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Abstract 

Powder bed fusion (PBF) is an additive manufacturing process in which finely focused 

thermal energy is used to selectively melt target regions within thin layers of metal 

powders. Due to the complex thermal conditions associated with the rapidly moving 

micro-melt pool and the layer-by-layer deposition of material, the resulting printed 

product in, for example, CoCr, Ti-6Al-4V, and 17-4PH stainless steel have unique and 

anisotropic microstructure, compared to traditional manufacturing processes. Another 

significant process within industrial PBF manufacturing is post-built heat treatment (HT). 

This step modifies the microstructure (as well as relieves residual stress), adding 

complexity to the processing parameters design. It is thus necessary to develop a further 

understanding of the process-structure (HT) and structure-property (PBF) relationships in 

PBF manufacturing. 

Multi-physics computational models are developed, based on experimental 

characterisation, to investigate the process-structure-property relationship in PBF. 

Particular attention is paid to model construction and maintaining a faithful representation 

of real PBF grains and sub-grain features. Direct microscopy microstructural 

characterisation is performed using electron backscatter diffraction of as-built and post-

heat treatment specimens, where measures of texture and grain morphology are extracted 

and used to construct Voronoi tessellation-based or real image-based micromechanics 

models. 

Crystal plasticity finite element (CPFE) modelling is a micro-scale computational method 

to predict mechanical performance based on microstructure and crystallographic 

properties. CPFE model with physical dislocation mechanisms is employed to quantify 

the effect of the PBF microstructure variation (grain size, phase, morphology, and 

crystallographic orientation) on mechanical properties (tensile and fatigue). Phase-field 

method (PFM) is implemented to investigate the effect of heat treatment on grain growth 

and is then integrated with CPFE to offer an efficient method for an in-depth 
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understanding of the relationship between thermo-processing, microstructural evolution 

and mechanical properties. This thesis also utilizes a large database of input-output 

samples from CPFE modelling to develop a trained deep neural network (DNN) model 

which instantly estimates the output (strength prediction) associated with a given input 

(microstructure) of multi-phase PBF stainless steels. 

The EBSD-based method for CPFE model generation is shown to give approximately 

10% improved agreement for fatigue life prediction, compared with the more commonly-

used Voronoi tessellation method. The effect of PBF inhomogeneity and post-built HT on 

the structure-property relationship was investigated using a dual-phase strain gradient 

crystal plasticity model based on physical dislocation mechanisms, based on the as-built 

and HT microstructure of Ti-6Al-4V, with a notable increase in lath width post HT. The 

effect of as-built lath width gradient in a single component on bulk stress-strain 

relationship exists but is minimal (1% variation in yield strength), whereas a greater effect 

(9% reduction in yield strength) is found in the post-heat treatment specimen. The PFM 

model is utilized for analysing the grain growth behaviour during the post-built heat 

treatment process through the simulation of grain boundary migration. It predicts five 

times grain growth in lath area from 0.59 to 3.0 𝑢𝑚2, after 100 minutes of annealing at 

1127 K. The evolved lath prediction reaches close agreement compared to the EBSD 

measurement. Finally, the CPFE-based deep learning (DL) model exhibits high accuracy 

for the structure-property relationship as a surrogate predicting tool compared to CPFE 

while significantly reducing the computational cost to a few seconds.    

 

  



 

 

8 

 

Acknowledgements 

First, I want to thank my supervisors Dr. Noel Harrison and Prof. Sean Leen for their 

constant helpful supervision over the last four years. Their broad knowledge and kindness 

help me successfully obtain my PhD degree while living an enjoyable life in Galway. 

They also never hesitate to offer me guidance and assistance in ensuring the high quality 

of my presented work. The comments and feedback alone are usually half the word count 

of my draft! from which I benefited and progressed considerably as a non-native speaker. 

I am also impressed by their easy-going style as well as the free academic atmosphere. I 

have been allowed and encouraged to develop new research directions based on my 

personal background and interest. They supported me when I was considering learning 

and employing the phase-field method and arranged the relative supports. Later, they 

supported me again to work with Singapore and USA researchers for the deep learning 

work. This thesis could never include the abundant interdisciplinary content it now has, 

without the unconditional support from my supervisors. As an international student, I 

always receive kind consideration from my supervisors, for example, regarding 

accommodation and visa issues, my physical health and mental condition especially when 

the Covid-19 pandemic occurred. Even still, they are providing support and advice for my 

future career development. 

I also want to acknowledge the support from my sponsor, I-Form, Science Foundation 

Ireland, for providing funding for this research project, under Grant number 16/RC/3872. 

I acknowledge HEA and The National University of Ireland Galway / University of 

Galway for funding the last 7 months of the project, and the Irish Centre for High-End 

Computing (ICHEC) for the provision of computational facilities and support. 

Then the author would like to acknowledge Dr. P. J. Ashton, Dr. Yaoyi Geng and Dr. 

Xinyu Yang for the helpful discussions. It is a pleasure to have you guys around, in the 

lab, the office, or the pub.    

Finally, I want to thank my parents. Actually, my mom insisted and strongly 

recommended me to start this PhD study, which turned out to be a superb decision. My 



 

 

9 

 

father, as an experienced automobile engineer, has been giving useful and professional 

suggestions, both on engineering knowledge and more importantly, life-coaching. I enjoy 

the unique relationship with my parents, like the closest peers, with whom I never hesitate 

to share my real feelings regardless of pains or joys.  

 

List of Publications 

The following two peer-reviewed journal papers were published from 

the research in this thesis.  

Yuhui Tu, Sean B Leen, Noel M Harrison. A high-fidelity crystal-plasticity finite element 

methodology for low-cycle fatigue using automatic electron backscatter diffraction scan 

conversion: Application to hot-rolled cobalt–chromium alloy. Proceedings of the 

Institution of Mechanical Engineers, Part L: Journal of Materials: Design and 

Applications. 2021;235(8):1901-1924. doi:10.1177/14644207211010836 

Yuhui Tu, Zhongzhou Liu, Luiz Carneiro, Caitriona M. Ryan, Andrew C. Parnell, Seán 

B Leen, Noel M Harrison. Towards an instant structure-property prediction quality 

control tool for additive manufactured steel using a crystal plasticity trained deep 

learning surrogate, Materials & Design, 2022; 213, doi:10.1016/j.matdes.2021.110345 

  

https://doi.org/10.1177/14644207211010836
https://doi.org/10.1016/j.matdes.2021.110345


 

 

10 

 

Acronyms List 

2D Two-dimensional 

3D Three-dimensional 

BCC Body centre cubic 

CoCr Cobalt Chromium 

CPFE Crystal plasticity finite element 

EBSD Electron backscatter diffraction 

EDX Energy-dispersive X-ray spectroscopy 

FCC Face centre cubic 

FCI Fatigue crack initiation 

FIB Focused ion beam 

FIP Fatigue indicator parameter 

GND Geometrically necessary dislocation 

HCP Hexagonal close packed 

IPF Inverse Pole Figure 

LCF Low-cycle fatigue 

PBCs Periodic boundary conditions 

SEM Scanning electron microscope 

UMAT User material subroutine 

UEL User element subroutine 

SSD Statistically stored dislocations 

VT Voronoi tessellation 

AM Additive manufacturing 

PBF Powder bed fusion 

DL Deep learning 

CNN Convolutional neural network 

DNN Deep neural network 

RMSE Root mean squared error 

MAE Mean absolute error 

YS Yield stress 

SS Stainless steel 



 

 

11 

 

Nomenclature List 

Parameter Unit Description 

𝑿  reference global vector 

𝒙  current configuration vector 

𝒖  displacement vector 

𝑭  global deformation gradient 

𝑭𝒆  elastic deformation gradient 

𝑭𝒑  plastic deformation gradient 

𝑳𝒑  plastic velocity gradient tensor 

�̇�α  rate of slip along the slip system α 

�̇�0 [s-1] reference strain rate 

𝛼  current slip system 

𝒔α  unit vectors along slip direction 

𝒎α  unit vectors normal to slip plane 

�̇� [s-1] reference strain rate component 

𝑛  strain rate sensitivity 

𝘨0 [MPa] initial critical resolved shear stress 

𝘨∞ [MPa] stage I stress 

ℎαα [MPa] self-hardening moduli 

ℎαβ [MPa] latent-hardening moduli 

𝑥𝛼 [MPa] kinematic hardening back stress 

𝐶𝑖  𝐷𝑖 [GPa] parameters which define the back-stress hardening 

𝑏𝛼 [m] Burgers vector 

𝜌𝑆𝑆𝐷
𝑚,𝛼

 [m-2] mobile SSD density 

𝜌𝑆𝑆𝐷,𝑖 [m-2] immobile SSD density 

𝜌𝐺𝑁𝐷
𝛼 [m-2] GND density 

𝜈 [s-1] frequency for mobile dislocations 

Δ𝐻 [J] Helmholtz free energy 

T [K] Temperature 



 

 

12 

 

k [JK-1] Boltzmann constant 

𝑝  accumulated effective crystal slip 

𝑊 [MJ/m-3] accumulated strain energy dissipation 

𝑁𝑖  fatigue crack initiation life 

 

  

  



 

 

13 

 

1 Introduction 

1.1  General 

Global industries such as medical devices, automotive, aerospace and the military have 

led the adoption of metal additive manufacturing (AM) as a process of choice for next-

generation manufacturing.  AM, also referred to as digital fabrication, rapid prototyping, 

or 3D printing, is a computer-aided design (CAD) assisted manufacturing approach in a 

layer-by-layer manner. AM techniques, according to the ISO/ASTM S2900:2021 

terminology standard [1], are primarily classified into seven categories: (1) powder bed 

fusion (PBF), (2) directed energy deposition, (3) binder jetting, (4) material jetting, (5) vat 

polymerization, (6) material extrusion and (7) sheet lamination. A graphical summary of 

these seven processes is shown in Figure 1-1. This thesis focuses on PBF AM using metal 

alloy powder materials.  

Figure 1-2 shows a general PBF workflow and the printing system components. A PBF 

printer firstly deposits the powder layers on a (often preheated) substrate using a blade or 

roller layering apparatus. Then a laser or electron beam heats and melts the powder layer 

selectively according to the sliced CAD profile and process controlling system. 

Subsequently, the build plate moves downwards to allow the manufacturing of the next 

layer [2]. Finally, post-built processing including surface polishing, heat treatment, and 

machining [3, 4] are carried out on the fabricated part to improve the mechanical 

performance.  



 

 

14 

 

 

Figure 1-1. Classification of the seven different AM process, image obtained from [5]. 
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Figure 1-2. (a) Generic steps of AM fabrication, from CAD part design to end-use 

product application, not including heat treatment, image obtained from [6]. 

PBF is the most promising AM technique for manufacturing small and complex 

metallic products. Within the PBF category, there are two main subcategories, 

differentiated by the form of energy beam in use- laser beam (PBF-LB), or electron beam 

(PBF-EB). PBF-EB (suitable only for metal printing) built parts exhibit lower oxidation 

in because PBF-EB takes place under a vacuum environment compared to the inert gas 

environment used for PBF-LB [7].  PBF-EB parts also exhibit lower residual stresses post-

built due to the higher chamber and pre-heat temperatures, compared to PBF-LB [8]. 

However, PBF-EB is not as popular as PBF-LB, due to the higher printer cost, and the 

reduced resolution (minimum feature size of 100 m compared to 40 m in PBF-LB) [9]. 

This thesis focuses on PBF-LB technology only, and the following PBF terms, if not 

specially specified, all refer to the PBF-LB fabrication type. 

 Current PBF research focuses on improving our understanding and control of the 

process for various metals or alloy products. PBF has been widely used to fabricate metal 

products including titanium alloy, cobalt chromium alloy, aluminium alloy, nickel-based 

superalloy, and a range of stainless steels [10]. This will enable the industrial manufacture 

of next-generation components with complex structures or with added functionality, that 

are not suitable for conventional fabrication techniques (casting, forging, machining). The 

main benefit of PBF includes high flexibility in structure design and the unique capability 
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of building complex lattices or detailed geometries for engineered materials [11]. PBF can 

achieve accurate 3D structure especially complex net-shape shapes, which is impossible 

or troublesome through conventional manufacturing approaches such as subtractive 

machining or casting etc [12]. PBF has enabled the development of new metal products 

and a new era of innovation, such as in orthopaedic design [13, 14]. PBF has also 

positively impacted industrial tooling availability and design, in particular for low-volume 

production, prototyping or rapid customised fabrication, reducing the dependency on 

costly traditional machined moulds and dies [6]. Material waste and energy consumption 

are the two issues when estimating environmental influence. PBF is generally assumed to 

be more environmentally sustainable in particular for manufacturing complete parts [15]. 

Recent years have witnessed explosive growth in the AM business due to the expiration 

of key hardware patents, recognition of the new product design freedoms, and the 

emergency of smart design tools, particularly in weight-sensitive applications such as 

topology optimization. The aerospace magnate Boeing company has adopted AM to 

produce over 200 different parts for 10 aircraft platforms [16]. In 2017, Boeing adopted 

AM to produce four titanium-alloy based parts for its model 787, and expect future 

production to extend AM to more than 1000 parts,  with an estimated saving of $3 million 

per airplane [17]. Another aircraft company Airbus replaced the machined aluminium 

alloy part with AM titanium part which brought a 30% weight reduction [18]. NASA 

engineers are also using PBF processes to fabricate rocket injector part for the next-

generation space launch engine, which has reduced the required injector part numbers 

from 155 to 2 only, together with the decreased production cycle from months to weeks 

[19].  

In order to further enable industry’s ability to capitalise on the advantages of PBF and 

move to large-scale production capability with industry-standard quality, the following 

research challenges and knowledge gaps need to be addressed  [11, 20]: 

1. The complex combination of process parameters, build conditions and post-built 

heat treatment leads to various possibilities of thermal history, leading to varying 

microstructure and ultimately inconsistent product mechanical properties. This 
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leads to difficulties in PBF parameter optimization and stable product quality 

control.  

2. Difficulty in characterizing the inevitable inhomogeneous PBF product 

performance. Directional microstructure induced from layer-by-layer built 

features and the associated anisotropic mechanical properties, which might be 

either beneficial or undesired, cannot be eliminated. 

3. Lack of an industry-ready predictive model for PBF quality prediction. Current 

quality monitoring sensors in PBF hardware track secondary parameters such as 

temperature history, and lack the responsive capability to determine the 

consequence of temperature variations on material properties. Rapid or in-situ 

quality predicting tools based on observed microstructure are urgently required. 

In recent years, major advances in microstructural imaging, including electron 

backscatter diffraction (EBSD) and synchrotron X-ray diffraction tomography technique, 

have enabled accurate visual characterisation of grain structures and their orientation [21, 

22]. In parallel, advances in computational modelling methodologies, including crystal 

plasticity finite element (CPFE) modelling, deep neural network (DNN) modelling, and 

phase-field modelling (PFM), have permitted advanced microstructural mechanical 

simulation and prediction [23, 24]. Prediction of microstructure and associated mechanical 

properties of AM materials is key to addressing current industry concerns with PBF.  

 

1.2  The Significance of Micromechanics 

It is well understood that the mechanical performance of metal in-service is largely 

dependent on its microstructural features such as phase composition, crystallographic 

orientations, grain morphology as well as grain size distribution [25]. The mechanical 

performance can be more explicitly quantified as the yield strength, ultimate strength, 

fatigue toughness, and hardness etc. In general, the strength of a material is inevitably 

linked to the failure behaviour. Micromechanics is the study of these interrelationships 

and is a branch of mechanics of materials, that can be dated back to Eshelby’s study [26]. 
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The benefit of a micromechanics study is to understand the macroscopic mechanical 

behaviour of polycrystalline materials or composites based on the characterisation of their 

microstructure, imperfections and inhomogeneities, by implementing the theories of 

elasticity and plasticity. Micromechanics includes the definition of micro-scale structures 

and the numerical analysis to predict a range of macroscopic mechanical behaviour such 

as elasticity, plasticity, fracture, and fatigue [27].  

Figure 1-3 illustrates the interdependency of the process-structure-property 

relationship. Process: PBF printer parameter and post-built heat treatment; Structure: 

microstructural grain morphology, grain size, phase, crystallographic orientations, and 

grain boundary; Property: mechanical strength, fatigue and fracture. The critical 

significance of characterisation of the interrelationships between the manufacturing 

process, microstructure, material properties and mechanical performance (structural 

integrity) [28, 29] has been highlighted by a recent aeroengine fan hub failure 

investigation [30, 31]. This report provides detailed proof of the serious risks associated 

with not considering these relationships, particularly for fatigue crack initiation in real 

applications, in this case, an aeroengine fan hub failure of Ti-6Al-4V alloy, not previously 

considered susceptible to facet fatigue.  

 

Figure 1-3. The process-structure-property interdependency in PBF study.  
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1.3  Micromechanics in Additive Manufacturing 

The structure-property relationship in PBF fabricated metals has become a significant 

area of research and is considered by some to be the main bottleneck for PBF exploitation 

in industry [32]. The complex layer-by-layer solidification process and intricate thermal 

history of metal PBF parts present complexities in predicting material microstructures in 

printed parts. Grain size, texture and grain morphology in metal AM structures are 

believed to be highly dependent on temperature profiles induced by AM processing 

variables. The variety of PBF process parameters, material effects and part size design all 

contribute to uncertainty when determining the resulting mechanical behaviour. The 

inhomogeneity and anisotropic feature of PBF product also require multi-directional 

material characterisation, for e.g., microstructural sectioning and mechanical tests along 

both parallel and perpendicular (compared to build direction) surfaces. The mechanical 

properties that are commonly shown to be different include but are not limited to tensile 

behaviour, creep and fatigue [33]. 

Titanium alloys can be classified into five groups according to the 𝛼 − 𝛽  phase 

compositions [34]. Ti-6Al-4V has received the most popularity in PBF industry 

considering its high strength-to-weight ratio. The commonly used PBF-LB precipitate 

hardening steels include 17-4PH SS, 15-5PH SS, and 440 SS and have good corrosion 

resistance due to higher Cr content compared to other austenite materials. Microstructure 

features such as morphology and crystallographic orientations, raise new requirement for 

the micromechanics modelling work, such as high-fidelity microstructural representation 

tool, as well as implementing anisotropic tensors when calculating the deformation. This 

is because PBF-generated microstructures are usually more complex than conventionally 

manufactured counterparts due to the layer-by-layer and continuous-spot mode of the 

melting and solidification. AM microstructure is largely determined by the laser spot size 

(usually between 50-100 mm), the spot moving (scan) speed, and the overall power level. 

The grain morphology resulting from PBF is often observed to have columnar or lamellar 

grain morphology and the measured grain size is finer than conventional method such as 

wrought or forging [35]. One example is PBF manufactured Ti-6Al-4V alloys, which 

display lamellar shape and dual-phase 𝛼 + 𝛽  morphologies within prior β-grains 
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compared to equiaxed 𝛼 + 𝛽 morphologies observed in wrought sample [36]. Another 

example, the microstructure of PBF as-built austenitic stainless steel such as 17-4PH, has 

been observed to have columnar grain morphologies with fine grain size with a columnar 

width of less than 8 m due to the rapid solidification process compared to an average 

diameter of 15 m in wrought samples [25, 37].  Another important difference is the 

crystallographic orientation distribution, also referred to as texture when groups of grain 

aggregates tend to elongate along similar direction [38]. In PBF produced alloy, the parent 

grains tend to elongate along the build direction, leading to textured fibres.   These 

neighbouring parent grains usually have large grain boundary angles. After the cooling 

process, the smaller transformed grain form within their parent grain, sharing very similar 

crystallographic orientations.  

Micromechanics of PBF metal alloys is a complex matter but is key to improving our 

understanding and exploitation of PBF. Micromechanics-based modelling tool offers a 

reliable approach to predict the macroscopic response of new materials while reducing the 

reliance on experimental testing. Assisted with the experimental method, microstructural-

based, especially high fidelity representative numerical simulations [39], are believed to 

offer reliable PBF process-microstructure- mechanical property linkage.   Challenges with 

real-time quality control and process-structure-property awareness, are also limiting the 

further uptake of PBF, and next-generation PBF technology development [40]. Such a 

platform, possibly developed based on big data micromechanical modelling, will enable 

us to directly investigate the thermal history of metal powders and the process design tool, 

thus integrating a software interface for data acquisition and micromechanics 

measurements. The PBF industry can benefit from such algorithms, to optimize, test, and 

validate a real-time and closed-loop control of PBF processes [41]. 

 

1.4  Motivations and Objectives 

There is a priority need to establish a robust understanding of the links between as-built 

PBF microstructure and mechanical properties, and the effect post-built heat treatments 

may have on this relationship. The objective of the thesis is to advance our understanding 
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of the process-structure-property relationship for AM metals through microscopy image-

based microstructural-sensitive micromechanical modelling and solid-state kinetic 

microstructural evolution. Note that although the effect of solidification on phase 

transformation and microstructure, this thesis does not address the solidification process. 

Among these applications, three popular AM alloys are presented in this thesis as 

examples, including single phase FCC crystallographic lattice biomedical graded L-605 

CoCr, BCC + FCC 17-4PH stainless steel, and HCP + BCC Ti-6Al-4V alloys, thus the 

introduced methodology can be further extended to any type of alloy database.  

To summarise, this PhD thesis aims to: 

1. Develop and demonstrate a tool for automatically converting EBSD data into high-

fidelity CPFE models, including accurate representation of grain morphology and 

orientation, for improved mechanical property prediction. 

2. Develop physically based strain gradient CPFE to investigate microstructural-

sensitive effects including built gradient and heat treatment of PBF Ti-6Al-4V. 

3. Introduce a coupled computational framework that integrates solid-state grain 

growth phase-field modelling (PFM) with CPFE modelling, to investigate the 

process-structure-property relationships for post-processing heat treatment of AM 

Ti-6Al-4V alloy. 

4. Develop a deep learning model which instantly estimates the output property 

associated with a given input structure of multi-phase PBF stainless steel.   

  

1.5  Outline of Thesis  

Chapter 2 provides the literature review of the key subjects in this thesis. This chapter 

first starts with the experimental characterisation of the process-structure-property 

interdependency, by including the effect of printing and post-built treatment process and 

parameters on the resulting microstructure and mechanical performance. Then the 

developed computational models applied to such process-structure-property investigation 
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are introduced and potential linkage between the models is presented. The equations and 

theory implemented in this thesis for the relative computational modelling, including 

crystal plasticity modelling, phase-field method, and deep learning, are also detailed. 

Chapter 3 details the experimental work used in microstructural characterisation and PBF 

testing approaches, including (1) PBF part build and post-built heat treatment; (2) 

microscopy sample preparation, EBSD characterisation, microstructure post-processing 

and analysis methodology, and micro-CT quality check; (3) tensile and low cyclic fatigue 

mechanical testing.  

Chapter 4 introduces a detailed methodology for automatically converting EBSD data 

into high-fidelity CPFE models, including an accurate representation of grain morphology 

and orientation. This EBSD-CPFE methodology is applied in the prediction of grain size 

effects for cyclic plasticity and fatigue crack initiation in biomedical-grade CoCr alloy for 

fatigue life prediction, compared with the more commonly used Voronoi tessellation 

method.  

Chapter 5 introduces a physically based CPFE model to characterize the lath size and 

gradient effects for PBF Ti-6Al-4V. The improved CPFE model implements a length-

scale effect for characterizing the size effect without the need to modify the input 

constitutive parameters. This more advanced CPFE model captures the dependence of the 

mechanical responses on alpha phase lath size by investigating the geometrically 

necessary dislocation (GND) density distribution.  

Chapter 6 adds in a quantitative PFM to simulate grain growth during post-processing 

heat treatment such as annealing and hot isostatic pressing, which are necessary to 

homogenize microstructure and eliminate initial defects. The proposed PFM takes into 

account both temperature-dependent grain boundary mobility and thermal driving force. 

The evolved microstructure from the PFM prediction is firstly compared to measurements 

from EBSD analysis and then imported into a CPFE modelling tool for prediction of the 

mechanical performance. This work utilizes the EBSD-based model generating tool 

introduced in Chapter 4, and the size-sensitive strain gradient model developed in Chapter 

5.  
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Chapter 7 introduces an interdisciplinary coupling of the CPFE model with a machine 

learning approach employed in computer science, to produce an industry-ready strength 

prediction tool. This work is motivated by the heavy computational cost in CPFE analyses 

and aims to present a more user-friendly and efficient process-structure-property 

predicting tool with satisfying predicting accuracy. This work utilizes a large database of 

input-output samples out of CPFE modelling to produce a trained DNN model which 

instantly estimates the output property associated with a given input structure of the 

multiple-phases PBF stainless steels.  

Chapter 8 summarizes the conclusions of this PhD project. Discussions on the key 

findings and relative illustrations are presented. Based on the findings and outcomes of 

the thesis, potential future works are suggested to further develop the capability of the 

developed multi-physics modelling framework, for more advanced and practical 

applications in PBF research and industry.  
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2 Literature review 

2.1 PBF-LB process parameters 

The laser beam, along the scanning direction, forms single tracks. The morphology of 

these tracks is one of the significant features, which can be assessed by the following 

definitions: (i) good quality and continuous; (ii) transitional tracks; (iii) balling effect [42] 

(showing particle chains due to non-optimal parameters)  and (iv) humping effect [43] (a 

surface defect observing swelling zone). Other single-track defects also include cracks 

and droplets. Figure 2-1 shows the typical geometry of the melting pool. The geometry of 

the track is usually described by its penetration depth, width, height, and contact angle 

and width of the remelted area.   

 

Figure 2-1. Schematic of the cross-section of the sintered PBF track [44]. 

 

The geometry of the cross-section (width and depth) of the track depends on the laser 

power density and irradiation time [45], shown in Figure 2-2. The track geometry is 

determined by the spot size and layer thickness [46]. The hatch space and the scanning 

strategy affect the morphology of the PBF layer.  
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Figure 2-2. Effect of PBF parameters (laser power density and scan speed) on the sintered 

powder bed track (Adapted from Ref [45]). 

 

Many researchers adopt the idea of “integral” parameter to optimize the PBF process, 

e.g., the volumetric energy density (VED) [47]: 

 𝑉𝐸𝐷 =
𝑃

𝑉ℎ𝑡𝑙
 (2-1) 

where P is laser power, 𝑉 is laser scanning speed, ℎ is the hatch spacing distance, and 𝑡𝑙 

is the layer thickness.  

Some also consider laser spot diameter [48] when estimating this VED value. It is not 

possible to quantify the accurate energy density using the concept of VED. The same 

integral energy density can be obtained, e.g., by increasing the scanning speed with a 

thinner layer, but possibly resulting in a different property. Thus, VED is usually used as 

a metric for comparing PBF processing effects rather than quantification. The direct 

influence of PBF processing parameters on the product includes: (i) quality such as defects 

and porosity, and (ii) solidified microstructure (discussed in section 2.3.1).  Figure 2-3 
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shows the relationship between the processing parameters and the defects, for PBF-LB 

Ti-6Al-4V alloy built with EOS M290[49]. A lack of fusion with irregular voids was 

observed when the power and scan speed are low. Porosity also increased with combined 

high laser power and scan speed, due to the beading-up conditions. 

 

Figure 2-3. PBF processing parameter induced defects and porosity contour map [49]. 

 

2.2 Post-built heat treatment 

Post-built heat treatments (HT) are important to improve the PBF-LB product 

properties, compared to the as-built conditions [50]. A HT process is also necessary to 

minimise the residual stress artefacts from PBF-LB product [51]. Meanwhile, HT 

homogenises the localized or graded microstructure observed in PBF parts, leading to 

uniform and isotropic mechanical performance. The suitable HT process adopted for PBF-

LB materials includes stress relief annealing, solution annealing [52], aging [53], and hot 

isostatic pressing (HIP) [54]. HIP is a proven post-processing HT approach for improving 

the ductility and fatigue performance, by reducing the voids using uniform pressure on the 

part surface [55].    

The temperature gradient induced along the built direction (BD) during the PBF 

process leads to notable directional microstructural phenomena such as grain size 

irregularity observed within the melting pool interfaces and along the built direction. 

Solution annealing at 1150 C reduces the micro-segregation of PBF-LB 17-4PH stainless 

steel (SS) to homogenize the solute distribution [56].  
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Besides homogenizing the microstructure and reducing potential defects, HT also 

offers the opportunity to tailor the desired mechanical property. Available HT parameters 

including temperature, HT time, heating rate, and cooling rate, as well as the HT types 

have been shown to affect the microstructure and the corresponding mechanical 

properties. After HT, the microstructure removed the Laves phase which has a detrimental 

influence on the material property, with the Laves phase solved from coarse to discrete 

particles for the PBF-LB Inconel 718 alloy [51]. A novel HIP process was developed to 

maintain the strength behaviour of the Ti-6Al-4V alloy compared to the as-built condition. 

HIP treatment was found to modify the lath aspect ratio, but also get rid of internal porosity 

and remove the microstructural heterogeneities [54]. Industrial recommended post-built 

HT process was tested for a stress relief annealing process for AM 17-4PH stainless steel 

and it showed little influence on the directional dendrite grain morphology (grows along 

favourable crystallographic direction along the laser source) but altered the phase fraction 

of BCC/martensite volume fraction. This phase change led to significantly increased 

Vickers micro-hardness (from 258 to 312 VHN) [56]. Through a comparison between 

solution HT and aging at different temperatures, post-built HT has proved to influence the 

hardness and recrystallization microstructure of the PBF fabricated Al alloy [57]. An 

investigation on Ti-6Al-4V alloy found that after HIP, the microstructure evolved to dual 

𝛼 − 𝛽 lamellar phase and the mechanical properties was altered to have a lower strength, 

but significantly improved ductility. After HT, the Ti-6Al-4V samples also showed 

improved fatigue performance under dynamically loaded conditions [58].  

Another benefit of HT is to alleviate residual stress. Steep residual stress gradient is 

caused by the layer-by-layer feature, together with a high-temperature gradient and rapid 

cooling speed of PBF-LB process (typically 103 − 108  °C/s [59]), leading to part 

distortion in the as-built product. Typical residual stress profiles include high tensile stress 

observed in the surface zone and the magnitude is influenced by the substrate [60]. Tensile 

residual stresses were observed localized at the edges alongside the BD, with a higher 

magnitude 150% - 160% compared to the nominal yield strength of the 316L SS [61]. 

Compressive residual stress has also been observed in the as-built PBF-LB Inconel 718 

(IN718) alloy, which mostly appeared in the longitude cross-section surface along the BD, 

due to the inhomogeneity microstructure of the part. The measured compressive residual 
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stress using the contour method had a peak value of 378.4 MPa, about 1/3 of the yield 

strength,  which decreased to 140.6 MPa measured in the HT sample [51].  

Post-built HT can reduce defects such as voids and lack of fusion. Porosity is one 

challenge for PBF-LB fabricated products, including pores caused by lack of fusion [62], 

keyhole pores caused by laser spot movement [63], and gas pores caused by entrapped 

gases [64]. Post-built HT is potentially effective in reducing the near-surface porosity 

defects.  Through X-ray computed tomographic examination, it was found that the Ti-

6Al-4V samples show fewer porosity values (from 2.4% to 1.2%) due to high temperature 

and uniform pressure, after HIP treatment [65]. Another research [66] using the X-ray 

computed tomography (XCT) as the measuring tool has quantified the reduction of the 

defects: (i) Lack of fusion from 0.35% to 0.0039%; (ii) keyhole pore fraction from 0.298% 

to 0.0007%; and (iii) contour pores from 0.911% to 0.643%, after HIP treatment for the 

PBF-LB Ti-6Al-4V alloys.  

 

2.3 Microstructure of PBF-LB metals 

2.3.1 Effect of PBF-LB process on solidified microstructure. 

The PBF-LB fabricated metallic alloys have different microstructure compared to their 

conventionally manufactured counterparts, mainly due to the layer-by-layer deposition 

and the incremental formation manner during the PBF-LB process, and other factors such 

as temperature gradient and repeating thermal cycles. The microstructure is determined 

by this thermal gradient within the melt pool [32]. Thermal gradient is described as the 

ratio of the temperature difference along the normal direction to the solid-liquid interface 

[67]. One microstructural feature in PBF-LB cooling process is phase transformation, 

where sub grains (grains having low-angle grain boundary) nucleate from the parent phase 

(prior-𝛽 substrate in Ti-6Al-4V) and inherent similar crystallographic orientations.  
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Figure 2-4．SEM images showing the columnar grain and dendritic structure in PBF titanium 

alloy [68]. 

 

Another unique feature compared to casting or machining, is the widely observed 

cellular or dendritic columnar grain morphologies, as shown in Figure 2-4 [68]. Rapid 

cooling speed [59] (typically 103 − 108 °C/s) during PBF-LB solidification causes rapid 

non-diffusion transformation and crystallization, also referred to as growth rate [69]. Such 

high growth rate in the melting pool generates solute-rich boundary layers along the solid-

liquid interface and causes the material to reach the supercooling condition (Cooling the 

liquid below solidified point). Crystallization becomes unstable under this condition, thus 

forming cellular/lamellar (also referred to as basketweave) grain morphology, shown in 

Figure 2-5. The above two unique microstructural features have been widely observed in 

a range of PBF metallic alloys, including biomedical graded CoCr alloys [70-72],  Ti-6Al-

4V alloys [20, 73], and 17-4PH stainless steels [74, 75]. Figure 2-6 shows a comparison 

between PBF-LB fabricated resulting microstructure and their conventionally 

manufactured samples such as wrought products. The near- 𝛼  Ti-6Al-4V exposed to the 

fast cooling speed in PBF-LB process leads to the generation of needle shape and fine size 

𝛼′ lath transformed from 𝛽. 
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Figure 2-5. Basket-weave microstructure in a PBF-LB Ti-6Al-4V EBSD image [76].   

 

Figure 2-6. Reconstructed 3D SEM grain image comparison: (a) PBF Ti-6Al-4V[77], (b) 

wrought Ti-6Al-4V [78], (c) PBF 17-4PH SS [79], (d) wrought 17-4PH SS [79]. 
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Increasing the energy density (higher VED) means increased solidification and cooling 

rate, and smaller thermal gradient. Laths width, or the dendritic arm spacing are used to 

measure the size of PBF lamellar structure. The PBF-LB Ti-Al alloy was observed a 

cellular structure with the dendritic arm spacing ranging from 0.165 to 1.765 m using a 

laser power of 150 W and a scanning speed of 200 mm/s. The solidified microstructure 

was found to be more sensitive to the cooling rate rather than the thermal gradient, and 

finer laths were observed at the centre of melt pool due to the higher cooling speed [80]. 

The prior-𝛽 grain size in Ti-6Al-4V increased when a higher energy density was applied. 

As the VED increases, the grain morphology transits from columnar to equiaxed due to 

the higher driving force induced from the constitutional supercooling condition [49].  The 

grain diameter increased from 101 μm to 224 μm with the laser power increasing from 

127.5 W to 161.5 W for 17-4PH SS [81]. 

 

2.3.2 PBF-LB strategies on crystallographic texture. 

The PBF-LB strategies mainly include built direction (BD), scanning strategies, 

powder bed preheating, and support type. The PBF-LB solidified grain usually forms 

alongside the BD, resulting in an anisotropic microstructure with strong texture. The 

epitaxial nucleation feature during the crystallization and solidification process causes the 

sub-grains to have similar crystallographic orientation compared to the parent phase grain, 

which is largely determined by the BD. In some dual-phase alloys such as Ti-6Al-4V and 

17-4PH alloy, the martensitic transformation occurs during cooling. The martensite phase 

can be related to its parent phase via Burgers vector relationship and the reconstructed 

parent grain map can be used to track the texture during PBF [82]. This dominant 

crystallographic orientation is referred to as texture. One popular tool for calculating the 

texture direction and strength is a probe plugin of a scanning electron microscope called 

electron backscatter diffraction (EBSD). Figure 2-7 shows the EBSD measured grain 

morphology of an PBF-LB 316L stainless steel showing strong texture along its BD and 

obvious anisotropic microstructure compared to the longitude cross-section plane. 

Dendritic arm spacing is a quantitative microstructural parameter determining local 

solidification rate [83]. Dendritic arm spacing also affects tensile strength, wear and 
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fatigue behaviour [84]. The microsegregation is the composition variation across cells or 

dendrites in a solidified alloy [85, 86]. 

 

Figure 2-7. The 3D EBSD image of PBF-LB 316L stainless steel showing the grain morphology, 

orientation by inverse pole figure, and the calculated grain size distribution [87]. 

 

The crystallographic texture can be controlled or modified through suitable processing 

parameters or post-built processing. Niendorf et.al. [88] found that the 316L SS can 

maintain a strong <100> texture along the BD, given that a laser power of 1000 W is 

adopted.  Texture was observed across the successive deposited layers in the PBF Ti-6Al-

4V alloy [89]. A similar conclusion was addressed for Inconel 718 with a laser power 

higher than 400W [90].  Scanning strategies also affect the overall crystallographic 

texture, as shown in Figure 2-8. The hexagonal scanning strategy shows a <100> texture 

parallel to BD, while the remelting strategy generates multiple texture peaks. Also, a 

smaller grain size is observed with lower laser power [81]. Undesired texture can be 

reduced by post-built HT. E.g., the <100> texture observed in as-built 17-4PH steel 

disappeared after the solution HT [37]. 
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Figure 2-8.IPF EBSD grain maps taken from central regions of 17-4PH SS with different 

scanning strategies [81].  
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2.3.3 Effect of post-built heat treatment on the microstructure of PBF-LB alloys. 

It is recommended that the HT be performed immediately after completion of the PBF 

build and before the parts are cut from the plate, in order to improve the homogenize the 

structure and improve the property. CoCr and 𝛽-Ti display softening and grain growth 

during HT at high temperatures [91]. HT of PBF-LB Ti-6Al-4V alloy usually results in 

more uniform 𝛼 − 𝛽  microstructure and disappearance of dislocation and twining 

structures [34]. In-situ high temperature XRD [92] was used to analyse and quantify the 

phase transition during HT for PBF-LB Ti-6Al-4V. The retained 𝛽 phase was detected 

when the HT temperature was higher than 500 °C, while there was no 𝛼 phase once the 

temperature reaching 1200 °C. The HT effect on grain size evolution is the focus of this 

thesis, and more HT induced grain growth applications are discussed in Chapter 5 and 6. 

 

2.4 Surface roughness 

The layer-by-layer principle of the PBF process inherently causes a rougher surface 

than other manufacturing methods. SEM images shown in Figure 2-9 gives a comparison 

between the surface height map of plate and cylinder samples using the same printing 

parameters. The surface roughness of PBF-LB products is usually in micrometre scale and 

can be controlled by post-built surface processing techniques. 60% higher surface 

roughness was observed in a cylindrical part compared to flat ones in 17-4PH SS [93]. 

Roughness average (Ra) of a surface was measured highest, 8.38 m for a 17-4PH SS 

sample, which decreased to 0.015 m after polishing and machining, compared to 0.01 

m in the wrought sample [94]. Besides, post-built surface processing is sometimes 

challenging, for products with complex shapes. Such surface roughness cannot be 

improved through HT or HIP without milling [95].  The main factors influencing surface 

roughness include the size of powder particles, ejection of particles, the morphology of 

the melting pool track, stair-stepping effect, and layer thickness [96, 97].   



 

 

35 

 

 

Figure 2-9. Surface height distribution map for plate tensile sample (left) and cylindrical sample 

(right) respectively of PBF-LB manufactured SS 17-4PH alloy [93]. 

 

The fatigue performance of the PBF sample is highly sensitive to surface quality and 

defects, thus requiring careful consideration of post-built quality improvement for low 

cyclic fatigue test, especially at a relatively higher strain range. The roughness associated 

with PBF marts may be of benefit in certain medical device applications, for example, 

cementless orthopaedic implants where the ability for bone tissue to attach to the implant 

is increased with increased surface roughness. Another significant impact of surface 

roughness is the ability to withstand crack initiation at the part surface under fatigue 

loading, and more details are covered in section 2.5.2.  Machined or surface etched Ti-

6Al-4V showed the increased fatigue life from 2 × 104 to 8 × 105 in stress-controlled 

tests after surface machining [98]  

 

2.5 Mechanical performance 

2.5.1 Tensile behaviour of PBF-LB components. 

PBF-LB manufactured stainless steels such as 17-4PH and P91, are usually dominated 

by martensite with retained austenite phase [56]. 8% to 21% retained austenite were 
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reported in the previous PBF-LB 17-4PH SS research, with the reported yield stress (YS) 

ranging from 570 to 660 MPa, and a UTS ranging from 900 to 1250 MPa  [25, 79, 99]. 

The PBF lamellar microstructure morphology leads to higher strength and hardness but 

lower ductility in the as-built Ti-Al-4V alloy. The as-built parts have reported UTS values 

of between 1035 and 1407 MPa compared to the UTS values from 870 to 995 MPa for 

wrought fabricated parts [100]. 17-4PH SS can have higher tensile strength after HT, due 

to the precipitation of nanoparticles in martensite. However, this effect was largely 

reduced given the retained volume fraction of austenite is higher [101].  HT on Ti-6Al-

4V usually aims at trading some strength for better ductility. PBF-LB Ti-6242 [102], after 

annealing at 850°C for 3 hours, followed by air cooling, the UTS has dropped from 1437 

MPa to 1185 MPa, however, its strain at failure doubles, from 5.7% to 9.3%.  

 

2.5.2 Fatigue behaviour of PBF-LB components 

A common concern with PBF-LB components is the fatigue behaviour, due to the 

existence of defects such as voids, surface roughness, and the existence of residual stresses. 

This shortcoming is especially notable for the as-built parts without a suitable post-built 

treatment processing and has prevented wider adoption of AM application by industry 

[103]. The fatigue tolerance estimation, consequently, needs to consider microstructure, 

defects, and surface condition. As-built PBF-LB Ti-6Al-4V has poor fatigue performance 

due to the dominant volume fraction of martensite phase and as a result, HT is 

recommended to eliminate this phase [104]. Besides microstructure, fatigue cracks are 

believed to initiate from surface roughness and voids close to the surface [105].  
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Figure 2-10. Experimental design for studying the crystallographic texture effect on mechanical 

response caused by three different built directions. 

 

Anisotropic microstructure induced fatigue performance has been studied, including 

LCF [106, 107] and HCF tests [108]. The vertical direction build sample exhibits fewer 

crack propagation resistance due to the weaker bonding interfaces between the layers. 

Such anisotropic mechanical response features caused by the directional AM process have 

been studied with samples varying in printing orientation. Figure 2-10 shows a typical 

design trial with horizontal, 45 degrees, and vertical built samples respectively. Their 

crystallographic texture effect on the different behaviour in stress-strain curves [106], 

fatigue crack initiation [109], fatigue crack propagation [107, 110], as well as high cyclic 

fatigue performance, have been quantified and also explained with microstructural 

characterisation results. Agius et al, [106] stopped the fatigue tests with strain amplitudes 

ranging from ±1.0% to ±2.0% reaching 200 cycles, which obtained sufficient testing 

data for plotting the hysteresis loops but not failure life. Table 2-1 shows the main results 

obtained from the previous experimental research on the mechanical behaviour of three 

different orientated AM Ti-6Al-4V samples. The crack propagation data [107] was 

obtained through a load-controlled fatigue test with R-ratio of 0.1 and the crack 
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propagation rate was fitted using the NASGRO equation [111]. High cyclic fatigue test 

[108] was carried out using a stress ratio of 0 up to 2 × 106 cycles. 

Table 2-1. The mechanical behaviour of Ti-6Al-4V samples varying in built directions. 

Sample Elastic 

modulus 

(GPa) 

Yield 

stress 

(MPa) 

Ultimate 

stress 

(MPa) 

 ∆𝐾th ∆𝐾Ic  HCF 

crack 

initiation 

HCF 

failure 

life 

Horizontal 95.2 1000 1182 14.3 55  2 × 104 5 × 105 

45 degrees 100.0 1100 1254 23.4 60  - - 

Vertical 103.7 1037 1181 11.1 55  8 × 103 1 × 105 

 

2.6 Process monitoring and non-destructive testing 

Efforts in PBF process and materials research and industrial quality control would 

benefit from greater availability of detailed high resolution and fast-rate sensor data from 

within the manufacturing process. The currently implemented sensors include in-situ 

process monitoring systems and thermal imaging cameras. Non-destructive tests (NDT) 

is a group of quality check techniques that inspects parts for defects without damaging the 

part.  Methods for in-situ process sensing and monitoring and in-situ NDT are detailed in 

a review [112].  

Current process monitoring systems have three main challenges:  

(i) Lack of automatic operation tuning tool based on the feedback from monitors 

[113]. The variation nature of PBF makes the calibration and tuning algorithms 

development a difficult task. The training dataset for such an algorithm needs 

to be representative while the physical phenomenon within each layer might 

differ, adding complexity to the process assessment.   

(ii) The efficiency of dealing with big data monitoring information. PBF 

monitoring data involves multiple formats, such as images, thermal signals, and 

video, which easily occupy hundreds of gigabytes of storage [114].   
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(iii) Instant data analysis and synchronization [115]. The monitoring sensor needs 

to be rapidly located at the target location, or even use images to construct 3D 

data. The sensor also needs to be synchronized with the layer's behaviour.  

 

2.7 PBF modelling framework  

2.7.1 General 

Based on the modelling scale, the computational models addressing the structure or 

property calculation can be classified into four main types [116], as shown in Figure 2-

11: (1) Quantum simulations (not discussed in this thesis), (2) Molecular dynamics (MD) 

simulation, (3) micro-meso scale simulation such as crystal plasticity finite element 

(CPFE), phase-field method (PFM), Monte Carlo (MC), and Cellular automata (CA), (4) 

macroscale modelling, also known as continuum simulations. Models can interact to 

establish a multiscale modelling framework, e.g., homogenize the microscale CPFE 

models to represent the macroscopic behaviour. 

PBF-LB is a multi-scale and multi-physics process. During PBF-LB the micro-scale 

powders interact with each other within each layer of the powder bed, requiring particle 

flow models to capture the physical behaviour of the powder [117, 118]. These in-situ 

PBF-LB process are not the focus of this thesis. After the laser beam is activated, heat 

transfer, particle sintering, melt pool dynamics, and solidification become dominant 

processes. This work focuses on the solidified microstructure from as-built parts and 

evolved structure after post-built heat because it directly determines the mechanical 

properties of the PBF-LB alloys. Figure 2-12 illustrates an example modelling framework 

integrating thermal-based FE predicting thermal history, phase-field method predicting 

solidified microstructure based on temperature evolution, and crystal plasticity finite 

element (CPFE) model predicting mechanical strength based on microstructure, to 

characterize the process-structure-property interdependent relationship for AM Ti-6Al-

4V alloys. This section discusses the developed computational models to investigate the 

process-structure-property concerns in PBF-LB fabrication.    
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Figure 2-11. Micromechanics models at ranges of modelling scale [118, 119], and the idea of 

homogenizing micro-scale models for representing macroscopic behaviour of the test profile. 
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Figure 2-12. Integrated modelling framework, coupling  (a) thermal FE model [120], (b) phase-

field method for solidified microstructure under different cooling speed [121], and (c) CPFE 

modelling predicting mechanical response[122], to investigate the process-structure-property 

independency. 
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2.7.2 Representative volume element 

The heterogeneous material property depends on the microstructural features. 

Micromechanics, different to the conventional continuum macroscopic modelling, 

considers the features inside the structure, and requires the concept of a representative 

volume element (RVE) as a repeating unit cell, to represent the material as a whole part 

[123]. An RVE is the minimum volume which contains sufficient statistical 

microstructural data to account for behaviour, and further increasing the volume should 

not affect the mechanisms [124]. 

Numerous artificial methods have been adopted for generating idealised polycrystalline 

RVE models, such as homogenised regular shape microstructures [125, 126], Voronoi 

tessellation (VT) based 2D maps consisting of irregular (but idealised) grain morphologies 

defined by straight grain boundaries [127] and the 3D polycrystalline aggregate cube [128, 

129] methods. These methods have some important limitations:  

 The polyhedral-shaped structures typically generated by VT do not represent the 

real measured morphology of grains, which has been shown to influence the 

evolution of intra-granular misorientation and inter-grain deformation [130-132].  

 VT generated models fail to include accurate orientation information for grain-

neighbourhood effects, especially for materials with strong texture [133]. 

 VT algorithms produce unique models from each run, due to the use of random 

nucleation generators within the model generation codes. This produces an 

inherent scatter in modelling results which, while sometimes useful, cannot be 

eliminated [134]. 

In recent years, researchers have realised the significant influence of phase composition 

and grain morphology on mechanical behaviour [135]. Of particular interest to the broader 

context of the present work are complex microstructure morphologies like those of 

Ti6Al4V alloy [20]. The traditional VT method is not sufficient to represent such multi-

phase lamellar or bimodal structures [20-22]. Efforts to address these shortcomings 

include the open source software Neper [22], which uses an extension function, based on 

the traditional VT rule, to provide an absolute mean grain size and standard deviation, 

using the lognormal fit, to achieve a wider range of grain size distribution and higher grain 



 

 

43 

 

sphericities compared with the simplified polyhedral-shaped standard VT method. This 

improved extension is also capable of providing a sub-tessellation meshing option, based 

on the centre of the grain mass, to imitate realistic morphology and grain boundary shape 

[23]. The Dunne group introduced a 27-grain polycrystal model to investigate elastic 

anisotropic in cold-dwell fatigue of a titanium alloy [31]. This 2D model used 5- to 8- 

(straight) sided polygons to represent the grain morphology and random orientations were 

assigned to each grain. The group also developed another sketching method to generate a 

real image-based model integrated with the extended finite element (xFEM) method to 

model slip-dominated crack growth through polyhedral line grain boundary drawing with 

2D surface crack assumption [136]. Real microstructural morphologies (grain shape and 

size), measured using scanning electronic microscopy [137, 138] or diffraction contrast 

tomography [139, 140], has been utilised in image-based CPFE models to enhance 

accuracy and demonstrate the errors associated with artificially-generated microstructure 

models. However, details of the model generation process have been limited and its 

application to fatigue crack initiation has not previously been addressed.   

A solution to include both accurate morphology and texture in CPFE models is through 

direct and complete EBSD conversion [141, 142]. Bronkhorst et al. [143] applied EBSD-

based structural reconstruction with a single-crystal theory model for the tensile behaviour 

of wrought and additively manufactured stainless steel to investigate the effects of the 

manufacturing-induced differences in texture. Kapoor and co-workers [144, 145] applied 

a similar method to study strain localization and residual stress of lamellar Ti6Al4V alloy. 

Although Euler angle data available from EBSD measurements has been used to define 

grain orientations in CPFE models [146-149], the comparative and quantitative benefits 

vis-à-vis artificially-generated (e.g. VT) models for FCI has not previously been 

addressed. Furthermore, a systematic exposition of this approach, addressing imaging 

artefact issues such as imprecise or incomplete Kikuchi band indexing and pattern 

matching [150] and grain reconstruction strategy, has not previously been presented. 
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2.7.3 Modelling of PBF process and heat transfer 

Laser power, scan speed, and hatch spacing are the three most important parameters 

during this process [2]. To model the PBF-LB powder material, variables including heat 

capacity, thermal conductivity and material density are considered.  

The core theory to study heat transfer is defined by solving a time-dependant fluid 

energy problem [151] taking into account physical variables such as the flow velocity 𝑢, 

temperature 𝑇, the energy loss 𝑄and the fluid density 𝜌. 

Based on the background above, finite element methods [120] have been developed to 

predict the heat conduction, thermal distribution, and residual stress during PBF-LB 

process, with particular attention to the effect of scanning strategies [152]. Discrete 

element methods were also developed for quantifying the effect of process parameters, for 

example, laser power, scanning speed and hatch space, on the powder bed temperature 

field. Models are usually validated by comparing the predicted powder flow and heat 

conduction, with the experimentally measured temperature distribution in the powder bed.  

Laser hatch spacing, while not hugely affecting the temperature field on the powder bed, 

causes severe microstructural inhomogeneity and discontinuity[153].  

 

2.7.4 Modelling of microstructural evolution during PBF process. 

2.7.4.1 Kinetic Monte Carlo (kMC) modelling 

Kinetic Monte Carlo (kMC) is a mesoscale modelling approach for predicting the 

solidified grain microstructure, including the grain morphology size, and the densities. 

KMC can describe the sintering mechanism which cannot be explained through finite 

element modelling. Besides, it is also capable of modelling high density systems which is 

the limitation of discrete element method. The kMC requires the construction of a 

representative volume element (RVE) to initialize the microstructure which can be 

reconstructed from real microstructure image using micro-CT pr X-ray microtomography 

facilities [154].  The popular kMC package, open-source suite SPPARKS, has been 

adopted to analyse the dependency between the grain morphology and the AM parameters, 



 

 

45 

 

such as the lathes size and their preferential growth orientations, for Ti-6Al-4V alloys 

[155].   

 

2.7.4.2 Cellular Automata (CA) modelling 

Cellular automata (CA), similar to kMC, is another mesoscale modelling approach and 

also requires RVE to initialize the microstructure. The simulation domain is meshed into 

cells containing variables that represent the properties necessary for predicting the volume 

evolution of itself and the neighbouring cells, and these predictions sum up to the final 

predicted solidified microstructure. CA was first introduced by Gandin et al. [156]. CA 

applications in AM usually contain two steps, melting and solidifications, simulated by 

solid-liquid cell definition and the boundary nucleation from the fusion lines.  

CA has been integrated with computational fluid dynamics (CFD) models to predict 

the solidified microstructure of the PBF fabricated 316L stainless steel [157]. The coupled 

CFD-CA model predicted more fraction of columnar morphology grains and finer grain 

size when increasing the laser scanning speed. The PBF solidified microstructure 

morphology was also predicted using a 3D CA model focusing on dendritic grain growth 

and validated against the microstructural characterisation of PBF 316L [157] and Inconel 

718 [158] samples. Another common approach is the coupled CA and finite element 

approach referred to as CA-FE, which was improved to evaluate the solidified texture for 

PBF 316L [159], and Ti34Nb alloys [160].  

 

2.7.4.3 Molecular Dynamics (MD) modelling  

MD modelling method can be integrated with other modelling approaches to obtain 

necessary variables such as temperature to simulate the evolution of energy difference to 

predict the solid/liquid or phase transition evolution [161]. Another integrated modelling 

framework coupled the discrete element method with the MD model to predict the 

evolution of temperature and microstructure of the Ti-6Al-4V alloys, by modelling the 

interaction between the non-spherical powder grains [162]. The capabilities include the 
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prediction of the effect of powder morphology and PBF parameters on solidified 

microstructure features such as phase composition and grain morphology.   

 

2.7.4.4 Phase-field method (PFM) modelling 

The PFM predicts the microstructural evolution using a group of field variable across 

the interfacial, and the evolution of the field variables are determined by Allen-Cahn 

relaxation (time-dependent Ginzburg-Landau) equation [24]. PFM, similar to kMC and 

CA, predicts the microstructural evolution at the mesoscale. One significant limitation of 

the CA numerical method is the possibility of introducing artificial anisotropy in the 

growth kinetics due to the Cartesian mesh (square grid) [163].  kMC  can have difficulty 

predicting the three-dimensional microstructural evolution [164]. Furthermore, PFM can 

afford a better resolution around the grain boundary and triple junction areas, around the 

joints of at least three neighbouring grains.  PFM can better predict the grain boundary 

segregation. MD modelling is computationally expensive and not suitable for mesoscale 

or bigger timeframe modelling work.  

Current PFM approaches mainly cover three different processes: (i) solidification; (ii) 

grain growth [165, 166].; (iii) phase transformation. Figure 2-13 shows the typical 

applications of the PFM for PBF material modelling[167].  

A PFM model studying solidification of Ti-6Al-4V has captured the effect of 

processing parameters on dendrite grain morphology, with ~15% reduction in the dendrite 

arm spacing size when increasing scanning speed from 200 to 800 mm/s or increasing the 

temperature gradient from 2000 to 3000 K/mm [168]. Another work by Wang et al. [169] 

integrated PFM with the finite element method and applied such multi-scale model to 

study the morphology of Laves phase particles. This model was used to predict hot 

cracking resistance property at the regions where neighbouring grains share bigger 

misorientation angles. An integrated CFD-PFM model was developed for predicting 

solidified microstructure for PBF Inconel 718. CFD predicted the printing parameter-

based track characteristics using a numerical volume-of-fluid based method. These 

characteristics were then imported into the PFM as variables to predict grain 
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microstructure including segregation of phase elements in this binary alloy, dendrite width 

as well as dendrite orientation [83].  PFM has been used and developed for predicting 

solid state grain growth behaviour of the aluminium alloys [170] in PBF and martensitic 

steel [171]. Specific advances in PFM modelling include complexity was added for 

developing the capability of predicting abnormal grain growth by distinguishing grain 

boundary types [172], and grain growth in porous polycrystalline materials[173].  

 

Figure 2-13. Schematic showing the widely-adopted applications of PFM approach, in predicting 

(a) the effect of laser power and scanning pathways on the columnar grain solidification 

evolution prediction in the anisotropic temperature field [135]; (b) Example of the MARMOT 

model predicting the grain growth behaviour of the reconstructed 1620-grain polycrystalline 

aggregates, whose grain size increases by a factor of  2.7 after 85 simulating steps [133]; (c) 

PFM predicted weave-basket morphology alpha lath transformed from their parent phase, prior 

beta grains, at a temperature of 1000K for a duration of 35 seconds [85]. 

 

2.7.5 Modelling of mechanical properties of PBF alloys. 

2.7.5.1 Mechanical strength property  

Finite element (FE) modelling is widely used for predicting the mechanical strength 

properties, e.g., the yield strength (YS) and ultimate strength (UTS) during the tensile tests. 

The macroscopic FE model is mainly used for structural topology optimization to achieve 

the desired mechanical property or stress distribution analysis. A FE model was developed 

to predict the tensile curve loaded from different directions until failure, for Ti-6Al-4V 

brackets components, using geometry designs varying in wall thickness [174]. FE model 

was also adopted for cellular structure optimization, to achieve a light-weight product 
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while meeting the strength requirement [175]. Another macroscopic FE model studied the 

effect of artificial voids on the tensile behaviour of 17-4PH SS [176].  

Molecule dynamics modelling has been used to characterize the mechanisms of powder 

sintering behaviour at atomistic scale. Some studies also tried to link the AM product 

strength with the powder’s sintering behaviour. Molecular dynamics (MD) is another 

computational modelling tool to describe the interaction action of powders. The MD 

method implemented in AM simulation usually requires multiscale modelling framework, 

e.g., thermal history from CFD modelling. The MD modelling packages LAMMPS [177] 

and LIGGGTS [178] were adopted for predicting the elastic modulus, tensile plastic strain, 

yield stress, and residual stress for the PBF-LB printed nickel particles’ sintering 

behaviour [179]. 

CPFE modelling has been utilized to quantify the phase composition effect on tensile 

behaviour [180, 181],  the higher ductility and strength caused by finer grain size structure 

[182, 183], the strengthening effect of grain boundaries [184, 185], as well as 

manufacturing direction-induced texture effect [186, 187]. This predictive capability has 

been applied to investigate AM metals and processes within manufacturing and materials 

research, requiring post-built sectioning, polishing, imaging, model reconstruction. One 

important advantage leading to the popularity of CPFE is the flexibility of implementing 

various constitutive flow laws with the aim of studying different microstructural-sensitive 

mechanical responses [188].  A Ramberg-Osgood and Hall-Petch based plasticity finite 

element model was developed for predicting the yield stress of PBF-LB Ti-6Al-4V [189]. 

CPFE modelling is the focus in this thesis, and more applications can be found in Chapter 

4 to 7. 

 

2.7.5.2 Fatigue and failure 

The development of computational prediction methods for microstructure-sensitive 

fatigue crack is an important problem that will benefit a wide range of industries, including 

aerospace [182], medical-device [190], and power generation [146, 191]. The critical 

importance of characterisation of the interrelationships between manufacturing process, 
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microstructure, material properties and mechanical performance (structural integrity) [28, 

29] has been highlighted by a recent aeroengine fan hub failure investigation [30, 31]. 

This report provides detailed proof of the serious risks associated with not considering 

these relationships, particularly for fatigue crack initiation in real applications, in this case, 

an aeroengine fan hub failure of Ti-6Al-4V alloy, not previously considered susceptible 

to facet fatigue. 

Different methods have been introduced for evaluating the fatigue life of metals. The 

linear damage approach S-N curves, also referred to as stress-based approach is commonly 

adopted. The curve information can be used for deriving the constants in Paris’ law [192, 

193]. Basquin [194] firstly raised up the idea of using power law for illustrating the 

relationship between the applied stress amplitude and fatigue life. Coffin-Manson [195] 

provided similar relationship for studying the type of loadings when fatigue life is affected 

mainly by plastic strains: 

𝜖𝑝

2
= 𝜖𝑓

′(2𝑁)𝑐 

where 𝜖𝑝  is the plastic strain amplitude, 𝑐  is the ductility constant, 𝜖𝑓
′  is the fatigue 

ductility coefficient and 𝑁 is the fatigue life.  

The failure of ductile material goes through yield before fracture. Thus, fatigue 

modelling needs to consider two main steps: plastic deformation, and fatigue damage 

accumulations. The primary damage accumulation theory assesses the failure through 

accumulative plastic strain and strain energy concepts. The procedure of finite element 

fatigue modelling parameter fitting includes optimization of the hardening parameters 

derived from hysteresis loop, as well as damage evolution parameters.  

A S-N curve (relationship between fatigue stress versus the number of cycles to failure) 

predictive model was developed to study the relationship between laser power and fatigue 

life for the PBF 316L. The fatigue fracture behaviour was explained with the void fraction 

using an inverse-square-root equation [196]. Yadollahi et al. [197-199] used Ramberg–

Osgood relationship to represent the stabilized hysteresis loops during fully reversed 

fatigue tests, and used Coffin-Manson relationship for fatigue prediction of the AM 17-
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4PH SS. In another modelling work of AM 15-5 PH SS, four back stresses were 

implemented, and four constants were used to fit the Coffin-Manson-Basquin law [200].  

 

2.7.5.3 Thermal residual stress and distortion 

The PBF-LB process often leads to large and anisotropic residual stress. High speed 

energy beam spot causes the nonuniform temperature field, plus the effect of hatch overlap 

and complex part geometry, residual stress prediction becomes difficult and hinders 

further uptake of PBF technology [201]. 

Finite element modelling methods are used for predicting the residual stress by 

calculating strain/stress tensors during the deformations. For the purpose of calculating 

residual stress, the finite element model needs to be capable of predicting both thermal 

and a mechanical PBF model. A coupled thermal-mechanical finite element method was 

developed for capturing the strain rate influenced by annealing process [202] and scanning 

strategies [152], for PBF Ti-6Al-4V alloy. Residual stress modelling results can be 

validated against measurements taken via Synchrotron X-ray diffraction [203].  Residual 

stress is also predicted at a microscale grain-level through CPFE modelling and validated 

via high resolution digital image correlation, for AM Ti-6Al-4V alloy [144]. The residual 

stress was predicted based on a geometrically necessary dislocation (GND) density 

initialized constitutive laws and the prediction was directly compared and validated 

against EBSD calculation with the Nye’s tensor-based approach. 

 

2.7.5.4 Toughness and distortion. 

The effect of printing parameters [204], build orientations [205, 206] and temperature 

[207] on the toughness of PBF material have been previously studied experimentally. 

Charpy impact experiment was adopted for estimating the impact energy to quantify the 

toughness property.  Johnson-Cook phenomenological flow stress constitutive law [208] 

together with the damage criteria were implemented in a finite element model by Sagar et 

al. [209] to simulate the impact energy when the striker impacts the 15-5 stainless steel 
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specimen.  Distortions were predicted using a part-scale FE thermos-mechanical for PBF-

LB Ti-6Al-4V through a sequential heating method [210].   

 

2.7.5.5 Void defects 

Voids and porosity are common defects in AM metals. Predicting the existence and 

fraction of void is important for controlling the product quality and to avoid significant 

damage to the mechanical strength [104]. The excessive AM source energy setting leads 

to keyhole-induced pores while insufficient heat input also leads to voids due to lack of 

fusion [211]. This means careful control over the heat energy input is required in the print 

parameter settings. A numerical Multiphysics model was established to predict the melt 

pool evolution and key-hole void formation for Ti-6Al-4V [212]. This model was further 

modified for predicting lack-of fusion type void for Inconel 718 alloy [213]. In another 

study, a CPFE model with a circular hole in the middle of the square model was developed 

with a 2D rate-dependant constitutive law. This single-crystal model [214] of AM 

aluminium alloy confirmed severe plastic deformation around the void and a significant 

influence on the stress-strain curve was observed from the shape of the void (aspect ratio), 

and the crystallographic orientations. DEM and CFD models were integrated as a meso-

scale modelling framework for predicting the formation of inter-layer void due to lack of 

fusion [215]. The DEM-CFD model predicts the size of the pores. Meanwhile, it suggests 

using contour and layer-wise interlace scanning strategy to reduce the voids.   

 

2.8 Crystal Plasticity Finite Element (CPFE) modelling. 

2.8.1 CPFE applications to investigate the structure-property relationship 

Accurate computational simulation of the macroscale strength of metals or alloys 

typically requires microstructure definition. Finite element analysis, involving grain 

boundary and crystal orientation specifications, along with constitutive and damage model 

parameters, are referred to as crystal plasticity finite element (CPFE) methods [188, 216-

218]. CPFE model is a suitable tool for solving structure-property problem of anisotropic 
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materials. The deformation of the polycrystalline grain aggregates is dependent on the 

external loading direction and its own orientation. CPFE requires an accurate and reliable 

representative volume element (RVE) to statistically contain the equivalent 

microstructural information in the sample, such as grain size distribution, phase 

composition, grain morphology, and texture.  

It has been shown that manufacturing-induced texture has an important influence on 

response to both monotonic and cyclic loading, with regards to yield stress and ductility 

[106]. Unfortunately, the crystallographic orientations in such studies do not correspond 

to the realistic microstructural characterisation. Other than the orientational-dependent 

slip system, a special misorientation relationship, twinning boundary also needs to be 

considered and activated for alloy structures dominated with hexagonal close packed 

(HCP) [219]. Ali et al. [220]  implemented the initial texture of annealed aluminium alloy 

into an equiaxed cubic VT model where the crystallographic orientation distribution is 

statistically equivalent to that from pole figure measurement. McDowell and co-workers 

[221, 222] developed a microscale dual-phase titanium model capturing the texture effect 

and found that (i) the accumulative effective plastic strain of the basal-textured material 

was ~25% lower than the transverse case and (ii) the effective plastic strain distribution 

changes significantly if neighbouring misorientation relationships are omitted.  In the 

latter work, orientation distribution was extracted and assigned to lamellar colony 3D 

models through the measured probability density distribution. This method successfully 

revealed distribution of absolute orientation and initial texture [223]. The Cailletaud team 

[224] introduced a customized grain boundary misorientation relationship in a regular 2D 

hexagonal model to predict FCI behaviour using the maximum value of shear strain 

amplitude as well as accumulated viscoplastic strain. The distributions of the two fatigue 

parameters were shown to depend on the misorientation relationships between grains. It 

was concluded that individual crystal orientation is insufficient for microstructure-based 

fatigue prediction. Rather, neighbouring grains and misorientation relationships need to 

be considered. 

Currently, most CPFE studies are based on VT idealised (grain morphology and linear 

grain boundaries) RVEs that statistically represent the real microstructure [225-227].  
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Other recent CPFE studies have introduced high-fidelity models based on realistic 

characterisation images from scanning electron microscope (SEM) or EBSD scans, to 

include realistic and detailed microstructural information such as grain morphology and 

neighbouring misorientation relationships [31, 141, 228]. Such EBSD-based modelling 

frameworks, while containing more accurate information, have two challenges. Firstly, 

imaging artefacts lead to non-indexed noise pixels, adding difficulty to phase fraction 

determination, especially when a minor phase (below 10%) exists in the sample. The 

difficulty in determining accurate minor phase content has led some researchers to 

approximate dual phase materials as single phase (Ti-6Al-4V [229], 316L steel [143] and 

P91 steel [146]), though dual phase CPFE studies on AM Ti-6Al-4V [180, 229] have been 

reported. Secondly, extra experimental efforts are required for both EBSD sampling 

preparation and increased computational cost as, typically, mesh density of EBSD based 

CPFE model is highly dependent on the high resolution EBSD images [144]. Thus EBSD 

data undoubtedly provides valuable raw source data for microstructural modelling; 

however, VT-based CPFE models informed by EBSD-derived parameters may be a more 

widely-adopted approach, especially for model sensitivity investigation. 

The next three sections introduce the constitutive laws implemented in this thesis. 

2.8.2 A phenomenological CPFE modelling approach 

The phenomenological crystal plasticity model is based on large deformation theory 

[230] and the deformation is described solely by the slip displacement along crystal slip 

systems. The motion and generated dislocations along the crystal slip direction cause shear 

deformation along slip planes. Crystal slip occurs on a given slip system once the shear 

stress exceeds the critical resolved shear stress. These slip systems determine the velocity 

gradient during plastic deformation. 

According to large deformation kinematics, current position vector x is defined in terms 

of reference original position vector X and displacement u, as follows: 

  𝒙 = 𝑿 + 𝒖  (2-2) 
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and the deformation gradient tensor 𝑭 is used for describing the transformation of the 

deformation from reference global vector 𝑑𝑿 to the current configuration vector 𝑑𝑥:  

 𝑑𝒙 = 𝑭𝑑𝑿 (2-3) 

The deformation gradient 𝑭 can be further decomposed into elastic and plastic parts: 

 𝑭 = 𝑭e ∙ 𝑭p (2-4) 

where 𝑭erepresents rigid body rotation and elastic stretch while 𝑭p  represents plastic 

deformation. The inelastic velocity gradient 𝑳p is implemented as follows: 

 𝑳p = 𝑭ṗ ∙ (𝑭p)−𝟏 = ∑ �̇�α𝒔α
α (𝒎α)𝑻 (2-5) 

where the velocity gradient 𝑳 is the differential form of the deformation gradient 𝑭. Plastic 

deformation is only affected and determined by crystallographic slip here; the velocity 

gradient can also be written as the accumulated value of the rate of slip along the slip 

system α where �̇�α is the rate of slip, and 𝒔α and 𝒎α are the slip direction and slip normal 

direction vector for slip system α, respectively.  

In the present work, a user material subroutine (UMAT) for ABAQUS (Release version 

2017) is employed, initially developed by Huang [231], and modified by Sweeney et al 

[232] modified to include back stress definitions for predicting non-linear kinematic 

hardening behaviour. This UMAT adopts a phenomenological power law flow rule for the 

rate of crystallographic slip γ̇, as follows: 

 �̇�𝛼 = �̇�sgn(𝜏𝛼 − 𝑥𝛼) {
|𝜏𝛼−𝑥𝛼|

|𝘨𝛼|
}
𝑛

 (2-6) 

where �̇� is the reference strain rate component and n is a rate sensitivity exponent. 𝑥𝛼 is 

the back stress which is defined later in Equations 14 and 15.  𝘨𝛼  is isotropic strain 

hardening parameter, defined by Peirce and co-workers [233] as: 

 𝘨(𝛾𝑎) =  𝘨0 + (𝘨∞ − 𝘨0) tanh |
ℎ0𝛾𝑎

𝘨∞−𝘨0
| (2-6) 
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where 𝛾𝑎 is the accumulated plastic slip over all slip systems, defined below in Equation 

16.  𝘨0 is the critical resolved shear stress, 𝘨∞ is the saturated stress, and the euqaitons for 

self and latent hardening can be derived from:  

 ℎαα = ℎαβ = ℎ(𝛾𝑎) = ℎ0sech
2 |

ℎ0𝛾𝑎

𝘨∞−𝘨0
| (2-7) 

where ℎ0 is the initial hardening modulus, 𝛼 and 𝛽 refer to two specific slip systems. The 

self-hardening modulus ℎαα  (𝛼 = 𝛼 ,, and latent hardening modulus ℎαβ  (𝛼 = 𝛽 , are 

assumed to be equal here. More details about self-hardening and latent-hardening moduli 

definitions can be found in prior literature [234-236]. 

The evolution of the hardening parameter is defined as the following: 

 �̇�𝜶 = ∑ 𝒉𝛂𝛃�̇�𝛃
𝛃  (2-8, 

The original Huang UMAT was extended to include non-linear kinematic hardening 

by Sweeney et al [232], with the total back stress 𝑥𝛼, defined as a summation of two 

individual back-stresses (one for short and one for long range strains, defined by 

individual Armstrong-Frederick evolution rules as follows: 

 𝑥𝛼 = 𝑥1
𝛼 + 𝑥2

𝛼 (2-9) 

 �̇�𝑖
𝛼 = 𝐶𝑖�̇�

𝛼 − 𝐷𝑖𝑥𝑖
𝛼|�̇�𝛼| (2-10) 

where i = 1, 2; Ci and Di are the material parameters which define the asymptotic limit 

and rate of decay of each non-linear back-stress evolution.  

Accumulated crystallographic slip over all slip systems, which is key to the fatigue 

indicator parameters (FIP) for crack initiation in the present work, can be obtained by 

integrating over time, as follows: 

 𝛾𝑎 = ∑ ∫ |�̇�𝛼|
𝑡

0
𝑑𝑡α  (2-11) 
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2.8.3 A physically-based strain gradient CPFE modelling approach. 

In order to evaluate the effects of grain size, a user defined element (UEL) subroutine 

with a strain gradient constitutive law, was developed by Dunne and co-workers [237], 

based on the incorporation of GND [238] effects. This slip rate calculation flow rule is 

established on the assumption of occurrence and pinning behaviour of gliding during the 

plastic deformation. GNDs act as barriers to mobile dislocations such as the statistically 

stored dislocations (SSDs) [239]. The flow rule is modified from the Gibbs creep rate 

equation [240, 241] 

 γ̇α = 𝜌𝑆𝑆𝐷
𝑚,𝛼𝜈(𝑏α)2 exp (

𝛥𝐻

−𝑘𝑇
) sinh (

(𝜏𝛼−𝜏𝑐
α)𝛾0𝛥𝑉α

𝑘𝑇
) (2-12) 

where 𝜌𝑆𝑆𝐷
𝑚,𝛼

 and 𝑏α are the mobile SSD density and Burgers vector, respectively, on the 

slip system 𝛼. 𝜈 describes the frequency of attempts for mobile dislocations to jump over 

the energy barriers whether successful or not. Δ𝐻 is the Helmholtz free energy, T is the 

temperature and k is the Boltzmann constant. 𝜏𝑐
α is the critical resolved shear stress and 

𝛾0 is the reference slip.  

 𝛥𝑉α =
(𝑏𝛼)2

√𝜌𝑆𝑆𝐷
𝑠

 (2-13) 

 𝜆𝑝 = 1/√𝜓(𝝆𝑆𝑆𝐷,𝑖 + 𝝆𝐺𝑁𝐷) (2-14) 

The activation energy Δ𝐻 is related to the pinning actions by SSD and GND over the 

associated activation volume Δ𝑉, determined by the pinning distance 𝜆𝑝, and the Burgers 

vector magnitude 𝑏α. The pinning distance is related to the sum of immobile SSD density 

𝝆𝑆𝑆𝐷,𝑖 and GND density 𝝆𝐺𝑁𝐷. 𝜓 is the constant that defines the percentage of SSD or 

GND acting as pinning points of gliding. The mobile and immobile SSD density are 

assumed to be equal for simplification in this thesis.  

The GND density 𝜌𝐺𝑁𝐷
𝛼 is further decomposed to three separate components based 

on the types of dislocations, by two edge dislocations and one screw dislocation: 

 ∑ (𝝆s
α𝒃α⨂𝒔α𝑛𝑠𝑙𝑖𝑝

𝛼=1 + 𝝆et
α 𝒃α⨂𝒏α + 𝝆en

α 𝒃α⨂𝒕α) = 𝑐𝑢𝑟𝑙(𝑭p) (2-15) 
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where 𝒔𝛼  and 𝒏𝛼 are the two vectors parallel and perpendicular to the slip plane. 𝒕α 

is defined as product vector of the slip direction and slip normal, as (𝒔α × 𝒏α). 𝝆s
α is 

screw dislocation and 𝝆e
α is edge dislocation vector. 

The GND density 𝜌𝐺𝑁𝐷
𝛼 is defined as a function of the plastic deformation gradient: 

 ∑ 𝒃𝛼𝑛𝑠𝑙𝑖𝑝
𝛼=1 ⨂𝝆𝛼

𝐺𝑁𝐷
 =  curl(𝑭p) (2-16) 

The circuit equation can be expressed in a surface integration format through Stokes’ 

theory: 

 𝑩 = ∬ (∑ (𝒃𝛼⨂𝝆𝛼
𝐺𝑁𝐷

)𝑛𝑠𝑙𝑖𝑝
𝛼=1 )𝒓𝑑𝑆

−

𝑆
 (2-17) 

where 𝒓 is the unit normal vector on an arbitrary surface 𝑆 along the failure circuit.   

The plastic deformation occurred within a crystal lattice generates a Burger’s circuit 

𝑩 along the closure failure path, 𝛤. According to Nye’s GND theory, the relationship 

between the deformation gradient and circuit can be expressed by: 

 ∮ 𝑭𝑝𝑑𝑥 = 𝑩
−

𝛤
 (2-18) 

The critical resolved shear stress (CRSS) for a slip system 𝛼 is calculated by: 

 𝜏𝑐
α = 𝜏𝑐0

α + 𝑀𝐺𝑏α√𝜌𝐺𝑁𝐷  + 𝜌𝑆𝑆𝐷
𝑠  (2-19) 

where 𝑀 is the Taylor factor [242] and 𝐺 is the material shear modulus, and 𝜏𝑐0
𝛼 is the 

initial CRSS value.  

The evolution of immobile SSD density 𝜌𝑆𝑆𝐷,𝑖
𝛼 is implemented as follows: 

 

�̇�𝑆𝑆𝐷,𝑖
𝛼 =

|�̇�𝛼|

𝑏
[∑ (𝐻𝛼𝛽(𝜌𝑆𝑆𝐷,𝑖

𝛼 + 𝜌𝐺𝑁𝐷
𝛼)𝛼 − 2𝑐𝑦𝑐𝜌𝑆𝑆𝐷,𝑖

𝛼]

 (2-20) 
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where c is a constant and 𝑦𝑐  is the critical annihilation distance. The coefficients 𝐻𝛼𝛽 

describe immobility relationships between dislocations, assigned a value of 0 when 

dislocations share the same or coplanar slip system, and a value of 1 for all the other cases.  

The accumulated slip on a certain slip system 𝛼, after a modelling step Δ𝑡 can be 

expressed as: 

 𝛾𝑡+Δ𝑡
𝛼 = 𝛾𝑡

𝛼 + ∫  
𝑙+Δ𝑡

𝑡
|�̇�𝛼|𝑑𝑡 = 𝛾𝛼 + |�̇�𝑡+Δ𝑡

𝛼 |Δ𝑡 (2-21) 

Newton iteration is implemented in this model to determine the stress increment after 

each modelling step. The calculated stress is updated iteratively until the residual is 

below the defined tolerance (10-8 MPa).  

 

2.8.4 Fatigue crack initiation (FCI) prediction with CPFE modelling 

A key challenge for the prediction of microscale crack initiation, is the identification 

of suitable, scale-consistent fatigue indicator parameters (FIPs) [138, 243].  

Dunne [244] and co-workers have shown for a C263 alloy, that accumulated effective 

crystal slip, aggregated over all slip systems, can be successfully implemented with CPFE 

to predict high and low cycle fatigue, including the effects of mean stress and even 

temperature. This parameter is denoted here as p and defined as follows: 

 �̇� = (
2

3
𝑳p: 𝑳p)

1

2
 (2-22) 

 𝑝 = ∫ �̇�𝑑𝑡
𝑡

0
 (2-23) 

A further development of this approach is the accumulated strain energy dissipation W 

parameter. Compared to p which measures the effect of slip only, FIP W takes both 

microscale shear stress and slip rate into consideration, giving more accurate prediction 

in FCI.  This FIP sums up the energy consumption on all the crystal slip systems as 

follows: 
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 𝑊 = ∑ ∫ 𝜏𝛼�̇�𝛼𝑑𝑡
𝑡

0𝛼  (2-24) 

Several other FIPs have been developed, e.g., the Fatemi-Socie FIPFS and grain 

boundary impingement FIPGBI, for fatigue crack initiation prediction of Ti-6Al-4V [245]. 

A new Dang Van criterion donated as FIPDV, [246] measured the combined effects of the 

shear stress on individual slip systems and the hydrostatic stress and was used in 

aluminium alloy fatigue study. FIPFS and FIPDV are the two slip-dependent FIPs, which 

emphasize the influence of heterogeneous microstructure.  

It has been shown that the cyclic values of these parameters, 𝑝cyc and  𝑊cyc typically 

evolve to a stabilised saturated value, so that the numbers of cycles for FCI is then 

predicted by dividing a critical FIP value by that of the stabilized fatigue cycle, shown 

below: 

 𝑝cyc =  𝑝(𝑡) − 𝑝(𝑡 − 𝛥𝑡𝑐𝑦𝑐) (2-25) 

 𝑊cyc =  𝑊(𝑡) − 𝑊(𝑡 − 𝛥𝑡𝑐𝑦𝑐) (2-26) 

 𝑁𝑖,𝑝 =
𝑝crit

𝑝cyc
 (2-27) 

 𝑁𝑖,𝑤 =
𝑊crit

𝑊cyc
 (2-28) 

The experimental FCI life for LCF test was approximated from the total life fatigue 

data according to a damage approach [235]: 

 𝐷 = 1 − [1 − (
𝑁

𝑁𝑓
)

1

1−𝑥
]

1

𝑦−1

 (2-29, 

where x and y are two parameters identified against all strain range tests to allow the best 

fit. FCI (Ni) is identified with a critical damage value 𝐷𝑐 taken as 0.0125, based on an 

assumed crack initiation size equal to the RVE standard element size at the free surface.   
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2.9 Phase-field method (PFM) in grain growth modelling.   

As introduced in section 2.7.4, PFM displays superiority when studying 3D 

polycrystalline and grain boundary evolution problems, compared to other modelling tools 

such as CA and MD. PFM can also be integrated with CPFE model, due to similar input 

variables and FE meshing tool. Thus, PFM is adopted in this thesis for grain growth 

simulation. A PFM based approach from MOOSE [247] is introduced below, for 

calculating the grain boundary (GB) migration process to predict the grain growth 

behaviour, at fixed temperature.   

The governing equation for PFM simulation is the Allen-Cahn equation [248] : 

 
∂𝜂𝑖

∂𝑡
= −𝜇

𝛿𝐹

𝛿𝜂𝑖
, 𝑖 = 1,2,3…𝑁 (2-30) 

where 𝜇 is the grain boundary (GB) mobility and𝑓 represents the free-energy functional. 

The evolution of variables is defined below by a modified Cahn-Hilliard equation: 

 
∂𝑐𝑖

∂𝑡
= ∇ ⋅ 𝑀𝑖∇

∂𝐹

∂𝑐𝑖
 (2-31) 

where 𝑐𝑖 is the conserved variable, and 𝑀𝑖 is the mobility. The local free energy density 

𝑓0 is a function of all concentrations and order parameters 𝜂𝑖,  which can be expressed in 

the format: 

 
𝐹 = ∫  

𝑉
𝑓(𝜂1, … , 𝜂𝑝, ∇𝜂1, … , ∇𝜂𝑝)𝑑𝑉

= ∫  
𝑉

[𝑚𝑓0(𝜂1, 𝜂2, … , 𝜂𝑝) +
𝜅

2
∑  𝑝

𝑖=1 (∇𝜂𝑖)
2] 𝑑𝑉

 (2-32) 

where an individual grain is represented by 𝜂𝑖, which equals to 1 within the grain and 0 in 

other grains.  

The molar volume is assumed to be constant and the system is assumed to be under 

thermal equilibrium condition. 𝜅 is the energy gradient coefficient and should be always 

positive. Different grain orientations can be represented as a large set of non-conserved 

field variables. 
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The free energy is calculated as a function of the phase field variables and their 

gradients, in a homogeneous free energy format 𝑚𝑓0. The local free energy 𝑓𝑙𝑜𝑐 for the 

model can be further assumed using N conversed variables 𝑐𝑖 as: 

 𝐹 = ∫  
𝑉

[𝑓𝑙𝑜𝑐(𝑐1, … , 𝑐𝑁 , 𝜂1, … , 𝜂𝑀)]𝑑𝑉 (2-33) 

The evolution of order parameter in individual grains is described as: 

 
𝜕𝑓

𝜕𝜂𝑖
=  𝜇(𝜂𝑖

3 − 𝜂𝑖 + 2𝛾 ∑ 𝜂𝑖
2𝜂𝑗

2𝑁
𝑗>𝑖 ) (2-34) 

The homogeneous free energy is assumed to be zero within grains; thus the integral 

calculation from Equation (2-30) represents the total grain boundary energy within a 

system under the assumptions. The phase field evolution is then modified to be time-

dependant by implementing the Ginzburg-Landau equation [249]: 

 

∂𝜂𝑖(𝐫,𝑡)

∂𝑡
= −𝐿

𝛿𝐹(𝜂1,𝜂2,…,𝜂𝑝)

𝛿𝜂𝑖(𝐫,𝑡)

= −𝐿 [
∂𝑓(𝜂1,𝜂2,…,𝜂𝑝)

∂𝜂𝑖
− 𝜅∇2𝜂𝑖]

 (2-35) 

where 𝛾, 𝐿 and 𝜅 are model parameters determined by the GB surface energy 𝜎𝐺𝐵, the GB 

width for diffusion 𝑤𝐺𝐵, and the GB mobility 𝜇.  

The definition by Equation (2-35) guarantees a continuous decrease in the total GB 

energy through the calculation of GB migration caused by the high temperature condition. 

An analytical model for two-grain configuration is derived when considering only the 

interaction between two grains indexed by i and j: 

 
𝑑(

𝑑𝜂𝑗

𝑑𝑥
)

𝑑(
𝑑𝜂𝑖
𝑑𝑥

)
=

𝜂𝑗
3−𝜂𝑗+2𝛾𝑖,𝑗𝜂𝑖

2𝜂𝑗

𝜂𝑖
3−𝜂𝑖+2𝛾𝑖,𝑗𝜂𝑖𝜂𝑗

2  (2-36) 

The equation 2-37 was developed for constructing the test function 𝜙𝑚: 

 

(
∂𝑐𝑖

∂𝑡
, 𝜙𝑚) = −(𝜅𝑖∇

2𝑐𝑖, ∇ ⋅ (𝑀𝑖∇𝜙𝑚))

− (𝑀𝑖∇ (
∂𝑓toc 

∂𝑐𝑖
+

∂𝐸𝑑

∂𝑐𝑖
) , ∇𝜙𝑚) + ⟨𝑀𝑖∇(𝜅𝑖∇

2𝑐𝑖) ⋅ �⃗� , 𝜙𝑚⟩

− ⟨𝑀𝑖∇ (
∂𝑓𝑙𝑜𝑐

∂𝑐𝑖
+

∂𝐸𝑑

∂𝑐𝑖
) ⋅ �⃗� , 𝜙𝑚⟩ + ⟨𝜅𝑖∇

2𝑐𝑖, 𝑀𝑖∇𝜙𝑚 ⋅ �⃗� ⟩

 (2-37) 
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Thus, the Equation 2-35 can be rewritten in the following format, for the use of respective 

interior and boundary integrals: 

 
(
∂𝜂𝑗

∂𝑡
, 𝜙𝑚) = −𝐿(𝜅𝑗∇𝜂𝑗 , ∇𝜙𝑚) − 𝐿 (

∂𝑓𝑙𝑜𝑐

∂𝜂𝑗
+

∂𝐸𝑑

∂𝜂𝑗
, 𝜙𝑚)

+𝐿⟨𝜅𝑗∇𝜂𝑗 ⋅ �⃗� , 𝜙𝑚⟩.
  (2-38) 

 

2.10 Deep learning application in AM. 

2.10.1 Deep learning development in process monitoring and quality control.  

Currently, the most widely accepted idea of applying deep learning (DL) [250] 

algorithms in AM, is defect detection using in-situ thermographic monitoring. Compared 

to manual detection, DL is more effective and avoids potential human bias. Previously 

developed DL models [251] have reached an accuracy of 96.8% when recognizing the 

delamination and splatter defects from the thermal sensor images, as shown in Figure 2-

14. This DL tool is light on computational cost and can be easily modified for detecting 

other defect types. Another convolutional neural network (CNN) -based DL model 

fulfilled a correlation accuracy of 85% validated against CT results, and further upgraded 

to an automatic defect detection and classification system for PBF-LB Ti-6Al-4V alloys 

[252, 253]. DL was also used to optimize the process parameters for Ti-6Al-4V [254].  

 

Figure 2-14. Application of CNN to detect defects, delamination and splatters from PBF imaging 

sensor [255]. 
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2.10.2 Deep learning development in microstructural prediction.  

CNN based DL has been used for automatic microstructure image recognition [256, 

257]. However, there is still relatively little work on using DL models to predict 

microstructural evolution considering the limited possible alternative for real-time 

predictions or direct measurement. DL also helps quantify the microstructural variation in 

PBF, as shown in Figure 2-15 [258]. A genetic algorithm [259] was developed to 

determine the optimum AM parameters to get desired microstructure zones, with 30000 

different scan paths as the training dataset, which could be improved and further 

investigated with a variation on other parameters. 

 

Figure 2-15. EBSD analysis for solid-state PBF materials [258]. 

2.10.3 Deep learning development in structure-property relationship.  

Some studies have considered integrating DL with the structure-property prediction 

models to either assist decision making [260-263] and non-destructive quality control 

[264, 265], improve efficiency [266, 267] or predict mechanical properties [268] . Existing 

DNN-FE coupled methods focus on decision making and computational cost reduction 

[269, 270]. CNN, a subclass type of  DNN model, was adopted as the encoder to study the 

crystallographic texture effect on the stress-strain behaviour [271] and orientation 

evolution [272] of a synthetic RVE morphology. CNN methods have been shown to give 

accurate DL predictions compared to CPFE simulations but with a greatly reduced 
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computational cost per run (order of milliseconds runtime). Yamanaka et al. [269] 

developed a  DNN tool to read in 3D orientation maps including the 32 × 16 × 32 pixels 

Euler angle information of aluminium sheet material and applied this to estimate the 

biaxial stress-strain behaviour. The mean squared error (MSE) between CPFE modelling 

and DNN-3D prediction was less than 7% of the true stress extracted from nine points, 

and an approximate 3% error was calculated for predicted maximum stress at 0.05 strain. 

Compared to the DNN-2D modelling tool which read in a 32×16 pixel 2D pole figure, 

DNN-3D improves the MSE accuracy when predicting stress ratio in the biaxial tensile 

tests but also with a 50% longer running time. Miyazawa et. al [270] compared a two-

point correlation (with 2-point features as inputs) with DL approach for the fatigue 

behaviour of a ferrite-pearlite dual phase steel. Mangal [273] used CNNs to predict stress 

localization and capture “hotspots” for the potential crack initiation locations.  

While previous studies have successfully implemented DL techniques with various 

structure-property models, to the author’s knowledge, such tool that captures the effect of 

phase and crystallographic orientation in AM materials has not been previously 

developed. CPFE model is generated based on the microscopic image, and such high 

contrast image format is intrinsically a favourable input for DL. The complex PBF 

parameters and the associated varying microstructure also require an effective and reliable 

characterisation tool, for processing quality control and parameter optimization. The next 

section introduces a DL algorithm developed for training a CPFE-based instant structure-

property tool.  

2.10.4 Deep learning training for CPFE-based data. 

Over recent years, DL, a subclass of the general term machine learning (ML), has 

become a popular tool due to its ability to deal with big data efficiently. Compared to 

traditional ML techniques [274] such as Gaussian processes, regression trees, and linear 

regression, which often impose unrealistic or rigid assumptions about the input feature 

relationships, DL provides greater flexibility via an artificial neural network where 

successive transformations (known as hidden layers) of the inputs extract useful 

information from the previous layers to predict the final output, with minimal human bias. 

DL produces predictions by training and updating the implicit parameters in these layers 
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via a back-propagation algorithm which allows the model to run on extremely large data 

sets [275]. DL generates a pipeline-like structure, where data is input and flows through 

many layers, each with different transformation functions, according to the task at hand.   

The base module of the DNN model implements CNN [276] as the kernels to extract 

information from the groups of images, and the design of the CNN contains the following 

layers: 

Fully connected layer: this layer implements a perceptron for nonlinear transformation 

on the input data defined as: 

 𝑦 = ∅(𝑤𝑥 + ℎ)  (2-40) 

where 𝑥 is the high-dimensional feature input data, 𝑤 and ℎ are trainable parameters 

and ∅  is the activation function [277]. The fully connected layer is a non-linear 

transformer capable of handling arbitrary complexity and is widely used in DNN design 

[271]. Although the fully connected layer is effective in modelling data features, it is not 

suitable for image processing [278]. Since it cannot capture the local characteristics of an 

image, especially when the size of the image increases, the resulting number of parameters 

greatly affects DNN efficiency. In this work, each input image has 100 × 100 × 3 pixels, 

further action is required to condense the size of the data. The further layers introduced 

are: 

Convolution layer: this layer is used to capture local characteristics of an input 2D array 

such as an image [279]. A convolution layer consists of several small filters; each filter 

can capture one type of local characteristic within the input data. Unlike the fully 

connected layer which takes the whole image as the input, the convolution layer only 

needs a small part for each computation (usually 3 x 3 or 5 x 5), resulting in a much smaller 

number of parameters. The feature map generated by filters shows the distribution of the 

specific characteristic on the data (i.e. in which part the characteristic is more significant 

and in which part it is less significant, also denoted by a weight parameter). The stress-

strain property of each instance is influenced by different characteristics of the data. The 

goal of the convolution layer is to determine the implicit characteristics that contribute to 

the stress property. 
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Pooling layer and dropout layer: these DNN layers are usually adopted to prevent 

overfitting. Overfitting can lead to the loss of the generalization power of a DNN. The 

pooling layer can smooth some intermediate characteristics to let the model be adapted to 

different settings (or sources) of the data. The dropout layer randomly drops a specific 

proportion of parameters during the training step. It would be helpful to reduce the model 

complexity during DNN optimization process to save computational cost. By training 

different DNNs, the generalization power is improved, and overfitting can be prevented. 

The fully-connected multi-Layer perceptron developed by TensorFlow 2 is converted 

to a CNN by constraining the matrices. Take a 2D image input format X for example, its 

2D hidden representations H has the same shape and spatial structure. The expression of 

the fully-connected layer is:   

 
𝐇𝑖,𝑗 = [𝐔]𝑖,𝑗 + ∑  𝑘 ∑  𝑙 [W]𝑖,𝑗,𝑘,𝑙[𝐗]𝑘,𝑙

= [𝐔]𝑖,𝑗 + ∑  𝑎 ∑  𝑏 [V]𝑖,𝑗,𝑎,𝑏[𝐗]𝑖+𝑎,𝑗+𝑏
 (2-41) 

where I and j donate the relative pixel coordination in the 2D input image. The tensors are 

re-indexed by 𝑘 = 𝑖 + 𝑎 and 𝑙 = 𝑗 + 𝑏 respectively. After convolution through invariant 

translation, the equation is converted to: 

 [𝐇]𝑖,𝑗 = 𝑢 + ∑  𝑎 ∑  𝑏 [𝐕]𝑎,𝑏[𝐗]𝑖+𝑎,𝑗+𝑏 (2-42) 

The value [𝐇]𝑖,𝑗 , after convolutional translation, can be obtained effectively by 

weighting pixels at the (𝑖 + 𝑎, 𝑗 + 𝑏) location. This conversion can be further condensed 

by ignoring the pixels too far away from the target by assuming a zero value of [𝐕]𝑎,𝑏 

once the distance exceeds the range tolerance Δ . Under this new assumption, the 

relationship can be re-written in the format: 

 [𝐇]𝑖,𝑗 = 𝑢 + ∑  Δ
𝑎=−Δ ∑  Δ

𝑏=−Δ [𝐕]𝑎,𝑏[𝐗]𝑖+𝑎,𝑗+𝑏 (2-43) 

The new format is a typical CNN layer, where 𝐕 is referred to as a convolutional filter 

or kernel which determine the weight factor of the layer when determining the predictive 

output. The kernel is usually learnable and trainable, through optimization algorithms, to 

improve the predicting accuracy and efficiency.  
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The challenge of kernel and hidden layer optimization lies in the minimizing the 

objective function, rather than the generalized error. The optimization algorithm design is 

closely associated with the input data structure and is usually determined through training 

and validation group performance. More details on CNN layer architecture design and 

modification are shown in Chapter 7.  

CNN is an important tool in practical DL application, especially when dealing with big 

data learning jobs. The billions of parameters in image recognizing works can be 

condensed to less than a thousand, without sacrificing the dimensional structure. 

 

2.11 Gaps between current research and future PBF needs. 

PBF industry grows rapidly due to its unique advantages. Publications containing PBF 

as the key word have increased by eight times in 2020 [280]. Based on the literature review 

presented in this chapter, future development of PBF needs better PBF product quality 

control, extended manufacturing capability, and improved efficiency and productivity. 

Some key challenges identified in the current applications are as follows:  

(1) The microstructure of PBF, metal is more complex than its conventionally 

manufactured counterpart. Thus, realistic representative model including precise 

grain morphology, grain boundary misorientation, texture, and grain size, should 

be developed for better prediction of the micromechanical behaviour. No clear 

integrated method to develop such models exist.  

(2) Need to better understand the microstructure-property relationship and develop 

better predictive capability. The PBF process allows for gradients in composition 

and thus have the gradient properties within a part.  

(3) Need for coupled multi-scale and multi-physics models to establish a through 

process modelling framework. The PBF process includes different multi-scale and 

multi-physics phenomena that are typically impossible to describe sufficiently in a 

single model. Further effort is therefore required to integrate modelling tools for 

process-microstructure-property interdependence investigation.  
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(4) Need for an instant quality control tool to avoid process-structure-property 

uncertainties that hinder the PBF process. To address this issue, on the one hand, 

further development of in-situ and feedback systems especially on microstructure 

monitoring are required. On the other hand, the modelling time are usually much 

longer than that of the practical operation and process, if combined with multi-scale 

modelling method for process-structure-property.  Artificial intelligence 

technologies, such as deep learning, have the potential to facilitate much rapid 

calculation. This technology can be implemented within the in-situ monitoring 

system or modelling framework for development within AM digital twins.  

(5) Heat treatment (HT) and hot isostatic pressing, as the post-built thermal treatment 

required for stress relief and mechanical properties enhancement, need more 

comprehensive investigation. The capability of a bigger HT chamber is needed for 

larger scale PBF part.  An emerging technology, in-situ HT saves the cost and time 

for PBF fabrication, however, requires a novel monitoring tool to check the in-situ 

HT temperature and the associated microstructure evolution.   
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3 Experiments: PBF-LB processing, microstructural 

characterisation, and mechanical testing. 

3.1 Introduction 

The computational models and tools developed and employed in this research require 

experimental characterisation, including microstructural measurements and mechanical 

testing, for parameter identification and overall model calibration and validation. This 

chapter first introduces the manufacturing processes (specimen design, printing 

parameter, post-built heat treatment) for the following materials: L605 CoCr (Chapter 4), 

Ti-6Al-4V (Chapter 5 and 6), and 17-4PH stainless steel (Chapter 7).  It also introduces 

the microscopy protocol with special attention to the EBSD technique as it motivates the 

high-fidelity (the most direct source of microstructure data) modelling framework, see 

section 3.4.  Finally, the mechanical testing protocol including tensile and fatigue are 

demonstrated. 

3.2 Sample manufacturing and post-processing. 

3.2.1 Processing parameters and sample design.  

The PBF-LB Ti-6Al-4V samples used in Chapters 5 & 6 were manufactured from 

extra-low interstitial powder provided by Renishaw. The powder particle size was 

measured to range from 20-100 m and had low thermal expansion and conductivity 

[281]. Figure 3-1 shows the Renishaw RenAM 500M model, located at the Irish 

Manufacturing Research centre, that was used for printing the Ti-6Al-4V specimens. This 

printer uses a 500 W pulsed wave emission laser as the energy beam source, with a 

wavelength of 1020 nm,  with an argon atmosphere. Table 3-1 lists the PBF-LB process 

parameters adopted. A meander scanning strategy was also specified in the fabrication for 

consistent specimens without large deformation [282]. The specimen was vertically 

printed with the axial direction perpendicular to the powder bed.  
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Table 3-1. RenAM 500M printing parameters. 

Power Point distance Exposure time Layer height Hatch distance 

250 W 50 m 90 s 30 m 0.1 mm 

 

 

Figure 3-1. Renishaw RenAM 500M PBF-LB metal printer (left) for fabricating the Ti-6Al-4V 

alloys, 3D Systems ProX DMP 100 printer in NUI Galway (right) for 17-4PH SS, with inset 

image of view of buid chamber during specimen fabrication. 

 

A build plate consisting tensile test specimens was configured in the 3D Systems 

3DXpert build software at NUI Galway. However, hardware and access issues at that time 

prevented build completion at that time. Therefore published test data  [79] on 17-4PH SS 

specimens was used for tensile and fatigue test data. The primary author of that study 

(Luiz Carneiro) thus collaborated on the publication of the paper emanating from Chapter 

7 [283] in terms of tensile test data provision. The specimens used in Chapter 7 were 

fabricated by the Sentinent Corporation company in USA, using a PBF-LB machine, 

under the protection of the argon atmosphere. These 17-4 PH SS samples were orientated 

with the axial direction aligned with the build direction (vertically printed) and were of 

ASTM-E8 specification (Figure 3-2). Details about the specific PBF-LB machine were 

not fully disclosed by the company in charge of specimen manufacturing. The PBF 

specimen was then subjected to the recommended post-built heat treatment, this standard 

annealing process are described later in section 3.1.2. 
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Figure 3-2. Designed geometry for the PBF-LB built samples: plate and round ASTM-E8 

samples for tensile test, and ASTM-E606M sample for fatigue testing. 

 

Figure 3-3 shows (a) the printed flat and cylindrical Ti-6Al-4V samples, following the 

ASTM-E8 standard recommendation, and (b) the cylindrical 17-4 PH SS samples, 

following the ASTM-E606 standard. Ti-6Al-4V specimen had a length of 16 mm and a 

diameter of 8 mm at the gauge section, The shoulder radius of the testing specimen was 

40 mm. The grip section had a diameter of 16 mm.  17-4PH SS specimen had a length of 



 

 

72 

 

16 mm and diameter of 8 mm at the gauge section, The shoulder radius of the testing 

specimen was 40 mm. The grip section had a diameter of 16 mm. The mechanical test 

protocol employed in this test programme followed the ASTM-E8 [284] and the ASTM 

E606 standard [285] recommended for tensile and fatigue mechanical testing respectively 

 

Figure 3-3. (a) RenAM 500M printed Ti-6Al-4V samples following ASTM-E8 standard. (b) 

PBF-LB 17-4PH SS following ASTM-E606 standard. 

3.2.2 Heat treatment 

Post-built heat treatment (HT) of PBF-LB alloys used in an electric Nabertherm oven 

(max temperature 3000 °C) in NUI Galway. Ti-6Al-4V samples were annealed 900 °C, 

for two different durations 50 & 100 minutes. The heated samples were then air cooled 
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(unassisted) to room temperature. Abrasive paper (Grit 400) was used on the samples to 

slightly smooth the surface. Figure 3-4 shows the four samples after HT. These samples 

were used for comparison and validation against modelling, with regards to their 

microstructure evolution and tensile properties in Chapter 6. 

 

Figure 3-4. PBF-LB Ti-6Al-4V samples after HT with different HT time for comparison. 

 

The post-built heat-treatment of all the PBF-LB 17-4PH SS samples also followed the 

standard HT H1100, which consists of solution annealing at approximately 1050 °C, air 

cooling, and then age hardening at 593 °C for 4 hours, followed by air cooling at room 

temperature. After the heat treatment process, grit blasting was conducted to improve the 

surface quality and the polished average surface roughness was measured as 60.1 m. 

The material of focus in Chapter 4 (L-605 CoCr alloy), was not PBF-LB manufactured 

but did undergo solution annealing at 1250 °C for 2.5 hours, and was the basis of previous 

published study from the group [183]. 

 



 

 

74 

 

3.3 Microstructural characterisation. 

Non-destructive inspection methods such as micro-CT is first used on the printed metal 

samples to check the porosity, internal defect, and surface roughness. For microstructural 

characterisation, such as EBSD, the samples need to be sliced, mounted, gritted using a 

succession of papers and polished with silica colloidal. A final etching step is also required 

for an investigation under an optical microscope or SEM. Energy Dispersive X-Ray 

spectroscopy (EDX) is necessary prior to EBSD scanning if the phase composition of the 

sample is unknown. The determined crystalline type from EDX helps input necessary 

crystal symmetry information when setting up EBSD analysis, ensuring reliable texture 

information.  

3.3.1 Micro-CT scan and detection. 

The cabinet cone-beam microCT, Scanco Medical CT100 (shown in Figure 3-5) was 

used to scan the as-built part to check the overall manufacturing quality (porosity). The 

highest energy available (70 kV) and the highest intensity settings were set for the scans. 

Each sample scan contains 855 slices with a resolution of 3072 × 3072  pixels, 

corresponding to a 11.4 micron isotropic resolution. The raw data, image sequence data 

(.isq), was generated by combining these slices. A contouring drawing method was 

adopted for segmentation and threshold of the gauge transition area of the cylindrical or 

irregular sample. After contouring, the .isq file was converted to a graphical object, and 

was finally reconstructed as a 3D scan after thresholding, suitable for porosity and density 

evaluation.    
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Figure 3-5. Scanco Medical Micro-CT 100 

 

Each scan included one ASTM-E8 flat sample and another round sample. Two scans 

were made per sample. The first scan checked the area at the bottom end of the sample 

directly attached to the powder bed during PBF while the second scan checked the necking 

area at the end of the gauge length where some failure took place. The micro-CT raw data 

was proceeded through a customized MATLAB code  [286]and extracted 800 slices of 

the cross-section area were for a void and porosity check. Those slices have not detected 

obvious pores and the volume was calculated based on the reconstructed 3D files. 

 

3.3.2 Sample preparation for microstructure analysis. 

The L-605 CoCr alloy used in Chapter 4 was polished with a sequence of polishing 

paper and paste up to a final polish with 0.02 m diamond suspension paste. 

Chapter 5 and 6 details the micromechanical characterisation of Ti-6Al-4V.  The 

sample preparation for PBF-LB titanium alloy is more challenging due to the harder alpha 

phase and higher surface smoothness requirement for revealing the complex lamellar 
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morphology. The detailed procedure below was based on and improved from the Buehler 

guide [287].  

(i) Wet grinding with SiC paper down to 400, 800 (1200 optional) grits with water 

cooled, 240 rpm rotating speed using the Buehler AutoMet 250 polisher (shown 

in Figure 3-6), and apply 30N force to press at the centre top of specimen.  

(ii) Change to a new abrasive paper and polishing mat, continue polishing using a 

9 m suspension on UltraPad under 25N load force for 10 mins. 

(iii) Use 0.05 m final polishing suspension on a soft, porous, chemically resistant 

synthetic polishing pad, ChemoMet supplied by Buehler, under 20N load force 

for a minimum of 20 minutes until obtaining plane surface through optical 

microscope check. This improved polishing protocol reduces the loading force 

to avoid undesired manually generated deformation twinning, but increases the 

polishing time in the final step to deal with the roughened part surface exposed 

to non-melted powder in the PBF process.  

(iv) Rub with ethanol and ultrasonic cleaning before EDX testing. 

 

Figure 3-6. Buehler AutoMet™ 250 Grinder-Polisher. 
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After going through the polishing protocol, the specimen needs to be etched to reveal 

different phase contrast and grain boundaries. CoCr was etched using a mixed chemical 

reagent of 100 ml HCL and 5ml 30% H2O2.  The Kroll’s reagent 187 (HF and Nitric acid 

by 2:1) supplied from Etchants UK was used to reveal the grain boundary of Titanium 

alloys. Hydrofluoric acid (HF) etches glass, therefore all HF processing is carried out in 

polyethylene or polymethyl pentene containers only. Ti-Al alloy is easy to be etched, and 

the etching process is complete once the colour of the surface changes (approx. 10 

seconds). However, the etching job for Ti-6Al-4V is trickier due to no visible colour 

changes. In-house trails of various etching approaches concluded that using a pipette for 

dropping etching onto PBF Ti-6Al-4V samples offered the best etching depth control. A 

separate study on the effect of etching time and method types on image characteristics is 

available in Appendix A. The surface change (dimmed colour and scratched texture) is 

evident after the first drop. 3-5 drops are sufficient (cross-section of ASTM-E8 samples).  

Table 3-2 summarizes the recommended procedures after several trails and 

optimization steps, for PBF-LB Ti-6Al-4V sample preparation. 

Table 3-2. Recommended polishing and etching procedures. 

 

Chapter 7 investigate the structure-property relationship of 17-4PH SS. The 17-4PH 

SS sample was etched with Ralph’s reagent to reveal the grain structure. 

Etching is not performed on samples for EBSD characterisation because it roughens 

the surface around the grain boundary. Instead, for EBSD, further polishing steps are 
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performed which result in a surface smoothness capable of yielding sufficient diffraction 

data points (above 90%). The pre-etching process described above leads to 40 – 70 % 

valid EBSD points, which would result in significant missing data points in the grain map 

construction. The further polishing steps include:  

(v) Vibrating polishing with the colloidal silica suspension on the VibroMet 

vibratory polisher for 1-2 hours and, 

(vi) Ion polishing using the focused ion beam until achieving the optimal condition 

for EBSD measurement. A focused ion beam (FIB) generated from excited ions 

vaporises and exposes the sample surface to be directly suitable for an EBSD 

scan. The FIB milling uses 10 keV ion gun for a rapid milling, followed by 2 

keV gentle polishing and cleaning until smooth, as observed under FIB-SEM.  

3.3.3 Optical and Scanning Electron Microscopy 

The etching process has revealed the different phases by varying colour depth and most 

importantly, it has made the grain boundary obvious for the ease of polycrystalline map 

reconstruction. The optical microscopy image in Figure 3-7 shows the general 

microstructure by stitching four 4:3 ratio images along the PBF printing direction, using 

the Olympus microscope and the associated Fujitsu post-processing tool (shown in Figure 

3-8). The basket-weave lath within the parent phase prior-beta grain varies associated with 

the solidification process determined by the PBF process and cannot be characterized 

clearly in this macroscopic image. However, this is a good example showing the typical 

highly anisotropic prior-beta grains along the build direction. The columnar shape prior-

beta grains in this Ti-6Al-4V sample have a length ranging from 100-1500 m.  
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Figure 3-7. Optical microscopy image of PBF Ti-6Al-4V showing the macroscopic 

microstructure. 

 

Figure 3-8. Olympus optical microscopy systems. 

The cold field emission high-resolution SEM, Hitachi S-4700 (Figure 3-9) was used to 

reveal the microstructure at a higher resolution. For high magnification examination the 

etch depth should be shallow, while for low magnification examination a deeper etching 

yields better image contrast.  
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Figure 3-9. Hitachi S-4700 FE-SEM. 

Figure 3-10 shows the SEM images of the etched PBF Ti-6Al-4V samples. (a) (b) and 

(c) show the microstructure of the cross-section surface along the build direction, at 

different magnitude scales. It is observed that the laths in this cross-section plane have a 

preferable growth direction as well as the segregated smaller needle 𝛼′ lath in between the 

thicker laths. However, image (d) shows the SEM of the bottom surface of the sample 

attached to the powder bed directly. As a result, the microstructure does not show 

directional preference because it represents the solidified laths out of a single layer. All 

the Ti-6Al-4V images indicate a very fine lath width of the segregated alpha phase during 

the melting pool solidification.    
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Figure 3-10. SEM microstructural images of two PBF Ti-6Al-4V samples from different cross-

section surfaces. 

3.3.4 Energy-dispersive X-ray (EDX) spectroscopy. 

The EDX spectroscopy, also referred to as energy dispersive X-ray (EDX) analysis can 

be used either before or after polishing of the sample, to characterize the chemical 

composition of the surface. The EDX spectroscopy facility system associated with the 

scanning electron microscope model Hitachi S-4700 located at NUI Galway microscopy 

centre, was used in this thesis to quantify the chemical composition of the two near-alpha 

titanium alloys. During EDX scanning, SEM needs operate in high magnitude mode with 

the analysis mode activated.  Figure 3-11 shows the EDX spectrums and the quantified 

element weight fraction for (a) as-build PBF Ti-6Al-4V, (b) Ti-6Al-4V samples after 

polishing and etching and, (c) Ti-Al sample after polishing and etching. The polishing 

step seems to have little influence on the EDX calculation. However, the scans of some 

specimens that did not receive complete cleaning detected up to 8% carbon, due to 

contamination. In such cases, this material needs to be removed via ethanol before repeat 

measurement. 
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Figure 3-11. EDX spectroscopy results for the two PBF near-alpha alloys. 

 

3.4 Electron backscatter diffraction (EBSD) measurement. 

3.4.1 EBSD scan and measurement  

Although various algorithms have been developed to measure grain morphology (e.g. 

intercept length method) from SEM images [288], such approaches require high contrast 

images as the measurement accuracy is highly dependent on the shape of the grain 

boundary, particularly for high-aspect ratio grains. As an advanced characterisation tool, 

EBSD offers quantitative microstructural feature measurement by directly counting the 

pixels within certain phase groups and grain aggregates. This tool is invaluable when 

studying irregular grain morphology materials such as those found in PBF metals. EBSD 

also provides crystallographic orientation data for individual grains, which assist in 

determining the texture, misorientation and anisotropy features in PBF samples. Due to 

the above reason, EBSD is the key characterisation tool in this thesis, for both 

microstructural inspection (grain map, phase data and orientation data) and as direct-from-

source raw data for computational model construction.  
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Figure 3-12. Principle of EBSD, diffraction, Kikuchi band, and texture detection [289]. 

 

EBSD scans of Ti-6Al-4V were taken using the FEI (Thermo) Helios G4 CX 

DualBeam instrument system equipped with the focused ion beam (FIB) and the Oxford 

EBSD detector located at Bernal Institute, University of Limerick (UL), shown in Figure 

3-13. The Ti-6Al-4V sample used in Chapter 5 and 6, was cut from the cross-section along 

the build direction with the scan area of 38 × 25 m with the resolution (step scanning 

increment) of 0.05 m.  EBSD scans of SS 17-4PH were outsourced to a Jeol JSM-7100F 

field emission SEM located at the University of Nevada, Geology department, equipped 

with an Oxford EBSD detector. A microstructural sample was cut from the gauge area 

using a scan area of 300 × 300 m and a resolution of 0.5 m to detect the austenite and 

martensite phases together with their crystallographic orientation texture. 
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Figure 3-13. FEI Helios G4 CX SEM system, equipped with the Oxford Instrument EBSD prob. 

 

Figure 3-14 shows the sample preparation and settings for EBSD scanning. The 

specimen needs to be either mounted in an electrically conductive resin or stuck with a 

conductive band. During EBSD measurement, the electron beam firstly hits the sample 

surface at a tilt angle of 70°. Y axis in the scan was defined to be alongside the built 

direction. The backscattered electrons contact the crystal and generate two diffraction 

cones, which later interact with the phosphor screen to form the bands. The position of the 

cones, the bandwidth and symmetry of the crystal together determine the final indexing 

process through the Hough transformation [290].  
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Figure 3-14. EBSD sample preparation and internal placement in the vacuum chamber, image 

taken in UL. 

 

FEI Helios DualBeam FIB-SEM system generates up to 30 kV accelerating voltage 

from the Schottky field emitter energy source, with the ion beam current ranging from 0.8 

pA to 22 nA. The resolution is up to 0.8 nm scanned under a voltage of 15 kV, while 1.4 

nm at 1 kV. The EBSD probe has a symmetry detector which permits efficient generation 

and indexing of the scanned pixels. It takes 30 minutes to complete a scan containing 1 

million pixels, with high resolution grid of 50 nm, corresponding to a sample area of 140  

m × 87 m. 
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Figure 3-15. User interface of AZtec for diffraction calculation and Kikuchi band indexing, 

during the process of scanning Ti-6Al-4V sample used in this thesis. 

 

3.4.2 Polycrystalline grain map reconstruction 

The capabilities of EBSD include grain microstructure analysis through post-

processing on the Oxford Channel text file (ctf) file to reconstruct the polycrystalline grain 

map including information such as grain size, grain shape, and phase distribution. Figure 

14 shows a snapshot of the commercial software package AZtec user interface when the 

probe is fetching and indexing the grain map data, based on the crystallographic 

relationship, for the Ti-6Al-4V sample. Figure 3-15 shows the EBSD pixel acquisition 

and data indexing from the diffraction bands.  
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Figure 3-16. EBSD probe is indexing a PBF-LB Ti-6Al-4V scan, ~25% progress. 

 

The grain map reconstruction usually contains two steps, clean-up and grain 

segmentation. The clean-up process replaces the non-indexed or noise with more 

reasonable indexed data through neighbouring grain relationships (neighbour correlation). 

MTEX [291] provides a grain erosion and dilation algorithm to successfully fill the bad 

data when the non-indexed region is less than 30%. The most popular approach for 

segmenting the grains is known as the burning algorithm by picking a random location as 

the starting scanning point and adding the nearest neighbouring pixels into its aggregate 

if less than the specified threshold tolerance. This approach is adopted by MTEX [292], 

ATEX [293] and DREAM3D [294]. The detailed parameters and optimization process is 

introduced in Chapter 4 methodology section.   
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Figure 3-17. Full grain map reconstruction, colouring and editable file extraction in AZtec. 

 

3.4.3 Texture analysis 

This thesis uses HKL standard coordinates to record the crystallographic orientation. 

The specimen coordinate transformation is defined through three Euler angles in Bunge 

definition: 𝜑1, Φ, and  𝜑2. The Bunge Euler angles make the second rotation about the x-

axis compared to Roe, Matthies and Kocks angles which rotate about the y-axis.  

The Bunge Euler angles are calculated to plot the orientation distribution in three types: 

(i) pole figure showing the general texture on a projected crystal plane, (ii) inverse pole 

figure (IPF) emphasizing the texture direction and strength on a projected sample plane, 

(iii) orientation distribution functions (ODF) focusing on the intensity of Euler angles 

projected in a Euler space. Figure 3-17 shows a reconstructed grain map example, 

coloured according to the Euler angles and crystallographic types, as well as the 

conversion of the raw data into .ctf type data, a more common and user-friendly format 

for analysis. 

After grain reconstruction and texture analysis, it is also feasible to calculate the 

misorientation distribution function (MDF) through the similar approach adopted by ODF 
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measurement. In this thesis, the Kernal averaged misorientation method is used to 

calculate the misorientation relationships. 

These Euler angles are finally converted to a rotation matrix, which links the grain 

orientation with the three user-defined subroutine introduced in Section 2.7, in finite 

element modelling work. The three rotations are calculated as: 

𝒈𝜑1
= (

cos𝜑1 sin𝜑1 0
− sin𝜑1 cos𝜑1 0

0 0 1
) 

𝒈Φ = (
1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ

) 

𝒈𝜑2
= (

cos𝜑2 sin𝜑2 0
− sin𝜑2 cos𝜑2 0

0 0 1
) 

Thus, the rotation matrix is obtained by multiplying these matrices in sequence: 

𝒈 =  𝒈𝜑1
∙  𝒈Φ  ∙   𝒈𝜑2

 

3.5 Tensile and fatigue tests 

3.5.1 Axial tensile test 

The mechanical behaviour of PBF metals was measured through experimental testing 

to facilitate constitutive behaviour calibration and validation of the CPFE model. The 

stress-strain curve, as well as the fatigue life are compared to the CPFE predicted result 

shown in result section of Chapters 4-7. 

The tensile behaviour of three PBF-LB Ti-6Al-4V samples following ASTM-E8 

standard was first tested on Instron-4467 at NUI Galway under room temperature. This 

machine does not support extensometer control/data logging. Thus the testing result is 

only adopted for a quick estimation of yield strength and ultimate strength of the sample, 

but is not used for modelling validation. Details on the test results from Instron-4467 are 

provided in Appendix B1.  Ti-6Al-4V samples introduced in Chapter 5 & 6 were all tested 
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on an Instron 8500 servo hydraulic machine at NUI Galway using flat jaws, equipped with 

a clip-on strain extensometer. The V-shaped jaws were also used to test the cylindrical 

specimen; however, the gripping force was not sufficient, and the grip became loose 

during the test. The tests were only able to continue after some adjustments to the sample 

geometry modification. The initial tensile speed was set at 1.25 mm/min and increased to 

2.5 mm/min after yield. 

As for the 17-4PH SS samples used in Chapter 7, axial tensile test was conducted under 

ambient air conditions using a servo-hydraulic tension-torsion Instron load frame 

equipped with the 8800 controller, located at the University of Nevada, as detailed in a 

prior publication from that research group [79]. The test machine has a maximum loading 

force capacity of 222 kN to characterise the plasticity behaviour of the 17-4PH SS 

material. 

 

Figure 3-18. Instron 4467 (left) and 8500 hydraulic machines (right) for tensile and fatigue 

testing at NUI Galway. 
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3.5.2 Fatigue test 

The L-605 CoCr sample was tested at room temperature on an Instron 8500 servo 

hydraulic machine using V-shaped jaws, as previously published [295]. The strain-

controlled LCF behaviour tests with a cyclic strain ratio of -1 were carried out at four 

different strain ranges. Closed-loop control of strain-range and strain rate (0.01 𝑠−1, was 

monitored via a clip-on extensometer. The critical fatigue crack initiation (FCI, values 

have previously been identified by comparison of predicted and measured FCI data for 

sample tests, with validation against other independent data. 

The strain-controlled LCF test of PBF Ti-6Al-4V was also on Instron 8500 machine 

with the clip-on extensometer to accurately monitor the strain deformation. The strain rate 

was set as 0.001  𝑠−1 with an interval of 0.002. The fatigue test was tested on ±0.5% only 

due to the poor ductility of the sample. The details of this fatigue test are provided in 

Appendix B2. 

The strain-controlled fatigue tests of PBF 17-4PH SS samples were equipped with an 

extensometer with a gauge length of 12.7 mm to monitor and measure the strain evolution. 

The tensile test was conducted under displacement control with an approximated strain 

rate of  8 × 10−4 𝑠−1. Fully reversed strain-controlled fatigue tests were conducted with 

the testing frequency from 0.2 Hz to 10 Hz according to the strain amplitude ranging from 

1.5 ×  10−3 to 1.0 × 10−2.  The strain limit is 40% in the monotonic tensile test and 

±10% in the fatigue test. During individual cycles in the fatigue test, a minimum of 200 

data points were recorded, and the fatigue failure was considered to take place once the 

maximum stress was reduced by 5% compared to the stabilized peak value. The fatigue 

tests under four different strain ranges are compared to the modelling prediction, in 

Chapter 7.  
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4 A high-fidelity EBSD-CPFE modelling tool for grain 

size sensitive fatigue crack initiation assessment in 

CoCr alloy. 

 

The core contents of this chapter have been published in as [Tu Y, Leen SB, Harrison NM. 

A high-fidelity crystal-plasticity finite element methodology for low-cycle fatigue using 

automatic electron backscatter diffraction scan conversion: Application to hot-rolled 

cobalt–chromium alloy. Proceedings of the Institution of Mechanical Engineers, Part L: 

Journal of Materials: Design and Applications. 2021;235(8):1901-1924. 

doi:10.1177/14644207211010836]…. 

 

4.1 Introduction 

CoCr alloys are employed in the medical device industry for a number of important 

applications, including cardiovascular stents [296] and orthopaedic hip implants [297, 

298], where design against premature fatigue failure is of critical importance. In recent 

years, major advances in microstructural imaging, including electron backscatter 

diffraction (EBSD), have enabled accurate visual characterisation of grain structures and 

their orientation [21]. In parallel, advances in computational modelling methodologies, 

including crystal plasticity finite element (CPFE) modelling, have permitted advanced 

microstructural mechanical characterisation [23]. The common approach to CPFE 

modelling for load-bearing prediction of metallic structures involves the simulation of 

simplified grain morphology and substructure detail. The methodology generates high-

fidelity CPFE models, by directly converting measured EBSD metal microstructure grain 

maps into finite element microstructural models, and thus captures essential grain 

definition for improved microstructure-property analyses. 

This chapter provides a detailed systematic procedure including the development of an 

automatic tool for EBSD processing to convert data directly into image-based realistic 
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CPFE models for high-fidelity EBSD-based micromechanical predictions. Attention is 

focused on the cyclic plasticity and low cycle fatigue (LCF) crack initiation response for 

the biomedical-grade CoCr alloy, previously experimentally characterized by Sweeney et 

al. [183, 235, 296]. The latter presented experimental testing characterisation, and FE 

modelling, J2 continuum plasticity and CPFE, based on a VT methodology. To 

demonstrate the reliability and accuracy of the new method, comparisons are made with 

VT-generated models as the conventional and convenient CPFE method, and also against 

the experimental test data. 

This chapter details a methodology for predicting the structure-property effect of as-

manufactured microstructure, including true grain morphology and orientation, on cyclic 

plasticity and fatigue crack initiation in biomedical-grade CoCr alloy. As a starting point, 

this work distinguishes the performance between two commonly adopted representative 

volume element (RVE) methods; Voronoi tessellation (VT) and real image-based models, 

as detailed in Chapter 2.7.2. The convergence of the minimum RVE sizes for both models 

need to be quantitatively determined, e.g., the sufficient volume of RVE required to either 

obtain a reliable stress-strain relationship, or address the “hot spot” location leading to 

fatigue crack formation. These outputs offer useful criteria and significant guidance for 

RVE generation method, cropping size selection, and scattering elimination in the 

following studies, Chapter 5-7. 

 

4.2 Methodology 

4.2.1 High-fidelity EBSD image-based methodology 

A key objective of the present work is to develop an optimum methodology for the 

rapid and accurate construction of image-based computational microstructural models. 

The methodology is predicated on the use of EBSD, which is an advanced microscopy 

technique, based on scanning electron microscopy as described in Section 3.4 and [21] 

[299]. This methodology is motivated by the two new types of information obtained from 

the automated EBSD technique: (i) quantitative orientation for each individual crystal and 
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(ii) ability to represent texture. The capability for detection with high pixel resolution 

facilitates a high accuracy, high-resolution grain boundary demarcation process. The 

reconstructed grain maps based on the quantitative orientation map, in turn, represent the 

grain morphology and grain size information with high resolution [300]. Before 

mechanical tests, EBSD imaging was conducted on the polished L605 CoCr surface, to 

produce crystallographic orientation maps parallel to the central axis of the cylindrical 

specimen [295]. An initial grain reconstruction attempt was performed on the EBSD raw 

data using an open-access toolbox MTEX [291] with a segment tolerance angle of 5 

degrees. Figure 4-1 shows the segmented grain map, coloured with inverse pole figure 

definition. Each colour represents a unique orientation, defined by the set of three Euler 

angles, corresponding to the perpendicular plane direction projected on the colour legend. 

 

Figure 4-1. Reconstructed 576 m × 476 m grain map of CoCr alloy from electron 

backscatter diffraction (EBSD) scan.   

  

The mean orientation values of the pixels within the same segmented grain were then 

calculated and projected to generate the scatter pole figure and the inverse pole figure, as 

shown in Figure 4-2. Plane projections on the three pole figure reference spheres only 

show very small areas of red, where similar orientations are shared. The indicated texture 
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strength is calculated as 1.2% by MTEX, which is equal to the fraction of projected 

orientations within a 10-degree difference compared with the direction of the vector 

orthogonal to fibres (a presumed directional texture that is mostly orthogonal to all the 

grains) in the (001) pole figure. The quantitative texture strength analysis indicates 

negligible preferred crystal orientation, i.e., random orientation. Consequently, in the 

more conventional VT method for CPFE model generation, as described below, random 

orientations are assigned for the cubic cell RVE model.  

 

Figure 4-2. (a) Grain orientations are projected on three reference sphere planes (001) 

(011) and (111) to plot pole figures for CoCr alloy and (b) texture strength of 1.2% 

obtained through inverse pole figure analysis. 

The proposed new methodology for converting EBSD data into a high fidelity CPFE 

is developed in the commercially available programming language MATLAB 

(MathWorks) [301]. The MATLAB code calls a number of other software tools, including 

MTEX, DREAM3D (Digital Representation Environment for the Analysis of 

Microstructure in 3D) [294, 302] and Python, for microstructure manipulation and mesh 

generation etc. Figure 4-3 shows a graphical illustration of the conversion process used 

for the present CoCr alloy, starting from EBSD raw file processing, microstructural 

information conversion, to linkage with CPFE constitutive laws. Unlike other digital 

microstructural reconstruction tools running from the command line, DREAM3D works 
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through a pipeline consisting of several filters with unique functions. The EBSD 

information including the pixel coordinates and the associated orientations are input into 

the pipeline structure which contains the EBSD reader and FE mesh writer functions. 

Outputs from such generated pipeline clearly define data containers with reconstructed 

and meshed grain information. This structure provides flexibility for customized plug-ins 

and makes it easier for combined use with Python to import necessary reconstructed 

imaging information for CPFE simulation in the commercially available general purpose 

FE solver ABAQUS [303].     

 

Figure 4-3. Flowchart of the overall steps of generating a realistic CPFE model based on 

the EBSD characterisation.  

The microstructure information acquired by the EBSD measurement technique is 

shown in Figure 4-4 (a) with planar dimensions of 576 m × 476 m. The EBSD raw data 

was firstly processed with MTEX. The microstructure morphology was processed in a 

series of image cleaning steps, involving:  

 specification of feature recognition tolerances,  

 eliminating poor-quality pixel and  

 minimum grain size removal, in order to minimise noise artefacts.  
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In this grain reconstruction procedure, the grain segmentation process depends largely 

on the quantitative orientation measurement of EBSD; non-indexed regions, as shown by 

the small white dots in Figure 4-4, were assigned to the surrounding grains [304]. 

Consequently, the algorithm [305] merges the voxels sharing similar orientations into the 

same grain ID list, by comparing the misorientation angle with the critical tolerance 

between the seed voxel and each of its neighbours. After each loop a new reference seed 

voxel is chosen to write up another grain list, and this process repeats until all the voxels 

are indexed. Hence, this process is sensitive to the precise value assigned to the relative 

misorientation tolerance, as it determines if a pixel belongs to the same grain as a 

neighbouring element or is a separate grain or feature. Too large a misorientation tolerance 

angle allows too many voxels for the same feature, especially with respect to lack of 

sudden misorientation change in deformed material. Too small an orientation tolerance 

will overpopulate the model with excessive independent features. However, a significant 

amount of imaging artefacts was observed when processing the EBSD raw data. The 

spurious data is possibly due to the presence of pores or precipitates or, are unindexed 

grain boundary points due to duplicate data from adjoining grains, thus distorting the 

pattern recognition. One solution to this issue is to increase the misorientation tolerance 

angle during grain segmentation [300].    
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Figure 4-4. (a) EBSD measurement with noise before post proceeding. The non-indexed 

pixels are shown in white regions and the FCC structure CoCr phase shown in blue. (b) 

Noise measurement through quotients between the noise pixel area and the boundary 

length. 

Commonly used misorientation tolerance angles range between 5° and 10° [306]. Thus, 

four misorientation tolerance angles, 5°, 8°, 10°, 15° were tested on the same EBSD raw 

data. The proceeded maps with the four settings varied little with respect to the resulting 

total number of grains, viz. 1096, 1042, 1018, 988 respectively. The misorientation 

tolerance angles range has minimal influence on the resulting grain segmentation in this 

work, and 10° was chosen as the critical tolerance angle for grain reconstruction 

considering the relatively high grain boundary misorientation angles and small size poor 

data points. Then, the minimum grain size limitation in terms of number of the voxels 

(4 𝜇𝑚3, was set to merge extremely small ‘grains’ into surrounding grains. The key 

parameter for this criterion is the choice of minimum grain for the sample, as well as the 

suitable minimum numbers of voxels required to represent the grain morphology. The 

measurement of grain size in the EBSD-converted CPFE model adopted the same 

definition as in the EBSD image analysis, viz. 2-D circular equivalent diameter 

assumption.  In this study, the minimum grain size was defined as 3 voxels which is the 

maximum area size of non-indexed spots, so that grains with fewer than 3 voxels were 

combined into a neighbouring grain and were assumed to be artificial noise in the EBSD 
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scan. Finally, the orientation information for individual grains was captured by the inverse 

pole figure with a unique colour identification scheme, as shown by the arrows in Figure 

4-5 (a). These orientation details were written in the form of Euler angle datasets (three 

Euler angles). The Euler angles datasets were converted to a rotation matrix dataset, as 

input material properties for the CPFE UMAT, representing the crystallographic slip 

systems of different grain sets in the polycrystalline model.  

The resulting grain data was relabelled and discretized to a voxel FE mesh by 

reorganizing and grouping the nodes and setting the orientation property in the FE mesh 

to correspond to the Euler angle value in the EBSD map. In this 8-node element FE model, 

the 3D RVE was generated by extending the 2D map along the z direction by one-element 

thickness, resulting in a columnar grain shape in the third dimension in this quasi-3D 

model. In this method, grain boundaries have zero thickness, however some computational 

studies have included explicit representation of the grain boundaries in small sample sizes 

[307]. The grain ID lists were used to define sections in ABAQUS. Three grains labelled 

A, B and C are highlighted in both images in Figure 4-5 to emphasize the complete 

equivalent relationship between the EBSD image and the CPFE model.  
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Figure 4-5. Output schematic during image-based CPFE generation procedure showing 

direct mapping of grains from 576 m × 476 m EBSD into CPFE model. (a) Arrows 

show the projected orientation for individual grains. Three randomly picked grains 

labelled A, B and C are highlighted here for reference and comparison to the converted 

and meshed CPFE model in (b). 
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4.2.2 A statistically equivalent RVE model approach 

The commonly-used VT approach for the generation of CPFE models representing 

measured microstructures is an obvious comparator for the proposed image-based (EBSD-

based) methodology described above. Initial testing of 2D VT models demonstrated an 

18.8% error in the predicted mechanical performance (maximum cyclic stress) compared 

with the experimental results. This compares to a predictive accuracy within 5% for the 

3D VT or quasi-3D (one-element thickness) models. Knezevic et al. [308] have previously 

reported the same limitation of 2D VT CPFE models. The key concept here is to develop 

a statistically-equivalent RVE model to represent the microstructure, in this case of the 

hot-rolled biomedical grade L605 cobalt chromium alloy previously characterised by 

Sweeney et al [235] via EBSD and fatigue testing. For the present work, a Voronoi 

tessellation methodology was developed to generate an FE cubic RVE cell. The Python 

library SciPy (Version 1.5.0) [309] was called to generate the nuclei points through the 

Delaunay triangulation algorithm, and then the edge of each polygon shape was connected 

based on the circumcircle around the nuclei points, thus forming the grain boundaries. The 

grain boundary coordinates were recorded and later read by ABAQUS. The grain size of 

the EBSD characterisation was determined through an equivalent circular diameter 

definition. There exists an argument that partial grains (on the edges) should be removed 

when measuring the averaged grain size to avoid introducing a bias since most partial 

grains are large. Thus, the average grain size measurements were calculated based on 

EBSD map (i) with all grains, and (ii) without partial grains, respectively. It was found 

that the partial grains comprised 26% of the total number of grains. The calculated 

equivalent circular diameter was 27.3 m measured from the full grain map, and this value 

increased to 27.8 m from the map without partial grains. Considering that the EBSD-

based modelling uses full grain map conversion and a relatively small difference between 

the two calculations (1.8% difference), the grain sizes in this study were measured using 

full grain EBSD data. The grain size of the 3D VT model was represented using the 

equivalent spherical diameter. The grain volume was calculated by the number and size 

of the voxel mesh within the same grain. The grain size distribution was represented using 

a log-normal distribution fit to the measured data of mean and standard deviation of the 

grain sizes, as shown in Figure 4-6. The equivalent spherical diameters d of the grains are 
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extracted and regrouped to plot probability distribution. The grain size distribution was 

represented using a log-normal distribution fit to the measured data of mean grain 

(equivalent spherical diameter d) and standard deviation. The definitive RVE model thus 

contains the necessary statistically representative microstructural information. 

 

Figure 4-6. Comparison of measured grain size distribution from EBSD measurement 

with RVE cell distribution in VT based CPFE model. 

Two boundary condition configurations were considered here: simply constrained 

boundary condition (i.e. fixing the model at the bottom and left side) and periodic 

boundary condition (PBC). Some studies have suggested that it is not necessary to use 

PBCs for micromechanical models under tensile loading [137]. Other authors have shown 

that due to PBCs linking the response between boundary surfaces, there is a significant 

benefit in reducing the minimum required model size for a definitive RVE [221, 310]. A 

definitive RVE model has sufficient microstructural information to fully represent the 

general macroscopic performance. Computational cost is high when running 3D fatigue 

constitutive models. The runtime required increases exponentially as the polycrystal 

geometry size scales up. In addition, PBCs are considered capable of providing accurate 

mechanical behaviour prediction with fewer variations to achieve complete convergence 

as the number of grains grows to a critical value [311]. PBCs are assigned to all FE nodes 

along the free edges of the unit cell shown in Figure 4-7, through a custom-written Python 
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script [234]. N, E, S, W are the four boundary lines and NW, NE, SE, SW refer to the four 

corner nodes and z-direction is perpendicular to the square. Boundary constraints for the 

displacement U obey the following equations: 

 𝑼𝐸(𝑥) = 𝑈𝑆𝐸(𝑥) + 𝑼𝑊(𝑥) (4-1) 

 𝑼𝑁(𝑦) = 𝑈𝑁𝑊(𝑦) + 𝑼𝑆(𝑦)  (4-2) 

 𝑼𝑆(𝑥) = 𝑼𝑁(𝑥)  (4-3) 

 𝑼𝑊(𝑦) = 𝑼𝐸(𝑦)  (4-4) 

 𝑈𝑆𝑊(𝑥, 𝑦, 𝑧) = 𝑈𝑁𝑊(𝑥) = 𝑈𝑆𝐸(𝑦) = 0 (4-5) 

 

Figure 4-7. A cropped EBSD map to illustrate the principle of periodic boundary 

condition (PBC). N, E, S, W refer to the four edge surfaces of the model while NE, SE, 

SW and NW are the four corner points. Red curve around the model shows a typical 

deformed shape with PBC definition 

In addition to PBCs, a periodic grain boundary (PGB) geometry was generated using 

the DREAM3D function “pack the primary phases”. This filter generates a PGB for the 

microstructure that combines the grains along the surface bounds to be of the same 

specification. Figure 4-8 shows the generated periodic grains within the resulting CPFE 

model.  
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Figure 4-8. Illustration of the periodic grain boundary (PGB) in the polycrystalline RVE 

morphology. Labels 1, 2 highlight grain examples with PGB definition where the grains 

along the edge surfaces of the RVE model are bounded to the same section (grain) 

definition. 

The definitive RVE model thus contains the necessary statistically representative 

microstructural information (as shown in the comparison of Figure 4-6) for prediction of 

the macroscale mechanical behaviour, as illustrated in Figure 4-9. 

 

Figure 4-9. The concept of periodically repeated RVE model to predict mechanical 

property. Microstructure characterisation information obtained from a partial area of the 

sample is used for generating RVE unit cell model, which is then repeated periodically 

using the PBC and PGB definitions to predict macroscopic deformation. 
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In the present work, the cyclic plasticity responses of the two sets of boundary 

conditions were compared for strain-controlled simulations corresponding to strain ranges 

of ±0.5%, ±0.8%, ±1.0% and ±1.2%, viz. low cyclic fatigue loading cases, using the 3D 

VT CPFE models presented below. It was thus established, using the phenomenological 

CPFE constitutive model described in Chapter 2.3.2, that the simply constrained approach 

over-predicts local von Mises stress by between 10 to 20% relative to the PBC approach, 

the 0.5% comparison case, as shown, for example, in Figure 4-10. The remaining models, 

both VT and EBSD-based, in this thesis, thus use a PBC-based approach.  

 

Figure 4-10. Effect of assumed boundary condition on localised von Mises stress. Finite 

element contour plots of the von Mises stress distribution for 0.5% strain-range case 

using simple boundary condition (BC) and periodic BC definition.  

4.3 Results 

4.3.1 RVE converged model size determination. 

4.3.1.1 Determination of a converged definitive VT model. 

The determination of a suitable (minimum) size is the first step in RVE modelling. 

CPFE models can lead to noticeable scatter in maximum principal stress [312] and initial 

yield strength when the number of grains is below 20 along cross-section area [313]. 

Hojun et al. observe that the predicted Von Mises stress values have a scatter of up to 

11.7% when fewer than 100 elements are defined in individual grains [314].  This 

quantitative RVE convergence study ensures that the resulting simulation scatter due to 
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inherent VT algorithm shortcomings is minimized to a reasonable level so that both VT 

and EBSD models represent the (statistically) same grain size distribution. One benefit of 

the VT method is convenience with respect to studying RVE convergence; this is due to 

the artificial nature of the model, whereby it is straight-forward to generate models with 

increasing numbers of grains for the same grain size distribution. Hence, RVE 

convergence is first established here using the VT-based models. The constitutive material 

parameters of CoCr alloy for this study were previously calibrated by Sweeney et al [315], 

as shown in Table 4-1. 

Table 4-1. Material parameters for CoCr alloy. 

Parameter Value 

�̇� 0.002 𝑠−1 
𝑛 50 
𝘨0 100 𝑀𝑃𝑎 
𝘨∞ 130 𝑀𝑃𝑎 
ℎ0 100 𝑀𝑃𝑎 
𝐶1 80 𝐺𝑃𝑎 
𝐷1 750 
𝐶2 1.25 𝐺𝑃𝑎 
𝐷2 0.001 
𝑏𝛼 2.56 × 10−10𝑚 
𝑣 1.0 × 1011𝑠−1 

Δ𝐻 2.85 × 10−20𝐽 
𝑇 293𝐾 

𝑘 1.38 × 10−23𝐽𝐾−1 

𝛾0 1.0 × 10−3 

𝜌𝑆𝑆𝐷,𝑚 5 × 1010 𝑚−2 

 

Figure 4-11 shows a typical example of the scatter predicted for three realizations of 

the statistically equivalent grain distributions on a 30-grains RVE mode. Although the 

average mesh density of 900 elements/grain is sufficiently refined, based on the findings 

of Harewood [316], for example, and both periodic boundary condition and grain 

boundary geometry were adopted, the predicted bulk stress values for an applied strain of 

0.5% strain are 502.7 MPa, 507.4 MPa and 492.7 MPa, i.e. 3% difference between 

maximum and minimum. As for FIP p, the scatter in incremental values from the third 

cycle is 32.2%, with similar associated scatter in predicted FCI life. 
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Figure 4-11. Comparison of predicted responses from different realisations of VT-based 

RVE (30-grain case) with same grain size distribution. Three realisations with different 

markers show (a) stress-strain behaviour for 0.5% applied strain and (b) stabilized 

hysteresis loops for ±0.5% strain-controlled cyclic case. 

In the literature, there is significant variation in RVE sizes, in terms of the number of 

grains, e.g. [137]. The size of the definitive RVE depends on material properties such as 

elastic modulus, shear modulus and plasticity [317] and typically needs to be quantified 

individually for each application, including local considerations such as boundary and 

loading conditions, as well output criterion for convergence. 
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Figure 4-12. VT-generated CPFE models used for RVE convergence study with five 

groups differing in numbers of grains: 50, 80, 120, 150 and 190. 
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This study aims at ensuring a reliable prediction of elastic-plastic behaviour for an 

applied tensile strain of 0.5%. In order to facilitate this, a matrix of RVEs consisting of 

different random realisations for different numbers of grains, all using the same grain 

distribution (mean grain size and deviation) data, was generated using VT. Recent work 

by Farukh et al. [137], for 2D RVE convergence, concluded that a 169-grain RVE was 

sufficient for convergence under strain-controlled tensile deformation. As shown in Figure 

4-12, the numbers of grains considered were 50, 80, 120, 150, and 190 respectively, for 

each of the three realisations. Each group includes three realizations for the specified 

number of grains. All the models have the same grain size distribution (as measured from 

EBSD analysis, see Figure 4-6) and element density (100 elements/grain). The FE mesh 

density was set constant at 100 elements per grain, according to a previous study 

demonstrating that 98 elements per grain were a sufficient density for converged results 

[318].  

Figure 4-13(a) shows the effect of number of grains on scatter in predicted macroscopic 

stress, and the computational cost for the different RVE sizes are shown in Figure 4-13(b), 

based on a Windows workstation, consisting of a quad-core Intel i7 processor and 32 GB 

(4 × 8 GB) with ABAQUS multi-core accelerating assist. Simulation run-time needs to be 

balanced carefully against scatter when deciding the size of definitive RVE model, 

because the required computational cost multiplies for fatigue (cyclic loading) cases.  

 

Figure 4-13. (a) Effect of number of grains from 50 to 190 in RVE model on maximum 

principal stress, with error bars representing the standard deviations across the three 

realizations; (b) effect of number of grains in RVE model on computational cost for 

0.5% strain tensile test. 
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The predicted scatter in mechanical response is due to the scatter in randomly generated 

microstructural RVEs. Artificial variations in micro-structure occur when the total RVE 

volume is not sufficiently large. Figure 4-14(a) shows comparisons of the probability 

density plots of grain size distributions for different realisations of the 30-grain RVE and 

the 190-grain RVE. The scatter is significantly less for the 190-grain RVE. Furthermore, 

Figure 4-14(b) shows the corresponding comparison between the 190-grain RVE and the 

measured EBSD data, illustrating that the 190-grain model correlates closely to the EBSD. 

Hence, the establishment of a converged RVE is critical for minimizing the errors 

(artificial scatter) from VT-generated CPFE models of microstructures. The remaining 

CPFE-VT results in this chapter correspond to the 190-grain RVE.  

 

Figure 4-14. Comparisons of probability density distributions for grain size. �̅� is the 

averaged grain diameter and is equal to 27 m. (a) grain size distribution for three 

different realisations of 30-grain and 190-grain RVE models.  (b) Comparison of grain 

size probability density distribution of 190-grain RVE (in red) with measured EBSD 

distribution (in blue). 
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4.3.1.2 Determination of a converged EBSD model. 

The convergence investigation for the EBSD-based model focuses on the effect of ratio 

of EBSD map length to average grain size (l/d) using five cropped regions to construct the 

comparison sets, as shown in Figure 4-15. The dashed rectangular window indicates the 

cropped model and the value on the right-top of this window gives the relative (l/d) ratio.  

Unlike a strictly regular grain model, the averaged grain size slightly varies and is 

recalculated in each case of the cropped EBSD map; consequently, the l/d ratio is not 

completely linear with respect to the edge length l along the x axis direction. 

 

Figure 4-15. Illustration of the five cropped areas with different EBSD map length to 

average grain size l/d ratios for convergence study. 

These five models were subjected to fully-reversed 0.5% cyclic strain. Consistent with the 

previous VT-RVE convergence study, the difference in stress-strain hysteresis response 

is negligible, being only an 8 MPa (1.42%) difference in maximum stabilized principal 

stress. This is attributed to the number of grains in the smallest cropped EBSD model 

being 272, which exceeds the above-identified convergence limit of 190 grains in an (VT-

generated) RVE. However, l/d ratio was observed to marginal influence predicted FCI 

life, as shown in Figure 4-16. The predicted FCI life was found to decrease by factors of 

1.12 for W and 1.23 for p as l/d increased from 21.7 to 9.9, with a negligible increase for 



 

 

112 

 

l/d > 14.5. These results are consistent with previously-presented results in a fretting 

fatigue study [234] and a failure strain [236] study. It was found that predicted life is more 

stable with respect to l/d for W than for p. It is important to note that all subsequent CPFE 

results meet the convergence requirements of more than 190-grain for VT models and l/d 

> 21 for EBSD models. 

 

Figure 4-16. The effect of l/d ratio on predicted FCI life for the EBSD-based CPFE 

model, as predicted via FIP p and FIP W. l/d ratio is observed to have marginal 

influence on predicted FCI life. 

4.3.2 Stress-strain response during cyclic deformation. 

Figure 4-17 shows a comparison of the CPFE models with the experimental data [315] 

for four different applied strain ranges, demonstrating close agreement of both methods 

with the test data. Similar to the finding of a previous martensitic steel study [319], in 

general, the macroscopic stress results from the two methods show only slight differences 

in terms of stress-strain response.  Both models, viz. VT- and EBSD-based methods, 

provide a satisfactory prediction of the hysteresis stress-strain relationship, although the 

VT method predicts slightly less accurate maximum tensile stress for the lowest and 

highest strain-ranges. The predicted responses show the close agreement of both methods 

with the test data, with the EBSD predictions showing slightly higher fidelity, particularly 

for the tensile part of the lowest and highest strain ranges. 
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Figure 4-17. Comparison of measured and CPFE-predicted stabilised hysteresis stress-

strain loops behaviour for strain-ranges of 0.5%, 0.8%, 1.0% and 1.2% for (a) EBSD-

based CPFE model and (b)VT-based RVE response. 

To further characterize the difference between these two polycrystalline generating 

methodologies, Figure 4-18 (a) shows a comparison of the predicted stabilized stress-

strain responses from the EBSD- and VT-based CPFE models. Figure 4-18 (b) gives the 

stress values at different strain ranges from experimental measurements and CPFE 

predictions. 
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Figure 4-18. (a) Comparison of stabilised hysteresis stress-strain loops from VT- (blue 

dashed line) and EBSD-based CPFE models (red curve). (b) Comparison of maximum 

stress values at four strain ranges of 0.5%, 0.8%, 1.0% and 1.2% between experimental 

measurement (circle, VT- (blue square) and EBSD-based CPFE models (red triangle). 

4.3.3 Fatigue crack initiation prediction. 

The 𝐹𝐼𝑃𝑐𝑦𝑐 values are calculated by the difference between successive cycles after the 

stress-strain response has stabilized, taken here as the 7th cycle. The critical FIP values are 

calibrated using the equation 𝐹𝐼𝑃𝑐𝑟𝑖𝑡 = 𝐹𝐼𝑃𝑐𝑦𝑐𝑁𝑖
𝑒𝑥𝑝

 at a sample strain range, in this case, 

the 1% case. Table 4-2 shows the identified critical FIP values against FCI life. The FCI 

life identified from the test data was 15,690 [315].  

Table 4-2. FIP critical values determination of the original fine grain sample for strain-

range of 1%.   

Model type 𝒑𝒄𝒓𝒊𝒕 𝑾𝒄𝒓𝒊𝒕 

VT 312.6 132123 
EBSD 380.2 148920 

 

Figure 4-19 shows a contour plot of the measured grain boundary misorientation angle 

along with the corresponding CPFE-predicted equivalent (von Mises, stress distribution, 

p-distribution and W-distribution, at 0.5% tensile strain. Grain boundaries are not 
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explicitly modelled here as per [307] but it is clear that the ESBD construction data 

provides an accurate geometric representation of grain boundaries for the microstructure 

RVE being modelled. A significant benefit of the EBSD-based CPFE model is the ability 

to capture the localization of crystallographic plastic slip and discontinuity stresses at the 

grain boundary interface regions of the microstructure. This is critical for an accurate and 

realistic representation of the discontinuity in crystallographic orientations between 

adjacent grains, which plays a key role in fatigue crack nucleation [32]. It is important to 

note that the VT method is limited to straight-line polyhedral boundaries and thus fails to 

provide a realistic neighbour relationship between adjacent grains. Hence, the VT method 

cannot provide realistic representations of the localized stresses and slips. 

 

Figure 4-19. CPFE-predicted contour plots showing distributions of (a) von Mises stress 

at 0.5% strain after 6 cycles with grain boundary misorientation angle information where 

the boundary curve is coloured based on the orientational angle difference between the 

neighbouring grains and (b) fatigue indicator parameters, effective plastic strain p and 

accumulative energy dissipation W for EBSD-based RVE, at 0.5% tensile strain. 
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Figure 4-20(a) shows the comparison of the EBSD model for both FIPs with the 

experimental data across the full set of strain ranges. Although accurate FCI prediction 

was achieved using both FIPs, the W parameter is found to be more accurate across the 

full range. Figure 4-20(b) shows the comparisons of the VT-based and EBSD-based FCI 

predictions with the test data. The EBSD-based RVE model predictions are more accurate 

than those of the VT-based models. The EBSD-based p- and W- predictions are all within 

25% and 23%, respectively, of the test data; in comparison, the corresponding errors for 

the VT-based model are 37% and 30%, respectively. A ±30% error area is provided for 

the ease of predicting accuracy comparison.  Although accurate FCI prediction is achieved 

using both FIPs, the W parameter is more accurate across the full range. Figure 4-20(b) 

indicates that the EBSD-based RVE model predictions are more accurate than those of the 

VT-based models.  

 

(a) 
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(b) 

Figure 4-20. (a) Comparison of the predicted FCI from EBSD-based RVE with 

experimental results (red circle), for FIP p (blue diamond) and FIP W (green triangle), 

and (b) comparison of VT-based and EBSD-based FCI predictions against measured 

data for W parameter.  

 

4.3.4 GND induced strain gradient length-scale size effect. 

In this section, the evolution of the immobile GNDs during deformation is captured in 

order to predict the effects of grain size on FCI performance. More dislocations are 

required to overcome curvature obstacles in the crystalline lattice induced by deformation. 

Smaller grains result in a higher plastic strain gradient thus leading to a higher localized 

hardening along the slip systems of smaller grains [50, 51]. The original material was 

annealed to increase the grain size. The grain size was defined by the averaged value of 

equivalent spherical diameter d from EBSD analysis. The EBSD-based CPFE model was 

assigned the strain gradient constitutive formulation to simulate the LCF behaviour of 

both the original fine grain (d = 27 m) and the coarse grain (d = 209 m) CoCr alloys, 

using the modified constitutive law specified in Chapter 2.3.2.  
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Table 4-3. Comparison of W-based FCI life prediction using EBSD-based modelling for 

two fine- and coarse-grain CoCr. 

Grain size Strain 

range 

𝑁𝑖
𝑒𝑥𝑝

 𝑁𝒊
𝒑𝒓𝒆𝒅

 

 

Fine 0.5% 

1.0% 

15690 

2752 

8820 

2740 

Coarse 0.5% 

1.0% 

8697 

2376 

6186 

2375 

  

Two fatigue tests were carried out on this annealed alloy at the strain ranges of ±0.5% 

and ±1.0%. Figure 4-21 shows the predicted hysteresis loops compared to experimental 

loops for the two different grain sizes. It is clear that a key effect of the coarsened grain 

size is the reduction in loop size and, hence, in cyclic strength, i.e. softened response. This 

is well captured by the present EBSD-based strain-gradient CPFE model for both strain 

ranges. In order to demonstrate FCI prediction for the two different grain sizes, the W-

based method was adopted, due to its established superior predictive ability above. A 

value 𝑊crit = 83934 MJ/m-3 was identified using the fine grain, ±1.0% data. Table 4-3 

shows the resulting comparisons between the predicted and experimental FCI data for 

both original fine-grain and coarsened-grain material for the two strain-ranges. It is seen 

that for the higher strain-range, the model is very accurate, while for the lower strain-

range, it is somewhat conservative.  
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Figure 4-21. Comparison of experimental measurements (black circle) and EBSD-based 

model results (red curve) for original fine grain and coarse grain after annealing, at (a) 

0.5% strain, and (b) 1.0% strain. 

 

Figures 4-22(a) and (b) shows the grain boundary mis-orientation relationships for the 

fine and coarse grain EBSD images and FE models. Figure 4-22(c) and (d) show the 

CPFE-predicted GND density distributions for both levels of microstructure refinement. 

It can be seen from Figures 4-22(b) and (d) that there appears to be correspondence 

between high-angle grain boundaries and concentration of GNDs. For the fine-grain 

model, it is not possible to identify such direct correspondence; the dominant 

characteristic is the significantly higher GND values throughout, due to the reductions in 

grain size. 
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Figure 4-22. The grain reconstruction and mis-orientation relationship for the two grain 

sizes of (a) d = 27 m (fine grain), (b) d = 209 m (annealed, coarse grain) CoCr alloy. 

The mis-orientations are classified into four ranges by 15 degrees interval in blue, green, 

yellow, and red, respectively. Predicted geometrically necessary dislocation (GND) 

density distributions of (c) material-averaged diameter d = 27 m and (d) d = 209 m, at 

1.0% strain range. 

4.4 Discussion 

The primary objective of this present work is to detail a new structure-property 

methodology to (i) systematically convert EBSD images directly into CPFE models and 

(ii) thus establish a micromechanics-based predictive method for fatigue crack initiation 

in realistic microstructure morphologies. Due to the inherent two-dimensional nature of 

the EBSD data, attention is limited here to ‘quasi-3D’ CPFE models, where grains are 

assumed to have one-element thickness in the out-of-plane direction. Thus, the grains are 

essentially columnar in this direction.  

Another objective of this work is to compare the results between VT-generated and 

EBSD-converted CPFE model. Consequently, a definitive RVE model convergence study 
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is necessary to minimize the influence of scatter and ensure the reliability of the 

comparison conclusion. The scatter studied here refers to the inherent limitation of the VT 

algorithm in failing to accurately represent the realistic microstructure with an insufficient 

number of grains. Such scatter caused by the inherent deficiencies of artificial model-

generating techniques (not microstructural scatter due to sampling region) is undesirable. 

The convergence study of the EBSD-based model is not simply a statistical size effects 

relationship [320]. FCI prediction is assumed here to be local, calculated based on the 

maximum or ‘hottest’ point in the map. As the l/d ratio increases, the size of EBSD map 

represented increases, so that the maximum ‘hot-spot’ value will be greater than or equal 

to the value from lower l/d values. This is consistent with the observation that fatigue life 

tends to decrease as part size increases [321] due to an increased probability of occurrence 

of fatigue-weak points. This trend is also consistent with the findings of Lucarini [322]. 

Figure 4-14 (a) shows decreasing tensile strength with an increasing number of grains, 

consistent with the results of Farukh [137]. In the following chapters, all the RVE models 

have the definitive size which is larger compared to the converged l/d ratio for EBSD-

based, as well as the number of grains determined in this study, to ensure the minimum 

influence of scatter.    

An important finding here is that the predicted cyclic hysteresis loops from both VT- 

and EBSD-based CPFE models are essentially the same. In contrast, for FCI prediction, 

EBSD-based models have improved the accuracy compared to VT-based models. The 

crystallographic work FIP, W, performs consistently better than crystallographic slip, p. 

W is able to capture more potentially dangerous hot spots by including the effects of both 

crystallographic slip and local crystallographic stress as indicated in Figure 4-20 (b). The 

EBSD-based modelling methodology is also applied to a coarsened-grain CoCr (heat 

treated) material and captures the grain size effect on (i) cyclic strength and hysteresis 

loop shape via incorporation of the GND-induced spatial gradient mechanism and (ii) FCI 

life via the crystallographic work parameter, W. FCI is a localized event specifically 

associated with microstructure discontinuities, such as grain boundaries with complex 

geometries, sudden changes of mis-orientation and facet nucleation. Compared with the 

coarse-boundary VT method, EBSD-converted models contain more accurate grain 

boundary morphologies and realistic neighbouring grain mis-orientation relationships.  
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Although the VT model, based on statistical information from SEM characterisation, 

is more convenient and arguably suitable for bulk stress-strain behaviour, it is important 

(and necessary), for capturing localised effects, to adopt the EBSD-based approach, due 

to the associated fidelity with respect to grain orientation, morphology, and 

microstructure-sensitive effects in particular. The latter has been shown here to give about 

10% improvement for fatigue crack initiation life.  

Despite the high-fidelity representativity and accurate prediction by EBSD-CPFE 

model, one significant challenge is the computational effort involved in such structure-

property prediction. Considering that VT model can be easily controlled to alter the 

microstructural feature, and the invisible shortage in predicting tensile bulk stress, the 

dual-phase VT is implemented in Chapter 5 and 7, for lath width effect and phase 

composition study. EBSD-based approach is used in Chapter 6 where grain boundary 

morphology and texture are important.  

 

4.5 Conclusion 

This EBSD-based method for CPFE model generation is shown to give approximately 

10% improved agreement for fatigue life prediction, compared with the more commonly-

used Voronoi tessellation method. However, the added microstructural detail available in 

EBSD-CPFE did not significantly alter the bulk stress-strain response prediction, 

compared to VT-CPFE. The new EBSD-based method within a strain-gradient CPFE 

model is also applied to predict measured grain size effects for cyclic plasticity and fatigue 

crack initiation, and shows the concentration of geometrically necessary dislocations 

(GND) around true grain boundaries, with smaller grain samples exhibiting higher overall 

GND concentrations. In addition, minimum model sizes for VT-CPFE and EBSD-CPFE 

models are proposed for cyclic hysteresis and fatigue crack initiation prediction. Key 

conclusions from this work are as follows: 

 A method is developed for converting electron back-scatter diffraction data 

images of microstructure into crystal plasticity finite element models, including 

grain morphology, size and orientation information. Details of the method are 
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provided and explained from reconstruction of the EBSD raw file to linkage 

with CPFE constitutive laws. The primary user inputs in this automated model 

generation tool are a definition of misorientation tolerance angle and of 

minimum feature size. The EBSD-based RVEs studied in this work are all one-

element quasi-3D models due to the lack of 3D EBSD raw data; however the 

EBSD-CPFE conversion method used here can be extended to 3D EBSD-based 

model generation. This fully automatic procedure also allows the generation of 

large groups of models rapidly, providing potential for the application of 

machine learning and parameter control.  

 The tool has been applied to generate image-based models of biomedical grade 

CoCr alloy and applied to the cyclic plasticity and low–cycle fatigue crack 

initiation prediction for multiple strain ranges.  

 A minimum RVE size with an adequate number of grains is required to 

sufficiently reproduce real crystallographic texture. For this hot-rolled L-605 

CoCr alloy sample and the CPFE models introduced in this work cyclically-

loaded (under strain control) at ±0.5%, ±0.8%, ±1.0% and ±1.2% strain ranges, 

a definitive RVE convergence study confirms a minimum of 120 grains, 

preferably higher than 190 grains, in VT-generated CPFE models, to avoid 

detrimental scatter in the prediction of cyclic hysteresis behaviour. The size of 

the selected EBSD-based model (model dimension to grain size ratio) needs to 

be greater than 14.5 to ensure converged prediction of FCI.  

 Until advanced multi-level Voronoi tessellation (VT) methods are developed 

for RVE generation, real microstructure conversion techniques (e.g. the EBSD-

based RVE for micromechanical modelling) offer benefits in terms of FCI 

prediction. In this study, it has been shown that an improvement of up to 10% 

in fatigue life prediction is achievable in FCI behaviour prediction via EBSD-

based micromechanical modelling based directly on observed microstructure, 

as opposed to using artificially generated VT microstructure models, even if the 

latter are based on approximate statistical equivalence to measured 

microstructure data. 
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 Modification of the constitutive law via a GND effect successfully captured the 

microstructural grain size effect on cyclic response and fatigue crack initiation 

life without the need to change model parameters. 
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5 Microstructure-based strain gradient crystal 

plasticity modelling of PBF-LB dual-phase Ti-6Al-4V 

 

5.1 Introduction 

A defining feature of metal AM processes is the gradual layer-by-layer formation of solid 

parts. In most metal AM processes, laser beam powder bed fusion (PBF-LB), for example, 

the process parameters (laser power, speed, layer thickness etc) remain unchanged during 

the build process. However, the complex thermal cycles, different combinations of 

printing parameter settings, and the directional fabrication features cause a large variety 

of microstructure features and inhomogeneity, leading to challenges and difficulties in 

product quality control. For example, the variation in thermal history along the PBF-LB 

build direction leads to non-uniform microstructure observed from different regions 

varying in distance from the powder bed base, even in the same metal parts. Even for fixed 

process parameters, it has been observed that an unintentional gradient exists in 

microstructural features, from the bottom of the part (nearest the build plate) to the top of 

the part, due to a variation in local thermal history along the build height [323].  

Typical laser beam powder bed fusion (PBF-LB) printers usually produce Ti-6Al-4V with 

highly elongated prior β columnar grains along the build direction. Typical measured prior 

β grain sizes vary from 55 to 620 m [324].  During the PBF-LB process, the β to α′ 

martensitic transformation occurs due to a very high cooling rate of more than about 410 

K/s, compared to 20 K/s during air cooling [325, 326]. This high cooling speed has 

transformed most of the β phase into martensite α′ laths within their parent prior β grains, 

with very little retained β phase (typically less than 10%) surrounding the grain boundary 

[327]. Lath width was measured for PBF-LB fabricated Ti-6Al-4V part with the building 

height of 38 cm [323].  

The columnar prior 𝛽 lath width was observed to increase from an average value of 

approximately 86m measured at the bottom to 154 m at top region of the part. Similar 

results were found for 𝛼 lath with width increasing from 0.58 to 0.87 m [328]. Another 



 

 

126 

 

study [329] carried out mechanical tests and found that the microhardness and tensile 

strength decreased as the building height increased in the Ti-6Al-4V specimen produced 

by electric beam melting. This phenomenon was explained by a slower cooling rate at the 

higher region during the AM process.  

This inevitable gradient and inhomogeneity AM phenomenon in microstructure can 

lead to unexpected product performance and product quality control difficulties, as 

observed in industry. This also presents difficulty in PBF-LB material characterisation, as 

local variations in microstructure lead to local variations in mechanical behaviour. 

Typically, this inhomogeneity issue is addressed via post-built heat treatment, e.g. post-

built annealing, as well as hot isostatic pressing (HIP), to regularise microstructure. The 

post-built heat treatment is also a standard process for reducing porosity, thus improving 

the ductility and fatigue properties of PBF-LB Ti-6Al-4V alloys [330]. However, such 

post-built processes, while homogenizing the structure, inevitably modify the grain size 

and phase composition. PBF-LB manufactured Ti-6Al-4V alloy, usually displays fully 

lamellar shape and dual-phase α+β morphologies within prior β-grains, after undergoing 

a fast cooling and solidification process [331]. The lath width size is highly dependent on 

thermal history and has been previously measured and quantified based on the Arrhenius 

equation with regards to the printing temperature cycle and primary phase kinetic [59]. 

The 𝛼 lath width in PBF-LB Ti-6Al-4V was measured to be between 0.42 and 2m, 

which increases to between 3.2 to 4.65 m after HIP [332]. Due to these microstructural 

changes after heat treatment, the mechanical tensile strength changes [333], with the UTS 

and YS decreasing from 1362 MPa and 1311 MPa, to 1180 MPa and 1115 MPa 

respectively after annealing at 600 °C. 

PBF-LB processed Ti-6Al-4V has higher tensile strength but poorer ductility 

performance than conventional (e.g. wrought) Ti-6Al-V [331], due to the predominant 

acicular α′ martensite microstructure. The development of a suitable microstructural 

model for understanding such hierarchical microstructures influence in mechanical 

response, consequently, is important to assist AM alloy design and quality control in 

industry. 
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The mechanical performance of metals during loading is largely dependent on 

microstructural features, such as phase composition, crystallographic orientations, grain 

morphology as well as grain size distribution [25]. Crystal plasticity finite element (CPFE) 

modelling is a micro-scale computational method to predict mechanical performance 

based on these microstructure and crystallographic properties [188, 228]. The recent 

advanced Voronoi tessellation (VT) improved through an optimal Laguerre tessellations 

technique, has allowed more accurate representative model generation, thus increasing the 

fidelity for the modelling of typical lath microstructure like pearlite, bainite, and 

martensite in steels [122], as well as lamellar Ti-6Al-4V [22]. The lamellar morphology 

based CPFE models have been generated for studying the cyclic deformation of non-AM 

duplex titanium alloys and the localized micropillar behaviour of the TiAl alloy [221, 

334]. Liu et al [335] directly import the morphology from microstructural predicting 

model viz. phase-field method, where the predicted alpha laths which solidified after 

phase transformation during the PBF-LB cooling process, were imported to CPFE for 

predicting mechanical properties.  

The microscale polycrystalline aggregate-based model feature, and the localized 

deformation predicting capability, make CPFE a suitable and qualified tool for 

investigating the microstructural sensitive phenomenon, such as the important grain size, 

or lath size effects in this chapter, for Ti-6Al-4V alloy. CPFE has been previously adopted 

by the Max Planck Institute for characterizing the lath size effect of hierarchical 

compound structure from rapid cooled multi-phase steels, using phenomenological 

constitutive laws [122, 336]. Another phenomenological flow rule was adopted for 

characterizing the effects of grain size on the mechanical strength of the intentionally 

designed functionally graded alloys [180, 337]. One typical and common solution is to 

implement a size effect on the initial critical resolved shear stress (CRSS), in the 

constitutive laws. The Hall-Petch type and its extended format CRSS calculating equation 

were defined to simulate the effect of grain size on the number of cycles for fatigue crack 

initiation in two wrought IN718 samples varying in grain sizes [182]. Other efforts also 

include implementing physical length-scale dislocation effects through a strain gradient 

development, to further capture the size sensitivity. For example, Dunne and co-authors 

introduced a length-scale physically based CPFE model with HCP slip system definitions 
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[31], providing support for the modelling of titanium alloys. In this work, the length scale 

effects, determined by the plastic strain, contribute to the grain level stress behaviour 

based on dislocation glide and pinning obstacles due to the existence of geometrically 

necessary dislocations (GNDs). In recent years this physically-based CPFE model has also 

been successfully extended and implemented for investigating size effects in a wide range 

of alloys, such as CoCr [183, 228], polycrystalline copper [338], ferritic-pearlitic steel 

[339], and Ti-6242 [340]. 

This chapter aims to investigate the effect of such inevitable microstructural 

inhomogeneity and post-built heat treatment on the strength performance of the PBF-LB 

manufactured dual-phase Ti-6Al-4V parts, via strain gradient, microstructural sensitive 

lamellar CPFE modelling. Figure 5-1 illustrates the workflow from sample printing and 

microstructural characterisation, CPFE model generation and calibration, to mechanical 

tensile test validation. Section 5.2 describes direct microscopy microstructural 

characterisation using electron backscatter diffraction of as-built and post-built heat 

treatment specimens, where measures of texture and grain morphology are extracted from 

the bottom region and top region of PBF-LB specimens and used to construct Voronoi 

Tessellation based CPFE models. The model material parameters are fitted against 

experimental tensile stress-strain curves. Section 5.3 describes CPFE methods 

incorporating physical dislocation mechanisms to quantify the effect of the above AM 

phenomena, and of the heat treatment, on the tensile behaviour of Ti-6Al-4V. Key 

microstructural features exhibiting a gradient (between bottom and top) include lath width 

and phase fraction. Section 5.4 presents a separate lath width size effect study to further 

investigate the microstructural sensitivity, and the captured size effects are fitted and 

examined through macroscopic structure-property relationships in Section 5.5.  
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5.2 Methodology 

 

Figure 5-1. Overview of the research workflow, from sample printing, microstructural 

characterisation and associated RVE model generation, to the CPFE prediction and mechanical 

test for result validation. 

Figure 5-1 introduces the workflow in this research, starting with PBF-LB Ti-6Al-4V 

specimen fabrication, then microscopy characterization of the inhomogeneous structure 

for localized samples along the built direction, as well as the HT specimen, finally to the 

generated representative CPFE modelling validated against experimental tests.   

5.2.1 Experimental characterisations 

The microstructure characterisation needs to reveal the high-resolution grain boundary 

morphology and provide texture information. Consequently, electron backscattered 

diffraction (EBSD) was considered a suitable microstructure scanning tool and adopted in 

this work to characterize the polished Ti-6Al-4V alloy. Some inevitable but undesired 

noise was observed from the raw EBSD detection, resulting in 7.4% non-indexed pixel 

information loss. This poor data percentage could be reduced by further improving the 

surface quality during sample preparation.  
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In this work, a neighbouring orientational relationship-based approach was 

implemented to assign un-indexed EBSD pixels, for a complete data set [150, 291]. The 

approach includes the main steps: (i) apply segment angle and minimum grain size for 

fundamental grain map reconstruction (taking 10 degree and 3 pixels per grain 

respectively here), (ii) apply an orientational median filter on the indexed data to filter out 

the random errors, (iii) define a suitable filter size (set as 3 in this work with an indexing 

neighbour window size of 7 × 7 pixels). (iii) fill data based on the previous step analysis 

and extract the newly written raw data file for final measurement.  

 

Figure 5-2. EBSD reconstructed 40 m  × 26 m  lamellar shape grains with minimum aspect 

ratio filters, showing laths with AR higher than 5, 4, 3 and 2. Coloured by IPF definition.  

 

The first important feature is the grain size. One challenge in PBF Ti-Al-4V grain size 

demonstration is the special lamellar grain morphology, making it unsuitable to implement 

the equivalent spherical assumption. Figure 5-2 shows a new variable, aspect ratio (AR), 

which needs to be considered. Figure 5-3 shows an ellipse fitting process for measuring 

AR values for all the grains and obtains an average measured AR result of 3.09 for this 

EBSD image. The polycrystalline lath area 𝑆 was determined as the product of pixel size 

and the number of pixels included in individual grain aggregates. The major and minor 

axis dimensions in the ellipse equation is equal to the corresponding fitted lath length and 
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lath width respectively. Finally, the equivalent lath width 𝑤, was again calculated based 

on the ellipse area equation: 

𝑆 =  𝜋 × 𝑑𝑎 × 𝑑𝑏 =  𝜋 × 
𝐴𝑅 × 𝑤

2
 × 

𝑤

2
 

 

 

Figure 5-3. EBSD grain morphology fitted with ellipse assumption for measuring and 

calculating the aspect ratio value of alpha phase laths. 

 

Figure 5-4 shows the reconstructed EBSD phase map with the alpha phase coloured in 

green. EBSD also helps quantify the material and crystallographic lattice constants 

required in the physically-based CPFE constitutive laws. 



 

 

132 

 

 

Figure 5-4. EBSD phase map, alpha HCP phase in green and beta BCC phase in red. 

 

Other important information required is texture, or crystallographic orientation. Figure 

5-5 shows the non-index filled and reconstructed EBSD grain map coloured according to 

the inverse pole figure (IPF) legend. Pole figures, IPF, and ODF were plotted to analyse 

the general crystallographic orientation distributions, texture strength along sample 

coordinate, and spatial distribution of the Euler angle sets, respectively. These orientation 

measurements were used as a criterion for determining the rotation matrix of finite 

element aggregates in the CPFE model. 

 

Figure 5-5. High resolution EBSD grain map after noise clean-up and filling process. The colour 

shows the crystallographic orientation for (001) plane based on the IPF. 



 

 

133 

 

5.2.2 Crystal plasticity modelling approach 

5.2.2.1 Equivalent dual-phase polycrystalline model construction.  

As a main objective of this work is to investigate the effect of graded microstructure, 

it is important to precisely represent the minor difference between the lath size and phase 

fraction. The EBSD-based method described in Chapter 4 is not suitable to do this 

parameter study because although morphologically accurate, an EBSD scan usually has 

~5% unindexed noise, adding difficulties in phase fraction determination. Consequently, 

this chapter employs a novel VT algorithm to realize the required microstructure for 

consistency whilst maintaining specific model parameter control.  An advanced multiple-

tessellation poly-grain realization method [22] was developed to represent the dual-phase 

lamellar microstructure, including two main settings:  lath width and lath aspect ratio. The 

sub-tessellation via the second level Laguerre cells discretization further divides the VT 

cells generated in the primary domain, into lamellar planes [341]. The developed dual-

phase CPFE model differentiated the lath width ratio of 𝛼 and 𝛽 phase grains to represents 

the phase fraction. Figure 5-6 (a) shows a 3D example including complete prior-𝛽 

morphology and the alpha laths in between. Unfortunately, such a model is too complex 

to analyse requiring prohibitive computational costs to analyse, with the current 

computational capability. This difficulty includes not only CPFE running effort, but the 

required input file generation, e.g., meshing, material property definition, as well as 

boundary condition settings. Consequently, one cuboid cut of a reasonable size from the 

3D full model was adopted and the thickness of this model along the z axis (out-of-plane 

direction) was defined to be the same as the alpha lath width. Figure 5-6 (b) shows the 

constructed thin-slice and dual-phase lamellar CPFE model to represent the 

polycrystalline grains with an average 𝛽 lath width of 0.0276 m. The constructed RVE 

exhibits similar dual-phase morphology validated against the SEM image, showing darker 

regions of alpha phase, with few lighter regions around the lath boundary representing the 

retained beta phase laths.  
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Figure 5-6. The methodology of constructing microstructural equivalent dual-phase lamellar 

CPFE model. The ratio of alpha and beta lath equals the phase volume fraction.  

The orientation equivalent model is achieved by assigning the same orientation of the 

main grain aggregate (Figure 5-7 indicates 10 in total and highlighted with rectangles in 

the IPF) to generate the associated orientational dependant material data card in CPFE 

simulation. Figure 5-7 first shows the strategy for assigning the crystallographic 

orientation property in the CPFE model based on EBSD data. The IPF shows the texture 

distribution for 1571 grains in the reconstructed EBSD map. The IPF indicated ten fibres 

with strong texture, whose Euler angle set was then converted to a rotation matrix for the 

CPFE user subroutine. The generated VT with orientation definition was coloured using 

the same IPF legend through a customized-written code. The 10 generated prior-𝛽 grains 

orientations are shown in the IPF and the alpha laths within the same grains generally have 

the same orientation compared to its parent grain (prior-𝛽).  
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Figure 5-7 finally compares the EBSD orientation analysis result with the CPFE model, 

through pole figures projected on the (0001) and (101̅0) planes, as well as an ODF plot 

showing the spatial distribution of the three Euler angles. The EBSD analysis utilises 137 

randomly selected grains which is the same as the CPFE model for plotting the orientation 

figures, thus the EBSD pole figure scatters slightly after each run. The orientation plots 

from the EBSD and CPFE model show close agreement of texture distributions.  

 

Figure 5-7. Schematic of assigning statistically equivalent texture in CPFE modelling and the 

orientation information comparison between EBSD characterisation and CPFE modelling. 

 

5.2.2.2 Constitutive parameters calibration and fitting methodology. 

Three main calibration steps were carried out to help determine the optimum set of 

constitutive parameters implemented here: (i) the material crystal lattice parameter 

measured from EBSD detection, (ii) the optimized parameters iteratively calibrated to the 

measured bulk tensile stress-strain response, and (iii) previously published parameters 
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established for the present 𝛼 − 𝛽  dual-phase titanium alloy and material models in 

previous research [28, 144].  

The parameter optimization tool is developed based on the MATLAB toolbox non-

linear least square (Lsqnonlin algorithm) which uses the Levenberg-Marquardt algorithm 

to minimize error with respect to a target, e.g., experimental test data. Lsqnonlin assists in 

automatic initial parameters modification to reach an optimized parameter set without 

time-consuming manual trials or unreliable human bias. This approach was successfully 

implemented for parameter optimization in studying the kinematic behaviour of MarBN 

steel[342] , and nickel-based superalloys [343]. Figure 5-8 illustrates the Lsqnonlin fitting 

workflow in this work, starting by defining the four parameters to be optimized and 

combining them into a matrix variable 𝒙 . Elastic parameters  

𝐸1, 𝑣12, the two critical resolved shear stress (CRSS) for basal 𝜏0,<𝑎> and pyramidal slip 

systems 𝜏0,<𝑎+𝑐> respectively. This matrix was altered and iterated by comparison with 

the monotonic tensile response to achieve minimum error. The CRSS for beta phase was 

calibrated as 280 MPa for a functional gradient Ti-6Al-4V alloy [337]. The initial 

dislocation densities were from previous modelling research on Ti-6242 [28], and other 

constants from the original research [31] which first introduced this flow rule. Table 5-1 

lists the constitutive parameter values implemented in this work. 

Periodic boundary conditions (PBC) were defined as previously shown in Figure 4-7, 

to constrain the adjacent boundaries of the CPFE polycrystalline model throughout the 

deformation simulation. Under such PBC definition, the laths are permitted to strain in the 

out-of-plane direction, but the deformation is constrained to be uniform. 
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Table 5-1. Constitutive parameters used in CPFE modelling. 

Parameter HCP Alpha lath BCC Beta lath 

𝜏0,<𝑎> 322 MPa 280 MPa [337] 

𝜏0,<𝑎> 419 MPa - 

𝐺12 30137 MPa 54900 MPa 

𝐺13 57900 MPa 54900 MPa 

𝐸1 88000 MPa 82000 MPa 

𝐸3 105000 MPa 82000 MPa 

𝑣12 0.46 0.46 

𝑣13 0.22 0.46 

𝑏 <a> 2.95 x 10-4 m 3.31 x 10-4 m 

𝑏 <c+a> 3.84 x 10-4 m - 

𝑀 0.8 

𝑘 1.38 x 10-23 J K-1 

𝑇 293 K 

𝛥𝐻 7.58 x 10-20 J 

𝜈 1.00 x 1011 Hz 

𝛾0 1.32 x 10-4 

𝜌𝑆𝑆𝐷
𝑚   5.0 m-2 [28] 

𝜌𝑆𝑆𝐷
𝑠   0.01 m-2 [28] 

 

 

Figure 5-8. Workflow of an efficient and convenient curve fitting programme NL-Lsq, for 

parameter calibration, to determine elastic moduli and critical resolved shear stresses. 
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5.3 Results 

5.3.1 Mesh convergence study 

The converged mesh size was determined through the sensitivity of the computed 

stress-strain curve to different mesh designs and degrees of refinement. The CPFE 

modelling works are carried out using the high-performance computer, named Kay, the 

primary device for academic research in ICHEC. The modelling jobs are submitted on a 

cluster equipped with 2.4 GHz Intel Xeon Gold 6148 (Skylake) processors (4-core 

ABAQUS acceleration enabled), and the RAM of 192 GB. Five different element 

densities, with numbers of elements, show the different meshes considered ranging from 

3200 to 86400 were defined to mesh an alpha phase only CPFE model with the lath width 

of 0.5 m. The C3D20R voxel type element was assigned, and Figure 5-9 indicates 

minimal difference for refinement above 60000 elements. In this fully lamellar model, the 

predicted strength after yield increases with the mesh density. However, there is no 

obvious trend before yield as all five models predict only 1 MPa stress difference at a 

strain of 0.7%.  
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Figure 5-9. Effect of mesh refinement (no. of elements, uniform distribution) on CPFE predicted 

bulk tensile stress-strain curves. 

 

The predicted stress at 1% strain was shown as the criterion for determining 

convergence. Figure 5-10 shows the relationship between this stress and the number of 

elements. The difference is less than 0.17% on increasing number of elements from 25600 

to 60000 and this difference reduces to 0.05% on further increasing number of elements 

to 86400. Mesh density adds a heavy computational burden on the CPU core performance 

when assigning PBCs and running the job. The mesh with 60000 elements is then decided 

for the remaining models based on balancing the convergence performance and 

computational requirement.  
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Figure 5-10. The relationship between the computational cost, predicted macroscopic stress at 

1% strain for different numbers of C3D20R (uniformly spaced) elements.  

 

5.3.2 Tensile behaviour prediction. 

The tensile behaviour of the PBF-LB manufactured Ti-6Al-4V alloy was predicted by 

the statistically equivalent CPFE model where the physically-based strain gradient 

constitutive law determines the crystal plasticity deformation. The retained 𝛽  phase 

fraction was determined to be 3% by calculating the 110𝛽/101𝛼  diffraction peak intensity 

[281] through X-ray diffraction (XRD).  The average lath area was calculated as 0.665 

m2 and the calculated average equivalent lath width �̅� of the Ti-6Al-4V sample is thus 

0.5235 m.Table 5-1 shows the calibrated parameters used in this Chapter. After 

calibration and validation with the experimental measurement, the CPFE stress-strain 

curve shows close agreement with the tensile test up to 1.5% strain, as shown in Figure 5-

11. The CPFE-predicted Young’s modulus of 103.35 GPa and yield stress (0.2% offset, 

of 941.12 MPa compare favourably to corresponding experimental values of 104.9 GPa 

and 939.20 MPa respectively.  
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Figure 5-11. CPFE-predicted tensile response compared to the experimental measurement based 

on the calibrated constitutive parameters. 

 

Figure 5-12 shows the CPFE predicted contour plots for this dual-phase lamellar 

sample, including the maximum principal stress, logarithmic strain, cumulative 

crystallographic slip p, as well as the GND density distribution, at 1.0 % strain. The CPFE 

predicted stress-strain curve gives a macroscopic flow stress of 916.2 MPa at this strain 

while the principal stress contour plot shows a maximum localized stress of 1763 MPa, 

corresponding to a localised (microstructural-induced) stress concentration factor of 1.92. 

Deformation strain inhomogeneity is observed between the neighbouring alpha lath within 

the same grain while the difference across prior-𝛽 grain boundaries. The Beta laths show 

higher accumulative crystallographic slip p (see Section 2.8.6), this accumulated 

deformation tends to be uniform among alpha laths within the same prior-𝛽 grain. 
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Figure 5-12. The contour plots showing principal maximum stress, logarithmic strain, 

cumulative crystallographic slip, and GND density distribution from CPFE modelling. 

5.3.3 Inhomogeneous mechanical property characterisation. 

The printed sample with long build height (~30cm) has exhibited various 

microstructure from bottom to top. Figure 5-13 shows the microscopy images scanned 

from the as-built bottom and, top areas, and the top area for post-built HIP, respectively. 

XRD was used to measure the phase fraction. Table 5-2 lists the measured average 

equivalent lath width and beta phase fractions for these three conditions [323]. As the 

distance (build height) from the building base plate increases, an increase in alpha lath 

width 𝑤𝛼 from 0.7 to 1.1 m is observed while the beta phase fraction increases from 3% 

to 8%. 
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Figure 5-13. SEM images of AM Ti-6Al-4V alloys at the regions of bottom, top, and after HIP 

treatment on top region. 

 

Table 5-2. Microstructural information characterized from XRD detection and SEM images, 

including lath width and the beta phase fraction. 

Sample  𝒘𝜶 (m) Beta phase (%) 

Top, as-built 1.06 8.8 

Bottom, as-built 0.76 3.0 

Top, post-built HIP ~5 9.5 

 

Figure 5-14 shows the corresponding CPFE models generated to represent the 

microstructure for the three conditions. The CPFE model size was increased by a factor 

of five times with a total cuboid volumetric size of 100 × 100 × 5 m3 to represent the 

HIP sample, compared to that of the as-built top CPFE model, to maintain the same grain 

morphology and texture distribution. As defined by the equivalent model generation 

method introduced in section 5.2.2.1, the three models all have the correct values of Beta 

phase (viz. 8.8%, 3%, 9.5%) and of 𝑤𝛼 (viz. 1.06 m, 0.76 m, and 5 m) respectively. 
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Figure 5-14. Schematic of the CPFE models’ generation to represent the microstructural features 

including alpha lath width size and phase fraction ratio, for the three samples respectively. 

 

Figure 5-15 shows the CPFE-predicted stress-strain tensile curves for the bottom, top, 

and HIP samples. The CPFE results are generally consistent with the mechanical test 

values [323]. Table 5-3 shows the yield stress from both experiment and CPFE modelling. 

The experimental test confirms that the sample after HIP treatment has the lowest strength, 

which drops by 10% compared to the as-build part. The inhomogeneous mechanical 

behaviour is captured between the bottom and top area of the as-build samples, the bottom 

yield stress is measured about 1% higher than the top in both model and test.  
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Figure 5-15. The tensile stress-strain curve of the as-received bottom sample, top area sample, 

and HIP sample, predicted by strain gradient CPFE model. 

 

Table 5-3. Comparison of the yield strength difference between the three samples from 

experimental measurement and CPFE prediction. 

Sample Experimental YS (MPa) CPFE predicted YS (MPa) 

Top 903.6 914.90 

Bottom 911.9 922.07 

HIP 813.9 836.25 

 

Figure 5-16 shows the GND evolution as the strain increases during the tensile 

deformation. For bottom as-built model. Figure 5-17 plots the probability density function 

of the maximum GND distribution at 1.5 % strain. The GND distribution map shows 

slightly lower GND density for the top microstructure compared to the bottom, with the 

heat-treated microstructures showing much lower GND density. The effect of as-printed 

lath width variation in a single component on bulk stress-strain relationship was minimal 

(1% variation in yield strength), whereas a greater effect (10% reduction in yield strength) 
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was found in the post heat treatment specimen. Most elements in top and bottom models 

have the GND density of around 20 m-2 while the density peak is smaller in the top 

model. HIP model has smaller GND density where most elements have a GND density of 

less than 10 m-2. 

 

Figure 5-16. The maximum GND density evolution during the tensile deformation. 
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Figure 5-17. GND distribution plot of the bottom, top, and HIP CPFE models. 

 

5.4 Model microstructural sensitivity analysis 

5.4.1 Lath width size effect 

The developed model successfully captures the microstructural sensitive effect when 

comparing as-built and post-built HIP samples. It is worth noting that the difference in 

mechanical response is contributed by both lath width and phase fraction. This means that 

the decrease in strength after HIP was caused by multiple factors such as the softer beta 

phase, the changing aspect ratio, and thicker lath. To quantify individual lath size effect 

and fulfil the advantage of computational modelling for strict single variable sensitivity, 

alpha phase models differing in lath width (𝑤𝛼) only, were generated to quantity only lath 
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width size effect. This study is especially meaningful for metals having one dominating 

phase, like Ti-6Al-4V, mainly consisting of alpha phase in a near-alpha titanium alloy. 

Considering the motivation of avoiding the influence of unavoidable scatter of 

crystallographic orientation and number of grains among separate tessellations, the 

models in this lath width size effect study are all scaled based on the same morphology 

model. 

 

Figure 5-18. Tensile and yield behaviour predicted by CPFE models varying in lath width size. 
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CPFE models are generated with average lath width of 0.25 m, 0.5 m, 0.75 m, 1 

m, 2 m, 3 m, 4 m, and 5 m to study size effect of the lamellar material. Figure 5-

18 shows the predicted stress-strain tensile curve up to 1.5% strain, and Figure 5-19 shows 

the predicted relationship between maximum GND density at 1.5% strain and the average 

lath width. Increasing lath width causes a decrease in GND density, leading to reduced 

yield stress, consistent with the plastic deformation constitutive laws. GND density 

exhibits higher sensitivity to lath width for a smaller width. This calculated maximum 

GND density drops by 85% from 1417.0 to 210.4 m-2 as lath width increases from 0.25 

to 2.0 m. Thus, the lath width change has a greater influence on the predicted yield 

strength when the lath width is smaller than 2.0 m. An exponential equation can be used 

to represent the predicted relationship by: 𝜌𝐺𝑁𝐷,𝑚𝑎𝑥 = 401.32 𝑤−0.914. 

 

Figure 5-19. The relationship between the CPFE predicted GND density at the strain of 1% and 

the average CPFE model lath width. 

 

5.4.2 Prior-𝜷 grain size effect 

Two different CPFE model comparison groups were generated to investigate prior- 𝛽 

grain (PBG) size sensitivity. In both cases, the cuboid model size was kept constant while 
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changing the number of prior Beta grains. In each comparison group, four models were 

generated with different numbers of PBG (𝑛𝛽 ) namely 2, 4, 7, and 10. The multiple 

Voronoi tessellation approach implemented so far has a constraint, with the generated lath 

width following a normal distribution. In this case, the alpha lath widths are dependent on 

parent PBG size and consequently not constant compared to the size within the different 

beta grains, as shown by the Group 1 model in Figure 5-20. Figure 5-21 shows the 

predicted tensile curve comparing the four models in Group 1. The elastic moduli are 

similar (107.4 to 108.6 GPa), but not equal due to the unique texture material feature and 

the anisotropic definition in constitutive laws. There is no obvious relationship between 

elastic behaviour and the number of grains because the Young’s modulus is affected by 

crystallographic orientation and lattice type. However, an obvious difference can be 

noticed after yielding. Tensile strength drops from 1070 MPa to 1040 MPa (2.8%), as the 

𝑛𝛽 increases from 2 to 10.  



 

 

151 

 

 

Figure 5-20. Schematic of the two constructed model groups for prior beta grain size study, with 

uneven and even alpha lath width, respectively. In each group number of prior beta grains were 

defined to range from 2 to 10 grains.  
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Figure 5-21. Tensile behaviour after yield predicted by the uneven alpha lath models group with 

the number of prior beta grains of 10, 7, 4, and 2. 

 

The limitation for comparison Group 1, as mentioned, is the non-equal (non-uniform) 

alpha lath width. Then the VT algorithm was modified to remove the linkage between the 

alpha lath and parent grain, allowing equal alpha lath width for different number of PBGs, 

as shown in Figure 5-20 Group 2. In this case, a negligible difference is observed from 

the stress-strain curves. The largest difference is 0.34%, so the PBG size has a negligible 

effect on tensile response.  
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5.4.3 Grain morphology effect 

This section investigates the effect of grain morphology, e.g., for the commonly-

observed lamellar and equiaxed shape grains. Figure 5-22 shows the equiaxed polyhedron 

model and fully regular (the grains have similar aspect ratio) models. As well as the 

previously described lamellar model, the three models are defined to have the same model 

size and the same number of elements sets (137 grains in equiaxed or 137 laths in the 

lamellar model, in total), thus leading to the same equivalent spherical areas.  

 

 

Figure 5-22. Schematic of the generated equiaxed, regular equiaxed, and lamellar CPFE model 

for grain shape effect study. 

 

The modelling results show a negligible difference in terms of predicted macroscopic 

stresses, with only 4 MPa difference at the strain of 1% for the average stress of 1065 

MPa. The regular model has the lowest strength, 1064.2 MPa. However, their predicted 

GND distributions show some differences, as shown in Figure 5-23. The GND density in 

the lamellar lath model has a bigger standard deviation due to the irregular lamellar shape, 

and sharper grain boundary. In the equiaxed grain model, the distribution is narrower, 

indicating that more elements have a similar GND density result, and this narrow region 

area grows slightly when the equiaxed grain morphology becomes more regular.  
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Figure 5-23. GND density plot for the lath, equiaxed, and regular equiaxed grain morphology 

samples. 

5.5 Discussion 

During the PBF-LB solidification process, the PBGs of Ti-6Al-4V solidify to a basket-

weave morphology of 𝛼′ laths. The cooling speed in the upper area of the vertically built 

sample is slower compared to that in the earlier layers. Previously printed layers also 

undergo more annealing cycles compared to the subsequent layers. These differences in 

local thermal history cause a graded microstructure along the built direction, with an 

associated graded mechanical behaviour. It is worth noting that the models used here for 

investigating the gradient phenomena as well as the heat treatment, take account of the 

lath width gradient, and the phase composition fraction changes. Section 5.4.1 considers 

only lath width effects and quantified the implemented strain-gradient size effect for the 

lath widths ranging from 0.25 to 5 m, which covers the commonly reported range, thus 

confirming that the present strain-gradient CPFE is a suitable modelling tool for studying 

the PBF-LB Ti-6Al-4V alloy.  

The columnar morphology prior- 𝛽 usually has a length of ~100 m, which is outside 

the size sensitivity of GND prediction from this CPFE model. The computational cost of 
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using the high-performance computer to run this full model can be estimated from the 

quantified relationship shown in Figure 5-10. Assuming the full model contains a height 

equal to the prior- 𝛽  length, the model has twelve million elements (using the same 

meshing density). Thus, the estimated running time is 158 days with a linear fit. An even 

longer time of 554 days is predicted if using a power law to fit the computational cost 

versus the number of elements relationship. However, the methodology of generating this 

full model still has potential for future research, given the development of more efficient 

constitutive laws with optimized coding structure, and the capability of higher 

performance computational facilities.          

The relationship between the lamellar microstructure and mechanical behaviour has 

not been quantified, for PBF-LB fabricated Ti-6Al-4V alloys. To provide a more efficient 

and less computationally intensive method for lath size sensitivity, relationships between 

microstructure and its macroscopic tensile behaviour are fitted to the CPFE-predicted 

results. The Lsqnonlin was adopted here. 

Hall and Petch [344, 345] presented a phenomenological relationship between the grain 

size and the yield strength, as follows:   

 𝜎𝑌𝑆 = 𝜎0 +
𝑘HP

𝑤𝑛  (5-1) 

where 𝜎0 is an assumed YS of the polycrystalline material with a large grain size, while 𝑛 

and 𝑘HP are two constants identified from a test data for different grain sizes.  

The Hall-Petch relationship was calibrated against CPFE modelling data presented in 

Section 5.3.1. The calibrated form is as:  

 𝜎 = 828 +
103.69

𝑤0.2848
 (5-2) 

The fitted Hall-Petch relationship covers the reported tensile yield strength for the as-

build Ti-6Al-4V samples ranging from 828 to 1166 MPa [4, 346]. 

The generalized size-dependent Taylor-strengthening relationship was introduced as 

[347]: 
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 𝜎𝑌𝑆/𝜇 = (
𝛼

𝑤√𝜌𝐺𝑁𝐷
+ 𝛽𝑏√𝜌𝐺𝑁𝐷)𝑀 (5-3) 

where 𝜌𝐺𝑁𝐷 is the GND density, 𝑏 is the Burgers vector, and 𝑀 is the Taylor factor, 0.8 

here. 𝛼 and 𝛽 are the two dimensionless constants requiring fitting, and their calibrated 

values are: 𝛼 = 0.0041, 𝛽 = 21.0465. 𝜌𝐺𝑁𝐷  is provided from the CPFE prediction at 

yield, see Table 5- . 𝜌𝐺𝑁𝐷 can also be obtained from EBSD measurement.  

Table 5-4. The GND density used for the calibration with varying lath width. 

𝒘𝜶 (m) 0.25 0.5 0.75 1 2 3 4 5 

𝝆𝑮𝑵𝑫 (m-2) 1417 761.3 521 405.2 210.4 147.1 113.3 92.3 

 

The calibrated constants help quantify the size effect strength of the two parts: the 

intrinsic length effect of the grain size, and the normalized extrinsic length effect 

determined by the weakest dislocation and the Burgers vector magnitude.  

A grain boundary strengthening relationship was introduced in order to help: (i) 

consider the strengthening effect of lath boundaries; and (ii) include evaluation of lath 

boundary effect as the lath becomes thicker, due to the accumulated dislocations around 

the grain boundary. This equation for YS is: 

 𝜎𝑌𝑆 = 𝜎i + 8(𝜎b − 𝜎i)
𝑡

𝑤
− 16(𝜎b − 𝜎i) (

𝑡

𝑤
)
2

 (5-4) 

where 𝜎i is the grain strength and 𝜎b is the grain boundary strength. 𝜉 is a constant, taken 

here as 0.1. Grain boundary thickness t is determined by the lath width: 

 𝑡 = 𝜉𝑤1/2 (5-5) 

The two stress constants were calibrated as: 𝜎i = 837.3 MPa, 𝜎b = 979.4 MPa.  

Figure 5-24 shows the comparison between the CPFE predicted YS values and the 

fitted curves plotted from the four relationships. The Hall-Petch gives the best fitting 

result. Thus, this relationship will be implemented in Chapter 6 to study the effect of post-

built heat treatment. A similar trend between the Taylor dislocation-based relationship and 

the CPFE models was observed because both the CRSS equation in the CPFE constitutive 
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law and this generalized Taylor relationship are dependent on dislocation densities. In the 

grain boundary strengthening relationship, a reversed Hall-Petch effect is activated when 

the size is below 150 nm. 

 

Figure 5-24. The CPFE predicted YS strength for the lath width ranging from 0.25 m to 5 m, 

compared to the three fitted grain size relationships. 

5.6 Conclusion 

During powder bed fusion, the dual-phase alloy Ti-6Al-4V undergoes fast cooling and 

solidification, leading to a complex and gradient α-β lamellar microstructure. A 

physically-based, strain-gradient micromechanical model can capture key microstructural 

variations and determine their effect on the tensile response of PBF-LB Ti-6Al-4V alloys. 

Some key findings of this study are: 
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1. A strain gradient crystal plasticity finite element model has been developed for the 

lath width size effect, and predicted close agreement to experimental tensile test 

data for yield strength of PBF-LB Ti-6Al-4V samples.  

2. The dual-phase lamellar model predicts a marginal effect (0.8%) on tensile yield 

strength due to spatial position on a PBF-LB sample where 43% increase is 

observed in lath width (0.74 – 1.06 m). However, the observed five-fold increase 

in lath width due to post build heat treatment HIP is predicted to cause a significant 

decrease in yield strength (~ 9 %) and tensile strength. The captured difference in 

mechanical response is consistent with the experimental test results. 

3. An accurate lath width measuring approach and 3D dual-phase lamellar model 

generation method are introduced. The CPFE model generated from the 

methodologies represents statistically equivalent microstructural information 

compared to the SEM/EBSD characterisation, including lath size, phase fraction, 

lath morphology, and crystallographic orientation.  

4. The models varying in alpha lath width have been constructed, and quantitively 

compared to separately study the lath size effect on the mechanical response. The 

relationship between the predicted macroscopic yield stress and average lath width 

is fitted into three size-sensitive strengthening equations.  

5. In this developed strain-gradient model, GND density has a more significant 

influence on the alloys with a lath width smaller than 2 m and thus is especially 

suitable for predicting the performance of powder bed fusion Ti-6Al-4V alloys.  

6. The effects of prior-𝛽 grain (PBG) size and grain morphology (sphericity) are 

studied to investigate the microstructural sensitivity and other capabilities of the 

CPFE model. The PBG and grain morphology has negligible influence on the 

CPFE-predicted stress-strain curves. However, lamellar morphology results in a 

higher standard deviation in GND density compared to regular and equiaxed 

morphology. 

7. Hall-Petch and Taylor model parameters have been identified to investigate the 

effect of lath width on yield strength of PBF-LB Ti-6Al-4V.  
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6 Investigation of the post-built heat treatment effect 

on grain growth and mechanical behaviour using 

integrated PFM-CPFE framework 

 

6.1 Introduction 

The PBF core process features of, localised heating, partial melting and rapid 

solidification lead to the existence of thermal gradients during the manufacturing process. 

This thermal gradient also leads to an inhomogeneous microstructure [323] along the built 

direction and the presence of more residual stresses in the as-printed part [144]. 

Consequently, post-built heat treatments (HT) such as annealing are necessary to 

regularize the microstructure, as well as minimise the residual stress [56, 333]. Such 

annealing processes release the stored distortion energy and cause microstructural 

evolution such as grain recrystallization, grain growth and phase transition, leading to a 

polycrystalline grain structure varying in grain size and orientation [348]. 

Linking the thermal history induced driving force with a defined microstructural 

equilibrium, the phase-field method (PFM) is capable of constructing the process-

structure relationship. The PFM predicts the microstructural evolution using a group of 

field variables across the interfacial grain boundary [24], as detailed in Section 2.7. 

Recently PFM has been used to predict the evolved morphological material 

microstructure, such as titanium alloy solidification [349], and grain growth [165, 166]. 

To construct the structure-property relationship, one popular computational model is the 

crystal plasticity finite element (CPFE) approach which predicts mechanical response 

based on a certain microstructure, as introduced in Section 2.8. Although several 

applications, including the lath width research in Chapter 5 have demonstrated the 

capability of the CPFE method in studying grain size effect [183, 338], and texture effect 

[222], work on strength predictions based on an evolved microstructure due to a thermal 

process is still in the early stages of development. Some recent studies have integrated 
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modelling methods of solidification and as-solidified strength prediction to fulfil a 

through-process simulation. One such example is the coupled PFM-CPFE approach. This 

integrated method has been utilized for the prediction of evolved texture and the 

associated anisotropic mechanical property of steel [348], the as-built grain morphology 

and tensile property of the Ti-6Al-4V alloy manufactured by different printing strategies 

[335], and shear stress of recrystallized grain varying in orientations [350]. 

As discussed in Section 4.4 and 5.1, AM research requires accurate and realistic 

representative models considering their microstructures are usually more complex than 

conventionally manufactured counterparts including the PBF manufactured Ti-6Al-4V 

alloys, which display fully lamellar shape and basket-weave morphologies within prior β-

grains. VT partitions space, it does not capture or use information/physics of metallurgy. 

In VT, there can sometimes be more than 3 grains meeting at one point, compared to the 

fact that only 3 grains could meet at one point. It generates models without considering 

thermodynamics or physics. Due to the complexity of local thermal history during the 

PBF process and repeated rapid cooling and heating rate, the resulting Ti-6Al-4V alloy 

has a martensite phase lamellar shape grains elongated towards the printing direction 

[331]. While grain size, anisotropic texture and grain morphology in metal AM structures 

are believed to be highly dependent on temperature profiles induced by AM processing 

variables, these microstructural features, in turn, influence the macroscopic mechanical 

behaviour. As introduced in Chapter 4, one of the novel challenges is to adopt real 

microstructure images, e.g. obtained from electron backscatter diffraction (EBSD) as the 

initial condition, for both microstructural measurements as well as computational 

modelling. The EBSD imaging allows accurate and detailed grain-level information like 

grain morphology, phase fraction, and recrystallization texture which are important 

features of PBF fabricated alloys. However, there are still few image-based 

microstructural evolution models for PBF metals, and limited high-fidelity through-

process modelling research to the best of author’s knowledge.  
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Figure 6-1. The schematic of post-built heat treatment, EBSD characterisation, tensile tests, 

PFM, CPFE modelling, and the validation process in this research. 

This chapter aims to introduce a through-process approach that integrates the phase-

field method (PFM) with the crystal plasticity finite element (CPFE) modelling for the 

prediction of microstructure evolution during the post-PBF heat-treatment and the 

associated change in mechanical performance. This work first introduces a real image-

based model generation method for PFM to deliver high-fidelity representative models of 

the complex microstructure including realistic grain morphology and orientation. Then a 

seamless bridging tool linked to the microstructural-sensitive strain gradient CPFE model, 

detailed in Chapter 5, is developed to establish the coupled PFM-CPFE modelling 

framework. Such an integrated framework is introduced to establish a through-process 

HT-structure-property relationship for PBF manufactured Ti-6Al-4V alloy. The objective 

is to use real (not VT) microstructure images obtained from electron backscatter 

diffraction (EBSD) scans as the initial condition for both PFM and CPFE models. Figure 

6-1 illustrates the workflow in this Chapter. The PFM model will be developed to predict 

grain growth during the post-built annealing process. Both the evolved polycrystalline 

microstructure from the PFM prediction and the original as-printed EBSD map will be 

analysed via a CPFE model for the prediction of mechanical response. The experimental 

validation is shown by the blue arrows, including the microstructural comparison between 

heat treated EBSD image and PFM prediction, tensile curves from three CPFE models for 
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both as-built and annealed samples compared to the mechanical tests respectively. Thus, 

this combined modelling approach will determine the effect the post-built heat treatment 

process has on the microstructural evolution and the associated mechanical properties.   

 

6.2 Methodology 

6.2.1 Sample fabrication and microstructural characterisation 

The PBF-LB Ti-6Al-4V samples followed the ASTM-E8 standard and were fabricated 

with the Renishaw RenAM 500M metal printer located at the Irish Manufacturing 

Research centre, using a 500 W constant pulsed laser power as the energy beam source. 

The specimen geometry design was introduced in Section 3.1.1 of this thesis.  Post-built 

HT of Ti-6Al-4V samples involves annealing in a Nabertherm oven under 900 °C for 100 

minutes, and then cooling at the ambient air temperature. The samples were sectioned 

along the built direction longitude surface, shown in Figure 6-2, for EBSD 

characterisation, by the FEI Helios DualBeam SEM-FIB system located at Bernal 

Institute, the University of Limerick. The voltage was set as 20 kV with a current of 12 

nA, and the resolution was defined as 0.05 m per pixel. A bigger 139 × 87 m area was 

scanned to provide an overall grain morphology of the material, while smaller regions 

with the size of 40 × 26 m were also obtained for finite element model generation, 

considering the likely computational cost. Both the as-built and HT samples show less 

than 5% retained 𝛽 phase, as reported in the EBSD detection. Aside from the relatively 

small area fraction, the retained 𝛽  phase is also hard to distinguish and represent, 

considering their small size (width of ~0.1 m) and ~8% indexed pixels in the EBSD raw 

file. Consequently, this works adopts a single-phase assumption to simplify the model 

generation, material data input requirements and solution stability. 
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Figure 6-2. Sample cutting a from longitude cross-section surface, ready for SEM and EBSD 

scan. 

6.2.2 EBSD-based PFM for grain growth prediction 

Post-processing HT such as annealing and hot isostatic pressing, are necessary to 

homogenize microstructure and eliminate initial defects, and meanwhile, modify the lath 

size. Quantitative PFM is implemented to simulate grain growth during such process. 

Figure 6-3 shows the 9.6 𝑢𝑚2 square (same as model 1 below) converted PFM model 

from a cropped area of the original EBSD map. An adaptive mesh was used in this PFM 

work to allow denser mesh around the GB area, because GB evolution and migration 

behaviour was the focus of the PFM component of the simulation. 

Table 6-1. PFM model information in various model size. 

Sample  Size L (m) # of grains # of elements Meshing time (min) 

1 9.6 88 36636 5 
2 12 395 57400 20 
3 14 2499 78400 55 
4 17.6 3957 123904 180 
5 25.8 8614 266256 720 
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Figure 6-3. EBSD-PFM model generation, and convergence study. 

 

The meshing of the EBSD image and conversion to PFM input files were conducted 

through a custom written C++ code. The EBSD image was cropped at various size L, to 

carry out the convergence study. Table 6-1 lists the sample details such as the number of 

grains and elements information for the five regions. The meshing process was first 

performed on a standard office PC with 32GB RAM, which turned out to be insufficient 

for samples 3-5. Thus, the meshing time listed in the table are all based on high 

performance ICHEC facility [351], with 4-core 2.4 GHz Intel Xeon Gold 6148 (Skylake) 

processors, and 192 GB of RAM. However, sample 5 failed to converge a single step after 

144 hours (maximum allowance time when submitting job), without any temporary result 

to continue running. Consequently, all the following computational finite element 

modelling work in this chapter is based on sample 4 size. 

Considering the balance between the computational cost and predicting accuracy, it is 

necessary to carry out a PFM convergence study. In this grain growth PFM model, it is 
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anticipated the lath area can grow 3-5 times after HT [324, 352, 353]. Take sample 1 for 

example, it is reasonable to anticipate that the evolved microstructure will contain fewer 

than 20 laths after HT, making it unfavourable for statistical comparison to EBSD 

measurement with regards to lath size, and lath area. Too small the cropped model also 

increases the uncertainty in the representative microstructure, due to limited lath 

information, which in turn, also influences the CPFE results in a later stage. From the 

CPFE perspective, one significant conclusion from the previous convergence study in 

Chapter 4 has confirmed a preferable model length L and grain diameter ratio L/w of 

higher than 21, for definitive EBSD-CPFE models. Based on this conclusion, 10.0 m is 

calculated as the minimum model size while a bigger sample is always preferable if 

permitted considering that the lath width will increase after HT. Sample 5 has an overall 

dimension of 25.8 m corresponding to the maximum available scan length in the EBSD 

scan. 

The proposed PFM approach takes into account both temperature-dependent grain 

boundary (GB) mobility and thermal driving force. This PFM model was developed based 

on the open-access package MOOSE FRAMEWORK [247], and is designed according to 

MARMOT theory using the Allen-Cahn and Ginzburg-Landau equations, as were detailed 

in Section 2.9 of this thesis. 

This PFM modelling tool predicts the microstructural evolution during heat treatment 

including grain nucleation and growth, based on the strain energy release theory and 

neighbouring grains' misorientation induced stored energy difference. Apart from the 

temperature, 1173 K operated in this annealing process, other parameters include molar 

volume which equals 2.846 e-5 𝑚3/𝑚𝑜𝑙  for Ti-6Al-4V alloy, and the diffuse grain 

boundary width 𝑤𝐺𝐵 which is defined as the same as the minimum resolution distance 

between neighbouring lath in the EBSD scan, equalling 0.1 m. Previous research on PFM 

of electron beam AM Ti-6Al-4V [168] has determined the values for GB energy  

𝜎gb and activating migration energy 𝑄, as shown in Table 6-2. 
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Table 6-2. Parameters used in PFM for grain growth prediction during HT. 

Parameter Value 

𝑚gb 4.0 ×  10−5 𝐽/𝐾 

𝜎gb  0.81 𝐽 𝑚2⁄  

𝑄 1.0 𝑒𝑉 
𝑇 

𝑤𝐺𝐵 

1173 𝐾 

0.1 𝑢𝑚 

 

The remaining parameter to determine the value for GB mobility 𝑚gb which can vary 

from 1.8 × 10−8 𝐽/𝐾  to 2.42 × 10−4 𝐽/𝐾  for different alloys [171, 354]. A further 

complexity is the dependency of GB mobility on texture [355]. This could lead to different 

grain growth results for AM samples built in varying directions. The GB mobility was 

4.0 ×  10−5 𝐽/𝐾, calculated from a non-AM Ti-6Al-4V grain growth research [356].  

6.2.3 CPFE modelling for mechanical property prediction 

The CPFE modelling in this chapter uses the strain gradient constitutive laws 

introduced in Section 2.8.5 of this thesis. The PBF-LB Ti-6Al-4V, after HT, such as 

annealing, is believed to sacrifice strength for an increase in ductility [357]. In Section 

5.5, a relationship between the Ti-6Al-4V lath width and the yield stress in the tensile test 

is summarized based on the Hall-Patch formula. Two constants were imported from size-

sensitive yield strength study calibrated in Section 5.5, 𝑘𝐻𝑃  as 103.69 MPa, and the 

exponent constant 𝑛, as 0.2848. Then the initial critical resolved shear stress (CRSS) 𝜎0, 

was calibrated against the experimental tensile stress-strain curve obtained from as-built 

sample.  

𝜏𝑐0
α = 𝜎0 +

103.69

𝑤0.2848
 

The modified CRSS equation is now implemented to determine the 𝜏𝑐0
α of basal slip 

system of alpha phase, where 𝑤 is the lath width.  

𝜎0 was fitted against the experimental tensile test on as-built sample, using the EBSD-

based as-built CPFE model, which was calibrated as 220 MPa. The two constants, 𝜎0 and 

𝑛 , were then unchanged when modelling the heat-treated specimen, where 𝜏𝑐0
α  was 
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automatically updated from the evolved lath width value. Periodic boundary conditions 

were applied to both PFM and CPFE models. In CPFE, the model deformed along the y-

axis direction, with the maximum strain the same as the strain at fracture from the tests. 

Both the PFM predicted microstructural information and the EBSD scans after HT are 

firstly compared, and then independently converted into CPFE inputs, ready for the grain-

size sensitive and orientational-dependant mechanical response simulation. A comparison 

between these CPFE models and the experimental mechanical tests is conducted to 

confirm the reliability of the proposed PFM-CPFE methodology. 

6.2.4 Tensile tests 

The samples before annealing (EXP as-built) and after HT (EXP HT) were tested on 

an Instron 8500 servo hydraulic machine, equipped with a clip-on strain extensometer. 

The initial tensile speed was set at 1.25 mm/min and increased to 2.5 mm/min after yield. 

 

6.3 Results 

6.3.1 Quantitative PBF-LB Ti-6Al-4V EBSD measurement 

Two 139 × 87 m area lath images were scanned from the longitude cross-section 

surfaces, to plot a 3D schematic figure for the EBSD reconstruction, as shown in Figure 

6-4. The reconstructed grain morphology indicates the main presence of Al-rich 𝛼 phase, 

with a variety of lath morphologies, acicular, basket-weave or band shapes with varies of 

aspect ratios.  
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Figure 6-4. Reconstructed 3D schematic lath map, coloured in IPF legend, from EBSD scans. 

 

Figure 6-5 compares the EBSD scan with area of 40 × 26 m, for as-built and HT 

samples, respectively. The estimation of lath width again adopted the ellipse fit of alpha 

lath, from the aspect ratio and lath area, the algorithm and calculating methodology was 

detailed in Section 5.2.1.  
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Figure 6-5. The EBSD map for as-built and annealed Ti-6Al-4V. Ellipse lath fit was adopted for 

lath width and aspect ratio estimation. 

After annealing, the total number of grains has decreased from 1822 to 447 measured 

from EBSD scan, with the averaged lath width increasing from 0.52 m 1.23 m. The 

main changes of the microstructural features are quantified and summarized in Table 6-3. 

Figure 6-6 shows the lath area evolution during annealing, from the two EBSD 

measurements. This EBSD characterisation has indicated that the lath area growth is 

influenced by both lath width and the lath length, with obvious aspect ratio increase as 

well.  

Table 6-3. Quantitative Ti-6Al-4V lath features from experimental EBSD measurement. 

 As built HT 

Number of laths 1822 447 

Lath area (𝑢𝑚2) 0.59 3.00 

Lath width (𝑢𝑚) 0.52 1.23 

Aspect ratio 2.53 4.80 
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Figure 6-6. Probability density curves showing lath size distribution comparison between as-

built and annealed EBSD measurements. 

6.3.2 PFM microstructural evolution after HT 

The grain growth is predicted based on the reduction of total grain boundary energy 

during the GB migrating behaviour under the annealing process. Figure 6-7 shows the 

evolved grain map after the simulated post-built annealing process, under a temperature 

of 1127 K. The small grains merge into their neighbouring grains to minimize the total 

local free energy caused by the high-temperature driving force. The EBSD map of the 

same size (17.6 m in length) are listed on the right side, for a straightforward comparison. 

The PFM model and EBSD before HT are completely consistent because they are from 

direct conversion. However, the EBSD scan after annealing is not the same region due to 

two main reasons: (i) extremely precise operation requirement when mounting and placing 

sample in the SEM chamber to repeat the same coordinate setting and difficulty to locate 

the same region; and (ii) destructive tensile test that prevents using the same sample after 

HT.  
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Figure 6-7. PFM predicted microstructural evolution under 1127 K for 100 minutes. 
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Figure 6-8 shows the probability density plot for the lath area distribution before and 

after HT in the PFM model. The PFM predicted lath size evolution was statistically 

compared and validated against the EBSD measurement. After HT, the EBSD measures 

the lath area between 0.01 to 77.86 m2, while the PFM predict the lath area varying from 

0.01 to 143.10 m2. The averaged lath area predicted by PFM is 3.03 m2 with a standard 

deviation of 13.01, compared to 3.01 m2 and standard deviation of 8.13 from EBSD 

characterisation. From this microstructural validation, the averaged lath area reaches close 

agreement compared to EBSD, and the PFM prediction has a bigger maximum lath size, 

and a wider distribution range.  

 

Figure 6-8. Probability density plot for the lath size distribution evolution by PFM. 

 

6.3.3 Fractography and porosity.  

The crack was uneven and not homogeneous in SEM observation. The fractography 

study indicates poor ductility of the PBF-LB Ti-6Al-4V parts under tensile loading. Figure 

6-9 shows the abrupt cracking surface without necking. In the higher magnitude images 

(b) and (d), the cracking area is extended by a terraces or spindrift like region with few 

dimples. This terraces morphology region does not show obvious preferable direction, 
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making it hard to tell the actual crack propagation routine. A possible crack propagation 

step is marked by arrow in image (a). This fracture type is usually attributed by either 

porosity or lack of fusion near the surface [358].  

 

Figure 6-9. SEM images of the fracture surface after tensile test of the two plate ASTM-E8 Ti-

6Al-4V samples. 

 

Micro-CT is used to check the voids and porosity of the as-build samples, and the 

scanned 3D reconstruction is shown in Figure 6-10. The density of these samples was 

measured to be 4.39 𝑔/𝑐𝑚3, 99.1% of the theoretical value 4.43 𝑔/𝑐𝑚3. Micro-CT results 

showed no significant porosity or defect. However, potential pores might exist but cannot 

be detected due to the poor penetration of X-ray for Ti-6Al-4V alloy.  
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Figure 6-10. micro-CT slice image, and two reconstructed 3D stl models. 

 

6.3.4 Tensile behaviour: tensile tests and CPFE comparison. 

Both the original EBSD scan for the as-printed part and the PFM predicted 

microstructure after the grain growth evolution were imported for generating the CPFE 

models. Consequently, the following terms are defined for the ease of pointing to specific 

CPFE model types generated from different sources: (i) EBSD-AB for the model 

converted from the direct EBSD grain map image of the as-built sample; (ii) EBSD-HT 

for the model converted from EBSD image of the annealed sample; (iii) PFM-HT for the 

model generated from the PFM predicted microstructure after annealing. Figure 6-11 (a) 

shows the converted CPFE model in ABAQUS, using C3D20R hexagonal finite element 

mesh, for the EBSD-AB, EBSD-HT and PFM-HT, respectively. CPFE contour plots 

results from the three models are shown in Figure 6-11 (b) shows the von-Mises stress at 

1% strain. At a deformed strain of 1%, the CPFE contour plots predicts a maximum von-

Mises stress of over 2000 MPa, for the three samples, indicating severe stress localization 

in this lamellar PBF-LB alloy.  
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Figure 6-11.  CPFE results from EBSD-AB, EBSD-HT, and PFM-HT, for (a) meshed 

polycrystalline model, (b) von-Mises contour plots at 1% strain. 

 

The macroscopic tensile stress-strain curves were extracted from the three CPFE 

models, shown in Figure 6-12, for a comparison with the experimental tests. The two 

experimental tensile curves have confirmed the function of annealing on PBF alloys, to 

improve the ductility by increasing the strain at failure from 1.62% to 2.07%. Meanwhile, 

the strength including both yield stress, and ultimate stress are sacrificed due to lath size 

growth. This phenomenon is referred to as strength-ductility trade-off, which is 

successfully captured with the strain gradient CPFE models.  
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Figure 6-12. CPFE tensile stress-strain curves from EBSD- and PFM-based conversion, and 

validation against mechanical tests. 

6.4 Discussion 

The discussion on material mechanical performance is always linked to its structure, 

especially for PBF-LB manufactured alloy which has more complex thermal history and 

unique microstructure. The challenge in characterizing such process-structure-property 

relationship requires integrating interdisciplinary computational models to fulfil a 

through-process modelling framework. Typical coupled modelling examples can be found 

in Section 2.7 of this thesis.   

To fulfil a balanced mechanical property, the AM Ti-6Al-4V is either coupled with 

hybrid manufacturing strategies such as forging and wrought, to generate bimodal 

microstructure [359, 360], or followed by HT to modify the lath size. Post-built HT 

modifies microstructure to reduced residual stress, and improve the ductility and fatigue 
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life [50]. Suitable HT process design, such as hot isotropic pressing, or tempering strategy 

can maintain the tensile strengths while improving the ductility or removing the 

heterogeneities [54, 361]. These findings further emphasize the significance and necessity 

of understanding the thermal process, microstructure, and the property relationship in AM 

fabrication. It is necessary to better understand the effect of such HT process on 

microstructural modification, thus the PFM on grain morphology evolution under high 

temperature was developed. The introduced PFM-CPFE provides a reliable tool in 

characterizing this relationship and is important for AM material tailoring and the AM 

process technological design.  

The varying file format in EBSD characterisation, PFM, and CPFE (ABAQUS 2017 

[303]) is one challenge in this coupled modelling work. Customized codes were written 

to allow seamless conversion and importing functions between the three sources. Such a 

real image-based PFM-CPFE framework has not been previously reported. However, this 

effort is worth considering the more detailed and higher fidelity information provided. For 

e.g., the Ti-6Al-4V grain growth behaviour was previously measured from SEM image 

[54, 362] to consider lath thickness change only. The common PFM research on grain 

growth also compares the averaged grain area with experiments only, some validate the 

number of grains. The image-based PFM introduced in this Chapter, besides the number 

of lath and area, also gives the value of lath width and aspect ratio, thanks to the developed 

EBSD grain fitting program. Lath width and aspect ratio is more important for the fully 

lamellar structure PBF-LB Ti-6Al-4V, the result shown in Chapter 5 also convinces the 

strain gradient CPFE model is more sensitive to the lath width compared to grain area. 

This capability guarantees higher reliability when validated against a microstructural 

image, taking into account both size and morphology.  From the CPFE perspective, one 

important achievement is that the size effect is induced from geometrical sensitivity rather 

than material parameter modification. It can be anticipated that this MARMOT based 

PFM model [165] will predict slighter grain growth when a lower temperature or fewer 

HT time are defined. However, the CPFE model, once calibrated, can predict the 

mechanical response from products under ranges of HT process, without the need to 

change a material parameter, which is automatically updated accordingly from the 

coarsened structure.  
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In Chapter 4, it was found that the real image-based CPFE model does not show 

prominent improvement in stress prediction. However, it might be reasonable to propose 

that a realistic grain boundary representation is preferable in PFM model compared to 

CPFE, because the GB migration, and the neighbouring grain merging behaviour are the 

focus. To convince this suppose, the lamellar Voronoi tessellation (VT) model, introduced 

in Chapter 5 was converted to PFM model and predict the lath growth evolution using the 

same physical parameter, result shown in Figure 6-13. The VT-PFM underestimates the 

effect of HT on lath growth.  Table 6-4 lists the three microstructural features, lath width, 

lath aspect ratio, and lath area from the three data. Here only the microstructural 

information after HT is compared, considering that the PFM model is converted directly 

from the EBSD scan, so their as-built features are consistent. The VT-based PFM is still 

the most common approach in recent grain growth research [363, 364]. However, in this 

modelling case for PBF-LB Ti-6Al-4V, the artificially generated VT, although whose 

morphology has lamellar structure, fails to generate very small grains which exists in 

EBSD. Besides, the aspect ratio is bigger which means longer laths are generated due to 

the limited lamellar VT algorithm. As for CPFE modelling case, the EBSD-based CPFE 

study introduced in Chapter 4, although finds no prominent improvement for predicting 

the bulk stress-strain curve, indicates the significance of representing realistic grain 

morphology and neighbouring grain relationship for a better understanding of localized 

behaviour, even for an equiaxed microstructure. For the same reason, recent years have 

witnessed the use of EBSD-CPFE method for complex hierarchical morphology size-

effect study [191], and cyclic shear localized deformation modelling for steels [365]. 

Although the artificial VT method was able to capture the lath size effect in the CPFE 

study in Chapter 5, mainly because the developed strain gradient model is not sensitive to 

the aspect ratio. However, this is not the same case in the PFM modelling, where lath 

morphology, especially lath boundary becomes the focus of the simulation. Consequently, 

real image-based PFM, as well as the high-fidelity PFM-CPFE modelling become more 

significant, for precise microstructural evolution and the associated property prediction, 

to obtain an accurate result for the complex PBF-LB manufactured alloys.  



 

 

179 

 

 

Figure 6-13. PFM lath growth evolution from lamellar Voronoi tessellation model. 

 

Table 6-4. Lath information after HT, from experimental EBSD and two-types PFM models. 

 Experiment EBSD-PFM VT-PFM 

Lath area (𝑢𝑚2) 3.01 3.03 1.48 

Aspect ratio 4.80 4.08 7.51 

Lath width (𝑢𝑚) 1.23 1.34 0.69 

 

Crystallographic orientation does not evolve in the current PFM model, which means 

that the merged lath directly inherits the original orientation from its parent phase. This 

assumption is made to simplify the problem. In Figure 6-5, when the smaller lath merge 

to its neighbouring lath, its ID is labelled inactive, and the crystallographic orientation of 

that material in that space is updated to match the orientation of the new larger grain. 

Figure 6-14 plots the pole figures contour showing the texture distribution for the as-built 

and HT materials. Due to the simplified assumption, PFM after HT contains partial texture 

distribution and cannot have new texture compared to as-built EBSD, because it is 

generated from EBSD, and some texture information becomes inactive after sample 

cropping and lath growth and merging. Comparing as-built and HT EBSD pole figures, 
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there appear some new laths elongated perpendicular to the (1010) plane in the pole figure 

after HT, which are not taken into account by the introduced PFM.    

 

 

Figure 6-14. Pole figure comparison between the as-built EBSD scan, PFM model after HT, and 

EBSD scan after HT. 

It is always important to be aware of the scatter caused by using non-converged RVE 

model to represent a large material. The scatter has been discussed several times in this 

thesis, which causes statistical microstructural-sensitive effect in CPFE, and undesirable 

texture strength and size distribution in PFM. In a single case, as shown in Figure 6-12, 

the EBSD-HT CPFE model seems to have a better predicting result compared to PFM-

HT, but it should be noted that the two models are not based on the same sample region 
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due to technical difficulties. However, both models have successfully captured the most 

important strength-ductility change after HT for Ti-6Al-4V alloys, which is the key 

finding here. The current challenge in eliminating or limiting the undesired scatter lies in 

computational modelling capability. Thanks to the progress in EBSD plugin hardware, it 

takes 40 minutes to scan the two grain images (40 × 26 m) for model generation, and 

4 hours to complete the two bigger images for 3D reconstruction (139 × 87m), which 

is completely affordable. However, unlike the EBSD scan which has a linear time-size 

relationship, modelling cost increases exponentially as the size grows, especially for PFM 

as shown in Table 6-1. The EBSD-PFM-CPFE methodology can also be easily extended 

to real 3D given that the facility can fulfil the capability.  

In this work, the PFM was used first because the objective was to study the HT effect 

(lath size effect) on mechanical properties. However, this order is not unalterable, e.g., 

reversing the workflow, it is also possible to run CPFE first to calculate the plastic 

dislocation and the relative generated stored energy along the grain boundary, which is 

then imported to PFM as a driving force, to calculate dynamic recrystallization during hot 

deformation [366] [367].   

 

6.5 Conclusion 

A through-process approach that integrates the phase-field method (PFM) with the 

crystal plasticity finite element (CPFE) modelling is presented for the prediction of 

microstructural evolution and the mechanical properties of powder bed fusion (PBF) 

manufacture Ti-6Al-4V alloy. This framework offers an efficient method for an in-depth 

understanding of the relationship between thermo-processing, microstructural evolution, 

and mechanical properties for additive manufactured alloys. The key achievements in this 

chapter are: 

1. The PFM model is utilized for analysing the grain growth behaviour during the 

post-built heat treatment process through the simulation of grain boundary 

migration. It predicts five times growth in lath area from 0.59 to 3.0 𝑢𝑚2, after 
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100 minutes of annealing at 1127 K. The evolved lath prediction reaches close 

agreement compared to EBSD measurement. 

2. Lath size sensitive CPFE models, generated from both direct EBSD-, and PFM- 

based conversions, are used to model the tensile behaviour of as-built and annealed 

samples. The CPFE models successfully observe the softening tensile property due 

to the lath growth after heat treatment and are validated against mechanical tests. 

3. The developed geometrically strain gradient CPFE model has captured severe 

stress localization phenomenon in this lamellar morphology PBF Ti-6Al-4V alloy. 

The maximum localized principal stress can be up to 2790 MPa, approximately 

triple the value of yield stress.  

4. This work introduces a realistic microstructure image-based phase-field method, 

as well as a PFM-to-CPFE bridging tool method. Together with the image-based 

CPFE methodology detailed in chapter 4, this tool has achieved a complete high 

fidelity micro-scale coupled modelling framework, to offer an important process-

structure-property for predicting microstructural evolution and mechanical 

properties during the PBF thermal process. 
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7 An Instant Process Quality Control Tool for Additive 

Manufactured Dual-Phase Steel based on a Crystal 

Plasticity Trained Deep Learning Surrogate for 

Structure-Property Prediction 

 

The core contents of this chapter has been published in Yuhui Tu, Zhongzhou Liu, Luiz 

Carneiro, Caitriona M. Ryan, Andrew C. Parnell, Seán B Leen, Noel M Harrison, 

Towards an instant structure-property prediction quality control tool for additive 

manufactured steel using a crystal plasticity trained deep learning surrogate, Materials 

& Design, Volume 213, 2022, https://doi.org/10.1016/j.matdes.2021.110345. The author 

of this thesis is the primary author of the paper led the following activity in this chapter / 

paper: 

 CPFE model development: model generation, constitutive law development, 

parameter calibration, and automatic big data modelling workflow design.  

 Experimental test data post-processing: EBSD analysis. 

 DL model development: TensorFlow code writing, CNN architecture optimization, 

accuracy assessment and comparison against CPFE and experimental data.  

 Manuscript drafting.  

The contribution of each collaborator in this study is as follows: 

 Zhongzhou Liu (Singapore Management University) : Discussion on  TensorFlow 

coding structure optimization. 

 Luiz Carneiro (University of Nevada, Reno): Provision of experimental test data 

 Caitriona M. Ryan, Andrew C. Parnell (Maynooth University ): Discussion on DL 

application and theory. 

https://doi.org/10.1016/j.matdes.2021.110345
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7.1 Introduction 

Accurate computational simulation of the macroscale strength of metals or alloys 

typically requires microstructure definition. Finite element analysis, involving grain 

boundary and crystal orientation specifications, along with constitutive and damage model 

parameters, are referred to as crystal plasticity finite element (CPFE) methods [188, 216-

218]. Such advanced modelling generally requires model development and simulation 

time in the order of hours and days, respectively. For e.g, the 190-grain model introduced 

in Chapter 4, requires 5 days to complete the simulation of low cyclic fatigue behaviour. 

Often high-end computer infrastructure is required to perform the computation, and once 

complete offers powerful insights into the contribution that individual microstructural 

features make to the local and bulk material response. CPFE methods have evolved to 

include increased slip system complexity [28, 136],  allowing simulation of multi-phase 

alloy behaviour. These advances improve accuracy and broaden the applicability, but they 

also increase computational costs. The more advanced strain gradient model implemented 

in Chapter 5 and 6, has the capability of calculating dislocation density based on model 

geometry. However, the computational cost is also 10 times heavier compared to the 

phenomenological model in Chapter 4. This computational effort further increases when 

the loading condition is complex (e.g. cyclic) and further grows if a definitive RVE model 

(containing sufficient grain information and mesh density to represent a large sample) 

[318, 322] or a high-fidelity model (realistic microscopy image-based) is required. While 

accurate and insightful, finite element modelling is far removed from a live in-process 

property predictive tool, primarily due to model setup and simulation times. 

Stainless steels have emerged as a common material for metal printing due to the low 

power requirement for melting and the non-reactive properties of the material in powder 

form [368]. The AM fabricated stainless steel exhibits different phase components 

(austenite, martensite, and ferrite) as well as the varying precipitate (carbides), leading to 

complex combination of microstructure and mechanical properties [25]. Studies on dual 

phase austenite-martensite steels have shown that chemical phase fraction has the bigger 

influence on mechanical behaviour, among a range of microstructural features examined 

in PBF additive manufactured 17-4PH stainless steel (SS17-4PH) and 316L stainless steel 
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(SS316L)  [369]. It is known that spatial variations in phase fraction can occur during the 

PBF process due to small changes in (rapid) cooling rate and the complex thermal history 

involved [323].  SS17-4PH is a dual-phase steel strengthened by precipitation. As-built 

SS17-4PH contains mainly martensite phase together with the retained austenite phase 

[370], the precise fraction of which is highly dependent on the PBF process as well as post 

heat treatment parameters [99]. Studies have reported the retained austenite phase varying 

from 3% to 63% [37, 79, 197, 371]. Similar behaviour was also observed for other 

stainless steels such as SS316L, with more complex phase composition including the 

detected volume fraction of ferrite ranged from 0.83% to 7.83% [372, 373].   

Variations in PBF process parameters, number of parts in a build or build layouts can 

lead to variations in as-built microstructure, and consequently variations in local 

mechanical performance [331]. Even when process parameters are held constant in a 

build, a gradient in microstructure can often be observed along the build direction [323]. 

This, along with the risk of defect occurrence, has led to some PBF equipment 

manufacturers developing live process monitoring quality tools that image and record 

sensor data for each individual solidified layer, before the next layer of loose powder is 

applied [92, 357, 374-376]. As optical imaging resolution and sensor technology continue 

to advance, it is anticipated that the next generation of quality control in PBF machines 

will go beyond melt-pool analysis and record as-solidified microstructural features, such 

as grain boundaries within the captured individual layer data. To take advantage of this 

live microstructural data, an ideal in-process PBF monitoring tool should have a structure-

property prediction for each printed layer. However, live-CPFE modelling of the 

individual layers is impractical due to computational cost and the short time frame 

(generally seconds) between successive layer printing.  

This study presents a data-driven deep learning (DL) model based on a CPFE predicted 

structure-property relationship database. This will provide an instant predictive capability 

to advance the development of a live process-structure-property quality tool based on real-

time image and sensor data, giving real-time layer-by-layer strength prediction, once 

suitable in-situ microscopy technology is in place. 
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7.2 Methodology 

The workflow is described in Figure 7-1. This process firstly generates a statistically 

equivalent VT-generated CPFE model from the EBSD measurement of an AM 17-4PH 

stainless steel sample. The input parameters are calibrated against experimental stress-

strain behaviour under tensile and cyclic fatigue conditions (ASTM-E606). The dual phase 

CPFE model is then extended to five different martensite volume fractions (𝑉𝑓,𝑚) model 

sets. Each set contains 200 models, with different (random) grain morphologies, leading 

to the simulation of 1000 unique CPFE models in total. The resulting 1000 structure-

property linkages are used for training and validating the DL model as a surrogate tool for 

CPFE to rapidly predict structure-property relationships.  

 

Figure 7-1. Schematic of the integrated CPFE-DNN architecture, two images containing phase 

fraction and orientation information act as input to predict mechanical properties. 

 

7.2.1 CPFE based dataset generation. 

The data-driven model requires structure-property relationship data for training of the 

DNN model. In the absence of large datasets of experimental testing for structure-property 

relationships of PBF-LB manufactured stainless steel, CPFE models are adopted here as 

a reasonable method to produce a broad map of property-structure linkage information for 
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the DL tool. The VT based grain maps were generated using DREAM3D [294]. The 

advantage of this tool is that it permits random grain nucleation while maintaining a 

constant phase fraction ratio. This feature is beneficial to imitate a batch of samples with 

the same print parameters.  

 

Figure. 7-2.  A sample of 85 automatically generated CPFE big data generation results with 

unique grain morphology, crystallographic orientational and phase volume fraction information 

for five different martensite phase fractions. Each individual square represents a 100 × 100 m 

sample 

 

An efficient simulation framework was developed to batch generate and solve large 

groups of dual-phase VT models automatically. Each model contains approximately 100 

grains of average grain size 10.36 m and each grain is meshed with approximately 100 

linear solid hexahedral (C3D8) finite elements in the general purpose finite element solver 

ABAQUS [303]. This voxel mesh permits directly conversion from image pixels to a finite 

element mesh [377] and also facilitates a consistent DNN input size for all model thus 
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minimizing the potential bias of DNN input size [378]. This three-dimensional solid 

element as a recommended stress/displacement element [379], has also been shown to 

have better accuracy compared to linear tetrahedron mesh for plasticity simulations [380]. 

200 unique CPFE models were generated for each martensite volume fractions (𝑉𝑓,𝑚)  of 

5, 20, 50, 80, 95%, with a constant grain size distribution and phase fraction. 

Crystallographic orientation is assigned to individual grains according to the BCC and 

FCC inverse pole figures (IPFs), to generate 1000 unique polycrystalline realizations in 

total. Finally, a customized script analyses the phase and orientation definitions and 

generates the relevant CPFE and DNN material data cards for each model. Figure 7-2 

shows sample models from the 80% 𝑉𝑓,𝑚 model set, the martensite phase is shown in 

black with austenite in white and corresponding grain morphology and orientation data 

shown in colour. Materials consisting of more than two phases would require a colour 

map for complete phase data description. 

The CPFE model implements large deformation theory, and the deformation is 

determined by crystallographic slip only. The yield and hardening behaviour are described 

by initial critical resolved shear stress 𝘨0, saturated stress 𝘨∞ when large plastic flow 

breaks out in stage I, is the initial self-hardening modules ℎ0, as detailed in Chapter 2.8.2. 

This dual phase CPFE model contains 24 slip systems, 12 for the FCC lattice structure 

austenite phase, and another 12 for the BCC martensite phase [381, 382], shown in Figure 

7-3.  

For this material research, it is found necessary to use a scale-consistent fatigue 

indicator parameter (FIP) to predict the FCI life here. In this case, based on previous work, 

two FIPs, namely accumulated effective crystallographic slip p [244], and accumulative 

energy dissipation W [138, 243] were calculated. Equations 5 to 7 define the calculation 

of these two FIPs. The two FIPs have successfully been utilized in previous research [6, 

56] to determine fatigue crack initiation.  

Accumulated effective crystal slip p, aggregated over all slip systems including the 

effects of mean stress, is successfully implemented with CPFE to predict fatigue 

behaviour as follows: 
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(7 − 1) 

𝑝 = ∫ �̇�𝑑𝑡
𝑡

0

(7 − 2) 

Further development of this FCI prediction approach considers the accumulated strain 

energy dissipation parameter W which sums up the energy consumption on all the crystal 

slip systems by considering both microscale shear stress and slip rate, as follows: 

𝑊 = ∑∫ 𝜏𝛼�̇�𝛼𝑑𝑡
𝑡

0𝛼

(7 − 3) 

 

It has been found that the two FIPs tend to evolve and finally reach a stabilised value 

during CPFE modelling.  Thus, it is reasonable to predict the numbers of cycles for FCI 

by dividing a critical FIP value 𝐹𝐼𝑃𝑐𝑟𝑖𝑡 by that of the stabilized fatigue cycle 𝐹𝐼𝑃𝑐𝑦𝑐, as 

shown below: 

𝑝cyc = 𝑝𝑡 − 𝑝(𝑡−∆𝑡𝑐𝑦𝑐)
(7 − 4) 

𝑊𝑐𝑦𝑐 = 𝑊𝑡 − 𝑊(𝑡−∆𝑡𝑐𝑦𝑐)
(7 − 5) 

𝑁𝑖,𝑝 =
𝑝crit

(𝑝cyc)𝑏1
(7 − 6) 

𝑁𝑖,𝑊 =
𝑊crit 

(𝑊cyc )
𝑏2

(7 − 7) 

where  𝛥𝑡𝑐𝑦𝑐 is the modelling time consumed to finish one fatigue cycle. 

The critical FIP values are identified and validated by comparing the CPFE-predicted 

and measured FCI data for certain sample tests.  The component b is solved through the 

experimental data-fitting process by a nonlinear least-squares algorithm. This power-law 

approach was considered necessary to improve the fatigue prediction  [182, 340, 383].  
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The integrated algorithm was written in a user material subroutine (UMAT) [231] for 

ABAQUS. More details about self-hardening and latent-hardening moduli definitions can 

be found in prior literature [234-236]. 

 

Figure. 7-3. Slip systems and crystallographic lattice of austenite and martensite phase. 

Periodic boundary conditions (PBC) [234] were applied to the free surfaces in the 

CPFE models together with a strain of 1.0%, which is sufficient to calculate bulk yield 

strength value while keeping an acceptable CPFE running time. A customized script was 

applied to schedule the job and perform results extraction once the simulation finishes. 

These post-processed property data (stress-strain and fatigue data) act as the output of the 

DNN model.   

Although the definitive RVE model is unfortunately not the suitable choice for running 

the big data batch jobs, due to the tremendous computational cost from thousands of 

models, it can be adopted for calibrating the material parameters in CPFE modelling. The 

CPFE model for calibration shown in Figure 7-5, contains 1078 grains with a mesh density 

of 111 elements per grain. This model has satisfied the minimum size and number of grain 

required for a converged definitive VT-based model, as previously quantified in Chapter 

4.3.1.1 (190 grains and 98 elements per grain). This converged model helps avoid scatter 

caused by microstructural variation during the VT realization and texture definition, thus 

ensuring reliable calibration results.  

The initial parameter values selected in the calibration step referred to relative dual 

phase steel studies using similar UMAT, as the starting variable combination in the 
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developed MATLAB non-linear square fit automatic calibration tool. Specifically, the 

initial elastic parameters for martensite phase were taken from a two-stage deformation 

modelling work on DP 780 steel [12] and the values for austenite were obtained from 

published data [50] [51]. Initial parameters for critical resolved shear stress 𝘨0 and stage 

I saturated stress values 𝘨∞  were determined through hardness tests [52], and the 

hardening modules from tensile tests for a transformation-induced plasticity steel [53]. 

These values were iteratively adjusted by the algorithm to suit the PBF-LB steel adopted 

in this chapter. The calibrated data set for PBF-LB built 17-4PH steel sample with 79% 

𝑉𝑓,𝑚, based on a comparison with the stabilized stress-strain curve [28] is given in Table 

7-1. 

Table 7-1. Calibrated parameters for dual phase CPFE model. 

Parameter Martensite BCC Austenite FCC 

�̇� 0.001 𝑠−1 0.001 𝑠−1 

𝑛 50 50 

𝘨0 466 𝑀𝑃𝑎 192.5 

𝘨∞ 740 𝑀𝑃𝑎 402.5 

ℎ0 20 𝑀𝑃𝑎 20 𝑀𝑃𝑎 

𝐶11 262 𝐺𝑃𝑎 204.6 𝐺𝑃𝑎 

𝐶12 150 𝐺𝑃𝑎 137.7 𝐺𝑃𝑎 

𝐶44 112 𝐺𝑃𝑎 126.2 𝐺𝑃𝑎 

𝐶1 10000 

𝐷1 200 

𝑏 1.58 
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7.2.2 DNN model optimization, training, and validation. 

The DNN inputs consist of 1000 varying microstructural images including phase and 

crystallographic orientation variations, each with 10,000 pixels, thus 2 × 107  data 

features in total. There is no fixed value for optimal ratio of size of training sample dataset 

to size of validation sample dataset, as this parameter depends on the signal-to-noise ratio 

in the data and the training sample size. The effect of this ratio selection has been discussed 

in a previous study [378], showing that an increase in the training set percentage can lead 

to an unstable estimation of the true performance of the DNN model, while a reduced 

training set percentage can lead to a poor model due to insufficient amount of training 

data. In this study, a range of ratios was examined, as shown in Table 7-2, where a training 

to validation ratio of 75:25 was found to give the lowest mean absolute error (MAE) in 

yield strength predictions. Consequently, the CPFE predicted 1000 structure-property 

relationships are randomly divided into two groups: 750 for training and 250 for 

validation.  

Table 7-2. Relationship between DNN performance and the training/validation ratio 

setting. 

Training/validation ratio MAE in YS (MPa) 

50-50 332.0 

60-40 317.8 

70-30 45.3 

75-25 37.1 

80-20 38.6 

 

Specifically, the inputs of the DL model are the microstructural images containing 

phase and orientation data, and the output value is the predicted bulk stress-strain curve. 

The 100 × 100  pixel (nodes in CPFE) microstructural images, representing phase 
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composition and orientation, were converted to DNN input data format, which contained 

the RGB values respectively, for the complete model. Thus, the phase map input and the 

orientation map use 100 × 100 × 3  array sizes. A customized Python code was 

developed for calculating the macroscopic stress based on the CPFE predicted reaction 

force, and the result together with its strain value was recorded with an interval of 0.00025 

strain. Consequently, 40 data points were extracted and used to plot the stress-strain 

curves, which also acted as the DNN output, with an array dimension of 40 × 2. 

In this work, two different types of DNN architecture are considered. A standard 

sequence DNN network [269, 277] is first developed where inputs go through a single 

pipeline shown in Figure 7-4 (a). As the microstructural inputs have two variables, the 

sequence DNN design may not be appropriate. Thus, an optimized non-sequence 

(Siamese) DNN structure [384] with two pipelines, shown in Figure 7-4 (b), was also 

developed to capture the structural features of phase and crystallographic orientation 

(represented as IPF colour) data separately. Integrating the two different CNNs to extract 

the characteristic of phase and orientation separately while aggregating the outputs 

together at the last 3 layers (as shown in Figure 7-4) is a key novelty in this study. In a 

standard sequence DNN design, the two images are usually imported at the first layer 

where rich semantic information could be lost. However, in the new model, by aggregating 

the images in the last 3 layers, it can better capture their common points and differentiate 

their features thus leading to an improved prediction [77]. 
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Figure. 7-4. (a) Single pipeline sequence DNN (before optimization) and (b) non-

sequence multi-pipeline Siamese DNN (after optimization) 

The base module of the DNN model implements convolution neural networks (CNN) 

as the kernels to extract information from the microstructure images. CNN is generally 

designed to handle the problem of processing grid-shaped data which are difficult to 

process via traditional deep learning models. It utilizes several small filters and pooling 

layers to efficiently extract features which are useful for downstream tasks. Further 

general information on convolution layer design can be found elsewhere [276]. In this 

study, the design of the CNN contains the following layers: convolution layer [279], 

pooling layer and dropout layer. 

The convolution layer only needs a small part for each computation (usually 3 × 3 or 

5 × 5), resulting in a much smaller number of parameters. It consists of several filters 

which capture the distributions of the specific characteristic on the data (i.e. in which part 

the characteristic is more significant when predicting the result, also denoted by a weight 

parameter) by performing matrix multiplication with a part of the data. In this way, the 
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filters are a set of matrices whose elements (parameters) are implicitly and automatically 

learned during the training process of model development. The stress-strain property of 

each instance is influenced by different characteristics of the data. The goal of the 

convolution layer is to determine the implicit characteristics that contribute to the stress 

property. The hyper-parameters were defined based on a (published) recommended stable 

value [385], without an explicit hyper-parameter search, as it was observed that the 

predicted output was not sensitive to minimal change in hyper-parameter.  

The DNN architecture (i.e. the combination of DNN layers) was modified through 

parameter tuning during the training process to obtain a satisfactory accuracy and learning 

rate. Mean squared error (MSE) is adopted to train the model and optimize the parameters. 

The definition of MSE is presented in Equation 13 below: 

𝑀𝑆𝐸(𝑦𝑡𝑟𝑢𝑒,𝑦𝑝𝑟𝑒𝑑) = (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑)
2

(7 − 8) 

where 𝑦𝑡𝑟𝑢𝑒 is the ground truth of the stress property from CPFE modelling results, and 

𝑦𝑝𝑟𝑒𝑑 is the predicted value by DNN, and L is the MSE loss function.  

A back propagation (BP) algorithm was adopted for the training of the DNN. A BP 

algorithm is a general algorithm to update parameters in a DNN for supervised learning. 

The BP algorithm computes the gradient of each parameter, with respect to the loss 

function. For the DNN proposed in this model, the network architecture can be 

summarized in the formula below: 

𝑦𝑝𝑟𝑒𝑑 = ∅𝐿(𝜃𝐿 , ∅𝐿−1(𝜃𝐿−1 ⋯∅1(𝜃1, 𝑥)⋯ )) (7 − 9) 

where 𝑥 is the input into this model, 𝜃𝐿 is the 𝐿𝑡ℎ layer’s parameters (note that there may 

more than 1 parameter existing in a neural network layer, but they are all represented by 

a single 𝜃 here), and ∅𝐿 means the activation function and layer type of the 𝐿𝑡ℎ layer.  

Hence, the loss function can be rewritten as: 

𝐿 (𝑦𝑡𝑟𝑢𝑒 , ∅
𝐿(𝜃𝐿 , ∅𝐿−1(𝜃𝐿−1 ⋯∅1(𝜃1, 𝑥)⋯ )))

= 𝑎𝑏𝑠 (𝑦𝑡𝑟𝑢𝑒 − ∅𝐿(𝜃𝐿 , ∅𝐿−1(𝜃𝐿−1 ⋯∅1(𝜃1, 𝑥)⋯ ))) (7 − 10)
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Therefore, for each 𝜃, it is possible to compute its gradient with a chain rule. This back 

propagation (BP) algorithm was adopted for the training of the DNN [386]. For example, 

considering 𝜃1 the gradient is: 

𝑑𝐿

𝑑𝜃1
=

𝑑𝐿

𝑑∅𝐿

𝑑∅𝐿

𝑑∅𝐿−1
⋯

𝑑∅1

𝑑𝜃1
(7 − 11) 

After getting the gradient of parameter 𝜃, it is updated as: 

𝜃′ = 𝜃 − 𝛼
𝑑𝐿

𝑑𝜃
(7 − 12) 

where 𝛼  is referred to as a learning rate. The Keras library and the efficient 

implementation of BP (SGD) were adopted in this optimization process [250].  

In general, BP algorithm intends to find a global optimal parameter 𝜃 that minimizes 

the gap between the 𝑦𝑝𝑟𝑒𝑑 value and 𝑦𝑡𝑟𝑢𝑒 extracted from CPFE modelling result. 𝜃′ is 

expected to finally converge to 𝜃 . The CPFE predicted training database is used to 

compute the loss as well as the gradient of each parameter. After multiple steps of updated 

iterations, the parameters finally converge to produce a minimized loss (e.g. MSE defined 

in Equation 13). 

The remaining unseen unique 250 sets of CPFE predicted structure-property 

relationships are used to validate the reliability of the trained DNN model.  Two criteria, 

mean absolute error (MAE) and regression residual are used for determining the DNN 

model performance in both efficiency and accuracy. MAE quantifies the loss between the 

predicted values and ground truth of the 250 data points. The regression residual is 

computed as |𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑|/𝑦𝑡𝑟𝑢𝑒 and reported in percentage terms. The standard and 

Siamese DNN architecture are trained to predict the property and then compared to CPFE, 

and the resulting preferred DNN type is adopted for subsequent runs. 

7.2.3 DNN validation with new phase fraction dataset 

Having determined the effectiveness of the DNN model in predicting the stress-strain 

response and fatigue life for the specific martensite-austenite phase fractions that it was 
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trained upon, the effectiveness of the DNN model’s predictive capability for other phase 

fraction combinations was then assessed. Thus, 200 more synthetic microstructure images 

were generated for two martensite fractions (𝑉𝑓,𝑚 = 35%, 65%) that are between previous 

fraction values (5, 20, 50, 80, 95%). In this case, no re-training of the DNN model was 

performed, however CPFE analyses were performed for validation of the predicted yield 

strength. 

7.2.4 DNN application on realistic microstructural images 

CPFE modelling based directly on realistic microstructure images, (based on SEM or 

EBSD scans) is considered to more accurately represent microstructure with complex 

grain morphologies and special textures common in AM metals, [142, 143, 228, 387] than 

using synthetic (e.g. VT-based) images. However, this real image-based model usually 

has higher computational cost and larger computational memory requirements. 

Furthermore, time-consuming sample preparation and pre-processing of the raw data, 

including non-indexed fill and grain cleaning, is necessary to avoid excessive numbers of 

local singularities. 

The DNN model is potentially capable of addressing the excessive computational cost 

issue associated with solving EBSD-CPFE models. To test this capability, a 400 × 400 

pixel EBSD scan of 17-4PH material was performed. The EBSD images were converted 

to a grey scale image (for phase data) together with an IPF coloured orientation map (for 

texture data) with which the trained DNN is familiar. Meanwhile, an EBSD image-based 

CPFE model was constructed using a previously published approach [228]. To distinguish 

from the VT-generated CPFE model, all models from direct EBSD image-based 

conversion are subsequently denoted as CPFE-E. The DNN and CPFE-E predicted stress-

strain curves using realistic microstructural images were compared to the experimental 

test to determine predictive accuracy. The computational costs were also measured to 

compare efficiency.  
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7.3 Results  

7.3.1 CPFE model calibration and property prediction. 

This study started with CPFE model calibration against the mechanical tests. Figure 7-

5 shows a statistically equivalent RVE model (21% austenite phase and equivalent 

texture), based on microstructural characterisation from EBSD measurement, for this 

parameter calibration process. Figure 7-6 shows a comparison between CPFE-predicted 

and measured experimental tensile stress-strain response. This CPFE model shows close 

agreement up to the strain of 1%, including good agreement of yield stress (1066 and 1087 

MPa).  

 

Figure. 7-5. Reconstructed EBSD crystallographic orientation map coloured in inverse pole 

figure (IPF), phase fraction map (79% martensite in green and 21% austenite in red), and the 

statistically equivalent VT-generated CPFE model. 
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Figure 7-6. Experimental fit and CPFE parameters calibration for SLM manufactured 17-4PH 

steel. 

The next step was to validate the performance of steels with different phase fractions.  

For ease of results visualization and comparison, Figure 7-7 shows the 0.2% offset yield 

stress (YS) values extracted from the 1000 CPFE models with five different phase 

fractions. The CPFE model predicted an increasing tensile strength as the martensite 

fraction increases with the predicted YS median values being 532 MPa, 567 MPa, 702 

MPa, 1003 MPa and 1216 MPa for the groups with 5, 20, 50, 80, 95% martensite phase, 

respectively. The CPFE-predicted YS ranges are also compared with tensile test data for 

other AM steels for a range of martensite phase fractions in Table 7-3.   
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Figure. 7-7. CPFE predicted effect of martensite phase fraction on yield stress. 

Table 7-3. Comparison of CPFE predicted results with literature on yield strength. 

Martensite Fraction (%) CPFE YS ranges (MPa) Test YS (MPa) 

5 509.7 - 557.9 440-520 [388-390] 
20 534.4 - 600.0 570 [391] 
50 623.8 - 793.5 750-798 [371, 392] 
80 824.9 - 1094.3 1087 [79] 
95 1138.8 - 1270.0 1170 [99] 

 

Figure 7-8 shows the CPFE-predicted stabilized hysteresis stress-strain loop 

relationship at three strain amplitudes, ±0.4%, ±0.7%, and ±1.0%. FCI is assumed to 

correspond to a critical FIP W value, which is calibrated against the ±1.0% CPFE result 

as 8.26 ×  105 𝑀𝐽𝑚−3 . The maximum localized FIP W is adopted to indicate the 

predicted FCI life. Table 3 shows a comparison between predicted and measured stress 

amplitudes and FCI lives. Both FIPs show a decreasing trend until they finally become 

stable after 8 cycles. The FIP energy dissipation W result from the tensile test simulation 

can, to some extent, represent the cyclic FIP result by multiplying it by a factor of four 

while the plastic slip p result shows overestimation when predicting maximum 
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localization values. A previous study [234] also showed a more reliable prediction on 

fatigue behaviour using W rather than p. Due to the above reasons, this work only 

considers energy dissipation W values as the FIP and uses tensile CPFE modelling results 

for the DNN training to save computational cost.   

 

Figure. 7-8. Comparison of CPFE-predicted stabilized hysteresis loop (lines) with experimental 

data (symbols), for the 79% martensite phase fraction in 17-4PH AM steel, at 0.4%, 0.7% and 

1.0% cyclic strain amplitudes. 

 

Table 7-4. Comparison between experimental tests and CPFE predicted results on cyclic stress 

and fatigue crack initiation life.  

Strain 

amplitude 
Experiment ∆𝜎 2⁄  CPFE ∆𝜎 2⁄  𝑁𝑖Test 

(cycles) 

𝑁𝑖 CPFE 

(cycles) 

±0.4% 792 MPa 748 MPa 11271 11399 

±0.5% 921 MPa 862 MPa 4011 3352 

±0.7% 1014 MPa 994 MPa 633 956 

±1.0% 1060 MPa 1108 MPa 129 125 
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Figure 7-9 shows the 1000 maximum localized FIP W distribution results extracted 

from batch CPFE models at the strain of 1%. It can be observed that for a group of 

randomly generated models with a constant phase fraction definition but unique 

morphology and texture, there is approximately a 3% possibility for the CPFE models to 

predict double the localized FIP values compared to the mean FIP of the phase group. The 

CPFE models have predicted a wide range of FIPs although their phase compositions are 

statistically equivalent. One reason is the difference in RVE size for a monotonic stress-

strain prediction and the RVE size for a maximum FIP value prediction. The RVE size 

used here meets the requirements for monotonic stress-strain but may not suffice for some 

model FIP predictions. It is known that the predicted fatigue life reduces as the RVE size 

increases [228]. However, the model size in this work (of 1000 CPFE models) had to be 

balanced with the computational costs of the CPFE analysis. In addition, the FIP 

prediction has proved to be more sensitive to the initial texture than to grain morphology. 

The texture is randomly assigned to the models within the same phase group and is unique 

in individual RVEs. In each phase group, there are approximately 5 FIP predictions 

considerably higher than the mean. It is worth noting that although a bigger RVE 

decreases the possibility of a large scatter in the FIP prediction, it is unlikely to account 

for all scatter [393]. Figure 7-10 shows von Mises stress, principal strain, and FIP W 

contour plots for phase fractions of 20% and 80% at the strain of 1%. The 80% martensite 

material gives a higher von Mises stress and fewer deformed regions due to increased 

harder phase components. The FIP W shows a similar distribution to the principal strain 

contour plot, while its magnitude is influenced by both stress and strain localization 

values. 
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Figure. 7-9. Predicted effect of martensite phase fractions on the maximum localized energy 

dissipation FIP W over full RVE extracted from CPFE models. 
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Figure. 7-10. Predicted effect of martensite phase fraction on CPFE-predicted distribution of 

von-Mises stress, maximum principal strain and W FIP. 
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7.3.2 DNN training and validation performance 

The hardware requirement for the developed DNN model is low and all DNN code in 

this work runs on an office-grade laptop with 4-core CPU and 16 GB RAM. The design 

and arrangement of DNN layers have a significant impact on training time and 

convergence values, but not on the convergence speed. The optimised non-sequence DNN 

model in Figure 7-4 (b), with 2 input layers and 3 CNN layers for each branch, had an 

accuracy of 91% (compared to the standard sequence DNN model of 65%) but required a 

larger training time of 25 minutes (compared to 15 minutes). 

 

Fig. 7-11. MSE loss curves (loss for training group and val_loss for validation group) of the 

DNN network (a) before (standard DNN) and (b) after optimization (Non-sequential DNN). 

 

 

Fig. 7-12. Regression residual (residual %) boxplot of the DNN network performance (a) before 

(standard DNN) and (b) after optimization (Non-sequential DNN). 
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Figure 7-11 compares the training loss and validation loss curves for the standard 

sequence DNN (a) and the advanced non-sequence DNN after model optimization (b). 

From these two figures, it can be concluded that after optimization, the latter model creates 

far better predictions with significantly reduced MSE. The MSE curve for the model 

before optimization fails to converge, as shown in Figure 7-11 that after 25 epochs the 

validation loss is still not steady. After improving the DNN to non-sequence multi-

pipeline type, the loss curves begin to converge after 20 epochs, giving a more robust 

model. To further distinguish the two DNN model types, Figure 7-12 plots the regression 

residual for the two network structures. Similar to the conclusion drawn by MSE, after 

optimization, the mean of regression residual has decreased, indicating that the model can 

perform more accurate prediction and the variance of the regression residual has also 

decreased indicating that the optimized model is less likely to produce outliers. Table 7-5 

and Table 7-6 list the structural parameters of two models before and after optimization. 

Although the optimized model adds more parameters in total which may lead to slightly 

more training time, it results in largely improved performance. Thus, all DNN models run 

hereafter in this study employ the optimized non-sequence structure. 

Table 7-5. Standard DNN structure design parameters before optimization. 

Layer (type) Output Shape Param # 

Conv2D (BATCH, 98, 98, 32) 896 

MaxPooling2D (BATCH, 49, 49, 32) 0 

Conv2D (BATCH, 47, 47, 64) 18496 

MaxPooling2D (BATCH, 23, 23, 64) 0 

Conv2D (BATCH, 21, 21, 64) 36928 

Flatten (BATCH, 28224) 0 

Dense (BATCH, 64) 1806400 

Dense (BATCH, 1) 65 

Total  1862785 
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Table 7-6 Non-sequence (Siamese) DNN structure design parameters after optimization. 

Layer (type) Output Shape Param # 

Conv2D (BATCH, 98, 98, 32) 896 

MaxPooling2D (BATCH, 49, 49, 32) 0 

Conv2D (BATCH, 47, 47, 64) 18496 

MaxPooling2D (BATCH, 23, 23, 64) 0 

Conv2D (BATCH, 21, 21, 64) 36928 

Flatten (BATCH, 28224) 0 

Dense (BATCH, 32) 903200 

Conv2D (BATCH, 98, 98, 32) 896 

MaxPooling2D (BATCH, 49, 49, 32) 0 

Conv2D (BATCH, 47, 47, 64) 18496 

MaxPooling2D (BATCH, 23, 23, 64) 0 

Conv2D (BATCH, 21, 21, 64) 36928 

Flatten (BATCH, 28224) 0 

Dense (BATCH, 32) 903200 

Concatenate (BATCH, 64) 0 

Dense (BATCH, 64) 1040 

Dense (BATCH, 1) 17 

   

Total  1920097 

 

It takes 3 seconds for the DNN to give stress-strain relationships for all 250 models in 

the validation group, while it takes 4 days to complete CPFE modelling of the equivalent 

data set. Figure 7-13 show the stress-strain curve comparison from randomly picked 

models in 250 validation group of 80% martensite phase fraction. Figure 7-14 plots the 

comparison between 0.2% offset yield strength predicted by CPFE modelling and DNN 

machine learning, including both training and validation groups. The validation group 

tends to over predicts the YS value for the 50% phase fraction group, but the general 

predicting error is controlled within ±15% margin.  
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Fig. 7-13. Comparison between CPFE- and DNN-predicted tensile stress-strain response up to 

0.8% strain for 80% phase fraction of martensite. 

 

Fig. 7-14. Result Comparison between CPFE and DNN (optimized) predicted yield stress values 

in the training (red) and validation (blue) group. 
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Figure 7-15 shows the CPFE and DNN predicted contour plots of von Mises stress 

(CPFE) and heat-map for contributing pixels (DNN) at 1% strain for 20%, 50% and 80% 

models, respectively. The contour plots on the left side are directly from CPFE modelling 

showing von Mises stress, while the contour plots on the right side are the weight factor 

distribution extracted from the DNN convolutional layer to the overall stress-strain 

response. It should be noted that the DNN model is not designed to predict the von Mises 

stress contour plot, but these images are presented to indicate the relative contribution that 

each grain makes to the DNN response prediction. The weight factor heatmap shows the 

correlation of microstructural images to the stress property after DNN training, where the 

red regions contribute most to the overall stress (DNN output property) while the blue 

regions have the least positive effect on the property. It is obvious that the black phase 

(martensite) has the higher weight factor leading to a higher stress localization, which is 

consistent with the CPFE model prediction because martensite is defined to be harder. 

Figure 7-16 shows a similar comparison between the CPFE contour plot of FIP W and the 

corresponding DNN predicted heat map for FIP W.  The CNN weight factor heatmap 

reveals what the DNN model has interpreted. The comparison between the heatmap and 

the relevant physical constitutive-based CPFE model stress contour plot, helps assess and 

improve the DNN performance. Besides, the localized mechanical property prediction, 

rather than a macroscopic stress-strain curve, offers a more visible and straightforward 

reference for tailored microstructure design or localized quality assessment. 
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Fig. 7-15. CPFE Effect of martensite phase fraction on CPFE-predicted von Mises stress 

distribution (left) and corresponding weight factors for CNN layer (right). 
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Fig. 7-16. A comparison of the predicted FIP W contour plot from (a) CPFE modelling and (b) 

CNN layer weight factor. 

 

7.3.3 DNN structure-property prediction on customized multiphase steels. 

The developed DNN tool was adopted for predicting the YS values out of the newly 

generated 400 models with 35% and 65% martensite fractions, respectively. CPFE 

modelling result with the same phase fraction was only adopted for validating the DNN 

predictions. Figure 7-17 shows a randomly selected example from the 200 models and 

compares the predicted stress localization contour plots. Together with the previous 1000 

models for DNN training and validation, Figure 7-18 shows the DNN predicted structure-

property relationship curve defined by YS and phase fraction including 7 phases totally. 

The averaged YS values from the two selected CPFE models in Figure 7-17 were plotted 

(in black diamonds) to validate the two new phase DNN predictions. A third order 

polynomial equation was implemented here to quantify the trend relationship as 𝑌𝑆 =

𝑓(𝑉𝑓,𝑚), which shows a similar trend compared to the hardness testing data for similar 

materials in the literature [394]. 
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Fig. 7-17. CPFE and DNN predicted contour plot comparison. 35% martensite phase fraction 

model: (a) CPFE predicted von-Mises stress distribution and (b) CNN layer weight factor 

predicted from DNN model. 65% martensite phase fraction model: (c) CPFE predicted von-

Mises stress and (d) DNN model weight factor. 

 

Fig. 7-18. DNN predicted relationship between martensite phase fraction and yield strength, and 

comparison with measured effect on hardness.  

 



 

 

213 

 

7.3.4 DNN structure-property prediction on a realistic EBSD scan. 

Figure 7-19 (a) shows the EBSD data and images containing phase and orientation 

information as the DNN input. The realistic EBSD image has 321,602 pixels, equal to the 

number of nodes required in the converted CPFE-E model. The reconstructed EBSD map 

with 24,406 grains is meshed with C3D8 hexagonal voxels as shown in Figure 7-19 (b). 

One key benefit of the DNN model is again the much higher computational efficiency. It 

takes 45 minutes for the customized code to generate the necessary CPFE-E input file. It 

takes 13 hours to finish the real image-based CPFE-E modelling due to the model size and 

higher resolution. Yet it only takes 1.27 seconds for the trained DNN tool to output the 

stress prediction and most of that time is consumed with data transfer. 

 

Fig 7-19. (a) EBSD map data inputs in DNN tool with 321602 pixels: grey scale phase 

composition and IPF coloured crystallographic orientation imaging information. (b) Direct 

EBSD converted CPFE-E model with 24406 grains using C3D8 hexagonal mesh. 

Figure 7-20 shows the stress-strain curve comparison between CPFE-E, DNN 

prediction and the experiment test. The YS prediction from CPFE-E and DNN are 1049 

MPa and 1095 MPa respectively, compared to the experimentally obtained 1087 MPa. 

The DNN predicted stress-strain behaviour after yield is slightly closer to the experimental 

test in this case. In this case, the higher predicted stress from CPFE-E might be due to the 

small size of some austenite grains and could be solved using a higher resolution. 
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However, this solution further increases the computational cost. In this real image-based 

study, while both CPFE-E and DNN models successfully predict stress-strain curves, the 

developed DNN model has shown higher efficiency and accuracy when predicting 

mechanical properties, albeit with a non-smooth computational stress-strain curve. 

 

Fig. 7-20. A comparison of the bulk stress-strain relationship between EBSD image-based DNN 

model, CPFE-E model and the experimental test. 

 

7.4 Discussion 

This study has presented a CPFE trained DNN tool with the ability to predict 

mechanical response based on microstructural images. In CPFE, the phase and orientation 

data determine the individual grain properties in microscale finite element based 

modelling of grain deformation and interaction under a given loading condition.  Within 

the DNN tool (trained from prior CPFE analyses), microstructural detail such as phase 

and orientation is regarded as a combination of pixels with different weight factors for the 

prediction. Every pixel in the image contributes to the prediction depending on this weight 

factor, and together they determine the mechanical response metrics. The predicted 
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contour plots and heat maps are shown in Figure 7-15 and Figure 7-17 to demonstrate this 

principle. Both CPFE contour plots represent the localised mechanical response while the 

hottest region in the DNN heatmap represents the pixels with the most significant 

influence (high weight factor) on the DNN predicted mechanical property. From these 

contours, the DNN successfully captures the stress localization at similar hot spots to the 

CPFE results. The difficulty lies around the grain boundary when DNN knows to assign 

different weight factors on the grain boundary curves but fails to always find the correct 

trends. Precise grain boundary modelling is also a challenge for CPFE modelling. The 

consistent fit between stress distribution maps explains the satisfying prediction of stress-

strain behaviour and yield strength. Moreover, it can be deduced that the integrated CPFE-

DNN tool developed in this study has the potential to predict hysteresis loops by extending 

current CPFE tensile models to fatigue, without the need to change the DNN model 

architecture.  

When it comes to FIP prediction, see Figure 7-21, the MSE curve fails to converge, 

even with sufficient training iterations (200 epochs), using the same optimized DNN 

model. Figure 7-16 visually shows how the DNN model fails to identify the dominant 

grains for FIP W contribution (per the CPFE result). FIP is an extremely localized value 

for predicting strong mechanical behaviour such as crack initiation. Thus, fewer clues 

exist in the training data for the DNN which causes reduced predictive accuracy. This is 

in contrast to Figure 7-15, where most pixels in the structural input image appropriately 

contribute to a weight factor when determining bulk stress-strain behaviour as well as the 

stress localization distribution, resulting in a good stress-strain predictive accuracy.  
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Fig. 7-21. MAE convergence curve for W FIP prediction during DNN training. 

 

DNN architecture optimization has a significant effect on the predicting accuracy in 

this work. Despite the different settings of the standard and Siamese DNN, they are quite 

similar in layers and depth. However, the latter achieved lower MSE and regression 

residual as shown in Figures 7-11 and 7-12, which indicate a better capacity in prediction. 

The reasons for the results can be concluded as follows. (1) The Siamese DNN separate 

the microstructure inputs Phase and IPF data into two separate pipelines, which enables 

the model to capture their individual characteristics in different ways without interference. 

(2) The two different characteristics are merged in the last 3 layers, which guarantees that 

the model can also capture the common points between Phase and IPF data during the BP 

algorithm. (3) The Siamese DNN has more parameters compared to the standard type, 

providing better capability in fitting and predicting the more complex CPFE data. 

Another key finding in this work is that the developed DNN model has the ability to 

predict the structure-property relationships for a real image within seconds, providing a 

rapid non-destructive testing solution once integrated with a high speed in-situ cameras 
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providing live microstructure imaging of a solidified layer. This potential application 

offers a step towards an instant / real-time determination of mechanical performance based 

on live process quality control data, for instance, the next generation of PBF machines 

could give a live read-out of the strength of the layer which has just solidified. It is noted 

that such in-process microstructural imaging captures as-solidified microstructure and so 

future code surrogates could be expanded to include microstructural evolution predictive 

steps to account for changes that may occur during cooling or subsequent post-built heat-

treatment. 

The two results introduced in sections 7.3.3 and 7.3.4 broaden the practical applications 

of the developed DNN tool. If the DNN model is designed for the purpose of predicting 

gradient or flexible phase composition, the phase fraction in training data can be specified 

to be continuous within the desired range, rather than the discrete values, to further 

improve the predicting accuracy. After sufficient training steps, the developed DNN 

model successfully recognizes the phase regions and the associated unique 

crystallographic orientation variations. It also captures the differences in macroscopic 

stress response due to the varying microstructures. Such DNN model exhibits as high 

accuracy compared to CPFE on structure-property relationship prediction while reducing 

the computational cost to seconds. The developed DNN model and its training procedure 

offer a new perspective for structure-property modelling. The developed DNN model has 

the ability to predict the structure-property relationships for a real image within 

milliseconds, providing a rapid non-destructive tensile testing solution once integrated 

with a high speed in-situ cameras providing live microstructure imaging of a solidified 

layer.  

This potential application offers a step towards an instant / real-time determination of 

tensile mechanical performance based on live process quality control data, for instance, 

the next generation of PBF machines could give a live read-out of the tensile strength of 

the layer which has just solidified. It is noted that such in-process microstructural imaging 

captures as-solidified microstructure and so future code surrogates could be expanded to 

include microstructural evolution predictive steps to account for changes that may occur 

during cooling or subsequent post-built heat-treatment. In addition, this DNN tool could 
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be expanded to include PBF process-structure modelling capability [59, 395], to give a 

complete process-structure-property instant predictive capability based on selected 

process parameters and CAD layer/slice data. Further uptake of the developed CPFE-

DNN method could be via a non-destructive inspection tool which gives quick and 

accurate reports on void and microstructural defect characterisation, to accompany the 

existing microscopy techniques [396, 397].  

7.5 Conclusions 

The Deep Learning model presented here demonstrates one future option for an instant 

non-destructive property predicting tool, trained by crystal plasticity finite element 

analysis of the microstructure-property relationship and experimental testing. The near-

instant strength prediction performance makes it feasible to implement this DL model as 

a surrogate tool of CPFE and other computationally expensive models, to give a rapid 

prediction of additive manufacturing part performance within a process-monitoring 

quality control tool. The dual-phase crystal plasticity and DNN models have been 

developed for relating microstructural features and mechanical response including stress-

strain and fatigue indicator parameter behaviour. The CPFE study was scripted and 

automated for big data generation and an optimized DNN model was implemented with 

the automated CPFE for data-driven model training. The key conclusions for this research 

are: 

1. It is viable to develop and train a CPFE-DNN model to successfully predict the 

stress-strain curve and yield strength to within ±15% error.  

2. The DNN model, while predicting the structure-property relationship as a viable 

alternative tool for CPFE, enables significant computational cost savings (once 

trained). (The DNN takes 12 milliseconds for VT generated 100-grain predictions 

and 1.27 seconds for real EBSD image converted 24406-grain predictions 

compared to 25 mins and 13 hours, respectively, when using full CPFE 

modelling.) 

3. A data driven DNN model requires a large number of CPFE predicted samples for 

training, with 75:25 training: validation ratio recommended. For dual-phase 
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materials, phase fraction and crystallographic texture are sufficient inputs to 

provide reliable yield stress for the AM steels.  

4. The design of the DNN hidden layers architecture is important in machine learning 

parameter optimization. In this case, the prediction accuracy increases from 65% 

to 91% after improving the sequence DNN to multi-pipeline non-sequence 

architecture.  

5. It is necessary to run multiple models of the same phase fraction for FIP 

characterisation to account for possible over-prediction of the maximum FIP 

values.   

6. The DNN model, trained on VT-CPFE data, can identify the main contributing 

grains to the stress distribution profile, and can accurately predict the tensile stress-

strain curve but is less accurate in predicting FIP localization results.  

7. The trained DNN model can be applied to multiple ranges of phase fraction steels, 

including phase fractions not used in the training data.  Most importantly, it is 

capable of predicting the mechanical response from real EBSD images, despite 

being trained only on VT models. This is a key step towards a tool for in-situ 

microstructure-property prediction in real-time.  
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8 Conclusion and Future Work 

8.1 Conclusions 

The main outputs of this thesis include the development of (i) 3D microstructural 

sensitive crystal plasticity finite element (CPFE) computational models to characterize the 

structure-property relationship; (ii) Integrated multi-physics phase-field method (PFM) 

and CPFE to establish dynamic and evolving structure-property modelling framework; 

and (iii) A deep learning (DL) model developed on multiple state-of-the-art computational 

methods. The thesis’ multi-physics and interdisciplinary modelling work, with the 

associated experimental characterisation, complete a micromechanics-based investigation 

on the structure-property relationship for additive manufactured, particularly powder bed 

fusion (PBF) manufactured metals. The significant achievements of this thesis include: 

 The development and implementation of high-fidelity and real image-based 

PFM and CPFE models for CoCr, Ti-6Al-4V, and 17-4PH stainless steel 

alloys. The models are calibrated and validated via experimental 

characterisation for the micromechanics-based investigation.  

 A series of bridging tools were developed to fulfil a seamless data connection 

between computational mechanical modelling, material science and 

characterisation, deep learning. With these tools, data formats can be flexibly 

and easily converted between microscopy scans, finite element models, and 

convolutional neural network, to fulfil an interdisciplinary research capability. 

These tools are available open source at https://github.com/I-Form/Deep-

learning---Crystal-plasticity-. 

 Developing the coupled CPFE-PFM and CPFE-DL modelling frameworks for 

an efficient and reliable computational assessment system for the 

micromechanics characterisation of AM products and heat treatment 

processes. The core codes for these frameworks are available at the above link. 

The main outputs of the above achievement are summarized as follows. 

https://github.com/I-Form/Deep-learning---Crystal-plasticity-
https://github.com/I-Form/Deep-learning---Crystal-plasticity-
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8.1.1 Microstructure sensitive CPFE models 

Research of a variety of microstructural sensitive features, ranging from grain sizes, 

grain morphology, phase fraction, and crystallographic orientations, has been carried out 

to study and quantify the structure-property relationship for PBF metals. The single-phase 

CoCr alloy with equiaxed grain morphology and randomly orientated grain texture is 

studied with a phenomenological constitutive law as a straightforward starting point. 

Through this CoCr study, detailed methods for EBSD raw data proceeding and grain 

reconstruction, generating equiaxed Voronoi tessellation (VT), and converting EBSD 

images to high-fidelity CPFE models, have been developed. The methodologies have been 

applied to investigate micromechanics of low-cycle fatigue of CoCr alloy. The 

comparison between VT- and EBSD-based CPFE models has observed an improvement 

of up to 10% in fatigue life prediction from direct EBSD-CPFE modelling. Another 

contribution of this work is determining the converged definitive representative volume 

element (RVE) model size for the VT and EBSD types of CPFE model. The study 

indicates a preferable minimum grain number of 120 and 100 meshes in each grain, and a 

ratio of 14.5 between scan image size and grain size to avoid undesired prediction scatter, 

sometimes referred to as the statistical grain size effect. The proposed methodology, as 

well as the convergence study, offer important predicates for the subsequent studies of 

more complex PBF-LB alloys.    

The VT model is then extended to a more advanced dual-phase lamellar lath RVE with 

statistically equivalent crystallographic texture and lath width validated against EBSD 

measurement. Meanwhile, a physically-based strain gradient constitutive law is 

incorporated to study the Ti-6Al-4V alloy with three different slip systems in the 

hexagonal crystal lattice alpha phase. The developed GND-induced length-scale model, 

reached close agreement with the experimental tensile test and predicted the impact on 

mechanical response difference caused by microstructural inhomogeneity along the built 

height, and the microstructural evolution due to post-built heat treatments. Models varying 

in lath width and phase fraction were generated respectively, to represent the 

microstructure observed in the bottom and top area of as-built samples, as well as the 

homogenous sample after heat treatment. The CPFE model predicts a minor decrease of 
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0.9% in yield stress of the top area compared to the bottom area in the same specimen, 

while a bigger drop in yield stress of 9% was predicted in a heat-treated specimen. The 

changes in the predicated tensile strength correspond with the experimental 

measurements. The benefit of using VT models in this work is the possibility of 

performing trial sensitivity analyses of individual microstructural features via a strain 

gradient CPFE model. The effects of lath width and grain size, and grain morphology on 

both GND density distribution and the macroscopic stress-strain behaviour are analysed 

and quantified. GND-induced size sensitive model has shown prominent sensitivity for 

the material with lath width less than 2 m. The lath width has shown the greatest 

influence among these variables on the tensile behaviour, thus the predicted relationship 

is fitted using Hall-Petch equations, dislocation-based grain size equations, and a grain 

boundary strengthening equation, to further develop a relationship of PBF-LB titanium 

lath width and its macroscopic yield strength.   

Although deep learning (DL) implementation is the primary focus of Chapter 7, the 

accurate prediction of SS 17-4 steel from dual-phase VT-CPFE model data is also a 

significant achievement. The CPFE model, while giving tensile stress-strain curve and the 

localized stress distribution contour, also provides accurate fatigue crack initiation life 

prediction for the testing strains ranging from  ±0.4 to ±1.0 with the tested fatigue life 

varying from 129 to 11271 cycles. The crystallographic orientations and grain boundary 

misorientation information are also involved in the 1000 VT realizations within each 

phase set, and the resulting different mechanical responses have been captured by both 

CPFE and DL models.  

8.1.2 Coupled PFM-CPFE modelling framework 

A PFM model is developed based on the Allen-Cahn and Ginzburg-Landau theories, 

to predict the lath growth during annealing heat treatment (HT) process of PBF-LB Ti-

6Al-4V. Then, the PFM evolved microstructure is imported into CPFE as a coupling PFM-

CPFE model for HT-structure-property relationship characterisation. This work builds on 

the two previous thesis outputs: (i) EBSD direct conversion methodology and model 

convergence criteria determined in Chapter 4; and (ii) lath width sensitive strain gradient 

model developed in Chapter 5.  
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The PFM model successfully predict the lath growth during HT process, with the 

averaged lath area increasing from 0.59 to 3.01 m2 after annealing at 1127 K for 100 

minutes. This result is validated against the EBSD measurement where the lath size is 

quantified through an ellipse fitting program, indicating the averaged lath area growing 

from 0.56 to 3.03m2.. Both PFM-HT and EBSD-HT CPFE models successfully capture 

the decrease in tensile strength after HT, due to the martensite softening and lath size 

increase.   

 

8.1.3 Interdisciplinary application of Deep learning (DL) and CPFE.   

An instant material structure-property prediction tool for a metal additive 

manufacturing process based on a DL model is trained and validated with over 1,400 

complex and computationally expensive CPFE simulations of microstructural 

deformation. The trained DL model reaches close agreement (85% accuracy on yield 

stress prediction) compared to the crystal plasticity modelling results. The deep learning 

model is capable of predicting a whole stress-strain curve and stress localization 

distribution. Besides, the trained code surrogate can predict mechanical response within 

milliseconds, making it feasible to be implemented as an industry powder bed fusion 

process quality control tool. 

The two results introduced in sections 7.3.3 and 7.3.4 have broadened the practical 

applications of the developed deep neural network (DNN) tool. DNN successfully predicts 

the structure-property relationship of two new customized phase fraction dual phase steels, 

even though the DNN model was not specifically trained on that phase fraction or data 

(EBSD) type. This indicates strong potential for such tools to read in geometrically 

gradient microstructure images, e.g., growing martensite fraction along the built direction 

and predict the changing property from layer to layer.  

Furthermore, this model could be reversed to assist microstructure design (determining 

required microstructural features) for the desired strength response or use in decision 

making on the powder mixture ratio for a desired functional gradient material product. 
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The CPFE-DNN method presented can also be easily extended to multiple-phase materials 

with other chemical compositions.  

8.2 Future work recommendation.  

The final objective of this thesis was to develop an effective and reliable process-

structure-property predictive tool for additive manufacturing process. This thesis has 

achieved specific outcomes in this regarding a microstructural sensitive CPFE model for 

stress-strain curve and fatigue crack initiation prediction, as well as a solid-state grain 

growth phase-field method for AM heat treatment effect.  Future work in this area could 

focus on the following aspects:   

8.2.1 3D high-fidelity modelling 

The EBSD-CPFE models in this thesis are all defined as Quasi-3D models where the 

single slice EBSD scan is extended to one-element thickness along the out-of-plane 

direction. This Quasi-3D RVE approach has been previously adopted by a number of 

authors, such as O’Dowd and co-workers [146, 191], Dunne and co-workers [29, 136], 

Shollock and co-workers [137, 398] etc. However, the grain size measured from 2D EBSD 

image assumption has potential errors since not all grains in the 2D slice are sectioned 

through their exact middle section. This issue could be solved using 3D EBSD data which 

combines a set of 2D slices to provide more reliable grain size distribution information.  

It is also anticipated that the higher fidelity 3D EBSD-CPFE provides a more accurate 

prediction on the localized behaviour such as fatigue performance because it offers more 

grain boundary information along the z axis direction. The EBSD-based methodology 

discussed in Chapter 4 could be extended to 3D by suitably combining a sequence of 

EBSD scan slices [399]. The tool developed in this thesis has confirmed the capability of 

switching and converting the multiple EBSD scans into a 3D EBSD-CPFE model. Figure 

8-1 shows the constructed IN-100 alloy from 117 scan layers where each slice size is of 

189 x 201 pixels (supplied by DARPA AIM program). Such an approach can also be 

easily adapted for constructing 3D realistic PFM models.  
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Figure 8-1. The schematic of a reconstructed high-fidelity 3D EBSD-CPFE model using 

developed converting tool on 117-layers IN-100 nickel alloy scans. 

 

One existing challenge is the difficulty when preparing multiple sample slices required 

for 3D EBSD reconstruction [400, 401]. The requirements of file size and model 

reconstructing executions have been solved with a cloud-based infrastructure solution 

[402], for anisotropic additive manufactured materials. Another solution is using 3D X-

ray tomography microscopy instead, which provides grain structure without the need of 

cutting the sample. The remaining problem is the heavy CPFE and PFM computational 

cost.  

8.2.2 Full physically-based CPFE model development. 

The commonly-adopted method for calibrating the constitutive parameters of CPFE 

and PFM are still based on trial and error, which could be time consuming and sometimes 

unreliable. A previous study [403] and Chapter 5 in this thesis have applied MATLAB 

toolbox to perform an automatic non-linear fitting. This program is also used to calibrate 

lath effect equation constants and fatigue indicate parameter calculation in Chapter 7. 

However, this fitting method still requires multiple CPFE runs to optimize the suitable 

parameter set and thus is not feasible for modelling with heavy computational cost, such 

as the EBSD-CPFE and EBSD-PFM works. 

One solution is the direct measurement from micro-scale experiments, such as 

microhardness tests to obtain the elastic modulus [76, 404]. Some parameters like critical 
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resolved shear stress (CRSS) of different slip system, grain boundary width and mobility 

in PFM are difficult to obtain from experimental work. Another possible solution is 

through first-principal calculation. For example, the calculation of stacking fault energy 

during plastic deformation has been utilised for calculating CRSS in different slipping 

modes [405, 406]. It is reasonable to anticipate this method can also be used for calculating 

the CRSS of basal, pyramidal, and prismatic slip systems in Ti6Al4V alpha phase, and 

even the twining slip system [219, 407] induced from PBF solidification or large 

deformation.  

8.2.3 Inhomogeneous behaviour of PBF-LB built direction 

Although an anisotropic texture case study is carried out on CoCr EBSD map, the 

experimental fatigue tests on PBF-LB samples are still incomplete. It would be 

worthwhile constructing EBSD-CPFE models for samples varying in printing direction 

and study this directional effect on the predicted stress-strain curve, GND distribution, 

and fatigue indicator parameters. Another limitation of the CPFE and PFM models in this 

thesis is that crystallographic orientation of each grain is constant and does not evolve 

during the deformation and heat treatment. This assumption is acceptable when all the 

strain ranges studied in this thesis are small, and heat treatment is unlikely to largely alter 

the texture. However, it is anticipated that adding texture evolution will improve the 

accuracy of representing neighbouring grain boundary angles.   

Gradient grain size VT model has been successfully constructed (shown in Figure 8-2) 

but unfortunately, there is a mismatch in size between the gradient in a whole specimen 

and the gradient achievable within a single CPFE model (usually in hundreds to thousands 

of microns). The model developed in this thesis could be further employed and validated 

once more microscopy data is available.   
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Figure 8-2. Gradient grain size VT model with a decreasing grain size along y axis. 

 

8.2.4 Damaged crystal plasticity model  

The CPFE models introduced in thesis are all non-damaged models. However, it is 

known that strength-ductility trade-off is one significant feature for additive manufactured 

metals, which is also captured in Chapter 6 tensile tests. A damaged model helps 

characterizing this trade-off especially when comparing AM products with its 

conventionally fabricated counterparts. The damaged model is also helpful when studying 

the crack propagation behaviour, as well as the effect of defects such as voids and surface 

roughness, which leads to a significant decrease in ductility and fatigue life.  

8.2.5 Expansion of load case scenarios 

The mechanical test and the corresponding CPFE modelling in this thesis include static 

axial tensile test and fully reversed low cyclic fatigue test. There are still very few CPFE 

results for torque or fretting fatigue, and microhardness (nanoindentation) loading 



 

 

228 

 

condition simulations. The author so far has not found existed literature on CPFE 

modelling of Charpy impact toughness behaviour of AM metals.   

8.2.6 Microstructural evolution including phase transition 

The highest HT temperature encountered in this thesis is 1127 K, and minor phase 

change after cooling is observed for Ti-6Al-4V alloy. The PFM model in this work is 

simplified as a solid-state grain growth model considering the relatively low volume 

fraction changes (approximately 5%) of the beta phase detected during heat treatment. 

However, when the temperature is high, or for titanium alloys with fewer alpha phase 

stabilizer elements, the phase transformation and solidification behaviour cannot be 

ignored. To assist experimental validation of such phase transition behaviour, a parent 

phase reconstruction code (to reveal prior beta grain before PBF solidification in Ti-6Al-

4V), has been developed according to the neighbouring orientation relationship when 

alpha laths segregate from the prior beta boundaries. The EBSD scan used in Chapter 6 is 

30 m in length and thus only captures two prior-beta grains along the built direction. The 

parent phase reconstruction method can assist the validation process once a bigger EBSD 

scan and a phase transition PFM (example shown in figure 8-3a) are available. The 

dynamic structure-property predicting ability is also possible through other modelling 

approaches at a similar scale such as coupled cellular automata and CPFE (shown in figure 

8-3b). Further integration of AM process modelling which provides thermal history and 

temperature cycles will help establish a more complete process-structure-property 

interdependency framework.  
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Figure 8-3.  (a) An example of PFM simulation of austenite-martensite transformation. (b) 

Cellular automata predicted single crystal material solidification and grain nucleation. 

 

8.2.7 Machine learning capability investigation 

The DL surogate developed in this thesis not as accurate for fatigue life prediction, as 

it was for stress-strain perdiction. This limitation has been attributed to too few clues 

indicating fatigue life from the input images. Based on this reason, an improvement could 

be made by providing more information from both the input microstructure and CPFE 

predicted fatigue indicator parameter distributions. The fatigue cracking, while being a 

localized behaviour, is also sensitive to discontinuities in the microstructure. Thus, the 

suggested improvement includes adding another microstructure image showing the 

misorientation angles along the grain boundary curves with colours. The CPFE output 

could give the location of the maximum energy dissipation, as well as the value itself.  

Further uptake of the developed CPFE-DL method could be via a non-destructive 

inspection tool which gives quick and accurate reports on void and microstructural defect 

characterisation, to accompany the existing microscopy techniques [396, 397]. The 
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potential and further application of EBSD-DL approach could offer a step towards an 

instant / real-time determination of mechanical performance based on live process quality 

control data, for instance, the next generation of PBF machines could give a live read-out 

of the strength of the layer which has just solidified. It is noted that such in-process 

microstructural imaging captures as-solidified microstructure and so future code 

surrogates could be expanded to include microstructural evolution predictive steps to 

account for changes that may occur during cooling or subsequent post-built heat-

treatment. 

 

8.2.8 User-friendly interface development 

Customized codes have been written to assist model construction and running, as well 

as the post-processing and visualization. These codes contain: (i) EBSD analysis and 

direct EBSD-CPFE conversion, CPFE element aggregates inverse pole figure colouring 

and 3D periodic boundary condition assignment codes in Chapter 4; (ii) 3D dual-phase 

sub-tessellation, tessellation grain texture analysis, and parameter non-linear fitting 

program implemented in Chapter 5; (iii) PFM predicted morphology importing tool and 

CPFE grain boundary highlighting tool in Chapter 6; and (iv) automatic batch CPFE 

generation-running-postprocessing workflow command and DNN optimization codes in 

Chapter 7. The codes mentioned here were developed in python, MATLAB, and C++, and 

sometimes call each other to fulfil the multiple functions. Converting these codes to a 

user-friendly interface could help simplify the operation and encourage adoption by the 

industry. Early implementation of a GUI is avaiable here: 

https://github.com/I-Form/PERCEPT_Microscopy-Stress-Tool   

https://github.com/littlelazy6/PERCEPT_Microscopy-Stress-Tool   

 

8.3 Summary Reflection 

In summary, the work presented in this thesis has advanced the speed (Chapter 7), 

accuracy (Chapter 5) and fidelity (Chapter 4) of computational microstructural modelling 

https://github.com/I-Form/PERCEPT_Microscopy-Stress-Tool
https://github.com/littlelazy6/PERCEPT_Microscopy-Stress-Tool
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for metal additive manufacturing (Chapters 5 &7) and post-built heat treatment (Chapter 

6) for a range of common PBF alloys. Real image based modelling is more sensitive to 

heterogeneous behaviour, such as fatigue crack, and localized behaviour around the grain 

boundary. This approach is helpful in PBF-LB inhomogeneity study and grain boundary 

evolution research. However VT-based is sufficient to represent macroscopic behaviour.  

On the other hand, RVE has the benefit of representing microstructures that have not been 

manufactured, to assist material optimization with custom-designed structure-property 

[123]. This thesis studies three different alloys, CoCr, Ti-6Al-4V and 17-4PH SS. Not 

only because they are widely used in PBF industries, they also cover complete slip system 

definitions (crystallographic lattice types), thus the models are universal and can be easily 

extended to other alloys without major modifications.  
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10 Appendices 

Appendix A: Etching comparison for PBF-LB Titanium 

alloys. 

The standard immersion method was used for this TiAl sample. Four different immersion 

times were used in this etching procedure with Kroll’s reagent (187,. Immersed for 5s 10s 

15s and 25s 

Table 0-1. Ti-Al etchant test matrix 

TiAl- 1 Immerse for 10 seconds 

TiAl- 2 Immerse for 15 seconds 

TiAl- 3 Immerse for 20 seconds 

TiAl- 4 Immerse for 25 seconds 

 

 

Figure 0-1. TiAl Etched samples, sample 1 (10 Seconds), 2 (15 Seconds), 3 (20 Seconds), 4 (25 

Seconds). 
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Figure 0-2.Clear microstructural images visible on an optical microscope image for TiAl-2 

 

 

Figure 0-3. Higher resolution optical microscope images for TiAl-3, showing darker structure 

more difficult to discern microstructural boundaries 
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Figure 0-4. Large areas of dark regions visible in optical microscope images for TiAl-4 

 

Five different etching strategies were employed and compared for PBF-LB Ti-6Al-4V. 

Table 0-2. Ti6Al4V etchant test matrix. 

Ti6Al4V- 1 3 drops. Dropping interval = 1 second. 

Ti6Al4V- 2 3 drops. Dropping interval = 2 second. 

Ti6Al4V- 3 5 drops. Dropping interval = 1 second. 

Ti6Al4V- 4 Immerse for 10 seconds 

Ti6Al4V- 5 Immerse for 20 seconds 

  

 

Figure 0-5. Sample Ti6Al4V- 1 revealed lamellar grain morphology, but not with a very obvious 

contrast, especially for the secondary lath grain between the thicker primary alpha grain. 
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Figure 0-6. Sample 4 is hard to see clear features; the etching depth is very shallow. 

 

The etching strategies for Sample 2, 3 and 5 have similar results: visible long and thin 

columnar grains formed during cooling from high temperature, elongated along 3D 

printing direction with obvious texture. The dark regions correspond to the α (HCP, phase 

and the light white region is the β (BCC, phase. Secondary α phase (smaller and thinner 

needle-shape martensite structure) forms in-between the primary α phase laths.  

 

Figure 0-7. SEM image of Ti6Al4V- 2. 3 drops. Dropping interval = 2 second. 
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Figure 0-8. SEM image of Ti6Al4V- 5. Dip for 20 seconds 

 

 

Figure 0-9. SEM images for Ti6Al4V- 3. 5 drops with a 1 second interval 

 

 



Appendix B: Tensile and Fatigue test on PBF-LB Ti6Al-

4V.   

 

B1 Tensile test 

The test was carried out on Instron-4467 (without extensometer), with the crosshead 

speed of 4.0 mm/min and the same speed after yield. The data points were recorded at the 

rate of 20 points per second. Table B1 shows the average testing result. A huge variation 

of elongation at fracture measurement was observed, varying from 2.3 to 4%, probably 

due to the build layout design or the powder freshness condition. The measured elastic 

modulus is about half the value compared to generally reported property. This test protocol 

provides reasonable material strength, but not accurate strain values due to the lack of an 

extensometer. 

Table B1. Tensile testing result of PBF-LB Ti-6Al-4V from Instron-4467, without 

extensometer. 

Ultimate 

Stress (MPa) 

Stress at 

0.2% (MPa) 

Ultimate 

Strain (%) 

Strain at 

fracture (%) 

Young’s 

Modulus (GPa) 

1167.76 1033.53 3.028 3.557 48.6 

 

B2 Fatigue test 

The test was firstly set by ±1.0% strain, however, the sample break immediately after 

the first cycle. The fatigue test setting had to turn to a lower strain amplitude at ±0.5%. 

At this strain range, as shown in Figure 20, the Ti-6Al-4V material does not reach the yield 

stage. The fatigue life was measured as 1108 cycles. The martensite softening 

phenomenon was observed, as the maximum tensile stress decreases from 545.3 MPa to 

494.3 MPa at 1% strain during the last cycle of this test. Similar downwards of cyclic 
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strength were observed in Agius [106] work as the applied strain range became over 

±1.5%, also in other fatigue behaviour of lath structure and martensite phase predominate 

metals such as P91 steel [146].  

 

Figure 10-10. LCF test of as-build PBF Ti-6Al-4V, under a strain magnitude of ±0.5%. 
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Appendix C: Software and customized codes summary.  

This appendix summarises the codes used or developed within this thesis. 

Software Custom codes written to extend function 

Microstructure analysis 

MTEX (MATLAB plugin) Ctf cleaning, cropping, non-indexed data filling. 

Grain reconstruction. Texture analysis. Parent 

phase prediction. Dislocation density 

measurement.   

AzTec (Oxford Instrument) N/A 

Model construction and meshing 

DREAM3D C++ plugin for EBSD conversion and C3D20 

meshing capability. Convert inp to ctf, convert 

3D mesh to 2D. 

Neper C++ Multi-VT, lamellar structure, voids. 

Computational tool 

ABAQUS 2017 Python codes for post-processing (stress-strain, 

contour plot printing, SDV evolution, 

maximum/averaged value extraction). Grain 

boundary visualization. Batch job automatic 

manage. 

MOOSE FRAMWORK MATLAB codes for PFM exodus mesh to 

ABAQUS inp, and to ctf.   

TensorFlow Python for DNN optimization 

 


