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This thesis proposes analytically developed aplanatic field correctors. To begin, an
astigmatism correction method for aplanatic Gregorian telescopes was developed
employing two lenses with spherical surfaces and a spherical GRIN medium. Sec-
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without compromising image quality or changing the original telescope design. Fur-
thermore, their employment maintains the telescope’s aplanatic properties.
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Chapter 1
Introduction

1.1 Field correctors for telescopes

For rotationally-symmetric optical systems, spherical aberration (SA) is the only
monochromatic aberration that is present on-axis. As will be seen in Chapter 2, de-
focus and tilt can also occur for on-axis rays, however, they are not considered as
real aberrations of the system but rather misalignment of the image plane, it is only
a matter of adjusting the image plane (detector tilt and position) to correct them.
The off-axis aberrations are composed of coma, astigmatism, field curvature, and
distortion. The chromatic aberrations are composed of longitudinal chromatic aber-
ration for on-axis rays, and transverse chromatic aberration for off-axis rays. There
are different orders of SA. However, the most impacting in image quality in an opti-
cal system is the third-order SA, which is called the primary SA. Correction of SA is
fundamental as it affects the image as a whole, not only at the periphery of the lenses
as other aberrations [5]. As will be seen in Chapter 2, SA depends on the aperture
stop size. In contrast with all off-axis aberrations, since the path of an off-axis beam
and the chief ray through the lens is affected, SA does not depend on the aperture
stop position when placed in front of the system. Moreover, it does not depend on
the field angle, so it does not depend on the height of the object or image [6].

Coma is one of the monochromatic aberrations that occurs off-axis. This aberra-
tion can significantly impact image quality, especially considering the asymmetry it
creates in the image spot. This asymmetry does not allow one to locate the center of
the image spot as with other aberrations [7].

For this reason, it is important to correct both aberrations, creating an aplanatic
system. Figure 1.1 illustrates common names used for describing systems free from
SA, coma, and astigmatism. A system that is only free from SA is called stigmatic,
and free only from coma is called isoplanatic. If the system is free from both SA and
coma, it is called aplanatic. And if the correction goes further and a system is free
from SA, coma, and astigmatism, it is denominated anastigmatic. Those definitions
are important for the next Chapters.

This thesis will be dealing with aplanatic and quasi-aplanatic field correctors for
telescopes.

Telescopes are optical instruments used to observe far-away objects. Its origin,
officially, can be traced back to 1608 in the Netherlands when Hans Lippershey filed
a patent application. The patent was denied because there were several claims of
this invention being utilized by others at the same time. Jacob Metius and Zacharias
Jansen, for example, had been producing telescopes known as "spyglasses", with
the former applying for a patent three weeks after Lippershey. The Lippershey spy-
glasses were not designed with astronomy in mind. It had a tiny diameter and just
three times magnification, therefore it was widely employed as spectacle lenses [8].
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FIGURE 1.1: Common names used for describing systems free from SA, coma, and astig-
matism.

Galileo Galilei was the first one to document the use of telescopes for astronom-
ical purposes and his observations in details. He then developed theories based on
his findings. Galilei’s telescope consisted of a lead pipe with two lenses in the ex-
tremities, a plano-convex and a plano-concave. The eyepiece was a plano-convex
lens, while the objective was a plano-concave lens. The Galilean telescope is seen
in Fig. 1.2a. As can be seen, the image formed by the Galilean telescope is upright,
making it more suitable for terrestrial observations [8].

The flat surface of the lenses also made it easier to manufacture them using 16th-
century technology, allowing for the testing of several designs and verifying their
magnification. Galileo began using the telescope for astronomical observations after
a greater magnification was obtained. On-axis spherical and chromatic aberration
are present due to the telescope’s use of spherical refractive elements. However,
because it is made up of a positive and a negative lens, the total degree of aberration
is reduced [8].

The Keplerian telescope is made up of an objective and an eyepiece, both con-
verging. In general, the entrance pupil is in the lens mount, and the exit pupil is
found in the real image generated by the eyepiece. The image in this telescope is
inverted. The keplerian telescope is seen in Fig. 1.2b.

Figure 1.2 illustrates the differences between the Galilean and the Keplerian tele-
scopes. As seen, the Galilean presents an upright image while the Keplerian presents
an inverted image. Moreover, the Galilean has a virtual image while the Keplerian
has a real image. It is also possible to see how the Galilean is more compact com-
pared to the Keplerian.

There are three types of telescope: refractive, reflective, and catadioptric. The
catadioptric systems involve the use of both reflective and refractive elements in its
composition.

The Cassegrain and the Gregorian systems are the two most commonly used
two-mirror reflecting telescopes in astronomy. Their primary mirror has a concave
paraboloidal surface, but their secondary mirrors, however, are different. A concave
secondary mirror with an ellipsoidal surface is used in the Gregorian telescope. In
this case, the secondary mirror is positioned after the prime focus, where the axial
light beam is diverging, resulting in a longer telescope configuration. Furthermore,
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FIGURE 1.2: Layout for (a) a Galilean telescope, and (b) a Keplerian telescope.

the image generated is not inverted, which has some advantages for terrestrial ob-
servations. On the other hand, in a Cassegrain telescope, the secondary mirror being
convex hyperboloid of revolution positioned before the primary focus, where the ax-
ial light beam is converging, which leads to a shorter configuration. As a result, the
image is inverted in this case, but for large astronomical telescopes, this makes no
difference. In both configurations, all mirrors are independently free of spherical
aberration, and as a consequence, there is no spherical aberration in the system [9].

Coma is the primary aberration impacting image quality in both Cassegrain and
Gregorian telescopes. Thus, changes in the original design are necessary to correct
coma. These adjustments require converting the primary mirror’s paraboloidal sur-
face into another conic of revolution and slightly adjusting the secondary mirror’s
conic as well. As a result, the two-mirror system can simultaneously correct spheri-
cal aberration and coma, resulting in an aplanatic system. For the Gregorian system,
the primary mirror is transformed into an ellipsoidal surface while slightly adjusting
the conic constant of the secondary mirror. This version is known as Aplanatic Grego-
rian, this design is used in the Euro50 telescope, for example [10]. For the Cassegrain
system, the primary mirror is transformed into a hyperboloidal surface while adjust-
ing the secondary mirror’s conic constant. This version is known as Ritchey-Chrétien
(RC). As a result, the unaberrated field of view is increased, but astigmatism and
field curvature become new limiting factors for such telescopes [11].
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FIGURE 1.3: Layout for (a) a Cassegrain telescope, and (b) a Gregorian telescope. The
hyperboloidal surface is denoted as H, the ellipsoidal as E, and the paraboloidal as P.

The RC telescope presents many advantages over the Aplanatic Gregorian, in-
cluding a shorter overall length, slightly wider Field of View (FoV), and easier align-
ment [12]. However, as mentioned above, the aberrations that limit the RC image
quality are astigmatism and field curvature. Therefore, to improve the image quality
even further, the correction of those aberrations is essential. For this reason, many
researchers explored different alternatives, such as using field correctors or curved
sensors.

Field correctors have been introduced into telescopes so that their intrinsic aber-
rations can be corrected. There are different sorts of field correctors: those placed in
the primary focus, those placed in the final focus, and those placed in the incoming
collimated rays from the object. The first two types are known as sub-aperture cor-
rectors because they only cover the converging beam from the primary or secondary
mirror of the telescope, not the entire incoming beam from the object.

R. A. Sampson suggested the first reported field correctors in the primary focus
in 1913. His corrector was comprised of three lenses, each of which was spherical.
The first lens, which had a silvered back for reflection in a meniscus form, named
"the reverser", replaced the Cassegrain’s convex mirror. The following two lenses
are close to each other along the outgoing beam’s path, between the large mirror and
the reverser. He also focused on his solution’s achromatism. It was accomplished by
utilizing the same glass for all three lenses and fine-tuning their focal lengths so that
the focal point and image size for any two rays at the primary focus are equal [13].
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FIGURE 1.4: Layout for (a) a RC telescope, and (b) an Aplanatic Gregorian telescope. The
RC is composed of two hyperboloidal mirrors, denoted as H, and the Aplanatic Gregorian

is composed of two ellipsoidal mirrors, denoted as E.

In order to reduce distortion and field curvature in a parabolic mirror, F. E. Ross
presented a corrector made up of two spherical lenses, a crown, and a flint in 1935.
The first lens had a negative meniscus, while the second was a biconvex. SA, on
the other hand, was still undercorrected. The form of the corrector lenses was deter-
mined by the distance between the lenses and the parabolic mirror’s focus point, as
well as the focal length. When the negative lens is placed in front of the mirror, the
best results are produced. In contrast to Sampson’s correctors, Ross’ correctors were
utilized in observatories, whereas Sampson’s approach was never implemented on
any telescope [14].

Based on Sampson’s corrector concept, V. N. Churilovskii created a corrector for
telescopes similar to Cassegrain in 1940. His solutions used afocal apochromatic
lenses made of the same material. The distinction between the telescopes he em-
ployed and the Cassegrain is that all of the mirror surfaces, as well as the surfaces
of the correctors, were spherical. The two lens correctors, when combined with the
spherical surfaces of the mirror, corrected the system’s SA and coma. He also ex-
plored combining two correctors in the convergent beam of the telescope to correct
more aberrations [15].

To correct the aberrations of the spherical mirror, G. G. Slyusarev et al in 1947.
presented a correction system consisting of five lenses grouped in three separate
components, the first of which contains an internal reflecting surface. Doublets were
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used in the first and third components. Between the first and second elements, they
used parallel rays as a solution. Strong chromatic aberration afflicted this system
[16].

A. B. Meinel proposed using three aspheric plates as a corrector for parabolic
telescopes in 1953. Compared to Ross’s corrector, Meinel’s had less chromatic aber-
ration. The distance between the plates had little effect on the correction of aberra-
tions [17].

S. Rosin improved Ross’s two-lens corrector in 1964. Both lenses in Rosin’s de-
sign were replaced with fused silica to extend the spectral range into the ultraviolet
and near infrared, as well as to provide undercorrected SA [18].

Ross has also created a three-lens design for the Mount Palomar observatory’s
200-inch Hale telescope [19]. Despite this, he never published a scholarly article re-
garding his three-lens corrector. C. G. Wynne retrieved his invention in 1965. Wynne
has proposed variants of the Ross corrector for Cassegrain telescopes. His variations
included three-lens correctors with spherical surfaces, but with various lens shapes
and thicknesses. He proposed replacing one of the three lenses with a triplet in one
of his prototypes [20]. This is still one of the most popular RC telescope solutions.
Undercorrected SA and coma were also evident in Wynne’s solutions. Including an
aspheric plate before the doublet corrector was one of Wynne’s solutions for correct-
ing the SA from Ross’s corrector [21].

S. C. B. Gascoigne designed an aspheric plate at the prime focus to correct astig-
matism in the RC in 1965 as well. The plate’s first surface is aspheric, whereas the
second is flat. However, his technique necessitated a modification of the RC system,
which needed the inclusion of SA and coma to correct the aberrations caused by
the aspheric plate. The plate should be adjusted to compensate for SA, coma, and
astigmatism, and the aspherical parameters of the mirrors should be altered as well
[22].

In 1965, P. P. Argunov suggested two new correctors for Cassegrain telescopes
designs. The first corrector was comprised of two or three lenses made up of various
glasses that were used to provide aplanatic and chromatic adjustments. The two-
lens system, on the other hand, had a significant secondary spectrum, which was
marginally reduced by adding a third lens. This three-lens corrector, however, adds
to the complexity while providing little benefit in terms of image quality [23].

D. H. Schulte adapted Gascoigne’s solution for RC telescopes in 1966. To begin,
he employed Gascoigne’s aspheric plate to create a system that was free of SA, coma,
and astigmatism. A field flattener was used after the aspheric plate. The field flat-
tener was made up of two surfaces, the first of which was spherical and the second
of which was flat. The spherical surface compensates for Petzval curvature in the
system. The cost of this repair is the introduction of SA into the system. When the
field flattener is positioned close to the focal plane, however, the SA is reduced [24].

Rosin also introduced a new corrector in 1966, this time for RC telescopes. He
employed two separated lenses in the RC’s converging beam; the first and fourth
surfaces of the two-lens corrector were aplanatic, therefore no SA, coma, or astig-
matism was introduced. The pair’s inner surfaces were concentric and did not con-
tribute to SA, coma, or axial color. However, the system’s inner surfaces introduce
astigmatism, field curvature, and lateral color, whereas the outer surfaces introduce
field curvature, axial color, and lateral color. The RC telescope is not affected by SA
or coma while using this corrector. As a result, the aplanatic state is retained [25].

Argunov presented another corrector in 1966, which consisted of an afocal sys-
tem consisting of two lenses made of the same material. The pair was positioned
between the primary and secondary mirrors, causing the ray to be refracted twice
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in each lens. As a result, an apochromatic system is created, which corrects sphe-
rochromatism as well. If the pair is situated at a proper distance from the secondary
mirror, aplanatic results can be obtained [26].

G. M. Popov proposed a two-lens corrector design in 1966, which was compara-
ble to Argunov’s afocal system. However, with a central aperture enabling the rays
from the secondary spherical mirror to pass through unaltered, this corrector only
required one refraction in the lenses from the rays originating from the primary mir-
ror. This system was able to correct astigmatism, but it was difficult to implement
due to the additional complexity caused by the necessity for a long focal length for
the corrector, which resulted in a large field curvature and the large size of the re-
fractive elements. Popov also looked into a corrector design that used a meniscus
near to the secondary mirror and twice refracted the rays, similar to Argunov’s idea.
It did not, however, achieve aplanatic or chromatic adjustments [27].

Wynne introduced a four-lens corrector for paraboloidal primary mirror tele-
scopes in 1967. His concept consisted of two afocal systems, each with two spherical
thin lenses in contact that were constructed of the same material. Each lens of the
afocal systems are of the opposed optical power of each other. As a result, they are
a pair with no optical power. SA and field curvature were not present in the sys-
tems. The system corrects the parabolic main mirror’s coma without compromising
its astigmatism. However, this was only a theoretical solution. The thickness of the
lenses and their spacing must be optimized in order to execute this approach in a
real-world setting, which may result in the systems losing their afocal qualities and
each pair being distanced [28, 29]. SA and coma may be present in the optimized
corrector.

In 1968, R. N. Wilson claimed that in the literature found by then, the aspheric
constants of the RC were modified to adapt its aberrations with the corrector. The
difficulty is that the corrector has to be removed for some applications, such as pho-
tographic photometry and astrometry. Even though removing the corrector had no
effect on the modified RC’s SA, it did cause a large degree of coma, affecting image
quality and reducing the maximum FoV of the RC alone. Depending on the tele-
scope’s setup, the reduction in FoV might be as much as 50 %. In the secondary fo-
cus, he described and analyzed various correctors. H. Köhler offered a field corrector
with a curved surface and another one virtually flat close to the image plane while
considering single-element correctors, solution that was mentioned in the European
Southern Observatory (ESO) reports [30]. The corrector is described as having good
astigmatism and field curvature correction. The lens does, however, have chromatic
aberrations. This field corrector may also be made by bending the virtually flat sur-
face in such a way that the lens becomes a meniscus, with the second surface’s RoC
being comparable to the first. Although the meniscus with spherical surfaces has
lateral color, it retains its astigmatism and field curvature correction. Because the
surfaces are almost symmetric, the lens corrects for axial chromatic aberration, re-
sulting in image quality that is superior to the prior design. The RC mirrors would
need to be modified in both cases. Another way to adjust the RC parameters is to
utilize three lenses, all of which are made of quartz, with two positive lenses and
one negative lens. When compared to the doublet, this approach produces poorer
outcomes. This occurs because chromatic aberration correction is weaker, leading to
increased astigmatism and coma [31].

In 1968, I. N. Refsdal presented a two-element system for correcting aberrations
in Cassegrain telescopes that used quartz positioned near to the image plane. This
solution’s telescope is similar to the RC’s, but with stronger aspherical surfaces. The
negative lens was used to correct astigmatism. The aspherical surface of the positive
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lens corrects the tangential curvature and flattens the image for larger fields. There
is axial chromatic aberration correction if the fourth-order term of the aspheric coef-
ficient is optimized. The system presents lateral chromatic aberration [32].

S. Rosin and M. Amon utilized two glass plates to introduce astigmatism into
an RC in 1972, while maintaining spherical and axial chromatic aberration to a min-
imum. The plate is positioned near the focal plane of the telescope’s converging
beam. They are placed at an angle to the optical axis, rotated in opposing directions.
This is where the lateral aberrations adjustments are dealt with. The astigmatism
created by the plates depends very little on the material’s refractive index. As a
result, the transmission range required for the application determines the material.
The angle between the plates and the optical axis has a significant impact on the
amount of astigmatism in the pair of plates. The plates are placed at a distance from
the optical axis in a manner that it covers the off-axis rays. For a flat image surface,
the system still presents field curvature. Therefore, they suggested the use of a field
flattener after the plates [33].

Wynne suggested using a doublet to increase the FoV of large Cassegrain tele-
scopes in 1973. He considered that using a hyperboloidal primary mirror for some
applications, such as when the primary mirror’s focus is to be employed alone,
would be difficult due to the SA introduced by the primary mirror of an RC. As
a result, he began to investigate Cassegrain telescope correctors. Each lens in the
thin pair must be of opposing power, in an afocal arrangement, and in contact in or-
der to correct for chromatic aberration. At the expense of adding SA into the system,
the doublet corrects coma and astigmatism in the Cassegrain. The doublet should
be placed as near to the focus point as feasible to reduce the SA. If not, modifications
to the Cassegrain’s settings are required. The doublet’s first lens is biconvex, while
the second is a meniscus. This adjustment, of course, is affected by SA, even if only
in a minor manner. As a result, the system is no longer aplanatic [34].

For paraboloid mirrors, Wynne suggested a triple lens field corrector in 1974. His
goal was to achieve the same good outcomes for a paraboloid as he had previously
achieved for the RC. A paraboloid mirror and three lenses made of the crown glass
BK7 were part of his design. Every surface was spherical. This approach minimizes
SA, coma, and astigmatism while correcting for chromatic aberration and Petzval
curvature [35].

In 1976, C. F. W. Harmer and Wynne presented a doublet for Cassegrain tele-
scopes that had spherical surfaces and was nearly afocal. They revisited Wynne’s
1973 doublet solution. However, this time they focused on smaller telescopes. The
doublet was nearly afocal as well, although it was located farther away from the fo-
cal point of the telescope. As a result, a considerable amount of SA was introduced
into the system. The secondary mirror of the Cassegrain must take on a spherical
form in order to correct SA [36].

S. Ding-Qiang and W. Lan-Juan suggested a two-mirror focus reducer for Cassegrain
telescopes in 1981. The reducer’s primary mirror is positioned at the Cassegrain fo-
cus, allowing the diverging beam to be reflected in a convex mirror, M1, and then
reflected back from a second mirror, M2, to a new focal point for the system right
after M1. The system may be corrected for SA, coma, and astigmatism by carefully
selecting the fourth-order aspheric terms of the elements of the reduction. High-
order aberrations are also reduced as a result of this. Cassegrain, RC, and Gregorian
telescopes are all compatible with their solution. The circular obscuration of each
pair of mirrors in a four mirror telescope is a challenge. As a result, the beam that
is transmitted is reduced. In addition, for larger fields, the system begins to suffer
from vignetting. The aberration corrections do not hold if this solution is applied
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in the primary focus. To address this problem, a thin aspheric plate must be used
before the reducer [37].

Considering the results they obtained from those designs, they concluded that
aspherical terms in the three lens system did not provide significant advantage over
the original design for monochromatic corrections considering the complexity added
to the system. However, it proved itself to be successful in the correction of chro-
matic aberrations [38].

C. Cao and N. Wilson investigated the use of aspherical surfaces for prime focus
correctors in 1984. The Wynne-type triplet design was improved. The thickness of
the three lenses was increased, the second, fourth, and fifth surfaces were modified
from spherical to fourth power aspheres, and a field flattening lens was added. The
second lens has been modified to have higher optical power than the Wynne solu-
tion, resulting in flatter surfaces on the first lens. The system, on the other hand, has
a weakness in that the fourth surface is too steep and the center thickness is too thin.
The high-order chromatic aberrations introduced by the correctors were reduced as
a result of these improvements. They also looked at whether using the sixth aspheric
term provided any benefit for the correctios of aberrations, and found that there was
minimal benefit. As a result, given the additional complexity of the aspheres, this
adjustment was not justified. Later in their attempt to improve the corrector, they
tried using the three lenses without the field corrector, ignoring the telescope’s field
curvature. Given that the predominant aspherical surfaces are found in the second
and third lenses, the first lens has little impact in the system. As a result, removing
an aspherical surface from the first lens was a viable option. Given the complexity
introduced to the system and the results obtained from those designs, they deter-
mined that aspherical terms in the three lens system did not give a substantial ben-
efit over the original design for monochromatic adjustments. It did, however, prove
to be effective in the correction of chromatic aberrations [38].

H. W. Epps and D. Faricant proposed the use of field correctors in RC telescopes
used for CCD imaging in 1997, employing two components of the same material and
spherical surfaces to correct astigmatism and field curvature. They opted for fused
silica and employed ray-tracing tools to determine the best shape for the lenses’ sur-
faces. The spacing between the lenses, the BFD, EFL, lens thickness, and distance
between the last element and the focus were all employed as constraints in the op-
timization process. As a result, the first lens had a meniscus shape, whereas the
second lens has a biconcave shape. Compactness was one of its benefits [39].

D. T. Puryayev and A. V. Goncharov suggested a four-mirror system to correct
coma in a telescope in 1998. The first part was composed of a spherical primary
and an aspherical secondary mirror, and the second part of two aspherical mirrors.
The overall system is free from SA and meets the sine criterion, i.e. it is aplanatic.
Not only that, but by adjusting the distance between the system’s second and third
mirrors, the two mirror corrector can also correct for astigmatism. The SA and coma
are corrected with the use of an elegant analytical solution [114].

V. Y. Terebizh presented three primary focus corrector designs for RC telescopes
in 2004, each including five fused silica lenses with spherical surfaces. The Wynne
three-lens design was their starting point. He improved the design by adding two
more lenses after the second and third lenses, making two doublets in total. Due to
the two doublets that correct the aberrations from the hyperboloidal primary mirror,
mainly coma, this new design increases the system’s FoV. Because the corrector is
practically afocal, the focal length of the primary mirror does not vary considerably.
This method was tuned for three Blanco 4 m telescopes of the Cerro Tololo Inter-
American Observatory (CTIO) with varying FoVs of 2.12, 2.4, and 3.0 degrees [0].
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In 2004, S. A. Chuprakov proposed using a doublet with the second lens hav-
ing a reflecting surface to replace the Cassegrain’s secondary mirror. This method
required the employment of two lenses with different materials and spherical sur-
faces, with the outer surfaces having the same radius of curvature and the interface
being flat. The doublet operates by refracting both incoming rays from the primary
mirror and incoming rays from the reflecting surface, resulting in a double ray path.
The doublet’s lenses are made of crown glasses, which have a minor refractive index
fluctuation but a significant Abbe Number variation with wavelength. The goal of
this approach was to make the system’s manufacturing process as simple as possi-
ble. The image quality was impaired by chromatic aberration, and the telescope’s
field of view is limited by SA [40].

Yu. A. Klevtsov proposed a corrector in 2006 that consisted of a meniscus near
to the secondary mirror that refracted rays from the primary mirror as well as those
reflected from the secondary mirror, followed by three lenses close to the focus point.
A lens having a reflecting surface on the side facing the primary mirror served as the
secondary mirror. The rays from the primary mirror and the secondary reflecting
surface were therefore refracted by the secondary mirror refractive element. As a
result, the corrector was made up of a total of six lenses. The second one, which was
positioned in front of the secondary mirror, was a quasi-afocal negative meniscus,
which means that both sides of the meniscus were almost identical. A reflecting lens
was the third lens. The fourth lens was a negative-power focus converter. The fifth
lens was a positive-power focus converter. A concentric meniscus was the sixth and
final lens. This solution corrected astigmatism and chromatic aberration, but the
entire system’s SA increased as the image distance between the telescope and the
corrector increased [41].

Terebizh presented an aplanatic Gregorian telescope field corrector in 2007. His
approach included an optical element positioned near the telescope’s exit pupil (which
is close to the primary focus), five lenses, and a curved detector window. The ma-
terials used for all of the elements were the same. To prevent vignetting, the first
element contained a hole in the middle that allowed the primary mirror’s rays to
pass through without being refracted. If not, the Gregorian telescope’s image qual-
ity deteriorated, diminishing its field of view [42].

A field corrector for paraboloidal primary mirrors was proposed by A. Rakich
and N. J. Rumsey in 2013. Four spaced refractive elements with spherical surfaces
were used in their solution. The solution focused on how to improve Wynne’s four-
lens corrector. In comparison to the original method, the third lens was reversed
around the optical axis and positioned closer to the fourth lens, resulting in a sharper
image. However, when a larger wavelength spectrum was considered, Wynne’s
method produced the best results. The Wynne solution, on the other hand, was
more prone to coma. SA affected both systems [43].

As seen, many designs entail modifying the telescope’s specifications in order to
reduce aberrations with the use of correctors. In some configurations, the corrector
induces SA or coma, causing the system to lose its aplanatic status. The majority of
recent studies have moved away from using RC or Cassegrain original designs in
favor of optimizing the entire telescope system, including lenses and mirrors.
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1.2 Novel solutions of the thesis

Three correctors were analytically designed so that they can be added or re-
moved from an aplanatic Gregorian or RC without any need to change their orig-
inal design, i.e., no change in their RoC, distance between the mirrors or aspheric
surfaces of the mirrors. That means that the image quality of the telescopes is main-
tained when the correctors are not used. As previously mentioned, R. N. Wilson de-
scribed the need for an aplanatic telescope to have their corrector removed, such as
for photometry or astrometry. Thus, the correctors presented here demonstrate ad-
vantages over the correctors that require modifications in the telescopes. Not only
that, two of the correctors presented are aplanatic. Therefore, the overall combi-
nation of the aplanatic telescopes with the aplanatic corrects result in an aplanatic
solution. One of the correctors is quasi-aplanatic, i.e., introduce a small quantity of
coma into the telescope, that does not affect the image quality.

The novel correctors presented here are:

• A GRIN corrector composed of two lenses with spherical surfaces. Both lenses
have a similar GRIN structure, and when combined, can either create an apla-
natic afocal or an aplanatic corrector for Gregorian telescopes. The aplanatic
corrector tackles the astigmatism of the Gregorian, balancing it so that the
sagittal and tangential planes are at the same distance from the image plane, so
that the final image of the system is circular instead of the typical oval shape of
a system with astigmatism. This is important considering that symmetry may
be needed for some applications. Moreover, the use of a GRIN media to correct
the field in telescopes while maintaining the aplanatic conditions has not been
found in literature. In fact, the use of GRIN media as a corrector with or with-
out maintaining the aplanatic conditions has not been found. This solution is
of great importance especially considering that the manufacturing process of
GRIN media is a developing field, including even the 3D ink-jet printing of
GRIN lenses being available. The structure of the GRIN media in this correc-
tor is spherical, so many other techniques can also be used. Taken all that in
consideration, this solution provides a theoretical approach that can also be
applied in a practical manner. The challenge with this solution is possibly the
costs of manufacturing the lenses, and also the limitation of the size of the lens.
The size of the lens is correlated to the thickness of the lens considering that
the diameter-to-thickness ratio has to be established so that the lens is not too
thin, and this influences the variation in refractive index between the surfaces
of the lens. The maximum variation of the refractive index possible for the lens
is connected to the materials available. For example, polymers are a good al-
ternative, but if the difference in refractive index becomes too big, it is possible
that there are no polymers available to cover that refractive index, considering
that a lens that is too thick would require a refractive index variation of 1 or
more.

• A meniscus has been developed to increase the field-of-view (FoV) in RC tele-
scopes. This meniscus is composed of two hyperbolic surfaces. Both surfaces
have the same radius of curvature. Thus, it presents correction for spherical
aberration, coma, and axial chromatic aberration. This results in an aplanatic
achromat. That means that the meniscus does not change the aplanatic prop-
erties of the RC, and does not introduce axial chromatic aberration. The menis-
cus’s overall intrinsic astigmatism is opposite to that of the RC. Therefore, the



Chapter 1. Introduction 12

astigmatism of the RC is corrected. As a consequence, the FoV for a diffraction
limited system of the RC is increased. Moreover, this meniscus, as in the case
of the GRIN corrector, can be added or removed from the RC without decreas-
ing the image quality of the original telescope. Even though the meniscus has
no field curvature, the residual high-order astigmatism in the system is also
flattened. This solution has also been studied not only in a theoretical manner,
but the practicality of the solution has also been investigated. The selection of
materials and the diameter-to-thickness ratio for astronomical purposes have
been taken into consideration. Furthermore, it works for different F/# and
diameters. This meniscus, however, introduces lateral color into the system.
The lateral color can be reduced by a proper choice of the distance between the
meniscus and the focal point. This work brings an elegant new solution to an
old problem. It has been published in Optics Express.

• A pair of lenses has been developed in order to individually optimize astigma-
tism correction for different spectral bands. The pair is composed of a concave-
plano and a plano-convex pair, with the same configuration as the meniscus
presented above. However, this solution involves the use of different materials
for each lens, with a similar refractive index and different Abbe number. This
results in a system that is free from spherical aberration, but that introduces a
small amount of coma. The axial chromatic aberration correction presented in
the meniscus does not hold. There is a residual axial chromatic aberration as
a trade-off for reducing the lateral color present in the meniscus. The pair can
correct astigmatism for different spectral bands individually by changing their
separation. This is possible because the beam inside of the lenses is collimated,
so the other aberrations are not significantly affected. The pair can be placed at
a distance farther away from the focal point in order to increase the diameter-
to-thickness ratio, easing the manufacturing process of the lens. One of the
surfaces of the lenses being flat also helps in the manufacturing process. The
solution here can also be applied for different F/# and diameters. It’s prac-
ticality has also been considered with the choice of materials being restricted
to existing catalogs. The solution can possibly be further improved with new
materials.

1.3 Thesis Outline

This thesis is organized as follows:

Chapter 2 addresses geometrical optics and optical aberrations. These principles
are utilized in the chapters that follow.

Chapter 3 covers the concepts of stigmatic and aplanatic correction in an optical
system. Analytical solutions to aplanatic optical systems are discussed in the
following chapters.

Chapter 4 gives an analytical solution for making a pair of GRIN lenses aplanatic.
This method enables the creation of an afocal system as well as a field corrector.
They are also illustrated in terms of their applications and examples.

Chapter 5 gives an analytical method for estimating an RC telescope’s FoV, as well
as an analytical solution for increasing it using a meniscus with aspherical sur-
faces.
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Chapter 6 gives an analytical approach for increasing the FoV for various spectral
bands in RC telescopes using a quasi-aplanatic refractive pair.

Chapter 7 concludes the thesis, which also includes an overview of future work.
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Chapter 2
A review on Optical Aberrations

Image formation involves the projection of an object in three dimensions into
an image on a two-dimensional surface [44]. One of the most straightforward opti-
cal systems for imaging is the camera obscura. A camera obscura is a dark chamber
with a small hole, called a pinhole, in one of its sides. The object in front of the
hole is projected onto the surface on the opposite side of the hole. Around 500 BCE,
the effect of an inverted image through a pinhole was first described by the Chi-
nese philosopher Mozi. Around 300 BCE, the same phenomenon was addressed
in the collection of pseudo-Aristotelian Problemata Physica, describing gaps between
the tree leaves working as several pinholes projecting the solar eclipse on the floor.
Around 1000 CE, the Arab physicist Ibn Al-Haytham approached the topic geomet-
rically and mentioned the correlation between the image quality and the aperture
size in On the Shape of the Eclipse [45, 46]. His experiments demonstrated that there
are certain conditions for image formation in a pinhole model. The aperture should
not be too wide nor too narrow, a narrow aperture suffers diffraction, and the image
is too dim. A wide aperture produces a blurred image due to more rays converging
to the same point. Thus, it is crucial to balance the effects from the physical and
geometric optics for good image quality by choosing a proper aperture size. The ob-
ject must be bright, as only an iota of rays reaches the image plane. Therefore, dim
objects need more time of exposure, resulting in a blur if the object moves. The box
must be dark, as the image generated is dimmer than the object, so the image will
not be seen so sharply [46].

FIGURE 2.1: Representation of a camera obscura.

Figure 2.1 illustrates the layout of a camera obscura. A single ray intercepts each
image point in the pinhole model representation, which is achieved by the box’s
surface blocking most of the rays. The final image is dimmer than the original object
and inverted. The image size is dependent on the focal length, defined herein in
an oversimplified manner as the depth of the box, so the angular magnification is
constant unless the object or box position changes [47]. The depth of field (DoF) is
the distance range over which the object is still in focus. That is, how much the object
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can be shifted without compromising the image quality. It is inversely proportional
to the aperture size [7]. Therefore, a pinhole aperture has an almost infinite DoF.
The aperture should compromise between the best size for geometric and physical
optics for the best image quality. Thus, the diameter of the light patch D is given by
the combination of the size of the central maximum in the diffraction pattern for a
small pinhole and the aperture size for a larger pinhole, as seen in Eq. (2.1) [48, 49].

D = 2r +
f λ

r
(2.1)

where r is the radius of the pinhole, f is the focal length, and λ is the light wavelength.
The minimum of Eq. (2.1) gives the sharpest image. So the best aperture radius

should be proportional to the square of the focal length and the wavelength, as seen
in Eq. (2.2) [48–50].

r =

√
f λ

2
(2.2)

When the pinhole becomes larger, there is a possible solution for obtaining a
good quality image while gathering more light into the image, using an objective
lens [44]. A lens is an optical device that deviates the angle of a ray’s path through
refraction. It can either converge or diverge the light unless absorbed or scattered.
Different materials refract the light into different angles due to the different refrac-
tive indices. Also, depending on their composition, the wavelength range varies as
specific wavelengths are absorbed by the material [51]. Refractive index is the ratio
between the speed of light in vacuum and the speed of light in a medium, seen in
Eq. (2.3). The speed of light in the vacuum, c, is 3x108 m/s, and the refractive index
in vacuum shall be denoted as 1.0. As seen in Eq. (2.3), the RI of any other refractive
medium is always greater than 1.0, as the light speed in any other material is slower
than in vacuum [5], except for special cases such as metamaterials [52].

n =
c
v

(2.3)

The speed the light travels in different materials is not constant. It reduces when
the material is optically denser, as this density influences how much the light is
slowed down. Therefore, the refractive index varies with the wavelength. There
are different formulas for calculating the refractive index of a medium. The most
straightforward formula is Cauchy’s equation, seen in Eq. (2.4). One of the most ac-
curate and widely used formulas is Sellmeier’s Equation, seen in Eq. (2.5). The coef-
ficients of this equation include the absorption lines. There are also external factors
that might affect the refractive index of a medium, such as temperature, pressure,
and impurities in the material’s composition [7, 53–55].

n(λ) = A0 +
A1

λ2 +
A2

λ4 (2.4)

where A0, A1, and A2 are constants that depend on the medium’s properties.

n2(λ) = n2
0 +

B1 λ2

λ2 − C1
+

B2 λ2

λ2 − C2
+

B3 λ2

λ2 − C3
(2.5)

where B1, B2, B3, C1, C2, and C3 are constants that depend on the medium’s proper-
ties.

According to Fermat’s principle, also known as the principle of least time, a light
ray traveling from one medium to another takes the path between two points, let us
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say A and B, in which the optical path length (OPL) is stationary, i.e., a minimum.
From all possible paths, the ray takes the one that gives the shortest OPL. The OPL is
the sum of the geometrical path length traveled by the ray in a medium multiplied
by its refractive index, as seen in Eq. (2.6) for isotropic homogeneous and inhomo-
geneous mediums. The OPL demonstrates the proportionality of the time for a light
ray to propagate between two points. It is essential to notice that when traveling in
a homogeneous medium, the ray travels in a straight line [55–57]. As an example, in
Fig. 2.2, several possible paths for the ray are illustrated, and the ray takes the one
with the least time.

OPL(γ) =
∫

γ
n(λ)ds = Min. (2.6)

where ds is the geometrical path length, given by the GPL ds =
√

dx2 + dy2 + dz2,
and γ is the the curve between two points.

FIGURE 2.2: Illustration of the Fermat’s principle. γ1, γ2, γ3, and γ4 are the possible paths.
Considering that n′ > n, the path taken by the ray that minimizes the OPL is represented

in red.

From Fermat’s principle, one can easily derive Snell’s law. This law states that a
ray’s direction changes when it travels from one medium to another with different
refractive indices, with the relationship between them seen in Eq. (2.7) [58]. The an-
gle between the ray and the normal of the interface between two mediums is called
incidence angle, denoted as u, and the refracted or reflected angle is called refract-
ed/reflected angle, denoted as u′. The refractive indices before and after the surface
between two mediums are denoted as n and n′, respectively, and these notations
shall be used for paraxial ray-tracing [56].

n sin(u) = n′ sin
(
u′) (2.7)

Figure 2.3 demonstrates planar wavefronts and a ray, r, being refracted or re-
flected by a surface. In this case in particular, the refractive index n′ is higher than n.
Therefore, according to Snell’s law, the ray angle u′ for a refracted ray, r′t, is smaller
than the angle u. As previously mentioned, the velocity of the wavefront is slower in

a high RI medium, given by vi =
c
ni

. And according to Fermat’s principle, the OPLs

of d1 and d2 should be equal. Therefore, the geometrical path of d2 is smaller than
d1 [7, 54]. For reflection, the reflected angle is the same as the incidence angle, but
using the sign convention, they are opposed in sign, and the ray maintains the same
geometrical path length. Using Eq. (2.7), it is possible to obtain the refractive index
for reflective systems using the previously mentioned relationship between the in-
cident and reflected rays. It is trivial to notice that the refractive index of reflective
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FIGURE 2.3: Representation of Snell’s law. The wavefronts are represented in purple. The
ray in blue represents a ray being refracted, and the ray in green represents a ray being

reflected.

surfaces is given by −n [56].
Not only the RI influence in the rays’ deviation, but also the lens’ radius of cur-

vature. The greater the RI, and the more curved a surface, the greater the deviation
of the ray. Needless to say, the shorter the wavelength, the greater the deviation. The
material usually used for a lens is either glass or polymers [54]. The Abbe Number
of the material gives the dispersion of a lens by expressing the relationship between
the variation of the RI of a lens and the wavelength, as seen in Eq. (2.8). The Abbe
number is inversely proportional to dispersion. Therefore, flint glasses present an
Abbe number smaller than 50, while it is larger than 50 for crown glasses [55].

V =
(nm − 1)
(ns − nl)

(2.8)

where nm is the middle, nl is the longest, and ns is the shortest wavelengths in a
spectrum, respectively.

Figure 2.4 demonstrates the variation in refractive index with wavelength for
various materials, in specific, glasses. It is possible to notice that the refractive index
variation, δn, is higher for shorter wavelengths in most materials. The lenses with a
high dispersion are classified as flint glasses while the ones with a low dispersion are
classified as crown glasses. [55].

The simplest and most widely used shape of lenses is spherical. It can be easily
manufactured by grinding a rotating glass blank against a rotating diamond tool
[55]. The power of a spherical surface, φ, is given by the RI and radius of curvature
[59].

The most straightforward representation of a lens is a thin lens in air, where
the thickness of the lens is neglected, and all the optical powers are provided by
the surface’s radius of curvature and RI of the material, as seen in the Lensmaker’s
Equation, in Eq. (2.9). This representation can be helpful as a starting point for an
optical lens design [54].

Φ = φ1 + φ2 =
(n′ − n1)

n1 R1
+

(n3 − n′)

n3 R2
(2.9)

where φ1 and φ2 are the optical power of the lens surfaces,R1 and R2 are the radii of
curvature of the lens, n1 and n2 are the RI before and after the lens, and n′ is the lens
RI.

If a lens focuses a collimated bundle into a real point, it is classified as a conver-
gent or positive lens. Otherwise, if the lens focuses on a virtual point, it is classified



Chapter 2. A review on Optical Aberrations 18

FIGURE 2.4: Refractive index for different materials. The materials with a (C) are crown,
while the materials with a (F) are flint. It is noticeable that the flint glasses present a larger

variation in RI than the crown glasses.

as a divergent or negative lens [55]. Figure 2.5 illustrates a positive and a negative
lens. This classification shall be used in the following chapters.

(a) (b)

FIGURE 2.5: Ray-tracing through a thin lens that is (a) positive, and (b) negative.

A thick lens, as the name implies, takes into consideration its thickness. There-
fore, the calculations are more precise, and the thickness is included in the Lens-
maker’s Equation, seen in Eq. (2.10) [55].

Φ = φ1 + φ2 −
φ1 φ2 d

n′ =
n′ − n1

n1 R1
+

n2 − n′

n2 R2
− (n′ − n1) (n2 − n′) d

n1 n2 n′ R1 R2
(2.10)

In contrast to the thin lens approximation, the cardinal points of a thick lens do
not coincide. The principal planes are not physical planes but fictitious ones. They
represent the apparent position in which the rays are refracted inside of a lens. For
this, incoming collimated rays from the object space, the left of a lens, and the image
space, from the right of the lens are refracted and converged into the focal points
F and F′. The principal point can be located by the intersection of the extended in-
coming and outgoing rays. The principal points define the position of the principal
planes that are perpendicular to the optical axis. Not only do individual lenses have
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their principal planes, but the whole optical system can also be reduced to two prin-
cipal planes. Figure 2.6 shows the principal points in green. The focal lengths of a
lens or optical system, f and f ′, are given by the distance from the principal planes
to the focal points. [54, 60].

The nodal points, represented in yellow in Fig. 2.6, are defined such that a ray that
has the same angular magnification in the object and image spaces, i.e., the incoming
and outgoing angles are the same as θ, and it is given by the position in which the
extrapolation of the incoming and outgoing ray intersects with the optical axis [56].
Therefore, their angular magnification is 1. If the medium before and after the lens
is the same, the nodal point coincides with the principal point. Otherwise, their

distance to the principal plane is sPN = sP′N′ =
(n2 − n1)

Φ
, with Φ being the optical

power of the lens [54].

FIGURE 2.6: Ray-tracing in a thick lens showing the principal and nodal planes.

The cardinal points, or Gauss points, are special points in an optical system. They
comprise the pair of focal (F,F’), principal (P,P’), and nodal (N,N’) points. They are
fundamental in image formation as they are used to trace a ray in an optical system.
One can define the position and size of an image for a given object position and size
using the cardinal elements position and Snell’s law for homogeneous, or Fermat’s
principle for inhomogeneous mediums [54, 56, 61].

The paraxial region, or Gaussian region, is the one close to the optical axis, and
the rays in this regime are called paraxial rays. In paraxial optics, or first-order op-
tics, approximations are acceptably accurate for calculations in imaging. The first
approximation made is for the rays’ angle. The sine function can be given by the
Taylor expansion, as seen in Eq. (2.11). In the paraxial regime, the angles are rela-
tively small. Therefore, the Taylor series for the sine can be truncated after the first
element. Therefore, the sine can be approximated as sin(u) = u. Figure 2.7 shows
the discrepancy between the sine of an angle and the Taylor expansion using one or
two terms [54, 56, 61].

sin(u) =
∞

∑
i=0

(−1)i

(2i + 1)!
x2i+1 = u − u3

3!
+

u5

5!
− u7

7!
+ O(u9) (2.11)
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As a rule of thumb, the discrepancy should not exceed 3%. Thus, the approxi-
mated maximum angle for the approximation using the Taylor expansion with one
term is 30◦. Two other trigonometric first-order approximations are tan(u) = u and
cos(u) = 1 [54].

FIGURE 2.7: Representation of the comparison between the sine and the Taylor series trun-
cated with one or two terms.

The sagitta of a surface, represented as z in Fig. 2.8, is the distance from the edge
of the lens to its vertex. It is given by a Taylor series as seen in Eq. (2.12). When using
the paraxial region, this series can also be reduced to the first term as z(r) = (c r2)/2.
Another assumption in paraxial optics is the surface being rotationally symmetric
about the optical axis [6, 56, 60].

z(r) =
1
2

c r2 +
1
23 c3 r4 +

1
24 c5 r6 + O(r8) (2.12)

where r =
√

x2 + y2, and c is the curvature of the lens given by 1/R.
The Aperture Stop (AS) is an opening that limits the diameter of the beam of axial

rays entering an optical system. The ray at the edge of this aperture is called marginal
ray (MR). The ray from the object edge that crosses the optical axis in the AS position
is called the chief ray (CR). Those two rays are the most important ones for Paraxial
Ray-tracing. The Field Stop (FS) is an aperture that limits the maximum angle of the
incoming rays. Thus, this stop limits the Field of View (FoV). The angular FoV is the
angle for the maximum object diameter imaged by the system. The linear FoV is
the transverse distance to the optical axis that allows the rays to be imaged by the
system. For convenience, the Half Field of View (HFoV) is frequently used.

The AS and FS do not necessarily have to be physical diaphragm in the system.
It can be simply an optical element with a size limiting the height or angle of the
incoming rays [7, 56, 60].

The entrance pupil (EnP) is the image of the AS from the object space. Its position
is found by the intersection of the CR with the optical axis in object space, as rep-
resented in yellow in Fig. 2.8, and the MR’s height at this position defines the EnP
radius. The exit pupil (ExP) has the same construction as the EnP, but the CR intersec-
tion position, represented in pink, and the MR height at this position are given from
the image space. Similarly, the image of the FS is called Entrance Window in object
space, and Exit Window in image space. The back focal distance (BFD) is the physical
distance between the vertex of the back of the lens and the image space focal point
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F, while the front focal distance (FFD) is the distance between the vertex of the front
of the lens and the object space focal point F′ [6, 7, 60].

The angles in object space for the MR and CR are u and u, while the angles in
image space for the MR and CR are u′ and u′, as seen in Fig. 2.8. These notations
shall be used in the following chapters.

FIGURE 2.8: Ray-tracing of the paraxial marginal and chief rays between two mediums. C
is the center of curvature of the surface with radius R.

An object at a distance l from the vertex of a spherical surface produces an im-
age at a distance l′ from the same. Thus, one can use the paraxial properties of a
single surface to find their relationship with the refractive indices of the mediums
encompassing them, as seen in Eq. (2.13).

n′

l′
− n

l
= (n′ − n) c (2.13)

In paraxial optics, a ray is refracted or reflected at the interface between two
different mediums. The height at which the CR intersects the surface is y and for
the MR is y. The angles before and after the interface are u and u′ for the CR, and
u and u′ for the MR. By knowing that the power of a surface is given by Eq. (2.14),
and using Eq. (2.13), one can easily obtain Eq. (2.15). This is known as the refraction
equation [7, 54–56].

φ = (n′ − n) c (2.14)

n′u′ = n u − y c(n′ − n) = n u − y φ (2.15)

Using geometry, one can also obtain the relationship between the height of the
ray intersecting different surfaces, as seen in Fig. 2.9. This relationship is demon-
strated in Eq. (2.16), this is called the transfer equation.

yi+1 = yi + u′
i di (2.16)
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Equation (2.15) and Eq. (2.16) are used for paraxial raytracing. Paraxial ray-tracing
is a convenient and straightforward method for calculating the image or object posi-
tion and height and the angular FoV of an optical system. This approach calculates
the ray’s height, angle with the optical axis, refractive index, and curvature for each
interface in an optical system unto the final image. This type of ray-tracing, in par-
ticular, is called the ynu method, as it is implied in the name, an approach using the
refractive indices, heights, and angles of the rays. Paraxial ray-tracing allows for a
ray to be traced in a system with several surfaces [7, 54–56].

yi
yi+1

Surface 
Ri

Surface 
Ri+1

u'i

u'i+1

ui

ui+1

(ni-1) (ni) (ni+1)

di

FIGURE 2.9: Ray-tracing through two surfaces.

The numerical aperture (NA) of an optical system defines the light cone accepted
by the optical system and is given by the RI and angle of the MR in object or image
space. The larger the NA, the larger the ray angle. Considering a lens that contains
the AS at its edge, for an object at infinity, the distance l′ obviously becomes the
focal length f ′. Therefore, the NA in image space is directly related to the lens’s
focal length and diameter. Furthermore, this relationship shows a direct relationship
between the NA and the f-number (F/#). The F/# defines how fast an optical system
is, i.e., how much time is necessary for gathering the same amount of light. A low
F/# presents a larger entrance pupil or shorter focal length, gathering more light in
less time than the same lens with a higher F/#. These relationships can be seen in
Eq. (2.17) [62].

NA′ = n′ sin
(
u′) = n′ D

2 f ′
=

n′

2 F/#
(2.17)

where NA′ is the numerical aperture in image space, and D = 2R.
The lateral magnification of an optical system, m, is given by the ratio between the

image and object sizes. The geometry of the triangles for object and image space for
the MR can be used to obtain a relationship between the lateral magnification and
the NA, as seen in Eq. (2.18). For an afocal system, the lateral magnification is simply
the ratio between the height of the collimated bundle in object and image space [54,
55].

m =
η′

η
=

n sin(u)
n′ sin(u′)

=
n u

n′ u′ (2.18)
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Rearranging Eq. (2.18), one can obtain a relationship between the object and im-
age heights and the paraxial numerical aperture in object and image space. This re-
lation is called the Lagrange invariant, and it can be seen in Eq. (2.19). The Lagrange
invariant shows the relationship between the system’s numerical aperture with ray
height at each surface, and its value is constant, independent of the ray choice and
the number of surfaces. The energy of an optical system is preserved upon both
transfer and refraction between surfaces. This invariant is important for calculating
aberrations, as will be seen in the following sections [5, 54–56].

ηnu = η′n′u′ (2.19)

In paraxial ray-tracing, both MR and CR are usually the choice of rays traced
through the surfaces. As the power of a surface is the same for both rays, it is possible
to deduce the relationship between their angles and heights by applying Eq. (2.15)
to each one. [7, 54–56].

Λ = n(u y − u y) = n′(u′ y − u′ y) (2.20)

In first-order optics, an optical system is assumed to focus a single object point
into a single, or stigmatic, image point. However, in reality, an optical system suffers
from optical aberrations. That means that the rays focus on a small area instead of a
point, even in a well-corrected system. Optical aberrations are imperfections in an
optical system’s image. They are classified into two different types, monochromatic
aberrations and chromatic aberrations, as will be seen in Sections 2.2 and 2.1. In the
case of well-corrected systems for aberrations, the system still presents a limitation
in resolution due to the wave nature of the light, the diffraction of the system’s aper-
ture. The diameter of the maximum brightness on the diffraction pattern is called
the Airy disk. The diffraction happens in an optical element due to the wavelets in-
terfering with each other, so a circular aperture will present an energy distribution
around the focal region with a Bessel function shape, i.e., a maximum brightness
surrounded by rings with different intensities, as seen in Fig. 2.10a. All the points
falling inside of the Airy disk distribution cannot be resolved; for that, they have to
satisfy the Rayleigh Criterion. The Rayleigh Criterion states that the separation of two
point sources,p1 and p2, must be not less than the radius of the Airy disk for them to
be resolvable, as seen in Fig. 2.10b. In other words, the peak of the central maxima
of one Airy disk must coincide with the first minima of the other one. The Rayleigh
Criterion can also be given in an angular form, sin(α). The relationships of the Airy
disk and Rayleigh Criterion with the F/# and wavelength is given by Eq. (2.21). A
system is said to be diffraction-limited if the optical aberrations are smaller than the
Airy disk [54].

DAiry = 2.43952 λ F/# = 2 dRayleigh = 2 f sin(α) (2.21)

where DAiry is the Airy disk diameter, dRayleigh is the distance between the two Airy
disk’s peaks, and sin(α) is the angular resolution.
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(a) (b)

FIGURE 2.10: (a) Diffraction pattern for a small aperture demonstrating the Airy
disk, and (b) two point sources, p1 and p2, being resolved by satisfying the Rayleigh

Criterion. a is the aperture size, and α is the angular resolution.

For a finer detailed image, the optical resolution limit has to be minimal. For
that, the F/# shall be decreased, or the aperture size increased. The resolving power is
the ability of the optical system to resolve two points in object space. It is given by
the inverse of the optical resolution. Thus, the larger the value, the finer the image
[5].

The following sections will define each subgroup of the optical aberrations.

2.1 Chromatic Aberrations

Chromatic aberrations are the aberrations in which the image suffers from different
wavelengths not focusing at the point. This happens because of the relationship
between the wavelength and the refractive index, as previously seen in Eq. (2.4) and
Eq. (2.5). For instance, taking the most straightforward refractive index equation
presented here, Cauchy’s equation seen in Eq. (2.4), truncated after the second term.

This relationship between wavelength and refractive index means that a refrac-
tive medium presents a different optical power for each wavelength. As expected, a
mirror will not present chromatic aberration.

One can notice that the refractive index is proportional to the inverse of the
square of the wavelength. Thus, two equally spaced wavelengths in the spectrum
will not be equally spaced in the image plane.

As previously mentioned, different materials present different dispersions, i.e.,
different rates in which the power of the medium changes with the wavelength.

There are two different chromatic aberrations, Longitudinal Chromatic Aberration
(LCA) and Transverse Chromatic Aberration (TCA) [54].

2.1.1 Longitudinal Chromatic Aberration

LCA occurs with on-axis rays. The rays from different wavelengths focus at dif-
ferent positions in the optical axis as they present different focal lengths due to the
different optical powers through the spectrum. Thus, as the name implies, this is a
purely longitudinal aberration. Therefore, if the image plane is placed at the position
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of one wavelength, the others will be out of focus, either diverging or converging.
Consequently, each wavelength presents a different BFL.

Figure 2.11 illustrates the effect of LCA. In this example, using the visible spec-
trum, the blue wavelength is closer to the lens, while the red wavelength is farther
away, with the green in between. Remembering Cauchy’s Eq. (2.5), it is trivial to
deduce that shorter wavelengths present a high refractive index, and longer wave-
lengths a low refractive index [5]

Image
plane

F'F F'e

F'CCoC

BFLF

BFLe
BFLC

FIGURE 2.11: LCA in an optical system. F′
F, F′

e , and F′
C are the focal point of the blue, green

and red, respectively. CoC is the circle of least confusion. As can be seen, the image plane
placed in the CoC position presents the smallest spot size.

If the image plane, for example, is placed at the position of the green focal point,
then the blue rays have already focused and started diverging while the red ones are
still converging when it intersects the image plane. Therefore, the image formed is a
combination of adequately focused wavelengths with others out of focus. The final
result of the image plane placed at each of the focal points can be seen in Fig. 2.12.
Notice that the system’s image is similar to defocus but for different wavelengths.
As we place the image plane in one of the wavelength’s focal points, we can see that
this wavelength focuses in the center of the image plane while the other ones are
defocused. The image plane can also be placed in the CoC position so that the spot
size due to wavelength defocus is minimized.

The lower the Abbe Number, the higher the dispersion. Furthermore, the higher
the refractive index, the lower the Abbe Number. As an example, Fig. 2.13 illustrates
the relationship between RI and Abbe Number for different glasses from the Schott
catalog for the visible light, with a wavelength classified as the primary wavelength,
i.e., the wavelength considered as the reference one. The spectral lines considered
here are F, d, and C from the Fraunhofer lines. They are associated with the elements
Hydrogen blue, Mercury green, and Hydrogen red, respectively. And their wave-
lengths are λF = 486 nm, λd = 546 nm, λC = 656.27 nm. For simplicity, they shall
be simply called blue, yellow, and red from now on. By convention, the spectral line
d is frequently considered as the primary wavelength. Equation Eq. (2.22) gives the
Abbe Number for the visible spectrum [56].

Ve =
(nd − 1)
(nF − nC)

(2.22)
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FIGURE 2.12: Zoom of the front view of the image plane for different positions in an optical
system with LCA.
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FIGURE 2.13: Relationship between RI and Abbe Number for different glasses from Schott
catalog. Best seen with zoom.

where ne is the green, nC is the blue, and nF is the red refractive indices for the same
medium, respectively.

Considering the simplified thin lens in air, Eq. (2.23), one can derive the chro-
matic variation of a lens with the dispersion, δn, of the medium [56].

φ = (n − 1)(c1 − c2) (2.23)

Equation Eq. (2.24) demonstrates not only the relationship mentioned above but
also the fact that the radius of curvature is not needed to calculate the variation in
optical power as long as the optical power is given.

δφ = δn(c1 − c2) = φ
δn

(n − 1)
(2.24)

This aberration is also known as first-order chromatic aberration [56].
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Due to the difference in refractive indices and Abbe number in different materi-
als, it is possible to combine them in order to balance the dispersion, thus correcting
the LCA, especially when combining crown and flint glasses. For this purpose, a
converging crown lens is combined with a diverging flint lens. This combination is
called a doublet. This method only corrects LCA for a pair of wavelengths on op-
posite positions in the spectrum. Thus, if one wants to correct more wavelengths,
adding more lenses to the system is necessary. The residual chromatic aberration in
the system is called Secondary Spectrum [56]. The doublet can be cemented or spaced.
The spaced doublet adds more degrees of freedom for aberration correction than the
cemented one. Figure 2.14 illustrates a doublet focusing rays with different wave-
lengths. The secondary spectrum, δBFL(F−d), is the distance between the BFL of the
F and d wavelengths. This results in the yellow wavelength suffering from defocus
if the image plane is located at the focal point of the blue and the red wavelengths.

Image
plane

BFLC
BFLF

BFLd

δBFL
(F-d)

Crown Flint

FIGURE 2.14: Secondary spectrum in a doublet corrected for two wavelengths, in this case,
red and blue. The central wavelength, yellow, is seen at a distance δBDL(F−d) from the
other two. Notice that the yellow wavelength is illustrated in green for image clarity pur-

poses.

Figure 2.15 illustrates the characteristic BFD curve of a thin lens for different
wavelengths in a system with secondary spectrum. As can be noticed, as aforemen-
tioned, there are several pairs of wavelengths with the same BFD. In this example,
in which the spectral bands F and C are the same, the BFL difference between them
and the spectral band d can be seen [56].

The condition for a system to have the primary spectrum corrected is that the
difference in the power variation between two wavelengths in a spectrum to be equal
to zero, as seen in Eq. (2.25).

δΦ(C−F) = 0 (2.25)

Therefore, combining Eq. (2.22) and Eq. (2.25) gives the relationship between the
optical power and Abbe number for each element of the doublet to correct LCA in
Eq. (2.26) [56].

φ1

V1
+

φ2

V2
= 0 (2.26)



Chapter 2. A review on Optical Aberrations 28

Short-wave infrared

F'F F'C

δBFL
(F-d)

B
F

L

Wavelength (nm)
400 460 500 578542 600 700656.27546.07486.13

F'd

FIGURE 2.15: Secondary spectrum in an achromat for the spectral bands F, C, and d.

Remembering that the optical power of an optical system in a thin lens approxi-
mation is the sum of the individual optical powers, as seen in Eq. (2.9), one can de-
duce the optical power necessary for each individual element as seen in Eqs. (2.27)
and (2.28). Thus, each optical element shall have the same optical power but with
opposite signs to cancel out and correct LCA [56].

φ1 =
φ V1

V1 − V2
(2.27)

and

φ2 =
−φ V2

V1 − V2
(2.28)

One can also use the space between the lenses to their advantage to correct LCA.
For instance, it is even possible to correct LCA using two lenses with the same ma-
terial if the distance between them is properly chosen. In this case, one can calculate
what is the optimal distance by using the thick lens equation. For instance, the dis-
tance in the equation shall be taken as the distance between the thin lenses. Using
Eq. (2.23), one can obtain the overall optical system of the thin lens using the same
material combined, as in Eq. (2.29) [63].

Φ = φ1 + φ2 − φ1 φ2 d (2.29)

For convenience, the terms (c1 − c2) for the curvature of a lens shall be denoted
as Ci. Thus, this term for the first lens shall be denoted as C1 and the second lens C2.
Using Eqs. (2.23) and (2.29) leads to Eq. (2.30).

Φ = (n − 1)C1 + (n − 1)C2 − (n − 1)2 C1 C2 d (2.30)

In order to make the system achromatic, the derivative of Eq. (2.30) as a function
of the refractive index should be zero, as seen in Eq. (2.25). This gives Eq. (2.31).

δΦ
δn

= C1 + C2 − 2 (n − 1)C1 C2 d = 0 (2.31)

For practical purposes, multiplying Eq. (2.31) by (n − 1) transforms the equation
in terms of optical power instead of C1. Moreover, with this, it is possible to obtain
the relationship between the lenses’ distance and the optical power of each one, as
seen in Eq. (2.32).

d =
φ1 + φ2

2 φ1 φ2
(2.32)
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As this derivation takes the thin lenses approach into consideration, one can also
use the approximation φ = 1

f to obtain what is the distance between the lenses in
function of their focal lengths, as in Eq. (2.33).

d =
f1 + f2

2
(2.33)

When the power of the individual elements is not exactly the same, the residual
LCA can be calculated, for example, by the difference in optical power of the doublet
using the helium yellow (d) and hydrogen red (F) spectrum range [56]. This relation
can be seen in Eq. (2.34) for a doublet.

δΦ(d−F) =

(
φ1

V1 (d−F)
+

φ2

V2 (d−F)

)
= 0 (2.34)

where V1 (d−F) and V2 (d−F) are the specific Abbe numbers for the spectrum rang-
ing from the spectral line d to F for each lens of the doublet.

The Abbe number for this range is given by Eq. (2.35).

V(d−F) =
(nd − 1)
(nF − nd)

(2.35)

The relative partial dispersion is given by their relationship with the refractive
indices or the Abbe number for the C to F lines range, and for the d to F lines range,
as seen in Eq. (2.36).

p =
(nF − nd)

(nF − nd)
=

V(C−F)

V(d−F)
(2.36)

Thus, it is possible to express Eq. (2.34) in terms of partial dispersion, Abbe num-
ber, and overall optical power of a system. This relation can be seen in Eq. (2.37).

δφ(d−F) = Φ
(p1 − p2)

(V1 − V2)
= 0 (2.37)

From Eq. (2.37), one can notice that, for a system to be free from secondary spec-
trum, there are two conditions to be fulfilled. The first one is that the Abbe number
of the glasses should be different, but the relative partial dispersion should be equal
[56].

2.1.2 Transverse Chromatic Aberration

The magnification of an optical system is wavelength-dependent. The chief ray
of off-axis rays sits at different positions along the image plane for each wavelength,
presenting a transversal displacement. That means the image size changes for differ-
ent wavelengths. This displacement is called Transverse Chromatic Aberration (TCA)
or lateral color. As seen in Fig. 2.16, they are caused by the angular offset, θ(F−C),
of the outgoing chief rays [64]. This effect is commonly seen in prisms separating
white light into several colors. In addition, the magnitude of TCA is affected by the
position of the AS. This occurs because the AS positioning alters the system’s chief
rays.

As seen in Eq. (2.38), the TCA can be quantified as the difference δη(F−C) in the
height of the focal point of two extreme rays, in this case, blue and red.

δη(F−C) = ηC − ηF (2.38)
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FIGURE 2.16: Transverse chromatic aberration in an optical system. Again, the yellow
wavelength is being represented by the green color.

In reality, the PP of different wavelengths do not coincide in a system with TCA,
as seen in Fig. 2.17 [64]. However, as the system’s distance to the image plane is usu-
ally significantly larger than the distance between the PPs, this first approximation
is often used [55].
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FIGURE 2.17: Principal planes for different wavelengths not coinciding.

Equation (2.39) demonstrates the relationship between the principal plane and
the back surface of a lens.

s′P =
−F′(n(λ)− 1)d

R1n(λ)
(2.39)

It is clear that the distance from the principal plane to the lens’s back surface
depends on the refractive index, and therefore depends on the wavelength.
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The distance between the principal planes can be quantified by using Eq. (2.39)
for each wavelength, resulting in Eq. (2.40).

δs′P(C−F) =
−d
R1

[
(FF − FC)−

(FFnc − FC − FCnF)

nCnF

]
(2.40)

In this case, in which the distance between the principal planes is not neglected,
the primary lateral color can be calculated in function of the distance between the
principal planes and the angle formed by one of the principal rays with the optical
axis, as seen in Fig. 2.18. Equation (2.41) shows this relationship [64].
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FIGURE 2.18: TCA in a lens considering the distinct PP of different wavelengths.

TCA = δs′P(C−F)tan(u′F) = δs′P(C−F)
η′

F
F′

F
(2.41)

2.2 Monochromatic Aberrations

Monochromatic aberrations are imperfections in the image that do not depend on
the wavelength of the light. They are directly related to the aperture and field of an
optical system. The larger the aperture or field, the larger the optical aberrations.
The rays, in this case, deviate from the paraxial region. Two approaches can be used
to quantify the monochromatic aberrations by using a ray or a wave perspective. A
reference sphere (RS) is used as the ideal wavefront with radius Rrs, and an aber-
rated with radius Rab does not coincide with the RS, neither does their rays. The
rays from the RS do not have the same OPL as the rays from an aberrated wave-
front. Commonly, the intersection of the CR with the image plane can also be used
as the reference point of an ideal system in imaging. Other rays are then traced to
quantify the deviation of their focal point from the reference one. In the ray perspec-
tive, the aberrations can be divided into longitudinal and transverse. The transverse
aberrations, δξ ′ in the x-axis and δη′ in the y-axis, can be quantified by the axial
distance from the position in which a ray intersects the image plane of the refer-
ence point. The longitudinal aberrations, δz, can be quantified as the distance of a
ray intersecting the optical axis and the reference point. In addition, for particular
cases, in which the image is at infinity, i.e., a collimated beam, the aberrations can
also be quantified as a function of the angle between a ray and the CR, δu′. This is
called angular aberration. In the wave perspective, the wavefront aberration, δW,
is quantified as the displacement of the aberrated wavefront from the RS where all
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rays focus at a single point [54]. Figure 2.19 illustrates the wave and ray aberrations
in an optical system.

FIGURE 2.19: Wave and ray aberrations.

The transverse aberrations in terms of angular displacement is given by δ ξ ′ =
Rrsδ u′ in the x-axis, and δη′ = Rrs δu′

y in the y-axis. The angle δ u′
x,y can be defined

in terms of the wavefront as Eqs. (2.42) and (2.43) [56].

δu′
x =

−1
n′

δW
δx

(2.42)

δu′
y =

−1
n′

δW
δy

(2.43)

The RS’s location is commonly not known so that one can define relative pupil
coordinates xrel and yrel as the ratio between the RS and the marginal ray coordinate,
as seen in Eqs. (2.44) and (2.45). As these coordinates are relative, their values vary
between -1 and 1 [56].

xrel =
xrs

xmarg
(2.44)

yrel =
yrs

ymarg
(2.45)

The transversal displacements can be then given as Eqs. (2.46) and (2.47).

δξ ′ =
−1

n′ sin(u′)

δW
δxrel

(2.46)

δη′ =
−1

n′ sin(u′)

δW
δyrel

(2.47)

Considering that Eqs. (2.46) and (2.47) have a differential relationship, the wave-
front can be given in an integral form by Eq. (2.48) and Eq. (2.49) [56].

Wx = n′ sin
(
u′) Rrs

∫
δξ ′ dx (2.48)

Wy = n′ sin
(
u′) Rrs

∫
δη′ dy (2.49)
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The wavefront aberration can be described by W(x, y, ξ ′, η′), and due to the sym-
metry of the system, it can be defined using the polar coordinates of the pupil. Fig-
ure 2.20 shows the diagram of the coordinate axis for the meridional (y-axis) and
sagittal (x-axis) planes. The axes x and y in the pupil are parallel to the ξ ′ and η′

in the image plane, respective. The polar coordinates are given by r2 = x2 + y2,
x = r sin

(
φ
)
, and y = r cos

(
φ
)
. Considering an optically centered lens that is rota-

tionally symmetric in the optical axis, one can simplify the wavefront in terms of r,
η, and φ. The triangle ABC gives the dependence of the wavefront aberration on the
terms of the sides of the triangle, given by η2, r2, and r2 + η2 − 2ηr cos

(
φ
)
, with the

latter simplified as ηr cos
(
φ
)

as the other terms are already previously included [54,
56].

FIGURE 2.20: Optical aberrations in polar coordinates.

The wavefront aberrations can be expanded into a power series with a Taylor
expansion using the three variables aforementioned. Each term is correlated with
different types of aberration, and the most relevant terms are the third-order aberra-
tions, demonstrated in Eq. (2.50) [54, 56].

W(η, r, φ) =

Not real aberration︷ ︸︸ ︷
w020 r2︸ ︷︷ ︸
Defocus

+w111 η r cos
(
φ
)︸ ︷︷ ︸

Tilt

+ w040 r4︸ ︷︷ ︸
Spherical

+w131 η r3 cos
(
φ
)︸ ︷︷ ︸

Coma

+w222 η2 r2 cos2(φ)︸ ︷︷ ︸
Astigmatism

+

w220 η2 r2︸ ︷︷ ︸
Field Curvature

+w311 η3 r cos
(
φ
)︸ ︷︷ ︸

Distortion
(2.50)

The notation Wijk for power series expansion of the wavefront gives a direct re-
lation between the suffixes i, j, and k and the power of the terms r, η, and φ, as seen
in Eq. (2.51). The usefulness of these relations is the straightforward identification of
the aberrations’ nature by knowing the suffixes [56].

Wijk(η, r, φ) = ∑
i,j,k

wijk ηi rj cosk(φ) (2.51)
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The only on-axis monochromatic aberration is SA. And the off-axis monochro-
matic aberrations are coma, astigmatism, field curvature, and distortion.

2.2.1 Defocus and Tilt

The first two terms of Eq. (2.50) are Defocus and Tilt are the First-order aberrations.
This name is given by the sum of the exponents of their variables η and r in ray
aberrations being equal to 1. In terms of wavefront aberration, this sum is equal
to 2. The first-order aberrations are not considered real aberrations as they do not
compromise the image quality as they still produce a stigmatic focal point. They
are simply a mismatch between the formed image’s position or angle and the image
plane of the RS [54, 56].

Defocus is simply the image plane being closer or farther than the image forma-
tion of an optical system. This can be fixed by moving the image plane or the optical
system to match them. As demonstrated in Fig. 2.21, the RS wavefront focuses in
the image plane, with the aberrated wavefront focusing on the optical axis with a
shift from the reference point by a distance δz. The wavefront aberration of defo-
cus is given by w020 r2, or w020 y2 considering the rotational symmetry of the system
around the optical axis. The transverse ray aberration of defocus can be quantified
using Eq. (2.47) and the defocus term w020 r2, obtaining Eq. (2.52) [56].

FIGURE 2.21: Defocus on an optical system.

δη′ =
−2 y

n′ sin(u′)
w020 (2.52)

The defocus ray aberration can also be quantified in terms of δz, as seen in
Eq. (2.53) [54].

Wde f =
−n′

2
δz sin2(u′) (2.53)

An image plane positioned at the focal point of the RS results in the real rays
reaching the image plane creating equally spaced rings. Figure 2.22 illustrates the
rays intersecting the image plane in a system with defocus. The front view of the
image plane being intersected by the rays is called a Spot Diagram. This is a valuable
tool to quickly identify the possible aberrations present in an optical system. It is not
as accurate as other methods, but as different aberrations present different shapes of
the spot diagram, it can work as a starting point for identifying the aberrations [56].
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FIGURE 2.22: Zoom of the front view of the image plane in an optical system with defocus.

Tilt occurs when the wavefront is at an angle with the RS, presenting an angle
mismatch, θ, between the aberrated and the RS rays. This results in a lateral dis-
placement between the image point of the wavefront and the RS image, as seen in
Fig. 2.23. The transverse aberration can be quantified by Eq. (2.54). The wavefront
aberration of tilt is given by w111 η r cos

(
φ
)

or w111 η y [56].

FIGURE 2.23: Tilt in an optical system.

δη′ =
−η′

n′ sin(u′)
w111 (2.54)

The tilt ray aberration can also be quantified in terms of the angle between the
rays θ, as seen in Eq. (2.55) [54].

Wtilt = −n r θ cos
(
φ
)
= −n y δη′

Rrs
(2.55)

Equation (2.54) shows that the transverse aberration of a system with tilt is con-
stant once the image size η′ is defined. It is trivial to notice that the tilt will still
produce a stigmatic focal point. However, this point is laterally displaced. Thus, the
object size is proportional to the displacement of the image. Figure 2.24 shows the
difference in magnification of the optical system, with the point in blue being the



Chapter 2. A review on Optical Aberrations 36

location of the focal point of the aberrated wavefront, while the red point shows the
reference point [56].

FIGURE 2.24: Zoom of the front view of the image plane in an optical system with tilt.

2.2.2 Spherical Aberration

SA depends only on the pupil radius, and this is the only on-axis monochromatic
aberration. This occurs because of the difference in optical power of a spherical
surface depending on the angle of the incoming collimated ray and the normal to the
surface at different heights. Thus, rays from different pupil radii focus at different
positions along the optical axis [59]. As seen in Fig. 2.25, the angle of a collimated
bundle with a spherical surface varies depending on the ray height when the surface
is intersected. The central region presents a slight variation between these angles, so
the paraxial approximation is valid. Therefore, the rays from the aperture zones in
the central region focus the rays relatively close to each other in the optical axis. As
the height of the rays moves towards the edge of a surface, the increase in the angle
between the rays and the normal to the surface evidently increases, so the paraxial
approximation ceases to be sufficiently accurate in those zones. Using Snell’s law, it
is trivial to notice that the paraxial zone is less refracted than the rays farther from
the optical axis. Thus, the paraxial rays focus on the optical axis farther away from
the surface than the marginal rays. The spherical ray aberration is proportional to
r3, while the wavefront aberration is proportional to r4. This aberration does not
depend on the field η′ or the azimuth φ [56].

The faster the system, i.e., the smaller the F/#, the more SA it will present. On the
other hand, the smaller the radius of curvature, the higher the curvature; therefore,
the system also presents more SA due to the more significant variance in the angles
between the rays from different aperture zones and the normal to the surface.

The longitudinal aberration, δz is simply given by the distance between the clos-
est focal point to the surface, and the farthest focal point, as seen in Fig. 2.25 as the
focal points F′

1 and F′
5, this relation can be seen in Eq. (2.56) [7].

δz = F′
5 − F′

1 (2.56)

The transverse aberration is given by the distance between the reference point in
the image plane and the height of the farthest ray intersecting the image plane. The
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FIGURE 2.25: SA in an optical system.

transverse aberration is given by Eq. (2.57) for the x-z axis, and by Eq. (2.58) for the
y-z axis. One can easily notice that both axes have a similar solution, and that is due
to the rotational symmetry of the system around the optical axis [59].

δξ ′ =
−4 x3

n′ sin(u′)
w040 (2.57)

δη′ =
−4 y3

n′ sin(u′)
w040 (2.58)

The SA wavefront is given by Eq. (2.59).

WSA = w040 r4 = w040 (x2 + y2)2 (2.59)

Due to the nature of the focal points being at different positions in the optical
axis for different aperture zones, the image plane has to be chosen properly to min-
imize the spot size. The optimal position is a compromise between the paraxial and
marginal rays. That is, the position in which the waist of the beam is the smallest.
This position is known as the Circle of Least Confusion (CoC). Figure 2.26 illustrates
the image plane in three different positions. The orange plane is the position of the
marginal rays’ focal point, the green plane is the position of the CoC, and the pink
plane is the position of the paraxial rays’ focal point. As can be seen, the smallest
spot can be achieved by the position of the CoC. The spot size is still suffering from
SA, but the majority of the energy in the system is in the central region [56].

The curve formed by the outgoing beam’s height concerning different focal lengths
in the optical axis is called the Caustic Curve; it is illustrated in orange in Fig. 2.25 [65].

Both defocus and SA present a spot diagram with rings surrounding the refer-
ence point. However, while defocus presents a constant energy distribution through
the equally spaced rings, as in Fig. 2.22, SA presents an energy distribution in which
the rings are not equally spaced, as seen in Fig. 2.27 [56]. Therefore, they can be
combined in order to decrease the spot size. Thus, the CoC is the optimal position
in which the defocus balances SA in an optical system.
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FIGURE 2.26: CoC in an optical system with SA.

FIGURE 2.27: Zoom of the front view of the image plane in an optical system with SA.

2.2.3 Coma

The symmetry of the surfaces of an optical element is not maintained for an off-
axis incident beam. Therefore, the angle at which the bundle meets the surface is
different depending on the annular zone of the surface. As a result, different aper-
ture zones of an optical element focus the rays into different transversal positions,
presenting a comet-like image shape aberration known as coma. Similar to SA, the
marginal rays focus in a different position from the chief ray. Unlike SA, the aperture
size is not the only term influencing how much aberration is present in the system,
but also the angle of the oblique rays. Thus, the larger the aperture size or field an-
gle, the larger the coma present in the system. This is given by the fact that the focal
point position of the aperture zones becomes more evident and farther away from
each other as the field angle increases [5]. Figure 2.28 shows the geometry of coma.
Different annular zones present different magnifications. Thus, each zone images at
different heights; not only that, the shape of the image formed for different aperture
zones is circular.

In the case of off-axis aberrations, the reference point does not necessarily lie in
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FIGURE 2.28: Coma in an optical system.

the optical axis, and the centroid of the spot diagram can be used as the reference.
The coordinates of the centroid can be given by Eqs. (2.60) and (2.61).

∆xc =
1
N ∑

j
∆xj (2.60)

∆yc =
1
N ∑

j
∆yj (2.61)

where N is the total number of rays being traced and j is the index for each ray.
The Root-Mean-Square (RMS), or Gaussian Moment, uses the centroid as reference

to calculate the deviation of the rays in the image plane, the RMS radius is given by
Eq. (2.62) [66].

∆rRMS =

√
1
N ∑

j
[(∆xj − ∆xc)2 + (∆yj − ∆yc)2] (2.62)

Sagittal coma is the difference between the reference point and the closest point
of the circle formed by the largest annular zone of the pupil. Tangential coma is the
difference between the reference point and the farthest point of the circle formed by
the same aperture zone [66]. The area of the sagittal coma concentrates a significant
proportion of the energy in the system [7]. Figure 2.29 illustrates the sagittal and
tangential coma.

Coma is one of the aberrations considered as the most compromising to the im-
age quality because the asymmetry makes it challenging to find the image position
and the optimal CoC [5]. The wavefront aberration for coma s given by Eq. (2.63).
One can quickly notice that the wavefront in the y-z plane is proportional to y3,
while it is 0 in the x-z axis [56].

W = w131 η r3 cos φ = w131 η (x2 + y2) y = w131 η r2 y (2.63)

Coma can also be quantified in terms of transverse aberrations as shown in
Eqs. (2.64) and (2.65).

δη′ =
−3

n′ sin u′ w131 η′ y2 (2.64)

δξ = 0 (2.65)
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As seen in Eq. (2.64), coma is proportional to the field angle η′. Thus, this is one
of the off-axis aberrations that affect an optical system quality the most, even for
small angles [56].

FIGURE 2.29: Zoom of the front view of the image plane in an optical system with coma.

2.2.4 Astigmatism

Off-axis rays depend not only on the aperture zone of the pupil but also on the
plane it lies on. For a ray bundle in the tangential plane, the rays meet the lens
surface with a tilt in the sagittal plane. Due to the different paths of the sagittal
and tangential rays, they present different focal lengths. That means that the lens
presents different optical power depending on the plane that the rays lie on. This
aberration is known as astigmatism. Figure 2.30 illustrates a bundle of rays in the
sagittal and tangential orientations focusing on their respective focal points [5].

FIGURE 2.30: Astigmatism in an optical system.

The rays being refracted in the sagittal plane end up having a longer OPL inside
of the lens than the rays in the tangential plane, as if the lens was thicker for the
sagittal plane [5]. Figure 2.31 illustrates the OPL of the rays in the sagittal and tan-
gential orientations inside of a lens. As can be seen, the distance t2 is greater than t1
for different off-axis angles in the vertical orientation.

When the image plane is placed at the sagittal rays’ focus, the image formed is
a vertical line. This means that while the sagittal rays produce a focal point in this
position, the tangential rays have either not focused and therefore are converging,
or have previously focused and are diverging when intersecting the image plane.
Meanwhile, the same logic applies if the image plane is placed at the tangential
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FIGURE 2.31: Side view of astigmatism.

rays’ focus, creating a horizontal line as the sagittal rays are diverging or converging
when they intersect the image plane. The best approach to minimize the spot size is
to place the image plane in between the sagittal and tangential focal points, known as
the Medial Focal Plane. This will form a more symmetric image with a circular shape.
This relation can be seen in Fig. 2.30 with the whole schematic of astigmatism, while
the front view of the focal planes can be seen in Fig. 2.32 [56].

FIGURE 2.32: Front view of astigmatism in an optical system.

The transverse ray aberrations for astigmatism can be quantified as Eqs. (2.66)
and (2.67).

δη′ =
−2

n′ sin(u′)
w222 η′2 y (2.66)

δξ = 0 (2.67)

The wavefront aberration of astigmatism can be quantified with Eq. (2.68).

W = w222 η′2 r2 cos2(φ) = w222 η′2 y2 (2.68)

Astigmatism has a particular ellipsoidal shape when it is not in either of the
planes aforementioned. Indeed, most optical systems that suffer from astigmatism
demonstrate this shape, either on the horizontal or vertical orientations. Figure 2.33
illustrates an example in which the image formed is closer to the sagittal focus than
to the tangential focus [56].
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FIGURE 2.33: Zoom of the front view of the image plane in an optical system with astig-
matism.

2.2.5 Field Curvature

The image formed by different field angles does not focus on a plane. The larger
the field angle, the larger the displacement of the focal point from the image plane,
as seen in Fig. 2.34. Thus, the image is formed into a curved surface. It is known
as Field Curvature. This aberration is similar to astigmatism. However, it does not
depend on the azimuth angle [56].

FIGURE 2.34: Field curvature in an optical system.

The transverse ray aberrations are given by Eqs. (2.69) and (2.70).

δη′ =
−2

n′ sin(u′)
w220 η′2 y (2.69)

δξ ′ =
−2

n′ sin(u′)
w220 η′2 x (2.70)

The wavefront aberration is given by Eq. (2.71).

W = w220 η′2 r2 = w220 η′2 (x2 + y2) (2.71)

From Eqs. (2.69) to (2.71) it is noticeably that this aberration is basically a defocus
proportional to the square of the field angle η′.
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Figure 2.35 shows the image formed by a system with field curvature. Notice
that the image plane front view looks similar to defocus. However, this aberration
happens with off-axis rays only [54].

FIGURE 2.35: Zoom of the front view of the image plane in an optical system with field
curvature.

The coefficient w220 of the field curvature can be split into two; the coefficient
equivalent to astigmatism w∗

222 and the coefficient w220p, with the latter being the
Petzval Curvature. Petzval curvature is the curvature in which the image formed
by an object is sharp. This is not held if the system presents astigmatism, and the
Petzval curvature is three times farther away from the tangential surface than the
sagittal one, as in Eq. (2.72) and illustrated in Fig. 2.36. On the other hand, if the
system does not present astigmatism, the field curvature has the same radius as
Petzval [67].

δsp =
3 δssag − δstan

2
(2.72)

FIGURE 2.36: Petzval curvature in an optical system.

The Petzval radius is given by the optical element surface radius and its respec-
tive refractive indices before and after the surface, as seen in Eq. (2.73).

Rp =
−n R
n′ − n

(2.73)
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The Petzval radius can be calculated not only for a single surface but also for an
optical system with several surfaces. One can easily extend Eq. (2.73) into a complete
mathematical formulation for that purpose, using each surface’s radius of curvature
and their respective refractive indices, as seen in Eq. (2.74). Indeed, Eq. (2.73) is a
simplified version of Eq. (2.74).

1
Rp

= −n′
i ∑

i

n′
i − ni

ni n′
i Ri

(2.74)

Petzval curvature does not depend on the rays’ height or angle, unlike the aberra-
tions aforementioned. Thus, as seen in Eq. (2.74), only the lens parameters influence
this quantity [54].

2.2.6 Distortion

The object points with different distances to the optical axis present different
transverse magnifications. As a result, the image shape is geometrically altered
while the image is sharp. The points farther away from the paraxial region still
maintain the image quality, i.e., it still presents a sharp image. However, the points
fall at a distance from the ideal image point. This creates an effect in which the image
seems distorted, and that is the reason why this aberration is called distortion [5].

The shape of the image depends on the orientation of the change in magnifica-
tion. There are two types of distortion. If the magnification increases farther away
from the optical axis, the image formed presents a shape in which the lines appear
to be curved outwards with the borders farther away from the reference points than
the central region. Thus, due to the pincushion appearance of the shape formed, this
is known as pincushion distortion or positive distortion. While if it decreases, the lines
appear to be curved inwards, creating a barrel shape; thus, this is known as barrel
distortion, or negative distortion [5].

The transverse ray aberration is given by Eq. (2.69).

δη′ =
−1

n′ sin(u′)
w311 η′3 (2.75)

The wavefront aberration is given by Eq. (2.71).

W = w311 η′3 r cos φ = w311 η′3 y (2.76)

Distortion is typically quantified as a fraction between the transversal distance
from the paraxial and real points and the transversal distance of the paraxial point
to the optical axis, as seen in Eq. (2.77) [56].

Dist. =
δη′

η′ =
η′

real − η′
parax.

η′
parax.

(2.77)

Figure 2.37 illustrates an optical system with pincushion and barrel distortion,
respectively. Notice that the AS position influences the type of distortion present. In
the case of a positive lens, a barrel distortion will be present if the AS is positioned
before the lens, whereas a pincushion distortion will be present if the AS is placed
after the lens. The location of the AS in the case of a negative lens will cause the
opposite distortion to that of the positive lens [66].

Practically, this aberration is not as critical as the other ones for the image quality,
up to a certain degree, as it can be corrected using image processing. In fact, barrel
distortion can be seen as a feature in some optical systems for specific applications.
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(a) Pincushion (positive) distortion.

(b) Barrel (negative) distortion.

FIGURE 2.37: Distortion in an optical system.

For example, fish-eye lenses present significant distortion through which a larger
FoV is achieved [68].

2.3 Seidel Coefficients

The Seidel coefficients are composed of the third-order aberrations. As seen in the
previous sections, the wavefront aberrations can be converted into transverse ray
aberrations by differentiating them. The name of the third-order aberrations comes
from the fact that the sum of the exponents of the aperture r and the field η′ in terms
of ray aberrations is 3, while for the wavefront aberration, it is 4. For the Seidel
analysis, paraxial ray-tracing is used once it provides a good approximation for the
calculations; there is little difference for the real ray-tracing. Furthermore, the rays
being traced to quantify the wavefront aberrations are the paraxial marginal, and
chief rays [56].

In order to facilitate calculating the Seidel coefficients, we shall define two quan-
tities, A and Ā, using the paraxial approximation. These quantities are merely the
Eq. (2.7) simplified combined with the paraxial incidence angle for a spherical sur-
face Eq. (2.78), resulting in Eqs. (2.79) and (2.80). These quantities are known as Re-
fraction Invariant, and they are useful for calculating the Seidel sums for calculating
the quantity of primary aberration in an optical system by summing the contribution
of primary aberration from each surface [56, 66].

i = h c + u (2.78)

A = n i = n′ i′ = n(h c + u) = n′(h c + u′) (2.79)
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and

Ā = n ī = n′ ī′ = n(h̄ c + ū) = n′ ī′ = n′(h̄ c + ū′) (2.80)

in which A is the refraction invariant for the marginal ray, and Ā for the chief ray
in each surface.

Here, the angle between the normal to the surface and the ray is defined as i, as
seen in Fig. 2.38.

(n')(n)

u

i

i'

hc u'

c = 1 
r

h

O O'

l l'

A

B

FIGURE 2.38: Schematic of the refraction invariant.

The wavefront aberration for a single surface can be calculated using the differ-
ence in paths between the marginal ray and the optical axis from the object O to the
image O′:

W = [OAO′]− [OBO′] = n(OA − OB) + n′(AO′ − BO′) (2.81)

The distance OA and AO′ is straightforward as it is simply the distance between
the object O to the surface vertex A, l, and the surface vertex A to the image O′, l′

[56].
The distances OB and BO′ can be obtained using the Pythagorean theorem, the

sagitta of the surface in Eq. (2.12) truncated after the second term, and the paraxial
approximation when h is significantly smaller than l, that leads to the difference in
paths being:

OA − OB = −1
2

(
c − 1

l

)[
h2 +

c2 h4

4
+

h4

4 l

(
c − 1

l

)]
(2.82)

and

AO′ − BO′ = −1
2

(
c − 1

l′

)[
h2 +

c2 h4

4
+

h4

4 l′

(
c − 1

l′

)]
(2.83)

Thus, substituting Eq. (2.81) by Eqs. (2.82) and (2.83) and simplifying it by using
Eq. (2.13) leads to:

W =
h4

8

[
n′

l′

(
c − 1

l′

)2

− n
l

(
c − 1

l

)2]
(2.84)
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The solution in Eq. (2.84) can be further simplified by using the refractive invari-
ant Eqs. (2.79) and (2.80):

W =
h4

8

[
n′

l′

(
A

n′h

)2

− n
l

(
A
nh

)2]
=

A2h
8

(
u
n
− u′

n′

)
(2.85)

If we define δ u
n = u′

n′ − u
n , the final wavefront aberration for a system with SA is:

W = −A2 h
8

δ

(
u
n

)
(2.86)

This solution assumes paraxial approximations. In reality, there will be a dis-
crepancy between the height for the paraxial and the real rays when the ray angle
increases and the assumption of sin(i) = i does no longer hold. As we are consid-
ering SA, the field does not influence the aberration, so all the proportionality of
wavefront aberrations is related to the aperture size. For the Seidel SA coefficient,

the term
1
8

is removed. This leads to:

S1 = −A2 h δ

(
u
n

)
(2.87)

The off-axis Seidel coefficients can be defined using the same terms, but in this
case, also including the chief ray refraction invariant Ā, and the Lagrange invariant
Λ previously defined in Eq. (2.20). The Seidel coefficient defined in Eq. (2.87) is
related to each surface. To consider the overall Seidel sum in the system, one needs
to use the sum of the coefficients for each surface. This sum is demonstrated in
Table 2.1 for each aberration. This table also describes the relationship between the
wavefront aberration and the Seidel coefficients. [56, 66].

TABLE 2.1: Seidel coefficients and sum.

Aberration Seidel terms Seidel sum Wavefront coefficient

SA SI −∑ A2 h δ

(
u
n

)
w040 =

1
8

SI

Coma SI I −∑ Ā A h δ

(
u
n

)
w131 =

1
2

SI I

Astigmatism SI I I −∑ Ā2 h δ

(
u
n

)
w222 =

1
2

SI I I

Petzval field SIV −∑ Λ2 c δ

(
1
n

)
w220 =

1
4
(SI I I + SIV)

Distortion SV −∑
{

Ā3

A
h δ

(
u
n

)
+

Ā
A

Λ2 c δ

(
1
n

)}
W311 =

1
2

SV

Axial color CI ∑ A h δ

(
δn
n

)
w020 =

1
2

CI

Lateral color CI I ∑ Ā h δ

(
δn
n

)
w111 = CI I

The sagittal and tangential fields can be calculated by the sum of astigmatism and
Petzval field coefficients SI I I and DIV , with the sagittal field being the sum SI I I + SIV ,
and the tangential field being the sum 3 SI I I + SIV .

The Seidel coefficients are limited to the third-order aberrations, which means
that they do not ultimately hold all the aberrations affecting the image quality in an
optical system. However, their correction significantly increases image quality.



48

Chapter 3
Aplanatic correction

A good approach to creating an aplanatic optical system is to start by correcting
SA. There are many methods that can be used. However, many of them greatly
minimize the SA but do not correct it completely. Those methods are still important
as they give a good starting point in an optical design. Other methods go beyond
and provide complete SA correction. It is also worth noting that when elements free
from SA are combined, they do not necessarily result in aplanatic correction.

This chapter deals with SA and aplanatic correction using refractive and reflec-
tive systems. It is also possible to correct SA using diffractive systems or metasur-
faces, however, they have not been used in the research presented here.

3.1 Methods for SA correction

3.1.1 Lens bending

As previously seen in Chapter 2, the more curved a surface is, the more it suffers
from SA. In fact, as seen in Fig. 2.25, the more curved the surface is, the greater
the difference between the angles between the rays and the normal to the surface in
different aperture zones. Thus, from Eq. (2.7), it is trivial to notice that this results in
a larger discrepancy in the focal length for different aperture zones due to the rays
being refracted in different angles. Therefore, designing a lens with a surface that
is less curved is ideal for SA reduction as it reduces this difference in the angles for
different aperture zones.

Figure 3.1 illustrates the difference in the angles aforementioned. As can be seen,
the lens with a smaller RoC presents a large SA, i.e., it presents a large difference
between the incoming rays and the surface. In this case, θML1 > θML2. And the lens
with a larger RoC produces an image with less SA as the deviation of the angles is
not as critical as the previous case. However, when using the method of increasing
the RoC of a single surface of the lens will also result in a change in its focal length.
Thus, the correction of SA by changing only one surface of the lens comes with a
compromise of increasing its focal length [66].

As an example, two lenses have been designed. The first one with half the RoC
of the second one, while maintaining the same diameter. As seen in Fig. 3.2, the first
one presents an evident SA, while the second one, while it also presents SA, it is
significantly reduced by a factor of 1/r3. However, the effective focal length (EFFL)
doubles, which means that the system becomes less compact.

For that reason, when applying the lens bending method, both surfaces of the
lens are normally used to maintain the optical power of the lens while decreasing
the SA. One can optimize the shape of both surfaces of a lens to balance the SA
using a good balance of the RoC of both surfaces and the object position. This can
be done using the Coddington factors [54].
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δzL2
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FIGURE 3.1: Layout for (a) a lens with a small RoC, L1, and (b) a lens with a larger RoC,
L2. The angle between an incoming ray and the curved surface of the plano-convex lenses,
L1 and L2, is larger for the L1 lens considering that it is more curved, i.e., presents a smaller
RoC. Thus, the marginal ray bends more for this lens, focusing farther away than the parax-

ial rays focus, which increases the SA.

OBJ: 0.0000 (deg)

(a)

OBJ: 0.0000 (deg)

(b)

FIGURE 3.2: Spot diagrams for (a) a lens with a low RoC, and (b) a lens with a larger RoC.
It shows on-axis image spots for both lenses. It is noticeable that a lens with a larger RoC

presents less SA. Both grids represent the same scale.
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3.1.2 Coddington factors

In order to balance the SA in a lens by optimizing both of its surfaces, one needs
to find the relation between the RoC of the surfaces, and the optimal object position
[54].

As previously seen, the shape of the surfaces of the lens influences the SA cor-
rection. Section 3.1.1 considered the case in which only one of the surfaces of the
lens changes its shape in order to minimize SA. However, adding an extra degree
of freedom, of changing both of the surfaces of a lens, one can achieve a better SA
correction by balancing the SA introduced by each surface. This method uses the
thin lens approximation.
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(a)
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δη'q0

(b)
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F'Mq1
F'Pq1

δzq1

δη'q1

(c)

FIGURE 3.3: Layout for a single lens with a Coddington shape factor of (a) q = −1 (b)
q = 0, and (c) q = 1.

The symmetry of the surfaces of the lens can be calculated using a parameter,
known as the Coddington shape factor q [56, 69]:

q =
R1 + R2

R2 − R1
=

c1 + c2

c2 − c1
(3.1)
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Different Coddington shape factors define what type of the lens is designed.
Plano-convex lenses present a q = ∓1, plano-convex lenses a |q| < 1, and menis-
cus a |q| > 1. They result in different amounts of SA in an optical system [66].

Figure 3.4 illustrates the results for the optical systems presented in Fig. 3.3 using
a BK7 glass with a refractive index of n = 1.5168000345. It is evident that, in this
case, the plano-convex lens, with q = −1, presents the worst result. And the best
result is achieved with the plano-concave lens, with q = 1. The former does not have
SA balancing as the first surface is normal to the incoming rays, so all the focusing
happens on the second surface. The latter presents a better SA correction as the
SA introduced by the second lens presents a better opposite SA sign from the first
surface compared to the other optical designs in Fig. 3.3.

(a) (b)

(c)

FIGURE 3.4: Spot diagrams for a singlet with a Coddington shape factor of (a) q = −1, (b)
q = 0, and (c) q = 1. All grids represent the same scale.

Another factor that influences the SA in a lens is the object and image positions.
The configuration of the object and image location can be described using the Cod-
dington position factor p:

p =
s′ − s
s′ + s

= 1 − 2 f
s′

(3.2)
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This factor can also be described by the magnification of the lens using the lateral
magnification seen in Eq. (2.19) [56]:

p =
m + 1
m − 1

(3.3)

The position factor, however, is not a parameter as free as the shape factor con-
sidering that, in many cases, the object distance from the lens is predefined in an
optical system [56].

Different Coddington position factors define the position at which the object and
image are located. For a collimated incoming beam with the outgoing beam focusing
at a finite position the factor is p = −1, for a finite object and image focal points with
magnification 1 the factor is p = 0, and for a finite object position with collimated
outgoing beam the factor is p = 1. They result in different amount of SA in an optical
system [66].
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Object
space
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Object
space
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(c)

FIGURE 3.5: Layout for a single with a Codding position factor of (a) p = −1 (b) p = 0,
and (c) p = 1, in this case, SA can be quantified by using a paraxial lens to focus the light

as it does not affect image quality.

Figure 3.6 illustrates the results of the optical systems presented in Fig. 3.5 using
the same lens with a BK7 glass with a refractive index of n = 1.5168 while changing
the object position.

For a thin lens, the SA coefficient in terms of proportionality with the Codding-
ton’s factors is given by [70]:

kSA(n, p, q) ∝
n3 + (n + 2) q2 + (3 n + 2) (n − 1)2 p2 + 4 (n2 − 1) p q

32 n (n − 1)2 (3.4)
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(a) (b)

(c)

FIGURE 3.6: Spot diagrams for a singlet with a Coddington position factor of (a) p = −1,
(b) p = 0, and (c) p = 1. All grids represent the same scale.

One can obtain the optimal Coddington shape factor in which the SA is mini-
mized in terms of the Coddington position factor and refractive index of the lens:

q = −2 (n2 − 1) p
n + 2

(3.5)

When the Coddington position factor p is defined for an optical system, the op-
timal Coddington shape factor q changes with the RI of the lens, as seen in Figs. 3.7
to 3.9. When the position factor p = 0, it is clear that the optimal shape factor p
is constant, also being zero. This relationship can be seen in Fig. 3.8, in accordance
with Eq. (3.5) [66].

The examples given in Fig. 3.3 demonstrate this relationship between the shape
factor q and the position factor p, with the best results being the one closest to the
q = 1 in the case of a collimated incoming beam (p = -1). The RI in those examples are
approximately n = 1.5 as the blue line in Fig. 3.7, showing that this is in accordance
with Eq. (3.5).
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FIGURE 3.7: SA kSA depending on the Coddington factor q for a position factor of p =
−1 for different RI. The points in red represent the optimal shape factor to minimize SA

depending on the RI.
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FIGURE 3.8: SA kSA depending on the Coddington factor q for a position factor of p =
0 for different RI. The points in cyan represent the optimal shape factor to minimize SA

depending on the RI.
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FIGURE 3.9: SA kSA depending on the Coddington factor q for a position factor of p = 1
for different RI. The points in magenta represent the optimal shape factor to minimize SA

depending on the RI.
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FIGURE 3.10: SA kSA depending on the Coddington factor q for different position factors
p for the same RI. The points represent the optimal shape factor to minimize SA for each

position factor.

The point with the minimal SA in a lens shows a linear relationship between the
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shape and position factors. Figure 3.10 illustrates the change in the optimal shape
factor q for different position factors p while maintaining the same refractive index
for the lens. As p decreases, the optimal q increases.

3.1.3 Power splitting and combination
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FIGURE 3.11: Layout for (a) a single lens, L1, and (b) a system composed of two lenses
with the same combined optical power as the single lens, S2.

The power of a lens depends on the RI of the material and the RoC. As previously
seen in Section 3.1.4, the lower the RI, or the more curved the RoC, the more the lens
introduces SA. Considering that the power of an optical system is the sum of each
individual lens, as seen in Eq. (2.29), one can split a single lens into several lenses
so that the RoC of each lens is increased, making them less curved than the original
lens. This, decreasing SA while keeping the same optical power and focal length.

This is a method commonly used in an optical system, as it can help decrease
not only SA but also other aberrations. In fact, splitting a single element into several
elements increases the degrees of freedom in an optical system allowing not only
changing the RoC to correct aberrations, but also to use different materials so that
the refractive index can also help in the aberration correction process, as will be seen
in Sections 3.1.4 and 3.1.5 [66].

Fig. 3.11 illustrates the idea. As an example, two optical systems have been de-
signed, both using the same material for all the lenses, with the same diameter and
F/#. The first system, Fig. 3.11a, is composed of a singlet, and the second, Fig. 3.11b,
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is composed of two lenses. It is important to notice that the optical power of both
systems is the same, otherwise it would not be a fair comparison.

The results can be seen in Fig. 3.12. The spot diagram demonstrates a significant
decrease in SA even when the materials used are the same in both cases, i. e., the
same RI, so that only the power splitting is used to achieve those results.

OBJ: 0.0000 (deg)

(a)

OBJ: 0.0000 (deg)

(b)

FIGURE 3.12: Spot diagrams for (a) a single lens, and (b) a system with two lenses with
a combined optical power similar to the single lens. It shows on-axis image spots for both
lenses. It is noticeable that a lens split into two presents less SA. Both grids represent the

same scale.

3.1.4 Refractive index

The RI of a lens also influences the SA introduced into an optical system. If the
RI of a single is increased, in order to keep the same optical power, its RoC increases,
resulting in a less curved lens. As seen in the previous sections, increasing the RoC
helps SA correction.

Flint glasses normally present higher RI than crown glasses. Thus, they can be
a good choice for SA correction. However, they present a low Abbe Number, mak-
ing them present a high dispersion. Therefore, this solution is more suitable for
monochromatic systems [66].

The best choice of material for SA correction is Germanium. It presents one of
the highest RI with a low dispersion. That means it can correct SA without a huge
increase in LCA. However, the wavelength range of this glass is between λ = 2000.0
nm to λ = 14000.0 nm [71].

To illustrate the idea, two singlets have been designed with the same F/#and
diameter as seen in Fig. 3.13. The RI depends on the wavelength, so both systems
were tested for the same wavelengths ranging from λ = 486.1 nm to λ = 656.3 nm.
The first lens is composed of BK7, a crown lens with a RI of nd = 1.5168 and Abbe
number Vd = 64.17. The second lens is composed of SF66, a flint lens with a RI of
nd = 1.9229 and Abbe number Vd = 20.88.
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FIGURE 3.13: Layout for a single lens composed of (a) a BK7 glass, L1, and (b) a SF66, L2
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FIGURE 3.14: Spot diagrams for a lens with (a) a high RI, and (b) a low RI. It shows on-axis
image spots for both lenses. It is noticeable that a lens with higher RI presents less SA. Both

grids represent the same scale.

Fig. 3.14 demonstrates the results of the simulations. As expected, the SF66 lens
provides better results in terms of SA correction than the BK7. However, it is clearly
seen how the SF66 presents more LCA as the material has a low Abbe Number.
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3.1.5 Doublets
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FIGURE 3.15: Layout for (a) a singlet, S1, (b) two lenses with the same material, S2, (c) a
cemented doublet, S3, and (d) an air-spaced doublet, S4.

As previously seen in Section 3.1.3, splitting a lens into more lenses decreases
the SA. If one splits a singlet into two lenses to minimize SA, but instead of using
the same material, using two different materials with one generally being a positive
crown and one being generally a negative flint, it is possible to obtain even greater
image correction. This happens because one extra degree of freedom is added into
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the system, which is the RI of the second material to be used in one of the lenses. This
combination of two lenses with two different materials is called a doublet. They can
be composed of two lenses in contact with the same central RoC, known as cemented
doublets, or two lenses spaced between themselves, known as air-spaced doublets.

The cemented doublets are commonly used because they provide a good aber-
ration correction while being compact. They are usually preferred over a singlet in
many applications. A proper choice of the materials and the lenses’ RoC results in a
significant SA and LCA reduction [66].

(a) (b)

(c) (d)

FIGURE 3.16: Spot diagrams for (a) a singlet, (b) a system with two lenses with the same
material, (c) a cemented doublet, and (d) an air-spaced doublet. It shows on-axis image

spots for both lenses. All grids represent the same scale.

The air-spaced doublet presents the same benefits as the cemented doublet. How-
ever, considering that they have two extra degrees of freedom, the distance between
the lenses and the RoC of the internal surfaces, the aberrations correction could pos-
sibly be improved even further.

The doublets do not only correct for SA but also for LCA, so that it also tackles
the problem presented with the power splitting technique using the same material
for the lenses. This results in a smaller image spot size on-axis when using a wide
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wavelength band. This method is a combination of the methods presented in Sec-
tions 3.1.3 and 3.1.4 [66].

Four different optical systems were designed with the same focal length and F/#
for a fair comparison, as illustrated in Fig. 3.15. The first one is composed of a singlet,
Fig. 3.15a, the second one of two lenses with the same material (BK7), Fig. 3.15b,
the third one of a cemented doublet with two different materials (BK7 and SF5),
Fig. 3.15c, and the forth one of an air-spaced doublet (also composed of BK7 and
SF5), Fig. 3.15c.

Figure 3.16 demonstrates the image spot size for all four systems. It is noticeable
how the worst performance is presented by the singlet, as in Fig. 3.16a, it presents
a significant SA and LCA. Splitting the singlet into two lenses of the same material,
as in Fig. 3.16b, reduces the spot size, as was also previously seen in Fig. 3.12, but
it still demonstrates a significant SA and LCA. Using a cemented doublet, as seen
in Fig. 3.16c, significantly tackled the SA and LCA issue presented in the previous
two examples. However, the air-spaced doublet, as seen in Fig. 3.16d, exceeded the
image quality of all the other systems presented.

3.1.6 Aspherical surfaces

In 984, the mathematician Ibn Sahl first discovered the stigmatic refractive sur-
face. However, Sahl was not able to formulate a general equation [72]. In 1637,
René Descartes described how a refractive lens can be free from spherical aberra-
tion if conics of revolution are used. These surfaces of revolution received the name
of Cartesian Ovals [64], also known as Descartes’ Ovoids [55]. In 1944, Luneburg
used Fermat’s principle of stationary optical paths to show that the Cartesian Ovals
can be represented by a fourth-order curve in the meridional section. If one of the
conjugate points (object or image) is located at infinity, the Cartesian Oval reduces
to a second-order curve of a conicoid of revolution [73]. Figure 3.17 illustrates the
different conic sections.

Hyperbola

Parabola

Ellipse
Circle

FIGURE 3.17: Conic sections demonstrating the shape of
hyperbola, parabola, ellipse, and circle.

Conic surfaces are often used in optical systems due to their properties to correct
SA. They can be used for refractive and reflective elements. The lenses or mirrors
designed with conic surfaces are known as aspheric elements [74].

Using Fermat’s Principle and the properties of the ellipse, one can easily deduce
that if the eccentricity of the ellipse is properly chosen, the ovoid is free from SA [55].
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FIGURE 3.18: Cartesian Ovals. s1 is the incident ray, s2 and s3 are the paths to both optical
focii of an ellipsoid.

As illustrated in Fig. 3.18, a line s1 parallel to the directrix of an oblate ellipsoidal

surface (or ellipsoid of revolution), represented in purple, is located at a distance ± a
ε

from the center of the ellipse O, where a is the semi-major axis and ε the eccentricity
of the surface. The eccentricity of an ellipse is given by the semi-focal separation c
divided by the semi-major axis, as seen in Eq. 3.6, and the equation of the ellipse
seen in Fig. 3.7, where b is the semi-minor axis [75]. The vector sum law states that
the sum of two vectors from the focal points of an ellipse is constant, as shown in
Eq. 3.8 [76].

ε =
c
a

(3.6)

z2

a2 +
y2

b2 = 1 (3.7)

(s2 + s3) = cte (3.8)

where s2 and s3 are two segments from the ellipse’s focal points to the ellipse points.
They can be expressed as Eqs. 3.9 and 3.10.

s2 =
√
(z − c)2 + y2 (3.9)

s3 =
a
ε
− z = (a − εz) (3.10)

Algebraically manipulating the Eqs. 3.7 and 3.9 gives Eq. 3.11. Thus, Eqs. 3.10
and 3.11 can be combined into Eq. 3.12 that shows the eccentricity of the ellipse in
terms of lines s2 and s3.

s2 =
(a − εz)

ε
(3.11)

s2 = εs3 (3.12)
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Now, considering that s1, s2, and s3 are light rays, one can use Fermat’s principle
to derive the OPL of the system, as shown in Eq. 3.13 [56].

(n1s1 + n2s3) = cte (3.13)

Finally, manipulating the Eqs. 3.12 and 3.13 demonstrates that the only solution
possible is the concave or convex surface of a lens being a conicoid of revolution with
the eccentricity ε equal to the ratio of the refractive indices at the chosen wavelength
[77–80]. Therefore, for a lens to be free from spherical aberration and guarantee its
stigmatic property, the Eq. 3.14 must be satisfied.

ε =
n1

n2
(3.14)

where n1 and n2 are the refractive indices before and after the aspherical surface,
respectively.

(a)

(b)

FIGURE 3.19: Ray-tracing through a lens free from spherical aberration using ellipsoidal
surfaces for a (a) converging lens, and for (b) a diverging lens.

The surface’s Schwarzschild constant, or conic constant k, is related to the ec-
centricity ε as k = −ε2 [54, 81]. From that, one can obtain the relation between the
refractive index, at the chosen wavelength, and the conic constant as in Eq. 3.15.

k = −
(n1

n2

)2
(3.15)

For an ellipsoid of revolution surface, the rays are refracted at the first surface of
the lens, so in this case, n1 is the refractive index of the air, and n2 is the refractive
index of the lens, as seen in Eq. 3.16.

ke = − 1
n2 (3.16)

One can extend this solution for a collimated beam into a plano-convex or plano-
concave lens, as shown in Fig. 3.20. In this case, n1 and n2 is the refractive index of
glass and air, respectively. Considering that n1 > n2, the eccentricity is greater than
one, therefore this surface represents a hyperboloid of revolution. [82].

kh = −n2 (3.17)

where kh is the conic constant, and n is the refractive index of a lens at a given
wavelength. The surface height, y, as a function of sag z, is given by y2 = 2 R z− (1−
n2) z2, where R is the radius of curvature of the surface at its vertex. This equation
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represents a conicoid of revolution and does not require any higher-order aspheric
coefficients.

(a)
(b)

FIGURE 3.20: Ray-tracing through a lens free from spherical aberration using hyper-
boloidal surfaces for a converging lens (a), and for a diverging lens (b).

For reflective systems, the ellipsoidal and hyperboloidal surfaces are free from
SA when the object is located at one focal point, and consequently the image is lo-
cated at the second focal point [55]. When considering an object at infinity, one can
identify the optimal shape of a concave mirror to be free from SA [55].

Figure 3.21 illustrates this solution, which is a parabola.
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θ
θ

θ
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d1
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Directrix D

d2

d2

FIGURE 3.21: A parabolic mirror stigmatically focusing at the focal point F.

Considering that the distance between the focal point and the vertex of a mirror is
given by f , and that the distance between the vertex of the directrix of the parabola is
of the same absolute value but opposite sign − f , one can obtain what is the distance
PD:

PD = d2 = y + f (3.18)

Using the properties of the parabola, the distance between a point in the parabola
and the focal point is the same as between this point and the directrix .Thus, the
distances PD and FP are the same. Therefore, the distance d2 can be calculated in
terms of y, z, and f :

d2 =
√
(y − f )2 + z2 (3.19)
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Combining Eqs. (3.18) and (3.19) and rearranging it gives:

y =
z2

4 f
(3.20)

The conic section equation is given by [54]:

y =
c z2

1 +
√

1 − (1 + k) z2 c2
(3.21)

where c is the curvature of the mirror, defined as c =
1
R

, with the R being the RoC.
Combining Eqs. (3.20) and (3.21) gives the relationship:

(1 + k) z2

R2 = 0 (3.22)

Therefore, for a mirror to be free from SA with the object at infinity, the conic
constant should be k = −1, equivalent to an eccentricity of ε = 1.

3.1.7 GRIN media

Gradient index (GRIN) lenses are inhomogeneous isotropic media in which the
RI gradually changes through the lens. Those gradual changes can present different
structures. Thus, they can manipulate the light rays in different manners. In fact, the
use of a GRIN media increases the degrees of freedom in an optical system [66].

O'1

O1

O2

O'2

O3

O'3

C

FIGURE 3.22: Representation of the Maxwell’s fisheye lens. C is the center of the sphere.

J. C. Maxwell stablished in 1854 that a medium with a spherically symmetric
RI distribution around a point can give a solution in which each point in a sphere
produces a sharp image. This was later referred to as Maxwell’s fisheye lens. However,
initially, this was a theoretical solution with only the points around or inside of the
lens being able to image sharply. Figure 3.22 illustrates the lens, with O being the
object and O′ being the image, both at the surface of the sphere. If one uses half of
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the Maxwell’s fisheye lens, it is also possible to collimate light [83]. The RI is given
by:

n(r) =
n0

1 +
( r

R

) (3.23)

with n0 being the initial RI at the center of the lens, R the radius of the lens, and r the
radial distance from the center C.

O' Optical
axis

FIGURE 3.23: Representation of the Wood lens.

Unlike mirrors and homogeneous lenses, it is possible to focus a collimated in-
coming beam while using flat surfaces in a lens with an appropriate GRIN structure.
This is the case of the solution described by R. W. Wood. He developed a gelatin
cylinder in 1905 that allowed him to make a lens with flat surfaces and a GRIN
structure that changed with radial symmetry along the optical axis. The RI of the
lens was highest in the center and gradually fell as it approached the cylinder’s
edge. His lens would concentrate a collimated beam at a certain distance from the
cylinder’s second surface outside of the lens [84]. Figure 3.23 illustrates this lens.

O'1

O'2

O'3

C

FIGURE 3.24: Representation of the Luneburg lens. C is the center of the sphere.
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It was in 1964 that the Maxwell’s fisheye lens was revisited by R. Luneburg. He
proposed a spherical lens with a spherical concentric GRIN media for focusing light
from a collimated beam on the opposed side of the sphere [85]. Figure 3.24 illustrates
collimated beams being focused at the points O′ at the surface of the sphere. The RI
is given by:

n(r) =

√
2 −

( r
R

)2
(3.24)

This type of media has been explored following the previous work of the re-
searchers mentioned above [86].

It is possible to determine the trajectory of light rays in the GRIN media using
Fermat’s principle.

δ
∫ B

A
n(x, y, z)ds = 0 (3.25)

where ds is the differential length of the path between A and B [86].
Considering that the length ds can be a path in three dimensions, the length can

be described in terms of x(s), y(s), and z(s). Considering the gradient, all three
functions have a partial differential equation given by [87]:

d
ds

(
n

dx
ds

)
=

∂n
∂x

(3.26)

d
ds

(
n

dy
ds

)
=

∂n
∂y

(3.27)

d
ds

(
n

dz
ds

)
=

∂n
∂z

(3.28)

If one defines a vector denominated as r(s) and the gradient of n being ∆n,
Eqs. (3.26) to (3.28) takes the form:

d
ds

(
n

dr
ds

)
= ∇n (3.29)

which is known as the ray equation [87].
If one considers the wavefront instead of the rays, the relationship is given by

the Eikonal equation:

∇S2 =
(∂S

∂x

)2
+
(∂S

∂y

)2
+
(∂S

∂z

)2
= n2 (3.30)

with ∇S being the gradient of the optical path.
A slab with a radial GRIN structure can present different optical properties along

its length. Its GRIN structure is given by [88]:

n(r) = n0

[
1 −

( g
2

)
r2
]

(3.31)

where g the gradient constant. This is a approximated form of the generic radial
GRIN media described as [66]:

n2(r) = n2
0 [1 − (gr)2 + N4 (gr)4 + N6 (gr)6 + ...] (3.32)

where N4 and N6 are the gradient coefficients of the RI.
The light ray’s profile inside the lens takes a parabolic form.
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L2
L3
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FIGURE 3.25: Representation of a slab with a radial GRIN structure.

Figure 3.25 illustrates the slab, it is known as SELFOC due to the self-focusing
properties of the cylinder. The ray oscilating inside of the lens presents a period p of
2π
√

g
. A pitch is given by the complete sinusoidal path [88].

A lens with the lengths L1 =
p
4

and L3 =
3 p
4

collimates light from an object from

the first surface of the slab. A length of L2 =
p
2

generates an inverted image while
L4 = p generates an upright image.

A narrow slice of the cylindrical slab, specifically a slice of length L5, is used to
make a Wood lens [67]. Furthermore, the last section L5 is actually an element called
Mikaelian lens [83]. It can focus collimated light into the opposed surface of the lens.
The GRIN structure of the Mikaelian lens is given by [66]:

n(r) =
n0

cosh
( π

2 L5
r
) (3.33)

The GRIN lenses can also take an axial structure. They are given by:

n(z) = n0 + nz z (3.34)

where nz is the gradient coefficient of the RI in the z-axis [66].
This type of structure does not influence the trajectory of a collimated beam,

as seen in Fig. 3.26a, unless a spherical (or aspherical) surface is used, as seen in
Fig. 3.26b [66].

In lenses with spherical or aspherical surfaces, the preceding GRIN structures,
spherical and radial, can also be employed. This is a typical combination since it
aids in the correction of aberrations.

When considering the degree of freedom contributed to the system, the GRIN
media can not only correct aberrations, but also have the ability to reduce the num-
ber of components or their sizes in an optical system. There are several benefits
of utilizing GRIN lenses. As previously seen, GRIN lenses can be used to converge
light rays, resulting in a less curved surface or thinner or lighter lenses with the same
optical power as a conventional curved lens [89].
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(a)

O'

(b)

FIGURE 3.26: Layout for a GRIN lens with an axial structure and (a) flat surfaces, and (b)
a curved surface followed by a flat one.

The manufacturing of GRIN lenses can involve different techniques. Some of
them involve the use of stacked nanolayers of polymers compressed using high
pressure and heat, or the use of ink-jet printing. The former involves the surfaces
of the lens being compressed and then being molded by either bending the entire
block with a GRIN structure or bending it such that the GRIN structure takes on a
certain form [90, 91]. The latter involves the use of droplets with various RI being
deposited into a surface/mold [92]. Even though the manufacturing techniques for
GRIN media keep advancing, there are a few limitations. Until now, the cost of man-
ufacturing GRIN lenses is high. Not only that, the materials available for printing
a high-quality GRIN lens are restricted. Also, the RI variation required to achieve
the light manipulation required for the lens could also be larger than the materials
available can possibly cover [93].

As will be seen in Chapter 4, GRIN media can be used to create a lens free from
SA, such as the Ilinsky GRIN lens [94]. In some configurations, their use can replace
aspherical surfaces. In fact, it is possible to obtain a lens free from SA with spherical
surfaces.

The usage of lenses with a freeform GRIN structure has sparked a lot of atten-
tion in recent years. This provides an additional degree of freedom, allowing for
more flexibility in the design of optical systems for several applications [95–103].
However, this adds to the manufacturing process’s complexity.

3.2 Methods for aplanatic correction

3.2.1 Abbe Sine Condition

The Sine Condition was initially proposed by Ernst Abbe, and for this reason,
later known as the Abbe Sine Condition (ASC). He realized that the objective of
microscopes free from SA could also be free from coma if the magnification of all
annular zones of a lens was the same. That means that Eq. (2.18) must hold for all
annular zones [66].
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A lens or other optical system must satisfy the sine Abbe condition in order to
create sharp images of both off-axis and on-axis objects. Figure 3.27 illustrates two
rays, one paraxial and one marginal. In a lens free from SA, for it to also be free from
coma,the magnification over the aperture to be the same, the magnification of the
marginal and paraxial rays must be the same [66]. That means:

m =
n u

n′ u′ = M =
n sin U

n′ sin U′ (3.35)

So this yields to the relationship between the angles of both rays:

sin U
u

=
sin U′

u′ (3.36)

remembering that the paraxial approximation sin u = u has been used for the parax-
ial ray but not for the marginal ray.

(n)

R

O O'
u

H

(n')

Paraxial ray
Marginal

 ray U
u'

U'
h

FIGURE 3.27: Abbe sine condition for finite object and image.

This relationship holds when the object and image are at a finite distance. If the
object is at infinity and the image finite, as illustrated in Fig. 3.28, the relationship is
given by:

H
h

=
sin U′

u′ (3.37)

(n)
R

O'

H

(n')

Paraxial ray

Marginal ray

u'
U'

h

FIGURE 3.28: Abbe sine condition for an object at infinity and a finite image.
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If both the object and image are at infinity, as illustrated in Fig. 3.29, the relation-
ship is given by:

H1

h1
=

H2

h2
(3.38)

(n)

R1

H2

(n')

Paraxial ray

Marginal ray

h2

R2

(n)

H1

h1

FIGURE 3.29: Abbe sine condition for an object and image both at infinity, i.e, afocal.

It is important to notice that these relationships must hold for all the rays in the
pencil for satisfying the ASC, thus, being aplanatic.

Also, not all systems free from SA satisfy the ASC condition. As an example, a
Cassegrain telescope is free from SA, but not coma. Both mirrors of the Cassegrain
are correct for SA individually, but when combined do not satisfy the ASC, so the
telescope is not aplanatic. The RC, as previously mentioned, is a variant of the
Cassegrain, in this case, each mirror presents SA that cancel out when combined.
They are arranged in a manner that they satisfy the ASC, being aplanatic [56].

3.2.2 Aplanatic surfaces

(n')(n)
i = 0 i' = 0

hcu' =

c = 1 
r

h

O'

l = l' = r

A

B
 

O

FIGURE 3.30: Aplanatic surface when i = 0, i.e., concentric surface.
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Spherical surfaces can also be free from SA under certain conditions. Consider-
ing Eq. (2.86), a system can be free from SA if W from Eq. (2.86) is equal to zero.

For that, there are different possibilities: A = 0, h = 0, or δ
(u

n

)
= 0. Figure 2.38

illustrates a spherical surface with its corresponding angles and distances [66].
The first possibility, when A = 0, and consequently n i = n i′ = 0, gives two

possibilities, n = 0 or i = 0. It is obvious that n cannot be zero, so that leaves the
only alternative being i = 0. That means that the incoming angle is not refracted
by the surface. Thus, i′ = 0 and u′ = hc = l′ = r. So the marginal ray meets the
surface with an angle which is concentric to the image point. Moreover, the object
and image, O and O′, can be located at the same position in the optical axis, with
their distances l and l′ being the same. Figure 3.30 illustrates this case. This surface
is free from SA and coma, but suffers from other aberrations [66]. Remembering that

the magnification of the system is given by m =
n l′

n′ l
. For a concentric surface this

magnification takes the form of:

mc =
n
n′ (3.39)

(n')(n)

u = -i

c = 1 
r

h = 0A

 

u' = -i'

FIGURE 3.31: Aplanatic surface when h = 0, i.e., the ray intersects the vertex. In this case,
n′ > n.

In the second possibility, where h = 0, the ray intersects the surface at the vertex.
This surface is free from SA, coma, and astigmatism but suffers from other aberra-
tions. That means that it is not only aplanatic, but also anastigmatic. This type of
surface is suitable for field lenses. The distances for the object and image are then
l = l′ = 0, and the angles are u = −i and u′ = −i′ [66]. Figure 3.31 illustrates this
case. This surface is not only free from SA and coma but also from astigmatism, i.e.,
anastigmatic.

In the third possibility, with δ
(u

n

)
= 0, guarantees that the SA, coma, and

astigmatism of the surface is corrected. This is evident when considering the Sei-

del coefficients of those three aberrations in Table 2.1. Remembering that δ
(u

n

)
=
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(u′

n′

)
−
(u

n

)
, this means that

(u′

n′

)
=
(u

n

)
. This solution is many times referred to

as the aplanatic surface [7, 56]. Combining δ
(u

n

)
= 0 and Eq. (2.15) gives:

−h n
r

= u (n′ + n) (3.40)

Replacing the angles u and u′ in Eq. (3.40) by the distance between the object and
image yields:

l = r
n + n′

n
(3.41)

and

l′ = r
n + n′

n′ =
n
n′ l (3.42)

Considering that both l and l′ are of the same sign, it means that an image cannot
be real if the object is real. Thus, at least one, image or object, must virtual when the
other one is real.

For convergent lenses, the object is virtual and located at the intersection of the
optical axis with the projection of the incoming ray. The image is real located at the
intersection of the optical axis with the refracted ray. If n > n′, the convergence
decreases, with the object farther away from the aplanatic surface. Therefore, l′ > l.
If n < n′, the convergence increases, with the object closer to the aplanatic surface.
Therefore, l′ < l. This relationship can be seen in Fig. 3.32.

(n')(n)

O'OOO'
r

l
l'

l'

i

uu' u'

i' i'

n > n'
n < n'

FIGURE 3.32: Convergent aplanatic surfaces.

For divergent lenses, the object is real and located at the intersection of the optical
axis with the refracted ray. The image is virtual and located at the intersection of
the optical axis with the projection of the incoming ray. If n > n′, the divergence
decreases, with the object closer to the aplanatic surface. Therefore, l′ > l. If n < n′,
the convergence increases, with the object farther away from the aplanatic surface.
Therefore, l′ < l. This relationship can be seen in Fig. 3.33.

In summary, for both convergent and divergent lenses, when n > n′, have their
object closer to the aplanatic surface and the ray’s convergence/divergence decreases.
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When n < n′, have their object farther away from the aplanatic surface and the ray’s
convergence/divergence increases.

(n')
(n)

O O' O' O
r

l'
l

l

u' uu

ii

i'n > n'
n < n'

FIGURE 3.33: Divergent aplanatic surfaces.

The combination of aplanatic and concentric surfaces results in an aplanatic lens.
There are four different combinations possible for an aplanatic lens, all using con-
centric and aplanatic surfaces.

S1 S2

Ap.
Conc.

S1 S2
Ap.

Ap.

Ap.Conc.
Conc. Conc.

Parallel offset
Convergence 

Nothing

Effect on the ray

Convergence 

FIGURE 3.34: Combination of surfaces for aplanatic lenses.

Figure 3.34 illustrates the effects of these combinations on a ray for a convergent
lens. The first and second surfaces of the lens were denominated S1 and S2. First
case is if S1 and S2 are both aplanatic, the ray is refracted at both surfaces, resulting
in a ray parallel to the incoming ray but with an offset, represented in blue. Second
case is if S1 is aplanatic but S2 is concentric, the ray refracts in the first surface but
not in the second surface and the convergence increases, respresented in red. Third
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case is if S1 and S2 are both concentric, nothing happens to the ray, so it passes
through both surfaces unaltered, represented in magenta. Fourth and last case is
if S1 is concentric and S2 aplanatic, the ray is unaffected by the first surface and
refracts in the second one and the convergence decreases, represented in green [66].

3.2.3 Symmetry principle

The symmetry principle uses the symmetry of the elements in an optical system
around the AS. If a lens is free of SA but still has coma, an aplanatic system can
be designed by combining it with a symmetrical one with respect to the aperture
stop, allowing all off-axis aberrations that are odd functions of field angle, such as
lateral color, coma, and distortion, to be eliminated. However, this cannot be done
at the same time, because while the correct stop position can give zero coma, it may
require a slightly distinct stop position when the lenses [66]. Figure 3.35 illustrates an
aplanatic system using this method. It is comprised of two aspherical lenses that are
each free of SA in this example. Because of this symmetry, coma can be eliminated.

The lenses are similar for finite-to-finite imaging, as in the case of Fig. 3.35, so all
three aberrations can be corrected at once. Nevertheless, for typical objectives, imag-
ing is from infinity to finite distance, and lenses cannot be identical, so a compromise
with the stop position is needed to minimize coma and lateral color together, with
coma usually taking priority.

AA
AS

On-axis rays

Off-axis rays

O O'

FIGURE 3.35: Symmetry principle using two lenses with a flat and an aspheric surface each.

The system’s magnification, which is always 1, limits this method [66]. Even with
only two aspherical lenses, it is a useful approach since it may be used for afocal and
relay systems, as well as field correctors. When it comes to systems with several
lenses, the possibilities are significantly expanded.

3.3 Conclusion

Various techniques for aplanatic corrections were presented. Systems free from
SA are a good starting point when developing aplanatic systems. Thus, solutions for
SA correction based on lens features like as RoC, dividing a single lens into multiple,
and the use of aspherical surfaces and GRIN media are advantageous. The ASC
must be satisfied in order to guarantee the aplanatic correction. The symmetry of
the elements in an optical axis around the AS or aplanatic surfaces can also be used
for aplanatic correction.
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Chapter 4
Aplanatic GRIN lenses corrector with

spherical surfaces

As seen in previous chapters, aplanats are regularly made of aspheres [104–106],
freeform surfaces [107, 108], diffractive optics [109], or even metasurfaces [110].
However, only a few of them are made with a spherical surface [111], especially
when considering all of the surfaces being spherical, such as the two systems pre-
sented in this Section using gradient-index lenses. Both of the systems have spherical
surfaces and a spherical GRIN structure.

In this Section 4.1, the system presented is an f /2.5 afocal aplanatic system using
two GRIN lenses, with the first positive and the second negative. In Section 4.2, the
system presented is an f /2.2 aplanatic field curvature corrector using two GRIN
lenses, with the first negative and the second positive.

4.1 An aplanatic afocal GRIN system

For a converging lens with spherical surfaces to be free from SA for a collimated
beam, one approach is to use a GRIN structure. For that, an appropriate GRIN struc-
ture is needed. This is achievable if the GRIN structure and the second surface of the
lens do not change the trajectory of the rays, i.e., the GRIN structure is iso-indicial,
and the second surface is concentric to the first surface focus. To start, a necessary
condition is for the second surface to be concentric to the focal point. Figure 4.1 illus-
trates the geometry of the lens. The RI on the vertex of the first surface at the point
A is the initial RI, n0. The RI at the point C is given by n.

Using Snell’s law for the ray at the point C yields:

n =
sin γ1

sin β1
(4.1)

Using the law of sines for the triangle C O1 F′ yields to:

( f − R0)

sin β1
=

l1
sin γ1

(4.2)

Thus, using Eqs. (4.1) and (4.2) gives:

n =
l1

( f − R0)
(4.3)

The relationship between the refractive indices n and n0 is given by:

n =
n0 l1

f
(4.4)
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Combining Eqs. (4.2) and (4.4) and rearranging gives the focal length related to
the RI n0 and RoC:

f =
R0 n0

(n0 − 1)
(4.5)

The distance l1 is given by:

l1 =
√

x2 + y2 + (z − f )2 (4.6)

So, combining Eqs. (4.4) to (4.6) and rearranging yields the GRIN RI structure
for a positive lens with spherical surfaces to be free from spherical aberration as in
Eq. (4.7). This is known as the Ilinsky lens [94].

n =
(n0 − 1)

R0

√
x2 + y2 +

(
z − R0 n0

(n0 − 1)

)2

(4.7)

F'

β1

α

h0

R0
f

A

γ1

O1

R0

C
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FIGURE 4.1: Ray-tracing in the convergent lens using a GRIN structure. O1 represents the
center of curvature of the positive lens, l1 is the distance between the vertex of its first
surface to the focal point, R0 is the RoC of the first surface, and f is the focal length of the

first surface.

Using the same idea, a negative lens can also be free from spherical aberration
with a similar GRIN structure. If the negative GRIN lens is placed in the converging
beam of the positive one and the GRIN structure is carefully chosen, an aplanatic
afocal system is formed. In this case, the first surface of the second lens is concentric
to the focus while the second surface collimates the stigmatic beam. The refractive
indices at the point A must be the same as the point B, and point C the same as point
E, for the system to be also corrected for coma.

Both lenses have to share a common focal point F′, so the focal length, thickness,
and RoC of the second lens has to be taken into consideration. Figure 4.2 illustrates
the schematic of the negative lens.

Considering that the first surface of the lens is concentric to the focus, the thick-
ness d of the lens has to be considered in order to obtain the RI at the points G and
H. The relationship between the RI at the point A and H is given by:

n∗
0 = n0

(d + SF)

SF
(4.8)
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Similarly to Eq. (4.4), the relationship between the RI at the points G and H are
given by:

n∗ =
n∗

0 l2
(SF + d)

(4.9)

The distance l2 is given by:

l2 =
√

x2 + y2 + (z − SF − d)2 (4.10)

Combining Eqs. (4.8) to (4.10) gives the structure of the second lens as seen in
Eq. (4.11).

n∗ =
n∗

0
(SF + d)

·
√

x2 + y2 + (z − SF − d)2 =
n0

SF
·
√

x2 + y2 + (z − SF − d)2 (4.11)

and

SF =
r · f
R0

(4.12)

where n∗
0 is the refractive index at the vertex of the first surface of the negative lens, d

is the thickness, r is the radius of curvature, and SF is the focal length of the negative
meniscus.

Figure 4.3 illustrates the ray-tracing through this system.

l2

F'
α

r
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h1 r β2

E
d

G

H

FIGURE 4.2: Ray-tracing in the divergent lens using a GRIN structure. O2 represents the
center of curvature of the negative lens, l2 is the distance between the vertex of its second
surface to the focal point, r is the RoC of the second surface, and SF is the focal length of

the second surface.

As previously seen in Chapter 3, a system free from spherical aberration is guar-
anteed to also be free from all orders of linear coma if the ASC is satisfied. In order
for this to be the case, the angular magnification for all the aperture zones in the
system must be constant. In an afocal system, the magnification is given by the ratio
between the marginal rays object and image heights, as in Eq. (3.38) [56, 66, 112, 113].
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FIGURE 4.3: Ray-tracing in the afocal aplanatic system using two GRIN lenses.

To verify that the solution satisfies the ASC, the geometry of the system has to
guarantee that all the rays of the system have the same magnification. The magnifi-
cation of the system is given by:

h1

h0
=

EF′

CF′ = M (4.13)

where h0 and h1 are the heights of the images for the first and second lenses, re-
spectively.

The height of the rays at the point C and G are given by:

h0 = R0 sin γ1 (4.14)

and
h1 = r sin β2 (4.15)

Using the law of sines in Fig. 4.3 gives:

R0

sinα
=

CF′

sinγ1
(4.16)

for the first lens, and
r

sinα
=

EF′

sinβ2
(4.17)

for the second lens.

For a concentric spherical surface, O1 is equal to O2, so the α angle is the same
for both of the lenses. Therefore:

sin α =
R0 sin γ1

CF′ =
r sin β2

EF′ (4.18)

Rearranging Eq. (4.18) leads to

EF′

CF′ =
r sin β2

R0 sin γ1
=

h1

h0
(4.19)
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which is precisely Eq. (4.13), proving that the Abbe Sine Condition is satisfied. Thus,
the system is guaranteed to be free from all orders of spherical aberration and coma.

4.2 An aplanatic GRIN field corrector

The afocal system from Section 4.1 can also be transformed into an aplanatic
field corrector if the lenses are swapped so that the negative lens is the first one
in the system, and the positive lens is the second one. This field corrector can be
introduced in the converging beam of an optical system, illustrated as a in Fig. 4.4.
The condition for this system to have the field corrected is that its astigmatism be
opposed to that of the GRIN corrector. A good example of field correction is for
telescopes, as will be seen in Section 4.3.2 [114]. Changing the distance D between
the lenses, considering that the ray coming out of the first lens is collimated, leads
to a decrease or increase of the lenses’ field curvature without deviating from the
aplanatic conditions.

Again, Eq. (4.12) has to be satisfied in order to guarantee the aplanaticity of the
system, and the changes in the distance D do not affect it.

R0r
O1 O2

D

F'
a

FIGURE 4.4: Ray-tracing in the aplanatic field corrector using two GRIN lenses (negative
and positive, respectively). a is the converging system to be corrected, D is the distance
between the second and third surfaces, which can be changed to introduce the system’s

correct overall field curvature.

4.3 Numerical examples of GRIN aplanatic systems

4.3.1 Afocal optical system

To illustrate this idea, an F/7.4 afocal GRIN system has been designed to demon-
strate the aplanatic solution in the ray-tracing software OpticStudio (The C code for
the DLLs of the GRIN structures can be seen in Appendix A). The entrance pupil
diameter is 10 mm. The wavelength used for this example is λ = 0.55 µm. The
monochromatic light is considered because the chromatic dispersion depends on
the materials used to create the GRIN structure. The layout of this system can be
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seen in Fig. 4.3. Table 4.1 shows the parameters that have been used for the afocal
GRIN system in this numerical example.

TABLE 4.1: Optical and design parameters of the aplanatic afocal GRIN system. R1 and R1’
are the first and second surfaces of the positive lens. R2 and R2’ are the first and second

surfaces of the negative lens. IMA is the image space.

Radius (mm) Thickness (mm) Semi-diameter (mm) Material
R1 7.500 1.500 5.100 Positive GRIN
R1’ 18.500 13.25 4.937
R2 5.250 0.25 1.438 Negative GRIN
R2’ 1.875 2.00 1.284

IMA Infinity 1.305

The positive GRIN lens RI starts at 1.60 at the first surface, and ends at 1.48 at
the second surface, as seen in Fig. 4.5. The negative GRIN lens RI starts at 1.68 at the
first surface, and ends at 1.60 at the second surface, as seen in Fig. 4.6.
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FIGURE 4.5: RI variation between the first and second surface of the positive lens.
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FIGURE 4.6: RI variation between the first and second surface of the negative lens.
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FIGURE 4.7: Spot diagram for the aplanatic afocal GRIN system. It shows the on-axis rays,
as well as the off-axis rays. The Airy disk radius is 0.2684 mr (equivalent to 55.36 arcsec),

and it is shown as a black circle.

Fig. 4.7 shows the spot diagram of the afocal system. As can be noticed, the
system is free from spherical aberration and coma, but it presents an evident astig-
matism.
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FIGURE 4.8: Field curvature and distortion in the aplanatic afocal GRIN system.

Figure 4.8 shows the astigmatism and field curvature in the afocal system. The
system also presents distortion, but, it is not a limiting factor.
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FIGURE 4.9: Optical path difference fan in the aplanatic afocal GRIN system.
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Figure 4.9 shows the optical path difference (OPD) in the afocal GRIN system
also validating the aplanatic solution with the presence of astigmatism.

4.3.2 Field corrector

A good example of an application of field correction using the GRIN system is
Gregorian telescopes. Introducing the GRIN lenses into the telescope flattens the
medial surface, i.e., the surface between the tangential and sagittal field curvature,
creating a catadioptric telescope [66]. To illustrate the idea, a Gregorian telescope has
been analyzed with and without the GRIN field corrector. The Gregorian telescope
with the GRIN field corrector is seen in Fig. 4.10.Table 4.1 gives the parameters that
have been used for the afocal GRIN system in this numerical example.

TABLE 4.2: Optical and design parameters of the aplanatic GRIN corrector system.

Radius (mm) Thickness (mm) Semi-diameter (mm) Conic k Material
M1 -1800.000 -1275.355 310.000 -0.963 MIRROR
M2 600.352 781.212 66.950 -0.405 MIRROR
R2 780.510 15.000 36.240 Negative GRIN
R2’ 281.010 239.400 35.642
R1 281.010 20.000 39.604 Positive GRIN
R1’ 745.510 745.510 38.851

IMA Infinity 12.547

F'

R1

R2

d1

d2 D

FIGURE 4.10: Ray-tracing of the Gregorian telescope combined with the field corrector
using two GRIN lenses. The distance D can be optimized to obtain a field curvature of
the same magnitude with the opposite to the telescope so that the system’s overall field

curvature is corrected.
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The negative GRIN lens RI starts at 1.611 at the first surface, and ends at 1.58 at
the second surface, as seen in Fig. 4.11. The positive GRIN lens RI starts at 1.58 at
the first surface, and ends at 1.539 at the second surface, as seen in Fig. 4.12.
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FIGURE 4.11: RI variation between the first and second surface of the negative lens.

Z coordinate in Millimeters

I
n
d
e
x
 
o
f
 
R
e
f
r
a
c
t
i
o
n

Surface R1

Surface R'1
0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

1.539

1.549

1.559

1.569

1.579

FIGURE 4.12: RI variation between the first and second surface of the positive lens.

Fig. 4.13 shows the spot diagram of the Gregorian telescope without and with the
GRIN corrector. As can be noticed, both of them are free from spherical aberration
and coma. The spot diagram of the original Gregorian, Fig. 4.13a, demonstrates the
presence of astigmatism and field curvature. As can be seen in Fig. 4.13b, the GRIN
corrector flattened the field as expected.

Figure 4.14 shows the astigmatism and field curvature in the Gregorian telescope
with and without the GRIN corrector. It is evident how the field has been flattened
by balancing the sagittal and tangential fields. The system presents an increase in
distortion, but, it is not a limiting factor for image quality. The sagittal field curvature
of the original Gregorian telescope changed from 0.2878 mm to 0.1765 mm, and the
tangential one from 0.1641 mm to 0.1764 mm compared to the telescope with the
GRIN corrector.
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FIGURE 4.13: Spot diagrams for the Gregorian telescope (a) original design, (b) and with
the GRIN corrector. It shows the on-axis rays, as well as the off-axis rays. The Airy disk

radius is 8.038 µm, and it is shown as a black circle.
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FIGURE 4.14: Field curvature and distortion in the Gregorian telescope (a) original design,
(b) and with the GRIN corrector.
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FIGURE 4.15: Optical path difference fan in the Gregorian telescope (a) original design, (b)
and with the GRIN corrector. It can be seen that the medial surface has been flattened.

Figure 4.15 shows the optical path difference (OPD) in the Gregorian telescope
without and with the GRIN system, also validating the aplanatic solution with the
presence of astigmatism. The field has been evidently flattened in the system with
the GRIN corrector.

It is important to notice that the use of the GRIN field corrector can be applied to
systems other than Gregorian telescopes. The order of the astigmatism in the GRIN
corrector has to be opposed to that of the optical system for it to be corrected. The
distance between the GRIN pair influences the amount of astigmatism introduced
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into the system, so this can be used as a degree of freedom to adapt this solution to
other optical systems.

4.4 Conclusion

An aplanatic field corrector using GRIN lenses, individually free from SA, has
been analytically designed to flatten the medial surface of aplanatic Gregorian tele-
scopes for a symmetric image.
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Chapter 5
Aplanatic meniscus lens corrector for

Ritchey-Chrétien telescopes

As seen in Chapter 1, the Ritchey-Chrétien (RC) is an aplanatic telescope widely
used in astronomy. The field curvature and astigmatism restrict the FoV of these
aplanatic telescopes.

There are several ways to improve the RC, such as using correctors or curved im-
age planes. The aplanatic meniscus lens proposed in this paper does not introduce
spherical aberration or coma into the RC telescope for a given wavelength. This en-
sures that the meniscus can be inserted or removed from the system without any
need to alter the telescope’s original design while preserving its aplanatic correc-
tion [3]. Furthermore, the FoV of the RC system can be significantly increased by
introducing this aplanatic meniscus due to the fact that the meniscus has intrinsic
astigmatism comparable to that of the telescope but of the opposite sign. As a result,
the total astigmatism in the RC can be reduced if the meniscus has an appropriate
axial thickness and is placed in the telescope’s converging beam such that it operates
in an afocal mode.

The closest solution to the aplanatic meniscus is Rosin’s two-lens corrector [25].
His solution has been tested by the author of the thesis in the optical design software
OpticStudio, and the conclusions are: the field curvature introduced by the concen-
tric and aplanatic surfaces of the corrector is not enough to correct that of the RC.
In addition, the aplanatic surfaces introduce a significant axial chromatic aberration
into the system when the pair is placed close to the primary mirror as suggested
in [25]. This results in a significant degradation in image quality. The chromatic
aberration for larger systems, such as the f /10 4m RC used here, already affects the
system in such a way that the system is not diffraction limited even for on-axis rays.
It is possible to optimize the position in which the pair is implemented in the RC,
while maintaining the concentric and aplanatic surfaces, and also the thickness of
the lenses. However, even with this optimization, with the pair being placed closer
to the focal point, the FoV is reduced compared to the RCm due to a strong lateral
color in the Rosin corrector.

In Section 5.1, a method to estimate the FoV in RC telescopes is presented, and
an analytical solution for the meniscus shape is given in Section 5.2. Numerical ex-
amples are given in Section 5.2.1. As shown in Section 5.2.2, the proposed meniscus
can be used to extend the FoV in RC systems of various sizes, including extremely
large telescopes (ELTs).
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5.1 Astigmatism in the RC telescope

D2
D1

M2

M1

f1
f

d1
θRC

F'

FIGURE 5.1: Optical layout of the RC telescope. The primary and secondary mirrors di-
ameters are D1 and D2, respectively. The primary and secondary mirrors are M1 and M2.
The distance between the primary and the secondary mirror is d1. The focal length of the
primary mirror and the overall system is given by f1 and f , respectively. F′ is the focal
point of the system. θRC is the maximum half-FoV of the RC telescope. Figure not to scale.

Given the radius of curvature of the primary mirror r1 and the secondary mag-
nification m2, one can design an RC telescope using Eqs. (5.1) to (5.3) to obtain the
radius of curvature r2 of the secondary mirror, and the conic constants k1 for the
primary mirror and k2 for the secondary mirror [115].

r2 =
2m2

(m2 + 1)
( f1 − d1), (5.1)

k1 = −1 +
2( f1 − d1)

d1m2
2

, (5.2)

k2 = −
[(

m2 − 1
m2 + 1

)2

+
2 f

d1(m2 + 1)3

]
. (5.3)

where d1 is the axial distance between the mirrors, f1 and f2 are the focal lengths
of the primary and secondary mirrors, respectively, and f is the focal length of the
telescope. The magnification of the secondary mirror, m2, is given by f / f1. Figure 5.1
illustrates the parameters used above to design an RC telescope.

Assuming that the RoC of the two mirrors of the RC are r1 and r2, and that the
distance between the mirrors is d1, we have the sag of the image surface for tangen-
tial astigmatism, zt, as a function of the field angle θRC:

zt =
A
B

tan2(θRC), (5.4)



Chapter 5. Aplanatic meniscus lens corrector for Ritchey-Chrétien telescopes 90

with

A = 12 d4
1(k2 + 1)− 12 (k2r1 + r1 − 2 r2)d3

1 + 6 d1(r1 − 2 r2)r1r2

+2 (r1 − r2)r1r2
2 + 3

[
(k2 + 1)r1

2 − 8 r1r2 + 4 r2
2
]
d2

1,
(5.5)

and
B = 4 (2 d1 − r1 + r2)

2r2, (5.6)

The Petzval surface sag is given by:

zp =
f 2 tan2 θRC

Rp
(5.7)

where f is the effective focal length of the RC and Rp is the Petzval radius of curva-
ture, which is defined as:

Rp =
r1r2

2(r1 − r2)
(5.8)

Using the fact that the Petzval surface is three times closer to the sagittal image
surface than to the tangential surface:

(zt − zp) = 3(zs − zp) (5.9)

One can estimate the sagittal surface sag zs:

zs =
1
3

{
zt +

f 2tan2(θRC)

Rp

}
(5.10)

The optimal image surface with a nearly round image spot occurs approximately
midway between the tangential and sagittal surfaces, and the sag of this surface is
given by:

zm =
zt + zs

2
(5.11)

If residual astigmatism in the RC is comparable to the system’s depth of focus,
then astigmatism will have little impact on image quality [116]. The depth of focus
is defined as:

∆z = ±2λ0(F/#)2. (5.12)

where λ0 is the primary wavelength, and F/# is the system’s f-number.
In other words, equating the sag of the optimal image surface, Eq. (5.11), to the

depth of focus, Eq. (5.12) and solving for tan(θRC), one can obtain a good approxi-
mation for the maximum half-FoV of the RC operating with a flat detector as given
by:

tan(θRC) = (F/#)

√
12BRpλ

B f 2 + 4 ARp
. (5.13)

The comprehensive derivation of Eq. (5.13) is given in Appendix B.
The plots showing this dependence of the maximum field angle θRC on the en-

trance pupil diameter D and the telescope f-number F/# will be given in Section 5.2.1.
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FIGURE 5.2: Maximum diffraction-limited half-FoV obtained on a flat detector using the
Eq. (5.13) compared to the predicted field using simulations in OpticStudio. The entrance

pupil diameter D in the range of 1 - 10 m and the focal ratio F/# in the range of 8 - 12.

Figure 5.2 shows the relation between the estimated maximum half-FoV from
Eq. (5.13), and the simulation results as function of the entrance pupil diameter for
the RC. Three different F/# have been considered assuming a flat image surface for
all systems. The optical designs for different F/# of the RC telescopes presented here
were carried out by keeping the first mirror’s parameters constant while changing
the secondary mirror.

5.2 An afocal aplanatic meniscus lens

Using Fermat’s principle, one can show that a plano-convex lens can be made
free from spherical aberration for a collimated beam if the lens’ convex surface is a
conicoid of revolution with the eccentricity equal to the refractive index of the lens
material at a given wavelength [77–80].

Figure 3.20 illustrates the case in which a hyperboloid of revolution lens is used.
A plano-convex lens focuses a collimated beam while a concave-plano surface con-
verges a collimated beam. Thus, similarly, to collimate a converging stigmatic beam,
one can use a concave-plano lens with a hyperboloidal surface, while the plano-
convex lens featuring the same hyperboloidal surface will restore the original stig-
matic converging beam, as seen in Fig. 5.3.
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FIGURE 5.3: Ray-tracing in the aplanatic meniscus. F′
1 is the focal point of the RC, and F′

2 is
the focal point of the RCm. Figure not to scale.

Furthermore, due to the internal surfaces of the pair being flat, both lenses can
be combined in a single meniscus lens, shown in Fig. 5.4, which works as an afocal
lens in a converging beam. The direct relation between the conic constant of the
hyperboloidal surfaces and refractive index of the lens is given by Eq. (3.17).

where kh is the conic constant, and n is the refractive index at a given wavelength.

d d

F'1
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R1
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F'2

FIGURE 5.4: Ray-tracing in the aplanatic meniscus. F′
1 is the focal point of the RC, and F′

2 is
the focal point of the RCm. Figure not to scale.

We shall note that such a meniscus lens is free from spherical aberration at a
given wavelength, and due to its convex-concave symmetry (the sag equation for
the front and back surfaces is identical), the angular magnification is preserved for
all rays in the beam before and after the lens. As a result, the lens satisfies the Abbe
Sine Condition [117]. Therefore, it is also free from coma[64].

For a given distance z2 from the telescope focus F′
1 to the meniscus’s anterior

surface, its radius of curvature R1 should be chosen so that the refracted rays form
a collimated beam inside the lens as shown in Fig. 5.4. This condition is met if the
optical power of the anterior lens surface is equal to the inverse of the distance z2,
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and from this relation, we find:

R1 = −(n − 1)z2. (5.14)

The central thickness d of the meniscus and its axial position from the telescope
focus determine the amount of astigmatism introduced into the RC. We shall denote
an RC system combined with the aplanatic meniscus as RCm. The new focal point
position F′

2 for the RCm system is at a distance d from the initial RC focal point F′
1,

since the radius of curvature of the posterior meniscus surface R2 = R1, where R1 is
given by Eq. (5.14).

The meniscus working as an aplanatic afocal lens preserves the RC system’s apla-
natic correction for a given wavelength and does not introduce any field curvature.
However, astigmatism introduced by the meniscus lens’s anterior and posterior sur-
faces with a finite thickness does not strictly cancel, and the residual astigmatism of
the meniscus, as we shall see later, can be used to balance intrinsic astigmatism in the
original RC system. The closer the meniscus lens is to the telescope’s focus, the more
curved its surfaces become, see Eq. (5.14), and as a result, the less central thickness is
required to produce the same amount of residual astigmatism. Given the complexity
of calculating total astigmatism in the RCm system analytically, including third- and
fifth-orders, it is easier to find the meniscus’s optimal central thickness that maxi-
mizes the FoV of the RCm by numerical optimization with exact ray-tracing. The
meniscus corrector was designed and analyzed using the ray-tracing software Op-
ticStudio [118].

5.2.1 Numerical Example of astigmatism correction

TABLE 5.1: Optical and design parameters of the RCm system. The primary and secondary
mirrors are M1 and M2. The anterior and posterior surfaces of the meniscus lens are R1
and R2, respectively. The image space is IMA. CO is a surface that has been used to create
a central obscuration for the incoming rays in the area of the secondary mirror, its value
is from 0 to 624.0 mm. The primary mirror has been set to have a circular aperture radius

between 280 to 2010 mm. The entrance pupil is 4 m.

Radius(mm) Thickness(mm) Semi-Diameter(mm) Conic k Material
CO Infinity 8600.0 624.00
M1 -24400.0000 -8540.0 2010.00 -1.0797357 Mirror
M2 -10532.3741 11250.0 624.00 -4.3174794 Mirror
R1 -343.5283 13.8 136.00 -2.1258739 Silica
R2 -343.5283 750.00 136.00 -2.1258739
IMA -8521.8305 101.367

To demonstrate the correction with an aplanatic meniscus lens, we start with an
F/10 RC telescope with an entrance pupil diameter of 4 m. The optical layout of the
RCm can be seen in Fig. 5.5. The aplanatic meniscus corrector is introduced behind
the primary mirror M1 at a distance of 2.71 m. The meniscus is located at a distance
z1 = 11.25 m from the vertex of the secondary mirror M2. Table 5.1 describes the
main optical parameters of the RCm system.
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FIGURE 5.5: Optical layout of the RCm system. The primary and secondary mirrors di-
ameters are D1 and D2, respectively. The distance between the secondary mirror and the
meniscus is z1. The distance between the meniscus first surface and the RC focal point F′

1
is z2. The axial thickness of the meniscus is d. Figure not to scale.

The axial thickness of the meniscus is d = 13.8 mm, while its optical semi-
diameter is 136.0 mm. The material chosen for the meniscus is fused silica since
it is a high-purity glass that covers a wide spectral range of transparency between
0.2 µm and 3.7 µm [119]. Besides, the fused silica also exhibits high-temperature sta-
bility and low thermal shock properties, making it an optimal choice for telescopic
optics [120].

For the visible light using a wavelength range from λ = 0.4 µm to λ = 0.7 µm,
the refractive index of silica at the primary wavelength λ = 0.6 µm is n =1.458 and
from Eq. (3.17) this corresponds to the conic constant k = −2.126 for both surfaces
of the meniscus.

The RoC of the meniscus lens is defined by the distance from the posterior sur-
face of the meniscus to the telescope focus z2 and refractive index of the lens, ac-
cording to Eq. (5.14). Therefore, the initial position of the lens can be tested for an
arbitrary distance such that say z1/z2 > 10. The thickness of the lens is used as
a free parameter to correct astigmatism. However, there is a mechanical constraint
on the central thickness d of the lens. Here we used the manufacturing limit with
d = D/20, where D is the lens’s optical diameter. If the lens’s optimal thickness to
correct astigmatism falls below this limit and becomes too thin, the lens should be
placed farther away from the telescope focal point. Since increasing z2 makes the
lens less curved, this, in turn, also increases the thickness of the lens required to cor-
rect astigmatism. To illustrate this, as seen in Fig. 5.6, the RoC for different z2 related
to the thickness demonstrates the trend of the thickness decreasing as the RoC in-
creases. The larger systems requires a thicker meniscus, considering that the lens is
also larger in diameter.

If the telescope operates over a broad wavelength range, the FoV might be lim-
ited by the lateral color; see discussion in 5.2.2. Thus, the distance z2 has to be opti-
mized by balancing astigmatism correction and controlling the lateral color. For our
example z2 = 750 mm and z1/z2 = 15.0. The diameter of the meniscus is comparable
to the linear size of the full field, and for large telescopes, it can exceed 200 mm.

The maximum full-FoV increases from 12.84 to 17.40 arcmins, which is 1.36 times
the FoV of the original RC system. This is equivalent to increasing the sky area by
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FIGURE 5.6: Thickness of the meniscus related to its RoC.
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FIGURE 5.7: Spot diagrams for (a) the classical RC telescope, and (b) the RCm system. It
shows on-axis and off-axis image spots at the maximum half FoV for the RC and RCm. The

Airy disk radius is 7.32 µm, and it is shown as a black circle.
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FIGURE 5.8: Field curvature and distortion for (a) the classical RC telescope, and (b) the
RCm system. The Y-axis unit is arcmin.
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FIGURE 5.9: Encircled energy at 80 % for (a) the classical RC telescope, and (b) the RCm
system.
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The curved image surface used for the RCm is flatter than the one used for the
RC system. The radius of curvature of the image surface for the RC is −4012.6017
mm, which is 2.1 times more curved than that in the RCm system, so the lens not
only corrects astigmatism but also flattens the image surface. If one uses only third-
order aberrations, then Petzval curvature is not changed by the meniscus lens since
R1 = R2. However, when the best image surface is considered, the field curvature is
more balanced by astigmatism, and as a result, the best image surface becomes less
curved.

For the numerical example, using visible light, the optical performance for the
two systems is presented in Figs. 5.7 to 5.9. At the edge of 8.70 arcmins half FoV,
which is the maximum half FoV for a diffraction-limited RC, the RCm forms a
smaller image spot. This is because the third- and fifth-order astigmatism present in
the RCm are better balanced in comparison to the RC system, as shown in Fig. 5.8.
The meniscus introduces a small positive distortion (less than 0.2 percent). We can
also see in Fig. 5.7 (b) that lateral color is present. However, it is not critical, and by
narrowing the spectral band, one can reduce the image spot size even further.

Comprehensive numerical results for this example, represented by Configura-
tion 2 in Section 5.2.2, and two other optical designs are presented in Tables 5.2
and 5.3.

5.2.2 Numerical Results

As mentioned above, the meniscus lens suffers from lateral color, limiting the
useful FoV of the RCm, but as we show later in this section, this problem can be
reduced by careful consideration of the system’s meniscus position. To keep the
lateral color to a minimum, the meniscus should be placed as close as possible to the
telescope focus F′

1. Since R2 = R1 in the meniscus design, the transverse lateral color
in the system can be estimated using paraxial ray-tracing Eq. (5.15) [82]:

LC = (n(λ2)− n(λ1))

(
ū1d
R1

)
z2 = −(n(λ2)− n(λ1))

(
ū1d

n(λp)− 1

)
, (5.15)

where n(λ1) and n(λ2) are the meniscus’ refractive index for any two wavelengths,
(λp) being the primary wavelength, and ū1 is the chief ray angle after the first surface
for the primary wavelength. Notice that the lateral color depends on the chief ray
angle ū1 and the thickness of the lens d.

The chief ray angle ū1 increases linearly as the lens approaches the telescope
focus and becomes more curved, whereas the optimal lens thickness d decreases
more rapidly. Therefore, the product term ū1d decreases. Thus, lateral color also
decreases.

As the meniscus approaches the telescope focus, z2 is reduced. Considering
Eq. (5.14), for the lens to remain working in an afocal mode, the meniscus surfaces
must become more curved. As a consequence, the optimal central thickness required
for astigmatism correction decreases. The practical limit of how small the central
thickness can be depends on the manufacturing process and structural stability of
a thin glass shell. Therefore, as mentioned earlier, one has to consider a maximum
permissible diameter-to-thickness ratio, which in our analysis we previously set to
Dlens/d = 20.

A number of the RC telescope designs have been considered here to verify the
gain in aberration-free FoV after inserting the aplanatic meniscus near the telescope
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FIGURE 5.10: The maximum diffraction-limited half-FoV attainable on a flat detector in RC
and RCm systems with the entrance pupil diameter D in the range of 2 - 10 m and the focal

ratio F/# in the range of 8 - 12.

focus. Figure 5.10 shows the relation between the maximum half-FoV obtained
through ray-tracing simulations for the RC and the corrected RCm telescopes as a
function of the entrance pupil diameter. Three different F/# have been considered
assuming a flat image surface for all systems.

Scaling up the RC system will increase ray aberrations relative to the Airy disk
size, which is inversely proportional to the entrance pupil diameter. As a result, the
maximum FoV for a diffraction-limited system is reduced in a non-linear manner,
see Eq. (5.13). The most prevalent aberration in an RC system is astigmatism, and
after being corrected with the help of an aplanatic meniscus, the remaining field
curvature limits the field. Another limiting factor is the lateral color introduced by
the meniscus. The image spot size in an RCm system is affected by lateral color,
but it can be kept smaller than the original image spot size imposed by intrinsic
astigmatism in the RC system.

We should note that the FoV gain is somewhat reduced with the increase of the
entrance pupil diameter. This happens because as the system’s size increases, the
diameter of the meniscus increases, and due to the diameter-to-thickness ratio lim-
itations, the meniscus has to be placed farther away from the focal point of the RC
so that the astigmatism is not over-corrected. Therefore, the lateral color increases,
becoming the main limiting factor of the system. Also, it is important to mention
that the increase in FoV is still significant with the use of the aplanatic meniscus in
those cases.

A trend can be noticed in Fig. 5.10. Faster systems produce higher FoV gains
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when the meniscus is used. This occurs because the ratio of the diameter of the
meniscus to its thickness, Dlens/d = 20, is limited to 20. When comparing tele-
scopes with the same diameter D but differing F/#, the RC astigmatism increases
noticeably. As a result, a thicker meniscus is required, which allows the lens to be
positioned closer to the focal point while keeping the Dlens/d = 20 ratio, decreasing
lateral color.

To find the optimal minimum thickness of the meniscus, d0, depending on the
position of the meniscus, a range of entrance pupil diameters for an F/10 telescope
have been simulated using a flat image plane for different values of Z, which is the
ratio between the distance of the meniscus to the secondary mirror and to the focal
point F′

1, as defined in Eq. (5.16). Our findings can be seen in Fig. 5.11. Thus, the
closer the meniscus approaches the focal point F′

1, the thinner the meniscus must be
to balance astigmatism in the RCm system.
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FIGURE 5.11: The minimum thickness for the meniscus to correct astigmatism for different
F/10 telescope entrance pupil diameters using a flat image surface as a function of the ratio

Z = z1/z2, see Fig. 5.5. The diameter-to-thickness ratio is kept at 20.

It is important to note that these results take into account the constraint of diameter-
to-thickness ratio, which is kept smaller than 20 for the lens manufacturability.

Z =
z1

z2
(5.16)

When diameter-to-thickness criteria are not used, the FoV starts to decline for
higher Z values. As mentioned before, the thickness of the meniscus needed to cor-
rect astigmatism diminishes due to the lens surfaces being more curved. Otherwise,
the overall astigmatism is over-corrected. Astigmatism compensation requires two



Chapter 5. Aplanatic meniscus lens corrector for Ritchey-Chrétien telescopes 100

optimal factors, the radius of curvature of the surfaces of the meniscus and their
axial separation d.

The closer the meniscus moves towards the primary mirror, i.e., farther away
from the focal point, the less curved the surfaces will be. Consequently, its cen-
tral thickness must be increased to correct the RC’s astigmatism, thus increasing
the lateral color accordingly. For greater Z values, the meniscus is closer to the fo-
cal point. Hence, the surfaces are more curved, requiring less central thickness to
balance astigmatism, and increasing the diameter-thickness ratio. If the diameter-
to-thickness ratio complies with the manufacturing limits, then at some point, the
meniscus thickness might become greater than the optimal thickness d0, and astig-
matism will be over-corrected.

Figure 5.12 illustrates the maximum HFoV in an F/10 RCm with an entrance
pupil of 4 m for monochromatic and polychromatic light. It is clear to see that the
maximum FoV achieved in an RCm with monochromatic light is significantly larger
for lower values of Z. As aforementioned, this occurs because the main factor lim-
iting the FoV becomes the TCA as the meniscus is placed farther away from the
focal point. It is also evident that the FoV starts decreasing for Z values that are
too low even for the monochromatic light. That happens because as we are dealing
with high-order astigmatism, the meniscus ceases to correct it as the lens becomes
significantly less curved and thicker, so the astigmatism is under-corrected.
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FIGURE 5.12: Maximum diffraction-limited HFoV in a 4 m F/10 RCm system using
monochromatic and polychromatic light. With the first using the λ = 0.600 µm wavelength,
and the latter considering a wavelength range between λF = 0.4861 µm and λC = 0.6563

µm.
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The overall astigmatism in the system, up to the seventh-order, has been calcu-
lated using the Zernike coefficients as in Eq. (5.17). The Noll notation was chosen
for the Zernike polynomials, where the first index is 1, and the cosine and sine terms
are even and odd, respectively [121].

Astig. = 2

(
√

6Z6 − 3
√

10Z12 + 6
√

14Z24

)
. (5.17)

Configurations 1 to 3 correspond to the telescopes with an F/# = 10 and the
system entrance pupil diameter equal to 2, 6, and 8 m, respectively. The results
from Tables 5.2 and 5.3 demonstrate a significant improvement in FoV size of the
original RC designs, showing an increase of up to 1.79 times in the object area from
an RC telescope and a major reduction in total astigmatism. Furthermore, in every
optical design reviewed, meniscus distortion is below 0.3%. Thus, image scale is not
compromised.

TABLE 5.2: Different configurations simulated for the RC and RCm telescopes. The en-
trance pupil diameter is D1. FoV is the full FoV of the telescopes, and EE80 is the encircled
energy at 80%. The values of the EE80 for the RC are given for the encircled energy at the

maximum half-FoV of the RCm.

Config.
D1
(m)

EE80
RC

(µm)

EE80
RCm
(µm)

FoV
RC

(arcmin)

FoV
RCm

(arcmin)

FoV
increase

Object
Area

increase

IMA
Plane

1 2 38.65 13.88 9.828 19.44 1.98x 3.91x Flat
2 4 19.48 13.20 12.84 17.40 1.36x 1.84x Curved
3 8 18.64 12.97 9.240 11.52 1.25x 1.55x Curved

TABLE 5.3: Supplementary ray-tracing simulation results for the various RC and RCm
optical designs. Lat. Col. is lateral color, Astig. is astigmatism, and Dist. is distortion in

the system.

Config.
Max.
FoV

(arcmin)

RMS Diam.
RC

(µm)

RMS Diam.
RCm
(µm)

Lat. Col.
RCm
(µm)

Astig.
RC

(waves)

Astig.
RCm

(waves)

Dist. RCm
(%)

1 19.44 56.608 14.522 18.714 -0.9918 0.2440 0.2465
2 17.40 30.406 14.632 18.854 -1.5891 -0.3401 0.1373
3 11.52 24.124 14.622 18.633 -1.5117 -0.2136 0.0504

As can be seen in Tables 5.2 and 5.3, the maximum FoV demonstrates a larger FoV
gain for a flat image surface. We should note that the most effective configuration
for FoV gain is the first one, in a system with a 2m entrance pupil diameter and a
flat image plane. This happens because the curved image surface can correct the
field curvature in both systems. However, as the final image in the RCm is already
flatter than the one in the RC, the curved image surface has less impact on the RCm.
Consequently, the FoV increase from the RC, and the RCm is smaller. Nevertheless,
a less curved sensor can be desirable for manufacturing purposes.
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5.2.3 Numerical optimization alternative

TABLE 5.4: Parameters used for the modified RCm. The parameters numerically optimized
are marked in bold.

Radius(mm) Thickness(mm) Semi-Diameter(mm) Conic k Material
M1 -24400.0000 -8540.0 2000.0 -1.0797357 Mirror
M2 -10532.3741 10252.9 600.0 -4.3174794 Mirror
R1 -820.0013 22.0 220.0 -4.2029961 Silica
R2 -820.0013 1747.1 220.0 -4.2029961
IMA -9325.7034 146.77
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FIGURE 5.13: Simulation results for the modified RCm, showing (a) the encircled energy
at 80 %, (b) the spot diagram, and (c) the field curvature.

It is desired to optimize the meniscus parameters (central thickness and the ra-
dius of curvature of the surface) with exact ray-tracing to further increase the FoV of
the RCm. This allows us to obtain additional gain in the FoV, which can be doubled.
However, this approach will lead to a deviation of the aplanatic properties of the
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system. Figure 5.13 shows the results of the numerical example from Section 4, the
entrance pupil diameter is 4 m, the meniscus is re-optimized for d and R1.

The optimized parameters obtained for the RCm are shown in Table 5.4. It is
worth noticing that the radius of curvature and the conic constant of both surfaces
were kept equal for optimisation stability. In this example, the maximum full-FoV
increases from 13.2 arcmins of the original RC to 25.2 arcmins in the RCm opti-
mized, representing a 1.91 times increase in FoV and 3.64 times in object area. A
noticeable coma can be seen in the spot diagram Fig. 5.13b for the intermediate field
point. Thus, as expected, the system is no longer aplanatic. However, the FoV with
diffraction-limited image quality is significantly increased.

5.3 Conclusion

An aplanatic meniscus has been analytically described to increase the FoV of RC
telescopes by correcting astigmatism and flattening the image. This solution requires
no modifications to the original design of the telescope.
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Chapter 6
Quasi-aplanatic pair for increasing the FoV

in Ritchey-Chrétien telescopes

The quasi-aplanatic pair presented in this chapter to increase the FoV slightly
introduces coma into the RC telescope. The spherical aberration is corrected for a
given wavelength, but the pair presents spherochromatism. Similarly to the menis-
cus presented in Chapter 5, this pair does not require any modification to the RC’s
parameters. Therefore, it can be easily introduced into an existing RC. The intrinsic
astigmatism of the pair is comparable to, but of opposite sign to that of the RC. As
a result, the overall astigmatism in the system can be decreased when the pair is
placed in the RC’s converging beam operating in an afocal mode. In addition to the
astigmatism correction, the image is flattened. Hence, the FoV of the RC is signifi-
cantly increased [3]. The difference between this solution and the meniscus solution
previously presented in Chapter 5 is that one can easily adjust the distance between
the pair to correct astigmatism for each spectral band due to the collimated beam be-
tween the lenses [4]. Moreover, the diameter-to-thickness limitation does not affect
the pair as much as the meniscus considering that due to the reduction of the TCA at
the cost of introducing LCA, and knowing that LCA is not affected by the thickness
of the lens, the thickness of each lens of the pair can be increased for manufacturing
purposes. However, this solution requires a proper material selection for each lens
so that the lateral color is reduced. This leads to a significant reduced material se-
lection to satisfy this condition. In addition, the material’s maximum diameter for
manufacturing can also limit the size of the RC in which this solution can be used.

In Section 6.1, an analytical solution for the pair shape is presented. A numerical
example of astigmatism correction is given in Section 6.2. And numerical results for
different spectral bands using a flat image plane for small telescopes and a curved
image plane for larger telescopes are demonstrated in Section 6.3.

6.1 A quasi-aplanatic pair of lenses

A plano-convex and concave-plano lens can present an aplanatic solution if their
surfaces are a conicoid of revolution with eccentricity equal to the lens material’s
refractive index at a given wavelength, in this case, a hyperboloidal of revolution
surface, as seen in Section 3.1.6.

As seen in Section 5.2, an afocal pair can be created, demonstrated in Fig. 5.3.
Equation (5.14) gives the relation necessary between the hyperboloidal surfaces’

conic constant and the refractive index at a given wavelength.
The lenses are individually free from spherical aberration for a given wavelength

if their material is the same, and when combined, due to the convex-concave sym-
metry of the pair, all rays’ angular magnification in the beam before and after the
lens is preserved, satisfying the Abbe Sine Condition, which means that the system
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is also free from coma[64, 117]. In the case of both materials being the same, the
solution can be reduced to a single meniscus that is aplanatic as was introduced in
Chapter 5. However, the meniscus introduces lateral color, which becomes the new
limiting factor of the system. To keep the lateral color to a minimum, the meniscus
can be introduced as close to the focal point as possible, which results in a thinner
lens. Moreover, due to the lens’s thickness decreasing, the diameter-to-thickness ra-
tio quickly reaches the manufacturing limits for a meniscus. Besides, as only one
material is used in this case, even though the lateral color is minimal when using a
single meniscus if this meniscus is split into two lenses to ease the manufacturing
process or the alignment of the surfaces, the overall thickness of the two lenses com-
bined introduces too much lateral color. For that reason, a quasi-aplanatic pair using
two different materials is presented in this chapter.

It is easier to align two hyperbolic surfaces if they are a pair of the concave-
plano and plano-convex lens. Therefore, the two lenses can be used separated by a
variable distance d. However, unlike the aplanatic meniscus, this pair cannot correct
astigmatism while keeping the lateral color to a minimum as each lens’s thickness
has to consider the diameter-to-thickness ratio individually, making the pair have a
larger overall thickness combined.

To decrease the lateral color while maintaining the system free from spherical
aberration, one can deviate slightly from the lens’s aplanatic condition by keeping
both lenses free from spherical aberration individually while using different materi-
als for each lens with a similar refractive index while the Abbe number is different.
By doing so, the pair becomes quasi-aplanatic, with some residual coma and sphe-
rochromatism. In order to achieve this, the curved surface of the lenses RoC, R1 and
R2, and their conic constants, k1 and k2, are no longer the same, but they are very
similar.

For a distance z2 from the anterior surface of the first lens to the focal point F′
1

of the telescope, the radii of curvature R1 and R2 have to be properly chosen so that
the rays are collimated in between the outer surfaces of the pair and refocused at a
point F′

2 as shown in Fig. 6.1. This relation can be seen in Eq. (6.1).

FIGURE 6.1: Ray-tracing in the quasi-aplanatic pair. F′
1 and F′

2 are the focal points of the RC
and RC with the pair, respectively.
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Ri = −τi0z2 (6.1)

with
τij = ni(λj)− 1 (6.2)

where i = 1, 2 is the first and second lenses, respectively. ni(λj) is the refractive
index of the surface at a given wavelength j, with j = 0 a given wavelength in
the lenses chosen appropriately to minimize the spherochromatism in the system.
Furthermore, j = 1, 3 refers to any two extreme wavelengths used in the spectral
bands.

The distance between the RC and the RCp focal point is z3, which is the sum of
the thickness of the lenses and the distance between them, as in Eq. (6.3).

z3 = t1 + d + t2 (6.3)

where d is the distance between the lenses, and t1 and t2 are the thickness of the first
and second lens, respectively.

The distance between the outer surfaces of the pair determines astigmatism in
the system. The RC telescope combined with the quasi-aplanatic pair is denoted as
RCp.

An estimate of the transverse lateral color and the axial chromatic focal shift in
the system is given by Eqs. (6.4) and (6.5)), respectively [82].

LC =

[
(τ11 − τ13)

(
ȳ1

R1

)
− (τ21 − τ23)

(
ȳ2

R2

)]
z2 (6.4)

where τ11 and τ13 are related to the refractive index for any two extreme wavelengths
for the first lens, τ21 and τ23 related to the second lens, and ȳ1 and ȳ2 are the chief ray
heights at the external surfaces of the pair for the primary wavelength.

∆ f12 = −R1R2

(
1

τ11τ21ξ1 + R2τ11 − R1τ21
− 1

τ13τ23ξ3 + R2τ13 − R1τ23

)
(6.5)

with

ξk = d +
t1

n1(λk)
+

t2

n2(λk)
(6.6)

Overall astigmatism, up to the tertiary, can be calculated using the Zernike coef-
ficients as demonstrated in Eq. (5.17) using the Noll notation.

6.2 Numerical example of astigmatism correction

To illustrate this idea, an F/10 RC telescope has been designed with and without
the aplanatic pair in the system to demonstrate the FoV gain in the RCp telescope.
The entrance pupil diameter is 4 m. The layout of the RCp can be seen in Fig. 6.2.
The first lens is placed at a distance z1 from the secondary mirror, while the second
lens is separated from the first one by a variable distance d. The distance between
the focal points of the RC and the RCp is z3. Table 6.1 demonstrates the parameters
that have been used for the RCp in this numerical example.
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FIGURE 6.2: Optical layout of the RCp. The diameter of the primary and secondary mirrors
are D1 and D2, respectively. The distance between the secondary mirror and the aplanatic
pair is z1. The distance between the first surface of the first lens and the RC focal point F′

1
is z2. The axial distance between the two lenses is d.

The glasses chosen for the example were P − SK57 and N − SK5 due to their
similar refractive index and different Abbe number. The refractive indices for the
wavelength λ0 = 0.550 µm are nL1 = 1.5891 and nL2 = 1.5912 while their Abbe
numbers are VL1d = 59.60 and VL2d = 61.27, respectively. Notice that the materials
chosen are just an example to illustrate this correction. Other factors such as thermal
expansion, manufacturing limitation on the diameter of the lens, purity of the glass,
and other properties have to be considered for the material’s optimal choice.

TABLE 6.1: Optical and design parameters of the RCp system. M1 and M2 are the primary
and secondary mirrors. The external surfaces of the pair are R1 and R2, while the internal
ones are defined as R1’ and R2’. IMA is the image space and it varies with the spectral

bands. The distance d between the lenses is also variable.

Radius (mm) Thickness (mm) Semi-diameter (mm) Conic k Material
M1 -24400.00 -8540.00 2000.00 -1.07973571 MIRROR
M2 -10532.37 10500.00 600.00 -4.31747940 MIRROR
R1 -889.05 30.00 234.00 -2.53669329 P-SK57
R1’ Infinity d 234.00 0.00000000
R2’ Infinity 30.00 234.00 0.00000000 N-SK5
R2 -892.05 1499.76 234.00 -2.54306809

IMA Curved 111.79

The image plane is curved for both the RC and the RCp, with the RCp presenting
a flatter image than the RC, almost three times less curved. For this numerical exam-
ple, using different spectral bands, the optical performance of the two systems are
presented in the Figs. 6.3 to 6.6. For the maximum Half-FoV for a diffraction-limited
RCp, the RC presents a significantly larger spot size, which is evidently larger than
the Airy disk. This happens because all astigmatism orders summed in the RCp
flattens the image.
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FIGURE 6.3: Encircled energy at 80 % for (a) the classical RC telescope, (b) and for the RCp.
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(a)

(b)

FIGURE 6.4: Spot diagram for (a) the classical RC telescope, (b) and for the RCp. It shows
the rays for the maximum half FoV for a diffraction limited image for the RCp. The Airy

disk radius for each band in Table 6.5, and it is represented as the black circle.
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(a)

(b)

FIGURE 6.5: Field curvature and distortion for (a) the classical RC telescope, (b) and
for the RCp.
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FIGURE 6.6: RMS vs Field for (a) the classical RC telescope, (b) and for the RCp.

Tables 6.4 and 6.5 in Section 6.3 show the comprehensive numerical results for
this system.
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6.3 Numerical results

Different spectral bands for RC telescopes have been tested for a f /10 2 m with
a flat image plane and a f /10 4 m with a curved image plane. The combined spec-
tral bands analyzed range from 0.505 µm to 2.440 µm. However, the blue band has
not been considered as it is the least relevant of all bands since the atmospheric tur-
bulence in this band is the strongest of all for terrestrial telescopes, particularly for
the larger telescopes because their Airy disk is smaller [122]. Section 6.3.1 and Sec-
tion 6.3.2 demonstrate two numerical examples. The first one using a flat detector
and the second a curved one, respectively.

When analyzing Fig. 6.7, one can see that the FoV increase is significant for dif-
ferent spectral bands in a flat image plane, with the spectral K presenting a decline
considering that this spectral band covers a large wavelength range. Thus, the chro-
matic aberration becomes more evident, especially as the lenses aspherical surfaces
were optimized for the primary wavelength λ0 = 0.550 µm. Figure 6.7 shows the
exhaustive numerical results for this example.

0.5 1.0 1.5 2.0
λ0 (nm)

10

15

20

25

30

35

40

Fo
V 

(a
rc
m
in

)

2m RC
2m RCm
Band V
Band R

Band I
Band J
Band H
Band K

FIGURE 6.7

When analyzing Fig. 6.8, one can see that the FoV is also significant for different
spectral bands in a curved detector. The band R covers a relatively large wave-
length range, and considering that the FoV of the RC has been increased by using
a curved detector, the FoV increase is significantly decreased. In fact, this spec-
tral band presents the smallest FoV increase compared to the bands in which the
diameter-to-thickness ratio is not a limiting factor. The last four bands can be seen
to have a similar FoV, which means that the FoV increase is decreased as the wave-
length increases, while the RC continues having its FoV increased. This decrease in
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FoV for the last bands are due to the diameter-to-thickness ratio limiting the system.
Figure 6.8 shows the exhaustive numerical results for this example.
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6.3.1 Flat image plane

For smaller telescopes, a flat image plane was chosen because the surface be-
comes too curved, and the manufacturing of steeply curved sensors might be chal-
lenging. Thus, a flat image plane was used in this example.

TABLE 6.2: Simulation results for the RC and RCp telescopes. The entrance pupil diameter
is 2 m. The full-FoV is represented by FoV, d is the distance between the lenses, FoV incr. is
the FoV increase, Obj. area incr. is the object area increase, and the encircled energy at 80%

is EE80.

Band
λ range

(µm)

EE80
RC

(µm)

EE80
RCp
(µm)

FoV
RC

(arcmin)

FoV
RCp

(arcmin)

FoV
incr.

Obj.
area
inc.

d
(mm)

V 0.505-0.595 29.51 13.33 9.48 16.80 1.77 3.14 2.0
R 0.590-0.810 42.19 17.12 10.56 20.40 1.93 3.73 7.0
I 0.780-1.020 73.55 21.53 12.00 27.00 2.25 5.06 13.0
J 1.060-1.440 108.90 30.24 14.28 33.00 2.31 5.34 18.0
H 1.500-1.700 151.00 39.46 16.08 39.00 2.43 5.88 22.0
K 1.960-2.440 157.80 52.84 18.84 39.60 2.10 4.42 26.0
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TABLE 6.3: Supplementary results for the ray-tracing simulations for the RC and RCp tele-
scopes. The transverse lateral color is Lat. Col., the astigmatism is Astig., the axial color is

Ax. Col., and the distortion is Dist.

Band
Astig.

RC
(wave)

Astig.
RCp

(wave)

Airy
Disk
(µm)

RMS
RC

(µm)

RMS
RCp
(µm)

Ax.
Col.
RCp
(µm)

Lat.
Col.
RCp
(µm)

Dist.
RCp
(%)

V -0.8080 0.2173 6.710 21.110 6.107 221.344 4.479 0.0596
R -0.9361 0.3609 8.542 31.179 8.220 289.400 11.505 0.1000
I -1.2754 0.5777 10.990 54.702 10.572 186.601 13.214 0.1979
J -1.3718 0.5817 15.260 81.772 15.162 217.640 21.595 0.3174
H -1.4968 0.4783 19.520 114.258 19.314 115.581 15.645 0.4588
K -1.1223 0.3500 26.890 117.805 26.552 334.495 58.673 0.4931

The FoV can increase up to almost 2.5 times, equivalent to an increase in the ob-
ject area size almost six times, showing worse gains for the bands with a smaller
wavelength. That happens because the Airy disk radius is smaller in those bands.
Thus the spherochromatism and chromatic aberration demonstrate a high signifi-
cance in the RCp FoV.

6.3.2 Curved image plane

Larger telescopes, considered here as telescopes with an entrance pupil larger
than 2 m, were analyzed using a curved image plane as the image size is larger than
100 mm and the curvature is not steep, such as in this example.

TABLE 6.4: Numerical results for the RC and RCp telescopes using a curved image plane
for an entrance pupil diameter of 4 m. IMA is the radius of curvature of the image.

Band
EE80
RC

(µm)

EE80
RCp
(µm)

FoV
RC

(arcmin)

FoV
RCp

(arcmin)

FoV
incr.

Obj.
area
incr.

IMA
RC

(mm)

IMA
RCp
(mm)

V 21.74 13.05 12.66 18.96 1.50 2.24 -3939.4347 -10464.5951
R 23.40 16.50 14.28 19.20 1.35 1.81 -3932.6399 -10846.7392
I 54.53 19.24 16.08 31.20 1.94 3.77 -3931.3610 -11654.1530
J 57.33 24.64 19.08 31.32 1.64 2.70 -3924.3100 -11530.8538
H 60.10 29.47 21.60 31.32 1.45 2.10 -3921.3111 -11514.7464
K 65.55 43.17 25.20 31.32 1.24 1.55 -3918.9489 -11790.0771

The FoV in the last three spectral bands (J, H, and K) is kept constant due to
the limitations in the size of the lens. As can be seen in Fig. 6.3, the FoV could be
increased regarding image quality. However, that results in vignetting so the FoV
has to be kept constant for those three bands [5]. The systems with a curved image
plane presents a smaller FoV increase than for flat image planes. This is the result of
the RCm flattening the image, so the curved image plane does not affect much the
image quality in this case, thus, does not affect much the maximum FoV. Considering
that the RC presents a significant field curvature, a curved image plane highly affects
its maximum FoV. Therefore, the curved sensor provides a great benefit for the RC
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while not for the RCm. Moreover, the image plane for the RCm is less curved than
for the RC. This eases the mechanical manufacturing limits of the detector [123].

TABLE 6.5: Supplementary results for the ray-tracing simulations of the telescopes with an
entrance pupil diameters of 4 m and a curved image.

Band
Astig.

RC
(wave)

Astig.
RCp

(wave)

Airy
disk
(µm)

RMS
RC

(µm)

RMS
RCp
(µm)

Ax.
Col.
RCp
(µm)

Lat
col.
RCp
(µm)

d
(mm)

V -2.0584 0.0003 6.71 15.043 5.935 389.081 0.828 1.4
R -1.6585 -0.0003 8.54 15.425 7.696 501.926 3.258 3.0
I -3.4063 0.0018 10.98 40.719 9.134 321.486 12.670 14.2
J -2.4714 -0.0013 15.25 41.030 10.106 368.340 14.835 16.1
H -1.9308 0.0001 19.53 41.029 8.741 191.841 8.953 17.8
K -1.4042 -0.0025 26.84 41.029 16.657 534.325 39.489 21.3

6.4 Conclusion

A quasi-aplanatic pair has been analytically described to increase the FoV of RC
telescopes by correcting astigmatism and flattening the image. Different spectral
bands can be individually corrected by changing the separation between the pair.
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Chapter 7
Conclusion and Future Work

An analytical solution for aplanatic optical systems using GRIN lenses with curved
surfaces has been presented. The first solution is an afocal system in which the inner
surfaces are concentric to the focus, and so is the GRIN structure. This results in
a system free from spherical aberration and coma, but presenting astigmatism and
field curvature. The second solution uses the astigmatism seen in this first solution
to correct field curvature in optical systems. For that, the lenses have to be swapped
and placed in the converging beam of an optical system in which the astigmatism is
of the oppose astigmatism. As an example, a Gregorian telescope has been designed
and tested with and without the GRIN corrector. The results demonstrated a good
field curvature correction. The distance between the lenses influences on the amount
of astigmatism introduced into the system. Thus, this can be applied to other optical
systems.

A meniscus has been analytically designed to increase the FoV of RC telescopes.
This approach does not deflect them from their aplanatic solution. By increasing the
FoV, the object area size can be significantly increased by a factor of 1.5 to 4 times,
depending on the entrance pupil size and its image plane shape. The advantage
of the aplanatic meniscus solution over other approaches is its incorporation and
removal of existing RC telescopes without remodeling their optical design. Given
manufacturing limits, the meniscus’ optimal position to minimize lateral color and
achieve a larger FoV has also been demonstrated. Besides, an equation estimating
the approximated maximum FoV of an RC telescope has also been presented.

The RCm can be designed in different entrance pupil sizes and F/#, showing
promising results for telescopes with an entrance pupil up to 8m. However, because
of the smaller FoV of larger systems and the lateral color added with the thicker
meniscus, the telescopes with a larger entrance pupil display a lower gain in FoV
compared to the smaller ones.

A quasi-aplanatic pair has been analytically described to increase the FoV of RC
telescopes by correcting astigmatism and flattening the image. The pair present a
collimated beam between them. Therefore, the distance between the lenses can be
optimized to correct astigmatism for different spectral bands. The pair must be com-
posed of two lenses with materials in which the refractive indices are similar, but the
Abbe numbers are distinct. By doing so, one can decrease the lateral color in the sys-
tem at the cost of adding axial chromatic aberration. With a proper choice of the
materials used, this axial chromatic aberration, though, is not enough to compro-
mise the system ultimately, still showing an FoV gain using the pair in the RC. The
spectral bands from V to K have been tested and demonstrated promising results as
theoretically expected. The band B was not considered as this band can be challeng-
ing for terrestrial observations due to strong turbulence in this wavelength range.
Depending on the entrance pupil’s size, the FoV of the RCp can be almost 2.5 times
larger than the RC.
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Future study will entail investigating the polymers available for ink-jet printing
in such a way that the aplanatic optical system employing GRIN lenses may also
be made achromatic. As a result, this method has a major advantage over strict
aplanatic aspherical lenses in general.

The prospect of combining the meniscus or refractive pair with additional lenses
to go beyond the aberration correction in RC telescopes while maintaining the apla-
natic properties and astigmatism correction, in order to increase the FoV even fur-
ther, is also to be investigated.

As is typical in science, future work will not be restricted to the research outlined
above, but additional solutions may emerge during the investigation process.
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Appendix A
DLL code for SA free GRIN lenses in

OpticStudio

LISTING A.1: OpticStudio C code for ray-tracing the positive GRIN lens

1 # include <windows . h>
2 # include <math . h>
3 # include < s t r i n g . h>
4 # include " u s e r s u r f . h "
5

6 /* Adapted from Zemax sample gr in . c */
7

8 i n t
9 __declspec ( d l l e x p o r t ) APIENTRY UserDefinedSurface (USER_DATA* UD,

FIXED_DATA* FD) ;
10

11 /* a gener ic S n e l l s law r e f r a c t i o n rout ine */
12 i n t
13 R e f r a c t ( double thisn , double nextn , double * l , double * m, double * n ,

double ln , double mn, double nn ) ;
14

15 BOOL
16 WINAPI DllMain (HANDLE hInst , ULONG u l _ r e a s o n _ f o r _ c a l l , LPVOID lpReserved )
17 {
18 re turn TRUE;
19 }
20

21 /* t h i s DLL models a GRIN s u r f a c e s i m i l a r to the GRIN 1 s u r f a c e type . */
22

23 i n t
24 __declspec ( d l l e x p o r t ) APIENTRY UserDefinedSurface (USER_DATA* UD,

FIXED_DATA* FD)
25 {
26 i n t i ;
27 double p2 , r2 , alpha , index , N, A, x , y , z , f ;
28 double power , a , b , c , rad , t , zc , casp ;
29 switch (FD−>type )
30 {
31 case 0 :
32 /* ZEMAX i s request ing general information about the s u r f a c e */
33 switch (FD−>numb)
34 {
35 case 0 :
36 /* ZEMAX wants to know the name of the s u r f a c e */
37 /* do not exceed 12 c h a r a c t e r s */
38 s t rcpy (UD−>s t r i n g , "GRIN p o s i t i v e " ) ;
39 break ;
40 case 1 :
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41 /* ZEMAX wants to know i f t h i s s u r f a c e i s r o t a t i o n a l l y
symmetric */

42 /* i t i s , so re turn any c h a r a c t e r in the s t r i n g ; otherwise ,
re turn a n u l l s t r i n g */

43 s t rcpy (UD−>s t r i n g , " 1 " ) ;
44 break ;
45 case 2 :
46 /* ZEMAX wants to know i f t h i s s u r f a c e i s a gradient index

media ( i t i s ) */
47 s t rcpy (UD−>s t r i n g , " 1 " ) ;
48 break ;
49 }
50 break ;
51 case 1 :
52 /* ZEMAX i s request ing the names of the parameter columns */
53 /* the value FD−>numb w i l l i n d i c a t e which value ZEMAX wants . */
54 /* re turning a n u l l s t r i n g i n d i c a t e s t h a t the parameter i s unused .

*/
55 switch (FD−>numb)
56 {
57 case 1 :
58 /* All GRINs must use paramter 1 as Delta T ! ! ! ! ! ! ! ! ! ! ! ! ! ! */
59 s t rcpy (UD−>s t r i n g , " Delta T" ) ;
60 break ;
61 case 2 :
62 s t rcpy (UD−>s t r i n g , "N0" ) ;
63 break ;
64 case 3 :
65 s t rcpy (UD−>s t r i n g , "A" ) ;
66 break ;
67 d e f a u l t :
68 UD−>s t r i n g [ 0 ] = ’ \0 ’ ;
69 break ;
70 }
71 break ;
72 case 2 :
73 /* ZEMAX i s request ing the names of the e x t r a data columns */
74 /* the value FD−>numb w i l l i n d i c a t e which value ZEMAX wants . */
75 /* they are a l l " Unused " f o r t h i s s u r f a c e type */
76 /* re turning a n u l l s t r i n g i n d i c a t e s t h a t the ex t radata value i s

unused . */
77 switch (FD−>numb)
78 {
79 d e f a u l t :
80 UD−>s t r i n g [ 0 ] = ’ \0 ’ ;
81 break ;
82 }
83 break ;
84 case 3 :
85 /* ZEMAX wants to know the sag of the s u r f a c e */
86 /* i f there i s an a l t e r n a t e sag , re turn i t as well */
87 /* otherwise , s e t the a l t e r n a t e sag i d e n t i c a l to the sag */
88 /* The sag i s sag1 , a l t e r n a t e i s sag2 . */
89

90 UD−>sag1 = 0 . 0 ;
91 UD−>sag2 = 0 . 0 ;
92

93 /* i f a plane , j u s t re turn */
94 i f (FD−>cv == 0) re turn ( 0 ) ;
95 p2 = UD−>x * UD−>x + UD−>y * UD−>y ;
96 alpha = 1 − (1 + FD−>k ) * FD−>cv * FD−>cv * p2 ;
97 i f ( alpha < 0) re turn (−1) ;
98 UD−>sag1 = (FD−>cv * p2 ) / (1 + s q r t ( alpha ) ) ;
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99 i f ( alpha != 1 . 0 ) UD−>sag2 = (FD−>cv * p2 ) / (1 − s q r t ( alpha ) ) ;
100 break ;
101 case 4 :
102 /* ZEMAX wants a p a r a x i a l ray t r a c e to t h i s s u r f a c e */
103 /* x , y , z , and the o p t i c a l path are unaffected , a t l e a s t f o r t h i s

s u r f a c e type */
104 /* f o r p a r a x i a l ray t rac ing , the return z coordinate should always

be zero . */
105 /* p a r a x i a l s u r f a c e s are always planes with the fol lowing normals

*/
106

107 UD−>ln = 0 . 0 ;
108 UD−>mn = 0 . 0 ;
109 UD−>nn = −1.0;
110 power = (FD−>n2 − FD−>n1 ) * FD−>cv ;
111 i f ( (UD−>n ) != 0 . 0 )
112 {
113 (UD−>l ) = (UD−>l ) / (UD−>n ) ;
114 (UD−>m) = (UD−>m) / (UD−>n ) ;
115

116 (UD−>l ) = (FD−>n1 * (UD−>l ) − (UD−>x ) * power ) / (FD−>n2 ) ;
117 (UD−>m) = (FD−>n1 * (UD−>m) − (UD−>y ) * power ) / (FD−>n2 ) ;
118

119 /* normalize */
120 (UD−>n ) = s q r t (1 / (1 + (UD−>l ) * (UD−>l ) + (UD−>m) * (UD−>m) )

) ;
121 /* de−p a r a x i a l i z e */
122 (UD−>l ) = (UD−>l ) * (UD−>n ) ;
123 (UD−>m) = (UD−>m) * (UD−>n ) ;
124 }
125 break ;
126 case 5 :
127 /* ZEMAX wants a r e a l ray t r a c e to t h i s s u r f a c e */
128 i f (FD−>cv == 0 . 0 )
129 {
130 UD−>ln = 0 . 0 ;
131 UD−>mn = 0 . 0 ;
132 UD−>nn = −1.0;
133 i f ( R e f r a c t (FD−>n1 , FD−>n2 , &UD−>l , &UD−>m, &UD−>n , UD−>ln , UD

−>mn, UD−>nn ) ) re turn (−FD−>s u r f ) ;
134 re turn ( 0 ) ;
135 }
136 /* okay , not a plane . */
137 a = (UD−>n ) * (UD−>n ) * FD−>k + 1 ;
138 b = ( (UD−>n ) / FD−>cv ) − (UD−>x ) * (UD−>l ) − (UD−>y ) * (UD−>m) ;
139 c = (UD−>x ) * (UD−>x ) + (UD−>y ) * (UD−>y ) ;
140 rad = b * b − a * c ;
141 i f ( rad < 0) re turn (FD−>s u r f ) ; /* ray missed t h i s s u r f a c e */
142 i f (FD−>cv > 0) t = c / ( b + s q r t ( rad ) ) ;
143 e l s e t = c / ( b − s q r t ( rad ) ) ;
144 (UD−>x ) = (UD−>l ) * t + (UD−>x ) ;
145 (UD−>y ) = (UD−>m) * t + (UD−>y ) ;
146 (UD−>z ) = (UD−>n ) * t + (UD−>z ) ;
147 UD−>path = t ;
148 zc = (UD−>z ) * FD−>cv ;
149 rad = zc * FD−>k * ( zc * (FD−>k + 1) − 2) + 1 ;
150 casp = FD−>cv / s q r t ( rad ) ;
151 UD−>ln = (UD−>x ) * casp ;
152 UD−>mn = (UD−>y ) * casp ;
153 UD−>nn = ( (UD−>z ) − ( ( 1 / FD−>cv ) − (UD−>z ) * FD−>k ) ) * casp ;
154 i f ( R e f r a c t (FD−>n1 , FD−>n2 , &UD−>l , &UD−>m, &UD−>n , UD−>ln , UD−>mn

, UD−>nn ) ) re turn (−FD−>s u r f ) ;
155 break ;
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156 case 6 :
157 /* ZEMAX wants the index , dn/dx , dn/dy , and dn/dz at the given x ,

y , z . */
158 N = FD−>param [ 2 ] ;
159 A = FD−>param [ 3 ] ;
160 x = UD−>x ;
161 y = UD−>y ;
162 z = UD−>z ;
163

164 f = N / ( (N − 1) * (FD−>cv ) ) ;
165

166 r2 = x * x + y * y + ( z − f ) * ( z − f ) ;
167

168 index = N * s q r t ( r2 ) / f ;
169

170 /* do not re turn stupid data */
171 i f ( index < 1 . 0 ) index = 1 . 0 ;
172 UD−>index = index ;
173

174 /* now the d e r i v a t i v e s */
175 UD−>dndx = N * x / ( f * s q r t ( r2 ) ) ;
176 UD−>dndy = N * y / ( f * s q r t ( r2 ) ) ;
177 UD−>dndz = N * ( z − f ) / ( f * s q r t ( r2 ) ) ;
178

179 break ;
180 case 7 :
181 /* ZEMAX wants the " s a f e " data . */
182 /* t h i s i s used by ZEMAX to s e t the i n i t i a l values f o r a l l

parameters and e x t r a data */
183 /* when the user f i r s t changes to t h i s s u r f a c e type . */
184 /* t h i s i s the only time the DLL should modify the data in the

FIXED_DATA FD s t r u c t u r e */
185 FD−>param [ 1 ] = 1 . 0 ; /* Delta T */
186 FD−>param [ 2 ] = 1 . 6 ; /* N0 */
187 FD−>param [ 3 ] = 0 . 0 ; /* A */
188 f o r ( i = 4 ; i <= 8 ; i ++) FD−>param [ i ] = 0 . 0 ;
189 f o r ( i = 1 ; i <= 2 0 0 ; i ++) FD−>xdata [ i ] = 0 . 0 ;
190 break ;
191 }
192 re turn 0 ;
193 }
194

195 i n t
196 R e f r a c t ( double thisn , double nextn , double * l , double * m, double * n ,

double ln , double mn, double nn )
197 {
198 double nr , cos i , cos i2 , rad , cosr , gamma;
199 i f ( t h i s n != nextn )
200 {
201 nr = t h i s n / nextn ;
202 c o s i = fabs ( ( * l ) * ln + ( *m) * mn + ( * n ) * nn ) ;
203 c o s i 2 = c o s i * c o s i ;
204 i f ( c o s i 2 > 1) c o s i 2 = 1 ;
205 rad = 1 − ( ( 1 − c o s i 2 ) * ( nr * nr ) ) ;
206 i f ( rad < 0) re turn (−1) ;
207 cosr = s q r t ( rad ) ;
208 gamma = nr * c o s i − cosr ;
209 ( * l ) = ( nr * ( * l ) ) + (gamma * ln ) ;
210 ( *m) = ( nr * ( *m) ) + (gamma * mn) ;
211 ( * n ) = ( nr * ( * n ) ) + (gamma * nn ) ;
212 }
213 re turn 0 ;
214 }
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LISTING A.2: OpticStudio C code for ray-tracing the negative GRIN lens

1 # include <windows . h>
2 # include <math . h>
3 # include < s t r i n g . h>
4 # include " u s e r s u r f . h "
5

6 /* Adapted from Zemax sample gr in . c */
7

8 i n t
9 __declspec ( d l l e x p o r t ) APIENTRY UserDefinedSurface (USER_DATA* UD,

FIXED_DATA* FD) ;
10

11 /* a gener ic S n e l l s law r e f r a c t i o n rout ine */
12 i n t
13 R e f r a c t ( double thisn , double nextn , double * l , double * m, double * n ,

double ln , double mn, double nn ) ;
14

15 BOOL
16 WINAPI DllMain (HANDLE hInst , ULONG u l _ r e a s o n _ f o r _ c a l l , LPVOID lpReserved )
17 {
18 re turn TRUE;
19 }
20

21 /* t h i s DLL models a GRIN s u r f a c e s i m i l a r to the GRIN 1 s u r f a c e type . */
22

23 i n t
24 __declspec ( d l l e x p o r t ) APIENTRY UserDefinedSurface (USER_DATA* UD,

FIXED_DATA* FD)
25 {
26 i n t i ;
27 double p2 , r2 , alpha , index , N, A, x , y , z , f ;
28 double power , a , b , c , rad , t , zc , casp ;
29 switch (FD−>type )
30 {
31 case 0 :
32 /* ZEMAX i s request ing general information about the s u r f a c e */
33 switch (FD−>numb)
34 {
35 case 0 :
36 /* ZEMAX wants to know the name of the s u r f a c e */
37 /* do not exceed 12 c h a r a c t e r s */
38 s t rcpy (UD−>s t r i n g , "GRIN negat ive " ) ;
39 break ;
40 case 1 :
41 /* ZEMAX wants to know i f t h i s s u r f a c e i s r o t a t i o n a l l y

symmetric */
42 /* i t i s , so re turn any c h a r a c t e r in the s t r i n g ; otherwise ,

re turn a n u l l s t r i n g */
43 s t rcpy (UD−>s t r i n g , " 1 " ) ;
44 break ;
45 case 2 :
46 /* ZEMAX wants to know i f t h i s s u r f a c e i s a gradient index

media ( i t i s ) */
47 s t rcpy (UD−>s t r i n g , " 1 " ) ;
48 break ;
49 }
50 break ;
51 case 1 :
52 /* ZEMAX i s request ing the names of the parameter columns */
53 /* the value FD−>numb w i l l i n d i c a t e which value ZEMAX wants . */
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54 /* re turning a n u l l s t r i n g i n d i c a t e s t h a t the parameter i s unused
. */

55 switch (FD−>numb)
56 {
57 case 1 :
58 /* All GRINs must use paramter 1 as Delta T ! ! ! ! ! ! ! ! ! ! ! ! ! ! */
59 s t rcpy (UD−>s t r i n g , " Delta T" ) ;
60 break ;
61 case 2 :
62 s t rcpy (UD−>s t r i n g , "N0" ) ;
63 break ;
64 case 3 :
65 s t rcpy (UD−>s t r i n g , "A" ) ;
66 break ;
67 d e f a u l t :
68 UD−>s t r i n g [ 0 ] = ’ \0 ’ ;
69 break ;
70 }
71 break ;
72 case 2 :
73 /* ZEMAX i s request ing the names of the e x t r a data columns */
74 /* the value FD−>numb w i l l i n d i c a t e which value ZEMAX wants . */
75 /* they are a l l " Unused " f o r t h i s s u r f a c e type */
76 /* re turning a n u l l s t r i n g i n d i c a t e s t h a t the ex t radata value i s

unused . */
77 switch (FD−>numb)
78 {
79 d e f a u l t :
80 UD−>s t r i n g [ 0 ] = ’ \0 ’ ;
81 break ;
82 }
83 break ;
84 case 3 :
85 /* ZEMAX wants to know the sag of the s u r f a c e */
86 /* i f there i s an a l t e r n a t e sag , re turn i t as well */
87 /* otherwise , s e t the a l t e r n a t e sag i d e n t i c a l to the sag */
88 /* The sag i s sag1 , a l t e r n a t e i s sag2 . */
89

90 UD−>sag1 = 0 . 0 ;
91 UD−>sag2 = 0 . 0 ;
92

93 /* i f a plane , j u s t re turn */
94 i f (FD−>cv == 0) re turn ( 0 ) ;
95 p2 = UD−>x * UD−>x + UD−>y * UD−>y ;
96 alpha = 1 − (1 + FD−>k ) * FD−>cv * FD−>cv * p2 ;
97 i f ( alpha < 0) re turn (−1) ;
98 UD−>sag1 = (FD−>cv * p2 ) / (1 + s q r t ( alpha ) ) ;
99 i f ( alpha != 1 . 0 ) UD−>sag2 = (FD−>cv * p2 ) / (1 − s q r t ( alpha ) ) ;

100 break ;
101 case 4 :
102 /* ZEMAX wants a p a r a x i a l ray t r a c e to t h i s s u r f a c e */
103 /* x , y , z , and the o p t i c a l path are unaffected , a t l e a s t f o r

t h i s s u r f a c e type */
104 /* f o r p a r a x i a l ray t rac ing , the return z coordinate should

always be zero . */
105 /* p a r a x i a l s u r f a c e s are always planes with the fol lowing normals

*/
106

107 UD−>ln = 0 . 0 ;
108 UD−>mn = 0 . 0 ;
109 UD−>nn = −1.0;
110 power = (FD−>n2 − FD−>n1 ) * FD−>cv ;
111 i f ( (UD−>n ) != 0 . 0 )
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112 {
113 (UD−>l ) = (UD−>l ) / (UD−>n ) ;
114 (UD−>m) = (UD−>m) / (UD−>n ) ;
115

116 (UD−>l ) = (FD−>n1 * (UD−>l ) − (UD−>x ) * power ) / (FD−>n2 ) ;
117 (UD−>m) = (FD−>n1 * (UD−>m) − (UD−>y ) * power ) / (FD−>n2 ) ;
118

119 /* normalize */
120 (UD−>n ) = s q r t (1 / (1 + (UD−>l ) * (UD−>l ) + (UD−>m) * (UD−>m) )

) ;
121 /* de−p a r a x i a l i z e */
122 (UD−>l ) = (UD−>l ) * (UD−>n ) ;
123 (UD−>m) = (UD−>m) * (UD−>n ) ;
124 }
125 break ;
126 case 5 :
127 /* ZEMAX wants a r e a l ray t r a c e to t h i s s u r f a c e */
128 i f (FD−>cv == 0 . 0 )
129 {
130 UD−>ln = 0 . 0 ;
131 UD−>mn = 0 . 0 ;
132 UD−>nn = −1.0;
133 i f ( R e f r a c t (FD−>n1 , FD−>n2 , &UD−>l , &UD−>m, &UD−>n , UD−>ln , UD

−>mn, UD−>nn ) ) re turn (−FD−>s u r f ) ;
134 re turn ( 0 ) ;
135 }
136 /* okay , not a plane . */
137 a = (UD−>n ) * (UD−>n ) * FD−>k + 1 ;
138 b = ( (UD−>n ) / FD−>cv ) − (UD−>x ) * (UD−>l ) − (UD−>y ) * (UD−>m) ;
139 c = (UD−>x ) * (UD−>x ) + (UD−>y ) * (UD−>y ) ;
140 rad = b * b − a * c ;
141 i f ( rad < 0) re turn (FD−>s u r f ) ; /* ray missed t h i s s u r f a c e */
142 i f (FD−>cv > 0) t = c / ( b + s q r t ( rad ) ) ;
143 e l s e t = c / ( b − s q r t ( rad ) ) ;
144 (UD−>x ) = (UD−>l ) * t + (UD−>x ) ;
145 (UD−>y ) = (UD−>m) * t + (UD−>y ) ;
146 (UD−>z ) = (UD−>n ) * t + (UD−>z ) ;
147 UD−>path = t ;
148 zc = (UD−>z ) * FD−>cv ;
149 rad = zc * FD−>k * ( zc * (FD−>k + 1) − 2) + 1 ;
150 casp = FD−>cv / s q r t ( rad ) ;
151 UD−>ln = (UD−>x ) * casp ;
152 UD−>mn = (UD−>y ) * casp ;
153 UD−>nn = ( (UD−>z ) − ( ( 1 / FD−>cv ) − (UD−>z ) * FD−>k ) ) * casp ;
154 i f ( R e f r a c t (FD−>n1 , FD−>n2 , &UD−>l , &UD−>m, &UD−>n , UD−>ln , UD−>mn

, UD−>nn ) ) re turn (−FD−>s u r f ) ;
155 break ;
156 case 6 :
157 /* ZEMAX wants the index , dn/dx , dn/dy , and dn/dz at the given x ,

y , z . */
158 N = FD−>param [ 2 ] ;
159 A = FD−>param [ 3 ] ;
160 x = UD−>x ;
161 y = UD−>y ;
162 z = UD−>z ;
163

164 r2 = x * x + y * y + ( z−1/FD−>cv ) * ( z−1/FD−>cv ) ;
165

166 index = N* s q r t ( r2 ) /(1/FD−>cv−FD−>t h i c ) ;
167

168 /* do not re turn stupid data */
169 i f ( index < 1 . 0 ) index = 1 . 0 ;
170 UD−>index = index ;
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171

172 /* now the d e r i v a t i v e s */
173 UD−>dndx = N* x /((1/FD−>cv−FD−>t h i c ) * s q r t ( r2 ) ) ;
174 UD−>dndy = N* y/ ( ( 1 / FD−>cv − FD−>t h i c ) * s q r t ( r2 ) ) ;
175 UD−>dndz = N* ( z−1/FD−>cv ) / ( ( 1 / FD−>cv − FD−>t h i c ) * s q r t ( r2 ) ) ;
176

177 break ;
178 case 7 :
179 /* ZEMAX wants the " s a f e " data . */
180 /* t h i s i s used by ZEMAX to s e t the i n i t i a l values f o r a l l

parameters and e x t r a data */
181 /* when the user f i r s t changes to t h i s s u r f a c e type . */
182 /* t h i s i s the only time the DLL should modify the data in the

FIXED_DATA FD s t r u c t u r e */
183 FD−>param [ 1 ] = 1 . 0 ; /* Delta T */
184 FD−>param [ 2 ] = 1 . 6 ; /* N0 */
185 FD−>param [ 3 ] = 0 . 0 ; /* A */
186 f o r ( i = 4 ; i <= 8 ; i ++) FD−>param [ i ] = 0 . 0 ;
187 f o r ( i = 1 ; i <= 2 0 0 ; i ++) FD−>xdata [ i ] = 0 . 0 ;
188 break ;
189 }
190 re turn 0 ;
191 }
192

193 i n t
194 R e f r a c t ( double thisn , double nextn , double * l , double * m, double * n ,

double ln , double mn, double nn )
195 {
196 double nr , cos i , cos i2 , rad , cosr , gamma;
197 i f ( t h i s n != nextn )
198 {
199 nr = t h i s n / nextn ;
200 c o s i = fabs ( ( * l ) * ln + ( *m) * mn + ( * n ) * nn ) ;
201 c o s i 2 = c o s i * c o s i ;
202 i f ( c o s i 2 > 1) c o s i 2 = 1 ;
203 rad = 1 − ( ( 1 − c o s i 2 ) * ( nr * nr ) ) ;
204 i f ( rad < 0) re turn (−1) ;
205 cosr = s q r t ( rad ) ;
206 gamma = nr * c o s i − cosr ;
207 ( * l ) = ( nr * ( * l ) ) + (gamma * ln ) ;
208 ( *m) = ( nr * ( *m) ) + (gamma * mn) ;
209 ( * n ) = ( nr * ( * n ) ) + (gamma * nn ) ;
210 }
211 re turn 0 ;
212 }
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Appendix B
Derivation of the equation for the

maximum FoV in an RC
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FIGURE B.1: Layout of a RC with its respective angles, distances, and RoC.

For facilitating the clarity of the derivation, a few abbreviations have been used:

t = tan ω, (B.1)

y′ =
dy
dz

, (B.2)

y′′ =
d2y
dz2 , (B.3)

B(y, z) is the point on the second mirror M2. C(y3, z3) is the point of the tangen-
tial focal surface. Considering the geometry of the triangle around the angle ω and
the distance d1, y is given by:

y = (d1 + z) t (B.4)

Thus, the sag of the surface is given by:

z =
d1

2 t2

2 r
+

d1
4 t4 [(1 + k) d1 − 4 r]

8 r3 + ... (B.5)
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where k is the conic constant.
The tangent of α + θ is given by:

tan (α + θ) =
y

p − z
(B.6)

Thus, the distance p is given by:

p = z +
y cos α θ√
1 − cos2 α θ

(B.7)

The distance q is given by:

q =
(−2 d1 + r1)

2
r2

(2 d1 − r1 + r2)
− d1 (B.8)

The height h by:

h = d1 t (B.9)

Then z by:

z =
h4 (

4 r2

d1
+ k + 1)

8 r23 +
h2

2 r2
(B.10)

The RoC of the primary or secondary mirror, M1 and M2, respectively, assuming
local sphere with radius rs is given by:

Rs = rs =
(1 + (y′)2)3/2

y′′
(B.11)

Both mirrors are conicoids of revolution with conic constant k, so the radius rs
for M2 is given by:

rs =
(r2

2 − k y2)3/2

r22 (B.12)

For M2, y is given by:

y2 = 2 r2z − (k + 1) z2 (B.13)

Thus, the first and second derivatives of y with respect to z are given by:

y′ =
r2 − (k + 1) z

y
(B.14)

and

y′′ = − 1
y3 (r2 − (k + 1) z)2 − (k + 1)

y
(B.15)

The tangent of α is given by the derivative of z with respect to y. Using , the
tangent is given by:

tan α =
dz
dy

= z′ =
y

r2 − (k + 1) z
(B.16)
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The cosine of θ is the same as the cosine of α + ω. Thus:

cos θ = cos α + ω = cos α cos ω − sin α sin ω

=
1√

1 + tan2 α

1
1 + t2 − (tan α cos α) (t cos ω)

=
1 − tan α t√

1 + tan2 α
√

1 + t2

(B.17)

The cosine of α + θ is given by:

cos (α + θ) = cos α cos θ − sin α sin θ

= cos θ(cos α − sin α tan θ) = cos θ cos α (1 − tan α tan θ)

= cos θ
1√

tan2 α + 1
(1 − tan α

√
1 − cos2 θ

cos θ
)

(B.18)

The distance between the vertex of M1 and the edge of M2, AB, is given by:

AB = l1 =
(d1 + z)

cos ω
= (d1 + z)

√
1 + t (B.19)

The Coddington equation for the tangential cross-section is given by [124]:

n1 cos2 θ1

lt
− n0 cos2 θ0

l0
=

n1 cos θ1 − n0 cos θ0

rs
(B.20)

Considering that θ1 = θ0 = θ, n0 = 1 and n1 = −1, Eq. (B.20) can be simplified
to:

cos2 θ

lt
− cos2 θ

l0
= −2 cos θ

rs
(B.21)

so,

1
lt
=

1
l0
− 2

rs cos θ
(B.22)

where, for M1, l0 = − r1 cos ω

2
− l1, since at ∞:

cos ω

lt
− cos ω

∞
= − 2

r1
, (B.23)

lt − l1 = l0, (B.24)

and

cos ω

lt
= − 2

r1
(B.25)

Therefore, Eq. (B.22) becomes:

1
lt
=

1

− r1

2
cos ω − l1

− 2
rs cos θ

(B.26)
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Then lt becomes:

lt = − rs cos θ (2 l1
√

t2 + 1 − r1)

2 (
√

t2 + 1 (rs cos θ + 2 l1)− r1)
(B.27)

The height of the point C is given by:

y3 = y + lt sin α + θ (B.28)

And the sagitta of the tangential focal surface is given by:

z3 = −(z + d1 + q) + lt cos (α + θ) (B.29)

in this case, q < 0.
Combining Eqs. (B.8), (B.10), (B.16) to (B.18) and (B.27) with Eq. (B.29) and sim-

plifying it for t yields to Eq. (5.13).
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