 2000. 

[124] H. Parvin, M. Mohamadi, S. Parvin, Z. Rezaei, and B. Minaei, “Nearest cluster classifier,” 

in International Conference on Hybrid Artificial Intelligence Systems, 2012, pp. 267–275. 

[125] J. Brownlee, “Learning Vector Quantization for Machine Learning,” Online) 

http//machinelearningmastery. com/learning-vector-quantization-for-machine-learning/(12 April 2017), 

2016. 

[126] A. Ahmad and R. Yusof, “A modified kohonen self-organizing map (KSOM) clustering for 

four categorical data,” J. Teknol., vol. 78, no. 6–13, 2016. 

[127] S. Karamizadeh, S. M. Abdullah, A. A. Manaf, M. Zamani, and A. Hooman, “An overview 

of principal component analysis,” J. Signal Inf. Process., vol. 4, no. 3B, p. 173, 2013. 

[128] D. Rana, S. P. Jena, and S. K. Pradhan, “Performance Comparison of PCA and LDA with 

Linear Regression and Random Forest for IRIS Flower Classification,” PalArch’s J. Archaeol. 

Egypt/Egyptology, vol. 17, no. 9, pp. 2353–2360, 2020. 

[129] A. Navlani, “Understanding logistic regression in python,” Link https//www. datacamp. 

com/community/tutorials/understanding-logistic-regressionpython\# comments. Udgivet, vol. 7, 2018. 

[130] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown, “Auto-WEKA: 

Automatic model selection and hyperparameter optimization in WEKA,” in Automated 

Machine Learning, Springer, Cham, 2019, pp. 81–95. 

[131] S. Sayad, “No Title,” Classification. [Online]. Available: 

http://www.saedsayad.com/classification.htm. 

[132] A. A. Johari, M. H. Abd Wahab, and A. Mustapha, “Two-Class Classification: Comparative 

Experiments for Chronic Kidney Disease,” in 2019 4th International Conference on Information 

Systems and Computer Networks (ISCON), 2019, pp. 789–792. 

[133] Xiaoharper, “ML Studio (Classic): Two-class decision jungle - azure,” ML Studio (classic): 

Two-Class Decision Jungle - Azure | Microsoft Docs. [Online]. Available: 

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-

reference/two-class-decision-jungle. 

[134] W. Lin, Z. Wu, L. Lin, A. Wen, and J. Li, “An ensemble random forest algorithm for 

insurance big data analysis,” Ieee access, vol. 5, pp. 16568–16575, 2017. 

[135] J. Yan, Z. Zhang, K. Lin, F. Yang, and X. Luo, “A hybrid scheme-based one-vs-all decision 



 

209 

 

trees for multi-class classification tasks,” Knowledge-Based Syst., vol. 198, p. 105922, 2020. 

[136] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,” Journal-Japanese Soc. 

Artif. Intell., vol. 14, no. 771–780, p. 1612, 1999. 

[137] S. R. Gomes et al., “A comparative approach to email classification using Naive Bayes 

classifier and hidden Markov model,” in 2017 4th International Conference on Advances in 

Electrical Engineering (ICAEE), 2017, pp. 482–487. 

[138] A. Bilski, “A review of artificial intelligence algorithms in document classification,” Int. J. 

Electron. Telecommun., vol. 57, pp. 263–270, 2011. 

[139] M. Singh and A. Bin Queyam, “A Novel Method of Stress Detection using Physiological 

Measurements of Automobile Drivers,” Int. J. Electron. Eng., no. 2, pp. 13–20, 2013. 

[140] D. Cogan, M. B. Pouyan, M. Nourani, and J. Harvey, “A wrist-worn biosensor system for 

assessment of neurological status,” 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 

EMBC 2014, pp. 5748–5751, 2014, doi: 10.1109/EMBC.2014.6944933. 

[141] F. P. Akbulut and A. Akan, “A smart wearable system for short-term cardiovascular risk 

assessment with emotional dynamics,” Measurement, vol. 128, pp. 237–246, 2018. 

[142] A. Barreto, J. Zhai, and M. Adjouadi, “Non-intrusive Physiological Monitoring for 

Automated Stress Detection in Human-Computer Interaction,” Human–Computer Interact., 

pp. 29–38, 2007, doi: 10.1007/978-3-540-75773-3_4. 

[143] R. Castaldo, W. Xu, P. Melillo, L. Pecchia, L. Santamaria, and C. James, “Detection of 

mental stress due to oral academic examination via ultra-short-term HRV analysis,” in 2016 

38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC), 2016, pp. 3805–3808. 

[144] F. Mokhayeri, M. R. Akbarzadeh-T, and S. Toosizadeh, “Mental stress detection using 

physiological signals based on soft computing techniques,” 2011 18th Iran. Conf. Biomed. Eng. 

ICBME 2011, no. December, pp. 232–237, 2011, doi: 10.1109/ICBME.2011.6168563. 

[145] D. F. Dinges et al., “Optical computer recognition of facial expressions associated with stress 

induced by performance demands,” Aviat. Space. Environ. Med., vol. 76, no. 6, pp. B172--

B182, 2005. 

[146] H. Jebelli, S. Hwang, and S. H. Lee, “EEG-based workers’ stress recognition at construction 

sites,” Autom. Constr., vol. 93, no. April, pp. 315–324, 2018, doi: 



 

210 

 

10.1016/j.autcon.2018.05.027. 

[147] R. R. Singh, S. Conjeti, and R. Banerjee, “Biosignal based on-road stress monitoring for 

automotive drivers,” 2012 Natl. Conf. Commun. NCC 2012, pp. 1–5, 2012, doi: 

10.1109/NCC.2012.6176845. 

[148] S. C. Pauws, M. Biehl, and others, “Insightful stress detection from physiology modalities 

using learning vector quantization,” Neurocomputing, vol. 151, pp. 873–882, 2015. 

[149] C. Dobbins and S. Fairclough, “Detecting Negative Emotions during Real-Life Driving via 

Dynamically Labelled Physiological Data,” 2018 IEEE Int. Conf. Pervasive Comput. Commun. 

Work. PerCom Work. 2018, pp. 830–835, 2018, doi: 10.1109/PERCOMW.2018.8480369. 

[150] C. Setz, B. Arnrich, J. Schumm, R. La Marca, G. Tröster, and U. Ehlert, “Discriminating 

stress from cognitive load using a wearable EDA device,” IEEE Trans. Inf. Technol. Biomed., 

vol. 14, no. 2, pp. 410–417, 2009. 

[151] A. R. Subhani, W. Mumtaz, M. N. B. M. Saad, N. Kamel, and A. S. Malik, “Machine learning 

framework for the detection of mental stress at multiple levels,” IEEE Access, vol. 5, pp. 

13545–13556, 2017. 

[152] R. A. Calvo, I. Brown, and S. Scheding, “Effect of experimental factors on the recognition 

of affective mental states through physiological measures,” Lect. Notes Comput. Sci. (including 

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5866 LNAI, pp. 62–70, 2009, doi: 

10.1007/978-3-642-10439-8_7. 

[153] H. M. Khan, B. Ahmed, J. Choi, and R. Gutierrez-Osuna, “Using an ambulatory stress 

monitoring device to identify relaxation due to untrained deep breathing,” Proc. Annu. Int. 

Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 1744–1747, 2013, doi: 

10.1109/EMBC.2013.6609857. 

[154] O. Oti, I. Azimi, and A. Anzanpour, “IoT-based Healthcare System for Real-time Maternal 

Stress Monitoring,” no. September, 2018. 

[155] T. Salafi and J. C. Y. Kah, “Design of unobtrusive wearable mental stress monitoring device 

using physiological sensor,” IFMBE Proc., vol. 52, pp. 11–14, 2015, doi: 10.1007/978-3-319-

19452-3_4. 

[156] S. Betti et al., “Evaluation of an integrated system of wearable physiological sensors for stress 

monitoring in working environments by using biological markers,” IEEE Trans. Biomed. 



 

211 

 

Eng., vol. 65, no. 8, pp. 1748–1758, 2017. 

[157] S. H. Sunwoo et al., “Chronic and acute stress monitoring by electrophysiological signals 

from adrenal gland,” Proc. Natl. Acad. Sci., vol. 116, no. 4, pp. 1146–1151, 2019. 

[158] I. Berger, M. Werdermann, S. R. Bornstein, and C. Steenblock, “The adrenal gland in stress-

-Adaptation on a cellular level,” J. Steroid Biochem. Mol. Biol., vol. 190, pp. 198–206, 2019. 

[159] J.-H. Lee and H.-I. Jung, “Biochip technology for monitoring posttraumatic stress disorder 

(PTSD),” BioChip J., vol. 7, no. 3, pp. 195–200, 2013. 

[160] Z. Djuric et al., “Biomarkers of psychological stress in health disparities research,” Open 

Biomark. J., vol. 1, p. 7, 2008. 

[161] A. Kaushik, A. Vasudev, S. K. Arya, S. K. Pasha, and S. Bhansali, “Recent advances in 

cortisol sensing technologies for point-of-care application,” Biosens. Bioelectron., vol. 53, pp. 

499–512, 2014. 

[162] M. Holleman, S. A. Vreeburg, J. J. M. Dekker, and B. W. J. H. Penninx, “The relationships 

of working conditions, recent stressors and childhood trauma with salivary cortisol levels,” 

Psychoneuroendocrinology, vol. 37, no. 6, pp. 801–809, 2012. 

[163] A. S. Zainol Abidin et al., “Current and potential developments of cortisol aptasensing 

towards point-of-care diagnostics (POTC),” Sensors, vol. 17, no. 5, p. 1180, 2017. 

[164] C. Kirschbaum, K.-M. Pirke, and D. H. Hellhammer, “The ‘Trier Social Stress Test’--a tool 

for investigating psychobiological stress responses in a laboratory setting,” Neuropsychobiology, 

vol. 28, no. 1–2, pp. 76–81, 1993. 

[165] B. M. Kudielka, A. Buske-Kirschbaum, D. H. Hellhammer, and C. Kirschbaum, “HPA axis 

responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and 

children: impact of age and gender,” Psychoneuroendocrinology, vol. 29, no. 1, pp. 83–98, 2004. 

[166] R. Gatti, G. Antonelli, M. Prearo, P. Spinella, E. Cappellin, and F. Elio, “Cortisol assays and 

diagnostic laboratory procedures in human biological fluids,” Clin. Biochem., vol. 42, no. 12, 

pp. 1205–1217, 2009. 

[167] A. Levine, O. Zagoory-Sharon, R. Feldman, J. G. Lewis, and A. Weller, “Measuring cortisol 

in human psychobiological studies,” Physiol. \& Behav., vol. 90, no. 1, pp. 43–53, 2007. 

[168] M. Akinola and W. B. Mendes, “Stress-induced cortisol facilitates threat-related decision 

making among police officers.,” Behav. Neurosci., vol. 126, no. 1, p. 167, 2012. 



 

212 

 

[169] A. D. Clements, “Salivary cortisol measurement in developmental research: where do we go 

from here?,” Dev. Psychobiol., vol. 55, no. 3, pp. 205–220, 2013. 

[170] V. L. Kallen, J. H. Stubbe, H. J. Zwolle, and P. Valk, “Capturing effort and recovery: reactive 

and recuperative cortisol responses to competition in well-trained rowers,” BMJ open Sport 

\& Exerc. Med., vol. 3, no. 1, p. e000235, 2017. 

[171] M. V. Rosati et al., “Plasma cortisol concentrations and lifestyle in a population of outdoor 

workers,” Int. J. Environ. Health Res., vol. 21, no. 1, pp. 62–71, 2011. 

[172] M. R. Sladek, L. D. Doane, L. J. Luecken, and N. Eisenberg, “Perceived stress, coping, and 

cortisol reactivity in daily life: A study of adolescents during the first year of college,” Biol. 

Psychol., vol. 117, pp. 8–15, 2016. 

[173] K. Wingenfeld, M. Schulz, A. Damkroeger, C. Philippsen, M. Rose, and M. Driessen, “The 

diurnal course of salivary alpha-amylase in nurses: An investigation of potential confounders 

and associations with stress,” Biol. Psychol., vol. 85, no. 1, pp. 179–181, 2010. 

[174] J.-H. Lee, Y. Hwang, K.-A. Cheon, and H.-I. Jung, “Emotion-on-a-chip (EOC): Evolution 

of biochip technology to measure human emotion using body fluids,” Med. Hypotheses, vol. 

79, no. 6, pp. 827–832, 2012. 

[175] M. Debono et al., “Modified-release hydrocortisone to provide circadian cortisol profiles,” 

J. Clin. Endocrinol. \& Metab., vol. 94, no. 5, pp. 1548–1554, 2009. 

[176] E. R. De Kloet, M. Joëls, and F. Holsboer, “Stress and the brain: from adaptation to 

disease,” Nat. Rev. Neurosci., vol. 6, no. 6, pp. 463–475, 2005. 

[177] B. S. McEwen, “Cortisol, Cushing’s syndrome, and a shrinking brain—new evidence for 

reversibility,” J. Clin. Endocrinol. \& Metab., vol. 87, no. 5, pp. 1947–1948, 2002. 

[178] O. Edwards, J. M. Galley, R. J. Courtenay-Evans, J. Hunter, and A. Tait, “Changes in cortisol 

metabolism following rifampicin therapy,” Lancet, vol. 304, no. 7880, pp. 549–551, 1974. 

[179] F. Holsboer and M. Ising, “Stress hormone regulation: biological role and translation into 

therapy,” Annu. Rev. Psychol., vol. 61, pp. 81–109, 2010. 

[180] C. W. Le Roux, G. A. Chapman, W. M. Kong, W. S. Dhillo, J. Jones, and J. Alaghband-

Zadeh, “Free cortisol index is better than serum total cortisol in determining hypothalamic-

pituitary-adrenal status in patients undergoing surgery,” J. Clin. Endocrinol. \& Metab., vol. 

88, no. 5, pp. 2045–2048, 2003. 



 

213 

 

[181] K. Hogenelst, M. Soeter, and V. Kallen, “Ambulatory measurement of cortisol: Where do 

we stand, and which way to follow?,” Sens. Bio-Sensing Res., vol. 22, p. 100249, 2019. 

[182] M. Frasconi, M. Mazzarino, F. Botrè, and F. Mazzei, “Surface plasmon resonance 

immunosensor for cortisol and cortisone determination,” Anal. Bioanal. Chem., vol. 394, no. 

8, pp. 2151–2159, 2009. 

[183] G. A. Akceoglu, Y. Saylan, and F. Inci, “A Snapshot of Microfluidics in Point-of-Care 

Diagnostics: Multifaceted Integrity with Materials and Sensors,” Adv. Mater. Technol., p. 

2100049, 2021. 

[184] M. Yaneva, G. Kirilov, and S. Zacharieva, “Midnight salivary cortisol, measured by highly 

sensitive electrochemiluminescence immunoassay, for the diagnosis of Cushing’s 

syndrome,” Open Med., vol. 4, no. 1, pp. 59–64, 2009. 

[185] A. J. Steckl and P. Ray, “Stress Biomarkers in Biological Fluids and Their Point-of-Use 

Detection,” ACS Sensors, vol. 3, no. 10, pp. 2025–2044, 2018, doi: 

10.1021/acssensors.8b00726. 

[186] O. Parlak, “Portable and wearable real-time stress monitoring: A critical review,” Sensors and 

Actuators Reports, vol. 3, p. 100036, 2021. 

[187] J. Zhang et al., “Wearable biosensors for human fatigue diagnosis: A review,” Bioeng. \& 

Transl. Med., p. e10318, 2022. 

[188] M. Zea et al., “Electrochemical sensors for cortisol detections: Almost there,” TrAC Trends 

Anal. Chem., vol. 132, p. 116058, 2020. 

[189] A. Kaushik, A. Vasudev, S. K. Arya, S. K. Pasha, and S. Bhansali, “Recent advances in 

cortisol sensing technologies for point-of-care application,” Biosens. Bioelectron., vol. 53, pp. 

499–512, 2014, doi: 10.1016/j.bios.2013.09.060. 

[190] M. D. VanBruggen, A. C. Hackney, R. G. McMurray, and K. S. Ondrak, “The relationship 

between serum and salivary cortisol levels in response to different intensities of exercise,” 

Int. J. Sports Physiol. Perform., vol. 6, no. 3, pp. 396–407, 2011. 

[191] J. Bakusic, S. De Nys, M. Creta, L. Godderis, and R. C. Duca, “Study of temporal variability 

of salivary cortisol and cortisone by LC-MS/MS using a new atmospheric pressure 

ionization source,” Sci. Rep., vol. 9, no. 1, pp. 1–12, 2019. 

[192] N. El-Farhan, D. A. Rees, and C. Evans, “Measuring cortisol in serum, urine and saliva--are 



 

214 

 

our assays good enough?,” Ann. Clin. Biochem., vol. 54, no. 3, pp. 308–322, 2017. 

[193] A. Hodes et al., “Hair cortisol in the evaluation of Cushing syndrome,” Endocrine, vol. 56, 

no. 1, pp. 164–174, 2017. 

[194] B. Sauvé, G. Koren, G. Walsh, S. Tokmakejian, and S. H. M. Van Uum, “Measurement of 

cortisol in human hair as a biomarker of systemic exposure,” Clin. Investig. Med., pp. E183--

E191, 2007. 

[195] A. Ghemigian et al., “Cushing’s disease--Same condition, different scenarios,” Arch. Balk. 

Med. Union, vol. 53, no. 1, pp. 135–139, 2018. 

[196] G. Cizza and K. I. Rother, “Cortisol binding globulin: more than just a carrier?,” J. Clin. 

Endocrinol. \& Metab., vol. 97, no. 1, pp. 77–80, 2012. 

[197] M. Venugopal, S. K. Arya, G. Chornokur, and S. Bhansali, “A realtime and continuous 

assessment of cortisol in ISF using electrochemical impedance spectroscopy,” Sensors 

Actuators A Phys., vol. 172, no. 1, pp. 154–160, 2011. 

[198] A. El-Laboudi, N. S. Oliver, A. Cass, and D. Johnston, “Use of microneedle array devices 

for continuous glucose monitoring: a review,” Diabetes Technol. \& Ther., vol. 15, no. 1, pp. 

101–115, 2013. 

[199] P. M. Wang, M. Cornwell, and M. R. Prausnitz, “Minimally invasive extraction of dermal 

interstitial fluid for glucose monitoring using microneedles,” Diabetes Technol. \& Ther., vol. 

7, no. 1, pp. 131–141, 2005. 

[200] P. Khanna, J. A. Strom, J. I. Malone, and S. Bhansali, “Microneedle-based automated 

therapy for diabetes mellitus,” J. Diabetes Sci. Technol., vol. 2, no. 6, pp. 1122–1129, 2008. 

[201] I. Schmalbach et al., “Cortisol reactivity in patients with anorexia nervosa after stress 

induction,” Transl. Psychiatry, vol. 10, no. 1, pp. 1–15, 2020. 

[202] A. Siddiqui, N. G. Desai, S. B. Sharma, M. Aslam, U. K. Sinha, and S. V Madhu, 

“Association of oxidative stress and inflammatory markers with chronic stress in patients 

with newly diagnosed type 2 diabetes,” Diabetes. Metab. Res. Rev., vol. 35, no. 5, p. e3147, 

2019. 

[203] G. Grossi, A. Perski, M. Ekstedt, T. Johansson, M. Lindström, and K. Holm, “The morning 

salivary cortisol response in burnout,” J. Psychosom. Res., vol. 59, no. 2, pp. 103–111, 2005. 

[204] L. H. Powell et al., “Physiologic markers of chronic stress in premenopausal, middle-aged 



 

215 

 

women,” Psychosom. Med., vol. 64, no. 3, pp. 502–509, 2002. 

[205] L. C. Carlesso, J. A. Sturgeon, and A. J. Zautra, “Exploring the relationship between disease-

related pain and cortisol levels in women with osteoarthritis,” Osteoarthr. Cartil., vol. 24, no. 

12, pp. 2048–2054, 2016. 

[206] S. Balters, J. W. Geeseman, A.-K. Tveten, H. P. Hildre, W. Ju, and M. Steinert, “Mayday, 

Mayday, Mayday: Using salivary cortisol to detect distress (and eustress!) in critical incident 

training,” Int. J. Ind. Ergon., vol. 78, p. 102975, 2020. 

[207] P. Ethridge, N. Ali, S. E. Racine, J. C. Pruessner, and A. Weinberg, “Risk and resilience in 

an acute stress paradigm: Evidence from salivary cortisol and time-frequency analysis of the 

reward positivity,” Clin. Psychol. Sci., vol. 8, no. 5, pp. 872–889, 2020. 

[208] K. Mizuhata, H. Taniguchi, M. Shimada, N. Hikita, and S. Morokuma, “Effects of 

Breastfeeding on Stress Measured by Saliva Cortisol Level and Perceived Stress,” 

Asian/Pacific Isl. Nurs. J., vol. 5, no. 3, p. 128, 2020. 

[209] K. Jansakova, K. Kyselicova, H. Celusakova, G. Repiska, and D. Ostatnikova, “The effect 

of saliva stimulation on the secretion of cortisol during stress and physiological conditions,” 

Clin. STUDY, vol. 428, p. 430, 2020. 

[210] S. Metz et al., “Blunted salivary cortisol response to psychosocial stress in women with 

posttraumatic stress disorder,” J. Psychiatr. Res., vol. 130, pp. 112–119, 2020. 

[211] R. H. Pompon, A. N. Smith, C. Baylor, and D. Kendall, “Exploring associations between a 

biological marker of chronic stress and reported depression and anxiety in people with 

aphasia,” J. Speech, Lang. Hear. Res., vol. 62, no. 11, pp. 4119–4130, 2019. 

[212] J. Vliegenthart, G. Noppe, E. F. C. Van Rossum, J. W. Koper, H. Raat, and E. L. T. den 

Akker, “Socioeconomic status in children is associated with hair cortisol levels as a biological 

measure of chronic stress,” Psychoneuroendocrinology, vol. 65, pp. 9–14, 2016. 

[213] X. Chen et al., “Caregivers’ hair cortisol: a possible biomarker of chronic stress is associated 

with obesity measures among children with disabilities,” BMC Pediatr., vol. 15, no. 1, pp. 1–

13, 2015. 

[214] P. Henley et al., “Hair cortisol as a biomarker of stress among a first nation in Canada,” Ther. 

Drug Monit., vol. 35, no. 5, pp. 595–599, 2013. 

[215] L. E. Bautista, P. K. Bajwa, M. M. Shafer, K. M. C. Malecki, C. A. McWilliams, and A. 



 

216 

 

Palloni, “The relationship between chronic stress, hair cortisol and hypertension,” Int. J. 

Cardiol. Hypertens., vol. 2, p. 100012, 2019. 

[216] S. L. Moch, V. R. Panz, B. I. Joffe, I. Havlik, and J. D. Moch, “Longitudinal changes in 

pituitary-adrenal hormones in South African women with burnout,” Endocrine, vol. 21, no. 

3, pp. 267–272, 2003. 

[217] J. K. Cremeans-Smith, K. Greene, and D. L. Delahanty, “Physiological indices of stress 

prior to and following total knee arthroplasty predict the occurrence of severe post-

operative pain,” Pain Med., vol. 17, no. 5, pp. 970–979, 2016. 

[218] S. Khoromi et al., “Effects of chronic osteoarthritis pain on neuroendocrine function in 

men,” J. Clin. Endocrinol. \& Metab., vol. 91, no. 11, pp. 4313–4318, 2006. 

[219] C. D. Butts et al., “Urine cortisol concentration as a biomarker of stress is unrelated to IVF 

outcomes in women and men,” J. Assist. Reprod. Genet., vol. 31, no. 12, pp. 1647–1653, 2014. 

[220] C.-L. Du, M. C. Lin, L. Lu, and J. J. Tai, “Correlation of occupational stress index with 24-

hour urine cortisol and serum DHEA sulfate among city bus drivers: a cross-sectional 

study,” Saf. Health Work, vol. 2, no. 2, pp. 169–175, 2011. 

[221] C. Shimanoe et al., “Perceived stress, depressive symptoms, and cortisol-to-cortisone ratio 

in spot urine in 6878 older adults,” Psychoneuroendocrinology, vol. 125, p. 105125, 2021. 

[222] G. M. Hall, D. Peerbhoy, A. Shenkin, C. J. R. Parker, and P. Salmon, “Relationship of the 

functional recovery after hip arthroplasty to the neuroendocrine and inflammatory 

responses,” Br. J. Anaesth., vol. 87, no. 4, pp. 537–542, 2001. 

[223] L. M. Oswald, P. Zandi, G. Nestadt, J. B. Potash, A. E. Kalaydjian, and G. S. Wand, 

“Relationship between cortisol responses to stress and personality,” Neuropsychopharmacology, 

vol. 31, no. 7, pp. 1583–1591, 2006. 

[224] M. S. Herbert et al., “Ethnicity, cortisol, and experimental pain responses among persons 

with symptomatic knee osteoarthritis,” Clin. J. Pain, vol. 33, no. 9, p. 820, 2017. 

[225] R. J. McQuaid, O. A. McInnis, A. Paric, F. Al-Yawer, K. Matheson, and H. Anisman, 

“Relations between plasma oxytocin and cortisol: the stress buffering role of social 

support,” Neurobiol. Stress, vol. 3, pp. 52–60, 2016. 

[226] E. Ortega, I. Gálvez, M. D. Hinchado, J. Guerrero, L. Mart\’\in-Cordero, and S. Torres-

Piles, “Anti-inflammatory effect as a mechanism of effectiveness underlying the clinical 



 

217 

 

benefits of pelotherapy in osteoarthritis patients: regulation of the altered inflammatory and 

stress feedback response,” Int. J. Biometeorol., vol. 61, no. 10, pp. 1777–1785, 2017. 

[227] \cSükrü Burak Tönük, E. Serin, F. F. Ayhan, and Z. R. Yorgancioglu, “The effects of 

physical therapeutic agents on serum levels of stress hormones in patients with 

osteoarthritis,” Medicine (Baltimore)., vol. 95, no. 35, 2016. 

[228] A. G. Bertollo et al., “Stress and serum cortisol levels in major depressive disorder: a cross-

sectional study,” AIMS Neurosci., vol. 7, no. 4, p. 459, 2020. 

[229] N. Schaffter et al., “Serum cortisol as a predictor for posttraumatic stress disorder symptoms 

in post-myocardial infarction patients,” J. Affect. Disord., 2021. 

[230] P. Pearlmutter et al., “Sweat and saliva cortisol response to stress and nutrition factors,” Sci. 

Rep., vol. 10, no. 1, pp. 1–11, 2020. 

[231] S. N. Doan, G. DeYoung, T. E. Fuller-Rowell, C. Liu, and J. Meyer, “Investigating relations 

among stress, sleep and nail cortisol and DHEA,” Stress, vol. 21, no. 2, pp. 188–193, 2018. 

[232] H. Wu, K. Zhou, P. Xu, J. Xue, X. Xu, and L. Liu, “Associations of perceived stress with 

the present and subsequent cortisol levels in fingernails among medical students: A 

prospective pilot study,” Psychol. Res. Behav. Manag., vol. 11, pp. 439–445, 2018, doi: 

10.2147/PRBM.S181541. 

[233] V. L. Wester and E. F. C. van Rossum, “Clinical applications of cortisol measurements in 

hair,” Eur. J. Endocrinol., vol. 173, no. 4, pp. M1--M10, 2015. 

[234] B. R. Walker, “Glucocorticoids and cardiovascular disease,” Eur. J. Endocrinol., vol. 157, no. 

5, pp. 545–559, 2007. 

[235] L. Manenschijn et al., “High long-term cortisol levels, measured in scalp hair, are associated 

with a history of cardiovascular disease,” J. Clin. Endocrinol. \& Metab., vol. 98, no. 5, pp. 

2078–2083, 2013. 

[236] S. Feller, M. Vigl, M. M. Bergmann, H. Boeing, C. Kirschbaum, and T. Stalder, “Predictors 

of hair cortisol concentrations in older adults,” Psychoneuroendocrinology, vol. 39, pp. 132–140, 

2014. 

[237] D. Pereg et al., “Hair cortisol and the risk for acute myocardial infarction in adult men,” 

Stress, vol. 14, no. 1, pp. 73–81, 2011. 

[238] T. Stalder et al., “Cortisol in hair and the metabolic syndrome,” J. Clin. Endocrinol. \& Metab., 



 

218 

 

vol. 98, no. 6, pp. 2573–2580, 2013. 

[239] G. Noppe, E. F. C. Van Rossum, J. Vliegenthart, J. W. Koper, and E. L. T. Van Den Akker, 

“Elevated hair cortisol concentrations in children with adrenal insufficiency on 

hydrocortisone replacement therapy,” Clin. Endocrinol. (Oxf)., vol. 81, no. 6, pp. 820–825, 

2014. 

[240] V. L. Wester et al., “Long-term cortisol levels measured in scalp hair of obese patients,” 

Obesity, vol. 22, no. 9, pp. 1956–1958, 2014. 

[241] J. O. Younge et al., “Cortisol levels in scalp hair of patients with structural heart disease,” 

Int. J. Cardiol., vol. 184, pp. 71–78, 2015. 

[242] S. Braig et al., “Determinants of maternal hair cortisol concentrations at delivery reflecting 

the last trimester of pregnancy,” Psychoneuroendocrinology, vol. 52, pp. 289–296, 2015. 

[243] S. Kalra, A. Einarson, T. Karaskov, S. Van Uum, and G. Koren, “The relationship between 

stress and hair cortisol in healthy pregnant women,” Clin. Investig. Med., pp. E103--E107, 

2007. 

[244] J. Karlén, J. Ludvigsson, A. Frostell, E. Theodorsson, and T. Faresjö, “Cortisol in hair 

measured in young adults-a biomarker of major life stressors?,” BMC Clin. Pathol., vol. 11, 

no. 1, pp. 1–6, 2011. 

[245] T. Stalder et al., “Cortisol in hair, body mass index and stress-related measures,” Biol. Psychol., 

vol. 90, no. 3, pp. 218–223, 2012. 

[246] Y. Dowlati et al., “Relationship between hair cortisol concentrations and depressive 

symptoms in patients with coronary artery disease,” Neuropsychiatr. Dis. Treat., vol. 6, p. 393, 

2010. 

[247] H. M. Burke, M. C. Davis, C. Otte, and D. C. Mohr, “Depression and cortisol responses to 

psychological stress: a meta-analysis,” Psychoneuroendocrinology, vol. 30, no. 9, pp. 846–856, 

2005. 

[248] M. A. B. Veldhorst et al., “Increased scalp hair cortisol concentrations in obese children,” J. 

Clin. Endocrinol. \& Metab., vol. 99, no. 1, pp. 285–290, 2014. 

[249] S. Steudte et al., “Hair cortisol as a biomarker of traumatization in healthy individuals and 

posttraumatic stress disorder patients,” Biol. Psychiatry, vol. 74, no. 9, pp. 639–646, 2013. 

[250] L. Wang et al., “Linking hair cortisol levels to phenotypic heterogeneity of posttraumatic 



 

219 

 

stress symptoms in highly traumatized chinese women,” Biol. Psychiatry, vol. 77, no. 4, pp. 

e21--e22, 2015. 

[251] L. Manenschijn et al., “Long-term cortisol in bipolar disorder: associations with age of onset 

and psychiatric co-morbidity,” Psychoneuroendocrinology, vol. 37, no. 12, pp. 1960–1968, 2012. 

[252] S. Steudte, I.-T. Kolassa, T. Stalder, A. Pfeiffer, C. Kirschbaum, and T. Elbert, “Increased 

cortisol concentrations in hair of severely traumatized Ugandan individuals with PTSD,” 

Psychoneuroendocrinology, vol. 36, no. 8, pp. 1193–1200, 2011. 

[253] X. Weng, Z. Fu, C. Zhang, W. Jiang, and H. Jiang, “A Portable 3D Microfluidic Origami 

Biosensor for Cortisol Detection in Human Sweat,” Anal. Chem., vol. 94, no. 8, pp. 3526–

3534, 2022. 

[254] S. Zhang, A. Garcia-D’Angeli, J. P. Brennan, and Q. Huo, “Predicting detection limits of 

enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general,” 

Analyst, vol. 139, no. 2, pp. 439–445, 2014. 

[255] R. Minic and I. Zivkovic, “Optimization, Validation and Standardization of ELISA,” in 

Norovirus, IntechOpen, 2020. 

[256] S. K. Arya, A. Dey, and S. Bhansali, “Polyaniline protected gold nanoparticles based 

mediator and label free electrochemical cortisol biosensor,” Biosens. Bioelectron., vol. 28, no. 

1, pp. 166–173, 2011. 

[257] T. Vural, Y. T. Yaman, S. Ozturk, S. Abaci, and E. B. Denkbas, “Electrochemical 

immunoassay for detection of prostate specific antigen based on peptide nanotube-gold 

nanoparticle-polyaniline immobilized pencil graphite electrode,” J. Colloid Interface Sci., vol. 

510, pp. 318–326, 2018. 

[258] G. A. Posthuma-Trumpie, J. Korf, and A. van Amerongen, “Lateral flow (immuno) assay: 

its strengths, weaknesses, opportunities and threats. A literature survey,” Anal. Bioanal. 

Chem., vol. 393, no. 2, pp. 569–582, 2009. 

[259] B. G. Andryukov, I. N. Lyapun, E. V Matosova, and L. M. Somova, “Biosensor technologies 

in medicine: from detection of biochemical markers to research into molecular targets,” 

Современные технологии в медицине, vol. 12, no. 6 (eng), 2020. 

[260] H.-K. Oh, K. Kim, J. Park, H. Jang, and M.-G. Kim, “Advanced trap lateral flow 

immunoassay sensor for the detection of cortisol in human bodily fluids,” Sci. Rep., vol. 11, 



 

220 

 

no. 1, pp. 1–12, 2021. 

[261] P. Hampitak et al., “A point-of-care immunosensor based on a quartz crystal microbalance 

with graphene biointerface for antibody assay,” ACS sensors, vol. 5, no. 11, pp. 3520–3532, 

2020. 

[262] T. Ito, N. Aoki, S. Kaneko, and K. Suzuki, “Highly sensitive and rapid sequential cortisol 

detection using twin sensor QCM,” Anal. Methods, vol. 6, no. 18, pp. 7469–7474, 2014. 

[263] M. Falk, C. Psotta, S. Cirovic, and S. Shleev, “Non-Invasive Electrochemical Biosensors 

Operating in Human Physiological Fluids,” Sensors, vol. 20, no. 21, p. 6352, 2020. 

[264] Y.-H. Kim et al., “Direct immune-detection of cortisol by chemiresistor graphene oxide 

sensor,” Biosens. Bioelectron., vol. 98, pp. 473–477, 2017. 

[265] C. Tlili, N. V Myung, V. Shetty, and A. Mulchandani, “Label-free, chemiresistor 

immunosensor for stress biomarker cortisol in saliva,” Biosens. Bioelectron., vol. 26, no. 11, pp. 

4382–4386, 2011. 

[266] S. Jo et al., “Localized surface plasmon resonance aptasensor for the highly sensitive direct 

detection of cortisol in human saliva,” Sensors Actuators B Chem., vol. 304, p. 127424, 2020. 

[267] M. Yamaguchi et al., “Immunosensor with fluid control mechanism for salivary cortisol 

analysis,” Biosens. Bioelectron., vol. 41, pp. 186–191, 2013. 

[268] A. F. D. Cruz, N. Norena, A. Kaushik, and S. Bhansali, “A low-cost miniaturized 

potentiostat for point-of-care diagnosis,” Biosens. Bioelectron., vol. 62, pp. 249–254, 2014. 

[269] A. Vasudev, A. Kaushik, Y. Tomizawa, N. Norena, and S. Bhansali, “An LTCC-based 

microfluidic system for label-free, electrochemical detection of cortisol,” Sensors Actuators B 

Chem., vol. 182, pp. 139–146, 2013. 

[270] A. Kaushik et al., “Electrochemical sensing method for point-of-care cortisol detection in 

human immunodeficiency virus-infected patients,” Int. J. Nanomedicine, vol. 10, p. 677, 2015. 

[271] W. Leung et al., “One-step quantitative cortisol dipstick with proportional reading,” J. 

Immunol. Methods, vol. 281, no. 1–2, pp. 109–118, 2003. 

[272] E. A. Shirtcliff, R. L. Buck, M. J. Laughlin, T. Hart, C. R. Cole, and P. D. Slowey, “Salivary 

cortisol results obtainable within minutes of sample collection correspond with traditional 

immunoassays,” Clin. Ther., vol. 37, no. 3, pp. 505–514, 2015. 



 

221 

 

[273] S. Choi, S. Kim, J.-S. Yang, J.-H. Lee, C. Joo, and H.-I. Jung, “Real-time measurement of 

human salivary cortisol for the assessment of psychological stress using a smartphone,” Sens. 

Bio-Sensing Res., vol. 2, pp. 8–11, 2014. 

[274] M. Zangheri et al., “A simple and compact smartphone accessory for quantitative 

chemiluminescence-based lateral flow immunoassay for salivary cortisol detection,” Biosens. 

Bioelectron., vol. 64, pp. 63–68, 2015. 

[275] A. Singh, A. Kaushik, R. Kumar, M. Nair, and S. Bhansali, “Electrochemical sensing of 

cortisol: a recent update,” Appl. Biochem. Biotechnol., vol. 174, no. 3, pp. 1115–1126, 2014. 

[276] C. J. Cook, “Rapid noninvasive measurement of hormones in transdermal exudate and 

saliva,” Physiol. \& Behav., vol. 75, no. 1–2, pp. 169–181, 2002. 

[277] M. Yamaguchi, S. Yoshikawa, Y. Tahara, D. Niwa, Y. Imai, and V. Shetty, “Point-of-use 

measurement of salivary cortisol levels,” in SENSORS, 2009 IEEE, 2009, pp. 343–346. 

[278] E. Panfilova, “Development of a Prototype Lateral Flow Immunoassay of Cortisol in Saliva 

for Daily Monitoring of Stress,” Biosensors, vol. 11, no. 5, p. 146, 2021. 

[279] K. Kosicka, A. Siemi\katkowska, A. Szpera-Goździewicz, M. Krzyścin, G. Br\keborowicz, 

and F. Główka, “High-performance liquid chromatography methods for the analysis of 

endogenous cortisol and cortisone in human urine: Comparison of mass spectrometry and 

fluorescence detection,” Ann. Clin. Biochem., vol. 56, no. 1, pp. 82–89, 2019. 

[280] M. Yamaguchi, H. Katagata, Y. Tezuka, D. Niwa, and V. Shetty, “Automated-

immunosensor with centrifugal fluid valves for salivary cortisol measurement,” Sens. bio-

sensing Res., vol. 1, pp. 15–20, 2014. 

[281] B. J. Sanghavi et al., “Aptamer-functionalized nanoparticles for surface immobilization-free 

electrochemical detection of cortisol in a microfluidic device,” Biosens. Bioelectron., vol. 78, 

pp. 244–252, 2016. 

[282] O. Parlak, S. T. Keene, A. Marais, V. F. Curto, and A. Salleo, “Molecularly selective 

nanoporous membrane-based wearable organic electrochemical device for noninvasive 

cortisol sensing,” Sci. Adv., vol. 4, no. 7, p. eaar2904, 2018. 

[283] T. Iqbal et al., “A Sensitivity Analysis of Biophysiological Responses of Stress for Wearable 

Sensors in Connected Health,” IEEE Access, vol. 9, pp. 93567–93579, 2021. 

[284] E. S. Epel et al., “More than a feeling: A unified view of stress measurement for population 



 

222 

 

science,” Front. Neuroendocrinol., vol. 49, pp. 146–169, 2018. 

[285] A. Tawakol et al., “Relation between resting amygdalar activity and cardiovascular events: a 

longitudinal and cohort study,” Lancet, vol. 389, no. 10071, pp. 834–845, 2017. 

[286] M. Kusserow, O. Amft, and G. Tröster, “Monitoring stress arousal in the wild,” IEEE 

Pervasive Comput., vol. 12, no. 2, pp. 28–37, 2012. 

[287] J. S. Sandhu, M. Paul, and H. Agnihotri, “Biofeedback approach in the treatment of 

generalized anxiety disorder,” Iran. J. Psychiatry, vol. 2, no. 3, pp. 90–95, 2007. 

[288] S. Klangphukhiew, R. Srichana, and R. Patramanon, “Cortisol stress biosensor based on 

molecular imprinted polymer,” in Multidisciplinary Digital Publishing Institute Proceedings, 2017, 

vol. 1, no. 4, p. 538. 

[289] J. Botelho et al., “Stress, salivary cortisol and periodontitis: A systematic review and meta-

analysis of observational studies,” Arch. Oral Biol., vol. 96, pp. 58–65, 2018. 

[290] A. Zamkah, T. Hui, S. Andrews, N. Dey, F. Shi, and R. S. Sherratt, “Identification of suitable 

biomarkers for stress and emotion detection for future personal affective wearable sensors,” 

Biosensors, vol. 10, no. 4, p. 40, 2020. 

[291] E. Iob and A. Steptoe, “Cardiovascular disease and hair cortisol: a novel biomarker of 

chronic stress,” Curr. Cardiol. Rep., vol. 21, no. 10, pp. 1–11, 2019. 

[292] T. Iqbal, A. Elahi, P. Redon, P. Vazquez, W. Wijns, and A. Shahzad, “A Review of 

Biophysiological and Biochemical Indicators of Stress for Connected and Preventive 

Healthcare,” Diagnostics, vol. 11, no. 3, 2021, doi: 10.3390/diagnostics11030556. 

[293] F. Sun, C. Kuo, H. Cheng, and S. Buthpitiya, “Activity-Aware Mental Stress Detection,” pp. 

282–301, 2012. 

[294] A. Muaremi, B. Arnrich, and G. Tröster, “Towards Measuring Stress with Smartphones and 

Wearable Devices During Workday and Sleep,” Bionanoscience, vol. 3, no. 2, pp. 172–183, 

2013, doi: 10.1007/s12668-013-0089-2. 

[295] K. Lai, S. N. Yanushkevich, and V. P. Shmerko, “Intelligent Stress Monitoring Assistant for 

First Responders,” IEEE Access, vol. 9, pp. 25314–25329, 2021. 

[296] E. Smets et al., “Large-scale wearable data reveal digital phenotypes for daily-life stress 

detection,” NPJ Digit. Med., vol. 1, no. 1, pp. 1–10, 2018. 



 

223 

 

[297] Z. Wang and S. Fu, “An analysis of pilot’s physiological reactions in different flight phases,” 

in International Conference on Engineering Psychology and Cognitive Ergonomics, 2014, pp. 94–103. 

[298] A. Reiss, I. Indlekofer, P. Schmidt, and K. Van Laerhoven, “Deep PPG: large-scale heart 

rate estimation with convolutional neural networks,” Sensors, vol. 19, no. 14, p. 3079, 2019. 

[299] Y. Jiang, W. Li, M. S. Hossain, M. Chen, A. Alelaiwi, and M. Al-Hammadi, “A snapshot 

research and implementation of multimodal information fusion for data-driven emotion 

recognition,” Inf. Fusion, vol. 53, pp. 209–221, 2020. 

[300] C. K. Aridas, S. Karlos, V. G. Kanas, N. Fazakis, and S. B. Kotsiantis, “Uncertainty based 

under-sampling for learning naive Bayes classifiers under imbalanced data sets,” IEEE 

Access, vol. 8, pp. 2122–2133, 2019. 

[301] M. T. Uddin and S. Canavan, “Synthesizing physiological and motion data for stress and 

meditation detection,” in 2019 8th International Conference on Affective Computing and Intelligent 

Interaction Workshops and Demos (ACIIW), 2019, pp. 244–247. 

[302] S. D. Kreibig, “Autonomic nervous system activity in emotion: A review,” Biol. Psychol., vol. 

84, no. 3, pp. 394–421, 2010. 

[303] P. Hamilton, “Open source ECG analysis,” in Computers in cardiology, 2002, pp. 101–104. 

[304] X. Tang, Q. Hu, and W. Tang, “A real-time QRS detection system with PR/RT interval and 

ST segment measurements for wearable ECG sensors using parallel delta modulators,” 

IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 4, pp. 751–761, 2018. 

[305] C. A. Ledezma and M. Altuve, “Optimal data fusion for the improvement of QRS complex 

detection in multi-channel ECG recordings,” Med. \& Biol. Eng. \& Comput., vol. 57, no. 8, 

pp. 1673–1681, 2019. 

[306] S. K. Berkaya, A. K. Uysal, E. S. Gunal, S. Ergin, S. Gunal, and M. B. Gulmezoglu, “A 

survey on ECG analysis,” Biomed. Signal Process. Control, vol. 43, pp. 216–235, 2018. 

[307] G. Pope et al., “An ultra-low resource wearable EDA sensor using wavelet compression,” 

in 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks 

(BSN), 2018, pp. 193–196. 

[308] B. Lamichhane, U. Großekathöfer, G. Schiavone, and P. Casale, “Towards stress detection 

in real-life scenarios using wearable sensors: normalization factor to reduce variability in 

stress physiology,” in eHealth 360°, Springer, 2017, pp. 259–270. 



 

224 

 

[309] J. Choi, B. Ahmed, and R. Gutierrez-Osuna, “Development and evaluation of an 

ambulatory stress monitor based on wearable sensors,” IEEE Trans. Inf. Technol. Biomed., vol. 

16, no. 2, pp. 279–286, 2011. 

[310] S. Kim, W. Rhee, D. Choi, Y. J. Jang, and Y. Yoon, “Characterizing driver stress using 

physiological and operational data from real-world electric vehicle driving experiment,” Int. 

J. Automot. Technol., vol. 19, no. 5, pp. 895–906, 2018. 

[311] J. Wijsman, B. Grundlehner, J. Penders, and H. Hermens, “Trapezius muscle EMG as 

predictor of mental stress,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 4, pp. 1–20, 2013. 

[312] D. Huysmans et al., “Unsupervised learning for mental stress detection-exploration of self-

organizing maps,” Proc. Biosignals 2018, vol. 4, pp. 26–35, 2018. 

[313] R. Li and Z. Liu, “Stress detection using deep neural networks,” BMC Med. Inform. Decis. 

Mak., vol. 20, no. 11, pp. 1–10, 2020. 

[314] A. D. McDonald, F. Sasangohar, A. Jatav, and A. H. Rao, “Continuous monitoring and 

detection of post-traumatic stress disorder (PTSD) triggers among veterans: a supervised 

machine learning approach,” IISE Trans. Healthc. Syst. Eng., vol. 9, no. 3, pp. 201–211, 2019. 

[315] D. Leightley, V. Williamson, J. Darby, and N. T. Fear, “Identifying probable post-traumatic 

stress disorder: applying supervised machine learning to data from a UK military cohort,” J. 

Ment. Heal., vol. 28, no. 1, pp. 34–41, 2019. 

[316] K. M. Dalmeida and G. L. Masala, “Hrv features as viable physiological markers for stress 

detection using wearable devices,” Sensors, vol. 21, no. 8, p. 2873, 2021. 

[317] K. Wang and P. Guo, “An ensemble classification model with unsupervised representation 

learning for driving stress recognition using physiological signals,” IEEE Trans. Intell. Transp. 

Syst., vol. 22, no. 6, pp. 3303–3315, 2020. 

[318] E. Vildjiounaite, J. Kallio, J. Mäntyjärvi, V. Kyllönen, M. Lindholm, and G. Gimel’farb, 

“Unsupervised stress detection algorithm and experiments with real life data,” in EPIA 

Conference on Artificial Intelligence, 2017, pp. 95–107. 

[319] F. Larradet, R. Niewiadomski, G. Barresi, D. G. Caldwell, and L. S. Mattos, “Toward 

emotion recognition from physiological signals in the wild: approaching the methodological 

issues in real-life data collection,” Front. Psychol., vol. 11, p. 1111, 2020. 

[320] P. Adams et al., “Towards personal stress informatics: comparing minimally invasive 



 

225 

 

techniques for measuring daily stress in the wild,” in Proceedings of the 8th International Conference 

on Pervasive Computing Technologies for Healthcare, 2014, pp. 72–79. 

[321] C. Maaoui and A. Pruski, “Unsupervised stress detection from remote physiological signal,” 

in 2018 IEEE International Conference on Industrial Technology (ICIT), 2018, pp. 1538–1543. 

[322] G. Rescioa, A. Leonea, and P. Sicilianoa, “Unsupervised-based framework for aged worker’s 

stress detection,” Work. Artif. Intell. an Ageing Soc., 2020. 

[323] J. Ramos, J.-H. Hong, and A. K. Dey, “Stress Recognition-A Step Outside the Lab.,” in 

PhyCS, 2014, pp. 107–118. 

[324] L. Fiorini, G. Mancioppi, F. Semeraro, H. Fujita, and F. Cavallo, “Unsupervised emotional 

state classification through physiological parameters for social robotics applications,” 

Knowledge-Based Syst., vol. 190, p. 105217, 2020. 

[325] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” Science (80-

. )., vol. 315, no. 5814, pp. 972–976, 2007. 

[326] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data clustering method for 

very large databases,” ACM sigmod Rec., vol. 25, no. 2, pp. 103–114, 1996. 

[327] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th international conference on 

World wide web, 2010, pp. 1177–1178. 

[328] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, and others, “A density-based algorithm for 

discovering clusters in large spatial databases with noise.,” in kdd, 1996, vol. 96, no. 34, pp. 

226–231. 

[329] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS: Ordering points to 

identify the clustering structure,” ACM Sigmod Rec., vol. 28, no. 2, pp. 49–60, 1999. 

[330] J. A. Healey, “Wearable and automotive systems for affect recognition from physiology,” 

Massachusetts Institute of Technology, 2000. 

[331] S. Koldijk, M. Sappelli, S. Verberne, M. A. Neerincx, and W. Kraaij, “The swell knowledge 

work dataset for stress and user modeling research,” in Proceedings of the 16th international 

conference on multimodal interaction, 2014, pp. 291–298. 

[332] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new 

research resource for complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215--

e220, 2000. 



 

226 

 

[333] A. Widyanti, A. Johnson, and D. de Waard, “Adaptation of the rating scale mental effort 

(RSME) for use in Indonesia,” Int. J. Ind. Ergon., vol. 43, no. 1, pp. 70–76, 2013. 

[334] T.-M. Bynion and M. T. Feldner, “Self-assessment manikin,” Encycl. Personal. Individ. Differ., 

pp. 4654–4656, 2020. 

[335] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space analysis,” 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, 2002. 

[336] P. C. Chaitra and R. S. Kumar, “A review of multi-class classification algorithms,” Int. J. Pure 

Appl. Math, vol. 118, no. 14, pp. 17–26, 2018. 

[337] S. Koldijk, M. A. Neerincx, and W. Kraaij, “Detecting work stress in offices by combining 

unobtrusive sensors,” IEEE Trans. Affect. Comput., vol. 9, no. 2, pp. 227–239, 2016. 

[338] M. A. Russo, D. M. Santarelli, and D. O’Rourke, “The physiological effects of slow 

breathing in the healthy human,” Breathe, vol. 13, no. 4, pp. 298–309, 2017. 

[339] R. Yousefi and M. Nourani, “Separating arterial and venous-related components of 

photoplethysmographic signals for accurate extraction of oxygen saturation and respiratory 

rate,” IEEE J. Biomed. Heal. informatics, vol. 19, no. 3, pp. 848–857, 2014. 

[340] L. Al-Ghussain, S. El Bouri, H. Liu, D. Zheng, and others, “Clinical evaluation of stretchable 

and wearable inkjet-printed strain gauge sensor for respiratory rate monitoring at different 

measurements locations,” J. Clin. Monit. Comput., pp. 1–10, 2020. 

[341] N. A. Nayan, R. Jaafar, and N. S. Risman, “Development of respiratory rate estimation 

technique using electrocardiogram and photoplethysmogram for continuous health 

monitoring,” Bull. Electr. Eng. Informatics, vol. 7, no. 3, pp. 487–494, 2018. 

[342] R. B. Prasetiyo, K.-S. Choi, and G.-H. Yang, “Design and implementation of respiration 

rate measurement system using an information filter on an embedded device,” Sensors, vol. 

18, no. 12, p. 4208, 2018. 

[343] C. X. Pan, B. C. Palathra, and W. F. Leo-To, “Management of respiratory symptoms in 

those with serious illness,” Med. Clin., vol. 104, no. 3, pp. 455–470, 2020. 

[344] J. C. Collins and R. J. Moles, “Management of respiratory disorders and the pharmacist’s 

role: Cough, colds, and sore throats and allergies (including eyes),” Encycl. Pharm. Pract. Clin. 

Pharm., p. 282, 2019. 

[345] N. J. Brendish et al., “Routine molecular point-of-care testing for respiratory viruses in adults 



 

227 

 

presenting to hospital with acute respiratory illness (ResPOC): a pragmatic, open-label, 

randomised controlled trial,” Lancet Respir. Med., vol. 5, no. 5, pp. 401–411, 2017. 

[346] A. D. Bedoya, M. E. Clement, M. Phelan, R. C. Steorts, C. O’Brien, and B. A. Goldstein, 

“Minimal impact of implemented early warning score and best practice alert for patient 

deterioration,” Crit. Care Med., vol. 47, no. 1, p. 49, 2019. 

[347] K. V. Madhav, M. R. Ram, E. H. Krishna, N. R. Komalla, and K. A. Reddy, “Robust 

extraction of respiratory activity from PPG signals using modified MSPCA,” IEEE Trans. 

Instrum. Meas., vol. 62, no. 5, pp. 1094–1106, 2013. 

[348] E. R. S. Sheffield, “The Global Impact of Respiratory Disease,” Forum Int. Respir. Soc., vol. 

Second Edi, 2017. 

[349] WHO, “Technical Seminar- Actue Respiratory Infections,” 2010. 

[350] K. H. Chon, S. Dash, and K. Ju, “Estimation of respiratory rate from photoplethysmogram 

data using time--frequency spectral estimation,” IEEE Trans. Biomed. Eng., vol. 56, no. 8, pp. 

2054–2063, 2009. 

[351] H. Kim, J.-Y. Kim, and C.-H. Im, “Fast and robust real-time estimation of respiratory rate 

from photoplethysmography,” Sensors, vol. 16, no. 9, p. 1494, 2016. 

[352] G. Liu, D. Wu, Z. Mei, Q. Zhu, and L. Wang, “Automatic detection of respiratory rate from 

electrocardiogram, respiration induced plethysmography and 3D acceleration signals,” J. 

Cent. South Univ., vol. 20, no. 9, pp. 2423–2431, 2013. 

[353] Q. Qananwah, A. Dagamseh, H. Alquran, K. S. Ibrahim, M. Alodat, and O. Hayden, “A 

comparative study of photoplethysmogram and piezoelectric plethysmogram signals,” Phys. 

Eng. Sci. Med., vol. 43, no. 4, pp. 1207–1217, 2020. 

[354] W. K. Ngui, M. S. Leong, L. M. Hee, and A. M. Abdelrhman, “Wavelet analysis: mother 

wavelet selection methods,” in Applied mechanics and materials, 2013, vol. 393, pp. 953–958. 

[355] K. T. Sweeney et al., “Identification of sleep apnea events using discrete wavelet transform 

of respiration, ecg and accelerometer signals,” in 2013 IEEE International Conference on Body 

Sensor Networks, 2013, pp. 1–6. 

[356] P. Dehkordi, A. Garde, B. Molavi, J. M. Ansermino, and G. A. Dumont, “Extracting 

instantaneous respiratory rate from multiple photoplethysmogram respiratory-induced 

variations,” Front. Physiol., vol. 9, p. 948, 2018. 



 

228 

 

[357] W. Karlen, S. Raman, J. M. Ansermino, and G. A. Dumont, “Multiparameter respiratory 

rate estimation from the photoplethysmogram,” IEEE Trans. Biomed. Eng., vol. 60, no. 7, 

pp. 1946–1953, 2013. 

[358] P. van Gent, H. Farah, N. van Nes, and B. van Arem, “HeartPy: A novel heart rate algorithm 

for the analysis of noisy signals,” Transp. Res. part F traffic Psychol. Behav., vol. 66, pp. 368–

378, 2019. 

[359] C. Park, H. Shin, and B. Lee, “Blockwise PPG enhancement based on time-variant zero-

phase harmonic notch filtering,” Sensors, vol. 17, no. 4, p. 860, 2017. 

[360] D. Luguern et al., “Wavelet Variance Maximization: A contactless respiration rate estimation 

method based on remote photoplethysmography,” Biomed. Signal Process. Control, vol. 63, p. 

102263, 2021. 

[361] R. Katiyar, V. Gupta, and R. B. Pachori, “FBSE-EWT-based approach for the 

determination of respiratory rate from PPG signals,” IEEE Sensors Lett., vol. 3, no. 7, pp. 

1–4, 2019. 

[362] Q. Zhang, Q. Xie, M. Wang, and G. Wang, “Motion artifact removal for PPG signals based 

on accurate fundamental frequency estimation and notch filtering,” in 2018 40th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, pp. 

2965–2968. 

[363] M. A. Motin, C. K. Karmakar, and M. Palaniswami, “Selection of empirical mode 

decomposition techniques for extracting breathing rate from PPG,” IEEE Signal Process. 

Lett., vol. 26, no. 4, pp. 592–596, 2019. 

[364] R. Lei, B. W.-K. Ling, P. Feng, and J. Chen, “Estimation of Heart Rate and Respiratory Rate 

from PPG Signal Using Complementary Ensemble Empirical Mode Decomposition with 

both Independent Component Analysis and Non-Negative Matrix Factorization,” Sensors, 

vol. 20, no. 11, p. 3238, 2020. 

[365] S. Xiao, P. Yang, L. Liu, Z. Zhang, and J. Wu, “Extraction of Respiratory Signals and 

Respiratory Rates from the Photoplethysmogram,” in EAI International Conference on Body 

Area Networks, 2020, pp. 184–198. 

[366] H. Yang, M. Li, D. He, X. Che, and X. Qin, “Respiratory Rate Estimation from the 

Photoplethysmogram Combining Multiple Respiratory-induced Variations Based on SQI,” 

in 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 2019, pp. 382–



 

229 

 

387. 

[367] B. Roy, A. Roy, J. K. Chandra, and R. Gupta, “i-PRExT: Photoplethysmography Derived 

Respiration Signal Extraction and Respiratory Rate Tracking Using Neural Networks,” 

IEEE Trans. Instrum. Meas., vol. 70, pp. 1–9, 2020. 

[368] J. Deny, E. Muthukumaran, S. Ramkumar, and S. Kartheesawaran, “Extraction of 

respiratory signals and motion artifacts from ppg signal using modified multi scale principal 

component analysis,” Int. J. Pure Appl. Math., vol. 119, no. 12, pp. 13719–13727, 2018. 

[369] A. Cicone and H.-T. Wu, “How nonlinear-type time-frequency analysis can help in sensing 

instantaneous heart rate and instantaneous respiratory rate from photoplethysmography in 

a reliable way,” Front. Physiol., vol. 8, p. 701, 2017. 

[370] M. R. Ram, K. V. Madhav, E. H. Krishna, N. R. Komalla, K. Sivani, and K. A. Reddy, “ICA-

based improved DTCWT technique for MA reduction in PPG signals with restored 

respiratory information,” IEEE Trans. Instrum. Meas., vol. 62, no. 10, pp. 2639–2651, 2013. 

[371] H. Kang, “The prevention and handling of the missing data,” Korean J. Anesthesiol., vol. 64, 

no. 5, p. 402, 2013. 

[372] M. Peeters, M. Zondervan-Zwijnenburg, G. Vink, and R. de Schoot, “How to handle 

missing data: A comparison of different approaches,” Eur. J. Dev. Psychol., vol. 12, no. 4, pp. 

377–394, 2015. 

[373] P. van Gent, H. Farah, N. van Nes, and B. van Arem, “Analysing noisy driver physiology 

real-time using off-the-shelf sensors: Heart rate analysis software from the taking the fast 

lane project,” J. Open Res. Softw., vol. 7, no. 1, 2019. 

[374] G. Slapničar, N. Mlakar, and M. Luštrek, “Blood pressure estimation from 

photoplethysmogram using a spectro-temporal deep neural network,” Sensors, vol. 19, no. 

15, p. 3420, 2019. 

[375] N. Selvaraj, Y. Mendelson, K. H. Shelley, D. G. Silverman, and K. H. Chon, “Statistical 

approach for the detection of motion/noise artifacts in Photoplethysmogram,” in 2011 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 

4972–4975. 

[376] M. Elgendi, “Optimal signal quality index for photoplethysmogram signals,” Bioengineering, 

vol. 3, no. 4, p. 21, 2016. 



 

230 

 

[377] H.-T. Wu and E. Z. Soliman, “A new approach for analysis of heart rate variability and QT 

variability in long-term ECG recording,” Biomed. Eng. Online, vol. 17, no. 1, pp. 1–14, 2018. 

[378] E. J. Argüello-Prada, “The mountaineer’s method for peak detection in 

photoplethysmographic signals,” Rev. Fac. Ing. Univ. Antioquia, no. 90, pp. 42–50, 2019. 

[379] P. Welch, “The use of fast Fourier transform for the estimation of power spectra: a method 

based on time averaging over short, modified periodograms,” IEEE Trans. audio 

Electroacoust., vol. 15, no. 2, pp. 70–73, 1967. 

[380] P. K. Rahi and R. Mehra, “Analysis of power spectrum estimation using welch method for 

various window techniques,” Int. J. Emerg. Technol. Eng., vol. 2, no. 6, pp. 106–109, 2014. 

[381] D. J. Meredith, D. Clifton, P. Charlton, J. Brooks, C. W. Pugh, and L. Tarassenko, 

“Photoplethysmographic derivation of respiratory rate: a review of relevant physiology,” J. 

Med. Eng. \& Technol., vol. 36, no. 1, pp. 1–7, 2012. 

[382] M. A. F. Pimentel et al., “Toward a robust estimation of respiratory rate from pulse 

oximeters,” IEEE Trans. Biomed. Eng., vol. 64, no. 8, pp. 1914–1923, 2016. 

[383] L. Nilsson, A. Johansson, and S. Kalman, “Monitoring of respiratory rate in postoperative 

care using a new photoplethysmographic technique,” J. Clin. Monit. Comput., vol. 16, no. 4, 

pp. 309–315, 2000. 

[384] S. G. Fleming and L. Tarassenko, “A comparison of signal processing techniques for the 

extraction of breathing rate from the photoplethysmogram,” Int. J. Biol. Med. Sci, vol. 2, no. 

4, pp. 232–236, 2007. 

[385] “basic statistics and data presentation,” Basic statistics and data presentation. The United States 

Food and Drug Administration is a federal agency of the Department of Health and Human 

Services, [Online]. Available: https://www.fda.gov/media/73535/download. 

[386] R. S. Reis, A. A. Hino, and C. R. Añez, “Perceived stress scale,” J. Heal. Psychol, vol. 15, pp. 

107–114, 2010. 

[387] H. \THórarinsdóttir et al., “The validity of daily self-assessed perceived stress measured 

using smartphones in healthy individuals: cohort study,” JMIR mHealth uHealth, vol. 7, no. 

8, p. e13418, 2019. 

[388] T. Iqbal, A. Elahi, W. Wijns, and A. Shahzad, “Exploring Unsupervised Machine Learning 

Classification Methods for Physiological Stress Detection,” Front. Med. Technol., vol. 4, 2022. 



 

231 

 

[389] F. Rahimi Sardo et al., “Recent Progress of Triboelectric Nanogenerators for Biomedical 

Sensors: From Design to Application,” Biosensors, vol. 12, no. 9, pp. 1–25, 2022, doi: 

10.3390/bios12090697. 

[390] N. El Haouij, J.-M. Poggi, S. Sevestre-Ghalila, R. Ghozi, and M. Ja\"\idane, 

“AffectiveROAD system and database to assess driver’s attention,” in Proceedings of the 33rd 

Annual ACM Symposium on Applied Computing, 2018, pp. 800–803. 

[391] J. Healey and R. Picard, “SmartCar: detecting driver stress,” pp. 218–221, 2002, doi: 

10.1109/icpr.2000.902898. 

[392] S. Hosseini et al., “A multimodal sensor dataset for continuous stress detection of nurses in 

a hospital,” Sci. Data, vol. 9, no. 1, pp. 1–13, 2022. 

[393] T. Iqbal, A. Elahi, S. Ganly, W. Wijns, and A. Shahzad, “Photoplethysmography-Based 

Respiratory Rate Estimation Algorithm for Health Monitoring Applications,” J. Med. Biol. 

Eng., pp. 1–11, 2022. 

[394] D. Roshan et al., “A comparison of methods to generate adaptive reference ranges in 

longitudinal monitoring,” PLoS One, vol. 16, no. 2, p. e0247338, 2021. 

[395] P. S. O’Súilleabháin, B. M. Hughes, A. M. Oommen, L. Joshi, and S. Cunningham, 

“Vulnerability to stress: Personality facet of vulnerability is associated with cardiovascular 

adaptation to recurring stress,” Int. J. Psychophysiol., vol. 144, pp. 34–39, 2019. 

[396] F. Scarpina and S. Tagini, “The stroop color and word test,” Front. Psychol., vol. 8, p. 557, 

2017. 

[397] E. C. Helminen, M. L. Morton, Q. Wang, and J. C. Felver, “Stress reactivity to the trier 

social stress test in traditional and virtual environments: a meta-analytic comparison,” 

Psychosom. Med., vol. 83, no. 3, pp. 200–211, 2021. 

[398] S. Cohen, T. Kamarck, and R. Mermelstein, “A global measure of perceived stress,” J. Health 

Soc. Behav., pp. 385–396, 1983. 

[399] E.-H. Lee, “Review of the psychometric evidence of the perceived stress scale,” Asian Nurs. 

Res. (Korean. Soc. Nurs. Sci)., vol. 6, no. 4, pp. 121–127, 2012. 

[400] C. D. Spielberger, R. Gorsuch, R. Lushene, P. Vagg, and G. Jacobs, “Manual for the Stait-

Trait Anxiety Inventory Consulting Psychologists Press: Palo Alto,” CA, USA, 1983. 

[401] R. D. Riley et al., “Calculating the sample size required for developing a clinical prediction 



 

232 

 

model,” Bmj, vol. 368, 2020. 

[402] T. Vallès-Català, A. Pedret, D. Ribes, D. Medina, and M. Traveria, “Effects of stress on 

performance during highly demanding tasks in student pilots,” Int. J. Aerosp. Psychol., vol. 31, 

no. 1, pp. 43–55, 2021. 

[403] V. Chandra, A. Priyarup, and D. Sethia, “Comparative Study of Physiological Signals from 

Empatica E4 Wristband for Stress Classification,” in International Conference on Advances in 

Computing and Data Sciences, 2021, pp. 218–229. 

[404] M. Kim, J. Kim, K. Park, H. Kim, and D. Yoon, “Comparison of Wristband Type Devices 

to Measure Heart Rate Variability for Mental Stress Assessment,” in 2021 International 

Conference on Information and Communication Technology Convergence (ICTC), 2021, pp. 766–768. 

[405] A. Giorgi et al., “Wearable technologies for mental workload, stress, and emotional state 

assessment during working-like tasks: A comparison with laboratory technologies,” Sensors, 

vol. 21, no. 7, p. 2332, 2021. 

[406] A. A. T. Schuurmans et al., “Validity of the Empatica E4 Wristband to Measure Heart Rate 

Variability (HRV) Parameters: a Comparison to Electrocardiography (ECG),” J. Med. Syst., 

vol. 44, no. 11, 2020, doi: 10.1007/s10916-020-01648-w. 

[407] “E4 wristband data.” 2022, [Online]. Available: https://support.empatica.com/hc/en-

us/sections/200582445-E4-wristband-data. 

[408] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting 

and control. John Wiley \& Sons, 2015. 

[409] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, 

architectural elements, and future directions,” Futur. Gener. Comput. Syst., vol. 29, no. 7, pp. 

1645–1660, 2013. 

[410] F. S. Collins and H. Varmus, “A new initiative on precision medicine,” N. Engl. J. Med., vol. 

372, no. 9, pp. 793–795, 2015. 

[411] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0 scenarios,” in 

2016 49th Hawaii international conference on system sciences (HICSS), 2016, pp. 3928–3937. 

[412] B. D. Fulcher, M. A. Little, and N. S. Jones, “Highly comparative time-series analysis: the 

empirical structure of time series and their methods,” J. R. Soc. Interface, vol. 10, no. 83, p. 

20130048, 2013. 



 

233 

 

[413] J. Wiens, E. Horvitz, and J. Guttag, “Patient risk stratification for hospital-associated c. diff 

as a time-series classification task,” Adv. Neural Inf. Process. Syst., vol. 25, 2012. 

[414] M. Christ, F. Kienle, and A. W. Kempa-Liehr, “Time series analysis in industrial 

applications,” 2016. 

[415] M. M. Saad, T. Iqbal, H. Ali, M. F. Bulbul, S. Khan, and C. Tanougast, “Incident Detection 

over Unified Threat Management platform on a cloud network,” in 2019 10th IEEE 

International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology 

and Applications (IDAACS), 2019, vol. 2, pp. 592–596. 

[416] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, “Time series feature extraction on 

basis of scalable hypothesis tests (tsfresh--a python package),” Neurocomputing, vol. 307, pp. 

72–77, 2018. 

[417] B. D. Fulcher, “Feature-based time-series analysis,” in Feature engineering for machine learning 

and data analytics, CRC Press, 2018, pp. 87–116. 

[418] M. Christ, A. W. Kempa-Liehr, and M. Feindt, “Distributed and parallel time series feature 

extraction for industrial big data applications,” arXiv Prepr. arXiv1610.07717, 2016. 

[419] M. A. Rassam, M. A. Maarof, and A. Zainal, “Adaptive and online data anomaly detection 

for wireless sensor systems,” Knowledge-Based Syst., vol. 60, pp. 44–57, 2014. 

[420] A. Fawzy, H. M. O. Mokhtar, and O. Hegazy, “Outliers detection and classification in 

wireless sensor networks,” Egypt. Informatics J., vol. 14, no. 2, pp. 157–164, 2013. 

[421] G. Jäger et al., “Assessing neural networks for sensor fault detection,” in 2014 IEEE 

international conference on computational intelligence and virtual environments for measurement systems and 

applications (CIVEMSA), 2014, pp. 70–75. 

[422] G. R. Abuaitah and B. Wang, “Data-centric anomalies in sensor network deployments: 

Analysis and detection,” in 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor 

Systems (MASS 2012), 2012, pp. 1–6. 

[423] A. Rahman, D. V Smith, and G. Timms, “A novel machine learning approach toward quality 

assessment of sensor data,” IEEE Sens. J., vol. 14, no. 4, pp. 1035–1047, 2013. 

[424] Z. Ouyang, X. Sun, and D. Yue, “Hierarchical time series feature extraction for power 

consumption anomaly detection,” in Advanced Computational Methods in Energy, Power, Electric 

Vehicles, and Their Integration, Springer, 2017, pp. 267–275. 



 

234 

 

[425] W. Zhang, X. Dong, H. Li, J. Xu, and D. Wang, “Unsupervised detection of abnormal 

electricity consumption behavior based on feature engineering,” IEEE Access, vol. 8, pp. 

55483–55500, 2020. 

[426] G. Liu, L. Li, L. Zhang, Q. Li, and S. S. Law, “Sensor faults classification for SHM systems 

using deep learning-based method with Tsfresh features,” Smart Mater. Struct., vol. 29, no. 7, 

p. 75005, 2020. 

[427] Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in multiple testing 

under dependency,” Ann. Stat., pp. 1165–1188, 2001. 

[428] S. Simmons, L. Jarvis, D. Dempsey, and A. W. Kempa-Liehr, “Data Mining on Extremely 

Long Time-Series,” in 2021 International Conference on Data Mining Workshops (ICDMW), 2021, 

pp. 1057–1066. 

[429] T. Iqbal et al., “Stress Monitoring Using Wearable Sensors: A Pilot Study and Stress-Predict 

Dataset,” Sensors, vol. 22, no. 21, p. 8135, 2022, doi: 10.3390/s22218135. 

[430] B. D. Fulcher and N. S. Jones, “Highly comparative feature-based time-series classification,” 

IEEE Trans. Knowl. Data Eng., vol. 26, no. 12, pp. 3026–3037, 2014. 

[431] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn. 

Res., vol. 3, no. Mar, pp. 1157–1182, 2003. 

[432] “Release v0.11.0 · blue-yonder/tsfresh,” GitHub. Accessed: Dec. 08, 2022. [Online]. 

Available: https://github.com/blue-yonder/tsfresh/releases/tag/v0.11.0. 

[433] “Overview on extracted features - tsfresh,” GitHub. Accessed: Dec. 08, 2022. [Online]. 

Available: http://tsfresh.readthedocs.io/en/latest/text/list_of_features.html. 

[434] I. T. Jollife and J. Cadima, “Principal component analysis: A review and recent 

developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 374, no. 2065, 2016, doi: 

10.1098/rsta.2015.0202. 

[435] M. Vettoretti and B. Di Camillo, “A variable ranking method for machine learning models 

with correlated features: In-silico validation and application for diabetes prediction,” Appl. 

Sci., vol. 11, no. 16, 2021, doi: 10.3390/app11167740. 

[436] L. Toloşi and T. Lengauer, “Classification with correlated features: Unreliability of feature 

ranking and solutions,” Bioinformatics, vol. 27, no. 14, pp. 1986–1994, 2011, doi: 

10.1093/bioinformatics/btr300. 



 

235 

 

[437] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise 

reduction in speech processing, Springer, 2009, pp. 1–4. 

[438] F. Z. Okwonu, B. L. Asaju, and F. I. Arunaye, “Breakdown analysis of pearson correlation 

coefficient and robust correlation methods,” in IOP Conference Series: Materials Science and 

Engineering, 2020, vol. 917, no. 1, p. 12065. 

[439] M. Lobo and R. D. Guntur, “Spearman’s rank correlation analysis on public perception 

toward health partnership projects between Indonesia and Australia in East Nusa Tenggara 

Province,” in Journal of Physics: Conference Series, 2018, vol. 1116, no. 2, p. 22020. 

[440] J. Hauke and T. Kossowski, “Comparison of values of Pearson’s and Spearman’s correlation 

coefficients on the same sets of data,” Quaest. Geogr., vol. 30, no. 2, p. 87, 2011. 

[441] K. H. Hamed, “The distribution of Kendall’s tau for testing the significance of cross-

correlation in persistent data,” Hydrol. Sci. J., vol. 56, no. 5, pp. 841–853, 2011. 

[442] M.-T. Puth, M. Neuhäuser, and G. D. Ruxton, “Effective use of Spearman’s and Kendall’s 

correlation coefficients for association between two measured traits,” Anim. Behav., vol. 102, 

pp. 77–84, 2015. 

[443] M. M. Mukaka, “A guide to appropriate use of correlation coefficient in medical research,” 

Malawi Med. J., vol. 24, no. 3, pp. 69–71, 2012. 

[444] G. Vos, K. Trinh, Z. Sarnyai, and M. R. Azghadi, “Machine Learning for Stress Monitoring 

from Wearable Devices: A Systematic Literature Review,” arXiv Prepr. arXiv2209.15137, 

2022. 

[445] P. T. Noi and M. Kappas, “Comparison of random forest,” K-Nearest Neighbor Support Vector 

Mach. Classif. L. Cover Classif. Using Sentin. Imagery, MDPI, 2018. 

[446] K. Shah, H. Patel, D. Sanghvi, and M. Shah, “A comparative analysis of logistic regression, 

random forest and KNN models for the text classification,” Augment. Hum. Res., vol. 5, pp. 

1–16, 2020. 

[447] “Feature extraction package - tsfresh,” GitHub. Accessed: Dec. 08, 2022. [Online]. Available: 

https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html. 

[448] B. S. Oken, I. Chamine, and W. Wakeland, “A systems approach to stress, stressors and 

resilience in humans,” Behav. Brain Res., vol. 282, pp. 144–154, 2015. 



 

236 

 

Appendix 

10.1 Chapter 3: A Sensitivity Analysis of Biophysiological 
Responses of Stress for Wearable Sensors in Connected 
Health 

 

 

 

Table Chapter 3 S1. Logistic regression classifier results (70-30 Split) 

Features Test- Train 
Split 

Accuracy 
(%) 

Sensitivity Specificity LR+ LR- 

EMG 

30-70 % 

64.91 1.00 0.00 1.00 inf 

EDA 63.82 0.93 0.09 1.03 0.73 

RspR 77.21 0.87 0.59 2.11 0.22 

RRI 76.40 0.91 0.49 1.78 0.18 

HR 77.10 0.89 0.56 2.12 0.21 

HRV 66.73 1.00 0.51 2.12 0.00 

HR +RspR 83.82 0.90 0.72 3.25 0.14 

HR+ RspR+ HRV 88.88 1.00 0.83 6.00 0.00 

All combined 88.90 1.00 0.86 7.00 0.00 

Table Chapter 3 S2. Logistic regression classifier results (4-fold Cross Validation) 

Features 

Test- 
Trai

n 
Split 

Accuracy 
(%) 

Sensit
ivity 

Speci
ficity 

95% Confidence 
Intervals of 

sensitivity and 
specificity 

LR+ LR- 
Varia
nce 

Stan
dard 
devia
nce 

Lower Upper 

EMG 

4-
fold 

Cross 
Valid
ation 

64.96 1.00 0.00 
[1.00, 
0.00] 

[1.00, 
0.00] 

1.0 Inf 0.00 0.00 

EDA 59.23 0.87 0.88 
[0.86, 
0.08] 

[0.86, 
0.088] 

0.95 1.55 0.01 0.10 

RspR 77.00 0.87 0.59 
[0.87, 
0.59] 

[0.87, 
0.59] 

2.11 0.22 0.00 0.01 

RRI 71.37 0.85 0.47 
[0.75, 
0.49] 

[0.75, 
0.48] 

1.59 0.33 0.01 0.10 

HR 73.55 0.85 0.53 
[0.85, 
0.53] 

[0.85, 
0.53] 

1.80 0.29 0.01 0.09 

HR 
+RspR 

79.89 0.86 0.69 
[0.86, 
0.69] 

[0.86, 
0.69] 

2.79 0.21 0.00 0.06 

HR+ 
RspR 

+HRV 
82.14 0.79 0.86 

[0.57, 
0.67] 

[1.00, 
1.04] 

5.51 0.25 0.03 0.18 

All 
combined 

82.14 0.79 0.86 
[0.57, 
0.67] 

[1.00, 
1.04] 

5.51 0.25 0.03 0.18 
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10.2 Chapter 5: Photoplethysmography-Based Respiratory 
Rate Estimation Algorithm for Health Monitoring 
Applications 

 

 

Chapter 5 S 1. Bland-Altman Plot of respiratory rate estimation using 10 seconds window size 

Chapter 5 S 2.  Bland-Altman Plot of respiratory rate estimation using 20 seconds window size 
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Chapter 5 S 3.  Bland-Altman Plot of respiratory rate estimation using 30 seconds 

window size 

Chapter 5 S 4.  Bland-Altman Plot of respiratory rate estimation using 32 seconds 

window size 
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Chapter 5 S 5.  Bland-Altman Plot of respiratory rate estimation using 45 seconds 

window size 

Chapter 5 S 6.  Bland-Altman Plot of respiratory rate estimation using 60 seconds 

window size 
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Chapter 5 S 7.  Bland-Altman Plot of respiratory rate estimation using 64 seconds 

window size 

Chapter 5 S 8.  Bland-Altman Plot of respiratory rate estimation using 120 seconds 

window size 
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Table Chapter 5 A1. Bland-Altman plot: Bias values along with upper and lower limits of 
agreement 

Window Size Bias Value 
Standard Deviation of 

Bias 

Limit of agreement 

Lower Upper 

10 3.49 6.90 -10.03 17.01 

20 2.38 5.69 -8.77 13.52 

30 1.62 4.99 -8.06 11.40 

32 1.55 4.91 -8.07 11.17 

45 0.87 4.72 -8.38 10.13 

60 0.38 4.63 -8.68 9.45 

64 0.21 4.56 -8.73 9.15 

90 -0.45 4.47 -9.20 8.31 

120 -1.60 4.20 -9.83 6.64 

Best window sizes 0.25 3.11 -5.84 6.35 

Note: The negative bias value indicates the average reference respiratory rate was higher than the 
average estimated respiratory rate. 

 

Table Chapter 5 S1. Error in Respiratory Rate Estimation using Different Window Sizes for each 
subject 

S1 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.23 6.39 1.78 0.84 0.58 1.11 2.37 1.62 0.64 

RMS
E 

7.31 6.62 2.24 1.14 0.79 1.68 3.08 2.15 0.93 

S2 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

Chapter 5 S 9.  Bland-Altman Plot of respiratory rate estimation using best window size for 

each subject 
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MAE 7.95 3.30 1.76 0.88 0.50 0.68 1.34 1.56 0.43 

RMS
E 

8.12 3.45 1.92 1.00 0.63 0.91 1.66 1.69 0.57 

S3 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.41 2.16 0.61 1.15 1.73 2.64 3.46 0.60 1.90 

RMS
E 

7.49 2.52 0.88 1.27 1.83 2.69 3.56 0.79 1.99 

S4 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.11 5.28 4.14 3.07 2.45 1.83 2.48 3.85 2.25 

RMS
E 

7.83 5.85 5.00 3.76 3.27 2.61 2.64 4.64 3.05 

S5 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 12.14 8.26 7.12 6.39 5.44 4.42 3.40 7.00 5.19 

RMS
E 

12.38 8.63 7.50 6.85 5.73 4.72 4.00 7.38 5.42 

S6 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 3.94 1.39 3.06 4.20 4.78 5.46 6.04 3.29 4.91 

RMS
E 

4.00 1.46 3.09 4.22 4.80 5.47 6.06 3.31 4.93 

S7 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE  8.15 6.50 5.32 4.58 3.29 3.06 6.26 4.36 

RMS
E 

 8.17 6.53 5.37 4.72 3.83 3.28 6.29 4.54 

S8 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE  4.66 3.20 2.12 1.54 1.59 2.56 2.96 1.48 

RMS
E 

 4.72 3.27 2.21 1.63 1.66 2.98 3.03 1.54 

S9 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE  8.51 6.78 5.51 4.71 3.35 3.11 6.54 4.49 

RMS
E 

 8.54 6.82 5.57 4.85 3.95 3.31 6.58 4.66 

S10 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.51 6.09 4.37 3.12 2.34 1.61 1.96 4.08 2.08 

RMS
E 

8.56 6.43 4.67 3.33 2.53 1.74 2.01 4.33 2.27 

S11 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.06 2.80 1.52 1.00 1.17 1.90 2.40 1.35 1.30 

RMS
E 

7.41 3.08 2.00 1.68 1.86 2.45 2.83 1.87 1.97 

S12 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 1.75 3.54 4.89 5.96 6.46 7.18 7.65 5.11 6.56 

RMS
E 

2.31 3.86 5.17 6.14 6.61 7.26 7.73 5.37 6.70 

S14 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 5.40 4.58 3.24 2.29 1.70 2.24 3.12 3.07 1.73 
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RMS
E 

6.44 5.74 4.30 3.10 2.31 2.56 3.83 4.11 2.24 

S15 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 5.40 1.70 1.17 1.36 1.54 1.68 1.83 1.15 1.56 

RMS
E 

5.76 2.23 1.61 1.61 1.81 1.83 1.97 1.53 1.81 

S16 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 1.14 3.11 4.42 5.30 5.76 6.31 6.69 4.60 5.87 

RMS
E 

1.62 3.21 4.45 5.32 5.77 6.32 6.71 4.62 5.88 

S17 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 9.01 7.82 6.35 4.76 4.07 2.94 1.88 6.04 3.90 

RMS
E 

9.14 8.17 6.65 4.95 4.26 3.23 2.47 6.31 4.10 

S18 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.97 9.39 10.19 10.72 10.91 10.98 10.79 10.29 10.93 

RMS
E 

7.04 9.41 10.20 10.73 10.92 11.00 10.83 10.30 10.94 

S19 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.96 2.15 2.12 3.00 3.78 4.35 4.43 2.29 3.87 

RMS
E 

7.80 2.77 2.62 3.35 4.01 4.54 4.60 2.74 4.08 

S20 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 11.39 7.46 5.78 4.60 3.89 2.98 1.89 5.55 3.74 

RMS
E 

11.50 7.68 5.93 4.70 3.96 3.15 2.39 5.69 3.80 

S21 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.18 2.37 3.11 3.84 4.26 4.90 5.56 3.22 4.37 

RMS
E 

2.96 2.75 3.49 4.10 4.46 5.05 5.68 3.59 4.56 

S22 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.37 4.17 5.81 6.90 7.48 8.04 8.32 6.03 7.59 

RMS
E 

3.05 4.22 5.84 6.92 7.49 8.05 8.33 6.05 7.60 

S23 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE  14.07 7.88 6.73 7.06 6.98 4.24 6.97 6.83 

RMS
E 

 14.11 8.34 7.84 8.02 7.36 5.08 8.08 7.73 

S24 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 3.80 1.14 1.40 2.20 2.81 3.82 5.15 1.44 3.00 

RMS
E 

4.33 1.54 1.67 2.34 2.91 3.95 5.44 1.68 3.09 

S25 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 3.23 0.85 1.64 2.51 3.00 3.43 3.84 1.80 3.09 
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RMS
E 

3.85 1.14 1.88 2.65 3.09 3.51 3.93 2.01 3.18 

S26 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 13.84 9.62 7.51 5.59 5.52 4.31 4.59 6.63 5.10 

RMS
E 

13.99 9.88 7.98 7.26 7.10 5.77 5.59 7.66 6.75 

S27 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 16.34 11.48 9.96 9.09 8.43 7.59 6.58 9.88 8.21 

RMS
E 

16.41 11.56 10.05 9.22 8.55 7.78 6.86 10.00 8.33 

S28 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.66 4.99 3.62 2.07 1.39 1.25 1.92 3.27 1.23 

RMS
E 

6.89 5.57 4.12 2.34 1.60 1.35 2.10 3.76 1.46 

S29 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.21 4.37 2.83 1.93 1.29 1.12 2.02 2.92 1.15 

RMS
E 

6.98 4.90 3.28 2.48 1.74 1.45 2.22 3.53 1.61 

S30 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.42 3.98 2.34 1.43 1.05 1.00 1.86 2.14 0.95 

RMS
E 

7.76 4.31 2.72 1.71 1.35 1.37 2.53 2.52 1.24 

S31 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 8.71 3.69 1.96 0.92 0.54 0.73 1.72 1.72 0.51 

RMS
E 

8.81 3.86 2.17 1.11 0.67 0.96 2.04 1.93 0.60 

S32 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.62 2.53 3.94 5.16 5.91 6.80 7.78 4.17 6.09 

RMS
E 

2.89 2.68 4.10 5.23 5.96 6.87 7.92 4.32 6.13 

S34 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 10.10 5.93 4.13 2.93 2.32 1.46 1.59 3.84 2.16 

RMS
E 

10.39 6.17 4.39 3.18 2.56 1.84 1.68 4.07 2.40 

S35 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.52 3.01 1.91 1.11 0.96 1.20 1.63 1.73 0.98 

RMS
E 

6.90 3.66 2.83 1.75 1.31 1.39 1.98 2.64 1.27 

S36 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.98 4.79 2.76 1.38 0.70 0.72 1.49 2.48 0.60 

RMS
E 

8.09 4.89 2.88 1.56 0.95 0.89 1.87 2.61 0.83 

S37 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.36 2.91 1.26 0.72 0.90 1.54 2.55 1.08 1.01 
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RMS
E 

7.52 3.32 1.66 0.86 1.10 1.94 3.01 1.46 1.23 

S38 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.74 6.40 5.20 3.57 2.67 1.57 1.06 4.85 2.41 

RMS
E 

9.00 6.99 6.03 4.16 3.16 1.84 1.24 5.70 2.83 

S39 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 10.24 8.77 7.03 5.74 5.05 4.13 2.94 6.77 4.91 

RMS
E 

11.12 9.10 7.36 5.93 5.16 4.33 3.38 7.07 5.04 

S40 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 3.53 3.60 3.80 2.34 1.72 1.70 2.77 3.72 1.58 

RMS
E 

4.46 4.83 5.11 3.05 2.30 2.06 2.97 4.97 2.12 

S41 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 9.30 6.02 4.55 4.57 4.68 5.27 4.30 4.32 4.67 

RMS
E 

9.88 6.48 5.24 5.42 5.62 6.10 4.87 5.02 5.64 

S42 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 1.59 1.09 0.90 0.75 0.73 0.96 1.43 0.86 0.75 

RMS
E 

1.81 1.22 1.01 0.84 0.79 1.00 1.58 0.94 0.80 

S43 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.59 3.45 1.99 1.20 1.02 1.45 2.27 1.77 1.02 

RMS
E 

7.92 4.03 2.46 1.44 1.34 1.88 2.65 2.21 1.38 

S44 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 1.35 1.47 1.64 1.74 1.68 1.83 1.49 1.60 1.64 

RMS
E 

2.05 2.58 2.99 3.19 2.84 2.79 1.91 2.91 2.74 

S45 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.15 8.79 9.07 8.33 8.31 5.27 5.78 8.49 7.23 

RMS
E 

7.55 9.62 9.76 9.34 9.26 7.75 6.57 9.35 8.61 

S46 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 3.99 4.24 4.32 4.24 4.06 4.16 4.56 4.33 4.05 

RMS
E 

5.22 5.29 5.27 5.05 4.63 4.49 4.69 5.26 4.57 

S47 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.62 3.16 3.40 3.57 3.84 4.37 5.30 3.46 3.94 

RMS
E 

2.94 3.28 3.46 3.61 3.87 4.48 5.53 3.50 3.97 

S48 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.69 2.66 2.70 2.71 2.80 3.15 3.72 2.71 2.88 
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RMS
E 

3.14 3.04 3.03 3.00 3.08 3.51 4.12 3.04 3.18 

S49 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 8.33 6.80 4.98 3.57 2.81 1.47 1.66 4.73 2.51 

RMS
E 

9.34 7.06 5.28 3.88 3.11 1.87 1.72 5.02 2.85 

S50 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 12.08 10.33 8.67 8.11 7.50 6.49 4.79 8.98 7.34 

RMS
E 

12.12 10.45 8.83 8.34 7.69 6.77 5.38 9.24 7.54 

S51 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE  7.51 9.64 8.35 7.54 6.11 3.88 9.39 7.30 

RMS
E 

 8.20 9.67 8.40 7.67 6.59 5.26 9.42 7.47 

S52 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 4.91 5.16 5.27 5.37 5.41 5.52 5.72 5.30 5.43 

RMS
E 

4.96 5.18 5.29 5.37 5.41 5.53 5.74 5.31 5.44 

S53 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.88 2.10 1.77 1.83 1.96 2.02 2.48 1.77 2.03 

RMS
E 

3.89 2.94 2.25 2.13 2.21 2.24 2.82 2.19 2.26 
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Table Chapter 5 S2. Error in Respiratory Rate Estimation using Different Window Sizes for each 
subject (removing points with SQI = nan) 

S1 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.23 6.37 1.74 0.84 0.61 1.18 2.46 1.62 0.64 

RMS
E 7.31 6.60 2.22 1.13 0.83 1.77 3.16 2.15 0.93 

S2 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.95 3.30 1.76 0.88 0.50 0.68 1.34 1.56 0.43 

RMS
E 8.12 3.45 1.92 1.00 0.63 0.91 1.66 1.69 0.57 

S3 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.41 2.16 0.61 1.15 1.73 2.64 3.46 0.60 1.90 

RMS
E 7.49 2.52 0.88 1.27 1.83 2.69 3.56 0.79 1.99 

S4 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.11 5.28 4.14 3.07 2.45 1.83 2.48 3.85 2.25 

RMS
E 7.83 5.85 5.00 3.76 3.27 2.61 2.64 4.64 3.05 

S5 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 12.14 8.01 6.64 5.78 5.11 4.42 3.40 6.55 5.01 

RMS
E 12.38 8.26 6.83 6.04 5.31 4.72 4.00 6.76 5.21 

S6 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 3.94 1.39 3.06 4.20 4.78 5.46 6.04 3.29 4.91 

RMS
E 4.00 1.46 3.09 4.22 4.80 5.47 6.06 3.31 4.93 

S7 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE  8.15 6.50 5.32 4.58 3.29 3.06 6.26 4.36 

RMS
E  8.17 6.53 5.37 4.72 3.83 3.28 6.29 4.54 

S8 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE  4.66 3.20 2.12 1.54 1.59 2.56 2.96 1.48 

RMS
E  4.72 3.27 2.21 1.63 1.66 2.98 3.03 1.54 

S9 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE  8.51 6.78 5.51 4.71 3.35 3.11 6.54 4.49 

RMS
E  8.54 6.82 5.57 4.85 3.95 3.31 6.58 4.66 

S10 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.88 5.92 4.15 3.04 2.41 1.81 1.55 3.95 2.27 

RMS
E 8.81 6.22 4.39 3.23 2.60 1.90 1.56 4.17 2.44 

S11 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 
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MAE 7.06 2.80 1.52 1.00 1.17 1.90 2.40 1.35 1.30 

RMS
E 7.41 3.08 2.00 1.68 1.86 2.45 2.83 1.87 1.97 

S12 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 1.75 3.54 4.89 5.96 6.46 7.18 7.65 5.11 6.56 

RMS
E 2.31 3.86 5.17 6.14 6.61 7.26 7.73 5.37 6.70 

S14 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 5.58 2.33 2.54     2.83  

RMS
E 6.42 3.00 3.30     3.56  

S15 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 5.44 1.70 1.15 1.33 1.52 1.71 1.91 1.15 1.56 

RMS
E 5.82 2.21 1.59 1.59 1.79 1.86 2.06 1.53 1.82 

S16 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 1.14 3.16 4.44 5.31 5.76 6.31 6.69 4.62 5.87 

RMS
E 1.62 3.25 4.47 5.33 5.77 6.32 6.71 4.64 5.88 

S17 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 9.03 7.82 6.42 4.83 4.07 2.94 1.88 6.12 3.90 

RMS
E 9.17 8.18 6.73 5.01 4.26 3.23 2.47 6.39 4.10 

S18 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.97 9.39 10.19 10.72 10.91 10.98 10.79 10.29 10.93 

RMS
E 7.04 9.41 10.19 10.73 10.92 11.00 10.83 10.30 10.94 

S19 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.78 2.14 2.17 3.02 3.74 4.27 4.28 2.29 3.87 

RMS
E 7.65 2.73 2.65 3.35 3.96 4.46 4.46 2.74 4.08 

S20 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 11.46 7.34 5.68 4.54 3.89 2.98 1.88 5.45 3.74 

RMS
E 11.56 7.54 5.83 4.64 3.96 3.15 2.39 5.59 3.80 

S21 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.02 2.34 3.30 4.17 4.77 5.53 5.83 3.44 4.95 

RMS
E 2.65 2.74 3.63 4.40 4.91 5.60 5.92 3.75 5.06 

S22 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.37 4.17 5.81 6.90 7.48 8.04 8.32 6.03 7.59 

RMS
E 3.05 4.22 5.84 6.92 7.49 8.05 8.33 6.05 7.60 

S23 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE  13.87 9.09 8.11 6.63 6.01 3.99 8.96 6.28 
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RMS
E  13.92 9.43 8.57 7.41 6.25 4.79 9.54 7.05 

S24 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 3.80 1.14 1.40 2.20 2.81 3.82 5.15 1.44 3.00 

RMS
E 4.33 1.54 1.67 2.34 2.91 3.95 5.44 1.68 3.09 

S25 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 3.15 0.85 1.64 2.58 3.13 3.70 4.58 1.80 3.23 

RMS
E 3.74 1.15 1.89 2.72 3.22 3.76 4.60 2.01 3.32 

S26 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 13.86 9.68 7.99 6.82 6.37 4.91 2.86 6.63 5.93 

RMS
E 14.01 9.93 8.43 8.06 7.56 5.85 3.01 7.66 7.17 

S27 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 16.39 11.50 9.95 8.99 8.57 8.04 7.60 9.88 8.49 

RMS
E 16.45 11.57 10.01 9.06 8.63 8.10 7.71 10.00 8.55 

S28 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.66 4.99 3.62 2.07 1.39 1.25 1.92 3.27 1.23 

RMS
E 6.89 5.57 4.12 2.34 1.60 1.35 2.10 3.76 1.46 

S29 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.30 4.34 2.60 1.49 0.85 0.77 2.75 2.40 0.68 

RMS
E 7.03 4.76 2.92 1.76 0.99 1.06 2.80 2.68 0.80 

S30 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.47 3.86 2.26 1.42 1.05 1.00 1.87 2.08 0.95 

RMS
E 7.81 4.18 2.66 1.71 1.35 1.37 2.53 2.47 1.24 

S31 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 8.71 3.69 1.96 0.92 0.54 0.73 1.72 1.72 0.51 

RMS
E 8.81 3.86 2.17 1.11 0.67 0.96 2.04 1.93 0.60 

S32 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.62 2.53 3.94 5.16 5.91 6.80 7.78 4.17 6.09 

RMS
E 2.89 2.68 4.10 5.23 5.96 6.87 7.92 4.32 6.13 

S34 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 10.21 5.88 4.09 2.77 2.03 1.07 1.21 3.80 1.83 

RMS
E 10.50 6.09 4.34 3.02 2.25 1.34 1.23 4.01 2.03 

S35 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.59 2.99 1.60 0.79 0.85 1.46 2.73 1.73 0.92 
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RMS
E 6.96 3.50 1.98 0.96 1.01 1.67 2.74 2.64 1.08 

S36 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.98 4.79 2.76 1.38 0.70 0.72 1.49 2.48 0.60 

RMS
E 8.09 4.89 2.88 1.56 0.95 0.89 1.87 2.61 0.83 

S37 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.38 2.95 1.34 0.73 0.90 1.75 2.95 1.08 1.01 

RMS
E 7.53 3.33 1.72 0.88 1.13 2.21 3.36 1.46 1.27 

S38 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.66 6.24 5.02 3.40 2.46 1.23 1.15 4.85 2.17 

RMS
E 8.91 6.83 5.91 4.06 3.01 1.43 1.35 5.70 2.63 

S39 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 10.24 8.77 7.03 5.74 5.05 4.13 2.94 6.77 4.91 

RMS
E 11.12 9.10 7.36 5.93 5.16 4.33 3.38 7.07 5.04 

S40 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 3.03 3.09 3.07 2.24 0.85 0.47 2.89 3.03 0.65 

RMS
E 3.73 3.69 3.49 2.51 0.88 0.47 2.90 3.41 0.67 

S41 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 9.37 5.95 4.45 4.44 4.73 4.68 3.17 4.21 4.77 

RMS
E 9.94 6.42 5.19 5.34 5.69 5.32 3.69 4.96 5.76 

S42 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 1.59 1.09 0.90 0.75 0.73 0.96 1.43 0.86 0.75 

RMS
E 1.81 1.22 1.01 0.84 0.79 1.00 1.58 0.94 0.80 

S43 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 7.59 3.45 1.99 1.20 1.02 1.45 2.27 1.77 1.02 

RMS
E 7.92 4.03 2.46 1.44 1.34 1.88 2.65 2.21 1.38 

S44 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 1.35 1.25 1.16 0.91 0.80 0.67 0.94 1.60 0.76 

RMS
E 1.99 2.02 1.83 1.35 1.18 1.08 1.07 2.91 1.14 

S45 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 6.15 8.79 9.07 8.33 8.31 5.27 5.78 8.49 7.23 

RMS
E 7.55 9.62 9.76 9.34 9.26 7.75 6.57 9.35 8.61 

S46 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 3.99 4.24 4.32 4.24 4.06 4.16 4.56 4.33 4.05 
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RMS
E 5.22 5.29 5.27 5.05 4.63 4.49 4.69 5.26 4.57 

S47 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.62 3.16 3.38 3.57 3.84 4.37 5.30 3.46 3.94 

RMS
E 2.94 3.27 3.43 3.61 3.87 4.48 5.53 3.50 3.97 

S48 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.67 2.81 2.81 2.79 2.80 3.11 3.44 2.82 2.87 

RMS
E 3.12 3.14 3.15 3.12 3.14 3.52 3.91 3.17 3.22 

S49 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 9.21 7.05 4.82 2.70 2.25 1.63 1.84 4.28 1.73 

RMS
E 10.11 7.53 5.37 2.88 3.41 1.88 1.85 4.51 1.94 

S50 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 12.10 10.30 8.66 7.65 7.01 6.04 4.79 8.72 6.83 

RMS
E 12.14 10.40 8.81 7.79 7.14 6.32 5.38 8.92 6.97 

S51 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE  7.51 9.64 8.35 7.54 6.11 3.88 9.39 7.30 

RMS
E  8.20 9.67 8.40 7.67 6.59 5.26 9.42 7.47 

S52 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 4.91 5.16 5.28 5.37 5.41 5.52 5.73 5.31 5.43 

RMS
E 4.96 5.19 5.30 5.37 5.41 5.53 5.74 5.32 5.44 

S53 
WIN_1

0 
WIN_2

0 
WIN_3

0 
WIN_4

5 
WIN_6

0 
WIN_9

0 
WIN_1

20 
WIN_3

2 
WIN_6

4 

MAE 2.88 2.10 1.77 1.83 1.96 2.02 2.48 1.77 2.03 

RMS
E 3.89 2.94 2.25 2.13 2.21 2.24 2.82 2.19 2.26 
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