

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-25T17:59:44Z

Some rights reserved. For more information, please see the item record link above.

Title Multi-objective reinforcement learning and planning for the
expected scalarised returns

Author(s) Hayes, Conor F.

Publication
Date 2023-01-13

Publisher NUI Galway

Item record http://hdl.handle.net/10379/17625

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Multi-Objective
Reinforcement Learning & Planning
for the Expected Scalarised Returns

Conor F. Hayes
School of Computer Science

University of Galway

October 2022

A thesis submitted for the degree of
Doctor of Philosophy

Supervisors: Dr. Patrick Mannion, Dr. Enda Howley & Dr. Diederik M. Roijers

Abstract

Many problems in the real world have multiple, often conflicting, objectives. To
solve such problems a multi-objective approach to decision making must be taken.
In the multi-objective decision making (MODeM) literature, the utility-based
approach is followed where a utility function is used to model the preferences over
the objectives of a human decision maker (or user). If the utility function is known
a priori a single optimal solution can be computed. However, if the utility function
is unknown or uncertain, a set of optimal solutions must be computed.

When following the utility-based approach, multiple optimality criteria can arise.
In scenarios where the utility function of a user is derived from multiple executions
of a policy, the scalarised expected returns (SER) must be optimised. In scenarios
where the utility of a user is derived from a single execution of a policy, the expected
scalarised returns (ESR) criterion must be optimised. In the MODeM literature,
the SER criterion has been studied extensively, while the ESR criterion has largely
been ignored. In the real world, a user may only have a single opportunity to make
a decision. For example, in a medical setting, a patient may only have one chance
to select a treatment. Therefore, in order to effectively apply MODeM algorithms
to a range of practical applications, the ESR criterion must be further investigated.

This thesis contains a number of important contributions. It is demonstrated by
example that for ESR settings where the utility function is known and nonlinear,
multi-objective methods that compute policies must be explicitly designed for the
ESR criterion. For settings where the utility function of a user is unknown, it
is shown that expected value vectors are not sufficient to determine optimality
under the ESR criterion. Therefore, to determine a partial ordering over policies,
new methods to compute sets of optimal policies are proposed. Finally, this thesis
proposes a number of new multi-objective algorithms that can compute sets of
optimal policies for the ESR criterion in various MODeM settings.

3

Contents

Abstract 3

Acknowledgments 9

Declaration 11

1 Introduction 13
1.1 Research Questions . 16
1.2 Hypotheses . 16
1.3 Thesis Overview . 17

2 Background 19
2.1 Reinforcement Learning & Planning 19

2.1.1 Markov Decision Processes 20
2.1.2 Multi-Armed Bandits . 25
2.1.3 Coordination Graphs . 27
2.1.4 Other Settings . 29
2.1.5 Deep Reinforcement Learning 29
2.1.6 Distributional Reinforcement Learning 30

2.2 Stochastic Dominance . 31
2.3 A Note on the Limitations of Reinforcement Learning & Planning . 34
2.4 Multi-Objective Reinforcement Learning & Planning 37

2.4.1 Problem Setting . 37
2.4.2 Other Problem Settings . 41

5

CONTENTS

2.4.3 A Note on Scalar and Vector Rewards 43
2.4.4 The Utility-Based Perspective 44
2.4.5 Multi-Objective Solution Concepts 46
2.4.6 Multi-Objective Reinforcement Learning & Planning

Algorithms . 49
2.4.7 Multi-Objective Optimality Criteria 51

2.5 The Expected Scalarised Returns Optimality Criterion 52

3 Algorithms for Known Utility Functions 55
3.1 A Note on Nonlinear Utility Functions 56
3.2 Monte Carlo Tree Search for Nonlinear Utility Functions 59
3.3 Distributional Monte Carlo Tree Search 67
3.4 Empirical Evaluation . 72

3.4.1 Ablation Study . 72
3.4.2 Evaluation using Multi-objective Markov Decision Processes . 76

3.5 Related Work . 85
3.6 Summary . 86

4 Theory for Unknown Utility Functions 87
4.1 Motivating a Distributional Approach 88
4.2 Stochastic Dominance for the Expected Scalarised Returns 91
4.3 Solution Sets for the Expected Scalarised Returns 96
4.4 Related Work . 102
4.5 Summary . 103

5 Algorithms for Unknown Utility Functions 105
5.1 A Pruning Algorithm for the Expected Scalarised Returns 106
5.2 Solving Multi-Objective Multi-Armed Bandits for the Expected

Scalarised Returns . 107
5.2.1 Multi-Objective Tabular Distributional Reinforcement

Learning . 107
5.2.2 Evaluation Metrics . 111
5.2.3 Empirical Evaluation . 112
5.2.4 Discussion . 119

5.3 Solving Multi-Objective Markov Decision Processes for the Expected
Scalarised Returns . 120
5.3.1 Multi-Objective Distributional Value Iteration 120
5.3.2 Empirical Evaluation . 123

6

CONTENTS

5.3.3 Discussion . 130
5.4 Solving Multi-Objective Coordination Graphs for the Expected

Scalarised Returns . 131
5.4.1 Multi-Objective Coordination Graphs for the Expected

Scalarised Returns . 131
5.4.2 Distributional Multi-Objective Variable Elimination 132
5.4.3 Empirical Evaluation . 135
5.4.4 Discussion . 142

5.5 Related Work . 142
5.6 Summary . 143

6 Conclusion 145
6.1 Summary of Contributions . 146

6.1.1 Analysis of Multi-Objective Optimality Criteria for
Nonlinear Utility Functions in Single-Agent Settings 146

6.1.2 Theoretical Analysis of Multi-Policy Methods under the
Expected Scalarised Returns Criterion 146

6.1.3 Distributional Multi-Policy Algorithms for the Expected
Scalarised Returns Criterion 147

6.2 Impact . 148
6.3 Limitations . 148

6.3.1 Categorical Distributions . 148
6.3.2 Benchmarks and Evaluation Metrics 149
6.3.3 Discrete States & Actions . 149
6.3.4 Computational Analysis . 149

6.4 Future Work . 150
6.4.1 Approximating Return Distributions 150
6.4.2 Trustworthy AI . 150
6.4.3 Further Theoretical Investigations 151
6.4.4 Further Optimality Criteria 152

6.5 Final Remarks . 152

A Appendices 157
A.1 Monte Carlo Tree Search Algorithms 158
A.2 Renewable Energy Dynamic Economic Emissions Dispatch

Implementation Details . 159
A.2.1 Dynamic Economic Emissions Dispatch 159
A.2.2 Renewable Energy Dynamic Economic Emissions Dispatch . 161

7

CONTENTS

A.2.3 Sample Solutions . 165
A.3 Further Theory for ESR Dominance 168
A.4 Space Traders . 169
A.5 PPrune . 171
A.6 Exhaustive List of Results for DMOVE 172

A.6.1 Random MO-CoG . 173
A.6.2 Mining Day . 186

Bibliography 189

8

Acknowledgments

First, I would like to thank my supervisors Patrick, Enda, and Diederik. Thank
you all for everything over the course of this PhD. I have thoroughly enjoyed
every minute of the last few years, and I will miss our weekly meetings and chats.
Thank you for your encouragement, guidance, patience, and support. But most
importantly thank you for pushing me to do good work. While this is the end of
my PhD, I look forward to continuing to work with you all.

I like to thank everyone in Room 307 whom I’ve been fortunate enough to cross
paths with. I would also like to thank everyone who I have collaborated with
over the last number of years, particularly Roxana Rădulescu, Mathieu Reymond,
Pieter Libin, Willem Röpke, Timothy Verstraeten, and Peter Vamplew.

Thank you to Dr. Karl Mason and Prof. Maite Lopez-Sanchez for their helpful
discussion, comments, and feedback on this thesis.

I would also like to thank my family. To my parents Edel and Frank, thank
you for your continued unconditional support. I really appreciate all that you
have done for me, especially over the last two years. Without you none of this
would be possible. To my siblings Luke and Ross, thank you for always seeing the
lighthearted aspect of everything!

To Theresa and Casey, thank you for your continued support.
Finally, I want to thank Megan. Megan, thank you for everything! You have been

a constant throughout this PhD journey. Thank you!

9

Declaration

This thesis has not previously been accepted in substance for any degree and is
not being concurrently submitted in candidature for any degree other than Doctor
of Philosophy of the University of Galway. This thesis is the result of my own
investigations, except where otherwise stated.

Mr. Mathieu Reymond (Vrije Universiteit Brussel) provided part of the source
code that was used for the Renewable Energy Dynamic Economic Emissions
Dispatch domain in Section 3.4.2.2.

Dr. Timothy Verstraeten (Vrije Universiteit Brussel) helped verify Theorem 3
presented in Section 4.2.

Some of the material contained in this thesis has appeared in the following
published or awaiting publication papers:

1. Hayes, C. F., M. Reymond, D. M. Roijers, E. Howley, P. Mannion. Risk-
Aware and Multi-Objective Decision Making with Distributional Monte Carlo
Tree Search. In Proceedings of the Adaptive Learning Agents Workshop 2021
at AAMAS. 2021.

2. Hayes, C. F., M. Reymond, D. M. Roijers, E. Howley, P. Mannion.
Distributional Monte Carlo Tree Search for Risk-Aware and Multi-Objective
Reinforcement Learning. In Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems, pp. 1530-1532. 2021.

3. Hayes, C. F., M. Reymond, D. M. Roijers, E. Howley, P. Mannion. Monte
Carlo Tree Search Algorithms for Nonlinear Utility Functions. Journal of
Autonomous Agents and MultiAgent Systems.

11

Declaration

4. Hayes, C. F., T. Verstraeten, D. M. Roijers, E. Howley, P. Mannion.
Dominance Criteria and Solution Sets for the Expected Scalarised Returns.
In Proceedings of the Adaptive Learning Agents Workshop 2021 at AAMAS.
2021.

5. Hayes, C. F., T. Verstraeten, D. M. Roijers, E. Howley, P. Mannion.
Expected Scalarised Returns Dominance: A New Solution Concept for
Multi-Objective Decision Making. Neural Computing & Applications.
https://doi.org/10.1007/s00521-022-07334-x. 2022.

6. Hayes, C. F., D. M. Roijers, E. Howley, P. Mannion. Multi-Objective
Distributional Value Iteration. In Proceedings of the Adaptive Learning
Agents Workshop 2022 at AAMAS. 2022.

7. Hayes, C. F., D. M. Roijers, E. Howley, P. Mannion. Decision-Theoretic
Planning for the Expected Scalarised Returns. In Proceedings of the 21st
International Conference on Autonomous Agents and Multiagent Systems,
pp. 1621-1623. 2022.

8. Hayes, C. F., T. Verstraeten, D. M. Roijers, E. Howley, P. Mannion. Multi-
Objective Coordination Graphs for the Expected Scalarised Returns with
Generative Flow Models. In Proceeding of the European Workshop on
Reinforcement Learning. 2022.

9. Hayes, C. F., D. M. Roijers, E. Howley, P. Mannion. A Distributional
Perspective on Multi-Objective Decision Making. Under Review: Journal
of Artificial Intelligence Research.

12

1 | Introduction

Machine learning [Russell and Norvig, 2010] can be defined as a computer system
that learns from experience to solve a predefined task. It is becoming increasingly
common to use machine learning approaches to solve real-world decision making
problems. For example, algorithms like AlphaFold [Jumper et al., 2021] and
AlphaTensor [Fawzi et al., 2022] have shown that machine learning can be used
to make major scientific advancements across multiple disciplines.

Reinforcement learning (RL) and planning are sub-fields of machine learning
whereby an autonomous agent solves a task by interacting with its environment.
An RL or planning agent perceives the state of the environment and the agent
interacts with the environment by executing actions. For each action, the agent
receives feedback and this known as a reward. Over time, the agent solves a
predefined task by acting in a way that maximises its long term reward, RL and
planning are popular methods used to solve real-world decision making problems.
For example, RL and planning have been applied to autonomous driving [Kiran
et al., 2021], healthcare [Yu et al., 2021], finance [Rao and Jelvis, 2022], and many
other areas [Li, 2017; Mason and Grijalva, 2019].

However, many real-world problems have multiple, often conflicting, objectives
[Roijers et al., 2013; Dulac-Arnold et al., 2021; White, 1982]. For example, consider
a user planning their commute to work. The user aims to minimise the following
objectives: time taken to commute to work and the cost of the commute. In this
case, driving will get the user to work much faster than public transport. However,
the cost of fuel will be significantly higher when compared to the cost of public
transport [Hayes et al., 2022c]. When faced with a multi-objective problem, RL
and planning practitioners generally either select a single objective to optimise

13

CHAPTER 1. INTRODUCTION

or combine the objectives using a hand-tuned weighted sum. These approaches
reduce a multi-objective problem to a single-objective problem, where a scalar
reward can be optimised. However, both of the aforementioned approaches can
produce sub-optimal results [Vamplew et al., 2008]. Furthermore, it can be argued
that maximising for a scalar reward is not sufficient when optimising for multiple
objectives [Vamplew et al., 2022]. Therefore, in order to solve multi-objective
problems, all objectives must be taken into consideration and an optimal solution
or set of optimal solutions can be computed. To do so, an explicitly multi-objective
approach to RL and planning must be taken [Bryce et al., 2007].

In the multi-objective decision making (MODeM) literature, multi-objective RL
and multi-objective planning are used to compute optimal policies for multi-
objective problems. In MODeM, the agent has a state and can execute actions.
In this case, the agent receives a reward vector, where a value in the vector exists
per objective. In some settings, a utility function (also known as a scalarisation
function) is used to reduce the reward vector to a scalar and a total ordering over
policies can be determined by comparing the scalarised values [Roijers et al., 2013].
However, in many settings, applying a utility function is impossible, infeasible, or
undesirable [Rădulescu et al., 2020]. Early work in the MODeM literature adopted
an axiomatic based approach to determine a partial ordering over policies, where
the Pareto front is always assumed to be the optimal set of solutions [Wang and
Sebag, 2012]. By following the axiomatic based approach, it is difficult to encode
domain knowledge into the decision making process. As such, time and resources
can be wasted computing unnecessary solutions that may have low utility for the
user [Hayes et al., 2022c].

A widely used approach to solving decision problems, is maximising user utility
[Roijers, 2016]. MODeM explicitly models the human decision maker in the decision
making process by adopting the utility-based approach [Roijers et al., 2013; Hayes
et al., 2022c], where a utility function is used to represent a human decision maker’s
preferences over objectives. In some settings, a user may know their preferences
over the objectives a priori. By using the user’s preferences, a utility function
can be modelled, and a single optimal policy can be computed. In many scenarios,
explicitly modelling a user’s utility function can be difficult. When a utility function
is unavailable a set of optimal policies must be computed. A user can then simply
select a policy from the computed set that best reflects their preferences. MODeM
has been applied to many real-world problems, like water resource management
[Castelletti et al., 2013], energy management [Mannion et al., 2016], and public
health [Reymond et al., 2022b].

In contrast to single-objective RL and planning, different optimality criteria exist
in MODeM. In scenarios where the utility of a user is derived from multiple
executions of a policy, the scalarised expected returns (SER) criterion must be

14

optimised. Consider an electrical generation facility powered by fossil fuels.
Government regulations limit the amount of CO2 that the facility can emit
annually. In this example, a policy is executed every day. Subject to meeting the
annual CO2 emissions regulation, CO2 emissions can be high for some days because
days where CO2 emissions are low compensate. As such, computing policies for
this scenario under the SER criterion is optimal as average CO2 emissions are
important, rather than daily limits. However, many scenarios exist where the
utility of a user is derived from the single execution of a policy. For example,
strict government regulations might require the daily CO2 emissions of an electrical
generation facility to fall below a certain limit. In this example, optimising under
the ESR criterion is optimal because every policy execution must ensure the CO2
emissions fall below the regulated limit for a given day.

The SER criterion has been studied extensively in the existing MODeM literature.
Many methods exist that can compute a single policy [Pan et al., 2020] or set of
polices [Van Moffaert and Nowé, 2014a] under the SER criterion. For example,
under the SER criterion, the Pareto front can be computed as a set of optimal
polices [Wang and Sebag, 2012]. In contrast, the ESR criterion has largely been
ignored by the MODeM community. Only a small number of single policy methods
have been proposed that can compute policies for the ESR criterion [Roijers et al.,
2018b; Reymond et al., 2021; Malerba and Mannion, 2021]. Furthermore, a method
to determine a partial ordering over policies for the ESR criterion has yet to be
defined. For many real-world problems, a user may only have one opportunity to
make a decision. For example, in a medical setting a patient may only have one
opportunity to select a treatment. Therefore, the ESR criterion requires further
study in order to effectively utilise MODeM in the real world.

The work presented in this thesis explores the ESR criterion. First, I evaluate the
ramifications of nonlinear utility functions in single-agent settings and their impact
on the policies computed under the SER criterion and ESR criterion. Second, I
investigate if the current state-of-the-art methods that are used to determine a
partial ordering over policies for the SER criterion can be used under the ESR
criterion. Finally, I present a number of novel algorithms that can compute a set
of optimal policies for the ESR criterion. The aim of this thesis is to investigate
the ESR criterion because I believe exploring the ESR criterion is essential for
extending MODeM to a broad range of application domains.

15

CHAPTER 1. INTRODUCTION

1.1 Research Questions
This thesis aims to answer the following research questions:

1. Is it necessary to design algorithms specifically for the ESR criterion in single-
agent settings where the utility function is known? (RQ1)

2. When the utility function is unknown, what methodologies can be used to
derive a partial ordering over policies for the ESR criterion? (RQ2)

3. How can multi-policy algorithms be designed for the ESR criterion for
different multi-objective settings (e.g., multi-armed bandits, Markov decision
processes and coordination graphs)? (RQ3)

1.2 Hypotheses
From the research questions outlined above, in this thesis I expect to demonstrate
that:

1. It can be shown that the policies computed under the SER criterion and
the ESR criterion can be different for nonlinear utility functions in single-
agent settings. As a result, dedicated methods that can optimise for the ESR
criterion must be developed.

2. The state-of-the-art methods, like Pareto dominance, that use expected value
vectors cannot be used to determine a partial ordering over policies under the
ESR criterion. An alternative to the expected value approach is to, instead,
maintain distributions over the range of possible rewards. Therefore, methods
like stochastic dominance (SD) can be used to determine a partial ordering
over policies.

3. By taking a distributional approach to MODeM, it is possible to define new
multi-policy algorithms for many multi-objective settings that can compute
a set of optimal policies for the ESR criterion.

16

1.3. THESIS OVERVIEW

1.3 Thesis Overview
This thesis is structured as follows:

• Chapter 2 - introduces the concepts for reinforcement learning and
planning, stochastic dominance, and multi-objective reinforcement learning
and planning that are relevant to understanding the contributions of this
thesis.

• Chapter 3 - considers the implications of nonlinear utility functions on
the policies computed under the SER criterion and the ESR criterion. This
investigation shows that the policies can be different in single-agent settings.
Therefore, methods that explicitly compute policies for the ESR criterion
must be developed. This chapter also proposes two model-based multi-
objective Monte Carlo tree search (MCTS) algorithms that can compute
policies for nonlinear utility functions under the ESR criterion.

• Chapter 4 - investigates whether methods that utilise expected value vectors
to determine a partial order over policies under the SER criterion can be used
under the ESR criterion. By example, it is demonstrated that using expected
value vectors to determine optimality is fundamentally incompatible with
the ESR criterion. As such, it is shown that a distributional approach to
MODeM must be taken under the ESR criterion. Furthermore, several novel
dominance relations and solution sets for the ESR criterion are defined.

• Chapter 5 - defines three novel distributional multi-objective algorithms
that can compute sets of optimal policies for the ESR criterion. These
algorithms show that optimal policies for the ESR criterion can be computed
for multi-objective multi-armed bandit settings, multi-objective Markov
decision processes, and multi-objective coordination graphs.

• Chapter 6 - concludes with a summary of the main contributions of this
thesis, a discussion of the limitations of this work, and an outline of some
promising directions for future research.

17

2 | Background

This chapter presents the relevant background material required to understand the
contributions presented in this thesis. The topics covered address reinforcement
learning and planning, deep reinforcement learning, distributional reinforcement
learning, stochastic dominance, multi-objective reinforcement learning and
planning, multi-objective optimality criteria, and the expected scalarised returns
optimality criterion.

2.1 Reinforcement Learning & Planning
Reinforcement learning (RL) and planning [Sutton and Barto, 2018] are sub-fields
of machine learning where an autonomous agent solves a predefined task through
interactions with an environment. Figure 2.1 outlines how an RL and planning
agent interacts with an environment. At each timestep, t, the agent perceives
the current state, st, of the environment. The agent receives feedback from the
environment in the form of a scalar reward, rt+1, by performing an action, at, and
transitioning to a new state, st+1.

The reward the agent receives can be positive or negative, and the agent aims
to maximise the reward. Through multiple interactions with the environment, the
agent computes a solution that maximises its reward.

19

CHAPTER 2. BACKGROUND

Figure 2.1: Interaction between an agent and its environment.

2.1.1 Markov Decision Processes
Generally, in RL and planning, a Markov decision process (MDP) is used to
model single-agent sequential decision-making problems. A MDP can be defined
as follows:

Definition 1

A Markov decision process (MDP) [Puterman, 1990] is a tuple M =
⟨S,A, T , γ, µ,R⟩, where:

• S is the state space
• A is the action space
• T : S × A × S → [0, 1] is a probabilistic transition function
• γ is a discount factor
• µ : S ← [0, 1] is a probability distribution over states
• R : S × A × S → R is the immediate reward function

MDPs are commonly used in RL and planning to model the environment. A MDP
is a tuple consisting of a state space, S, an action space, A, a probabilistic transition
function, T , a discount factor, γ, and a reward function, R. The state space S is
a set of all possible states of the environment where the current state is denoted
s. The action space A is the set of all possible actions an agent can take in an
environment. The transition function T encodes the dynamics of the environment
and determines which next state, s′, an agent will transition to, having executed
action a in state s. The discount factor γ can be used to determine the relative

20

2.1. REINFORCEMENT LEARNING & PLANNING

importance of future rewards. Finally, the reward function R determines the scalar
reward the agent receives for taking action a in state s and transitioning to state s′.

Typically, in a MDP, a horizon H is defined to determine the number of timesteps
in a RL or planning problem. Some problems have an infinite horizon, H =∞. In
contrast, finite horizon problems have a finite number of timesteps. Finite horizon
problems are episodic and terminate after a fixed number of timesteps.

While both RL and planning use MDPs to model sequential decision making
problems, the dynamics of the environment are not known to the agent in RL.
However, in planning, the dynamics of the environment (also known as a model)
are known to the agent.

The agent’s goal is to compute a policy, π, that maximises the expected discounted
sum of rewards. A policy π can be defined as a mapping from states to probabilities
of selecting each possible action, π(a|s) [Sutton and Barto, 2018]. The expected
discounted sum of rewards can be defined as follows:

V π = E
[∞∑

t=0
γtrt | π, µ0

]
, (2.1)

where rt is the reward R(st, at, st+1) for taking action at in state st and
transitioning to state st+1 at timestep t, and µ0 is a probability distribution over
initial states.

To compute optimal policies, the agent needs to reason about how good being in
a given state is and how good selecting a certain action in a given state is [Sutton
and Barto, 2018]. To evaluate a state s, the state-value function can be defined.
The state-value function of a state s under a policy π can be used to determine
the expected future reward the agent can expect when in state s and following
policy π thereafter:

V π(s) = E
[∞∑

k=0
γkrt+k | π, st = s

]
, (2.2)

where rt+k is the reward R(st+k, at+k, st+k+1) for taking action at in state st and
transitioning to state st+1 at timestep t. To evaluate the possible expected future
reward for selecting a given action a in a given state s, the action-value function
can be defined as follows:

Qπ(s, a) = E
[∞∑

k=0
γkrt+k | π, st = s, at = a

]
. (2.3)

The action-value function defines the value of taking action a in state s under
a policy π, as the expected return, starting from state s, selecting action a and
following policy π thereafter.

21

CHAPTER 2. BACKGROUND

A fundamental property of value functions used in MDPs and dynamic
programming is that value functions satisfy recursive relationships. For example,
the Bellman equation [Bellman, 1957a] expresses a relationship between the value
of a state and the values of its successor states. The Bellman equation can be
defined as follows:

V π(s) =
∑

a

π(s, a)
∑

s′

T (s, a, s′)(R(s, a, s′) + γV π(s′)) (2.4)

The Bellman equation states that the value of the start state must equal the
discounted value of the expected next state and the expected future reward. The
Bellman equation averages over all possibilities, weighting each by its probability of
occurring. The Bellman equation is the foundation of numerous MDP algorithms,
such as Q-learning [Watkins and Dayan, 1992] and value iteration [Bellman,
1957b]. Q-learning has been used extensively in the RL literature [Dearden et al.,
1998; Greenwald et al., 2003], whereas value iteration algorithms have been used
extensively in the planning literature [Tamar et al., 2016; Pineau et al., 2003].

The agent aims to compute an optimal policy, π∗, that maximises the expected
sum of future reward. There may be multiple optimal policies, however, all optimal
policies share the same state-value function called the optimal state-value function,
V π∗ , where V π∗ = maxπ V π(s) for all s ∈ S. Each optimal policy also shares the
same optimal action-value function Qπ∗(s, a), where Qπ∗(s, a) = maxπ Qπ(s, a) for
all s ∈ S and a ∈ A(s).

2.1.1.1 Q-Learning

One of the earliest MDP algorithms is Q-learning [Watkins and Dayan, 1992], which
is a temporal-difference control algorithm. For Q-learning, the learned action-value
function directly approximates the optimal action-value function independently
of the policy being followed. Over multiple iterations, the Q-learning algorithm
updates the action-value function by bootstrapping and using the estimated action-
value of the next state. Q-learning updates the action-value function for state s
and the selected action a by executing the following equation:

Q(s, a)← Q(s, a) + α

[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]
, (2.5)

where α is the learning rate and γ is the discount factor. Q-learning is a tabular
method and stores the action-values for each state in memory using a Q-table. The
use of tabular Q-learning is limited to settings with discrete state-action spaces,
given a value for all states and actions must be stored in memory.

22

2.1. REINFORCEMENT LEARNING & PLANNING

2.1.1.2 Policy Gradient

Policy gradient methods are commonly used in RL to solve MDPs. Policy gradient
methods learn a policy without learning a value function. To learn a policy, π,
the policy π is paramaterised using θ. Using this approach, it is possible to follow
the policy gradient, ∇θJ(πθ) , to find the θ that maximises the expected future
returns. To do so, policy gradient methods calculate the gradients of the objective,
J(θ), with respect to θ, using the agent’s interactions with the environment. The
parameters of θ can then be updated by taking a step in the direction of the
gradient,

θt+1 = θt + α∇J(θt). (2.6)

The policy gradient theorem [Sutton and Barto, 2018] shows the policy gradient
can be computed as follows:

∇J(θ) ∝
∑

s

µ(s)
∑

a

∇π(a|s)Qπ(s, a), (2.7)

where µ is the on-policy distribution under π [Sutton and Barto, 2018]. Algorithms
like REINFORCE [Williams, 1992] estimate the objective by using a single Monte
Carlo rollout of a policy. Such methods suffer from slow learning rates and
high variance. Various other policy gradient methods, like actor-critic methods
[Haarnoja et al., 2018; Konda and Tsitsiklis, 1999; Mnih et al., 2016], also exist.

2.1.1.3 Monte Carlo Tree Search

Another common way of solving MDPs is to use tree search [Bonet and Geffner,
2006, 2012; Bai et al., 2016]. Perhaps the most popular of such methods is Monte
Carlo tree search (MCTS) [Coulom, 2006], which employs heuristic exploration to
construct its search tree through planning. MCTS is a model-based algorithm and,
therefore, the reward function and transition function are known to the agent a
priori [Moerland et al., 2020]. MCTS builds a search tree of nodes, where each
node has a number of children. Each child node corresponds to an action available
to the agent. MCTS has two phases: the planning phase and the execution phase.

In the planning phase, the agent implements the following four steps [Browne
et al., 2012]:

• Selection: the agent traverses the search tree until it reaches a node for
which not all of its possible child nodes have been explored.

• Expansion: at a node whose children have not all been expanded, the node
must be expanded. The agent creates a random child node and then must
simulate the environment for the newly created child node.

23

CHAPTER 2. BACKGROUND

• Simulation: the agent executes a random policy through Monte Carlo
simulations until a terminal state of the environment is reached. The agent
then computes the returns.

• Backpropagation: the agent must backpropagate the returns received at
a terminal state to each node visited during the selection phase, where a
predefined algorithm statistic, e.g., upper confidence bound (UCB) [Coulom,
2006; Kocsis and Szepesvári, 2006], is updated.

Each step is repeated a specified number of times, which incrementally builds the
search tree.

During the execution phase, the agent must select a child node corresponding
to an action and associated state transition to which it will traverse. The agent
evaluates the statistic at each node that is reachable from the root node and moves
to the node which returns the maximum value. Once the execution phase has
completed, the agent repeats the planning phase.

As already highlighted, MCTS makes decisions and explores based on a predefined
algorithm statistic. One such version of MCTS is upper confidence trees (UCT)
[Kocsis and Szepesvári, 2006], which uses the following formula to derive the
optimal action at decision time while also incorporating exploration during
learning:

vi + C ×

√
ln(N)

ni
, (2.8)

where vi is the approximated value of the node i, ni is the number of the times
the node i has been visited, and N is the total number of times that the parent of
node i has been visited. C is a hyperparameter that can be tuned for exploration,
however C is often set to

√
2.

2.1.1.4 Exploration-Exploitation Dilemma

In RL, an agent must trade off between exploring new areas of the environment and
exploiting the knowledge already accumulated. This is known as the exploration-
exploitation dilemma. By exploring, the agent can potentially find new states that
may lead to a higher reward. However, if the agent focuses too much on exploration,
actions known to return a high reward may not be effectively exploited. A common
approach to balancing exploration and exploitation is to follow an ϵ-greedy strategy.
In this scenario, the agent executes a random action (explores) with probability
ϵ and executes the known best action (exploitation) with probability 1 − ϵ. It is
important to note that other methods, like Thompson sampling (TS) [Russo et al.,
2018], can also be used to address the exploration-exploitation dilemma.

24

2.1. REINFORCEMENT LEARNING & PLANNING

2.1.2 Multi-Armed Bandits
Beyond MDPs, RL and planning have been applied to many other problem settings.
Multi-armed bandit (MAB) settings have been studied extensively using RL. The
MAB setting is stateless and presents the agent with a choice among A different
options, or arms [Slivkins et al., 2019]. The agent selects a given arm, a, and
receives a scalar reward, R(a), where the rewards are generated from a stationary
probability distribution. The agent aims to maximise its reward by selecting the
arm with the highest expected reward. The rewards for each arm are not known
a priori and are stochastic [Auer et al., 2002]. Therefore, MABs can be defined
as follows:

Definition 2

The multi-armed bandit (MAB) has a finite set of arms A, where each arm
a ∈ A returns some reward R(a) when pulled. Each arm a has an associated
stationary reward distribution that is unknown to the agent, where µ(a) =
E[R(a)]

Generally, in MAB settings, the objective is to minimise the expected cumulative
regret, which can be defined as follows:

∇(at) = µ(a∗)− µ(at), (2.9)

where a∗ is an optimal value, which is known a priori. To minimise the expected
cumulative regret, the agent learns a policy, π, that balances both exploration and
exploitation. MABs have been used to model real-world decision making problems,
like online advertising [Chapelle and Li, 2011] and wind-farm control [Bargiacchi
et al., 2018]

2.1.2.1 Upper Confidence Bounds

One of the most commonly used methods to learn optimal policies in MAB settings
is upper confidence bound (UCB) [Auer, 2002]. UCB is a frequentist approach that
constructs confidence bounds around the mean of each arm. UCB optimistically
selects arms with a high confidence bound. UCB is defined as follows:

arg maxa µt−1(a) + C

√
ln(t)

nt−1(a) , (2.10)

where C is a constant that can be tuned for exploration, µt−1(a) is the expected
returns for arm a at timestep t − 1 and nt−1(a) is the total number of times arm
a has been pulled at timestep t − 1.

25

CHAPTER 2. BACKGROUND

2.1.2.2 Thompson Sampling

Another approach commonly used to solve MABs is Thompson sampling (TS)
[Thompson, 1933]. TS, also known as probability matching or posterior sampling,
takes a Bayesian approach to decision making and selects arms based on the
probability of that arm being optimal. At each timestep, t, the agent draws a
sample, µt−1(a), from the posterior distribution of a given arm, a. The posterior
distribution is the prior distribution conditioned on the history, Ht−1 [Chapelle and
Li, 2011]. The history at timestep t, Ht−1, consists of the previously pulled arms
and the observed rewards. Once an arm at is pulled, a reward r(at) is received and
the history is updated [Russo et al., 2018]. The arm, a, that returns the maximum
sample is selected according to the following:

arg maxa µt(a) (2.11)

where µt(a) is the sample mean at timestep t for arm a. TS has been used in real-
world decision making settings like wind-farm control [Verstraeten et al., 2020],
online advertising [Chapelle and Li, 2011], and news article recommendation [Li
et al., 2010].

2.1.2.3 Bootstrap Thompson Sampling

When using TS, it is not always possible to get an exact posterior. In this
case, a bootstrap distribution over means can be used to approximate a posterior
distribution [Efron, 2012; Newton and Raftery, 1994]. Eckles and Kaptein [2014,
2019] use a bootstrap distribution to replace the posterior distribution used
in TS. This method is known as bootstrap Thompson sampling (BTS) [Eckles
and Kaptein, 2014] and was proposed in the MAB setting. The bootstrap
distribution contains a number of bootstrap replicates, j ∈ {1, ..., J}, where J
is a hyperparameter that can be tuned for exploration. For a small J , BTS can
become greedy. A larger J value increases exploration, but at a computational
cost [Eckles and Kaptein, 2014].

Each bootstrap replicate, j, in the bootstrap distribution has two parameters, αj

and βj , where αj

βj
is an estimate of replicate j’s expected utility. At decision time, to

determine the optimal action, the bootstrap distribution for each arm, i, is sampled.
The observation for the corresponding bootstrap replicate, j, is retrieved and the
arm with the maximum expected utility is pulled [Eckles and Kaptein, 2014].

The distribution that corresponds to the maximum arm is randomly re-weighted
by simulating a coin flip (commonly known as sampling from a Bernoulli bandit)
for each bootstrap replicate, j, in the bootstrap distribution (see Algorithm 1). If

26

2.1. REINFORCEMENT LEARNING & PLANNING

Algorithm 1: Bootstrap Thompson Sampling Update
1 for j ∈ J do
2 sample dj from Bernoulli(1/2)
3 if dj = 1 then
4 αj = αj + u(r)
5 βj = βj + 1

the coin flip is heads, the α and β parameters for j are re-weighted1. To do so, the
return is added to the αj value and 1 is added to βj [Eckles and Kaptein, 2014].

Bootstrap methods with random re-weighting [Rubin, 1981] are more
computationally appealing as they can be conducted online rather than having
to re-sample data [Oza and Russell, 2001]. BTS addresses problems of scalability
and robustness when compared to TS [Eckles and Kaptein, 2014]. Furthermore,
bootstrap distributions can approximate posteriors that are difficult to represent
exactly.

2.1.3 Coordination Graphs
Another common method to model stateless decision problems is using coordination
graphs (CoGs) [Guestrin et al., 2001; Kok and Vlassis, 2004]. CoGs consider
multiple agents where some dependency structure exists between the agents that
can be exploited. The goal of a CoG is to learn a single joint action, across all
agents, that is optimal. A CoG can be defined as follows [Roijers et al., 2015;
Verstraeten et al., 2020]:

1Updating the distribution in this way is known as "double-or-nothing" or online half sampling
[Eckles and Kaptein, 2014]. It is important to note that the absolute scale of the weights does
not matter for most estimators [Eckles and Kaptein, 2014]. In the literature various other weight
distributions have been used. For example, Rubin [1981] uses a Bayesian bootstrap which uses
exponential weights. While this overcomes some numerical problems, it requires updating all
replicates and therefore can be more computationally expensive. For an extensive study on
weight distributions for bootstrapping the sample mean see Owen and Eckles [2012].

27

CHAPTER 2. BACKGROUND

Definition 3

A coordination graph (CoG) [Roijers, 2016] is a tuple ⟨D,A,P⟩ where:

• D = {1, ..., n} is the set of n agents. D is factorised into p, possibly
overlapping, groups of agents De.

• A = Ai, ...,An is the set of joint actions, which is the Cartesian product
of the finite action spaces of all agents. A joint action is a tuple
containing an action for each agent a = ⟨a1, ..., an⟩. Ae denotes the
set of local joint actions for the group De.

• P = p1, ..., pl is a set of l, scalar local payoff functions. The joint payoff
for all agents is the sum of local payoff functions: p(a) =

∑l
e=1 pe(ae).

The dependencies between the local reward functions and agents can be represented
by a bipartite graph with a set of nodes, D, and a set of edges, E . In this setting
the nodes, D, are agents and components of a factored payoff function, and an
edge (i, pe) ∈ E exists if and only if agent i influences component pe. The set of all
possible joint action value vectors is denoted by the set V [Verstraeten et al., 2020].

2.1.3.1 Variable Elimination

Variable elimination is a method that can be used to solve CoGs [Zhang and Poole,
1996]. Variable elimination can exploit the loose couplings between the local payoff
functions to compute the optimal joint global action. Variable elimination utilises
two passes: the forward pass and the backward pass. First, variable elimination
executes a forward pass, where variable elimination eliminates each agent in some
predefined or random order by calculating the value of that agent’s best response to
every joint action of its neighbors [Roijers et al., 2015]. A new local payoff function
is then created conditioned on the best response. The agent and the payoff function
previously used to determine optimality are then removed. Once all agents have
been eliminated, a backward pass computes the optimal joint action. Typically,
both passes are utilised. However, in multi-objective settings, only a forward pass
is used and the backward pass is replaced with a tagging scheme [Roijers et al.,
2015]. Algorithm 2, presented by Roijers et al. [2015], determines the elimination
procedure for variable eliminationusing a tagging scheme. Variable elimination has
been used in real-world settings, like wind-farm control [Verstraeten et al., 2020,
2021], to determine optimality.

28

2.1. REINFORCEMENT LEARNING & PLANNING

Algorithm 2: eliminateVE(P, i)
1 Input: A CoG P, and an agent i
2 Pi ← a set of local payoff functions involving i
3 ni ← a set of neighboring agents of i
4 unew ← a new factor taking joint actions of ni, ani ,as input
5 for ani ∈ Ani do
6 S ← ∅
7 for ani ∈ Ani do
8 v ←

∑
pj∈Pi

pj(ani
, ai)

9 tag v with ai

10 S ← S ∪ {v}
11 end
12 pnew(ani)← max(S)
13 end
14 Return (P \ Pi) ∪ {pnew}

2.1.4 Other Settings
While this thesis extensively covers MDPs, MABs and CoGs, other RL and
planning settings exist which have not been mentioned. For example, a
partially observable Markov decision process (POMDP) is another common way of
formulating sequential decision making in RL and planning. In MDPs, the state
of the agent is fully observable, whereas, in POMDPs, the agent can not directly
observe the state of the environment. Therefore, the agent must make decisions
based on imperfect information. POMDPs have been extensively covered in the
existing literature [Monahan, 1982; Spaan, 2012] and algorithms like MCTS [Silver
and Veness, 2010], point-based algorithms [Pineau et al., 2003], and other methods
[Sunberg and Kochenderfer, 2018; Ross et al., 2008; Somani et al., 2013] can be
used to solve POMDPs.

2.1.5 Deep Reinforcement Learning
Tabular methods, like Q-learning, use a table to store the action-value functions
for each state-action pair in memory. While tabular methods work well for
settings with a small discrete state-action space, they cannot scale to settings with
continuous states or actions. With the advent of deep learning [LeCun et al., 2015;
Goodfellow et al., 2016], a large number of deep RL methods have been presented

29

CHAPTER 2. BACKGROUND

in recent years. Deep RL methods can scale to settings with continuous state and
action spaces through approximation and have achieved astounding results.

Deep Q-networks (DQN) [Mnih et al., 2013] extend Q-learning to settings with
high dimensional state spaces. DQN approximates a state-value function used in
the Q-learning framework using deep neural networks. DQN takes a state as input
and outputs state-values per action. Generally, DQN maintains two networks: the
Q-network and the target network. The Q-network, parameterised by θ, is trained
over a number of iterations, i, for sequences of loss functions, Liθi, as follows:

Liθi = E
[
(yi −Q(s, a; θi))2

]
, (2.12)

where yi = E[r+γ maxa′ Q(s′, a′; θi−1)], which is known as the target. The target is
generated by the target network. The target network is the same as the Q-network
except that its parameters are copied every τ steps from the Q-network. DQN
learns by storing experiences ((s, a, s′, r) transitions) in a replay buffer [Lin, 1992].
DQN then samples experiences from the replay buffer in batches when learning.
In the Atari gaming platform [Bellemare et al., 2013], DQN achieves superhuman
levels of play [Mnih et al., 2013]. Multiple variants of DQN also exist, some of which
are listed here: [Osband et al., 2016; Van Hasselt et al., 2016; Wang et al., 2016].

Deep RL has enabled significant advances in artificial intelligence. Some examples
include AlphaGo, which learned to play the game of Go through a combination of
tree search, supervised learning, and RL [Silver et al., 2016]. Alpha Zero mastered
the game of Go, chess, and Shogi [Silver et al., 2017]. Alpha Zero learns without
any human input by repeatedly playing itself in matches of the aforementioned
games, using a process called "self-play" [Silver et al., 2017]. Deep RL has also
been applied to competitive computer games [Wurman et al., 2022], silicon chip
design [Mirhoseini et al., 2020], and many other applications [Fawzi et al., 2022;
Bellemare et al., 2020; Kiran et al., 2021].

2.1.6 Distributional Reinforcement Learning
Recently, distributional RL [Bellemare et al., 2023] has become an active area of
research. An example of a distributional RL method is categorical deep Q-networks
(C51) [Bellemare et al., 2017]. To make distributional updates, Bellemare et al.
[2017] define the distributional Bellman operator as follows:

T π
D z(s, a) D= rs,a + γ z(s′, a′), (2.13)

where z is the distribution over the returns. The distributional Bellman operator
is used to replace the Bellman operator2. To represent a return distribution,

2The Bellman operator can be defined as follows: T πQ(s, a) = rs,a + γE Q(s′, a′).

30

2.2. STOCHASTIC DOMINANCE

Bellemare et al. [2017] utilise a paramaterised categorical distribution. The
distribution is parameterised by a number of categories n ∈ N and is bounded
by the minimum returns, Rmin, and maximum returns, Rmax, whose support is
the set of categories: {zi = Rmin + i △z: 0 ≤ i < n}. The category probabilities
are given by a parametric model, θ.

Bellemare et al. [2017] project the Bellman update of T zθ onto the support of
zθ, which reduces the Bellman update to multi-class classification. Therefore, for
a sampled transition from the replay buffer the Bellman update T zj := r + γzj

for each category, zj , is performed. The probability pj(s′, π(s′)) is distributed to
the immediate neighbours of T zj . As such, the ith component of the projected
update ϕT zθ(s, a) is:

(ϕT zθ(s, a))i =
n−1∑
j=0

[
1− |[T zj]− zi|

△z

]1

0
pj(s′, π(s′)). (2.14)

Bellemare et al. [2017] use the cross-entropy term of the KL divergence [Thomas
and Joy, 2006] as the loss function L(θ),

L(θ) = DKL(ϕT zθ′(s, a)||zθ(s, a)), (2.15)

which can be minimised by gradient descent. Bellemare et al. [2017] use the same
architecture as DQN, except C51 outputs category probabilities instead of action-
values. C51 is evaluated using the Atari learning environment and achieves state-
of-the-art performance.

Many other distributional RL algorithms exist in the literature. For example,
Dabney et al. [2018b] define a distributional RL algorithm using quantile regression.
Martin et al. [2020] define a distributional RL algorithm and utilise stochastic
dominance (SD) for action selection to compute a policy that is optimal for all risk
preferences. Some other example of distributional RL algorithms are: [Petersen
et al., 2020; Dabney et al., 2018a; Eriksson et al., 2022; Mavrin et al., 2019; Lyle
et al., 2019].

2.2 Stochastic Dominance
When taking a distributional approach to decision making, stochastic dominance
(SD) [Hadar and Russell, 1969; Bawa, 1975] can be used to give a partial ordering
over distributions (see Figure 2.2). In sequential decision making settings, SD is
particularly useful when a decision maker needs to take the full distribution over
the returns into consideration, and not just the expected returns. When making

31

CHAPTER 2. BACKGROUND

0 2 4 6 8 10
Utility

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y

FX
FY

Figure 2.2: For random variables X and Y , X ⪰F SD Y , where FX and FY are the
CDFs of X and Y respectively. In this case, X is preferable to Y because higher
utilities occur with greater frequency in FX .

decisions under uncertainty, SD can be used to determine the most risk averse
decision.

In the literature, varying orders of SD exist. To illustrate the orders of SD, two
random variables X and Y are considered. First-order stochastic dominance (FSD)
can be defined, in terms of X and Y , as follows:

Definition 4

For random variables X and Y, X first-order stochastically dominates (⪰F SD)
Y if the following is true:

X ⪰F SD Y ⇒ P (X > z) ≥ P (Y > z),∀ z

It is also possible to define FSD in terms of the cumulative distribution function
(CDF) of a random variable. Consider the CDF of X, denoted by FX , and the
CDF of Y, denoted by FY , therefore X ⪰F SD Y if:

FX(z) ≤ FY (z), ∀ z.

Definition 4 presents the necessary conditions for FSD, and Theorem 1 proves
that, if a random variable is FSD dominant, it has at least as high of an expected

32

2.2. STOCHASTIC DOMINANCE

value as another random variable [Wolfstetter, 1999]. It is important to note that
the work of Wolfstetter [1999] is used to prove Theorem 1.

Theorem 1

If X ⪰F SD Y, then X has a greater than or equal expected value as Y.

X ⪰F SD Y =⇒ E(X) ≥ E(Y).

Proof. By a known property of expected values the following is true for any random
variable:

E(X) =
∫ +∞

0
(1− FX(x)) dx

E(Y) =
∫ +∞

0
(1− FY (x)) dx

Therefore, if X ⪰F SD Y then:∫ +∞

0
(1− FX(x)) dx ≥

∫ +∞

0
(1− FY (x)) dx

Which gives,
E(X) ≥ E(Y).

Second-order stochastic dominance (SSD) can be defined as follows:

Definition 5

A random variable X second-order stochastically dominates (⪰SSD) a random
variable if the following is true:

X ⪰SSD Y ⇒
∫ k

n

FXdx ≤
∫ k

n

FY dy ∀ k (2.16)

Furthermore, if X ⪰SSD Y , then X has a greater than or equal expected utility
as Y .

Proposition 1

If X ⪰SSD Y, then the expected utility of X is greater than or equal to the
expected utility of Y .

X ⪰SSD Y =⇒ E(X) ≥ E(Y).

33

CHAPTER 2. BACKGROUND

Moreover, if X ⪰F SD Y , it can be assumed X ⪰SSD Y . However, if X ⪰SSD Y , it
cannot be assumed that X ⪰F SD Y [Wolfstetter, 1999]. SD has been shown to be
transitive [Hadar and Russell, 1969]. The transitive properties of SD are preserved
when the original random variables are multiplied by a constant or when another
random variable is added [Wolfstetter, 1999], see Proposition 2.

Proposition 2

Consider three independent non-negative random variables, X, Y , and W ,
and the linear combination aX + bW and aY + bW with a > 0, b > 0. Then:

1. X ⪰F SD Y ⇒ (aX + bW) ⪰F SD (aY + bW)

2. X ⪰SSD Y ⇒ (aX + bW) ⪰SSD (aY + bW)

SD has been used extensively in economics [Choi and Johnson, 1988], finance
[Ali, 1975; Bawa, 1978], game theory [Fishburn, 1978], and various other real-world
scenarios [Bawa, 1982; Cook and Jarrett, 2018]. For example, Levy and Robinson
[2006] use SD in financial settings to build sets of optimal portfolios, where each
portfolio in the set is optimal for different preferences of risk.

2.3 A Note on the Limitations of Reinforcement
Learning & Planning

Many problems in the real world have multiple, often conflicting, objectives
[Vamplew et al., 2022]. Generally, AI engineers deploy RL and planning algorithms
to compute policies in real-world settings with multiple objectives by: (a) selecting
a single objective to compute a policy for and ignoring the other objectives (b)
combining the objectives using a weighted sum (linear scalarisation) [Hayes et al.,
2022c]. Utilising a weighted sum to combine the objectives is the most common
method used to tackle multi-objective problems with standard RL and planning
methods [Kompella et al., 2020; Wurman et al., 2022]. Both of the outlined
approaches reduce a multi-objective problem to a single-objective problem, where
traditional RL and planning methods can be used to optimise for a single scalar
reward. However, ignoring objectives, or, combining objectives via a weighted sum,
has been shown to produce sub-optimal results [Vamplew et al., 2008]. For example,
combining objectives via a weighted sum assumes that the utility function of a user
is linear. In many cases the user’s preferences may be nonlinear. For such cases,
using a linear utility function will be inadequate to represent the user’s true utility
[Hayes et al., 2022c]. This will be discussed in more detail in the next paragraph.

34

2.3. A NOTE ON THE LIMITATIONS OF REINFORCEMENT LEARNING &
PLANNING

Figure 2.3: The Deep Sea Treasure problem where the agent aims to find and
collect treasures on the sea floor while minimising fuel.

To illustrate why the aforementioned approaches to solving multi-objective
problems can have limitations, consider the following problem presented in Figure
2.3, known as Deep Sea Treasure [Vamplew et al., 2008]. In Deep Sea Treasure, the
agent controls a submarine and aims to collect treasure on the sea floor. At each
timestep the submarine uses a single unit of fuel, which incurs a cost. Therefore,
depending on the cost of the fuel, the agent may only be able to collect certain
treasures. Deep Sea Treasure is a multi-objective problem where the agent aims
to minimise fuel and maximise treasure. Solving the Deep Sea Treasure problem
is a challenging task. Given the nature of the problem, it is not possible to simply
ignore one of the objectives. Therefore, to apply RL and planning algorithms
to Deep Sea Treasure, the objectives must be combined by using linear weights.
When using linear weights, a number of problems arise. Tuning the weights for each
objective must be completed by an AI engineer using a non-intuitive, semi-blind,
and iterative process. To find the weights for each objective, the AI engineer will
execute the following steps: (a) choose the weights manually for each objective,
where the weights must be positive and sum to 1 (b) execute the learning or
planning algorithm to evaluate if, for the chosen weights, the desired behaviour
can be achieved (c) repeat steps (a) and (b) until weights that can be used to
achieve the desired behaviour are identified. This process can be long, frustrating,
and, in the end, may not provide the exact behaviour desired (just something close
to it). Moreover, tuning the weights is non-intuitive because a small change in the

35

CHAPTER 2. BACKGROUND

0 20 40 60 80 100 120
treasure

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

fu
el

Pareto Front

Convex Hull

Figure 2.4: The policies on Pareto front and the convex hull for the multi-objective
problem known as Deep Sea Treasure.

inputs can lead to a large change in the output, especially if there is a nonlinear
relationship between the objectives [Hayes et al., 2020, 2022c].

Additionally, an AI engineer, not a problem domain expert, is tasked with
determining the weights. In this scenario, the weights the AI engineer selects
may not be accurately aligned with the preferences of a problem domain expert.
As such, the policy computed using the weights specified by an AI engineer may
cause unintended and potentially serious negative side effects [Vamplew et al.,
2018]. In contrast, a problem domain expert has extensive knowledge about the
underlying problem and can leverage this knowledge to avoid such undesirable
outcomes. Therefore, leaving such important decision factors to an AI engineer has
both moral and ethical implications [Vamplew et al., 2018]. A potential solution
to overcome the aforementioned implications would be to elicit the preferences
from a problem domain expert in the form of a utility function and compute
a single optimal policy [Roijers et al., 2013]. Another potential solution is to
compute a set of optimal policies. A problem domain expert can then select a
policy from the computed set of policies that best reflects their preferences [Hayes
et al., 2022c]. Both of the highlighted methods effectively remove the AI engineer
from the decision making process. However, the aforementioned solutions require
an explicitly multi-objective approach, which will be discussed in detail later.

Furthermore, when using linear weights, the range of policies that can be
recovered during learning or planning is limited. By using linear weights to

36

2.4. MULTI-OBJECTIVE REINFORCEMENT LEARNING & PLANNING

combine objectives, only policies that lie on the convex hull can be computed.
This observation has been studied extensively in the multi-objective optimisation
[Coello, 2000] literature and the multi-objective decision making (MODeM)
literature [Vamplew et al., 2008]. For example, in Figure 2.4, both the convex hull
and Pareto front are presented for the Deep Sea Treasure problem. Using linear
weights, only policies on the convex hull (highlighted in red) can be computed.
Therefore, several other policies (highlighted in blue) that may be optimal cannot
be computed. In some settings computing the convex hull may be optimal.
However, for many real-world settings, like Covid-19 modelling [Reymond et al.,
2022b], calculating the Pareto front would be more beneficial, given the Pareto
front generally contains a more diverse set of solutions. A solution to overcome the
challenges and limitations highlighted above is to take a multi-objective approach
to decision making.

2.4 Multi-Objective Reinforcement Learning &
Planning

Multi-objective RL and planning are a natural extension of RL and planning
where multiple objectives are explicitly modelled. Both approaches are described
extensively in the multi-objective decision making (MODeM) literature, therefore
MODeM is used to refer to multi-objective RL and planning. For MODeM, at
timestep t an agent has a state st. At state st, the agent selects an action at and
transitions to the next state st+1. To model problems with multiple objectives,
the reward received by the agent is a reward vector, where there exists a value for
each objective. Therefore, the agent receives a reward, rt+1, for each action a and
next state st+1 transition.

2.4.1 Problem Setting
A common way to model sequential MODeM problems is to utilise a multi-objective
Markov decision process (MOMDP). A MOMDP is a natural extension to MDPs
where multiple objectives are explicitly modelled.

37

CHAPTER 2. BACKGROUND

Definition 6

A multi-objective Markov decision process (MOMDP) is a tuple, M =
⟨S,A, T , γ, µ, R⟩, where:

• S is the state space
• A is the set of actions
• T : S ×A× S → [0, 1] is the probabilistic transition function
• γ is the discount factor
• µ : S ← [0, 1] is a probability distribution over states
• R : S ×A×S → Rn is the probabilistic vectorial reward function. The

reward, r, from this function at each timestep is a vector, where each
component of the vector is a reward for each of the n objectives.

An agent acts according to a policy π : S × A → [0, 1]. Given a state, actions are
selected according to a certain probability distribution. The value function of a
policy π in a MOMDP can be defined as follows:

Vπ = E

[∞∑
k=0

γkrk+1 | π, µ

]
, (2.17)

where rk+1 = R(sk, ak, sk+1) is the reward received at timestep k + 1, and Vπ is
a vector. The state-value function of a MOMDP can be defined as follows:

Vπ(s) = E

[∞∑
k=0

γkrt+k+1 | π, st = s

]
, (2.18)

where Vπ(s) is a vector.
For MODeM a utility function can be used to represent a user’s (human decision

maker’s) preferences over the objectives. The utility function maps the multi-
objective value of a policy to a scalar value,

V π
u = u(Vπ). (2.19)

Applying the utility function, u, to the multi-objective value function effectively
converts a MOMDP to a MDP, where a total ordering over policies can be
determined [Hayes et al., 2022c] by comparing the scalarised values of each policy.

In many scenarios applying the utility function to the value function may be
impossible, infeasible, or undesirable. In this case the value functions must be
utilised. In MOMDPs, value functions only allow for a partial ordering over policies
to be obtained. For value functions, it may be that values on one policy π may be

38

2.4. MULTI-OBJECTIVE REINFORCEMENT LEARNING & PLANNING

superior to a policy π′ on one objective, i, but policy π′ may be superior to policy π
on another objective, j, i.e., V π

i > V π′

i but V π
j < V π′

j [Roijers et al., 2013]. In this
case, to determine which value functions are optimal, further information on how
to prioritise the objectives is required [Hayes et al., 2022c]. Therefore, a utility
function, u, is always assumed to be monotonically increasing in all objectives.
Utilising monotonically increasing utility functions is the minimal assumption for
MODeM, given a user will always want more value in each of the objectives [Hayes
et al., 2022c; Roijers et al., 2013].

Definition 7

A monotonically increasing utility function, u, adheres to the constraint that
if a policy increases for one or more of its objectives without decreasing any
of the objectives, the scalarised value also increases:

(∀i : Vπ
i ≥ Vπ′

i) ∧ (∃i : Vπ
i > Vπ′

i) =⇒ u(Vπ) ≥ u(Vπ′
)

Monotonically increasing utility functions are general and can be used to represent
both linear and nonlinear user preferences. Generally, a total ordering over policies
cannot be determined in MODeM. By assuming utility functions are monotonically
increasing, a partial ordering over polices can be determined to compute sets of
possibly optimal policies.

2.4.1.1 Solution Sets

Depending on the setting, a user may be uncertain about their preferences over
the objectives. As a result, a utility function may not be available and an a priori
scalarisation may not be possible. Furthermore, an a priori scalarisation may be
undesirable even if the utility function is known. In this case, a partial ordering
over policies can be determined using dominance relations, like Pareto dominance
[Pareto, 1896], and sets of policies that are optimal for all monotonically increasing
utility functions can be computed.

Definition 8

The undominated set, U(Π), is the subset of all possible policies Π and
associated value vectors for which there exists a possible utility function u
with a maximal scalarised value:

U(Π) =
{

π ∈ Π
∣∣∣ ∃u,∀π′ ∈ Π : u(Vπ) ≥ u(Vπ′

)
}

. (2.20)

39

CHAPTER 2. BACKGROUND

Furthermore, if a user’s utility function is monotonically increasing, then the
undominated set can be considered to be the Pareto front:

Definition 9

If the utility function u is any monotonically increasing function, then the
Pareto Front (PF) is the undominated set [Roijers et al., 2013]:

PF (Π) = {π ∈ Π | ∄π′ ∈ Π : Vπ′
≻P Vπ}, (2.21)

where ≻P is the Pareto dominance relation,

Vπ ≻P Vπ′
⇐⇒ (∀i : Vπ

i ≥ Vπ′

i) ∧ (∃i : Vπ
i > Vπ′

i). (2.22)

However, the definition of the undominated set allows for excess policies to be
included, whereby excess policies have the same value vector. As a result, not all
policies must be retained to ensure optimal utility. Therefore a coverage set can
be defined where the goal is to make a coverage set as small as possible.

Definition 10

A set CS(Π) is a coverage set if it is a subset of U(Π) and if, for every u, it
contains a policy with maximal scalarised value, i.e.,

CS(Π) ⊆ U(Π) ∧
(
∀u,∃π ∈ CS(Π),∀π′ ∈ Π : u(Vπ) ≥ u(Vπ′

)
)

. (2.23)

In this case, excess policies on the Pareto front can be removed, given only one
of the policies that has the same value vector needs to be maintained to ensure
optimality. Therefore, a set of policies whose value function corresponds to the
Pareto front is called a Pareto coverage set [Hayes et al., 2022c].

As previously highlighted, a user’s preferences over the objectives may be linear
(a positively weighted linear sum). For linear utility functions, the policies in the
undominated set will be the convex hull.

Definition 11

A linear utility function computes the inner product of a weight vector w and
a value vector Vπ

u(Vπ) = w⊤Vπ. (2.24)

Each element of w specifies how much one unit of value for the corresponding
objective contributes to the scalarised value. The elements of the weight vector
w are all positive real numbers and constrained to sum to 1.

40

2.4. MULTI-OBJECTIVE REINFORCEMENT LEARNING & PLANNING

Definition 12

The convex hull (CH) is the subset of Π for which there exists a w (for a
linear u), for which the linearly scalarised value is maximal, i.e., it is the
undominated set for linear utility functions:

CH(Π) = {π ∈ Π | ∃w,∀π′ ∈ Π : w⊤Vπ ≥ w⊤Vπ′
}. (2.25)

Finally, to reduce the size of the convex hull, a convex coverage set (CCS) can
be computed, which can often be significantly smaller than the convex hull and
Pareto front.

Definition 13

A set CCS(Π) is a convex coverage set if it is a subset of CH(Π) and if for
every w it contains a policy whose linearly scalarised value is maximal, i.e.,
if:

CCS(Π) ⊆ CH(Π) ∧
(
∀w,∃π ∈ CCS(Π),∀π′ ∈ Π : w⊤Vπ ≥ w⊤Vπ′

)
.

(2.26)

Depending on the availability of a user’s utility function and the setting, MODeM
algorithms can be deployed to compute a single optimal policy or a set of policies
that are optimal for all monotonically increasing utility functions. Such an
approach highlights the flexibility of MODeM which can be utilised in real-world
problems.

2.4.2 Other Problem Settings
A multi-objective approach can also be taken in other decision making settings, like
MABs and CoGs. A multi-objective approach to these settings is outlined below.

2.4.2.1 Multi-Objective Multi-Armed Bandits

Multi-objective multi-armed bandits (MOMABs) [Drugan and Nowe, 2013] are
a multi-objective extension to MABs. MOMABs lead to important differences
compared to MABs, where there could be several optimal arms for a given problem.
MOMABs can be defined as follows:

41

CHAPTER 2. BACKGROUND

Definition 14

A multi-objective multi-armed bandit (MOMAB) has a finite set of arms,
A, where each arm a ∈ A returns a reward vector, R(a), when it is pulled.
The reward vector has a value per objective. Each arm a has an associated
stationary reward distribution that is unknown to the agent, where µ(a) =
E[R(a)]

Generally, in MOMABs the utility function is unknown. Therefore, the goal of
MOMABs is to learn a set of optimal policies (e.g. the Pareto front or convex
hull). Various regret metrics have been formulated for the multi-objective case.
For example, Pareto regret and a scalarised regret metric have been defined by
Drugan and Nowe [2013] and have been used extensively to evaluate performance
of MOMAB algorithms [Yahyaa et al., 2014; Yahyaa and Manderick, 2015].

2.4.2.2 Multi-Objective Coordination Graphs

Multi-objective coordination graphs (MO-CoGs) are a natural extension to CoGs.
Generally, for MO-CoGs the utility function of a user is unknown a priori, and a
set of optimal policies must be computed. For MO-CoGs, a policy is represented
by a global joint action and the expected value vector for executing the associated
global joint action [Rollón and Larrosa, 2006; Roijers et al., 2013]. A MO-CoG
can be defined as follows:

Definition 15

A multi-objective coordination graph (MO-CoG), a multi-objective extension
of CoGs, is a tuple (D,A,P).

• D = {1, ..., n} is a set of n agents. D is factorised into p, possibly
overlapping, groups of agents De, where e is used to denote a group.

• A = Ai, ...,An is the set of joint actions. Ae denotes the set of local
joint actions for the group De.

• P = p1, ..., pl is a set of l, d-dimensional local payoff functions.
• The joint payoff for all agents is the sum of local payoff functions: p(a) =∑l

e=1 pe(ae).

42

2.4. MULTI-OBJECTIVE REINFORCEMENT LEARNING & PLANNING

2.4.3 A Note on Scalar and Vector Rewards
Some researchers would argue that modelling problems as multi-objective is
unnecessary and that all rewards can be represented as a single scalar signal. For
example, Sutton’s reward hypotheses states, "All of what we mean by goals and
purposes can be well thought of as maximization of the expected value of the
cumulative sum of a received scalar signal (reward)" [Sutton and Barto, 2018].
Furthermore, Silver et al. [2021] define the reward-is-enough hypotheses as follows:
"Intelligence, and its associated abilities, can be understood as subserving the
maximisation of reward by an agent acting in its environment," where Silver et al.
[2021] define a reward as a special scalar observation emitted at each timestep
by a reward signal in the environment. Scalar rewards are suitable for many
problems, however, many other researchers would argue that vector rewards are
more appropriate for general use in decision making problems. Vamplew et al.
[2022] argue against the general use of scalar rewards and the reward-is-enough
hypothesis. Instead, Vamplew et al. [2022] promote following a multi-objective
approach using vector rewards3. A brief overview of some of the arguments for
vector reward outlined by Vamplew et al. [2022] is presented below.

Silver et al. [2021] imply that the maximisation of the cumulative scalar reward
is the general case for decision making problems. However, Vamplew et al. [2022]
provide strong arguments that the maximisation of the cumulative scalar reward
is the special case for decision making problems. Vamplew et al. [2022] argue that
scalar rewards (where the number of rewards n = 1) are a subset of vector rewards
(where the number of rewards n > 1). Therefore, an agent designed to optimise
for a reward vector can also be used in scenarios with a single scalar reward, as the
reward can simply be treated as a one-dimensional vector [Vamplew et al., 2022].
However, the inverse is not true. Silver et al. [2021] state that a solution to a
general problem also provides a solution to any special cases. However, based on
the argument outlined by Vamplew et al. [2022], vector rewards are more general.

Furthermore, Silver et al. [2021] acknowledge that multiple objectives can exist,
but outline that a scalar reward signal can be represented using a linearly weighted
combination of the objectives. As previously discussed in Section 2.3, such an
approach has several limitations and a scalar representation may not be adequate to
represent a user’s true utility [Vamplew et al., 2022]. Additionally, a scalar reward
representing a weighted combination of objectives encodes a fixed weighting of the
objectives. In this case, the agent can only compute policies with respect to that
weighting. In contrast, an agent which uses an explicitly multi-objective approach

3Silver et al. [2021] and Vamplew et al. [2022] make respective arguments about scalar rewards
and vector rewards in the context of artificial general intelligence. Discussion on artificial general
intelligence is considered out of scope of this work and is therefore not included.

43

CHAPTER 2. BACKGROUND

that maintains vector rewards can compute a set of policies which are optimal for
all utility functions. For scenarios where the user’s preferences change over time, a
standard single-objective RL algorithm must start learning from scratch. However,
this is not the case for dynamic utility and multi-policy MODeM methods. For
example, if using a multi-policy method, another policy which best reflects the new
preferences can be selected without the need for further learning. This ensures
rapid, or even immediate, adaption if the utility function changes [Vamplew et al.,
2022]. Such an approach cannot be taken with scalar rewards.

Further arguments against the general use of scalar rewards have been made by
Roijers et al. [2013]. To utilise scalar rewards for problems with multiple objectives,
a MOMDP must be converted to a MDP by using an a priori scalarisation.
However, Roijers et al. [2013] have argued that when following the utility-based
perspective (which will be discussed in the next section), an a priori scalarisation
can be impossible, infeasible, or undesirable [Roijers et al., 2013].

In line with the discussion above, this work advocates for a multi-objective
approach using vector rewards.

2.4.4 The Utility-Based Perspective
An approach often adapted in the MODeM literature is the axiomatic approach,
where the Pareto front is always assumed to be the optimal solution. In certain
settings, taking an axiomatic approach can be useful because the Pareto front is a
set of optimal policies for all monotonically increasing utility functions. However,
the axiomatic approach has several limitations. In many practical settings, domain
knowledge may be readily available, which can be used to model a utility function.
However, by taking an axiomatic based approach it is difficult, if not impossible,
to encode domain knowledge into the process of computing optimal policies. By
exploiting domain knowledge, it may be possible to compute a single optimal
policy. However, when taking an axiomatic approach the Pareto front must be
computed. In this case, any available domain knowledge is not utilised and both
time and computation are wasted calculating solutions which may be sub-optimal
with respect to the user’s utility function. Another limitation is that computing
the Pareto font may be infeasible in certain settings. If the state-action space for
a given problem domain is large enough, it may be prohibitively expensive, and
perhaps infeasible, to compute the Pareto front. As a result, Roijers et al. [2013]
and Hayes et al. [2022c] recommend following the utility-based approach, which is
becoming widely adapted in the MODeM literature [Roijers and Whiteson, 2017;
Reymond et al., 2021].

The utility-based approach considers user utility first, and aims to derive the
optimal solutions from the information available about a user’s utility function.

44

2.4. MULTI-OBJECTIVE REINFORCEMENT LEARNING & PLANNING

By exploiting this knowledge, it is possible to put constraints on the solution set,
which can improve efficiency and make it easier for users to select their preferred
policy. In contrast to the axiomatic approach, it is also possible to encode system
domain knowledge and represent this information as a utility function. The utility-
based approach has the following steps [Hayes et al., 2022c]:

1. Collect all a priori available information regarding a user’s utility.

2. Decide which type of policies (e.g., stochastic or only deterministic) are
allowed.

3. Derive the optimal solution concept from the resulting information of the first
two points.

4. Select or design a multi-objective reinforcement learning or planning
algorithm that fits the solution concept.

5. When multiple policies are required for the solution, design a method for the
user to select the desired policy from the set of optimal policies.

In Step 1, all available information about a user’s utility function is collected. Using
this information it is possible to determine which class of utility functions should
be used. For example, a user’s utility function may be linear. A user may also not
know their preferences and, therefore, a utility function cannot be derived before
planning or learning.

In Step 2, the policy types that are allowed must be decided. For example, in
MODeM settings stochastic policies have been shown to dominate deterministic
policies [Vamplew et al., 2021b; Wakuta and Togawa, 1998].

Using the information gathered in Step 1 and Step 2, the appropriate solution
concept must be selected. For example, if the utility function is unknown, then
a set of optimal solutions must be computed. However, if the utility function is
known to be linear, then the convex hull can be computed. Moreover, if the utility
function is known, then a single optimal policy can be computed for the known
utility function.

In Step 3, the appropriate solution concept must derived. The selection of the
solution concept depends on Step 1 and Step 2. For example, if the utility function
of a user is known and linear, then any type of policy is allowed. In this case,
the known utility function scenario can be selected as the solution concept, and
a single optimal policy can be computed. In Section 2.4.5, each solution concept
is discussed in detail.

In Step 4 an algorithm to compute the desired solution must be selected or
designed. Therefore, an algorithm from the literature can be selected or a novel

45

CHAPTER 2. BACKGROUND

algorithm must be designed to solve the multi-objective problem. Depending on
the availability of the utility function, different types of algorithms must be utilised.
If the utility function is known, then a single-policy algorithm can be used. Single-
policy algorithms compute a single optimal policy for a given utility function.
However, if the utility function is unknown, then a multi-policy algorithm must
be used to compute a set of optimal policies for all monotonically increasing utility
functions.

Finally, the aim of Step 5 is to aid the user in selecting a policy which best
reflects their preferences. Step 5 is only relevant when a set of optimal policies
has been computed in Step 4. Therefore, a user must select a single policy from
the set of returned policies that best reflects their preferences. In settings where a
small number of policies is returned to a user, this process may be straightforward.
However, for continuous settings the computed solution set may be large and,
therefore, a user may have difficulty in selecting a policy. While some work has
been presented in this area [Zintgraf et al., 2018], how to appropriately visualise
and present a set of polices to a user remains an open question.

Once the desired solution is selected in Step 5, then the selected policy can
be executed during the execution phase. Together, these steps form a complete
pipeline to set up a multi-objective reinforcement learning or planning system
[Hayes et al., 2022c].

2.4.5 Multi-Objective Solution Concepts
Many scenarios require an explicitly multi-objective approach. As a result, Roijers
et al. [2013] present three scenarios where a multi-objective approach is required as
illustrated in (a), (b) and (c) in Figure 2.5. Recently, Hayes et al. [2022c] proposed
three new scenarios hat require a multi-objective approach: the interactive decision
support scenario (d), the dynamic utility function scenario (e), and the review
and adjust scenario (f). Figure 2.5 presents each of the outlined scenarios, and
shows that each scenario consists of a planning or learning phase, an execution
phase, and for some scenarios a selection phase. Each of the proposed scenarios
is described below.

In the unknown utility function scenario (a) [Rădulescu et al., 2020], the
utility functions of a user is unknown at the time of learning or planning, therefore
a priori scalarisation is undesirable. In this scenario, a single optimal policy
cannot be computed, given there is little information available about the user’s
utility function. Therefore, a set of policies, that are optimal for all monotonically
increasing utility functions, must be computed (e.g. a coverage set). A policy can
then be selected from the set of optimal policies when more information about the
user’s utility functions becomes available. During the selection phase, it is assumed

46

2.4. MULTI-OBJECTIVE REINFORCEMENT LEARNING & PLANNING

Figure 2.5: The six motivating scenarios for MOMDPs: (a) the unknown utility
function scenario, (b) the decision support scenario, (c) the known utility function
scenario, (d) the interactive decision support scenario, (e) the dynamic utility
function scenario, and (f) the review and adjust scenario [Hayes et al., 2022c].

47

CHAPTER 2. BACKGROUND

that the utility function of a user becomes known, therefore, a utility revelation
step is included where the utility function becomes explicit.

In the decision support scenario (b), the user’s preferences over the objectives
are unknown or difficult to specify. Similarly to the unknown utility function
scenario, an a priori scalarisation is infeasible given the utility function is unknown.
Therefore a set of optimal policies must be computed. Defining a utility function
can be difficult, if not infeasible. Therefore, during the selection phase the decision
relies on the user, and the utility function remains implicit in the decision taken.

In the known utility function scenario (c), the user’s preferences are known.
Therefore, the user’s utility function is known at the time of learning or planning.
As a result, scalarisation is possible and a single optimal policy can be computed. It
is important to note, in some cases a priori scalarisation can lead to an intractable
problem [Rădulescu et al., 2020; Roijers et al., 2013; Hayes et al., 2022c].

In the interactive decision support scenario (d), the agent has to learn about
both the preferences of the user and the environment [Roijers et al., 2018a]. Given
the uncertainty about the user’s preferences, applying a priori scalarisation in this
scenario can be both undesirable and infeasible. Therefore, preference elicitation is
utilised during learning to remove uncertainty about the user’s utility function. A
method to elicit information about a user’s preferences is to present the user with
different solutions during the learning phase. The user can then rank the solutions
in order of preference. Using this information it would be possible to get a more
accurate representation of the user’s preferences and compute an optimal solution.

In the dynamic utility function scenario (e), the user’s preferences over
objectives changes over time [Natarajan and Tadepalli, 2005]. Therefore, applying
a priori scalarisation would be undesirable. In this case, it would be optimal to
compute a finite number of policies over time. Then a non-dominated policy for
any utility function can be chosen and improved upon by further learning for that
utility. As shown by Abels et al. [2019]; Natarajan and Tadepalli [2005] efficiency
can be improved by reusing information from previously encountered utilities.

In the review and adjust scenario (f), a user may be uncertain about their
preferences over objectives. A further complicating factor in this scenario is a user’s
preferences over objectives may also change over time. Therefore, applying a priori
scalarisation is infeasible because there is too much uncertainty around the utility
function of the user. As a result a set of optimal policies must be computed during
the learning or planning phase. During the selection phase the user can select a
policy which accurately represents their preferences. During the execution phase a
review step is introduced, where the user can review their chosen solution before
the solution is executed. If the user’s preferences have changed, the user can simply
adjust their selected solution to accurately reflect their updated preferences.

48

2.4. MULTI-OBJECTIVE REINFORCEMENT LEARNING & PLANNING

The review process can also update the MOMDP, which can alter the computed
set of solutions. This may, for example, occur when a new objective is identified
that was previously missed.

2.4.6 Multi-Objective Reinforcement Learning & Planning
Algorithms

To compute policies for each of the scenarios outlined above, explicitly multi-
objective algorithms must be deployed. In this section an overview of various
algorithms for a number of settings is provided.

2.4.6.1 Stateless & Bandit Algorithms

Stateless algorithms can be utilised to solve MO-CoGs. For example, multi-
objective variable elimination (MOVE) methods extend traditional variable
elimination (VE) [Koller and Friedman, 2009] to problems with multiple-objectives.
MOVE methods have been used to compute sets of optimal policies for MO-CoGs.
Pareto multi-objective variable elimination (PMOVE) [Rollón and Larrosa, 2006;
Rollón, 2008] computes the Pareto front for MO-CoGs. Convex hull variable
elimination (CMOVE) [Roijers et al., 2015] computes the convex hull for MO-CoGs.
CMOVE shows that computing the convex hull can be more computationally
efficient compared to computing the Pareto front [Roijers et al., 2015]. Other
stateless algorithms use AND/OR branch and bound methods [Marinescu, 2009] or
influence diagrams [Marinescu et al., 2017, 2012] to solve multi-objective problems.

Many algorithms have been proposed to solve MOMABs. For example, the
UCB algorithm has been used as a starting point for several multi-objective
algorithms. Drugan and Nowe [2013] extend UCB using both linear and Chebyshev
scalarisations; they also extend UCB with Pareto dominance. Furthermore,
Gaussian process Thompson sampling [Roijers et al., 2020] utilises both TS with
Gaussian processes to learn for the interactive decision support scenario. Turgay
et al. [2018] extended contextual MABs to model multiple-objectives and propose
a Pareto contextual zooming algorithm to minimise Pareto regret.

2.4.6.2 Single-Policy Algorithms

In the known utility function scenario, a single optimal policy must be computed
and executed. For this setting, single-policy algorithms are deployed when learning
or planning. The simplest and most-widely adopted approach is to extend existing
RL or planning methods to handle multiple-objectives. For example, when
the utility function is linear, applying a linear scalarisation is the equivalent of
transforming a MOMDP to a MDP. In this case, a single-objective RL or planning

49

CHAPTER 2. BACKGROUND

algorithm can be used to compute a single optimal policy using weighted or
unweighted linear utility functions [Aissani et al., 2008; Guo et al., 2009; Perez
et al., 2009; Shabani, 2009]. A limitation of linear utility functions is that they are
not always an adequate representation of a user’s preferences over objectives [Hayes
et al., 2022c]. To overcome this limitation, nonlinear utility functions must be used
[Hayes et al., 2022c; Roijers et al., 2013]. However, nonlinear utility functions do not
distribute across the sum of the immediate and future returns [Roijers et al., 2018b],
which violates the assumption of additive returns in the Bellman equation [Hayes
et al., 2022c; Roijers et al., 2018b]. Therefore, explicitly multi-objective algorithms
must be used to compute policies for nonlinear utility functions. Reymond et al.
[2021] and Roijers et al. [2018b] propose single policy multi-objective algorithms
that can learn policies for nonlinear utility functions. These approaches use Monte
Carlo rollouts to compute the future returns, and apply the utility function to the
cumulative return vector.

Policy gradient methods have also been extended to multi-objective settings. For
example, Siddique et al. [2020] extend PPO [Schulman et al., 2017] and A2C [Mnih
et al., 2016] to compute a single policy that is fair in all objectives. Siddique
et al. [2020] define a fair solution as one that is Pareto optimal, satisfies the
equal treatment of equals principal, and satisfies the Pigou-Dalton principle. To
implement these concepts Siddique et al. [2020] use the generalised Gini social
welfare function. Furthermore, Pan et al. [2020] propose a policy gradient and
planning method to compute a single policy in multi-objective settings.

2.4.6.3 Multi-Policy Algorithms

Many multi-objective scenarios exist where the utility function of a user is unknown
or uncertain. In this setting, it is not possible to apply an a priori scalarisation.
Therefore, multi-policy algorithms must be deployed to compute a set of optimal
policies. Multi-policy methods are divided into two categories: outer loop methods
and inner loop methods.

Outer loop methods solve a series of single objective problems to compute a
coverage set. For example Mossalam et al. [2016] create an outer loop deep RL
multi-policy algorithm by applying the optimistic linear support algorithm [Roijers
et al., 2015] to a deep scalarised Q-learning algorithm. The proposed algorithm
learns an optimal policy for each optimal linear weight, where the policy learned
is represented by a DQN instance. The set of policies returned to the user is the
convex hull.

Inner loop methods are explicitly designed to learn multiple policies in a single
pass. Some inner loop methods follow the utility-based approach [Abels et al.,
2019; Castelletti et al., 2012], however, many follow the axiomatic based approach

50

2.4. MULTI-OBJECTIVE REINFORCEMENT LEARNING & PLANNING

[Parisi et al., 2017; Ruiz-Montiel et al., 2017; Van Moffaert and Nowé, 2014b;
Wiering et al., 2014]. An example of an inner loop method is Pareto Q-learning
[Van Moffaert and Nowé, 2014b]. Pareto Q-learning learns sets of Pareto optimal
policies in a single run in episodic environments with deterministic and stochastic
reward functions. Pareto Q-learning learns by bootstrapping sets of Q-vectors
[Van Moffaert and Nowé, 2014b], where Van Moffaert and Nowé [2014b] propose
a mechanism that separates the expected immediate reward vector from the set
of expected future discounted reward vectors. By taking this approach, it is
possible to update the sets of policies and to exploit the learned policies consistently
throughout the state space [Van Moffaert and Nowé, 2014b]. Pareto Q-learning
returns the Pareto front to the user during the selection phase. However, when the
reward function is stochastic, Pareto Q-learning suffers from the policy following
problem [Roijers et al., 2021] making policy execution difficult in settings where
the reward function is stochastic.

Many other multi-policy methods exist in MODeM literature. Reymond et al.
[2022a] extend upside down RL [Kumar et al., 2019; Schmidhuber, 2019] to multi-
objective settings and learn to approximate the Pareto front for settings with
continuous state and action spaces [Reymond et al., 2022b]. Furthermore, Yang
et al. [2019], Abels et al. [2019], Reymond and Nowé [2019], and Alegre et al. [2022]
propose interesting multi-policy MODeM methods.

For planning settings, methods like convex hull Monte Carlo tree search
(CHMCTS) extend MCTS to compute the convex hull. Multi-objective Monte
Carlo tree search (MOMCTS) [Wang and Sebag, 2012] extends MCTS to multi-
objective settings and can learn the Pareto front in deterministic environments.
Bryce et al. [2007] propose a multi-objective LAO∗ algorithm to compute the
Pareto front in multi-objective planning settings. White [1982] adapted dynamic
programming to find Pareto optimal policies for infinite horizon MOMDPs.

2.4.7 Multi-Objective Optimality Criteria
When following the utility-based perspective, depending on how the utility
function is utilised, different optimality criteria can arise. The MODeM literature
distinguishes between two optimality criteria: the scalarised expected returns
(SER) and the expected scalarised returns (ESR). The selection of which optimality
criterion to apply depends on how the utility of a user is derived. In scenarios where
the utility of a user is derived from the expected outcome over multiple executions
of a policy, the SER criterion should be optimised [Hayes et al., 2022c]:

V π
u = u

(
E

[∞∑
t=0

γtrt | π, µ0

])
. (2.27)

51

CHAPTER 2. BACKGROUND

Under the SER criterion the expected value vector is computed, then the utility
function is applied. Therefore, under the SER criterion the utility of the
expectation is computed. In this case, a user will execute the selected policy
multiple times during the execution phase. The SER criterion is the most
commonly used criterion in the multi-objective (single-agent) MODeM literature
[Alegre et al., 2022; Wang and Sebag, 2012; White, 1982; Xu et al., 2020]. For SER,
a set of non-dominated policies that are optimal for all possible utility functions
is known as a coverage set.

Applying the utility function to the returns and then calculating the expected
utility leads to the ESR criterion:

V π
u = E

[
u

(∞∑
t=0

γtrt

)
| π, µ0

]
. (2.28)

In scenarios where the utility function of a user is derived from the single execution
of a policy, the ESR criterion should be optimised [Hayes et al., 2022c]. Under
the ESR criterion, the utility function is applied to the returns first, and then the
expectation is computed. Therefore, the expected utility is computed. In this case,
a user may execute their selected policy once during the execution phase. The
ESR criterion is the most commonly used criterion in the game theory literature
on multi-objective games [Rădulescu et al., 2020; Röpke et al., 2021]. However, the
ESR criterion has largely been ignored in the MODeM literature [Hayes et al.,
2022c].

2.5 The Expected Scalarised Returns Optimality
Criterion

The expected scalarised returns (ESR) criterion was introduced by Roijers et al.
[2013], where the ESR criterion was identified as an open research question in the
MODeM literature. Recently, Rădulescu et al. [2020] identified that the distinction
between the ESR criterion and the SER criterion does not exist when the utility
function of a user is linear. However, Rădulescu et al. [2020] also identified that
the policies computed under the ESR criterion and the SER criterion can be
different when the utility function of a user is nonlinear. The findings presented by
Rădulescu et al. [2020] were demonstrated only for multi-agent settings; no results
for single-agent settings were presented. However, in the MODeM literature it has
been assumed that the policies for the ESR criterion and the SER criterion can
be different for nonlinear utility functions in single-agent settings [Roijers et al.,
2018b; Hayes et al., 2022c]. As a result, some explicitly multi-objective methods

52

2.5. THE EXPECTED SCALARISED RETURNS OPTIMALITY CRITERION

have been developed that compute policies for the ESR criterion [Roijers et al.,
2018b; Reymond et al., 2021; Malerba and Mannion, 2021; Vamplew et al., 2021a].
Furthermore, no multi-policy methods for the ESR criterion have been developed.
It has not been explored in the literature if expected value vectors based methods,
which are used to compute policies under the SER criterion, can be utilised to
determine a partial ordering over policies under the ESR criterion. Moreover, a set
of optimal policies for the ESR criterion has yet to be defined.

As previously mentioned, in the MODeM literature, when computing policies
under the ESR criterion, the utility function is assumed to be nonlinear. Computing
policies for nonlinear utility function can be challenging because nonlinear utility
functions do not distribute across the sum of the immediate and future returns,
which violates the assumption of additive returns in the Bellman equation [Hayes
et al., 2022c],

max
π

E

[
u

(
R−

t +
∞∑

i=t

γiri

) ∣∣∣∣∣ π, st

]
̸=

u(R−
t) + max

π
E

[
u

(∞∑
i=t

γiri

) ∣∣∣∣∣ π, st

]
,

(2.29)

where u is a nonlinear utility function and R−
t =

∑t−1
i=0 γiri. To compute policies

for nonlinear utility functions, methods which utilise the Bellman equation must
augment the state by conditioning the state on the accrued returns. This approach
ensures the utility for nonlinear utility functions can be correctly calculated.
Furthermore, if the accrued returns are utilised to calculate the utility, but the
state is not augmented with the accrued returns, the Markov property is broken
[Reymond et al., 2021]. Therefore, to ensure the Markov property is intact, the
state must be augmented using the accrued returns [Reymond et al., 2021]. The
accrued returns, R−

t , is the sum of the rewards received from timestep 0 to timestep
t − 1. However, by taking this approach the algorithm may fail to converge to
the optimal policy [Hayes et al., 2022c]. Furthermore, explicitly multi-objective
methods must be used to compute policies for nonlinear utility functions.

A method that can learn policies for nonlinear utility functions under ESR
criterion is expected utility policy gradient (EUPG) [Roijers et al., 2018b]. EUPG
is an extension of policy gradient [Sutton and Barto, 2018; Williams, 1992], where
Monte Carlo simulations are used to compute the returns and optimise the policy.
EUPG calculates the accrued returns, R−

t , which is the sum of the immediate
returns received as far as the current timestep, t − 1. EUPG also calculates the
future returns, R+

t , and uses Monte Carlo rollouts to calculate the future returns,
R+

t . Using both the accrued and future returns enables EUPG to optimise over

53

CHAPTER 2. BACKGROUND

the utility of the full returns of an episode, where the utility function is applied
to the sum of R−

t and R+
t .

Policy gradient methods adapt the policy towards the attained utility by gradient
descent. For EUPG the utility of the sum of the accrued and future returns is
calculated inside the loss function, which results in the following:

L(π) = −
T∑

t=0
u(R−

t + R+
t) log(πθ(a|s, R−

t , t)). (2.30)

Roijers et al. [2018b] demonstrated that for the ESR criterion the accrued and
future returns must be considered when learning in order to learn a good policy.
Applying this consideration to EUPG, the algorithm achieves the state-of-the-art
performance under the ESR criterion.

Although the ESR criterion has received some attention in recent years [Roijers
et al., 2018b; Rădulescu et al., 2020; Malerba and Mannion, 2021], the ESR criterion
still largely remains under-explored. It has yet to be determined for single-agent
settings if the policies computed for the ESR criterion and the SER criterion
are different for nonlinear utility functions. If the policies can be different for
nonlinear utility functions, algorithms that can compute policies explicitly for the
ESR criterion must be developed. Furthermore, it is unknown whether current
multi-policy methods that utilise expected value vectors to determine a partial
ordering over policies under the SER criterion can be used for the ESR criterion.
Additionally a set of optimal policies has yet to be determined for the ESR criterion.

In scenarios where a user may only have a single opportunity to execute the
policy, the ESR criterion should be optimised. Therefore, the ESR criterion aligns
with many real-world decision making scenarios. To effectively extend MODeM to a
broad range of real-world problems, the ESR criterion must be investigated further.

54

3 | Algorithms for Known
Utility Functions1

Chapter 3 introduces the first contributions of this thesis. As previously
highlighted in Chapter 2, designing algorithms that compute policies for nonlinear
utility functions poses a significant challenge in multi-objective decision making
(MODeM). The policies computed for nonlinear utility functions under the
scalarised expected returns (SER) criterion and the expected scalarised returns
(ESR) criterion have been shown to be different in multi-agent settings. However,
whether this also holds in single-agent settings has not been comprehensively
determined.

This chapter aims to investigate the impact of nonlinear utility functions on
different MODeM optimality criteria in single-agent settings, and also proposes
algorithms that can compute policies for the ESR criterion. The contributions of
Chapter 3 are as follows:

1. Section 3.1 investigates if, for single-agent settings, the policies computed
under the SER criterion and ESR criterion can be different when the utility
function is nonlinear. It is demonstrated by example that policies computed
for nonlinear utility functions in single-agent settings can be different when
optimising for the SER criterion and the ESR criterion.

1The contributions presented in Chapter 3 are published in the following papers: [Hayes et al.,
2021a,b, 2022d]

55

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

2. Section 3.2 outlines Monte Carlo tree search for nonlinear utility functions
(NLU-MCTS). The outlined algorithm can also compute policies for the
ESR criterion. The proposed algorithm overcomes the challenges previously
outlined when optimising for nonlinear utility functions.

3. Section 3.3 proposes a novel distributional Monte Carlo tree search (DMCTS)
algorithm that computes an approximate posterior distribution and utilises
Thompson sampling (TS) for exploration during planning. DMCTS computes
policies for nonlinear utility functions and can also optimise for the ESR
criterion. DMCTS also overcomes the previously highlighted challenges that
arise when optimising for nonlinear utility functions.

4. Finally, Section 3.4 performs an empirical evaluation where the algorithms
proposed in Section 3.2 and Section 3.3 are evaluated against state-of-the-
art algorithms from the literature in several sequential MODeM problems.
Section 3.4 outlines how both proposed algorithms overcome the challenges
associated with nonlinear utility functions to achieve good performance in
each evaluation domain.

3.1 A Note on Nonlinear Utility Functions
As previously mentioned, different optimality criteria exist for MODeM. In
scenarios where the utility of a user is derived from multiple executions of a policy,
the agent should optimise over the SER criterion. In scenarios where the utility
of a user is derived from a single execution of a policy, the agent should optimise
for the ESR criterion.

Consider the following example: a power plant that generates electricity for a
city and emits harmful CO2 and greenhouse gases. City regulations have been
imposed which limit the amount of pollution that the power plant can generate.
If the regulations require that the emissions from the power plant do not exceed
a certain amount over an entire year, the SER criterion should be optimised. In
this scenario, the regulations allow for the pollution to vary day to day, as long as
the emissions do not exceed the regulated level for a given year. However, if the
regulations are much stricter and the power plant is fined every day it exceeds a
certain level of pollution, it is beneficial to optimise under the ESR criterion.

The majority of MODeM research focuses on linear utility functions. However,
in the real world, a user’s utility function may be nonlinear. For example, a utility
function is nonlinear in situations where a minimum value must be achieved on each
objective [O’Callaghan and Mannion, 2021]. Focusing on linear utility functions
limits the applicability of MODeM in real-world decision making problems. For

56

3.1. A NOTE ON NONLINEAR UTILITY FUNCTIONS

L1
P(L1= R) R

0.5 (4, 3)
0.5 (2, 3)

L2
P(L2=R) R

0.9 (1, 3)
0.1 (10, 2)

Table 3.1: A lottery, L1, has two possible returns, (4, 3) and (2, 3), each with a
probability of 0.5. A lottery, L2, has two possible returns, (1, 3) with a probability
of 0.9 and (10, 2) with a probability of 0.1.

example, linear utility functions cannot be used to learn policies in concave regions
of the Pareto front [Vamplew et al., 2008]2. Furthermore, if a user’s preferences are
nonlinear, these are fundamentally incompatible with linear utility functions. In
this case, strictly multi-objective methods must be used to learn optimal policies
for nonlinear utility functions. In MODeM, for nonlinear utility functions, different
policies are preferred when optimising under the ESR criterion versus the SER
criterion [Rădulescu et al., 2020]. While this has been shown in multi-agent settings,
the difference in policies for nonlinear utility functions for different optimality
criteria has not been shown in single-agent settings. Therefore, the example below
is used to investigate if different policies are preferred for nonlinear utility function
under different MODeM optimality criteria3.

For example, a decision maker has to choose between the following lotteries, L1
and L2, which are highlighted in Table 3.1.

The decision maker has the following nonlinear utility function:

u(x) = x2
1 + x2

2, (3.1)

where x is a vector returned from R in Table 3.1, and x1 and x2 are the values
of two objectives. Note that this utility function is monotonically increasing for
x1 ≥ 0 and x2 ≥ 0. Under the SER criterion, the decision maker will compute
the expected value of each lottery, apply the utility function, and select the lottery
that maximises their utility function. Let us consider which lottery the decision
maker will play under the SER criterion:

L1 : E(L1) = 0.5(4, 3) + 0.5(2, 3) = (2, 1.5) + (1, 1.5) = (3, 3)

L1 : u(E(L1)) = (32 + 32) = 9 + 9 = 18
2When using linear utility functions only policies that lie on the convex hull can be recovered,

reducing the number of optimal policies that can be computed. See to Section 2.3.
3It is important to note that, for linear utility functions, the distinction between ESR and

SER does not exist [Rădulescu et al., 2020].

57

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

L2 : E(L2) = 0.9(1, 3) + 0.1(10, 2) = (0.9, 2.7) + (1, 0.2) = (1.9, 2.9)

L2 : u(E(L2)) = (1.92 + 2.92) = 3.61 + 8.41 = 12.02

Therefore, a decision maker with the utility function in Equation 3.1 will prefer to
play lottery L1 under the SER criterion.

Under the ESR criterion, the decision maker will first apply the utility function
to the return vectors, compute the expectation, and select the lottery to maximise
their utility function. Let us consider how a decision maker will choose which
lottery to play under the ESR criterion:

L1 : E(u(L1)) = 0.5(u(4, 3)) + 0.5(u(2, 3)) = 0.5(42 + 32) + 0.5(22 + 32)

= 0.5(25) + 0.5(13) = 12.5 + 6.5 = 19

L2 : E(u(L2)) = 0.9(u(1, 3)) + 0.1(u(10, 2)) = 0.9(12 + 32) + 0.1(102 + 22)

= 0.9(10) + 0.1(104) = 9 + 10.4 = 19.4

Therefore, a decision maker with the utility function in Equation 3.1 will prefer to
play lottery L2 under the ESR criterion. From the example, it is clear that users
with the same nonlinear utility function can prefer different policies, depending on
which multi-objective optimisation criterion is selected. Therefore, it is critical that
the distinction between ESR and SER is taken into consideration when selecting
a MODeM algorithm to compute optimal policies4.

The majority of MODeM research focuses on the SER criterion [Rădulescu
et al., 2020]. By comparison, the ESR criterion has received very little attention
from the MODeM community [Roijers et al., 2013; Hayes et al., 2022c; Roijers
et al., 2018b; Rădulescu et al., 2020]. Many of the traditional MODeM methods
cannot be used when optimising under the ESR criterion, given nonlinear utility
functions in MOMDPs do not distribute across the sum of immediate and future
returns, which invalidates the Bellman equation [Roijers et al., 2018b]. As a result
single objective methods cannot be used to compute policies for nonlinear utility
functions. This poses a significant challenge for the RL and planning community
given the majority of methods cannot be utilised to compute policies for nonlinear
utility functions. However, it is possible to utilise multi-objective methods [Roijers
et al., 2018b]. Furthermore, Section 3.2 and Section 3.3 propose two novel multi-
objective algorithms that can compute policies for nonlinear utility functions under
the ESR criterion.

4It is important to note, Roijers et al. [2018b] briefly discuss the differences between the SER
criterion and the ESR criterion in single-agent settings for nonlinear utility functions. However,
the work of Roijers et al. [2018b] does not formally address or investigate the differences in the
values of policies under the different optimality criteria for nonlinear utility functions.

58

3.2. MONTE CARLO TREE SEARCH FOR NONLINEAR UTILITY
FUNCTIONS

3.2 Monte Carlo Tree Search for Nonlinear Utility
Functions

In Section 3.1 it was shown that the policies computed under the SER criterion and
the ESR criterion can be different when the utility function is nonlinear. Therefore
dedicated methods that can optimise for the ESR criterion must be developed.

To compute policies for the ESR criterion when the utility function is nonlinear
and known a priori [Hayes et al., 2022c], a Monte Carlo tree search for nonlinear
utility functions (NLU-MCTS) algorithm is presented. As shown by Roijers et al.
[2018b], to compute optimal policies for nonlinear utility functions under the ESR
criterion, both the accrued and future returns must be taken into consideration
before applying the utility function. Therefore, an algorithm must either maintain
a distribution over the returns or have some method which allows the agent to
sample from the underlying return distribution of the environment. NLU-MCTS
utilises the latter, by performing Monte Carlo simulations to compute the future
returns.

Usually, in single-objective MCTS an expectation of the returns is maintained
at each chance node and the agent seeks to maximise the expectation. When
the utility function is nonlinear, making decisions based on the expected
returns does not account for the potential undesired outcomes a decision might
have. For MODeM under the ESR criterion, decisions must be made with
sufficient information to avoid undesirable outcomes and exploit positive outcomes.
Therefore, computing the utility of the cumulative returns (the returns received
from executing a policy), can be used to replace the expected future returns (of
vanilla MCTS) at each node.

Before a method to compute the accrued and future returns is presented, the
structure of the search tree utilised by NLU-MCTS is outlined. Under the
ESR criterion, the environment can be stochastic, where the state transitions
or reward function are stochastic. To handle this uncertainty, NLU-MCTS
builds an expectimax search tree using the same planning phase as MCTS (see
Section 2.1.1.3). A search tree is a representation of the state-action space that
is incrementally built via the steps of the underlying MCTS algorithm. An
expectimax search tree [Veness et al., 2011] uses both decision and chance nodes.

Figure 3.1 describes a search tree constructed by NLU-MCTS, which contains
both decision and chance nodes. Each decision node represents a state, action,
and reward of a MOMDP, where each decision node has a child chance node per
action. In Section 3.4, environments with stochastic rewards are examined. Each
chance node represents the state and action of a MOMDP. At each chance node, the
environment is sampled. For NLU-MCTS, if a new observation-reward combination

59

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

Figure 3.1: A representation of a search tree constructed using NLU-MCTS for a
problem with stochastic rewards and two actions. The search tree contains both
decision nodes, represented by circular nodes, and chance nodes, represented by
octagons.

is generated when sampling the environment, a new child decision node is created.
This process repeats as the agent traverses the search tree.

It is important to note that each chance node and its parent decision node share
the same state and action. A child decision node is only created when a new
observation-reward combination is received when sampling the environment. To
build and traverse a search tree similar to MCTS, NLU-MCTS uses the following
phases: selection, expansion, simulation, and backpropagation.

Now that the structure of the underlying search tree has been outlined, it is
possible to describe how the cumulative returns and future returns are calculated.
The accrued returns is the sum of returns the NLU-MCTS algorithm receives during
the execution phase from timestep 0, t0, to timestep t− 1, where rt is the reward
vector received at each timestep,

R−
t =

t−1∑
t0

rt. (3.2)

Given the underlying planning phases of MCTS are utilised (see Section 2.1.1.3), it
is possible to use the simulation phase to compute the future returns. As already
mentioned, during the simulation phase the agent performs a random rollout (also
known as a Monte Carlo simulation) until a terminal state is reached. Therefore,
the future returns can be computed from Monte Carlo simulations performed at
each node during planning. Taking this into consideration, the future returns,
R+

t , is the sum of the rewards received when traversing the search tree during
the planning phase and Monte Carlo simulations from timestep, t, to a terminal

60

3.2. MONTE CARLO TREE SEARCH FOR NONLINEAR UTILITY
FUNCTIONS

node, tn,

R+
t =

tn∑
t

rt. (3.3)

Finally, before the utility function is applied, the cumulative returns must be
calculated. The cumulative returns, Rt, is the sum of the accrued returns, R−

t ,
and the future returns, R+

t ,

Rt = R−
t + R+

t . (3.4)

In other words, the cumulative returns is the returns received from a full policy
execution. Once the cumulative returns, Rt, have been calculated, it is possible to
compute the utility of the returns, u(Rt), to optimise for the ESR criterion.

As already highlighted, NLU-MCTS builds an expectimax search tree and utilises
both decision and chance nodes. Over multiple iterations of the planning phase,
NLU-MCTS constructs a search tree using the selection, expansion, simulation,
and backpropagation phases used by traditional MCTS [Silver et al., 2016]. The
NLU-MCTS algorithm is outlined in Algorithm 3.

Firstly, NLU-MCTS utilises the selection phase (Algorithm 4, see Figure 3.2),
where the agent traverses the search tree starting at the current root decision
node [Shen et al., 2019]. During the selection phase, outcome selection is utilised
for chance nodes and action selection is utilised for decision nodes. When the
agent arrives at a chance node, outcome selection is performed where the agent
simulates the environment model (Algorithm 6). The agent then moves to the
child decision node corresponding to the observation-reward combination received
from the simulation [Shen et al., 2019]. When the agent arrives at a decision node,
nd, the agent must decide which of its child chance nodes, Cnd

to select. To do so,
NLU-MCTS selects the chance node nc, which maximises the UCB term:

bestChild = arg maxnc∈Cnd
UCB(nd, nc) (3.5)

where the UCB term is defined as follows:

UCB(nd, nc) = vnc

Nnc

+ C ×

√
ln(Nnd

)
Nnc

, (3.6)

where vnc is the total utility of the child node nc, vnc

Nnc
is the expected utility of

the child node nc, C is an exploration value, and Nnd
and Nnc

are the number of
times nd and nc have been visited respectively. Equation 3.6 ensures that the agent
explores areas of the tree that have not been visited often while also ensuring that

61

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

Figure 3.2: During the selection phase, NLU-MCTS starts at the root node and
traverses down the search tree (nodes highlighted in red). The agent traverses the
search tree until a leaf decision node is found.

the agent exploits nodes that have good returns. The agent then traverses to the
chance node corresponding to the best action. The agent continues to traverse the
search tree until a decision node is encountered that has not had all of its children
expanded. The agent then progresses to the expansion phase (Algorithm 5) where
the selected decision node is utilised. It is important to note that, as the agent
traverses the search tree, the future returns, R+

t , is being computed incrementally.
During the expansion phase (Algorithm 5, see Figure 3.3), the agent considers a

decision node selected during the previous phase that has not had all of its children
expanded. There are three steps to the expansion phase. First, for the decision
node, a child chance node corresponding to a previous remaining action is created
for a randomly selected action. Second, the agent simulates the environment model
for the newly created chance node. Finally, for the previously created chance
node, the agent creates a child decision node corresponding to the observation-
reward combination received. It is important to note that both a chance node
and a decision node are generated during the expansion phase. The newly created
decision node is then utilised in the next phase, known as the simulation phase.

After expansion, the created decision node must be simulated. Figure 3.4
highlights the simulation phase (Algorithm 7) for NLU-MCTS. When a decision
node is simulated, a random rollout is executed. During the rollout, a random
policy is followed until it reaches a terminal state. Once the simulation is completed,
the cumulative returns, Rt, can be computed. The future returns, R+

t , is equal to
the sum of the rewards received when traversing the search tree and the returns
from the random rollout in the simulation phase. The cumulative returns, Rt, is
then computed by adding both the accrued returns, R−

t , and the future returns,
R+

t . It is important to note that Rt is the same for every node visited during
backpropagation.

62

3.2. MONTE CARLO TREE SEARCH FOR NONLINEAR UTILITY
FUNCTIONS

Figure 3.3: During the expansion phase of NLU-MCTS (nodes highlighted in red),
a child chance node is created. The newly generated chance node simulates the
environment and creates a child decision for the corresponding reward received.

Figure 3.4: During the simulation phase of NLU-MCTS (nodes highlighted in red),
the decision node generated in the expansion phase executes a random policy until
a terminal state. Finally, the cumulative returns, Rt, is computed.

63

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

Rt

Rt

Rt

Rt

Figure 3.5: During the backpropagation phase, the cumulative returns, Rt, is
backpropagated to each node visited during the planning phase.

Figure 3.5 and Algorithm 8 outline the backpropagation phase of NLU-
MCTS. Once the simulation phase is completed, the cumulative returns, Rt, is
backpropagated to each node visited during the previous phases of the search tree.
As the agent backpropagates the cumulative returns, the agent updates the required
statistic for each node.

Under the ESR criterion, the utility of the cumulative returns, u(Rt), is computed
during the backpropagation phase5 by applying the known utility function, u, to
the cumulative returns, Rt. Therefore, during backpropagation, the statistics at a
chance node are updated by updating the total utility, v, of the node:

vnc
← vnc

+ u(Rt). (3.7)

The visit count for both chance nodes and decision nodes is also updated as follows:

Nnc ← Nnc + 1, (3.8)

Nnd
← Nnd

+ 1. (3.9)

The NLU-MCTS algorithm runs each step of the planning phase (selection,
expansion, simulation, and backpropagation) a specified number of times. The

5To compute policies under the ESR criterion its is also possible to backpropagate the utility
of the cumulative returns, u(Rt). The relevant statistics can then be updated using the utility of
the cumulative returns. See Appendix A.1

64

3.2. MONTE CARLO TREE SEARCH FOR NONLINEAR UTILITY
FUNCTIONS

number of times the planning phase is run is denoted by nexec. Once the NLU-
MCTS algorithm has run the planning phase an nexec number of times, the
algorithm returns the best action to take from the current root node, nr. Under
the ESR criterion, the best action, a∗, can be calculated by evaluating the expected
utility, v, of each of the current root nodes, nr, children, Cnr and taking the action
that returns the maximum expected utility:

a∗ = arg max
n∈Cnr

vn

Nn
. (3.10)

Using the outlined algorithm, NLU-MCTS is able to learn policies for nonlinear
utility functions under the ESR criterion for multi-objective settings.

Algorithm 3: Monte Carlo Tree Search for nonlinear Utility Functions
1 Input : Nroot ← Root node; R−

t ← Accrued returns
2 Output: Action a
3 while Not out of computation do
4 N← Nroot

5 R+
t ← Future returns with 0 value entry per objective

6 N, R+
t ← Selection(N, R+

t)
7 R+

t ← Simulation(N, R+
t)

8 Rt ← R+
t + R−

t

9 Backpropagate(N, Rt)
10 end
11 bestAction← calculateBestAction(Nroot)(Equation 3.10)
12 return bestAction

65

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

Algorithm 4: Selection
1 Input: N ← Node in the tree; R+

t ← Future returns
2 if N is terminal then
3 return N, R+

t

4 end
5 if N is a chance node then
6 N , R+

t ← Sample(N, R+
t)

7 end
8 if N has children to expand then
9 N∗, R+

t ← Expansion(N∗, R+
t)

10 return N∗, R+
t

11 end
12 N, R+

t ← BestChild
13 Selection(N, R+

t)

Algorithm 5: Expansion
1 Input : N← Node in the tree; R+

t ← Future returns
2 N∗ ← a new child chance node for a remaining action
3 add N∗ to N’s children
4 N∗, R+

t ← Sample(N∗, R+
t)

5 return N∗, R+
t

Algorithm 6: Sample
1 Input: N ← Chance Node; R+

t ← Future returns
2 observation, reward ← simulate agent environment for N
3 R+

t ← R+
t + reward

4 for DN in N.Children do
5 if (DN.observation, DN.reward) = (observation, reward) then
6 return DN, R+

t

7 end
8 end
9 DN ← N create child decision node (observation, reward)

10 return DN, R+
t

66

3.3. DISTRIBUTIONAL MONTE CARLO TREE SEARCH

Algorithm 7: Simulation
1 Input : N ← Node in the tree; s ← Node.state; R+

t ← future returns
2 while s is not terminal do
3 a ← random action
4 s, rt ← env(s, a)
5 R+

t ← R+
t + rt

6 end
7 return R+

t

Algorithm 8: Backpropagate
1 Input : N← Node in the tree; Rt ← Cumulative returns
2 while N is not null do
3 UpdateStatistics(N, Rt)
4 N← N.parent
5 end

3.3 Distributional Monte Carlo Tree Search
NLU-MCTS utilises the UCB statistic to explore during planning. However,
Thompson sampling (TS) methods have been shown to outperform UCB methods
in bandit settings [Russo and Van Roy, 2014; Chapelle and Li, 2011]. Therefore, to
exploit the potential performance increases associated with TS methods, a novel
algorithm is presented, called distributional Monte Carlo tree search (DMCTS),
which learns an approximate posterior distribution over the expected utility of the
returns.

Before the DMCTS algorithm is outlined, it is important to discuss the underlying
methods DMCTS utilises to construct a search tree. DMCTS builds an expectimax
search tree using the same planning phase as NLU-MCTS (see Section 3.2).
However, DMCTS takes a distributional approach to decision making.

DMCTS aims to maintain a posterior distribution over the expected utility of
the returns at each chance node. However, because the utility function may be
nonlinear, a parametric form of the posterior distribution may not exist. Since a
bootstrap distribution can be used to approximate a posterior [Efron, 2012; Newton
and Raftery, 1994], it is much more suitable to maintain a bootstrap distribution
over the expected utility of the returns at each chance node.

67

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

Algorithm 9: Distributional Monte Carlo Tree Search
1 Input : Nroot ← Root node; R−

t ← Accrued returns
2 Output: Action a
3 while Not out of computation do
4 N← Nroot

5 R+
t ← Future returns with 0 value entry per objective

6 N, R+
t ← Selection(N, R+

t)
7 R+

t ← Simulation(N, R+
t)

8 Rt ← R+
t + R−

t

9 Backpropagate(N, Rt)
10 end
11 bestAction← calculateBestAction(Nroot)
12 return bestAction

Each bootstrap distribution contains a number of bootstrap replicates, j ∈
{1, ..., J} [Eckles and Kaptein, 2014] (see Section 2.1.2.3). It is important to note
the number of bootstrap replicates, J , is a hyperparameter that can be tuned
for exploration [Eckles and Kaptein, 2014]. Each bootstrap replicate, j, in the
bootstrap distribution has two parameters, αj

6 and βj , where αj

βj
is the expected

utility for replicate j. On initialisation of a new node, for each bootstrap replicate,
j, the parameters αj and βj are both set to 1. Moreover, αj can be set to positive
or negative values to increase initial exploration without a computational cost.
Figure 3.6 outlines a bootstrap distribution learned by the DMCTS algorithm. For
ESR settings, the expected utility of each bootstrap replicate, j, can be computed
as follows:

E(u(j)) = αj

βj
. (3.11)

It is important to note that, similarly to NLU-MCTS, DMCTS requires the utility
function of the user to be known a priori. The bootstrap distribution is updated
during the backpropagation phase of the DMCTS algorithm.

During the backpropagation phase, the bootstrap distribution at each chance
node is updated. Algorithm 12 outlines how a bootstrap distribution for a node is
updated for the ESR criterion. At chance node, i, for each bootstrap replicate, j,
a coin flip is simulated (See Algorithm 12, Line 4). If the result of the coin flip is

6In this work our use of α differs slightly from that of Eckles and Kaptein [2014]. The parameter
α is utilised to track the sum of the utility, which can then be utilised to compute the expectation.
Whereas, Eckles and Kaptein [2014] utilise α as a count for the returns of a Bernoulli bandit.

68

3.3. DISTRIBUTIONAL MONTE CARLO TREE SEARCH

Algorithm 10: Selection
1 Input: N ← Node in the tree; R+

t ← Future returns
2 if N is terminal then
3 return N, R+

t

4 end
5 if N is a chance node then
6 N, R+

t ← Sample(N, R+
t)

7 end
8 if N has children to expand then
9 N∗, R+

t ← Expansion(N∗, R+
t)

10 return N∗, R+
t

11 end
12 N, R+

t ← ThompsonSampling
13 Selection(N, R+

t)

αj

βj

j0 j1 j2 j3 j4 j5 j6 j7

0.1

0.2

Bootstrap replicates (j)

E
xp

ec
te

d
ut

ili
ty

Figure 3.6: A bootstrap distribution learned by DMCTS with the number of
bootstrap replicates, J , set to 8. The expected utility for each bootstrap replicate,
j, can be calculated by αj

βj
. For example, the expected utility for bootstrap replicate

j4 can be calculated as follows: E(u(j4)) = αj4
βj4

.

69

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

Algorithm 11: Backpropagate
1 Input : N← Node in the tree
2 Input : Rt ← Cumulative returns
3 while N is not null do
4 UpdateDistribution(N, Rt)
5 N← N.parent
6 end

equal to 1 (heads), αij and βij are updated:

αij ← αij + u(Rt) (3.12)

βij ← βij + 1 (3.13)

To select actions while planning, the previously computed statistics are utilised.
At each timestep the agent must choose which action to execute in order to traverse
the search tree (as outlined in Algorithm 13). At decision node n, an action is
selected by sampling the bootstrap distribution at each child chance node, i. For
each sampled bootstrap replicate, j, the αij and βij values are retrieved and αij

βij

is computed. Since the following approximation is true,
αij

βij
≡ E[u(R−

t + R+
t)], (3.14)

by maximising over i in Equation 3.14, an action is selected corresponding to j
approximately proportional to the probability of that action being optimal (as per
the BTS exploration strategy). The agent then executes the action, a∗, which
corresponds to the following:

a∗ = arg max
i

αij

βij
. (3.15)

At execution time, we can calculate the best action (Algorithm 9 Line 11) by
simply selecting the overall maximising action by averaging over all the acquired
data, thereby maximising the ESR criterion:

ESR = E[u(R−
t + R+

t)]. (3.16)

Using the outlined algorithm, DMCTS is able to learn policies for nonlinear utility
functions under the ESR criterion for multi-objective settings.

70

3.3. DISTRIBUTIONAL MONTE CARLO TREE SEARCH

Algorithm 12: UpdateDistribution
1 Input: i ← Node in the tree; Rt ← Cumulative returns
2 J ← node.bootstrapDistribution
3 for j, ..., J bootstrap replicates do
4 Sample dj from Bernoulli(1

2)
5 if dj = 1 then
6 αij = αij + u(Rt)
7 βij = βij + 1
8 end
9 end

Algorithm 13: ThompsonSample
1 Input: n ← Node in the tree
2 Require: α, β prior parameters
3 αij := α, βij := β {For each n child, i, and each bootstrap replicate, j }
4 for i, ..., n children do
5 Sample j from uniform 1, ..., J bootstrap replicates
6 Retrieve αij , βij

7 end
8 maxChild = arg maxi

αij

βij

9 return maxChild or maxChild.action

71

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

3.4 Empirical Evaluation
In order to evaluate NLU-MCTS and DMCTS, both algorithms are tested in
multiple multi-objective settings. First, an ablative study is performed to outline
the effect on computation and performance the J parameter has when computing
the BTS distribution for DMCTS. Next, NLU-MCTS and DMCTS are evaluated
in multi-objective settings under the ESR criterion for nonlinear utility functions.
Both NLU-MCTS and DMCTS are evaluated against state-of-the-art algorithms
using variants of standard benchmark problems from the MODeM literature.

NLU-MCTS and DMCTS are evaluated against two other state-of-the-art RL
algorithms: expected utility policy gradient (EUPG) [Roijers et al., 2018b] and
categorical deep Q-networks (C51) [Bellemare et al., 2017]. EUPG is the only
MODeM algorithm that can compute policies under the ESR criterion and therefore
has achieved state-of-the-art performance in this setting [Roijers et al., 2018b]. The
C51 algorithm is used as a baseline algorithm during experimentation because C51
is a distributional RL algorithm and has achieved state-of-the-art performance in
single-objective settings [Bellemare et al., 2017].

At each timestep for NLU-MCTS and DMCTS, the planning phase is performed
multiple times before an action is selected during the execution phase. It is
important to note that NLU-MCTS and DMCTS are model-based algorithms, while
C51 and EUPG are model-free algorithms. To fairly evaluate all other algorithms
against NLU-MCTS and DMCTS, each benchmark algorithm has been altered to
have the same number of policy executions of each environment at each timestep as
NLU-MCTS and DMCTS. At each timestep, each algorithm gets nexec full policy
executions worth of learning from that state and timestep onward. Therefore, if
nexec = 10, NLU-MCTS and DMCTS perform the planning phase ten times before
selecting an action. To ensure C51 and EUPG get the same opportunity to learn,
both algorithms are altered to execute a policy nexec number of times from the
current state. For the other algorithms (except NLU-MCTS and DMCTS), this
has the effect of increasing the learning speed. The number of policy executions
nexec varies for each problem domain. Finally, all experiments are averaged over
10 runs.

3.4.1 Ablation Study
Before both NLU-MCTS and DMCTS are evaluated using multi-objective
sequential decision making problems, the BTS parameter settings are empirically
evaluated to determine their effect on performance and run time. An example
is also provided which visualises how a BTS distribution is updated over time to
estimate the underlying posterior distribution over the expected utility. Finally,

72

3.4. EMPIRICAL EVALUATION

the performance of DMCTS is evaluated under different J values in a MOMDP
to highlight how the selection of the J value can effect performance in sequential
decision making settings.

3.4.1.1 Bootstrap Thompson Sampling J Value & Runtime

To illustrate how a BTS distribution evolves over time, a single BTS distribution is
updated based on the returns of a simple multi-objective bandit. In this setting the
bandit has one arm, where there is a 0.5 chance of receiving the following return:
r = [1, 1], and a 0.5 chance of receiving the following return: r = [0, 0]. The returns
are then scalarised using the following nonlinear utility function:

u = r1r2, (3.17)

where r1 and r2 are the returns for objective 1 and objective 2 respectively. In this
example, the expected utility is 0.5.

Using this bandit, a single BTS distribution is updated over time by utilising
multiple update steps at each timestep. Figure 3.7 outlines how a BTS distribution
with 100 bootstrap replicates evolves after 1, 8, 32, 128, 250 & 500 updates. After
500, updates the BTS distribution moves close to the optimal expected utility of
0.5. As a result BTS distributions can learn the optimal expected utility in the
outlined setting. Figure 3.7 outlines similar results to those reported by Eckles
and Kaptein [2019].

Next, the computational run time for a BTS distribution with a varying number of
replicates, J , is investigated. To evaluate the run time for each chosen J value, the
time in seconds taken to perform 1, 000 updates of a BTS distribution is computed.
This experiment was performed 10 times for each J value and the average run
time was computed. To evaluate the run time, the following J values were used:
10, 100, 200, 300, 400, 500, 600, 700, 800, 900 & 1, 000.

Figure 3.8 shows that the run time in seconds increases linearly with the number
of replicates J . Therefore, the hyperparameter J can have an impact on the
run time of the algorithm and therefore should be taken into consideration in
order to optimise performance. Next, the performance of a BTS distribution for
multiple J values in a MOMDP will be evaluated. By comparing run time and
performance, it should be possible to determine which J values can be selected for
good performance and efficiency.

3.4.1.2 Random Multi-Objective Markov Decision Process

To evaluate the impact the selection of the J parameter for the BTS distribution has
on the performance of DMCTS, various different J values are used in a MOMDP.

73

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

0.0 0.2 0.4 0.6 0.8 1.0
utility

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
utility

0
1
2
3
4
5
6
7

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
utility

0

5

10

15

20

25

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
utility

0
10
20
30
40
50
60
70
80

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
utility

0
20
40
60
80

100
120
140

fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
utility

0

50

100

150

200

250

fr
eq

ue
nc

y

Figure 3.7: A BTS distribution after 1, 8, 32, 128, 250 & 500 updates. After 500
updates the distribution converges to the correct expected utility, where expected
utility is on the x-axis.

74

3.4. EMPIRICAL EVALUATION

0 200 400 600 800 1000
J

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ru
n

ti
m

e
(s

)

Figure 3.8: The run time is seconds required to complete 1, 000 updates of a BTS
distribution for different J values. The run time required increases linearly with
the increase in the J value.

To do so, a random MOMDP from the literature [Roijers et al., 2018b] is utilised.
The random MOMDP is configurable based on the requirements of the experiments,
where the number of states, actions, objectives, timesteps, and possible successor
states can be determined a priori. The random MOMDP can then be initialised
for each experiment by selecting a consistent seed. For experimentation a random
MOMDP with 20 states, 2 actions, and 2 objectives is generated. The transition
function T (s, a, s′) is generated using N = 8 possible successor states per action,
with random probabilities drawn from a uniform distribution [Roijers et al., 2018b].
The following nonlinear utility function is used for evaluation:

u = r2
1 + r2

2. (3.18)

DMCTS is evaluated using the following J values of 1, 2, 10, 100, 500 and 1, 000 for
the BTS distributions. Figure 3.9 outlines the results from the random MOMDP.
Utilising a J value of 1 has an impact on performance, given DMCTS with J set
to 1 achieves a lower utility compared to the other parameter settings. As the J
value increases to 2, it is clear that performance begins to improve. However, for a
very low J value (J = 1 or J = 2) DMCTS will select actions greedily and will not
explore the environment enough to obtain a good utility. As the J value increases
even further, the performance also increases. Once the J value is set to 10, DMCTS
has a large increase in performance. Similarly, once the J value increases to 100, a

75

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

0 200 400 600 800 1000

episode

0

10

20

30

40

50

60
ut

ili
ty

1

2

10

100

500

1000

Figure 3.9: Evaluation of different J values in a random MOMDP with 20 states,
2 actions, 2 objectives and 8 successor states reachable from each state.

further improvement can be seen. The performance increases plateau for DMCTS
after a certain J value for the random MOMDP. When the J value is set to 500
or 1, 000, the performance does not increase relative to J = 100. However, the
computational cost of updating a BTS distribution scales linearly with the number
of J values. Therefore, there is a trade-off between performance and computational
cost. Moreover, it is important to ensure that the J value is set sufficiently high
for exploration, while also avoiding J values with a high computational cost. As a
result, it may be important to tune the J value depending on the evaluation setting.

3.4.2 Evaluation using Multi-objective Markov Decision
Processes

To evaluate NLU-MCTS and DMCTS in multi-objective settings under the ESR
criterion, two problem domains are considered. First, NLU-MCTS and DMCTS are
evaluated in the Fishwood problem [Roijers et al., 2018b], given this is one of the
very few domains for which ESR results have been published. Second, NLU-MCTS
and DMCTS are evaluated using the newly proposed Renewable Energy Dynamic

76

3.4. EMPIRICAL EVALUATION

Economic Emissions Dispatch (REDEED) problem domain7. Finally, DMCTS is
evaluated using a number of nonlinear utility functions to highlight the flexibility
of the DMCTS algorithm.

3.4.2.1 Fishwood

Fishwood is a multi-objective benchmark problem proposed by Roijers et al.
[2018b]. In Fishwood, the agent has two states: in the woods or at the river.
The goal of the agent is to catch fish and collect wood. The Fishwood environment
is parameterised by the probabilities of successfully obtaining fish and wood at
these respective states. The following parameters are used: at the river the agent
has a 0.25 chance of catching a fish and in the woods the agent has a 0.65 chance
of acquiring wood. For every fish caught, two pieces of wood are required to cook
the fish, which results in a utility of 1. The goal in this setting is to maximise the
following nonlinear utility function:

u = min
(

fish,
⌊

wood
2

⌋)
. (3.19)

As demonstrated by Roijers et al. [2018b], to maximise utility in the Fishwood
problem, it is essential that both past and future returns are taken into
consideration when learning. For example, if there are 5 timesteps remaining and
the agent has received 2 pieces of wood, the agent should go to the river and try
to catch a fish to ensure a utility of 1 [Roijers et al., 2018b].

Both NLU-MCTS and DMCTS are evaluated in the Fishwood domain against
EUPG [Roijers et al., 2018b] and C51 [Bellemare et al., 2017]. EUPG achieves
state-of-the-art results in the Fishwood problem under the ESR criterion [Roijers
et al., 2018b]. C51 [Bellemare et al., 2017] is a distributional RL algorithm that
achieved state-of-the-art results in the Atari game problem domain.

For C51, the learning hyperparameters are set as follows: Vmin = 0, Vmax = 2,
ϵ = 0.01, γ = 1 and α = 0.0001. For DMCTS the number of bootstrap replicates,
J , in the bootstrap distribution is set as follows: J = 100. NLU-MCTS has the
following hyperparameters: C =

√
2. EUPG is conditioned on the accrued returns

and the current timestep, t. Each experiment runs for 10, 000 episodes, where each
episode has 13 timesteps, and nexec = 2.

As shown in Figure 3.10, the utility for C51 fluctuates throughout experimentation
and it fails to learn a consistent policy. Given C51 does not take the accrued

7It is important note, in Section 3.4 NLU-MCTS and DMCTS (both model-based algorithms)
are evaluated against a number of model-free algorithms. Therefore, to fairly evaluate model-
based and model-free approaches, both NLU-MCTS and DMCTS maintain the search tree across
episodes. This has the effect that both algorithms require less simulations during experimentation.

77

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

0 2000 4000 6000 8000 10000

episode

0.0

0.5

1.0

1.5

2.0
ut

ili
ty

DMCTS NLU-MCTS C51 EUPG

Figure 3.10: Results from the Fishwood environment where DMCTS achieves state-
of-the-art performance in a multi-objective setting over EUPG.

returns into consideration during learning, the utility function is applied directly
to the reward received by the agent. The reward received by an agent in the
Fishwood domain can be [0, 1] or [1, 0]. By applying the utility function (presented
in Equation 3.19) to the reward, the C51 agent can only receive a utility of 0.
DMCTS, NLU-MCTS, and EUPG all take the accrued and future returns into
consideration and can compute better policies for nonlinear utility functions when
compared to C51. It is important to note that C51 is not explicitly designed
for nonlinear utility functions. C51 relies on the distributional Bellman operator,
which assumes additive returns. However, it is expected if the utility function were
linear, that the performance of C51 would improve.

DMCTS and NLU-MCTS achieve a higher utility when compared to EUPG.
All algorithms, except C51, use Monte Carlo simulations of the environment and
optimise over the expected utility of the returns of a full episode. Although
EUPG uses Monte Carlo simulations of the environment, policy gradient algorithms
are sample inefficient. DMCTS and NLU-MCTS are sample efficient, given both
algorithms utilise the planning phase of MCTS, which has been shown to be sample
efficient [Abramson, 1987; Chang et al., 2005].

Both DMCTS and NLU-MCTS learn good policies with respect to the specified
utility function. Given the utility function aims to collect sufficient wood to cook
fish and feed the agent, it can be said that both algorithms learn a behaviour
which reflects the predefined preferences over the objectives which are encoded

78

3.4. EMPIRICAL EVALUATION

in the utility function. Therefore, compared to EUPG and C51, both DMCTS
and NLU-MCTS compute policies that are more effective at switching states at
an appropriate time to collect the right balance of fish and wood to ensure their
utility is maximised.

In the Fishwood environment, the agent is not guaranteed to obtain a fish or a
piece of wood. For an action in a particular state the agent may need multiple
simulations to understand the underlying distribution of the stochastic rewards.
Both DMCTS and NLU-MCTS build a search tree, which enables the agent to re-
sample the environment at each chance node during planning. However, DMCTS
achieves a higher overall utility when compared with NLU-MCTS despite both
algorithms utilising repeated sampling at each chance node and Monte Carlo
simulations.

3.4.2.2 Renewable Energy Dynamic Economic Emissions Dispatch

Next, NLU-MCTS and DMCTS are evaluated in a complex problem domain with a
large state action space. Renewable Energy Dynamic Economic Emissions Dispatch
(REDEED) is a variation of the traditional Dynamic Economic Emissions Dispatch
(DEED) problem [Basu, 2008]. In REDEED, the power demand for a city must be
met over 24 hours. To supply the city with sufficient power, a number of generators
are required. There are 9 fossil fuel-powered generators, including a slack generator
and 1 generator powered by renewable energy which is generated by a wind turbine.
The optimal power output for each generator was derived by Mannion [2017] and
the derived values are used for the both the fossil fuel generators and the renewable
energy generator (see Table A.1). In this example, Generator 3 is controlled by
an agent, Generator 1 is a slack generator and Generator 4 is replaced by a wind
turbine.

This setting covers a period of 24 hours and for each hour a weather forecast is
received for a city. For hours 1 − 15, the weather is predictable and the optimal
power values derived by Mannion [2017] can be used to generate power. From
hours 16−24, a storm is forecast for the city. During the storm, both high and low
levels of wind are expected and the weather forecast impacts how much power the
wind turbine can generate. At each hour during the storm, there is a 0.15 chance
the wind turbine will produce 25% less power than optimal, a 0.7 chance the wind
turbine will produce optimal power and a 0.15 chance the wind turbine will produce
25% more power than optimal. In the REDEED problem the aim is to compute a
policy that can ensure the required power is met over the entire day while reducing
both the cost, emissions and penalty violations created by all generators.

79

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

The goal is to maximise the following nonlinear utility function under the ESR
criterion,

R+ =
O∏

o=1
fo, (3.20)

where fo is the objective function for each objective, o ∈ O [Mannion et al., 2018;
Hayes et al., 2020].

The following equation calculates the local cost for each generator n, at each
hour m:

fL
c (n, m) = an + bnPnm + cn(Pnm)2 + |dnsin{en(P min

n − Pnm)}|. (3.21)

Therefore the global cost for all generators can be defined as:

fG
c (m) =

N∑
n=1

fL
c (n, m). (3.22)

The local emissions for each generator, n, at each hour, m, is calculated using the
following equation :

fL
e (n, m) = E(an + bnPnm + γn(Pnm)2 + η exp δPnm). (3.23)

Therefore the global emissions for all generators can be defined as:

fG
e (m) =

N∑
n=1

fL
e (n, m). (3.24)

It is important to note the emissions for the wind turbine are 0.
If the agent exceeds the ramp and power limits a penalty is received. A global

penalty function fG
p is defined to capture the violations of these constraints,

fG
p (m) =

V∑
v=1

C(|hv + 1|δv). (3.25)

Along with cost and emissions, the penalty function is an additional objective
that will need to be optimised. Some parameters for this problem domain have not
been included here; all equations and parameters absent from this description that
are required to implement this problem domain can be found in the Appendix A.2.

To evaluate NLU-MCTS and DMCTS in the REDEED domain, EUPG and C51
are again used for comparison. For DMCTS the number of bootstrap replicates, J ,

80

3.4. EMPIRICAL EVALUATION

0 2000 4000 6000 8000 10000

episode

−8

−7

−6

−5

−4

−3

−2

−1

0

ut
ili

ty

×1022

DMCTS

NLU-MCTS

EUPG

C51

Figure 3.11: Results from the REDEED environment DMCTS outperforms EUPG,
C51 and NLU-MCTS. DMCTS achieves a higher utility compared to other
algorithms used throughout experimentation in the REDEED domain under the
ESR criterion.

for the bootstrap distribution is set as follows: J = 100. For NLU-MCTS C =
√

2.
For C51 the learning hyperparameters are set as follows: Vmin = −8e22, Vmax = 0,
ϵ = 0.01, γ = 1 and α = 0.0001. For the REDEED problem the agent learns for
10, 000 episodes and nexec = 2 for each algorithm.

As seen in Figure 3.11, DMCTS outperforms EUPG, NLU-MCTS, and C51
in the REDEED domain. C51 struggles to learn a consistent policy and C51’s
utility fluctuates throughout experimentation. The hyperparameters chosen for
C51 provide good performance but are difficult to tune. Although the learning
speed of EUPG is slow, EUPG achieves a higher utility than C51.

Both DMCTS and NLU-MCTS learn good policies faster than EUPG. MCTS
algorithms are much more sample efficient when compared to policy gradient
algorithms like EUPG. Figure 3.11 highlights the difference in sample efficiency
of DMCTS, NLU-MCTS and EUPG given the differences in the number episodes
required for each of the aforementioned algorithms to compute stable policies for
the defined nonlinear utility function.

DMCTS, NLU-MCTS and EUPG all compute stable policies. However, DMCTS
achieves a higher utility when compared to NLU-MCTS and EUPG. DMCTS
converges to a policy with an average utility of −1.54×1021. In comparison, NLU-
MCTS converges to a policy with an average utility of −1.80× 1021, while EUPG

81

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

6000 6500 7000 7500 8000 8500 9000 9500 10000

episode

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

ut
ili

ty

×1021

DMCTS

NLU-MCTS

EUPG

Figure 3.12: Results from the final 4, 000 episodes of the REDEED environment to
highlight how DMCTS outperforms NLU-MCTS, EUPG, and C51.

converges to a stable policy with an average utility of −1.75×1021. Given the scale
of the utility computed throughout REDEED experimentation, it is difficult to see
the final difference in utility in Figure 3.11. Therefore, to highlight the difference
in utility between DMCTS, NLU-MCTS, and EUPG the final 4, 000 episodes have
been plotted in Figure 3.12. It is important to note, given C51 has performed
poorly in the REDEED domain, C51 has not been included in Figure 3.12. For
the highlighted episodes in Figure 3.12, it is clear that DMCTS achieves a higher
utility when compared to both NLU-MCTS and EUPG.

The REDEED environment has a large state-action space with stochastic returns.
Although C51 has achieved state-of-the-art results in the Atari environment
Bellemare et al. [2017], C51 fails to learn any meaningful policy for REDEED.
A potential reason for such poor performance is C51’s inability to learn a
distribution over the full returns and the level of discretisation of the distribution.
The distribution for C51 uses 51 bins to discretise the algorithm’s categorical
distribution. In the work presented by Bellemare et al. [2017] the number of
bins is set to 51. While this provides good performance in certain problem
domains, Bellemare et al. [2017] highlight that increasing the number of bins may
lead to increased performance. However, to remain consistant with the literature
the number of bins is fixed to 51, given the potential added performance when
increasing the number of bins has not been thoroughly explored. The results
presented for C51 show this parameter setting is sub-optimal in scenarios where the

82

3.4. EMPIRICAL EVALUATION

returns are not simple scalars over small ranges. The results present in Figure 3.11
show that C51 struggles to scale to large problem domains with complex returns
over large ranges.

3.4.2.3 Nonlinear Utility Functions

During experimentation, DMCTS has been evaluated using utility functions for
each experimental benchmark that were previously defined in the literature. To
show that DMCTS can learn good policies for a wide range of nonlinear utility
functions, DMCTS is evaluated in the Fishwood problem domain using the
following four nonlinear utility functions under the ESR criterion:

u1 = max(r1

2 , r2

2),

u2 = r1

2 + r4
2,

u3 = min(r1

2 , r2

4),

u4 = r2
1 + r2

2,

where r1 is the returns received for the fish objective and r2 is the returns received
for the wood objective.

For this demonstration, nexec = 2 and each experiment lasts 10, 000 episodes. For
DMCTS the number of bootstrap replicates, J , for the bootstrap distribution is
set as follows: J = 100.

In Figure 3.13, for each utility function the utility has been scaled between 0 and
1. For the scaled utility, 1 represents the maximum utility and 0 represents the
minimum utility obtained by DMCTS. The utility has been scaled to show the
performance of DMCTS for each utility function on a single plot.

Figure 3.13 outlines the performance of DMCTS when optimising for each
nonlinear utility function. It is clear from Figure 3.13 that DMCTS converges
to a good policy for each utility function. Therefore, DMCTS can learn a good
policy for many forms of nonlinear utility functions and is not limited to the utility
functions associated with predefined benchmark problems. The ability of DMCTS
to learn a good policy for a range of nonlinear utility showcases how DMCTS
could potentially be used in real-world scenarios, where different decision makers
may have very different nonlinear utility functions for the same problem [Hayes
et al., 2022c].

83

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

0 2000 4000 6000 8000 10000

episode

0.0

0.2

0.4

0.6

0.8

1.0

ut
ili

ty

max(r12 ,
r2
2)

r1
2 + r4

2

min(r12 ,
r2
4)

r1
2 + r2

2

Figure 3.13: Results from the Fishwood environment where DMCTS is evaluated
against multiple nonlinear utility functions.

3.4.2.4 Discussion

In multi-objective settings both NLU-MCTS and DMCTS compute good policies
for the specified nonlinear utility functions. Applying the utility function to the
cumulative returns (rather than just the expected future return) ensures that
both NLU-MCTS and DMCTS can compute good policies. It is clear from the
performance of C51 that applying the utility function to the cumulative returns is
crucial for good performance in multi-objective settings when the utility function
is nonlinear.

As previously highlighted, the difference between NLU-MCTS and DMCTS is
the method used to explore during planning. NLU-MCTS uses UCB to determine
which action to take during planning. UCB selects actions deterministically based
on the expected utility and an exploration bonus [Russo and Van Roy, 2014;
Auer, 2002]. In contrast, DMCTS selects actions using TS, which stochastically
samples from the underlying approximate posterior distribution (BTS distribution)
and selects the action proportional to the probability of the action being optimal
[Chapelle and Li, 2011; Eckles and Kaptein, 2014]. In the bandit literature, TS
has been shown to empirically outperform UCB [Chapelle and Li, 2011; Russo
et al., 2018; Russo and Van Roy, 2014]. MCTS methods utilise independent nodes,
therefore it is possible to consider each node itself to be a bandit. In this case, it is
expected that TS methods will outperform UCB in sequential settings. The results

84

3.5. RELATED WORK

presented for sequential multi-objective settings are consistent with prior bandit
literature that suggests that TS can outperform UCB [Chapelle and Li, 2011].

Additionally, UCB makes highly pessimistic assumptions regarding the underlying
reward/return distributions in order to guarantee a bound on the regret of its
action selection procedure [Russo and Van Roy, 2014]. For known parametric
distributions, tighter bounds have been proven using tighter upper confidence
bounds (e.g. for Gaussian reward distributions [Russo and Van Roy, 2014]).
However, doing something similar in the setting explored during experimentation
isn’t opportune because, even if the return distributions are nicely parametric, the
nonlinear transformation resulting from the application of the utility function would
no longer allow for a closed-form distribution [Russo and Van Roy, 2014]. As such,
this will limit the assumptions to be highly pessimistic and, therefore, will result in
sub-optimal performance. Bootstrap distributions and the resulting BTS algorithm
for action selection is able to approximate and effectively exploit knowledge about
the utility distributions, regardless of the shape of this underlying distribution.

3.5 Related Work
Many MCTS methods have been developed for situations involving reward
uncertainty. For example, Tesauro et al. [2010] take a Bayesian approach to
UCT with Gaussian approximation. Their method backpropagates probability
distributions over rewards. To select actions, Tesauro et al. [2010] use UCB without
taking the distributions into consideration. Cazenave and Saffidine [2010] define a
MCTS algorithm that takes into account the bounds on the possible values of a
node to select nodes for exploration. They apply their algorithm to problems that
have more than two outcomes and show that taking the bounds into consideration
can increase performance. Kaufmann and Koolen [2017] and Huang et al. [2017]
also have developed MCTS algorithms that can compute policies for settings with
reward uncertainty. Additionally, Bai et al. [2014] extend MCTS to maintain a
distribution at each node using TS as an exploration strategy. In their work, Bai
et al. [2014] do not compute a posterior distribution over the expected utility of
the returns or apply their work to multi-objective settings, nor do they incorporate
the accrued returns as part of their algorithm.

Furthermore, Zhang et al. [2021] compute a multi-variate distribution over the
returns for RL settings. While this work considers reward vectors, it is likely
that this algorithm will suffer from similar limitations to those of traditional RL
algorithms when applied to nonlinear utility functions. The method proposed by
Zhang et al. [2021] does not take the accrued returns into consideration. Similarly
to C51, their approach may fail to achieve a high utility [Roijers et al., 2018b].

85

CHAPTER 3. ALGORITHMS FOR KNOWN UTILITY FUNCTIONS

However, this method could be an interesting starting point for developing model-
free multi-objective distributional RL algorithms.

It is also important to note the C51 algorithm proposed by Bellemare et al.
[2017] achieves state-of-the-art performance in single-objective settings and learns
a distribution over the future returns. Abdolmaleki et al. [2020] learn a distribution
over actions based on constraints set per objective. This approach ignores the
utility-based approach [Roijers et al., 2013] and uses constraints set by the user to
learn a coverage set of policies where the value of constraints is dependent on the
scale of the objectives. Abdolmaleki et al. [2020] claim setting the constraints for
this algorithm is a more intuitive approach when compared to setting weights for
a linear utility function. It may be the case that, if the user’s utility function is
nonlinear, this approach would fail to learn a coverage set.

3.6 Summary
This chapter outlines the first contributions of this thesis. First, an example is used
to demonstrate the implications of using nonlinear utility functions to compute
policies for the SER criterion and the ESR criterion in single-agent settings. This
investigation shows that in single-agent settings for nonlinear utility functions, the
policies computed under the SER criterion and ESR criterion can be different.
Therefore, algorithms that can compute policies explicitly for the ESR criterion
must be developed. These findings are similar to the results shown by Rădulescu
et al. [2020] for multi-agent settings.

Second, two novel multi-objective MCTS algorithms are proposed that can
compute policies for nonlinear utility functions by taking the accrued and future
returns into consideration. Both algorithms aim to maximise expected utility and
therefore optimise for the ESR criterion.

Finally, both algorithms are empirically evaluated. An ablative study is used to
investigate the optimal hyperparameter settings for the DMCTS algorithm. Both
NLU-MCTS and DMCTS are then evaluated in benchmark MOMDPs alongside
state-of-the-art algorithms. Both NLU-MCTS and DMCTS compute good policies
for multiple nonlinear utility functions for the ESR criterion. DMCTS achieves
state-of-the-art performance for the ESR criterion.

86

4 | Theory for Unknown
Utility Functions1

Chapter 3 demonstrates that the policies computed for known nonlinear utility
functions can be different under the scalarised expected returns (SER) criterion
and the expected scalarised returns (ESR) criterion. However, in the real world
many scenarios exist where a user’s utility function may be unknown a priori. In
this scenario, a set of optimal policies must be computed and returned to the user
[Roijers et al., 2013; Hayes et al., 2022c]. The majority of multi-policy methods
compute sets of optimal policies by using expected value vectors to determine
optimality. Furthermore, the existing multi-policy methods only compute sets of
optimal policies for the SER criterion. How to determine a partial ordering over
policies for the ESR criterion has yet to be determined and, as a result, a set of
optimal policies for the ESR criterion has yet to be defined. Therefore, multi-policy
methods have not been explored in the multi-objective decision making (MODeM)
literature for the ESR criterion.

Chapter 4 investigates if expected value vector methods, which are used under
the SER criterion, can be used to determine a partial ordering over policies for
the ESR criterion. Based on the findings of this investigation, Chapter 4 also aims
to define a dominance relation to compute sets of optimal policies for the ESR
criterion. The contributions of Chapter 4 are as follows:

1The contributions presented in Chapter 4 are published in the following papers: [Hayes et al.,
2021c, 2022b,d]

87

CHAPTER 4. THEORY FOR UNKNOWN UTILITY FUNCTIONS

1. Section 4.1 investigates if expected value vector methods (SER) can be used
to determine a partial ordering over policies under the ESR criterion when the
utility function is unknown a priori. By using a simple example, Section 4.1
shows that expected value vector methods are fundamentally incompatible
with the ESR criterion. Additionally, in Section 4.1 it is shown that a
distributional approach to MODeM must be taken to determine a partial
ordering over policies under the ESR criterion when the utility function is
unknown.

2. In Section 4.2, stochastic dominance (SD) is proposed as a solution to
determine a partial ordering over policies when taking a distributional
approach. SD utilises a distribution over the returns to determine a partial
ordering over policies and can be used under the ESR criterion when the
utility function is unknown.

3. Section 4.3 extends SD to define a novel dominance relation known as ESR
dominance. Finally, both SD and ESR dominance are used to define sets
of optimal policies under the ESR criterion for scenarios when the utility
function of a user is unknown.

4.1 Motivating a Distributional Approach
As shown in Chapter 3, when the utility function of a user is known and nonlinear,
the policies computed under the SER criterion and ESR criterion can be different.
However, many scenarios exist where the utility function of a user is unknown. In
the taxonomy of MODeM, this is known as the unknown utility function scenario.
In this case, a multi-policy algorithm is utilised to compute a set of optimal policies
which are returned to the user. To date, only multi-policy methods that compute
sets of optimal polices for the SER criterion have been proposed. Given computing
policies under the ESR criterion is optimal for many real-world scenarios, multi-
policy methods must be explored for the ESR criterion. A further complicating
factor is that a set of optimal solutions has yet to be defined for the ESR criterion.

Generally, multi-policy methods use expected value vectors to represent a policy.
By taking this approach, dominance relations like Pareto dominance can be used
to determine a partial ordering over policies. In this case, the Pareto dominated
solutions are removed from consideration and the resulting set of optimal policies
is returned to the user. When Pareto dominance is used as a dominance relation,
the set of optimal policies is known as the Pareto front. Multi-policy methods
that utilise expected value vectors have only been explored for the SER criterion.
However, the SER criterion and the ESR criterion utilise the utility function

88

4.1. MOTIVATING A DISTRIBUTIONAL APPROACH

L1
P(L1= R) R

0.6 (8, 2)
0.4 (6, 1)

L2
P(L2=R) R

0.9 (5, 1)
0.1 (8, 0)

Table 4.1: Lottery L1 has two possible returns, (8, 2) with probability 0.6 and (6,
1) with probability 0.4. Lottery L2 has two possible returns (5, 1) with probability
0.9 and (8, 0) with probability 0.1.

differently. Therefore to determine if expected value vector methods are sufficient
to determine a partial ordering over policies under the ESR criterion, consider the
example below.

Consider the lotteries, L1 and L2 in Table 4.1. In this example the utility function,
u, is unknown. To determine which lottery to play in Table 4.1 when optimising
for the SER criterion, the expected value vector for L1 and L2 must be computed
first (see Equation 2.27):

E(L1) = 0.6((8, 2)) + 0.4((6, 1)) = (4.8, 1.2) + (2.4, 0.4) = (7.2, 1.6)

u(E(L1)) = u((7.2, 1.6))

E(L2) = 0.9((5, 1)) + 0.1((8, 0)) = (4.5, 0.9) + (0.8, 0) = (5.3, 0.9)

u(E(L2)) = u((5.2, 0.9))

Given that the utility function is unknown, Pareto dominance [Pareto, 1896] can be
used to define a partial ordering over expected value vectors for all monotonically
increasing utility functions. For example, methods like [White, 1982; Wang and
Sebag, 2012; Wiering and de Jong, 2007; Wray et al., 2015] compute the Pareto
front. In this example, a user with a monotonically increasing utility function will
always prefer lottery L1 over L2, given the expected value vector for L1 Pareto
dominates the expected value vector of L2.

To determine which lottery to play when optimising for the ESR criterion, the
utility function must first be applied, then the expected utility can be computed
(see Equation 2.28):

u(L1) = u((8, 2)) + u((6, 1))

E(u(L1)) = 0.6(u((8, 2))) + 0.4(u((6, 1)))

u(L2) = u((5, 1)) + u((8, 0))

E(u(L2)) = 0.9(u((5, 1))) + 0.1(u((8, 0)))

89

CHAPTER 4. THEORY FOR UNKNOWN UTILITY FUNCTIONS

As the utility function is unknown, it is impossible to compute the expected
utility. By using expected value vectors, the utility of the expectation is computed.
However, in order to optimise for the ESR criterion, the expected utility must be
computed. Therefore, expected value vectors cannot be used to determine a partial
ordering over policies for the ESR criterion. Moreover, multi-policy algorithms that
utilise expected value vectors cannot be used for the ESR criterion. Therefore, new
methods must be developed that can determine a partial ordering over policies for
the ESR criterion and also ensure the expected utility can be computed.

As previously highlighted, to compute the expected utility, the utility function
must first be applied to the returns, and then the expected utility can be
calculated. In the unknown utility function scenario, the utility function of a user
becomes known during the selection phase. Therefore, under the ESR criterion,
a distributional approach to MODeM must be taken. By taking this approach, a
distribution over the returns for a policy is maintained. Once the utility function
becomes known during the selection phase, the utility function can be applied to
each of the returns in the distribution and the expected utility can be computed.

To adopt a distributional approach to MODeM, a multi-objective version of
the return distribution proposed by Bellemare et al. [2017]2 must be introduced.
A return distribution, zπ, is equivalent to a multivariate distribution where a
dimension exists per objective. The return distribution, zπ, gives the distribution
over returns of a random vector [Sutton and Barto, 2018] when a policy π is
executed, such that,

E zπ = E

[∞∑
t=0

γtrt

∣∣∣∣∣ π, µ0

]
. (4.1)

Moreover, a return distribution can be used to represent policies. Under the ESR
criterion, the utility-of-the-return-distribution, zπ

u , is defined as a distribution over
the scalar utilities received from applying the utility function to each vector in the
return distribution, zπ. Therefore, zπ

u is a distribution over the scalar utility of
vector returns of a random vector received from executing a policy π, such that,

E zπ
u = E

[
u

(∞∑
t=0

γtrt

) ∣∣∣∣∣ π, µ0

]
. (4.2)

The utility-of-the-return-distribution can only be calculated when the utility
function is known (or becomes known).

2Bellemare et al. [2017] introduce a value distribution. However given the distribution is a
distribution over the returns, not values, the term return distribution is preferred.

90

4.2. STOCHASTIC DOMINANCE FOR THE EXPECTED SCALARISED
RETURNS

As previously highlighted, when the utility function of a user is unknown, a set
of policies that are optimal for all monotonically increasing utility functions must
be computed. However, for the ESR criterion, a method to determine a partial
ordering over policies and a corresponding set of optimal solutions has yet to be
defined. Therefore, in Section 4.2 methods that determine a partial ordering over
return distributions (policies) under the ESR criterion are explored.

4.2 Stochastic Dominance for the Expected
Scalarised Returns

First-order stochastic dominance (FSD) is a method that can be used to
determine a partial ordering over random variables [Wolfstetter, 1999; Levy, 1992].
FSD compares the cumulative distribution functions (CDFs) of the underlying
probability distributions of random variables to determine optimality. When
computing policies under the ESR criterion, it is essential that the expected utility
is maximised. To use FSD for the ESR criterion, the FSD conditions presented in
Chapter 2 Section 2.2 must be shown to also hold when optimising the expected
utility for unknown monotonically increasing utility functions.

For the single-objective case, Theorem 2 proves for random variables X and Y ,
if X first-order stochastically dominates (⪰F SD) Y , the expected utility of X is
greater than or equal to the expected utility of Y for monotonically increasing
utility functions. In Theorem 2, random variables X and Y are considered, and
their corresponding CDFs FX , FY . The work of Mas-Colell et al. [1995] is used
as a foundation for Theorem 2.

Theorem 2

A random variable, X, is preferred to a random variable, Y , for all decision
makers with a monotonically increasing utility function if, X ⪰F SD Y .

X ⪰F SD Y =⇒ E(u(X)) ≥ E(u(Y))

Proof. If X ⪰F SD Y, then3,
FX(z) ≤ FY (z),∀ z

Since,
E(u(X)) =

∫ ∞

−∞
u(z)dFX(z)

3CDFs with lower probability values for a given z are preferable. Figure 2.2 outlines why this
is the case.

91

CHAPTER 4. THEORY FOR UNKNOWN UTILITY FUNCTIONS

E(u(Y)) =
∫ ∞

−∞
u(z)dFY (z)

When integrating both E(u(X)) and E(u(Y)) by parts, the following results are
generated:

E(u(X)) = [u(z)FX(z)]∞−∞ −
∫ ∞

−∞
u′(z)FX(z) dz

E(u(Y)) = [u(z)FY (z)]∞−∞ −
∫ ∞

−∞
u′(z)FY (z) dz

Given FX(−∞) = FY (−∞) = 0 and FX(∞) = FY (∞) = 1, the first terms in
E(u(X)) and E(u(Y)) are equal, and thus

E(u(X))− E(u(Y)) =
∫ ∞

−∞
u′(z)FY (z) dz −

∫ ∞

−∞
u′(z)FX(z) dz

Since FX(z) ≤ FY (z) and u′(z) ≥ 0 for all monotonically increasing utility
functions, then

E(u(X))− E(u(Y)) ≥ 0
and thus,

E(u(X)) ≥ E(u(Y))

A utility function maps an input (scalar or vector return) to an output (scalar
utility). Since the probability of receiving some utility is equal to the probability
of receiving some return for a random variable, X, the following can be written:

P (X > c) = P (u(X) > u(c)), (4.3)

where c is a constant. Using the results shown in Theorem 2 and Equation 4.3, the
FSD conditions highlighted in Section 2.2 can be rewritten to include monotonically
increasing utility functions:

P (u(X) > u(z)) ≥ P (u(Y) > u(z)) (4.4)

Definition 16

Let X and Y be random variables. X is preferred over Y for all decision
makers with a monotonically increasing utility function if the following is
true:

X ⪰F SD Y ⇔

∀u : ∀v : P (u(X) > u(v)) ≥ P (u(Y) > u(v)).

92

4.2. STOCHASTIC DOMINANCE FOR THE EXPECTED SCALARISED
RETURNS

In MODeM, the return from the reward function is a vector where each element
in the return vector represents an objective. To apply FSD to MODeM under
the ESR criterion, random vectors must be considered. In this case, a random
vector (or multi-variate random variable) is a vector whose components are scalar-
valued random variables on the same probability space. For simplicity, the case in
which a random vector has two random variables, known as the bi-variate case, is
examined. FSD conditions have been proven to hold for random vectors with n
random variables in the works of Sriboonchitta et al. [2009], Levhari et al. [1975],
Nakayama et al. [1981] and Scarsini [1988].

In Theorem 3, the work of Atkinson and Bourguignon [1982] is distilled into
a suitable theorem for MODeM. Theorem 3 highlights how the conditions for
FSD hold for random vectors when optimising under the ESR criterion for a
monotonically increasing utility function, u, where ∂2u(x1,x2)

∂x1∂x2
≤ 0 [Richard, 1975].

It is important to note Atkinson and Bourguignon [1982] have shown the conditions
for FSD hold for random vectors for utility functions where ∂2u(x1,x2)

∂x1∂x2
≥ 0. In

Theorem 3, X and Y are random vectors where each random vector consists of
two random variables, X = [X1, X2] and Y = [Y1, Y2]. FX1X2 and FY1Y2 are the
corresponding CDFs.

Theorem 3

Assume that u : R≥0 × R≥0 → R≥0 is a monotonically increasing function,
with ∂u(x1,x2)

∂x1
≥ 0, ∂u(x1,x2)

∂x2
≥ 0 and ∂2u(x1,x2)

∂x1∂x2
≤ 0. If, for random vectors X

and Y, X ⪰F SD Y, then X is preferred to Y by all decision makers, i.e.,

X ⪰F SD Y =⇒ E(u(X)) ≥ E(u(Y))

Proof. As X ⪰F SD Y, ∀t, z we have

FX(t, z) ≤ FY(t, z),
or ∆F (t, z) = FX(t, z)− FY(t, z) ≤ 0.

The expected utility of the random variable X can be written as follows:

Eu(X) =
∫ ∞

0

∫ ∞

0
u(t, z)fX(t, z)dtdz,

where f is the probability density function of X. Note that

∆f (t, z) = fX(t, z)− fY(t, z)

= ∂2∆F (t, z)
∂t∂z

.

93

CHAPTER 4. THEORY FOR UNKNOWN UTILITY FUNCTIONS

Using integration-by-parts (I), and the fact that ∆F (t, 0) = ∂∆F (0,z)
∂z = 0 (Z), the

following can be obtained:

Eu(X)− Eu(Y)

=
∫ ∞

0

∫ ∞

0
u(t, z)∆f (t, z)dtdz

(I)=
∫ ∞

0

[
u(t, z)∂∆F (t, z)

∂z

]∞

t=0
dz −

∫ ∞

0

∫ ∞

0

∂u(t, z)
∂t

∂∆F (t, z)
∂z

dtdz

(I)=
∫ ∞

0

[
u(t, z)∂∆F (t, z)

∂z

]∞

t=0
dz −

∫ ∞

0

[
∂u(t, z)

∂t
∆F (t, z)

]∞

z=0
dt+∫ ∞

0

∫ ∞

0

∂2u(t, z)
∂t∂z

∆F (t, z)dtdz

(Z)=
∫ ∞

0
lim

t→∞
u(t, z)∂∆F (t, z)

∂z
dz −

∫ ∞

0
lim

z→∞

∂u(t, z)
∂t

∆F (t, z)dt+∫ ∞

0

∫ ∞

0

∂2u(t, z)
∂t∂z

∆F (t, z)dtdz.

Given that ∂2u(t,z)
∂t∂z ≤ 0, ∂u(t,z)

∂t ≥ 0 and ∆F (t, z) ≤ 0, the last two terms are
positive. Therefore, the following can be stated:

Eu(X)− Eu(Y)

=
∫ ∞

0
lim

t→∞
u(t, z)∂∆F (t, z)

∂z
dz −

∫ ∞

0
lim

z→∞

∂u(t, z)
∂t

∆F (t, z)dt+

∫ ∞

0

∫ ∞

0

∂2u(t, z)
∂t∂z

∆F (t, z)dtdz ≥
∫ ∞

0
lim

t→∞
u(t, z)∂∆F (t, z)

∂z
dz.

According to Lemma 2 (see Section A.3), as u(t, z)F (t, z) is a positive
monotonically increasing function in both t and z, the following is known:∫ ∞

0
lim

t→∞
u(t, z)∂F (t, z)

∂z
dz = lim

t→∞

∫ ∞

0
u(t, z)∂F (t, z)

∂z
dz.

94

4.2. STOCHASTIC DOMINANCE FOR THE EXPECTED SCALARISED
RETURNS

Using integration-by-parts (I), and the fact that ∆F (t, 0) = 0 (Z):

Eu(X)− Eu(Y)

≥ lim
t→∞

∫ ∞

0
u(t, z)∂∆F (t, z)

∂z
dz

(I)= lim
t→∞

[u(t, z)∆F (t, z)]∞0 − lim
t→∞

∫ ∞

0

∂u(t, z)
∂z

∆F (t, z)dz

(Z)= lim
t→∞

lim
z→∞

u(t, z)∆F (t, z)− lim
t→∞

∫ ∞

0

∂u(t, z)
∂z

∆F (t, z)dz.

Finally, given that ∂u(t,z)
∂z ≥ 0 and ∆F (t, z) ≤ 0, the following is known:

Eu(X)− Eu(Y)

≥ lim
t→∞

lim
z→∞

u(t, z)∆F (t, z)− lim
t→∞

∫ ∞

0

∂u(t, z)
∂z

∆F (t, z)dz

≥ 0

Using the results from Theorem 3, Equation 4.4 can be updated to include random
vectors,

P (u(X) > u(z)) ≥ P (u(Y) > u(z)). (4.5)

Definition 17

For random vectors X and Y, X is preferred over Y by all decision makers
with a monotonically increasing utility function if, and only if, the following
is true:

X ⪰F SD Y⇔

∀u : (∀v : P (u(X) > u(v)) ≥ P (u(Y) > u(v))

Using the results from Theorem 3 and Definition 17, it is possible to extend FSD
to MODeM. As defined in Section 4.1, for MODeM under the ESR criterion, the
return distribution, zπ, is considered to be the full distribution of the returns of
a random vector received when executing a policy, π. Return distributions can
be used to represent policies, and it is possible to use FSD to obtain a partial
ordering over policies. For example, consider two policies, π and π′, where each
policy has the underlying return distribution zπ and zπ′ . If zπ ⪰F SD zπ′ then π
will be preferred over π′.

95

CHAPTER 4. THEORY FOR UNKNOWN UTILITY FUNCTIONS

Definition 18

Policies π and π′ have return distributions zπ and zπ′ . Policy π is preferred
over policy π′ by all decision makers with a utility function, u, that is
monotonically increasing if, and only if, the following is true:

zπ ⪰F SD zπ′
.

Now that a partial ordering over policies has been defined under the ESR criterion
for the unknown utility function scenario, it is possible to define a set of optimal
policies.

4.3 Solution Sets for the Expected Scalarised
Returns

Section 4.2 defines a partial ordering over policies under the ESR criterion for
unknown utility functions using FSD. In the unknown utility function scenario,
it is infeasible to learn a single optimal policy [Roijers et al., 2013]. When a
user’s utility function is unknown, multi-policy MODeM algorithms must be used
to compute a set of optimal policies. To apply MODeM to the ESR criterion in
scenarios with unknown utility, a set of optimal policies under the ESR criterion
must be defined. In Section 4.3, FSD is used to define multiple sets of optimal
policies for the ESR criterion.

First, a set of optimal policies, known as the undominated set, is defined. The
undominated set is defined using FSD, where each policy in the undominated set
has an underlying return distribution that is FSD dominant. The undominated
set contains at least one optimal policy for all possible monotonically increasing
utility functions.

Definition 19

The undominated set, U(Π), is a sub-set of all possible policies for where
there exists some utility function, u, where a policy’s return distribution is
FSD dominant.

U(Π) =
{

π ∈ Π
∣∣∣ ∃u,∀π′ ∈ Π : zπ ⪰F SD zπ′

}
However, the undominated set may contain excess policies. For example, under
FSD, if two dominant policies have return distributions that are equal, then both

96

4.3. SOLUTION SETS FOR THE EXPECTED SCALARISED RETURNS

policies will be in the undominated set. Given both return distributions are equal,
a user with a monotonically increasing utility function will not prefer one policy
over the other. In this case, both policies have the same expected utility. To reduce
the number of policies that must be considered at execution time, for each possible
utility function it is possible to keep just one corresponding FSD dominant policy;
such a set of policies is called a coverage set (CS).

Definition 20

The coverage set, CS(Π), is a subset of the undominated set, U(Π), where, for
every utility function, u, the set contains a policy that has a FSD dominant
return distribution,

CS(Π) ⊆ U(Π) ∧
(
∀u,∃π ∈ CS(Π),∀π′ ∈ Π : zπ ⪰F SD zπ′

)
In practice, a decision maker may aim to learn the smallest possible set of optimal
policies. However, the FSD relation considered does not have a strict inequality
condition. Moreover, the undominated set generated using FSD may contain excess
policies. Therefore, to compute a coverage set in practice where each optimal
policy has a unique return distribution, a new dominance relation called expected
scalarised returns dominance (ESR dominance) is defined. In contrast to FSD,
ESR dominance ensures that an explicitly strict inequality exists.

Definition 21

For random vectors X and Y, X ≻ESR Y for all decision makers with a
monotonically increasing utility function if, and only if, the following is true:

X ≻ESR Y⇔

∀u : (∀v : P (u(X) > u(v)) ≥ P (u(Y) > u(v))

∧∃v : P (u(X) > u(v)) > P (u(Y) > u(v))).

ESR dominance (Definition 21) extends FSD, however, FSD is a more strict
dominance criterion. For FSD, policies that have equal return distributions
are considered dominant policies, which is not the case under ESR dominance.
Therefore, if a random vector is ESR dominant, the random vector has a greater
expected utility than all ESR dominated random vectors. Theorem 4 proves that if
a random vector X ESR dominates a random vector Y, X has a greater expected
utility than Y. Theorem 4 focuses on random vectors X and Y where each random
vector has two random variables, such that X = [X1, X2] and Y = [Y1, Y2]. FX

97

CHAPTER 4. THEORY FOR UNKNOWN UTILITY FUNCTIONS

and FY are the corresponding CDFs and v = [t, z]. However, Theorem 4 can easily
be extended for random vectors with n random variables (X = [X1, X2, ..., Xn]).

Theorem 4

A random vector, X, is preferred to a random vector, Y, by all decision makers
with a monotonically increasing utility function if, and only if, X ≥ESR Y:

X ≻ESR Y =⇒ E(u(X)) > E(u(Y))

Proof. X and Y are random vectors with n random variables. If X ≻ESR Y the
following two conditions must be met for all u:

1. ∀v : P (u(X) > u(v)) ≥ P (u(Y) > u(v))

2. ∃v : P (u(X) > u(v)) > P (u(Y) > u(v))

From Definition 17, if X ⪰F SD Y then the following is true:

∀u : ∀v : P (u(X) > u(v)) ≥ P (u(Y) > u(v))

If X ⪰F SD Y, then, from Theorem 3, the following is true:

E(u(X)) ≥ E(u(Y))

If condition 1 is satisfied, the expected utility of X is at least equal to the expected
utility of Y, then:

E(u(X)) =
∫ ∞

−∞

∫ ∞

−∞
u(z)fX(t, z) dt dz

E(u(Y)) =
∫ ∞

−∞

∫ ∞

−∞
u(z)fY(t, z) dt dz

In order to satisfy condition 2, some limits must exist to give the following,∫ b

a

∫ d

c

u(t, z)fX(t, z) dt dz >

∫ b

a

∫ d

c

u(t, z)fY(t, z) dt dz

The minimum requirement to satisfy condition 1 is:∫ ∞

−∞

∫ ∞

−∞
u(t, z)fX(t, z) dt dz =

∫ ∞

−∞

∫ ∞

−∞
u(t, z)fY(t, z) dt dz

98

4.3. SOLUTION SETS FOR THE EXPECTED SCALARISED RETURNS

If condition 1 is satisfied, to satisfy condition 2 some limits must exist:∫ b

a

∫ d

c

u(t, z)fX(t, z) dt dz >

∫ b

a

∫ d

c

u(t, z)fY(t, z) dt dz.

Therefore, ∫ a

−∞

∫ c

−∞
u(t, z)fX(t, z) dt dz +

∫ b

a

∫ d

c

u(t, z)fX(t, z) dt dz +

∫ ∞

b

∫ ∞

d

u(t, z)fX(t, z) dt dz >

∫ a

−∞

∫ c

−∞
u(t, z)fY(t, z) dt dz +

∫ b

a

∫ d

c

u(t, z)fY(t, z) dt dz +
∫ ∞

b

∫ ∞

d

u(t, z)fY(t, z) dt dz.

Finally, ∫ ∞

−∞

∫ ∞

−∞
u(t, z)fX(t, z) dt dz >

∫ ∞

−∞

∫ ∞

−∞
u(t, z)fY(t, z) dt dz

if X ≻ESR Y, then,
E(u(X)) > E(u(Y)).

In the ESR dominance criterion defined in Definition 21, the utility of different
vectors is compared. However, it is not possible to calculate the utility of a vector
when the utility function is unknown. In this case, Pareto dominance [Pareto,
1896] can be used instead to determine whether one of the vectors being compared
is guaranteed to give a higher utility.

Definition 22

A Pareto dominates (≻p) B if the following is true:

A ≻p B⇔ (∀i : Ai ≥ Bi) ∧ (∃i : Ai > Bi). (4.6)

For monotonically increasing utility functions, if the value of an element of the
vector increases, then the scalar utility of the vector also increases. Therefore, using
Definition 22, if vector A Pareto dominates vector B, for a monotonically increasing
utility function, A has a higher utility than B. To make ESR comparisons between
return distributions, Pareto dominance can be used.

99

CHAPTER 4. THEORY FOR UNKNOWN UTILITY FUNCTIONS

Definition 23

For random vectors X and Y, X ≻ESR Y for all monotonically increasing
utility functions if, and only if, the following is true:

X ≻ESR Y⇔

∀v : P (X >P v) ≥ P (Y >P v) ∧ ∃v : P (X >P v) > P (Y >P v).

It is also possible to calculate ESR dominance by comparing the CDFs of random
vectors. Using the CDF, also guarantees a higher expected utility. Using the CDF
it is possible to compare the cumulative probabilities for a given vector where a
lower cumulative probability is preferred. ESR dominance with the CDF does not
require any information about the utility function of a user and, therefore, can be
used in the unknown utility function scenario.

Definition 24

For random vectors X and Y, X ≻ESR Y for all monotonically increasing
utility functions if, and only if, the following is true:

X ≻ESR Y⇔

∀v : FX(v) ≤ FY(v) ∧ ∃v : FX(v) < FY(v).

Therefore, either Definition 23 or Definition 24 can be used to calculate ESR
dominance to give a partial ordering over policies.

Definition 25

For return distributions zπ and zπ′ for policies π and π′, π is preferred over
π′ by all decision makers with a monotonically increasing utility function if,
and only if, the following is true:

zπ ≻ESR zπ′

To illustrate the ESR dominance relation and how a partial ordering over return
distributions is determined, consider the example outlined in Figure 4.1 and Figure
4.2. As already highlighted, to determine ESR dominance, the CDF, FX of a return
distribution X must be compared with the CDF, FY, of a return distribution Y. To
illustrate the example, it is possible to rewrite Definition 24 to give the following
condition, which must be true:

∀v : FX(v)− FY(v) ≤ 0 ∧ ∃v : FX(v)− FY(v) < 0.

100

4.3. SOLUTION SETS FOR THE EXPECTED SCALARISED RETURNS

−1 0 1 2 3 0

2

4
0

0.5

1

o1

o2

pr
ob

ab
ili

ty

−1 0 1 2 3 0

2

4
0

0.5

1

o1

o2

pr
ob

ab
ili

ty
Figure 4.1: (left) The CDF, FX, of a return distribution X. (right) The CDF,
FY, of a return distribution Y.

Figure 4.2 highlights the difference in probability for FX − FY. The dotted line
in Figure 4.2, labelled (a), highlights that, for at least one point, FX − FY > 0.
Therefore, the return distribution X cannot ESR dominate the return distribution
Y.

Finally, by using ESR dominance it is possible to define a set of optimal policies,
known as the ESR set.

Definition 26

The ESR set, ESR(Π), is a sub-set of all policies where each policy in the
ESR set is ESR dominant,

ESR(Π) = {π ∈ Π | ∄π′ ∈ Π : zπ′
≻ESR zπ}. (4.7)

The ESR set is a set of non-dominated policies, where each policy in the ESR set
is ESR dominant. The ESR set can be considered a coverage set, when no excess
policies exist in the ESR set. It is viable for a multi-policy MODeM method to
use ESR dominance to construct the ESR set.

101

CHAPTER 4. THEORY FOR UNKNOWN UTILITY FUNCTIONS

020 1 2 3 4

−0.6

−0.4

−0.2

0

0.2 (a)

o1o2

F
X
−

F
Y

Figure 4.2: The difference in probability mass for FX−FY, which is used to visualise
the requirements for ESR dominance. A dotted line (a) is drawn to highlight that
FX − FY > 0 for least at one point. Therefore, X does not ESR dominate Y.

4.4 Related Work
The various orders of SD have been used extensively as a method to determine
the optimal decision when making decisions under uncertainty in economics [Choi
and Johnson, 1988], finance [Ali, 1975; Bawa, 1978], game theory [Fishburn, 1978],
and various other real-world scenarios [Bawa, 1982]. However, SD has largely been
overlooked in systems that learn. Cook and Jarrett [2018] use various orders of
SD and Pareto dominance with genetic algorithms to compute optimal solution
sets for an aerospace design problem with multiple objectives when constrained
by a computational budget. Martin et al. [2020] use second-order stochastic
dominance (SSD) with a single-objective distributional reinforcement learning
(distRL) algorithm [Bellemare et al., 2017]. Martin et al. [2020] use SSD to
determine the optimal action to take at decision time, and this approach is shown
to learn good policies during experimentation.

102

4.5. SUMMARY

4.5 Summary
This chapter has added several major contributions to the MODeM literature.
Prior to this work, the ESR criterion for the unknown utility function scenario had
not been explored, and how best to compute sets of optimal policies for the ESR
criterion remained an open question. The work presented in this chapter outlines
how MODeM problems can be solved under the ESR criterion with unknown utility
functions and provides a theoretical methodology for doing so.

An important aspect of this chapter was the identification of the limitations of
SER value vector methods for the ESR criterion. Prior to this work, the SER
criterion was the only optimality criteria that had been explored for settings with
unknown utility functions. The findings presented in Section 4.1 outline that
dedicated algorithms must be developed to compute sets of optimal policies under
the ESR criterion by taking a distributional approach.

Taking a distributional approach to MODeM means new methods must be used
to determine a partial ordering over policies. Section 4.2 and Section 4.3 outlined
and proved how SD and ESR dominance can be used under the ESR criterion to
determine a partial ordering over policies. Having tractable methods to determine
a partial ordering over policies is crucial when computing sets of optimal policies
when the utility function is unknown. Therefore, Section 4.2 and Section 4.3 outline
major contributions to the MODeM literature.

Finally, by following the utility-based approach, a user is always assumed to be
part of the decision making process. Therefore, the optimal policies which have
been computed must be returned to the user for selection. Again, under the ESR
criterion, such methods had not been explored. In Section 4.3, an undominated
set, a coverage set, and the ESR set were defined. The defined sets contain policies
that are optimal for all monotonically increasing utility functions and, therefore,
can be returned to the user during the decision making process. By comparing
distributions from an ESR set, rather than expected value vectors, users can get
a better intuition of the range of possible outcomes for a decision. For example,
a user could avoid selecting policies or actions that that have an unacceptable
probability of an undesirable outcome; this is impossible with SER methods and
expected value vectors.

103

5 | Algorithms for
Unknown Utility

Functions1

In Chapter 4 multiple solution concepts were defined for the expected scalarised
returns (ESR) criterion that can be used to determine a partial ordering over
policies. Additionally, relations to determine sets of optimal policies for the ESR
criterion were also defined. As previously highlighted, multi-policy methods have
not been explored for the ESR criterion. However, now that a partial ordering
over policies and sets of optimal solutions for the ESR criterion have been defined,
it is possible to design multi-policy algorithms for the ESR criterion by taking a
distributional approach. Chapter 5 proposes several multi-policy multi-objective
decision making (MODeM) algorithms that can compute sets of optimal polices
under the ESR criterion in different MODeM settings. Each algorithm utilises
distributions over the returns to compute a set of optimal policies for the ESR
criterion. During the empirical evaluation for each algorithm, the ESR set is
computed. The contributions of Chapter 5 are as follows:

1. First, Section 5.1 proposes a new pruning algorithm for the ESR criterion
known as ESRPrune. The pruning algorithm proposed is necessary to
compute sets of optimal policies under the ESR criterion.

1The contributions presented in Chapter 5 are published in the following papers: [Hayes et al.,
2022a,b,d,e].

105

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

2. Second, Section 5.2 proposes a novel multi-objective distributional tabular
reinforcement learning (MOTDRL) algorithm that computes a set of optimal
policies under the ESR criterion in a multi-objective multi-armed bandit
(MOMAB) setting. Furthermore, to evaluate MOTDRL a novel evaluation
metric for the ESR criterion is proposed. MOTDRL is evaluated in multiple
MOMAB problem domains.

3. Next, Section 5.3 defines a new multi-objective distributional value iteration
(MODVI) algorithm to compute a set of optimal policies (ESR set) in a
multi-objective Markov decision process (MOMDP). MODVI is evaluated
using several MOMDP benchmark problems from the literature.

4. Finally, Section 5.4 describes a novel distributional multi-objective variable
elimination (DMOVE) algorithm that computes the ESR set for multi-agent
settings, specifically in multi-objective coordination graphs (MO-CoGs).
DMOVE is evaluated using several benchmark MO-CoGs from the literature.

5.1 A Pruning Algorithm for the Expected
Scalarised Returns

To compute the ESR set, comparisons of return distributions must be made using
ESR dominance. In settings with a large number of policies, many comparisons
between return distributions must be made to determine optimality. Therefore, to
optimise the computation of the ESR set, a pruning algorithm known as ESRPrune
is defined. ESRPrune can be used to reduce the nessesary comparisons of return
distributions in multi-objective settings under the ESR criterion. ESRPrune is
particularly useful in settings with a large number of policies.

For the SER criterion, multiple pruning operators exist. For example, PPrune
[Roijers, 2016] can be utilised to compute the Pareto front or CPrune [Roijers et al.,
2015] can be used to compute the convex coverage set. However, such pruning
operators utilise expected value vectors which are fundamentally incompatible
with the ESR criterion, as shown in Chapter 4. Therefore, in order to apply a
pruning algorithm to the ESR criterion, ESRPrune takes return distributions into
consideration. Algorithm 14 presents the ESRPrune algorithm. ESRPrune can be
used to compute the ESR set for multi-objective settings under the ESR criterion.

ESRPrune utilises ESR dominance and, like Pareto dominance, ESR dominance
is transitive [Wolfstetter, 1999]. Therefore, ESRPrune can be applied in sequence.
To compute ESR dominance, the cumulative distribution function (CDF) of each
return distribution in the given set must be calculated. ESRPrune iterates over the
given set of return distributions and compares the CDFs of the return distributions

106

5.2. SOLVING MULTI-OBJECTIVE MULTI-ARMED BANDITS FOR THE
EXPECTED SCALARISED RETURNS

Algorithm 14: ESRPrune
1 Input: Z ← A set of return distributions
2 Z∗ ← ∅
3 while Z ̸= ∅ do
4 z← the first element of Z
5 for z′ ∈ Z do
6 if z′ >ESR z then
7 z← z′

8 end
9 end

10 Remove z and all return distributions ESR-dominated by z from Z
11 Add z to Z∗

12 end
13 Return Z∗

to determine which are ESR non-dominated. The return distributions that are
ESR dominated are removed from the set. ESRPrune is utilised in Section 5.3 and
Section 5.4 to compute the ESR set in MOMDPs and MO-CoGs.

5.2 Solving Multi-Objective Multi-Armed
Bandits for the Expected Scalarised Returns

To compute a set of optimal policies under the ESR criterion in MOMAB settings,
a new multi-objective distributional tabular reinforcement learning (MOTDRL)
algorithm is proposed in Section 5.2.1. To evaluate the performance of MOTDRL,
Section 5.2.2 proposes a new evaluation metric for the ESR criterion. In Section
5.2.3 MOTDRL is evaluated using several MOMAB problems and computes the
ESR set for each problem domain.

5.2.1 Multi-Objective Tabular Distributional Reinforcement
Learning

In this section, a novel multi-objective distributional tabular reinforcement learning
(MOTDRL) algorithm is presented that learns an optimal set of policies for the
ESR criterion, also known as the ESR set, for MOMAB problems. MOTDRL learns
the return distribution for a policy by sampling each available arm in a MOMAB
setting. Given MOTDRL only considers MOMAB problem domains, MOTDRL

107

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

Z x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5
x1 = 0 0 0 0 0 0 0
x1 = 1 0 0 0 0 0 0
x1 = 2 0 0 0 0 0 0
x1 = 3 0 0 0 0 0 0
x1 = 4 0 0 0 0 0 0
x1 = 5 0 0 0 0 0 0

Figure 5.1: An illustration of an initialised Z-table for a problem domain with two
objectives, x1 and x2, with each index value set to 0.

maintains a distribution per arm and updates the distribution after each timestep
with the return vector received from executing the sampled arm.

When optimising under the ESR criterion, it is crucial that a MODeM method
learns the underlying distribution over the returns. Other distributional MODeM
methods, such as bootstrap Thompson sampling (BTS) (see Chapter 3), cannot
be used to learn a set of optimal policies under the ESR criterion when the utility
function is unknown. Such methods learn a distribution over the mean returns.
In scenarios where the utility function is unknown or unavailable, computing ESR
dominance would not be possible using the outlined methods.

MOTDRL can learn the underlying return distribution for an arm by maintaining
a tabular representation of the underlying multivariate distribution. To maintain
a tabular representation of a multivariate distribution, a Z-table for each arm is
initialised where the Z-table has an axis per objective. The Z-table maintains a
count of the number of times a return vector is received for a given arm. The
size of each Z-table is initialised using the parameters Rmin and Rmax, which are
the minimum and maximum returns obtainable for any of the objectives in the
given environment. Therefore, each axis in the Z-table will use Rmin and Rmax to
define the length of the axis, where each index value of the Z-table is initialised to
0. Using Rmin and Rmax as initialisation parameters, a Z-table can be constructed
that contains an index for all possible return vectors in a given problem domain.
Figure 5.1 visualises an initialised Z-table for a multi-objective problem with two
objectives where Rmin = 0 and Rmax = 5.

Each Z-table can be used to calculate the return distribution of an arm, zπ,
that can be used to represent a policy π. At each timestep, t, the returns, R,
received from pulling arm, i, are used to update the Z-table. The Z-table is used
to maintain a count of the number of times the return, R, is received. In MOMAB
problem domains, the returns received from the execution of an arm represent the
full returns of the execution of a policy. To update the Z-table, the value at the

108

5.2. SOLVING MULTI-OBJECTIVE MULTI-ARMED BANDITS FOR THE
EXPECTED SCALARISED RETURNS

Algorithm 15: Z-table Update
1 Input - arm, i
2 Require - Z-table for arm, i, Zi

3 Pull arm, i, and observe return, R.
4 Zi(R) = Zi(R) + 1
5 Ni = Ni + 1
6 return Z-table, Zi.

index corresponding to the return R is incremented by one. To correctly calculate
the probability of receiving return R when pulling arm i, a counter, Ni, which
represents the number of times arm i has been pulled, must be maintained. Each
time arm i is pulled, the counter Ni is incremented by one. Algorithm 15 outlines
how the Z-table for each arm is updated.

MOTDRL is a multi-policy algorithm that can learn the ESR set using ESR
dominance. Algorithm 16 outlines how MOTDRL learns the ESR set when the
utility function of a user in unknown in a MOMAB problem domain. In Algorithm
16, A is defined as a set of available arms, the ESR set is defined as E, D is the
number of objectives, n is the total number of pulls across all arms, Nj and Ni are
the total pulls of arms j and i, and |E∗| is the cardinality of the ESR set, which
is known a priori. When learning, the MOTDRL algorithm has priori knowledge
of A, Rmax and Rmin. The agent must have knowledge of Rmax and Rmin so the
Z-table can be correctly initialised, and the agent must know the number of arms
in A for action selection. A suitable stopping condition criteria for Algorithm 16
is a fixed number of episodes.

Algorithm 16: Multi-Objective Tabular Distributional Reinforcement
Learning

1 Pull each arm i in A, β times
2 Z-table Update(i) ∀ i ∈ A
3 repeat
4 Find E such that ∀ i ∈ E, ∀ j

5 zj +
√

2ln(n 4
√

D|E∗|)
Nj

⊁ESR zi +
√

2ln(n 4
√

D|E∗|)
Ni

6 Pull i uniform randomly chosen from E
7 Z-table Update(i)
8 until stopping condition is met;

109

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

On initialisation each arm is pulled β times. The hyperparameter β is selected
to ensure each arm is pulled sufficiently to build an initial distribution. For good
performance β is set to greater than 1. For β greater than 1, MOTDRL can build
a sufficient initial distribution and can then efficiently explore each arm with the
upper confidence bound (UCB) statistic. At each timestep, the return distribution
of the policies associated with the execution of each arm is calculated. The ESR
set, E, is then calculated from the resulting return distributions. Therefore, for
all the non-optimal arms l ̸∈ E, there exists an ESR dominant arm i ∈ ESR that
ESR dominates the arm l.

To calculate ESR dominance in Algorithm 16 at Line 5, it is nessesary to compute
both the probability density function (PDF) and cumulative distribution function
(CDF) of the underling return distribution of a policy. The PDF can be calculated
by computing the probability of receiving individual returns. Combining the Z-
table and N for an arm, i, it is possible to compute the probability of receiving
each return in a given problem domain, since the following is true:

fX(x1, x2, ..., xn) = P (X = x1, X = x2, ..., X = xn) = Zi(x1, x2, ..., xn)
Ni

(5.1)

Once the PDF has been computed using Equation 5.1, it is possible to compute
the CDF. Since the following is true:

FX(x1, x2, ..., xn) =P (X ≤ x1, X ≤ x2, ..., X ≤ xn)

=
∑

xa≤x1

∑
xb≤x2

...
∑

xk≤xn

P (X = xa, X = xb, ..., X = xk)

=
∑

xa≤x1

∑
xb≤x2

...
∑

xk≤xn

Zi(xa, xb, ..., xk)
Ni

(5.2)

Using the PDF and the CDF of a return distribution, it is possible to determine
if arms are ESR dominated using Definition 23 or Definition 24.

To efficiently explore all available arms, MOTDRL uses the UCB statistic
presented by Drugan and Nowe [2013]. MOTDRL uses UCB to transform the
PDF of the underlying return distribution, by adding the UCB statistic, computed
at Line 5 in Algorithm 16, to the PDF. By summing the UCB statistic and the
PDF, the PDF is shifted relative to the value of the computed UCB statistic. The
CDF can then calculated based on the transformed PDF and ESR dominance can
then be calculated.

Transforming the PDF using the UCB statistic ensures that there is sufficient
exploration of all available arms during experimentation. However, as the number
of pulls of a given arm increases, the UCB statistic decreases, which decreases

110

5.2. SOLVING MULTI-OBJECTIVE MULTI-ARMED BANDITS FOR THE
EXPECTED SCALARISED RETURNS

exploration. Over time the UCB statistic’s effect on the PDF and CDF becomes
negligible. At such a point, MOTDRL can exploit the return distributions learned
during exploration and compute the ESR set.

Given MOTDRL is a multi-policy algorithm, MOTDRL can be used in the
unknown utility function scenario. During learning, MOTDRL learns the ESR
set by utilising the steps in Algorithm 16. In Section 5.2.3 MOTDRL is evaluated
using two MOMAB settings. However, the state-of-the-art MODeM evaluation
methods are only useful when optimising under the SER criterion. Therefore, in
Section 5.2.2, a new metric is proposed that can be used to evaluate MODeM
algorithms under the ESR criterion.

5.2.2 Evaluation Metrics
The standard metrics for MODeM [Vamplew et al., 2011; Zintgraf et al., 2015;
Yang et al., 2019] are not suitable to evaluate a multi-policy method under the
ESR criterion because they are designed to specifically evaluate SER multi-policy
methods. To evaluate MODeM algorithms under the ESR criterion, the coverage
ratio metric used by Yang et al. [2019] is adapted for the ESR criterion. The
coverage ratio evaluates the agent’s ability to recover optimal solutions in the ESR
set (E). If F ⊆ Rm is the set of solutions found by the agent, the following can
be defined:

F ∩ϵ E := {zπ ∈ F | ∃zπ′
∈ E s.t sup

x
|Fzπ (x)− Fzπ′ (x) | ≤ ϵ}, (5.3)

where x = [x1, x2, ..., xD] and D is equal to the number of objectives. Equation 5.3
uses the Kolmogorov–Smirnov statistic [Darling, 1957] (Equation 5.4), where sup

x
is the supremum of the set of distances. The Kolmogorov–Smirnov statistic takes
the largest absolute difference between the two CDFs across all x values,

sup
x
|Fzπ (x)− Fzπ′ (x)|. (5.4)

The Kolmogorov–Smirnov statistic returns a minimum value of 0 and a maximum
value of 1. If two CDFs are equal, then the Kolmogorov–Smirnov statistic will
return a value of 0.

The coverage ratio is then defined as:

F1 = 2 · precision · recall

precision + recall
, (5.5)

where precision = |F ∩ϵ E|/|F| indicating the fraction of optimal solutions among
the retrieved solutions, and the recall = |F ∩ϵ E|/|E| indicating the fraction

111

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

arm1
P(Arm 1 = R) R

0.4 (0, 1)
0.6 (5, 4)

arm2
P(Arm 2 = R) R

0.85 (1, 0)
0.15 (3, 2)

arm3
P(Arm 3= R) R

0.75 (2, 0)
0.25 (4, 2)

arm4
P(Arm 4 = R) R

0.8 (0, 1)
0.2 (1, 2)

arm5
P(Arm 5 = R) R

0.7 (2, 0)
0.3 (4, 5)

Table 5.1: A MOMAB with 5 arms where selecting an arm has two outcomes and
two objectives.

of optimal instances that have been retrieved over the total amount of optimal
solutions [Yang et al., 2019].

5.2.3 Empirical Evaluation
MOTDRL is evaluated using two newly defined MOMAB settings. First, a
traditional MOMAB setting with stochastic rewards is defined and is used to
evaluate MOTDRL. Second, a newly proposed MOMAB problem domain, known
as the Vaccine Recommender System (VRS) environment, is defined and used to
evaluate MOTDRL.

5.2.3.1 Multi-Objective Multi-Armed Bandit Environment

To evaluate MOTDRL, a bi-objective MOMAB with five arms is considered. Table
5.1 outlines the number of possible outcomes obtainable when selecting a given
arm and the corresponding probabilities. Table 5.1 is unknown to the agent, and
the agent aims to learn each distribution per arm and prune the ESR dominated
arms from consideration. In the MOMAB setting, the ESR set is known a priori
where the return distributions for arm1 and arm5 are ESR dominant. Therefore,
the ESR set only contains arm1 and arm5. To evaluate MOTDRL in a MOMAB
environment, the following hyperparameters are set: Rmin = 0, Rmax = 10, D = 2,
β = 5 and |E∗| = 2. To compute the coverage ratio, ϵ is selected as follows:
ϵ = 0.01. All experiments in this setting are averaged over 10 runs, where each
experiment lasts for 200, 000 episodes.

MOTDRL is able to learn the underlying return distributions for each arm in
the MOMAB setting. Using the return distributions for each arm, MOTDRL can
learn the ESR set in the MOMAB environment. In Figure 5.2, the coverage ratio
is presented as the F1 score. MOTDRL converges to the optimal F1 score of 1.

112

5.2. SOLVING MULTI-OBJECTIVE MULTI-ARMED BANDITS FOR THE
EXPECTED SCALARISED RETURNS

0 40000 80000 120000 160000 200000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

F
1

sc
or

e

Figure 5.2: Results from the MOMAB environment. MOTDRL is able to learn the
ESR set as MOTDRL converges to the optimal coverage ratio since the F1 score
reaches the maximum possible value of 1.

MOTDRL converges to the optimal F1 score after 150, 000 episodes. An optimal
F1 score can only be achieved when all policies in the ESR set have been learned
by the agent.

The learned ESR set contains two arms: arm1 and arm5. Both arm1 and arm5
are ESR dominant and, therefore, any user with a monotonically increasing utility
function would prefer arm1 or arm5 over all other available arms in the MOMAB
problem. Given the utility-based perspective is followed, MOTDRL will return
the ESR set to the user during the selection phase. In practice, a user will select
a policy form the ESR set which best reflects their preferences and the selected
policy will be executed.

Given ESR dominance is a new solution concept, Figure 5.3, Figure 5.4, and
Figure 5.5 are utilised to give the reader some intuition about ESR dominance.
Figure 5.3 displays the return distributions in the ESR set learned by MOTDRL as
heatmaps. Each heatmap in Figure 5.3 corresponds to the probabilities highlighted
for arm1 (left) and arm5 (right) in Table 5.1.

Figure 5.4 displays the CDFs for each return distribution in the ESR set learned
by MOTDRL. The CDF is used to calculate ESR dominance and the CDFs in
Figure 5.4 correspond to the CDFs of arm1 (left) and arm5 (right) in Table 5.1.

Figure 5.5 describes how arm1 ⊁ESR arm5 and arm5 ⊁ESR arm1 given the CDFs
for arm1 and arm5 intersect at multiple points.

113

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

0 1 2 3 4 5 6 7 8 9 10
objective 2

0

1

2

3

4

5

6

7

8

9

10

ob
je

ct
iv
e

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10
objective 2

0

1

2

3

4

5

6

7

8

9

10

ob
je

ct
iv
e

1

0.0

0.2

0.4

0.6

Figure 5.3: Heatmaps for each return distribution in the ESR set learned by
MOTDRL in the MOMAB environment. The left heatmap describes the return
distribution for arm1 learned by MOTDRL and the right heatmap describes the
return distribution for arm5 learned by MOTDRL.

objective 1

0
2

4
6

8
10

ob
jec

tiv
e 2

0
2

4
6

8
10

pr
ob

ab
ilit

y

0.0

0.2

0.4

0.6

0.8

1.0

objective 1

0
2

4
6

8
10

ob
jec

tiv
e 2

0
2

4
6

8
10

pr
ob

ab
ilit

y

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.4: CDFs for each policy in the ESR set learned by MOTDRL in the
MOMAB environment. The left figure describes the CDF for arm1 learned by
MOTDRL and the right figure describes the CDF for arm5 learned by MOTDRL.

114

5.2. SOLVING MULTI-OBJECTIVE MULTI-ARMED BANDITS FOR THE
EXPECTED SCALARISED RETURNS

objective 1

0
2

4
6

8
10

ob
jec

tiv
e 2

0
2

4
6

8
10

pr
ob

ab
ilit

y

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.5: The CDFs for arm1 and arm5 intersect at multiple points. Therefore,
as per Definition 21: arm1 ⊁ESR arm5 and arm5 ⊁ESR arm1.

0 1 2 3 4 5
objective 1

0

1

2

3

4

5

ob
je

ct
iv
e

2

Pareto Front

0 1 2 3 4 5
objective 1

0

1

2

3

4

5

ob
je

ct
iv
e

2

ESR Set

Figure 5.6: The policies on the Pareto front (left) are different from the policies
in the ESR set (right). In this case, a policy that is in the ESR set is not on the
Pareto front. This figure illustrates why SER methods cannot be used to learn the
ESR set.

115

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

Figure 5.6 highlights why the choice of optimality criteria must be taken into
consideration for MODeM when the utility function of the user is unknown. A
number of SER methods use Pareto dominance to determine a partial ordering
over policies. The Pareto dominant policies, or Pareto front, are then returned to
the user. To determine the Pareto front [Pareto, 1896], the expectations of each
arm in the MOMAB setting are calculated and the Pareto dominant policies are
determined.

In Figure 5.6 the policies on the Pareto front (left) have been highlighted in red;
all other policies are Pareto dominated. In the MOMAB environment outlined in
Table 5.1, the Pareto front consists of a single policy. Figure 5.6 (right) displays
the expected value vectors of the policies in the ESR set, highlighted in green.
By comparing both plots in Figure 5.6, it is clear that the ESR set contains an
extra policy. Therefore, in some settings, certain policies that are optimal under
the ESR criterion are dominated under the SER criterion. Figure 5.6 highlights
the importance of selecting the correct optimality criterion when learning. If SER
methods are used to compute a set of optimal policies in scenarios where the ESR
criterion should be used, it is possible a sub-optimal policy may be selected by the
user at decision time. This may have adverse affects when applying multi-policy
multi-objective methods in real-world decision making settings.

5.2.3.2 Vaccine Recommender System

To illustrate a potential real-world use case for the ESR criterion and ESR
dominance, a new MOMAB environment known as the Vaccine Recommender
System (VRS) is defined. For example, in a medical setting a doctor may only have
one opportunity to select a treatment for a patient. In this case, it is necessary
to optimise under the ESR criterion.

Consider the following scenario: a patient is travelling to another country where
it is required to be vaccinated for a specific disease to gain entry to the country.
There are five available vaccines, however, each vaccine will have varying side effects
(safety rating) and effectiveness. This problem has two objectives: safety and
effectiveness. Both objectives are ranked from 0 to 5, with 0 being the worst rating
and 5 being the best rating. None of the available vaccines are 100% effective at
preventing the disease. When taking each vaccine, there is a chance of different
outcomes occurring. For example, there is a chance of having severe side effects
(low safety rating) and a chance of the vaccine providing the required immunity
to the disease (high effectiveness rating). Table 5.2 outlines each vaccine and
the probability of each outcome occurring after taking the vaccine. Table 5.2 is
unknown to the agent, and the agent aims to learn each distribution per vaccine
and prune the ESR dominated vaccines from consideration.

116

5.2. SOLVING MULTI-OBJECTIVE MULTI-ARMED BANDITS FOR THE
EXPECTED SCALARISED RETURNS

Vaccine 1 (V1)
P(V1= R) R

0.05 (2, 0)
0.05 (2, 1)
0.1 (3, 2)
0.8 (4, 2)

Vaccine 2 (V2)
P(V2= R) R

0.1 (0, 0)
0.1 (1, 1)
0.5 (2, 0)
0.3 (2, 1)

Vaccine 3 (V3)
P(V3= R) R

0.1 (1, 0)
0.1 (1, 3)
0.2 (3, 4)
0.6 (5, 4)

Vaccine 4 (V4)
P(V4= R) R

0.1 (1, 0)
0.4 (2, 1)
0.4 (3, 1)
0.1 (3, 2)

Vaccine 5 (V5)
P(V5= R) R

0.8 (0, 0)
0.05 (1, 1)
0.05 (1, 2)
0.1 (4, 0)

Table 5.2: A group of available vaccines that have varying outcomes. Some vaccines
have a higher chance of side effects (low safety rating), while others are more
effective at providing immunity. The objectives are ordered as follows: R = (safety,
effectiveness).

Given the utility function of the user is unknown, the MOTDRL algorithm is
used to learn the underlying return distributions for each vaccine in Table 5.2 and
determine the ESR set. Once MOTDRL has finished learning a set of optimal
polices, in this case the ESR set is returned to the user. When the user’s utility
function becomes known, a vaccine that maximises the user’s utility function can
be selected from the ESR set by the user.

The ESR set for the VRS environment is known a priori. The return distributions
for V1 and V3 are ESR dominant and, therefore, V1 and V3 are the only distributions
in the ESR set. The VRS environment, has five arms where each arm corresponds to
a vaccine in Table 5.2. To evaluate MOTDRL in a VRS environment, the following
hyperparameters are used: Rmin = 0, Rmax = 10, D = 2, β = 5 and |E∗| =
2. All experiments in this setting are averaged over 10 runs and each experiment
lasts 200, 000 episodes. To compute the coverage ratio, the ϵ parameter is set as
follows: ϵ = 0.01.

After sufficient sampling, MOTDRL is able to learn the underlying return
distributions for each arm in the VRS environment. Given return distributions
can be used to give a partial ordering over policies, MOTDRL can use the return
distributions for each arm to compute the ESR set in the VRS environment. In
Figure 5.7, the coverage ratio as the F1 score is presented. MOTDRL converges
to the optimal F1 score after 120, 000 episodes. Given MOTDRL converges to the
optimal F1 score, it is clear MOTDRL is able to learn the ESR set.

117

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

0 40000 80000 120000 160000 200000
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

F
1

sc
or

e

Figure 5.7: Results from the VRS environment. MOTDRL is able to learn the full
ESR set as it converges the optimal F1 score of 1.

0 1 2 3 4 5 6 7 8 9 10
objective 2

0

1

2

3

4

5

6

7

8

9

10

ob
je

ct
iv
e

1

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10
objective 2

0

1

2

3

4

5

6

7

8

9

10

ob
je

ct
iv
e

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.8: Heatmaps for each policy in the ESR set learned by MOTDRL. The
left heatmap describes the distribution for V1 learned by MOTDRL and the right
heatmap describes the distribution for V3 learned by MOTDRL.

118

5.2. SOLVING MULTI-OBJECTIVE MULTI-ARMED BANDITS FOR THE
EXPECTED SCALARISED RETURNS

objective 1

0
2

4
6

8
10

ob
jec

tiv
e 2

0
2

4
6

8
10

pr
ob

ab
ilit

y

0.0

0.2

0.4

0.6

0.8

1.0

objective 1

0
2

4
6

8
10

ob
jec

tiv
e 2

0
2

4
6

8
10

pr
ob

ab
ilit

y

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.9: CDFs for each policy in the ESR set learned by MOTDRL in the VRS
environment. The left figure describes the CDF for V1 learned by MOTDRL and
the right figure describes the CDF for V3 learned by MOTDRL.

In practice, once learning has completed, MOTDRL returns the learned ESR set
for the VRS environment to the user. The learned ESR set contains two vaccines;
V1 and V3. Both vaccines in the ESR set are ESR dominant. Moreover, a user
with a monotonically increasing utility function will prefer either V1 or V3 over all
other vaccines in the VRS environment.

Figure 5.8 and Figure 5.9 are presented to give the reader some intuition about
ESR dominance. Figure 5.8 presents heatmaps to represent the policies in the ESR
set learned by MOTDRL. Each heatmap represents a return distribution learned by
MOTDRL and shows the return vectors and the corresponding probabilities. Each
heatmap in Figure 5.8 corresponds to the probabilities highlighted for V1 (left) and
V3 (right) in Table 5.2. Figure 5.9 displays the policies in the ESR set learned by
MOTDRL and their corresponding CDFs. Each CDF in Figure 5.9 corresponds to
the CDFs of the underlying return distributions of V1 and V3 in Table 5.2.

5.2.4 Discussion
In this section, a novel multi-objective distributional tabular reinforcement learning
(MOTDRL) algorithm is proposed that can compute a set of optimal policies for
the ESR criterion. MOTDRL learns a distribution over the returns for each arm
in MOMAB settings. By utilising a distributional approach, MOTDRL is able to
learn the ESR set in each evaluation setting. MOTDRL is the first algorithm that
can learn the ESR set in MOMAB settings.

119

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

During experimentation, it was found that the Pareto front and the ESR set can
contain different policies. Therefore, the choice of optimality criterion is important,
given policies that are sub-optimal for the SER criterion may be optimal under
the ESR criterion. Selecting the wrong optimality criterion can lead to the user
selecting a sub-optimal solution at decision time.

Furthermore, a novel evaluation metric for the ESR criterion is also defined.
However, the proposed evaluation metric can only be used in settings where the
ESR set is known a priori, and therefore its application is limited to settings where
the full ESR set is known.

5.3 Solving Multi-Objective Markov Decision
Processes for the Expected Scalarised Returns

In this section a novel multi-objective distributional value iteration (MODVI)
algorithm is proposed that can compute a set of optimal policies for the ESR
criterion in sequential decision making settings.

5.3.1 Multi-Objective Distributional Value Iteration
To compute a set of optimal policies for sequential MODeM scenarios under the
ESR criterion when the utility function of a user is unknown, a novel multi-objective
distributional value iteration (MODVI) algorithm is proposed. MODVI maintains
sets of return distributions for each state and uses ESR dominance to compute a
set of non-dominated return distributions, known as the ESR set.

As previously outlined, the state-of-the-art sequential MODeM algorithms use
expected value vectors to compute sets of optimal policies [Wang and Sebag, 2012;
Wiering and de Jong, 2007; White, 1982]. However, expected value vectors can
only be used when optimising for the SER criterion. Therefore, to compute a set
of optimal polices for the ESR criterion, expected value vectors must be replaced
with return distributions. Generally, expected value MODeM algorithms utilise
the Bellman operator [Bellman, 1957a] to compute the expected value vectors for
each state in sequential settings. Given the proposed approach is distributional, the
distributional Bellman operator [Bellemare et al., 2017], T π

D , is adopted to update
the return distribution for each state-action pair:

T π
D z(s, a) D= rs,a + γ z(s′, a′). (5.6)

To represent a return distribution in multi-objective settings, a multivariate
categorical distribution similar to the distributions used by Reymond et al. [2021]

120

5.3. SOLVING MULTI-OBJECTIVE MARKOV DECISION PROCESSES FOR
THE EXPECTED SCALARISED RETURNS

and Bellemare et al. [2017] is used. The categorical distribution is paramaterised
by a number of atoms, N ∈ N, where the distribution has a dimension per
objective, n. The atoms outline the width of each category and are bounded
by the minimum returns, Rmin, and maximum returns, Rmax. The multivariate
categorical distribution has a set of atoms defined as follows [Reymond et al., 2021]:

{zi...k = (Rmin0 + i∆z0, . . . , Rminn
+ k∆zn) : 0 ≤ i < N , . . . , 0 ≤ k < N}, (5.7)

where each objective, n, has a separate Rminb
, Rmaxb

for 0 < b ≤ n and ∆z =
Rmax−Rmin

N−1 . The distribution is a set of discrete categories, N , where each category,
pi, represents the probability of receiving a return [Reymond et al., 2021]. To ensure
the distribution is an accurate representation of the returns of the execution of a
policy, it is crucial a number of atoms are selected to sufficiently cover the range
of values from Rmin and Rmax. For example, if γ = 1 and reward values are
expected to be integers in the range Rmin = [0, 0] to Rmax = [1, 10], N = 11 is
the required value to ensure that the distribution is represented without aliasing
between different reward levels.

To update the multivariate categorical distribution, the state space, action space
and reward function of the model are utilised. During an update of the multivariate
categorical distribution, each atom, j, is evaluated for each objective. To update
the return distribution, zs, for state s, the distributional Bellman update T̂ zs,j =
rs,a,s′ + γzs′,j is computed for each atom j, for a given reward rs,a,s′ and return
distribution, zs′ , for state s′. Next, the probability, p, for the atom, j, of the return
distribution, pj(zs′), in state s′, is distributed to the corresponding atom of the
updated return distribution, zs, for state s. Therefore, the return distribution, zs,
for state s is equivalent to the return distribution, zs′ , in state s′, shifted relative
to the reward, rs,a,s′ .

At each iteration, k, of MODVI, for each state, s, and action, a, a set of optimal
return distributions is backed up once. In Equation 5.8, the Bellman operator has
been replaced with the distributional Bellman operator [Bellemare et al., 2017],

Qk+1(s, a)←
⊕

s′

T (s′|s, a)[rs,a,s′ + γZk(s′)] (5.8)

where Qk+1(s, a) and Zk(s′) represent sets of return distributions, ⊕ denotes
the cross-sum between sets of return distributions, and T (s′|s, a) represents the
probability of transitioning to state s′ from state s after taking action a.

During a distributional Bellman backup, each return distribution, zs′ , in the set
Zk(s′), is updated with the reward, rs,a,s′ , for action, a, in state, s, as follows:
{rs,a,s′ + γzs′ : ∀ zs′ ∈ Zk(s′)}. Each updated return distribution in the set for
state s′ is then multiplied by the transition probability, T (s′|s, a). The cross sum

121

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

for each resulting set of updated return distributions is computed for each next
possible next state, s′. The cross sum between two sets of return distributions,
X
⊕

Y, is defined as follows: {x + y : x ∈ X ∧ y ∈ Y}, where x and y are
return distributions.

To compute a set of ESR non-dominated policies for each state, the ESRPrune
algorithm (Algorithm 14) is utilised which computes a set of ESR non-dominated
policies by removing ESR dominated return distributions from a given set.

Zk+1(s)← ESRPrune

(⋃
a

Qk+1(s, a)
)

(5.9)

Equation 5.9 calculates the set of return distributions for a given state, s, by taking
the union of each set of return distributions over each action, a. The resulting set
of return distributions is then passed to the ESRPrune algorithm as input.

Algorithm 17: Multi-Objective Distributional Value Iteration
1 Initialise all return distributions and sets
2 while not converged do
3 for s ∈ S do
4 for a ∈ A do
5 Qk+1(s, a)←

⊕
s′ T (s′|s, a)[R(s, a, s′) + γZk(s′)]

6 end
7 Zk+1(s)← ESRPrune

(⋃
a Qk+1(s, a)

)
8 end
9 end

Algorithm 17 describes the MODVI algorithm2. On initialisation of MODVI, a set
of return distributions is generated for each state-action pair. For infinite horizon
settings, each set contains a single return distribution that is randomly initialised,
where an atom is selected at random and a probability mass of 1.0 is assigned
to that atom. In finite horizon settings each return distribution is initialised by
assigning a probability mass of 1.0 to the atom which corresponds to the return
[0, 0]. During each iteration of MODVI, a set of return distributions is computed
(Algorithm 17, Line 5) for each state, s and action, a. The union of the resulting
sets of return distributions is then passed to the ESRPrune algorithm to remove
the dominated return distributions. Once ESRPrune (Algorithm 17, Line 7) has
been executed for the given iteration of MODVI, a set of non-dominated return

2Algorithm 17 describes MODVI for infinite horizon settings. However, it is trivial to alter
MODVI for finite horizon settings.

122

5.3. SOLVING MULTI-OBJECTIVE MARKOV DECISION PROCESSES FOR
THE EXPECTED SCALARISED RETURNS

distributions is backed up for the state s. Once MODVI has converged, a set of
ESR non-dominated policies, or the ESR set, is available at the start state, s0.

5.3.2 Empirical Evaluation
In this section, MODVI is evaluated using two multi-objective benchmark problems
form the literature.

5.3.2.1 Space Traders

First, MODVI is evaluated using a multi-objective benchmark problem known as
Space Traders [Vamplew et al., 2020, 2021a]. Space Traders is a problem with
nine policies and a small number of returns per policy. Therefore, it is possible to
visualise each policy in the ESR set, illustrating how policies can be returned to
a user during the selection phase in practice. Of course, for larger problems, the
user could select subsets of the policies to visualise and compare.

Space Traders has two timesteps, two non-terminal states, and three available
actions per state. In Space Traders, an agent must deliver cargo from its home
planet (state A) to some destination planet (state B) and then return home. While
delivering the cargo, the agent must avoid being intercepted by space pirates. An
agent acting in the Space Traders environment aims to complete the mission and
minimise time. An agent receives a reward of 1 for returning home to planet (state
A) and completing the mission, and at all other states the agent receives a reward
of 0 for mission success. After each action, the agent receives a negative reward
corresponding to the time taken to reach the next planet. Finally, after taking
each action there is a probability the agent will be intercepted by space pirates.
If the agent is intercepted by space pirates, the agent will receive a reward of 0
for mission success, a negative time penalty, and the episode will terminate. All
remaining implementation details for the Space Traders environment are available
in the Appendix A.4.

MODVI is run using the following hyperparameters: γ = 1, N = 23, Rmin =
[0,−22] and Rmax = [1, 0]. Table 5.3 outlines the six return distributions in the
computed ESR set. Figure 5.10 plots the expected value vectors of each return
distribution in the ESR set and also plots the expected value vectors for the Pareto
front [Vamplew et al., 2021a]. It is important to note that the ESR set for Space
Traders contains a policy that is not present on the Pareto front. The Pareto
front is a set of optimal policies for the SER criterion. As demonstrated earlier,
certain policies that are optimal under the ESR criterion are not optimal under the
SER criterion. In real-world decision making, incorrectly selecting an optimality

123

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

−20 −15 −10 −5 0
objective 2

0.8

0.9

1.0

ob
je

ct
iv

e
1

ESR Set

Pareto Front

Figure 5.10: The expected value vectors of the return distributions in the ESR set
(red) are plotted against the expected value vectors of the Pareto front (blue).

criterion can lead to sub-optimal performance, given some optimal policies may
not be returned to the user.

During the selection phase, visualisations, like Figure 5.10, are returned to the user
to aid in their decision making. However, in Figure 5.10, the details of the return
distributions for each policy in the ESR set are lost. Computing expected value
vectors for each return distribution reduces the information available about a policy,
given the information about each individual return of a policy is no longer available.
As already highlighted, under the ESR criterion the utility of a user is derived
from a single execution of a policy. Therefore, it is crucial a user has sufficient
information available at decision time, given a policy may only be executed once.
Figure 5.11 visualises each potential return and the corresponding probability of
the return distributions in the ESR set. In Figure 5.11, each return distribution
has a shape, where the position of each shape corresponds to a return and the
colour of each shape corresponds to the probability of receiving the return. Figure
5.12 presents the individual return distributions for each policy. In practice, a
user would be able to choose which return distributions in the ESR set to display
at a given moment, allowing the user to compare and contrast different policies
individually. Figure 5.11 provides an intuitive aid which can be returned to a user
when making decisions under the ESR criterion.

124

5.3. SOLVING MULTI-OBJECTIVE MARKOV DECISION PROCESSES FOR
THE EXPECTED SCALARISED RETURNS

π r1 r2 P (r1, r2)
π1 1 -22 1.0

π2
0 -1 0.1
1 -16 0.9

π3

0 -7 0.085
0 0 0.15
1 -8 0.765

π4
0 0 0.15
1 -10 0.85

π5
0 0 0.2775
1 0 0.7225

π6

0 -6 0.135
0 -1 0.1
1 -6 0.765

Table 5.3: The return distributions in the ESR set for the Space Traders
environment, with γ = 1.

−20 −15 −10 −5 0
objective 2

0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
1

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Figure 5.11: The return distributions in the ESR set computed by MODVI. Each
shape corresponds to a computed policy in the ESR set, where the location of the
shape corresponds to a return in the policy. Colours correspond to the probability
of receiving the specific return when executing the policy.

125

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

−20 −15 −10 −5 0
objective 2

0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
1

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

−20 −15 −10 −5 0
objective 2

0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
1

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

−20 −15 −10 −5 0
objective 2

0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
1

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

−20 −15 −10 −5 0
objective 2

0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
1

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

−20 −15 −10 −5 0
objective 2

0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
1

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

−20 −15 −10 −5 0
objective 2

0.0

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
1

0.2

0.4

0.6

0.8

1.0
pr

ob
ab

ili
ty

Figure 5.12: The return distributions for policy π1, π2, π3, π4, π5, and π6 computed
by MODVI for Space Traders.

126

5.3. SOLVING MULTI-OBJECTIVE MARKOV DECISION PROCESSES FOR
THE EXPECTED SCALARISED RETURNS

R1

†1 R2

†2

Figure 5.13: The grid for the Resource Gathering environment. †1 and †2 are enemy
states. R1 and R2 are the resources that need to be gathered, before returning to
the home state.

5.3.2.2 Resource Gathering

Next, MODVI is evaluated using the Resource Gathering benchmark [Barrett and
Narayanan, 2008]. Resource Gathering is a multi-objective benchmark problem
with intuitive trade-offs between objectives, motivating the need to consider the
ESR criterion in real-world decision making. MODVI is evaluated on a four-
objective version of Resource Gathering, where time is added as an objective. The
Resource Gathering environment is shown in Figure 5.13. The agent starts in a
home state and navigates the grid environment to collect the available resources (R1
and R2), while avoiding the enemy states (†1 and †2) before returning home again.
At each timestep, the agent receives a reward of [−1, 0, 0, 0]. If the agent returns
to the home state having gathered the available resources, the agent receives one
of the following rewards: [−1, 0, 10, 0] for collecting R1, [−1, 0, 0, 10] for collecting
R2, and [−1, 0, 10, 10] for collecting R1 and R2. The agent must avoid the enemy
states. If the agent enters an enemy state, there is a 0.1 chance the agent will be
attacked. If the agent is attacked in an enemy state, the agent receives a reward
of [−10,−10, 0, 0]. In this case, the agent also receives a time penalty for being
attacked and the episode terminates.

127

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

π r1 r2 r3 r4 P(r1, r2, r3, r4)
π1 -18 0 10 10 1.0
π2 -12 0 10 0 1.0

π3
-16 -10 0 0 0.1
-14 0 10 10 0.9

π4
-12 -10 0 0 0.1
-16 0 10 10 0.9

π5
-12 -10 0 0 0.1
-10 0 10 0 0.9

π6

-14 -10 0 0 0.09
-12 -10 0 0 0.1
-12 0 10 10 0.81

π7

-14 -10 0 0 0.09
-12 -10 0 0 0.1
-8 0 10 0 0.81

π8 -10 0 0 10 1.0

Table 5.4: The return distributions in the ESR set for the Resource Gathering
environment, with γ = 1.

For Resource Gathering, the following hyperparameters were set for MODVI:
γ = 1, N = 25, Rmin = [−24,−24,−14,−14] and Rmax = [0, 0, 10, 10]. Table 5.4
outlines the return distributions in the ESR set for Resource Gathering. The ESR
set contains eight policies, where each policy gathers one or both resources before
returning home. An important aspect of the distributional approach applied by
MODVI is that a user will have sufficient information about the trade-offs between
each objective for each policy in the ESR set. For example, there is a clear trade-
off between objectives in π3 and π6 in Table 5.4. When considering π3, fourteen
timesteps are taken to gather both resources and the agent enters one enemy state
with a 0.1 chance of being attacked. When considering π6, twelve timesteps are
taken to gather both resources, but the agent must enter both enemy states, which
poses 0.09 chance and 0.1 chance of being attacked.

Using a distributional approach ensures a user has sufficient information to
understand the trade-offs between objectives across different policies. In Resource
Gathering, a user looking to minimise time, while also being indifferent about being
attacked, may select π6 having fully understood the probabilities of being attacked.
Therefore, having sufficient critical information available at decision time enables
the user to make more informed decisions that could potentially better reflect

128

5.3. SOLVING MULTI-OBJECTIVE MARKOV DECISION PROCESSES FOR
THE EXPECTED SCALARISED RETURNS

R1

†1 R2

†2

Figure 5.14: A potential path for policy π3. The agent obtains both resources
(R1, R2) and crosses enemy state †2 before returning home.

R1

†1 R2

†2

Figure 5.15: A potential path for policy π6. The agent obtains both resources
(R1, R2) and crosses both enemy states (†1, †2) before returning home.

129

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

their preferences over objectives, when compared to expected value vector based
methods.

Additionally, visual aids like those outlined in Figure 5.14 and Figure 5.15 can
be presented to a user at decision time. Both visualisations illustrate a potential
route the agent can take to achieve the return distribution associated with the
highlighted policy. In Figure 5.14, a potential route for policy π3 is outlined.
When following this route the agent can collect both resources, while the agent
avoids one enemy state but enters the other enemy state. Furthermore, Figure
5.15 presents a potential route the agent can take to obtain the return distribution
for policy π6. As previously highlighted, the agent obtains both resources but
enters both enemy states. It is important to remember that the agent can execute
the route for policy π6 in less time when compared to π3. However, there is a
higher chance of being attacked. Using visual aids, like those presented in Figure
5.14 and Figure 5.15, and having the return distributions available can help the
user select an appropriate policy at decision time. The visualisations presented in
Figure 5.14 and Figure 5.15 differ from those presented in Section 5.3.2.1 and in
certain circumstances may provide the user with a more intuitive understanding
of the potential outcomes a policy may have.

5.3.3 Discussion
In this section, a novel multi-objective distributional value iteration (MODVI)
algorithm is proposed that can compute a set of optimal policies for the ESR
criterion. MODVI utilises return distributions, which replace expected value
vectors in MODeM. MODVI is the first algorithm that can compute a set of
optimal policies under the ESR criterion in sequential MODeM settings. MODVI
is evaluated using two benchmark MOMDPs from the MODeM literature, and
MODVI is shown to compute the ESR set in each setting. Because it is the first
of its kind, MODVI opens up decision-theoretic planning for a key range of real-
world problems.

As shown in the Space Traders environment (Figure 5.10) the ESR set and the
Pareto front can be different for MOMDPs. Therefore, the choice of optimality
criterion must be considered when computing sets of optimal policies. In this case,
some policies that are optimal under the ESR criterion are sub-optimal under the
SER criterion. When applying MODeM to real-world decision making problems,
it is important the choice of optimality criterion is carefully considered.

130

5.4. SOLVING MULTI-OBJECTIVE COORDINATION GRAPHS FOR THE
EXPECTED SCALARISED RETURNS

5.4 Solving Multi-Objective Coordination Graphs
for the Expected Scalarised Returns

In this section a novel distributional multi-objective variable elimination (DMOVE)
algorithm is proposed that can compute a set of optimal policies for the ESR
criterion in multi-agent settings, like multi-objective coordination graphs (MO-
CoGs). However, before DMOVE can be applied, MO-CoGs must first be extended
for the ESR criterion. DMOVE is then evaluated using benchmark MO-CoGs from
the literature.

5.4.1 Multi-Objective Coordination Graphs for the
Expected Scalarised Returns

The current literature on MO-CoGs focuses exclusively on the SER criterion [Rollón
and Larrosa, 2006; Roijers et al., 2015]. As previously shown, methods that
compute solution sets for the SER criterion cannot be used under the ESR criterion.
Therefore, a set of optimal policies under the ESR criterion for MO-CoGs must
be defined.

To determine a partial ordering over policies under the ESR criterion, ESR
dominance can be used. To calculate ESR dominance a return distribution for each
local payoff function must be calculated. For MO-CoGs, a return distribution, z,
is defined as the distribution over the returns of a local payoff function. Therefore,
Z where Z = {z1, ..., zl} is a set of l, d-dimensional return distributions of local
payoff functions. The joint payoff for all agents is the sum of local payoff return
distributions: z(a) =

∑l
e=1 ze(ae). The set of all possible joint action return

distributions is denoted by V.
By utilising ESR dominance a set of optimal policies under the ESR criterion for

a MO-CoG can be defined as a set of ESR non-dominated global joint actions a
and associated return distributions of local payoff functions, z(a), known as the
ESR set:

Definition 27

The ESR set (ESR) of a MO-CoG, is the set of all joint actions and associated
payoff return distributions that are ESR non-dominated,

ESR(V) = {z(a) ∈ V | ∄ z′(a) ∈ V : z′(a) ≻ESR z(a)} . (5.10)

131

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

5.4.2 Distributional Multi-Objective Variable Elimination
To solve MO-CoGs for the ESR criterion a novel distributional multi-objective
variable elimination (DMOVE) algorithm is defined. DMOVE utilises return
distributions and ESR dominance to compute the ESR set.

Generally, multi-objective variable elimination (MOVE) methods translate the
problem to a set of value set factors [Roijers et al., 2013, 2015]. Given that under
the ESR criterion return distributions must be utilised, the problem must first be
translated to a set of return distribution set factors (RSF), f , where each RSF fe

is a function mapping local joint actions to set of payoff return distributions. On
initialisation, each RSF is a singleton set containing a local actions payoff return
distribution and is defined as follows:

fe(ae) = {ze(ae)} (5.11)

It is possible to describe the coordination graph as a bipartite graph whose nodes,
D, are both agents and components of a factored RSF, and an edge (i, fe) ∈ E , if
and only if agent i influences component fe. It is important to note an agent node
is joined by an edge to a factored RSF component if the agent influences the RSF.
Therefore, the dependencies can be described by setting E = {(i, fe)|i ∈ De}. To
compute an ESR set, DMOVE treats a MO-CoG as a series of local sub-problems.
DMOVE manipulates the set of RSFs by computing local ESR sets (LESRs) when
eliminating agents. To calculate LESRs, a set of neighbouring RSFs, fi, must first
be defined.

Definition 28

The set of neighbouring RSFs fi of agent i is the subset of all RSFs which
agent i influences.

Each agent i has a set of neighbour agents, ni, where each agent in ni influences
one or more RSFs in fi. To compute a LESR, all return distributions for the
sub-problem must first be considered, Vi, by calculating the following:

Vi(fi, ani) =
⋃
ai

⊕
fe∈fi

fe(ae), (5.12)

where ⊕ is the cross sum of sets of return distributions. In Equation 5.12 all actions
in ani are fixed, apart from ai, and ae is formed from ai and the appropriate part
of ani . Once Vi(fi, ani) has been computed for agent i, a LESR can be calculated
by applying an ESR pruning operator. Therefore, a LESR is defined as follows:

132

5.4. SOLVING MULTI-OBJECTIVE COORDINATION GRAPHS FOR THE
EXPECTED SCALARISED RETURNS

Definition 29

A local ESR set, a LESR, is the ESR non-dominated subset of Vi(fi, ani):

LESRi(fi, ani) = ESR (Vi(fi, ani)), (5.13)

When calculating a LESR, a new RSF, fnew, is generated, which is conditioned
on the actions of the agents in ni:

∀ ani fnew(ani) = LESRi(fi, ani). (5.14)

The set of RSFs, f , must then be updated with fnew. Therefore, the RSFs in fi

are removed from f and f is updated with fnew. To do so, a new operator, known
as the eliminate operator, is defined as follows:

eliminate(f , i) = (f \ fi) ∪ {fnew(ani)}. (5.15)

Computing Equation 5.14 and Equation 5.15 removes agent i from the coordination
graph. Therefore, the nodes and edges of the coordination graph are updated,
where the edges for each agent in ni are now connected to the new RSF, fnew.

Utilising the steps outlined above, the DMOVE algorithm (Algorithm 18) can be
defined. DMOVE first translates the problem into a set of RSFs and removes agents
in a predefined order, q. DMOVE calls the algorithm eliminate which computes
local ESR sets by pruning, and updates the set of RSFs. Once all agents have
been eliminated, the final factor from the set of RSFs, f , is retrieved, pruned, and
returned. The resulting set, S, contains ESR non-dominated return distributions,
known as the ESR set, and the associated joint actions. DMOVE only executes a
forward pass and calculates joint actions using a tagging scheme [Roijers et al.,
2015].

Algorithm 18: DMOVE (P, f , prune1, prune2, prune3, q)
1 Input: P ← A set of local payoff functions; q ← an elimination order
2 while ani ∈ Ani do
3 i ← q.dequeue()
4 f ← eliminate(f , i, prune1, prune2)
5 end
6 f ← retrieve final factor from f
7 S ← prune3(f(a∅))
8 Return S

133

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

The eliminate algorithm (Algorithm 19) calculates the LESRs and updates the
set of RSFs, f . To calculate the LESRs, the function CalculateLESR is utilised.
CalculateLESRi is defined as follows:

CalculateLESRi(fi, ani , prune1,prune2) = prune2

⋃
ai

∗⊕
fe∈fi

fe(ae)

 , (5.16)

where
∗⊕

is the prune and cross-sum operator defined by Roijers et al. [2015].
The CalculateLESRi function prunes at two different stages; prune1 is applied
after the cross-sum has been computed and prune2 is applied after the union
over all ai, which results in incremental pruning [Cassandra et al., 1997]. Both

Algorithm 19: eliminate(f , i, prune1, prune2)
1 Input: f ← A set of RSFs; i ← an agent
2 ni ← the set of neighbouring agents of i; fi ← the subset of f that i

influences; fnew(ani)← a new RSF
3 for ani ∈ Ani do
4 fnew(ani)← CalculateLESRi(fi, ani , prune1,prune2)
5 end
6 f ← (f \ fi) ∪ {fnew}
7 Return f

DMOVE (Algorithm 18) and eliminate (Algorithm 19) are paramaterised by
pruning operators. To compute the ESR set, the pruning algorithm ESRPrune
(see Algorithm 14) is used as each pruning operator.

To represent the distribution for each RSF, fe, the multivariate categorical
distribution defined in Equation 5.7 is utilised. Given DMOVE is a planning
algorithm, the returns and the corresponding probabilities for each joint local
action are known a priori. Therefore, it is possible to initialise a multi-variate
return distribution for each RSF, fe, with the relevant probabilities for each
potential return. As previously defined, a multivariate categorical distribution
is parameterised by the maximum returns and minimum returns which must be
specified before initialisation. Also, a number of atoms must be selected, where
each atom maintains the probability for the corresponding return. By utilising
this approach, the DMOVE algorithm can be used to compute the ESR set for
MO-CoGs.

134

5.4. SOLVING MULTI-OBJECTIVE COORDINATION GRAPHS FOR THE
EXPECTED SCALARISED RETURNS

5.4.3 Empirical Evaluation
To evaluate DMOVE, two MO-CoGs from the literature are used. First, DMOVE
is evaluated using a random MO-CoG [Roijers et al., 2015] in which it is possible
to directly control all variables. Second, DMOVE is evaluated using a MO-CoG
inspired by a more realistic scenario known as Mining Day [Roijers et al., 2013;
Verstraeten et al., 2020].

5.4.3.1 Random MO-CoG

A random MO-CoG was first introduced by Roijers et al. [2015]. For random MO-
CoGs it is possible to control all variables. Therefore, a random MO-CoG takes a
number of parameters as input. To construct a random MO-CoG, the number
of agents, n, the number of payoff dimensions, d, the number of local payoff
functions, p, and the size of the action space for each agent, |Ai|, are specified.
However, the rewards for the random MO-CoG introduced by Roijers et al. [2015]
were deterministic, therefore, the random MO-CoG must be extended to include
stochastic rewards. To make the returns stochastic, an underlying probability
distribution for each local action is generated that, when sampled, returns a
vector reward. The number of outcomes per local action, o, is also configurable
and the corresponding probabilities for each outcome are randomly selected, and
naturally sum to 1. The values for the different objectives for each outcome in the
probability distribution for each local payoff function are real numbers that are
drawn independently and uniformly from the interval [0, 5].

To evaluate DMOVE in a random MO-CoG, the random MO-CoG is initialised
with the following hyperparameters: n = 8, d = 2, p = 7, |A|i = 4, and o = 5.
Furthermore, DMOVE is initialised with the following hyperparameters: Rmin =
[0, 0], Rmax = [50, 50], and N = 51.

The ESR set computed by DMOVE for the random MO-CoG contains 156
policies. Figure 5.16 plots the expected value vectors for each return distribution in
the ESR set. Figure 5.16 contains a number of policies that would be sub-optimal
under the SER criterion. Figure 5.16 shows similar results to those presented in
Figure 5.10. However, in this instance, the results presented are for multi-agent
settings, not single-agent sequential decision making problems. Therefore, selecting
the correct optimality criterion in MODeM is also very important in multi-objective
multi-agent decision making settings.

Plotting the expected value vectors for the ESR set removes the information about
the distribution over the returns for each policy, but it is still important to outline
how the policies in the ESR set could be presented to a user. A user could take a
first look at the expected value vectors for the ESR set and then select policies of
interest. The full distribution over the returns could be shown to the user for the

135

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

12 14 16 18 20 22
objective 1

16

18

20

22

24

26
ob

je
ct

iv
e

2

Figure 5.16: The expected value vectors of the return distributions in the ESR set
for a random MO-CoG with stochastic rewards.

selected policies of interest. This could provide a more intuitive selection process
when compared to showing the user all distributions individually.

Using DMOVE for the random MO-CoG, the Pareto front is also computed. To
compute the Pareto front the PPrune algorithm [Roijers et al., 2015] is used as
the prune1, prune2 and prune3 parameters for DMOVE. Therefore, DMOVE still
computes the distribution over the returns, however, when pruning the expected
value vector for each distribution is computed and the Pareto dominated expected
value vectors are removed from consideration by PPrune. The PPrune algorithm
is presented in Section A.5. In Figure 5.17 both the ESR set and the Pareto
front are shown. As observed in Figure 5.10, the ESR set contains the full Pareto
front along with excess policies that are Pareto dominated. Therefore, certain
policies that are optimal under the ESR criterion are sub-optimal under the SER
criterion. Figure 5.17 highlights how selecting the correct optimality criterion is
important given optimal policies under the ESR criterion can be sub-optimal under
the SER criterion. Such an observation was also made in Figure 5.6 and Figure
5.10 when using the MOTDRL and MODVI algorithms, which also holds in multi-
agent settings. Figure 5.17 also highlights the flexibility of distributional methods
given the Pareto front can be computed by simply switching the pruning operators.
Furthermore, using DMOVE it may be possible to compute the convex hull by using
the CPrune pruning algorithm [Roijers et al., 2015].

136

5.4. SOLVING MULTI-OBJECTIVE COORDINATION GRAPHS FOR THE
EXPECTED SCALARISED RETURNS

12 14 16 18 20 22
objective 1

16

18

20

22

24

26

ob
je

ct
iv

e
2

ESR set

Pareto front

Figure 5.17: The expected value vectors of the return distributions in the ESR set
(red) and the Pareto front (blue) for a random MO-CoG with stochastic rewards.

Additionally, two return distributions from the ESR set are shown in Figure 5.18
and Figure 5.19. While a random MO-CoG is not a realistic setting, it provides
a good baseline to show the ESR set in multi-agent settings. Each distribution in
the ESR set displays each individual outcome which is possible from executing a
joint global action. Having such information available at decision time is essential
for ESR settings. Furthermore, having such information available at decision time
can also aid in real-world decision making, allowing certain undesirable outcomes
can be avoided, given in certain real-world settings even a small probability of an
undesirable event occurring is unacceptable. Having such a capability is essential
when making decisions in the real world where laws, regulations, and social
consequences must be taken into consideration. All remaining return distributions
from the ESR set for the random MO-CoG are displayed in Section A.6.1.

137

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

5 10 15 20 25 30
objective 2

0

5

10

15

20

25

30
ob

je
ct

iv
e

1

0.005

0.010

0.015

pr
ob

ab
ili

ty

Figure 5.18: The return distribution, π1, which is present in the ESR set for a
random MO-CoG instance.

5 10 15 20 25 30
objective 2

5

10

15

20

25

30

35

ob
je

ct
iv

e
1

0.0025

0.0050

0.0075

0.0100

pr
ob

ab
ili

ty

Figure 5.19: The return distribution, π14, which is present in the ESR set for a
random MO-CoG instance.

138

5.4. SOLVING MULTI-OBJECTIVE COORDINATION GRAPHS FOR THE
EXPECTED SCALARISED RETURNS

Figure 5.20: An example of a Mining Day instance [Roijers et al., 2015].

5.4.3.2 Mining Day

The Mining Day problem is inspired by a realistic scenario where in order to
maximise their chances of excavating gold and silver, a mining company must
decide which mines to send their workers to. The goal of the mining company is
to maximise the total amount of gold and silver excavated, where mining gold and
mining silver are the objectives. The motivating scenario for Mining Day is outlined
as follows: A mining company sells excavated gold and silver (objectives) from a set
of mines located in the mountains nearby (local payoff functions). All mine workers
live locally in villages which are located at the foot of the mountains. However, each
village only has one van for transporting its workers. Therefore, every morning each
village must determine which mine to send their van of workers to (local actions).
A further complicating factor is a van can only travel to nearby mines (coordination
graph). There is a higher chance of finding gold or silver if more workers are at a
mine. For an instance of Mining Day there is a 3% efficiency bonus per worker.
Therefore, the amount of gold and silver mined per worker is defined as follows:

rgold = bgold · 1.03w−1, (5.17)

rsilver = bsilver · 1.03w−1, (5.18)
where bgold is the base rate per worker for gold, bsilver is the base rate per worker for
silver, and w is the number of workers at a mine. The rewards are defined as follows:

R = [rgold, rsilver]. (5.19)

The base rate of gold and silver are properties of the mine. Given the company
aims to mine and sell gold and silver, the company aims to maximise their profits.
Therefore, the best strategy depends on the fluctuating prices of gold and silver.
For example, on a given day gold may be worth far more than silver. In this case,
it would be optimal to send more workers to mines that have a higher chance of

139

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

4.95 5.00 5.05 5.10 5.15 5.20
silver

5.6

5.7

5.8

5.9

6.0
go

ld

Figure 5.21: The expected value vectors of the return distributions in the ESR set
for the Mining Day problem.

excavating gold when compared to silver. However, the worth of gold and silver
may fluctuate from day to day. As such, by the time a single policy is computed
using the most recent price information, the worth of gold and silver may have
changed. As a result the mining company may lose out on some profits. Therefore,
time would be wasted calculating the most optimal strategy with the latest possible
information. Instead it is more useful to compute a set of optimal policies, where
a policy can be selected that best reflects the current price information.

To evaluate DMOVE, a Mining Day instance is generated. The Mining Day
instance has 7 villages (agents), then 2− 5 workers are randomly assigned to each
village, and the village is connected to 2 − 4 mines. It is important to note that
each village is only connected to mines with a greater or equal index3. The last
village is connected to 4 mines. The base rates per worker for gold and silver
at each mine are drawn uniformly from the interval [0, 1.0]. To make the reward
stochastic, uncertainty is added to the problem by generating the rewards from a
multivariate normal distribution, where the mean µ = R and a covariance matrix
Σ =

(
0.0001 0

0 0.0001
)
. Therefore, the rewards, r, can be generated as follows: r ∼

N (µ, Σ). DMOVE is initialised with the following hyperparameters: Rmin = [0, 0],
Rmax = [10, 10], and N = 1001.

3For example, village 2 can only be connected to mines 2, 3, 4, ..., etc. and cannot be connected
to mine 1.

140

5.4. SOLVING MULTI-OBJECTIVE COORDINATION GRAPHS FOR THE
EXPECTED SCALARISED RETURNS

4.6 4.8 5.0 5.2 5.4

silver

5.6

5.8

6.0

6.2

6.4

go
ld

0.000

0.002

0.004

0.006

pr
ob

ab
ili

ty

Figure 5.22: The return distribution, π1, which is present in the ESR set for a
Mining Day instance.

Figure 5.21 presents the expected value vectors for the return distributions in
the ESR set. The ESR set contains a total of 30 policies. Figure 5.21 contains a
number of policies that are Pareto dominated. This further highlights how selecting
the correct optimality criterion in multi-objective multi-agent decision making is
important given different sets of policies can be returned for different optimality
criteria.

Given the mining company aims to maximise their profits, it is crucial that the
company has sufficient information about the potential outcomes that a policy
execution may have and the likelihood of each outcome. Therefore, using the
distributions presented in Figure 5.18 and Figure 5.19, a manager can perform a
more informed analysis of potential policies. Efficient planning of miners’ schedules
is important to both the mining company and the miners themselves, and thus each
policy execution is important. Having the outlined distributions available can help
a manager avoid selecting policies which may have some likelihood of occurring
losses. A further advantage of DMOVE is the local distributions may also be
extracted from the algorithm. Therefore, a manager can investigate the potential
outcomes for each mine and can understand the distribution of possibilities that
can occur at each mine. Such information can also be useful when making decisions
globally. For example, some mines may have certain constraints about the number
of workers that can work there at any given time. Such an issue may not be entirely
visible at the global level and therefore having local distributions can be an aid to
a decision maker.

141

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

4.8 5.0 5.2 5.4 5.6

silver

5.2

5.4

5.6

5.8

6.0

go
ld

0.000

0.002

0.004

0.006

pr
ob

ab
ili

ty

Figure 5.23: The return distribution, π7, which is present in the ESR set for a
Mining Day instance.

5.4.4 Discussion
In this section, a novel distributional multi-objective variable elimination (DMOVE)
algorithm is proposed. DMOVE is evaluated using two benchmark problems from
the multi-objective literature. DMOVE can compute the ESR set in MO-CoGs,
and the Pareto front by simply switching pruning operator. DMOVE is the first
multi-objective variable elimination algorithm that can compute a distribution over
the returns for multi-agent settings.

The work presented in this section shows that the ESR set and the Pareto front
can be different for multi-agent settings. Therefore, polices that are optimal under
the ESR criterion may be sub-optimal under the SER criterion. As before, the
choice of optimality criterion can have an impact on the set of optimal policies
computed in multi-agent settings.

5.5 Related Work
In recent years, using distributions in decision making has become an active area of
research for both single and multi-objective problem domains. For example, Martin
et al. [2020] use a single-objective distributional C51 algorithm with stochastic
dominance (SD) to make risk-aware decisions. Abdolmaleki et al. [2020] take a
distributional approach to MODeM to compute a set of optimal policies for the
SER criterion. However, it is important to note, taking a distributional approach
to decision making is not a new idea and methods like conditional value-at-risk

142

5.6. SUMMARY

(CVAR) [Rockafellar et al., 2000] and value-at-risk (VAR) [Duffie and Pan, 1997]
have been used extensively in finance [Rockafellar and Uryasev, 2002; Engle and
Manganelli, 2001] to make decisions under uncertainty. However, it is difficult
to apply both VAR and CVAR to multi-objective settings because the computed
CVAR and VAR values would not give a total ordering over policies.

Beyond a distributional approach, many algorithms can compute a set of optimal
policies for the SER criterion for MOMABs, MOMDPs, and MO-CoGs. For
MOMABs, the UCB algorithm has been extended to compute the Pareto front
[Drugan and Nowe, 2013]. Furthermore, TS has also been extended to compute the
Pareto front for MOMABs [Yahyaa and Manderick, 2015]. For MOMDPs, multi-
objective Monte Carlo tree search (MOMCTS) [Wang and Sebag, 2012], Pareto
value iteration (PVI) [White, 1982], convex hull value iteration (CHVI) [Barrett
and Narayanan, 2008], and CON-MODP [Wiering and de Jong, 2007; Wiering et al.,
2014] can be used to compute the Pareto front. For MO-CoGs, many methods like
PMOVE [Rollón and Larrosa, 2006], and CMOVE [Roijers et al., 2015] are used
to compute the Pareto front and convex coverage set respectively.

5.6 Summary
In this chapter a series of distributional multi-objective algorithms are presented
and evaluated. Each presented algorithm computes a distribution over the returns.
Each algorithm also uses ESR dominance to compute the ESR set. In Section 5.2,
MOTDRL is presented which can be used to compute the ESR set for MOMABs.
In Section 5.3, an algorithm known as MODVI is presented that can compute the
ESR set in MOMDPs. In Section 5.4, DMOVE is presented, and the ESR set is
defined for MO-CoGs. DMOVE is shown to compute the ESR set in two MO-CoGs.
Furthermore, an evaluation metric for the ESR criterion is defined in Section 5.2,
however the proposed metric can only be used in settings where the ESR set is
known a priori. Finally, in Section 5.1 a pruning operator for the ESR criterion
is defined. The pruning algorithm, known as ESRPrune, is used by MODVI and
DMOVE to compute the ESR set.

During experimentation, it was demonstrated that the ESR set and the Pareto
front can be different for MOMABs, MOMDPs, and MO-CoGs. In each setting
it was shown that policies that are optimal under the ESR criterion may be sub-
optimal under the SER criterion. Therefore, it is important to carefully consider
the optimality criteria for MODeM.

Furthermore, each proposed algorithm computes a distribution over the returns
for policies. When optimising for the ESR criterion, a user may only execute
a policy once. By have a distribution over the returns available, the user can

143

CHAPTER 5. ALGORITHMS FOR UNKNOWN UTILITY FUNCTIONS

carefully evaluate each outcome that may occur when executing a policy. Having
such information available is important as a user can then choose a policy that
avoids undesirable outcomes. As such, taking a distributional approach is essential
when making decisions for the ESR criterion.

144

6 | Conclusion

This chapter concludes the work presented with a summary of the main
contributions and further discussions on the impact, limitations, and potential
future work arising from this thesis.

As stated in Chapter 1, the core research questions this body of work aimed to
explore were:

1. Is it necessary to design algorithms specifically for the ESR criterion in single-
agent settings where the utility function is known? (RQ1)

2. When the utility function is unknown, what methodologies can be used to
derive a partial ordering over policies for the ESR criterion? (RQ2)

3. How can multi-policy algorithms be designed for the ESR criterion for
different multi-objective settings (e.g., multi-armed bandits, Markov decision
processes and coordination graphs)? (RQ3)

Following from the investigations presented in Chapter 3, Chapter 4, and Chapter
5, the outlined research questions can be answered as follows:

1. The investigation presented in Chapter 3 showed that, for single-agent
settings, the policies computed under the SER criterion and the ESR criterion
can be different for nonlinear utility functions. Therefore, multi-objective
algorithms that can compute policies explicitly for the ESR criterion must
be developed. In Chapter 3, two multi-objective Monte Carlo tree search
(MCTS) algorithms are proposed that can compute policies for the ESR
criterion.

145

CHAPTER 6. CONCLUSION

2. The investigation presented in Chapter 4 showed that the methods that
determine optimality based on expected value vectors (SER criterion) cannot
be used to compute a set of optimal policies under the ESR criterion. As
a result, in Chapter 4, new dominance relations are proposed that can
determine a partial ordering over policies under the ESR criterion. Using
these dominance relations, an optimal set of solutions for ESR settings, known
as the ESR set, was defined.

3. Three new multi-objective multi-policy algorithms are proposed in Chapter 5
that can compute sets of optimal policies under the ESR criterion in various
multi-objective settings. The algorithms proposed are the first algorithms to
compute sets of optimal policies under the ESR criterion.

6.1 Summary of Contributions
In summary, the main contributions of this thesis are:

6.1.1 Analysis of Multi-Objective Optimality Criteria for
Nonlinear Utility Functions in Single-Agent Settings

The analysis presented in Chapter 3 showed for the first time in single-agent settings
that the policies for the SER criterion and the ESR criterion can be different when
the utility function of a user is nonlinear. The results of the analysis reflect the
results presented by Rădulescu et al. [2020] in multi-agent settings and address
RQ1.

Based on the findings of this analysis, dedicated multi-objective algorithms that
can compute policies for the ESR criterion must be developed. In Chapter 3,
two novel multi-objective MCTS algorithms are proposed. The algorithms, known
as NLU-MCTS and DMCTS, are able to compute good policies for an array of
different nonlinear utility functions in various MOMDPs. Both algorithms are
empirically evaluated using multi-objective benchmarks. Furthermore, DMCTS
achieves state-of-the-art performance under the ESR criterion.

6.1.2 Theoretical Analysis of Multi-Policy Methods under
the Expected Scalarised Returns Criterion

Prior to this thesis, very little was understood about the use of multi-policy
methods for the ESR criterion. In Chapter 4, it was shown that methods that use
expected value vectors to determine optimality cannot be used to compute sets of
optimal policies under the ESR criterion, given these methods compute the utility

146

6.1. SUMMARY OF CONTRIBUTIONS

of the expectation. As a result, the state-of-the-art solution sets and dominance
relations for the SER criterion cannot be used under the ESR criterion. In Chapter
4, it is demonstrated that, under the ESR criterion, a distributional approach must
be taken to compute sets of optimal policies and determine a partial ordering over
policies.

Based on the findings of this investigation, multiple new dominance relations are
proposed that can be utilised to determine a partial ordering over policies for the
ESR criterion. First, stochastic dominance (SD) is extended to MODeM and it is
shown that SD can be used to determine a partial ordering over policies under the
ESR criterion. As a result, an undominated set and a coverage set for the ESR
criterion are also proposed. Second, another dominance relation, known as ESR
dominance, is outlined. Finally, a set of ESR dominant policies is defined, known
as the ESR set. Each of the methodologies outlined in Chapter 4 are theoretically
analysed. Furthermore, it is proven that each method can be used to compute a
set of optimal polices under the ESR criterion. Therefore, the work presented in
Chapter 4 addresses RQ2.

6.1.3 Distributional Multi-Policy Algorithms for the
Expected Scalarised Returns Criterion

The final major contribution of this thesis addresses RQ3. In Chapter 5, three
novel multi-objective distributional algorithms are proposed to compute sets of
optimal policies under the ESR criterion. The algorithms utilise the methodologies
presented in Chapter 4. Each algorithm maintains categorical distributions over
the returns and uses ESR dominance to compute the ESR set. The algorithms,
known as MOTDRL, MODVI, and DMOVE, compute the ESR set in multiple
MOMABs, MOMDPs, and MO-CoGs.

Furthermore, the empirical evaluations presented in Chapter 5 show that the ESR
set and the Pareto front can be different. Moreover, policies that are sub-optimal
under the SER criterion can be optimal under the ESR criterion. Therefore, if the
correct optimality criterion is not selected when learning or planning, then sub-
optimal solutions may be returned to the user. Moreover, computing sub-optimal
solutions in real-world settings could have negative implications.

The algorithms proposed in Chapter 5 are the first algorithms presented that can
compute a set of optimal policies for the ESR criterion.

147

CHAPTER 6. CONCLUSION

6.2 Impact
Following the contributions outlined above, this thesis will influence future research
in a number of significant ways. The contributions of this thesis answer many
significant open questions regarding the ESR criterion. The work presented in
this thesis has shown that dedicated single-policy and multi-policy algorithms
must be developed in order to optimise under the ESR criterion. Moreover, this
thesis introduces a theoretical framework that utilises a distributional approach
to MODeM for the ESR criterion and shows that such an approach is necessary
to optimise under the ESR criterion. Therefore, this thesis has established a new
area of research, known as distributional multi-objective reinforcement learning and
planning, that can aid in applying multi-objective methods to real-world settings.
Given policies under the ESR criterion may only be executed once, the ESR
criterion aligns with many real-world decision making scenarios. For example,
in a medical setting a user may only have one opportunity to select a treatment.
Prior to this work, it was not possible to accurately optimise for such scenarios
in MODeM settings under the ESR criterion. The work outlined in this thesis
provides a starting point for researchers and AI practitioners to develop algorithms
that can compute a single policy, or sets of polices, in real-world settings under
the ESR criterion.

6.3 Limitations
Despite the contributions outlined above, this work does have limitations, as
outlined below:

6.3.1 Categorical Distributions
The distributional algorithms presented in this thesis utilise categorical
distributions. While categorical distributions have been used extensively in the
distRL literature [Reymond et al., 2021; Bellemare et al., 2017], they have many
limitations. In multi-objective settings, a categorical distribution must maintain
categories to represent the probability of each possible return. However, the number
of categories scales poorly with the number of objectives. Therefore, utilising
categorical distributions can have an impact on memory requirements, especially in
settings with a large range between the maximum and minimum returns. In settings
where a large number of categories is required, categorical distributions can also
be computationally inefficient to update. Therefore, categorical distributions do

148

6.3. LIMITATIONS

not scale efficiently and potentially cannot be used in the most complex real-world
settings.

6.3.2 Benchmarks and Evaluation Metrics
In this thesis, all evaluations were completed using toy problems or altered
benchmarks. As the ESR criterion had not previously been extensively studied, the
majority of multi-objective benchmark problems had been designed for the SER
criterion. Furthermore, the majority of benchmark problems have deterministic
state transitions and reward functions. Designing dedicated benchmarks for the
ESR criterion where the ESR set is known a priori would be a significant challenge
and, hopefully, this thesis inspires future work in this area.

Furthermore, the work presented in this thesis regarding multi-policy methods
lacks evaluation metrics. As previously noted, the majority of research for MODeM
has focused on the SER criterion. Therefore, each multi-objective evaluation metric
can only be used to evaluate SER algorithms. As a result, an evaluation metric
for the ESR criterion was designed in Chapter 4. However, this method requires
the ESR set to be known a priori which limits its use. Therefore, to accurately
evaluate multi-policy ESR algorithms, multi-objective evaluation metrics must be
developed.

6.3.3 Discrete States & Actions
Each multi-objective problem domain presented during the empirical evaluations
of this thesis had a finite set of states and actions that were represented discretely.
Focusing on discrete states and actions was useful when exploring single-policy
methods and multi-policy methods for the ESR criterion for the first time.
However, in real-world settings the state and action spaces for a given problem may
be continuous. The methods proposed in this thesis cannot be used to compute
solutions for problems with continuous state or actions spaces. Therefore, the
proposed methods are limited in their applicability to real-world problem domains.

6.3.4 Computational Analysis
While this thesis proposes novel algorithms that can tackle new problem settings
for the first time, no mathematical analysis of the computational requirements
of these algorithms was undertaken. Each of the multi-policy methods must
maintain a distribution over the returns to determine optimality. It can be
assumed that computing a distribution over the returns is more computationally
inefficient when compared to expected value vector methods used under the SER

149

CHAPTER 6. CONCLUSION

criterion. Therefore, before multi-policy methods that compute policies under the
ESR criterion can be applied to real-world settings, a computational analysis of
these methods must be undertaken. Performing such analyses can determine the
feasibility of these methods in larger problem domains so that future researchers
and practitioners can better understand how well these methods will scale to larger
problems. The results of such analyses will be informative when trying to determine
if these methods can feasibly be applied to a particular real-world problem.

6.4 Future Work
Following from the investigations in this thesis, there are a number of promising
avenues for future research:

6.4.1 Approximating Return Distributions
The algorithms presented in this thesis utilise categorical distributions to represent
return distributions. A limiting factor of categorical distributions is, when the range
of potential returns increases, maintaining a sufficient number of categories for the
categorical distribution requires a large amount of memory. It is expected that,
in scenarios with large state-action spaces, like [Abrams et al., 2021], the range of
possible returns would be difficult to maintain using a categorical distribution. A
potential solution would be to approximate the distributions using various methods.

Recently, a class of machine learning models, known as generative models
[Tomczak, 2022], have become widely used in the literature. Generative models,
like generative adversarial networks [Goodfellow et al., 2020], generative flow
models [Papamakarios et al., 2021; Kobyzev et al., 2020], and diffusion models
[Ho et al., 2020] have shown excellent performance in modelling high dimensional
data distributions. One model that shows promise is a generative flow model known
as real-NVP [Dinh et al., 2016]. Using real-NVP to model return distributions is
a promising starting point for some future work that could improve the scalability
of these algorithms in larger and more realistic problems.

6.4.2 Trustworthy AI
Given the rise in deployment of artificial intelligence systems in real-world settings,
it is important that these systems are explainable, trustworthy, and safe [Mannion
et al., 2021]. Distributional multi-policy methods, like MOTDRL, DMOVE, and
MODVI, can be used to provide explainability for MODeM problems. For example,
consider a cleaning robot operating in a household and, one day, the robot breaks a
vase [Hayes et al., 2022c]. In this situation, it is important to be able to review the

150

6.4. FUTURE WORK

robot’s behaviour to understand why the robot acted in a way that resulted in the
vase being damaged. Having a distribution over the returns available can aid system
experts in understanding how and why an adverse event occurred, as such an event
could be present in the distribution of returns. Additionally, distributional methods
can also bring outlier events to the attention of a system before a decision is made,
allowing unsafe events to be avoided. Therefore, it may be possible to utilise
distributional multi-objective approaches for expanding the field of trustworthy
and safe artificial intelligence [Mannion et al., 2021].

As already highlighted, the state-of-the-art MODeM approaches focus on
computing policies using expected value vectors [Roijers et al., 2015; Bryce et al.,
2007]. Making decisions based on expected value vectors reduces the explainability
and safety of such algorithms, given the distribution over the potential outcomes is
lost when the expectation is computed. For example, for a given action, there may
be a very small probability that the robot will come into contact with a vase and
knock it over. An expected value vector may not effectively capture uncommon
events, given their probability of occurring may be small. Expected value vectors
can also be difficult to interpret, especially in environments where outcomes can be
stochastic. In contrast, return distributions can easily be interpreted by a system
expert. Therefore, distributional methods could be utilised as a decision making aid
in complex real-world settings. As such, distributional methods may be a fruitful
direction for future trustworthy AI research.

6.4.3 Further Theoretical Investigations
From the empirical evaluations presented in Chapter 5, it appears that there is a
relationship between the ESR set and the Pareto front. In all experimental results
so far, it has been observed that policies that are on the Pareto front are also
in the ESR set. Therefore, the Pareto optimal set could be a subset of the ESR
set. However, no theoretical investigations have been undertaken to determine this
potential relationship. Furthermore, the theoretical work presented in Chapter 4 is
limited to specific settings. In order to fully understand the relationships between
the ESR criterion, the SER criterion, and the rest of the MODeM literature, further
theoretical investigations must be undertaken. Therefore, additional theoretical
investigations are needed to expand the literature for ESR criterion. This is an
exciting avenue for future research.

Finally, ESR dominance is a strict dominance criterion. In many settings, ESR
dominance may produce very large sets of policies that would be optimal for all
decision makers. It would be possible to relax the ESR dominance requirements
by using almost stochastic dominance to generate smaller solution sets, where each
policy in the set is optimal for most decision makers [Leshno and Levy, 2002].

151

CHAPTER 6. CONCLUSION

6.4.4 Further Optimality Criteria
In this thesis, the SER criterion and the ESR criterion are studied. However,
in certain scenarios, a user’s utility may be derived from a mixture of the SER
criterion and the ESR criterion across different objectives. For example, consider
a user who is planning their daily commute to work. The user needs to arrive
on time. Therefore, the user must optimise for the ESR criterion for the time
objective. However, the user may still want to have an average cost for commuting,
therefore, the the user must optimise for the SER criterion for the cost objective.
In this case, a user has a mixture of different optimality criteria for a given
problem. Such mixed optimality criteria have not been explored in the literature
and the implications of mixed optimality criteria is an open question. Developing
a theoretical methodology to compute policies for mixed optimality criteria is an
interesting starting point for future research.

6.5 Final Remarks
As RL and planning methods continue to be deployed in real-world settings, the
case for MODeM grows in importance, given many real-world problems have
multiple objectives that need to be optimised. However, some limitations have
restricted the applicability of MODeM in certain real-world settings. As described
throughout this thesis, the ESR criterion aligns with many practical problems.
Despite the contributions to the ESR criterion presented in this thesis, the ESR
criterion must be investigated further. However, this thesis has provided a starting
point for aspiring researchers who are interested in developing theoretical and
algorithmic methods for the ESR criterion. I hope the work presented in this
thesis inspires future researchers to continue work in this field.

152

Glossary

BTS bootstrap Thompson sampling. 26, 27, 70, 72–76, 84, 85, 108

C51 categorical deep Q-networks. 30, 31, 72, 77–86, 142

CDF cumulative distribution function. 32, 91, 93, 98, 100, 101, 106, 110, 111,
113–115, 119, 168

CHMCTS convex hull Monte Carlo tree search. 51

CHVI convex hull value iteration. 143

CMOVE convex hull variable elimination. 49, 143

CoG coordination graph. 27–29, 41, 42

CVAR conditional value-at-risk. 142, 143

DEED Dynamic Economic Emissions Dispatch. 79, 159, 161, 162, 165

distRL distributional reinforcement learning. 102, 148

DMCTS distributional Monte Carlo tree search. 56, 67–70, 72, 73, 75–84, 86,
146, 158, 165–167

DMOVE distributional multi-objective variable elimination. 106, 131–136, 140–
143, 147, 150, 171, 172

DQN deep Q-networks. 30, 31, 50

153

Glossary

ESR expected scalarised returns. 3, 15–17, 51–59, 61, 64, 65, 68, 70, 72, 76, 77,
80, 81, 83, 86–91, 93, 95–97, 99–103, 105–120, 122–125, 127, 128, 130–138,
140–152, 158, 172, 173, 186

EUPG expected utility policy gradient. 53, 54, 72, 77–82

FSD first-order stochastic dominance. 32, 91–93, 95–97

LESR local ESR set. 132–134

MAB multi-armed bandit. 25, 26, 29, 41, 49

MCTS Monte Carlo tree search. 17, 23, 24, 29, 51, 59–61, 78, 81, 84–86, 145, 146

MDP Markov decision process. 20–23, 25, 29, 37, 38, 44, 49

MO-CoG multi-objective coordination graph. 42, 49, 106, 107, 131, 132, 134–138,
142, 143, 147, 171–173

MODeM multi-objective decision making. 3, 14–17, 37–39, 41, 44, 45, 51–59, 72,
87, 88, 90, 93, 95, 96, 101, 103, 105, 108, 111, 116, 120, 130, 135, 142, 143,
147–152, 161, 165, 168

MODVI multi-objective distributional value iteration. 106, 120, 122, 123, 125–
128, 130, 136, 143, 147, 150

MOMAB multi-objective multi-armed bandit. 41, 42, 49, 106–109, 111–114, 116,
119, 143, 147

MOMCTS multi-objective Monte Carlo tree search. 51, 143

MOMDP multi-objective Markov decision process. 37, 38, 44, 49, 51, 58, 59, 73,
75, 76, 86, 106, 107, 130, 143, 146, 147, 169

MOTDRL multi-objective distributional tabular reinforcement learning. 106–
114, 117–119, 136, 143, 147, 150

MOVE multi-objective variable elimination. 49, 132

NLU-MCTS Monte Carlo tree search for nonlinear utility functions. 56, 59–65,
67, 68, 72, 76–82, 84, 86, 146, 158

PDF probability density function. 110, 111

154

Glossary

PMOVE Pareto multi-objective variable elimination. 49, 143

POMDP partially observable Markov decision process. 29

PVI Pareto value iteration. 143

REDEED Renewable Energy Dynamic Economic Emissions Dispatch. 76, 79–82,
159, 161–163, 165–167

RL reinforcement learning. 13, 14, 19–25, 29–31, 34, 35, 37, 44, 49–51, 58, 72, 77,
85, 86, 152, 161

RSF return distribution set factors. 132–134

SD stochastic dominance. 16, 31, 32, 34, 88, 102, 103, 142, 147, 168

SER scalarised expected returns. 3, 14–17, 51–59, 86–89, 103, 106, 111, 115, 116,
120, 123, 130, 131, 135, 136, 142, 143, 145–147, 149, 151, 152, 158

SSD second-order stochastic dominance. 33, 102

TS Thompson sampling. 24, 26, 27, 49, 56, 67, 84, 85, 143

UCB upper confidence bound. 24, 25, 49, 61, 67, 84, 85, 110, 111, 143

UCT upper confidence trees. 24, 85

VAR value-at-risk. 143

VE variable elimination. 49

VRS Vaccine Recommender System. 112, 116–119

155

A | Appendices

157

APPENDIX A. APPENDICES

A.1 Monte Carlo Tree Search Algorithms
Under the ESR criterion it is also possible to backpropagate the utility of the
cumulative returns, u(Rt), during the backpropagation phase. Therefore, the
relevant statistics are updated using the backpropagated utility of the cumulative
returns. Figure A.1 outlines how the utility of the cumulative returns can be
backpropagated to each node. However, this method makes the DMCTS and
NLU-MCTS algorithms less general as they cannot be as easily adapted for the
SER criterion.

R

u(Rt)

u(Rt)

u(Rt)

u(Rt)

Figure A.1: To compute polices under the ESR criterion, the utility of the
cumulative returns, u(Rt), can also be backpropagated to each node visited during
the planning phase.

158

A.2. RENEWABLE ENERGY DYNAMIC ECONOMIC EMISSIONS
DISPATCH IMPLEMENTATION DETAILS

A.2 Renewable Energy Dynamic Economic
Emissions Dispatch Implementation Details

Renewable Energy Dynamic Economic Emissions Dispatch (REDEED) is a variant
of the Dynamic Economic Emissions Dispatch (DEED) problem [Basu, 2008]. In
Chapter 3 some relevant implementation details for the REDEED problem domain
were not included. In this section, all nessesary details to implement the REDEED
problem domain are included. Before the REDEED domain is introduced, the
DEED problem is discussed in detail for completeness.

A.2.1 Dynamic Economic Emissions Dispatch
DEED is a multi-objective optimisation problem first introduced by Basu [2008].
For the DEED problem, a number of electrical generators must be run in order
to provide power to a population in a town. The objective of the DEED problem
proposed by Basu [2008] is to minimise both the cost and emissions of running a
required number of generators.

Both cost and emissions of operating a generator are defined by equations. The
following equation represents the fuel cost for each generator:

f1 =
M∑

m=1

N∑
n=1

[an + bnPnm + cn(Pnm)2 + |dnsin{en(P min
n − Pnm)}|] (A.1)

where M = 24 is the number of operating hours and N = 10 is the number of
generators, an, bn, cn, dn and en are the cost coefficients associated with each
generator n, Pnm is the power output from generator n at time m, and P min

n is
the minimum permissible power output of generator n.

The emissions from each generator can be defined by the following equation:

f2 =
M∑

m=1

N∑
n=1

[αn + βnPnm + γn(Pnm)2 + η exp δPnm] (A.2)

where αn, βn, γn, ηn and δn are the emission coefficients associated with each
generator n.

N∑
n=1

Pnm − PDm − PLm = 0 (A.3)

Mannion [2017] defined the total power output in a given hour must be equal to
the sum of power demand and transmission losses. Equation A.3 can be modified

159

APPENDIX A. APPENDICES

to define the following:

N∑
n=1

Pnm = PDm + PLm ∀m ∈M (A.4)

where PDm is the power demand over hour m and PLm is the transmission loss
over hour m.

There are two constraints for real power operating limits and generating unit ramp
rate limits [Basu, 2008]. Real power operating limits can be defined as follows:

P min
n ≤ Pnm ≤ P max

n (A.5)

The real power operating limits outline the minimum and maximum possible power
output of a generator. The ramp rate limits can be defined by the following
equations:

Pnm − Pn(m−1) ≤ URn (A.6)

Pn(m−1) − Pnm ≤ DRn (A.7)

The ramp rate limits determine the maximum or minimum possible power output
of a generator from one hour to the next. These equations determine the range in
which a generator’s power output can fluctuate over time.

For equations A.5, A.6 and A.7: P min
n and P max

n refer to the minimum and
maximum power output of each generator, Pnm is the power output for n ∈ N and
m ∈M , and URn and DRn are the ramp up and ramp down limits for generator n.

To satisfy Equation A.4 Mannion [2017] outlines that the first generator, n = 1,
must be treated as a slack generator. Therefore, if the power output of the other
generators does not satisfy the required demand, the slack generator is able to
generate more energy to meet the demands if required. The power output of the
slack generator for a single hour, P1m, can be calculated as follows:

P1m = PDm + PLm −
N∑

n=2
Pnm (A.8)

The transmission loss PLm is a function of all the generators, including the slack
generator, and can be defined with the following equation:

PLm =
N∑

n=2

N∑
j=2

PnmBnjPjm + 2P1m(
N∑

n=2
B1nPnm) + B11(P1m)2 (A.9)

160

A.2. RENEWABLE ENERGY DYNAMIC ECONOMIC EMISSIONS
DISPATCH IMPLEMENTATION DETAILS

where B is the matrix of transmission line loss coefficients. Therefore, by expanding
Equation A.8 and rearranging with respect to Equation A.9, the following equation
can be defined:

0 = B11(P1m)2 +(2
N∑

n=2
B1nPnm−1)P1m +(PDm +

N∑
n=2

N∑
j=2

PnmBnjPnm−
N∑

n=2
Pnm)

(A.10)
The loading of the slack generator at each hour can be found by solving
the quadratic Equation A.10. All required values for the cost coefficients,
emission coefficients, ramp limits, generator capacity limits, power demands, and
transmission line loss coefficients can be found in the work of Basu [2008].

A.2.2 Renewable Energy Dynamic Economic Emissions
Dispatch

Mannion [2017] reformulated the DEED problem as a multi-objective stochastic
game. Mannion et al. [2017] applied multi-agent RL to the DEED problem and
achieved good results [Mannion et al., 2016, 2017]. In order to create a version of
the DEED problem suitable for singe-agent MODeM, further changes to the work
of Mannion [2017] must be made.

In the DEED problem there are 9 controlled generators (n = {2, ..., 10}) and an
additional slack generator, n = 1. However, for REDEED, generator n = 4 is
replaced by a wind turbine. Additionally, generator n = 3 is controlled by the
agent1. The power for all other generators in the REDEED problem is fixed. The
values for each generator are derived from the work of Mannion [2017] and can
be found in Table A.12. The REDEED problem is a sequential decision making
problem, where each hour m ∈ M is a timestep.

The setting for REDEED covers a period of 24 hours and for each hour a weather
forecast is received for a city. For hours 1− 15, the weather is predictable and the
optimal power values derived by Mannion [2017] can be used to generate power (see
Table A.1). From hours 16− 24, a storm is forecast for the city. During the storm,
both high and low levels of wind are expected and the weather forecast impacts
how much power the wind turbine can generate. At each hour during the storm,
there is a 0.15 chance the wind turbine will produce 25% less power than optimal,
a 0.7 chance the wind turbine will produce optimal power and a 0.15 chance the

1Generally, when the DEED problem is utilised in multi-agent settings each agent controls its
directly assigned generator. However, given REDEED is reformulated for single-agent settings,
the agent controls the generator n = 3.

2It is important to note minor changes from the power values derived by Mannion [2017] have
been made to Table A.1.

161

APPENDIX A. APPENDICES

wind turbine will produce 25% more power than optimal. At each hour the values
for P4 in Table A.1 can be utilised to implement the power outputs from the wind
turbine. In the REDEED problem the aim is to compute a policy that can ensure
the required power is met over the entire day while reducing the cost, emissions,
and penalty violations created by all generators.

The objectives of the REDEED problem are the same as those outlined in the
DEED problem proposed by Mannion [2017], whereby cost, emissions, and penalty
violations must be minimised.

The following equation calculates the local cost for each generator n, at each
hour m:

fL
c (n, m) = an + bnPnm + cn(Pnm)2 + |dnsin{en(P min

n − Pnm)}|. (A.11)

Therefore the global cost for all generators can be defined as:

fG
c (m) =

N∑
n=1

fL
c (n, m). (A.12)

The local emissions for each generator, n, at each hour, m, is calculated using the
following equation:

fL
e (n, m) = E(an + bnPnm + γn(Pnm)2 + η exp δPnm). (A.13)

where E = 10 is the emissions scaling factor, chosen so that the magnitude of the
local emissions fL

e (n, m) is the same as that of the local cost function fL
c (n, m).

Therefore the global emissions for all generators can be defined as:

fG
e (m) =

N∑
n=1

fL
e (n, m). (A.14)

It is important to note the emissions the wind turbine, n = 4, are set to 0.
The power limits and the ramp limits for the slack generator must be taken

into consideration. Mannion [2017] developed a global penalty function fG
p that

captures the violations of these constraints:

fG
p (m) =

V∑
v=1

C(|hv + 1|δv) (A.15)

h1 =

P1m − P max

1 if P1m > P max
1

P min
1 − P1m if P1m < P min

1
0 otherwise

(A.16)

162

A.2. RENEWABLE ENERGY DYNAMIC ECONOMIC EMISSIONS
DISPATCH IMPLEMENTATION DETAILS

h2 =

(P1m − P1(m−1))− UR1 if (P1m − P1(m−1)) > UR1

(P1m − P1(m−1)) + DR1 if (P1m − P1(m−1)) < −DR1

0 otherwise
(A.17)

where V is determined by the number of constraints handled in the given problem.
In this case V = 2 given slack generator power and the ramp limits can be violated.
C = 10E6 is the violation constant and hv is the violation of each constraint.
Further more δv = 0 if there are no violations for a given constraint and δv = 1
if the constraint is violated.

Therefore the agent receives the following reward at each timestep t:

rt = [−fG
c ,−fG

e ,−fG
p] (A.18)

The next state for the agent is a vector that contains the change in power demand
from the previous timestep, ∆PD, and the previous power output of the Generator
3, Pnm. The change in power demand at time m can be calculated as follows:

∆PDm = PDm − PD(m−1) (A.19)

Therefore the state vector for the agent (Generator 3) at hour m is:

sim = [∆PDm, Pn(m−1)] (A.20)

The action chosen by the agent at each timestep determines the power output of
Generator 3. The power outputted by Generator 3 has to meet the constraints set
in equation A.5. To overcome the high variability of the policies learned, Mannion
[2017] created an abstraction A∗ of the action space with 101 actions. However,
for REDEED the action space is reduced further to include 11 actions. Therefore,
in A∗ the agent has a set of 11 possible actions, A∗ = {0, 10, 20,, 100}. Each
action represents a different percentage value of the operating range of Generator
3 controlled by the agent. The power output from generator n for action a∗

i can
be calculated as follows:

Pn = P min
n + a∗

i (P max
n − P min

n

100) (A.21)

where i = n. Using the action abstraction A∗ ensures the agent is still subject to
the ramp limits outlined in equations A.5, A.6, and A.7.

163

APPENDIX A. APPENDICES

Hour(m) P2 P4 P5 P6 P7 P8 P9 P10
1 245 115 145 86 73 80 51 26
2 245 124 152 95 80 91 64 30
3 245 165 187 101 94 101 70 44
4 251 174 219 114 120 111 75 51
5 314 179 226 131 122 118 75 52
6 291 214 237 157 122 117 75 52
7 294 219 241 158 122 117 79 54
8 337 250 241 158 126 119 79 55
9 380 295 241 159 127 119 79 55
10 407 298 241 159 128 119 79 55
11 430 298 241 159 129 119 79 55
12 384 298 241 159 129 119 79 55
13 354 298 241 159 129 119 79 55
14 314 298 241 159 129 119 79 55
15 241 293 206 154 129 119 79 42
16 218 276 206 131 127 109 79 52
17 261 267 214 137 127 109 79 53
18 337 250 224 148 127 109 79 54
19 414 269 236 154 128 112 79 54
20 344 269 236 156 128 116 79 54
21 341 238 209 108 125 95 68 52
22 264 188 199 92 94 83 65 43
23 211 186 152 115 65 68 52 34
24 274 160 122 69 62 53 40 13

Table A.1: Power outputs derived from the work of Mannion [2017] for generators
2, 4, 5, 6, 7, 8, 9, 10. For the REDEED problem domain the generator P4 is replaced
with a wind turbine. However, the power outputs specified for P4 can be used to
derive the power outputs for the wind turbine. The power outputs for generator
P1 are determined by the slack generator equation.

164

A.2. RENEWABLE ENERGY DYNAMIC ECONOMIC EMISSIONS
DISPATCH IMPLEMENTATION DETAILS

A.2.3 Sample Solutions
Typically in MODeM, single policy algorithms compute policies for a known utility
function. Therefore, the goal of the agent is to compute a policy that maximises
utility. In Section 3.4, DMCTS is evaluated using the REDEED problem with a
specified nonlinear utility function. However, typically the DEED and REDEED
problems evaluate an algorithm’s performance based on the algorithm’s ability to
optimise for the individual objectives. Generally, the cost, emissions, and penalty
violations of the policies computed by the agent(s) is reported. Given utility is
only reported in Section 3.4, further experiments are presented for DMCTS where
the cost, emissions, and penalty violations are also reported. To ensure the results
are in line with the literature, the power output of the slack generator, the wind
turbine, and the generator the agent controls are also included.

For the REDEED environment DMCTS is run using the following parameters:
J = 100 and nexec = 2. To present the results for DMCTS, the algorithm is
run for 10, 000 episodes. Table A.2 and Table A.3 present two sample solutions
computed by DMCTS. Each table outlines the power for the Slack generator, the
wind turbine and the generator powered by the DMCTS agent. Furthermore, the
cost, emissions, and penalty violations are also reported.

It is important to note that the results presented in Table A.2 and Table
A.3 are not directly comparable to the original DEED problem implementations
[Basu, 2008; Mannion, 2017], given the problem has changed considerably. The
factors that have influenced this are as follows: The REDEED problem is a
single-agent problem, whereas the DEED problem used by Mannion [2017] is a
multi-agent problem. With the addition of the wind turbine the REDEED problem
is stochastic, whereas the outcomes of actions and state transitions in the DEED
problem are deterministic. The wind turbine also has 0 emissions, which is not
the case in other DEED implementation. Furthermore, the action space of the
REDEED problem has been reduced to 11 actions compared to the version used
by Mannion [2017] which has 101 actions.

165

APPENDIX A. APPENDICES

Hour P1 (Slack) P3 (Agent) P4 (Turbine)
1 219.19 99.0 115.0
2 259.92 153.0 124.0
3 263.26 179.0 165.0
4 179.12 233.0 174.0
5 211.8 259.0 179.0
6 214.94 286.0 214.0
7 223.14 340.0 219.0
8 304.3 340.0 250.0
9 323.81 340.0 295.0
10 387.03 340.0 298.0
11 413.32 340.0 298.0
12 423.43 286.0 298.0
13 369.32 206.0 298.0
14 300.02 153.0 298.0
15 245.1 99.0 293.0
16 202.56 126.0 276.0
17 259.15 179.0 267.0
18 313.63 206.0 250.0
19 456.15 233.0 201.0
20 490.30 206.0 201.0
21 329.61 126.0 238.0
22 272.80 73.0 188.0
23 260.05 73.0 186.0
24 159.63 73.0 200.0
Cost ($x106) Emissions (lbx105) Violations (x106) Utility
-2.731874279 -2.902131774 -200.4386492 −1.5921

Table A.2: A sample solution computed by DMCTS for the REDEED problem
domain, where the values for P2, P5, P6, P7, P8, P9, and P10 can be found in Table
A.1.

166

A.2. RENEWABLE ENERGY DYNAMIC ECONOMIC EMISSIONS
DISPATCH IMPLEMENTATION DETAILS

Hour P1 (Slack) P3 (Agent) P4 (Turbine)
1 219.19 99.0 115.0
2 259.92 153.0 124.0
3 263.26 179.0 165.0
4 179.12 233.0 174.0
5 211.8 259.0 179.0
6 214.94 286.0 214.0
7 223.14 340.0 219.0
8 304.3 340.0 250.0
9 323.81 340.0 295.0
10 387.03 340.0 298.0
11 413.32 340.0 298.0
12 423.43 286.0 298.0
13 369.32 206.0 298.0
14 300.02 153.0 298.0
15 245.1 99.0 293.0
16 202.56 126.0 276.0
17 326.09 179.0 200.0
18 313.63 206.0 250.0
19 387.01 233.0 269.0
20 448.87 179.0 269.0
21 357.58 99.0 238.0
22 226.12 73.0 235.0
23 188.03 99.0 232.0
24 199.19 73.0 160.0
Cost ($x106) Emissions (lbx105) Violations (x106) Utility
-2.721039042 -2.757148637 -171.7684759 −1.2921

Table A.3: A second sample solution computed by DMCTS for the REDEED
problem domain, where the values for P2, P5, P6, P7, P8, P9, and P10 can be found
in Table A.1

167

APPENDIX A. APPENDICES

A.3 Further Theory for ESR Dominance
In Section 4.2, Theorem 3 proves that stochastic dominance (SD) can be extended
to MODeM, Lemma 2 is used in Theorem 3.

Lemma 1

(Beppo Levi’s lemma [Schappacher, 1996]) Consider a point-wise non-
decreasing sequence of positive functions fn : X → [0, +∞], i.e., for every
k ≥ 1 and every x ∈ X.

0 ≤ fn(x) ≤ fn+1(x) ≤ +∞

Set the point-wise limit of the sequence {fi} to be f . That is, for every x ∈ X,

lim
n→+∞

fn(x) = f(x)

Then f is measurable and:

lim
n→+∞

∫
fn(x)dx =

∫
lim

n→+∞
fn(x)dx

Lemma 2

(Monotone convergence) Let u be a non-negative monotonically increasing
utility function in x and y, and F the CDF of a random variables X and Y .
Then, ∫

lim
y→+∞

u(x, y)F (x, y)dx = lim
y→+∞

∫
u(x, y)F (x, y)dx.

Proof. Let gn(x) = u(x, n)F (x, n). As u and F are positive monotonically
increasing functions in n, the function gn is also positive and monotonically
increasing, i.e.,

0 ≤ gn(x) ≤ gn+1(x) ≤ +∞

According to Beppo Levi’s lemma (see Lemma 1), the limit of the integral of gn(x)
in x is the integral of its limit, i.e.,

lim
n→+∞

∫
gn(x)dx =

∫
lim

n→+∞
gn(x)dx.

168

A.4. SPACE TRADERS

State Action P (success) Reward on success Reward on failure

A
Indirect 1.0 (0, -12) n/a
Direct 0.9 (0, -6) (0, -1)

Teleport 0.85 (0, 0) (0, 0)

B
Indirect 1.0 (1, -10) n/a
Direct 0.9 (1, -8) (0, -7)

Teleport 0.85 (1, 0) (0, 0)

Table A.4: The probability of success and reward values for each state-action pair
in the Space Traders MOMDP.

A.4 Space Traders
Space Traders is a finite horizon problem with a horizon of 2 timesteps that was
first introduced by Vamplew et al. [2021a]. Space Traders has 5 states, with 2
non-terminal states, and 3 available actions in each state. The goal of the agent
is to travel from its home planet (State A) to another planet (State B) to deliver
a shipment of cargo and then return to its home planet with the payment. Space
Traders has two objectives: mission success and time. The agent receives a reward
of 1 for returning to its home planet with the cargo and a reward of 0 for mission
success at all other states. The agent receives a negative reward for time for each
action taken. It is important to note the time values and reward for the outward
(State A to State B) and return (State B to State A) journeys for each action
vary (see Table A.4).

There are three possible pathways between each of the planets. The agent can
take a direct path, which is short. However, there is a chance the agent will be
intercepted by space pirates, which results in a terminal state. The agent can also
take the indirect path, which avoids the pirates and guarantees completion of the
mission. However, the indirect path takes a long time. Finally, the agent can also
teleport from one state to the next instantaneously. However, this action has a
high chance of failure, resulting in a terminal state.

Table A.4 summarises the transition probabilities and rewards of the Space
Traders MOMDP. Table A.5 presents the distribution over the returns for each
possible deterministic policy in the Space Traders MOMDP. Utilising the details
presented above along with Table A.4 and Table A.5, it is possible to fully
implement the Space Traders problem.

169

APPENDIX A. APPENDICES

π Action in state A Action in state B r1 r2 P (r1, r2)
II Indirect Indirect 1 -22 1.0

ID Indirect Direct 0 -19 0.1
1 -20 0.9

IT Indirect Teleport 1 -12 0.85
0 -12 0.15

DI Direct Indirect 0 -1 0.1
1 -16 0.9

DD Direct Direct
1 -14 0.81
0 -13 0.09
0 -1 0.1

DT Direct Teleport
1 -6 0.765
0 -6 0.135
0 -1 0.1

TI Teleport Indirect 1 -10 0.85
0 0 0.15

TD Teleport Direct
1 -8 0.765
0 -7 0.085
0 0 0.15

TT Teleport Teleport
1 0 0.7225
0 0 0.1275
0 0 0.15

Table A.5: The return distributions for each policy in the Space Traders MOMDP.

170

A.5. PPRUNE

A.5 PPrune
Below the PPrune algorithm presented by Roijers et al. [2015] is outlined. PPrune
is used as the pruning operator for DMOVE in Section 5.4.3.1 to compute the
Pareto front for a Random MO-CoG instance.

Algorithm 20: PPrune
1 Input: V ← A set of value vectors
2 V∗ ← ∅
3 while V ̸= ∅ do
4 V← the first element of V
5 for V ′ ∈ V do
6 if V ′ ≻p V then
7 V← V ′

8 end
9 end

10 Remove V, and all vectors Pareto-dominated by V, from V
11 Add V to V∗

12 end
13 Return V∗

171

APPENDIX A. APPENDICES

A.6 Exhaustive List of Results for DMOVE
In Section 5.4.3, DMOVE is evaluated using two MO-CoGs from the literature.
The return distributions for the policies in the ESR set computed by DMOVE
during evaluation are presented below. For the Random MO-CoG, 156 return
distributions are presented. For the Mining Day instance 30 return distributions
are presented. It is important to note, each return distributions represents the
distribution over possible outcomes (rewards) a policy may have.

172

A.6. EXHAUSTIVE LIST OF RESULTS FOR DMOVE

A.6.1 Random MO-CoG
Below the return distributions for each policy in the ESR set for a random MO-
CoG instance are presented.

Figure A.2: The return distributions for policies π1 - π12 computed by DMOVE
for Random MO-CoG.

173

APPENDIX A. APPENDICES

Figure A.3: The return distributions for policies π13 - π24 computed by DMOVE
for Random MO-CoG.

174

A.6. EXHAUSTIVE LIST OF RESULTS FOR DMOVE

Figure A.4: The return distributions for policies π25 - π36 computed by DMOVE
for Random MO-CoG.

175

APPENDIX A. APPENDICES

Figure A.5: The return distributions for policies π37 - π48 computed by DMOVE
for Random MO-CoG.

176

A.6. EXHAUSTIVE LIST OF RESULTS FOR DMOVE

Figure A.6: The return distributions for policies π49 - π60 computed by DMOVE
for Random MO-CoG.

177

APPENDIX A. APPENDICES

Figure A.7: The return distributions for policies π61 - π72 computed by DMOVE
for Random MO-CoG.

178

A.6. EXHAUSTIVE LIST OF RESULTS FOR DMOVE

Figure A.8: The return distributions for policies π73 - π84 computed by DMOVE
for Random MO-CoG.

179

APPENDIX A. APPENDICES

Figure A.9: The return distributions for policies π85 - π96 computed by DMOVE
for Random MO-CoG.

180

A.6. EXHAUSTIVE LIST OF RESULTS FOR DMOVE

Figure A.10: The return distributions for policies π97 - π108 computed by DMOVE
for Random MO-CoG.

181

APPENDIX A. APPENDICES

Figure A.11: The return distributions for policies π109 - π120 computed by DMOVE
for Random MO-CoG.

182

A.6. EXHAUSTIVE LIST OF RESULTS FOR DMOVE

Figure A.12: The return distributions for policies π121 - π132 computed by DMOVE
for Random MO-CoG.

183

APPENDIX A. APPENDICES

Figure A.13: The return distributions for policies π133 - π144 computed by DMOVE
for Random MO-CoG.

184

A.6. EXHAUSTIVE LIST OF RESULTS FOR DMOVE

Figure A.14: The return distributions for policies π145 - π156 computed by DMOVE
for Random MO-CoG.

185

APPENDIX A. APPENDICES

A.6.2 Mining Day
Below the return distributions for each policy in the ESR set for a Mining Day
instance are presented.

Figure A.15: The return distributions for policies π1 - π12 computed by DMOVE
for Mining Day.

186

A.6. EXHAUSTIVE LIST OF RESULTS FOR DMOVE

Figure A.16: The return distributions for policies π13 - π24 computed by DMOVE
for Mining Day.

187

APPENDIX A. APPENDICES

Figure A.17: The return distributions for policies π25 - π30 computed by DMOVE
for Mining Day.

188

Bibliography

Abdolmaleki, A., S. Huang, L. Hasenclever, M. Neunert, F. Song, M. Zambelli,
M. Martins, N. Heess, R. Hadsell, and M. Riedmiller
2020. A distributional view on multi-objective policy optimization. In
International Conference on Machine Learning, Pp. 11–22. PMLR.

Abels, A., D. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher
2019. Dynamic weights in multi-objective deep reinforcement learning. In
International Conference on Machine Learning, Pp. 11–20. PMLR.

Abrams, S., J. Wambua, E. Santermans, L. Willem, E. Kuylen, P. Coletti, P. Libin,
C. Faes, O. Petrof, S. A. Herzog, P. Beutels, and N. Hens
2021. Modelling the early phase of the belgian covid-19 epidemic using a
stochastic compartmental model and studying its implied future trajectories.
Epidemics, 35:100449.

Abramson, B.
1987. The expected-outcome model of two-player games. PhD thesis, Columbia
University.

Aissani, N., B. Beldjilali, and D. Trentesaux
2008. Efficient and effective reactive scheduling of manufacturing system using
sarsa-multi-objective agents. In MOSIM’08: 7th Conference Internationale de
Modelisation et Simulation, Pp. 698–707.

Alegre, L. N., A. Bazzan, and B. C. Da Silva
2022. Optimistic linear support and successor features as a basis for optimal
policy transfer. In International Conference on Machine Learning, Pp. 394–413.
PMLR.

189

BIBLIOGRAPHY

Ali, M. M.
1975. Stochastic dominance and portfolio analysis. Journal of Financial
Economics, 2(2):205–229.

Atkinson, A. B. and F. Bourguignon
1982. The Comparison of Multi-Dimensioned Distributions of Economic Status.
The Review of Economic Studies, 49(2):183–201.

Auer, P.
2002. Using confidence bounds for exploitation-exploration trade-offs. Journal
of Machine Learning Research, 3(Nov):397–422.

Auer, P., N. Cesa-Bianchi, and P. Fischer
2002. Finite-time analysis of the multiarmed bandit problem. Machine learning,
47(2):235–256.

Bai, A., S. Srivastava, and S. Russell
2016. Markovian state and action abstractions for mdps via hierarchical mcts.
In IJCAI, Pp. 3029–3039.

Bai, A., F. Wu, Z. Zhang, and X. Chen
2014. Thompson sampling based monte-carlo planning in pomdps. In Proceedings
of the Twenty-Fourth International Conference on International Conference on
Automated Planning and Scheduling, ICAPS’14, P. 29–37. AAAI Press.

Bargiacchi, E., T. Verstraeten, D. Roijers, A. Nowé, and H. Hasselt
2018. Learning to coordinate with coordination graphs in repeated single-stage
multi-agent decision problems. In International conference on machine learning,
Pp. 482–490. PMLR.

Barrett, L. and S. Narayanan
2008. Learning all optimal policies with multiple criteria. In Proceedings of the
25th international conference on Machine learning, Pp. 41–47.

Basu, M.
2008. Dynamic economic emission dispatch using nondominated sorting genetic
algorithm-ii. International Journal of Electrical Power and Energy Systems,
78:140–149.

Bawa, V. S.
1975. Optimal rules for ordering uncertain prospects. Journal of Financial
Economics, 2(1):95 – 121.

190

BIBLIOGRAPHY

Bawa, V. S.
1978. Safety-first, stochastic dominance, and optimal portfolio choice. The
Journal of Financial and Quantitative Analysis, 13(2):255–271.

Bawa, V. S.
1982. Research bibliography-stochastic dominance: A research bibliography.
Manage. Sci., 28(6):698–712.

Bellemare, M. G., S. Candido, P. S. Castro, J. Gong, M. C. Machado, S. Moitra,
S. S. Ponda, and Z. Wang
2020. Autonomous navigation of stratospheric balloons using reinforcement
learning. Nature, 588(7836):77–82.

Bellemare, M. G., W. Dabney, and R. Munos
2017. A distributional perspective on reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, Pp. 449–
458. JMLR. org.

Bellemare, M. G., W. Dabney, and M. Rowland
2023. Distributional Reinforcement Learning. MIT Press. http://www.
distributional-rl.org.

Bellemare, M. G., Y. Naddaf, J. Veness, and M. Bowling
2013. The arcade learning environment: An evaluation platform for general
agents. Journal of Artificial Intelligence Research, 47:253–279.

Bellman, R.
1957a. Dynamic programming. Courier Corporation.

Bellman, R.
1957b. A markovian decision process. Journal of mathematics and mechanics,
Pp. 679–684.

Bonet, B. and H. Geffner
2006. Learning depth-first search: A unified approach to heuristic search in
deterministic and non-deterministic settings, and its application to mdps. In
ICAPS, volume 6, Pp. 142–151.

Bonet, B. and H. Geffner
2012. Action selection for mdps: Anytime ao* versus uct. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 26, Pp. 1749–1755.

191

http://www.distributional-rl.org
http://www.distributional-rl.org

BIBLIOGRAPHY

Browne, C. B., E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton
2012. A survey of monte carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43.

Bryce, D., W. Cushing, and S. Kambhampati
2007. Probabilistic planning is multi-objective. Arizona State University, Tech.
Rep. ASU-CSE-07-006.

Cassandra, A., M. L. Littman, and N. L. Zhang
1997. Incremental pruning: A simple, fast, exact method for partially observable
markov decision processes. In Proceedings of the Thirteenth Conference on
Uncertainty in Artificial Intelligence, UAI’97, P. 54–61, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Castelletti, A., F. Pianosi, and M. Restelli
2012. Tree-based fitted q-iteration for multi-objective markov decision problems.
In The 2012 international joint conference on neural networks (IJCNN), Pp. 1–
8. IEEE.

Castelletti, A., F. Pianosi, and M. Restelli
2013. A multiobjective reinforcement learning approach to water resources
systems operation: Pareto frontier approximation in a single run. Water
Resources Research, 49(6):3476–3486.

Cazenave, T. and A. Saffidine
2010. Score bounded monte-carlo tree search. In International Conference on
Computers and Games, Pp. 93–104. Springer.

Chang, H. S., M. C. Fu, J. Hu, and S. I. Marcus
2005. An adaptive sampling algorithm for solving markov decision processes.
Oper. Res., 53(1):126–139.

Chapelle, O. and L. Li
2011. An empirical evaluation of thompson sampling. In Advances in Neural
Information Processing Systems, volume 24.

Choi, E. and S. Johnson
1988. Stochastic dominance and uncertain price prospects. Center for
Agricultural and Rural Development (CARD) at Iowa State University, Center
for Agricultural and Rural Development (CARD) Publications, 55.

192

BIBLIOGRAPHY

Coello, C. C.
2000. Handling preferences in evolutionary multiobjective optimization: A
survey. In Proceedings of the 2000 Congress on Evolutionary Computation.
CEC00 (Cat. No. 00TH8512), volume 1, Pp. 30–37. IEEE.

Cook, L. and J. Jarrett
2018. Using stochastic dominance in multi-objective optimizers for aerospace
design under uncertainty. In American Institute of Aeronautics and Astronautics
Journal.

Coulom, R.
2006. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, Pp. 72–83. Springer.

Dabney, W., G. Ostrovski, D. Silver, and R. Munos
2018a. Implicit quantile networks for distributional reinforcement learning. In
International conference on machine learning, Pp. 1096–1105. PMLR.

Dabney, W., M. Rowland, M. Bellemare, and R. Munos
2018b. Distributional reinforcement learning with quantile regression. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32.

Darling, D. A.
1957. The kolmogorov-smirnov, cramer-von mises tests. The Annals of
Mathematical Statistics, 28(4):823–838.

Dearden, R., N. Friedman, and S. Russell
1998. Bayesian q-learning. Aaai/iaai, 1998:761–768.

Dinh, L., J. Sohl-Dickstein, and S. Bengio
2016. Density estimation using real nvp. arXiv preprint arXiv:1605.08803.

Drugan, M. M. and A. Nowe
2013. Designing multi-objective multi-armed bandits algorithms: A study. In
The 2013 International Joint Conference on Neural Networks (IJCNN), Pp. 1–8.

Duffie, D. and J. Pan
1997. An overview of value at risk. Journal of derivatives, 4(3):7–49.

Dulac-Arnold, G., N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and
T. Hester
2021. Challenges of real-world reinforcement learning: definitions, benchmarks
and analysis. Machine Learning, 110(9):2419–2468.

193

BIBLIOGRAPHY

Eckles, D. and M. Kaptein
2014. Thompson sampling with the online bootstrap. CoRR, abs/1410.4009.

Eckles, D. and M. Kaptein
2019. Bootstrap thompson sampling and sequential decision problems in the
behavioral sciences. SAGE Open, 9(2).

Efron, B.
2012. Bayesian inference and the parametric bootstrap. Ann. Appl. Stat.,
6(4):1971–1997.

Engle, R. and S. Manganelli
2001. Value at risk models in finance. Technical report, European Central Bank.

Eriksson, H., D. Basu, M. Alibeigi, and C. Dimitrakakis
2022. Sentinel: taming uncertainty with ensemble based distributional
reinforcement learning. In Uncertainty in Artificial Intelligence, Pp. 631–640.
PMLR.

Fawzi, A., M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain,
A. Novikov, F. J. R. Ruiz, J. Schrittwieser, G. Swirszcz, D. Silver, D. Hassabis,
and P. Kohli
2022. Discovering faster matrix multiplication algorithms with reinforcement
learning. Nature, 610(7930):47–53.

Fishburn, P. C.
1978. Non-cooperative stochastic dominance games. International Journal of
Game Theory, 7(1):51–61.

Goodfellow, I., Y. Bengio, and A. Courville
2016. Deep learning. MIT press.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio
2020. Generative adversarial networks. Communications of the ACM,
63(11):139–144.

Greenwald, A., K. Hall, R. Serrano, et al.
2003. Correlated q-learning. In ICML, volume 3, Pp. 242–249.

Guestrin, C., D. Koller, and R. Parr
2001. Multiagent planning with factored mdps. Advances in neural information
processing systems, 14.

194

BIBLIOGRAPHY

Guo, Y., A. Zeman, and R. Li
2009. A reinforcement learning approach to setting multi-objective goals for
energy demand management. International Journal of Agent Technologies and
Systems (IJATS), 1(2):55–70.

Haarnoja, T., A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, et al.
2018. Soft actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905.

Hadar, J. and W. R. Russell
1969. Rules for ordering uncertain prospects. The American Economic Review,
59(1):25–34.

Hayes, C. F., E. Howley, and P. Mannion
2020. Dynamic thresholded lexicograpic ordering. In Adaptive and Learning
Agents Workshop (at AAMAS 2020).

Hayes, C. F., M. Reymond, D. M. Roijers, E. Howley, and P. Mannion
2021a. Distributional monte carlo tree search for risk-aware and multi-objective
reinforcement learning. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, Pp. 1530–1532.

Hayes, C. F., M. Reymond, D. M. Roijers, E. Howley, and P. Mannion
2021b. Risk-aware and multi-objective decision making with distributional monte
carlo tree search. In: Proceedings of the Adaptive and Learning Agents workshop
at AAMAS 2021).

Hayes, C. F., D. M. Roijers, E. Howley, and P. Mannion
2022a. Decision-theoretic planning for the expected scalarised returns. In
Proceedings of the 21st International Conference on Autonomous Agents and
Multiagent Systems, Pp. 1621–1623.

Hayes, C. F., D. M. Roijers, E. Howley, and P. Mannion
2022b. Multi-objective distributional value iteration. In Adaptive and Learning
Agents Workshop (AAMAS 2022).

Hayes, C. F., R. Rădulescu, E. Bargiacchi, J. Källström, M. Macfarlane,
M. Reymond, T. Verstraeten, L. M. Zintgraf, R. Dazeley, F. Heintz, E. Howley,
A. A. Irissappane, P. Mannion, A. Nowé, G. Ramos, M. Restelli, P. Vamplew,
and D. M. Roijers
2022c. A practical guide to multi-objective reinforcement learning and planning.
Autonomous Agents and Multi-Agent Systems, 36(1):26.

195

BIBLIOGRAPHY

Hayes, C. F., T. Verstraeten, D. M. Roijers, E. Howley, and P. Mannion
2021c. Dominance criteria and solution sets for the expected scalarised returns.
In Proceedings of the Adaptive and Learning Agents workshop at AAMAS 2021.

Hayes, C. F., T. Verstraeten, D. M. Roijers, E. Howley, and P. Mannion
2022d. Expected scalarised returns dominance: A new solution concept for multi-
objective decision making. Neural Computing and Applications, Pp. 1–21.

Hayes, C. F., T. Verstraeten, D. M. Roijers, E. Howley, and P. Mannion
2022e. Multi-objective coordination graphs for the expected scalarised returns
with generative flow models. European Workshop on Reinforcement Learning
(EWRL).

Ho, J., A. Jain, and P. Abbeel
2020. Denoising diffusion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851.

Huang, R., M. M. Ajallooeian, C. Szepesvári, and M. Müller
2017. Structured best arm identification with fixed confidence. In Proceedings of
the 28th International Conference on Algorithmic Learning Theory, S. Hanneke
and L. Reyzin, eds., volume 76 of Proceedings of Machine Learning Research,
Pp. 593–616. PMLR.

Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, et al.
2021. Highly accurate protein structure prediction with alphafold. Nature,
596(7873):583–589.

Kaufmann, E. and W. M. Koolen
2017. Monte-carlo tree search by best arm identification. Advances in Neural
Information Processing Systems, 30.

Kiran, B. R., I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and
P. Pérez
2021. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems.

Kobyzev, I., S. J. Prince, and M. A. Brubaker
2020. Normalizing flows: An introduction and review of current methods. IEEE
transactions on pattern analysis and machine intelligence, 43(11):3964–3979.

Kocsis, L. and C. Szepesvári
2006. Bandit based monte-carlo planning. In Machine Learning: ECML, volume
2006, Pp. 282–293.

196

BIBLIOGRAPHY

Kok, J. R. and N. Vlassis
2004. Sparse cooperative q-learning. In Proceedings of the twenty-first
international conference on Machine learning, P. 61.

Koller, D. and N. Friedman
2009. Probabilistic graphical models: principles and techniques. MIT press.

Kompella, V., R. Capobianco, S. Jong, J. Browne, S. Fox, L. Meyers, P. Wurman,
and P. Stone
2020. Reinforcement learning for optimization of covid-19 mitigation policies.
arXiv preprint arXiv:2010.10560.

Konda, V. and J. Tsitsiklis
1999. Actor-critic algorithms. Advances in neural information processing
systems, 12.

Kumar, A., X. B. Peng, and S. Levine
2019. Reward-conditioned policies. arXiv preprint arXiv:1912.13465.

LeCun, Y., Y. Bengio, and G. Hinton
2015. Deep learning. nature, 521(7553):436–444.

Leshno, M. and H. Levy
2002. Preferred by “all” and preferred by “most” decision makers: Almost
stochastic dominance. Management Science, 48(8):1074–1085.

Levhari, D., J. Paroush, and B. Peleg
1975. Efficiency analysis for multivariate distributions. The Review of Economic
Studies, 42(1):87–91.

Levy, H.
1992. Stochastic dominance and expected utility: Survey and analysis.
Management Science, 38(4):555–593.

Levy, H. and M. Robinson
2006. Stochastic dominance: Investment decision making under uncertainty,
volume 34. Springer.

Li, L., W. Chu, J. Langford, and R. E. Schapire
2010. A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international conference on
World wide web, Pp. 661–670.

197

BIBLIOGRAPHY

Li, Y.
2017. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274.

Lin, L.-J.
1992. Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine learning, 8(3):293–321.

Lyle, C., M. G. Bellemare, and P. S. Castro
2019. A comparative analysis of expected and distributional reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, Pp. 4504–4511.

Malerba, F. and P. Mannion
2021. Evaluating tunable agents with non-linear utility functions under expected
scalarised returns. In Multi-Objective Decision Making Workshop (MODeM
2021).

Mannion, P.
2017. Knowledge-based multi-objective multi-agent reinforcement learning. PhD
Thesis, NUI, Galway.

Mannion, P., S. Devlin, J. Duggan, and E. Howley
2018. Reward shaping for knowledge-based multi-objective multi-agent
reinforcement learning. The Knowledge Engineering Review, 33:e23.

Mannion, P., S. Devlin, K. Mason, J. Duggan, and E. Howley
2017. Policy invariance under reward transformations for multi-objective
reinforcement learning. Neurocomputing, 263:60–73.

Mannion, P., F. Heinz, T. G. Karimpanal, and P. Vamplew
2021. Multi-objective decision making for trustworthy ai. Multi-Objective
Decision Making Workshop (MODeM 2021).

Mannion, P., K. Mason, S. Devlin, E. Howley, and J. Duggan
2016. Multi-objective dynamic dispatch optimisation using multi-agent
reinforcement learning. International Conference on Autonomous Agents and
Multiagent Systems (AAMAS).

Marinescu, R.
2009. Exploiting problem decomposition in multi-objective constraint
optimization. In International Conference on Principles and Practice of
Constraint Programming, Pp. 592–607. Springer.

198

BIBLIOGRAPHY

Marinescu, R., A. Razak, and N. Wilson
2012. Multi-objective influence diagrams. arXiv preprint arXiv:1210.4911.

Marinescu, R., A. Razak, and N. Wilson
2017. Multi-objective influence diagrams with possibly optimal policies. In
Thirty-First AAAI Conference on Artificial Intelligence.

Martin, J., M. Lyskawinski, X. Li, and B. Englot
2020. Stochastically dominant distributional reinforcement learning. In
International Conference on Machine Learning, Pp. 6745–6754. PMLR.

Mas-Colell, A., M. D. Whinston, J. R. Green, et al.
1995. Microeconomic theory, volume 1. Oxford university press New York.

Mason, K. and S. Grijalva
2019. A review of reinforcement learning for autonomous building energy
management. Computers & Electrical Engineering, 78:300–312.

Mavrin, B., H. Yao, L. Kong, K. Wu, and Y. Yu
2019. Distributional reinforcement learning for efficient exploration. In
Proceedings of the 36th International Conference on Machine Learning,
K. Chaudhuri and R. Salakhutdinov, eds., volume 97 of Proceedings of Machine
Learning Research, Pp. 4424–4434, Long Beach, California, USA. PMLR.

Mirhoseini, A., A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J. Lee,
E. Johnson, O. Pathak, S. Bae, et al.
2020. Chip placement with deep reinforcement learning. arXiv preprint
arXiv:2004.10746.

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu
2016. Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, Pp. 1928–1937. PMLR.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller
2013. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Moerland, T. M., J. Broekens, and C. M. Jonker
2020. Model-based reinforcement learning: A survey. arXiv preprint
arXiv:2006.16712.

199

BIBLIOGRAPHY

Monahan, G. E.
1982. State of the art—a survey of partially observable markov decision processes:
theory, models, and algorithms. Management science, 28(1):1–16.

Mossalam, H., Y. M. Assael, D. M. Roijers, and S. Whiteson
2016. Multi-objective deep reinforcement learning. arXiv preprint
arXiv:1610.02707.

Nakayama, H., T. Tanino, and Y. Sawaragi
1981. Stochastic dominance for decision problems with multiple attributes
and/or multiple decision-makers. IFAC Proceedings Volumes, 14(2):1397 – 1402.
8th IFAC World Congress on Control Science and Technology for the Progress
of Society, Kyoto, Japan, 24-28 August 1981.

Natarajan, S. and P. Tadepalli
2005. Dynamic preferences in multi-criteria reinforcement learning. In
Proceedings of the 22nd international conference on Machine learning, Pp. 601–
608.

Newton, M. and A. Raftery
1994. Approximate bayesian inference by the weighted likelihood bootstrap.
Journal of the Royal Statistical Society Series B-Methodological, 56:3 – 48.

O’Callaghan, D. and P. Mannion
2021. Exploring the impact of tunable agents in sequential social dilemmas.
In Proceedings of the Adaptive and Learning Agents Workshop (ALA-21) at
AAMAS.

Osband, I., C. Blundell, A. Pritzel, and B. Van Roy
2016. Deep exploration via bootstrapped dqn. Advances in neural information
processing systems, 29.

Owen, A. B. and D. Eckles
2012. Bootstrapping data arrays of arbitrary order. The Annals of Applied
Statistics, 6(3):895–927.

Oza, N. C. and S. J. Russell
2001. Online bagging and boosting. In International Workshop on Artificial
Intelligence and Statistics, Pp. 229–236. PMLR.

Pan, A., W. Xu, L. Wang, and H. Ren
2020. Additional planning with multiple objectives for reinforcement learning.
Knowledge-Based Systems, 193:105392.

200

BIBLIOGRAPHY

Papamakarios, G., E. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan
2021. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64.

Pareto, V.
1896. Manuel d’Economie Politique, volume 1. Giard, Paris.

Parisi, S., M. Pirotta, and J. Peters
2017. Manifold-based multi-objective policy search with sample reuse.
Neurocomputing, 263:3–14.

Perez, J., C. Germain-Renaud, B. Kégl, and C. Loomis
2009. Responsive elastic computing. In Proceedings of the 6th international
conference industry session on Grids meets autonomic computing, Pp. 55–64.

Petersen, B. K., M. L. Larma, T. N. Mundhenk, C. P. Santiago, S. K. Kim, and
J. T. Kim
2020. Deep symbolic regression: Recovering mathematical expressions from
data via risk-seeking policy gradients. In International Conference on Learning
Representations.

Pineau, J., G. Gordon, S. Thrun, et al.
2003. Point-based value iteration: An anytime algorithm for pomdps. In Ijcai,
volume 3, Pp. 1025–1032. Citeseer.

Puterman, M. L.
1990. Markov decision processes. Handbooks in operations research and
management science, 2:331–434.

Rădulescu, R., P. Mannion, D. M. Roijers, and A. Nowé
2020. Multi-objective multi-agent decision making: a utility-based analysis and
survey. Autonomous Agents and Multi-Agent Systems, 34(10).

Rao, A. and T. Jelvis
2022. Foundations of Reinforcement Learning with Applications in Finance. CRC
Press.

Reymond, M., E. Bargiacchi, and A. Nowé
2022a. Pareto conditioned networks. In Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Systems, Pp. 1110–1118.

Reymond, M., C. F. Hayes, D. M. Roijers, D. Steckelmacher, and A. Nowé
2021. Actor-critic multi-objective reinforcement learning for non-linear utility
functions. In Multi-Objective Decision Making Workshop (MODeM 2021).

201

BIBLIOGRAPHY

Reymond, M., C. F. Hayes, L. Willem, R. Rădulescu, S. Abrams, D. M. Roijers,
E. Howley, P. Mannion, N. Hens, A. Nowé, et al.
2022b. Exploring the pareto front of multi-objective covid-19 mitigation policies
using reinforcement learning. arXiv preprint arXiv:2204.05027.

Reymond, M. and A. Nowé
2019. Pareto-dqn: Approximating the pareto front in complex multi-objective
decision problems. In Proceedings of the Adaptive and Learning Agents Workshop
(ALA-19) at AAMAS.

Richard, S. F.
1975. Multivariate risk aversion, utility independence and separable utility
functions. Management Science, 22(1):12–21.

Rockafellar, R. T. and S. Uryasev
2002. Conditional value-at-risk for general loss distributions. Journal of banking
& finance, 26(7):1443–1471.

Rockafellar, R. T., S. Uryasev, et al.
2000. Optimization of conditional value-at-risk. Journal of risk, 2(3):21–41.

Roijers, D., L. Zintgraf, P. Libin, and A. Nowe
2018a. Interactive multi-objective reinforcement learning in multi-armed bandits
for any utility function. In Proceedings of the Adaptive and Learning Agents
Workshop (ALA-18) at AAMAS.

Roijers, D. M.
2016. Multi-objective decision-theoretic planning: Abstract. AI Matters,
2(4):11–12.

Roijers, D. M., W. Röpke, A. Nowé, and R. Rădulescu
2021. On following pareto-optimal policies in multi-objective planning and
reinforcement learning. In Proceedings of the Multi-Objective Decision Making
(MODeM) Workshop.

Roijers, D. M., D. Steckelmacher, and A. Nowé
2018b. Multi-objective reinforcement learning for the expected utility of the
return. In Proceedings of the Adaptive and Learning Agents workshop at FAIM
2018.

Roijers, D. M., P. Vamplew, S. Whiteson, and R. Dazeley
2013. A survey of multi-objective sequential decision-making. Journal of
Artificial Intelligence Research, 48:67–113.

202

BIBLIOGRAPHY

Roijers, D. M. and S. Whiteson
2017. Multi-objective decision making. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 11(1):1–129.

Roijers, D. M., S. Whiteson, and F. A. Oliehoek
2015. Computing convex coverage sets for faster multi-objective coordination.
Journal of Artificial Intelligence Research, 52:399–443.

Roijers, D. M., L. M. Zintgraf, P. Libin, M. Reymond, E. Bargiacchi, and A. Nowé
2020. Interactive multi-objective reinforcement learning in multi-armed bandits
with gaussian process utility models. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Pp. 463–478. Springer.

Rollón, E.
2008. Multi-objective optimization in graphical models. PhD thesis, Universitat
Politècnica de Catalunya.

Rollón, E. and J. Larrosa
2006. Bucket elimination for multiobjective optimization problems. Journal of
Heuristics, 12(4):307–328.

Röpke, W., R. Radulescu, D. M. Roijers, and A. Nowe
2021. Communication strategies in multi-objective normal-form games. In
Adaptive and Learning Agents Workshop 2021.

Ross, S., J. Pineau, S. Paquet, and B. Chaib-Draa
2008. Online planning algorithms for pomdps. Journal of Artificial Intelligence
Research, 32:663–704.

Rădulescu, R., P. Mannion, Y. Zhang, D. M. Roijers, and A. Nowé
2020. A utility-based analysis of equilibria in multi-objective normal form games.
The Knowledge Engineering Review, 35(e32).

Rubin, D. B.
1981. The bayesian bootstrap. The Annals of Statistics, 9(1):130–134.

Ruiz-Montiel, M., L. Mandow, and J.-L. Pérez-de-la Cruz
2017. A temporal difference method for multi-objective reinforcement learning.
Neurocomputing, 263:15–25.

Russell, S. J. and P. Norvig
2010. Artificial intelligence a modern approach. Pearson Education, Inc.

203

BIBLIOGRAPHY

Russo, D. and B. Van Roy
2014. Learning to optimize via posterior sampling. Mathematics of Operations
Research, 39(4):1221–1243.

Russo, D. J., B. Van Roy, A. Kazerouni, I. Osband, Z. Wen, et al.
2018. A tutorial on thompson sampling. Foundations and Trends® in Machine
Learning, 11(1):1–96.

Scarsini, M.
1988. Dominance conditions for multivariate utility functions. Management
Science, 34(4):454–460.

Schappacher, N.
1996. Beppo levi and the arithmetic of elliptic curves. The Mathematical
Intelligencer, 18(1):57––69.

Schmidhuber, J.
2019. Reinforcement learning upside down: Don’t predict rewards–just map
them to actions. arXiv preprint arXiv:1912.02875.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Shabani, N.
2009. Incorporating flood control rule curves of the Columbia River hydroelectric
system in a multireservoir reinforcement learning optimization model. PhD
thesis, Citeseer.

Shen, W., F. Trevizan, S. Toyer, S. Thiébaux, and L. Xie
2019. Guiding mcts with generalized policies for probabilistic planning. HSDIP
2019, P. 63.

Siddique, U., P. Weng, and M. Zimmer
2020. Learning fair policies in multi-objective (deep) reinforcement learning
with average and discounted rewards. In International Conference on Machine
Learning, Pp. 8905–8915. PMLR.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
2016. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489.

204

BIBLIOGRAPHY

Silver, D., T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al.
2017. Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. arXiv preprint arXiv:1712.01815.

Silver, D., S. Singh, D. Precup, and R. S. Sutton
2021. Reward is enough. Artificial Intelligence, 299:103535.

Silver, D. and J. Veness
2010. Monte-carlo planning in large pomdps. In Advances in Neural Information
Processing Systems, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta, eds., volume 23. Curran Associates, Inc.

Slivkins, A. et al.
2019. Introduction to multi-armed bandits. Foundations and Trends® in Machine
Learning, 12(1-2):1–286.

Somani, A., N. Ye, D. Hsu, and W. S. Lee
2013. Despot: Online pomdp planning with regularization. Advances in neural
information processing systems, 26.

Spaan, M. T.
2012. Partially observable markov decision processes. In Reinforcement Learning,
Pp. 387–414. Springer.

Sriboonchitta, S., W.-K. Wong, s. Dhompongsa, and H. Nguyen
2009. Stochastic Dominance and Applications to Finance, Risk and Economics.
Chapman and Hall/CRC.

Sunberg, Z. N. and M. J. Kochenderfer
2018. Online algorithms for pomdps with continuous state, action, and
observation spaces. In Twenty-Eighth International Conference on Automated
Planning and Scheduling.

Sutton, R. S. and A. G. Barto
2018. Reinforcement Learning: An Introduction. Cambridge, MA, USA: A
Bradford Book.

Tamar, A., Y. Wu, G. Thomas, S. Levine, and P. Abbeel
2016. Value iteration networks. Advances in neural information processing
systems, 29.

205

BIBLIOGRAPHY

Tesauro, G., V. T. Rajan, and R. Segal
2010. Bayesian inference in monte-carlo tree search. In Proceedings of the Twenty-
Sixth Conference on Uncertainty in Artificial Intelligence, UAI’10, P. 580–588,
Arlington, Virginia, USA. AUAI Press.

Thomas, M. and A. T. Joy
2006. Elements of information theory. Wiley-Interscience.

Thompson, W. R.
1933. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3-4):285–294.

Tomczak, J. M.
2022. Deep Generative Modeling. Springer Nature.

Turgay, E., D. Oner, and C. Tekin
2018. Multi-objective contextual bandit problem with similarity information. In
International Conference on Artificial Intelligence and Statistics, Pp. 1673–1681.
PMLR.

Vamplew, P., R. Dazeley, A. Berry, R. Issabekov, and E. Dekker
2011. Empirical evaluation methods for multiobjective reinforcement learning
algorithms. Machine Learning, 84:51–80.

Vamplew, P., R. Dazeley, C. Foale, S. Firmin, and J. Mummery
2018. Human-aligned artificial intelligence is a multiobjective problem. Ethics
and Information Technology, 20(1):27–40.

Vamplew, P., C. Foale, and R. Dazeley
2020. A demonstration of issues with value-based multi objective reinforcement
learning under stochastic state transitions. In Adaptive and Learning Agents
Workshop (AAMAS 2020).

Vamplew, P., C. Foale, and R. Dazeley
2021a. The impact of environmental stochasticity on value-based multiobjective
reinforcement learning. In Neural Computing and Applications.

Vamplew, P., C. Foale, R. Dazeley, and A. Bignold
2021b. Potential-based multiobjective reinforcement learning approaches to low-
impact agents for ai safety. Engineering Applications of Artificial Intelligence,
100:104186.

206

BIBLIOGRAPHY

Vamplew, P., B. J. Smith, J. Källström, G. Ramos, R. Rădulescu, D. M. Roijers,
C. F. Hayes, F. Heintz, P. Mannion, P. J. Libin, et al.
2022. Scalar reward is not enough: A response to silver, singh, precup and sutton
(2021). Autonomous Agents and Multi-Agent Systems, 36(2):1–19.

Vamplew, P., J. Yearwood, R. Dazeley, and A. Berry
2008. On the limitations of scalarisation for multi-objective reinforcement
learning of pareto fronts. In AI 2008: Advances in Artificial Intelligence,
W. Wobcke and M. Zhang, eds., Pp. 372–378, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Van Hasselt, H., A. Guez, and D. Silver
2016. Deep reinforcement learning with double q-learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 30.

Van Moffaert, K. and A. Nowé
2014a. Multi-objective reinforcement learning using sets of Pareto dominating
policies. The Journal of Machine Learning Research, 15(1):3483–3512.

Van Moffaert, K. and A. Nowé
2014b. Multi-objective reinforcement learning using sets of pareto dominating
policies. The Journal of Machine Learning Research, 15(1):3483–3512.

Veness, J., K. S. Ng, M. Hutter, W. Uther, and D. Silver
2011. A monte-carlo aixi approximation. J. Artif. Int. Res., 40(1):95–142.

Verstraeten, T., E. Bargiacchi, P. J. Libin, J. Helsen, D. M. Roijers, and A. Nowé
2020. Multi-agent thompson sampling for bandit applications with sparse
neighbourhood structures. Scientific reports, 10(1):1–13.

Verstraeten, T., P.-J. Daems, E. Bargiacchi, D. M. Roijers, P. J. Libin, and
J. Helsen
2021. Scalable optimization for wind farm control using coordination graphs.
In Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems, Pp. 1362–1370.

Wakuta, K. and K. Togawa
1998. Solution procedures for multi-objective markov decision processes.
Optimization, 43(1):29–46.

Wang, W. and M. Sebag
2012. Multi-objective Monte-Carlo tree search. In Proceedings of Machine
Learning Research, S. C. H. Hoi and W. Buntine, eds., volume 25, Pp. 507–
522, Singapore Management University, Singapore. PMLR.

207

BIBLIOGRAPHY

Wang, Z., T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas
2016. Dueling network architectures for deep reinforcement learning. In
Proceedings of The 33rd International Conference on Machine Learning, M. F.
Balcan and K. Q. Weinberger, eds., volume 48 of Proceedings of Machine
Learning Research, Pp. 1995–2003, New York, New York, USA. PMLR.

Watkins, C. J. and P. Dayan
1992. Q-learning. Machine learning, 8(3):279–292.

White, D.
1982. Multi-objective infinite-horizon discounted markov decision processes.
Journal of mathematical analysis and applications, 89(2):639–647.

Wiering, M. A. and E. D. de Jong
2007. Computing optimal stationary policies for multi-objective markov decision
processes. In 2007 IEEE International Symposium on Approximate Dynamic
Programming and Reinforcement Learning, Pp. 158–165.

Wiering, M. A., M. Withagen, and M. M. Drugan
2014. Model-based multi-objective reinforcement learning. In 2014 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL), Pp. 1–6. IEEE.

Williams, R. J.
1992. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256.

Wolfstetter, E.
1999. Topics in Microeconomics: Industrial Organization, Auctions, and
Incentives. Cambridge University Press.

Wray, K. H., S. Zilberstein, and A.-I. Mouaddib
2015. Multi-objective mdps with conditional lexicographic reward preferences.
In Twenty-ninth AAAI conference on artificial intelligence.

Wurman, P. R., S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J.
Walsh, R. Capobianco, A. Devlic, F. Eckert, F. Fuchs, et al.
2022. Outracing champion gran turismo drivers with deep reinforcement learning.
Nature, 602(7896):223–228.

Xu, J., Y. Tian, P. Ma, D. Rus, S. Sueda, and W. Matusik
2020. Prediction-guided multi-objective reinforcement learning for continuous
robot control. In International Conference on Machine Learning, Pp. 10607–
10616. PMLR.

208

BIBLIOGRAPHY

Yahyaa, S. and B. Manderick
2015. Thompson sampling for multi-objective multi-armed bandits problem.
In Proceedings of the 23rd European Symposium on Artificial Neural Network,
Computational Intelligence and Machine Learning, P. 47. Presses universitaires
de Louvain.

Yahyaa, S. Q., M. M. Drugan, and B. Manderick
2014. Annealing-pareto multi-objective multi-armed bandit algorithm. In
2014 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), Pp. 1–8. IEEE.

Yang, R., X. Sun, and K. Narasimhan
2019. A generalized algorithm for multi-objective reinforcement learning and
policy adaptation. In Advances in Neural Information Processing Systems,
Pp. 14636–14647.

Yu, C., J. Liu, S. Nemati, and G. Yin
2021. Reinforcement learning in healthcare: A survey. ACM Computing Surveys
(CSUR), 55(1):1–36.

Zhang, N. L. and D. Poole
1996. Exploiting causal independence in bayesian network inference. Journal of
Artificial Intelligence Research, 5:301–328.

Zhang, P., X. Chen, L. Zhao, W. Xiong, T. Qin, and T.-Y. Liu
2021. Distributional reinforcement learning for multi-dimensional reward
functions. Advances in Neural Information Processing Systems, 34:1519–1529.

Zintgraf, L. M., T. V. Kanters, D. M. Roijers, F. Oliehoek, and P. Beau
2015. Quality assessment of morl algorithms: A utility-based approach. In
Benelearn 2015: Proceedings of the 24th Annual Machine Learning Conference
of Belgium and the Netherlands.

Zintgraf, L. M., D. M. Roijers, S. Linders, C. M. Jonker, and A. Nowé
2018. Ordered preference elicitation strategies for supporting multi-objective
decision making. In 17th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2018, Pp. 1477–1485. International Foundation
for Autonomous Agents and Multiagent Systems (IFAAMAS).

209

	Abstract
	Acknowledgments
	Declaration
	Introduction
	Research Questions
	Hypotheses
	Thesis Overview

	Background
	Reinforcement Learning & Planning
	Markov Decision Processes
	Multi-Armed Bandits
	Coordination Graphs
	Other Settings
	Deep Reinforcement Learning
	Distributional Reinforcement Learning

	Stochastic Dominance
	A Note on the Limitations of Reinforcement Learning & Planning
	Multi-Objective Reinforcement Learning & Planning
	Problem Setting
	Other Problem Settings
	A Note on Scalar and Vector Rewards
	The Utility-Based Perspective
	Multi-Objective Solution Concepts
	Multi-Objective Reinforcement Learning & Planning Algorithms
	Multi-Objective Optimality Criteria

	The Expected Scalarised Returns Optimality Criterion

	Algorithms for Known Utility Functions
	A Note on Nonlinear Utility Functions
	Monte Carlo Tree Search for Nonlinear Utility Functions
	Distributional Monte Carlo Tree Search
	Empirical Evaluation
	Ablation Study
	Evaluation using Multi-objective Markov Decision Processes

	Related Work
	Summary

	Theory for Unknown Utility Functions
	Motivating a Distributional Approach
	Stochastic Dominance for the Expected Scalarised Returns
	Solution Sets for the Expected Scalarised Returns
	Related Work
	Summary

	Algorithms for Unknown Utility Functions
	A Pruning Algorithm for the Expected Scalarised Returns
	Solving Multi-Objective Multi-Armed Bandits for the Expected Scalarised Returns
	Multi-Objective Tabular Distributional Reinforcement Learning
	Evaluation Metrics
	Empirical Evaluation
	Discussion

	Solving Multi-Objective Markov Decision Processes for the Expected Scalarised Returns
	Multi-Objective Distributional Value Iteration
	Empirical Evaluation
	Discussion

	Solving Multi-Objective Coordination Graphs for the Expected Scalarised Returns
	Multi-Objective Coordination Graphs for the Expected Scalarised Returns
	Distributional Multi-Objective Variable Elimination
	Empirical Evaluation
	Discussion

	Related Work
	Summary

	Conclusion
	Summary of Contributions
	Analysis of Multi-Objective Optimality Criteria for Nonlinear Utility Functions in Single-Agent Settings
	Theoretical Analysis of Multi-Policy Methods under the Expected Scalarised Returns Criterion
	Distributional Multi-Policy Algorithms for the Expected Scalarised Returns Criterion

	Impact
	Limitations
	Categorical Distributions
	Benchmarks and Evaluation Metrics
	Discrete States & Actions
	Computational Analysis

	Future Work
	Approximating Return Distributions
	Trustworthy AI
	Further Theoretical Investigations
	Further Optimality Criteria

	Final Remarks

	Appendices
	Monte Carlo Tree Search Algorithms
	Renewable Energy Dynamic Economic Emissions Dispatch Implementation Details
	Dynamic Economic Emissions Dispatch
	Renewable Energy Dynamic Economic Emissions Dispatch
	Sample Solutions

	Further Theory for ESR Dominance
	Space Traders
	PPrune
	Exhaustive List of Results for DMOVE
	Random MO-CoG
	Mining Day

	Bibliography

