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Abstract

The depth estimation problem has made significant progress due to recent improvements in
Convolutional Neural Networks (CNN) and the incorporation of traditional methodologies
in these deep learning systems. Depth estimation is one of the fundamental computer
vision tasks, as it involves the inverse problem of reconstructing the three-dimensional
scene structure from two-dimensional projections. Due to the compactness and low cost of
monocular cameras, there has been a significant and increasing interest in depth estimation
from a single RGB image. Current single-view depth estimation techniques, however, are
extremely slow for real-time inference on an embedded platform and are based on fairly large
deep neural networks that require a large range of training sets. Due to the difficulties in
obtaining dense ground-truth depth at scale across various environments, a range of datasets
with distinctive features and biases have developed. This thesis firstly provides a summary of
the depth estimation datasets, depth estimation techniques, studies, patterns, difficulties, loss
function and opportunities that are present for open research. For effective depth estimation
from a single image frame, a method is proposed to generate synthetic high accuracy human
facial depth from synthetic 3D face models that enables us to train the CNN models to
resolve facial depth estimation challenges. To validate the synthetic facial depth data, a brief
comparison analysis of cutting-edge depth estimation algorithms on individual image frames
from the generated synthetic dataset is proposed. Following that, two different lightweight
encoder-decoder-based neural networks for training on the generated dataset are proposed,
and when tested and evaluated across four public datasets, the proposed networks are shown
to be computationally efficient and outperform the current state-of-the-art. The proposed
lightweight models will allow us to use the low-complexity models, making them suitable
for implementation on edge devices. Synthetic human facial depth data can help overcome
the lack of real data and can increase the performance of the deep learning methods for depth
maps.
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Chapter 1

Introduction to the
Single-Image/Monocular Depth
Challenge

1.1 Introduction

Image depth estimation plays a key role in computer vision, which facilitates the understand-
ing and awareness of real 3D situations leading to a variety of applications such as robotic
navigation, self-driving, and augmented worlds [6–8]. Active depth approaches typically
utilize laser beams, structured illumination, and other reflective surfaces on the object surface
to acquire depth point cloud data, explicit surface model construction, and approximate
scene depth information [9, 10]. However, producing dense and precise depth maps typically
involves relatively significant costs, time of manpower to manually annotate and processing
resources [11, 12]. Image-based depth estimation methods mainly contain binocular image
depth estimation and single image depth estimation methods. The results of multi view image
depth estimation from scenes containing less texture details are significantly uncertain, and
require great accuracy in the calibration and triangulation of the acquired images. Depth
information retrieved from a monocular image is inconsistent, as different depth information
can be projected to a given scene [13, 14].

The progress of image-based depth computation is presented in Fig. 1.1. In the early
period, researchers calculated depth maps based on depth cues, including edges [15], focus
and defocus [16], and shadow [17]. However, the majority of these algorithms were applied
in constrained scenarios [15–17]. With the development of the computer vision, numerous
hand-made features and probability-based graph models have been suggested. Such methods
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includes scale-invariant feature transform (SIFT) [18], speeded up robust features (SURF)
[19], pyramid histogram of oriented gradient (PHOG) [20], Conditional Random Field (CRF)
[21], and Markov Random Field (MRF) [22]. These methods were adopted to anticipate
multi view and monocular depth maps with parameter and non-parameter learning in the
machine learning process [21, 22]. The development of deep learning technology has given
tremendous advances to image analysis [23–30], particularly depth estimation.

Fig. 1.1 The advancement of depth estimation. This work classifies the evolution of depth
estimation into 3 phases: the early period, the machine learning period, and the deep
learning period, in which the depth evaluation methods of monocular images based on
deep learning is mainly studied and presented [31]

.

In multi view depth estimation, the disparity of two 2D images (acquired by a binocular
camera) is calculated by stereo matching and triangulation to create a depth map [32, 33].
It is difficult to capture enough elements in the image to match when the scene has less
or no texture information [34]. As a result, researchers focus has shifted to monocular
depth estimation. Monocular depth estimation employs a single camera to acquire an image
or video sequence, requiring no additional complex equipment or professional techniques.
It has a broad range of application requirements due to the wide availability of only one
camera in the majority of real-world applications. As a result, demand for monocular depth
estimation has increased in recent years. These approaches perform with a smaller number
of operations and have less computational complexity[35]. Researchers have proposed a
variety of approaches for monocular depth estimation that can be used in a wide range of
applications such as autonomous driving, robotic navigation, and virtual reality [3, 31].

Deep learning techniques for monocular depth estimation can be categorized into three
categories: supervised, unsupervised, and semi-supervised training, and single and multi-task
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training of depth maps networks. By inferring the scene structures from the GT depth images,
the supervised monocular depth maps model estimates the depth maps [1]. Fig. 1.2 shows
the overall diagram of deep learning-based monocular depth estimation.

Fig. 1.2 Advances in depth estimation techniques. These DL techniques are categorized
into different models depending on whether the network using GT; single-task and multi-
task learning techniques depending on the type of network prediction task.
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CNN advancements and publically available datasets have recently greatly improved the
performance of monocular depth estimation methods [3, 32, 12, 36, 28]. In a scene, CNN
can automatically extract spatial information representing depth. It is a kind of feed-forward
neural network that simultaneously extract depth information and generate depth maps
compared to traditional methods [31]. Convolution operation, pooling layer, fully-connected
layers, and activation function are the four key layers that make a CNN. These layers allow
CNN to acquire the 2D spatial properties of the input image. The input is transformed into
depth features by the CNN layer, the input feature map size is decreased by the pooling
layer in the fully connected layer; maximum or average pooling is typically found to output
the information at the end of the CNN; and typically, activation function is a continuously
differentiable nonlinear function to avoid pure linear combinations. Some typical CNNs are
AlexNet [63], VGG [37], GoogLeNet [38], and some lightweight networks, such ResNet
[39], DenseNet [40], and such as GhostNet [41], MobileNet [42], ShuffleNet [43]. It serves
as the foundation for the current CNN-based systems and it can be used effectively in depth
estimation tasks [31].

RNN, a sequence-to-sequence model with memory capabilities, learns temporal informa-
tion from video sequences. RNN is made up of three units, i.e., an input unit, a hidden unit,
and an output unit. The outputs of the previous hidden unit and the current input unit are
used as the hidden units input. The spatial features from single image frames are captured
by RNN-based supervised learning networks for depth maps [44, 45]. In comparison to
CNN-based models, the RNN-based networks encoder is composed with all LSTM (or
ConvLSTM) layers, or it combines LSTM and convolutions (ConvLSTM), in order to extract
and preserve spatial information for single depth maps.

From the GT depth maps, the supervised depth estimation model can learn the 3D
mapping and scale information. GAN [46, 47] was developed by researchers to generate
better and more accurate depth maps in comparison to other models, as it is challenging to
acquire GT depth maps in real scenes. The depth map is predicted by the generator as a depth
estimation network, and the discriminator evaluates whether or not the input depth map is
true.

Due to the high expense of collecting GT depth images, some monocular depth estimation
networks must be trained with less or no GT in order to reconstruct depth images. These
techniques are referred to as semi-supervised or unsupervised learning. Supervised learning
methods for monocular depth estimation have the highest accuracy but are highly dependent
on GT depth maps. Unsupervised learning methods use geometric limitations of the input
images to predict depth maps without supervision, but their accuracy is significantly inferior to
supervised and semi-supervised learning techniques, which must overcome scale uncertainty,
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obstruction, and other issues. Semi-supervised learning methods that contain information,
such as synthetic data, surface normals, and LIDAR, as the semi-supervised learning manners
to reduce the network dependence on GT depth maps, which improve the scale consistency
and enhance estimated accuracy of depth maps. This is performed in order to efficiently utilize
a large amount of relatively inexpensive unlabeled data to improve learning performance.

Deep learning techniques for monocular depth estimation can be divided into two cat-
egories based on the different task types. On the one hand, users can train a network
exclusively for depth estimation, which is referred to as single-task learning; but on the other
hand, researchers can integrate depth estimation with several other related tasks in order
to jointly learn for feature representation and enhance depth forecasting accuracy, which is
referred to as multi-task learning [31].

Deep learning algorithms have significantly improved 2D face identification, making
3D face recognition more promising. Due to the fact that 3D faces are widely considered
to be more discriminative than 2D faces. For 3D face recognition, depth information is the
foundation of the majority of deep learning algorithms [48].

1.2 Facial Depth Estimation Challenge

Estimating depth maps from images is a fundamental and crucial problem in CV that could
be used in a wide range of tasks such as semantic segmentation, navigation, localization,
object detection, mapping, and 3D reconstruction [49–51]. Different techniques can be used
to estimate depth, such as stereo vision matching or multi-view, which can estimate the
3D structures of a scene by employing two or more different points of view [52]. It uses
two or more cameras to process the scene to determine the disparity maps of the images.
Since the cameras in multi-view are calibrated in advance and all the data is contained in
the depth maps [53] using geometric constraints methods. A technique commonly used in
3D reconstruction and SLAM, is another way to recover depth maps and the corresponding
3D structures from two or more images [54, 35]. Although, geometry-based algorithms can
compute the depth values of sparse features well, they typically rely on image pairings or
image sequences. Due to the absence of efficient geometric solutions, it is currently very
difficult to create a dense depth maps.

Advanced sensing devices called RGB-D cameras acquire RGB images together with
information about the depth of each pixel. These cameras have issues with limited accuracy
in range measurement and outdoors sun-lighting sensitivity. Depth sensors, LIDAR, and
other sensor-based techniques can also obtain the depth maps information of the images
directly [55]. LIDAR is commonly utilized in the automated vehicle sector for depth sensing,
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however it can only produce a sparse 3D map. Additionally, the applications of these depth
sensors (RGB-D cameras and LIDAR) to robotics applications, such as drones, are limited
by their large size and high power requirements [56].

Images of human faces are one of the most common today, and they play a pivotal role
in several visual interpretations. Since the facial components and representation in a face
image is well-known in human anthropometrics, it is helpful to quantify the distance of a
human focus from a single image frame if the cameras field of view is known. When one can
directly reconstruct a 3D face model from 2D feature points, the resulting face model lacks
characteristics since we are unable to determine the depth of the features from the 2D facial
image. In contrast to 2D data, shadow and aesthetic effects are negative for 2D data, but they
are advantageous for 3D data since they have rotation invariance and illumination invariance.
This indicates that 3D data is reliable and accurate. 3D data have more information than 2D
data since they can show richer facial shape features.

The estimation of facial depth and head pose is crucial for the autonomous monitoring
of driver concentration in a demanding environment characterized by significant lighting
changes, occluded, and high head postures. Using DL algorithms, image-based facial
depth estimation has demonstrated encouraging results. However, the field is still in its
infancy, and further advancements are anticipated to discuss the difficulties and problems,
such as selection and data for training, inferences to dynamic environments, fine-scale
depth prediction, reconstruction versus identification. By processing various objects in the
existence of occlusions and congested backgrounds, data lack of balance, and how to choose
an acceptable objective function and neural model for facial depth estimation.

For an accurate depth map, the depth camera sensor should be capable of faster human-
skeletal tracking in addition to being a low-cost camera sensor that outputs both RGB
and depth information. This kind of tracking can provide the precise position of human
body joints, making comprehensive human behavior investigations easier and quicker. As a
consequence, there has been a lot of interest in inferring human faces from depth images and
synthesizing depth and RGB images in recent years. Several new facial depths map datasets
have been generated in recent years to assist in the confirmation of humanoid facemask action
analysis methods. However, the GT of these datasets is relatively low, which can negatively
impact the performance of CNN and make them unsuitable for training [4].

The demand for correctly labeled data (GT) is a fundamental limitation of such supervised
models, despite the success of DL-based approaches. Specifically for facial depth estimation
problems, it is difficult to gather precisely annotated face depth data due to feature variables
such as race, age, and gender, as well as environmental influences such as noise, light, and
obstruction. Despite that, it is challenging to predict how much data will be required to
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train an algorithm. Also the dataset must contain sufficient information about all important
classes and edge cases that the algorithm should manage. Each significant dataset requires
a tremendous amount of labor and substantial investment, as well as extensive logistical
planning which is again very challenging. Also it might take months or even years to compile
a large-scale ground truth dataset, which delays DL research and implementations. No
assurance can be given that the data gathered will be of a high enough caliber to train the
algorithms on all required tasks and use cases.

In addition, several data acquisition metrics, including depth sensing and IMU movement,
are susceptible to sensor noise. As a result of uncertain 3D models and camera characteristics,
manually annotated key point procedures typically produce erroneous results. The facial
depth datasets available include Pandora [57], Eurecom Kinect Face [58], and Biwi Kinect
Head Pose [59] captured from real subjects only consists of a small number of images and
contains a low GT, thus these datasets are poorly suited for training DL-based depth methods.

Furthermore, the collection of new data from human subjects is now governed by several
data privacy protection regulations, such as the GDPR, and is subjected to an increasing
amount of severe restrictions making it hard to capture new datasets particularly for faces. It
is getting harder and harder to collect ground truth data that includes images or information
about living humans.

Another challenge is that implementation of autonomous navigation requires precise
depth and 3D data in real-time. Vehicles and battery-powered drones are the two categories
of autonomous guidance systems. In these applications, the usage of a camera or cameras is
constrained due to interference from varying illumination, reflective surfaces and weather.
Utilizing laser scanners to create 3D data for automated driving is possible. Nevertheless,
the scanners are costly and involve a substantial amount of power to function, limiting their
efficiency on battery-powered drones. The greater difficulty is how to increase the density of
the sparse data supplied by laser scanning while maintaining the scene structure.

The improved capability of today’s technological devices provides optimism that a
perception depth-sensing imaging system will be developed within the next decade or two,
and it is hoped that some of the contributions of this study may help in the development of
this solutions.

In general, we believe that monocular depth estimation will continue to be developed
with a focus on enhancing accuracy, simplicity, and real-time performance. The large number
of earlier works primarily concentrate on enhancing depth estimation accuracy through
the use of new loss functions or network architectures. Generalization describes how a
network performs when used with various cameras, scenarios, and datasets used. There is
growing interest in depth networks generalization. The most of the algorithms used today
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are trained and tested using the same dataset, which yields excellent results. However, there
is frequently significant performance loss as a result of using training and testing sets from
various domains or cameras. utilizing domain adaptation technology and including camera
characteristics in depth estimation framework training will considerably increase the depth
network’s generalisation. Larger networks perform exceptionally well, but their applications
face a significant problem because estimation tasks take longer to perform when using deeper
networks. The real uses of depth estimation networks will be significantly impacted by
their ability to function in real-time on embedded devices. Therefore, the development of
lightweight networks based on supervised, semi-supervised learning and pixel-accurate GT
is an alternative to improve accuracy while ensuring real-time performance.

The method for creating 3D synthetic human facial models is suggested in this thesis in
order to render the appropriate 2D RGB and depth maps along with head pose information.
The research community can use this dataset to improve facial depth estimation and apply it
to use in real life applications.

1.3 Overview of Contributions in this Thesis

In this section, the accomplishments of this dissertation are briefly summarized. In the
subsequent chapter of the thesis, every contribution’s associated works is discussed in detail.
An introduction paragraph gives a background for the study in each chapter. Then, the
objectives of the research are presented, supported by the contribution of the presented
research. Finally, a summary of the contributions is presented, analyzing their impact on
the entire study field. Furthermore, for each work an introduction, and a table detailing the
authors efforts in relation to the four primary criteria described in section 1.6 is provided.

The main contributions of this thesis are categorised into three main areas in the context
of the main challenges:

1. General ’review’ work on the broad field of single-image/monocular depth maps and
SoA NN models; this is captured through 3 review papers throughout the term of the
thesis.

2. Contribution to building 2D datasets from 3D models with pixel-accurate depth GT;
this is captured in two conference papers, but also in the release of both, 3D dataset
and 2D synthetic face-depth dataset; these have DOI numbers on IEE dataports and
further validated in the main journal papers.
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3. Contribution to improved NN models for monocular facial depth maps, together with
methodology for evaluation and, as a sub-contribution, a detailed comparison of SoA
models. This is captured in two stand-alone papers.

In the next sections we will give more details on each of these contributions.

1.3.1 Contribution to general Review Work on the broad Field of single-
Image Depth Maps and SoA NN Models

1. Khan, Faisal, Saqib Salahuddin, and Hossein Javidnia. "Deep learning-based monocular
depth estimation methods—a state-of-the-art review." Sensors 20, no. 8 (2020): 2272, [1].
Appendix A contains a copy of the paper published. This is the first comprehensive review
of the research in this thesis to depth estimation form single-image frames using DL meth-
ods. This study’s major goal was to identify alternative network architectures with reduced
computational complexity that would be easier to implement in consumer devices even while
providing comparable performance to larger CNN architectures. To accomplishthis goal,
a concise explanation of the monocular depth estimation concept, a problem description,
traditional depth estimation techniques, and publically available datasets are presented. Fol-
lowing that, DL architectures for monocular depth estimation were categorized as supervised,
self-supervised, and semi-supervised. The SoA methodologies are also thoroughly compared,
followed by a discussion and potential future study fields.

2. Khan, Faisal, Shahid Hussain, Shubhajit Basak, Mohamed Moustafa, and Peter Corcoran.
"A Review of Benchmark Datasets and Training Loss Functions in Neural Depth Estima-
tion." IEEE Access 9 (2021): 148479-148503, [2]. The paper published can be found in the
Appendix B. This work’s major objective is to provide a brief analysis of the depth datasets
that are currently available and the loss functions that are applied to the problem domain.
The key features and properties of each depth dataset and loss function are explained and
compared, and the depth datasets and loss functions are classified into different categories
based on use cases.Furthermore, a discussion of challenges and future research as well as
suggestions for developing robust depth datasets are presented.

3. Khan, Faisal, Muhammad Ali Farooq, Waseem Shariff, Shubhajit Basak, and Peter
Corcoran. "Towards Monocular Neural Facial Depth Estimation: Past, Present, and Future."
IEEE Access (2022), [3]. This published paper can be found in the Appendix C. This study
[3] tries to give all the information that would be needed to do a study on the problems with
monocular facial depth estimation. After giving a brief summary of the research on facial
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depth maps, facial depth estimation applications, challenges, and how it has been used, a
detailed study of publicly available facial depth datasets and commonly used loss functions
was given. To help you understand the facial depth map problem better, the important features
and qualities of the facial depth dataset are defined and analyzed, and then the loss functions
used are described. For each dataset, the dataset description, metadata, ground truth, and
relevant data are all listed in a clear way. Also, each loss function is given in a way that
allows researchers to choose the best loss function for their needs. It shows and talks about
the technical details of neural depth networks and the evaluation matrices that are included in
them.

In the second half of the study, a thorough comparison evaluation and, where possible, a
direct comparison of facial depth estimation methods are done to lay the groundwork for the
suggested model. When tested on four different data sets, the model is better than the current
best methods. The unique loss function of the proposed method helps the network learn the
areas of the face, which leads to an accurate prediction of depth. The network is trained and
tested with real and fake facial images from four facial depth datasets, as well as synthetic
images of human faces. A 3D point cloud is reconstructed from the predicted depth maps
and compared with SoA methods for 3D reconstructions.

1.3.2 Contribution to Building 2D Datasets from 3D Models with Pixel-
Accurate Depth GT

1. The first confrence paper: Khan, Faisal, Shubhajit Basak, Hossein Javidnia, Michael
Schukat, and Peter Corcoran. "High-Accuracy Facial Depth Models derived from 3D Syn-
thetic Data." In 2020 31st Irish Signals and Systems Conference (ISSC), pp. 1-5. IEEE, 2020,
[60], a copy of the work published can be accessed in Appendix D. The primary objective
of [60] is to generate 3D virtual human models with RGB and depth images. The purpose
is to evaluate the validity of synthetic datasets used to solve real-world problems in various
application fields. This should enable further methodological enhancements to be made to
the generated datasets in order to suit specific use case applications.

2. The second conference paper: Khan, Faisal, Shubhajit Basak, and Peter Corcoran.
"Accurate 2D Facial Depth Models Derived from a 3D Synthetic Dataset." In 2021 IEEE
International Conference on Consumer Electronics (ICCE), pp. 1-6. IEEE, 2021, [61],
Appendix E contains a copy of the work published. The main goal of this research [61] is to
create synthetic images of human faces that can be used in a range of environments, such as
3D computer graphics, to simulate real-world problems. This research [61] is an extension
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of the previous work to create more variations [60] to make 3D models of faces that look
like real ones more variable and robust, along with both 2D RGB and depth images. A full
workflow for making a set of synthetic human faces with depth renderings and textured and
complex backgrounds. A shallow CNNs-based UNet framework is shown to test the quality
of the data in the created datasets. The SSIM loss, gradient loss, and surface normal loss are
used to help the network learn the correct depth of the scene and the 3D structure of the face.
This is followed by a discussion of the results using a widely accepted evaluation method
with five evaluation metrics and showing the experimental results, and implementation details
of the trained models on the generated datasets.
These 3D models and 2D datasets with pixel-accurate depth GT and 2D synthetic face-depth
images are publicly available and we believe it can significantly help the face depth maps
problems. The DOI numbers on IEEE Dataport are as follows:
1. 10.21227/ath9-br59
2. 10.21227/f6zx-bf29

1.3.3 Contribution to improved NN Models for monocular Facial Depth
Maps: Training new CNN Models and their Evaluation and, as a
Sub-Contribution, a detailed Comparison of SoA Models

1. The first journal paper of this thesis which is main contribution: Khan, Faisal, Shahid
Hussain, Shubhajit Basak, Joseph Lemley, and Peter Corcoran. "An efficient encoder–decoder
model for portrait depth estimation from single images trained on pixel-accurate synthetic
data." Neural Networks 142 (2021): 479-491, [4]. Appendix F includes a copy of the work
that is published.

The first part of this paper develops the work of the previous two conference papers [60]
and [61] into a comprehensive research study [4] by providing all the details used to generate
the datasets and how it is organized.

1. This study presents a system for producing complex synthetic human face datasets
by combining multiple variation in synthetic facial data, a synthetic human model
with a 3D model design, the iClone Character Creation workflow, and the addition of
variations to iClone models.

2. This is followed by the model transfer from iClone to Blender, model manipulation in
Blender, construction of 3D scenes in Blender, The Blender camera model, selection
of 3D background environments in Blender, ground truth rendering in Blender, and the
structuring of the dataset.

10.21227/ath9-br59
10.21227/f6zx-bf29
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3. Using a collection of SoA DESI neural networks, the synthetic human facial depth
dataset is first trained and then evaluated.

4. In addition, a new CNN model with a hybrid loss function is constructed, and its
performance is compared to that of SoA networks. Initially, SoA DESI algorithms
are trained on a synthetic dataset of human facial images, and their performance is
compared to that of the proposed network.

2. The second journal paper of this thesis that covers the second main contribution: Khan,
Faisal, Waseem Shariff, Muhammad Ali Farooq, Shubhajit Basak, and Peter Corcoran. "A
Robust Light-Weight Fused-Feature Encoder-Decoder Model for Monocular Facial Depth
Estimation from Single Images Trained on Synthetic Data." IEEE Access (2023), under review
[5], a copy of the paper published can be found in the Appendix G. The primary contribution
of this study is a new neural facial depth estimation network that predicts accurate facial
depth maps from single image frames. This network is substantially smaller and more
cost-effective than available SoA facial depth estimation techniques, making it suitable for
embedded devices and edge-AI applications. On the basis of an evaluation of four publicly
available facial depth datasets, this lightweight network outperforms SoA across multiple
major measures. In addition, extensive experiments demonstrate the network’s value and
generalizability.

1.4 Other Contributions

I have collaborated with my PhD colleagues to incorporate a detailed study about the effective
use of head-pose imaging for human head pose estimation. The generation of pixel-perfect
synthetic 2D headshot images from high-quality 3D synthetic facial models annotated with
precise head poses is suggested. There is also a wide spectrum of age, racial, and gender
diversity. A SoA head pose estimation model that has been trained and tested against
the widely used evaluation datasets is used to evaluate the dataset. Additionally, a semi-
supervised strategy for adapting the visual domain is presented, which trains using both
labeled synthetic data and unlabeled real data. Model performance is significantly increased
when domain adaptation is used. Additionally, better results than previously published work
on this topic are obtained by using a data fusion based transfer learning approach. Chapter 5
provides a summary of these extra contributions in more details.
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1.5 List of Publications & Datasets

First Author

Journal Publications

1. Faisal Khan; Salahuddin, Saqib; Javidnia, Hossein. 2020. "Deep Learning-Based
Monocular Depth Estimation Methods—A State-of-the-Art Review" Sensors 20, no.
8: 2272.

2. Faisal Khan, Shahid Hussain, Shubhajit Basak, Mohamed Moustafa, and Peter Corco-
ran (2021). "A Review of Benchmark Datasets and Training Loss Functions in Neural
Depth Estimation," in IEEE Access, doi: 10.1109/ACCESS.2021.3124978.

3. Faisal Khan, Shahid Hussain, Shubhajit Basak, Joseph Lemley, Peter Corcoran. An
efficient encoder-decoder model for portrait depth estimation from single images
trained on pixel-accurate synthetic data, Neural Networks, Volume 142, 2021, Pages
479-491, ISSN 0893-6080, https://doi.org/10.1016/j.neunet.2021.07.007.

4. Khan, Faisal, Muhammad Ali Farooq, Waseem Shariff, Shubhajit Basak, and Peter
Corcoran. "Towards Monocular Neural Facial Depth Estimation: Past, Present, and
Future." IEEE Access (2022).

5. Khan, Faisal, Waseem Shariff, Muhammad Ali Farooq, Shubhajit Basak, and Pe-
ter Corcoran. " A Robust Light-Weight Fused-Feature Encoder-Decoder Model for
Monocular Facial Depth Estimation from Single Images Trained on Synthetic Data."
IEEE Access, 2023, under review.

Conference Publications

6. Faisal Khan, S. Basak, H. Javidnia, M. Schukat and P. Corcoran, "High-Accuracy
Facial Depth Models derived from 3D Synthetic Data," 2020 31st Irish Signals and
Systems Conference (ISSC), 2020, pp. 1-5.

7. Faisal Khan, Shubhajit Basak and Peter Corcoran, "Accurate 2D Facial Depth Mod-
els Derived from a 3D Synthetic Dataset," 2021 IEEE International Conference on
Consumer Electronics (ICCE), 2021, pp. 1-6.
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Co-Authored

Journal Publications

8. S. Basak, P. Corcoran, Faisal K, R. Mcdonnell and M. Schukat, "Learning 3D Head
Pose from Synthetic Data: A Semi-Supervised Approach," in IEEE Access, vol. 9, pp.
37557-37573, 2021.

Conference Publications

1. Basak S, Javidnia H, Khan F, McDonnell R, Schukat M. Methodology for build-
ing synthetic datasets with virtual humans. In 2020 31st Irish Signals and Systems
Conference (ISSC) 2020 Jun 11 (pp. 1-6). IEEE.

2. Basak S, Khan F, McDonnell R, Schukat M. Learning accurate head pose for con-
sumer technology from 3D synthetic data. In 2021 IEEE International Conference on
Consumer Electronics (ICCE) 2021 Jan 10 (pp. 1-6). IEEE.

Datasets

1. 3D-Dataset ([62, 63])

2. 2D-Pose Dataset ([62])

3. 2D-Face Depth Dataset ([60, 61, 30])

1.6 Contribution Taxonomy

Due to the fact that this publication-based thesis contains collaborative effort, this section
gives an outline of the primary factors that identify primary authorship. The CRediT ap-
proach has been adopted by journals in several fields to specify the contributions of individual
authors. In the CRediT Taxonomy, all authors’ contributions are measured as a percentage
point on 14 roles. These are: Conceptualization, Data curation, Formal Analysis, Fund-
ing acquisition, Investigation, Methodology, Project administration, Resources, Software,
Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.

Despite collaborations, most of the work in this thesis is my own; hence, a more compact
generalization of this taxonomy that contains the primary criteria has been selected. To be
more specific:

1. Research Hypothesis/ Idea.
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2. Methodology comprising validation, data creation, formal analysis, instrument selec-
tion, software development, implementation, and experiments.

3. Background which includes investigation, formalization, and work done to place the
research efforts in a broader context of literature in a given field; this may include some
aspects of writing (literature reviews) and informs aspects of project administration
and supervision, as well as ensuring that the methodology employed is typical of that
used in the area of publication.

4. Manuscript preparation which includes all aspects of writing manuscript preparation
including Writing – original draft, Writing – review & editing, and Visualization except
those specified in the next criteria.



Chapter 2

Contribution to General ’Review’ Work
on the Broad Field of Single-Image Depth
Maps and Neural Models

Introduction

The major topics of this chapter include the broad field of single-image depth map research,
applications of depth maps, the SoA DL techniques employed and their performance, evalua-
tion matrices, depth datasets, and loss functions. It provides a thorough and organized survey
of SoA deep learning-based monocular depth estimation algorithms. The review purpose
is to help the reader understand this developing area, which has attracted the interest of the
computer vision community in recent years. Furthermore, it makes recommendations on how
to generate new depth datasets and what variables can make the datasets significant for DL
methods. A brief discussion of which method, dataset, and loss function should be chosen
for a particular depth mapping problem, in particular facial depth estimation, follows. A
detailed analysis of SoA methods, publicly accessible depth datasets, and commonly used
loss functions is given for consideration after providing a brief overview of the research on
depth maps and how it has been used. This is done to help the research community better
understand the depth map problem and to benefit from speeding up their research and use of
it for practical use case applications.

Three review papers written during the course of the thesis and the main contribution of
each paper is listed in the following upcoming section.
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2.1 Research Objectives

Monocular depth estimation is a key problem in computer vision, with applications in robotics,
scene perception, 3D reconstruction, and medical imaging [64–67]. Since there are no good
measures for recognizing depth from a single image, this problem remains challenging. Such
images, for example, missing temporal information and stereo correspondences. Traditional
depth estimation methods [68, 69] rely primarily on multi-view geometry, such as stereo
images. The majority of binocular or multi-view approaches can estimate depth details with
reasonable accuracy. However, for many applications, their processing time and memory
needs are serious barriers [36].

The idea of using a monocular image to gather depth details has potential to overcome
the memory issue, however capturing global features of a scene like texture variation or
defocus information is computationally challenging. Convolutional Neural Networks (CNN)
and publicly available datasets have recently improved the performance of monocular depth
estimation algorithms dramatically [70–74].

It is vital that researchers in this field are made aware of the large range of publicly
available depth datasets as well as the attributes of various depth estimation loss functions.
The right training data, along with the suitable loss functions, will speed up new research and
allow for more accurate comparisons with the SoA methods. A loss function is a metric that
measures how well a prediction model predicts the expected result. The learning problem
is transformed into an optimization problem, a loss function is defined, and the method is
optimized to minimize the loss function.

Datasets are the building blocks for analyzing the performance and validating the results
of artificial intelligence models, and they play a critical role in scientific research. Data
captured in various environments (e.g., indoor vs. outdoor scenes), of various objects,
depth annotation types (relative, absolute, dense, sparse), accuracies (laser stereo, time-of-
flight, synthetic data, structure-from-motion, human annotation), image quality, size, and
camera settings are all included in different datasets. Every dataset has its unique set of
characteristics, as well as difficulties and biases [75]. Large dataset collections gathered via
the internet have a number of difficulties, including image quality, accuracy, and unknown
camera characteristics [76, 77].

High-quality datasets can aid researchers in the development of depth solutions for
specific computer vision depth challenges [78, 79]. Indoor/outdoor, portrait/driver, half/full
body scene, indoor small room, large street scene, large indoor scene, landscape/cityscape,
and medical are some of the different types of depth datasets. Depth data is a map of per-
pixel data that contains depth-related information. To aid rendering and computer vision
applications, a depth data object contains a disparity or depth map as well as conversion
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algorithms, focus information, and camera calibration data. To improve generalization,
researchers should mix several datasets during training, validation, and testing, however
caution is required when merging datasets with different features [2].

Loss functions are how the algorithm fits data in the first place, thus they provide more
than simply a static description of how your model is behaving. In the process of optimizing
or identifying the best weights for given data, most ML algorithms utilize some type of
loss function. Importantly, the loss function that chooses is directly related to the activation
function that has to choose the neural networks output layer. These two design concepts
are connected together. Considering the output layer configuration to be a choice regarding
the framework of the prediction problem, and the loss function selection to be the method
for calculating the error for a given model of the problem. The loss function calculates the
difference between the network GT and the estimated output, which is used to adjust the
deep network parameters. This is accomplished by backpropagating the loss function error
to the first layer of the training process, modifying the network weights at each iteration.

2.2 Summary and Discussions of Contributions

In this chapter, three journal review papers are proposed to cover the main field of single-
image depth maps, datasets for training and validation purposes of DL architectures and loss
function used for depth particularly for facial depth maps. The following contributions of the
proposed works are presented.

2.2.1 Deep Learning-based Monocular Depth Estimation Methods—a
State-of-the-art Review

The first review paper: Khan, Faisal, Saqib Salahuddin, and Hossein Javidnia. "Deep
learning-based monocular depth estimation methods—a state-of-the-art review." Sensors 20,
no. 8 (2020): 2272, [1], see Appendix A.

Peter Corcoran is not listed as a co-author of this work since he organized a special issue
and requested the corresponding author Hossein Javidnia to submit a manuscript for it in
order to ensure an unbiased review process. The author’s contributions to the four major
criteria, as explained in section 1.6, for the research works [1], are presented in Table 2.1.

This is the first brief literature review of the research work to understand the estimation
of single-image depth maps using DL methods. For use case applications, monocular depth
estimation algorithms must be high-performing and robust. Furthermore, existing depth
estimation solutions are properly evaluated in terms of the degree of supervision, accuracy,
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Table 2.1 Author’s

Contributions to [1]
Contribution Criteria Contribution Percent
Hypothesis/Idea for Research FK 70%, HJ 30%
Experiments and Evaluations FK 90%, HJ 10%
Background FK 90%, HJ 10%
Preparation of the Manuscript FK 70%, HJ 20%, SS 10%

depth range, computation time, and memory requirements for deployment in consumer
devices such as robotics, AR/VR headsets, and autonomous vehicles. This study looks to
find a potential network architectures with less complexity to make it easier to deploy such
solutions in consumer devices while maintaining performance and remaining competitive
when compared to larger CNN architectures.

A brief explanation and basic concept of monocular depth estimation, problem description,
classic depth estimation methods, and publicly available datasets are presented to achieve
the study objectives. Following that, supervised, self-supervised, and semi-supervised deep
learning architectures for monocular depth estimation are briefly discussed. A comprehensive
comparison of the SoA techniques is also presented, followed by a discussion and possible
future research areas. The main contribution can be further explained in detail as follows:

1. A number of important datasets that are particularly well-suited to the depth estimation
problem are presented. They include images and corresponding depth maps from vari-
ous perspectives, highlighting the most commonly used datasets for scene analysis.GT
depth images for datasets are frequently captured with consumer-level sensors like the
kinect and velodyne laser scanner. A summary is given (Appendix A, section 2.3). In
addition, the datasets main properties such as labelled images information, annotation,
size and captured scenes details are studied.

2. A CNN trained on RGB-images and the corresponding depth maps is used in the
majority of deep learning-based approaches. These techniques are divided into three
categories: supervised, semi-supervised, and self-supervised. All of the categorization
methods, network structures, as well as the training procedure and their primary loss
functions, are briefly presented (Appendix A, section 3).

3. The most commonly used quantitative metrics for evaluating the performance of
monocular depth estimation methods are presented (Appendix A, section 4).

4. The methods are briefly evaluated and the results are compared in terms of the per-
formances matrices. These models inference time, parameter count, depth accuracy,
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memory usage, and training environment are all evaluated. A visual comparison of
the five SoA depth map approaches is provided, with sharper boundaries and a lower
relative scale in (Appendix A, section 4, Table 4-6).

5. Color maps appear in a variety of computer vision and ML applications, ranging from
showing depth images to more conceptual uses such as image differencing. Colorizing
images makes it easier for the human visual system to pick out information, evaluate
numeric measures, and spot patterns in data. Jet is a high contrast color mapping
method that is widely used in computer vision applications. It is useful for highlighting
even weakly distinguishable image features that is used. There is some color devotion
in the images, which is due to the low GT depth images and missing depth pixel values,
causing it to appear in the wrong direction (Appendix A, section 4, Fig. 1.

By showing the importance of DL-based monocular depth estimation methods, cameras may
be able to compete as a reliable source of 3D data and have the potential to be optimized for
deployment on smart and consumer platforms.

2.2.2 A Review of Benchmark Datasets and Training Loss Functions in
Neural Depth Estimation

Based on the results of this study, we expanded the scope of our research to examine in-depth
information about depth datasets and widely-used loss functions for depth estimation which
is the second review paper of this chapter.

The second review paper: Khan, Faisal, Shahid Hussain, Shubhajit Basak, Mohamed
Moustafa, and Peter Corcoran. "A Review of Benchmark Datasets and Training Loss
Functions in Neural Depth Estimation." IEEE Access 9 (2021): 148479-148503, [2], a copy
of the paper can be found in the Appendix B.

Table 2.2 shows the author’s contributions to the four important criteria, as defined in
section 1.6, for the research works [2].
The published datasets show significant variation in terms of size (ranging from 5 to >1,800

Table 2.2 Author’s

Contributions to [2]
Contribution Criteria Contribution Percent
Hypothesis/Idea for Research FK 70%, SH 20%, SB 10%
Experiments and Evaluations FK 70%, SH 10%, SB 20%
Background FK 60%, SH 10%, SB 10%, MM 10%, PC 10%
Preparation of the Manuscript FK 60%, SH 10%, SB 10%, MM 10%, PC 10%
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classes), sensors used, image quality, and other factors. For this diversity, a number of
datasets are available for many researchers, but it is not always easy for researchers to choose
the best dataset. This study aids researchers in finding the correct dataset and loss function
for depth estimation tasks. Following a brief description (literature, concepts), datasets
are assessed in terms of citations, and depth datasets are classified based on their depth
applications. Each depth dataset’s key features and characteristics are described and analyzed.
After that, depth-based loss functions and a depth dataset mixing technique are thoroughly
discussed. Finally, reviews of cutting-edge deep learning-based depth estimation algorithms,
discussions on problems and future research, and suggestions for developing comprehensive
depth datasets are offered. The following are the important aspects of this paper:

1. Based on their use, these depth datasets are divided into five categories: (i) people
identification and action recognition, (ii) faces and facial position, (iii) perception-
based navigation (i.e., street signs, roads), (iv) object and scene recognition, and
(v) medical applications. Each depth dataset’s key characteristics and properties are
discussed and compared (Appendix B, section 3, 4, and 5).

2. In order to generalize model results across multiple contexts and application situations,
a mixing technique for depth datasets is provided (Appendix B, section 4).

3. Three of the most popular datasets are evaluated using state-of-the-art deep learning-
based depth estimation algorithms (Appendix B, section 6).

4. Also mentioned are depth estimation loss functions that can benefit in the training
of deep learning depth estimation models across a variety of datasets (Appendix B,
section 7).

5. Finally, a discussion of problems and future research, as well as recommendations for
developing comprehensive depth datasets, is provided to assist researchers in producing
diverse and useful depth map datasets (Appendix B, section 8).

The generalization ability and robustness of the DL model is heavily influenced by the quality
of the datasets and a suitable loss function. More data of higher quality, more scene categories
and a proper loss function are required to improve depth estimation tasks performances.

2.2.3 Towards Monocular Neural Facial Depth Estimation: Past, Present,
and Future

We have further extended the research to image-based facial depth estimation using DL
algorithms and provide all of the necessary information for carrying out a study on the
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problems related to monocular facial depth estimation while keeping in mind the significance
of depth datasets and loss functions used for DL methods which our third review paper of
this chapter.

This third paper: Khan, Faisal, Muhammad Ali Farooq, Waseem Shariff, Shubhajit Basak,
and Peter Corcoran. "Towards Monocular Neural Facial Depth Estimation: Past, Present,
and Future." IEEE Access (2022), [3], is published and a copy of the paper can be found in
Appendix C.

Table 2.3 shows the author’s contributions for the research works [3].
This paper [3] provides a brief overview of the literature and applications of facial depth

Table 2.3 Author’s

Contributions to [3]
Contribution Criteria Contribution Percent
Hypothesis/Idea for Research FK 70%, MAF 20%, WS 10%
Experiments and Evaluations FK 70%, MAF 10%, WS 10%, SB 20%
Background FK 60%, MAF 10%, WS 10%, SB 10%, PC 10%
Preparation of the Manuscript FK 60%, MAF 10%, WS 10%, SB 10%, PC 10%

map research, a detailed study of publicly available facial depth datasets and commonly used
loss functions used for DL methods to estimate the face depth estimation. This work differs
from the prior work [2], since it is based on facial depth map tasks. The primary takeaways
are as follows:

1. To help better grasping the facial depth map problem, a brief literature review and
applications of facial depth map method research are offered, and the important
characteristics and qualities of the facial depth dataset are defined and analyzed,
followed by the loss functions employed. The dataset description, metadata, ground
truth, and pertinent data for each dataset are listed systematically (year of publication,
ground truth information, image size, kind, objects per image, and multiple images)
(Appendix C, Sections 1, 2, and 3).

2. Additionally, each loss function is provided in a way that enables the research com-
munity to select the optimal loss function for their task in facial depth estimation
(Appendix C, Section 3, Subsection B.

3. The technical details of neural depth networks, as well as the associated evaluation
matrices, are presented and discussed (Appendix C, Section 4).

4. The second half of the study includes training method, results discussion, a complete
comparison evaluation and, where possible, a direct comparison of the trained facial
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depth estimation model that was trained on the synthetic facial depth dataset (Appendix
C, Sections 5, 6). When tested across four datasets, the model surpasses current SoA
approaches. The proposed method unique loss function aids the network in learning the
facial areas, resulting in an accurate depth prediction. The network is trained and tested
using synthetic human facial depth datasets and real and synthetic facial images from
four facial depth datasets are used for evaluation and testing (Appendix C, Section 7).

Naturally, synthetic facial data will not have the same richness in terms of skin features as
real image data. However, due to the small number of images in real-world datasets with
low quality GT information, this benefits using synthetic data to train a neural network to
achieve equivalent or better accuracy to SoA models trained on real-world data. Based on
the synthetic human facial depth dataset, the model was trained and tested on four different
datasets. The results show that it is better than MiDaS, DPT, and BTS. Researchers need to
know that real facial depth datasets like Pandora, Eurecom Kinect Face, and Biwi Kinect
Head Pose do not work well with the generalization performance of the models that were
studied. In addition, most depth GT is prone to errors because of practical limitations on how
much data can be collected. There are a number of difficulties in the depth of GT data in
these datasets, which makes it hard for models to learn about facial depth maps.

It makes sense to think that using a scalable loss function and training method helps you
learn more about facial depth and accuracy. The point clouds can be generated from a different
angle that provides more details of the 2D scene by using the model input RGB images and
the network predicted depth maps. Depth also allows you to use computational photography
features like autofocus and portrait mode in high-end phones, which are especially useful
at night when depth is difficult to obtain with traditional cameras but easy to obtain with a
LiDAR.

The next chapter 3 will further extend the research work to the second contribution
of the thesis and will briefly explain how to generate 2D datasets from 3D models with
pixel-accurate depth GT.



Chapter 3

Contribution to Building 2D Datasets
from 3D Models with Pixel-accurate
Depth GT

It is well recognized that data gathering, availability, and preparation are the most significant
bottlenecks in ML/DL pipelines, as illustrated by the studies detailed in Chapter 2. Neither
of the datasets currently available is sufficiently robust to permit the training of a model that
performs well on real images of a variety of circumstances. We currently have a range of
datasets that could be complementary to one another but are each biased and lacking in some
important information [3]. Synthetic data is less expensive than real-world data and has the
potential to provide more accurate GT. This chapter focuses on the synthetic human facial
data generated from 3D models using computer graphic open-access software iClone and
Blender.

As the head models, camera parameters and positions, scene illuminations, and other
constraints can be controlled within the 3D environment, creating synthetic facial images
using computer graphics software offers an affordable and sufficient amount of accurately
labeled data with comparatively little effort and complexity.

3.1 Synthetic Data and Tools

One of the significant issues in modern AI is a lack of datasets, as available datasets are
often too small to train DNN models. When such data is captured without a label, the
manual labeling task is time-consuming, costly, and prone to human error. Simple and open
source advanced 3D tools, including iClone [80] and Blender [81] can be used to create 3D
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models and render 2D RGB and GT images. They have a wide range of poses, hairstyles,
expressions, and structures, and their 2D appearance is influenced by external factors such as
lighting and camera location. It is possible to generate a number of synthetic data required
to train CNN models using these tools. Rendering synthetic human face images would
be extremely effectve for a range of tasks since, it provides sufficient realism to generate
different ground truth. To enrich the datasets, complex backgrounds, depth, movement,
body-part edge detection, camera and light orientation can be generated.

3.1.1 The Challenges of ‘Real-World’ Data

Data acquisition, accessibility, and preparations are well-known constraints in ML/DL
pipelines [82]. An optimal dataset would include all possible sensing and environmental
conditions, but because it is difficult to collect data for all possible cases, real-world datasets
are sparser, error to prone, and time consuming. The most of currently available datasets
have rather low accuracy GT, making them unsuitable for training DL models. A potential
method for gathering a significant amount of depth data is the synthetic data produced by the
open source 3D graphics engine tools. In order to improve single image depth estimation,
researchers have created synthetic datasets with accurate depth GT. During training, it is
challenging to bridge the domain gap between synthetic and real datasets [83]. Adversarial
learning and style transfer methods includding GAN can be used to predict depth maps of
real scenes [84] in which the results are depended on trained models with a large number of
data with GT depth maps. The trained network can be trained on both real and synthetic data
using the domain adaptation approach before being immediately deployed during the test
stage to predict depth maps from real RGB images for better generalization. Furthermore,
due to practical constraints in data acquisition, most of the depth GT have less variations and
number of images. Datasets with various face pose representations are particularly vulnerable
to inaccuracies in depth GT data [26].

Additionally, the collection of facial data from persons is now governed by several privacy
laws and ethical constraints. The GDPR governs the acquiring and disclosure of personal
information data in Europe, posing additional constraints for researchers with live human
information [85, 86]. This offers a case for creating low-cost synthetic datasets with minimal
complexity and a large amount of labelled data that resemble actual human model elements
such as camera settings, positions, lighting locations, scene illumination conditions, and
other limitations in a 3D environment. As data complexity increases, numerous data quality
challenges eventually arise, which could restrict use case and applications [? ]. For instance,
it is also difficult to identify biases in data and other underlying quality problems, which
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limits the results obtained from such data. High-quality data sets are more important than
ever to provide reliable analyses and insights.

3.2 Research Objectives

The fundamental contribution of this chapter is to present a detailed framework for con-
structing synthetic 3D human face models with the corresponding ground truth depth data.
Obviously, synthetic facial data will lack the richness of skin features found in real image
data. However, considering the numerous advantages of utilizing synthetic data to train a DL
model, a crucial question that we answer is whether we can achieve reasonable performance
accuracy of SoA DESI models trained on real-world data.

The general framework of this chapter is illustrated in Fig 3.1, which also includes
a step-by-step process description of generating the synthetic human facial dataset. This
work consists of two papers and it evolved over an 18-24 month period. In Fig 3.2, which
includes a step-by-step explanation of developing the synthetic human facial models, the
entire procedure of making 3D models in iClone and creating variations, then importing
them into Blender is shown. Shubhajit Basak was the main driver of this project, with some
support from me throughout period.

The first research study: Khan, Faisal, Shubhajit Basak, Hossein Javidnia, Michael
Schukat, and Peter Corcoran. "High-Accuracy Facial Depth Models derived from 3D
Synthetic Data." In 2020 31st Irish Signals and Systems Conference (ISSC), pp. 1-5. IEEE,
2020, [60], published and a copy of the work can be accessed in Appendix D. The "Realistic
Human 100" models in the iClone software are used to produce virtual human models based
on the subsequent procedures:

1. The original characters of the virtual human faces are made using the iClone character
creator.

2. Character creator virtual human face models are imported into iClone. Furthermore,
different expressions such as neutral, angry, happy, sad, and scared are added in iClone
to the face models to introduce variations.

3. The created virtual human face models are exported in FBX format from iClone
to Blender, which provides appropriate rigging and is used for exchanging the 3D
information.
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Fig. 3.1 The general framework and a schematic representation of generating the synthetic
human facial dataset

4. The cameras and lights are fixed in place, and the models corresponding distances are
varied between 700 and 1000 mm. The focal length and sensor size are both set to
60mm and 36mm. In the virtual scenes, the facial models are rotated in Blender.

5. The cameras near and far clip are set to 0.01 and 5 meters, respectively, to generate
RGB and depth images of faces in a wide range of positions. The facial models are
rendered with a resolution of 480X640 on a static background image.

6. Render passes are configured in Blender to generate the synthetic facial RGB and
ground truth depth images. The branched path tracing method is used to reduce noise
generated during the rendering process.
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7. The images are rendered in the perspective view using the Cycles engine and Eevee to
obtain RGB images with corresponding facial depth using Python plugin scripts.

Fig. 3.2. Shows creating the models and complete procedure of the datasets generation.
Virtual human models are created in iClone software using the Realistic Human 100 models
and then imported to Blender to further generate the RGB and depth images (Appendix D,
Section III). This is follows by details on the analysis of two SoA CNNs for estimating facial
depth, as well as a conclusion and future research (Appendix D, Section IV and V). The

Fig. 3.2 Creating human models in iClone and imported model in Blender - render ground
truth process

second conference paper: Khan, Faisal, Shubhajit Basak, and Peter Corcoran. "Accurate
2D Facial Depth Models Derived from a 3D Synthetic Dataset." In 2021 IEEE International
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Conference on Consumer Electronics (ICCE), pp. 1-6. IEEE, 2021, [61], Appendix E
contains a copy of the work published. The following steps are used to further generalize the
previous work [60]:

1. The position of the camera is changed at various points to the human facial models
with the associated ground truth depth.

2. While the camera parameters are set by changing the field of view (FOV), the clip
zoom in-out values, the sensors size, the depth of focus, and the f-stop values, the rigs
animations are controlled by constraint keyframes and shape keys.

3. The translations and rotations of the neck bones are transferred to the arbitrary object
while the boundaries of the original object are maintained.

4. To offer variation to the background, a mix of plain, textured, and real images was
used. The scenes background was changed to create more variation in order to increase
model generalization. The complex background was created using the Blender eevee
classroom and barbershop scenes.

5. To evaluate and compare dataset quality, a shallow autoencoder with skip connection-
based UNet architecture is proposed and trained, evaluated, and tested against SoA
methods.

Fig. 3.3 Sample synthetic RGB images and GT depth images with various variations (head
postures, expressions, light variations, camera angles, clothing, views, and backgrounds:
plain; textured; real) were generated from the synthetic dataset
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The sample frames with their ground truth depth images and different backgrounds (simple,
textured and complex) obtained from the synthetic dataset are illustrated in Fig. 3.3. (Ap-
pendix E, Section III) provide a comprehensive workflow for building a synthetic human
facial dataset with ground truth depth rendering, textured and complex backgrounds. To
validate the created datasets data quality, a shallow UNet architecture is presented (Appendix
E, Section IV-A). The SSIM loss, gradient loss, and surface normal loss are used to assist
the network in learning the correct depth of the scene as well as the 3D structure of the face,
followed by a discussion of the results, implementation details of the trained models on the
generated datasets (Appendix E, Section IV-B- Section IV-E).

3.3 Summary and Discussions of Contributions

One of the primary objectives of [60] is to create 3D virtual human models with corresponding
RGB and depth images. This should help researchers to train CNN models to solve real-life
challenges in different domains of application.

The generated synthetic dataset, which has a total size of 650GB is divided into two
folders. It consists of 2D rendered RGB and GT depth images and 3D virtual human models.
The 3D virtual models folder, which is further separated into sub-folders, contains all of
the CC and iClone data information (textures,.fbx,.fbm, and. blend) for each subject (male,
female). The 2D-generated images folder contains 56 and 44 subjects, respectively, in the
male and female sub-folders. The three various sorts of backgrounds—simple, textured,
and complex—are kept in three different routes for these subjects. Each of the five primary
folders in the sample and texture path—happy, sad, neutral, afraid, and angry—contains
the RGB images, depth images, and raw head posture information for every frame. The
sample and textured folders’ structure of the organization are shared by the classroom and
barbershop main folders, which make up the complex directory. Our synthetic dataset is
available for no charge download and it can be used in scientific research studies.

3.3.1 The Future of Synthetic Data

The use of synthetic data has increased dramatically during the last decade. While it saves
corporations time and expenses. It lacks outliers, which occur spontaneously in real data
and are critical for the accuracy of some models. It is also important to note that the
performance of the synthetic data is frequently dependent on the data used for production.
Biases in the input data can simply spread into the synthetic data, affecting the model
training and evaluation results. Using high-quality synthetic data can be more effective than
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using available real-world datasets, which give us comparable or better accuracy. Finally, it
necessitates further output control, specifically comparing the synthetic data with human-
annotated real data to verify that inconsistencies are not created. Despite difficulties, synthetic
data remains a promising field. It helps us to create novel AI solutions even when real-world
data is unavailable. Most significantly, it enables enterprises to create products which are
more inclusive and realistic of their based-on consumers diversity.

The research will be expanded upon in more detail in the following chapter by developing,
training, evaluating, and testing SoA DESI approaches. Also, as well as comparing their
performance on real datasets, a synthetic human facial depth dataset that has been produced
will be utilized.



Chapter 4

Contributions to Improving the Accuracy
of Facial Depth Estimation

This chapter will focus on the major contributions of this thesis. The contributions are
presented in two journal research papers, and they are further explained in the following
subsections.

4.1 Deep Learning Model for Portrait Depth Estimation
from Single Images trained on Pixel-Accurate Synthetic
Data

This section expands on the work of the previous two conference papers [60, 61], trans-
forming it into a detailed research paper: Khan, Faisal, Shahid Hussain, Shubhajit Basak,
Joseph Lemley, and Peter Corcoran. "An efficient encoder–decoder model for portrait depth
estimation from single images trained on pixel-accurate synthetic data." Neural Networks
142 (2021): 479-491, [4], Appendix F includes a copy of the work that is published. Contri-
butions of the author to the four key criteria, as defined in the section 1.6 for the research
works [4], are summarized in the table 4.1.

4.1.1 Research Objectives

As a preliminary step towards evaluating the work [60], [61], it is required to construct and
comprehend a brief pipeline that explains in full the unique synthetic data samples of human
faces and their related depth maps. A brief description of how the 3D models are generated
is presented, followed by a demonstration of how the 2D RGB and corresponding GT depth
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Table 4.1 Author’s

Contributions to [4]
Contribution Criteria Contribution Percent
Hypothesis/Idea for Research FK 70%, SB 20%, PC 10%
Experiments and Evaluations FK 70%, SH 20, JL 10%, PC 10
Background FK 70%, SH 10%, SB 10%, PC 10%
Preparation of the Manuscript FK 70%, SH 10%, JL 10%, PC 10%

are rendered, as well as how the dataset is organized in (Appendix F, Section 3). Fig. 4.1
illustrates the technique for rendering 2D images in Blender. Using current facial depth

Fig. 4.1 A workflow of the technique for rendering 2D images in Blender

datasets, the majority of them include very poor GT, making them inappropriate for training
DL models [87], [88], [89]. Furthermore, due to practical constraints on data collection, most
datasets are prone to inaccuracy. Multiple face depth datasets are particularly prone to depth
GT data errors and off axis faces will not capture the nuances of facial features. Following
that, there was a need for pixel-accurate face depth datasets that could be trained by utilizing
DL methods with more samples, identities, and image variations, as well as the correct depth
GT, which motivated this sections research effort.As a result, DL approaches can increase
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performance and be applied in real-world applications. The main questions that were the
foundation for this work motivation:

1. Can we train a more accurate depth model with synthetic data?

2. Does it work correctly on real-data?

3. How accurate models trained on real data are compared to those trained on synthetic
datasets?

An improved lightweight encoder-decoder model is proposed and its performance is evaluated
and compared against the existing SoA methods for facial depth estimation on four real
depth datasets. The lightweight encoder-decoder network consists of input, output images
and a two-stage mechanism in the network. The encoder-decoder learns to map datapoints
from an input domain to an output domain. The encoder function compresses the input
into a latent space representation in the first stage, while the decoder function predicts the
result in the second stage. To factorize the CNN layers into depthwise and pointwise layers
in the encoder, a MobileNet pre-trained network used which is based on the depthwise
decomposition technique. The filtration function, which collects low resolution information
from the input image, is used by each of the depthwise layers.

This paper also offers comprehensive comparison of various depth estimation models
with the proposed methods FaceDepth, LedDepth, BTS, Densedepth and UNet-simple with
various base models (EfficientNet-B0, EfficientNet-B7, ResNet-101, ResNet-50, DenseNet-
201, DenseNet-161). The main properties such as learning rate selection, computational
complexity, optimizers, number of parameters, input/output size resolution are studied and
analyzed.

In terms of accuracy and depth range, based on the evaluations the proposed method
achieved the best performance as compared to other SoA methods, BTS [90], Densedepth
[91] and UNet-simple [92] with various base models (EfficientNet-B0, EfficientNet-B7,
ResNet-101, ResNet-50, DenseNet-201, DenseNet-161) shown in Table 4.2. The evaluation
matrices are defined in (Appendix F, Section 6.) Calculating the RMSE, a metric that
indicates the average distance between the predicted values from the model and the actual
values in the dataset, is one technique to determine how well a model fits a dataset. The
better a particular model fits a dataset, the lower the RMSE. RMSElog measures the amount
of divergence of predicted probability with the real GT. SqRel divides the total squared error
of the predicted output by the total squared error of the Gt to normalize the total squared
error of the predicted output. AbsRel is the relative absolute difference, because the mean
difference is divided by the arithmetic mean between the predicted and GT values.
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On the synthetic human facial dataset, the proposed network achieved 0.0105 RMSE
and threshold accuracy of 0.9996 with δ < 1.253 as shown in Table. 4.2 (row 16). The

Table 4.2 Comparison of various depth estimation models with the proposed method
FaceDepth

No. Methods AbsRel SqRel RMSE RMSElog δ1 < 1.25 δ2 < 1.252 δ3 < 1.253

1. DenseDepth-161 0.0312 0.0121 0.0610 0.0169 0.9854 0.9876 0.9902
2. DenseDepth-121 0.0320 0.0132 0.0712 0.0180 0.9732 0.9803 0.9880
3. DenseDepth-169 0.0296 0.0096 0.0373 0.0129 0.9890 0.9920 0.9981
4. BTS 0.0165 0.0092 0.0206 0.0102 0.9830 0.9943 0.9956
5. DenseDepth-201 0.0375 0.0097 0.0304 0.0101 0.9920 0.9956 0.9969
6 ResNet-101 0.0123 0.0210 0.0306 0.0089 0.9938 0.9965 0.9980
7 ResNet-50 0.0232 0.0219 0.0445 0.0186 0.9919 0.9974 0.9984
8 EfficientNet-B0 0.0145 0.0280 0.0360 0.0154 0.9912 0.9934 0.9978
9 EfficientNet-B7 0.0132 0.0234 0.0353 0.0144 0.9880 0.9909 0.9965

10 UNet-simple 0.0103 0.0207 0.0281 0.0089 0.9960 0.9976 0.9987
11 UNet-simple (FC) 0.0098 0.0096 0.0143 0.0043 0.9982 0.9992 0.9996
12 DenseDepth(FC)-169 0.0110 0.0074 0.0161 0.0034 0.9981 0.9990 0.9992
13 BTS(FC) 0.0109 0.0072 0.0152 0.0033 0.9971 0.9991 0.9992
14 ResNet (FC)-101 0.0132 0.0077 0.0170 0.0035 0.9980 0.9990 0.9992
15 EfficientNet (FC)-B7 0.0112 0.0076 0.0166 0.0032 0.9887 0.9945 0.9989
16 Our FaceDepth (FC) 0.0176 0.0030 0.0105 0.0029 0.9982 0.9986 0.9996

proposed method is shown to have a significantly reduced memory footprint with improved
computational efficiency as compared to other SoA methods, [90], [91], UNet-simple [92] as
shown in Table. 4.3 (row 6). At 16.41 G-MACs per frame, this approach detailed analysis can
be found in Appendix F. The created synthetic human facial depth dataset is analyzed using
the SoA DESI neural networks (Appendix F, Section 4). Initially, SoA DESI techniques are
trained on a synthetic human facial dataset, and their performance is compared to that of the
proposed network (Appendix F, Section 5).

Table 4.3 A detailed comparison analysis and properties of the studied methods

Method Input Type Optimizer Parameters Output LR/E CC

BTS 640×480F ED Adam 46.6M 640×480F 0.0001/50 69.23 GMac
DenseDepth-169 640×480F ED Adam 42.6M 320×240F 0.0001/20 66.12 GMac

ResNet-50 640×480F ED Adam 68M 640×480F 0.0001/25 101.27 GMac
EfficientNet-B7 640×480F ED Adam 80.4M 640×480F 0.00001/20 113.44 GMac

UNet-simple (FC) 640×480F UNet Adam 17.27M 640×480F 0.001/20 188.04 GMac
Our FaceDepth 640×480F ED Adam 14.42M 320×240F 0.0001/50 16.41 GMac
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4.2 A Robust Light-Weight Fused-Feature Encoder-Decoder
Model for Monocular Facial Depth Estimation from
Single Images Trained on Synthetic Data

This section provides an overview of the research paper: Khan, Faisal, Waseem Shariff,
Muhammad Ali Farooq, Shubhajit Basak, and Peter Corcoran. "A Robust Light-Weight
Fused-Feature Encoder-Decoder Model for Monocular Facial Depth Estimation from Single
Images Trained on Synthetic Data." Neural Networks (2022), [5], see Appendix G.

Table 4.4 shows the author’s contributions for the research works [5].

Table 4.4 Author’s

Contributions to [5]
Contribution Criteria Contribution Percent
Hypothesis/Idea for Research FK 70%, MW 20%, MAF 10%
Experiments and Evaluations FK 70%, MW 10%, MAF 10%, SB 10%
Background FK 60%, MW 10%, MAF 10%, SB 10%, PC

10%
Preparation of the Manuscript FK 60%, MW 10%, MAF 10%, SB 10%, PC

10%

4.2.1 Research Objectives

To further improve the accuracy of the SoA DL facial depth estimation methods, accurate
datasets with pixel GT are required. These methods are suffering from low accuracy and
large measurement noise [28]. Conventional systems utilize fully connected layers, which
complicate the algorithms and needs additional memory, making them impractical for deploy-
ment on consumer devices and also suffer from issues like information loss that leads to low
pixel values in depth images. The model applied in this research optimizes the acquisition
of ideal parameters, hence minimizing model complexity during the facial depth estimation
training procedure. The steps below are used to further explain the main work of the paper:

1. A lightweight neural facial depth estimation model based on single image frames is
proposed.

2. By using a feature fusion module, the model employ pixel representations and recover
full details in terms of facial features and boundaries.
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3. It has a smaller number of parameters and is computationally much simpler.

4. An appropriate loss function is used that leads to higher performance.

5. The model performs better than existing comparative SoA facial depth networks in
terms of its generalization ability and robustness across different test datasets, setting a
new baseline method for facial depth maps.

6. The proposed model is converted to ONNX and it can be used for deployment in
embedded systems and in Edge-AI applications. The rendered point clouds from a
novel viewpoint is reconstructed and the results are compared.

This work consists of a basic encoder-decoder network design, the features are extracted
by initializing the encoder with a high-performance pre-trained network and reconstructing
high-quality facial depth maps with a simple decoder (Appendix G, Section 3). The model
used pixel representations and recover full details in terms of facial features and boundaries
by employing a feature fusion module. The model is composed of 22 layers, which are
divided into eight parts: convolutional layers 1-5, a global average pooling (AP) layer, and
a fully connected (FC) layer. The initial features are corrected in the channel dimension
to increase the model intensity of learning features, allowing the model to recognize the
key characteristics of various channels automatically. The global average pooling layer is
then used in place of the fully connected layers to reduce model parameters, speed it up
model convergence, and improve model accuracy. In the decoder stage, convolution is used
to reduce the channel dimension of the bottleneck feature, thus further avoiding algorithm
complexity. Then, to increase the size of the features, a series of bilinear upsampling layers
are used. Finally, to estimate the facial depth map, two convolution layers and a sigmoid
function are applied to the output. Furthermore, the depth map is scaled by the maximum
depth value to give the depth in meters. In order to make better use of the precise details of
the local structures, a skip connection is introduced into the proposed fusion module.

When tested and analyzed across four public facial depth datasets, the suggested network
gives a more reliable SoA, with much less computational complexity and a reduced number
of parameters (Appendix G, Section 4). The training technique is essentially based on the
usage of synthetic human facial images, which provide a pixel accurate GT depth map, and
the employment of an appropriate loss function leads to better performance (Appendix G,
Section 5).

Our comprehensive experiments, which span roughly four GPU, demonstrate that a model
trained on a rich and diverse set of images, when combined with an optimal training procedure
generates SOA results in a range of situations Table 4.5. Table 4.5 shows the comparison
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of various depth maps methods, BTS [90], Densedepth [91], UNet-simple [92], ResNet-101
[30], EfficientNet-B0 [93], MiDaS [94], DPT [95], LapDepth-Face [3], FaceDepth [30] on
synthetic human facial depth dataset [30] with the proposed method LEDDEPTH which is
briefly discussed in (Appendix G). The proposed network achieved 0.0203 RMSE as shown

Table 4.5 Comparison of various depth maps methods with the proposed method LEDDEPTH

No. Methods AbsRel SqRel RMSE RMSElog δ1 < 1.25 δ2 < 1.252 δ3 < 1.253

1. DenseDepth-161 0.0296 0.0096 0.0373 0.0129 0.9890 0.9920 0.9981
2. ResNet-101 0.0123 0.0210 0.0306 0.0089 0.9938 0.9960 0.9980
3. BTS 0.0165 0.0092 0.0206 0.0102 0.9830 0.9943 0.9956
4. EfficientNet-B0 0.0145 0.0280 0.0360 0.0154 0.9912 0.9934 0.9978
5. UNet-simple 0.0103 0.0207 0.0281 0.0089 0.9960 0.9956 0.9987
6. MiDaS 0.0146 0.0204 0.0356 0.0323 0.9665 0.9902 0.9983
7. DPT 0.0156 0.0106 0.0394 0.0184 0.9567 0.9646 0.9943
8. LapDepth-Face 0.0145 0.0041 0.0204 0.3614 0.9545 0.9857 0.9958
9. FaceDepth 0.0176 0.0030 0.0205 0.1252 0.9642 0.9849 0.9951

10. LEDDEPTH 0.0113 0.0025 0.0203 0.1172 0.9888 0.9961 0.9967

in Table. 4.2 (row 10) compared to the SOA methods.

4.2.2 Summary of Contributions

The study [4] offers a system for developing sophisticated synthetic human face datasets
by incorporating various variations in synthetic facial data, a synthetic human model with
a green3D model design, the iClone Character Creation workflow, and adding variations
to models in iClone. This is followed by model transfer from iClone to Blender, model
manipulation in Blender, creating 3D scenes in Blender, The Blender camera model, selecting
3D background environments in Blender, and GT rendering in Blender along with the dataset
organization. The created synthetic human facial depth dataset is analyzed using SoA
DESI neural networks. Additionally, a new CNN model is developed along with a hybrid
loss function and its performance is compared to the SoA networks. Initially, SoA DESI
techniques are trained on a synthetic human facial dataset, and their performance is compared
to that of the proposed network.

The second paper improves on the previous paper results by using a ResNet in the encoder
and a feature fusion module in the decoder stage, which makes the network structure better
and simpler than the available SoA models. It also provides a comparison analysis of the
3D point cloud with the SOA and ONNX conversion method that can be used for consumer
applications.
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4.2.3 Discussion of Contributions

A critical result of this research work is that training neural facial depth networks on synthetic
human facial data produces higher-quality depth maps. Using lightweight neural single
image depth estimation models with the high-quality training data can estimate accurate
facial depth maps. The performance of various methods is compared, including error and
accuracy metrics with SOA on real datasets.

Deeper networks perform well, but their applications encounter a significant problem
since estimation tasks take longer to perform when using deeper networks. The practical
uses of depth estimation networks significantly impact their ability to function in real-time
on embedded devices. In order to develop or design networks that can learn facial depth
information, this chapter covers improved light-weight DL face depth estimation networks.
These networks can have lower complexity and system memory needs, improved accuracy,
and the ability to operate in real time on embedded devices.



Chapter 5

Additional Contributions

Several of my secondary publications are briefly discussed in this chapter. These paper
mainly focuses on learning 3D head positions from synthetic data and reconstructing 3D face
models from a single camera frame. They are listed below:

• S. Basak, P. Corcoran, Faisal K, R. Mcdonnell and M. Schukat, "Learning 3D Head
Pose from Synthetic Data: A Semi-Supervised Approach," in IEEE Access, vol. 9, pp.
37557-37573, 2021. It is available in Appendix H.

• Basak S, Javidnia H, Khan F, McDonnell R, Schukat M. Methodology for build-
ing synthetic datasets with virtual humans. In 2020 31st Irish Signals and Systems
Conference (ISSC) 2020 Jun 11 (pp. 1-6). IEEE, which can be found in Appendix I.

• Basak S, Khan F, McDonnell R, Schukat M. Learning accurate head pose for con-
sumer technology from 3D synthetic data. In2021 IEEE International Conference on
Consumer Electronics (ICCE) 2021 Jan 10 (pp. 1-6). IEEE, which can be found in
Appendix J.

In [62], the process for constructing a synthetic head pose dataset using a commercially
accessible 3D asset creation application, iClone, and an open-source 3D computer animation
program, Blender. The experimental results indicated that training an SoA HPE model
with the newly suggested dataset independently provides SoA HPE performances. By
implementing the visual adversarial transfer learning method and training the model with
labelled synthetic data and unlabeled real data, it is demonstrated that the model is capable of
learning features that make and generate better results than training exclusively with synthetic
data.

In [63] this paper, a methodology for synthetically generating facial data that can be
utilized as a part of a toolset to build relatively big facial datasets with a high level of control
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across facial and environmental variations is presented. These large datasets can be utilized
to train deep neural networks more accurately and precisely. It utilizes a 3D morphable face
model for the creation of numerous 2D images over a collection of 100 synthetic identities,
offering complete control over image variations including poses, lighting, and environment.

In [96], a rendering process to build pixel-perfect synthetic 2D headshot images from
high-quality 3D facial models with realistic pose angle labels is provided. A number of age,
racial, and gender variations are supplied. More than 300k combinations of RGB images
with their related head pose annotations are included in the generated collection. There are
various changes in posture, lighting, and backgrounds for each one hundred 3D model. The
data is analyzed by training and validating a SoA head pose estimation model against by the
prominent benchmark dataset BIWI.



Chapter 6

Conclusions and Future Works

Various works completed over the course of this Ph.D. research have been introduced in
previous chapters. We summarize the key findings of this research in the context of the main
goals and objectives provided in the thesis introduction chapter 1. The following are the main
contributions of this work.

• Single image depth maps and neural models

• Building 2D datasets from 3D models with pixel-accurate depth GT

• New models for facial depth estimation

The first and second chapters 1, 2 provide a full summary of the research work done, a
summary of the contributions of the thesis, a list of publications and taxonomy including
a problem description and a brief review of traditional depth estimation techniques. For
monocular depth estimation, important datasets, loss functions, and SoA DL-based tech-
niques are studied, analyzed, and discussed. We conclude the study by looking ahead to
future research projects that will require more examination into monocular depth estimation
difficulties, particularly for faces (Appendix A, B, C).

The third chapter 3 of this thesis provides a brief introduction to the large-scale facial 3D
models created using synthetic data, and high-quality human facial depth generated from
synthetic 3D models. The first objective of this study was to produce 3D virtual human
models with corresponding RGB and depth images. The goal is to evaluate the accuracy
of synthetic datasets used to address practical problems in various application fields. This
should enable further methodological advancements to the datasets collected to address
certain use case applications (Appendix D, E).
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This thesis fourth chapter 4 introduces an enhanced light-weight neural networks for
estimating facial depth maps. The SoA DESI neural networks are trained and tested using
the generated synthetic human facial depth dataset.

New CNN models are proposed, and their performance is compared against SoA net-
works. The proposed models are more computationally efficient than the existing SoA depth
estimation models and perform as well as or better than the SoA when evaluated across four
public datasets. When tested and evaluated across public facial depth datasets, the suggested
networks provide a more reliable SoA, with significantly less computational complexity
and a reduced number of parameters. The training procedure is primarily based on the
use of synthetic human facial images, which provide a consistent ground truth depth map,
and the employment of appropriate loss functions leads to higher performance. Numerous
experiments have been performed to validate and demonstrate the usefulness of the proposed
approaches.

Finally, the models perform better than existing comparative facial depth networks in
terms of generalization ability and robustness across different test datasets, setting new
baseline methods for facial depth maps. Furthermore, the results obtained from the proposed
models are used to reconstruct 3D rendering from a novel viewpoint. Point clouds rendered
via Open3D are used. Also, the lightweight neural facial depth estimation model is con-
verted to ONNX and it can be used for deployment in embedded systems and in Edge-AI
applications. ONNX is a freely available format for encoding deep neural networks. With
ONNX, application developers can more quickly integrate models between SoA packages
and determine the ideal mix for their needs. A community of contributors contributes to the
development and support of ONNX (Appendix F, G).

Dataset contributions: As described in chapter 3, the dataset contributions of this
work consisted of novel synthetic facial depth data and data collection from 3D virtual
human models. The generated synthetic dataset used in this research work consists of
100 3D virtual human models with approximately 3.5k 2D rendered RGB and GT depth
images. The synthetic data is used to train a CNN-based facial depth estimation system,
which is then validated on both synthetic and real-world images. 3D reconstruction, driver
monitoring systems, robotic vision systems, and advanced scene understanding are all
possible applications.

A fundamental conclusion of this research is that synthetic human facial data can provide
greater quality ground truth depth data than real data. This high-quality training data can be
used to create improved, lightweight single-image depth models which can provide depth
information on lightweight computational devices.
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Some of the main future directions include network optimisation. When facing high-
quality images and aiming to forecast high-resolution depth, complex DL networks have
high memory requirements, computational time, complex environments such as occlusions,
highly cluttered scenes, and complex material properties of the scene and training datasets
annotated with ground truth labels for depth estimation. However, devolving lighter DL-
based architectures remains desirable especially if they are to be deployed in smart consumer
devices.

Many different 3D reconstruction tasks using depth maps, such as segmentation and
instance segmentation, can be addressed in future research. It can also be helpful in face
identification and verification tasks to enhance the suggested 3D face models and the corre-
sponding ground truth depth with additional variations, segmentation masks, and annotation
with 2D-3D boxing.

Another future work looks into ways to superimpose highly detailed face textures over
artificial avatar models and incorporate more complex facial dynamics, such as modifications
in the mouth and eyes used to illustrate a variety of expressions.

An investigation of various lightweight encoder-decoder architectures focused on devel-
oping more robust neural networks, as well as paying more attention to the newly developed
facial depth datasets to obtain pixel-accurate ground truth depth maps, data augmentation
methods, and tests using a wider variety of test datasets would be of interest.

One of the most important future works will be to optimize all SoA methods for use on
low-power computational systems. These technologies, particularly the algorithms provided
in Tables 4.2 and 4.5, have a high potential for implementation on consumer devices.

Another noteworthy feature is that some of the proposed algorithms operate on high-
resolution images without any downsampling, bringing them one step ahead of the state
of the art. As previously stated, this field of study suffers from a lack of real-world data
and appropriate evaluation metrics. This is another potential gap that should be addressed.
Proposing a uniform assessment system and global measurements has the potential to
significantly alter the way present approaches are evaluated.
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Abstract: Monocular depth estimation from Red-Green-Blue (RGB) images is a well-studied ill-posed
problem in computer vision which has been investigated intensively over the past decade using Deep
Learning (DL) approaches. The recent approaches for monocular depth estimation mostly rely on
Convolutional Neural Networks (CNN). Estimating depth from two-dimensional images plays an
important role in various applications including scene reconstruction, 3D object-detection, robotics and
autonomous driving. This survey provides a comprehensive overview of this research topic including
the problem representation and a short description of traditional methods for depth estimation.
Relevant datasets and 13 state-of-the-art deep learning-based approaches for monocular depth
estimation are reviewed, evaluated and discussed. We conclude this paper with a perspective towards
future research work requiring further investigation in monocular depth estimation challenges.

Keywords: monocular depth estimation; single image depth estimation; CNN monocular depth

1. Introduction

Monocular depth estimation is a fundamental challenge in computer vision and has potential
applications in robotics, scene understanding, 3D reconstruction and medical imaging [1–4].
This problem remains challenging as there are no reliable cues for perceiving depth from a single
image. For example, temporal information and stereo correspondences are missing from such images.
The classical depth estimation approaches heavily rely on multi-view geometry [5–9] such as stereo
image [10,11]. These methods require alignment and calibration procedures which are important for
multi-camera or multi-sensor depth measurement systems [12,13]. Multi-view methods acquire depth
information by utilising visual cues and different camera parameters.

Most of the binocular or multi-view methods are able to estimate fairly accurate depth information.
However, their computational time and memory requirements are important challenges for many
applications [14]. The idea of using the monocular image to capture depth information could potentially
solve the memory requirement issue, but it is computationally difficult to capture the global properties
of a scene such as texture variation or defocus information.

Recently, the advancement of Convolutional Neural Networks (CNN) and publicly available
datasets have significantly improved the performance of monocular depth estimation methods [15–19].

This paper offers a comprehensive and structured survey of deep learning-based monocular depth
estimation approaches. The goal of the review is to assist the reader to navigate this emerging field,
which has become of significant interest to the computer vision community in recent years. The rest
of the survey is organized as follows: Section 2 presents a summary and basic concept of monocular
depth estimation, problem description, traditional methods for depth estimation and publicly available
datasets. Section 3 reviews the recent deep learning architectures for monocular depth estimation
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categorised in supervised, self-supervised and semi-supervised methods. Section 4 compares the
state-of-the-art approaches followed by discussion and potential future research directions presented
in Section 5.

2. An Overview of Monocular Depth Estimation

The concept of depth estimation refers to the process of preserving 3D information of the scene
using 2D information captured by cameras. Monocular solutions tend to achieve this goal using only
one image. These methods aim to estimate distances between scene objects and the camera from one
viewpoint. This requires the method to perform depth estimation on low-cost embedded systems.
There are a variety of devices commercially available to provide depth information, however, their
processing power, computational time, range limitation and cost make them impractical for consumer
devices. Sensors such as Kinect are commonly used in consumer devices [20,21]. These types of sensor
are categorized as Time-of-Flight (ToF) where the depth information is acquired by calculating the
time required for a ray of light to travel from a light source to an object and back to the sensor [22].
ToF sensors are more suitable for the indoor environment and short range (<2 m) depth sensing. On the
other hand, laser-based scanners (LiDAR) are commonly utilised for 3D measurement in the outdoor
environment. The key advantages of LiDAR sensors are high resolution, accuracy, performance in low
light and speed. However, LiDARs are expensive devices and they require extensive power resources
which make them unsuitable for consumer products.

It has been shown in the state-of-the-art that monocular depth estimation methods could be
a potential solution to address many of these challenges [23–25]. These methods perform with a
relatively small number of operations and in less computation time. They do not require alignment
and calibration which is important for multi-camera, or multi-sensor depth measurement systems.
Accurate monocular depth estimation methods can play an important role in understanding 3D scene
geometry and 3D reconstruction, particularly in cost-sensitive applications and use cases.

2.1. Problem Representation

Let I ∈ Rw×h be an image with size w × h. The goal is to estimate the corresponding depth
information D ∈ Rw×h. This is an ill-posed problem as there is an ambiguity in the scale of the depth.
Supervised learning-based methods try to address this issue by approximately learning the scale from
a set of training images. On the other hand, unsupervised and semi-supervised methods often utilise
an extra input for training such as stereo image sets, visual odometry and 6D camera pose estimation
to tackle the scale ambiguity issue. These methods mathematically define the problem as follows:
given a large dataset of Red-Green-Blue (RGB) and depth images, single image depth estimation can
be considered as a regression problem that uses a standard loss function such as Mean Square Error
(MSE). To achieve this, a training set τ can be represented as follows:

τ =
{
(In, Dn)

}
, In ∈ Rw×h and Dn ∈ Rw×h (1)

2.2. Traditional Methods for Depth Estimation

Most of the traditional methods for depth estimation rely on the assumption of having observations
of the scene, either in space or time (e.g., stereo or multi-view, structure from motion) [10,11,26,27].
Traditional methods can be categorized in two sets, active and passive methods.

Active methods involve computing the depth in the scene by interacting with the objects and the
environment. There are different types of active method, such as light-based depth estimation, which
uses the active light illumination to estimate the distance to different objects. Ultrasound and ToF are
other examples of active methods. These methods use the known speed of the wave to measure the
time an emitted pulse takes to arrive at an image sensor. Passive methods exploit the optical features
of captured images. These methods involve extracting the depth information by computational image
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processing. In the category of passive methods, there are two primary approaches: (a) multi-view
depth estimation, such as depth from stereo, and (b) monocular depth estimation.

The traditional depth estimation methods are mainly focused on multi-view geometry. The detailed
review of those methods is outside the scope of this work. However, it is worth noting that multi-view
traditional methods have various limitations including computational complexity and associated high
energy requirements. Current research works take advantage of deep-learning methods to achieve
more accurate results with lower computational and energy demands [15–19]. Deep learning-based
approaches and the availability of large-scale datasets have significantly transformed the monocular
depth estimation methods.

2.3. Datasets for Depth Estimation

A number of important datasets are particularly preferred for the depth estimation problem as
they provide images and corresponding depth maps from different viewpoints. The following section
highlights the popular datasets used to analyse the scenes. Consumer-level sensors such as the Kinect
and Velodyne laser scanner [20,21,28] are commonly used to capture the ground truth depth images
for datasets. A summary is presented in Table 1.

NYU-v2: the NYU-v2 dataset for depth estimation was introduced in [29]. The dataset consists
of 1449 RGB images densely labelled with depth images. The datasets consist of 407K frames
of 464 scenes taken from three different cities. These datasets are used for indoor scenes depth
estimation, segmentation and classification.
Make3D: the Make3D dataset, introduced in [30], contains 400 and 134 outdoor images for
training and testing, respectively. This dataset contains different types of outdoor, indoor and
synthetic scenes that are used for depth estimation by presenting a more complex set of features.
KITTI: the KITTI dataset, introduced in [31], has two versions and is made of 394 road scenes
providing RGB stereo sets and corresponding ground truth depth maps. The KITTI dataset is
further divided into RD: KITTI Raw Depth [31]; CD: KITTI Continuous Depth [31,32]; SD: KITTI
Semi-Dense Depth [31,32]; ES: Eigen Split [33]; ID: KITTI Improved Depth [34]. KITTI datasets
are commonly used for different tasks including 3D object detection and depth estimation.
The high-quality ground truth images are captured using the Velodyne laser scanner.
Pandora: the Pandora dataset, introduced [35], contains 250K full resolution RGB and
corresponding depth images having their corresponding annotation. Pandora dataset is used for
head centre localization, head pose estimation and shoulder pose estimation.
SceneFlow: this was introduced in [36] as one of the very first large-scale synthetic datasets consist
of 39K stereo images with corresponding disparity, depth, optical flow and segmentation masks.

Table 1. Datasets for monocular depth estimation.

Dataset Labelled
Images Annotation Brief Description

NYU-v2 [29] 1449 Depth + Segmentation Red-green-blue (RGB) and depth images taken from
indoor scenes.

Make3D [30] 534 Depth RGB and depth images taken from outdoor scenes.

KITTI [31] 94K Depth aligned with RAW
data + Optical Flow RGB and depth from 394 road scenes.

Pandora [35] 250K Depth + Annotation RGB and depth images.

SceneFlow [36] 39K Depth + Disparity + Optical
Flow+ Segmentation Map

Stereo image sets rendered from synthetic data with
ground truth depth, disparity and optical flow.

3. Deep Learning and Monocular Depth Estimation

There has been a significant improvement in learning-based monocular depth estimation methods
over the past couple of years [37–42]. The majority of the deep learning-based methods involve a CNN
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trained on RGB-images and the corresponding depth maps. These methods can be categorized into
supervised, semi-supervised and self-supervised. Supervised methods accept a single image and the
corresponding depth information for training. In such a case, the trained network can directly output
the depth information. However, a large amount of high-quality depth data is required, which is hard
to generalize to all use cases.

To overcome the need for high-quality depth estimation as seed data, numerous semi-supervised
methods are proposed. Semi-supervised approaches require smaller amount of labelled data and a
large amount of unlabeled data for training [16,43,44]. The limitation of semi-supervised methods is
that the networks are unable to correct their own bias and require additional domain information such
as camera focal length and sensor data.

Self-supervised methods only require a small number of unlabeled images to train the networks
for depth estimation [15,42,45]. These methods obtain the depth information automatically by relating
different input modalities. Self-supervised methods suffer from generalization issues. The models can
only perform on a very limited set of scenarios with similar distribution as the training set.

Table 2 categorizes thirteen methods reviewed comprehensively in the next sub-sections into
supervised, semi-supervised and self-supervised.

Table 2. Categories of deep learning-based monocular depth estimation methods (FC: fully
convolutional; CNN: convolutional neural networks).

Method Architecture Category

EMDEOM [32] FC

Supervised

ACAN [46] Encoder-Decoder
DenseDepth [47] Encoder-Decoder

DORN [18] CNN
VNL [48] Encoder-Decoder
BTS [49]

DeepV2D [50]
Encoder-Decoder

CNN

LISM [51] Encoder-Decoder

Self-supervised
monoResMatch [38] CNN

PackNet-SfM [52] CNN
VOMonodepth [53] Auto-Decoder

monodepth2 [42] CNN

GASDA [54] CNN Semi-supervised

3.1. Supervised Methods

Rosa et al. [32] proposed a supervised framework to estimate continuous depth maps from LiDAR
points. The framework utilises Hilbert Maps methodology [55] to generate dense depth map from
the sparse point could projected from LiDAR scanner. Furthermore, the proposed framework takes
advantage of the Fully Convolutional Residual Network (FCRN) proposed by Laina et al. [56] for
depth estimation. The network is trained on the densified depth images which are augmented by
flipping and applying colour distortion. Despite the comparable performance of this method against
the state-of-the-art methods, it can only produce depth maps with 128× 160 pixel resolution. More
importantly, the network is biased by the output of the Hilbert maps’ densification process which does
not represent the truth depth information of the missing areas.

Yuru et al. [46] proposed a new supervised algorithm called the Attention-Based Context
Aggregation Network (ACAN) to estimate depth maps. The algorithm utilises the deep residual
architecture [57], dilated layer and self-attention module [58–60] to control the spatial scale and
continuous pixel-level dense depth estimation. Moreover, the self-attention module creates a
relationship among every pixel resulting in learning the attention weights and contextual information
which can produce more accurate depth information. Furthermore, the algorithm uses image-pooling
to combine the image-level information for depth estimation. Soft-ordinal inference translation is
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used to transform the predicted probabilities into continuous depth values to produce more realistic
depth maps. The network is trained on resized and cropped images from NYU-v2 [29] and KITTI [31]
datasets. The context adaption feature of this network results in sharp boundaries in the structure of
the predicted depth map.

Ibraheem et al. [47] proposed a supervised method to estimate depth maps with the help of
transfer learning. The method utilises a CNN for estimating high-quality depth maps. The method
uses standard encoder-decoder network architecture based on pre-trained DenseNet-169 [61] and
ImageNet [62] networks for features extraction. Furthermore, the information obtained is passed to
the decoder to calculate the final depth maps with the sampling layer [63]. The network is trained
on the densified depth images, which are augmented by horizontal flipping and applying the colour
distortion including swapping the green and red channels of the input images. It produces depth maps
with 320× 240 pixel resolution and is likely to be biased by the output of the bilinear upsampling layer
which does not represent the accurate depth information for all regions.

Fu et al. [18] proposed a supervised method to estimate depth maps from the Spacing-Increasing
Discretization (SID) approach. The framework utilises the dense feature extractor, cross channel
information learner, multi-scale feature learner, encoder and ordinal regression optimizer for
high-quality depth estimation. Furthermore, the network is defined in a simpler way that avoids
needless subsampling and captures multi-scale information to save computational cost and time.
The subsampling layers are removed in the pooling layers and dilated convolutions are added to
obtain more accurate depth information. The network is trained on four challenging datasets including
Make3D [30], NYU-v2 [29], KITTI [31] and ScanNet [64] to introduce more feature variations.

Yin et al. [48] proposed a supervised framework to estimate depth maps by taking advantage
of the 3D geometric constraints. A simple type of geometric constraints known as ‘virtual norm’ is
implemented which is determined by randomly sampled three points in the 3D reconstruction to
obtain a high-quality depth estimation. Further, the method can estimate 3D structures of the scene
and surface normals directly from depth maps.

The method uses the 3D geometric constraints to convert the estimated depth to 3D point cloud
representations. The network is trained on the densified depth images which are augmented by
randomly cropping and flipping. This method can produce depth maps with 384× 512 pixel resolution
which are more robust and have strong global constraints.

Jin et al. [49] proposed a supervised method for monocular depth estimation that uses new
Local Planar Guidance Layers (LPGL) inserted into the decoding phase of the network. The method
utilises a decoding stage with spatial resolutions of 1/8, 1/4 and 1/2 by placing a layer that guides
the input features to the desired depth. Furthermore, a Dense Feature Extractor (DFE), Contextual
Information Extractor (CIE), LPGL and their dense features are used for final depth estimation.
The proposed framework takes advantage of the dense Atrous Apatial Pyramid Pooling layer [65] for
depth estimation. The network is trained on random crop of size 352× 704 for KITTI [31] and 416× 544
for NYU-v2 [29] datasets.

Zachary et al. [50] targeted the issues of monocular depth estimation in videos. The proposed
method known as DeepV2D combines two classical algorithms in an end-to-end architecture.
The network consists of two modules, depth estimation and camera motion. The depth module takes
the camera motion as input and returns an initial depth map. The camera motion module takes the
predicted depth and outputs the refined camera motion. Furthermore, the network alternates between
these two modules to predict the final depth map. The network is trained on four challenging datasets
including Make3D [30], NYU-v2 [29], KITTI [31] and ScanNet [64] to introduce more feature variations
and high quality depth estimation.

3.2. Self-Supervised Methods

Matan et al. [51] proposed a self-supervised method to estimate depth maps from Siamese
networks [66] approaches. The method utilises the Siamese DispNet [36], ResNet [57] and VGG [67]
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based network architectures for depth estimation. Further, the method predicts multi-scale disparity
maps in four scales which are later concatenated with previous decoder layer output and the
corresponding encoder output using the skip connections. The network is trained on the RGB and
ground truth depth images with 1242× 375 pixel resolution. The proposed network has the advantage
of sharing weights to reduce computational operations by cutting the network size to half which could
lead to a potential model for consumer devices.

Aleotti et al. [38] proposed a self-supervised framework to estimate depth maps using end-to-end
monocular residual matching known as monoResMatch. The framework utilises stereo matching
approach for depth estimation. The RGB image is mapped to the feature space and then synthesized to
obtain features aligned with virtual right images. The network further considers high dimensional
features at input image resolution to find multi-scale inverse depth map aligned with the input image.
The model is constructed based on an hourglass structure with skip connections. The final stage
consists of a disparity refinement module which estimates residual corrections to the initial disparity.
The network is trained using Structural Similarity (SSIM) reconstruction loss, disparity smoothness
loss with an edge-aware term and reverse Huber loss [68]. The model is trained on Cityscape [69]
and KITTI [31] datasets with random crops of size 640× 192.

Guizilini et al. [52] proposed a self-supervised method to estimate depth maps by combining
the geometry of the PackNet. The method utilises the symmetrical packing and unpacking blocks
to combine the encoded and decoded information using 3D convolutions. The network follows a
similar architecture as [70], which provides the encoder-decoder layers with skip connections having
geometrical information of the dense depth estimation. Furthermore, the method introduces new
packing and unpacking blocks having visual information for fine-grained high-resolution depth
predictions. This model is trained on the RGB and ground truth depth images with 640× 192 pixel
resolution from unlabelled data which can be generalized into unseen environments. The proposed
architecture uses upsampling and downsampling operations which increase the number of the
parameters and result in inaccurately scaled depth maps.

Andraghetti et al. [53] employed a state-of-the-art visual odometry method to obtain 3D points
and sparse depth maps. Furthermore, the sparse data is fed to a sparse auto-encoder to obtain a denser
depth map. The output of this stage along with the corresponding RGB image are fed to a CNN to
acquire a final densified depth map in a self-supervised manner. The network is trained on the RGB
and ground truth depth images from the KITTI [31] dataset and predicts depth maps with 256× 512
pixel resolution.

Clement et al. [42] proposed a self-supervised approach to estimate depth maps utilising a
combination of three architectures and loss functions. The pipeline takes advantage of a fully connected
U-Net [71] to predict depth and a pose network to estimate the pose between pairs of images.
ResNet-18 [57] is selected as the encoder and the pre-trained ImageNet [62] model is used to initialise
the weights. The proposed framework utilises appearance-based loss and it introduces a modified
per-pixel minimum reprojection loss. The network is trained on KITTI [31] dataset with Eigen split
and it estimate depth maps with 640× 192 pixel resolution.

3.3. Semi-Supervised Methods

Shanshan et al. [54] proposed GASDA, a semi-supervised method to estimate depth maps using
the geometry-aware symmetric domain adaption. This approach targets the generalisation issue of
the depth estimation methods by training the model on synthetic data to estimate depth from natural
images. The method uses symmetric style image translation and monocular depth prediction. Utilising
the CycleGAN [72], GASDA involves both real to unreal and unreal to real image translations together
with an epipolar geometry of the real stereo images. The network is trained with two image style
translations and symmetric depth estimators to produce depth maps with 192× 640 pixel resolution.
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4. Evaluation Matrices and Criteria

The most commonly used quantitative metrics for evaluating the performance of monocular
depth estimation methods are Absolute Relative Difference (AbsRel), Root Mean Square Error (RMSE),
RMSE (log) and Square Relative Error (SqRel).

These metrics are defined as follows:

AbsRel =
1
N

∑ ∣∣∣di − d∗i
∣∣∣

di
(2)

RMSE =

√
1
N

∑∣∣∣di − d∗i
∣∣∣2 (3)

RMSE(log) =

√
1
N

∑∣∣∣log di − log d∗i
∣∣∣2 (4)

SqRel =
1
N

∑ ∣∣∣di − d∗i
∣∣∣2

di
(5)

Accuracy with threshold (δ < thr) : % o f di such that max
(

di
d∗i

,
d∗i
di

)
< thr,

where thr = 1.25, 1.252, 1.253
(6)

where di and d∗i are the ground truth and predicted depth at pixel i and N is the total number of pixels.
All of the methods described in this section are tested on either KITTI [31] or NYU-v2 [29]

datasets. In order to evaluate and compare all the methods, we used the publicly available pre-trained
models. The main advantage of comparing the pre-trained models on both datasets is that it allows
us to measure the generalised performance of the networks on different test sets. Table 3 illustrates
the properties of the networks studied for monocular depth estimation including their input/output
dimensions, number of parameters, Graphical Processing Unit (GPU) specification and the type of the
architecture employed.

Table 3. Properties of the studied methods for monocular depth estimation (FC: fully convolutional;
ED: encoder-decoder; AD: auto-decoder; CNN: convolutional neural networks; K: trained on KITTI;
N: trained on NYU-v2).

Method Input Type Optimizer Parameters Output GPU
Memory

GPU
Model

BTS [49] 352 × 704 K ED Adam 47M 352 × 704 K 4× 11 GB 1080 Ti
DORN [18] 385 × 513 K CNN Adam 123.4M 513 × 385 K 12 GB TITAN Xp
VNL [48] 384 × 384 N ED SGD 2.7M 384 × 384 N N/A N/A

ACAN [46] 256 × 352 N ED SGD 80M 256 × 352 N 11 GB 1080 Ti
VOMonodepth [53] 256 × 512 K AD Adam 35M 256 × 512 K 12 GB TITAN Xp

LSIM [51] 1242 × 375 K ED Adam 73.3M 1242 × 375 K 12 GB TITAN Xp
GASDA [54] 192 × 640 K CNN Adam 70M 192 × 640 K N/A N/A

DenseDepth [47] 640 × 480 N ED Adam 42.6M 320 × 240 N 4× 12 GB TITAN Xp
monoResMatch [38] 192 × 640 K CNN Adam 42.5M 192 × 640 K 12 GB TITAN Xp

EMDEOM [32] 304 × 228 K FC Adam 63M 128 × 160 K 12 GB TITAN Xp
PackNet-SfM [52] 640 × 192 K CNN Adam 128M 640 × 192 K 8× 16 GB Tesla V100
monodepth2 [42]

DeepV2D [50]
640 × 192 K
640 × 480 N

CNN
CNN

Adam
RMSProp

70M
32M

640 × 192 K
640 × 480 N

12 GB
11 GB

TITAN Xp
1080 Ti

Table 4 presents the performance evaluation of the studied methods on KITTI [31] dataset. All
the numbers presented in this table are reported by the respective authors. As shown in Table 4,
DeepV2D [50] marginally achieved the best accuracy on the KITTI [31] dataset. The last four columns
in this table represent the evaluation using RMSE (log) metric and threshold inlier measures defined in
Equation (6). Not all the methods in Table 4 are trained and evaluated on the same part of the KITTI [31]
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dataset. The Train and Test columns in Table 4 indicate the subsets of the KITTI [31] dataset used by
each method.

Table 4. Evaluation results on KITTI dataset. Best method per metric is emboldened and highlighted
in green. (RD: KITTI Raw Depth [31]; CD: KITTI Continuous Depth [31,32]; SD: KITTI Semi-Dense
Depth [31,32]; ES: Eigen Split [33]; ID: KITTI Improved Depth [34]).

Method Train Test Abs
Rel

Sq
Rel RMSE RMSElog δ<1.25 δ<1.252 δ<1.253

BTS [49] ES(RD) ES(RD) 0.060 0.182 2.005 0.092 0.959 0.994 0.999
DORN [18] ES(RD) ES(RD) 0.071 0.268 2.271 0.116 0.936 0.985 0.995
VNL [48] ES(RD) ES(RD) 0.072 0.883 3.258 0.117 0.938 0.990 0.998

ACAN [46] ES(RD) ES(RD) 0.083 0.437 3.599 0.127 0.919 0.982 0.995
VOMonodepth [53] ES(RD) ES(RD) 0.091 0.548 3.790 0.181 0.892 0.956 0.979

LSIM [51] FT RD 0.169 0.6531 3.790 0.195 0.867 0.954 0.979
GASDA [54] ES(RD) ES(RD) 0.143 0.756 3.846 0.217 0.836 0.946 0.976

DenseDepth [47] ES(RD) ES(RD) 0.093 0.589 4.170 0.171 0.886 0.965 0.986
monoResMatch [38] ES(RD) ES(RD) 0.096 0.673 4.351 0.184 0.890 0.961 0.981

EMDEOM [32] RD, CD SD 0.118 0.630 4.520 0.209 0.898 0.966 0.985
monodepth2 [42] ES(RD) ES(RD) 0.115 0.903 4.863 0.193 0.877 0.959 0.981
PackNet-SfM [52] ES(RD) ID 0.078 0.420 3.485 0.121 0.931 0.986 0.996

DeepV2D [50] ES(RD) ES(RD) 0.037 0.174 2.005 0.074 0.977 0.993 0.997

In another evaluation on the NYU-v2 [29] dataset, as shown in Table 5, DeepV2D [50] marginally
achieved the best accuracy with very close performance to BTS [49]. The significant advantage of this
method against the state-of-the-art is a learnable approach for a geometrical principal of structure from
motion and relative camera pose estimation.

Table 5. Evaluation results on NYU-v2 dataset. Best method per metric is emboldened and highlighted
in green.

Method Abs Rel Sq Rel RMSE RMSElog δ<1.25 δ<1.252 δ<1.253

BTS [49] 0.112 0.025 0.352 0.047 0.882 0.979 0.995
VNL [48] 0.113 0.034 0.364 0.054 0.815 0.990 0.993
DenseDepth [47] 0.123 0.045 0.465 0.053 0.846 0.970 0.994
ACAN [46] 0.123 0.101 0.496 0.174 0.826 0.974 0.990
DORN [18] 0.138 0.051 0.509 0.653 0.825 0.964 0.992
monoResMatch [38] 1.356 1.156 0.694 1.125 0.825 0.965 0.967
monodepth2 [42] 2.344 1.365 0.734 1.134 0.826 0.958 0.979
EMDEOM [32] 2.035 1.630 0.620 1.209 0.896 0.957 0.984
LSIM [51] 2.344 1.156 0.835 1.175 0.815 0.943 0.975
PackNet-SfM [52] 2.343 1.158 0.887 1.234 0.821 0.945 0.968
GASDA [54] 1.356 1.156 0.963 1.223 0.765 0.897 0.968
VOMonodepth [53] 2.456 1.192 0.985 1.234 0.756 0.884 0.965
DeepV2D [50] 0.061 0.094 0.403 0.026 0.956 0.989 0.996

Note that, some of the methods in Table 5 such as monodepth2 [42] and PackNet-SfM [52] are
only trained and evaluated on KITTI-ES(RD) as reported in their original papers. To achieve a fair and
generalized comparison, we evaluated LSIM [51], PackNet-SfM [52], GASDA [54], VOMonodepth [53]
and monodepth2 [42] on the NYU-v2 dataset [29]. The numbers for the rest of the methods are reported
by the respective authors.

Table 6 compares the performances of the studied methods in terms of inference time. As shown
in Table 6, BTS [49] has the fastest inference time with 0.22 s.
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Table 6. Comparison of the models in terms of inference time (FC: fully convolutional; CNN:
convolutional neural networks). Best method is emboldened and highlighted in green.

Method Inference Time Network/FC/CNN

BTS [49] 0.22 s Encoder-decoder
VNL [48] 0.25 s Auto-decoder
DeepV2D [50] 0.36 s CNN
ACAN [46] 0.89 s Encoder-decoder
VOMonodepth [53] 0.34 s CNN
LSIM [51] 0.54 s CNN
GASDA [54] 0.57 s Encoder-decoder
DenseDepth [47] 0.35 s Encoder-decoder
monoResMatch [38] 0.37 s CNN
EMDEOM [32] 0.63 s FC
DORN [18] 0.98 s Encoder-decoder
PackNet-SfM [52] 0.97 s CNN
monodepth2 [42] 0.56 s CNN

An additional set of methods are studied and compared as presented in Appendix A. These
methods are evaluated on either KITTI [31] or NYU-v2 [29] datasets and the comparison includes
the parameter counts, depth accuracy measured using RMSE metric, memory requirement and
training environment. All the methods in Appendix A, Table A1 are compared with the state-of-the-art
monocular depth estimation methods. These methods are categorized as of low accuracy with expensive
computational time and slow convergence rate which led us to exclude them from this survey.

Due to the technical complications with the publicly available codes and lack of instructions,
we were not able to test all 13 methods for qualitative comparisons. Only five methods were
implemented successfully and validated on NYU-v2 [29] dataset. A few samples of the results are
illustrated in Figure 1. This visual comparison also supports the claim from the previous tables that
DeepV2D [50] marginally outperforms BTS [49] and other methods as it can estimate smoother depth
maps with sharper boundaries, less artifacts and relative scale.
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5. Discussion

Monocular depth estimation plays a crucial role in understanding 3D scene geometry in many
applications. A single 2D image may be produced from an infinite number of distinct 3D scenes,
which is a classical monocular depth estimation approach. The classical monocular depth estimation
methods utilise meaningful monocular cues, such as perspective and texture information, objects size,
object locations and occlusions, resulting in an undesirable low-resolution depth prediction. Recently,
deep learning methods significantly improved the performance of the monocular depth estimation
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methods by exploring image-level information and hierarchical features in the network. However,
these methods employ repeated spatial pooling operations. To obtain high-resolution depth maps,
skip connection-based networks are required, however, these methods tend to make the training
process complicated and require more computational time. To target these issues, CNN based transfer
learning methods were employed resulting in high-quality depth estimation. In general, deep-learning
methods achieved outstanding results, however, they require a large amount of data labelled with
precise depth measurements for training. The introduction of different methodologies and architectures
such as local planar guidance layers (LPGL), multi-layer deconvolutional networks and atrous spatial
pyramid have moved the performance of these models to the next level.

5.1. Comparison Analysis Based on Performance

I. Degree of supervision: most of the methods demonstrated in this paper require ground
truth depth images for training. These supervised methods perform well and most of them are
state-of-the-art on common benchmarks. Methods such as DeepV2D [50], BTS [49] and VNL [48]
showed a much faster performance time compared to the other models. On the other hand, VNL [48],
ACAN [46] and EMDEOM [32] provides the depth information with much lower resolution compared
to the state-of-the-art. Unlike VNL [48], DORN [18] has the highest number of parameters in the
supervised category and it requires a high number of operations making it an inefficient choice for
real-life applications.

Obtaining large datasets of RGB images with accurate ground truth depth images is a challenging
task. As such, methods that do not require full supervision (labelled ground truth) are more
attractive. Methods such as LISM [51], monoResMatch [38], PackNet-SfM [52] and monodepth2 [42]
are self-supervised methods. Although most of these methods can generate high resolution depth
maps with comparable accuracy against the state-of-the-art, they are computationally expensive and
require a significant amount of memory.

II. Accuracy and depth range: based on our evaluations, DeepV2D [50] marginally achieved the
best performance compared to BTS [49] and the rest of the methods. On KITTI [31] dataset the model
achieved 2.005 RMSE and threshold accuracy of 0.977 with δ < 1.253. On NYUD-v2 [29] dataset it
achieved 0.403 RMSE and threshold accuracy of 0.996 with δ < 1.253. As shown in Tables 4 and 5,
methods with 3D geometry constraint or features, outperform the others, which shows the importance
of high order 3D geometric constraints for depth estimation.

The evaluation of BTS [49], DORN [18], VNL [48], DenseDepth [47] and VOMonodepth [53]
indicated that supervised learning approaches achieved better results compared to semi and
self-supervised methods.

III. Computation time and memory: based on the comparisons presented in Tables 3–6, VNL [48]
significantly reduced the computational time and memory footprint, which can be used for both quality
and low-cost monocular depth estimation.

The advancement of deep-learning methodologies suggests that cameras may become a
competitive source of reliable 3D information. Compared to the conventional method, these models
have the potential to be optimised for deployment on smart and consumer platforms.

These methods are composed in two ways: feature extraction which is done in encoder part using
the powerful pre-trained models such as VGG [67], ResNet [57] or DenseNet [61], while the desired
depth prediction is obtained using the decoder network architecture.

5.2. Future Research Directions

Over the past couple of years, deep-learning approaches have shown a significant improvement
in the performance of monocular depth estimation. The topic is still in its infancy and further
developments are yet to be expected. In this section, we present some of the current directions and
issues for further future research.
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1. Complex deep networks are very expansive in terms of memory requirements, which is a major
issue when dealing with high-resolution images and when aiming to predict high-resolution
depth images.

2. Developments in high-performance computing can address the memory and computational
issues, however, devolving lighter deep network architectures remains desirable especially if it is
to be deployed in smart consumer devices.

3. Another challenge is how to achieve higher accuracy, in general, which is affected by the
complex scenarios, such as occlusions, highly cluttered scenes and complex material properties of
the objects.

4. Deep-learning methods rely heavily on the training datasets annotated with ground truth labels
for depth estimation which is very expansive to obtain in the real world.

5. We expect in the future to see the emergence of large databases for 3D reconstruction. Emerging
new self-adoption methods that can adapt themselves to new circumstances in real-time or with
minimum supervision are one of the promising future directions for research in depth estimation.

This paper provided a preliminary review of the recent developments in monocular depth
estimation using deep-learning models. Regardless of its infancy, these methods are achieving
promising results, and some of these methods are competing, in terms of accuracy of the results, with
the traditional methods. We have entered a new era where deep learning and data-driven techniques
play an important role in image-based depth estimation.
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Appendix A

Low-Performance Monocular Depth Estimation Methods

Table A1 summarizes the monocular depth estimation methods in terms of parameter counts,
depth accuracy measured using RMSE metric, memory requirement and training environment. These
methods are categorized as low accuracy with slow convergence rate and are excluded from this survey.
All the numbers presented in this table are reported by the respective authors.

Table A1. Properties of the low-accuracy methods trained on either KITTI or NYU-v2 datasets. (FC: fully
convolutional, ED: encoder-decoder, AD: auto-decoder, K: trained on KITTI dataset, N: trained on
NYU-v2 dataset and CNN: convolutional neural networks).

Method Input Type Optimizer Parameters Output GPU
Memory RMSE GPU Model

Zhou et al. [70] 128 × 416 K CNN Adam N/A 128 × 416 K N/A 4.975 N/A
Casser et al. [73] 128 × 416 K CNN Adam N/A 128 × 416 K 11 GB 4.7503 1080 Ti

Guizilini et al. [74] 640 × 192 K FC Adam 86M 640 × 192 K N/A 4.601 N/A
Godard et al. [15] 640 × 192 K FC Adam 31M 640 × 192 K 12 GB 4.935 TITAN Xp
Eigen et al. [33] 640 × 184 K CNN Adam N/A 640 × 184 6 GB N/A TITAN Black

Guizilin et al. [75] 640 × 192 K ED Adam 79M 640 × 192 8× 16 GB 4.270 Tesla V100
Tang et al. [76] 640 × 192 K CNN RMSprop 80M 640 × 192 12 GB N/A N/A

Ramamonjisoa et al. [40] 640 × 480 N ED Adam 69M 640 × 480 N 11 GB 0.401 1080 Ti
Riegler et al. [39] N/A ED Adam N/A N/A N/A N/A N/A

Ji et al. [37] 320 × 240 N ED Adam N/A 320 × 240 N 12 GB 0.704 TITAN Xp
Almalioglu et al. [77] 128 × 416 K GAN RMSprop 63M 128 × 416 K 12 GB 5.448 TITAN V

Pillai et al. [41] 128 × 416 K CNN Adam 97M 128 × 416 K 8× 16 GB 4.958 Tesla V100
Wofk et al. [24] 224 × 224 N ED SGD N/A 224 × 224 N N/A 0.604 N/A

Watson et al. [78] 128 × 416 K ED SGD N/A 128 × 416 K N/A N/A N/A
Chen et al. [79] 256 × 512 K ED Adam N/A 256 × 512 K 11 GB 3.871 1080 Ti
Lee et al. [80] 640 × 480 N CNN SGD 61M 640 × 480 N N/A 0.538 N/A
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ABSTRACT In many applications, such as robotic perception, scene understanding, augmented reality, 3D
reconstruction, and medical image analysis, depth from images is a fundamentally ill-posed problem. The
success of depth estimation models relies on assembling a suitably large and diverse training dataset and
on the selection of appropriate loss functions. It is critical for researchers in this field to be made aware of
the wide range of publicly available depth datasets along with the properties of various loss functions that
have been applied to depth estimation. Selection of the right training data combined with appropriate loss
functions will accelerate new research and enable better comparison with state-of-the-art. Accordingly, this
work offers a comprehensive review of available depth datasets as well as the loss functions that are applied
in this problem domain. These depth datasets are categorised into five primary categories based on their
application, namely (i) people detection and action recognition, (ii) faces and facial pose, (iii) perception-
based navigation (i.e., street signs, roads), (iv) object and scene recognition, and (v)medical applications. The
important characteristics and properties of each depth dataset are described and compared. Amixing strategy
for depth datasets is presented in order to generalise model results across different environments and use
cases. Furthermore, depth estimation loss functions that can help with training deep learning depth estimation
models across different datasets are discussed. State-of-the-art deep learning-based depth estimationmethods
evaluations are presented for three of the most popular datasets. Finally, a discussion about challenges and
future research along with recommendations for building comprehensive depth datasets will be presented as
to help researchers in the selection of appropriate datasets and loss functions for evaluating their results and
algorithms.

INDEX TERMS Datasets, depth datasets, depth loss function, deep learning, depth estimation.

I. INTRODUCTION
Depth estimation, the process of preserving 3D informa-
tion of a scene using 2D information acquired by camera,
can proof beneficial for many challenging computer-vision
applications. Examples include human-machine interaction,
robotics, augmented reality, object detection, pose estima-
tion, semantic segmentation, and 3D reconstruction. Having
access to ground truth depth information is valuable for devel-
oping robust guidance systems in autonomous vehicles, envi-
ronment reconstruction, security, and image understanding

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino .

where it is desirable to determine the primary objects and
region with the imaged scene.

To this end, various methods have been developed to
capture depth measurements as well as to research depth
estimation using monocular or multi-view solutions, which
aim to find the distance between scene objects and camera
from a single or multiple point(s) of view relying on one or
more images.

This study presents a detailed overview of depth datasets,
depth loss functions, and their applications in the field of
computer vision. Starting with a brief description (litera-
ture, definitions), datasets are analyzed in terms of citations,
and then depth datasets are classified according to their
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applications, the important characteristics and properties of
each depth dataset are described and compared. Afterwards,
depth-based loss functions and a mixing strategy for depth
datasets are briefly discussed. Finally, state-of-the-art deep
learning-based depth estimation methods evaluations and
discussion about challenges and future research along with
recommendations for building comprehensive depth datasets
are presented.

A. APPLICATION CLASSES OF DEPTH DATASET
Datasets play a crucial role in scientific research, specifically
for artificial intelligence models, datasets are the building
block for analysing the performance and validating their
results. Different datasets contain data captured in differ-
ent environments (e.g., indoor vs outdoor scenes), of dif-
ferent objects, depth annotation types (relative, absolute,
dense, sparse), accuracies (laser stereo, time-of-flight, syn-
thetic data, structure-from-motion, human annotation), image
quality, size, and camera settings. Every dataset has its own
features and related problems and biases [1]. Large dataset
collections from internet sources have many issues including
quality of images, accuracy, and unknown camera parame-
ters [2], [3]. High quality datasets can play an important role
at enabling researchers to develop depth solutions for specific
computer vision depth problems [4], [5].

Depth datasets are classified into various categories
depending on particular task-based applications (i.e.,
indoor/outdoor, portrait/driver, half/full body scene, indoor
small room, large street scene, large indoor scene, land-
scape/cityscape, and medical). A map of per-pixel data con-
taining depth-related information is referred to as depth data.
A depth data object incorporates a disparity or depth map and
offers conversion methods, focus information, and camera
calibration data to help with rendering and computer vision
applications.

Structured light cameras, which give dense depth maps
up to 10 meters, are commonly used to collect indoor
depth information. They work by projecting a sequence of
known patterns onto an object, and the deformation resulting
from the object’s shape is then observed through a camera
from some other direction. Depth information can then be
extracted from the observed distortion’s disparity from the
original projected pattern. The original Kinect sensor, also
called Kinect v1, along with the Asus Xtion Pro, utilize this
approach for depth capture [6]. Another commonly used
technique is time-of-flight cameras, such as the Kinect v2,
which relies on measuring the round-trip time for an emitted
light using a sensor array and illumination unit [6]. Indoor
places include locations such as offices, labs, corridors, study
rooms, laboratories, and kitchens. Visual localization allows
for intriguing applications like robot navigation and aug-
mented reality by estimating the precise location of a camera.
This is particularly useful in indoor environments were other
localization technologies, such as Global Navigation Satellite
System (GNSS), fail. Indoor spaces impose interesting tasks
on visual localization methods (i.e., texture-less surfaces,

occlusions due to people, large view-point changes, repetitive
textures, and low light).

Outdoor depth datasets are typically collected with a spe-
cific application in mind such as autonomous vehicles and
generally captured with customized sensor arrays consisting
of multi or monocular cameras and Light Detection and
Ranging (LiDAR) scanners. Outdoor place categories include
street signs, forests, indoor/outdoor parking lots, urban areas,
roads, residential areas, and coast areas. The primary applica-
tions of outdoor depth datasets involve perception tasks in the
context of autonomous vehicles, semantic scene understand-
ing, and 3D reconstruction.

Human faces are one of the most prevalent features in
images, and thus are a key part of a lot of computer vision
tasks. It is widely known in human skeletal anatomy that the
eye-separation in a human face fall within a small range, thus
given information of a camera’s field-of-view, it is feasible
to calculate the distance-to-camera of a human subject with
reasonable accuracy [7]. Human facial depth datasets include
facial images, depth maps, images of the visible light spec-
trum (i.e., RGB), 3D depth maps, and head pose information.
Deep neural networks can be trained to detect age, face, and
gender using facial depth datasets, or to pick the optimum
type of image for a specific task, such as facial recognition.
It is also feasible to utilize data from people in random and
frontal orientations to see if a facial recognition system can
recognize faces from different perspectives [7], [8]. The face
recognition system is typically divided into two different
tasks in the computer vision field such face identification
and face verification. The former is based on a one-to-many
comparison to recognize the best match between a given face
and a set of possibilities. While the latter uses a one-to-one
comparison and can find whether the input item is of the same
person’s face or not.

Depth datasets created for a medical application consist
of multi-view frames, video, RGB, depth maps, calibration
parameters, 2D and/or 3D pose annotations, and human
bounding boxes. The data generated during surgeries can
be used for medical image analysis and machine learning
to observe, analyze, model and support staff activities and
clinician in the operating rooms.

Ideally researchers should combine multiple datasets dur-
ing training, validation, and testing to improve generalization,
but care is needed when combining datasets with differing
characteristics. The design and building blocks of the network
are important, but the performance of the network is mostly
determined by how it is trained which requires a diverse
dataset and a suitable loss function.

B. LOSS FUNCTIONS FOR DEPTH DATASETS
Another way to improve the deep network’s training results is
by introducing an appropriate loss function. The loss function
calculates the network output’s variance from the estimated
output which is used to adjust the parameters of the deep
network. This is achieved by backpropagating the error cal-
culated using the loss function to the first layer in the training
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process, changing the network’s weights at each iteration.
In the literature, several losses, architectures, and experi-
mental conditions are given, but it is difficult to determine
their relative influence on performance. An in-depth study
is proposed of different losses and experimental situation for
depth regression in this research.

A deep network must have a loss function. The loss func-
tion must be differentiable because of the back-propagation
stage used in deep learning systems, which relies on propa-
gating the gradients of the model’s error from the output layer
back towards the first layer. An in-depth study of various loss
functions for depth regression is proposed that can be used
for both short and long-range depth datasets.

C. RESEARCH CONTRIBUTIONS
This review aims to collect the available depth image datasets
using bibliometric research by providing detailed information
on the available datasets. Additionally, an easy and brief
description is presented for each of the datasets to provide
a basis for predicting depth estimation trends and explores
their sub-areas; dataset popularity helps in identifying study
areas that receive less attention.

The main scope of this study is to make it easier to navigate
among the depth datasets and common loss functions that
are frequently used in the depth estimation research. A list
of popular datasets is compiled by looking through the pub-
lications indexed by the web of science library and IEEE
Explore, as well as doing searches utilizing online search
engines. These datasets are classified into different use case
categories and present their detailed description such as (cam-
era tracking, scene reconstruction, tracking, semantic, pose,
video and recognition, streets, people i.e., identity recog-
nition/faces, medical depth-based applications, indoor and
outdoor scenes). The most popular datasets are highlighted,
together with bibliographic information (such as the number
of citations). Furthermore, different aspects of the datasets
are compared, common characteristics of popular datasets
are described, and key recommendations for generating depth
estimation datasets are suggested. The dataset description,
metadata, ground truth, and relevant information i.e. (year
of publication, ground truth information, size of the images,
type, objects per image and number of images) are all listed
in a structured way for each dataset. Also, each loss function
is described in a way that can help the research community
choose a right loss function for their specific tasks.

The authors hope to answer the following research ques-
tions based on the review. What are currently available
datasets for the depth estimation? What are the most com-
monly used datasets for depth estimation and what are their
distinguishing features?

How distinct are the features of such datasets and what are
their pros and cons when considering them for training by
machine learning (ML) algorithms? What are the most com-
monly used loss functions and how they influence the model
performancewhile training the depth estimations throughML

algorithms? What are the best practices for building a depth
estimation datasets?

The rest of the survey paper is organized as follows:
Section 2 describes related work, primarily other studies or
surveys in the field of depth estimation. The findings of a bib-
liometric study are provided in section 3. A comprehensive
review of depth datasets is presented in Section 4. Section 5
describes common characteristics of popular datasets. Top
five state-of-the-art (SoA) depth estimation methods on three
most popular datasets are presented in Section 6.In section 7,
popular depth estimation loss functions are studied. A brief
overview, relevant research, problems, and future research
prospects are presented in Section 8. A summary of the
current review is offered in section 9, while sections 10 and 11
make broad recommendations for creating new datasets to
achieve scientific importance and conclusion.

II. RELATED WORKS
In this section, a review of the current SoA research is
provided for depth datasets. Next, an overview of available
related depth estimation research and 3D reconstruction arti-
cles is presented, followed by depth from 2D, monocular, and
depth from Stereo & Multi-View depth datasets.

A. DEPTH DATASETS
The procedure of maintaining 3D information of a scene
using 2D information captured by cameras is referred to as
depth estimation. The authors in [8] presented a detailed
analysis of image-based depth estimation and 3D reconstruc-
tion. They provided details of existing systems, shortcomings,
and reconstruction approaches while briefly introducing five
publicly available datasets for depth estimation. However,
due to several limitations, particularly hardware (e.g., sensors
and optics limitations), the applicability of such datasets is
questionable for future research. The authors in [9] looked
at image segmentation research using deep learning with
details of five public depth datasets and briefly discussed
other segmentation datasets. The authors also point out sen-
sor limitations and future research directions, but they don’t
explain all the relevant datasets.

While the authors in [10] presented an analysis of a
method that combines ten datasets for monocular depth esti-
mation with results on ten datasets, a description for uti-
lizing the datasets, however, is not presented. An overview
of deep-learning algorithms for monocular depth estima-
tion using two public datasets was published in [11]; they
present the significance of using NYU-v2 and KITTI datasets
and argue that comprehensive testing with other datasets is
required.

Three types of depth estimation datasets were chosen and
described in [12] for understanding depth estimation models.

The application of deep learning algorithms with four
primary depth datasets for monocular depth estimation was
studied in [13]. However, some of the relevant datasets which
may influence the performance were not given much impor-
tance. The authors in [14] surveyed deep learning-based
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monocular depth estimation algorithms in the visible spec-
trum by describing a total of seven visible spectrum datasets.
Some of the existing review articles [15]–[20] focusing on
depth estimation either from single or multiple views, but the
accessibility of those datasets is unclear.

B. DEPTH ESTIMATION RESEARCH AND 3D
RECONSTRUCTION
One of themost useful intermediate representations for action
in physical environments is depth information, however,
activity depth estimation remains a challenging problem in
computer vision. To solve it, one must exploit many, some-
times, visual cues, subtle, short-range or long-range con-
text, along with their corresponding information. This calls
for learning-based methods. Depth estimation methods have
been shown in the SoA to be a potential solution to sev-
eral of problems [10], [11], [15]. Accurate depth estimation
approaches can help with understanding 3D scene geome-
try and 3D reconstruction, which is especially significant
in cost-sensitive applications and use case applications [16].
A comprehensive review of 3D reconstruction research is
proposed in [8], which focuses on the work that uses deep
neural network-basedmethods to estimate the 3D shape either
from single or multi-view images [21].

C. DEPTH FROM 2D, MONOCULAR IMAGES
Estimating depth information from 2D images is one of the
most important problem in the field of computer vision and
image processing. Depth information can be applied in 2D
to 3D reconstruction, scene refocusing, scene understand-
ing, depth-based image editing, and 3D scene conversion.
The problem of monocular depth estimation is currently
best tackled with convolutional neural networks due to their
properties that can be used particularly in cost-sensitive
applications [22]. SoA monocular depth methods have been
reviewed in [11], [17], [18], [23]–[25], which focus on both
non-deep learning and deep learning methods.

D. DEPTH FROM STEREO & MULTI-VIEW
Depth from stereo or multi-view can be obtained by using
two or more cameras. The main idea is that triangulation
and stereo matching can be used to estimate the depth,
which can be utilized in various tasks such as robotic navi-
gation, different object grasp, collision avoidance, or broad-
casting and multimedia. Various methods have been studied
in [2], [4], [8], [20], [26] that focus on depth estimation from
both stereo and multi-view images.

III. METHODOLOGY FOR REVIEWING DEPTH DATASETS
AND LOSS FUNCTIONS EMPLOYED IN LITERATURE
Utilizing the most suitable dataset for a given task is a basic
assumption for the effective training and validation of any
scientificmethod. In the domain of depth estimation research,
the lack of publicly available depth estimation datasets and
loss functions present challenges for researchers for their
specific task or use-case.

This section aims to provide an in-depth explanation of
the methodology used to search for and collect more than 40
popular datasets and loss functions which is presented in this
review. The authors defined popularity based on the citation
rank within the research areas and provide a detailed list of
collected datasets and loss functions, as well as reviewed
papers, in subsequent sections.

A. EXPLORING THE IMAGE DEPTH RELATED RESEARCH
There are numerous literature sources related to depth estima-
tion. This study focuses on research publications that involve
depth estimation tasks such as smart mobility-based road
navigation, object detection, 3D reconstruction, robotics, and
self-driving cars. The searchmethodology illustrated in Fig. 1
is adopted as to concentrate on the most relevant papers
as well as leverage popular libraries and search tools such
as Web of Science, Google Scholar, and IEEE Engineering
online libraries.

Keywords such as ‘‘depth estimation and 3D reconstruc-
tion’’, ‘‘depth datasets, databases’’, ‘‘monocular and multi
view depth estimation methods’’ were used as search criteria
which helped in identifying 634 relevant journal papers. The
selection of papers was based on three main factors: (i) Com-
puter vision, engineering, deep learning, imaging technol-
ogy, autonomous vehicles and robotics, 3D reconstruction,
(ii) Science citation index, and (iii) English language.

B. PRIMARY STUDIES AND ASSESSMENT OF RESEARCH
QUALITY
Following the research methodology (Fig. 1), the initial filter
search using the datasets keyword retrieved 321 results for
depth datasets and 212 results for loss functions out of 634
papers, the results were further analysed by title and abstract
which filtered out 145 and 104 research articles respectively.
Next, it is analysed that the text with the criteria being the
selection of those articles in which the authors discussed at
least one depth image datasets and loss function, carried out
manually by reading the selected research articles. Such anal-
ysis helped in further reducing the number of papers to 92 and
80, which were further filtered down to the most relevant 52
and 48 articles using full-text-based selection criteria. As per
the last stage’s criteria, the following categories of articles are
excluded:

1. Those publications that are not directly related to depth
estimation research. Examples include studies on 3D
reconstruction or segmentation tasks datasets.

2. Reproductions or the same research work appearing in
several places.

3. Studies that are concerned with human depth but do not
make use of any depth datasets (e.g., review studies).

C. ANALYSIS OF THE MOST RELEVANT DATASETS
The methodology discovered that about 61% of the total
papers in this domain considered at least one dataset in their
experimental study. Additionally, 51% of the publications
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FIGURE 1. An illustration of the methodology adopted for conducting the survey categorizes depth estimation databases and
the loss functions.

considered two or more than two datasets. Fig. 2 shows the
results, where it is highlighted that the overall number of cita-
tions for the most popular datasets. The figure indicates that
the most highly ranked depth datasets are KITTI, Cityscapes,
and NYU-V2, with a citation count of 141, 94, and 78 in 120,
70, and 52 papers, respectively. This implies that about 25%
of the studies considered these datasets for depth estimation
tasks. These datasets are considered benchmark datasets in
about 242 (77%) research studies.

The descriptions and comparisons of numerous crite-
ria used to assist in navigating current publicly available
datasets are presented by focusing on the usefulness of the
datasets for specific study areas. The nature of the data
imposes several restrictions on the availability of the datasets
to the public. To assess the current availability of each
dataset, their accessibility, in terms of access and obtain-
ing a copy, is confirmed manually by the authors for each
dataset. The test for access to each of the datasets included

checking free access and an email-based inquiry to the host
institution.

IV. PUBLICLY AVAILABLE DEPTH ESTIMATION
DATASETS
This section presents an overview with tabular summaries of
themost widely used image depth datasets and classifies them
into different use case applications.

Numerous interesting datasets are available for training
depth estimation models for both multi-view and monocular
images. The datasets general metadata includes details on
the number of objects, scenes, and the number of RGB and
depth images. The ground truth includes different types of
knowledge available in each dataset, including depth, mesh,
camera trajectories, video, poses, point cloud, semantic label,
trajectory, and dense multi-class labels.

With the growth (evolution) in image depth estimation
research, increasing efforts are made in generating larger and

FIGURE 2. Mag an illustration of database according to the number of citations in each year from 2017 to 2021. The number against each database
represents the total citations in each year.
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FIGURE 3. The amount of depth datasets released each year, with
predicted releases in 2021 represented as a dashed line.

more ambitious depth estimation datasets. One growing trend
is the increasing number of new publicly available depth
estimation datasets becoming available each year over the last
ten (10) years. This trend is shown in Fig. 3. A structured
taxonomy showing the importance of the depth estimation
datasets is given in Fig. 4. The datasets are further divided into
different environments (i.e., real/synthetic indoor/outdoor,
static indoor/outdoor, and real/rendered facial) in Figure 4.

Large and diverse training sets are required for depth esti-
mation. Since obtaining pixel accurate ground-truth depth at
scale in a range of circumstances is challenging, different
datasets with specific characteristics and biases have been
proposed.

A. THE TYPE AND REPRESENTATIONS OF DATA
There are different types (i.e., alphanumeric, text, image,
video, point cloud, mesh, voxel) and representations of data
such as (stereo 2D, 2.5D, 3D) that are used to analyse the
scenes from different perspectives (e.g., angles).

The most up-to-date depth datasets are divided into many
use case applications, such as (camera tracking, scene recon-
struction, tracking, semantic, pose, video, streets, people
i.e., identity recognition and faces, and medical depth-based
applications, indoor and outdoor scenes). A detailed compar-
ative analysis for various data representations is provided in
Table 1.

Moreover, as some datasets contain data of various types
and categories, Table 2 – 11 tabulates a comparative study
for the data present in each dataset using the following
labels:
• RGB: 2-dimensional visible light spectrum images.
• Depth: generic term for a map of per-pixel data contain-
ing depth-related information. A depth map describes at
each pixel the distance to an object (e.g., distance from
camera).

• Video: sequence of temporally consecutive visual read-
ings.

• Point cloud: data composed of a collection of points
representing a 3-dimensional shape, where each point
has at least an x, y, z coordinate.

• Mesh: polygon-based representation of 3-dimensional
shapes that directly captures topology and shape surface.

• Scene: data recording some environment such as a room.
• Semantic: labels mapping some data to a class in some
ontology (e.g., human, vehicle, etc.).

• Object: data capturing features of objects such as shape
or motion. Suitable for tasks such as object classification
or tracking.

• Camera: data that can be used to track the camera’s
geometrical features.

• Action: data recording subjects performing certain
actions.

FIGURE 4. Organized classification of depth datasets studied in this paper, which shows different use case applications
of each categories.
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TABLE 1. Comparison between data representations.

• Trajectory: data capturing the path of motion or action
being performed by some object or entity.

• Pose: data specifying human pose information, such as
head pose.

B. DEPTH DATASETS FOR PEOPLE DETECTION AND
ACTION RECOGNITION
Datasets that capture people doing different tasks like walk-
ing and acting as well as human recognition and activity depth
datasets can play an important role. By employing depth map
people datasets, the goal is to recognize the subject’s identity,
gender, or other qualities and activities.

1) RGB-D PEOPLE
The RGB-D people dataset [27] contains over 3,000 RGB and
depth frames collected from three Kinect sensors mounted
vertically in a university hall. The data is comprised of
up-right walking and standing humans seen from various
angles with various degrees of occlusion. The data is gathered
in a middle position (i.e., the lobby of a large canteen) by
observing people’s unscripted behaviour during lunch time.
The video sequences are captured at 30Hz using a set of three
Kinect v1 sensors vertically joined (1300x 500 field of view).
This capturing device is around 1.5 meters away from the
ground. It ensures that the three images are captured in a
synchronized and simultaneous manner while also reducing
IR projector crosstalk between the sensors. To reduce sensor
biases, certain background samples are taken from another
building on the College campus. Occlusions between people
is present in most sequences to make the data more realistic.
Following the ground truth, all frames aremanually annotated
with bounding boxes in 2D depth image space and subject
visibility position. A total of 1,088 frames, including 1,648
instances of persons, have been labelled to smooth the evalu-
ation of individual detection systems.

2) TST FALL DETECTION V2
During the simulation of Activities of Daily Living (ADLs)
and falls, the dataset [28] contains depth frames and skeleton
joints collected using Microsoft Kinect v2 and acceleration
samples provided by an inertial measurement unit (IMU).

The ADLs dataset is simulated for 11 young actors. The
actions listed below are included in the ADL category:

the actor sits in a chair; the actor walks and grabs an object
from the floor; the performer takes a walk back and forth;
the actor lies down on the floor. The following actions are
included in the category of fall: In the front, the actor falls
to the ground and lies down; at the back, the actor falls
backward and ends up lying; at the side, the actor falls to
the side and ends up lying; EUpSit, the actor falls backward
and ends up sitting. Each actor performed each action three
times, resulting in a total of 264 sequences. The following
information is provided for each sequence: Two raw accel-
eration streams, provided by IMUs constrained to the actor’s
waist and right wrist; skeleton joints in depth and skeleton
space, captured by Microsoft SDK 2.0; depth frames with
a resolution of 512 × 424, captured by Kinect v2; timing
information, timestamps of Kinect frames and acceleration
samples, useful for synchronization.

3) WEB STEREO VIDEO
The web stereo video dataset can be used for depth from
monocular video sequences containing a large number of
non-rigid objects, such as people. To learn non-rigid scene
reconstruction cues, [2] includes 553 stereoscopic videos
from YouTube. This dataset contains a wide range of scene
types as well as several non-rigid features.

4) MANNEQUIN CHALLENGE
In-wild recordings of people in static poses as a handheld
camera pan around the environment are available in the man-
nequin challenge dataset [29]. The dataset is split into three
parts for training, validation, and testing. The mannequin
challenge is a film collection of people replicating man-
nequins by freezing in a variety of natural poses as a hand-
held camera covers the scene. More than 170K frames and
associated camera postures were retrieved from around 2,000
YouTube videos in the dataset. SLAM and bundle adjustment
techniqueswere used to calculate the camera poses. TheMan-
nequin Challenge dataset has been used to train the model for
predicting dense depth maps from common video with the
camera and participants in the scene moving.

5) MHAD
Except for one senior person, the Berkeley Multimodal
Human Action Database (MHAD) [30] contains 11 acts done
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by 7 male and 5 female subjects between the ages of 23
and 30. All the individuals repeated each action five times,
resulting in about 660 action sequences and 82 minutes of
total recording time. In addition, they recorded a T-pose for
each subject which can be used for the skeleton extraction; as
well as the background data (i.e., with and without the chair
used in some of the activities). Actions with movement in
both upper and lower extremities, such as jumping in place,
jumping jacks, and throwing; actions with high dynamics
in upper extremities, such as waving hands and clapping
hands; and actions with high dynamics in lower extremities,
such as sitting down and standing up, are included in the
specified set of actions. The subjects were given instructions
on what action to complete before each recording, but no
exact specifics on how the activity should be carried out were
supplied (i.e., performance style or speed). As a result, some
of the activities have been performed in a variety of styles
by the individuals (e.g., punching, throwing). Depth data
is collected using two Microsoft Kinect v1 sensors placed
in opposite directions to prevent active pattern projection
interference.

6) UR FALL DETECTION
The dataset [31] has 70 sequences (30 falls + 40 activi-
ties of daily living). Falling events are captured using two
Microsoft Kinect v1 cameras and accelerometric data. Only
one device (camera) and an accelerometer are used to record
ADL actions. PS Move (60Hz) and x-IMU (256Hz) devices
were used to collect sensor data.

7) MOBILE-RGBD
On the mobile platform, MobileRGBD is a corpus dedicated
to low-level RGB-D dataset [32]. It flipped the traditional
corpus recording paradigm on its head. The goal is to make
ground truth annotation and record reproducibility easier in
the face of speed, trajectory, and environmental changes.
To portray static users in the environment, they utilized dum-
mies that do not move between recordings. It is feasible to
record the same motion multiple times to validate the impact
of detecting algorithms at different speeds. This benchmark
corpus is for low-level RGB-D algorithms such as 3D-SLAM,

body/skeleton tracking, and face trackingwith amobile robot.
Depth data was collected using a Kinect v2 sensor.

C. DEPTH DATASETS FOR FACES AND POSES
Aside from providing a low-cost camera sensor that produces
both RGB and depth information, the depth camera sensor
also allows a faster human-skeletal tracking. This tracking
technique can offer the exact location of human body joints
across time, making analyses of complex human behaviours
simpler and faster. As a result, deducing human faces from
depth images or combining depth and RGB images has
received much attention. In recent years, several of these new
depth datasets have been developed to help in the verification
of human facial activity analysis techniques.

1) BIWI
BIWI dataset [33] with over 15K images of 20 people
(6 females and 14 males - 4 people were recorded twice).
A depth image, the associated RGB image (both 640 × 480
pixels), and the annotation are provided for each frame. The
range of head poses is approximately + − 75 degrees yaw
and + − 60 degrees pitch. The ground truth is provided in
the form of the head’s 3D location and rotation. Depth data is
acquired using a Kinect v1 sensor.

2) EURECOM KINECT FACE
The multimodal face images of 52 persons (14 females, 38
males) acquired by Kinect v1 are included in the Dataset [34].
The data was collected in two sessions at different times
(about half a month). In each session, the dataset provides
the facial images of each person in 9 states of different facial
expressions, lighting, and occlusion conditions: neutral face,
smiling, open mouth, strong illumination, occlusion of eyes
by sunglasses, occlusion of mouth by hand, occlusion of side
of face by paper, right profile, and left profile. The RGB
color image, the depth map (given in two forms of the bitmap
depth image and the text file containing the actual depth levels
sensed by Kinect), and the 3D image are all produced in three
formats. The dataset also includes manual landmarks for six
facial positions: left eye, right eye, the tip of the nose, left
corner of the mouth, right corner of the mouth, and the chin.

TABLE 2. Depth datasets for people detection and action recognition.
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TABLE 3. Properties of depth datasets for people detection and action recognition.

3) PANDORA
The Pandora dataset [35] has 250K full-resolution RGB and
depth images, obtained from a Kinect v2 sensor, as well as
their annotations. For head centre localization, head pose
estimation, and shoulder pose estimation, the Pandora dataset
is frequently utilized.

4) FACESCAPE
The FaceScape dataset [36] contains large-scale and high-
quality 3D face models, parametric models, and multi-view
images. The camera settings, as well as the subjects age
and gender, are all included. The information has been made
available to the public for non-commercial research purposes.
The FaceScape dataset contains 18,760 textured 3D faces,
eachwith 20 distinct expressions, captured from 938 subjects.
The pore-level facial geometry is also processed to be topo-
logically uniformed in the 3Dmodels. For rough shapes, these
fine 3D facial models can be represented as a 3D morphable
model, and for detailed geometry, as displacement maps.
Using a deep neural network to learn the expression specific
dynamic features, a novel approach is proposed that takes
advantage of the large-scale and high-accuracy dataset.

5) 3DMAD
The 3D Mask Attack Database [37] (3DMAD) is a database
for spoofing biometric (facial) data. It contains 76500 frames
of 17 people captured with Kinect v1 for real-time spoofing
attacks. A depth image (640× 480 pixels – 1× 11 bits), the
corresponding RGB image (640 × 480 pixels – 3 × 8 bits),
and carefully labelled eye positions make up each frame (con-
cerning the RGB image). For each person, data is collected
in three separate sessions such that in each session capturing
five 300-frame recordings. The recordings are conducted in
a controlled environment with a frontal view and neutral
expression. The first two sessions are dedicated to real-world
samples, in which individuals are recorded with a two-week
gap between captures. A single operator captures 3D mask
attacks in the third session (attacker).

D. PERCEPTION-BASED NAVIGATION DEPTH DATASETS
(i.e., STREET SIGNS, ROADS)
The peripheral vision of humans enables them to observe
more than just the focused objects, and their visual system
is capable of immediately analysing various characteristics
of the observed objects, such as distance, shape, motion, etc.
But this is not the case with robots and other computer-based
agents. Their vision relies upon the complex structure of hard-
ware cameras and software with complicated mechanisms

for panoramic sight and perceiving depths. Due to the wide-
screen views and blurred depth perception, robotics such
as drones and self-driving cars typically lack the ability to
provide valuable feedback as they navigate.

1) KITTI
KITTI [38] is one of the most often used datasets in mobile
robots and self-driving cars. It contains hours of videos of
traffic scenarios captured with a range of sensor modalities,
including high-resolution RGB and grayscale stereo cameras,
as well as a 3D laser scanner (LiDAR). The dataset itself
does not contain ground truth for semantic segmentation.
However, various researchers have annotated parts of the
dataset manually to meet their needs. The authors in [39]
created ground truth for 323 images from the road detection
challenge, divided into three categories: road, vertical, and
sky. The work in [40] annotated 252 (140 for training and 112
for testing) acquisitions, RGB and Velodyne LiDAR scan,
from the tracking challenge for ten object categories includ-
ing building, sky, road, vegetation, sidewalk, car, pedestrian,
cyclist, sign/pole, and fence. The authors in [41] labelled 170
images for training and 46 images for testing (from the visual
odometry challenge) with 11 classes: building, tree, sky, car,
sign, road, pedestrian, fence, pole, sidewalk, and bicyclist.

2) CITYSCAPES
The Cityscapes dataset [42] is a large-scale dataset ded-
icated to the semantic evaluation of urban street scenes.
It includes semantic, instance-based, and dense pixel anno-
tations for 30 classes divided into eight groups (i.e., flat
surfaces, humans, vehicles, constructions, objects, nature,
sky, and void). Around 5,000 finely annotated images and
20,000 coarsely annotated images make up the dataset. The
data was collected in 50 places for several months, during
daylight hours and under favourable weather circumstances.
It was originally shot on video; therefore, the frames were
hand-picked to include a large number of dynamic objects,
a dynamic scene layout, and a changing background. It also
contains 5,000 polygonal annotations, 5,000 volume anno-
tated images for both fine and course annotations, video
frames, GPS coordinates, Ego-motion, and outside temper-
ature data from the vehicle sensor and odometry. In terms of
diversity, cityscapes are one of the most popular benchmark
datasets.

3) DRIVING STEREO
DrivingStereo is a large-scale stereo dataset [43] that was
created. It is hundreds of times larger than the KITTI stereo
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TABLE 4. Depth datasets for faces and poses.

TABLE 5. Properties of depth datasets for faces and poses.

dataset, with over 180k images covering a wide range of
driving scenarios. A model-guided filtering technique from
multi-frame LiDAR points produces high-quality disparity
labels. Deep-learning models trained on the DrivingStereo
dataset achieve higher generalization accuracy in real-world
driving scenes than models trained on other datasets. The
dataset contains left and right images along with disparity
maps and depth maps. The total number of images 182188
is further divided into 174437 for training and 7751 pairs for
testing.

4) KITTI-DEPTH
The depth maps from projected LiDAR point clouds were
matched against the depth estimation from the stereo cameras
in the KITTI-depth dataset [44]. It contains 93K depth maps
with corresponding raw scene and RGB images captured with
LiDAR aligned with the raw KITTI Dataset. On the bench-
mark server, there are 86k training images, 7k validation
images, and 1k test set images. This dataset will enable the
training of advanced deep learning models for the problems
of depth completion and single image depth prediction.

5) UASOL
The UASOL RGB-D stereo dataset [45] has 160,902 frames
captured in 33 separate scenes with between 2k and 10k
frames each. The frames represent different pathways, such
as sidewalks, trails, and roadways, as seen through the eyes
of a pedestrian. The images were extracted fromHD2K video
files having a resolution of 2280 × 1282 pixels and a frame
rate of 15 frames per second. Each second in the sequences
has a GPS geolocation identifier, and the dataset reflects
various climatological circumstances. It also involves up to
four people photographing the dataset several times during
the day.

6) DDAD
DDAD is a new autonomous driving dataset [25] from the
Toyota Research Institute (TRI) for long-range (up to 250m)

and dense depth estimation in challenging and diverse urban
environments. It includes monocular movies as well as accu-
rate ground-truth depth (over a full 360-degree field of view)
generated by high-density LiDARs placed on a fleet of
self-driving automobiles driving across the United States.
Scenes from cities in the United States (San Francisco, Bay
Area, Cambridge, Detroit, Ann Arbor) and Japan (Tokyo,
Odaiba) appear in DDAD.

7) DENSE
DENSE (Depth Estimation on Synthetic Events) [46] is a
novel dataset with pixel accurate ground truth. The camera
specifications are set to imitate the MVSEC event camera,
which has a sensor size of 346 × 260 pixels and a horizontal
field of view of 83 degrees. DENSE is divided into five
training sequences, two validation sequences, and one testing
sequence. Each sample is a tuple containing one RGB image,
the stream of scenes between 2 subsequent images, ground
truth depth, and segmentation labels. Each sequence has 1000
samples at 30 frames per second.

8) HEADCAM
This dataset [47] features panoramic video captured while
riding a bike around suburban Northern Virginia with a
helmet-mounted camera. The videos were used to test an
unsupervised learning system for estimating depth and ego
motion. The videos are saved as.mkv video files with lossless
H.264 compression.

E. OBJECT AND SCENE RECOGNITION DEPTH DATASETS
Object recognition determines whether the input image con-
tains the pre-defined object, while scene recognition labels
all objects in a scene in a dense manner. With the help of
object recognition methods, one can distinguish the differ-
ences between objects and determine many distortions that
might occur such as different occlusions levels, illumination
variations, and reflections. Combining RGB and depth infor-
mation could potentially improve the robustness of the feature
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methods. Several depth datasets are generated for different
tasks in depth object and scene recognition.

1) NYU-D V2
NYU-DV2 [48] is mainly composed of video sequences from
a variety of indoor environments captured by the Microsoft
Kinect v1 RGB and depth cameras. It consists of 1,449
richly annotated pairs of aligned RGB and depth images from
over 450 scenes across three cities. A class and an instance
number are assigned to each object (e.g., cup1, cup2, cup3,
etc.). There are also 407,024 unlabelled frames in the col-
lection. In comparison to other datasets, this one is relatively
small. This dataset was used as a benchmark for indoor depth,
segmentation, and classification in the representative study
work.

2) SCANNET
ScanNet [49] is an indoor RGB-D dataset that includes both
2D and 3D data at the instance level. Rather than points or
objects, it is a collection of labelled voxels. ScanNet v2, the
most recent version of ScanNet, has collected 1513 annotated
scans with a surface coverage of over 90%. This dataset is
divided into 20 classes of annotated 3D voxelized objects for
the semantic segmentation challenge.

3) SUN3D
SUN3D includes [50], a large-scale RGB-D video database
with 8 annotated sequences. Each frame contains a semantic
segmentation of the scene’s features in conjunction with the
information on the camera’s position. It is made up of 415
segments captured in 254 distinct locations across 41 dif-
ferent buildings. Furthermore, several locations have been
photographed multiple times throughout the day. Depth
acquisition was performed using the Asus Xtion Pro Live
which utilizes depth from structured light technology.

4) SUN RGB-D
There are 10335 realistic RGB-D images of room scenes in
the SUN RGB-D dataset [51]. Each RGB image has a depth
and segmentationmap that corresponds to it. There are almost
700 different objects with labelled categories. There are 5,285
and 5,050 images in the training and testing sets, respec-
tively. The entire dataset is fully annotated, including 146,617
2D polygons and 58,657 3D bounding boxes with detailed
object orientations, as well as a 3D room layout and scene
categorization. This dataset allows us to train data-hungry
scene-understanding algorithms, evaluate them using direct
and relevant 3D metrics, minimize overfitting to a limited
testing set, and investigate cross-sensor bias. Four sensors,

TABLE 6. Perception-based navigation depth datasets (i.e., street signs, roads).

TABLE 7. Properties of perception-based navigation depth datasets (i.e., street signs, roads).
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leveraging three different depth technologies, were used for
gathering depth data: Intel RealSense (depth-from-stereo),
Kinect v1 and Asus Xtion (structured light), and Kinect v2
(Time-of-Flight).

5) MEGADEPTH
The MegaDepth dataset [52] contains 196 distinct locations
reconstructed usingCOLMAPStructure-from-Motion/Multi-
View Stereo (SfM/MVS) for single-view depth prediction.
This dataset generates training data from multi-view Internet
photo collections, a virtually limitless data source, using
sophisticated SfM and MVS algorithms, and presents a large
depth dataset named MegaDepth. Data obtained by MVS has
its own set of difficulties, such as noise and unreconstructed
objects. These issues are addressed by new data cleaning
methods, as well as automatically enriching data with ordinal
depth relations obtained by semantic segmentation.

6) DIODE
DIODE (Dense Indoor/Outdoor DEpth) [53] is the first stan-
dard dataset for monocular depth estimation that includes a
variety of indoor and outdoor scenarios captured with the
same hardware setup. There are 8,574 indoor and 16,884
outdoor samples in the training set, each with 20 scans. The
validation set consists of 325 indoor and 446 outdoor samples
obtained from ten separate scans. The indoor training and
validation splits have a ground truth density of around 99.54
percent and 99.54 percent, respectively. With 67.19 percent
for training and 78.33 percent for validation subsets, the
density of the outdoor sets is naturally lower. The datasets
ranges are 50m and 300m indoors and outdoors, respectively.
Depth data is acquired using the FARO LiDAR.

7) MIDDLEBURY
The Middlebury Stereo dataset [54] contains pixel-accurate
ground-truth disparity data and high-resolution stereo
sequences with complicated geometry. The ground-truth dis-
parities are obtained using a unique technique that uses struc-
tured illumination and does not require the light projectors for
calibration. The Middlebury dataset, which contains 38 real-
istic indoor scenes taken through a structured light scanner,
was one of the first datasets for stereo matching. A modified
version of the Middlebury dataset with 33 new indoor scenes
presented to provide a more accurate annotation at a reso-
lution of 6 Megapixels. They are, however, generally small
in size due to the difficulty and expensive cost of creating
such exact and dense stereo datasets, which also leads to
the problem of low variability. In an indoor setting with
controlled lighting, the scenes are limited.

8) EDEN
EDEN (Enclosed garDEN) is a synthetic multimodal dataset
for nature-oriented applications [55]. More than 300,000
images were captured from more than 100 garden models in
the dataset. Semantic segmentation, depth, surface normals,

intrinsic colours, and optical flow are among the low/high
level vision modalities labelled on each image.

9) INRIA DLFD
The INRIA Dense Light Field Dataset (DLFD) [55] is a
light field dataset for testing depth estimation methods. There
are 39 scenes inDLFDwith a disparity range of [−4,4] pixels.
The light fields have a 512 × 512 spatial resolution and
a 9 × 9 angular resolution.

10) SUNCG
The SUNCG dataset [56] contains 45,622 scenes with realis-
tic room and furniture layouts that were generated manually
using the Planner5D platform. Planner5D is a web-based
interior design tool that lets users construct multi-floor room
layouts, add furniture from a library, and arrange it in the
rooms. After deleting duplicated and empty scenes, a simple
Mechanical Turk cleaning operation was used to improve the
data quality. During the work, the authors display a set of top
view renderings of each level and ask the participants to vote
on whether or not this is a valid apartment floor. They take
three votes for each floor, and a floor is considered valid if it
receives at least two positive votes. They have 49,884 valid
floors, 404,058 rooms, and 5,697,217 object instances from
2,644 unique object meshes containing 84 categories in the
end. They also manually assigned category labels to all the
library items.

11) STANFORD 2D-3D
The Stanford 2D-3D dataset [49] collects mutually regis-
tered modalities from 2D, 2.5D, and 3D domains, as well
as instance-level semantic and geometric annotations, across
six indoor areas. It includes more than 70,000 RGB images,
as well as depths, surface normals, semantic annotations,
global XYZ images, and camera information. Depth data
was collected using the Matterport camera, which combines
3 structured-light sensors at different pitches to capture 18
RGB and depth images during a 360◦ rotation at each scan
location.

12) MATTERPORT3D
The Matterport3D dataset [57] is a big RGB-D dataset that
can be used to analyze scenes in indoor areas. It is made up
of 194,400 RGB-D images and features 10,800 panoramic
views inside 90 real building-scale sceneries. Surface con-
struction, camera postures, and semantic segmentation are all
annotated in each scene, of a residential building with many
rooms and floor levels. The Matterport camera is also used
for this dataset.

13) TASKONOMY
Taskonomy [58] offers a vast and high-quality dataset of
various indoor environments. This dataset contains compre-
hensive pixel-level geometry information via alignedmeshes,
as well as semantic information, derived from ImageNet,
MS COCO, and MIT Places, camera positions, complete
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camera intrinsic parameters, and high-quality images, mak-
ing it three times the size of ImageNet. This is accomplished
by searching a latent space for (first and higher order) transfer
learning dependencies across a dictionary of twenty-six 2D,
2.5D, 3D, and semantic tasks.

14) ETH3D
ETH3D is a MVS benchmark/3D reconstruction benchmark
that covers a wide range of indoor and outdoor environ-
ments [4]. A high-precision laser scanner was used to gen-
erate ground truth geometry. Images were captured using
a DSLR camera and a synchronized multi-camera system
with variable field-of-view. Instead of carefully construct-
ing scenes in a controlled laboratory environment as in
Middlebury, ETH3D provides the full range of challenges of
real-world photogrammetric measurements. However, it still
suffers from a lack of data samples and variability.

15) 2D-3D MATCH
The 2D-3D Match dataset [59] is a novel 2D-3D correspon-
dence dataset that takes advantage of the availability of vari-
ous 3D datasets from RGB-D scans. The data from SceneNet
and 3DMatch are specifically utilised. There are 110 RGB-D
scans in the training dataset, with 56 images from SceneNet
and 54 scenes from 3DMatch. The following is how the 2D-
3D correspondence data is generated. A set of 3D patches
from various scanning viewpoints is extracted from a 3D
point randomly sampled from a 3D point cloud. Each 3D
patch’s 3D position is re-projected into all RGB-D frames
for which the point lies in the camera frustum, taking occlu-
sion into consideration, to find a 2D-3D correlation. Around
the re-projected point, the matching local 2D patches are
extracted. Around 1.4 million 2D-3D correspondences are
collected in total.

16) 3D60◦

360◦ [60] repurposed newly released large scale 3D datasets,
rendering them to 360, and creating high-quality 360 datasets
with ground truth depth annotations. 3D60 is a collection
of datasets created as part of multiple 360◦ vision research
projects (Matterport-3D, Stanford 2D-3D, SunCG). It con-
sists ofmulti-modal stereo representations of scenarios gener-
ated from large-scale 3D datasets, both realistic and synthetic.

17) MINNAV
MinNav is a synthetic dataset based on the sandbox game
Minecraft [61]. To generate rendered image sequences with
time-aligned depth maps, surface normal maps, and cam-
era poses, the dataset employs multiple plug-in applications.
Because of the big gaming community, there is an extremely
large number of 3D open-world environments where players
can identify acceptable shooting locations and create data
sets, as well as create scenes in-game. Sildur renders 300
monocular color images for each camera trajectory, which are
stored as 8-bit PNG files with lossless compression. The fps

is being adjusted from 10 to 120 and render at 800×600 with
fov=70 and fps=10.

18) MAKE3D
The Make3D dataset [62] is a monocular depth estimation
dataset with 400 single training RGB and depth map pairs
and 134 test samples. While the RGB images have a high
resolution, the depth maps have a low resolution of 305× 55
generated from a custom 3D laser scanner.

19) TUM RGB-D
TUM RGB-D [63] is an RGB-D indoor dataset that contains
colour and depth images from a Microsoft Kinect v1 sensor
along with the sensors ground-truth trajectory. The data was
captured at a full-frame rate (i.e., 30 Hz) and with a sensor
resolution of 1 megapixel (i.e., 640× 480). A high-accuracy
motion-capture system with eight high-speed tracking cam-
eras provided the ground-truth trajectory (i.e., 100 Hz).

F. DEPTH DATASETS FOR MEDICAL APPLICATIONS
In the last decade, medical recognition utilizing depth maps
has seen significant research. As a result, depth maps-based
medical methods are being employed for various applica-
tions, including monitoring of radiation in image-guided
interventions to decrease surgical stuff exposure to X-rays,
endoscopic surgeries for real time safety monitoring, and
navigation analysis to support ultrasound procedures. Various
datasets have been generated to address different medical
task-based applications.

1) ENDOSLAM
The endoscopic SLAMdataset [64] (EndoSLAM) is a dataset
for endoscopic video depth estimation. This includes 3D
point cloud data for six porcine organs, capsule and standard
endoscopy recordings, synthetically produced data, and clini-
cally used conventional endoscope recordings of the phantom
colon with computed tomography (CT) scan ground truth.

2) MVOR
The Multi-View Operating Room (MVOR) dataset [65] con-
sists of 732 multi view frames captured by three RGB-D
cameras (Asus Xtion Pro). Every frame consists of three
RGB and depth images. The data was sampled from four
days of recording in room at the hospital during vertebro-
plasty and lung biopsy. There are in total 2,926 2D key point
annotations, 4,699 bounding boxes and 1,061 3D key point
annotations.

3) Cholec80
The Cholec80 dataset [66] consists of 80 videos for chole-
cystectomy surgeries performed by different surgeons. The
videos were shot at a frame rate of 25 frames per second.
The timing (at 25 frames per second) and tool presence anno-
tations are included in the dataset (at 1 fps). The dataset is
divided into two equal-sized subgroups (i.e., 40 videos each).
There are around 86K annotated images in the first subset.
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TABLE 8. Object and scene recognition depth datasets.

TABLE 9. Properties of object and scene recognition depth datasets.

Ten videos from this selection have also been thoroughly
annotated with tool bounding boxes. The evaluation subgroup
(the second subset) is utilized to put the algorithms for tool
presence detection and phase recognition to the test.

4) xawAR16
The xawAR16 dataset [67] is multi-view RGB-D camera
dataset that was created in an operating room (IHU Stras-
bourg) to test the tracking and relocalization of a hand-held
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moving camera. To create such a dataset, three RGB-D cam-
eras (Asus Xtion Pro Live) were employed. Two of them
are fixed to the ceiling in such a way that they may capture
views from both sides of the operating table. A third is
attached to a display that is moved around the room by a user.
A moving camera is fitted with a reflecting passive marker,
and its ground-truth pose is determined using a real-time
optical 3Dmeasuring system. The dataset consists of 16 time-
synchronized color and depth images in full sensor resolution
(640 × 480) captured at 25 frames per second, as well as
ground-truth positions of the moving camera measured at 30
frames per second by the tracking device. Each sequence
includes occlusions, motion in the scene, and sudden per-
spective shifts, as well as varied scene layouts and camera
movements.

G. EXPLANATION AND DATASETS COMPARISON
This section demonstrate brief comparision of depth datasets
from several aspects. For an easy access, all the datasets are
ordered by year; table 6 shows some features including the
name of the datasests, the year of creation, ground truth type,
size, objects per image in the dataset, type, and number of
images. In terms of popularity of the datasets, the authors
ranked the datasets based on the number of citations. The
datasets that are available freely and with longer history
always have more citations than the newer ones. Particularly
Kitti, Cityscapes, Nyu-v2, Sun-RGB-D, Make3D, SceneNet,
SunCG all have high number of citations compared to the
rest of the datasets. However, it does not necessarily mean
that the old datasets are better than the new ones. In terms
of the baseline evaluation datasets for depth estimation, Kitti,
Cityscapes, Nyu-v2 are the commonly used benchmarks. The
depth datasets are divided into different categories of intended
applications and studied properties. However, each dataset
may not be limited to one specific application only (e.g. Kitti
can be used for both depth and 3D reconstruction, Nyu-v2 can
be used for both depth and segmentation). The datamodalities
include RGB, depth, indoor, outdoor, real, synthetic, seman-
tic, labeled voxels, 3D, volumetric, meshes, point cloud, 3D
landmarks, surface normals, camera poses, and segmentation.
This is helpful for researchers to quickly identify the datasets
of interest especially when they are working on multi-modal
fusion. A link to each dataset is also provided, which can help
research involved in similar studies. It is important to keep in
mind that some datasets are updated while others’ websites
may change.

H. MIXING DATASETS FOR TRAINING ON DIVERSE DATA
To the author’s knowledge, the systematic combination of
many data sources has only been briefly studied. Refer-
ence [68] described amodel for estimating two-view structure
and motion, which they trained on a combination of smaller
datasets with static scenes; although, they did not explain the
impact of themethod used. Reference [69] proposed amethod
of naïvely mixing datasets for monocular depth estimation
with known camera parameters. Combining different datasets

can be challenge as the ground truth data is in different
forms (i.e., absolute form: laser based or stereo camera with
unknown camera parameters, depth from unknown scale,
disparity maps) in every dataset (see table 3). A methodology
that can be compatible with all ground truth representations
for training deep networks is required. Furthermore, an appro-
priate loss function can be designed, which must be flexible
and compatible with different kind of ground data sources.

Three key issues are identified by [10] and studied in detail.
• Direct vs. inverse depth representations are inherently
different representations of depth.

• Scale ambiguity: depth with unknown scale (or camera
parameters, camera calibration) in some data sources.

• Uncertainty about shift: some datasets only include dis-
parity maps up to a certain known scale.

Although a stochastic optimization computation, loss func-
tion and prediction space allow for the mixing of different
data sources, while it is not instantly obvious in what per-
centages different datasets will be merged through training.

When it comes to mixing datasets, there are two crucial
approaches to consider.

1. In each minibatch, the first technique is to combine dif-
ferent data sources into equal parts which sample F/K
training data from each dataset for a minibatch of size
F, where K specifies the number of different datasets.
This technique ensures that all datasets, regardless of
the size, are characterized equally in the effective train-
ing set for training deep networks.

2. The second approach takes a more principled style,
adapting a recent Pareto-optimal multi-task learning
method [70]. They examine every dataset as a differ-
ent task and try to find an approximated Pareto opti-
mum across all datasets (i.e., a technique in which the
loss on each training set cannot be reduced without
raising it on at least one of the others). To minimize
the multi-objective optimization criteria, it utilizes the
algorithm provided in [70] that can be used for mixing
different kind of ground truth data into an effective way
for various tasks in computer vision-based applications.

minf (L1(f ), . . . ,Ll(f ))t

where parameters of the model f are shared across different
datasets.

V. COMMON CHARACTERISTICS OF WELL-KNOWN
DATASETS
It was observed that, of the datasets mentioned above, the
depth estimation datasets with the highest potentials dis-
played five common qualities:
• Longevity -This study finds that the datasets that were

available for a longer period of time gained more attention
and popularity. The KITTI is the most discussed dataset and
has been accessible since its launch in 2012. It is the most fre-
quently cited benchmark dataset despite several constraints,
such as small scale. The KITTI dataset has become a standard
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TABLE 10. Depth datasets for medical applications.

TABLE 11. Properties of depth datasets for medical applications.

benchmark for comparing new results and methods for depth
estimation and 3D reconstruction tasks.
• Scale – The number of samples and subjects in a

dataset plays a critical role in its popularity. A dataset must
have enough sample data features for successful statistical
research. Datasets with many samples (and thus a higher
statistical relevance) provide objective standards. In conjunc-
tion with the dataset size, some other features such as the
methodology of its representation are also important.
• Timing – It is observed that the most popular datasets

provided novel features and facilitated research that was not
possible with previously available public datasets. The KITTI
dataset, which was the first publicly available depth outdoor
dataset, the NYU-V2 dataset, which was the first dataset
to add indoor imaging, and the Cityscapes dataset, which
was the first to feature high-resolution images, are all good
examples.
• Data quality - The data quality plays a critical role in

providing the information about its use in the given situation
(e.g., data analysis). It is worth noting that the datasets with
details for information collection usually get more attention
than the rest of the datasets (e.g., NYU-D V2, FaceScape,
Cityscapes).
• The Right Data Transformation - Once generated, the

datasets are modified for meeting particular performance
objectives while using the machine learning algorithms.
Domain knowledge and algorithm features/functions can help
determine the best type of transformation to increase the
training performance. Datasets that include tools for cleaning,
transforming, and preparing data for training are popular than
research-oriented datasets.

VI. STATE-OF-THE-ART DEPTH ESTIMATION METHODS
ON THREE MOST POPULAR DATASETS
The performance of the top five SoA algorithms on popular
depth estimation benchmarks is tabulated in this section.
It’s worth noting that, while most deep networks report
their results using standard datasets and metrics, some don’t,
making it impossible to compare SoA methods across the

board. Furthermore, only a small percentage of papers pro-
vide reliable additional information, such as execution time
and memory footprint, which is critical for industrial depth
estimation model applications (such as drones, self-driving
cars, robotics, and so on) that must run on embedded con-
sumer devices with limited processing power and storage and
thus require efficient, lightweight models. The performance
of the top five SoA deep learning-based depth estimation
models on three of the most popular datasets is summarized
in Tables 12-14. 3d-ken-burns [71] is the best of the other
methods trained on the NYU-V2 dataset, while AdaBins [72]
is better on the KITTI dataset and HRNetV2 [79] is better on
the cityscapes dataset.

VII. AN OVERVIEW OF LOSS FUNTIONS FOR DEPTH
ESTIMATION
Deep learning-based methods usually optimize a regression
model on the reference depthmap. For depth regression tasks,
defining an appropriate loss function is the main challenge
faced by the SoA methods. Optimisation algorithms are used
by neural networks (i.e., stochastic gradient descent to min-
imize the errors in the algorithm). The loss function, which
measures how well or poorly the model performs, is used to
calculate this error. There are several noteworthy loss func-
tions that have been employed in depth estimation problems
where deep neural networks are used to forecast depth maps
from a single or multiple images.

A. LEAST SQUARE LOSS
To supervise the training process of the models, the differ-
ences between the real depth y and predicted y̆ maps are
used. For the depth values, the L2 loss function [73] can be
represented as (L2) and is defined as:

L2(y, y̆) =
1
N

N∑
i

(yi − y̆i)22 (1)

As a result, depth estimation architectures predict the
ground truth to learn the depth information of the scenes.
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TABLE 12. Results of top five SoA depth estimation models on the
NYU-V2 dataset.

TABLE 13. Results of top five SoA depth estimation models on the KITTI
Eigen split dataset.

B. SCALE-INVARIANT LOSS
During the training stage, depth estimation approaches use
the ground truth of depth y and the corresponding model
predicts the log depth. The training Scale-invariant loss func-
tion [73] (LSI ) can be represented by (LSI ) for the depth values
and is defined as:

LSI (y, y̆) =
1
N

N∑
i

(log(yi)− log(y̆i))2

−
λ

N
(
N∑
i

log(yi)− log(y̆i))2 (2)

λ refers to the balance factor and is set to 0.5.

C. BERHU LOSS
To account for data that contains outliers or heavy-tailed
errors, the Ordinary Least Square (OLS) estimator is deemed
ineffective in this scenario. In the case of Gaussian noise,
however, Berhu loss is designed to keep good qualities. Fur-
thermore, the adaptive Berhu penalty encourages a grouping
effect, which develops one group with the highest coeffi-
cients. Berhu loss function [74] (LBerhu) can be represented
by (LBerhu) for the depth values and is defined as:

LBerhu(y, y̆) =

 (yi − y̆i) if (yi − y̆i) ≤ c,
(yi − y̆i)2 + c2

2c
if (yi − y̆i) > c,

(3)

D. HUBER LOSS
It is known that Mean Square Error (MSE) is better for
learning outliers in a dataset, butMeanAbsolute Error (MAE)
is better for ignoring them. However, data that appears to
be outliers should not be considered in some circumstances,
and those points should not be given great attention. For this
reason, Huber loss function [74] (LHuber ) can be represented
by (LHuber ) for the depth values and is defined as:

LHuber (y, y̆) =

 (yi − y̆i) if (yi − y̆i) ≥ c,
(yi − y̆i)2 + c2

2c
if (yi − y̆i) < c,

(4)

TABLE 14. Results of top five SoA depth estimation models on the
cityscapes dataset.

E. SILOG LOSS
Correctly scaling the range of the loss function can increase
convergence and training outputs, while increasing the λ
forces more focus on minimizing the error variance, resulting
in Silog loss function. Reference [74](Lsilog) can be repre-
sented by (Lsilog) for the depth values, λ = 0.5 and N
represent ground truth values (i.e., the number of pixels).

By rewriting equation. 2:

Lsilog(y, y̆) =
1
N

N∑
i

(log(yi)− log(y̆i))

−
1
N

i∑
N

(yi − y̆i)2 + (1− λ)
1
N

i∑
N

(yi − y̆i)2

In log space, variance and weighted squared mean errors is
combined define the Silog loss:

Lsilog(y, y̆) = α
√
Lsilog(y, y̆) (5)

F. COMMON DEPTH LOSS
Let y be a ground-truth depth map and y̆ be its estimated
depth. The common depth loss [84] L1 is given by the entry-
wise L1-norm for a matrix

L1(y, y̆) =
1
HW

(yi − y̆i)1 (6)

whereW and H are the width and height of the depth maps.

G. GLOBAL MEAN REMOVED LOSS
The global mean removed loss [84] is defined as

LGMR(y, y̆) =
1
HW

((yi − ȳi)− (y̆i − ¯̆yi))1 (7)

where W and H are the width and height of the depth maps,
ȳi and ¯̆yi are the average depths in y and y̆i, respectively.
This loss is based on the observation that, while estimating
the global depth scale (i.e., average depth) from an image is
unclear, predicting the relative depth of each pixel in relation
to the average depth is more reliable. In some situations, such
as age estimation, relative estimation is easier than absolute
estimation.

H. LOCAL MEAN REMOVED LOSS
A local mean removed loss [84] LMR, which penalizes the
relative depth errors with respect to local n×n square regions
and defined as follows:

LMR(y, y̆) =
1
HW

((yi − yi ⊕
Jm
m2 )− (y̆i − y̆i ⊕

Jm
m2 ))1 (8)
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where ⊕ denotes the convolution, and Jm is the n× n matrix
composed of all ones.

I. SSIM LOSS
The perceptual difference between two comparable images
is measured using SSIM. It can’t tell which of the two is
superior because it doesn’t know which is the ‘‘original’’
and which has undergone further processing like data com-
pression. The loss function for the structural similarity index
measure (SSIM) is represented by (LSSIM ) and can be defined
as:

LSSIM (y, y̆) = (
1− LSSIM (y, y̆)
MaxDepth

) (9)

J. PHOTOMETRIC LOSS
A SSIM term is combined with the L1 reprojection loss due
to its better performance in complex illumination scenarios.
Thus, the (LP) photometric loss [85] of theN scale is modified
as

LP(y, y̆) =
N∑
i

(1− λ)(yi − y̆i)1 + λ
1− LSSIM (y, y̆)

2
(10)

K. PRE-PIXEL SMOOTHNESS LOSS
A per-pixel smoothness loss is introduced to combine with
the LSL reprojection loss to encourage the inverse depth pre-
diction to be locally smooth, as depth discontinuities often
occur at image gradients. Thus, the (LSL) loss is defined as

LSL(y, y̆) =
N∑
i

∂xdte−∂x (y,y̆)+∂ydte−∂y(y,y̆) (11)

L. RECONSTRUCTION LOSS
The network calculates disparity during training, and the
bilinear sample is used to generate the input image, which
is then used to reconstruct another image using the disparity
map. The bilinear sampler is fully differentiable at the local
level and smoothly integrates into a fully convolutional archi-
tecture. A LHuber and SSIM is combined as a photometric
image reconstruction loss, which computes the inconsistency
between the input image and the reconstructed image, it is
defined as follows

LR(y, y̆) =
1
N

N∑
i

1− LSSIM (y, y̆)
2

+ (1− α)LHuber ((y, y̆)) (12)

M. PRIOR RECONSTRUCTION LOSS
It is consequently shown that constraining a cost function
involving a polarimetry-specific geometry is valid. Further-
more, because it is dependent on both the input and output
of the processing pipeline, this minimization strategy can
be used to optimize a deep learning model. This method is
consistent in unusual circumstances, implying a limited cam-
era calibration or a specific azimuth to angle of polarization

thought processes. As a result, a new method provides an
alternative but comparable strategy that allows for standard
calibration and the release of constraints via a generalized
loss term defined as follows

LPR(y, y̆) = µminLR + ν∂2x dte
−∂2x (y,y̆)+∂2y dte

−∂2y (y,y̆) (13)

N-1. SCALE INVARIANT LOSS
The scale-invariant loss [32] for a single sample is defined as

LSI (y, y̆) =
1
N

N∑
i

ρ2(y, y̆)−
λ

n2

(
N∑
i

ρ(y, y̆)

)
(14-1)

where ρ function defines the scale invariant loss
and λ ∈ [0, 1].

N. SCALE SHIFT INVARIANT LOSS
The scale-shift-invariant loss for a single sample is defined
as

LSSI (y, y̆) =
1
2N

N∑
i

ρ(y, y̆) (14)

where ρ function defines the scale invariant loss.

O. POINT-WISE LOSS
Point-wise loss function (Ldepth) can be represented by (L1)
for the depth values and is defined as:

Ldepth(y, y̆) =
1
n

∑
(yi − y̆i) (15)

P. GRADIENT LOSS
To capture the local structural consistency, a gradient loss
function (Lgrad ) is proposed and can be represented by
(Lgrad ), which penalize the gradient of depth around the edges
of the image and can be defined as

Lgrad (y, y̆) =
1
n

n∑
i

yx(ei)+ y̆y(ei) (16)

where yx(ei) and y̆y(ei) represent the spatial derivatives of the
difference between the ground truth and predicted depth for
the pth pixels ei which stands (||yi − y̆i||) for the x, y-axis.

Q. SURFACE NORMAL LOSS
The surface normal loss function (LSN ) can be utilized to
avoid minor errors and predicts the normal and estimated
depth maps. The ground-truth surface norms and predicted
depth are represented by

nyi = (9[−∇x(yi),−∇y(yi),1]T )

and

ny̆i = (9[−∇x(y̆i),−∇y(y̆i),1]T )

The loss is calculated as the difference between
the two surfaces normals, which may be expressed
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mathematically as follows

LSN =
1
n

n∑
i

(1−
〈nyi , ny̆i〉

(||nyi || · ||n
y̆
i ||)

) (17)

where 〈nyi , n y̆i〉 denotes the inner product of the vectors.

R. PERCEPTUAL LOSS
The ability of the MSE function to capture perceptually
relevant differences (such as high texture details). It is very
limited in the use cases because they are defined based on
differences in image pixels, minimizing the pixel averages.
Therefore, a perceptual loss function is introduced to make
the two more perceptible similarities by comparing feature
maps between original view and reconstructed view. Denote
by α the feature map obtained after the j-th convolution (after
activation) of the i-th convolutional layer in the VGG-16
network and the perceptual loss is defined as the Euclidean
distance between the feature maps of the original view y and
the reconstructed view y̆

LPRL(y, y̆) =
1
HW

N∑
i

(α(yi)− α(y̆i))2 (18)

The size of the generated feature map for a specific layer in
the VGG network is described by H and W. Perceptual loss,
rather than pixel-by-pixel loss, is more reflective of semantic
similarity between images during training. By adding percep-
tual loss training, the depth map generated by the model has
more precise details and edge information.

S. STRUCTURE GUIDED RANKING LOSS
Structure-Guided Ranking Loss is a pair-wise ranking loss
that is very broad, allowing it to be applied to a wide range
of depth and pseudo-depth data. The sampling method for
certain point pairs, on the other hand, might have a significant
impact on the reconstruction quality. Rather than utilizing
random sampling, the proposed segment-guided sampling
technique and purpose is to direct the networks attention to
the regions that matter most, i.e., the scene’s salient depth
structures, and can be characterized as

LSGL(y, y̆) =
1
N

N∑
i

(α(yi − y̆i))+ Lgrad(y, y̆) (19)

T. CHAMFER LOSS
The chamfer distance between two points can be defined is

D(X1,X2) =
N∑

x∈X1

min
y∈X2
||x − y||2 +

N∑
y∈X2

min
y∈Y
||x − y||2

for a distance d between subsets in R2, Then the Chamfer loss
function takes the form

LCL(y, y̆) =
N∑
i

d(yi − y̆i)) (20)

where i indexes training samples.

U. BIN CENTER DENSITY LOSS
Bin centre density loss function can be used to follow the
distribution of the depth pixels in the ground truth, and it can
be defined as the set of bin centres c(b) and a set of the ground
truth pixels in the image X along with bi-directional Chamfer
loss as a regularizes

LBCDL =
N∑
x∈X

min
y∈c(b)

||x − y||2 +
N∑

y∈c(b)

min
x∈X
||x − y||2 (21)

V. GRADIENT MATCHING LOSS
To encourage the network to output a depth map with sharp
edges, gradient matching loss is used and defined as

LGML(y, y̆) =
1
K

N∑
k=1

K∑
i=1

(∣∣∣∣ k∇x k
E
x

∣∣∣∣+ ∣∣∣∣ k∇y k
E
y

∣∣∣∣) (22)

where
k
∇
x
and

k
∇
y
are the gradient of the prediction.

W. PAIRWISE DISTILLATION LOSS
The pairwise distillation loss is obtained in two steps. First,
affinity maps for the feature maps are generated. Then the
MSE between the affinity maps of the obtained features is
then computed.

LPDL(y, y̆) =
1

x × y

∑
i

∑
j

(
ptij − p

u
ij

)
(23)

where ptij and p
u
ij are the affinity maps.

VIII. DISCUSSION
Over the previous two decades, available depth estimation
datasets have improved, yet there are still problems to be
solved. The most significant limitation is their availability,
which implies that many of the datasets are only available
for a limited duration. It’s also worth noting that in some
circumstances, when the authors prefer to give the dataset
based on the asking institutions, limited access is noticed
(institutions with a lower profile might typically have more
problems obtaining a dataset). This negatively impacts indi-
vidual researchers’ ability to replicate the analysis, as well
as future researchers’ capabilities to publish findings derived
from such datasets. The impact of aging has been studied
using public datasets collected in the previous few years.
Long and complex depth estimation is limited by the diffi-
culties of following up on a large group of people over a long
period of time.

The new data privacy standards, which secure personal
rights, have created a relatively new challenge. In Europe,
for example, the General Data Protection Regulation (GDPR)
includes a right to erasure (often known as the right to be
forgotten), which gives subjects the option to withdraw their
consent to the use of their data and have subject-related mate-
rial removed from datasets (if possible). Because of the nature
of biometric data, the subject can be uniquely identified.
As a result, potential changes in datasets could compromise
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the determination and uniformity of reported data over time.
Similar legislations are being discussed globally as a result
of recent difficulties relating to the lack of realistic data.
Imperfections in the mentioned collection setup and tech-
nique are also significant limitations of the current datasets.
Some of the dataset generation criteria are not available, but
they may be useful so that others can greatly expand the
datasets possible applications. Also, the optical system infor-
mation is sometimes not completely defined as well as some
of the datasets lack of sensor information, capture distance,
range of spectrum in the generated images, and environmental
validation. Some of the datasets only provide cropped image
regions of the complete scene, so information like aperture,
speed shutter, and sensitivity is lacking.When collecting with
mobile devices, data from the IMU (i.e., an accelerometer
and a gyroscope) may be beneficial in reducing the negative
effects of the rolling shutter and recognizing motion blur
(e.g., smartphones). In addition, several datasets only provide
compressed images, reducing the quantity of data captured by
the sensor.

Due to the differences in image quality, researchers require
a complete explanation of the method and capture informa-
tion in different research areas. Despite the common features
in research problems, smartphone depth capture research
focuses on using additional sensor information available in
mobile platforms (IMU or multiple imaging sensors) and
computational methods to process captured images, whereas
depth in motion research focuses on novel sensors and optical
systems.

Many research papers underline the absence of datasets
suited for evaluating a specific parameter (i.e., a constrained
environment with only one parameter’s variability), which
leaves research conclusions and underlying reasons unclear,
underlining the need for more research. In some cases, having
a clear protocol description may be enough to solve the prob-
lem. If the camera specifications (usually removed for privacy
concerns) were contained in the EXIF/metadata, several of
these issues may be avoided. This information is generally
missing from datasets created using custom-built cameras,
as well as a protocol description. While many details of
specialized hardware are hidden from users of other datasets,
publicly accessible cameras provide such attributes by default
in the image file.

There is also a mismatch between datasets acquired under
visible light. In some cases, the authors used a monochro-
matic sensor with a band-pass filter to catch the entire visible
band of light, while in others, they used mass market cameras
to collect visible light in three spectral bands (separately for
the colors red, green, and blue). Because the spectral sensitiv-
ity of the visible light filter differs from that of the individual
color filters (even when the color bands are combined), they
should not be compared. Additionally, most consumer color
cameras have a Bayer filter that restricts individual band
resolution to one-quarter for red and blue spectra and one-half
for green; as a result, two-thirds of the color information are
estimated rather than measured.

The review also found that synthetic image datasets have
not got momentum in depth estimation research. Researchers
prefer standard datasets (real) instead of synthetic images,
despite the fact that synthetic images have a higher num-
ber of samples. The authors feel that these datasets lack
the realism of research effects that occur in less confined
circumstances.

Only a small percentage of distance depth capture research
has focused on computational depth capture, such as using
super-resolution, whereas the majority has focused on con-
structing a standard optical system with mirrors for the
capture.

A. RELATED RESEARCH
This has been a review of existing datasets generated for
performance evaluation, with a focus on depth. The datasets
investigated in this work could be useful in other fields
of research that use images of the human body, faces,
poses, objects, indoor/outdoor, medical information, and
environments.

Face tracking and segmentation have been used in a wide
range of applications, from human–computer interaction to
medical diagnosis. These applications usually have other
well-known datasets, but they primarily share initial depth
image processing, such as depth localization and segmenta-
tion. As a result, depth estimation datasets could be useful as
a secondary data source. Furthermore, a useful medical diag-
nostic for detecting neurotransmitter and neuronal activity
levels has been proven using the pupil [66]. Object recogni-
tion and classification algorithms are a comparable, but more
sophisticated academic area. However, depth estimation is
often a more difficult challenge. It’s been utilized in medical
applications, such as diagnosing computer vision syndrome
and facial recognition technologies.

Biometrics datasets are restricted in that they do not con-
tain identification information, that restricts the use of many
datasets. Alternatively, unsupervised methods can play an
important role in depth-based recognition problems.

B. CHALLENGES AND COMPETITIONS
An independent evaluation and standard compression anal-
ysis can greatly help current depth estimation methods in a
range of applications and tasks in computer vision research.
There is a well-defined baseline for the SoA methods, but
the results are greatly diverse due to the datasets, training,
evaluation, and implementation methodologies. These vari-
ations make it difficult to compare the methods objectively
for a specific problem related to depth estimation. Many of
these issues can be avoided by creating benchmark datasets
and conducting independent evaluations. This ensures an
objective comparison of methods by using standardized pro-
tocols and environments. Competitions and/or challenges are
commonly used to organize such evaluations. This strat-
egy stimulates competition among academics in addition to
the production of publicly available datasets with uniform
measurements.
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C. FUTURE RESEARCH DIRECTIONS
Image-based depth estimation using deep learning
approaches has shown promising results following detailed
research over the last few years. However, the subject is still
in its early stages, and more developments are to be expected.
In this section, the authors will go over some of the hot
topics right now and point out in the right direction for future
research.
• Data for training purposes is a problem: The availabil-
ity of training data is critical to the effectiveness of
deep learning algorithms. Unfortunately, compared to
the training datasets used in tasks like classification and
recognition, the size of publicly available datasets that
comprise both images and their ground truth depth is
small. Due to a lack of 3D training data, 2D supervi-
sion techniques have been utilized. However, many of
them rely on silhouette-based supervision and can only
reconstruct the visual hull as a result. Consequently, one
can expect to see more papers in the future propos-
ing new largescale datasets with diverse environments,
new weakly-supervised and unsupervised methods that
leverage various visual cues, and new domain adaptation
techniques in which networks trained on data from a
specific domain, such as synthetically rendered images,
are adapted to a new domain, such as in-the-wild images,
with very little retraining and supervision. Research into
realistic rendering approaches that can bridge the gap
between actual and synthetically created images has the
potential to help with the training data problem.

• Generalization to unseen objects: Most SoA studies,
such as BTS and AdaBins, divide a dataset into three
subsets for training, validation, and testing, and then
report on the performance on the test subsets. However,
it is unclear how these approaches would perform on
categories of objects/images that have never been seen
before. In reality, the ultimate goal of the depth esti-
mation method is to be able to recreate any 3D shape
from any set of images. Learning-based strategies, on the
other hand, only work on images and objects that are part
of the training set. A number of recent publications have
attempted to examine this topic. However, combining
classical and learning-based strategies to improve the
generalization of the latter methods would be an inter-
esting direction for future research.

• Fine-scale depth estimation: The coarse depth struc-
ture of shapes can be recovered using current SoA
approaches. Although subsequent work has enhanced
the resolution of the reconstruction by employing refine-
ment modules, thin and small portions such as plants,
hair, eyes, and fur remain unrecoverable.

• Reconstruction versus recognition: The difficulty of
obtaining depth from images is ill-posed. As a result,
effective solutions must incorporate low-level image
cues, structural knowledge, and a high-level understand-
ing of the object. Deep learning-based depth estimation
algorithms are biased towards recognition and retrieval,

according to a recent study [8]. As a result, many of
them have difficulty generalizing and recovering fine-
scale features. Therefore, it is expected that this area
of research might see more exploration in the future on
how to mix top-down (i.e., recognition, classification,
and retrieval) and bottom-up approaches (i.e., pixel-
level reconstruction based on geometric and photometric
cues). This has the potential to improve the approaches’
generalization capabilities (see item (2) above).

• Handling multiple objects in the presence of occlusions
and cluttered backgrounds: Most of the SoA approaches
deal with single-object images. Images taken in the wild,
on the other hand, often feature a variety of things
from several categories. Detection and reconstruction
within regions of interest have been used in previous
studies. The modules for detection, depth, and recon-
struction are all independent of one another. These tasks,
however, are interrelated and might benefit from one
other if completed together. Two major concerns must
be solved in order to achieve this goal. The first is
a lack of multiple-object reconstruction training data.
Second, especially for methods that are learned without
3D supervision, creating proper CNN architectures, loss
functions, and learning procedures is critical. In general,
these employ silhouette-based loss functions, which
necessitate precise object segmentation.

• Data Imbalance: Some class representations are limited
in some scene understanding tasks, such as semantic
labelling, whereas others have a lot of examples. Learn-
ing a model that respects both types of categories and
performs equally well on frequent and less frequent ones
is a challenge that requires more research.

Deep-learning algorithms for depth estimation rely largely on
training datasets annotated with ground truth labels, which
are difficult to come by in the actual world. Large datasets
for 3D reconstruction are expected to emerge in the future.
One of the interesting future paths for study in depth esti-
mation is emerging new self-adoption algorithms that can
adapt to changing circumstances in real-time or with minimal
supervision.

IX. SUMMARY
This analysis reveals significant heterogeneity in available
datasets in terms of size (ranging from 5 to >1,800 classes),
sensors used, image quality, and so on. Because of this
variation, there is a dataset available for many research
issues, but it is not always straightforward for researchers
to choose the optimal alternative. This analysis not only
serves to help researchers find the right dataset and loss
function, but it also makes suggestions for establishing new
ones. Because there are so many features that researchers
can be interested in, presenting a global summary in the
form of a research article is challenging. According to the
bibliometric analysis, the KITTI dataset is the most cited,
followed by CITYSCAPES and NYU-V2 datasets. As a
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result, it is recommended that these datasets be used as
benchmarks when comparing approaches to the published
SoA. Furthermore, a license signed by a researcher is suf-
ficient to get these datasets, as opposed to the signature
of the institutional legal representative, which is normally
requested by others. It’s best to use datasets developed for
specific challenges or competitions for comparative research
because they come with a standardized evaluation methodol-
ogy. MOBILE-RGBD is a tool for evaluating depth images
obtained by smartphone cameras. FACESCAPE is a frame-
work for studying 3D reconstruction and detection. There are
3600 andWEBSTEREOVIDEO to examine combinations of
multiple modalities. Reference [68] has put a lot of effort into
developing publicly available datasets, in addition to KITTI
and CITYSCAPES. Their website contains 102 high-quality
datasets (plusmore from othermodalities), making it themost
comprehensive web resource the authors found. Although
the bibliometric analysis showed that these datasets are not
as popular as those at KITTI or CITYSCAPES, NYU-V2
and did not cover the depth estimation-based research, it is
encouraged that the academics explore them further.

X. RECOMMENDATION FOR BUILDING A
COMPREHENSIVE DATASETS
Various scientific groups have explored important aspects of
gathering and distributing research data.

• Plan availability for years to come - In the field of
depth estimation, the acceptance of a new benchmark is
typically difficult. It is critical to allocate resources for
database distribution for several years into the future in
order to maintain the database’s availability. The most
important resources are (i) technical – a solid URL for
the promoting website as well as the infrastructure to
keep it available – and (ii) personal – a designated person
responsible for licensing maintenance as well as answer-
ing any problems that prospective users may encounter.

• Make access simple - We discovered that databases
that include licenses that can be signed by individual
academics are more popular. For young researchers,
requiring the signature of the legal institutional represen-
tative, especially in a college environment (usually the
rector), is a substantial barrier. Instead, they frequently
choose to develop their own database. If an institutional
representative’s signature is required, we recommend
posting the whole license agreement as well as a sample
of the database images on the project website. This
aids in determining whether the database is appropri-
ate for a certain research project before beginning the
administrative procedures required to secure the requi-
site approvals.

• Include a statistically relevant number of samples
Acquiring and handling test subjects is one of the most
challenging tasks when creating a biometric database.
The number of subjects included should be as large
as possible; however, there is always a minimum size

for obtaining statistically relevant results. Although this
minimum is difficult to quantify for the general case, the
statistical significance of 100 samples obtained from the
same subjects is not the same as 1000 samples obtained
from 100 different subjects.

• Make the database unique - Many authors who use a
database in one publication continue to use it in subse-
quent publications. A database is often used to inves-
tigate particular qualities or problems in a methodical
manner, as we have seen in earlier sections. A suc-
cessful database should assist users in coming up with
new research findings and conclusions. As a result, the
database should be able to meet the needs of new study
areas where benchmarks have yet to be created.With this
review, the authors hope to aid in this work by making
the demands more apparent to database designers.

• Extensive protocol and setup description - Despite the
fact that the majority of the datasets available were
developed to test a specific hypothesis or for a certain
study aim, researchers frequently suggest that the dataset
can be beneficial for more than one research topic. It is
critical to offer a detailed description of the technique
and setup in order to maximize the dataset’s potential.
Important information, such as the wavelength of the
setup lighting, the distance at which the images were
captured, and descriptions of the sensor or optical sys-
tem employed, is usually lacking, restricting the usabil-
ity of the datasets.

• More Challenging Datasets - For depth estimation
and instance segmentation, several large-scale image
datasets have been generated. However, new complex
datasets, as well as datasets for diverse types of images,
are still needed. Datasets containing a large number of
objects and overlapping objects would be quite useful
for still images. This may make it possible to train
models that are better at dealing with dense object sce-
narios and high overlaps between objects, which are
typical in real life. With the growing popularity of 3D
image depth reconstruction, particularly in autonomous
vehicles and robotics, large-scale 3D image datasets are
in high demand. The creation of these datasets is more
difficult than that of their lower-dimensional equiva-
lents. Existing datasets for 3D image depth estimation
are often insufficiently large, and some are synthetic,
therefore larger andmore difficult 3D image datasets can
be extremely beneficial.

XI. CONCLUSION
This paper provides a detail review of the depth datasets
and loss functions developed in the field of computer
vision for depth estimation problems. The publicly available
depth datasets and depth-based loss functions have achieved
impressive performance in various depth maps tasks based on
deep learning networks. People detection and action recog-
nition, faces and poses, perception-based navigation (i.e.,
street signs, roads), object and scene recognition, andmedical
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applications are among the five general categories in which
the depth datasets are categorized. Each depth dataset’s main
properties and characteristics are described and compared.
To generalize model results across different environments,
a mixing approach for depth datasets is presented. In addition,
depth estimation loss functions are briefly presented, which
will facilitate in the training of deep learning depth estimation
models on a variety of datasets for both short- and long-range
depth map estimation. Three of the most popular datasets are
evaluated using SoA deep learning-based depth estimation
algorithms. Finally, there is a discussion of challenges and
future research, as well as recommendations for creating
comprehensive depth datasets, which will help researchers in
choosing relevant datasets and loss functions for evaluating
their results and methods.

The main aim of this survey paper is that, to speed up the
research in depth estimation tasks and compare the results
to SoA methodologies for use case applications, researchers
in this discipline must first understand the appropriate
depth datasets and loss functions. To improve generaliza-
tion, researchers should incorporate various datasets during
training, validation, and testing. However, when combin-
ing datasets with different features, caution is required. The
network’s design and building blocks are important, but its
performance is mostly influenced by how it is trained, which
requires a diverse dataset and an appropriate loss function.
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ABSTRACT This article contains all of the information needed to conduct a study on monocular facial depth 

estimation problems. A brief literature review and applications on facial depth map research were offered 

first, followed by a comprehensive evaluation of publicly available facial depth datasets and widely used loss 

functions. The key properties and characteristics of each facial depth map dataset are described and evaluated. 

Furthermore, facial depth maps loss functions are briefly discussed, which will make it easier to train neural 

facial depth models on a variety of datasets for both short- and long-range depth maps. The network's design 

and components are essential, but its effectiveness is largely determined by how it is trained, which 

necessitates a large dataset and a suitable loss function. Implementation details of how neural depth networks 

work and their corresponding evaluation matrices are presented and explained. In addition, an SoA neural 

model for facial depth estimation is proposed, along with a detailed comparison evaluation and, where 

feasible, direct comparison of facial depth estimation methods to serve as a foundation for a proposed model 

that is utilized. The model employed shows better performance compared with current state-of-the-art 

methods when tested across four datasets. The new loss function used in the proposed method helps the 

network to learn the facial regions resulting in an accurate depth prediction. The network is trained on 

synthetic human facial depth datasets whereas for validation purposes real as well as synthetic facial images 

are used. The results prove that the trained network outperforms current state-of-the-art networks 

performances, thus setting up a new baseline method for facial depth estimations.   

INDEX TERMS Facial depth datasets, Loss functions, Neural depth estimation, Empirical and systematic 

evaluation

I. INTRODUCTION 

The process of obtaining 3D information from a 2D frame is 

known as depth estimation. Depth estimation is used in 

diversified computer vision applications such as augmented 

reality, posture estimation, 3D reconstruction, object detection 

and recognition, semantic segmentation and -human-machine 

interaction, weather forecast, and autonomous vehicles. The 

ground truth depth information used to estimate depth is 

beneficial for developing reliable navigation systems for 

intelligent vehicles, environmental reconstruction, and image 

interpretation to understand the objects in the image and the 

scene behind them. 

Face depth estimation is a challenging subject that has been 

explored in conjunction with face motion [1], facial analysis, 

and facial recognition [2], [3]. Many methods for estimating 

face depth have been presented in recent years, notably 3D 

from stereo replicating [4], 3D morphable model-based 

methods [5], [6], shape from shading (SfS) [5, 6], shape from 

motion techniques (SfM) [6], [7], and statistical techniques 

[8], [9]. Due to the facial symmetry of facial areas, the stereo 

matching procedure for face depth estimation is more 

complicated (regardless of utilizing the local or global 

technique), particularly when the system is binocular and 

therefore only one stereo pair is used. Stereo matching 

methods can estimate a reasonable depth or disparity map for 
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facial depth estimation, but these approaches are more 

sophisticated, requiring the use of a local or global 

procedure. Because of the similarity of the face areas, 

particularly when using a binocular setup with only one pair 

of stereo images. All stereo approaches are limited by the 

similarity characteristics of the facial information. 

Furthermore, the similarity of the pixels values results in 

more spikes, holes, and particularly uncertain disparities in 

the depth map. 

The computer vision field has conventionally approached the 

field of depth maps in a variety of methods, such as with 

stereo or multi-view cameras [10], [11], structure from 

motion [12], [13], and depth from light diffusion & shading 

[14], [15]. The described methods face many difficulties, 

such as missing pixel values and depth consistency, which 

result in inconsistencies in depth maps. In addition, the 

camera calibration, camera setup, and post-processing 

techniques are computationally expensive and time-

consuming. The research community has explored the 

monocular depth estimation task using only a single image 

which is much more straightforward and suitable for 

consumer applications. The credit goes to significant 

advances in machine learning-based networks [16]–[20]. In 

the first part of the paper, we have given a detailed evaluation 

of publicly available facial depth datasets and widely used 

loss functions in facial depth estimation networks, thus to 

better understand the problem of facial depth maps. The key 

characteristics and properties of the facial depth datasets are 

presented and compared, followed by the loss functions 

employed. The implementation specifics of how neural 

depth networks work, as well as the evaluation matrices that 

correlate to them, are shown and described. A full 

comparison evaluation and, where possible, direct 

comparison of facial depth estimation methods are 

performed in the second phase of the paper to serve as a 

foundation for a proposed model that is used. When tested 

across four datasets, the proposed model outperforms current 

state-of-the-art approaches. The suggested method's unique 

loss function aids the network in learning the facial areas, 

resulting in an accurate depth prediction. The network is 

trained using synthetic human facial depth datasets, and real 

and synthetic facial images from four facial depth datasets 

are used for validation. 

A. RESEARCH CONTRIBUTIONS  

Following thorough research over the previous few years, 

image-based facial depth estimation using deep learning 

algorithms has demonstrated promising results. However, the 

field is still in its early stages, and more improvements are 

expected to address issues and challenges such as data 

selection for training, generalization to unknown 

environments, fine-scale depth estimation, reconstruction 

versus recognition, handling multiple objects in the presence 

of occlusions, and cluttered backgrounds, data imbalance and 

how to select an appropriate loss function and neural model 

for facial depth estimation. 

    This paper aims to provide all of the key information for 

conducting a study on monocular facial depth estimation 

challenges. First, a brief review of the literature and 

applications of facial depth map research was presented, 

followed by a detailed analysis of publicly available facial 

depth datasets and commonly used loss functions. To better 

understand the facial depth map problem, the facial depth 

dataset's key characteristics and properties are described and 

evaluated, followed by the loss functions used. For each 

dataset, the dataset description, metadata, ground truth, and 

relevant data (year of publishing, ground truth information, 

image size, type, objects per image, and several images) are 

listed systematically. In addition, each loss function is 

presented in such a way that the research community can 

select the best loss function for their requirements. The 

implementation details of how neural depth networks work are 

demonstrated and explained, as are the evaluation matrices 

that correspond to them. In the second section of the paper, a 

complete comparison evaluation and, where possible, direct 

comparison of facial depth estimation methods are conducted 

to serve as a foundation for a proposed model that is used. The 

model outperforms current state-of-the-art techniques when 

tested across four datasets. The unique loss function of the 

suggested method supports the network in learning the facial 

areas, resulting in an accurate depth prediction. The network 

is trained with synthetic human facial depth datasets and 

validated with real and synthetic facial images from four facial 

depth datasets. 

   The following is how the rest of the paper is organized: 

Section 2 discusses related work in the domain of facial depth 

estimation, especially related studies, or surveys. Section 3 

presents the results of a bibliometric investigation, a thorough 

examination of depth datasets, and further discusses the most 

used loss functions. Section 4 presents the implementation 

details of how facial depth neural networks work followed by 

some comparative analysis of the facial depth estimation 

methods. Section 5 presents evaluation matrices and section 6 

describes and illustrates the most recent SoA depth estimation 

model, which is discussed and chosen for facial depth 

estimation. Section 7 shows the experimental results, 

discusses the training approach, and compares the trained 

model to SoA methods in a brief comparison study. Section 8 

includes a detailed discussion of the experimental results while 

section 9 provides the conclusion and future research 

directions. 

II. RELATED WORKS 

Datasets are the foundations for evaluating the behaviour and 

validating the results of artificial intelligence networks, and 

they play a critical role in scientific research. Another 

important building block is to use an appropriate loss function 

to improve the deep network's training performance. An in-

depth analysis of various facial depth datasets is performed, 

and depth regression loss functions for both short and long-

range depth datasets are proposed in the next sections. This 
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section focuses mostly on related facial depth estimation 

research and applications.  

A. FACIAL DEPTH ESTIMATION APPLICATIONS 

Human face images are among the most common images, and 

they play an important role in many visual interpretations. 

Since the facial parts separation in a human face is well-known 

in human anthropometry, it is possible to find the distance of 

a human focus from a single image frame with good accuracy 

provided an understanding of the camera's field-of-view. The 

research community in today's fast-paced technological 

environment wants more realistic representations, thus 3D 

representations of 2D images are becoming increasingly 

important. These methods are categorized into the following 

primary categories based on their applications.  

Feature Extraction Methods: The expressions on people's 

faces reveal information about individuals. Faces identify 

people, and one may infer how others are feeling from their 

expressions. Face feature extraction can help in the 

improvement of face depth maps tasks. In the realm of 

computer vision, facial feature depth estimation and 3D 

reconstruction are popular topics. In computer vision related 

applications such as detection and recognition, especially 

under shifting posture lighting, and expression, 3D 

information gives significant benefits in overcoming 

difficulties associated with 2D images (PIE) [14]. Methods 

have been shown in the SoA to be a potential solution to 

several of problems in facial depth maps [20], [21], [22], [23], 

[24], [25]. 

Feature Fusion Methods: Feature fusion offers a full 

description of image features' rich internal information, and 

following dimensionality  

reduction, compact representations of integrated features can 

be obtained, resulting in decreased computational 

complexity and better performance of facial depth maps. 3D 

reconstruction helps in the resolution of difficulties in 2D 

images as well as the improvement in performance in a 

variety of tasks. Several approaches have been offered in the 

last few years [26], [27], [28], [29], [30], [31], [32], [33], [34] 

for facial depth estimation tasks.  

Image Processing Filtration Methods: For the successful 

application of depth information, quality is critical. Visually 

undesirable rendered views are frequently produced when a 

depth map is distorted by large featureless artifacts. A robust 

depth image post-filtering technique should be considered 

for further 3D video transmission. Filtering of depth maps 

has primarily been studied from the viewpoint of increasing 

resolution [35], [36], [37]. There are a variety of post-

processing techniques for restoring natural images [38]. 

Filtering algorithms included Gaussian smoothing and the 

H.264 in-loop deblocking filter [39], as well as a local 

polynomial approximation (LPA) [40] and bilateral filtering 

[41], which use edge-preserving structure information from 

the colour channel to refine rough depth maps [42].  

Table I shows the corresponding methods categorized into 

feature extraction, feature fusion, and image processing 

filtration with their respective use cases and strategies 

involved. 

 
TABLE I:  Properties of feature, fusion, and image processing filtration methods

  
Method Category 

 

Methods Strategy Category Descriptions of the main block Uses 

Feature Extraction 

 
 

 

 

[14] 

[20] 
[22] 

[23] 

[25] 

Depth From Shading, 

Defocus 

Face Depth CNN 

Recovering Facial Shape 

Shape-From-Shading 

From Depth Maps CNN 

DL 

DL 

ML 

ML 

DL 

Light-Field Angular Function 

Adversarial Networks 

Surface Normal Direction 

Symmetric Self-Ratio Images 

Feature Extractor 

 

Depth Maps 

Depth Maps 
Reconstructions 

Reconstructions 

Object Recognition 

Feature Fusion 

 

 
 

 
 

[26] 

[27] 

[28] 
[29] 

[30] 
[31] 

[32] 

[33] 
[34] 

Face Depth CNN 

Face Depth CNN 

Autoencoder 
Single Facial Depth Map 

Face From Depth 
Face From Depth 

Pose 

3D Blendshape 
Learning Feature 

DL 

DL 

DL 
DL 

DL 
DL 

DL 

DL 
ML 

Single Reference Face Shape 

Multi-Level Feature Fusion 

Stacked Contractive Autoencoder 
Multi-Level Feature Fusion 

Feature Fusion Extractor 
Feature Fusion Extractor 

Multi-Level Feature Fusion 

Feature Fusion Extractor 
Multi-Level Feature Fusion 

 

3D Face Reconstruction 

3D Reconstruction 

Learning 3D Faces 

Refinement 

Driver Pose Estimation 
Image Super-Resolution 

Pose Estimation 

Facial Expression 
Recognition 

Aggregation 

Image Processing 

Filtration 
 

 

 

 

 

 

[36] 

[37] 
[38] 

[39] 

[40] 

[41] 

[42] 

 

Learning Feature 

Depth 
Pointwise Shape-Adaptive 

Pointwise Shape-Adaptive 

Local Approximation 

For Gray And Color Images 

Fused Deep Representation 

 

ML 

ML 
ML 

ML 

ML 

DL 

DL 

 

Joint Bilateral 

Multistep Joint Bilateral 
High-Quality Filtration 

Filters 

High-Quality Filtration 

Bilateral Filtering 

Light Field 

 

Upsampling 

Depth Upsampling 

Denoising And Deblocking 

Deblocking 

Signal And Image Processing 

Signal And Image Processing 

Face Recognition 

1) Facial depth in 3D face recognition 
Face recognition (FR) has been used for human 

identification for ages. With the advances of deep neural 

networks (DNNs), both face identification (one-to-many) 

and face verification (one-to-one) have achieved state-of-

the-art results.  Despite these advances, there are still a few 
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limitations due to external conditions like viewing angles, 

human appearances like facial expressions, occlusions, scene 

lightings. To overcome these factors researchers, use other 

modalities like depth and surface normal. The availability of 

low-cost RGB-D consumer level sensors like Microsoft 

Kinect and Intel Real Sense which simultaneously capture 

depth data of the scene and the colour intensity make these 

multimodal data more accessible. Depth information can be 

very useful in FR because it helps to retrieve geometric 

information of the face in the form of dense 3D points. RGB-

D FR can be categorized broadly into two classes – 

handcrafted feature-based method and deep learning-based 

methods. Table II shows the corresponding details of the 

listed methods for this subsection. 
 
TABLE II: Properties of facial recognition depth maps methods  
 

Methods Feature 

Type 

Features extracted  Strategy Method 

Category 

Descriptions of 

the main block 

Uses 

[43] Geometric 
 

Histogram Of Oriented Gradient (HOG)  Random Decision Forest 
(RDF) Classifier 

Feature 
Extraction 

DL 

Entropy Map Recognition 

[44] 
 

Geometric 
 

Local Binary Patterns (LBP Iterative Closest Point 
(ICP) And  

Feature 
Extraction 

DL 

Discriminant Color 
Space (DCS) 

Depth Maps 

[45] Geometric 

 

Signed Distance Function (SDF) ICP Feature 

Extraction 
ML 

3D Face Model Depth Maps 

[46] Statistical Feature Space CNN  Feature 

Fusion 
DL 

Autoencoder Depth Maps 

[47] Spatial Feature Space Single Facial Depth  

 

Feature 

Fusion 
CNN VGG 

 

Depth Maps 

& 

Recognition  

[48] Spatial 

and 

Geometric 

  

Feature Space Face Recognition Accuracy Feature 

Extraction 

Surface Normal, 

Point Cloud; 

Recognition 

& Depth 

Maps 

B. FACIAL DEPTH FROM STEREO & MULTI-VIEW 
Using two or more cameras, depth can be derived from stereo 

or multi-view. A process known as stereo matching is used 

to produce this map. The primary notion is that triangulation 

and stereo matching can be used to estimate depth in a 

variety of applications, including object grasping, collision 

avoidance, broadcasting, robotic navigation, and 

multimedia. The most frequently used methods for 

measuring face depth from stereo methods are designed on 

fitting the computed depth to a generalized 3D model [49], 

[50], [51]. For facial depth estimation, a passive stereo 

system for 3D human face reconstruction and recognition at 

a distance method is introduced [52]. Using a Kinect camera 

and a face detection algorithm, a method was able to reliably 

locate the human head and estimate head posture. To locate 

the detailed facial characteristics, a depth AAM algorithm is 

designed [53]. In a passive stereo vision system, a method 

for estimating facial depth is introduced. The method relies 

on the fast creation of facial disparity maps, which does not 

necessitate the use of expensive instruments or generic face 

models. It entails including face attributes in the disparity 

 estimate process to improve 3D face reconstruction [54]. 

    The primary drawbacks of these approaches are the long 

processing times associated with the fitting phase (due to the 

high computational complexity) and the need for human 

setup, as seen in [51]. Another drawback of these approaches 

is that the generated faces resemble the generic model rather 

than their model. It's also particularly sensitive to noise 

because it calculates curves using the second derivative. 

C. FACIAL DEPTH FROM 2D, MONOCULAR 
IMAGES 

The monocular depth estimation method uses only a single 

RGB image as input to predict the depth value of each pixel 

or infer depth information. The following methods use a 

monocular depth strategy. Monocular depth maps are simple 

to set up, especially when it comes to camera calibration, and 

only require a single image to estimate depth. It can also give 

a variety of monocular visual cues, such as gradients and 

texture variations, colour, and defocus, that have previously 

been underutilized in such systems and can be used even in 

texture fewer areas. Table III shows the corresponding 

details of the listed methods from this section. 
 

TABLE III: Properties of facial depth from 2D monocular images methods 

 

Methods Feature 

Type 

Features extracted  Strategy Method 

Category 

Descriptions of 

the main block 

Uses 

[26] Geometric 
 

Single Reference Face Shape Constrained Independent 
Component Analysis 

Feature 
Extraction 

DL 

3D Face Model 3D Face 
Reconstruction 

[9] 
 

Spatial & 
Geometric  

Constrained Independent Component 
Analysis 

The Rotation and 
Translation Process  

Feature 
Extraction 

DL 

Discriminant 
Color Space 

(DCS) 

3D Face 
Reconstruction 
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[7] Geometric 

 

Similarity Transform & Feature 

Space  

Deep Learning Feature 

Extraction 

3D Face Model Depth Maps & 

3D Face 

Reconstruction 

[55] Statistical End-To-End Learning  Uses Single-View Depth 
and Multi-View Pose 

Networks 

Feature 
Fusion 

CNN Models 
Combined  

Depth Maps 

[56] Spatial & 
Geometric 

Canonical Correlation Analysis 
Surface Depth.  

Surface Depth Feature 
Extraction 

Face Color 
Texture And 

Surface Depth 

Face Depth 
Maps 

[57] Spatial & 

Geometric 

Feature Points, Feature Space  Feature Points Similarity 

Analysis  

Feature 

Extraction 
DL 

Extracted To 

Form The 2D-3D 

3D Face 

Reconstruction 

[58] Geometric 

 

Recovering The Depth  Uses A Cascaded FCN 

And CNN Architecture 

Feature 

Extraction 

CNN Models 

Combined 

Face Depth 

Estimation 

[59] Spatial & 

Geometric 

Feature Space Uses A Combination of 

Loss Function 

Feature 

Extraction 

CNN Encoder-

Decoder 

Face Depth 

Estimation 

 

D. FACIAL DEPTH THROUGH DOMAIN TRANSLATION  

The domain translation which is also known as image 

translation requires learning a parametric mapping function 

between two separate domains. Per-pixel classification or 

regression issues are frequently used to solve image-to-

image translation challenges [48, 49, 50] [60], [61], [62]. 

[51] [30] suggested a method for computing the appearance 

of a face based on a standard CNN that combines 

characteristics of autoencoders and fully connected 

convolutional networks (FCN). Several recent studies have 

investigated the image-to-image translation problem by 

developing a mapping between two frames using conditional 

generative adversarial networks [52] [63]. Authors in [53] 

[64], proposed an approach with the pix2pix model, which 

synthesizes images from semantic labelling and then 

reconstructs objects from edges and colourizes images. [54] 

[65] provided a framework of linked GANs that can 

synthesize pairs of similar images in two separate contexts. 

This research also focuses on the domain translation problem 

to create visually attractive facial depth maps with sufficient 

discriminative information for face recognition.  

      The authors [66] present a novel framework for learning 

(1) RGB face parsing, (2) depth face parsing, and (3) RGB-

to-depth domain translation together for facial depth maps. 

In [67], the authors suggest a new Deterministic Conditional 

GAN that is efficient for face-to-face translation from depth 

to RGB and is trained on labelled RGB-D face datasets. 

Whereas the network cannot reconstruct the exact somatic 

attributes of unknown focus on the individual, it can 

reconstruct plausible faces which is sufficient for use in 

various pattern recognition applications. In [68] a method 

proposes face from depth for head pose estimation on depth 

images for estimating head and shoulder pose based solely 

on depth images to create a complete end-to-end system. The 

proposed method also incorporates head detection and a 

localization module for facial depth estimation. 

E. FACIAL DEPTH MAP DENOISING 

Two forms of noise which include holes and spikes impact 

the depth data generated by the face reconstruction process. 

Pixels with unknown depth values are referred to as holes. 

During the disparity estimation procedure, the disparity 

values for these pixels are set to zero. They arise when there 

is an obstruction or poor light. Spikes are pixels having an 

incorrect depth estimation. They are mostly caused by 

incorrect matching and occur inhomogeneous areas where 

pixels have similar intensity values.  

     Various approaches for face depth map de-noising have 

been presented in the literature. These methods are divided 

into two categories: global and local. To eliminate spikes and 

fill holes, global approaches apply noise reduction filters to 

the hole depth image. For this, the median filter is frequently 

used. Authors in [69], [70], proposed a Gaussian filter 

method that works to soften the data and eliminate spikes in 

the z-coordinate. To eliminate spikes, fill tiny gaps, and 

smooth the data, the authors in [71] utilized three median 

filters with different variances. For minor noises, these types 

of filters can produce optimal results. However, if the noisy 

region is big, these filters will not be able to remove the 

noise; instead, they will just modify the pixel values by their 

surrounding pixels.  

     In [49] by processing the data row by row, with the first 

and last non-zero pixels in each row being chosen by a sweep 

of the depth images. This procedure is continued until no 

more pixels are produced. The filling process usually 

involves utilizing an interpolation technique or a local 

median filter after determining the hole's boundaries. This 

method is more accurate than the global method since it just 

processes noises and leaves the non-noisy data alone. Since 

holes have a known value (zero or undefined), it can only 

handle those; spikes, on the other hand, have a random value, 

therefore it can't be used to eliminate them.  

      The authors [72] suggested an edge-guided deep neural 

network for the super-resolution of a single facial depth map. 

It is divided into two sub-networks: edge prediction and 

depth reconstruction. The edge prediction sub-network 

generates an edge guidance map that is used to guide the 

depth reconstruction sub-network in recovering sharp edges 

and fine constructions. [73] proposes a time-of-flight depth 

camera-specific wavelet-based depth video denoising 

approach based on multi hypothesis motion estimation for 

facial depth maps. In [74] authors proposed a method and 

system for super-solving and recovering the facial depth 

maps.  The main idea of this approach is to use a learning-
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based technique to gather reliable face priors from a high-

quality facial depth map to improve the depth images. 

III. PUBLICLY AVAILABLE FACIAL DEPTH ESTIMATION 
DATASETS AND LOSS FUNCTIONS 

This section provides an overview of the most commonly 

used facial image depth datasets, including their respective 

descriptions in tabular form. 

There are several useful datasets available for training depth 

estimation methods both multi-view and monocular images of 

human faces. The collection's general data contains 

information on the number of objects, scenarios, and RGB and 

depth images. Among the numerous types of data contained 

within every dataset, the ground truth contains depth, mesh, 

cameras trajectories, videos, positions, point cloud, semantics 

label, trajectories, and dense multi-class labelling. As the field 

of face image depth estimation research grows in popularity, 

more work is being put into creating higher and additional 

informative depth maps datasets. Fig. 1 shows the number of 

new publicly available facial depth maps datasets and their 

corresponding number of citations becoming available each 

year over the period for the last ten (10) years. Table 4-6 

tabulates a comparison analysis for the data existing in each 

dataset.  

A. FACIAL AND POSE DEPTH DATASETS 

The depth camera sensor should be capable of faster human-

skeletal tracking in addition to being a low-cost camera sensor 

that outputs both RGB and depth information. This kind of 

tracking can provide the precise position of human body joints  

  

FIGURE 1.  The number of depth datasets publically available every 
year, with predicted availability in the year 2021 embodied as a dashed 
line. 

 

throughout a period, making comprehensive human behaviour 

investigations easier and quicker. As a consequence, there has 

been a lot of interest in inferring human faces from depth 

images and synthesizing depth and RGB images. Several new 

facial depths maps datasets have been generated in recent 

years to assist in the confirmation of humanoid facemask 

action analysis methods. The details of these datasets are 

provided in the following section.

 
TABLE IV: Comparison between data representations   
 

❖ RGB: Images of the visible light spectrum in two dimensions. 

❖ Depth: The term "depth map" refers to a map of per-pixel data that includes depth-related information. The 

distance to an object at each pixel is specified by a depth map (e.g., distance from the camera). 

❖ Video: This type of data displays a series of temporally consecutive visual readings. 

❖ Point cloud: A 3-dimensional shape is represented by a collection of points, each of which has at least one x, y, 

and z coordinate. 

❖ Mesh: It's a polygon-based representation of 3-dimensional objects that captures topological and shape surfaces 

directly.  

❖ Scene: It's a form of data that are collected in a specific environment, such as a room or various indoor/outdoor 

scenarios. 

❖ Semantic: Labels that relate some data to an ontology class (e.g., human, vehicle, etc.). 

❖ Object: Object properties such as form, and motion are captured in data. appropriate for tasks such as tracking or 

object categorization. 

❖ Camera: This information can be used to track the geometrical properties of the camera. 

❖ Action: This information is made up of videotapes of people performing specified actions. 

❖ Trajectory: It is a sort of data that records the course of motion or activity taken by a particular object or entity. 

❖ Pose: data describing human characteristics, such as head position. 
❖ Texture map: Texture maps are used to produce repeating textures, patterns, and distinctive visual effects on the 

surfaces of 3D models. These can be utilized to define precise aspects such as hair, clothing, and skin to any 3D 

models. 
❖ UV map: A UV map is a flat representation of a 3D model's surface that is used to wrap textures simply. UV 

unwrapping is the method of creating a UV map. The term U and V relate to the horizontal and vertical axes of the 

2D space. 
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 DATA TYPE   DIMENSION  SHAPE 

INFORMATION  

 MEMORY PROFICIENCY   COMPUTATION 

PROFICIENCY 

USAGE  

 RGB   2-D   High  Low  Moderate Images are detected, represented, and 

shown in electrical devices like 
televisions and computers. 

 Depth   2.5-D   High  Low  Moderate Simulating the impact of dense semi-

transparent material in a scene, such as 

fog, smoke, or significant amounts of 
water. 

 Mesh   3-D   Low   High   Moderate  To form shapes with height, width, and 

depth, 3D meshes use reference points 
on the X, Y, and Z axes. 

 Voxel   3-D   High   Moderate   High  Volumetric imaging in medical and 

landscape representation in games and 

simulations. 

 Point cloud   3-D   Moderate   High   High  from construction and engineering to 

highway planning and self-driving car 

development. 

 Octree   3-D   High  Moderate   Moderate  to recursively subdivide a three-
dimensional space into eight octants in 

order to partition it. 

 TSDF   3-D   Moderate   High   Moderate  based on a hand-held laser line scanner 
as a fast, precise, and adaptable 

geometric fusion method in the 3D 

reconstruction of industrial products. 

 Stixel   2.5-D   High  Low   Low  Segmentation, Object tracking. 

Texture map  3-D  High   High   High  Generate textures, patterns, or special 

visual effects. 

 UV map  3-D  High   Moderate  High  Converting a 3D mesh to a 2D space 
from a 3D model. 

 

TABLE V: Datasets of facial depth, pose, and recognition  

Examples of face images Dataset Labelling Description camera parameters APPLICATIONS 

 

Biwi [75] 3d Position Of The Head 
And Its Rotation 

People Moving Their Heads In 
Different Directions 

Intrinsic + 
Extrinsic 

 

Automatic Head 
Pose, Depth, 

Estimation, Gaze 

Estimation 

 

Eure Com 

Kinectv [76] 

Facial Variations, 

Expressions, Marker 

Point Positions, 
Illumination, Occlusion 

Performing Various 

Expressions, Poses  

Intrinsic + 

Extrinsic, Focal 

Length  
 

Face Recognition, 

Pose Estimation, 

Depth Facial 
Landmark Detection 

 

3dmad [77] Spoofing Is Occurring, 
Eye Positions 

3 Different Sessions For All 
Subjects And Each Session 5 

Videos Of 300 Frames Are 

Captured, Neutral Expression 

Intrinsic + 
Extrinsic 

Biometric (Face) 
Spoofing, Facial 

Depth Estimation 

 

Pandora [30] Head Position And Its 
Rotation, Features For 

The Face Verification 

People Doing Different Poses 
In Front Of A Camera Poses 

Intrinsic + 
Extrinsic 

Pose, Facial Depth 
Estimation 

 

Facescape [78] 

 

Textured 3d Face Models 

With Pore-Level 
Geometry, Expressions, 

Mash, Motion Map, 

Disparity Map, Texture 

 Textured 3d Faces, Captured 

From 938 Subjects And Each 
With 20 Specific Expressions 

Intrinsic + 

Extrinsic, Focal 
Length 

Predict Elaborate Rig 

Gable 3d Face 
Models, Facial Depth 

Estimation 

 

Syn Human 

Face [59] 

Expression And Pose, 

Expressions, Meshes, 3d 

Position Of The Head 
And Its Rotation, 

Lighting 

5 Expressions Performed By 

One Face, Poses, Lighting, 

Head And Camera Rotation, 
Translation  

Camera Matrix 

Intrinsic + 

Extrinsic, Focal 
Length 

Facial Depth 

Estimation, Pose 

Estimation 

 

Baracca 

Dataset [79] 

Measures Of Distance, 

Age, Weight, Variations, 
Expressions 

In-Car And Outside Views, 

Human Body Measurements 

Intrinsic + 

Extrinsic 

Thermal, Facial 

Depth Estimation 
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1) BIWI 

This dataset [75] comprises 15K images of 20 different 

subjects which included 6 female subjects and 14 male 

subjects (4 people were recorded twice). Moreover, this 

dataset provides the depth image of 640x480 pixels resolution, 

the corresponding visible image of 640x480 pixels size, and 

lastly, it also offers the annotation for every image. The depth 

data is captured using a Kinect v1 sensor. The dataset consist 

of the head poses with the range of around +-75 degrees yaw 

and +-60 degrees pitch. The overall dataset includes the head’s 

3D location and rotation as the ground truth data.  

 
2) EURECOM KINECT FACE 

This dataset provides multimodal facial data of 52 subjects 

among which 14 are female, and 38 are male subjects. 

Eurecom Kinect Face dataset [76] incorporates the depth data 

which is acquired from Kinect v1 sensor. This data was 

gathered at different times in the form of two-fold intervals 

with an average time gap of half month. The recorded data in 

two different intervals provides the facial frames of each 

subject in nine situations with various lighting and occlusion 

conditions and facial expressions which include a neutral face 

and smiling face.  

      The provided data incorporates facial data with open 

mouth, and different occlusions such that strong illumination, 

eyes occlusion by wearing sunglasses, mouth occlusion by 

covering it with hand, face side occlusion by placing a paper. 

The overall dataset provides the RGB colour images, the 3D 

images, and the depth map which is provided in the forms of 

the bitmap depth image and the text file containing the actual 

depth levels acquired from the Kinect sensor. The dataset also 

incorporates six distinct manual facial landmarks positions 

which comprise of right and left eye, right and left corner of 

the mouth, the tip of the nose, and the chin. 

 
3) PANDORA 

This dataset [30] provides a total of 250K full-resolution RGB, 

their corresponding depth data, and their annotations are also 

included in this dataset. The depth data is acquired from a 

Kinect v2 sensor. The Pandora dataset is frequently used for 

various computer vision tasks such that head poses estimation, 

head centre localization, and shoulder pose estimation. 

 
4) FACESCAPE 

The FaceScape dataset [78] includes large-scale 3D facial 

models, parametric models, and multi-view images all are 

recorded in high-quality. The dataset also provides the 

subject's age and gender, as well as the camera settings 

configuration. The dataset is made publicly available for non-

commercial research purposes. This dataset is consisting of 3D 

faces acquired from 938 subjects. The overall data comprises 

18,760 textured 3D faces, with 20 distinct facial expressions. 

The dataset provides topological information in all the 3D 

models by processing pore-level facial geometry. For rough 

shapes and intricate geometry, fine 3D facial models can be 

expressed as a 3D morphable model, it is represented as 

displacement maps. A unique methodology is proposed that 

takes advantage of the large-scale and high-accuracy dataset 

by utilizing a deep neural network to extract expression-

specific dynamic characteristics. 

 
5) 3DMAD 

The 3D Mask Attack Database [77] (3DMAD) contains 76500 

frames of 17 different subjects captured using the Kinect v1 

depth sensor. Each frame is made up of a depth image with an 

image dimension of 640x480 pixels – 1x11 bits, a matching 

RGB image with an image dimension of 640x480 pixels – 3x8 

bits, and precisely labelled eye locations (concerning the RGB 

image). Data is gathered in three distinct sessions for each 

subject, with each session consisting of five recordings with 

each recording including 300 frames. The overall data is 

recorded from the frontal view with neutral expression in 

controlled environmental conditions. The complete data is 

gathered in three different sessions. The first two events are 

for real-world samples, wherein people are recorded for two 

weeks. A single operator collects 3D mask attacks in the third 

session (attacker). 

 
6) SYN HUMAN FACE 

 

Lock3DFace 

[80] 

Changes In Facial 

Expression, Pose, 

Occlusion, And Time-
Lapse 

People Moving Their Heads In 

Different Directions 

Intrinsic + 

Extrinsic 

Pose, Facial Depth 

Estimation, 3D Face 

Analysis 

 

Curtinfaces 
[81] 

Facial Variations, 
Expressions 

Performing Various 
Expressions, Poses, 

Camera Matrix 
Intrinsic + 

Extrinsic 

Pose, Facial Depth 
Estimation, Face 

Recognition 

 

Iiit-D Rgb-D 

[82] 

Head Position And Its 

Rotation 

Performing Various 

Expressions Poses, 

Camera Matrix 

Intrinsic + 

Extrinsic 

Face Recognition, 

Facial Depth 

Estimation 

 

Kasparov [46] Variations, Expressions Poses, Lighting, Head And 
Camera Rotation 

Intrinsic + 
Extrinsic 

Pose, Facial Depth 
Estimation 
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The SYN Human FACE [59] includes extensive high-quality 

3D face models and their corresponding 2D RGB, pixel-

accurate ground truth depth images. The suggested 

framework works as follows: In Character Creator, a 

collection of virtual human models is built using the real 100 

head models. To generate additional data variations, the 

texture and morphology of the models are modified. These 

models are then imported to iClone for incorporating the data 

with five different facial expressions. The mesh, textures, 

and animation keyframes for the completed iClone models 

with individual face emotions are then exported in FBX 

format.  

     In the next phase head movement (yaw, roll, and pitch) 

was applied on all the models in Blender to acquire the head 

pose. The FBX files are then imported and scaled in the 

Blender world coordinate system. To replicate the real work 

environment, lights and cameras are included in the scene, 

whose properties are then adjusted accordingly. The camera 

sensor near and far clips have been set at 0.01 meters and 5 

meters, correspondingly. The sensor size and field of view 

(FOV) is set to 60 degrees and 36 mm, accordingly. The 

render layer's RGB and Z-pass outputs are then set up in the 

compositor to produce the final result. In posture mode, the 

head and shoulder joints are recognized, the head mesh has 

pivoted those bones, and the keyframes are stored to apply 

the rotation.  

     Finally, the RGB and depth images are created by 

rendering all of the keyframes. The matching head position 

(yaw, pitch, and roll) is produced using the Blender 

software's python module. For each frame, the RGB images 

are rendered with a resolution size of 640x480 pixels which 

are then stored in jpg format. Whereas the corresponding 

depth data is saved in a raw file (.exr format). Moreover, the 

head poses information for each frame is documented and 

stored in a text (.txt) file. The rendering process for each 2D 

frame nearly takes an average time duration of 26.3 seconds 

which is done using the Cycle Rendering Engine, provided 

in Blender software which is a type of physically-based path 

tracer for production rendering. The overall dataset consists 

of around 3,500k frames, with around 3.5k 2D frames per 

person.  

     The data is stored in a separate folder where each folder 

contains the data of 100 face models. Each face model's 

produced RGB images, as well as the resulting depth and 

head posture, are saved in three separate routes for three 

different backgrounds: plain, textured, and sophisticated. 

The synthetic dataset was used to create the sample images, 

which included ground truth depth images and various 

backdrops (basic, textured, and sophisticated). 
 
7) BARACCA DATASET 

The recent interest and growth in depth sensors have 

supported different methods to instinctively assess the 

anthropometric measurements, rather than utilising manual 

procedures and expensive 3D scanners. Normally, the 

application of depth data is limited due to the lack of depth-

based public datasets including accurate anthropometric 

annotations. As a result, the authors [79] introduced a better 

dataset, Baracca, that was constructed specifically for the 

anthropometric measurements and vehicle perspective, 

including both in-cabin and outside views. This is a type of 

multimodal dataset that was created with synchronized 

depth, infrared, thermal, and RGB cameras to meet the needs 

of the automobile industry. The depth data is recorded using 

the Pico Zense DCAM710 depth sensor. The spatial 

resolution of the RGB sensor is 1920×1080 pixels, whereas 

the infrared/depth sensor has a resolution of 640×480 pixels. 

A total of 30 subjects (26 male, and 4 female) took part in 

the data acquisition process. 
 
8) LOCK3DFACE  

The Lock3DFace dataset [80] contains 5671 RGBD facial 

videos from 509 people, each with a unique facial 

expression, position, occluded, and moments. The database 

was collected throughout two periods. The very first event's 

neutral images are used as training examples, while the final 

three variations are used to create the 3 test procedures for 

position, occluded, and expressions. All the images from the 

second run, in all variants, make up a fourth validation set. 

 
9) CURTINFACES  

CurtinFaces [81]  is a well-know RGBD face database that 

includes over 5000 co-registered RGBD images of 52 

participants taken using a Microsoft Kinect. The front left, 

and right postures are the initial three images for each person. 

The remaining 49 images include 35 images with 5 different 

illumination variations and 7 different emotions, as well as 7 

distinct positions captured with 7 facial variations. Images 

with sunglasses and arm occluded are also included in this 

collection. 

 
10) IIIT-D RGB-D 

The IIIT-D RGB-D dataset [82] includes 4605 RGBD 

images from 106 people collected for two periods using a 

Microsoft Kinect. Each participant was captured with 

modifications in attitude, emotion, and glasses under typical 

illumination conditions. The datasets which were before the 

procedure, which included a 5 cross-validation approach, in 

the tests set. The head is cropped for each image in the data. 

 
11) KASPAROV 

The KaspAROV dataset [46], which comprises automatic 

facial videos from 108 participants is captured by Microsoft 

Kinect v1 and v2 cameras. Every subject is shown in videos, 

each shot at a separate time. A total of 432 videos with 

117,831 images are included in the dataset. Because the 

Kinect v2 sensor data had higher Rgbd image registration 

than the Kinect v1 sensor information. 

 
B. FACIAL DEPTH ESTIMATION LOSS FUNCTIONS 

On the reference depth map, deep learning-based algorithms 

commonly improve a regression model. The key problem for 

the SoA approaches in deep regression problems is 

determining a suitable loss function. Neural networks make 

use of optimization algorithms. 
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TABLE VI: Publicly Available Depth datasets and properties for faces and poses 

 

No Dataset Name Year Gt Labeling Dimension   Objects Subject/Type No 

Images 

Diversity Annotation 

1. BIWI [75] 2011 Depth Expression, 

Pose, 2D 

Skeleton 

Positions 

640 × 480 Multiple 20/realistic  15K Medium Real RGB-

D 

2. 3DMAD [77] 2013 Depth Expression, 

Pose, 3D 

Positions of 

The Head 

and its 

Rotation 

640 × 480 Multiple realistic 76K Medium Real RGB-

D 

3. CURTINFACES 

[81] 

2013 Depth, 

Pose 

Expression, 

Pose, 2D 

Skeleton 

Positions 

640 × 480 Multiple 52/realistic >5K High Real RGB-

D 

4. IIIT-D RGB-D 

[82] 

2013 Depth, 

Pose  

Expression, 

Pose 

640 × 480 Multiple 106/realistic 46K High Real RGB-

D 

5. EURECOM 

KINECT [76] 

2014 Depth Expression 

type, Pose, 

2D Rotation 

256 × 256 Multiple realistic 20K Medium Real RGB-

D 

6. LOCK3DFACE 

[80] 

2016 Depth Expression 

type, Pose, 

3D Position 

of The Head 

and Its 

Rotation 

512 × 424 Multiple 509/realistic >6K High Real RGB-

D 

DATASET RGB DEPTH VIDEO POINT-CLOUD MESH SCENE SEMANTIC OBJECT CAMERA ACTION TRAJECTOR

Y 

POS

E 

BIWI [75] 

      

        

      

      

EURECOMKINECT [76] 

      

        

      

      

3DMAD [77] 

      

        

      

      

PANDORA [30] 

      

        

      

      

FACESCAPE [78] 
       

      

            
  

SYN HUMAN FACE [59] 

      

      

          

    

BARACCA DATASET [79] 
    

    

            

    

LOCK3DFACE [80] 
      

              

    

CURTINFACES [81] 
    

    

            

    

IIIT-D RGB-D [82] 
    

                

    

KASPAROV [46] 
      

              

    
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7. KASPAROV 

[46] 

2016 Depth Expression 

type, Pose, 

2D Rotation 

64 × 64 Multiple 108/realistic 101K Medium Real RGB-

D 

8. PANDORA [30] 2017 Depth Expression, 

Pose, 2D 

Skeleton 

Positions 

256 × 256 Multiple 20/ realistic 11K High Real RGB-

D 

9. FACESCAPE 

[78] 

2020 2D, 3D 

Landmarks, 

Depth 

3D Position 

of The Head 

and Its 

Rotation 

4096 × 

4096 

Multiple 938/Extracted 8K High Synthetic, 

3D, RGB-B 

10.  BARACCA 

DATASET [79] 

2020 Depth Expression, 

Pose 

640×480 Multiple 30/ realistic >10k Medium Real RGB-

D 

11. SYN HUMAN 

FACE [59] 

2021 2D, 3D 

Landmarks, 

Depth 

3D Position 

of The Head 

and Its 

Rotation 

640 × 480 Multiple 100/ 

Extracted 

350K High Synthetic, 

3D, RGB-B 

This error is calculated using the loss function that evaluates 

how well or badly the model behaves. Neural depth models 

have been used to estimate depth from one or many 2-D 

images using a variety of interesting loss functions for depth 

estimation challenges. This section lists the common loss 

functions that are used to estimate facial depth maps from 

one or multi 2D frame images.   

 
1) ADVERSARIAL LOSS FUNCTION 

The binary categorical cross-entropy loss function, which is 

used for face depth estimation in adversarial training models 

[20], [21], is defined as follows: 

𝐿𝑏𝑐𝑐(𝒚, 𝑟) = −
1

𝑁
∑𝑖=1
𝑁  [𝑟𝑖𝑙𝑜𝑔⁡ 𝑦𝑖 + (1 − 𝑟𝑖)𝑙𝑜𝑔⁡(1 − 𝑦𝑖)] (1) 

The discriminator output is subjected to yi = D(Ii), where yi is 

the prediction discriminator for the i-th input depth map and ri 

is the corresponding ground truth. The goal of the generator 

model is to create images similar to the GT depth and the 

discriminator model. The mean squared error (MSE) loss 

function is used to achieve the first goal. 

𝐿𝑀𝑆𝐸(𝑦
𝑔, 𝑦𝑑) =

1

𝑁
∑𝑖=1
𝑁  ∥∥𝐺(𝑦𝑖

𝑔
) − 𝑦𝑖

𝑑
∥∥
2

2
                     (2) 

where yg and yd are the input images and the output depth map. 

In the second stage of the network, feed created depth images 

into the discriminator and use the adversarial loss on the 

discriminator predictions to see if the generated images can 

trick the discriminator model. Next, while maintaining the 

discriminator weights constant, back-propagate the gradients 

up to the generator model input and modify the generator 

parameters. As a result, the goal of solving the back-

propagation problem is to minimize: 

𝜃̂𝑔 = 𝑎𝑟𝑔⁡𝑚𝑖𝑛𝜃𝑔  𝐿𝐺(𝑦
𝑔 , 𝑦𝑑)                         (3) 

Where LG is a balanced sum of two components and can be 

defined as:  

𝐿𝐺(𝑦
𝑔 , 𝑦𝑑) = 𝜆 ⋅ 𝐿𝑀𝑆𝐸(𝑦

𝑔 , 𝑦𝑑) + 𝐿𝑏𝑐𝑐𝑒(𝐺(𝑦
𝑔), 1)        (4)                                   

in which λ is a weighting parameter that controls the 

influence. 
2) GAN LOSS FUNCTION 

The loss function [20], [21] in the GAN-based facial depth 

model is divided into two parts: 1) Generator Loss: The 

generator loss is the sigmoid cross-entropy loss of the 

generated images and an array of ones. The L1 loss function 

(MAE) is utilized to calculate the absolute difference 

between the target and generated images. This determines 

how similar the anticipated image is to the actual image. The 

following formula can be used to compute the total generator 

loss: 

𝐿𝐺𝑒𝑛_𝑙𝑜𝑠𝑠 = Gan_loss +⁡𝜆⁡ ∗ 𝐿1−loss                              (5) 

Here λ is set as 100.  
𝑀𝐴𝐸 = (

1

𝑛
)∑𝑖=1

𝑛  |𝑟𝑖 − 𝑡𝑖|                                                (6) 

where ri is the prediction and ti are the true value. 2) 

Discriminator Loss: The discriminator takes real images and 

generated images as its input. The sigmoid cross-entropy loss 

of the real images and an array of ones is called real loss. 

Then the total loss can be calculated by the summation of 

real loss and the generated loss: 

T_loss = Real_loss + Generated_loss                             (7) 

3) STRUCTURAL SIMILARITY (SSIM) LOSS 

SSIM [81] is used to determine the perceived differences 

between the two similar images. (L_SSIM) represents the 

loss function for the structural similarity index measure 

(SSIM) and can be defined as:  

𝐿𝑆𝑆𝐼𝑀⁡(𝑟, 𝑡) = (
1−𝐿𝑆𝑆𝐼𝑀(𝑟,𝑡)

𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ
)                                (8) 

4) SCALE SHIFT-INVARIANT LOSS 

For a single ag image, the scale-shift-invariant loss [81] is 

defined as 

𝐿𝑆𝑆𝐼(𝑟, 𝑡) =
1

2𝑁
∑𝑖
𝑁  𝜌(𝑟, 𝑡)                                             (9) 
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where (𝜌 is the scale-invariant loss).  

5) PRE-PIXEL SMOOTHNESS LOSS 

Because image gradients commonly have depth 

inconsistencies, a per-pixel smoothness loss [83] is used in 

conjunction with the L_SL reprojection loss to make the 

inverse depth prediction better. The following formula is 

used to determine the (L_SL) loss:  

 
𝐿𝑆𝐿(𝑟, 𝑡) = ∑𝑖

𝑁  𝜕𝑥𝑑𝑡𝑒
−𝜕𝑥(𝑟,𝑡) + 𝜕𝑦𝑑𝑡𝑒

−𝜕𝑦(𝑟,𝑡) (10) 

Where N denotes the number of valid pixels, ∂d denotes the 

disparity gradient, and 𝒆−𝝏𝒙,𝒚(𝒓,𝒕) denotes the edges.  

 
6) RECONSTRUCTION LOSS 

When training, the network estimates disparity, and the input 

image is generated using the bilinear samples, utilized to 

recreate the image. At the local level, the bilinear sampler is 

completely differentiable and easily integrated into 

a network. A 𝑳𝑯𝒖𝒃𝒆𝒓 and SSIM is represented as follows: 

which computes the inconsistencies between both the input 

image and the regenerated image when coupled as a 

photometric image reconstruction loss [19].  

  
𝐿𝑅(𝑟, 𝑡) =

1

𝑁
∑𝑖
𝑁  

1−𝐿𝑆𝑆𝐼𝑀(𝑟,𝑡)

2
+ (1 − 𝛼)𝐿𝐻𝑢𝑏𝑒𝑟((𝑟, 𝑡))   (11) 

7) SCALE-INVARIANT LOSS 

When training the model, depth estimation methods use the 

GT depth y and the predicted log depth maps. Scale-

invariant loss function [81] (𝐿𝑆𝐼) can be represented by (𝐿𝑆𝐼) 
for the depth values and is defined as:                                                                                                                  

 𝐿𝑆𝐼(𝑟, 𝑡) =
1

𝑁
∑𝑖
𝑁  (𝑙𝑜𝑔⁡(𝑟𝑖) − 𝑙𝑜𝑔⁡(𝑡𝑖))

2
 

−
𝜆

𝑁
(∑𝑖

𝑁   𝑙𝑜𝑔(𝑟𝑖) − 𝑙𝑜𝑔(𝑡𝑖))
2                              (12) 

Where   refers to the balance factor. 

 
8) BERHU LOSS 

The OLS estimator is effective in the circumstance of 

checking for data with outliers or massive errors. Berhu loss, 

on the other hand, is designed to preserve good attributes in 

the face of Gaussian noise. Berhu loss function [81] ( )BerhuL  

is defined as:  

𝐿𝐵𝑒𝑟ℎ𝑢(𝑟, 𝑡) = {

(𝑟𝑖 − 𝑡𝑖)  𝑖𝑓  (𝑟𝑖 − 𝑡𝑖) ≤ 𝑐,
(𝑟𝑖−𝑡𝑖)

2+𝑐2

2𝑐
 𝑖𝑓  (𝑟𝑖 − 𝑡𝑖) > 𝑐, (13) 

Where 𝑟𝑖 , 𝑡𝑖 are ground truth and predicted depth maps. 

9) HUBER LOSS 

MSE is thought to be better at detecting outliers in a dataset, 

but MAE is expected to be better at preventing them. Data  

that appear to be outliers, on the other hand, should not be 

studied, and those points must not be assigned much weight. 

As a result, the Huber loss function [81] (L_Huber) is 

defined as: 

𝐿𝐻𝑢𝑏𝑒𝑟(𝑟, 𝑡) = {

(𝑟𝑖 − 𝑡𝑖)  𝑖𝑓  (𝑟𝑖 − 𝑡𝑖) ≥ 𝑐,
(𝑟𝑖−𝑡𝑖)

2+𝑐2

2𝑐
 𝑖𝑓  (𝑟𝑖 − 𝑡𝑖) < 𝑐, (14) 

Where ri, ti are ground truth and predicted depth maps. 

 

Table 7 shows the loss function categorized according to their 

use in depth estimation and their respective use case 

applications.  

 

 
 

 

 
TABLE VII: Loss functions categorized in terms of the use case applications. 
 

Loss Function  Purpose Of Usage in Terms of Depth Estimation Other Use Cases 

Adversarial Loss 

Function [20], [21] 

The matching feature vectors of distinct identities are linked together to expand the discriminative 

characteristics between them. The goal is to change the distance between two facial depth image feature 

vectors and predict the final depth maps. 

Segmentation, 3D 

reconstruction, 

Synthetic Data 
generation 

Gan Loss Function 

[22], [23] 

This loss function can be used to penalize inter-subject similarities to force the estimated depth image to 

preserve as much subject discriminative information as feasible. 

Segmentation, 3D 

reconstruction, 

Synthetic Data 
generation 

Structural Similarity 

(SSIM) Loss [81] 

✓ The (Structural Similarity Index) loss function is used with the BerHu loss function to use the 

input image structure and associated features.  
✓ The perceptual difference between two similar images is measured by the SSIM loss. Details 

about structural loss come from relatively adjacent pixels with a deeper connection.  

✓ These pixels contain vital information about the structure of the visual scene's objects. 

Classification, 

Regression, 
Segmentation  

Scale Shift-Invariant 
Loss [39] 

✓ The loss function with the extra term would create a considerably smaller error because the 
major issue is to preserve relative depth relationships between pixels. 

✓ It can also help in a diverse scene such as unknown and inconsistent scales and baselines 

dataset compatibility. This will allow for data to be trained on from a variety of sensing 
modalities, including stereo cameras (with potentially unknown calibration), laser scanners, 

and structured light sensors.  

Regression, 
Segmentation, Stereo 

Depth Maps  
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Pre-Pixel 

Smoothness Loss 

✓ This loss function estimates the similarity between the actual and predicted depth map.  

✓ It also benefits the estimated depth-perceptual map's quality. 

Regression, 

Segmentation, Stereo 

Depth Maps 

Reconstruction Loss 
[19] 

This loss function can be used to make the projected left-view disparity map equal to the projected right-
view disparity map, resulting in more realistic disparity maps. 

Segmentation, 3D 
reconstruction, 

Synthetic Data 

generation 

Scale-Invariant Loss 

[39] 

✓ Regardless of the absolute global size, scale-invariant loss helps in the measurement of 

relationships between points in the scene.  

✓ The average deviation between each pixel depth prediction and the ground truth depth is all 
that is measured. 

Regression, 

Segmentation, Stereo 

Depth Maps 

Berhu Loss [40] ✓ BerHu Loss has an advantage since it uses MSE (or L2) loss to give pixels with greater 

residuals more weight. At the same time, it allows smaller residuals to have a larger effect on 

gradients than MAE loss. 
✓ BerHu's loss function simply combines MAE and MSE, enhancing the whole training process 

and resulting in more smooth and accurate depth predictions. 

Regression, 

Segmentation, Stereo 

Depth Maps 

Huber Loss  [40] ✓ By balancing the MSE and MAE together, the Huber Loss provides the best of both worlds.  
✓ It is less sensitive to outliers in data and can predict more accurate depth maps. 

Regression, 
Segmentation, Stereo 

Depth Maps 

IV. IMPLEMENTATION DETAILS OF NEURAL DEPTH 
ESTIMATION NETWORKS  

Convolutional neural networks (CNN) are the form of a 

learning algorithm for data processing with a uniform grid, 

such as images, that is intended to acquire provides scalable 

features from low- to high-level structures efficiently and 

adaptively. Convolution, pooling, and fully connected layers 

are the three types of layers (or building blocks) that make 

up CNNs. Convolution and pooling layers are the initial 

layers that extract features, while the third, a fully connected 

layer, transmits these characteristics into the final output, 

such as classification or multiple regression analysis. A 

convolution layer is an important part of CNN, which is 

made up of a stack of mathematical computations like 

convolution, which is a specific sort of linear operation. 

Because a feature can appear everywhere in a digital image, 

image pixels are saved in a two-dimensional (2D) grid, i.e., 

an array of numbers and a small grid of parameters called the 

kernel, and an optimizable feature extractor, is implemented 

at every image position, CNNs are extremely efficient for 

image analysis. Features extracted can evolve hierarchical 

structures and progressively more complicated as one layer 

passes its results into the next layer. Training is the process 

of adjusting parameters such as kernels to reduce the 

disparity between outputs and ground truth labels using 

optimization algorithms like backpropagation and gradient 

descent. Fig. 2 illustrates the comprehensive implementation 

details.

 

FIGURE 2.  A look at the design of a CNN and how it's trained for facial depth estimation. Convolution layers, pooling layers (e.g., max-pooling), and 
fully connected (FC) layers are the building components that make up a CNN. The success of a model with certain kernels and weights is evaluated 
using a loss function and forward propagation on a training dataset, and learning parameters, such as kernels and weights, are adjusted using the 
gradient descent process. The term "corrected linear unit" refers to a linear unit that has been rectified. 

The performance of 2D facial depth estimation has been 

greatly enhanced because of the use of Deep Learning CNNs. 

Facial depth maps are learned directly from 2D RGB-D 

facial images by training deep neural networks on large 

datasets. Different deep learning models (i.e; VGG, 

Autoencoder, ResNet, encoder-decoder, inception, 

DenseNet) are used for facial depth maps which are trained 

on 2D face depth images. These models typically consist of 
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CNN, FC, SoftMax layers followed by an appropriate loss 

function that can minimize the errors of the training 

networks. Weights of the networks are mostly randomly 

initialized. The datasets can be augmented in several ways 

(pose augmentation, resolution, transformation, rotation, 

cropping, and flipping) using a range of images to enlarge 

training datasets and can achieve better accuracy. Table 8, 

shows some comparison analysis of the deep learning-based 

models for facial depth estimation on iiit-d rgb-d [82], 

kasparov [46], curtin faces [81] and lock3dface [80] datasets. 

Note that we were unable to compare other qualitative 

evaluation metrics mentioned in Table 8 due to technical 

difficulties with publicly available codes and a lack of 

instructions for these methods listed in Table 8, and the 

accuracy results are obtained from their related articles. A 

CNN-based system has three major components, a training 

phase, data pre-processing, and model design. To train the 

model, deep learning-based techniques usually require a 

significant number of datasets. In CNN-based facial depth 

maps research, a shortage of large-scale realistic face depth 

datasets remains an outstanding topic. Because CNN has a 

lower tolerance for pose changes, suitable data preparation 

or synthetic data can enhance accuracy before transmitting 

the data to the model. In addition, selecting an appropriate 

CNN and loss function are critical.

TABLE VIII: Performance Evaluation of Monocular Depth Estimation based deep learning models on IIIT-D RGB-D [82], KASPAROV [46], CURTIN 
FACES [81] and LOCK3DFACE [80]. 

 

 

REFERE

NCE 

 

YEAR 

 

NETWORK 

 

DATASETS 

 

PARAMETERS LAYERS INPUT/OUTPUT 
ACCUR

ACY % 

[46] 2016 AUTOENCODER 

IIIT-D RGB-D 

[82] 

47M CNN, FC, 

SOFTMA

X 

RGB/DEPTH 98.7 

[84] 2014 VGG-16 

KASPAROV 
[46] 

32M CNN, FC, 

SOFTMA

X 

RGB/DEPTH 94.4 

[85] 2016 RESNET-50 

IIIT-D RGB-D 

[82] 

68M CNN, FC, 
SOFTMA

X 

RGB/DEPTH 95.8 

[86] 2017 SE-RESNET-50 

CURTIN 

FACES [81] 

86M CNN, FC, 

SOFTMA

X 

RGB/DEPTH 97.8 

[58] 2018 INCEPTION-V2 

LOCK3DFACE 
[80] 

73M CNN, FC, 

SOFTMA
X 

RGB/DEPTH 71.7 

[47] 2020 VGG + DEPTH 

IIIT-D RGB-D 

[82] 

84M CNN, FC, 

SOFTMA

X 

RGB/DEPTH 99.6 

V. EVALUATION METRICS FOR FACIAL DEPTH 
ESTIMATION  

The most used quantitative metrics for evaluating the 

performance of monocular facial depth estimation methods 

are provided in Table 9. These are not limited to 8 metrics, 

however, most of the published articles used these 

quantitative metrics to analyze the performance of the 

trained depth estimation models. 
 
TABLE IX: Quantitative Metrics used for performance evaluation of 
Monocular Facial Depth Estimation  

 

S.No  Quantitative Metrics 

Name  

Formula 

1 AbsRel 
1

𝑁
∑

|𝑑𝑖−𝑑𝑖
∗|

𝑑𝑖
                                                        

2  RMSE √
1

𝑁
∑|𝑑𝑖 − 𝑑𝑖

∗|2                                                 

3 RMSE (log) 
√
1

𝑁
∑|log 𝑑𝑖 − log 𝑑𝑖

∗|2⁡⁡⁡⁡⁡ 

4 SqRel 
1

𝑁
∑

|𝑑𝑖 − 𝑑𝑖
∗|2

𝑑𝑖
⁡⁡⁡⁡⁡⁡⁡ 

5 Accuracies % of 𝑑𝑖max(𝑑𝑖/𝑔𝑖) = 𝛿⁡𝑡ℎ𝑟⁡⁡⁡⁡⁡⁡⁡ 

6 L1 ∑𝑖=1
𝑛  |𝑦true − 𝑦predicted |⁡⁡⁡ 

7 L2 ∑𝑖=1
𝑛  (𝑦true − 𝑦predicted )

2
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8 NRMSE √
1

𝑁
∑

|𝑑𝑖−𝑑𝑖
∗|

𝑑𝑖
∗       

where 𝒅𝒊 and 𝒅𝒊
∗ are the ground truth and predicted depth at pixel 𝒊 and 

𝑵 is the total number of pixels. 

VI. FACIAL DEPTH ESTIMATION MODEL 

Many consumer applications including robotics, augmented 

reality and advanced driving monitoring systems can benefit 

from facial depth estimation neural depth networks from 

single images. A methodology for creating depth maps from 

single images of human faces is presented in this section, 

which utilizes the source face depth and corresponding 

ground truth depth using neural networks.  

Existing facial depth map algorithms may produce depth 

maps with comparable accuracy, but they suffer from 

difficulties such as missing values and depth similarities, 

which result in holes in depth images. As an alternative, the 

model used in this study automates the collection of optimal 

parameters, reducing model complexity during the training 

process for facial depth estimation. 

A recent SoA LapDepth [68] model is chosen to accomplish 

high-quality facial depth estimation from a single 2D frame.  

By applying the Laplacian pyramid-based decomposition 

technique to the decoding process, the suggested method 

intends to successfully restore local details (i.e., depth 

boundaries) as well as the global layout of the depth map. 

The depth residual including local details, which suitably 

describe depth attributes of different scale-spaces, is created 

using Laplacian residuals of the input colour image guidance 

encoded features. To improve the efficiency of this decoding 

process, the authors [87] introduce weight standardization to 

the pre-activation convolution block, which greatly helps in 

estimating depth residuals. First, describe the overall 

architecture of the proposed decoder for monocular facial 

depth estimation in this section. The entire decoding 

procedure will then be detailed, including the influence of 

weight standardization. Finally, the loss functions utilized to 

train the model architecture are discussed. 

A. ARCHITECTURE DETAILS 

The proposed neural depth network for single image facial 

depth maps mechanism is provided in this section, as well as 

the suggested loss function for improving the training 

process over the training data. 

 
1) ENCODER MODEL  

The proposed method's general architecture is demonstrated 

in Fig. 3. [87]. The suggested decoder for restoring depth 

residuals is connected to the pre-trained encoder in the 

network. ResNext10  [56] is used in the encoder phase, 

which has been pre-trained for image classification. The 

input colour image is compressed as latent information using 

densely layered convolution blocks on the encoder. The 

spatial size of such features shrinks to a fraction of the 

original resolution, but they compactly contain the colour-

depth relationship in the embedding space, which is learned 

from various scene geometries. For the convolution block of 

the encoder, the authors utilize the Dense ASPP approach 

[88] with four dilation rates of 3, 6, 12, and 18 to extract more 

dense contextual information. 

 

FIGURE 3.  The overall architecture of the proposed method for monocular facial depth estimation. 

The suggested decoder is separated into many Laplacian 

pyramid branches. One branch, which is in charge of the 

Laplacian pyramid's topmost level, undertakes decoding 

work to restore the depth map's global layout. The depth 

residuals are generated by other branches using latent 

features led by Laplacian residuals of the input colour image 

at the matching scale. Using point-wise addition, this depth 

residual is gradually integrated with the middle depth map, 

which is the result of the higher level of the Laplacian 

pyramid. The decoding technique is based on a five-level 

Laplacian pyramid. All convolution layers in the decoder 

have a filter size of 3x3.  
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2) DECODER MODEL  

The laplacian residual of the input colour image is derived in 

the first phase. For all scaling methods in the suggested 

methodology, downsampling the initial input image, 

upsampling, and bilinear interpolation are used. 

Concatenated features are input into layered convolution 

blocks, and the output is added pixel-by-pixel. The one-

channel output, which is made up of stacked convolution 

blocks, has the same spatial resolution as the input colour 

image. It's important to note that input guides the decoding 

process to precisely restore local characteristics of various 

size areas, which aids in revealing depth boundaries without 

distortions. Finally, starting at the top of the Laplacian 

pyramid, the depth map is gradually recreated. The weight 

standardization in the pre-activation convolution block, 

which is the core module of the decoder, is made to produce 

the decoding process for monocular facial depth estimation 

more effectively. Because the depth map is reconstructed 

using an iterative accumulation of depth residuals, it is 

preferable for the projected depth residual to have a 

balancing of negative and positive values to estimate depth 

information reliably and accurately. During 

backpropagation, which is calculated from each layer of the 

laplacian pyramid, the decoder is capable of improving the 

flow of gradient by normalizing them. This is preferable for 

maintaining the colour-to-depth translation's stability based 

on residual information. The procedure is anticipated to be 

able to effectively understand the important connection 

between colour and depth values for facial images by 

combining this benefit with the Laplacian pyramid-based 

decomposition technique. 

B. LOSS FUNCTION  

The facial depth estimation task's final goal is to find a 

function that predicts the depth from an input image. (𝑳𝒔𝒊𝒍𝒐𝒈)  

is the most common loss function that is found in the 

literature more helpful for depth estimation, The network's 

trainable parameters are tuned based on the loss function, 

which employs properly scaling the loss function's range can 

improve converging and training outputs while putting a 

stronger focus  on decreasing error variance, leading in a 

Silog loss function. [89]⁡(𝑳𝒔𝒊𝒍𝒐𝒈) is defined: 

 

𝐿𝑠𝑖(𝑑𝑖 , 𝑑𝑖
∗) =

1

𝑁
∑ (𝑙𝑜𝑔(𝑑𝑖) − 𝑙𝑜𝑔(𝑑𝑖

∗))2
𝑁

𝑖
 

 −
𝜆

𝑁
(∑ 𝑙𝑜𝑔(𝑑𝑖) − 𝑙𝑜𝑔(𝑑𝑖

∗))
𝑁

𝑖

2
                  (15) 

where is the balance factor and 𝑵 is the number of pixels. 

By rewriting the equation. 15:   

𝐿𝑠𝑖𝑙𝑜𝑔(𝑑𝑖 , 𝑑𝑖
∗) =

1

𝑁
∑(𝑙𝑜𝑔(𝑑𝑖) − 𝑙𝑜𝑔(𝑑𝑖

∗)) −

𝑁

𝑖

 

1

𝑁
∑ (𝑑𝑖 − 𝑑𝑖

∗)2 + (1 − 𝜆)
1

𝑁

𝑖

𝑁
∑ (𝑑𝑖 − 𝑑𝑖

∗)2
𝑖

𝑁
             (16) 

 In log space, the combined Silog loss is defined as:  

 𝐿𝑠𝑖𝑙𝑜𝑔(𝑑𝑖 , 𝑑𝑖
∗) = 𝛼√𝐿𝑠𝑖𝑙𝑜𝑔(𝑑𝑖 , 𝑑𝑖

∗)                  (17) 

VII. EXPERIMENTAL RESULTS 

The experimental results are presented in this section show 

how well the proposed model performs. The purpose of these 

experiments is to see how well synthetic facial depth data can 

be used to estimate facial depth estimation. A set of SoA 

depth estimation single image neural networks is used to 

analyze and compare the human facial depth estimation. 

Furthermore, the model is first trained on a synthetic human 

facial depth dataset, after which it is evaluated against four 

different datasets (Pandora, Eurecom Kinect Face, Biwi 

Kinect Head Pose, and Synthetic human face datasets) 

explained in section 3. After that, there is a brief comparison 

analysis (evaluation results of the SoA to the proposed 

model) is presented. The experiments show that a model 

trained on a large and diverse set of facial depth images, 

along with the appropriate training methods, produce SoA 

results in a variety of scenarios. The zero-shot cross-dataset 

transfer technique is used to demonstrate this process. 

A. TRANING METHODOLOGY 

The proposed approach is designed in the PyTorch tool. The 

suggested decoder's parameters (i.e., the network's weights) 

are all initialized using the approach described in [88]. The 

proposed decoder has group normalization in each layer, 

which is known to be batch size independent. The model is 

trained on a synthetic human facial depth dataset (described 

in section 3), which was divided into training and validation 

sets with 0.8 and 0.2 ratios for facial depth estimation. The 

network is trained using the Adam optimizer for 50 epochs 

with a batch size of 6, with power and momentum set to 0.9 

and 0.999, respectively. For the encoder and decoder, the 

weight decaying factor is set to 0.0005 and 0. Using a 

polynomial decay with the power of 0.5, the learning rate is 

first set to 10-4 and then gradually decreased until it reaches 

10-5. The overall training process is conducted on a machine 

equipped with two TITAN 1080 GPUs, which takes a time 

duration of 72 hours. The model has 73M parameters and to 

avoid overfitting, the online data augmentation method is 

used in the training process. For the SYN HUMAN FACE 

dataset, training samples are randomly cropped to 512x416 

pixels before being randomly rotated in the range of [3, 3] 

degrees. With a ratio of 0.5, input images are also 

horizontally flipped. Furthermore, the scale factor picked 

from the range of [0.9, 1.1] is used to alter the brightness, 

colour, and gamma values of the input colour images. 

B. EXPERIMENTAL DETAILS AND RESULTS  

The first phase of this subsection explains the training dataset 

that was used to train the neural depth model for facial depth 

estimation. The second part explains the testing and 

evaluation process used to evaluate the model's 

generalization performance. For evaluations, Root Mean 

Square Error (RMSE), log Root Mean Square Error (RMSE 

(log)), Absolute Relative difference (AbsRel), Square 

Relative error (SqRel) and Accuracies are used defined in 
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Table 9. Four test datasets were chosen based on the diversity 

and accuracy of their ground truth. The model's performance 

is compared to existing SoA approaches in the final phase. 

Table 10 summarizes all of the information from this study's 

experiments.   
 
TABLE X: Information about how experiments have been conducted  

 
Method LapDepth [87] 

Tools/Software PyTorch, Open3d 

Training Time 72 hours 

Input 512×416 

Output 512×416 

Type CNN (Encoder-Decoder) 

Optimizer Adam 

Learning Rate 10-5 

Environment 2×TITAN 1080 GPUs 2.5Ghz Python 

Memory 16×2GB 

Epochs 50 

Parameters 73M  

 
1) MODEL TRAINING DATASET  

The synthetic human facial dataset having various variations 

including camera location, light position, body-pose, facial 

animations, scene illuminations, and pixel-accurate ground 

truth depth is used for training the proposed neural depth 

model for facial depth maps. This dataset is briefly explained 

in (section 3-part A subsection 6. Before conducting any 

experiments, the training data is processed and split into 

three sets: training set 80%, validation set 20%, and test set 

10%, each having its ground truth depth.    
2)  TEST DATASETS  

For comparison purposes, the zero-shot cross-dataset 

transfer protocol is utilized. The model was trained on a 

single dataset before being tested on unseen test datasets. The 

four datasets described in (section 3-part A) were chosen for 

testing and evaluation (i.e, Pandora, Eurecom Kinect Face, 

Biwi Kinect Head Pose, and Synthetic human face datasets). 
3. MODEL PERFORMANCE EVALUATION 

 The performance of the facial depth estimation model 

LapDepth [87] is compared to the SoA models (i.e; MiDaS 

[90], DPT [91] and BTS [89]) on the synthetic human facial 

dataset in Fig. 4 and Table 11. All of the training and testing 

experiments in this work have been coded and are available 

on Github. The network achieves SoA results, as shown in 

Table 11. The proposed model qualitative results against 

SoA approaches are shown in Fig. 5 and Fig. 6. As shown in 

Fig. 5, the results demonstrated a details information and 

consistency, indicating that the proposed chosen approach 

works better at facial depth estimation. The model 

outperformed SoA both numerically and qualitatively in tests 

across a variety of real and synthetic images and set a new 

SoA for facial depth estimation.  

In comparison to other SoA methods, the LapDepth 

approach performed best in terms of accuracy and depth 

range, according to the comparison analysis Table 11 and 

Fig. 6. As shown in Table 11, the network achieved 0.0281 

RMSE and 0.9976 threshold accuracy on a synthetic human 

facial dataset (row 8). For better visualization, the results are 

shown in the different colour maps. Note that, predicted 

depth images (Greys) indicate the inverse depth map Fig 4.

 

 
TABLE XI: QUANTITATIVE EVALUATIONS ON THE SNY HUMAN FACE DATASET[59] 

 

No. Methods AbsRel SqRel RMSE RMSElog 𝛿 ≺ 1.25 𝛿 ≺ 1.252 𝛿 ≺ 1.253 

1. DenseDepth-169 [92] 0.0296 0.0096 0.0373 0.0129 0.9890 0.9920 0.9981 

2. ResNet-101 [59]   0.0123 0.0210 0.0306 0.0089 0.9938 0.9965 0.9980 

3. EfficientNet-B0 [93]  0.0145 0.0280 0.0360 0.0154 0.9912 0.9934 0.9978 

4. BTS [89] 0.0165 0.0092 0.0206 0.0102 0.9830 0.9943 0.9956 

5. UNet-simple [94] 0.0103 0.0207 0.0281 0.0089 0.9960 0.9976 0.9987 

6. MiDaS [90] 0.0146 0.0204 0.03560 0.0323 0.9665 0.9902 0.9956 

7. DPT [91] 0.0156 0.0106 0.0394 0.0184 0.9567 0.9646 0.9943 

8. LapDepth [87] 0.0145 0.0041 0.0204 0.3614 0.9545 0.9857 0.99582 

 

As mentioned before the most commonly used quantitative 

metrics for evaluating the performance of trained monocular 

facial depth estimation methods are provided in Table 9. 

Based on the metrics in Table 11 i.e.; RMSE, RMSElog, 

SqRel, AbsRel, and accuracies one can compare and decide 

which method performance is better.    
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FIGURE 4.  Qualitative results in a sample of the synthetic human facial test dataset that was not used for training or validation. Input RGB images, 
ground truth images, predicted depth images, predicted depth images (Greys), and predicted depth images are shown from left to right. 

 

The model is compared with the SoA models (i.e; MiDaS 

[90], DPT [91], and BTS [89]) for comparison, and the 

qualitative results are shown in Fig. 5.  We were unable to 

train the techniques (i.e. MiDaS, DPT) from scratch due to 

unavailability of the training codes and a lack of instructions, 

and hence simply fine-tuned the model checkpoint for testing 

and validation purposes. The method BTS is initially trained 

on a training dataset before being put to the test on four 

different datasets. The suggested method has an advantage 

over the BTS and other SoA methods, as shown in Fig. 5. 

The model can recover fine details such as facial information 

and backgrounds since it is trained on pixel-accurate ground 

truth depth facial data. Pandora, Eurecom Kinect Face, and 

Biwi Kinect Head Pose are among the datasets that rarely 

capture those datils. It is difficult to learn when training 

neural depth networks due to a very sparse ground truth 

depth. It is noticed that the method LapDepth successfully 

preserves the facial depth information even with complicated 

geometries as compared to the rest of the SoA approaches. 

As can be seen in Fig. 6, the results show improved 

information and consistency, demonstrating that the works 

were better at depth estimation on real facial depth datasets. 

The network was not used for training or validation, and the 

method was exclusively trained on synthetic human facial 

depth datasets and tested on real datasets. In fig. 5, the results 

in the 4th column predicted depth images (Greys) indicate the 

inverse depth maps that is originally used by MiDaS [90]. 

The rest of the comparison results are respectively calculated 

with the same scale while predicting the depth estimation 

models.    

FIGURE 5.  From left to right, qualitative results of facial monocular depth estimation algorithms (Input: input RGB images; GT: ground truth images; 
Ours: LapDepth [87], MiDaS [90], DPT [91], and BTS [89] applied to the Synthetic human facial dataset [59]).
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FIGURE 6.  The results of a facial monocular depth estimation method's qualitative evaluation. It demonstrates how to use data from several, 
independent sources to estimate facial depth in a single view, despite changing and unknown depth range and scale. The method allows for broad 
generalization across datasets. Input images at the top. Middle: depth maps predicted by the approach provided. Bottom: corresponding point clouds 
as seen from a different perspective. Open3D [95] was used to render point clouds. Images from the Synthetic human facial dataset, the Pandora dataset, 
the Eurecom Kinect Face dataset, and the Biwi Kinect Head Pose dataset, as well as a real image of the main authors that were not seen during training.

VIII. DISCUSSION 

The results presented in the previous section are discussed in 

the following section. 

1. The model is trained by using only the Synthetic Human 

Facial Depth Dataset and evaluated against four 

different datasets, including the Pandora dataset, 

Eurecom Kinect Face dataset, Biwi Kinect Head Pose 

dataset, and the test Synthetic Human Facial Depth 

Dataset, as well as real images, in the testing phase. The 

results demonstrate that the trained model outperforms 

the other SoA approaches MiDaS, DPT, and BTS. It is 

important to mention that the low size and diversity of 

the Pandora dataset, Eurecom Kinect Face dataset, Biwi 

Kinect Head Pose dataset do not perform well on the 

generalization performance of the studied models, as 

shown in Fig. 6. Furthermore, most depth GT are error-

prone due to practical restrictions in data gathering. The 

depth GT data is particularly prone to mistakes in these 

datasets that make it difficult for models to learn robust 

facial depth information. 

2. Synthetic facial data will, of course, lack the same level 

of detail in terms of skin features as compared to real-

world image data. However, considering the numerous 

advantages of utilizing synthetic data to train a neural 

depth model, it acquires comparable accuracy to real-

world data as shown in Fig. 6. 
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3. When the new loss function is utilized in the final set of 

experiments, the model outperforms SoA when the 

network is trained entirely on synthetic data. As a result, 

it is rational to assume that employing a scalable loss 

function and training technique helps in acquiring 

greater accuracy and facial depth information. 

4. The model measure how effectively the created faces 

preserve the individual visual features of the subjects, 

which requires both high and low-level features to work 

effectively. The suggested model allows for the 

maximum test accuracy and outperforms the previous 

models that have been examined. Based on the results, 

the model can estimate both high-level and low-level 

aspects of facial depth maps, resulting in realistic and 

discriminative results. 

5. Using the model predicted depth maps, as shown in Fig. 

6 (row 3 and 6), the corresponding point clouds can be 

generated from a different perspective. Many developing 

visual applications require quick, direct, and exact depth 

information, which points clouds deliver. To localize and 

navigate, autonomous technologies such as robots, 

augmented reality devices, and self-driving cars rely on 

depth. In high-end smartphones, depth also enables 

computational photography functions like auto focus and 

portrait mode, which are especially useful at night when 

depth is difficult to obtain with traditional cameras but is 

readily available from a LiDAR.  

IX. CONCLUSION AND FUTURE RESEARCH 

This paper investigated the comprehensive details of facial 

depth datasets and loss functions generated in the field of 

computer vision for facial depth estimation problems. In 

various facial depth map tasks based on deep learning 

networks, publicly available facial depth datasets and facial 

depth-based loss functions have obtained robust results. The 

facial depth datasets are utilized in a variety of applications, 

including person detection and action recognition, face and 

pose detection, and biomedical applications. Implementation 

details of how neural depth networks work, as well as their 

associated evaluation matrices, are presented in this study. In 

addition to this, SoA neural architecture for facial depth 

estimation is proposed, along with a comparison evaluation. 

The proposed model outperforms current SoA techniques 

when tested against four different datasets. The proposed 

method's unique loss function helps the network in learning 

information aspects more robustly thus providing a detailed 

prediction. The training is done using synthetic human facial 

depth datasets, while the evaluation is done with real as well 

as synthetic facial images. The results prove that the proposed 

neural model outperforms current SoA networks, thus 

establishing a new benchmark for facial depth mapping and 

research aspects. Also, the achieved results presented in this 

paper can be utilized as a reference for better facial depth 

estimation model design and validation purposes. 

Future research can be focused on developing more robust 

neural networks, as well as paying more attention to the newly 

developed facial depth datasets to obtain pixel-accurate 

ground truth depth maps. Because the currently available 

datasets have issues, particularly with realistic human faces, 

they can be employed in a range of real-world applications 

such as in-cabin driver monitoring, robotics, and 3D face 

reconstructions if these difficulties are addressed. 

Finally, the available SoA depth estimation models can be 

reconsidered for the prediction of facial depth maps because 

they are mostly used for indoor and outdoor scene tasks and 

have not been extensively studied for human faces. They can 

also be investigated for other tasks such as single view facial 

recognition and surface normal prediction, 3D 

reconstructions, and while training on datasets both real and 

synthetic. The GitHub code is available online and can be 

found at this URL  

https://github.com/khan9048/LapDepth-for-Facial-depth-

estimation-. 
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Abstract—In this paper, we explore how synthetically 
generated 3D face models can be used to construct a high-
accuracy ground truth for depth. This allows us to train the 
Convolutional Neural Networks (CNN) to solve facial depth 
estimation problems. These models provide sophisticated 
controls over image variations including pose, illumination, 
facial expressions and camera position. 2D training samples can 
be rendered from these models, typically in RGB format, 
together with depth information. Using synthetic facial 
animations, a dynamic facial expression or facial action data can 
be rendered for a sequence of image frames together with 
ground truth depth and additional metadata such as head pose, 
light direction, etc.  The synthetic data is used to train a CNN-
based facial depth estimation system which is validated on both 
synthetic and real images. Potential fields of application include 
3D reconstruction, driver monitoring systems, robotic vision 
systems, and advanced scene understanding.       

Keywords—3D Facial models, Facial depth, Face attributes, 
Facial image dataset   

I. INTRODUCTION 

      Estimating human shape, pose, motion and depth from 
images are fundamental challenges for many multimedia 
applications and provide information that can be leveraged to 
enhance quality and immersion in advanced consumer use 
cases. Examples include scene analysis & understanding, 
human behaviour analysis, driver monitoring for semi-
autonomous driving, augmented reality systems and facial 
expression analysis and facial authentication. Today, state-of-
art systems for these use cases will rely on highly optimized 
convolutional neural networks designed to run on low-power 
embedded hardware. Such solutions require large, high-
quality training datasets.  

Facial images, in particular, are at the core of many 
consumer multimedia systems. They exhibit rich variations in 
pose, hairstyle, expression, structure and their 2D appearance 
is affected by external factors such as lighting and camera 
location. Many face variations can be synthesized using 
existing advanced 3D tools such as iClone [1] and Blender [2]. 
Using these tools, it is feasible to generate a large number of 
synthetic images required for training Convolutional Neural 
Network (CNN) models. Rendering synthetic facial images 
would be highly useful for numerous tasks as it can provide 
enough realism to create various ground truth in terms of 
occlusions, depth, motion, body-part segmentation, camera 
and light direction. 

      The current generation of deep learning models requires 
the datasets to contain various information and accurate data 
for the training and evaluation process. The existing human 
facial datasets do not have the accurate depth information that 
defines the actual position of each facial element. The depth 
information in these datasets requires the manual description 
of the scene, which is an error-prone and time-consuming task 
especially dealing with video [3]. In such type of facial 
dataset, they are not sufficiently large and varied enough to 
learn the CNN models, as a consequence, they come with a 
low performance which restricts real-world applications        
[4-5]. 
      Recently deep learning-based methodologies have 
significantly improved the performances of face recognition 
systems, Human-Computer Interaction (HCI), understanding 
of 3D scenes for autonomous driving and robotics. An 
accurate determination of depth within the 3D scene is an 
important element of these computer vision systems. New 
emerging applications such as 3D reconstruction, Driver 
Monitoring Systems (DMS), robotic vision systems for 
personal robots and advanced HCI modalities require further 
improvements in short-range depth analysis to better 
understand and engage with humans.  

In this work, we present a method for generating 
advanced facial models with synthetic data. A method is 
proposed to generate facial depth information using 3D virtual 
human and iClone [1] character modelling software. The 
proposed method can be scaled to produce any number of 
synthetic facial data by controlling the face animations, scene 
and camera position. 

The main contribution of this research is focused on 
facial image rendering with the corresponding ground truth 
depth information. Using the synthetically generated data, we 
can train CNNs to address the facial depth estimation problem. 
This approach can enrich the real-world facial datasets 
required for portrait depth estimation problem. 
       The rest of the paper is structured as follows: Section II 
discusses related work and Section III presents the facial 
models. The application of synthetic facial depth (evaluation) 
is studied in Section IV. Conclusion and further cautions are 
discussed in Section V.      

II. RELATED WORK 

Facial depth estimation is considered as one of the 
challenging issues in computer vision, human-computer 
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interaction and virtual reality. It is used in a wide range of 
applications which includes controlling 3D avatars, human 
object detection and human-robot interactions [6-11].  

     Synthetic human facial data is used frequently to augment 
real data for pose invariant face recognition.  By using the 3D 
morphable model and Basel face model [13, 14], a pipeline is 
proposed to create synthetic faces [15]. A synthetic dataset 
for person identification is studied in [16, 17]. The authors 
used Blender [2] rendering engine to create different realistic 
illumination conditions including indoor and outdoor scenes 
and introduce a novel domain adaptation method that uses the 
synthetic data. In [13], FaceGen Modeller is used for 
generating facial ground truth using morphable models. 
In [19], a large-scale synthetic dataset called (SURREAL) is 
introduced where the images are rendered from 3D sequences 
of MoCap data. In [18], synthetic bodies are obtained by 
utilizing the SMPL body model [18]. This dataset contains 
more than 6 million frames with ground truth depth, pose and 
segmentation masks [19].     

Very limited work is done on synthetic facial models to 
explore the field with the available 3D tools and other 
commercially available software. In this paper, we proposed a 
method that generates synthetic facial models with many 
variations in expressions. By controlling the facial animations, 
camera positions, light positions, body poses, scene 
illuminations and other scene parameters, the method can be 
scaled to generate any number of labelled data samples. 

III. FACIAL DEPTH GENERATOR MODEL 

Virtual human models are created using the “Realistic 
Human 100” models in iClone [1] software based on the 
following steps:  

A. The iClone Character Creation Process 

iClone character creator [1] is used to create the initial 
characters of the virtual human faces. The iClone character 
creator generates humanoid characters and offers a useful 3D 
rigging option. The facial animation-ready models can be 
customized with sculpting and morphs. The template of the 
“Realistic Human 100” models is applied to the base body in 
the character creator as shown in Fig. 1.   

 
Fig. 1. A sample from the iClone Character creator.  

B. Adding Facial Expressions to Character Models 

 The virtual human face models are imported from 
Character creator to iClone [1]. Further, different expressions 
are added to the face models to introduce variations such as 
neutral, angry, happy, sad and scared. Fig. 2, show an example 
of these expressions. 

 
Fig. 2. A sample rendered images of iClone with different expressions 
(neutral, angry, happy, sad and scared).  

C. Exporting Character Animations to Blender 

The created virtual human face models are exported from 
iClone [1] to Blender [2] in FBX format as it provides 
appropriate rigging. FBX is a popular 3D file format for 
exchanging the 3D information as used by many 3D tools 
including Blender [2]. A sample of an iClone facial model 
with base body loaded in Blender [2] is shown in Fig. 3. 

 
Fig. 3. iClone facial model with base body loaded in Blender.  

D. Rendering 2D Image Data with Ground Truth Depth 

 In this work, the following steps are taken to obtain the 
final output. The cameras and lights are placed in a fixed 
position and the corresponding distance of the models are 
changed in the range of 700-1000 mm. The focal length and 
sensor size are set to 60mm and 36mm respectively. The facial 
models are rotated in the virtual scenes. Fig. 4 shows a sample 
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of the camera and light position with respect to the facial 
models in Blender [2].   

 
Fig. 4. A sample of the camera and light position with respect to the 3D 
character. 

     To generate RGB and depth images of faces in an 
extensive range of positions, the near and far clip of the 
camera is set to 0.01 and 5 meters. The facial models are 
rendered with 480×640 resolution and on a static background 
image. Fig. 5 shows a few rendered images while the camera 
position is changed with respect to the facial models.

 
Fig. 5. A facial model with corresponding ground truth depth of a head 
model from different views. 

Fig. 6 illustrates facial models with the corresponding ground 
truth depth while the camera is positioned at different 
distances. 

 
Fig. 6. A facial model with ground truth depth captured at the different 
camera position. 

    Render passes are set up in Blender [2] to generate the 
synthetic facial RGB and the corresponding ground truth 
depth images. To reduce the noise produced during the 
rendering process, the branched path tracing method is 
employed. Fig. 7 presents an overview of the noise 
controlling method in Blender [2]. 
  

 
Fig. 7. An overview of the noise control system in Blender. 

Afterwards, the images are rendered using Cycles engine and 
in the perspective view to obtain the RGB images with 
corresponding facial depth. Fig. 8 demonstrates the workflow 
of the facial depth generation process, camera and light 
setting.           

 
Fig. 8. Rendering configuration in Blender. The left row shows the body 
shape, light and camera setting; the middle row shows the facial RGB and 
the last row illustrates the corresponding facial depth image. 

Fig. 9 shows a few numbers of synthetic male and female 
models with the corresponding ground truth depth.  

 
Fig. 9. A sample of the synthetic facial images with different expressions 
and their corresponding depth maps. 

IV. EVALUATION 

      In this section, we deliver details about the evaluation of 
the two-state of the art CNNs on facial depth estimation. 
The pre-trained monocular depth estimation models 
DepthDense [19] and MiDas [20] are tested on the rendered 
synthetic data. Fig. 10, presents a few random synthetic RGB 
images and the corresponding depth images predicted using 
DepthDense [19]. Similarly, Fig. 11, shows the synthetic 
RGB images, predicted depth using MiDas [20] and ground 
truth images. 

 
Fig. 10. Sample synthetic RGB images predicted depth maps by DepthDense 
[19] and corresponding ground truth. 
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Fig. 11. Sample synthetic RGB images, predicted depth maps by MiDas [20] 
and corresponding ground truth. 

The most common quantitative matrices for evaluating the 
performance of the pre-trained models including Absolute 
Relative difference (AbsRel), Root Mean Square Error 
(RMSE), log Root Mean Square Error (RMSE(log)) and 
Square Relative error (SqRel) are employed for evaluation 
purposes. Table 1, demonstrates the evaluation results of the 
DepthDense and MiDas models [19, 20]. 

To further evaluate the validity of the synthetic data 
generated in this paper, we re-trained a few recent CNN-
based depth estimation networks [21, 22] on the generated 
facial data and later fine-tuned the models on real datasets.   

A simple autoencoder with skip connection based on U-Net 
architecture has been trained using the data generated with a 
plain background as shown in Fig 12. 

 

Fig. 12. Ground Truth Depth and Predicted Depth before and applying the 
mask. 

Using the data generated with a plain background as shown 
in Fig 12, as a monocular depth estimation use case. There 
are around 40k training and 15k test images and their 
corresponding ground truth depth. The network has been 
initialized with random weight and trained with mean square 
error loss and Adam Optimiser. Further to evaluate the results 
only on a facial section of the image the depth has been 
masked within a range of 50 cm from the camera centre and 
the masked depth has been evaluated with the ground truth 
depth. Both the results have been shown in Table 1. 

 Furthermore, we will create additional variations and 
augmentations in the synthetic facial depth data to grow the 
final training dataset. It is expected that this will further 
increase the accuracy of these deep learning-based CNN 
networks when tested on real data. 

V. CONCLUSION AND FUTURE RESEARCH  

       In this research paper, we proposed an advanced 
synthetic facial data generation pipeline. The facial images 
are generated from 3D virtual human models by rendering 
different variations of face poses, head poses and lighting 
conditions. Blender [2] rendering engine is used to generate 
the output as it allows changing different parameters such as 
lights position, camera parameters and keyframe values. 
 
 
The proposed framework has the potential to generate a great 
number of synthetic facial images. The synthetic 3D models 
can be used in different 3D environments if scaled properly. 
This will allow simulating real-world scenarios by 
controlling the camera position, intrinsic parameters and 
lighting conditions. 
     The generated dataset can be used for training and 
validation of deep learning methods with the focus on natural 
face modelling, portrait 3D reconstruction and beautification. 
     In our future work, we will explore the potentials of the 
deep learning methods on direct facial 3D reconstruction 
using the synthetically generated data. 
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Abstract— As Consumer Technologies (CT) seeks to engage and 
interact more closely with the end-user it becomes important to 
observe and analyze a user’s interaction with CT devices and 
associated services. One of the most useful modes for monitoring 
a user is to analyze a real-time video stream of their face. Facial 
expressions, movements and biometrics all provide important 
information, but obtaining a calibrated input with 3D accuracy 
from a single camera requires accurate knowledge of the facial 
depth and distance of different features from the camera. In this 
paper, a method is proposed to generate synthetic high-
accuracy human facial depth from synthetic 3D face 
models. The generated synthetic human facial dataset is 
then used in Convolutional Neural Networks (CNN’s) for 
monocular depth facial estimation and the results of the 
experiments are presented. 

Keywords—3D Facial models, Facial Depth models, CNN's 

I. INTRODUCTION

Faces, with all their complications and an enormous 
number of degrees of freedom, allow us to connect and express 
ourselves through gestures, mimics and expressions. Depth 
information, pose, motion and shape are fundamental 
challenges in CT services and related devices. Examples 
include autonomous driving [1], license plate recognition [2], 
3D reconstruction [3], scene understanding [4], human detection 
& pose estimation [5], and medical image segmentation [6]. 
Facial movements, biometrics and expressions all provide 
important information but obtaining accurate facial depth and 
distance of different features from the camera requires 
knowledge of the calibrated input with 3D information from a 
single camera. Nowadays, state-of-the-art structures rely on 
highly improved CNN's based designed networks and large 
datasets require high-power machines.    

Progressively sophisticated camera hardware is 
becoming more reasonable at the consumer level, offering new 
possibilities. CT is now being combined with Machine 
Learning (ML) and Artificial Intelligence (AI) software to 
create new consumer-grade products. Luckily, recent advances 
in CT have taken to market numerous low-cost sensing 
solutions cameras can enable a range of useful CT applications 
including low-light facial recognition or object classification, 
business security and the world of home. Low-cost cameras can 
enable a range of useful CT applications including low-light 

facial recognition or object classification, business security and 
the world of home, facial biometrics to authenticate users, 
portrait photography, classification of facial expressions 
(determine user emotion/mood), 3D models from the 2D 
camera (map face response onto a virtual reality (VR) avatar in 
an online world), TV (that can adjust the size of screen text or 
subtitles based on user-distance and preferences, 3D lighting 
effects, and demine head pose position and distance to optimize 
airbag deployment. 

In particular, facial images are used in many CT 
structures. Facial images show various variations including 
expressions, 3D appearance, hairstyle and pose. The current 
advanced 3D tools such as Blender [7] and iClone [8] are used 
to synthesized many face variations. By using these 3D tools, 
large numbers of fake images can be created to train CNN's 
models. The generated images can be used for many 
applications having enough variations including depth, camera 
location and light direction and occlusions.       

Deep learning-based networks require datasets having 
more information and precise data to train and evaluate different 
use cases methods for CT applications. In the past, years, 
researchers have made remarkable progress on 3D modelling 
and synthesis. Synthesized datasets have been used for deep 
learning models training in many tasks, example includes 
human behaviour analysis, driver monitoring, scene analysis 
and understanding, augmented reality systems, facial 
authentication and facial expression. The existing human facial 
datasets (e.g. Biwi Kinect Head Pose Dataset [9] and Pandora 
[10]) have lots of missing information especially the depth and 
due to the restricted variation, the number of available samples 
makes datasets insufficient for training deep learning models. 
These datasets required manual explanation of the scene that is 
very hard and time-consuming work and error-prone in case of 
videos [11]. In such type of facial data, they are not sufficient to 
learn well from CNN’s model's limits many CT application [12-
13]. 

Although, current deep learning-based methods have 
shown good performance on many tasks including face 
recognition systems, object classification, business security and 
the world of home, 3D reconstructions, robotics and 
autonomous driving. Purpose of accurate depth information in 
the 3D reconstruction is a very important part of computer vision 
problems.  CT applications need more developments in short-
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range depth estimation to engage with humans for better 
understanding.     
 In this paper, we proposed a details methodology for 
generating synthetic facial models. During the generation 
process, iClone [7] software and the 3D virtual human models 
are used to generate facial depth information. In the proposed 
method, by putting various variations in synthetic facial data we 
can produce any number of images, which require a more 
complex and detailed structure than the generative models used 
in the previous works.       

II. LITERATURE REVIEW 

 Facial depth from monocular images as an ill-posed problem 
in computer vision, example includes virtual reality and human-
computer interaction. Facial depth estimation is used in many 
applications including human object detection, human-robot 
interactions and controlling 3D avatars [14-19]. 

Recently, deep learning-based methods received a great 
interest in facial depth estimation, serval works propose the use 
of RGB images with ground truth depth images to learn how to 
estimate depth [20-21]. The main issue is related to the available 
training datasets is limited size and overall low image quality 
[22-23].  

Facial data is used for face recognition by expanding the real 
data for pose variation. Basel face model and 3D morphable [24-
25] are used in many use cases applications to generate synthetic 
facial models [26]. A fake dataset is generated for person 
identification in [27]. (SURREAL) the dataset is proposed in 
[28], having a large number of synthetic images that are 
generated from 3D sequences of MoCap models. Fake human 
bodies are generated by using the SMPL model in [29] having a 
large number (6 million) frames with ground truth depth 
information, poses and mask segmentation. In this article, we 
present a methodology to create synthetic human facial models 
having various variations including camera location, light 
position, body-pose, facial animations and scene illuminations. 
The method can generate any number of images with ground 
truth depth information. 

III. ORGANIZATION OF THE METHOD 

In this section, we propose a complete pipeline for creating 
the synthetic human facial dataset with ground truth depth. 
Human facial models are generated by using the realistic human 
100 models in iClone [7] and Blender [8] software in the 
following steps:  

 The Initial human faces characters are generated by 
using the iClone character creator [7]. These animated 
facial models can be adapted with shaping and morphs 
in iClone character creator [7] which offers a useful 3D 
rigging option. An example of these models is shown 
in Fig 1.          

 The synthetic human facial models are imported to 
iClone [7] with various expressions (happy, neutral, 
angry, scared and sad) to create more variation to the 
human facial models. An example is shown in Fig. 2.  

 Synthetic human facial models have then exported to 
render high-quality images in different formats. The 

generated human facial models are exported to Blender 
[8] from iClone [7] in .fbx formate as it offers an 
appropriately rigging option. An example is given in 
Fig. 3.  

 The human facial models were exported from iClone 
[7] and placed in a 3D scene in the Blender [8].    

 The cameras and lights are placed in a fixed position 
and the relative distance of the model to the camera is 
changed within the range of 700-1000mm. The human 
facial model is rotated in the scenes and the sensor size 
is set between 36mm to 60mm. Fig. 4 show an example 
of the camera position and light location of the human 
facial models in Blender [8].  

 During the generation process of the human faces with 
ground truth depth information, the (near and far) clip 
is set between 0.01 to 5 meters. RGB and depth images 
are generated in 480 × 640 resolution and texture, 
colour and static backgrounds. A few samples of the 
generated human facial models are shown in Fig. 5 
while the camera location is varied to the 
corresponding human facial models.     

 The position is changed at different points of the 
camera to the human facial models with the 
corresponding ground truth depth, which can be seen 
in Fig. 6.   

  Blender [8] render passes are used to generate 
synthetic facial models. To reduce the noise, the 
branched path tracing method is utilized. An example 
is given in Fig. 7 of the noise controlling technique in 
Blender [8].      

  Cycles engine are used to render the RGB and depth 
images, An example of the pipeline is given in Fig. 7, 
which show the generation procedure, camera position 
and light location.    

  The generated synthetic human facial images with the 
ground-truth depth images are given in Fig. 9. 

 In the last step, all the keyframes are rendered to get 
the RGB and the depth images are captured through the 
python plugin provided by Blender [8]. 

The whole experiments and human facial depth dataset creation 
is done on Core i7 with 32 GB of RAM and with GeForce Ti 
GTX GPU with (11x2) GB of the graphics card. The images are 
saved in .jpg and. exr format. The rending average time for every 
frame is 52.5 seconds. The raw head pose and depth information 
are also taken as part of this human facial dataset. An example 
of the RGB and depth images with different head poses are 
presented in Fig 10. Different illuminations of the human facial 
dataset are shown in Fig 11. The more complex background is 
added to the human facial dataset and an example can be seen in 
Fig. 12. 
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Fig. 1. An example from the iClone Character creator.  

 
Fig. 2. An example of Different expressions (happy, sad, angry, neutral and 
scared) of iClone [7].  

 
Fig. 3. An example of iClone [7] facial model in Blender [8].   

 
Fig. 4. An example of the 3D character in Blender [8] shows the light location 
and camera position.  

 

Fig. 5. An example of the head model from various views of the facial model 
and the corresponding depth information.   

 
 

Fig. 6. Images of the synthetic human faces and corresponding ground truth 
depth in different camera location.   

 
Fig. 7. An overview of the noise reduction method.           

 
Fig. 8. A simple view of the rendering configuration in Blender [8].  

 
Fig. 9. Human facial images and ground truth depth images with various 
expressions.  

 
Fig. 10. An example of the facial images and their corresponding ground truth 

depth images with different head pose representation.  
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Fig. 11. An example of facial images with light variations. 

 

Fig. 12. An example of the complex background representation of the facial 
images with ground truth depth. 

IV. DEPTH ESTIMATION MODELS 

A. Network architecture: 

To check the data quality a shallow autoencoder 
(around 17 million parameters) with skip connection-based U-
Net architecture shown in Fig 13 is proposed. The encoder and 
decoder both consist of basic blocks of double convolution with 
the Batch norm and ReLU activation. Additionally, in the 
decoder, the convolutions are used on the concatenation of the 
bilinear up-sampling of the earlier block with the corresponding 
block from the encoder module. The network has been 
initialized with random weight and trained with Adam 
Optimiser.  

 
Fig. 13. An example of the proposed network architecture. 

B. Training losses: 

Loss function for monocular depth prediction from single 
image takes the difference among the ground truth g and the 
predicted depth map d. In this work, we have used SSIM loss, 
gradient loss and surface normal loss. These help to learn the 
correct depth of the scene as well as the 3D structure of the face. 
The loss L between g and d is defined as the weighted sum of 
the three different losses  

𝐿(𝑔, 𝑑) = 𝑤ଵ𝐿ௌௌூெ(𝑔, 𝑑) +  𝑤ଶ𝐿௚௥௔ௗ(𝑔, 𝑑)

+  𝑤ଷ𝐿ௌ௨௥௙௔௖௘ே௢௥௠(𝑔, 𝑑) 
The first loss term 𝐿ௌௌூெ incorporates the structural similarity 
(SSIM). As the SSIM has an upper bound value of one 𝐿ௌௌூெ 
has been defined as follows  

𝐿ௌௌூெ(𝑦, 𝑦ො) =  
1 −  𝐿ௌௌூெ(𝑔, 𝑑)

𝑀𝑎𝑥 𝐷𝑒𝑝𝑡ℎ
 

The second loss term 𝐿௚௥௔ௗ  is the L1 loss calculated over the 
image gradient of the depth image: 

𝐿௚௥௔ௗ(𝑔, 𝑑)  =  
1

𝑛
 ෍ ∇௫

௡

௣

(𝑒௣)  +  ∇௬(𝑒௣) 

Where 𝛻𝑥(𝑒௣) denotes the spatial derivative of the difference 
of ground truth and predicted depth for pth pixel 𝑒௣  which 
stands for (||𝑔௣  −  𝑑௣||) for the x-axis. The gradient of the 
depth maps has been obtained by the Sobel Filter and is 
sensitive to both x and y-axis. Though the gradient loss works 
well for strong edges it fails to penalise the small structural 
error like high-frequency undulation of a surface. 
Lastly, to overcome the small structural errors, we used the 
𝐿ௌ௨௥௙௔௖௘ே௢௥௠ the loss which estimates the normal to the surface 
of the predicted depth map. The surface normal of the ground-
truth and the predicted depth has been denoted as 𝑛௣

௚
 ≡

 [−𝛻௫(𝑔௣), −𝛻௬(𝑔௣), 1]்   and 𝑛௣
ௗ  ≡  [−𝛻௫(𝑑௣), −𝛻௬(𝑑௣), 1]் 

and the loss has been calculated as the difference between the 
two surfaces normal: 

𝐿ௌ௨௥௙௔௖௘ே௢௥௠  =  
1

𝑛
 ෍(1 −  

〈𝑛௣
ௗ  , 𝑛௣

௚〉

|| 𝑛௣
ௗ  || . || 𝑛௣

௚
 ||

 )

௡

௣

 

Where 〈 .  , . 〉 denotes the inner product of the vectors. 
Additionally, as the loss term is larger where the ground truth 
depths are bigger, we used the reciprocal of the depth [X, X]. If 
the ground truth depth is yorig we defined the target depth as 

𝑦 =  
ெ௔௫ ஽௘௣௧

௬೚ೝ೔೒
 . 

We set the values of the weights 𝑤ଵ, 𝑤ଶ, 𝑤ଷ, 𝑤ସ as 0.1, 0.1, 1 
respectively. 

C. Accuracy Measures: 

To evaluate the result a commonly accepted evaluation 
method has been used with five evaluation indicators: Root 
Mean Square Error (RMSE), log Root Mean Square Error 
(RMSE (log)), Absolute Relative difference (AbsRel), and 
Square Relative error (SqRel), Accuracies. These are 
formulated as follows: 

o RMSE = ට
ଵ

|ே|
Σ௜∈ேห|𝑑௜ −  𝑔௜|ห

ଶ
 

o Average Log10 Error =  
ଵ

|ே|
Σ௜∈ேห|𝑙𝑜𝑔(𝑑௜) −

𝑙𝑜𝑔(𝑔௜)|ห  

o Abs Rel = 
ଵ

|ே|
Σ௜∈ே

|ௗ೔ି௚೔|

௚೔
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TABLE. 1.  RESULTS OF THE DEPTH ESTIMATION MODELS, SIMPLY U-NET, DENSEDEPTH [32] WITH VARIOUS BASE MODELS. FC 
REFERS TO THE FACIAL CROP WHICH MEANS THE ERRORS ARE ESTIMATED ONLY ON THE FACIAL REGION. 

No. Methods AbsRel SqRel RMSE RMSElog 1.25   21.25   
31.25   

1. DenseDepth-161 [32] 0.0312 0.0121 0.0610 0.0169 0.9854 0.9876 0.9902 

2. DenseDepth-121 [32] 0.0320 0.0132 0.0712 0.0180 0.9732 0.9803 0.9880 

3. DenseDepth-169 [32] 0.0296 0.0096 0.0373 0.0129 0.9890 0.9920 0.9981 

4. DenseDepth-201 [32] 0.0375 0.0097 0.0304 0.0101 0.9920 0.9956 0.9969 

5 ResNet-101 [33] 0.0123 0.0210 0.0306 0.0089 0.9938 0.9965 0.9980 

6 ResNet-50 [33] 0.0232 0.0219 0.0445 0.0186 0.9919 0.9974 0.9984 

7 EfficientNet-B0 [34] 0.0145 0.0280 0.0360 0.0154 0.9912 0.9934 0.9978 

8 EfficientNet-B7 [34] 0.0132 0.0234 0.0353 0.0144 0.9880 0.9909 0.9965 

9 UNet-simple 0.0103 0.0207 0.0281 0.0089 0.9960 0.9976 0.9987 

10 UNet-simple (FC) 0.0098 0.0096 0.0143 0.0043 0.9982 0.9992 0.9996 

11 DenseDepth (FC)-169 [32] 0.0110 0.0074 0.0161 0.0034 0.9981 0.9990 0.9992 

12 ResNet (FC)-101 [32]  0.0132 0.0077 0.0170 0.0035 0.9980 0.9990 0.9992 

13 EfficientNet (FC)-B7 [34] 0.0112 0.0076 0.0166 0.0032 0.9887 0.9945 0.9989 
a. Results of the monocular depth estimation.

o Sq Rel = 
ଵ

|ே|
Σ௜∈ே

ห|ௗ೔ି௚೔|ห
మ

௚೔
 

o Accuracies = %  o𝑓 𝑑௜   𝑠. 𝑡.  𝑚𝑎𝑥 ቀ
ௗ೔

௚೔
ቁ = 𝛿 < 𝑡ℎ𝑟 

Where gi is the ground truth and di is the predicted depth of 
the pixel i, N denotes the total number of pixels and thr 
denotes the threshold. 

D. Experimentations 

Table. 1 shows the experimental results of the trained 
models on our datasets. Also, the depth has been masked 
within a certain range of 50 centimetres from the camera to 
evaluate the results only on the facial region of the images. 
We also used our synthetic human facial dataset and retrained 
state-of-the-art monocular depth estimation method [30] 
which is constructed on the encoder-decoder network with 
skip connections. A pre-trained DenseNet-169 [31] is used in 
the encoder, while in the decoder, a basic block of CNNs 
layers concatenated by a bilinear upsampling layer is used. 
Table. 1, presents the results.  
       The encoder is replaced with several models while the 
decoder settings are unchanged. We tested with the technique 
using the synthetic human facial depth dataset, and provide 
the results in table 1.  

       In Table 1, the results of the simple U-Net based 
networks archive the best performance compared to the other 
networks on our generated synthetic human facial depth 
dataset. We study this as a result of the comparatively lower 
variance of the synthetic dataset as the models are only 
trained on a simple static background that leads to low-
performance with big networks such as Dense Net, Res Net 
and efficient Net in this experiment. Also, we noted that the 
simple U-Net network-based encoder-decoder model holds 

less than half the number of parameters and shows about two 
times faster compared to the other networks. 

E. Implementations 

        We trained the network using the PyTorch. For training 
the model, we use adam optimizer for 20 epochs with 0.001 
learning rate and batch size 6 on an NVIDIA 1080ti GPUs for 
all experiments. Fig. 14. Show the visual comparison of the 
methods presented in Table 1. 

 
Fig. 14. An example of the qualitative comparison of methods. From left 
to right: Input, Ground Truth, U-Net, DenseDepth, ResNet and 
EfficientNet images. 

V. CONCLUSION 

         In this article, we present a method to generate synthetic 
facial depth dataset. The presented technique has a potational 
to create a large dataset of fake human facial images with 
ground depth information. The created synthetic human facial 
images can be used in many applications including 3D 
environments that will allow simulating real-life problems. 
Deep learning-based monocular depth estimation models are 
trained on the created facial dataset to validate the initial 
experiments that will further be extended to CT based 
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application with the focus on robotics, 3D reconstruction, 
beautification, autonomous vehicles, natural face modelling 
and augmented reality. 
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a b s t r a c t

Depth estimation from a single image frame is a fundamental challenge in computer vision, with many
applications such as augmented reality, action recognition, image understanding, and autonomous
driving. Large and diverse training sets are required for accurate depth estimation from a single
image frame. Due to challenges in obtaining dense ground-truth depth, a new 3D pipeline of 100
synthetic virtual human models is presented to generate multiple 2D facial images and corresponding
ground truth depth data, allowing complete control over image variations. To validate the synthetic
facial depth data, we propose an evaluation of state-of-the-art depth estimation algorithms based
on single image frames on the generated synthetic dataset. Furthermore, an improved encoder–
decoder based neural network is presented. This network is computationally efficient and shows better
performance than current state-of-the-art when tested and evaluated across 4 public datasets. Our
training methodology relies on the use of synthetic data samples which provides a more reliable
ground truth for depth estimation. Additionally, using a combination of appropriate loss functions
leads to improved performance than the current state-of-the-art network performances. Our approach
clearly outperforms competing methods across different test datasets, setting a new state-of-the-art
for facial depth estimation from synthetic data.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The problem of estimating depth from the image data of a
scene is a fundamental task in computer vision. It is particularly
important in image understanding where it is desirable to deter-
mine the primary objects and regions within an imaged scene
and where their relative locations and orientations from frame-
to-frame can provide valuable information about scene activity.
While single frame object detection (Chang & Wetzstein, 2019)
and classification techniques (Athira & Khan, 2020) are quite
well advanced depth estimation is typically a more challenging
problem (Fan et al., 2021).

The classic approach to depth estimation is to employ a two-
camera, stereoscopic solution, mimicking the human visual sys-
tem, and using disparity between the two images to construct a
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National University of Ireland Galway, Galway, H91TK33 Ireland; the Xperi
Galway Block 5 Parkmore East Business Park, Galway, H91V0TX, Ireland; and the
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Reality (d-real) under Grant No. 18/CRT/6224.

∗ Corresponding author.
E-mail address: f.khan4@nuigalway.ie (F. Khan).

depth map (Wenxian, 2010). When camera motion is available,
or when objects move from frame-to-frame it is possible to use
this data to reconstruct depth maps for individual image frames,
especially in mobile or handheld devices which incorporate mod-
ern inertial motion sensing (Schöps, Sattler, Häne, & Pollefeys,
2017). However there are applications where only a single camera
is used and exact motion sensing is not available and thus it
is desirable to estimate a depth map of an imaged scene from
single image frames. The current work is focused on this task,
and in particular in understanding if it is feasible to improve on
current state-of-the-art (SoA) while reducing the complexity of
the computational model.

Human faces are one of the most common objects found
in images and an important component of many image under-
standing problems. It is well-known from human anthropometry
that the eye-separation in a human face falls into a narrow
range (Ware, 2019) and thus given a knowledge of the field-
of-view of a camera it is possible to determine with reasonable
accuracy the distance-to-camera of a human subject from a single
image frame. This research work speculates that it should be
feasible to train a neural computer vision model to learn a more
accurate depth estimation by training it on data that includes

https://doi.org/10.1016/j.neunet.2021.07.007
0893-6080/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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human faces. With sufficient data and a pixel-accurate ground
truth (GT) the model should learn many nuances of human facial
features and structure that can improve depth estimation over
current SoA.

The main contribution of this work is an improved, deep
learning based encoder–decoder model for depth estimation from
single image frames. This model is more computationally efficient
than current SoA depth estimation models and shows perfor-
mance equal to, or better than SoA when evaluated across 4
public datasets. In part this improved performance is achieved
through our training methodology which relies on the use of
synthetic data samples that can provide a more accurate GT
for depth than is available from existing public datasets. Details
of this synthetic training dataset and the associated training
methodology provide a second significant contribution of this
work.

The rest of this paper is organized as follows. Section 2
presents a review of the related (depth estimation) literature
while the details of the synthetic human facial dataset used in our
training methodology are presented in Section 3. The evaluation
methodology of the compared methods is described in Section 4.
Section 5 provides details of the encoder–decoder model and
the associated loss functions used in the training process. A rich
synthetic human facial dataset is employed in the training process
as described and details of a series of experimental comparisons
of our model with current SoA models for depth estimation are
outlined in Section 6. Finally a discussion of the outcomes of this
research work is briefly discussed in Section 7 and the potential
for future refinement and improvements is provided in Section 8.

2. Related works

Depth estimation is the method of preserving 3D information
of a scene using 2D information captured by cameras. Monocular
depth estimation, also known as depth estimation from a single
image (DESI), is achieved by using only one image. These tech-
niques are designed to estimate distances between scene objects
from a single point of view. This necessitates using these methods
on low-cost embedded systems for performance estimation.

There has been a significant improvement in DESI methods
over the past couple of years (Basha, Avidan, Hornung, & Ma-
tusik, 2012; Javidnia & Corcoran, 2017; Laidlow, Czarnowski, &
Leutenegger, 2019; Ranftl, Lasinger, Hafner, Schindler, & Koltun,
2020; Tian & Hu, 2021). Most of the deep learning-based methods
involve a CNN trained on RGB images and the corresponding
depth maps. These methods can be categorized into
supervised, semi-supervised, and unsupervised. A brief litera-
ture review based on deep learning monocular depth estimation
methods can be found in Khan, Salahuddin, and Javidnia (2020).

Supervised DESI techniques use an input image and the cor-
responding depth maps for training. In such a case, the trained
network can directly output the depth predication (Yin, Liu, Shen,
& Yan, 2019). Supervised deep learning approaches have achieved
SoA performance in the DESI task (Andraghetti et al., 2019; Chen,
Zhao, Hu, & Peng, 2021; Fu, Gong, Wang, Batmanghelich, & Tao,
2018; Goldman, Hassner, & Avidan, 2019; Lee, Han, Ko, & Suh,
2019; dos Santos Rosa, Guizilini, & Grassi, 2019; Wang et al.,
2020). Despite the fact that these methods can predict accurate
depth maps when testing on the same or similar datasets, they do
not generalize well to scenes beyond the original dataset (Ranftl
et al., 2020). Also, the performance of these supervised methods
required a large amount of high-quality depth data and thereby
are unable to generalize to all use cases.

To overcome the need for high-quality depth estimation as
seed data, many methods have been employed to train the depth
estimation network in a semi-supervised manner. Numerous

semi-supervised methods are proposed, which require smaller
amount of labeled data and large amount of unlabeled data
for training (Bazrafkan, Hossein, Joseph, & Corcoran, 2017; Choi
et al., 2020; Lei, Wang, Li, & Yang, 2021; Yue, Fu, Wu, & Wang,
2020; Yusiong & Naval, 2020; Zhao, Jin, Wang, & Wang, 2020).
Semi-supervised methods, on the other hand, suffer from their
biases with more information is required, such as sensor data and
camera focal length (Xian et al., 2020).

To train the networks for depth estimation, self-supervised
methods only require a small number of unlabeled images (Yu-
siong & Naval, 2020). Many tasks have been studied using self-
supervised methods, including 3D reconstruction (Wang, Yang,
Liang, & Tong, 2019), human detection and pose estimation in
DESI (Guizilini, Ambrus, Pillai, Raventos, & Gaidon, 2020; John-
ston & Carneiro, 2020; Klingner, Termöhlen, Mikolajczyk, & Fin-
gscheidt, 2020; Li et al., 2021; Poggi, Aleotti, Tosi, & Mattoccia,
2020; Spencer, Bowden, & Hadfield, 2020; Widya et al., 2021).
These methods automatically obtain depth information by corre-
lating various image input modalities. However, self-supervised
methods suffer from generalization issues. The models can only
perform on a very limited set of scenarios with distributions
similar to the training set.

We argue that high-quality deep learning-based DESI methods
can in principle operate on a fairly wide and unconstrained range
of scenes. What limits their performance is the lack of large-
scale, dense GT that spans such a wide range of conditions (Ranftl
et al., 2020). Several of the existing benchmark datasets: Pan-
dora (Borghi, Venturelli, Vezzani, & Cucchiara, 2017); Eurecom
Kinect Face (Min, Kose, & Dugelay, 2014); Biwi Kinect Head
Pose (Fanelli, Weise, Gall, & Van Gool, 2011) have been tested
with limited sample sizes (250k, 50k and 15k) and fewer vari-
ations to estimate around 24, 52, and 20 subjects. It can be noted
in particular that these datasets show only a small number of dy-
namic objects. Networks that are trained on data with such strong
biases are prone to fail in less constrained environments (Xian
et al., 2020).

Despite their capacity to provide the depth layout without any
domain knowledge, deep learning-based techniques still struggle
with inconsistencies at the depth boundary. Existing approaches,
in particular, rely on characteristics taken from well-known en-
coders. The decoding mechanism in the symmetric design simply
upsamples these latent features to their original size, and then
converts them into the depth map. Because this translation proce-
dure struggles to incorporate object depth boundaries at multiple
scale levels, it is likely to produce inaccurate depth values be-
tween object boundaries. A unique yet simple method for monoc-
ular depth estimation was developed to address the shortcomings
of prior approaches. The suggested method’s main idea is to use
the Laplacian pyramid-based decoder architecture to correctly
interpret the relationship between encoded characteristics and
the final output for monocular depth estimation (Song, Lim and
Kim, 2021).

A new method called dense prediction transformer (DPT) is
introduced. It is a dense prediction architecture based on an
encoder–decoder design that uses a transformer as the encoder’s
primary computational building block. It also has a global re-
ceptive field at every level, demonstrating that these qualities
are particularly beneficial for dense prediction problems because
they naturally result in fine-grained and globally coherent pre-
dictions (Ranftl, Bochkovskiy, & Koltun, 2021). An investigation
of a method in which the network learns to focus adaptively on
depth range regions that are more likely to occur in the scene of
the input image for depth estimation (Bhat, Alhashim, & Wonka,
2020). To create per-pixel depth maps with sharper bounds and
richer depth features, a novel framework called MLDA-Net is pro-
posed. A multi-level feature extraction (MLFE) technique that can
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learn rich hierarchical representation and to amplify the obtained
features both worldwide and locally, a dual-attention technique
combining global and structure attention is developed, resulting
in better depth maps with sharper borders (Song et al., 2021).

CoMoDA is a new self-supervised Continuous Monocular Depth
Adaptation approach that adapts the pretrained model on the
fly on a test video. Rather than using isolated frame triplets as
in conventional test-time refinement methods, they choose for
continuous adaptation, which relies on earlier experience from
the same scene (Kuznietsov, Proesmans, & Van Gool, 2021). To
reduce inaccurate inference of depth details and the loss of spatial
information. a new detail-preserving network (DPNet), which
is a dual-branch network architecture that fully overcomes the
aforesaid issues and makes depth map inference easier (Ye, Chen,
& Xu, 2021).

To improve the training efficiency of deep neural networks,
more accurate labeled synthetic human facial image datasets
could be used. The synthetic datasets can be created by a camera
using sensing technologies or by using available software tools,
which are less expensive, require less effort, and produce bet-
ter face models that resemble a realistic 3D environment (Koo
& Lam, 2008; Roy-Chowdhury & Chellappa, 2005). During the
training process, the weight adjustment at each node through
the activation functions are controlled according to the efficiency
of the loss functions and thereby the use of appropriate loss
functions further improves the performance of the deep neural
networks (Jiang, El-Shazly, & Zhang, 2019; Lee & Kim, 2020; Liu,
Zhang, Meng, & Gao, 2020). The use of synthetic datasets and
the selection of appropriate training methodology can help in
the human facial depth estimation. Overall, none of the current
datasets is large enough to support the development of a model
that can reliably work on real images from a wide range of scenes.
Currently, we are confronted with a number of datasets that
may be useful when combined, but are individually biased and
incomplete.

3. Modeling of the synthetic dataset

This section presents a detailed pipeline of creating the syn-
thetic dataset. Most of the datasets currently available for facial
depth estimation have a very limited amount of ground truth
(GT) which makes them unsuitable for training deep learning
models (Borghi et al., 2017; Fanelli et al., 2011; Min et al., 2014).
Besides, due to practical limitations in data acquisition, most of
the depth GT are error-prone. Datasets with multiple facial pose
representations are especially prone to errors in the depth GT
data.

Furthermore, the acquisition of facial data from subjects is
now subject to a range of privacy regulations and ethical con-
straints. In Europe the General Data Protection and Regulations
(GDPR) govern the acquisition and distribution of personal data
introducing new challenges for researchers working with data
from live humans. This makes a case for generating inexpensive
synthetic dataset with lower complexity and a rich amount of
labeled data resembling the features of realistic human models
such as the camera parameters, positions, light locations, scene
illuminations and other constraints within a 3D environment.

This work introduces a methodology to build synthetic human
facial datasets. This methodology leverages a commercial tool for
generating synthetic avatars, iClone and Character Creator (CC)
employs an open access 3D animation environment, Blender to
build a rich variety of scenes for rendering 2D data samples
with matching, pixel exact, depth GT. Once avatar models are ex-
ported into the 3D environment it is relatively straight forward to
vary the rendering camera location and positions, camera model
and acquisition parameters together with controlling the scene

Fig. 1. A schematic representation of generating the synthetic human facial
dataset: Samples from the 100 Realistic Head Models, with variation in gender,
race, and age. In iClone, changing the morph to create variations to the head
models. Importing fully rigged FBX models from iClone to Blender, lighting,
camera positioning, and generating the final 2D images.

backgrounds, lighting sources, and absolute head pose. Facial
animations can also be used and variations in facial expression
can be introduced. Most importantly, all of the inputs to build a
particular 3D scene can be recorded and reproduced exactly in a
way that is not feasible for a real-world data acquisition.

Naturally, synthetic facial data will not have the same richness
in terms of skin features as real image data. But given the other
benefits of using synthetic data to train a neural DESI model, a key
research question that we seek to answer in this work is whether
we can achieve comparable accuracy to SoA DESI models that are
trained on real-world data?

Our procedure for generating the synthetic dataset is illus-
trated in Fig. 1 and the detailed description is presented in the
subsections.

3.1. Synthetic human model with 3D scene setup

Previous works (Elanattil & Moghadam, 2019;
Gu, Yang, De Mello, & Kautz, 2017; Varol et al., 2017) with syn-
thetic virtual humans relied on high-quality 3D scans to produce
synthetic data from 3D human models. But these 3D scans are
expensive and difficult to capture due to different data regulation
laws like GDPR, so there is a very limited number of variations
in the currently available synthetic facial depth datasets. This
study uses the low-cost commercially available 3D asset creation
software and an open-source 3D computer graphics (CG) tool as
an alternative to creating virtual human models. Fig. 2 shows an
example of these models.

3.1.1. The iClone character creation process
The characterization of virtual human models is achieved

with realistic human faces, humanoid behaviors, and 3D riggings
through the iClone CC process. In the process the template is
applied to the base body while the sculpting and morphs features
are utilized for capturing the facial animations. A realistic facial
expressions and morph transformation are then applied in the 3D
mesh that enhance the variations in the data. The virtual human
face models are imported from CC to iClone.
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Fig. 2. From left to right: Samples from the 100 Realistic Human Models with
variation in gender, race, age and facial expressions followed with a fully rigged
FBX model from iClone to Blender with the mesh representation.

Fig. 3. In Blender, a simplified view of the rendering configuration. The left row
shows the body shape, light and camera setting information; the middle row
shows the facial RGB image and the last row illustrates the corresponding facial
depth image.

3.1.2. Adding variations to models in iClone
The iClone provides a rich features library with embedded

templates supporting full parameter control for shapes, textures,
clothes materials modification and representations in different
styles. The layout base is easily adjustable to all the sub-nodes
by rotating them through different angles from hair element to
the coordinates texture and facial expressions. Such features are
implemented to specify the models with a range of human char-
acteristics including neutral, angry, happy, sad, and scared along
with the customized fabric plates layers and five different colored
hairstyle that results in generating above hundred variations for
the facial model.

3.1.3. Model transfer from iClone to Blender
To capture a richer GT with dense facial depth, head pose,

camera locations, scene illuminations the model needs a trans-
formation interface from iClone to Blender software. The interface
is designed by coupling the 3D modeling software to adjust the
adaptation of FBX format between the different software tools.

3.1.4. Manipulating models in Blender
Blender is a 3D creation suite open-source tool that provides

full support for modeling, rigging, animation, simulation, ren-
dering, composition, motion tracking, video editing and game
creation (with python integration) over the entire 3D model.
The rigs animations are controlled with the constraint keyframes
and shape keys, while the camera parameters are configured by
adjusting the field of view (FOV), the clip zoom in–out values,
sensors size, depth field and the f-stop values. Furthermore, the
light paths of refraction, reflection, diffraction, and absorption are
tracked through realistic cycle rendering engine as illustrated in
Fig. 3.

3.1.5. Building 3D scenes in Blender
The FBX format alignment allowed us to control and adjust

the head motions of various angles, while illuminations such as
area, sun, point, and spotlight assisted in varying the lights based
on the realistic scenarios of the scene. The GT rendering of the
image is achieved through admission of the camera model to
the particular scene mode, during the cycle rendering engine
control process. The ground truth data is generated by conducting

a sequences of head movements experiments through controlling
the neck bone rotations over the FBX based model. In the process
the initial head position is maintained by scaling an arbitrary
object between the eyeballs under the range of the camera focal
point.

The translation and the rotations of neck bones are transferred
to the arbitrary object in a way by retaining the constraints of
the original object. The default setting of Blender does not allow
the head to be positioned at zero angle therefore the imported
model head moment is restricted by default. The initialization of
head frame position is performed by setting down the yaw, pitch
and roll of the initial frame in the Blender world coordinator,
the original neck bone is then rotated by wisely minimizing the
delta through a python script, that tuned the local coordinates x,
y, and z-axis of arbitrary object to zeros. After the initial setup,
a sequential (Pitch, roll, and yaw) uniform rotation was applied
to the neck bone and a balanced status of all the frames was
recorded. The yaw, pitch and roll of the head pose are calculated
by capturing the corresponding values from the rotation matrix.
The ranges of the yaw, pitch, and roll have been maintained
in range of ± 80◦, ± 70◦ and ± 55◦, respectively, with the
granularity of 3◦ angle.

3.1.6. The Blender camera model
The Blender camera specifies the lens focal length and aper-

ture parameters for defining the viewpoint of the scenes and
their rendering. The default camera model is applied to the scene,
and its properties are adjusted to replicate the real environment.
The camera is set at 30 centimeters distance from nose tip of
the model and the background plane is set at a distance of 2
m, respectively. The camera sensors size and FOV are set at
36 millimeters (mm) with 60◦ and the near and far clip are
set at 0.001 and 5.0 meters (m), which results in covering the
overall scenes. The representation of 3D objects with 2D images is
obtained through optimizing the camera lens options. The camera
placement was maintained at a fixed position while the human
model was placed within the range of 700–1000 mm relative to
the camera that replicate the capturing of data in realistic sce-
narios. Finally, the realistic 2D images are obtained by a random
selection of main camera translation, head camera translation and
rotations.

3.1.7. 3D background scene selections in Blender
A mix of plain, textured, and real images have been used to

add variations to the background. The background of the scene
was varied to provide more variations in order to improve model
generalization. The Brodatz-based color images provided by Ab-
delmounaime and Dong-Chen (2013) are used for the textured
background. The classroom and barbershop scene from Blender
Eevee were chosen for the complex background.

3.1.8. Ground truth rendering in Blender
Blender provides Cycles and Eevee render engines for path

tracing and rasterization functions, respectively. To obtain a re-
alistic rendering, the Cycles rendering engine is used as cycles is
Blender most feature-rich and production-proven renderer. The
path tracers function captures the light reflection, refraction, and
adsorption while the rasterization maintained the pixel informa-
tion for a fast rendering process but reduced the accuracy. It has
been observed that the degrade in accuracy is due to the ren-
dering process of transparent materials and noises during their
Cycle path tracing. The noises are reduced by the branched path
tracing mechanism, which splits the original ray by capturing its
reflected rays in multiple directions that provide a full control
over the shades and support the accuracy improvement.
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Fig. 4. Random sample frames with high-resolutions RGB images and their corresponding ground truth depth with different variations (head poses, expressions, light
variations, camera positions, clothes, viewpoints and backgrounds: plain; textured; real) obtained from the generated synthetic dataset.

The movement of most of the other parts of body are con-
trolled according to the structures of their bones. The RGB render
pass was used in the Blender compositor setup to get the final
render. The head and the shoulders bone are identified in the pose
mode then the head mesh is rotated with respect to the selected
bones and the selected key frames are recorded. Finally, all the
key frames are rendered by capturing their respective head poses
through the python plugins and the RGB and the depth images are
obtained.

3.2. Dataset information

Following the methodology outlined above, the proposed
framework works as follows: In CC, a set of virtual human models
is constructed using the Real 100 humans face models. To add
more variation, the texture and morphology of the models are
changed. These models are then sent to iClone, where different
facial expressions are imposed. The mesh, textures, and anima-
tion keyframes for the final 3D models with facial expressions
are exported in FBX format. Complete information can be found
in Sections 3.1.1 and 3.1.2.

Following that, the FBX files are imported and scaled in
Blender world coordinate system. Lights and cameras are added
to the scene, and their properties are adjusted to capture the
real environment. The render layer RGB and Z-pass outputs are
then set up in the compositor to get the final result. In pose
mode, the head and shoulder bones are identified, and the head
mesh is rotated in relation to those bones, with the keyframes
saved. Finally, all of the keyframes are rendered to obtain RGB
and depth images, and the appropriate head pose (yaw, pitch, and
roll) is captured using Blender Python plugin. Sections 3.1.3–3.1.8
contain the detailed information. GT is rendered on an Intel Core
i5-7400 3 GHz CPU with 32 GB RAM and an NVIDIA GeForce GTX
TITAN X Graphical Processing Unit (GPU) with 24 GB of dedicated
graphics memory.

For each frame, the RGB images are rendered with 640 × 480
resolutions and saved in jpg format and the corresponding depth
data is saved in a raw file (.exr format). Additionally, the head

pose information for each frame is captured and saved in a text
(.txt) file. Cycle Rendering Engine, Blender physically-based path
tracer for production rendering, took an average of 26.3 s to
render each 2D image frame. The total dataset size is around
3500k image samples, with approximately 3.5k 2D image samples
per subject. For each of the 100 face models, the data is saved in
its own folder. The rendered RGB images and the corresponding
Gt (depth and head pose) for each face model are stored in three
different paths for the three types of backgrounds — simple,
textured, and complex. The sample frames with their ground
truth depth images and different backgrounds (simple, textured
and complex) obtained from the synthetic dataset are illustrated
in Fig. 4.

The generated synthetic dataset used in this research work
consists of 3D virtual human models and 2D rendered RGB and
GT depth images in zipped version with a total size of 650
GB categorized into two folders. All of the CC and iClone data
information (textures, .fbx, .fbm, and .blend) for each subject
is contained in the 3D virtual models folder, which is further
divided into sub-folders (male, female). The male and female
sub-folders of the 2D rendered images folder contain 56 and
44 subjects, respectively. For the three types of backgrounds –
simple, textured, and complex – these subjects are stored in three
different paths. The sample and texture path are divided into five
main directories (happy, sad, neutral, scared, and angry), each of
which contains the RGB images, depth images, and raw head pose
data for each frame. The complex directory is divided into two
main folders, classroom and barbershop, which have the same
structure as the sample and textured folders. The file hierarchy
structure is shown in Fig. 5.

Our synthetic dataset1 is available for a free of cost download
and can be utilized for scientific research purposes.

In contrast to the existing datasets (Borghi et al., 2017; Fanelli
et al., 2011; Min et al., 2014) our dataset provides a richer set
of portrait scene detail. Examples include a pixel-exact GT depth
information corresponding to each rendered RGB image; a larger

1 https://github.com/khan9048/Facial_depth_estimation.
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Fig. 5. Dataset organization: The dataset is divided into different folders which
correspond to each ‘subject’ being captured and rendered with RGB images;
ground truth depth images.

number of training samples; variations in camera perspective,
facial expression and head pose. Most importantly each 3D scene
data can be exactly replicated, and new variations introduced to
test the importance of different elements of scene composition.

4. Evaluating state-of-art models for single image depth esti-
mation

The purpose of this study is to see how well synthetic facial
depth data can be used to estimate facial depth estimation. A set
of SoA DESI neural networks is used to analyze the generated
synthetic human facial depth dataset. Since there are no publicly
available benchmarks methods for the evaluations purposes, this
work used DESI neural networks to train over the generated syn-
thetic dataset and evaluate with test data. In addition, a new CNN
model is proposed, and its performance is evaluated against the
SoA networks. Initially, SoA DESI methods BTS (Lee et al., 2019),
Densedepth (Alhashim & Wonka, 2018) and UNet-simple (Khan,
Basak, & Corcoran, 2021) are trained using the synthetic human
facial dataset and the results are compared against the proposed
network.

The most important requirement for a sensible training
scheme is that computations are performed in an appropriate
output space that is compatible with all GT representations. As
a result, the GT was scaled to the generated dataset for training
the SoA methods. A typical CNN system comprises of certain
layers which include convolution layers, pooling layers, dense
layers, and fully connected layers. There are a variety of pre-
trained networks that can be used to perform tasks like visual
recognition, object detection, segmentation, and depth estima-
tion. This work employ a pool of pre-trained networks which
includes EfficientNet-B0, EfficientNet-B7, ResNet-101, ResNet-50,
DenseNet-169, DenseNet-201, DenseNet-161 to generalize the
model for the target facial depth estimation.

Although these methods can produce depth maps with com-
parable accuracy, they are computationally more expensive and
requires large amount of graphical memory. As an alternative, the
proposed model in this work automates the collection of optimal
parameters, thus reducing model complexity during the training

Fig. 6. Schematic diagram of the proposed depth estimation network: A multi-
layer Encoder–Decoder network is used to generate accurate facial depth maps
based on the MobileNet backbone model.

process, and is more computationally efficient than the current
SoA depth estimation models and shows performance equal to,
or better than SoA when tested across 4 public datasets.

We examine how to compare the effects of various methods
for estimating a scene facial depth from a single image frame.
A new evaluation protocol of SoA facial depth estimation algo-
rithms for synthetic dataset is proposed, setting up a new SoA
for facial depth estimation.

Section 5 provides details of the Encoder–decoder model and
the associated loss functions used in the training process. In Sec-
tion 6, we present a detailed analysis of our model performance
against these methods using four public datasets. Also, a brief
comparison analysis, evaluation matrices, test datasets, imple-
mentation details, encoders comparison and qualitative study are
presented.

5. An encoder–decoder based facial depth estimation model

In this section, we described the proposed single image depth
estimation network with encoder–decoder mechanism and hy-
brid loss function to optimally select the hyper parameters for im-
proving the training process over the generated synthetic dataset.

5.1. Network architecture

To analyze the validity of the generated datasets, a CNN net-
work is designed that is referred to as FaceDepth and its perfor-
mance is compared against the SoA architectures. A schematic
diagram of the proposed model is illustrated in Fig. 6. It con-
sist of input and output images and a detailed Encoder–decoder
network architecture. The Encoder–decoder learn to map data-
points from an input domain to an output domain via a two-stage
mechanism in the network. In the first stage the encoder function
f = f (x), compresses the input into a latent-space representation
while in the second stage the decoder function y = g(f ) predicts
the output. In the encoder, we employ MobileNet (Sifre & Mallat,
2014) which is based on depthwise decomposition process to
factorize the CNN layers into depthwise and pointwise layers.
Each of the depthwise layers utilize the filtration function that ex-
tracts low-resolution features from the input image. The extracts
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Fig. 7. An illustration of the hybrid loss function composition: A hybrid loss
function is introduced through the combination of point-wise loss, gradient loss,
surface normal loss, and SSIM loss functions.

features are then fed to the decoder, which refines, merge and
upsample them to the final high-resolution output depth map.
In the second stage of the network, the decoder consists of five
upsampling and a single pointwise layers. Each upsample layer
performs a 5x5 CNN and reduces the number of channels with a
ratio of 2:1 input and output channels. Three skip connections
are applied to reconstruct a more detailed dense information
for the final depth map. The hybrid loss function measures the
differences between the GT depth and the predicted depth map
to minimize the reconstruction errors. A detailed description of
the hybrid loss function is presented in the subsequent section.

5.2. Hybrid loss function

The loss functions estimate the image depth by measuring the
difference between the true depth (g) and predicted depth (d)
such that the loss function results in a higher error if d deviates
largely from g and vice versa. To fine-tune and to penalize the
distortion among the GT and predicted depths for high frequency
images a hybrid loss function is introduced through the combina-
tion of point-wise loss, gradient loss, surface normal loss, and the
structural similarity index measure (SSIM) (Wang, Bovik, Sheikh,
& Simoncelli, 2004) loss functions. The designed loss function
learns to estimate the depth while minimizing the boundaries of
scenes as well as the 3D structure of the faces. Fig. 7 shows an
overview of the proposed loss function. The hybrid loss function
L between g and d is defined as the weighted sum of the four
different losses

L(g, d) = w1Ldepth(g, d) + w2LSSIM (g, d)+

w3Lgrad(g, d) + w4LSurfaceNorm(g, d) (1)

The first loss term
(
Ldepth

)
represents the point-wise

(
L1

)
loss for

the depth values and is according to Eq. (2).

Ldepth(y, y̆) =
1
n

n∑
p

|gp − dp| (2)

The second loss term
(
LSSIM

)
incorporates the SSIM metric with

its upper bound for reconstructing the image using Eq. (3) (Wang
et al., 2004).

LSSIM (y, y̆) =

(1 − LSSIM (g, d)
MaxDepth

)
(3)

The third term
(
Lgrad

)
represents the

(
L1

)
loss for the gradient

of the image depth with penalizing the error around their edges
according to Eq. (4).

Lgrad(g, d) =
1
n

n∑
p

∇x(ep) + ∇y(ep) (4)

where ∇x(ep) and ∇y(ep) denote the spatial derivatives of the
difference between the ground truth and predicted depth for the
pth pixels ep which stands (∥gp − dp∥) for the x, y-axis. The depth
maps gradient loss is sensitive to both x, y axes and is obtained
using Sobel Filter method. It is important to note that the two loss
functions presented,

(
Ldepth

)
and

(
Lgrad

)
, complement each other

for various types of errors. As a result, we use the (weighted) sum
of

(
Ldepth

)
and

(
Lgrad

)
.

According to the statistics of natural range images, depth
maps of natural scenes can be roughly approximated by a limited
number of smooth surfaces and step edges in between them. For
example, at an object edge, depth is frequently discontinuous.
Errors along such sharp edges are penalized by

(
Lgrad

)
. However,

while depth differences at such occluding boundaries of objects
might be very high, we must choose a reasonable value. We
explore yet another loss to deal with such small depth structures
and enhance fine details of depth maps. This loss measures the
accuracy of the normal to the surface of an estimated depth map
with respect to its ground truth.

The
(
LSurfaceNorm

)
loss function is used to avoid the small struc-

tural errors and estimate the normal and predicted depth maps.
The surface norms of the ground-truth and the predicted depth
are denoted by

ng
p =

(
Ψ [−∇x(gp),−∇y(gp), 1]T

)
and

nd
p =

(
Ψ [−∇x(dp),−∇y(dp), 1]T

)
where ng

p , nd
p are the surface normal vectors, ∇ is a vector

differential operator, ψ calculates the gradients of the differ-
ence between the ground truth and predicted depth in both the
horizontal and vertical directions. The loss is computed by the
difference between the two surfaces normal according to Eq. (5).

LSurfaceNorm =
1
n

n∑
p

(
1 −

⟨nd
p, n

g
p⟩

∥nd
p∥ · ∥ng

p∥

)
(5)

where ⟨nd
p, n

g
p⟩ denotes the inner product of the vectors.

We empirically found and set the values of the weights w1,
w2, w3, w4 as 0.28, 0.22, 0.30, 0.20 respectively. The four loss
functions are evaluated through an adoptive method with varying
weights and are coupled into a hybrid loss function for obtaining
optimal results, the development procedure of our hybrid loss
function is shown in Fig. 7.

6. Experiments

The experimental results are presented in this section to illus-
trate the effectiveness of the proposed method. We will start by
comparing training and evaluation results of SoA to the proposed
work and demonstrating a brief comparison analysis. Following
that, the network was tested on four different test datasets. For
the encoder, various comparison analyses have been conducted,
analyzing them based on accuracy and computational footprints.
Finally, we present an ablation study of the hybrid loss function,
which will be used to demonstrate the benefits of the method.
The proposed synthetic dataset was used to train all networks,
which were then tested against different test datasets.

Our extensive experiments, which cover approximately four
GPU months of computation, show that a model trained on a
rich and diverse set of images, combined with an appropriate
training procedure, yields SoA results in a variety of scenarios. To
show this, zero-shot cross-dataset transfer protocol is used for
comparison purposes. More specifically, the model was trained
on one dataset and then evaluated on unseen test datasets.
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Fig. 8. Overall implementation details of training the proposed model with
hybrid loss function.

6.1. Implementation details

The dataset was split into 0.8 and 0.2 ratios for training and
validation, and the model was validated on four publicly available
benchmark datasets (discussed in Section 6.2). The facial depth
estimation model is trained using the PyTorch deep learning
framework (Paszke et al., 2019). For all of the experiments, we
use the Adam optimizer on a workstation equipped with NVIDIA
2080ti GPUs for 50 epochs with a 0.0001 learning rate and batch
size of 6. For the entire model, there are approximately 14.42
million trainable parameters. For evaluations, Root Mean Square
Error (RMSE), log Root Mean Square Error (RMSE (log)), Absolute
Relative difference (AbsRel), Square Relative error (SqRel) and
Accuracies are used, see Eqs. (6)–(10).

For training BTS (Lee et al., 2019), Adam optimizer with β1 =

0.9, β2 = 0.999 is used and 10−6 learning is scheduled via
polynomial decay from base learning rate 10−3 with power p =

0.98. The total number of epochs is set to 50 with batch size 4.
The complete implementation details of the proposed model are
illustrated in Fig. 8.

6.2. Test datasets

To benchmark the generalization performance of DESI net-
works (Alhashim & Wonka, 2018; Khan et al., 2021; Lee et al.,
2019) and the proposed model trained on the synthetic human
facial dataset with various pre-trained models such as (Efficient-
Net-B0, EfficientNet-B7, ResNet-101, ResNet-50, DenseNet-169,
DenseNet-201, DenseNet-161), four datasets are selected based
on diversity and accuracy of their ground truth. This includes Pan-
dora (Borghi et al., 2017), Eurecom Kinect Face (Min et al., 2014),
Biwi Kinect Head Pose (Fanelli et al., 2011) and our proposed
test dataset for the testing and evaluation purposes. It should
be noted rather than fine-tuning the networks, we have trained
all the models from scratch on these datasets. We refer to this
experimental procedure as zero-shot cross-dataset validation.

• Pandora (Borghi et al., 2017): Pandora dataset is used for
different applications such as head pose estimation, head
center localization, depth estimation and shoulder pose esti-
mation. It contains a total of 250K full resolution RGB images
with corresponding depth images.

• Eurecom Kinect Face (Min et al., 2014): The dataset consists
of the multi-model face images of 52 people including 38
males and 14 females, which is obtained by using the Kinect
sensor. It consists of different facial expression, occlusion
and lighting conditions in 9 different states such as smile,
eye occlusion, mouth, light and paper, neutral, open mouth,
left–right profile.

• Biwi Kinect Head Pose (Fanelli et al., 2011): Consists of 15k
images of 20 subjects recorded by using the Kinect sensor by
moving the heads freely around each side. For every frame,
RGB and depth images are provided, together with the 3D
location of the head and its rotation angles.

6.3. Evaluation metrics

To evaluate the results a commonly accepted evaluation
method has been used with five evaluation indicators: Root
Mean Square Error (RMSE), log Root Mean Square Error (RMSE
(log)), Absolute Relative difference (AbsRel), Square Relative error
(SqRel), Accuracies, Normalized Root Mean Square Error (NRMSE)
and R-squared. These are formulated as follows:

RMSE =

√
1
N

∑
iεN

∥di − gi∥2 (6)

RMSELog =
1
N

∑
iεN

∥log(di) − log(gi)∥2 (7)

AbsRel =
1
N

∑
iεN

∥di − gi∥
gi

(8)

SqRel =
1
N

∑
iεN

∥di − gi∥2

gi
(9)

Accuracies = % of dimax
(di
gi
,
gi
di

)
= δ < thr (10)

NRMSE =
RMSE − RMSEmin

RMSEmax − RMSEmin
(11)

R2
= 1 −

∑N
m=1

(
di−gi

)2∑N
i=1

(
di−ḡi

)2 (12)

where gi is the ground truth, ḡi is the mean of the ground truth
and di is the predicted depth of the pixel i, N denotes the total
number of pixels and thr denotes the threshold for determining
the accuracy.

6.4. Comparison of encoders

Since the proposed network uses existing models as an en-
coder for dense feature extraction, it is worth comparing its
output to that of other commonly used base networks for similar
tasks. We checked the proposed method by adjusting the en-
coder with different models while keeping the other settings the
same. The influence of the encoder architecture is illustrated in
Fig. 10. The model is trained with EfficientNet-B0, EfficientNet-B7,
ResNet-101, ResNet-50, DenseNet-169, DenseNet-201, DenseNet-
161 encoder as our baseline architectures and the relative im-
provement in performance when swapping with different en-
coders. The results are reported in Table 1 (row 2,3, 5–9).

6.5. Final results and comparison with prior work

Results achieved with the proposed methodology are sum-
marized in Fig. 9 and Table 1, the performance of the facial
depth estimation model is compared to the SoA on the synthetic
human facial dataset. As it can be seen from Table 1, the proposed
network achieves SoA results.
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Table 1
Comparison of various depth estimation models with the proposed method FaceDepth, BTS (Lee et al., 2019), Densedepth (Alhashim & Wonka, 2018) and UNet-simple
(Khan et al., 2021) with various base models (EfficientNet-B0, EfficientNet-B7, ResNet-101, ResNet-50, DenseNet-201, DenseNet-161). FC refers to the facial crop which
means the errors are estimated only on the facial region.
No. Methods AbsRel SqRel RMSE NRMSE R2 RMSElog δ1 < 1.25 δ2 < 1.252 δ3 < 1.253

1. DenseDepth-161 0.0312 0.0121 0.0610 0.0607 0.0345 0.0169 0.9854 0.9876 0.9902
2. DenseDepth-121 0.0320 0.0132 0.0712 0.0746 0.0465 0.0180 0.9732 0.9803 0.9880
3. DenseDepth-169 0.0296 0.0096 0.0373 0.0432 0.0245 0.0129 0.9890 0.9920 0.9981
4. BTS 0.0165 0.0092 0.0206 0.0321 0.0254 0.0102 0.9830 0.9943 0.9956
5. DenseDepth-201 0.0375 0.0097 0.0304 0.0476 0.0265 0.0101 0.9920 0.9956 0.9969
6 ResNet-101 0.0123 0.0210 0.0306 0.0456 0.0236 0.0089 0.9938 0.9965 0.9980
7 ResNet-50 0.0232 0.0219 0.0445 0.0598 0.0231 0.0186 0.9919 0.9974 0.9984
8 EfficientNet-B0 0.0145 0.0280 0.0360 0.0476 0.0228 0.0154 0.9912 0.9934 0.9978
9 EfficientNet-B7 0.0132 0.0234 0.0353 0.0431 0.0225 0.0144 0.9880 0.9909 0.9965
10 UNet-simple 0.0103 0.0207 0.0281 0.0321 0.0212 0.0089 0.9960 0.9976 0.9987
11 UNet-simple (FC) 0.0098 0.0096 0.0143 0.0274 0.0201 0.0043 0.9982 0.9992 0.9996
12 DenseDepth(FC)-169 0.0110 0.0074 0.0161 0.0286 0.0189 0.0034 0.9981 0.9990 0.9992
13 BTS(FC) 0.0109 0.0072 0.0152 0.0248 0.0165 0.0033 0.9971 0.9991 0.9992
14 ResNet (FC)-101 0.0132 0.0077 0.0170 0.0213 0.0149 0.0035 0.9980 0.9990 0.9992
15 EfficientNet (FC)-B7 0.0112 0.0076 0.0166 0.0210 0.0141 0.0032 0.9887 0.9945 0.9989
16 Our FaceDepth (FC) 0.0176 0.0030 0.0105 0.0204 0.0136 0.0029 0.9982 0.9986 0.9996

Fig. 9. Qualitative results of the proposed method on a subset of the synthetic human facial dataset that was not used for training or validation. From left to right,
input RGB images, ground truth depth images and predicted depth images.

As stated in Section 4, since there are no available benchmark
methods for performance evaluation; in the first phase the gener-
ated synthetic human facial dataset is utilized to retrain the SoA
DESI methods (Alhashim & Wonka, 2018; Lee et al., 2019) and a
UNet-simple (Khan et al., 2021). Afterwards, all the trained mod-
els are then evaluated and tested on four benchmark datasets.
As stated above, the model is initially trained over the whole
image and then applied to the Facial crop (FC) for evaluating
errors particularly in the face region. In other words, the depth
has been masked within a certain range of 50 centimeters from
the camera to evaluate the results only on the facial region of
the images, see Table 1 (rows 11–16). The proposed lightweight
network structure contains fewer parameters to the SoA methods.
A detailed comparison analysis is given in Table 2.

6.6. Qualitative result

We discuss qualitative results from the proposed framework
against SoA methods in this section. Figs. 10 and 11 show a
qualitative comparison of our model to the three best-performing
models with various Encoders architectures. As it can be observed
from Fig. 10 our results show better information and consistency,
which proves that the proposed method performs better at depth
estimation with improvements on the facial region.

In testing across a combination of real and synthetic images,
we outperform SoA both quantitatively and qualitatively, and set
a new SoA for Facial DESI. Example results are shown in Table 1,
Table 2 and Fig. 11.

In terms of accuracy and depth range, based on the evaluations
the proposed method achieved the best performance as compared
to other SoA methods. On the synthetic human facial dataset,
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Table 2
Properties of the studied methods (Lee et al., 2019), (Alhashim & Wonka, 2018), UNet-simple (Khan et al., 2021) and our proposed model (ED: Encoder–Decoder; F:
Trained on the synthetic human facial dataset); LR/E: Learning Rate/Epochs; CC: Computational Complexity.
Method Input Type Optimizer Parameters Output LR/E CC

BTS 640 × 480F ED Adam 46.6M 640 × 480F 0.0001/50 69.23 GMac
DenseDepth-169 640 × 480F ED Adam 42.6M 320 × 240F 0.0001/20 66.12 GMac
ResNet-50 640 × 480F ED Adam 68M 640 × 480F 0.0001/25 101.27 GMac
EfficientNet-B7 640 × 480F ED Adam 80.4M 640 × 480F 0.00001/20 113.44 GMac
UNet-simple (FC) 640 × 480F UNet Adam 17.27M 640 × 480F 0.001/20 188.04 GMac
Our FaceDepth 640 × 480F ED Adam 14.42M 320 × 240F 0.0001/50 16.41 GMac

Table 3
Experimental results using a synthetic human facial dataset with various weights setting.
Method w1 , w2 , w3 , w4 AbsRel SqRel RMSE RMSElog δ1 < 1.25 δ2 < 1.252 δ3 < 1.253

FaceDepth [FC] 1.00, 0.1, 0.1, 1.00 0.0118 0.0037 0.0108 0.0031 0.9982 0.9985 0.0996
FaceDepth [FC] 1.00, 0.00, 0.00, 0.00 0.0178 0.0048 0.0124 0.0042 0.9961 0.9974 0.9991
FaceDepth [FC] 0.00, 1.00, 0.00, 0.00 0.0107 0.0011 0.0108 0.0033 0.9888 0.9924 0.9945
FaceDepth [FC] 0.00, 0.00, 1.00, 0.00 0.0495 0.0086 0.0181 0.0081 0.9881 0.9952 0.9986
FaceDepth [FC] 0.00, 0.00, 0.00, 1.00 0.0039 0.0206 0.0256 0.0113 0.8781 0.9821 0.9840
FaceDepth [FC] 0.25, 0.25, 0.25, 0.25 0.0219 0.0038 0.0109 0.0032 0.9961 0.9982 0.9990
FaceDepth [FC] 0.28, 0.22, 0.30, 0.20 0.0176 0.0030 0.0105 0.0029 0.9982 0.9986 0.9996

Fig. 10. A qualitative comparison of our approach to the four best competitors: from left to right; (Input: input RGB images; GT: ground truth images; Ours:
Our FaceDepth method; BTS (Lee et al., 2019), Ef-Net: EfficientNet-B7 (Alhashim & Wonka, 2018; Wang et al., 2019); Rs-Net: ResNet-50 (Alhashim & Wonka,
2018; He, Zhang, Ren, & Sun, 2016); D-Net: DenseDepth-169 (Alhashim & Wonka, 2018); U-Net: UNet-simple (FC) (Khan et al., 2021) applied to different datasets
(Our-D: Synthetic human facial dataset; P-D: Pandora dataset (Borghi et al., 2017); E-D: Eurecom Kinect Face dataset (Min et al., 2014); B-D: Biwi Kinect Head Pose
dataset (Fanelli et al., 2011).

the proposed network achieved 0.0105 RMSE and threshold ac-
curacy of 0.9996 with δ < 1.253 as shown in Table 1 (row 16).
Furthermore, the proposed method is shown to have a signifi-
cantly reduced memory footprint with improved computational
efficiency as compared to other SoA methods as shown in Table 2
(row 6). At 16.41 G-MACs per frame, this approach can enable real
time single frame depth estimation. Table 2 (row 5) portrays that
albeit the UNet-Simple model has comparatively lower number of
parameters comparing to the other models; however, the design
principal of double convolution layer, where the batch norm,
ReLU activation and the bi-linear up-sampling stages make it
computationally expensive. Moreover, our faceDepth model has
a fewer parameters with pre-trained weights help in avoiding
several computational steps in the decoder and thereby reducing
the computational complexity.

Table 2 shows properties of the studied methods for single
image facial depth estimation (ED: Encoder–Decoder; F: Trained
on the synthetic human facial dataset). Based on our evaluations,
BTS (Lee et al., 2019), DenseDepth (Alhashim & Wonka, 2018)
with various base models and UNet-simple method (Khan et al.,

2021) can generate high resolution depth maps with comparable
accuracy but they are computationally expensive and require a
significant amount of memory. On the other hand, FaceDepth sig-
nificantly reduced the computational time and memory footprint,
which can be used for both quality and low-cost single frame
facial depth estimations (Table 2 and Fig. 11).

6.7. Ablation study

The ablation studies in Table 3 are performed adaptively such
that all the possibilities of coupling the terms in connection with
their corresponding weights are tested and their performance
is recorded and thereby based on the optimal predicted depth
output the four terms combination has been selected.

We conduct ablation studies to analyze the effectiveness of the
hybrid loss criteria utilized in the proposed network architecture.
We start with weights defined for loss function in Eq. (1). The
result is given in Table 3. As the total weights (w1 = 0.28, w2 =

0.22, w3 = 0.30, w4 = 0.20) sum is equal to 1, the overall
performance is improved. We also analyze the effect of weights
separately and the results are shown in Table 3.
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Fig. 11. Results of the baseline model trained using our proposed hybrid loss
function and synthetic human facial dataset. The model trained using the hybrid
loss function provides more details of local depth structure and higher accuracy
at depth boundaries. The test images are a combination of real and synthetic
images which is not used in the training process for any of the above models.
Best viewed zoomed in on-screen shown on two real images.

As an exhaustive search of possible weight values is not com-
putationally feasible, this study sought to show that no single ele-
ment of the loss function can provide the demonstrated accuracy
without the other methods.

This was done by setting the weights to 0 for all methods
except the one being examined and is shown in rows 2–5 of
Table 3 these rows should be compared with row 6 where each
weight was set to the same value summing to 1 (0.25, 0.25,
0.25, 0.25). The best weight set examined is in row 7 (0.28, 0.22,
0.30, 0.20) which seems to indicate the relative importance L1
loss, particularly L1 calculated over the image gradient so as to
magnify the significance of errors on edges.

One unexpected result is shown in row 5 where w4 was set to
1 while all other weights were set to 0. This is the best result on
the AbsRel metric but performs poorly on the rest.

One possibility is that if w4 is too high, the network can
prioritize the reduction of differences that are due to noise, and
focus too much on the reduction small structural errors at the
possible expense of errors around edges. This is supported by
the fact that our best performing experiment in Table 3 had the
lowest non zero value for w4.

It is a reasonable expectation that when only the surface norm
is used in loss calculations that this would have the greatest
impact on the relative absolute error but it is unclear why this did
not translate into a greater improvement for AbsRel in the case
that L1 was used for training as the primary difference between
the loss function used in training and the evaluation metric is the
scaling (gi) factor. A more thorough ablation study analyzing this
possibility may be investigated in future work.

7. Discussion

This research offers a new encoder–decoder model for facial
depth estimation using synthetic human facial dataset and eval-
uates its performance against other SoA approaches. In contrast
to the different SoA approaches, the developed framework has
a remarkably smaller network size and reduced computational
complexity. The performance significance is due to the model
training method, which selects an adequately appropriate loss
function through a combination of different loss functions and

Fig. 12. The relative performance of several technique evaluation metrics (lower
is better).

the use of a synthetic human facial dataset with pixel-accurate
ground truth depth information.

The generated synthetic human facial depth dataset is ana-
lyzed using a set of SoA DESI neural networks. This work uti-
lized DESI neural networks to train over the generated synthetic
dataset and evaluate with test data because there are no publicly
available benchmarks techniques for evaluations. A new CNN
model is also proposed, and its performance is compared to the
SoA networks. The performances of the proposed model and the
SoA methods were measured using seven evaluation matrices:
Root Mean Square Error (RMSE), log Root Mean Square Error
(RMSE (log)), Absolute Relative Difference (AbsRel), Square Rela-
tive Error (SqRel), Accuracies, Normalized Root Mean Square Error
(NRMSE), and R-squared shown in Table 1. In addition, when
compared to previous SoA approaches, the suggested method has
a much smaller memory footprint and improved computational
efficiency, as demonstrated in Table 2 (row 6). At 16.41 G-MACs
per frame, this approach can enable real time single frame depth
estimation.

We test on a collection of datasets that were never seen
during training for all the experiments and comparisons to the
SoA. Figs. 10 and 11 illustrate a qualitative comparison of the
models, which show that the proposed method performs better at
depth estimation generalization with improvements in the facial
region. Following that, we adaptively run ablation tests on the
loss function Table 3, in which all possible couplings of terms with
their corresponding weights are examined and their performance
is recorded, and the four terms combination is chosen based
on the optimal predicted depth output. A comparison of the
different types of error concerning the SoA approaches is illus-
trated in Fig. 12. It is evident high-performance achievement with
the proposed method by reducing the errors across many test
datasets compared to the different SoA approaches. The selection
of appropriate loss function and the synthetic dataset enables the
model to reduce the error with lower computational cost. The
model performance in reducing the different types of errors is
shown through a box plot in Fig. 13. In general, the proposed
model reduces all the errors, while particularly, it has a significant
performance for the error types RMSElog and SqRel compared to
the AbsRel and RMSE, respectively.

Synthetic data can have a lot of advantages. Ground truth is
perfect and available for tasks such as depth estimation, head
pose, reconstruction, tracking, and camera or object position
without the need for costly human labeling. Motion blur and
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Fig. 13. The FaceDepth method box plot shows the relative performance of
various errors.

lighting changes, as well as camera position and expressions for
algorithm introspection, can all be used to recreate sequences.
It is also possible to generate conditions that would be impos-
sible to replicate in real life, such as exact ground truth depth
information. We would need a large number of images dataset
containing pixel-accurate ground truth of a scene to train and
test deep learning algorithms making it suitable for deployment
in embedded systems and in Edge-AI application. Many other
related challenges, such as shape completion, 3D reconstruction,
and 3D fusion may make use of synthetic data necessary for the
real-life applications.

8. Conclusion

The principle contribution of this research is an improved and
efficient encoder–decoder based neural model for single image
frame depth estimation. This model is competitive with other SoA
depth estimation models, but is significantly smaller in size and
computational complexity, making it suitable for deployment in
embedded systems and in Edge-AI applications (Ignatov et al.,
2018).

When tested across four public data sets, this model shows
performance that is equal to or better than SoA across all primary
metrics, as shown in Section 6.2 and Table 1. In part this level
of performance relies on a training methodology, which makes
use of synthetic data samples to provide a pixel-accurate ground
truth for depth. This improves on ground truth data available
from existing public datasets, and is a major contributory factor
to the high performance and lower complexity of the model.
A second significant contribution of this work is the synthetic
training dataset and associated training methodology which are
described in detail in this work.

A key take-away from this research is that synthetic human fa-
cial data can provide higher quality ground truth depth data than
can be obtained in practical data acquisition and this high-quality
training data can be leveraged to achieve improved, lightweight,
single image depth models. Further improvement beyond SoA
should be feasible by introducing real-data samples, improving
the photo-realism of the synthetic data samples and introducing
a wider variety of facial features, expressions and scene lightings.

Thus future work could include investigations into the super-
positioning of photo-realistic face textures over the synthetic
avatar models and introducing more sophisticated facial dynam-
ics such as mouth and eye variations used to express a wide range
of emotions. Also of interest would be an exploration of different
lightweight encoder–decoder architectures, data augmentation
techniques, and evaluations with a broader range of test datasets.
It would also be interesting to explore some 3D loss functions to
address specific downstream applications.

Finally, the release of the synthetic human facial depth dataset
used in this research and the associated 3D synthetic subject
models, will benefit future research in areas such as 3D facial
reconstruction, understanding, and facial analysis.
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ABSTRACT Due to the real-time acquisition and reasonable cost of consumer cameras, monocular
depth maps have been employed in a variety of visual applications. Regarding ongoing research in depth
estimation, they continue to suffer from low accuracy and enormous sensor noise. To improve the prediction
of depth maps, this paper proposed a lightweight neural facial depth estimation model based on single
image frames. Following a basic encoder-decoder network design, the features are extracted by initializing
the encoder with a high-performance pre-trained network and reconstructing high-quality facial depth maps
with a simple decoder. The model can employ pixel representations and recover full details in terms of facial
features and boundaries by employing a feature fusion module. When tested and evaluated across four public
facial depth datasets, the suggested network provides a more reliable state-of-the-art, with significantly less
computational complexity and a reduced number of parameters. The training procedure is primarily based
on the use of synthetic human facial images, which provide a consistent ground truth depth map, and the
employment of an appropriate loss function leads to higher performance. Numerous experiments have been
performed to validate and demonstrate the usefulness of the proposed approach. Finally, the model performs
better than existing comparative facial depth networks in terms of generalization ability and robustness
across different test datasets, setting a new baseline method for facial depth maps.

INDEX TERMS Facial Depth Estimation, Feature Fusion, Encoder-Decoder architecture, Deep learning

I. INTRODUCTION

DEPTH estimation is a crucial challenge that is used in
a variety of computer vision applications, including 3D

vision [1], 3D face recognition [2], and autonomous vehicles
[3] due to the low cost of consumer depth cameras and
real-time performances. Raw depth maps, on the other hand,
continue to face significant acquisition distortion and detailed
corruption. An extensive study has lately been conducted to
increase depth accuracy, with the majority of these studies
leveraging additional details, such as RGB images or multi-
depth maps, for depth map enhancement, while a few em-
ploy single depth map enhancement [4]–[8]. Although, few
studies focus on facial depth maps [9]. The improvement

of facial depth estimation is an important research topic for
rapid and low-cost 3D face applications. When compared
to ordinary scenery, human faces contain fine structures.
Face recognition and other facial depth applications require
features that can be used to distinguish one face from another.
This makes it more difficult to refine facial depth. With the
advancement of the autonomous industry, it is essential to
monitor the driver of a vehicle in order to achieve safety,
comfort, and enhanced human-vehicle interactions [10]. As
a proof of concept, the depth estimation in the intelligent ve-
hicle’s monitoring system is an advanced way to analyze the
driver’s behaviour in 3 dimensional instead of 2-dimensional
environments. Human facial depth maps are one of the most
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frequently encountered objects in facial images and are crit-
ical for a variety of facial image processing activities. From
human facial geometry, the eye separation task in a human
facial region is limited to a small range, and thus, using
the field of view information from the camera sensors, it is
possible to determine the distance between the camera and
the subject with reasonable accuracy from a single image
frame. A neural network can be trained to estimate depth
more accurately by using data that includes face images,
towards which this study is aimed. It should be possible
for the neural model to understand a considerable measure
of the details of human facial structure and properties that
can improve the state-of-the-art (SoA) in facial depth map
research.

In this paper, the main contribution is to propose a new
neural facial depth estimation network that uses a single im-
age and predicts accurate facial depth maps. As compared to
the previous facial depth estimation algorithms, this network
is significantly smaller in size and less cost-effective, making
it ideal for embedded systems and edge-AI applications.
Based on the evaluation of four public facial depth datasets,
this lightweight network outperforms equal to, or better than
SoA across different primary measures. Furthermore, exten-
sive experiments demonstrate the utility and generalization
of the proposed network. The rest of the article is organized
as follows. Section 2 discusses related research that has
been conducted in relation to the proposed method. Section
3 presents and discusses the proposed neural facial depth
estimation network for generating facial depth maps. A large
and diverse synthetic dataset is used in the training phase,
and a series of experimental comparisons, evaluations of the
presented approach against the existing SoA approaches and
results for facial depth maps are discussed in sections 4 and
5. In Section 6, the results of this research work are briefly
discussed. Section 7 addresses the challenges, future trends,
and improvements, while Section 8 summarizes the research.

II. RELATED WORKS
Interpreting spatial relationships within a scene involves es-
timating depth maps. As a result, such relationships assist in
the creation of stronger representations of objects and their
surroundings, which can lead to advancements in existing
recognition tasks as well as the development of new appli-
cations like 3D modelling. With only a single RGB image
as input, the purpose of monocular depth estimation is to
estimate the depth value of each image pixel or derive a
depth map. There has been a lot of effort put into the past
to estimate depth using stereo images, as well as progress
being made by researchers in monocular depth estimation
due to the advancement in convolutional neural networks
[7], [11]–[15]. However, monocular facial depth estimation
research has recently gotten attention [9]. Monocular depth
estimation employs a single camera to acquire an image or
video sequence and requires no more complex equipment or
professional techniques. It has a broad range of application
requirements due to the availability of only one camera in the

majority of application scenarios. As a result, the need for
monocular depth estimation has increased in recent years,
[15]. Facial depth estimation has many applications and
approaches using both conventional and traditional method-
ologies [8]. Using the feature extraction methods, There
are many SoA potential solutions to predict facial depth
[16]–[22]. Facial feature extraction depth maps can help in
the advancement of facial depth tasks. On the other hand,
with feature fusion methods, rich internal information of the
depth, and compressed reconstructions of integrated features
can be generated after dimensionality reduction. There are
several approaches that are offered in different tasks: [23]–
[25].

In recent years, facial depth estimation methods have been
proposed for various tasks. Authors in [26], devised a face
recognition system in which Fully Convolutional Network
(FCN) seeks to recover depth from an RGB image while
Convolutional Neural Network (CNN) preserves individual
subject separability. In [21] proposed a face depth estima-
tor with conditional generative adversarial networks (GAN).
They created a GAN-based approach for estimating depth
maps from single-face images. This method also concluded
that the conditional Wasserstein GAN structure is the most
reliable technique using GAN-based networks. Authors in
[27] used an unsupervised approach to estimate depth with
3D face rotation and replacement by implying the depth of
an input image’s facial key points. In [28] proposed a GAN-
based technique to produce robust facial depth estimation.
Further [9] proposed a GAN-based technique via segmen-
tation and mask-guided attention network for face depth
estimation. Recent research has also revealed that, in addition
to colour and deformation, the depth of Ground Truth (GT)
of a face can be used to discriminate between real and syn-
thetic faces. It is a strategy worth researching to increase the
label information by utilizing estimated depth image labels
instead of coding labels. The authors in [30], suggested an
auxiliary supervised technique that uses estimated face depth
information to expand label information.

In addition, there has been significant research towards
generating 3D synthetic facial depth estimation methodolo-
gies. In [31], authors provided realistic 2D facial depth
models obtained from a 3D synthetic dataset. The authors
also suggested a benchmark dataset, as well as a CNN-based
architecture for predicting depth from a 2D image in [32].
The authors in [8] offered a comprehensive review of monoc-
ular facial depth estimation, including types of approaches
that have been and can be used in past, current, and future
research.

III. LIGHTWEIGHT ENCODER-DECODER BASED FACIAL
DEPTH ESTIMATION MODEL
Numerous consumer applications, such as robots, augmented
reality, and automated driver monitoring systems, can benefit
from neural facial depth estimation networks constructed
from single image frames. Conventional approaches utilize
fully connected layers, which complicates the models and
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necessitates additional memory, making them unsuitable for
deployment on consumer devices and they suffer from issues
such as information loss that leads to holes in depth-images.
On the other hand, many Deep Learning (DL) techniques
have recently been presented, and they have shown consid-
erable progress in solving the fundamental ill-posed problem
of depth estimation. This article describes the procedure for
constructing depth maps from a single-frame face image that
makes use of the input RGB face image and the correspond-
ing GT depth utilizing neural networks.

Keeping a simple model architecture in mind that can
be used for consumer devices for real-life applications, the
model applied in this research work automates the collection
of optimal parameters and a less number of parameters
size thus reducing model complexity during the training
procedure. The proposed model is more computationally
efficient than the current SoA facial depth maps models
and shows performance equal to, or better than SoA when
tested across 4 public depth datasets. The performance of
the proposed CNN model is evaluated with SoA networks,
and different encoders including EfficientNetB0, ResNet-
101, and DenseNet-169 are compared.

A. NETWORK ARCHITECTURE
This section describes the proposed neural facial depth net-
work for the mechanism of single-image facial depth maps,
as well as the suggested loss function for optimizing the
procedure over the training data. The framework’s general
architecture is demonstrated in Fig. 1. To obtain high-quality
facial depth maps, researchers usually create deeper networks
with additional parameters and constraints, which need addi-
tional computation complexity and hence do not match the
real-time requirements of real-time applications. As a result,
the authors sought to develop a lightweight neural facial
depth model capable of real-time facial depth prediction
while maintaining prediction accuracy equal to or better than
current SoA networks.

1) Encoder Model
The proposed decoder for reconstructing facial depth residu-
als is coupled to the network’s pre-trained encoder ResNet18
[33] and the main feature of the network have been described
in Fig. 1 and Fig. 2. In the encoder process, the model
consists of 22 layers including eight parts: convolutional
layers 1-5, a global average pooling (AP) layer, and a fully
connected (FC) layer. The initial features are corrected in
the channel dimension to increase the model’s intensity of
learning features, enabling the model to automatically pick
up on the key characteristics of various channels. The global
average pooling layer is then used in place of the fully-
connected layers to decrease model parameters, speed up
model convergence and enhance the accuracy of the model.

2) Decoder Model
The presented model’s encoder takes the input image to block
features of various sizes. A lightweight and efficient decoder

is utilized to recover the bottleneck features in order to extract
the estimated facial depth map [6]. The better performance
is demonstrated experimentally to be due to the training pro-
cess. Additionally, the model achieves higher performance by
utilizing much fewer convolutional and bilinear upsampling
layers in the decoder. To begin, convolution is employed to
lower the channel dimension of the bottleneck feature, hence
avoiding the complexity of the algorithm. Following that, a
series of bilinear upsampling layers are utilized to enhance
the size of the features. Lastly, two convolution layers and a
sigmoid function are used to the output to estimate the facial
depth map. Additionally, the depth map is scaled by the value
of the maximum depth to give the depth in meters. A skip
connection is introduced to the proposed fusion module in
order to make better use of the precise details of the local
structures.

B. LOSS FUNCTION
The objective of the facial depth estimation problem is to de-
sign a function that accurately predicts the depth of an input
image. (L silog) seems to be the most frequently used and the
best choice loss function in the training process because it
is more useful for reducing errors in facial depth estimation.
The network’s learnable parameters are optimized focusing
on the loss function, which implements correctly scaling the
loss function’s range to enhance convergence and training
output results while attempting to put a stronger focus on
lamda-based error variance reduction, resulting in a Silog
loss function. [35](Lee, Han, Ko and Suh, 2019b) (L silog) is
defined:

Lsi (yi, y
∗
i ) =

1

n

n∑

i

(log (yi)− log (y∗i ))
2

− λ̂

n2

(
n∑

i

log (yi)− log (y∗i )

)2 (1)

where λ̂ is the balancing factor, and n is the pixel count.
Through a rewrite of the equation. 1:

Lsilog (yi, y
∗
i ) =

1
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(log (yi)− log (y∗i ))
2 −

(
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n
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i

log (yi)− log (y∗i )

)2

+

(1− λ̂)

(
1̂

n

n∑

i

log (yi)− log (y∗i )

)2
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It’s a sum of the variance and a balanced square average of
the error in log space. As a result, founding a larger λ̂ imposes
a greater focus on limiting error variance, Also, it is found
that adjusting the loss function’s range properly increases
convergence and the overall training result. In log space, the
combined Silog loss is defined as:

Lsilog (yi, y
∗
i ) = α

√
Lsilog (yi, y∗i ) (3)
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FIGURE 1. The proposed approach for monocular facial depth estimation’s architectural shape. The encoder has the Resnet18 network, and the proposed decoder
architecture’s primary components along with channel reductions, skip connections and feature fusion modules.

FIGURE 2. The Encoder model’s detailed structure is used in the proposed
method.

IV. EXPERIMENTS
The experimental results are discussed and summarized to
demonstrate the effectiveness of the proposed approach in
comparison to SoA methods. The proposed model is trained
on a synthetic facial depth dataset and then compared to four
real datasets. Numerous comparisons have been conducted,
as well as evaluations of its accuracy and computational
footprint.

The studies show that a network trained on a wide and
diverse set of images, along with a decent training technique,
produces SoA performance in many situations, particularly
for faces. The zero-shot cross-dataset transfer technique is
used to show the method’s effectiveness.

A. IMPLEMENTATION DETAILS
The model for estimating the facial depth is trained with the
PyTorch DL framework. For training and testing, the data
was divided into 0.8 and 0.2 ratios, and the model was evalu-
ated against four publicly available datasets. We employ the
one-cycle learning rate technique with an Adam optimizer
in all of the experiments. The learning rate increased by 0.9
during the first half of the total iterations from 3e-5 to 1e-4
following a poly LR scheduling and then falls by a factor of
0.9 from 1e-4 to 3e-5 in the second half. On a workstation
equipped with NVIDIA 2080ti GPUs, the total number of
epochs is set to 50 with a batch size of 16. There are around
12.06 million trainable parameters in the proposed model.

The Root Mean Square Error (RMSE), the log Root Mean
Square Error (RMSE (log)), the Absolute Relative difference
(AbsRel), the Square Relative error (SqRel), and the Accura-
cies are used to perform the evaluations (Equation (4-10)).
With a 50% probability, the following procedures are uti-
lized for data augmentation: horizontal flips, random bright-
ness(0.2), contrast(0.2), gamma(20), hue(20), saturation(30),
and value(20). We use p = 0.75 for vertical CutDepth with a
probability of 25%.

Fig. 3 depicts the whole experimental implementation
details including training, evaluation, and testing of the pro-
posed model using a synthetic facial depth dataset. First, the
model is trained with a synthetic facial depth dataset and then
evaluated and tested with four real depth datasets (mentioned
in section 4.3) against SoA DL methods. The proposed model
uses a single frame RGB image and corresponding GT depth
image as training data for the convolution layer to extract
features. CNN uses a weight-sharing method that signifi-
cantly reduces the number of parameters, greatly enhancing
the model’s performance.
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FIGURE 3. The implementation details of the suggested neural network
training, evaluation and testing procedure.

B. TRAINING DATASET
The proposed LEDDEPTH model is trained on the synthetic
human facial depth dataset and evaluated with four other
test datasets for rigorous comparison with other SoA models
which includes BTS [35], Densedepth [34], UNet-simple
[36], ResNet-101 [37], EfficientNet-B0 [38], MiDaS [39].
Further details of the training dataset are presented in sub-
section 4.2.1.

1) Synthetic Human Facial Depth dataset [37]
There are a considerable number of high-quality 3D face
models in the Synthetic Human facial depth datasets as well
as 2D RGB and pixel-accurate ground truth depth images.
Character Creator is accustomed to using 100 real-world
head models to create a series of virtual human avatars. The
models’ textures and topologies are adjusted to increase the
number of possible samples. After loading the models into
iClone, 5 distinct facial expressions are incorporated into
the data. Importing the FBX files of the iClone models and
their associated mesh, textures, and animation keyframes into
Blender is the final step in the process.

All Blender models have been rotated in order to get
the proper head position. Thereafter, the FBX models are
imported into Blender and adjusted to the reference frame.
Lights and cameras are used in the environment to mimic the
real-world environment, and their attributes are then altered
accordingly. The camera lens’s near and far clips have been
set to a distance of 0.01 meters and a maximum of 5 meters.
60 degrees of FOV is achieved by adjusting both the sensor’s
resolution and the sensor’s field of view (FOV). The final
effect is attained by configuring the render layer’s RGB and
Z-pass outputs in the compositor. In posture mode, the joints
of the head and shoulders are detected, the head mesh pivots
these bones, and frames are saved to carry out the rotational
movement.

Finally, all frames are rendered in order to produce the
RGB and depth images needed for final rendering. With the
help of the Python code available in the Blender application,
the head position (yaw, pitch, and roll) has been created. A

640x480 pixel RGB image is created and saved in jpg format
for each frame. while the depth data is saved in (.exr format).
A text file (.txt) containing each frame’s head positions is
also stored. The Cycle Rendering Engine, integrated with
Blender, renders each 2D image in about 26.3 seconds on
average. Using Cycle Rendering Engines is used to track the
progress of the rendered scenes. There are around 3,500k
frames in the entire collection, and each model receives
about 3.5k 2D images. The following link has detailed infor-
mation about the dataset. (https://dx.doi.org/10.21227/ath9-
br59) booktabs

C. TEST DATASETS
There are numerous datasets available for estimating facial
depth, each with a unique type and depth range. Four datasets
are chosen for the diversity and quality of their source data for
facial depth map predictions. Those include the following:
Pandora [40], Eurecom Kinect Face [41], Biwi Kinect Head
Pose [41] and Synthetic Human Facial Depth [37] test dataset
for testing and evaluations purposes.

1) Pandora
The Pandora dataset is utilized for a variety of purposes,
including estimating head pose, head centre localisation,
depth estimation, and shoulders pose estimation. It includes
250K full-resolution RGB images and their corresponding
depth images.

2) Eurecom Kinect Face
The dataset contains multi-model facial images of 52 indi-
viduals, 38 of who are male and 14 of whom are female, col-
lected with the Kinect sensor. It includes nine distinct states
of facial expression, occlusion, and illumination, including
grin, eye obstruction, mouth, light and sheet, moderate, open
mouth, and left-right profiling.

3) Biwi Kinect Head Pose
Contains 15k images of 20 subjects taken with the Kinect
sensor as the subjects’ heads were freely moved around
across each side. Each frame contains RGB and depth im-
ages, as well as the head’s 3D position and rotation angles.

D. EVALUATION METRICS
To interpret the data, a widely known assessment procedure
with several evaluation indicators is being used: The root
mean square error (RMSE), the log root mean square error
(RMSE (log)), the absolute relative difference (AbsRel), the
square relative error (SqRel), the accuracies, the normalized
root mean square error (NRMSE), and the R-squared. All of
those are as follows:

RMSE=

√√√√ 1

n

n∑

i=n

∥yi−y∗i ∥
2 (4)

RMSELog=
1

n

n∑

i=n

∥log(yi)− log(y∗i )∥2 (5)
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TABLE 1. Comparison of various depth maps methods with the proposed method LEDDEPTH, BTS [35], Densedepth [34], UNet-simple [36], ResNet-101 [37],
EfficientNet-B0 [38], MiDaS [39], DPT [15], LapDepth-Face [8], FaceDepth [37] on synthetic human facial depth dataset [37]

No. Methods AbsRel SqRel RMSE RMSElog δ1 < 1.25 δ2 < 1.252 δ3 < 1.253

1. DenseDepth-161 0.0296 0.0096 0.0373 0.0129 0.9890 0.9920 0.9981
2. ResNet-101 0.0123 0.0210 0.0306 0.0089 0.9938 0.9960 0.9980
3. BTS 0.0165 0.0092 0.0206 0.0102 0.9830 0.9943 0.9956
4. EfficientNet-B0 0.0145 0.0280 0.0360 0.0154 0.9912 0.9934 0.9978
5. UNet-simple 0.0103 0.0207 0.0281 0.0089 0.9960 0.9956 0.9987
6. MiDaS 0.0146 0.0204 0.0356 0.0323 0.9665 0.9902 0.9983
7. DPT 0.0156 0.0106 0.0394 0.0184 0.9567 0.9646 0.9943
8. LapDepth-Face 0.0145 0.0041 0.0204 0.3614 0.9545 0.9857 0.9958
9. FaceDepth 0.0176 0.0030 0.0205 0.1252 0.9642 0.9849 0.9951
10. LEDDEPTH 0.0113 0.0025 0.0203 0.1172 0.9888 0.9961 0.9967

AbsRel=
1

n

n∑

i=n

∥yi−y∗i ∥
y∗i

(6)

SqRel=
1

n

n∑

i=n

∥yi−y∗i ∥2
y∗i

(7)

Accuracies = % of yimax
( yi
y∗i

,
y∗i
yi

)
= δ < thr (8)

NRMSE =
RMSE −RMSEmin

RMSEmax −RMSEmin
(9)

R2 = 1−
∑n

m=1

(
yi−y∗i

)2
∑n

i=1

(
yi−ȳ∗i

)2 (10)

Where y∗i is the GT, ȳ∗i is the mean of the GT and yi is the
predicted depth of the pixel i, n represents the overall number
of pixels, while thr denotes the accuracy threshold.

V. RESULTS AND COMPARISONS TO PRIOR WORK
The results of the proposed approach are shown in Fig. 4
and Table 1. The performance of the proposed facial depth
estimation model is evaluated with the SoA methods BTS
[35]; MiDaS [39]; DPT [15]; LapDepth-Face [8] on the syn-
thetic human facial dataset [37]. The network achieves SoA
performances in the evaluation metrics SqRel, RMSE and δ2.
For depth map estimation RMSE is considered the most focal
metric for loss estimation thus measuring the performance
evaluation of the depth architectures. As can be observed
from Table 1, the proposed architecture outperforms other
SoA Depth models having the lowest RMSE value.

In the evaluated matrices in Table 1, it can also be observed
that the Unet-simple model performs better or is comparable
to the suggested model in AbsRel, RMSElog, and δ1. The
main reason for these results is that the model was trained
across the entire image first before being applied to the
Facial crop (FC) for evaluating errors in the face region.
In other words, the depth has been masked within a 50-
centimetre range from the camera so that the results can only
be evaluated on the facial region of the images.

The results, as shown in Fig. 5, display high-level detail
and constancy, showing that the suggested method performs
better at estimating facial depth maps. Note: due to the fact

that the MiDaS network was built to predict inverse depth,
the predicted images differ from those of other SoA. Fig.
7 demonstrate the proposed model’s qualitative results on
real data and synthetic data compared to SoA techniques.
The model outperforms the cutting-edge techniques and sets
a new SoA for facial depth estimation. According to the
comparison study Table 1 and Fig. 5, the proposed LedDepth
method performed best in terms of accuracy and depth range
when compared to other SoA approaches. On a synthetic
human facial dataset, the network achieved 0.0203 RMSE
and 0.9986 threshold accuracy. To the SoA approaches, the
suggested lightweight network structure has less parameters
and complexity and can be seen from Table 2 and Fig. 6,
which provides a full comparative analysis in terms of the
number of parameters and computational complexity.

A. QUALITATIVE RESULT
In this subsection, the authors compare qualitative results
from the proposed model to SoA approaches. A compre-
hensive analysis of the proposed method to the four best-
performing methods is shown in Fig. 5 and Fig. 7. The
suggested model results show better information and consis-
tency, as shown in Fig. 7, proving that the network works
better at facial depth estimation.

The model outperformed SoA quantitatively and qualita-
tively in testing using four datasets and formed a new SoA
for facial depth maps. Table 1, Table 2, and Fig. 7 illustrate
some of the results.

According to the analyses, the presented scheme signifi-
cantly outperforms other SoA methods on the basis of con-
sistency and depth range. On the synthetic human facial data,
the neural framework obtained a SqRel of 0.0025, RMSE of
0.0203 and a threshold accuracy of 0.9961 as can be seen in
Table 1 (row 10).

Additionally, as demonstrated in Table 2 (row 10), the
suggested method has a much smaller memory footprint and
higher computational efficiency when compared to previous
SoA methods. At 25.32 G-MACs per image, this technique
enables real-time prediction of single image face depth. Al-
though the LedDepth model has fewer parameters than other
SoA, the design principle and simple encoder-decoder stages
make it computationally less expensive and can be used for
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FIGURE 4. The suggested method was evaluated qualitatively using a sample of the synthetic human facial data that was not utilized for training or validation. The
first row consists of input RGB images, the second row consists of corresponding predicted depth images, and lastly their rendered point clouds from a novel
viewpoint. Point clouds rendered via Open3D [43]

.

FIGURE 5. Qualitative results of facial monocular depth estimation algorithms on the synthetic human facial dataset.

consumer devices.

The following Table 2 summarizes the characteristics of
the models for predicting facial depth maps of a single
image frame that have been studied and compared (ED:
Encoder-Decoder; F: Trained on the synthetic human facial
dataset). According to the test results, DPT [15]; MiDaS [39];
LapDepth-Face [8]; BTS [35] and FaceDepth [37] techniques
can build high-resolution facial depth maps with comparable
accuracy but are computationally expensive and require a
large amount of memory. On the other hand, LedDepth sig-
nificantly reduced computation time and memory footprints,
making it suitable for both high-quality and low-cost single-

image facial depth estimation (Table 2 and Fig. 7).

VI. DISCUSSION
This research proposes a neural model for facial depth esti-
mation and compares its performance to that of current SoA
algorithms. Compared to other SoA techniques, the frame-
work proposed has a significantly smaller network size, a
smaller number of parameters, and equal or better computing
complexity (only less than UNet-simple [36]). It can be noted
that when compared to the proposed LEDDEPTH approach,
the FaceDepth method in Table 2 is superior in terms of
computational complexity, however, the qualitative results
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TABLE 2. Properties of the studied methods with the proposed method LEDDEPTH, (ED: Encoder-Decoder; F: Trained on the synthetic human facial dataset);
LR/E: Learning Rate/Epochs; CC: Computational Complexity.

Method Input Type Optimizer Parameters Output LR/E CC (GMac)

BTS [35] 640×480F ED Adam 46.60M 640×480F 0.0001/50 69.23
DenseDepth-169 [34] 640×480F ED Adam 42.60M 320×240F 0.0001/20 66.12
ResNet-101 [37] 640×480F ED Adam 68.00M 640×480F 0.0001/25 101.27
EfficientNet-B0 [38] 640×480F ED Adam 80.40M 640×480F 0.00001/20 113.44
UNet-simple [36] 640×480F UNet Adam 17.27M 640×480F 0.001/20 188.04
FaceDepth [37] 640×480F ED Adam 14.42M 320×240F 0.0001/50 16.41
MiDaS [39] 384×384F CNN Adam 105.00M 384×384F 0.0001/60 104.00
DPT [15] 384×384F Transformer Adam 112.00M 384×384F 0.00001/60 107.00
LapDepth-Face [8] 512×416F ED Adam 73.00M 512×416F 0.00001/50 90.85
LEDDEPTH (Proposed) 640×480F ED Adam 12.06M 640×480F 0.0001/50 25.32

FIGURE 6. The comparison of parameters and their cumulative sum. The
proposed LEDDEPTH model contains much less parameters, as shown by the
cumulative percentage.

and evaluation metrics are superior to the FaceDepth method
in Table 1. In comparison to the existing FaceDepth, the
suggested LEDDEPT performed best in terms of accuracy
and depth range and can improve its performance in different
testing scenes.

The usefulness of the performance is related to the neural
model training strategy, which chooses an appropriately opti-
mal loss function by utilizing a synthetic human facial dataset
with pixel-accurate ground truth depth information.

As seen in Table 1 and Table 2, the suggested model
performs well on the majority of evaluation criteria (Table
1 row 10), which the authors explain to the proposed design
and improved depth-specific training methods. Additionally,
the suggested neural model outperforms recently published
SoA algorithms with fewer parameters (Table 2 bluerow 10).
This indicates that the integration of the encoder and the
suggested simple decoder clearly contributes significantly to
the fast obtaining of accurate facial depth maps. Fig. 7 depicts
the visible results. As illustrated in the figure, the model ac-
curately estimates facial depth values for the sample images
and is more robust to changing illumination circumstances
than other methods. In terms of generalization, DPT and
MiDaS performed well in some test images for long-range
recognition, however, the proposed LEDDEPTH technique
performed better for short-range attribution, particularly for

facial regions.
We perform all tests and evaluations of the SoA on a set

of datasets that were never seen during training for both real
imaged and synthetic datasets and the results are evaluated
using Equations (4-10).

Fig. 8 shows a visual representation of the three different
loss function comparisons of the proposed model with two
SoA depth networks (BTS and LapDepthFace) It is obvious
that the suggested method achieves good performance by
minimizing errors over a large number of test datasets when
compared to other SoA algorithms. By selecting an appropri-
ate loss function and a pixel-accurate synthetic facial depth
dataset, the algorithm is able to decrease error while having
a small number of parameters and equal or less computation
complexity.

Furthermore, The proposed model is converted to ONNX
and it can be used for deployment in embedded systems
and in Edge-AI applications. ONNX is a freely available
format for encoding deep neural networks. With ONNX,
Application developers can more quickly integrate models
between SoA packages and determine the ideal mix for
their needs. A community of contributors contributes to
the development and support of ONNX. Lastly, the release
of the code utilized in this study and the publicly avail-
able training dataset, as well as the corresponding ONNX
transformations, will aid future research in fields like as
3D facial reconstruction, perception, and characterization.
https://github.com/khan9048/Facial_Depth_Maps_from_Single
_Images

VII. CHALLENGES AND TRENDS
Monocular depth estimation based on DL has been widely
researched and advanced during the previous decades. Nev-
ertheless, much more work is required to overcome the
limitations, particularly in the area of facial depth estimation.

To enhance the accuracy of depth maps, the majority of
studies have concentrated on the layers of neural models,
which increases the capacity of the space model and memory
consumption. In multi-task neural depth methods for monoc-
ular facial depth maps usually use numerous sub-networks to
execute distinct sub-tasks, which also increases computations
and memory requirements. Typically, most of the monocular
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FIGURE 7. A qualitative analysis of our technique in relation to the four SoA methods applied to different datasets (From below:- Synthetic human facial dataset
[37]; Pandora dataset [40]; Eurecom Kinect Face dataset [41]; Biwi Kinect Head Pose dataset [42] and an image taken from iPhone 13 pro.

FIGURE 8. The three different evaluations errors metrics: AbsRel, SqRel and
RMSE comparison between the proposed network with two SoA networks.

facial depth estimation networks are encoder-decoders with
complex structures. After numerous levels of information
computation, the depth characteristics are significantly de-
graded, leading to decreased estimated depth maps that do

not fulfil the practical requirements of the application.
This section covers the major issues and discusses poten-

tial directions for monocular facial depth estimation research
that can help the researchers in further developments.

A. HIGH-RESOLUTION DEPTH MAP OUTPUT
Facial depth estimation is a critical phase in the evolution of
real-world applications such as augmented reality (AR) and
virtual reality (VR), and it imposes a great deal of importance
on the depth maps accuracies. Nonetheless, the quality of the
anticipated facial depth is often limited in most contempo-
rary algorithms in order to maximize computational effec-
tiveness. At the current, research studies are enhancing the
super-resolution of depth images using colour image super-
resolution frameworks. However, how to properly produce a
high-resolution facial depth map remains an open question.

B. REAL-TIME PERFORMANCE
The fundamental module of SLAM is image depth maps,
which are tightly coupled with industrial applications such
as autonomous driving. As a result, practical applications
required pixel-accurate depth map performance. However,
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in order to achieve high-quality depth maps, researchers
frequently design deeper networks with more parameters and
requirements, which requires more computation time and
thus does not meet the real-time requirements of real-time
applications. Thus, a future research area will be to determine
how to use lightweight neural depth models for real-time
depth prediction while maintaining prediction accuracy.

C. INTEGRATION AND OPTIMIZATION OF THE
NETWORK FRAMEWORK
While it is possible to combine or build a network that
can learn both facial depth and segmentation in DL facial
depth estimation research, this remains a distinct research
field. To learn several tasks, such as face depth maps or
segmentation or depth features or optical flow prediction and
visual odometry simultaneously, sub-models are typically
used in an unsupervised manner. These models, however, are
not effectively integrated, which results in a high number of
parameters, which increases the memory needs and compu-
tational complexity of the system. The neural model needs
to be better integrated, and this is a research topic worth
pursuing in the future.

With a DL model, we may acquire several features at once,
such as semantics, optical flow features as well as depth
information. Different aspects are obtained and matched si-
multaneously during the encoding stage; they are decoded
independently to meet the requirements of the applications
during the decoding step.

D. DYNAMIC OBJECTS AND OCCLUSION PROBLEMS
In order to create realistic scenes, developers must consider
a range of aspects, such as a large group of moving parts,
occlusions, shifting lighting, and varying weather. Most ex-
isting facial depth estimation algorithms, on the other hand,
simply take into account ideal circumstances. Researchers
have made progress in recent years in dealing with moving
objects and occlusion environments, but the challenge of
accurately estimating the facial depth of complicated envi-
ronments to satisfy real-world applications remains a major
challenge.

E. DATASETS CONSTRUCTION
The consistency and generalization of a learning algorithm
are heavily influenced by the quality of the datasets used to
train it. Facial depth maps can be improved if more data, with
greater quality, and more scene types are available. These
available datasets for facial depth maps are limited, and the
production of a new dataset is time-consuming and costly.
Currently, some researchers are using computers to make a
larger number of images for depth maps, but the quality is
unstable. In the future, researchers will be looking at how to
build a dataset for a monocular face depth map that is suitable
for DL.

For instance, synthetic human facial data generation can
give better ground truth depth information than can be col-
lected in practice, so high-quality training data can be utilized

to produce better single image depth algorithms. Adding real-
data samples, enhancing the hyperrealism of the synthetic
datasets, and including a larger range of face characteristics,
emotions, and scene illumination could allow for further
progress beyond SoA.

VIII. CONCLUSION
The main contribution of this paper is a new lightweight
neural facial depth estimation network based on a single
image frame depth map. While this network is compatible
with previous SoA facial depth estimation techniques, it is
substantially smaller in size and computation cost, making
it suited for embedded devices and edge-AI applications.
When evaluated over four publicly available datasets, this
model outperforms SoA on most of the primary measures
including RMSE, SqRel and δ2. Furthermore, comprehensive
experiments show the proposed network’s usefulness and
generalizability.

A crucial aspect of this research is that training neural fa-
cial depth networks on synthetic human facial data produces
higher-quality depth maps than is possible through the avail-
able realistic datasets. Using lightweight neural single-image
depth predictions, high-quality training data may be used
to generate accurate facial depth maps. More optimizations
beyond SoA should be possible through the incorporation of
large and diverse facial depth datasets. Obviously, synthetic
facial data will lack the richness of real image datasets of
skin features. However, considering the numerous benefits of
training a neural depth model with synthetic data, a critical
research question is whether it is possible to accomplish
comparable results that are answered to SoA facial depth
estimation models trained on real-world data. It is possible
that future research can include investigation and prosecution
into high-resolution facial depth maps, system integration
and optimization, high-resolution facial depth map efficiency,
data augmentation methods and analyses with a wider range
of sample datasets. It would be interesting to investigate a
combined multi-tasks network to specifically address down-
stream applications including image classification, depth
maps prediction and semantic segmentation. Another poten-
tial future study dimension is multi-frame facial depth, which
leverages a succession of image frames and may be paired
with some motion estimation or disparity information.
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ABSTRACT Accurate head pose estimation from 2D image data is an essential component of applications
such as driver monitoring systems, virtual reality technology, and human-computer interaction. It enables
a better determination of user engagement and attentiveness. The most accurate head pose estimators
are based on Deep Neural Networks that are trained with the supervised approach and rely primarily
on the accuracy of training data. The acquisition of real head pose data with a wide variation of yaw,
pitch and roll is a challenging task. Publicly available head pose datasets have limitations with respect to
size, resolution, annotation accuracy and diversity. In this work, a methodology is proposed to generate
pixel-perfect synthetic 2D headshot images rendered from high-quality 3D synthetic facial models with
accurate head pose annotations. A diverse range of variations in age, race, and gender are also provided. The
resulting dataset includes more than 300k pairs of RGB images with corresponding head pose annotations.
A wide range of variations in pose, illumination and background are included. The dataset is evaluated
by training a state-of-the-art head pose estimation model and testing against the popular evaluation-dataset
Biwi. The results show that training with purely synthetic data generated using the proposed methodology
achieves close to state-of-the-art results on head pose estimation which are originally trained on real human
facial datasets. As there is a domain gap between the synthetic images and real-world images in the feature
space, initial experimental results fall short of the current state-of-the-art. To reduce the domain gap, a semi-
supervised visual domain adaptation approach is proposed, which simultaneously trains with the labelled
synthetic data and the unlabeled real data. When domain adaptation is applied, a significant improvement in
model performance is achieved. Additionally, by applying a data fusion-based transfer learning approach,
better results are achieved than previously published work on this topic.

INDEX TERMS Head pose estimation, synthetic face, face dataset, visual domain adaptation.

I. INTRODUCTION
Head Pose Estimation (HPE) continues to be an active area of
research in the computer vision (CV) domain because of its
diverse application across a range of CV technologies. Highly
accurate HPE is a key element for many next-generation
consumer technologies which includes augmented and virtual
reality (AR/VR) based entertainment systems, human-
computer interaction technologies that engage human atten-
tiveness and behaviour analysis, immersive audio systems

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongqiang Zhao .

and driver monitoring systems (DMS). In human behaviour
analysis, HPE is used for estimating the human gaze and
refining face analysis and authentication to infer the inten-
tions, feelings, and desires of a user to personalize the asso-
ciated system or technology to meet their needs. For DMS,
HPE is important to monitor the driver’s attention level. For
AR/VR applications, HPE is used to predict the accurate field
of view (FOV). HPE information is also useful in producing
better face alignment for pose-robust facial authentication.

Head pose can be measured by the reading of sen-
sors embedded in head-mounted-devices which are costly
and awkward for users. Therefore, consumer-focused
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technologies have increasingly adopted computer vision-
based HPE that can estimate head pose with high accu-
racy and in real-time. Compared to wearable sensor-based
methods, computer vision-based HPE is technically more
challenging as it must handle variable factors such as facial
expressions, occlusions, illumination conditions, and lens
distortion in addition to the broad diversity of human facial
appearance.

Computer-vision based HPE transforms the captured
2D facial images into directional data in three-dimensional
space with three Euler angles: θx (Pitch), θy(Yaw) and
θz(Roll). Figure 1 [1] shows the head model as a rotated
object across the three different axes with the orientation of
yaw, pitch and roll. Normally, the HPE algorithms follow two
different approaches: geometry-based methods and learning-
based methods. Geometry based methods take the key facial
landmarks into consideration and estimate the pose through
geometrical calculation. On the other hand, learning-based
methods aim to extract features from the queried face images
and predict the pose with the support of face datasets and their
corresponding ground truth pose angles.

FIGURE 1. Head orientation with Pitch, Yaw and Roll [1].

These learning-based methods can be a regression or clas-
sification task. Regression approaches predict the head pose
by fitting a regression model on the training data and estimate
the yaw, pitch and roll in continuous angles, making these
models comparatively complex. On the other hand, classifi-
cation approaches mostly rely on putting the head pose into
a discrete bin. These methods are comparatively robust to
large pose variations but have a sparse solution space, e.g.
10 degrees intervals. for each bin.

Head pose estimation from a single image makes the
problem more challenging. It requires learning the mapping
between 2D and 3D spaces. Previously published works use
different modalities like depth information [2]–[5], inertial
measurement unit (IMU) [6] or video sequences [7] as a cue
to map the features extracted from the 2D image to the 3D
space. Thesemethods requiremore computation and different
sensors which are not always available. Therefore, because
of its low computational cost and easy setup, HPE from a

single image makes is a popular area in HPE research. Most
of these single image-based HPEmethods ([8]–[10]) leverage
the use of Convolution Neural Network (CNN) to extract
features from the 2D images and use those high-level features
to model 3D head pose regressors.

Though these DeepNeural Network (DNN) basedmethods
have given good results, a major drawback of such supervised
models is the requirement for accurately labelled data. Par-
ticularly for HPE tasks, it is challenging to obtain accurately
annotated head pose data with variations of appearances like
race, age, gender and other environmental factors like noise,
illumination and occlusion.

Additionally, the acquisition of new data from human
subjects now falls under different data protection and
privacy regulations such as the General Data Protec-
tion Regulation (GDPR) and is subject to ethical review
and increasingly stringent guidelines. Furthermore, some
data acquisition measurements such as depth sensing and
IMU motion are prone to sensor noise. Manually labelled
key point approaches are alsomostly giving inaccurate results
because of unknown 3D models and camera parameters.

The head-pose datasets available captured from real
subjects like Biwi Kinect Head Pose Dataset [2] and
Pointing’04 [11] only comprise around 15k and 4k data sam-
ples from 20 and 14 subjects respectively. Among these two
Biwi is most commonly used for benchmarking. But due to
the limited size, neither of these datasets are suitable to train
DNN based HPE models.

Generating synthetic facial images through Computer
Graphics (CG) Software provides an inexpensive and suffi-
cient amount of accurately labelled data with a comparatively
low effort and complexity as the head models, camera param-
eters and positions, scene illuminations and other constraints
can be controlled within the 3D environment.

Though this synthetic data can be perfectly annotated,
training solely with the synthetic data can lead to outcomes
that don’t match the current state-of-the-art. It is hypoth-
esized that this is due to the mismatch between the fea-
ture distribution of the synthetic (source) domain and the
real-world images (target domain). This is known as the
domain shift [12]. To address these challenges, there have
been many recent studies on visual domain adaptation (DA)
which is a particular variant of transfer learning. DA utilises
the labelled data from a source domain and the unlabeled
data from a target domain and learns how to reduce the gap
between the two domains. In this work, a similar approach is
used to learn the domain invariant features from the synthetic
and real data and thus improve the model performance.

The main contributions of this work are as follows:
• A methodology to build a synthetic head pose dataset
with the help of a commercially available 3D asset cre-
ation tool, iClone [13] and an open-source 3D computer
graphics software, Blender [14].

• Using the proposedmethodology, we propose a new syn-
thetic head pose dataset with the corresponding ground
truth head pose.
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• Experimental results show that training a state-of-the-art
HPE model solely with the new proposed dataset gives
near state-of-the-art HPE result. Also, applying data-
fusion-based transfer learning and fine-tuning the model
with only 1k of real data is able to produce a better result
than the previously published work.

• Finally, it is shown that by applying the visual adversar-
ial domain adaptation technique and training the model
with the labeled synthetic data and the unlabeled real
data, it is able to learn domain invariant features and
produce better results than training only with synthetic
data.

The paper is structured in the following way – Section II
reviews the recent work on HPE and visual DA along
with the descriptions of the datasets available for the HPE
task. Section III provides the foundation methods of head
pose measurement in a 3D environment. Section IV and V
describes the methodology of the synthetic data genera-
tion and dataset Details respectively. Section VI introduces
the theory behind the Synthetic to Real Domain Adapta-
tion. Section VII presents the model description and their
implementation details along with the training strategy and
experimental results. Finally, the paper concludes with a
discussion on the results and conclusion with future work
in section VIII and IX.

II. LITERATURE REVIEW
In this section, firstly, a review of recent research works
and the current state-of-art in HPE methods is provided.
Then, an overview of publicly available head pose datasets
is presented, followed by the recent relevant works in visual
domain adaptation.

A. HEAD POSE ESTIMATION METHODS
1) LEARNING FROM GEOMETRY
Geometry-based methods predict the head pose by geomet-
rical calculation with the help of facial feature points. These
methods take advantage of the geometric distribution of the
facial key points from the 2D image. Initial work by Gee and
Cipolla [15] considered the proportion between five facial
key points and the length of the nose with a fixed value to
calculate the head pose. Similarly, Nikolaidis and Pitas [16]
used the isosceles triangle formed by the mouth and the two
eyes to predict the yaw angle. To predict the yaw angle more
accurately, Narayanan et al. [17] proposed a more generic
geometric model with an ellipsoidal and cylindrical structure
to customize 12 different head models. This only predicts the
Yaw of the head. However, it is very difficult to estimate the
head pose accurately with these fixed geometric models as
the feature keypoint distributions of the human face vary a
lot with race, age, genders like factors.

To overcome these challenges, another set of approaches
have been proposed which aim to estimate the head-pose,
mapping the facial key points from the 2D image to a 3D
facial model. The head pose angles are then calculated from
the elements of the rotation matrix which can be derived from

the projectionmapping between the 2D face image and the 3D
head model. The rotation matrix solution was first proposed
by Fridman et al. [18] to estimate the head pose according
to a 3D facial model and the corresponding 2D facial feature
points directly.

A real-time 3D facial model had been used in previous
work by Martin et al. [5] for the HPE task which introduced
the iterative closest point algorithm (ICP) to find the best
matching pair of the 2D facial image and the 3D head model.
Meyer et al. [4] combined particle swarm optimization and
the ICP algorithm to estimate the head pose. All the above
methods used the depth cue of the facial image. In recent
work, Yuan et al. [19] proposed a 3D morphing method with
spherical parameterization which will deform an existing 3D
facial model with the help of four non-coplanar 2D facial
feature point along with all the three directions of yaw, pitch
and roll.

2) LEARNING FROM FACIAL FEATURES
Learning-based methods are trained to find the relation-
ship between the query images represented by the extracted
appearance feature distributions alongwith the head positions
and rotations. These methods are supported by a huge face
training dataset annotated with the corresponding yaw, pitch
and roll and uniformly distributed along with these label
spaces.

These learning-based methods are mathematically formu-
lated as a regression or classification problem to estimate
the head pose from the features learnt from the 2D images.
One of the initial works presented by Murphy-Chutorian and
Trivedi [20] uses support vector regression and Localized
Gradient Orientation histograms to predict the head orien-
tation in a driver monitoring system. Ba and Odobez [21]
improved the previous head tracking methods with Bayesian
formulation by introducing a silhouette likelihood term with
particle filtering.

A random forest model was used by Fanelli et al. [2] to
estimate the head pose by learning the 2D features from the
depth images. In this work, the leaf nodes with high training
variance are filtered out. Tan et al. [22] extend the approach
incorporating the 3D features and frame-by-frame tempo-
ral tracking through regression forest. The random forest-
based method was further combined with Hough voting by
Liang et al. [23] which varies the leaf weights with L0 regu-
larization and prune the unreliable leaf nodes of the decision
tree. Instead of segmenting the whole head, Riegler et al. [24]
used a classifier to segment image patches into foreground
and background and regression to cast vote in Hough space
for the foreground patches. The approach is similar to Hough
Forest but the RandomForest part was replacedwith a Convo-
lution Neural Network (CNN) and called it a HoughNetwork.

A transfer learning approach was used by
Rajagopal et al. [25] which deals with the HPE as a clas-
sification problem from multi-view surveillance images with
a small amount of target training data. Papazov et al. [26]
proposed a novel approach to extract a triangular surface
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patch (TSP) descriptor from a depth map and matched it with
the pre-computed synthetic head models with a fast-nearest
neighbour loop. The computed TSP is further used to estimate
the 3D head pose and facial landmarks. A video sequence of
synthetic facial images was used by Gu et al. [7] to learn the
head pose and facial landmarks via temporal shift, though the
video sequences require recurrent neural models with a high
computational cost.

The above-mentioned methods mostly deal with the HPE
as a classification task and used different modalities like
facial depth as additional cues which are difficult to acquire.
Therefore, deep learning-based HPE from a single facial
RGB image without a facial landmark has gained inter-
est among the research community in recent years. The
initial work on this was proposed by Ahn et al. [27]
which used CNN based models to regress the head pose
information. Patacchiola and Cangelosi [28] examined adap-
tive gradient methods with different CNN architectures
for HPE tasks. A ResNet based model was used by
Chang et al. [29] to predict the head pose and facial key
points jointly. To predict the head pose more accurately
Ruiz et al. [8] used the ResNet50 backbone architecture
and a multi-loss CNN (HopeNet) for feature extraction and
combined loss stream of regression and binned pose clas-
sification. A lightweight structure FSA-Net for head pose
feature regression, using the stage-wise regression model
SSR-Net [30] was proposed by Yang et al. [9].

Few of the above works use augmented synthetic facial
images with the ground truth head pose to train their models.
Ruiz et al. [8] and Yang et al. [9] use the synthetically
expanded dataset 300W-LP, which is created by augmenting
real images. Gu et al. [7] introduced a synthetically created
dataset SynHead, which has been rendered through a CG
tool from a very high-quality 3D scan obtained from [31].
Wang et al. [32] also introduced a synthetically rendered head
pose dataset from high-quality 3D scans and propose a fine to
a coarse deep neural network to predict accurate head pose.
However, the dataset is not publicly available for use. They
use a transfer learning approach and train the network with a
mix of synthetic data and real data which improves the model
accuracy with better generalization. The model was trained
with approximately 260k synthetic images from their dataset
and 15k real images from the Biwi dataset.

B. AVAILABLE HEAD POSE DATASETS
There are few datasets available that have been used for
monocular image-based HPE tasks.

1) 300W-LP & AFLW2000 3D
300W and AFLW2000 3D [33] databases were created and
released at the same time. uses multiple alignment real face
databases with 68 facial key points including LFPW, AFW,
IBUG, HELEN and XM2VTS. These images are collected
randomly from the web so there is no data available in terms
of identity or the total number of subjects. It uses 3D Dense
Face Alignment (3DDFA) in which a dense 3D Face model

is fitted to the images through a CNN and further synthesise
robust profile views through a face profiling algorithm that
align faces in large poses up to 90 degrees of yaw. The 300W
database contains around 61225 samples with large poses,
which is further expanded to 122450 samples by flipping.
The combined dataset is called 300W across Large Pose
(300W-LP). The AFLW2000-3D contains 2000 images in
the wild.

2) AFLW
AFLW [34] contains 21080 real faces in-the-wild col-
lected from the web with wide pose variations (yaw from
−90 degree to +90 degree). The head poses are extracted
with the help of the POSIT algorithm [35] and have been used
for coarse HPE. But as the images are annotated with up to
21 visible landmarks the face alignments have errors and the
model fitting accuracy is low [33].

3) BIWI
The Biwi Kinect Head Pose Dataset [2] contains approxi-
mately 15.7k images taken from 24 sequences of 20 subjects
(8 women and 12 men, 4 people wearing glasses). The data
was captured by a Kinect 1 depth sensor and the head ori-
entation is labelled by a state-of-the-art template-based head
tracker, where a generic template was deformed to match the
specific subjects and the 3D head location and rotations were
measured. Each sample has a resolution of 640× 480 pixels
with the faces containing 90×110 pixel on average. The head
pose ranges from ±75◦ yaw, ±60◦ pitch and ±50◦ roll.

4) POINTING’04
Pointing’04 [11] has captured 2.7k images from 14 subjects.
The head pose of the captured subjects is only represented
by the two angles yaw and pitch and both have fixed interval
of 15 degrees with 93 discrete poses. During the data acqui-
sition, the subjects were asked to stare at different markers
fixed in the room, which results in an error in the ground truth
head pose values for many samples. The pre-trained model
of the current state-of-the-art HPE FSA-Net gives a Mean
Absolute Error [MAE] of around 10 degrees when tested on
this dataset.

5) BOSPHORUS
The Bosphorus [36] dataset is captured by using a 3D
structured light system that contains 4666 images with
13 systematic head poses. To give the Yaw rotation subjects
were asked to align themselves in a rotating chair, while for
the pitch, subjects were required to look at the marks on the
wall. Because of the data accusation method, the ground truth
pose angles are prone to error. The dataset contains seven
yaw angles, four-pitch and two cross rotations. Apart from
the pose annotations it also has a variety of facial expressions
and occlusions like hand, hair and eyeglasses.

6) SASE
The SASE dataset [37] has captured different head poses
from 50 subjects (32 males and 18 females) via the Kinect 2.
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TABLE 1. A comparison of different head pose datasets.

Altogether the dataset consists of around 30k images with
600+ frames per subject. The head orientation has been
obtained by calculating the positions of five markers stuck
on each participant’s face and deriving the rotation matrix
between the initial and current vectors.

7) SynHead
NVIDIA SynHead [7] contains 510960 frames of 70 head
motion tracker rendered using 10 individual high-quality 3D
scan head models from [31]. It contains head motion tracks of
all 24 Biwi sequences, though it was rendered with a different
sequence of the rotation from that was followed by Biwi.

A comparison of the different features of these databases
is shown in Table 1. Out of these datasets, because of their
limitations of size, only the 300W-LP dataset is suitable
for DNN training. Even though the SynHead dataset has a
large number of synthetic head pose frames, it only contains
10 individual subjects from high-quality 3D scans, which
make it less diverse and expensive to acquire. On the contrary,
the dataset produced in this work has more than 300k frames
from 100 individual models.

C. VISUAL DOMAIN ADAPTATION
Visual domain adaptation (DA) tries to learn the domain
invariant features when there is a gap between the feature
distribution of the source data on which the network is being
trained and the target data on which the network is to be
evaluated. It tries to reduce the gap between these two domain
distributions. Almost all of the previous work on DA has been

proposed on classification tasks where the data distribution
has shared label spaces, in other words, the source and the
target data have a similar set of class labels. However, for
regression problems, this scenario is not valid as it has a
continuous label distribution.

The earliest andmost prominent work onDAwas proposed
by Ganin and Lempitsky [38] with the domain adversar-
ial neural network (DANN) which assumes identical labels
spaces where for every sample of the source data there exists
a target data with the same label class. However, in the real
world, this assumption does not stand as only a small amount
of target domain data exists. Therefore, while training the
DANN in such a scenario both source and target labels are
aligned with each other but as the target label space is not
matched with the source labels it causes negative transfer.
To solve this issue Cao et al. [39] introduced partial adver-
sarial domain adaptation (PADA) which tries to reduce the
negative transfer due to amismatch between source and target
domain labels by downweighing the source class data which
has a low probability of existence in the target data.

There are many subsequent works [40], [41] that refine
PADA by eliminating the source samples which are not
present in target data through different weighting schemes.
But all these approaches work on classification tasks where
they consider partially shared label spaces. For HPE the
label space is a continuous distribution, so these pro-
posed methods cannot be applied directly to the HPE prob-
lem. The only work that deals with domain adaptation on
the regression task, specifically on HPE, is proposed by
Kuhnke and Ostermann [42], which reduces the negative
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transfer from the source outliers through generating source
sampler weights during training and propose Partial Adver-
sarial Domain Adaptation for Continuous label spaces
(PADACO). This is the only work that trains only on synthetic
data rendered from a CG tool and tests on real data. In this
article, a similar but relatively straightforward sampling strat-
egy has been used to obtain data samples from the source
domain thus reducing negative transfer during adversarial
training.

III. HEAD POSE REPRESENTATION WITH 3D GEOMETRY
In this section, the 3D representation of the head pose is
discussed. As the head is rotated along with the X, Y and
Z axis, the head pose can be represented with the correspond-
ing Euler angles θx(Pitch), θy(Yaw) and θz(Roll) as shown
in figure 1.

When a point at (x, y, z) in 3D world coordinates is rotated
around the X-axis with an angle of θx the new co-ordinate of
the point will be –

(xxyxzx) = Rx · (xyz)T (1)

where

Rx =


1 0 0 0
0 cosθx −sinθx 0
0 sinθx cosθx 0
0 0 0 1

 (2)

In the same way, if the point rotates around Y and Z axis with
an angle of θy and θz respectively the modified coordinates of
the point will be -

(xyyyzy) = Ry · (x y z)T (3)

and

(xzyzzz) = Rz · (x y z)T (4)

where

Ry =


cosθy 0 sinθy 0
0 1 0 0

−sinθy 0 cosθy 0
0 0 0 1

 (5)

and

Rz =


cosθz −sinθz 0 0
sinθz cosθz 0 0
0 0 1 0
0 0 0 1

 (6)

So, combining (2, 5, 6) for a rotation of a point along all the
axes, the final coordinates of the point will be –

(xxyzyxyzzxyz)T = RxRyRz · (x y z)T = R · (x y z)T (7)

where,

R =


r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

 (8)

R is known as the rotation matrix and the Euler angles θx , θy
and θz can be calculated as –

θx = tan−1
r32
r33

θy = −tan−1
r31√

r232 + r
2
33

θz = tan−1
r21
r11

(9)

Additionally, the translation of any point in 3D space is
provided by the translation matrix as –

T (dx , dy, dz) =


1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

 (10)

where dx , dy, dz are the displacement of any point along the
x, y, z-axis respectively.

Blender provides the transformation matrix combining the
three rotation and translation matrix as TRxRyRz, so the indi-
vidual Euler rotation of yaw, pitch and roll can be calculated
with equation 9.

IV. DATA GENERATION METHODOLOGY
In this section, the detailed methodology of creating a syn-
thetic dataset is discussed. As outlined in section II-B of the
literature review most of the datasets currently available for
head pose estimation have a very limited amount of ground
truth image and label pairs which makes them unsuitable
for training deep learning models. Also, due to practical
limitations in data acquisition, most of the datasets’ ground
truths are prone to errors, especially in high concatenated-
rotation (combination of yaw, pitch and roll or combination
of any two) angles. Therefore, as an alternative to the real
data, this work presents this methodology using a commer-
cially available 3D asset creation software and an opensource
3D CG tool to generate synthetic facial images along with the
ground truth head pose.

A. 3D SCENE SETUP WITH VIRTUAL HUMAN MODELS
Previous works [7], [32], [42] with synthetic virtual humans
mostly used high-quality 3D scans to generate synthetic data
from 3D human models. But these 3D scans are expensive
and difficult to capture due to different data regulation laws
like GDPR, so there is a very limited number of variations in
the currently available synthetic head pose data. As an alter-
native to generating the virtual human models, this work uses
the low-cost commercially available software iClone 7 and
Character Creator [43]. The Character Creator comes with
a ‘‘Realistic Human 100’’ package consisting of 100 human
models of different age, race, gender, thus reducing the bias of
the dataset. A sample of thesemodels can be found in figure 2.
The iClone tools also provide a feature to add different facial
expressions and the facial morph can also be changed to add
variation in the 3D mesh as shown in figure 3.

As iClone cannot capture ground truth like facial depth,
head pose, camera location, scene illumination all the models
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FIGURE 2. Samples from the 100 Realistic Head Models with variation in
gender, race and age.

FIGURE 3. Applying change in the morph to add variations in the head
models in iClone [45].

need to be exported for further data capture. The models
can be exported in the commonly supported format by any
3D modelling software including alembic, FBX and obj.
In this work, all models are exported from iClone in FBX
format with Physically Based Rendering textures (Metallic,
Diffuse, Roughness, Opacity) to add realism.

These fully riggedmodels in FBX format are then imported
into Blender [14]. Blender is an opensource computer graph-
ics (CG) software with Python integration. To animate the
rigs, keyframes can be added with constraints and shape keys
commonly known as morph targets or blend shapes. Also,
the camera can be added to the scene which comes with
properties like FOV, a camera near and far clip value, sensor
size, depth of field and f-stop value which help to replicate
a real-world camera configuration. It also comes with the
realistic Cycle rendering engine which uses path tracing [44].
Path tracing tracks the path of light and considers refraction,
reflection and absorption to make the rendering realistic. The
full-featured workflow used in Blender is shown in figure 4.
The FBX models exported from iClone contain the fully
rigged armature with the mesh which can be used to add
motions to the head.

FIGURE 4. Workflow and different features of Blender [45].

A sample model is shown in figure 5. To vary the scene
light, different illuminations available in Blender were used
including area, sun, point, and spotlight. To render the ground
truth image, a camera model has been added to the scene in
perspective mode with the Cycle rendering engine selected.
The detailed methodology can be found in [45]. To add varia-
tions to the background, a combination of plain, textured, and
real images have been chosen.

FIGURE 5. Importing the fully rigged FBX models from iClone to
Blender [45].

B. APPLYING HEAD POSE TO 3D HUMAN MODELS
To generate the ground truth data, a sequence of head move-
ments need to be applied to the FBXmodels. As these models
are fully rigged, the neck bone is selected to provide the
rotation to the head mesh. An empty object has been added to
the centre of the two eyeballs which has been chosen as the
centre of the head and the camera optical axis will be normal
to this point to ensure the initial head position. Figure 6 shows
the neck bone and the empty axis object highlighted. The
translation and the rotation of the neck bone have been copied
to the empty object which constraint the empty object to
follow the neck bone.
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FIGURE 6. Neck bone highlighted in cyan on which the head rotation has
been applied and the empty object at the center of the two eyeballs
highlighted in orange.

As the head movement cannot be controlled mathemat-
ically in iClone when the default models are imported in
Blender, the head is not at its zero position (yaw, pitch and
roll at 0◦). To set the initial frame of the head where the yaw,
pitch and roll of the head are zero along with the Blender
world co-ordinate, the main neck bone was rotated in such
a way that the rotation of the empty object in blender local
co-ordinate becomes zero along the x, y and z-axis. This has
been achieved iteratively through a Python script minimizing
the delta of the rotation of the empty axis alongwith the three-
axis.

After the initial setup, uniform rotations have been applied
to the neck bone in the sequence of PRY (pitch, roll and
yaw) and all the frames have been saved. Blender provides
the rotation matrix for the empty object from which the exact
head pose in yaw, pitch and roll have been calculated with
the help of equation 9. A sample of applying the head pose is
shown in figure 7. Following most of the previous datasets’
range the yaw, pitch and roll have been varied in the range of
±80◦, ± 70◦ and ± 55◦, respectively in an interval of 3◦.

Though these rotations cover a wide range of angles,
as these are linear sequences, some of the cross-rotation
angles are not covered. As in Biwi the head pose angles are
captured tracking the real human subjects the ground truth
head pose sequences of the Biwi database has been collected
and applied to the head models similar to SynHead [7]. This
will also help to compare the evaluation result with the Biwi
dataset later. The head mesh vertices have different weights
with respect to the neck bone, so the rotation values of the
empty axis object and the neck bone are not equal. Also,
the 100 head models are rigged differently with different
mesh weights so the transformation relation between the neck
bone and the empty axis object is different for each of these
models. The transformation between these two objects for all
the 100 realistic virtual humans has been learnt individually
by training a shallow fully connected neural network from the
data collected in the previous step where a uniform rotation
has been given to the neck bone. After applying these learnt
models, the actual rotation of the neck bone for each Biwi

FIGURE 7. Applying head pose along the three axes with respect to the
neck bone highlighted.

ground truth sequence is calculated so that the rotation of the
empty axis matches with the Biwi sequences. After applying
the Euler angles learnt from 24 Biwi sequences, all the frames
have been recorded. However, as the rotations were applied to
the internal neck bone, the head mesh was not exactly aligned
with the Biwi sequences. The mean average error with Biwi
for these sequences is approx. 1◦ in Euler scale.

C. GENERATING GROUND TRUTHS
To collect the ground truth, the camera added to the scene
was set up in such a way that the camera optical axis is
aligned with the empty object axis as stated in the previ-
ous step. The camera is set at a distance of 30 centimetres
from the nose tip of the model and the background plane
is at a distance of 2 meters. Therefore, to cover the whole
scene the near and far clip of the camera is set to 0.001 and
5.0 meters, respectively. The camera sensor size and field of
view (FOV) are set at 36 millimetres and 60◦. To obtain the
final render, the RGB render pass was used in the Blender
compositor setup. As stated in the previous section, the back-
ground of the scene was varied to provide more variations
in order to improve model generalization. For the textured
background, the Brodatz-based colour images provided by
Abdelmounaime and Dong-Chen [46] are used. For the real
background, the images provided by the SynHead [7] dataset
in the background folder are selected.

The rotations recorded in the previous step are applied to
the model and the corresponding frames are rendered. For
each frame, the current translation and rotation (in Euler) of
the empty object has been captured through an automated
python script in Blender world co-ordinate. The rendering of
ground truth is carried out in an Intel Core i5-7400 3 GHz
CPU machine with 32 GB of RAM and an NVIDIA GeForce
GTXTITANXGraphical Processing Unit (GPU) with 12 GB
of dedicated graphics memory. The RGB ground truth head
pose images are rendered from the 3Dmodel with a resolution
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FIGURE 8. Samples from the generated synthetic data with different variation of head pose. The first three rows show the data with a
plain background, the fourth and fifth rows show data with textured backgrounds and the last two row shows data with real backgrounds.

of 640× 480 pixels in jpeg format. Each 2D image frame took
26.3 seconds on average to render using Cycle Rendering
Engine which is Blender’s physically-based path tracer for
production rendering.

V. DATASET DETAILS
Following the above-discussed methodology, the ground
truth RGB images and their corresponding ground truth mod-
els for 44 female and 56 male models have been generated.
As ground truth, different attributes like camera initial loca-
tion, camera initial rotation, camera post location, camera
post-rotation have been collected when the camera location
has been varied. Additionally, the initial location and rotation
of the empty object and the post-rotation and location of
the same has also been captured and saved in a text file for
each frame. Each subject has approx. 3.5k 2D image samples
which make the total dataset size to around 3,500k image
samples. The data is stored in an individual folder for the
100 head models. For each head model folder, the rendered
images and corresponding ground truth are stored in three
different paths for the three type of backgrounds – simple,
textured, and real. The zipped version of the total dataset
consumes around 60 GB of disk space. A sample of images
from the generated data with varying Pitch, Yaw and Roll
has been shown in figure 8. The dataset will be released and
can be accessed through the GitHub page.1 While training
a deep neural network, the generalization of the model is
highly dependent on the statistical data distribution of the
dataset. Thus, to check the label distribution, several identities
from the dataset has been selected and label distributions are
compared with those from the Biwi dataset. Figure 9 shows

1https://github.com/C3Imaging/SyntheticHeadPose

the two distributions which show the generated dataset is
more uniform across the value of yaw, pitch, and roll, whereas
the distribution of Biwi shows it is mainly concentrated on the
angles near the centre.

VI. SYNTHETIC TO REAL DOMAIN ADAPTATION
As stated in the introduction section, this synthetic data is
annotated perfectly without any error, but training any deep
learning model solely with synthetic data can lead to the poor
performance of the models because of the domain mismatch
between synthetic and real. Therefore, the visual domain
adaptation will help to reduce the feature gap between syn-
thetic and real domain data. In this section, the theory and
the common notation behind the domain adaptation will be
explained.

In any machine learning task, a domain D is made up of a
feature space X with a probability distribution P(X) where
X={x1, . . . ., xn}. For a specific domain, D = {X , P(X)}
a machine learning task T is trying to learn the objective
function f(·) from a feature space Y, which in another way can
be a probability distribution P(Y|X). In general, this P(Y|X)
can be learnt from the labelled data {xi, yi} where xi ∈ X
and yi ∈ Y .

However, a typical domain adaptation (DA) task consists
of two domains: a source domain DS = {XS ,P(X )S} with
the corresponding label yi ∈ YS and a target domain with
no labelled data DT = {XT ,P(X )T }. In this work, the source
domain data is the synthetic head pose data with the ground
truth head pose and the target domain is the real head images
where there is no labelled head pose associated with these
images. In traditional DA a common assumption is that the
source domain label space CS and the target label space CT
are shared. In partial domain adaptation (PDA) the target label
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FIGURE 9. The first row shows the label distribution of the generated
data across yaw, pitch and roll. The second row shows the similar
distribution of Biwi data.

space CT is a subset of the source domain label space CS , and
the rest of the labels in the source domain are seen as outliers.
As the DANN tries to align the source and target distribution
it will also align the label simultaneously. However, as there
are outliers in the target distribution, this causes negative
transfer during training. PADA overcomes these challenges
by down-weighting the contribution of the source data which
has a lower probability of existence in the target distribution.
This methodology works well for classification tasks as the
labels are fixed. But the same strategy cannot be applied to a
regression task (i.e. head pose estimation), as it has a contin-
uous label space. Therefore in this work, similar to [42] the
source data with the nearest match with the target predicted
distribution has been sampled during the Domain Adaptation
training phase.

A basic DANN [38] normally has three subnetworks:
A feature extractorGF , which learn the feature from the input
images, a network for the actual task, in this case, the head
pose regressorGY which regress the actual head pose from the
input image, and a domain classifier GD, which is trained to
differentiate the target domain from the source domain. The
main goal of the DA is to match the feature distribution of
the source and the target domain is achieved by a two-player
minimax game between GD and GF which tries to confuse
GD to learn the indistinguishable features from the source and
target domain.

To achieve the minimax goal during the training phase,
the parameters θD of the domain classifier GD are learnt by
minimizing the cross-entropy loss ofGD, at the same time the
parameters θF of the feature extractor GF tries to maximise
the loss GD to confuse it. Simultaneously the pose regressor
GY is trained to learn the parameters θY for the actual task,
in this case, the head pose estimation. So the overall objective
function can be expressed as –

J (θF , θY , θD) = LY
(
GY

(
GF

(
xSi
))
, yi
)
− µLD

×

(
GD

(
GF

(
xSi ∪ x

T
i

))
, lSi ∪ l

T
i

)
(11)

where LY is the main task loss (poss regressor loss) and
LD is the domain classifier loss. µis the hyperparameter to
make a trade-off between LY and LD. To train the domain
discriminator as a binary classifier, the source and target

domain data are labelled as 1 and 0 respectively which are
denoted as lSi and lTi in Eq. (11).

To obtain the desired saddle point of Eq. (11) in the
minimax optimization of the parameters of the network
(θ̂F , θ̂Y , θ̂D) is learned by converging –(

θ̂F , θ̂Y

)
= argmin

θF ,θY

J (θF , θY , θD),(
θ̂D

)
= argmin

θD

J (θF , θY , θD) (12)

The minimax optimization can be achieved through iterative
training using Generative Adversarial Networks (GAN) [47]
or the Gradient Reversal Layer (GRL) proposed in Ganin
and Lempitsky [38]. In this work, the GRL approach has
been used. The GRL has no trainable parameters except for
the hyperparameter µ. During the training of the network,
GRL produces an identity transform in the forward pass and
during backpropagation GRL takes the gradients from the
previous layer multiplied with the negative weight −µ, and
pass them to the preceding layer. This GRL layer is inserted
between the feature extractor GF and the domain classifier
GD. So effectively the partial derivative of the loss ∂LD

∂θF
is

replaced by −µ ∂LD
∂θF

which helps to reach the saddle point
during the minimax optimization.

VII. EVALUATION OF THE DATA
In this section, first, the details of the state-of-the-art model
that is used in this work to evaluate the effectiveness of the
generated synthetic data are discussed including the domain
adaptation module that is added to the existing model archi-
tecture. Next, the training strategy is presented, followed by
the experimental details and results.

A. DETAILS OF THE MODEL
To evaluate how useful the generated synthetic data is
for training HPE models, a recent state-of-the-art model
FSA-Net [9] is selected. In its original work, this model
has been trained on 300W-LP and Biwi and been validated
against Biwi. The FSA-Net model is based on feature aggre-
gation and a soft stagewise regression introduced in the work
of SSR-Net [30] which employs a coarse-to-fine strategy for
classification following the stage-wise regression. The soft
stagewise regression (SSR) function accepts N set of stage
parameters {Ep(n), Eη(n),1n}.

1) FEATURE AGGREGATION MODULE
FSA-Net employs a spatial grouping of features and passes
it to the aggregation module. The feature map Un for the
nth stage is a spatial grid that contains a k dimensional
feature representation of a particular spatial location. Then
to extract the pixel-level feature it computes an attention
map An through a scoring function. The original work
was based on three different scoring options (1) Uniform,
(2) 1× 1 convolution and (3) Variance. In this work the third
strategy is used, in which the features are selected through
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FIGURE 10. FSA-Net with the Domain Classifier and GRL layer for the adversarial learning.

Variance, which is differentiable but not learnable and com-
paratively less complex. After getting the feature map Un
and attention map An, a set of representative features Ũn is
extracted through Ũn = SnUn. Sn is a linear dimensionality
reduction transformation that has been learned from the atten-
tion map An. This representative feature Ũn is then fed to the
existing feature aggregation method capsule [48] to get the
representative features V.

2) SSR-NET MODULE
The SSR-Net employs a coarse-to-fine architecture for clas-
sification following the soft stage wise regression. The classi-
fication divides the task into several bins of head pose (yaw,
pitch and roll). A scale factor 1n defines the width of the
bin and a shift vector Eη(n) predict the center of each bin. The
SSR soft stagewise regression function takes N sets of stage
parameters {Ep(n), Eη(n),1n} as input, where Ep(n) is the proba-
bility distribution of the nth stage. These stage parameters are
obtained from the final set of feature vector V of the feature
aggregation module. The final regressor output of the head
pose then thus obtained by

y̌ =
∑N

n=1
Ep(n) · Eµ(n) (13)

where Eµ(n) is a vector for representative values of head pose
group and obtained from Eη(n) and 1n.

3) DOMAIN ADAPTATION MODULE
To apply the domain adaptation technique during the train-
ing phase a domain classifier and the GRL layer have been

added to the existing FSA-Net model. A very shallow fully
connected binary classifier network comprising of (Linear
−> BatchNorm−> Linear−> ReLU−> Linear) has been
designed for the domain classification task. The fine-grained
feature stream from the FSA-Net feature aggression layer
has been concatenated and send to the domain classifier
layer. The GRL layer has been injected between the feature
aggregation and the domain classifier layer to produce the
minimax optimization. The classifier and the GRL layer helps
the adversarial learning during backpropagation. The overall
model architecture is shown in figure 10.

4) LOSS FUNCTION
The end goal of the HPE task is to learn a representative
function F(x) which predicts the head pose y̌ for an input
image x. To find F(x) the most common loss function found
in HPE literature, the mean absolute error (MAE) between
the ground truth and predicted head poses has been used here
–

L(y, y̌) =
1
M

∑M

m=1
‖ỹm − ym‖ (14)

where ym is the corresponding ground truth and ỹm = F(xm)
is the predicted pose for the image xm.

For the domain classifier, the common cross-entropy loss
has been used –

Lcross−entropy(y, ŷ) = −
∑

i
yilog(ŷi) (15)

where y is the true label distribution and ŷ is the predicted
label distribution.
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B. TRAINING METHODOLOGY
The FSA-Net fine-grained feature aggregation learns the fea-
ture from the training images from both source synthetic
domain and target real images. The SSR-Net regression
module helps to learn the head pose estimation task. The
adversarial learning of the domain invariant features from
the source and target domain is achieved by training the
domain classifier and passing the backpropagation through
the gradient reversal layer. During this adversarial training to
reduce the negative transfer due to label mismatch from the
source to target domain data a similar strategy to the work of
Kuhnke and Ostermann [42] has been used to sample out the
nearest source samples in terms of head pose from the target
data. The overall training strategy is as follows –
• Inputs – Source Domain Synthetic images XS with
ground truth head pose Y S , and target domain real
images XT without any ground, truth head pose labels.

• Step 1 – Divide the training source domain data into two
sets. Train the FSA-Net which comprises of the feature
extractor GF and the head pose regressor GY with only
the first set of source domain data (XS ,Y S ) to learn
the parameters θ̂F and θ̂Y respectively and save the best
model.

• Step 2 – Predict the head pose for each sample from
the target domain with the model learnt from step 1 as
ŷti ← GY

(
GF

(
x ti
))
. Extract the nearest sample (image

and ground truth label pairs) from the second set of
source domain data for each target set image. The near-
est neighbour sample is identified by the shortest dis-
tance calculated with the mean square error between the
ground truth values from the source domain data and the
predicted label ŷti from the target domain.

• Step 3 – After extracting the nearest samples from the
source domain data the feature extractor GF , head pose
regressor GY and the domain classifier GD are trained
simultaneously with both source and target domain data.
GY is trained with the sampled source domain data
(XS ,Y S ), GD is trained through adversarial learning
with the source and target data (XS ,XT ) and their cor-
responding labels (lS , lT ). Finally the respective param-
eters θ̂F , θ̂Y and θ̂D are learnt.

C. EXPERIMENTAL DETAILS & RESULTS
Before running any experiments, the data is prepared by
processing all the generated synthetic images through a pop-
ular face detector MTCNN [49] to loosely crop the face.
To evaluate the data and to check if the data generated by
the methodology mentioned in this work is close enough to
the real-world data three different sets of experiments have
been carried out on the dataset. All the experiments have been
performed in an Intel I7 CPU and an Nvidia TITAN X GPU.

1) TRAIN ON SYNTHETIC DATA WITHOUT ANY TRANSFER
LEARNING OR DATA AUGMENTATION
First, the original FSA-Net model is trained without any
domain adaptation module and transfer learning methods

(i.e. only with the generated synthetic data) and tested on the
two real datasets Biwi and SASE.
To replicate the real-world data, random Gaussian noise is

added to the synthetic images during training, but no further
data augmentation strategy is applied. The training set con-
sists of 300k labelled synthetic images. The model is trained
for 90 epochs with the Adam optimizer. The initial learning
rate has been set to 0.0001, later the learning rate has been
reduced gradually after every 30 epochs by a factor of 0.1.
There is no previous work published that deals with the

HPE task training only on synthetic data and evaluating
it with real data. The nearest scenario can be training the
network with the synthesised 300W-LP data which was pro-
duced by augmenting the real data as discussed in section II-B
and validating the trained model on the Biwi dataset which
is a real dataset. Therefore, the results of the trained model
are compared against this scenario. Also, as the only true
synthetic data with head pose annotation that is currently
available is SynHead, the same FSA-Net model has been
trained with SynHead and has been evaluated against Biwi.
Table 2 shows the results of these scenarios. It includes

three state-of-the-art HPE models that are all trained on the
300W-LP dataset and tested on Biwi. FAN [50] is a landmark
detection method that produces multi-scale information and
merged the block features. The accurate head pose then can
be calculated from the detected landmarks. Hopenet [8] and
FSA-Net [9] are landmark free regression methods for HPE
task. The result shows training the FSA-Net with the synthetic
data generated from this work reaches near the state-of-the-
art results and perform quite well compared to the available
Synhead dataset. It is also able to beat the landmark-based
FAN result by more than 1◦ in MAE.
To analyse further and to understand the performance of

the trained model on particular head pose angles both the
FSA-Net models trained on the synthetic data produced by
this work and Synhead are evaluated against Biwi in narrower
angle ranges. Table 3 shows the result filtered yaw, pitch and
roll (stated as Y, P and R respectively) from Biwi. It can be
found that training solely with the synthetic data produced by
this work can reach the state-of-the-art result in most of the
narrow-filtered head pose angles. Also, it produces a better
result compared to the Synhead dataset.

2) TRANSFER LEARNING WITH DATA FUSION
In the second phase of the experiments, a data fusion based
transfer learning approach is applied during training where
the FSA-Net model is first trained with the synthetic data and
then the model is fine-tuned on a small set of real data from
Biwi and SASE. In this experiment, the FSA-Net model is
trained with around 70k of synthetic data and then the trained
model is fine-tuned with around 1k of Biwi data. A similar
experiment is conducted with SASE data as well.
The only similar work was done by Wang et al. [32] where

260k synthetic images and 15k of real images have been used.
Both the real and synthetic images were split into 80% for
training and 20% for testing. Experimental results are shown
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TABLE 2. Experimental result – a comparison with recent research works
with FSA-Net trained with the synthetic data.

TABLE 3. Comparative evaluation of our data against the synhead
dataset on the fsa-net model without any domain adaptation
and training only on synthetic data and testing on Biwi
varying the head pose along with one or two axis.

in Table 4 that include the results from this work and the
related previous work [32]. It shows that fine-tuning the pre-
trained model (trained only with synthetic data) with only 1k
of the real image and ground truth pairs from Biwi can beat
the previous work.

3) TRANSFER LEARNING WITH DOMAIN ADAPTATION
(SEMI-SUPERVISED APPROACH)
In the third and final experiment, the domain adaptation
approach with the training strategy discussed previously in
section VII-B was used. The FSA-Net model is first trained
with only the synthetic data for 70 epochs and the best model
is selected by testing on a held-out test set from the synthetic
dataset. Then the trained model is used to predict the pose
of the real data sequences from Biwi and with the predicted
result the nearest data is sampled from the synthetic data
for every sequence of real data. Afterwards, the FSA-Net
with the domain adaptation module is trained using those
sampled synthetic data and real data for another 30 epochs.
In this phase of the experiment both the real (Biwi) and the

TABLE 4. Mean error of yaw, pitch and roll on transfer learning approach
with data fusion.

synthetic data have been passed to the feature extractor mod-
ule. The MSE loss of the Head Pose Regressor module is cal-
culated against the labelled head pose synthetic data and the
classifier binary cross-entropy loss is measured against the
binary labelled synthetic and real data (Biwi). The same sec-
ond phase experiment is also conducted with the real dataset
SASE. The trained model is then evaluated against the Biwi
and SASE datasets.

Table 5 shows the comparative result with and without the
domain adaptation for the two real-world datasets. The result
shows that applying adversarial domain adaptation-based
training improves the result by 1◦ across yaw, pitch and roll.
Also, the predicted label and the ground truth label distribu-
tion is plotted in a scatter plot and shown in figure 11.

TABLE 5. Comparative result on Biwi and sase dataset with and without
domain adaptation.

VIII. DISCUSSION
The following section discusses the results presented in the
previous section.

• In the first set of experiments, the model is trained with
only the synthetic data and evaluated against Biwi. The
result shows that the trained model performs close to
the state-of-the-art. A similar result is found when the
model is evaluated against the narrow band of yaw,
pitch and roll as shown in table 2. Only for the high
concatenated rotation angles, the model fails to suffi-
ciently predict, and the errors are large. The first row
of figure 11 shows the distribution of the ground truth
labels and the predicted labels. From the distribution,
it can be seen that the trained model performs poorly on
either higher values of pitch and roll or higher values of
yaw and roll.
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FIGURE 11. Distribution of ground truth and predicted labels in blue and red color respectively. The first row shows the result without domain
adaptation and the second row shows with domain adaptation. The first column is Yaw versus Pitch, second column is Pitch versus Roll and the
third column shows Yaw versus Roll label distribution.

TABLE 6. Experimental results on varying the background of the synthetic
data and validating against Biwi.

• Though the model trained with the new synthetic data
performs poorly in some extreme angles when it is
compared with the previously available synthetic dataset
Synhead, it performs better and produces good results
overall as well in all the filtered angles as shown in
table 3. A possible reason may be the lack of variation
in the Synhead dataset, as it only contains 10 differ-
ent subjects, whereas the synthetic data produced in
this work has 100 subjects. Also, as the Synhead data
is produced from a head scan, there are artefacts in
some extreme angles compared to the proposed dataset
as in this work the images are rendered from fully
rigged full-body models. A few samples are shown
in appendix B.

• In the data augmentation and data fusion-based transfer
learning approach also the newly proposed synthetic
data produces a better result than the previous work [32],
where the model was trained on both real and syn-
thetic data and tested on a set of both synthetic and
real data. During the training, Wang et al. [32] have
used around 200k of synthetic data and 12k of real data
from the Biwi dataset, whereas using the synthetic data
produced by this work during the initial training and then

fine-tuning the trained model with only 1k of Biwi data
is able to beat the result of [32].

• In the final set of experiments where the adversarial
domain adaptation is applied, the model performs better
than the first phase where the network is trained only on
synthetic data. Therefore, we conclude that the domain
adaptation technique helps to learn the domain invari-
ant features from both the synthetic and real domain.
From figure 11 it can be found that after applying DA
the trainedmodel is able to predict the head pose in those
extreme angles (high yaw and roll or high pitch and roll)
as well where the model trained without the DA fails.

• Finally, as the data has been generated with three dif-
ferent backgrounds – plain, textured and real, it has
been observed that training with the data augmenting
with textured and real background images gives the best
result among the three. The detailed results are shown in
appendix A.

IX. CONCLUSION AND FUTURE WORK
In this article, a framework is presented to generate synthetic
head pose data with their ground truth using a low-cost open-
source toolchain, compared to previous works that gener-
ated synthetic datasets from expensive high-quality 3D scans.
By generating the data with enough variations and cover-
ing real data distributions, we can achieve near state-of-the-
art results training only with low-cost synthetic data. When
compared with the previously available synthetic datasets,
experimental results show that training a state-of-the-art HPE
model with the data produced by this work gives better results
in multiple scenarios. First, when the model is trained only
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FIGURE 12. Samples from SynHead [7] dataset with artefacts because of
large-concatenated rotation angles and samples from the dataset
produced from this work with similar head rotations.

with synthetic data it gives a better result than the previ-
ous available dataset SynHead [7]. In the second scenario
when the model is first trained on synthetic data and further
fine-tuned with a very small amount of real data through
transfer learning it produces a superior result than the pre-
vious work [32]. Further, it has been shown that applying the
synthetic to real domain adaptation technique with adversar-
ial training can reduce the gap between the synthetic and real
domain and enables to learn the domain invariant features
which further improve the result.

In future work, the proposed methodology can be used to
bring these fully rigged models to various synthetic com-
plex environments and build datasets for more specific tasks
like in-cabin driver monitoring systems. As the head pose
ground truth collected through this methodology is perfect
without any error, cross-validation with the existing real
head pose datasets can be performed by training the HPE
model with various real dataset and validating against the
synthetic data and vice-versa. The results can then be anal-
ysed to identify the errors in the ground truth of the real
head pose datasets, particularly for large-concatenated head
rotation angles. Additionally, as these full-body models are
fully rigged and all the body parts can be accessed, more
complex datasets can be created for human action sequences,
facial gestures and dynamic head-pose sequences. Finally,
the unsupervised domain adversarial learning is mostly used
for classification tasks and not widely examined for continu-
ous value prediction through regression, so theDomainAdap-
tation can further be examined for other regression tasks such
as single view depth estimation and surface normal prediction
while training on data from another domain (synthetic data).

APPENDIX A
Table 6 shows the comparative result of the FSA-Net trained
on data generated by the methodology proposed in this work
with three different backgrounds. The result shows combin-
ing the data with real and textured background produces the
best result.

APPENDIX B
Figure 12 shows some of the examples from the SynHead [7]
dataset with high vales of pitch and yaw. As these are gener-
ated from single head scans and contain single mesh without
any rigging there are some artefacts in those extreme angles.

In contrast in this work, a fully rigged full-body model is
used, so there are no similar artefacts after rendering the
models.
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Abstract— Recent advances in deep learning methods 
have increased the performance of face detection and 
recognition systems. The accuracy of these models relies 
on the range of variation provided in the training data. 
Creating a dataset that represents all variations of real-
world faces is not feasible as the control over the quality 
of the data decreases with the size of the dataset. 
Repeatability of data is another challenge as it is not 
possible to exactly recreate ‘real-world’ acquisition 
conditions outside of the laboratory. In this work, we 
explore a framework to synthetically generate facial data 
to be used as part of a toolchain to generate very large 
facial datasets with a high degree of control over facial 
and environmental variations. Such large datasets can be 
used for improved, targeted training of deep neural 
networks. In particular, we make use of a 3D morphable 
face model for the rendering of multiple 2D images across 
a dataset of 100 synthetic identities, providing full control 
over image variations such as pose, illumination, and 
background. 

Keywords— Synthetic Face, Face Dataset, Face Animation, 
3D Face. 

I. INTRODUCTION 

One of the main problems in modern artificial intelligence 
(AI) is insufficient reference data, as in many cases available 
datasets are too small to train Deep Neural Network (DNN) 
models. In some cases, where such data has been captured 
without a label, the manual labeling task is time-consuming, 
costly, and subject to human error. Producing synthetic data 
can be an easier approach to solving this problem. For image 
data, this can be achieved via three dimensional (3D) 
modeling tools. This approach provides the advantage of 
extraction of the ground truth information from 3D Computer 
Graphics (CG) scenes. While this process still requires some 
manual labor to create models, it is a one-time activity, and as 
a result, one can produce a potentially unlimited number of 2D 
pixel-perfect labeled data samples rendered from the 3D data 
model. The rendered data ranges from high-quality RGB 
images to object and class segmentation maps, accurate depth 
and stereo pairs from multiple camera viewpoints, point cloud 
data, and many more. 

Generating synthetic human models including face and the 
full human body is even more interesting and relevant, as 
gathering real human datasets is more challenging than any 
other kind of data, mainly due to the following limitations: 

• The labeling of the human face is especially 
complex. This includes proper head pose estimation, 
eye gaze detection, and facial key point detection. 

• In most cases, collecting real human data falls under 
data privacy issues including the General Data 
Protection Regulation (GDPR). 

• Generating 3D scans of the human body with 
accurate textures requires a complex and expensive 
full-body scanner and advanced image fusion 
software. 

• The existing real datasets are often biased towards 
ethnicity, gender, race, age, or other parameters. 

This synthetic data can be used for machine learning tasks 
in several ways: 

• Synthetically generated data can be used to train the 
model directly and subsequently applied the model to 
real-world data. 

• Generative models can apply domain adaptation to 
the synthetic data to further refine it. A common use 
case entails using adversarial learning to make 
synthetic data more realistic. 

• Synthetic data can be used to augment existing real-
world datasets, which reduces the bias in real data. 
Typically, the synthetic data will cover portions of the 
data distributions that are not adequately represented 
in a real dataset.  

 In this paper, we propose a pipeline using an open-source 
tool and a commercially available animation toolkit to 
generate photo-realistic human models and corresponding 
ground truths including RGB images and facial depth values. 
The proposed pipeline can be scaled to produce any number 
of labeled data samples by controlling the facial animations, 
body poses, scene illuminations, camera positions, and other 
scene parameters. 

 The rest of the paper is organized as follows: Section 
2 presents a brief literature review on synthetic virtual human 
datasets and the motivation against this work. Section 3 
explains the proposed framework. Section 4 presents some 
interesting results and discusses the advantages and future 
direction of the proposed framework. 
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II. RELATED WORK 

 This section presents an overview of existing 3D 
virtual human datasets and their applications. It also describes 
their limitations, which are the main motivation of this work. 

Queiroz et al. [1] first introduced a pipeline to generate 
facial ground truth with synthetic faces using the FaceGen 
Modeller [2], which uses morphable models to get realistic 
face skin textures from real human photos. Their work 
resulted in a dataset called Virtual Human Faces Database 
(VHuF). VHuF does not contain the ground truth like depth, 
optical flow, scene illumination details, head pose, and it only 
contains head models that are not rigged and placed in front of 
an image as a background.  Similarly, Kortylewski et al. [3] 
proposed a pipeline to create synthetic faces based on the 3D 
Morphable Model (3DMM) and Basel Face Model (BFM-
2017). They only captured the head pose and facial depth by 
placing the head mesh in the 2D background. The models are 
not rigged as well. Wang et al. [4] introduced a rendering 
pipeline to synthesize head images and their corresponding 
head poses using FaceGen to create the head models and Unity 
3D to render images, but they only captured head pose as the 
ground truth and there is no background. Bak et al. [5] 
presented the dataset Synthetic Data for person Re-
Identification (SyRI), which uses Adobe Fuse CC for 3D 
scans of real humans and the Unreal Engine 4 for real-time 
rendering. They used the rendering engine to create different 
realistic illumination conditions including indoor and outdoor 
scenes and introduce a novel domain adaptation method that 
uses synthetic data.  

Another common use case of virtual human models is in 
human action recognition and pose estimation. Chen et al. [6] 
generated large-scale synthetic images from 3D models and 
transferred the clothing textures from real images, to predict 
pose with Convolution Neural Networks (CNN). It only 
captured the Body Pose as the ground truth.  Varol et al. [7] 
introduced the SURREAL (Synthetic hUmans foR REAL 
tasks) dataset with 6 million frames with ground truth pose, 
the depth map, and a segmentation map that showed 
promising results on accurate human depth estimation and 
human part segmentation in real RGB images. They used the 
SMPL [8] (Skinned Multi-Person Linear) body model trained 
on the CAESAR dataset [9], one of the largest commercially 
available data that has 3D scans of over 4500 American and 
European subjects, to learn the body shape and textures, CMU 

MoCap to learn the body pose, and Blender to render and 
accumulate ground truth with different lighting conditions and 
camera models. Though this is the closest work to this paper 
that can be found, the human models are not placed in the 3D 
background, instead, they are rendered using a background 
image. It also did not capture the Facial Ground Truths as it 
focused on the full-body pose and optical flow. Dsouza et al. 
[10] introduced a synthetic video dataset of virtual humans 
PHAV (Procedural Human Action Videos) that also uses a 
game engine to obtain the ground truth like RGB images, 
semantic and instance segmentation, the depth map, and 
optical flow, but it also does not capture Human Facial Ground 
truths. 

Though there are previous works on creating synthetic 
indoor-outdoor scenes and other 3D objects, there is limited 
work done on exploring the existing available open-source 
tools and other commercially available software to build a 
large dataset of synthetic human models. Also, another major 
concern is the realism of the data and per-pixel ground truth. 
The proposed method tries to fill that gap. It can generate 
realistic human face data with 3D background and capturing 
the ground truths like head pose, depth, optical flow, and other 
segmentation data. As these are fully rigged full-body models, 
body pose with the other ground truths can also be captured. 
A detailed featurewise comparison can be found in table 1. 

III. METHODOLOGY 

This section presents a detailed framework for generating 
the synthetic dataset including RGB images and the 
corresponding ground truth. 

A. 3D Virtual Humans and Facial Animations 

The iClone 7 [11] and the Character Creator [12] software 
is used to create virtual human models. The major advantages 
of using iClone and Character Creator are: 

• Character Creator provides “Realistic Human 100” 
models that reduce the bias over ethnicity, race, 
gender, and age. These pre-built templates can be 
applied to the base body template as shown in Fig. 1. 

• The morphing of different parts of the body can be 
adjusted to create more variations to the model. Fig. 
2 shows adjustment in cheek, forehead, skull, and 
chin bone. 

This work is funded by Science Foundation Ireland Centre for Research
Training in Digitally Enhanced Reality (D-REAL) under grant
18/CRT/6224. 

TABLE I.  REVIEW OF CURRENT SYNTHETIC VIRTUAL HUMAN DATASETS 

Dataset 
3D 

Model 
Rigged 

Full 
Body 

3D Background Ground Truth 

VHuF [1] Yes No No No Facial Key points, facial Images, No Depth Data 

Kortylewski et al. [3] Yes No No No 
Facial Depth, Facial Images (Only include frontal face with no 
Complex Background) 

Wang et al. [4] Yes No No No Facial Image, Head Pose, No depth data 

SyRI [5] Yes No Yes Yes Full Body Image, No Facial Images 

Chen et al. [6]  Yes No Yes No Body Pose with full body image, No Facial Images 

SURREAL [7] Yes Yes Yes No 
Body Pose with Image, Full Body Depth, Optical Flow, No Facial 
Images 

Dsouza et al. [10]  Yes No Yes Yes 
Body Pose with Image, Depth including background, Optical Flow, 
No Facial Images 

Ours Yes Yes Yes Yes Facial Images, Facial Depth including background, Head Pose 
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• Different expressions including neutral, sad, angry, 
happy, and scared can be added to the models to 
create facial variations. Fig. 3 presents a sample 
render of these five expressions from iClone. 

• The models provide Physically Based Rendering 
(PBR) textures (Diffuse, Opacity, Metallic, 
Roughness) to render high-quality images. 

• Models can be exported in different formats (like obj, 
fbx, and alembic) which are supported by the most 
popular rendering engines.  

 Though iClone can render high-quality images, it does not 
provide the functionality to capture other ground truth data 
like exact camera locations, head pose, scene illumination 
details. Therefore, the models were exported from iClone and 
placed in a 3D scene in the popular free  and open-source 3D 
CG software toolset Blender [13] 

 
Fig. 1. Applying head template on a base female template in Character 

Creator 

 

Fig. 2. Adjust cheek, forehead, skull and chin bones in Character 
Creator 

B. Model Exporting from iClone 
The model created in iClone can be exported in different 

formats that are supported by the most popular 3D modeling 
software including Blender. Two of these formats are 
explored in this work including Alembic (.abc) and FBX 
(.fbx). 

 
Fig. 3. Sample images with different expression rendered from iClone 

In this research, the FBX format is used as it exports the 
model with proper rigging, which helps to add movements to 
different body parts including the head. A sample of a fully 
rigged model is shown in Fig. 4 after the model is loaded in 
Blender. 

 
Fig. 4. Sample of a fully rigged model imported in Blender from iClone 

C. Rendering 
The iClone models are imported to Blender 3D modeling 

software.  

The major components of Blender are Models, Textures, 
Lighting, Animations, Camera Control (including lens 
selection, image size, focal length, the field of view (FOV), 
movement, and tracking), and the rendering engine. The two 
most common and popular render engines supported by 
Blender are Cycles and Eevee. Cycles uses a method called 
path tracing, which follows the path of light and considers 
reflection, refraction, and absorption to get the realistic 
rendering, while Eevee uses a method called rasterization, 
which works with the pixel information instead of paths of 
light, which makes it fast but reduces the accuracy. A good 
comparison of these two rendering engines can be found in 
[14].  A sample workflow of the major components of Blender 
is described in Fig. 5.  

In the current work the following steps are taken to obtain 
the final output: 

• To replicate the process of capturing real data, the 
camera is placed at a fixed location in the scene and 
the relative distance from the model to the camera 
center is varied within a range of 700 mm to 1000 
mm to the human model as shown in Fig. 6. 
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• Different illumination is added to the 3D scene 
which can be varied to create different realistic 
lighting which includes point, sun, spotlight, and 
area light. 

• Different render passes are set up in Blender to get 
the RGB and the corresponding depth images. 
Cycles rendering engine is used to get a realistic 
rendering. It has been observed during the rendering 
of the transparent materials that Cycles path tracing 
can cause noisy output. To reduce the noise, the 
branched path tracing is used. It splits the path of the 
ray as the ray hits the surface and takes into account 
the light from multiple directions and provide more 
control for different shaders. 

• As the model is rigged, the movement of most of the 
body parts can be controlled by selecting their bone 
structure. Here the shoulder and head bones are 
selected, and the head mesh is rotated with respect to 
those bones. 

Rotations of yaw (+30 degree to -30 degree), roll (+15 
degree to -15 degree), and pitch (+15 degree to -15 degree) are 
applied to the head and the keyframes are saved. Later these 
keyframes are used to capture the head pose. A sample setup 
in Blender is illustrated in Fig. 7. 

 
Fig. 5. Sample workflow in Blender 

Following the above three steps, the proposed framework 
works as follows: Using the Real 100 head models a set of 
virtual human models is created in Character Creator. The 
texture and morphology of the models are modified to 
introduce more variations. These models are then sent to 
iClone where five facial expressions are imposed. The final 
iClone models with the facial expressions are exported in 
FBX which consists of the mesh, textures, and animation 
keyframes. 

 

 
Fig. 6. Sample setup of camera and the model 

 
Fig. 7. Applying head movement (yaw, roll, and pitch) on the model in 

Blender to capture the head pose 

The FBX files are then imported and scaled in the Blender 
world coordinate system. Lights and cameras are added to the 
scene, whose properties are then adjusted to replicate the real 
environment. The near and far clip of the camera is set to 0.01 
meters and 5 meters respectively. The FOV and the camera 
sensor size are set to 60 degrees and 36 millimeters 
respectively. The RGB and Z-pass output of the render layer 
is then set up in the compositor to get the final result. To apply 
the rotation, the head and shoulder bone is identified in pose 
mode and the head mesh is rotated with respect to those 
bones, and the keyframes are saved. Finally the all the 
keyframes are rendered to get the RGB and the depth images 
and the respective head pose (yaw, pitch, and roll) is captured 
through the python plugin provided by Blender. The overall 
pipeline is described in Fig. 8. 
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Fig. 8. Pipeline to produce a virtual human 

IV. RESULTS AND DISCUSSIONS 

Using the framework proposed in Section III, several virtual 
human models with their corresponding RGB and depth 
images have been rendered. 

The experiments and data generation is performed on an 
Intel Core i5-7400 3 GHz CPU with 32 GB of RAM equipped 
with an NVIDIA GeForce GTX TITAN X Graphical 
Processing Unit (GPU) having 12 GB of dedicated graphics 
memory. The RGB and depth images are rendered with a 
resolution of 640 X 480 pixels and their raw depth is saved in 
.exr format. The average rendering time for each frame is 57.6 
seconds.  The models are rendered in Blender using different 
parameters such as the positions of lights, camera parameters, 
keyframe values of the saved animations. The raw binary 
depth information and the head pose information are also 
captured as part of this dataset. Fig. 9 presents the RGB 
images and their corresponding ground truth depth images 
(scaled to visualize) with a different head pose. Fig. 10 shows 
the results with different illuminations. The models then 
imported to more complex 3D scenes and the ground truth 
data has been captured. Fig. 11 shows some samples and the 
corresponding depth with complex backgrounds. 

The proposed method allows the creation of potentially 
unlimited data samples with pixel-perfect ground truth data 
from the 3D models. Also, the 3D models can be placed in any 
3D scene and the data can be rendered within a different 
environment. Another advantage of using this pipeline of tools 
is that the positions of the camera and their intrinsic 
parameters and the scene lighting can be controlled to 
replicate a real environment. As these models have PBR 
shading and blender cycle rendering engine utilizes the path 
ray tracing and accurate bounce lighting the rendered images 
are more realistic than the previous datasets present. Table 2 
provides some samples from other datasets that capture facial 
synthetic data and shows the result from the proposed model 
is more realistic and robust than the previous ones. Although 

the proposed pipeline can generate a large amount of data 
more work has to be done in domain transfer and domain 
adaptation areas to make the images as realistic as possible. 

 
Fig. 9. Sample images of virtual human faces and their ground truth depth 

(scaled to visualize) with different head pose 

 
Fig. 10. Sample images of virtual human faces in different lighting 

condition 

 
Fig. 11. Sample images and their depth image (scaled to visualize) with 

more complex background 
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V.  CONCLUSION 

In this work, a framework to synthetically generate a huge 
set of facial data with variations in environment and facial 
expressions using available toolchains is explored. This will 
help to train DNN models, as it covers more variations in 
expressions and identity. Previously generated synthetic 
human datasets [6], [7] mostly lack realism and per-pixel 
ground truth data. The proposed pipeline will help to 
overcome such limitations. The data generated through this 
framework can extensively be used for facial depth estimation 
problems. There are currently a few datasets available with 
real-world facial images and their corresponding depth 
[15],[16],[17],[18]. However, it is practically impossible to 
get pixel-perfect depth images of the human faces due to the 
limitation of the available sensors like Kinect. The proposed 
framework can bridge this gap with more accurate ground 
truth facial depth data. The models can also be used to build 
more advanced 3D scenes which will cover more complex 
computer vision tasks such as driver monitoring system, 3D 
aided face recognition, elderly care, and monitoring. 
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Abstract² Accurate 3D head pose estimation from a 2D image 
frame is an essential component of modern consumer technology 
(CT). It enables a better determination of user attentiveness and 
engagement and can support immersive audio and AR 
experiences. While deep learning methods have improved the 
accuracy of head pose estimation models, these depend on the 
accurate annotation of training data. The acquisition of real-world 
head pose data with a large variation of yaw, pitch and roll is a 
very challenging task. Available head-pose datasets often have 
limitations in terms of the number of data samples, image 
resolution, annotation accuracy and sample diversity (gender, 
race, age). In this work, a rendering pipeline is proposed to 
generate pixel-perfect synthetic 2D headshot images from high-
quality 3D facial models with accurate pose angle annotations. A 
diverse range of variations in age, race, and gender are provided. 
The resulting dataset includes more than 300k pairs of RGB 
images with the corresponding head pose annotations. For every 
hundred 3D models there are multiple variations in pose, 
illumination and background. The dataset is evaluated by training 
a state-of-the-art head pose estimation model and testing against 
the popular evaluation dataset BIWI. The results show training 
with purely synthetic data produced by the proposed methodology 
can achieve close to state-of-the-art results on the head pose 
estimation task and is better generalized for age, gender and racial 
diversity than solutions trained on µreal-Zorld¶ datasets.  

Keywords— Head Pose Estimation, Synthetic Face, Face 
Dataset 

I. INTRODUCTION 
Head pose estimation (HPE) has great potential to provide 

an enabling technology for many next-generation consumer 
technologies (CT)  including virtual reality (VR) and augmented 
reality (AR) based entertainment systems, human-computer 
interfaces (HCI) that employ human behaviour or attentiveness 
analysis, driver monitoring systems (DMS),  and immersive 
audio systems. In human behaviour analysis, HPE is used for 
estimating human gaze and body posture to infer the feelings, 
desires etc. of a human subject. Facial authentication software 
can use HPE to improve performance and robustness. In DMS a 
real-time HPE is important to monitor the driver attention level, 
cognitive state and track eye-movements and gaze direction. For 

AR/VR application HPE can be used to predict the accurate field 
of view (FOV) and is essential for foveated rendering in VR 
headsets. 
Computer-vision based HPE transforms the captured 2D facial 
images into high-level directional data in three-dimensional 
space with three Euler angles: 𝜃𝑥  (Pitch), 𝜃௬ (Yaw) and 
𝜃௭ (Roll).  Normally the HPE tasks follow two different 
approaches: classification and regression. Regression 
approaches predict the head pose by fitting a regression model 
on the training data and estimating the yaw, pitch and roll in 
continuous angles, making these models comparatively 
complex. On the other hand, classification approaches mostly 
rely on classifying the head pose into a discrete bin. These 
methods are comparatively robust to large pose variations but 
with sparse solution space e.g. 10 degrees intervals for each bin.  

Head pose estimation from a single image makes the 
problem more challenging. It requires learning the mapping 
between 3D and 2D spaces. Previous works use different 
modalities like depth information [1, 2, 3, 4], video sequences 
[6] or inertial measurement unit (IMU) [5]. An accurate depth 
map provides additional 3D cues that are missing in 2D images 
and requires expensive depth sensors. Most of this single image-
based HPE methods leverage the use of Convolution Neural 
Network (CNN), a variant of a Deep Neural Network (DNN) to 
extract features from the 2D images and use those high-level 
features to model 3D head pose regressors. The recent state of 
the art models [7, 8, 9] shows combining the robustness of the 
classifier with the sensitivity of the regressor networks through 
a fine-to-coarse approach that makes these models more 
accurate. 

Though these DNN based methods have given good results, 
a major drawback of these supervised models is their need for 
accurately labelled data. Particularly for HPE tasks, it will 
become more challenging to obtain annotated head pose data 
with variations of appearances like race, age, gender and other 
environmental factors like noise, illumination and occlusion. 
Also, obtaining real human data falls under different data 
protection and ethical guidelines like GDPR. Other modalities 
such as depth and IMU are prone to sensor noise. The head-pose 
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datasets available captured from real subjects like BIWI Kinect 
Head Pose Dataset [1] aQd PRLQWLQg¶04 [10] only consists around 
15k and 4k images respectively. Among these two BIWI is most 
commonly used for benchmarking.  But because of the limited 
size, both these datasets are not suitable to train DNN based HPE 
models. Generating synthetic facial images using Computer 
Graphics (CG) software provides a powerful tool for building 
large datasets of accurately labelled 2D facial image samples.  

In this paper, we propose a methodology utilizing 
commercially available animation software and open-source CG 
tools to create photorealistic virtual human models and generate 
accurate RGB and corresponding ground truth Head Pose data. 
The data generated through this method is also been evaluated 
using the current state-of-the-art models. Training only on the 
synthetic dataset and testing on real dataset shows promising 
results except for some marginal areas of the data distribution. 

II. RELATED WORKS 
In this section, first deep learning-based HPE methods have 

been reviewed, before reviewing the currently available head 
pose datasets. 

A. Head Pose Estimation using Deep Learning 
Head Pose Estimation from visual information can be 

categorised into a few approaches. The first one is the facial 
geometric landmark-based method where these facial features 
have been used to fit appearance-based head models [12, 13] to 
calculate the accurate head pose. Different regression methods 
[14, 15] creates initial face models from the key points and 
incrementally align the created face with real ones by 
regressions. A comprehensive survey of these conventional 
methods can be found in [11]. As these landmark-based 
approaches require manual annotation of the landmarks in faces, 
it is often difficult to acquire such labels. In some cases, because 
of the low resolution of the images, accurately locating these 
landmarks is not possible. 

Other approaches take advantage of different modalities as 
well. Fanelli et al.[1] fits a regression random forest model to 
predict the head pose from the depth information. Meyer et al. 
[3] fits 3D morphable models to the depth images and regress 
the head pose from that. Gu et al.[6] propose the facial landmark 
features tracking by Recurrent Neural Network (RNN) using a 
sequence of  RGB images from facial video using temporal cues.  

Finally, there is another set of approaches which focuses on 
deep learning-based HPE from a single monocular RGB image. 
In this paper, we have used this approach to validate our data. 
The initial work on this was proposed by Anh et al. [16] which 
uses CNN based models to regress the head pose information. 
Cangelosi and Patacchiola [17] examine adaptive gradient 
methods with different CNN architectures for HPE tasks. Chang 
et al.[18] predicted the head pose and facial key points jointly 
using the ResNet model. Ruiz et al. [9] used ResNet50 backbone 
architecture for feature extraction and combined loss stream of 
regression and binned pose classification. Yang et al. [8] 
propose FSA-Net, a lightweight structure for head pose feature 
regression, using the stage-wise regression model SSR-Net [19]. 

Few of the above-mentioned works use synthetic facial 
images with the ground truth head pose to train their models. 
Ruiz et al. and Yang et al. use a synthetically expanded dataset 
300W-LP, which is created by augmenting real images. Gu et 
al.[6] introduced the synthetically created dataset SynHead, 
which has been rendered through a CG tool from a very high-
quality 3D scan obtained from [20]. They use a transfer learning 
approach and train the network on synthetic data and fine-tune 
with real data. Wang et al. [21] also introduce a synthetically 
rendered head pose dataset from high-quality 3D scans and 
propose a fine to a coarse network to predict accurate head pose. 
Though the data is not publicly available. They train their model 
with approx. 260k synthetic images from their dataset and 15k 
real images from the BIWI dataset. Kuhnke et al.[22] propose 
an Adversarial Synthetic to Real Domain Adaptation technique 
and uses the SynHead to train the network. This is the only work 

 
Figure 1. Sample Images from different datasets 
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which has trained on only synthetic data rendered from CG tool 
and tested on real data. 

B. Head Pose Datasets 
There are few datasets available which have been used for 

Monocular Image-based HPE tasks. Figure 1 shows the samples 
from these datasets. 

300W-LP: 300W [23] uses multiple alignment real face 
databases with 68 facial key points including LFPW, AFW, 
IBUG, HELEN and XM2VTS. It uses 3D Dense Face 
Alignment (3DDFA) in which a dense 3D Face model is fitted 
to the images through a CNN which align faces in large poses 
up to 90 degrees. It contains around 61225 samples with large 
poses, which is further expanded to 122450 samples by flipping. 
The combined dataset is called 300W across Large Pose (300W-
LP) 

AFLW: AFLW [23] contains 21080 real faces in the wild 
with wide pose variations (yaw from -90 degree to +90 degree). 

BIWI: Biwi Kinect Head Pose Dataset [1] contains 
approximately 15.7k images taken from 24 sequences of 20 
subjects (12 men and 6 women, 4 people wearing glasses). Each 
image has a resolution of 640X480 pixels with the faces 
containing 90X110 pixel on average. The head pose ranges from 
±75º yaw, ±60º pitch and ±50º roll. 

Pointing¶04: PRLQWLQg¶04 [10] haV beeQ caSWXUed fURP 14 
subjects containing 2.7k images. The head pose of the captured 
subjects is only represented by the two angles yaw and pitch and 

both have fixed interval of 15 degrees. In our investigating we 
have found that during data acquisition the subjects have been 
asked to stare to different markers fixed in the room, resulting in 
an error in the captured labelled head rotation values for many 
samples. The pre-trained model of the current state-of-the-art 
HPE FSA-Net gives a Mean Absolute Error [MAE] of around 
12 degrees while testing on this dataset. 

SynHead: NVIDIA SynHead [6] contains 510960 frames 
of 70 head motion tracker rendered using 10 individual high-
quality 3D scan head models from [20]. It contains head motion 
tracks of all 24 BIWI sequences. Though it was rendered with a 
different sequence of the rotation that was followed by BIWI. 

Out of these datasets, because of their limitations of size, 
only the 300W-LP dataset is suitable for DNN training. Even 
though the SynHead Dataset has a large number of synthetic 
head pose frames, it only contains 10 individual subjects from 
high-quality 3D scans, which make it less diverse expensive to 
acquire. On the contrary out dataset has more than 300k frames 
from 100 individual models. 

III. METHODOLOGY & DATASET DETAILS 
In this section, we discuss the detailed methodology of 

creating the synthetic dataset which includes the RGB images 
and the corresponding ground truth head pose. Later we provide 
dataset details and analysis on the generated dataset. 

 
Figure 2. Overall Pipeline to produce the synthetic Head Pose Data 

 
Figure 3. Samples from our dataset with plain and textured background and varying Yaw, Pitch, and Roll 

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on February 21,2022 at 11:52:26 UTC from IEEE Xplore.  Restrictions apply. 



A. 3D Model and Scene Setup 
To generate the virtual human models, we have used the 

commercially available software iClone 7 and Character Creator 
[24]. The Character Creator comes with a ³Realistic Human 
100´ package consisting of 100 human models with different 
age, race, gender, and ethnicity, thus reducing the bias of the 
dataset. Additionally, the facial morphs and expressions are also 
adjusted to provide more variations. All these models are 
exported from iClone in FBX formats with Physically Based 
Rendering (PBR) textures to add realism to them. These fully 
rigged models in FBX formats are then imported in open-source 
3D creation software Blender [25]. The FBX models contain the 
fully rigged armature with the mesh which can be used to add 
motions to the head. To vary the scene light, we have added 
different illuminations available in Blender, which includes 
point, area, sun, and spotlight. To render the actual image, a 
camera model has been added to the scene in perspective mode. 
We have chosen the Blender cycle rendering engine which 
provides the ray path tracing for realistic rendering. The detailed 
methodology can be found in [26]. To add variations to the 
background we have combined plain, textured, and real images. 
For the textured background, we have used the Brodatz-based 
colour images provided by [27]. For the real background, we 
have used the images provided by the SynHead [6] dataset in the 
background folder. 

B. Applying Head Pose & Collect Ground Truth 
 As these models are fully rigged, the shoulder bone has 

been selected to provide the rotation to the head mesh. An empty 
object has been added to the centre of the two eyeballs which we 
have chosen as the centre of the head. The translation and the 
rotation of the main head bone have been copied to the empty 
object which constraint the empty to follow the head. The 
rotation has been applied to the head bone in the sequence of 
PRY (pitch, roll and yaw) and all the frames have been saved. 
We have varied the Yaw, Pitch and Roll in the range of ±80º, ± 
70º and ± 55º, respectively in an interval of 3º. Additionally, we 
have also applied the Euler angles provided by the 24 Biwi 
sequences and recorded those frames as well. But as these 
models are rigged with the head mesh, for each frame the 
alignment is not exactly the same as Biwi. The mean average 
error with Biwi for these sequences is approx. 1º in Euler scale. 

To render the ground truth the camera near and far clip 
paremeters are set to 0.001 and 5.0 meters, respectively. The 
camera sensor size and field of view (FOV) are set at 60º and 36 
millimetres. To get the final render the RGB render pass has 
been used in the Blender compositor setup.  While rendering the 
frames saved previously the ePSW\ RbMecW¶V current translation 
in Blender 3D world coordinate and rotation in Euler has been 
captured through an automated python script.  

The rendering of ground truth is carried out in an Intel Core 
i7-6800 3.4 GHz 6 core CPU machine with 32 GB of RAM and 
two NVIDIA TITAN X Pascal Graphical Processing Unit 
(GPU) with 32 GB of dedicated graphics memory. The ground 
truth head pose RGB images are rendered with a resolution of 
640 × 480 pixels in jpeg format. Each frame took 16.3 seconds 
in an average to render using Blender Ray path Tracing Cycle 
Rendering Engine. 

 The overall pipeline for generating the synthetic head pose 
has been shown in figure 2. 

C. Dataset Details 
Following the above-discussed methodology, we have 

generated the ground truth RGB images and their corresponding 
headpose (Pitch, Roll and Yaw) in Euler angle for 44 female and 
56 male models. Each subject has approx. 3.5k samples which 
make the total dataset size to around 3,500k. A sample of images 
from the generated data with varying Yaw, Pitch and Roll has 
been shown in figure 3. While training a deep neural network, 
the generalization of the model highly depends on the data 
distribution of the dataset. So, to check the label distribution we 
randomly select a few identities from our dataset and compare 
them with the Biwi dataset. Figure 4 shows the two distributions 
which show our dataset is more uniform across the value of yaw, 
pitch, and roll, whereas the distribution of Biwi shows it is 
mainly concentrated on the angles near the centre. 

 
Figure 4. The first row shows the data distribution of Yaw, Pitch 
and Roll in our synthetic dataset and the second row shows the 
same distribution from Biwi Test dataset 

IV. EVALUATION 
In this section, we will first discuss one of the current state-

of-the-art HPE models that we have used to evaluate our data. 
Later we will show the results of that model on our dataset. 

A. Model Details 
To evaluate our data, we have selected the recent state-of-

the-art models FSA-Net [8], which has been trained on 300W-
LP and Biwi in its original work and has been validated against 
Biwi. The FSA-Net model is based on feature aggregation and a 
soft stagewise regression based on previous work on SSR-Net 
[24] which employs a coarse-to-fine strategy for classification 
following the stage-wise regression. The soft stagewise 
regression (SSR) function accepts N set of stage parameters 
ሼ𝑝ሺ𝑛ሻ, 𝜂ሺ𝑛ሻ, 𝛥𝑛ሽ. 

1) Feature Aggregation Module: FSA-Net employs a 
spatial grouping of features and feeds it to the aggregation 
module. The feature map 𝑈𝑛 for the nth stage is a spatial grid 
containing the k dimensional feature representation of a 
particular spatial location. Then it computes an attention map 
𝐴𝑛  through a scoring function, which helps to get the pixel-
level feature. The original work deals with three different 
scoring options (1) Uniform, (2) 1 ൈ  1 convolution and (3) 
Variance. We have used the third option, in which the features 
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are selected through Variance, which is differentiable but not 
learnable. After getting the feature map 𝑈𝑛 and attention map 
𝐴𝑛 , a set of representative features 𝑈෩𝑛    has been extracted 
through  𝑈෩𝑛 ൌ 𝑆𝑛𝑈𝑛.   𝑆𝑛 is a linear dimensionality reduction 
transformation which has been learned from the attention map 
𝐴𝑛. This representative features 𝑈෩𝑛 is then sent to the existing 
feature aggregation method capsule [31] to get the 
representative features V. 

2) SSR-Net Module: The SSR-Net employs a coarse-to-fine 
architecture for classification following the soft stage wise 
regression. The classification sets to divide the task into several 
bins of head pose (yaw, pitch and roll). A shift vector 𝜂ሺ𝑛ሻ 
predict the center of each bin and the scale factor 𝛥𝑛 defines the 
width of the bin. The SSR soft stagewise regression function 
accepts N set of stage parameters ሼ𝑝ሺ𝑛ሻ, 𝜂ሺ𝑛ሻ, 𝛥𝑛ሽ where 𝑝ሺ𝑛ሻ is 
the probability distribution of the nth stage. These stage 
parameters are obtained from the final set of feature vector V of 
the feature aggregation module. The final regressor output of the 
head pose then thus obtained by  

𝑦ු  ൌ  ෍ pሬ⃗ ሺ୬ሻ
ே

𝑛 = 1

⋅ 𝜇ሺ𝑛ሻ 

a) where 𝜇ሺ𝑛ሻ is a vector for representative values of head 
pose group and obtained from 𝜂ሺ𝑛ሻ 𝑎𝑛𝑑 𝛥𝑛. 

3) Loss function:  The ultimate goal of the HPE task is to 
find a representative function F(x) which predicts the head pose 
𝑦ු  for an input image x. To find F we have used the most 
common loss function found in HPE literature, the mean 
absolute error (MAE) between the ground truth and predicted 
head poses ±  

𝐿ሺ𝑦, 𝑦ුሻ ൌ  
1
𝑀

 ෍ ‖𝑦෤௠  െ 𝑦௠‖
𝑀

௠ =1

 

where 𝑦෤௠  ൌ  𝐹ሺ𝑥௠ሻ is the predicted pose for the image 𝑥௠ and 
𝑦௠ is the corresponding ground truth. 

B. Experimental Details 
We have used Pytorch to implement the FSA-Net module. 

As the main objective is to evaluate the data generated by our 

method to check if the data is close enough to the real-world 
data, we trained the model only with our synthetic data and 
tested on the two different real datasets Biwi. We have not used 
any further data augmentation or transfer learning approach 
during our training. The training set consists of 200k labelled 
synthetic images. We trained the network for 90 epochs with the 
Adam optimizer. The initial learning rate has been set to 0.0001, 
later the learning rate has been reduced gradually after 30 epochs 
by 0.1. The experiments have been performed in an Intel I7 CPU 
and an Nvidia TitanX GPU. 

C. Results & Discussion 
During the evaluation, after training the FSA-Net model 

with our synthetic data, we have tested the trained model against 
BIWI dataset, which we think are closest to our data in terms of 
appearance. We have used the popular face recogniser MTCNN 
[28] to exclude some of the extreme angles where the face is out 
of the frame and loosely cropped the facial region to create the 
test dataset.  

Table I shows the experimental result with the current state-
of-the-art models. We have divided the results into two 
category intra-domains where both the training and testing data 
are real and from the same domain. In the case of inter-domain, 
the models are trained with synthetic or synthetic like (300W-
LP) or fusion of Real and Synthetic data. We have found the 
network trained only on our synthetic data gives state-of-the-art 
result for a low roll. But when there is a mix of high negative 
pitch and high roll the model got confused and give an 
ambiguous result. We believe this is mostly because of the hair 
particle textures for the synthetic data as the face is not visible 
properly in these frames. For high roll with little variation in 
yaw and pitch also it gives MAE of approx. 2º. 

V. CONCLUSION 
In this paper, we have presented a framework to generate 
synthetic head pose data with their ground truth using the 
available cheap and open-source toolchain. Previous works 
have used synthetic dataset which has been generated from 
high-quality 3D scans thus making them expensive. Also, either 
they have used transfer learning or data fusion approach to train 
their model or domain adaptation techniques to reduce the gap 

TABLE I.  EXPERIMENTAL RESULTS  

Experiment Model Training Set Test Set MAE Yaw Pitch Roll 

Intra Domain 
Gu [6] VGG16 [29] Biwi Biwi 3.66 3.91 4.03 3.03 

Ruiz [9] ResNet50 Biwi Biwi 3.23 3.29 3.39 3.00 
Yang [8] FSA-Net Fusion Biwi Biwi 3.6 2.89 4.29 3.6 

Inter Domain 
(300W-LP as 
Training Set) 

Ruiz [9] ResNet50 300W-LP Biwi 4.90 4.81 6.61 3.27 

Yang [8] FSA-Net Fusion 300W-LP Biwi 4.00 4.27 4.96 2.76 

Transfer 
Learning  

+ Data Fusion 

Wang 
[21] GoogleNet [30] Synthetic + 

Biwi Biwi 4.96 4.76 5.48 4.29 

Inter Domain 
Train only on 

our  
Synthetic Data 

Ours FSA-Net Capsule Our Syn Data Biwi 6.10 5.1 6.64 6.56 

Ours FSA-Net Capsule Our Syn Data 
Biwi 

Yaw (+60º, -60º) 
Pitch (+60º, -60º) 
Roll (+10, -10º) 

4.88 4.375 5.59 4.67 
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between synthetic and real domain. We have also shown that 
generating the data with enough variations and covering the real 
data distribution we can achieve near state-of-the-art result just 
by training with low-cost synthetic data. Though our model 
does not perform well on the boundary value of roll and pitch 
we believe it can be improved further on applying proper 
domain adaptation techniques. 
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