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Abstract 

Fibre reinforced composites are becoming increasingly popular in 

engineering design due to their high strength to weight ratio. In one of the 

failure mechanisms, which can occur during impact, fibres can bridge 

between each of the newly created crack surfaces. This extrinsic toughening 

mechanism can significantly increase the material toughness. The objective 

of this thesis is to provide frameworks to characterise this behaviour and 

capture it correctly in computational models, i.e., using the finite element 

method.  

While previous research has represented this behaviour in models, the 

procedures to identify the input cohesive properties can be subjective. Using 

the most commonly used representation of fibre bridging (tri-linear traction 

separation law), a thorough examination of the possible parameter space is 

performed. The effect of each parameter is described and a robust method 

to identify the properties is outlined. This work is performed by virtually 

mimicking the typical experimental characterisation techniques, i.e., a 

Double Cantilever Beam (DCB) test. This work is also packaged in a format 

that allows use by a non-expert user, e.g., in an industry setting. The outputs 

can be used to compare different material systems or as inputs in larger scale 

simulations of applications of composite laminates.  

To further understand the mechanism of fibre bridging, it is necessary to 

consider the precise nature of the tractions exerted behind the crack tip. A 

recently developed experimental method seeks to do this by applying a fixed 

curvature to cantilever arms of a typical DCB specimen. A theoretical analysis 

is performed to show how the fracture energy can be related to the applied 

loads and how the crack length is directly controlled by the applied 

displacement. Further analysis establishes a method to calculate the 

tractions generated as a function of crack separation. Simulations using 

these findings show the conditions under which the approach can give 

accurate results. For both materials tested with this technique, the data 
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suggests a second local maximum in the traction separation response; this 

contrasts with the majority of the literature which considers only a single 

peak associated with intrinsic toughness.  

To further explore the detailed relationship between traction and separation 

for fibre bridging, a simpler test method based on the standard DCB 

approach was developed. Using a series of captured images and rotation 

tracking features on the beams, the slope, curvature, and internal moments 

were determined along the beam and from this the tractions are derived. 

These analyses support the existence of the second peak in the bridging 

tractions. The proposed methods are easily incorporated into standard test 

methods and the data is directly comparable to standard test methods.  

This thesis presents work which can improve the design of composite 

material systems by quickly assessing the changes in fracture behaviour with 

increased detail in the extrinsic toughening mechanisms. The research 

provides experimental and computational methods to accurately 

characterise the behaviour and facilitate inclusion in simulations of 

composite applications.
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Chapter 1. Introduction 

This thesis is focused on understanding an extrinsic toughening mechanism 

known as fibre bridging or crack bridging. This research is directed primarily 

towards composite structures and is conducted at a micro-scale. The 

research contains computational and experimental components. 

1.1 Composite materials 

A composite material is made up of two or more constituent materials, 

typically having different physical properties, which remain distinct in the 

finished material. Fibre reinforced polymers (FRP), such as glass fibre 

reinforced polymer (GFRP) or carbon fibre reinforced polymer (CFRP), are 

common examples of a composite material. The composite materials 

considered in this research are synthetic non-woven FRP; hence other 

composites such as foams, reinforced concrete and metallic composites will 

not be discussed in detail. Naturally occurring composite materials are also 

relevant to this research. Biological composites such as adipose tissue [1] 

and dentin [2] also contain a fibre and matrix structure; and experience 

toughening mechanisms similar to those found in synthetic composites. 

Both natural and synthetic composites are considered herein. 

Carbon fibre, glass fibre and carbon-epoxy composites are among the 

materials with the highest specific strength [3] meaning they can provide 

lightweight solutions to engineering problems for which steels are not 

viable. Composites and FRP are commonly used in large structural 

applications such as wind turbine blades and aircraft fuselage or wing 

surfaces, due to their high strength to weight ratio.  

Due to the unidirectional nature of the fibre properties. Composite materials 

typically consist of numerous plies in different orientations to provide tensile 

strength along several principal directions. Loading environment dictates 

the orientation of plies used in composite layups; popular combinations 

include [0°/90°] and [0°/±45°/90°]. 
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1.2 Fibre bridging and delamination 

Following matrix failure, the fibres in the composite matrix can bridge the 

crack interface providing a traction between the previously bonded matrix 

surfaces in a process known as fibre bridging. Fibre bridging is an extrinsic 

toughening mechanism acting behind the crack tip to significantly increase 

the material toughness in the wake of crack propagation. As the crack 

propagates, the density of fibres bridging the interface increases, raising the 

energy requirement for crack propagation, until a steady state distribution 

of fibres is reached. A steady state distribution is achieved when new fibres 

bridging the interface no longer increase the fracture toughness as they are 

counteracted by fibre breakage or pull-out in the interface.  

Fibre rich composite materials therefore do not have a single fracture 

toughness value, the fracture toughness increases as the crack propagates. 

The material’s fracture toughness reaches a plateau when a steady state 

distribution of fibres has been reached. This attribute can be found in a 

range of material types such as CFRP [4],  GFRP [5], biological tissues [1,6], 

and timbers [7,8]. Figure 1-1B shows fibre bridging in a DCB specimen [5]. 

The length scales over which fibre bridging acts is from the order of 

micrometres to millimetres (Figure 1-1C).  

Fibre bridging is relevant on a structural level, not just at a micro scale. Figure 

1-1D shows the effect of a bird strike on an aircraft, an impact event, with 

fibre bridging present at the perimeter of the damaged area. Fibre bridging 

is often observed after an impact event or excessive tension causing 

delamination. The damage experienced can prove difficult to identify, as it 

is often internal. Figure 1-1A shows a possible mechanism by which fibre 

bridging occurs after impact loading, this mechanism applies to both internal 

(in the centre of a laminate for example) and external (at the laminate 

peripheries) delamination.  
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Figure 1-1 A) An impact event leading to delamination of plies, and fibre bridging. B) Fibre 

bridging in a composite DCB specimen [5]. C) fibre bridging at different length scales 

adapted from [9]; showing fibre bridging by i) collagen fibrils [10] ii) dehydrated dentin [11] 

iii) fibre reinforced polymer matrix composite materials [12] and iv) balsa wood [13]. D) The 

front end of an aircraft following a bird strike. Fibre bridging is present along the perimeter 

of the damaged area. 

This behaviour is typically observed in mode I failure and mixed mode 

failure, excluding mode II/mode III. There is a mixed mode component to 

fibre bridging; but mode I opening motivates the mechanism. Increasing 

mode mixity reduces the level of fibre bridging observed [12]. Fibre bridging 

is typically of less interest in cyclic or fatigue loading as the load bearing 

capacity is only active in tension (complete load reversal is not possible) and 

the damage accumulated in the material at the onset of large-scale fibre 

bridging is typically too high to consider further fatigue loading. 

Inter-ply extrinsic toughening is an important feature in composite 

materials, significantly increasing the overall damage tolerance of the 

material. A study by Olave et al. shows that increasing the tow size in woven 

composites (thus increasing the likelihood of “nesting” of tows between 

plies) increases the maximum load bearing capacity of the material [14]. The 

importance of fibre bridging is highlighted by other toughening strategies 
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such as Z-pinning [15], whereby a third material oriented perpendicular to 

the laminate is used to prevent crack opening during delamination. This is 

analogous to an extreme amount of fibre bridging. Z-pinning can increase 

fracture toughness by an approximate factor or 25 in mode I [16] and an 

approximate factor of 7 in mode II [17] at a Z-pin percentage volume content 

of 2%. 

1.3 Research motivation and objectives 

Ashby and Cebon compared engineering properties of materials and families 

of materials [3], highlighting the specific strength of engineering composite 

materials (Figure 1-2D). While intrinsic toughening mechanisms (acting 

ahead of the crack tip) such as crack tip plasticity, void coalescence, and 

cleavage fracture are well studied; extrinsic mechanisms (acting behind the 

crack tip), like fibre bridging, have received less attention in the literature. 

Extrinsic mechanisms are not fully understood, of particular interest is the 

effect on the rise in fracture toughness. As the amount of fibre bridging at 

an interface increases, the energy requirement to advance the crack front 

increases until a steady distribution of fibres is achieved [18].  

Fibre bridging is of interest in engineering applications as the extrinsic 

toughening, which may be fully realised under impact loading and 

subsequent delamination, may be the deciding factor between a destructive 

brittle failure and a controlled ductile failure. In loading scenarios where the 

full fracture toughness is not realised, the rate of increase of the fracture 

toughness may be relevant as this will dictate the crack propagation before 

fibre bridging arrests crack growth. However, as the process is not fully 

understood, fibre bridging presents difficulties with experimental 

measurements, computational analyses, and physical interpretation.  

Fracture toughness tests evaluate a materials resistance to cracking. 

Measuring the fracture toughness of a material is not simple. 

Approximations such as the compliance calibration method are often used 

in industry. Common test methods include the Charpy impact test, Compact 
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Tension (CT) test and Izod impact test. These test methods are not capable 

of capturing the increase in fracture toughness as the crack propagates; 

hence they are less relevant when fibre bridging is present. The Double 

Cantilever Beam (DCB) test is commonly used to capture the increase in 

fracture toughness as the crack propagates. A typical measured response is 

shown in Figure 1-2B; this response is then used to produce a fracture 

resistance curve (R-curve), which shows the evolution of fracture toughness 

with delamination length (Figure 1-2A). 

 

Figure 1-2 A) A fracture resistance curve (R-curve) showing the evolution of energy required 

to advance the crack front in the presence of extrinsic toughening. B) A typical load-

displacement curve showing a decrease in measured load at crack initiation corresponding to 

the creation of a new crack surface. C) A traction-separation law relating the interfacial 

traction between debonded surfaces to the local separation between the surfaces. D) A 

modulus/density chart developed by Ashby [3] used to aid material selection. Materials are 

grouped into broad categories such as Engineering Composites, Elastomers, Engineering 

Alloys etc. 

In the absence of a singularity, crack tip definition is arbitrary. In practice, 

definition of the crack tip can vary in experimental fracture tests, 

irrespective of the presence of fibre bridging. Visual techniques are 

commonly used to measure crack length. With fibre bridging present it 

becomes more difficult to accurately define the crack tip. Depending on the 
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test procedure used, approximate methods such as the compliance 

calibration technique, may exist to approximate the crack length based on 

beam curvature for example. These approximations do not account for the 

effect of fibre bridging on beam curvature. Crack tip rotation correction 

factors add to the difficulty in defining an appropriate crack tip. 

Computationally, fibre bridging also presents difficulties. For instance, it is 

not feasible to model discrete fibres bridging a cracked interface as the 

computational cost would be far too high. The exact configuration of the 

fibres and the fracture properties between fibre tows and the matrix are also 

not well known. Continuum models are commonly used to approximate the 

attractive stresses of fibre bridging as a function of localised separation 

between surfaces. Continuum models typically use cohesive elements or 

surfaces and traction separation laws (TSL) (Figure 1-2C) to define the 

interfacial behaviour. Other available techniques such as virtual crack 

closure technique (VCCT) are discussed in the literature review section. It 

can be difficult to correctly identify parameters to define a traction 

separation law, which describes the interface behaviour. Rice developed a J-

integral approach in 1968 which is used to determine cohesive properties in 

multiple studies (as described by Sorensen and Jacobsen [19]), but 

computing the integral is not straightforward. 

The main research objective of this thesis is to further the understanding of 

how to model fracture processes involving fibre bridging. The objectives of 

the thesis are outlined below: 

1) Develop a robust method of determining traction separation law 

parameters needed to model ASTM Double Cantilever Beam (DCB) 

specimens based on experimental observations.   

2) Identify the relationship between the measured response and the 

fracture behaviour using a novel test procedure (the Double Rolling 

Arc Fracture Test method) which applies a specified beam curvature 

to composite specimens directly measuring fracture toughness with 

fibre bridging present, and controls crack growth rate. 
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3) Determine the true shape of a traction separation law and quantify 

the tractions exerted by the extrinsic toughening mechanism of fibre 

bridging.  

4) Increase the usability/accessibility of simulation in industry by 

optimising test methods and data analysis techniques.   

1.4 Thesis contents 

The thesis contents are summarised below: 

1) The current chapter provides introductory information regarding 

composite materials, toughening behaviour due to fibre bridging and 

the research goals of this thesis.  

2) Chapter 2 provides a comprehensive review of current research on 

relevant topics; fracture mechanics of fibre reinforced composites, 

beam bending theory, the finite element method (cohesive zone 

modelling), and modelling considerations in the technical chapters of 

this thesis. 

3) Chapter 3 details a technical discussion on a method of defining 

cohesive parameters based on DCB experimental observations. 

4) Chapter 4 describes the development of a novel test procedure (the 

DRAFT method) which directly measures fracture toughness with 

bridging present, dictates beam curvature and controls crack growth 

rate. A method of extraction of traction separation law data from the 

measured response is also provided. This method is then applied to 

idealised data and experimental data. 

5) Chapter 5 presents a modification the DCB test method which allows 

the interface tractions to be determined based on specimen rotation, 

recorded throughout the experimental procedure. The method is 

validated in finite element and applied to experimental data. 

6) Chapter 6 provides a discussion of the thesis as a whole and offers 

concluding remarks. 



Chapter 1: Introduction 

8 
 

7) Useful appendices are also attached. These include supplementary 

data on Chapter 3, a Graphical User Interface developed for industry 

partners, and a derivation of the compliance calibration method. 
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Chapter 2. Background 

2.1 Chapter summary 

This chapter provides relevant information regarding fibre bridging in fibre-

reinforced, non-woven, laminated, composite specimens, based on the 

existing literature.  

Firstly, as experimental methods for composite laminates typically involve 

slender beam specimens, Section 2.2 discusses beam bending theories and 

the differential relationship present in the beam’s response (i.e., the 

relationship between displacement 𝑦, slope 𝜃, curvature 𝜅, moment 𝑀, 

shear force 𝑉, and distributed load 𝜔). Next, composite structures are 

discussed in Section 2.3. The fundamentals of fracture mechanics (i.e., 

Griffith theory, the J-integral, definitions of intrinsic and extrinsic 

toughening, failure modes and fracture toughness) are outlined in Section 

2.4. Fracture specific to fibre reinforced materials is then considered 

(Section 2.5), including standardised fracture test methods, methods of 

approximating fracture toughness, and difficulties in defining the crack 

length. Computational modelling is considered in Section 2.6, topics here 

include: the finite element method, interfacial behaviour and modelling 

approaches used in the literature to capture toughening mechanisms 

present in the fracture of fibre-reinforced composites. 

To limit the scope of this review, dynamic fracture and fatigue loading of 

materials exhibiting fibre bridging are not considered, but it has been 

studied by numerous researchers [1–3]. Mixed mode loading is reviewed 

briefly, however it has been shown that fibre bridging is motivated by mode 

I loading (Figure 2-13) [4].  

2.2 Beam bending 

A beam is a long structural element that typically deforms in bending. To 

simplify analyses, considerations based on slender beams are often 

considered rather than those of thick beams. Common cross-sectional beam 
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profiles include rectangular, circular and I-beam. Beams can be modelled 

using theories such as simple beam theory, Euler-Bernoulli beam theory and 

Timoshenko beam theory. These methods relate beam deflections, applied 

load, reaction forces and moments, beam curvature and local slope. 

The three-dimensional theory of elasticity is the most accurate form of 

modelling beam bending; but is often difficult to implement. Timoshenko 

beam theory, Euler-Bernoulli theory and two-dimensional elasticity are 

common simplifications of the three-dimensional theory of elasticity. Euler-

Bernoulli theory (also known as simple beam theory) is the most common of 

these theories and is a special case of Timoshenko beam theory. A 

comparison of linear beam theories has previously been published [5]. 

2.2.1 Euler-Bernoulli beam theory 

Euler-Bernoulli beam bending theory, a simplification of linear elasticity, is 

used to calculate the deflection of beams. It is a simplification of the 

Timoshenko beam theory, that neglects the effects of shear loading. The 

Euler-Bernoulli equation relates the beam deflection to the applied load, 

slope, curvature, bending moment and shear force through a series of 

differential equations. If the flexural rigidity, 𝐸𝐼, is constant the equations 

can be written as: 

 
𝐸𝐼 

𝑑4𝑦

𝑑𝑥4
= −𝑤(𝑥) 

2.1 

 
𝐸𝐼 

𝑑3𝑦

𝑑𝑥3
= 𝑉(𝑥) 

2.2 

 
𝐸𝐼 

𝑑2𝑦

𝑑𝑥2
= 𝑀(𝑥) 

2.3 

 
 
𝑑𝑦

𝑑𝑥
= 𝜃(𝑥) 

2.4 

Where 𝑦 is the deflection of a point on the beam, 𝑤 is the applied load, 𝑥 is 

the distance along the beam, 𝑉 is the shear force, 𝑀 is the internal moment, 

𝜃 is the slope of the beam, 𝐸 is the bending modulus and 𝐼 is the second 
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moment of area. The second moment of area for a beam with rectangular 

cross section is written below. From this, the beam thickness, ℎ, has a 

greater impact on 𝐼 than the beam width, 𝑏. 

 
 𝐼 =

1

12
𝑏ℎ3 

2.5 

The Euler-Bernoulli theory is limited to slender beams as it does not account 

for shear affects. The main assumptions in this theory are that: 

1. The beam is subject to pure bending, there is no shear force. 

2. Plane cross-sections remain planar during deformation. The cross-

section does not vary along the length of the beam. 

3. The deformed beam slopes are small (Such that sin(𝜃) ≈ 𝜃), hence 

small deflections are considered.  

4. The beam is initially straight and free of internal stresses. 

5. The beam is isotropic and homogeneous across any cross-section. 

6. The material is assumed to be linear elastic. 

7. The beam has an axis of symmetry in the plane of bending. 

8. The beam will fail by bending rather than by buckling or in 

compression. 

The classic formula for determining the bending stress in a beam subject to 

simple bending is the flexure formula, shown below in equation 2.6.  

 𝜎

𝑞
=
𝑀

𝐼
=
𝐸

𝑅
 

2.6 

Where 𝜎 is the internal stress, 𝑞 is the distance from the neutral axis, 𝑀 is 

the internal moment, 𝐼 is the second moment of area, 𝐸 is the Young’s 

modulus and 𝑅 is the radius of curvature. 

In order to solve the Euler-Bernoulli beam equations (equations 2.1 to 2.5), 

boundary conditions must be specified to solve for constants of integration. 

In simple load cases, an analytical solution to these equations can be found. 

Numerically, Runge-Kutta iterative methods are commonly used to 

approximate the system of differential equations [6,7].  
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The end conditions of a beam dictate the integration constants needed to 

solve the system of equations governing the behaviour of the beam. These 

conditions include, for example, simply supported at both ends, fixed, 

overhanging on one or both ends, cantilever beams fixed at one end and 

trussed beams supported by cables or rods. Figure 2-1B shows some of these 

conditions and the implications for the quantities shown in equations 2.1 to 

2.5. 

 

Figure 2-1 A) cantilever beam and loads which are commonly applied to such a structure. B) 

End conditions C) 4th order differential equations used in beam theory. 

2.2.2 Timoshenko beam theory 

Timoshenko beam theory is a more general case of beam bending theory 

than Euler-Bernoulli beam theory as it accounts for the effects of shear and 

rotary inertia. This theory is suitable for thick beams and composite 

sandwiches, where Euler-Bernoulli theory would not be appropriate. It is 

assumed that deformation does not affect beam thickness and the surface 

normals to the axis of the beam remain straight after deformation. The 

equation is 4th order, like the Euler equation; but also contains a 2nd order 

differential term, making it more difficult to solve analytically and 

numerically. 
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𝐸𝐼 

𝑑4𝑦

𝑑𝑥4
= 𝑤(𝑥) −

𝐸𝐼

𝑘𝐴𝐺

𝑑2𝑤

𝑑𝑥2
 

2.7 

Where 𝑦 is the deflection of a point on the beam, 𝑤 is the distributed load, 

𝑥 is the distance along the beam,  𝐸 is the bending modulus, 𝐼 is the second 

moment of area, 𝐴 is the cross-sectional area, 𝐺 is the shear modulus and 𝑘 

is the Timoshenko shear coefficient. Note that, this Timoshenko equation 

(equation 2.7) will collapse to the Euler-Bernoulli equation if the effects of 

shear are ignored. In this case, 𝐺 would be set to infinity to provide rigidity 

to shear deformation, forcing the 
𝐸𝐼

𝑘𝐴𝐺
 term to 0. 

The shear coefficient depends on the Poisson’s ratio and generally must 

satisfy: 

 
∫𝜏 𝑑𝐴 = 𝑘𝐴𝐺𝜑
 

𝐴

 
2.8 

where 𝜑 is the beam rotation. Cowper found that the shear coefficient can 

be expressed in terms of the Poisson’s ratio for solid rectangular and circular 

cross sections [8]. 

Rectangular: 

 
𝑘 =

10(1 + 𝜈)

12 + 11𝜈
 

2.9 

Circular: 

 
𝑘 =

6(1 + 𝜈)

7 + 6𝜈
 

2.10 

It is valid to use Euler-Bernoulli theory rather than Timoshenko beam theory 

when shear is low. The threshold value for low shear force is calculated in 

equation 2.11. 

 𝐸𝐼

𝑘𝐿2𝐴𝐺
≪ 1 

2.11 
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However, it is often simpler to use a criterion based on the specimen aspect 

ratio. An aspect ratio of 10 to 1 or 20 to 1 is commonly used to assume the 

Euler-Bernoulli theory is valid.  

2.3 Composite structures 

A composite material is a non-homogenous mixture of two or more 

component materials typically with different physical, chemical or 

electromagnetic properties. Here, the focus is on fibre-reinforced 

composites which can also be referred to as fibre-reinforced polymers (FRP). 

However, other types of composites exist for example: reinforced concrete, 

fibre metal laminates, honeycomb materials and synthetic foams. 

While synthetic composites are most commonly discussed in engineering 

literature, natural materials can also be considered as composites. Natural 

timber and engineered timber composites are commonly used in the 

construction industry. Natural composite materials are relevant in 

biomedical fields; for example, fibrous biological tissue such as adipose 

tissue. Both biomedical and timber natural composites experience extrinsic 

toughening mechanisms similar to those found in FRP [9–12]. 

The main advantage of composite materials, and in particular fibre-

reinforced polymers, is their high strength to weight ratio. As FRP lamina are 

non-isotropic, laminates typically consist of layers at different orientations 

to provide additional load bearing capacity in the transverse directions. Due 

to their lightweight nature, composite materials are increasingly being used 

in the construction of aircrafts [13], aerospace applications [14,15], the 

automotive industry [16] and in biomedical settings [17]. 

Composites are anisotropic by nature. A unidirectional composite material’s 

strength in the tensile direction is approximately 15 – 50 times higher than 

in the shear direction [18]. This highly anisotropic nature means that single 

laminates are not used in practice. Composite layups are commonly 

manufactured from multiple laminates to improve material properties in the 

shear directions. Unidirectional (UD) laminates consist of multiple layers all 
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orientated in the same direction; while multidirectional (MD) laminates 

consist of layers in different orientations to provide tensile strength along 

more than one axis. Common angles used include 0°, 30°, 45°, 60° and 90°. 

Each laminate is made up of several plies. Each of these plies consist of fibre 

tows aligned in a principal direction of the ply, and a resin/matrix material 

around the fibre tows (Figure 2-2). 

 

Figure 2-2 Left: a single ply consisting of fibre tows in a polymer matrix. Right: a composite 

layup consisting of laminates orientated at different angles. Each laminate typically consists 

of several plies orientated in the same direction. Original image source: [19] 

2.4 Fundamental fracture mechanics  

During fracture or delamination, there can be significant toughening behind 

the crack tip in fibre-reinforced composites. The fibrous nature of these 

materials effects the behaviour at the interface. Fibres from neighbouring 

surfaces remain attached during fracture. This causes an attractive force to 

act across the interface and increase the energy requirement for further 

separation. This phenomenon is an extrinsic toughening mechanism known 

as fibre bridging.  

Fibre bridging in composite materials increases the material fracture 

toughness, decreasing the likelihood of crack propagation. This process has 

received much attention in academic literature. Fibre laminates are used in 

many applications for composite materials, such as aircraft wing and tail fin 

surfaces, wind turbine blades, and increasingly in the automotive industry. 

Under impact loading, delamination of neighbouring plies is an important 

failure mechanism. In the context of these failures, both intrinsic and 

extrinsic toughening mechanisms occur in composite materials [20–22]. 

Note that, intrinsic toughening mechanisms refer to mechanisms acting 
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ahead of the crack tip, while extrinsic mechanisms act in the wake of the 

crack tip. Fibre bridging is of interest in engineering applications as the 

additional extrinsic toughening, which may be fully realised under impact 

loading and subsequent delamination, could be the deciding factor between 

a destructive brittle failure and a controlled ductile failure.  

 

Figure 2-3 Examples of intrinsic (acting ahead of the crack tip) and extrinsic (acting behind 

the crack tip) toughening mechanisms. Image adapted from Liu et al. [23] 

2.4.1 Griffith fracture theory: Crack initiation and crack propagation  

Linear elastic fracture mechanics (LEFM) in brittle materials, including crack 

initiation and propagation theory, is largely based on the fundamental work 

of Griffith [24]. The Griffith theory states that a crack propagates if the 

reduction in potential energy (that occurs due to crack growth) is greater 

than or equal to the increase in surface energy due to the creation of new 

free surfaces. This theory is applicable to elastic materials undergoing brittle 

fracture. Griffith found that the energy release rate is defined as the rate of 

change of the potential energy with respect to the rate of fracture surface 

creation. 
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𝐺 =  

𝜕𝛱

𝜕𝑠
 

2.12 

Where 𝑠 is the fracture surface and Π is the potential energy, given below in 

equation 2.13.  

 
𝛱 = ∫𝑊 𝑑𝑉

 

𝑉

− ∫ 𝒕 ∙ 𝒖 𝑑𝑆
 

𝑆𝑡

−∫𝒃 ∙ 𝒖 𝑑𝑉
 

𝑉

  
2.13 

The potential energy Π can be written in terms of the strain energy density 

𝑊, the region occupied by the body 𝑉, the surface upon which the tractions 

𝒕 are prescribed  𝑆𝑡, the displacement field 𝒖, and the body force 𝒃. 

 

Figure 2-4 a) A cracked linear-elastic material subject to a point load. b) Load-displacement 

plot for a displacement-controlled crack. The shaded region indicates the reduction in elastic 

energy associated with the crack increment Δ𝑎. Image source Zehnder [25] 

The energy released in the generation of a new fracture surface is calculated 

by taking the limit of the energy release rate as the crack increment tends to 

zero. The energy release rate can be expressed as: 

 
𝐺 =  − 𝑙𝑖𝑚

𝛥𝑎→0

1

𝐵

𝛥𝛱

𝛥𝑎
   

2.14 

The key points of Griffith’s work that are used as building blocks in later 

research are that (i) crack initiation can be predicted to occur when the 

energy release rate exceeds a critical value and (ii) the shape of the 

material/specimen affects the critical release rate value. i.e., stress 
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concentrations differ based on test geometry. (iii) the crack will continue to 

propagate while the energy release rate is above this critical value. 

The role intrinsic toughening mechanisms play in the fracture of  traditional 

engineering materials is well studied, for example plasticity behind a crack 

tip in steels and other ductile metals [26]. The Griffith energy criterion for 

elastic crack propagation holds for an elastic, homogenous material; there 

are issues encountered in less idealised materials. Plasticity around the crack 

tip affects the energy balance [27]. Similarly, the introduction of fibres to the 

material changes the failure mode from a straightforward crack front 

advancement to include matrix cracking which is influenced by the presence 

of fibres, activating extrinsic toughening mechanisms. Extrinsic toughening 

mechanisms act behind the crack tip to increase fracture toughness as the 

crack propagates. These toughening mechanisms are not well understood. 

Of particular relevance to composite materials is fibre bridging, whereby 

fibres from neighbouring plies remain attached to both delaminated layers. 

Griffith theory was developed with brittle elastic materials. Irwin developed 

a modification to Griffith theory to handle plasticity around the crack tip 

[28], making the theory applicable to ductile materials. The modification 

accounts for energy dissipation due to heat generated by plastic loading and 

unloading near the crack tip. The total energy is then twice the surface 

energy plus a plastic dissipation term. 

It was noted by Sills and Thouless [29] that the terms plasticity and damage 

can be used to describe the same phenomena depending on the definition 

of the crack tip. The crack tip is theoretically a point where the separation 

between layers is zero and the adjacent point has a finite separation. In 

practice, the theoretical crack tip is too difficult to use consistently. While 

plasticity acts ahead of the crack tip, this can also be thought of as intrinsic 

damage. 
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2.4.2 The J-integral 

The J-integral is a path independent line integral around a crack tip, it 

represents a method of calculating the strain energy release rate in a 

material. Inspired by difficulties involved in computing stresses near the 

crack surface in elastic and elastic-plastic materials. The J-integral can also 

be used to compute the energy release rate of plastic materials, assuming 

monotonic loading (and no plastic unloading). 

The J-integral, developed by Rice [30], is the most common method of 

determining the traction separation law, used by numerous researchers as 

outlined by Sørensen and Jacobsen [31]. The J-integral is equivalent to the 

fracture toughness 𝐺 in isotropic, perfectly brittle, linear elastic materials. 

The expression for the J-integral is shown below. 

 
𝐽 =  ∫ (𝑊 𝑑𝑦 − 𝑡𝑖

𝜕𝑢𝑖
𝜕𝑥

 𝑑𝑠)
 

𝛤

    
2.15 

Where 𝑊 is the strain energy density, (𝑥, 𝑦) are the coordinate directions 

with 𝑥 running in the direction of crack propagation, 𝑡 is the surface traction 

vector, 𝑢 is the displacement vector and Γ is the region on which to 

integrate.  

In monotonic mode I and mode II loading of elastic-plastic materials, the 

quantity J is no longer path-independent, so only a contour very close to the 

crack tip gives the energy release rate. As the J integral commonly assumes 

the crack surface is not loaded. Rice has also shown that the J-integral is 

path-independent in plastic materials when non-proportional loading is not 

present.  

Experimental methods using the J integral were developed to measure 

critical fracture properties when sample sizes are too small for LEFM to be 

valid [32].  

The integral is computed by taking a closed contour path around the crack 

tip. The contour is then split into four regions, as shown in Figure 2-5. The J-
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integral has the same form as the static component of the energy 

momentum tensor introduced by Eshelby [33].  

 

Figure 2-5 Paths taken for J-integral calculation in a 2-dimensional elastic-plastic material. 

 
𝐽 =  ∫  

 

𝛤1

+ ∫  
 

𝛤2

+∫  
 

𝛤3

+∫  
 

𝛤4

= 0   
2.16 

Noting the assumption that the crack surface is not loaded, Γ3 and Γ4 are 

assumed to be zero. Hence: 
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∫  
 

𝛤1

= −∫  
 

𝛤2

 
2.17 

Depending on the material, the integrals in equation 2.17 are calculated 

differently. If a far field stress is applied to the material and the path Γ1 is 

entirely in the elastic zone as shown in Figure 2-5, then the J-integral is: 

 𝐽𝛤1 = 𝜋(𝜎𝑓𝑎𝑟)
2

 2.18 

If the path is chosen to be entirely in the plastic domain, Hutchinson [34] has 

shown that: 

 𝐽𝛤2 = −𝛼𝐾
𝑛+1𝑟(𝑛+1)(𝑠−2)+1𝐼 2.19 

Where 𝐾 is the stress amplitude 𝑟, 𝜃 is a polar coordinate system with the 

origin at the crack tip, 𝑠 is a constant and 𝐼 is a dimensionless integral.  

The practical use of the J-integral is later discussed. Determination of 

cohesive laws is possible by measuring the J-integral and the specimen end 

opening with pure bending moments [31].  

2.4.3 Failure modes and mixed mode loading 

Crack propagation can be brought on by applying a force in one or more of 

three opening modes. These modes are known as fracture modes. Mode I 

opening occurs when a tensile force is applied normal to the plane of the 

crack. Mode II sliding occurs when a shear stress acts parallel to the plane of 

the crack and perpendicular to the crack front. Mode III tearing occurs when 

a shear stress acts parallel to the plane of the crack and parallel to the crack 

front. The three modes are shown in Figure 2-6. 
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Figure 2-6 Fracture modes. Mode I: opening. Mode II: sliding. Mode III: tearing. Image 

source: [35] 

Considering mode I loading of an elastic material. The material’s 

deformation is recoverable without any permanent deformation to the 

material. Assuming there is no plasticity, which will introduce permanent 

material deformation, the load displacement response deviates from linear 

in the presence of a crack. The crack initiates at the transition from linearity 

to non-linearity, when the applied load has exceeded a critical value dictated 

by the material. The load carrying capacity of the material then continues to 

decrease as the crack propagates.  

 

Figure 2-7 Drop in load carrying capacity of a material as a crack initiates and subsequently 

propagates following elastic behaviour. 
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In a computational framework, mixed mode loading can be analysed by 

combining cohesive laws for the modes to be considered or some other 

combination of the laws. For example, if an element was experiencing 0.01 

mm displacement in mode I opening and 0.005 mm displacement in mode II 

opening and behaves in accordance with the traction separation laws shown 

below (Figure 2-8); the behaviour is calculated from the mode I and mode II 

behaviours, based on the following equations (2.20 and 2.21). The 

commercial finite element software ABAQUS use two measures on mode 

mixity, based on energy and traction. It is also possible to handle modes 

separately and use the maximum damage parameter from either loading 

mode [36]. 

 
(
〈𝑡𝑛〉

𝑡𝑛
0 )

2

+ (
𝑡𝑠
𝑡𝑠
0)

2

+ (
𝑡𝑡
𝑡𝑡
0)

2

= 1 
2.20 

 
𝐺𝑐 = 𝐺𝑛

𝑐 + (𝐺𝑠
𝑐 − 𝐺𝑛

𝑐) (
𝐺𝑠
𝐺𝑇
)
𝜂

 
2.21 

Where 𝐺𝑛, 𝐺𝑠 , 𝐺𝑡 and 𝐺𝑇 are the energies in the normal, first and second 

shear directions and the total energy respectively. 𝐺𝑇 = 𝐺𝑛 + 𝐺𝑠 + 𝐺𝑡 . 

 

Figure 2-8 Mixed mode response for cohesive elements in the finite element software Abaqus  
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2.4.4 The crack growth resistance curve (R-curve) 

Fracture toughness, �̂�, is not directly measured experimentally, hence it is 

evaluated using methods based on linear elastic fracture mechanics such as 

the compliance calibration method as used by [37,38] or the J-integral as 

used by [39,40]. Common methods for determining �̂�  are outlined in the 

ASTM standards [38] and include beam theory, modified beam theory, the 

compliance calibration method and the modified compliance calibration 

method. These methods all consider the change in beam compliance. 

Corrections are applied for loading block rotation, large displacements, and 

crack tip rotation. Details of these approximations are provided in section 

2.5.4.1.  

The crack growth resistance curve, also known as the R-curve, characterises 

the evolution of a material’s fracture toughness as the crack propagation 

increases. Typically, the fracture energy increases monotonically up to a 

plateau; the plateau is achieved once a steady distribution of bridged fibres 

is created behind of the crack tip. In this scenario, bridged fibres which either 

undergo tensile failure or complete detachment from one of the surfaces 

are replaced by new fibres entering the bridging zone at the crack tip 

allowing the fracture energy to achieve a steady state. Materials exhibiting 

fibre bridging usually have an increasing R-curve; with the resistance to crack 

propagation increasing as the amount of fibre bridging increases. The 

amount of fibre bridging increases as the crack propagates until it reaches a 

steady state. The R-curve will reach a steady state value when a steady state 

distribution of fibres has been achieved. 

R-curves are generally presented following a double cantilever beam (DCB) 

experiment. DCB experiments typically measure load, load-line 

displacement and crack propagation, this data is used to produce fracture 

resistance curves (R-curves) for a given material by approximating  �̂� using 

the J-integral of a LEFM method as outlined above (equations 2.27 to 2.30). 

Computational models attempt to replicate these R-curves and load-
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displacement plots, to show the applied traction separation curve is 

accurate for the material being modelled.  

Rising R-curve behaviour cannot be due to intrinsic mechanisms as they act 

ahead of the crack tip, hence the total intrinsic energy is realised on crack 

initiation. At this point extrinsic energy begins to be realised. An increase in 

R-curve behaviour is not always associated with fibre bridging. Other 

extrinsic toughening mechanisms can cause this type of behaviour. 

Heidari-Rarani, et al. propose a trilinear traction separation model for 

unidirectional DCB specimens under large-scale fibre bridging. The R-curve 

fracture energy changes from initiation toughness, 𝐺𝑖, to steady state 

toughness, 𝐺𝑠𝑠, over the length of the process zone, 𝑙𝑝𝑧. Experimental results 

show that the rise in the R-curve corresponds with the length of the process 

zone. [40] 

 

Figure 2-9 Fracture resistance curve (R-curve) (Source: [40]), relating fracture toughness to 

crack length. The fracture toughness increases on crack initiation until a steady state 

distribution of fibres is reached. 

Crack growth stability is achieved if the strain energy release rate is less than 

the crack growth resistance curve. Materials that exhibit fibre bridging 

increase their fracture resistance 𝐺𝑅 as the crack propagates. Unstable crack 
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growth can stabilise if the strain energy release rate is less than the fracture 

energy at that crack length according to the R-curve, 𝐺 < 𝐺𝑅. 

 

Figure 2-10 The crack growth resistance is shown in Green. Two loading scenarios are shown 

in red (dashed and solid). In the dashed case, the crack will propagate in an unstable manner 

as the energy release rate is always above the crack growth resistance 𝐺 > 𝐺𝑅. In the case of 

the solid red line, the crack will stabilise when 𝐺 < 𝐺𝑅.  

The measured load-displacement response and R-curves are specimen 

dependent; it depends on beam properties such as laminate thickness, 

modulus, and pre-crack length. Using the J-integral to calculate bridging law 

parameters, Shokrieh, et al. [41] investigated the effect of initial crack length 

on unidirectional glass/epoxy DCB specimens. It was found experimentally 

that the initial crack length only slightly affects the shape of the traction-

separation law. Gutkin, et al. also conducted a coupled experimental and 

computational study showing that an R-curve is specimen dependent. [42] 

As the R-curve shows fracture energy as a function of crack length, the 

definition of crack length (and crack tip in particular) is important. Definition 

of the crack tip is more difficult when fibre bridging is present. Difficulty 

arises in experimental observations due to extrinsic toughening mechanisms 

obstructing the view of the crack tip. In computational research, the crack 
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tip can be defined more consistently based on the separation of the surfaces, 

but a finite separation is still required. 

The crack length can be defined using approximations such as the 

compliance calibration method (equation 2.22). The crack can also be 

defined by observation, with the crack length being measured from an 

arbitrary crack tip (visually identifiable) to the point of load application 

(where the Crack Tip Opening Displacement (CTOD) is measured). The crack 

tip separation must have a finite value to allow detection using visual 

techniques such as a microscope or magnifying glass. 

 

𝑎 = √
3

2
𝐸𝐼𝐶

3

 

2.22 

In computational work using the finite element method, the Virtual Crack 

Closure Technique (VCCT) can also be used to approximate the crack length. 

VCCT assumes that the strain energy dissipated for a crack extension 𝑑𝑎 is 

equal to the energy required to close the crack by the same amount. This 

method is a well-established method for computing the energy release rate 

when analysing fracture problems via the finite element method. VCCT is 

commonly used in mixed mode fracture problems. A drawback of the VCCT 

is that assumptions about crack growth must be made, such as the location 

of cracks, number of cracks and crack lengths.  

2.5 Fracture of fibre-reinforced laminates 

2.5.1 Failure mechanisms  

In composite laminates, there are additional failure mechanisms to consider 

compared to an isotropic homogeneous material. Different failure 

mechanisms exist due to the material heterogeneity and the presence of 

interfaces between material phases (both interlaminar and intralaminar).  

Matrix cracking is a major pattern in the failure of composites. Cracks in the 

matrix occur during manufacture or on an impact event for example. This 

can occur at laminate level or inside a single lamina/ply. Fibre debonding is 
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another intralaminar failure mechanism in which the bond between matrix 

and fibre is compromised. Shear-driven fracture of fibres can also occur 

(typically in mixed mode loading). As fibres are non-isotropic, shear loads 

required for fibre failure are typically lower than uniaxial. 

Delamination between laminates or plies is an interlaminar failure 

mechanism in which neighbouring laminates/plies debond from one 

another. In fibre reinforced materials, fibre bridging typically occurs in 

delaminated regions. During delamination, fibre pull out can occur. This is a 

failure mechanism for bridging fibres whereby one end of the bridging fibre 

pulls out from the crack surface removing the load carrying capacity of that 

fibre. Another failure mechanism associated with bridging fibres (although 

it is also associated with internal fibres) is fibre breakage or rupture, 

whereby the tensile limit of the fibre is exceeded causing the fibre to fail. 

 

Figure 2-11 Fibre tows inside a matrix (right) showing failure mechanisms in a composite 

ply. Delamination occurs between laminates/plies (left) Image source: Noels [43]. 

2.5.2 Fibre bridging 

On delamination or matrix failure, the fibres in the composite matrix can 

bridge between the cracked surfaces providing a traction between the 

previously bonded matrix surfaces in a process known as fibre bridging or 

crack bridging. This is an extrinsic toughening mechanism which acts behind 

the crack tip increasing fracture toughness in the wake of crack propagation. 
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During crack propagation, the density of fibres bridging the interface 

increases, raising the energy requirement for crack propagation, until a 

steady state distribution of fibres is reached. At which point there is a 

constant turnover of fibres at the interface, where fibre breakage or pull-out 

at one end of the interface is balanced by new fibres bridging the interface 

at the other end of the crack. Examples of fibre bridging in different material 

types are shown below in Figure 2-12. 

 

Figure 2-12 A) Fibre bridging in CFRP [44]. B) Fibre bridging across a microcrack in 

concrete [45]. C) fibre bridging in unidirectional GFRP not present in woven material [46]. 

D) fibre bridging in biological materials (bone and bone like materials) [47] 

Fibre bridging is motivated by mode I opening, but mode II or mode III 

loading affects the behaviour of bridging fibres. Fibres typically do not 

provide a high resistance to mode II or III loading as they are comparatively 

weak to shear loading, as such the directional modulus is typically much 

higher for mode I loading [18,48]. Loading of fibres in pure mode II or pure 

mode III is not considered in this review. Naturally, there are loading 

scenarios where more than one fracture mode is to be considered (mixed 
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mode loading). Fibre bridging is relevant to mixed mode loading involving 

mode I opening. 

  

Figure 2-13 Side profile image of bridging fibres in a DCB test with various amounts of 

mixed mode I / mode II fracture [4] 

From Figure 2-13, pure mode II shows little fibre bridging, Fibre bridging is 

most prevalent in pure mode I loading and the amount of bridging fibres 

visually decreases as higher levels of mode II are introduced. 

2.5.3 Experimental observations of fibre bridging and computational 

models 

While fibre bridging is of interest in engineered composite materials [49,50], 

such as CFRP [51],  GFRP [52] and other fibre rich epoxies [40]; this 

mechanism also occurs in a range of different materials such as fibrous 

biological tissue (e.g. Liver tissue [53], adipose tissue [54], frozen arteries 

[55] and the cornea [12]) and timbers [9,10]. 

As an inter-laminate crack propagates in a DCB, the bridging fibres exert 

tractions on the delaminating surfaces, arresting the crack propagation. The 
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effect of fibre bridging is observed experimentally via the monotonic 

increase in fracture toughness or energy release rate with increasing crack 

length, shown in Figure 2-10. The initial value in the crack growth resistance 

(or R-curves), is set by the energy required for crack initiation. The amount 

of energy required to advance the crack front then increases as the amount 

of fibre bridging increases. The fracture toughness plateaus once new fibres 

bridging the interface compensate fibre breakage or fibre pull out at the 

other end of the crack. 

Experimental research is often coupled with a computational component. 

Computationally, the effect of fibre bridging is often captured using 

continuum methods such as a traction separation law (TSL); rather than 

modelling discrete fibres bridging a crack interface. A TSL relates the local 

separation between surfaces to the attractive force between these surfaces. 

The different computational methods of capturing interfacial behaviour are 

discussed in section 2.6 with the finite element method.  

The relationship between the behaviour of a single fibre and the continuum 

level behaviour (as represented by a TSL) are not well described although 

there have been several models proposed. Most of these models involve a 

single fibre bridging an interface but multiple fibres can also be modelled. 

The role fibre bridging plays in crack deflection is difficult to predict, 

Thouless has a number of papers on the topic of energy dissipation around 

a crack in a fibre rich material [56,57]. Sørensen [58] extended a fibre cross-

over model of Spearing and Evans [59] which considered mode I opening to 

a mixed mode model by considering a tangential crack opening 

displacement. This model can predict coupled mixed mode traction 

separation laws. This study found that toughening due to cross-over bridging 

is predicted to be much higher under mode II and mixed mode than pure 

mode I. Sørensen found that both normal and shear stresses depend on the 

normal and tangential crack opening displacements.  
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In fibre rich materials, bridged fibres can fail due to fibre breakage (either by 

stretching or tearing), fibres pulling out of the debonding surfaces, fibre 

buckling, fibre bending or fibre splitting. In a recent study [60], Sørensen also 

developed a micromechanical model for a single fibre fragmentation test. In 

this, the interface is characterised by an interfacial fracture energy and a 

frictional sliding shear stress. 

Fibre bridging depends on the composite’s constituent materials and 

specimen geometry [52]. An analytical approach is applied to a DCB 

specimen to express the through the thickness longitudinal strains in terms 

of the load and bridging tractions. Results show that the specimen thickness 

affects the form of the traction separation law but does not affect maximum 

crack opening displacement or the maximum stress in the traction 

separation law.  

Typical observations of fibre bridging show over a doubling of the total 

energy compared to the intrinsic energy, as shown in Figure 2-14 [40,41,61]. 

This is observed in both carbon fibre laminates [61] and glass fibre laminates 

[40,41]. These tests also showed that (i) The initial slope of the load-

displacement response is dependent on the pre-crack length, but the R-

curves produced are not significantly different [41]. (ii) High levels of fibre 

bridging can make traditional fracture theories, such as the corrected beam 

theory, inappropriate for approximating the crack length in the DCB method 

[61]. (iii) A bilinear cohesive model cannot replicate this rising R-curve 

behaviour [40]. 

 

Figure 2-14 Experimental fracture resistance curves for E-glass/epoxy laminates [41] (left), 

carbon/epoxy laminates [61] (middle), E-glass/epoxy laminates [40] (right) 
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2.5.4 Fracture test methods in the presence of fibre bridging 

In the absence of extrinsic toughening mechanisms (in materials such as 

steel), the fracture toughness is commonly found using a compact tension 

test. This fracture toughness data can then be used to define the traction 

separation law, or interface law, for that material. However, when fibre 

bridging is present the experimental determination of traction separation 

laws becomes more difficult.  

Numerous test methods have been designed to test the fracture, adhesion, 

and cohesion of fibre composite materials. Examined in this review: The 

ASTM DCB fracture test as used by [42,51,62,63], the peel test as used by 

[64–66], the compact tension (CT) test as used by [67,68] and the end 

notched flexure test (ENF) as used by [69–71]. All these test methods subject 

the fibres in a composite to tensile loading. 

 

Figure 2-15 Fracture test methods A) DCB [62]. B) Common peel test configurations a) 90° 
peel test b) 180° peel test c) climbing drum peel test d) T-peel test [72].  C) CT specimen 

[73]. D) three point bend test also known as ENF test [74]. 

The compact tension (CT) test method can be performed in accordance with 

ASTM standards [75]. This test is useful to measure intrinsic toughening 

mechanisms; however, it has limited effectiveness when extrinsic 

mechanisms are present as the specimens are typically narrow and do not 
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have enough material present for the extrinsic mechanism to fully develop 

and the fibre orientation can affect the crack path [68]. The aspect ratio of 

the specimen makes the shear components of the load significant, whereas 

shear components are negligible in other test methods such as the Double 

Cantilever Beam (DCB) test. 

The peel test is used to test the strength of adhesive bonds. The test can be 

conducted in various set ups but the most common set ups are the 90 degree 

peel test [76] and the T-peel test [77]. These tests are conducted to ASTM 

standards. The tests measure the load requirement to break adhesive bonds 

between the adherend surfaces. 

The ENF test method [78] is used to determine the fracture toughness for 

mode II opening. While this behaviour is not critical for fibre bridging, as 

fibre bridging is mode I motivated [4], the mode II behaviour is important in 

mixed mode loading scenarios. 

 Standardised fracture test methods: The ASTM DCB test 

Double cantilever beam (DCB) fracture tests often exhibit fibre bridging 

[51,52,79]. Depending on the material tested this effect can act over a large 

displacement [80] or a short displacement [81–83]. Even if fibre bridging acts 

over a seemingly short distance, it can still significantly affect the evolution 

of fracture toughness. The rate of increase of fracture toughness is of 

interest in cases where the full extrinsic toughness is not realised. DCB tests 

are most commonly performed in compliance with a standardised 

procedure. The most commonly used standards include the ASTM standard 

[38] and the ISO standard [84]. These procedures are broadly similar, hence 

only the ASTM standard will be discussed to avoid duplication. 

Test specimens are generated from unidirectional 0° laminates, measuring 

a minimum of 125 mm long and nominally from 20 to 25 mm in width. The 

thickness is normally between 3 and 5 mm. A pre-cracked region is created 

by using a non-adhesive insert in the midplane of the laminate to form an 

initiation site for the delamination. The film is no thicker than 13 𝜇m. The 
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initial delamination length and specimen height should satisfy equations 

2.23 and 2.24 respectively. 

 

𝑎0 ≤ 0.042 √
ℎ3𝐸11
𝐺1𝑐

 
2.23 

 
ℎ ≥ 8.28 (

𝐺1𝑐𝑎0
2

𝐸11
)

1/3

 
2.24 

Where 𝑎0 is the pre-crack length, 2ℎ is the specimen thickness, 𝐸11 is the 

modulus in the fibre direction, and 𝐺1𝑐 is the mode I fracture toughness. The 

standard states that at least five test specimens should be used for statistical 

significance unless valid results can be obtained from fewer specimens, such 

as the case of a designed experiment. 

The test is conducted by attaching the specimen to a tensile test machine 

using either loading blocks or piano hinges. The test is load-controlled.  

Loading blocks or piano hinges are attached to the pre-cracked end of the 

specimen to allow the specimen to attach to the tensile test machine. 

Loading blocks should be as small as possible to minimise errors as a result 

of the applied moment arm. The correction factor 𝑁 should be applied 

(equation 2.26) if the following criteria is not met: 

 

𝑡 ≤
ℎ

4
+ 0.01 √

0.0434ℎ3𝐸11
𝐺1𝑐

+ 𝑎2  
2.25 

 
𝑁 = 1 − (

𝐿′

𝑎
)

3

−
9

8
[1 − (

𝐿′

𝑎
)

2

] (
𝛿𝑡

𝑎2
) −

9

35
(
𝛿

𝑎
)
2

  
2.26 

Where 2𝐿′ is the width of the loading blocks and 2𝑡 is the height of the 

loading blocks. In the case of piano hinges, 𝐿′ =  0 and 2𝑡 is the thickness of 

the hinge when closed. 

The onset of delamination can be determined by three methods (Figure 

2-16A): 
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• Deviation form linearity (NL) – This method assumes that the 

delamination starts to grow when the load displacement plot 

deviates from a linear response. 

• Visual observations (VIS) – A visual initiation value of 𝐺1𝑐 is recorded 

at the visual onset of delamination. This method usually involves a 

microscope or a mirror. 

• 5% Offset/Maximum Load (5%/Max) – The value of initiation 𝐺1𝑐 is 

calculated from the intersection of the load-displacement curve and 

a line drawn from the origin with a 5% increase in the compliance 

from the original linear region of the load-displacement curve. 

The difference is between these methods is small. A tough matrix has slightly 

more variation in the initiation point than a brittle matrix. 

2.5.5 Approximating fracture toughness 

The fracture toughness of the material is approximated based on the load-

displacement response and the measured crack length. In some cases, the 

crack length is not measured and is approximated based on the compliance. 

The ASTM standard recommends measurement of the crack length.  

The approximation of fracture toughness is completed based on modified 

beam theory (MBT), compliance calibration method (CC), or the modified 

compliance calibration method (MCC), which are described in the following 

equations. Round robin testing found that the data reduction methods listed 

here differed by no more than 3.1% in the calculation of 𝐺1𝑐 [85]. 

MBT 
𝐺1 =

3𝑃𝛿

2𝑏𝑎
 

2.27 

MBT (crack tip 

rotation correction) 
𝐺1 =

3𝑃𝛿

2𝑏(𝑎 + |𝛥|)
 

2.28 

CC 
𝐺1 =

𝑛𝑃𝛿

2𝑏𝑎
 

2.29 
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MCC 
𝐺1 =

3𝑃2𝐶2/3 

2𝐴1𝑏ℎ
 

2.30 

These approximations are all based on linear elastic fracture mechanics. A 

derivation of the CC method is attached in the appendices as the CC method 

is used in research in this thesis.  

 

Figure 2-16 Parameters used in ASTM standard detailing mode I fracture of fibre-reinforced 

laminates [38]. A) Identification of crack initiation using three methods as outlined in ASTM 

standards. B) Definition of Δ used in Modified Beam Theory. C) Definition of 𝑛 used in 

Compliance Calibration method. D) Definition of 𝐴1 used in Modified Compliance 

Calibration method. 

Large displacements effects can be corrected for by applying the parameter 

𝐹 to the calculation of 𝐺1𝑐. This parameter accounts for both stiffening of 

the moment arm and tilting of the end block rotation.  

 
𝐹 = 1 −

3

10
(
𝛿

𝑎
)
2

−
3

2
(
𝛿𝑡

𝑎2
) 
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2.5.6 Determination of cohesive laws in the presence of fibre bridging 

Sørensen and Jacobsen showed that cohesive law definitions can be 

obtained by using the J-integral approach [31]. The cohesive laws predicted 

in this study agree with micro mechanical modelling. This method produced 

a good agreement for both a fibre cross-over bridging [58] problem and an 

adhesive joint problem. Sørensen also found that solutions were not 

obtainable in every case. In particular, it was necessary for the load to be 

applied via an end moment rather than through a conventional mode I 

opening [1]. While these findings are interesting in academia, they are less 

applicable in industry due to the non-standard fracture test method. 



Chapter 2: Background 

39 
 

The path independent J-integral can characterise the failure process zone 

under the assumption of bulk elastic behaviour, small strains, small 

displacements, and no body forces. Evaluating the J-integral locally along the 

crack faces enclosing the cohesive zone and the crack tip gives equation 2.32 

below relating the J-integral in this region 𝐽𝑙𝑜𝑐  to the stress 𝜎, opening 𝛿, end 

opening 𝛿∗ and J-integral around the crack tip 𝐽𝑡𝑖𝑝 (which is typically 

assumed to be zero). 

 
𝐽𝑙𝑜𝑐 = ∫ 𝜎(𝛿)𝑑𝛿 + 𝐽𝑡𝑖𝑝

𝛿∗

0

 
2.32 

The length of the cohesive zone and the end-opening increase as the crack 

propagates. Thus, the energy uptake of the cohesive zone increases in 

accordance with equation 2.32. The value of 𝐽 during crack growth, the 

fracture resistance 𝐽𝑅, increases as the crack propagates. This is R-curve 

behaviour as discussed in Section 2.4.4. When 𝛿∗ reaches a critical value the 

R-curve achieves a steady state value, 𝐽𝑠𝑠. 

 𝜕𝐽𝑅
𝜕𝛿∗

= 𝜎(𝛿∗) 
2.33 

Thus, by recording the J-integral and the end opening of the cohesive zone 

it is possible to derive the cohesive law. 

To use equations 2.32 and 2.33 above, it is necessary to relate 𝐽𝑙𝑜𝑐  to the 

applied loads. This can be done by evaluating the J-integral along the 

external boundaries to obtain 𝐽𝑒𝑥𝑡  which is equivalent to 𝐽𝑙𝑜𝑐  due to the path 

independence of the J-integral. 𝐽𝑒𝑥𝑡  cannot be obtained from LEFM; it must 

be obtained by analysing the J-integral along the specimen where the 

cohesive zone is present. In most cases, it cannot be obtained in closed form 

as 𝐽𝑒𝑥𝑡  depends on the details of the cohesive law. An exception to this is a 

DCB specimen loaded with pure bending moments, which can be solved 

analytically as shown by Sørensen [31], yielding the relationship between 

moment 𝑀, beam breadth 𝐵, beam height 𝐻, Young’s modulus 𝐸 and 

Poisson’s ratio 𝜈. 
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𝐽𝑒𝑥𝑡 = 12(1 − 𝜈2)

𝑀2

𝐵2𝐻3𝐸
 

2.34 

Thus 𝐽𝑒𝑥𝑡  can be determined by applied moment alone. The end opening is 

recorded experimentally using an extensometer mounted to the DCB 

specimen. Hence the cohesive law is defined by measuring (in practice) 

moment 𝑀 and end opening 𝛿∗. It should be noted that the test apparatus 

must apply pure bending moments and 𝐽𝑒𝑥𝑡  cannot be obtained in closed 

form for the DCB test [83]. 

2.6 The finite element method  

Here, the finite element method (FEM), a numerical approach to solving 

physical problems by discretising the problem domain into small elements, 

is discussed. FEM provides a discrete approximation of the differential 

equations governing a physical problem using numerical methods.  This 

method divides the problem domain into a finite number of nodes/points 

which are connected to provide a mesh of finite elements [86]. 

Finite element models are often completed in conjunction with 

experimental studies to provide additional insight into the problem. These 

models can be used to (i) validate experimental findings [40,41] (ii) compare 

to experiments and identify discrepancies (iii) reduce the parameter space 

needed to explore during physical experiments. 

The physical problems solved using FEM typically involve numerical 

calculation of the force and displacement at each of the nodes; and can also 

contain temperature and fluid flow effects. Both implicit and explicit 

solution methods exist and are commonly used. The research in this thesis 

uses the commercial finite element code ABAQUS with the implicit solver, 

developed by Dassault Systemes [36].  

In general, FEM follows the flowchart shown in Figure 2-17. Equation 2.35 is 

the characteristic equation of the Finite Element Method. In FEM the force 

vector 𝐹 is applied, the stiffness array 𝐾 is inverted to solve for the 

displacement vector 𝑢 [86]. 
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 𝐾𝑢 = 𝐹 2.35 

 

Figure 2-17 Flowchart of the finite element method.  

The finite element equation (Equation 2.35) can also be written in elemental 

form as shown in Figure 2-17; such that 𝐾𝑒𝑙 = 𝑡 ∑ 𝑊𝑝(𝐵
𝑇𝐷𝐵|𝐽|)𝑝

𝑛𝑖𝑛𝑡
𝑝=1  where 

𝐾𝑒𝑙 is the elemental stiffness, 𝑡 is the element depth, 𝑛𝑖𝑛𝑡 is the number of 

integration points, 𝑝 is the current integration point in the summation, 𝑊𝑝 

is the integration point weighting, 𝐵 and 𝐵𝑇 is the deformation matrix and 

its transpose, 𝐷 is the shape function matrix and 𝐽 is the Jacobian matrix. 

The full derivation of this is presented by Okereke [86]. 

The finite element method involves computing element level stiffness 

expressions which are used to assemble a global stiffness array, 𝐾. Boundary 

conditions are placed in the force vector, 𝐹, and the displacement vector, 𝑢, 

Matrix multiplication techniques such as Gaussian elimination or inversion 

are used to solve the matrix equation (Equation 2.35). 

The first step, meshing, discretises the domain into discrete elements. 

Incorrect meshing can have adverse effects on the results of a FE model. 

Errors can occur due to the wrong choice of element type for the load case 

or using a coarse mesh incapable of capturing complex geometric features. 

A mesh convergence study should always be completed with FEA to ensure 



Chapter 2: Background 

42 
 

the output results are not sensitive to the mesh used. This ensures that, at a 

minimum, the number of elements in the model is saturated and the results 

will not change by refining the mesh further. This study will not remove 

modelling inaccuracies related to element choice, reduced integration or 

other modelling choices related to the mesh. Over refining the mesh 

increases computational expense but does not necessarily increase the 

accuracy of the measured response. 

The global stiffness array contains the stiffness values calculated at an 

element level. This array is symmetric and can be largely populated with 

zeros. Once individual elemental stiffness arrays are calculated; each 

element of that array is placed in the global stiffness array. Their position is 

based on the node and element number. Depending on the nature of the 

model (2D or 3D), each element receives 4 or 9 stiffness terms: typically for 

𝑥, 𝑦, 𝑧, 𝑥𝑦, 𝑥𝑧 & 𝑦𝑧 terms, forming a symmetric matrix. A global stiffness 

array entry contains the sum of elemental stiffness terms from overlapping 

node numbers. 

The elemental stiffness array contains one entry for each degree of freedom 

for each node in the element along the diagonal of the matrix. The off-

diagonal terms relate to shear terms if present. Hence for a simple two node 

truss element in 2D loaded in the x-direction only, the elemental stiffness 

array has the following shape: 

 

𝑘𝑙𝑜𝑐𝑎𝑙 =
𝐸𝐴

𝐿
[

1
0
−1
0

 

0
0
0
0

 

−1
0
1
0

 

0
0
0
0

] 

2.36 

Assuming the nodes in the truss element are numbered 1 and 2, the global 

stiffness matrix is constructed by adding this local matrix in the correct 

location. The following global stiffness matrix assumes there is 3 elements 

in the structure and is hence a 6 by 6 array in 2D. 
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𝑘𝑔𝑙𝑜𝑏𝑎𝑙 =
𝐸𝐴

𝐿

[
 
 
 
 
 
1
0
−1
0
0
0

 

0
0
0
0
0
0

 

−1
0
1
0
0
0

 

0
0
0
0
0
0

  

0
0
0
0
0
0

  

0
0
0
0
0
0]
 
 
 
 
 

 

2.37 

The same process is repeated for each element in the structure to fully 

populate the global stiffness matrix.  

The bandwidth (calculated after mesh generation) is an indication of the 

speed with which an analysis will run. The bandwidth of a finite element 

analysis is computed from the global stiffness matrix. The bandwidth is equal 

to the maximum length along a row of the global stiffness matrix which is 

populated with non-zero entries. Commercial finite element codes run 

optimisation scripts which renumber nodes and elements in a simulation to 

minimise the bandwidth and provide a more efficient solution, as entries to 

the global stiffness array are based on node and element number. 

In the case of non-linear solutions, i.e. using the Newton-Raphson method, 

it is useful to write the finite element equation in terms of a residual: 

 
∫𝐵𝑇(𝑢𝑒)𝜎(𝑢𝑒)𝑑𝑉 − 𝐹 = 𝐺(𝑢𝑒) = 0 
 

𝑉

 
2.38 

Where 𝐵𝑇is the transpose of the deformation matrix, 𝑢𝑒 is the element 

deformation, 𝜎 is the stress, 𝑉 is the element volume, 𝐹 is the force vector 

and 𝐺(𝑢𝑒) gives us the residual forces vector. 

Applying the Newton-Raphson method to this function gives  

 
𝑢𝑖+1
𝑡+𝛥𝑡 = 𝑢𝑖

𝑡+𝛥𝑡 − [
𝜕𝐺(𝑢𝑖

𝑡+𝛥𝑡)

𝜕𝑢
]

−1

𝐺(𝑢𝑖
𝑡+𝛥𝑡) 

2.39 

Where 𝑖 is the current increment, 𝑡 is the current time, Δ𝑡 is a small time 

increment. 

This can be rewritten as: 
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𝐾(𝑢𝑖

𝑡+𝛥𝑡) =   [
𝜕𝐺(𝑢𝑖

𝑡+𝛥𝑡)

𝜕𝑢
] 

𝐾(𝑢𝑖
𝑡+𝛥𝑡)𝜕𝑢𝑖+1 =   𝐺(𝑢𝑖

𝑡+𝛥𝑡) 

2.40 

Where 𝐾 is the stiffness array. This form of the finite element equation is 

useful as it describes the behaviour from one increment to the next. In 

general, FE analyses contain numerous increments and iterations. An 

increment spans from one time point in the analysis to the next. Inside an 

increment there may be numerous iterations required to achieve a state of 

equilibrium. If the expected response is achieved immediately only one 

iteration is required; but if the expected response is not achieved in the first 

iteration the solver will reiterate to achieve an acceptable response. This 

iterative solving can be done using implicit or explicit techniques.  

The implicit solution method provides a Newton-Raphson approximation of 

the measured response, shown in Figure 2-18. In this approximation, an 

initial estimate is used to approximate the response of an element. 

Subsequent iterations minimise the error in the response. This method is 

preferred to explicit solutions as a finite number of iterations will achieve 

the physical response. However, there are applications where this technique 

is not possible and explicit solvers must be used.  
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Figure 2-18 Newton-Raphson method of approximating the measured response 

Under impact or dynamic loading, the rate of change of the response is 

typically too high to solve using the implicit method (obtaining a converged 

solution is not possible), hence explicit solvers are used. Explicit solvers 

perform a time integration that is analogous to Euler’s method: 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛) 2.41 

Where 𝑦𝑛 is an approximation to the solution of the ordinary differential 

equation at time 𝑡𝑛. And ℎ is the time increment size, such that ℎ = 𝑡𝑛+1 −

𝑡𝑛. 

The time increment must be less than a stable time increment which is set 

by the time taken for a stress wave to propagate though the smallest 

elements in the model. 

 
𝛥𝑡 ≤ 𝑚𝑖𝑛 (𝐿𝑒√

𝜌

𝜆 + 2𝜇
) 

2.42 

Where 𝐿𝑒 is the characteristic length associated with an element, 𝜌 is the 

density of the material, and 𝜆 and 𝜇 are Lamé’s constants for the material 

(which are a function of Poisson’s ratio and Young’s modulus). 
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Mass scaling can be used to facilitate use of a larger time increment (and 

thus solve quasi static problems) provided the effects of inertia can be kept 

negligible.  

This technique can be computationally less expensive than the implicit 

method and can be used when sudden changes in response are present, 

such as impact events or when discontinuities/sharp changes in response 

are present. Explicit solvers also scale better on HPC clusters and are often 

used on very large meshes, for example with aerospace and automotive 

assemblies. However, the accuracy of these results should always be 

validated.  

2.6.1 Interface related theory 

As this thesis is concerned with interfacial behaviour of composite materials 

undergoing fracture, methods of handling interfacial separation in FEM are 

discussed herein. When modelling interfaces such as cracks or voids for 

example, the behaviour of these regions differs from the rest of the model. 

Continuum elements are typically used in the main mesh in a model; and 

cohesive elements or cohesive surfaces are used to model interfacial 

behaviour. This research uses cohesive elements (with the behaviour of 

these elements governed through a traction separation law (TSL)) however 

similar theory applies for cohesive surfaces. Interfacial behaviour can also 

be modelled using other techniques, such as cohesive surfaces and spring 

elements [36].  

Cohesive surfaces work in a similar manner to cohesive elements, with the 

interfacial behaviour of the surfaces defined by a traction separation law. 

When using cohesive surfaces, there are no elements along the interface. 

Hence elemental data cannot be extracted directly from the interface. 

Spring elements can couple a force with a relative displacement. The spring 

constant can be specified as a function of displacement, which allows 

damage to be captured. 
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2.6.2 Cohesive elements 

Cohesive elements are commonly used to define interfacial behaviour in FE 

simulations. These elements typically have no initial thickness or a small 

finite thickness (and use a unit thickness in the material response) and are 

capable of handling large displacements. Advantages of cohesive elements 

over cohesive surfaces include the presence of an integration point in the 

cohesive element (which allows simple extraction of data from the interface 

such as stress and strain), and a reduced computational cost as the contact 

tracking is implemented in the global stiffness array. The response of 

cohesive elements is defined by a TSL, which is user defined. The number of 

parameters defining a TSL increases with increasing complexity of response 

at the interface. 

 

Figure 2-19 The fracture process using cohesive elements to capture the interfacial behaviour 

in a finite element simulation. Image source: [87] 

Cohesive elements are capable of accurately capturing crack propagation. 

During crack propagation, the local elemental damage is defined (by the 

traction separation law) based on the separation experienced by the 

element. Cohesive elements typically behave linearly elastic until damage 

initiation. Although a traction separation law uses stress and displacement, 

strain is used in the constitutive matrix by means of a constitutive thickness, 

with a default value of one [36]: 
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휀𝑛 =

𝛿𝑛
𝑇0
     휀𝑠 =

𝛿𝑠
𝑇0
     휀𝑡 =

𝛿𝑡
𝑇0

 
2.43 

Where 휀 is the nominal strain, 𝛿 is the displacement and 𝑇0 is the 

constitutive thickness. Subscripts 𝑛, 𝑠 and 𝑡 denote the normal, shear and 

tangential directions respectively. 

The behaviour of the cohesive element after this initial linear elastic 

response is dependent on the damage profile of the material. After this 

elastic response, damage in the cohesive elements begins to accumulate and 

the traction is calculated as a function of the damage. 

 𝜎 =  𝜎𝑒(1 − 𝐷) 2.44 

Where 𝜎 is the elemental stress, 𝜎𝑒 is the elemental elastic stress (stress 

experienced if damage is not present), and 𝐷 is the damage. 

2.6.3 The Traction Separation relationship 

The TSL, as shown in shown in Figure 2-20,  describes the traction exerted 

between two debonding surfaces based on the local displacement between 

the surfaces. The TSL affects the macroscopic material behaviour such as 

load displacement, crack growth and resulting R-curve behaviour which 

relates measured fracture energy to crack propagation.  

The shape of the TSL is critical in determining the R-curve that will be 

produced by a simulation. There are several TSL shapes explored in the 

literature including trapezoidal commonly seen in stiff materials such as 

concrete [88],  bilinear [49], trilinear [89] and a continuously changing 

function [41]. It has been found that a bilinear traction separation law 

(Figure 2-20A) is only capable to capture the initial stages of fibre bridging 

[37,42,50]; whereas a trilinear law (Figure 2-20B) is capable of capturing high 

levels of displacement typically found with fibre bridging [41,50,90].   

When considering composite materials, with a large degree of extrinsic 

toughening, the TSL can be categorised by three regions; namely the initial 

linear elastic response, the cohesive fracture stage where a large amount of 
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damage is accumulated over a small displacement, and the fibre bridging 

stage where a small traction is exerted between the surfaces over a 

relatively large separation. The initial elastic response and the cohesive 

fracture zone are related to intrinsic toughening mechanisms. The fibre 

bridging region models extrinsic toughening mechanisms which act behind 

the crack tip. 

 

Figure 2-20 General shape of a traction separation law. A) without fibre bridging present 

(Bilinear). B) with fibre bridging present (Trilinear). In the case of fibre bridging 𝛿𝑒𝑥𝑡 ≫ 𝛿𝑒 
or 𝛿𝑖𝑛𝑡. (Note: 𝛿𝑖𝑛𝑡 definition can vary but the area change is negligible.) 

In experimental work, the measured fracture toughness �̂� is approximated 

as detailed in section 2.5.4.1. In computational work, the fracture toughness 

can be defined in more detail. �̂� is the measured fracture toughness which 

is approximated in the same manner as experimentally; but there is now also 

the fracture energy input into a finite element model, 𝐺0, equivalent to the 

total area under a traction separation law. This fracture energy is further 

categorised as intrinsic energy, 𝐺𝑖𝑛𝑡, and extrinsic energy, 𝐺𝑒𝑥𝑡, responsible 

for the respective toughening mechanisms. The definition here varies 

slightly as the transition from intrinsic to extrinsic toughening is not exact; in 

this thesis, the intrinsic and extrinsic energies are calculated by equations 

2.45 and 2.46 respectively. 

 
𝐺𝑖𝑛𝑡 ≅

1

2
𝜎𝑖𝑛𝑡𝛿𝑖𝑛𝑡 

2.45 

 
𝐺𝑒𝑥𝑡 ≅

1

2
𝜎𝑒𝑥𝑡𝛿𝑒𝑥𝑡  

2.46 

Where all symbols are defined in Figure 2-20.  
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In composite materials, the sharp changes in slope are a good approximation 

as the intrinsic region occurs over such a small displacement and at a high 

strength. To overcome sharp peaks in the traction separation law, viscous 

damping is commonly introduced to the model. This acts in a similar manner 

as damping in a mechanical system. The introduction of a viscous term in the 

DCB model aids convergence. A similar approach is taken when investigating 

damping in the roller model in Chapter 4. 

Determining the parameters for a traction separation law is not always 

straight forward. The J-integral is commonly used, but it typically assumes 

there is no loading on the crack surface and is difficult to implement in an 

industry setting. Heidari-Rarani details their justification for a maximum 

traction 𝜎𝑚 for different cases [40]. But there is no direct guide to fully define 

a traction separation law based on experimental observations. There has 

been no systematic exploration of the parameter space associated with a 

traction separation law.  

There has been some research into experimental calculation of traction 

separation laws, however they are specimen dependent. Zhu, et al. propose 

a method of measuring traction separation laws using their experimental set 

up. [91]. However, this method requires the use of the J-integral, making it 

difficult to implement in an industry setting. 

2.7 Conclusions 

In this chapter, an overview of composite behaviour and fracture mechanics, 

with emphasis on fracture in composites, was given. While previous studies 

have modelled crack growth computationally, the presence of fibre bridging 

means many assumptions made in the underlying theories are no longer 

valid. Previous work [37,42,50,52,90,92] has found that computational 

results can replicate the results in an experimental procedure with fibre 

bridging present; however these works have not shown the effect of the 

computational parameters on the fit between numerical and experimental 

results. It is unclear how these studies choose their traction separation law 



Chapter 2: Background 

51 
 

or whether other laws would give similar results. This forms the main 

motivation for the work in Chapter 3, which aims to provide an in-depth 

exploration of the traction separation law parameter space, which provides 

insight into how to select the cohesive parameters for a traction separation 

law with extrinsic toughening based on experimental observations in a 

standardised DCB test. 

Detailed measurements of the tractions generated by fibre bridging are 

difficult to measure. Previous work has used approaches such as the J-

integral to calculate tractions; however, both the analysis and collection of 

data are difficult. The J-integral cannot be applied in closed form to a 

standard DCB test, it must be applied to a DCB specimen loaded with pure 

bending moments to provide an analytical solution. There is a distinct need 

for a method of measuring a material’s fracture energy that accounts for 

high levels of extrinsic toughness, while still being capable of use in an 

industry setting. The work in Chapters 4 and 5 seek to develop methods that 

can be quickly used to evaluate the role of fibre bridging and create traction 

separation laws for use in computational models.   
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Chapter 3. Fibre bridging: Continuum 

modelling of extrinsic toughening in Double 

Cantilever Beams  

Abstract  

Extrinsic toughening, such as fibre bridging, acts behind the crack tip to 

increase toughness in composite laminates. Computational studies have 

captured this phenomenon; however, the uniqueness of fit between 

computational results (which vary based on the interface traction-

separation relationship) and experimental results has not been explored in 

detail. Here, detailed exploration of the parameter space for various 

traction-separation laws (TSL) using finite elements is presented to 

investigate the role of fibre bridging.  

In the absence of extrinsic toughening, a linear softening TSL is sufficient to 

capture the key R-curve features, the total input fracture energy is of 

primary importance. Where extrinsic toughening is present, the ratio 

between intrinsic and extrinsic energy dictates the shape of the crack growth 

resistance curve (where fracture toughness (energy) increases with 

increasing crack growth). The influence of fibre bridging length on the crack 

growth required to reach a plateau in toughness is examined. A strategy for 

determining key cohesive properties from a double cantilever beam test is 

presented and applied to experimental results.  
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Nomenclature 

𝑎 Crack length 

𝑎0 Pre-crack length 

Δ𝑎𝑠𝑠 Crack length to achieve steady-state distribution of fibres 

𝑏 Beam width 

𝐸 Young’s modulus 

𝐺𝑡𝑜𝑡𝑎𝑙 Total fracture energy 

𝐺𝑒𝑥𝑡  Extrinsic fracture energy 

𝐺𝑖𝑛𝑡 Intrinsic fracture energy 

�̂� Observed fracture energy 

�̂�0 The initial value of fracture toughness on a resistance curve (R-

curve) 

�̂�𝑠𝑠 Plateau value of fracture toughness on a R-curve 

ℎ Beam thickness (one laminate) 

𝐿 Beam length 

𝐿𝑒𝑙 Length of one side of an element 

𝑛 Linear regression fitting parameter for compliance calibration 

method 

𝑃 Load 

𝑢 Load-line displacement 

𝛿𝑒 Traction-separation law length for elastic damage 

𝛿𝑖𝑛𝑡 Traction-separation law length for intrinsic behaviour 

𝛿𝑒𝑥𝑡  Traction-separation law length for fibre bridging 

𝛿𝑚𝑎𝑥 Traction-separation law maximum length 

𝜎𝑖𝑛𝑡 Maximum allowable traction 

𝜎𝑒𝑥𝑡  Fibre bridging maximum traction 

𝜎𝑦𝑡,   90° Transverse ply tensile strength 
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3.1 Introduction 

Composite materials composed from stacked layers of continuous fibres, 

embedded within a polymeric matrix provide high specific strength and 

stiffness properties. As such, composites find increasing use in aircraft 

structures, automotive components, and wind turbine blades. A direct 

consequence of motion is a greater susceptibility to impact loads; if this 

includes a cyclical element, fatigue life can also be of concern. Both impact 

and fatigue can result in delamination between the stacked layers of the 

composite. Both intrinsic and extrinsic toughening mechanisms (which act 

ahead of the crack tip and behind the crack tip, respectively, as seen in Figure 

3-1B) influence the onset and progression of failures [1–3]. 

3.1.1 Intrinsic and extrinsic toughening  

Intrinsic toughening mechanisms act ahead of the crack tip and extrinsic 

toughening mechanisms act behind the crack tip (see Figure 3-1B); however, 

the definition of the crack tip can vary significantly. The terms ‘damage’ and 

‘toughening’ can describe the same phenomena depending on the crack tip 

definition [4]. Sills and Thouless also suggest that a change in cohesive length 

scale can be used to define the transition from intrinsic to extrinsic 

toughening [4]. 

The role of intrinsic toughening mechanisms in traditional engineering 

materials is well studied, for example, micro-matrix cracking [5]. Other 

examples of intrinsic mechanisms include: plasticity ahead of a crack tip in 

steels and other ductile metals [6,7], crack deflection by secondary phases 

[8]; crack bifurcations [9] and void coalescence [10]. In composites, the 

intrinsic toughness is dictated by the resin properties [11], fibre volume 

fraction  [12], and the mean fibre diameter [13] 

Extrinsic toughening mechanisms act behind the crack tip to increase 

fracture toughness. Of particular relevance to composite materials is fibre 

bridging, an extrinsic toughening mechanism whereby fibres from 

neighbouring plies remain attached to both delaminated layers. This 



Chapter 3: Fibre bridging: Continuum modelling of extrinsic toughening … 

60 
 

generates a traction across the crack and, hence, raises the energy required 

to advance the crack front. This effect can act over a large separation, as 

found in Carbon Fibre Reinforced Polymers (CFRP) composites [14], or a 

short separation, as found in biological tissue [15]. Fibre bridging acting over 

a seemingly short distance still significantly affects the evolution of fracture 

toughness. The role fibre bridging plays in crack deflection is difficult to 

predict in mode I or mixed-mode loading [16–18]. 

Fibre bridging is of interest in engineered composite materials [14,19] as the 

additional extrinsic toughening, which may be fully realised under impact 

loading and subsequent delamination, could be the deciding factor between 

a destructive brittle failure and a controlled ductile failure. Fibre bridging has 

been characterised in composites such as CFRP [20], Glass Fibre Reinforced 

Polymers (GFRP) [21] and other fibre-rich epoxies [22]. Fibre bridging also 

occurs in a range of biological & natural materials such as fibrous biological 

or natural materials (e.g., Liver tissue [23], adipose tissue [24], frozen 

arteries [25] and the cornea [15]) and timbers [26,27]. 

 

Figure 3-1 A) Example of fibre bridging in GFRP [21] B) Examples of extrinsic and intrinsic 

toughening mechanisms. Image adapted from Liu et al. [28]. C) Experimental load-

displacement behaviour replicated computationally [29]. 

3.1.2 Experimental fracture tests with fibre bridging 

The effect of fibre bridging is observed experimentally via the monotonic 

increase in fracture toughness or energy release rate with increasing crack 

length, shown in Figure 3-2C. As an inter-laminate crack propagates in a DCB, 

the bridging fibres exert tractions on the delaminating surfaces, arresting 

the crack propagation.  The initial value in the crack growth resistance (or R-

curves), is set by the energy required for crack initiation. The energy required 



Chapter 3: Fibre bridging: Continuum modelling of extrinsic toughening … 

61 
 

to advance the crack front increases as the amount of fibre bridging 

increases. The fracture toughness plateaus once new fibres bridging the 

interface compensate fibre breakage or fibre pull out at the other end of the 

crack and a steady-state turnover of fibres occurs. 

Double cantilever beam (DCB) fracture tests of continuous fibre composites 

often exhibit fibre bridging [19]. Typically, DCB experiments measure load, 

load-line displacement, and crack propagation and are used to produce 

fracture resistance curves for a given material. DCB tests are most commonly 

performed in accordance with ASTM standards [30]. Four methods of data 

analysis are outlined in the standards: beam theory, modified beam theory, 

the compliance calibration method, and the modified compliance calibration 

method. The compliance calibration method is used in the present work and 

also, for example, Davidson and Waas [31]. Compact tension shear type 

specimens are also used to investigate interlaminar fracture [32]; however, 

generating a specimen of sufficient height involves a large number of 

laminates or compound specimens where the fibre composite is bonded to 

other materials. Other geometries, such as three point bend tests can also 

test the interlaminar properties, although this also requires more 

complicated specimen fabrication [33]. In the current study, we focus on the 

DCB test specimen which consists of only the fibre composite.  

Fibre bridging is observed experimentally via the monotonic increase in 

fracture toughness or energy release rate with increasing crack length, the 

so-called resistance curve (or R-curve), shown in Figure 3-2C. Fibre bridging 

depends on the composite’s constituent materials and specimen geometry 

[21,29,34]. On initiation, the fracture toughness is exclusively determined by 

the intrinsic mechanisms. However, as the crack front advances, fibre 

bridging develops in its wake, and the observed fracture toughness increases 

monotonically as the contribution from bridging increases. The fracture 

toughness plateaus, reaching a steady state once a steady distribution of 

bridged fibres is created behind the crack tip. The key features of an R-curve 

are: the initial value of fracture toughness �̂�0 , the plateaued value of 
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fracture toughness �̂�𝑠𝑠, the initial crack length 𝑎0, and the length of the new 

crack surface created while achieving a steady state fracture toughness 

measurement Δ𝑎𝑠𝑠  as illustrated in Figure 3-2. Heidari-Rarani, et al. model 

unidirectional DCB specimens under large-scale fibre bridging and 

experimental results show that the rise in the R-curve (from �̂�0 to �̂�𝑠𝑠) 

corresponds with the length of the process zone (which is defined by 

Heidari-Rarani, et al. in their work as the distance between (i) the point 

where bridging and the fracture process initiate and (ii) the first point in the 

wake of damage zone that is unable to sustain cohesive tractions) [22].  

3.1.3 Data analysis  

Using the compliance calibration method (as described in the ASTM 

standard), the fracture toughness �̂� is determined from the applied load 𝑃, 

the load-line displacement 𝑢 and the current crack length 𝑎: 

 
�̂� = n

Pu

2ba
 

3.1 

where 𝑏 is the specimen thickness, and 𝑛 is a linear regression fitting 

parameter relating the compliance (𝐶 =  𝑢/𝑃) to the crack length [30]. This 

regression parameter accounts for beam rotations at the crack tip. In DCB 

tests, measured load-displacement response and R-curves are dependent on 

the choice of certain material and specimen parameters, such as laminate 

thickness, modulus, and pre-crack length. Shokrieh et al. investigated the 

effect of initial crack length on unidirectional glass/epoxy DCB specimens 

[34]. While the values of �̂� do not vary with specimen, the crack length for 

each value does. It was found experimentally that the initial crack length 𝑎0 

only slightly affects the shape of the response. Gutkin, et al. also conducted 

a coupled experimental and computational study showing that an R-curve is 

dependent on thickness of the lever arm [29].  

3.1.4 Determining cohesive properties  

Experimental research on fibre bridging is often coupled with a model of the 

experimental procedure. In computational models of fibre bridging, it is 
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necessary to formulate the appropriate traction-separation law (TSL), which 

is also referred to as a cohesive zone model (CZM). The TSL describes the 

traction exerted between two debonding surfaces at each point on the crack 

face based on the local separation between the surfaces. The integral of the 

function is the work done to fracture. Many studies consider the bridged 

fibres in this manner, i.e., not as discrete fibres in the model geometry; 

however, there has not been an in-depth systematic exploration of the 

influence of TSL parameters. 

The shape of the TSL (typical examples are shown in Figure 3-2) is critical in 

determining and the load-displacement response and the R-curve that will 

be produced by the simulation. There are several TSL shapes explored in the 

literature including trapezoidal [35],  bilinear [14], trilinear [17] and a 

continuous function [34,36]. It has been found that a bilinear TSL (Figure 

3-2A) is only able to capture the initial stages of fibre bridging [19,29,31] as 

shown in blue in Figure 3-1B; whereas a trilinear law (Figure 3-2B) is capable 

of capturing high levels of separation typically found with fibre bridging 

[19,34,37] as shown in red in Figure 3-1B. Intrinsic toughening mechanisms 

are collectively captured in the cohesive fracture zone of the TSL (as shown 

in Figure 3-2), which acts over short separations. 

 

Figure 3-2 General shape of a traction-separation law. A) Bilinear curve without fibre 

bridging present. B) Trilinear curve with fibre bridging present. In the case of fibre bridging 

δext ≫ δe,δint and diagram is not to scale C) Idealised experimental observation of crack 

growth resistance showing key quantities.  

Figure 3-2 shows the general form of the traction-separation laws and 

establishes the terminology used in the current work (for use with the finite 

element method). For clarity, all fracture energies pertaining to the traction-
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separation laws are denoted by 𝐺 with various subscripts and all 

measured/observed (either experimentally or in the simulations) quantities 

are denoted by a circumflex, i.e., �̂�. The fracture energy, 𝐺𝑡𝑜𝑡𝑎𝑙, is the total 

area under the TSL. This fracture energy can be split into intrinsic and 

extrinsic contributions, related to the respective toughening mechanisms, 

and can also be determined as the areas of the respective regions: 

 
𝐺𝑖𝑛𝑡 ≅

1

2
𝜎𝑖𝑛𝑡𝛿𝑖𝑛𝑡 

3.2 

 
𝐺𝑒𝑥𝑡 ≅

1

2
𝜎𝑒𝑥𝑡𝛿𝑒𝑥𝑡  

3.3 

where all symbols are defined in Figure 3-2. Note that there is a small area 

overlap in equations 3.2 and 3.3, as 𝐺𝑡𝑜𝑡  ≠ 𝐺𝑖𝑛𝑡 + 𝐺𝑒𝑥𝑡. The size of the area 

which is included in both the definition of 𝐺𝑖𝑛𝑡 and 𝐺𝑒𝑥𝑡 is equivalent to 

𝜎𝑒𝑥𝑡

𝜎𝑖𝑛𝑡
 (𝛿𝑖𝑛𝑡 − 𝛿𝑒). This value typically accounts for less than 1% of the total 

fracture toughness in the analyses considered. 

While numerous studies have coupled experimental and computational 

work [19,31,34,38], there is no simple procedure to select cohesive 

parameters for a finite element model based on experimental observations. 

In many studies, the J-integral method [39] is used to determine a TSL for 

laminates as part of a theoretical analysis [40,41] or numerical study [22]. 

The J-integral method has also been used in ceramic composites [42] and for 

coatings [43]. In most applications of the J-integral approach, the stresses on 

the crack surface are assumed to be zero and this is not true in the case of 

fibre bridging. In a series of works, Sørensen and colleagues [40,44] apply 

the J integral method to fibre bridging to determine the cohesive law; but 

the loading of the specimen is via end moments [45].  

Previous studies of crack growth in fibre composites  have found that 

computational results can replicate the results in an experimental procedure 

with fibre bridging present [19,21,29,31,37,46]. However, the effect of the 

input parameters on the fit between numerical and experimental results has 
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not been explored and documented; the dominant parameters governing 

the observed phenomena are not described. Although for example, Heidari-

Rarani et al details their justification for a maximum traction 𝜎𝑖𝑛𝑡 for 

different cases [22], no algorithm to fully define a TSL based on experimental 

observations is available. Dávila et al. [47] present an approach to determine 

fracture properties for a tri-linear TSL for a CT fracture specimen. Their 

approach superimposes two cohesive elements, each with linear softening 

and the same separation for the maximum traction. In this way, two 

triangular areas are superimposed, and the intrinsic and extrinsic toughness 

can be related to these areas and the ratios of the peak strengths and total 

energy for each element. However, this approach requires non-standard 

implementation in a finite element package, and they do not fully explore 

the sensitivity of the overall response to each of the input parameters. The 

present work provides an insight into selecting cohesive parameters for a 

TSL with extrinsic toughening based on experimental observations, via a 

systematic exploration of the TSL parameter space. Key relationships are 

presented and an approach to reconstruct a TSL based on a small set of 

experimentally observed variables is described. Several case studies are 

used to demonstrate the approach.  

3.2 Modelling approach 

3.2.1 Finite element model 

Finite element models of a typical DCB fracture toughness test geometry, in 

line with ASTM standards, [30] are created in Abaqus (Dassault Systèmes, 

Rhode Island, USA) using 2D plane strain elements (Abaqus element code: 

CPE4) to represent the beams and the interfacial behaviour is captured using 

cohesive elements (shown in Figure 3-3). The mesh used is highly structured, 

consisting of square elements and the element size is determined by the 

height of a laminate arm; such that 25 elements are present along the 

vertical dimension of the laminate arm.  A TSL is used to define behaviour of 

the cohesive layer. The response of the cohesive element (Abaqus element 

code: COH2D4) follows the default behaviour, whereby the strain is 
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equivalent to the displacement as a unit thickness is used in the material 

calculation. The nodes in the cohesive layer are adjusted so that the layer 

has geometrically zero thickness in the y-direction [48].  If the cohesive layer 

has a finite geometric height, the stiffness applied to the layer (via the TSL) 

would artificially stiffen the model. 

The features of the ASTM standard DCB test are captured in the finite 

element model: the loading blocks are represented by using the Coupling 

Constraint method and displacements are applied to the associated 

reference points (with resulting reaction forces). For simplicity, and in line 

with previous studies of crack growth in CFRP [19], the laminate properties 

used in this model are linear elastic with Young’s modulus of 170 GPa and 

Poisson ratio of 0.3 unless otherwise stated. As the transverse behaviour is 

not relevant to the investigations (as only axial stretching is considered for 

simplicity), the laminates are modelled as isotropic; however, the 

methodology can be applied to anisotropic laminates. The isotropic nature 

of these models allows the results to be applied to other materials with in-

plane isotropic properties. 

 

Figure 3-3 A) FE model geometry, based on B) a typical composite test specimen with 

loading blocks in compliance with ASTM standards [30]. 

The load-displacement response is measured at the upper reference point, 

Figure 3-3A. The fracture toughness is calculated by the compliance 

calibration method [30]. Definition of the crack tip can be difficult and 

somewhat arbitrary when fibre bridging is present. The crack tip can be 

defined by observation or using the beam compliance. Difficulty arises in 

experimental observations due to extrinsic toughening mechanisms 
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obstructing the view of the crack tip. In this study, the crack length is defined 

as the distance from the pre-crack to where the separation of the surfaces 

is equal to 𝛿𝑒 (as defined in Figure 3-2). As this study is computational, a 

separation of 𝛿𝑒 can be measured in postprocessing to identify the crack tip; 

in practice measuring this separation (of 𝛿𝑒) is not simple. The crack length 

measurement is used in equation 3.1 to produce the R-curve.  

A TSL is shown in Figure 3-2 where the traction in a cohesive element 𝜎 is 

defined in terms of the local separation 𝛿. The shape of the curve is defined 

by an initial cohesive stiffness 𝑘𝑐, a maximum traction 𝜎𝑖𝑛𝑡 , and subsequent 

pairs of 𝜎 and 𝛿 which define the traction-separation response. In the 

current study, only mode I cracks are considered, and any tangential 

displacements are not considered. 

The simulation is solved using a non-linear implicit scheme in 

Abaqus/Standard. The lower reference point is fixed in all translational 

degrees of freedom while being free to rotate, and the upper block is 

displaced vertically upwards. The displacement of this point 𝑢, the resulting 

reaction force 𝑃, and the crack length 𝑎 are recorded and used to calculate 

the measured fracture energy �̂� using the same compliance calibration 

method as used in the ASTM experimental methods (equation 3.1).  

3.2.2 Parameter variation details 

A systematic variation of the parameters associated with the TSL (governing 

the material behaviour of the interface) is conducted, along with specimen 

specific parameter variation. To represent intrinsic toughness only, it is 

sufficient to describe a TSL using 𝑘𝑐, 𝜎𝑖𝑛𝑡, and 𝛿𝑖𝑛𝑡 (note 𝛿𝑒 = 𝜎𝑖𝑛𝑡/𝑘𝑐 is not 

independent). Extrinsic toughening (bridging behaviour) is considered by 

using a TSL which includes tractions which act over larger separations; in the 

case of the tri-linear law, as shown in Figure 3-2B, two extra parameters 𝛿𝑒𝑥𝑡  

and 𝜎𝑒𝑥𝑡  are required. 

For intrinsic toughness only, a wide range of TSL parameters are considered 

and the details and results are shown in Appendix 1. In terms of the shape 
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of the TSL, the energy, i.e., the area under the curve, dictates the observed 

response as long as 𝛿𝑖𝑛𝑡 is small. If 𝛿𝑖𝑛𝑡 is too large, then the peak in the load-

displacement response becomes less distinct and would not capture typical 

experimentally observed behaviour. The elastic loading slope and the 

softening/unloading slope will affect the computational cost, but 

uncertainty in the experimental data would frustrate any attempt at 

calibrating these values. For computational efficiency, setting 𝛿𝑒 = 𝛿𝑖𝑛𝑡/2 is 

recommended; estimation of 𝜎𝑖𝑛𝑡 is discussed below in Section 3.4. Note 

that numerical noise is observable in the load-displacement response for 

𝐿𝑒𝑙/𝛿𝑖𝑛𝑡 ≥ 50 (data not shown). 

For materials with both intrinsic and extrinsic toughness, the parameter 

space is explored systematically in four phases I-IV (with the details in Table 

3-1,Table 3-2 and Table 3-3). The intrinsic toughness is not varied in these 

phases; the parameters relating to the intrinsic part of the TSL are fixed, 

unless otherwise noted;  previous simulations of experimental data are used 

to determine appropriate ranges for parameters [19].  

The four phases are: 

I. The intrinsic properties (𝜎𝑖𝑛𝑡, 𝛿𝑒 , 𝛿𝑖𝑛𝑡) are held constant and the 

extrinsic toughness 𝐺𝑒𝑥𝑡  is varied by increasing the bridging length 

𝛿𝑒𝑥𝑡. The values of these parameters are based on CFRP as 

presented by De Morais [19]. 

II. The total fracture energy 𝐺𝑡𝑜𝑡𝑎𝑙 is held constant but the ratio of 

𝐺𝑖𝑛𝑡: 𝐺𝑒𝑥𝑡  is varied. This means that the elastic region (𝜎𝑖𝑛𝑡, 𝛿𝑒) is 

constant but the cohesive fracture zone (𝛿𝑖𝑛𝑡, 𝜎𝑒𝑥𝑡) is allowed to 

move to ensure the total energy 𝐺𝑡𝑜𝑡𝑎𝑙 remains constant across 

analyses. 

III. The R-curve specimen dependence is examined by varying 

dimensions and modulus with fixed TSL parameters (𝛿𝑒 =  0.005 

mm, 𝛿𝑖𝑛𝑡 = 0.01 mm, 𝛿𝑒𝑥𝑡  = 1 mm, 𝜎𝑖𝑛𝑡 = 40 MPa, 𝜎𝑒𝑥𝑡  = 0.4 MPa, 



Chapter 3: Fibre bridging: Continuum modelling of extrinsic toughening … 

69 
 

𝐺𝑖𝑛𝑡 = 200 𝐽/𝑚2 & 𝐺𝑒𝑥𝑡 = 200 𝐽/𝑚
2). Details are found in Table 3-

2. 

IV. The shape of the extrinsic region is varied by adjusting the extrinsic 

parameters (𝛿𝑒𝑥𝑡 and 𝜎𝑒𝑥𝑡) for constant extrinsic toughness. As the 

bridging length 𝛿𝑒𝑥𝑡  increases, the bridging stress 𝜎𝑒𝑥𝑡  decreases so 

that the extrinsic toughness stays constant. This is repeated for four 

values of 𝐺𝑒𝑥𝑡 as shown in Table 3-3. 

Table 3-1 Details of parameter variation I & II (examining the ratio of intrinsic to extrinsic 

toughness). This study has been completed for σext = 0.1, 0.4, 1.0 & 4.0 MPa. All results 

show the same trend regardless of σext. 

Phase 𝝈𝒊𝒏𝒕  

(𝐌𝐏𝐚) 

𝝈𝒆𝒙𝒕 

 (𝐌𝐏𝐚) 

𝜹𝒆 

 (𝛍𝐦) 

𝜹𝒊𝒏𝒕  

(𝝁𝐦) 

𝜹𝒆𝒙𝒕  

(𝐦𝐦) 

𝑮𝒊𝒏𝒕  

(𝐉/𝐦𝟐) 

𝑮𝒆𝒙𝒕  

(𝐉/𝐦𝟐) 

𝑮𝒕𝒐𝒕𝒂𝒍  

(𝐉/𝐦𝟐) 

I 40 

40 

40 

40 

40 

0.4 

0.4 

0.4 

0.4 

0.4 

5 

5 

5 

5 

5 

15 

15 

15 

15 

15 

0.05 

0.1 

0.3 

0.5 

1.0 

300 

300 

300 

300 

300 

10 

20 

60 

100 

200 

310 

320 

360 

400 

500 

II 40 

40 

40 

40 

40 

0.4 

0.4 

0.4 

0.4 

0.4 

5 

5 

5 

5 

5 

19.5 

19 

17 

15 

10 

0.05 

0.1 

0.3 

0.5 

1.0 

390 

380 

340 

300 

200 

10 

20 

60 

100 

200 

400 

400 

400 

400 

400 

 

Table 3-2 Summary of parameter variation III, examining R-curve specimen dependence, 

full list of parameter combinations is in the supplementary material. 

Phase Parameter Values 

III 𝑳 (mm) 150, 300, 400, 600, 1000 

 𝒂𝟎 (mm) 0, 10, 25, 50, 60, 70, 100 

 𝑬 (GPa) 50, 170, 300, 600, 1000, 1700 

 𝒉 (mm) 2, 3, 4, 5, 6, 7, 8, 12, 16 
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Table 3-3 Values of 𝜎𝑒𝑥𝑡 (MPa) for the shape variation of the extrinsic toughening region 

(phase IV). Intrinsic toughening properties are fixed. δe =  0.005 mm, 𝛿𝑖𝑛𝑡 = 0.01 mm, 

σint = 40 MPa, Gint = 200 J/m
2. 

  𝜹𝒆𝒙𝒕(𝒎𝒎) 0.05 0.1 0.25 0.5 1 2.5 10 

IV 𝝈𝒆𝒙𝒕 

(MPa) 

𝑮𝒆𝒙𝒕 = 𝟐𝟎𝟎 𝑱/𝒎
𝟐 8 4 1.5 0.8 0.4 0.16 0.04 

 𝑮𝒆𝒙𝒕 = 𝟒𝟎𝟎 𝑱/𝒎
𝟐 16 8 3.2 1.6 0.8 0.32 0.08 

 𝑮𝒆𝒙𝒕 = 𝟏𝟎𝟎𝟎 𝑱/𝒎
𝟐 N/A 20 8 4 2 0.8 0.2 

 𝑮𝒆𝒙𝒕 = 𝟐𝟎𝟎𝟎 𝑱/𝒎
𝟐 N/A N/A 16 8 4 1.6 0.4 

 

3.3 Results 

Figure 3-4 shows the deformed configuration of a DCB simulation with an 

intrinsic toughness of 300 𝐽/𝑚2 and an extrinsic toughness of 200 𝐽/𝑚2 

(with properties as shown in the final row of Table 3-1 phase I and in Figure 

3-4B). The cohesive tractions, shown as arrows in Figure 3-4A in the steady-

state (i.e., once the measured toughness has reached a plateau), are at a 

maximum at the crack tip (defined here as 𝛿 = 𝛿𝑒) and decrease 

monotonically in the bridging zone behind the crack tip. The load vs load-

line displacement (Figure 3-4C) shows a peak at which time crack 

propagation commences followed by a reduction in force as the crack grows 

as a result of the reduction in compliance of the DCB arms. The substantial 

amount of extrinsic fracture energy results in a rising R curve behaviour 

(Figure 3-4D); the initial value of the measured fracture energy is a direct 

result of the intrinsic toughness, and a final/plateaued value is determined 

by the total fracture energy (i.e., intrinsic plus extrinsic). The crack growth 

which occurs before the plateau is reached (and a steady-state toughness is 

obtained) is hereafter referred to as Δ𝑎𝑠𝑠. 
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Figure 3-4 A) Deformed shape of DCB specimen with overlaid traction vectors. The 

dimensions of 2 mm, 1.7 mm and 38 mm show the differing crack length scales over which 

intrinsic and extrinsic toughening mechanisms act. Applied traction-separation law shown 

(B) with the measured load-displacement response (C) and resulting R-curve, normalised 

with input fracture energy Gtotal (D). 

3.3.1 The ratio of extrinsic to intrinsic toughness (𝑮𝒆𝒙𝒕: 𝑮𝒊𝒏𝒕) 

The effect of the ratio of intrinsic toughness to extrinsic toughness on the 

overall R-curve behaviour is summarised in Figure 3-5 based on the 

parameters listed above (I & II in Table 3-1). In the first set of results (Figure 

3-5A-D), the intrinsic toughness is fixed and the extrinsic varied and, in the 

second (Figure 3-5E-H), the total toughness is fixed and the ratio of intrinsic 

to extrinsic toughening is varied. In the case of the former (A-D), the 

following observations are made: (i) the peak load is constant, (ii) the crack 

growth length to reach the steady-state measured toughness Δ𝑎𝑠𝑠 increases 

with increasing 𝐺𝑒𝑥𝑡, (iii) the plateau/steady-state measured toughness 

increases with 𝐺𝑡𝑜𝑡𝑎𝑙, and (iv), when normalized by the total toughness, the 

steady-state measured toughness ≈ 1, as expected.  

In second set of results (E-H), and similar to the above, we note: (i) the peak 

load increases with increasing 𝐺𝑖𝑛𝑡, (ii) Δ𝑎𝑠𝑠 increases with increasing 𝐺𝑒𝑥𝑡, 

and (iii) the plateau/steady-state measured toughness is constant with 
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constant 𝐺𝑡𝑜𝑡𝑎𝑙. In these simulations, the extrinsic energy is increased by 

increasing 𝛿𝑒𝑥𝑡  and correspondingly, 𝛿𝑖𝑛𝑡 is reduced to keep the total energy 

constant.  

These results show that the R-curve behaviour is dominated by changes in 

the extrinsic toughness, as expected; however, in these simulations only 𝛿𝑒𝑥𝑡  

is varied. A further investigation of the other extrinsic parameters is shown 

below.  

 

Figure 3-5 Summarised input parameters and results from phase I (where 𝐺𝑖𝑛𝑡 is fixed and 

𝐺𝑒𝑥𝑡 is varied) and II (where 𝐺𝑡𝑜𝑡 is fixed and the ratio of 𝐺𝑖𝑛𝑡: 𝐺𝑒𝑥𝑡 is varied) of the parameter 

variation, examining the ratio of intrinsic to extrinsic toughness.  

3.3.2 Effect of fracture test properties 

In the current section, the effect of test specimen parameters (ℎ, 𝐸, 𝑎0) on 

the response are explored (the series of simulations III in Table 3-2). Figure 

3-6 shows that increasing ℎ (Figure 3-6A) or increasing 𝐸 (Figure 3-6D) 

causes an increase in Δ𝑎𝑠𝑠. For a valid beam test (i.e., 
𝑎0

ℎ
> 10), Δ𝑎𝑠𝑠 is 

linearly proportional to ℎ for all values of 𝐸 considered (Figure 3-6B, C), as 

evident from the 1:1 relationship on a log-log scale indicating a linear 

relationship. Similarly, Δ𝑎𝑠𝑠 is linearly proportional to √𝐸
3

 for all values of ℎ 

considered (Figure 3-6E, F), as evident from the 1:3 relationship on a log-log 
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scale.  The original crack length 𝑎0 does not affect the behaviour for slender 

beams (data not shown).  

 

Figure 3-6 Top row: Relationship between steady-state crack growth Δass and beam 

thickness h for 𝐸 = 170 GPa A) R-curves. (B&C) A linear relationship (note 1:1 relationship 

is also shown) between Δass and h for various laminate moduli. Bottom row: Relationship 

between steady-state crack growth Δass and beam modulus E for ℎ = 4 mm. D) R-curves. 

(E&F) showing relationship between Δass and E for various laminate thicknesses. 

3.3.3 Bridging length and steady-state crack length 

Previously, 𝐺𝑒𝑥𝑡  was shown to control the shape of the R-curve by varying 

𝛿𝑒𝑥𝑡; here we show the 𝐺𝑒𝑥𝑡  does not substantially change the ratio 

Δ𝑎𝑠𝑠/𝛿𝑒𝑥𝑡. Therefore, the bridging length is the most important parameter 

– bridging tractions will influence the overall toughness, but not the slope of 

an R-curve (�̂�/𝐺𝑡𝑜𝑡𝑎𝑙 vs Δ𝑎). A range of behaviours are considered ; within 

each group of simulations 𝛿𝑒𝑥𝑡  is varied such that 𝐺𝑒𝑥𝑡 = 0.5 𝜎𝑒𝑥𝑡𝛿𝑒𝑥𝑡  is 

constant (Figure 3-7A); this is repeated for 4 different values of 𝐺𝑒𝑥𝑡  in total 

(Table 3-3).  For all values of 𝐺𝑒𝑥𝑡, Δ𝑎𝑠𝑠 is shown to linearly increase with 

𝛿𝑒𝑥𝑡. In all cases, 𝐺𝑖𝑛𝑡 = 200 J/m
2 

We note in passing that the input fracture energies in the cohesive law (i.e., 

the total, 𝐺𝑡𝑜𝑡𝑎𝑙) are not completely recovered in the measured values �̂�, 

i.e., �̂�/𝐺𝑡𝑜𝑡𝑎𝑙 < 1. This error arises from the ASTM data reduction methods 

which are replicated here in silico. The data reduction methods consider the 
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bending of the arms of the DCB specimen and beam rotations at the crack 

tip are accounted for; however, this method does not account for the 

tractions behind the crack as a result of fibre bridging. A follow-up study will 

examine this effect in detail in the context of the data reduction methods as 

described in the ASTM standard [30] and their appropriateness in the 

presence of fibre bridging or other extrinsic mechanisms. 

 

Figure 3-7 A) Traction-separation laws with constant Gext. Note: the extrinsic part of the 

horizontal axis is shown on a log scale. B) R-curves showing effect of 𝛿𝑒𝑥𝑡 for the case with 

Gext = 400 J/m
2 and C) the relationship between the bridging length δext and steady-state 

crack length Δass.  

3.3.4 Reproduction of experimentally observed behaviour 

Based on the above results, a strategy for determining traction-separation 

properties (suitable for use in simulation) from experimental data is 

suggested (Table 3-4). The previously established relationships above 

(Δ𝑎𝑠𝑠 ∝ 𝐸
1/3 and Δ𝑎𝑠𝑠 ∝ ℎ) are combined with the relationship established 

in Figure 3-7C (Δ𝑎𝑠𝑠 ∝ 𝛿𝑒𝑥𝑡  ) to relate Δ𝑎𝑠𝑠 to 𝐸, ℎ & 𝛿𝑒𝑥𝑡  as shown in Figure 

3-8B.  
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Figure 3-8 A) Measurement of 𝐺𝑖𝑛𝑡, 𝐺𝑒𝑥𝑡 and Δ𝑎𝑠𝑠 from bilinear approximation of an R-

curve [22]. B) Previously established relationship between Δass and E, h & δext; used to 

calculate 𝛿𝑒𝑥𝑡. 

Table 3-4 Origin of traction-separation law parameters 

 Parameter Source Notes 

1 𝐺𝑖𝑛𝑡 Directly measure from R-

curve (𝐺𝑖𝑛𝑡 = �̂�0). 

 

2 𝐺𝑒𝑥𝑡  Plateau value on fracture 

resistance curve (𝐺𝑒𝑥𝑡 =

�̂�𝑠𝑠 − �̂�0). 

 

Small errors are noticed for large 

extrinsic toughness. ASTM data 

reduction methods do not properly 

account for the large tractions behind 

the crack tip when accounting for 

rotation of the beams at the crack tip. 

3 𝜎𝑖𝑛𝑡 𝜎𝑖𝑛𝑡 can be approximated 

by the ply transverse 

tensile strength [19,49,50]. 

 

 

Note: that once 𝐺𝑖𝑛𝑡 is determined 𝜎𝑖𝑛𝑡  

and 𝛿𝑖𝑛𝑡 are inversely proportional. 

Setting 𝜎𝑖𝑛𝑡 too low will lead to a less 

pronounced peak on a plot of 𝑃, 𝑢 in 

disagreement with experimental 

observations. See below regarding 𝛿𝑖𝑛𝑡 

4 𝛿𝑖𝑛𝑡 𝜎𝑖𝑛𝑡 and 𝐺𝑖𝑛𝑡 constrain the 

choice of 𝛿𝑖𝑛𝑡 (equation 

3.2). 

Too small a value of 𝛿𝑖𝑛𝑡 would require 

an excessively fine mesh to avoid 

numerical issues (if 𝐿𝑒𝑙/𝛿𝑖𝑛𝑡 ≥ 50 )   
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5 𝛿𝑒 It is recommended to use a 

symmetric intrinsic region, 

𝛿𝑒 = 𝛿𝑖𝑛𝑡/2 

 

An asymmetric load vs unload slope will 

lead to increased computation cost 

related to the ratio of 𝐿𝑒𝑙 to min(𝛿𝑒 ,

𝛿𝑖𝑛𝑡 − 𝛿𝑒)  

6 𝑘𝑐 𝑘𝑐 is not independent. 

𝑘𝑐 = 𝜎𝑖𝑛𝑡/𝛿𝑒 

 

7 𝛿𝑒𝑥𝑡  Determined from Figure 

3-8 using the steady state 

crack length Δ𝑎𝑠𝑠 

(measured from R-curve). 

 

8 𝜎𝑒𝑥𝑡  𝐺𝑒𝑥𝑡  and 𝛿𝑒𝑥𝑡  constrain the 

choice of 𝜎𝑒𝑥𝑡 (equation 

3.3). 

 

3.3.5 Case studies 

The method outlined above is applied to three test case studies using 

existing data [22,34,38]. Figure 3-9 below shows the experimental data from 

these studies (black), the bilinear approximations used as model inputs 

(green) and resulting simulations (red). The TSL used in these simulations is 

obtained from the bilinear approximation. 

 

Figure 3-9 Case studies comparing experimental data (black) with simulated R-curves (red) 

using a traction-separation law approximated based on the method described in this study, 

bilinear approximation shown in green. Left: Shokrieh et al. [34], Middle: De Morais & 

Pereira [38], Right: Heidari-Rarani et al [22]. 

The materials used in these case studies encompass a range of material 

parameters; their properties and resulting traction-separation laws are 

summarised in Table 3-5. In all cases, the key features are captured, namely 
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the initial and plateau values of observed tractions, and the crack growth 

required to get the plateau. The form of the TSL assumed in this work does 

result in a difference between the slope of the R-curve during the transition 

region, particularly for the case of the experimental observations of De 

Morais and Pereira. Capturing the exact shape would require an arbitrarily 

shaped TSL and is beyond the scope or intent of the present work. Similar to 

the observations made above regarding the influence of fibre bridging on 

the ASTM data reduction methods, the plateau value of the measured 

toughness is below that of the bi-linear approximation (which informed the 

model inputs).  

Table 3-5 Summary of parameters and resulting traction-separation law used in case studies. 

Parameter Shokrieh et al. De Morais & 

Pereira 

Heidari-Rarani et 

al. 

𝐿 (mm) 150 200 150 

𝑎0 (mm) 35 55 35 

𝐸 (GPa) 29.5 119 30.54 

ℎ (mm) 2 1.8 2.1 

𝐺𝑖𝑛𝑡 (𝐽/𝑚
2) 100 250 175 

𝐺𝑒𝑥𝑡  (𝐽/𝑚
2) 500 550 375 

Δ𝑎𝑠𝑠 (mm) 8.5 25 8.6 

𝛿𝑒 (mm) 0.0025 0.005 0.005 

𝛿𝑖𝑛𝑡 (mm) 0.005 0.01 0.01 

𝜎𝑖𝑛𝑡 (MPa) 40 50 35 

𝛿𝑒𝑥𝑡  (mm) 0.65 2.3 0.65 

𝜎𝑒𝑥𝑡  (MPa) 1.538 0.478 1.154 

3.4 Concluding remarks 

By providing an in-depth exploration of the parameter space associated with 

a traction-separation law (TSL), the shape of a fracture resistance curve (R-

curve) can be explained in detail. For extrinsic toughening mechanisms such 

as fibre bridging, the maximum separation at which the bridging tractions 

act was found to be the key cohesive property to be tuned to capture the 
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main features of an R-curve (i.e., the initial and steady state toughness 

values and the crack growth required to reach the steady state value). For 

cohesive behaviour with only intrinsic toughening mechanisms, the cohesive 

stiffness and maximum traction do not control the behaviour – it is the 

intrinsic fracture toughness which dictates the behaviour. However, as 

bridging tractions are substantially less than the maximum intrinsic traction, 

a trilinear TSL is required to capture bridging behaviour. These observations 

are used to establish a procedure to robustly identify the input parameters 

for use in a computational model (i.e., with a traction-separation law) 

For cohesive behaviour with extrinsic toughening mechanisms such as fibre 

bridging, the relationship between the key features of an observed crack 

growth resistance curve and the input TSL have been robustly explored and 

key trends are identified. Examination of these trends has shown that the 

key features on an R-curve (the initial value, the plateau in toughness and 

the steady-state crack length) can be explained in terms of the interfacial 

law. The initial value �̂�0 required for crack initiation is the intrinsic fracture 

toughness 𝐺𝑖𝑛𝑡, the plateaued value �̂�𝑠𝑠 is the total fracture energy 𝐺𝑡𝑜𝑡𝑎𝑙 in 

the model. The steady-state crack length Δ𝑎𝑠𝑠, required to achieve a plateau 

in the R-curve, is a function of beam thickness, modulus and fibre bridging 

length 𝛿𝑒𝑥𝑡  (a cohesive property).  

Reproduction of experimental results has shown that this method of 

determining a TSL is accurate. These results facilitate improved 

understanding of crack growth resistance through quick interpretation of 

experimental data. By replicating the experimental procedures in the 

processing of the simulations (rather than for example numerical calculating 

the J-integral), our results are directly relevant to the experimental testing 

and calibration of models. The input parameters for finite element 

simulations can be quickly determined and employed in analyses of end-use 

scenarios and applications, e.g., in composite structures such as wing 

surfaces or turbine blades. Correctly capturing the effect of such toughening 
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mechanisms is critical for prediction of failure via inter-laminate cracking in 

large scale composite structures.  
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Chapter 4. Double Rolling Arc Fracture Test 

(DRAFT): Analysis of a Novel Test Method for 

Directly Measuring Fracture Properties in 

Composite Beams 

Abstract 

Fracture toughness in composite beams is typically calculated by 

approximate methods (e.g., the compliance calibration method). Composite 

specimens undergoing fracture often exhibit toughening behaviour during 

crack propagation. Traditional methods such as compact tension and three-

point or four-point bend tests do not accurately capture the extrinsic 

toughening mechanisms, as the mechanism may not fully develop during the 

test. Here, a novel fracture test method is replicated using the finite element 

method. This test applies an end moment to a composite beam specimen; 

while the test apparatus dictates the curvature achieved by the specimen 

and the specimen’s strain energy. The crack propagation rate is controlled 

in this method. Due to the loading nature of the test fixture, the fracture 

toughness can be read as a function of the measured load. As the specimen 

holds a constant curvature, the separation between laminates can be 

calculated as a function of applied displacement and geometric features. The 

fracture toughness and interlaminar separation can be manipulated to yield 

an expression for the interface traction. These expressions are applied to 

experimental measurements to produce an interface law. This interface law 

is then used in finite element software to reproduce the original 

experimental data with a high level of fidelity. The method defined here 

does not accurately capture intrinsic behaviour but captures the evolution 

of the R-curve behaviour well. It is recommended to use a traditional DCB 

test for intrinsic properties and the novel DRAFT method for extrinsic 

properties. The shape of the interface law is important as; even if the full 

fracture toughness is not realised – the shape of the law influences the 
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transitional response as the complete interface law is being realised. The 

material tested exhibits a second peak in the traction-separation response. 

This indicates that the material gets somewhat tougher as separation 

increases. The Double Cantilever Beam (DCB) test is limited when handling 

materials that experience high levels of extrinsic toughening. This method 

supplements the DCB method’s limitations by handling large scale extrinsic 

mechanisms well; albeit without accurately capturing the intrinsic response. 

 

Nomenclature 

𝑎 Crack length 

𝑎0 Pre-crack tab length 

𝑎𝑖 Crack length at a crosshead displacement of 𝑢𝑖 

𝑎𝑗 Crack length at a crosshead displacement of 𝑢𝑗 

𝑏 Specimen width 

𝐷 Damage variable 

𝐸 Young’s modulus 

𝐺 Measured fracture energy 

𝐺𝑒𝑥𝑡  Extrinsic fracture energy 

𝐺𝑖 Fracture energy achieved at a crosshead displacement 𝑢𝑖 

𝐺𝑖𝑛𝑡 Intrinsic fracture energy 

𝐺𝑗 Fracture energy achieved at a crosshead displacement 𝑢𝑗 

𝐺𝑡𝑜𝑡 Total fracture energy 

ℎ Specimen half thickness 

𝐼 Moment of Inertia 



Chapter 4: Double Rolling Arc Fracture Test (DRAFT): Analysis of a Novel …  

85 
 

𝐿 Specimen length 

𝑀 Moment 

𝑃 Measured load 

𝑃𝑑 Reaction force due to energy dissipation 

𝑃𝑒 Load required to elastically deform the specimen 

𝑃𝑖 Measured load at a crosshead displacement 𝑢𝑖 

𝑃𝑗 Measured load at a crosshead displacement 𝑢𝑗 

𝑃𝑚𝑎𝑥 Maximum value achieved reaction force, associated with 

dissipated energy realisation 

𝑃1 Reaction force between lower and upper plateaus. Denotes 

transition from intrinsic to extrinsic toughening 

𝑃𝑟  Load measured at one rolling arc. Note that 𝑃 = 2𝑃𝑟  

𝑟 Rolling arc radius 

𝑅 Effective rolling arc radius (measured from rolling arc centre 

point to midline of nearest lever arm) 

𝑅𝑜 Outer rolling arc radius (measured from rolling arc centre 

point to cracked surface of nearest lever arm)  

𝑢 Applied displacement 

𝑢𝑖 Crosshead displacement at time 𝑖 

𝑢𝑗 Crosshead displacement at time 𝑗 

𝑥𝑐  The current expected location of the crack tip directly 

underneath the centre of the rolling arc 

𝑊𝑑 Energy dissipated in the fracture process 

𝑊𝑒 Elastic energy stored in the beam 

𝑊𝑓𝑟𝑖𝑐 Energy loss to friction in the system 

𝑊𝑡𝑜𝑡 Total energy of the system 

𝛿 Separation 
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𝛿𝑎  Distance between the surfaces of the beam ends at the 

specimen 

𝛿𝑓  Maximum allowable separation between surfaces 

𝛿𝑖 Separation between surfaces at a crosshead displacement 𝑢𝑖 

𝛿𝑗 Separation between surfaces at a crosshead displacement 𝑢𝑗 

𝛿𝑘 Distance between the surfaces of the beam ends at the 

specimen at the point 𝑘 

Δ𝑎 Crack propagation 

Δ𝐴 New crack surface area created in the fracture process 

Δ𝑎𝑠𝑠 Crack propagation required to achieve a steady state in the 

fracture toughness response 

Δ𝑢𝑘 Displacement undergone from when the point 𝑘 passed the 

line between rolling arc centres 

Δ𝑊𝑑 Incremental change in energy dissipated in the fracture 

process 

Δ𝑊𝑒 Incremental change in elastic energy stored in the beam 

Δ𝑊𝑓𝑟𝑖𝑐 Incremental change in energy loss to friction in the system 

Δ𝑊𝑡𝑜𝑡 Incremental change in total energy of the system 

𝜅 Beam curvature 

𝜎 Traction 

𝜎𝑒𝑙 Elastic traction (assuming no damage has occurred) 

𝜎𝑖 Traction between surfaces at a crosshead displacement 𝑢𝑖 

𝜎𝑗 Traction between surfaces at a crosshead displacement 𝑢𝑗 

𝜙 Rotation of the rolling arc 
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4.1 Introduction 

Extrinsic toughening, which acts in the wake of a crack front, is a 

differentiating factor between a controlled ductile failure and an unstable 

brittle failure. The rate of toughening will affect the crack propagation 

behaviour of the material regardless of whether the full extrinsic toughness 

is realised. In composite laminates, fibre bridging is a common observed 

extrinsic toughening mechanism.  

Traditional fracture test methods, such as the double cantilever beam (DCB) 

test, typically perform better in the absence of large-scale extrinsic 

toughening. The underlying theory here does not account for traction acting 

behind of the crack tip, which alters the deflection of the beam. Traditional 

test methods can accurately capture intrinsic toughening mechanisms and 

the initial stages of crack propagation before extrinsic mechanisms have fully 

developed. 

The DCB test is largely calibrated with a focus on intrinsic toughening 

mechanisms such as plasticity. Corrections can be applied to account for 

specimen size and rotation of the crack root [1]. These corrections do not 

account for the change in specimen profile in the presence of large-scale 

extrinsic toughening. Similar effects are found in other fracture test methods 

such as the compact tension test. 

The DCB test, does not give details of the shape of traction-separation law 

(TSL) required to reproduce the measured response. Further approximate 

methods must be applied to the measured response to obtain the TSL.  

Understanding how different shapes of TSL affect laminate behaviour at a 

specimen level will have a direct impact on understanding the macroscopic 

behaviour of the material in structural applications, giving insight to future 

work. 

The Double Rolling Arc Fracture Test (DRAFT) method, used here, is not 

entirely unique. Previous studies have used similar test methods. Sorensen 

et al [2] developed a fixture which applied pure bending moments to DCB 
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specimens, and used a scanning electron microscope is used to measure the 

delamination length. In another study by Sorensen and Jacobsen [3], the J-

integral was applied to a beam loaded with applied end moments to 

determine the interfacial cohesive law. 

Peel tests also use similar principles to those in the DRAFT method. In 

previous studies, peel tests have used mandrels to apply the force,  resulting 

in a known curvature at the load point, as used by Breslauer and Troczynski 

[4]. The DRAFT method differs as the strained region of the beam remains 

conformed to the arc curvature for the duration of the experiment. Climbing 

drum peel tests work in a similar manner to the DRAFT rig, offering control 

of the curvature at separation. These tests have been standardised by ASTM 

[5]. There are similarities between the DRAFT method and two simultaneous 

climbing drum peel tests. 

The authors believe the interpretation of the measured response has not 

been fully understood in previous studies. An analytical solution for a DCB 

with prescribed end rotations has been presented recently [6]. This study 

provides a similar solution, with specimen curvature dictated by the 

experimental apparatus. In another study, Škec and co-workers [7] note that 

when a prescribed moment is applied (to a DCB),  the work of separation 

and the fracture toughness are the same; however when a prescribed load 

is applied they are not. This implies that the derivative of the J-integral with 

respect to crack opening displacement does not exactly capture the TSL. 



Chapter 4: Double Rolling Arc Fracture Test (DRAFT): Analysis of a Novel …  

89 
 

 

Figure 4-1 Examples of existing experimental configurations used in the literature (A) a DCB 

specimen loaded using a steel band and rollers by Sorensen et al. [2] (B) Broughton [8] used 

a climbing drum peel test to determine adhesive strength, the mechanism is similar to the 

DRAFT mechanism (C) Test fixture used by Sorensen and Jacobsen [3] to apply pure 

bending moments using steel wires and a pulley system (D) Peel test with a mandrel used by 

Breslauer and Troczynski [4], the mandrel dictates the local specimen curvature. 

Studies of laminates experiencing extrinsic toughening [9–11] typically 

perform an inverse simulation; whereby experimental measurements are 

reproduced using a bilinear, trilinear or exponential TSL. These studies 

showcase that experimental measurements can be replicated in-silico but 

do not show how computational parameters affect the measured response. 

This study shows the effect of computational parameters on the measured 

response; and describes how these parameters should be chosen to 

replicate a given experimental response. 
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In a previous study we presented a systematic exploration of the parameter 

space for a TSL that considers both intrinsic and extrinsic toughening 

mechanisms. However, the TSLs were generally piecewise-linear with a small 

number of linear sections to reduce the parameter space. While this 

approach captures the key observed results (quantified by the initial 

toughness, the final toughness, and the crack growth to reach the final 

steady state value), it does not capture the exact shape of the TSL.  

Here, we present an experimental approach that controls the beam 

curvature during crack propagation, which is directly controlled by machine 

crosshead displacement. A theoretical framework to determine the strain 

energy and fracture energy contributions during crack propagation are 

presented. As the crack opening displacements are imposed by the rollers, 

an arbitrarily shaped TSL can be determined from the energy release rate. 

Two different materials are tested experimentally and the resulting TSLs 

compared: providing insight into the material behaviour and guidance for 

future performance improvements. The TSLs generated are compared to 

DCB tests on the same materials and the limitations of the methods are 

discussed.  

4.2 Methods 

4.2.1 Experimental apparatus  

The DRAFT mechanism is presented below (Figure 4-2A&B) and consists of 

two carriages; the outer carriage holds the rolling arcs, and the inner 

carriage holds the specimen. The inner carriage is also connected to the 

rolling arcs via two flexible, but inextensible, shims. The specimen is fixed at 

one end to the inner carriage and the beam ends at the pre-cracked end of 

the specimen are attached to the rolling arcs. 

During a test, the outer carriage moves upwards. This pushes the rolling arcs 

upwards; however, the shims attached to the rolling arcs and the fixed 

stationary inner carriage cause the rolling arcs to rotate as they move. In 

turn, this imparts a curvature on the two ends of the pre-cracked specimen.  
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The assumed crack front is at the tangent point between the rolling arc and 

the uncracked section of the specimen and is colinear with the centre points 

of the rolling arcs. Therefore, as the carriage moves, it is assumed that the 

change in crack length 𝑎 is equal to the carriage displacement 𝑢. The validity 

of this assumption is questioned in Section 4.4.1.2. 

After the carriage has moved, the curved section of the beam will have 

length 𝑎 and the rolling arc has rotated through an angle 𝜙 with 𝑎 = 𝑢 =

𝑟𝜙, where 𝑟 is the radius of the rolling arc. The distance between the centres 

of the rolling arcs is 2(𝑟 + ℎ) = 2𝑅0 and the distance 𝛿𝑎  between the 

surfaces of the beam ends at the specimen end can be determined. 

 𝛿𝑎 = 2𝑅𝑜 (1 − 𝑐𝑜𝑠
𝑢

𝑟
) 4.1 

In general, for a point 𝑘 on the crack path, the separation for that point can 

be expressed in terms of the displacement undergone from when that point 

passed the line between the roller centres (i.e., the crack front) to the 

current time (Δ𝑢𝑘): 

 
𝛿𝑘 = 2𝑅𝑜 (1 − 𝑐𝑜𝑠

𝛥𝑢𝑘
𝑟
) 

4.2 

The motion of the system is shown in Figure 4-2; as the rolling arcs rotate 

and move upwards, note that the straight section of the shims and the 

straight section of the beam are a constant length as both are attached to 

either end of the inner carriage.  
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Figure 4-2 A) 3D model  and schematic representation and B) 3D visualisation of the novel 

test rig. In both A) and(B), the applied load pulls the inner carriage (blue) downwards. Two 

flexible plates (orange) are connected to the rolling arcs so that downwards movement of the 

carriage causes rotation of the arcs; the arc rotate about a centre which is stationary relative 

to the outer frame (green). C) distinction between rolling arc radius, 𝑟, the radius of curvature, 

𝑅, and the outer radius, 𝑅𝑜. 𝑅𝑜 dictates the separation between layers, while 𝑅 determines the 

current rotation of the rolling arc. D) Finite element model of novel test rig. Rolling arcs are 

modelled using rigid analytical surfaces and the interface is modelled with cohesive elements, 

governed by a traction-separation law.  

4.2.2 Experimental approach  

The specimen was mounted in the DRAFT rig which was controlled via 

crosshead displacement at a fixed velocity of 0.16̇ 𝑚𝑚/𝑠. The reaction loads 

generated were recorded and the interpretation of these is discussed in full 

below. The measured response (reaction force) has an initial rise from zero 

to a value of 𝑃𝑒 , which is shown below to correspond to the strain energy in 

bending the beam arms. As the rolling arcs move along the beam, the crack 

length increases linearly (at the rate of applied displacement). Once the 

crack front reached the end of pre-cracked region, 𝑎0, the measured force 

began to rise again; as there is now a dissipated energy contribution (in 

creating the new crack surface), along with the strain energy contribution to 

the total reaction force.  



Chapter 4: Double Rolling Arc Fracture Test (DRAFT): Analysis of a Novel …  

93 
 

Two example materials were tested which are known to exhibit high and low 

amounts of fibre bridging, respectively; and are referred to as High Extrinsic 

Toughness (HET) and Low Extrinsic Toughness (LET). Both materials use the 

same resin and changes were made to the fibre tows to alter the extrinsic 

toughness. The details of these changes are commercially sensitive and not 

revealed by the manufacturer. The laminate lay-up in the test specimens 

was 24:[09/-5/+5/0]s; the 5° offset is introduced to prevent “nesting” 

whereby fibres tows from neighbouring plies become intertangled; which 

occurs in purely 0° lay-ups. In other studies, increasing the fibre 

concentration has shown an increase in the composite tensile strength [12].  

The specimens measured 250 mm in length, 2 mm in thickness and have a 

25 mm breadth. A film insert was used in the manufacture of these 

specimens to produce a pre-cracked length of 20 mm. Additionally, DCB 

tests were performed on the same materials using the DCB fracture test 

method performed in accordance with the ASTM standards [1]. The 

compliance calibration method was used to calculate the crack growth 

release rate. The DCB specimens measure 250 mm in length, 3 mm in 

thickness and have a 25 mm breadth. A film insert was also used in the 

manufacture of these specimens to produce a pre-cracked of 30 mm. 

4.2.3 Finite element model  

A finite element model of the experimental setup is created; however, only 

the test specimen and rollers (rolling arcs) are considered (Figure 4-2D). The 

rollers are modelled as analytical rigid surfaces and are constrained to rotate 

as they move via an equation constraint, which represents the shims and 

moving carriage used in the experiment. The test specimen is modelled using 

two-dimensional plane strain elements CPE4I with a uniform out-of-plane 

thickness. Isotropic linear elasticity is assumed. The test specimen is 

constrained at one end and attached to the roller at the other. The end point 

of the roller is coupled to the end face of each of the beam ends (Figure 

4-2D) such that the face follows the rotation and displacement of the roller. 
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The outer surface of the test specimen is in contact with the roller surfaces 

and the penalty contact method with frictionless behaviour is used.  

The test specimen includes a pre-crack of length 𝑎0 and the crack path is 

modelled using cohesive element with zero height. The cohesive elements 

in this model are four node 2D quadrilaterals with two integration points 

(COH2D4). The cohesive elements use a traction separation material 

definition which uses an elastic component which undergoes damage once 

a defined traction is reached. The damage variable allows for a piecewise 

linear traction separation law. Only normal displacements contribute to the 

damage criteria. Once the element is fully damaged, it is deleted from the 

finite element model. The traction in the material is calculated as: 

 𝜎 = 𝜎𝑒𝑙(1 − 𝐷) 4.3 

where 𝜎𝑒𝑙 is the undamaged elastic traction across the interface. Thus, any 

TSL can be defined with the evolution of 𝐷 described in terms of the 

separation.  

In each simulation, the specimen is loaded via a displacement boundary 

condition applied to each roller, which also causes the roller to rotate via a 

constrain equation. A solution is obtained using an implicit solver (Abaqus 

2018, Dassault Systèmes, RI, USA). In addition to the field variables in the 

test specimen, the reaction forces and displacements at the rollers are 

recorded. Due to the test geometry, the crack is assumed to advance in 

direct proportion to the roller displacement.  

4.3 Theory 

Here, we present a method of calculating the fracture toughness based on 

the measured reaction force in the experimental set up. By neglecting 

frictional losses and considering the strain energy and dissipated energy 

terms separately, it is shown that increases in the measured force (from the 

strain energy baseline 𝑃𝑒) can be directly attributed to the fracture energy. 



Chapter 4: Double Rolling Arc Fracture Test (DRAFT): Analysis of a Novel …  

95 
 

The separation between laminates is directly related to the displacement, 

which is equivalent to the crack length, through the rolling arc radius. This 

relationship allows us to calculate the interfacial traction as the derivative of 

the fracture energy with respect to separation. 

4.3.1  Simplified approach 

The intrinsic and extrinsic fracture energies are related to the reaction forces 

generated during the test. First consider the curvature of the curved section 

of the beam which is in contact with the roller surface. The roller has radius 

𝑟 and the neutral surface of the beam is ℎ/2 beyond that (Figure 4-2C), 

giving a radius of curvature 𝑅 = 𝑟 + ℎ/2. We also note that the outer 

surface of the beam (on which the tractions will act) has radius 𝑅𝑜 = 𝑟 + ℎ. 

Assuming the curvature remains constant (i.e., the beam remains in contact 

with the roller surface), the moment-curvature relationship for the beam is: 

 
𝜅 =

1

𝑅
=
𝑀

𝐸𝐼
 

4.4 

where 𝐸 is the modulus and 𝐼 is the second moment of area. This moment 

can be considered as applied to the end of the beam and is related to the 

reaction force on each roller (taken at the centre) using the same distance 𝑅 

as the moment lever arm:  

 
𝑃𝑟 =

𝑀

𝑅
 

4.5 

Note the total reaction 𝑃 = 2𝑃𝑟  is the sum of both roller reactions. At the 

beginning of the test, there is no contribution from the fracture process as 

the beam includes a pre-crack of length 𝑎𝑜; therefore, the load applied is the 

load required to elastically deform the beam 𝑃𝑒 and is a constant value (as 

the curvature is constant:  

 
𝑃𝑒 = 2

𝐸𝐼

𝑅2
 

4.6 

Note that this includes contributions from both lever arms of the specimen.  

The total work done during a test can be decomposed as follows:  
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 𝑊𝑡𝑜𝑡 = 𝑊𝑑 +𝑊𝑓𝑟𝑖𝑐 +𝑊𝑒 4.7 

where 𝑊𝑑 is the energy dissipated during the fracture process, 𝑊𝑓𝑟𝑖𝑐 is 

energy lost to frictional losses, and 𝑊𝑒 is energy stored during elastic 

deformation of the beams.  

The amount of work done to advance the crosshead displacement from 𝑢𝑖 

to 𝑢𝑗 can be treated similarly: 

 𝛥𝑊𝑡𝑜𝑡 = 𝛥𝑊𝑑 + 𝛥𝑊𝑓𝑟𝑖𝑐 + 𝛥𝑊𝑒 4.8 

The stored elastic energy is equal to the elastic contribution of the work: 

 𝛥𝑊𝑒 = 𝑃𝑒(𝑢𝑗 − 𝑢𝑖) = 𝑃𝑒(𝑎𝑗 − 𝑎𝑖) = 𝑃𝑒𝛥𝑎 4.9 

Neglecting the contribution of friction, the total reaction force 𝑃 can be 

similarly decomposed:  

 𝑃 = 𝑃𝑒 + 𝑃𝑑 4.10 

Where 𝑃𝑑 is the force associated with the fracture process.  

The strain energy release rate can be similarly compared to the dissipated 

work and the new crack surface area Δ𝐴: 

 
𝐺 =

𝛥𝑊𝑑

𝛥𝐴
=
𝑃𝑑𝛥𝑎

𝑏𝛥𝑎
=
𝑃𝑑
𝑏

 
4.11 

 
𝐺(𝑎) =

𝑃𝑑(𝑎)

𝑏
 

4.12 

For materials where there is no change in 𝐺 with crack growth, e.g., in the 

absence of extrinsic toughening mechanisms, 𝐺𝑡𝑜𝑡 is the key parameter and 

is readily determined from the load displacement plot (Figure 4-3B) 

 
𝐺𝑡𝑜𝑡 =

𝑃𝑚𝑎𝑥 − 𝑃𝑒
𝑏

  
4.13 

In the case of a significant amount of extrinsic toughening, and the 

corresponding increase in crack growth resistance, the intrinsic toughness 

and extrinsic toughness are determined as follows. The intrinsic toughness 

is apparent on the force – displacement plot: once the crack begins to grow, 
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an almost instantaneous increase in force to 𝑃1is apparent associated the 

intrinsic toughness. A similar calculation as for the total fracture energy in 

absence of extrinsic mechanisms is used:   

 
𝐺𝑖𝑛𝑡 =

𝑃1 − 𝑃𝑒
𝑏

  
4.14 

Note that amount of crack opening associated with the intrinsic fracture 

energy is small (on the order of 10-50 𝜇m is typically used to capture intrinsic 

behaviour in fibre reinforced composites [13,14]). Consequently, the crack 

growth during the rise in force from 𝑃𝑒 to 𝑃1 is small (following Equation 4.1)  

As the crack progresses, the force contributions to continue elastically 

deforming the beams and to create new crack surface (the intrinsic 

component only) remain constant as the curved region and crack area grow 

directly with displacement. Therefore, the remaining component of the 

force is associated with the extrinsic toughness:  

 
𝐺𝑒𝑥𝑡 =

𝑃𝑚𝑎𝑥 − 𝑃1
𝑏

  
4.15 

where 𝑃𝑚𝑎𝑥 is the same final maximum value as before.  

The crack growth Δ𝑎𝑠𝑠 required to reach a steady state toughness value (i.e., 

𝐺𝑡𝑜𝑡 = 𝐺𝑒𝑥𝑡 + 𝐺𝑖𝑛𝑡) is easily identified from the load-displacement plot. This 

plateau is reached once there is a steady state turnover of fibres behind the 

crack tip. The force (and energy) increases until the fibres fail, and the 

tractions are removed. Therefore, the final length of the TSL is determined 

following Equation 4.2 as:  

 
𝛿𝑒𝑥𝑡 = 2𝑅𝑜 (1 − 𝑐𝑜𝑠

𝛥𝑎𝑠𝑠
𝑅
) 

4.16 

These three parameters are sufficient to generate a TSL which can capture 

the broad experimental trends. A tri-linear TSL is commonly used (as seen in 

chapter 3 and in literature [14–16]); however other forms such as an 

exponential decay during the extrinsic region are possible. The two fracture 

energies 𝐺𝑖𝑛𝑡 and 𝐺𝑒𝑥𝑡  correspond to the area of the first and second 
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triangular regions of the TSL and for a tri-linear approach, the constraint 

mentioned above regarding a small crack opening for intrinsic toughness will 

also dictate the maximum traction. For a trilinear TSL, 𝐺𝑒𝑥𝑡 and 𝛿𝑒𝑥𝑡  are both 

known, therefore 𝜎𝑏 is readily determined.  

4.3.2 Arbitrarily shaped traction-separation law 

In the previous approach, only the key fracture properties were determined, 

and assumptions were made about the form of the TSL. This approach is 

quick; however, it does not allow for detailed interrogation of extrinsic 

toughening mechanisms. Here, a method of defining an arbitrary piecewise 

linear TSL is presented. In this method, an incremental crack propagation 

details a section of the TSL which had not been described prior to that 

propagation as the separation between the laminates reaches a new 

maximum value (from 𝛿𝑖 to 𝛿𝑗 in Figure 4-3D). 

 

Figure 4-3 A) DRAFT specimen which has been loaded such that the current crack length is 

𝑎𝑖 − 𝑎0. B) Resulting load displacement plot for DRAFT specimen at time 𝑖 and at time 𝑗. 
The region Δ𝑊𝑒  is the change in strain energy from 𝑖 to 𝑗 and Δ𝑊𝑑 is the change in dissipated 

energy from 𝑖 to 𝑗. C) Tractions 𝜎 as a function of distance from the crack tip 𝑥𝑐. Note that 

the TSL has not fully developed at this point (time 𝑖). D) Traction separation law at point 𝑖 
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and 𝑗, the region in grey has been developed from the crack propagating from 𝑎𝑖 to 𝑎𝑗 

resulting in an energy dissipation of Δ𝑊𝑑. 

As discussed above, the number of bridging fibres accumulates behind the 

crack until fibre failure starts to occur, at which point a steady turnover of 

fibres continues. Consider a state 𝑖 prior to reaching this steady state. The 

point Q at the end of the pre-crack will undergone a displacement following 

Equation 4.1 and the traction exerted will have followed the traction-

separation law as the separation increased. The traction and separation at 

this point are 𝜎𝑖 and 𝛿𝑖 respectively, and the distribution of tractions behind 

the crack tip are shown in Figure 4-3C beneath the schematic diagram.  For 

this explanation, a trilinear TSL is assumed (Figure 4-3D); the separation 

reached in this state 𝑖 is also shown on the TSL.  The reaction force 𝑃𝑖 at 𝑢𝑖 

and the previous history are shown in Figure 4-3B.  

Similar to the approach taken above for Equation 4.13, the fracture energy 

observed here (for the present amount of crack growth) is: 

 
𝐺𝑖 =

𝑃𝑖 − 𝑃𝑒
𝑏

 
4.17 

Note that once 𝑃𝑖 > 𝑃1, then 𝐺𝑖 includes a constant intrinsic contribution 

𝐺𝑖𝑛𝑡.  

The current fracture energy is also apparent from the traction separation 

law:   

 
𝐺𝑖 = ∫ 𝜎

𝛿𝑖

0

𝑑𝛿 
4.18 

This is the shaded area in Figure 4-3D. Taking the derivative of both sides of 

Equation 4.18, we can obtain an expression for the current traction: 

 
𝜎𝑖 = (

𝑑𝐺

𝑑𝛿
)
𝛿𝑖

 
4.19 

Considering the current value of 𝐺𝑖 and 𝛿𝑖 in addition to the previous data 

point 𝐺𝑗 and 𝛿𝑗 (which have associated data 𝑃𝑗, 𝑢𝑗, and 𝑎𝑗) an approximation 
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of the derivative can be taken, and the traction is then obtained directly from 

the data.  

 
𝜎𝑖 =

(𝐺𝑗 − 𝐺𝑖)

(𝛿𝑗 − 𝛿𝑖)
 

4.20 

It is important to note that the tri-linear TSL was assumed here for 

illustration purposes and this approach is compatible with an arbitrarily 

shaped TSL. 

Note that equation 4.20 can be rearranged to express the traction as a 

function of the derivative of the measured data, 
𝑑𝐺

𝑑𝑢
. 

 
𝜎 =

𝑑𝐺

𝑑𝛿
=  
1

2

𝑅

𝑅0

1

𝑆𝑖𝑛 (
𝑢
𝑅)

𝑑𝐺

𝑑𝑢
 

4.21 

4.4 Results  

4.4.1 Simulated response of an idealised material 

In line with previous experimental and computational investigations 

[11,13,17], a representative tri-linear TSL (with fracture properties similar to 

those seen in CF composites [9,10]) is used to explore the behaviour of a 

material tested with the DRAFT apparatus. Figure 4-4 shows a typical 

deformed specimen shape obtained from a finite element analysis. The 

tractions acting at the interfacial cohesive layer are also shown. The reaction 

force measured at the roller reference points is shown in Figure 4-4D; the 

reaction force per unit width holds a steady value of 𝑃0=0.2 N/mm (5 N for 

a 25 mm specimen) before the pre-crack is reached. This corresponds to the 

work needed to elastically deform the lever arms of the specimen.  Once the 

pre-crack is reached, the measured reaction force begins to increase as 

energy required to advance the crack. The reaction force reaches a plateau 

once the intrinsic and extrinsic toughening mechanisms have been fully 

realised, i.e., the maximum allowable separation of 𝛿𝑓  has been reached 

(𝛿𝑓 = 1.51 mm in this case for Δ𝑢 = Δ𝑎 = 12.3 mm). The corresponding 

crack growth release rate is plotted on the secondary axis, as calculated 

based on the theory discussed above for Equation 4.17.  
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Finally, in order to demonstrate the reconstruction of an arbitrarily shaped 

TSL (as described in Section 4.3.2), the TSL of the idealised material is then 

calculated from the output only (i.e., Figure 4-4D) and presented in Figure 

4-4E. The key features of the input behaviour are captured including the 

maximum traction, the separation for the intrinsic and extrinsic 

components, and the bridging tractions. Some fidelity with the original TSL 

is lost due to the numerical process and the sharp changes in traction with 

the input tri-linear law.  

 

Figure 4-4 A) Deformed shape of specimen from a finite element analysis with overlaid 

tractions. B) Close up of overlaid tractions in the cohesive zone of the finite element model. 

C) Applied traction-separation law used to generate finite element response. D) Load-

displacement response (and corresponding fracture toughness plotted in secondary vertical 

axis). The end of the pre-crack is reached at point (1), where crack propagation begins. The 

load increase at point (2) corresponds to the intrinsic toughness (e.g., resin) of the material 
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and point (3) is the steady state response when a constant turnover of bridging fibres is 

achieved. E) The input (black) and obtained (red) traction-separation laws (TSLs).  

 Parameter exploration.  

To demonstrate the applicability of the methods for a range of fracture 

behaviours, TSLs with different combinations of extrinsic and intrinsic 

toughness (including various values of 𝛿𝑒𝑥𝑡) are considered. The TSLs are all 

constructed with the parameters listed in Table 4-1 and Table 4-2 and the 

other variables (𝜎𝑖𝑛𝑡, 𝑘𝑐  and 𝛿𝑒𝑥𝑡) depend on the choice of 𝐺𝑖𝑛𝑡 and 𝐺𝑒𝑥𝑡. The 

simulated response for these different tri-linear TSLs is shown in Figure 4-5. 

The responses all show the instantaneous jump in load once the crack 

propagation begins (i.e., when 𝑢 = 𝑎0) followed by an increase up to the 

plateau value of load which correspond to 𝐺𝑖𝑛𝑡 and 𝐺𝑒𝑥𝑡, respectively. The 

output variables are then measured from the graphed data and compared 

to the input data (Table 4-2); expected values of 𝐺  are observed for all 

scenarios.  

Table 4-1 Default simulation parameters  

𝑎0 𝐿 𝑏 2ℎ 𝑟 𝐸 𝛿𝑖𝑛𝑡 𝛿𝑒 𝜎𝑒𝑥𝑡  

30 200 3 1 100 170 0.01 0.005 0.4 

mm mm mm mm 𝑚𝑚 GPa mm mm MPa 

 

Table 4-2 Default simulation parameters  

Input Measured 

𝐺𝑖𝑛𝑡 𝐺𝑒𝑥𝑡  Δ𝑎𝑠𝑠 𝜎𝑖𝑛𝑡 𝛿𝑒𝑥𝑡  𝐺𝑖𝑛𝑡 𝐺𝑒𝑥𝑡  Δ𝑎𝑠𝑠 

J/m2 J/m2 mm MPa mm J/m2 J/m2 mm 

100 100 7.152 20 0.5 100 105 7 

100 200 7.152 20 0.5 100 205 7.5 

100 200 10.066 20 1 100 205 10.5 

200 100 7.152 40 0.5 200 110 7 

200 200 7.152 40 0.5 200 210 8 

200 200 10.066 40 1 200 215 10.5 
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Figure 4-5 DRAFT responses for simulations with varying intrinsic and extrinsic toughness 

values. The default parameters used in these simulations are shown in Table 4-1. The other 

parameters (𝜎𝑖𝑛𝑡 , 𝑘𝑐 and 𝛿𝑒𝑥𝑡) depend on the choice of 𝐺𝑖𝑛𝑡 and 𝐺𝑒𝑥𝑡 which are shown in the 

legend and in Table 4-2. 

 Effect of test geometry 

Previously, all simulations used the same arc radius as in the prototype 

experimental set up; here, the effect of roller radius is demonstrated. The 

expected values of Δ𝑎𝑠𝑠 are shown for a range of maximum separations as a 

function of roller radius (Figure 4-6A). Depending on the expected 

behaviour, an appropriate rolling arc radius may be designed in order give 

adequate resolution in the calculation of the TSL from the observed data. 

For a representative TSL (Table 4-3), the effect of varying the rolling arc 

radius (from 75 to 200 mm) is explored.  

Table 4-3 Parameters used to examine the effect of rolling arc radii 

𝑎0 𝐿 𝑏 2ℎ 𝐸 𝛿𝑖𝑛𝑡 𝛿𝑒 𝛿𝑒𝑥𝑡  𝜎𝑖𝑛𝑡 𝜎𝑒𝑥𝑡  

25 200 3 1 100 0.01 0.005 1.5 40 0.4 

mm mm mm mm GPa mm mm 𝑚𝑚 MPa MPa 
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Figure 4-6B shows an unexpected result; while all four simulations should 

show an almost instantaneous increase from 0 to the input intrinsic 

toughness value of 200 J/m2, the fracture energy increases gradually for 

radii greater than 75 mm. This is due to the beam not remaining in contact 

with the rolling arc and thus not maintaining constant curvature. A similar 

effect occurs when the height of the specimen is varied (Figure 4-6C). As the 

specimen height increases, so too does the strain energy due to bending in 

the system (equations 4.6 and 4.9). Increasing the strain energy makes it 

more difficult for the specimen to conform to the rolling arc curvature as it 

is energetically favourable for the specimen to move away from the rolling 

arc surface. 

Looking at the separation between the rolling arc and specimen in closer 

detail, Figure 4-6D shows the location of the crack surface on one of the lever 

arm (solid lines) and the expected location at 𝑟 + ℎ from the centre of the 

rolling arc (relative to the current expected location of the crack tip directly 

underneath the centre of the rolling arc, 𝑥𝑐), when the centre of the rolling 

arc is at 𝑢 = 30 mm. In the case of the 75 mm arc, there is a small offset 

between the expected and observed values; however, in the case of 

125 mm, the crack remains almost completely closed for ≈ 3 mm behind 

the crack tip. The values of 𝛿𝑒 and 𝛿𝑖𝑛𝑡 are shown for comparison. Figure 

4-6E compares the expected (theory) and observed (FEA) surfaces, with the 

y coordinate normalised by the expected value (i.e., 1 corresponds to the 

beam perfectly conforming to the shape of the rolling arc and 0 is a 

completely closed crack) for the instant when the centre of the rolling arc is 

at 𝑢 = 30 mm. In the case of the larger roller, the separation remains less 

than 𝛿𝑒 for approximately 4 mm behind the crack tip and the fracture 

process has not started at all; for the smaller rolling arc, the maximum 

traction (i.e., start of fracture process) is reached approximately 0.5 mm 

further behind the crack tip than expected. Thus, for the larger arc radii, the 

fracture energy is not correctly captured and the error in the results is 

substantial.  



Chapter 4: Double Rolling Arc Fracture Test (DRAFT): Analysis of a Novel …  

105 
 

This error is a result of a combination of factors including: (i) axial 

deformation during bending leads to Poisson effect and a reduction in the 

specimen height, (ii) the cohesive tractions can substantially alter the shape 

of the beam if the flexural stiffness is sufficiently low and (iii) axial stretching 

in the straight section of beam ahead of the crack tip. A clear relationship 

between the flexural stiffness of the beam and the onset of this phenomena 

is not evident due to the non-linear relationship between tractions and 

separations.  

The error can be reduced substantially by introducing an axial pre-strain in 

the specimen. In the simulation, this was achieved with a displacement 

applied to the fixed end of the specimen corresponding to 5% strain; 

however this introduces a second error, whereby the Poisson effect creates 

additional clearance between the beam and the rolling arc causing the load, 

and therefore the observed fracture energy, to increase before the end of 

the pre-crack is reached (Figure 4-6F). This may be compensated for by 

introducing a corresponding inwards movement of the rolling arcs in the 

simulation, or a preloaded spring to keep the arc in contact; however, the 

contact between the specimen and surface should be recorded. A similar 

result can be observed by considering a material with zero Poisson’s ratio 

with the axial stretch applied; in this case, inwards movement of the rolling 

arc is not necessary and expected results are achieved. In both approaches, 

the final plateau value is approximately 5% lower; this is due to the axial 

stretch which alters the previous relationship between crack growth and 

displacement. The energy release rate is relative to the unstretched surface 

area; the 5% pre-strain causes an error of similar magnitude in the 

calculation of the area.   
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Figure 4-6 A) Δ𝑎𝑠𝑠 as a function of rolling arc radius for different values of 𝛿𝑓 as calculated 

by equation 4.16. B) Crack growth resistance curves with different rolling arc radii. All other 

model parameters are identical 𝑎0 =  25mm, 𝐿 = 200 𝑚𝑚, 2ℎ = 1 𝑚𝑚, 𝑏 = 3 𝑚𝑚, 𝐸 =
100 𝐺𝑃𝑎, 𝐺𝑖𝑛𝑡 = 200 𝐽/𝑚

2, 𝐺𝑒𝑥𝑡 = 300 𝐽/𝑚
2, 𝛿𝑖𝑛𝑡 = 0.01 𝑚𝑚, 𝛿𝑒𝑥𝑡 = 1.5 𝑚𝑚, 𝜎𝑖𝑛𝑡 =

40 𝑀𝑃𝑎 & 𝜎𝑒𝑥𝑡 = 0.4 𝑀𝑃𝑎. C) Crack growth resistance curves with different specimen half 

height ℎ, all other parameters are the same as the 𝑟 = 200 𝑚𝑚 case as shown in (B). D) 

Position of the specimen outer surface theoretically (equivalent to the rolling arc surface) and 

in FEA for 𝑟 = 75𝑚𝑚 and 𝑟 = 125𝑚𝑚 cases from (B). E) ratio of difference between 

theoretical and FEA 𝑦 values as distance from the crack tip increases. F) Crack growth 

resistance curves for the 𝑟 = 200 𝑚𝑚 case. Various corrections for lag in response are 

applied: no correction (pink), 10 mm stretch in axial direction prior to crack propagation 

(purple), 10 mm stretch applied and 𝜈 = 0 to supress Poisson effect (green), 10 mm stretch 

applied, 𝜈 = 0.3 to allow Poisson effect to occur and an inward displacement of 9.69 𝜇𝑚 

applied to the rollers to counteract the Poisson effect (blue). 

4.4.2 Estimation of fracture properties (validation)  

Figure 4-7 shows the fracture energy for two different composite materials, 

one with a higher extrinsic toughness (fibre bridging) and one with a lower 

extrinsic toughness, hereafter referred to as HET and LET, respectively. 

Under testing with the DRAFT method, both materials increase in toughness 

at similar rates with respect to crack growth; however, the LET material 

reaches a plateau at a lower value. Although the performance of the 

materials is not the scope of this study, this suggests that the extrinsic 

toughening mechanisms, fibre bridging, proceeds in the same manner by 

peeling of fibres adhered to both laminates but that the failure of the fibres 
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is what determines the extrinsic toughness. Using the methods described 

above, an arbitrarily shaped TSL is determined for both materials and 

implemented in Abaqus. Examining the HET TSL in detail, the damage value 

𝐷 required to capture the TSL at 𝛿 = 4 𝑚𝑚 is greater than the value at 𝛿 =

8 mm. Therefore, when implemented in the FEA package, the TSL is not 

correctly captured as 𝐷 increases strictly monotonically. The increase in 

traction is then linear resulting in the dotted line shown in Figure 4-7B which 

excludes the shaded region of the TSL and substantially undervalues the 

fracture energy. This is seen in Figure 4-7C, where the TSL is used to 

reproduce the experimental data.  

This limitation can be overcome by (i) using a non-linear behaviour for the 

undamaged elastic response that would allow the increase in traction to be 

captured, (ii) using a parallel network of elements where the elasticity of the 

intrinsic toughness and extrinsic toughness elements are represented 

separately or (iii), modifying the TSL so that the correct area/energy is 

captured. The first two approaches require the use of custom subroutines 

and the introduction of additional material parameters, increasing the 

burden for validation of TSL for use in applications. Here, the third method 

is used and the corrected TSL is generated as shown in Figure 4-7B. The FEA 

simulation with this response captures the plateau value in toughness 

correctly and the deviation introduced leads only to a small difference 

between the experimental and simulated data at 𝑎 − 𝑎0 ≈ 20 mm. As a 

check on the modification, the area under the TSL is calculated via numerical 

integration and, using the relationship between separation and crack length 

established above, is plotted against crack length in Figure 4-7C.  
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Figure 4-7 A) Experimental crack growth resistance data for both materials considered in this 

study. B) Traction separation laws generated using equations 4.2 and 4.20 based on the 

experimental data shown on the left. C) Measured finite element response using the traction-

separation laws (B) overlaid with original experimental data (A). 

4.4.3 Comparison between DCB and DRAFT measurements of fracture 

properties.  

To highlight the strengths and weaknesses of both methods, a DCB and a 

DRAFT test are shown in Figure 4-8 including the experimental data and 

simulations using properties derived from both test methods. In both cases, 

an average of 4 experimental tests is shown. Considering the experimental 

data first, there is considerable difference in the shape of the response and 

the final value achieved. In the case of the DRAFT data, there is no sudden 

increase in G typically associated with the intrinsic toughness of the material 

which is clearly present in the DCB test. This is likely related to the 

phenomena discussed above in Figure 4-6 and a different test geometry may 

more clearly capture the true intrinsic toughness. The final steady state 

value of 𝐺 is estimated to be up to 30% lower for the DRAFT measurement. 

In the case of the DCB test data, the compliance was used to determine the 

crack length, however, optical measurements were also periodically taken. 

Comparing the measured and calculated values (Figure 4-8D), the 

compliance is seen to overestimate 𝑎 by ≈15%  at the end of the test; this 

would lead to an overestimation of 𝐺 for the DCB measurement shown in 

Figure 4-8B. The remaining difference can be attributed to the same error 

that caused the inaccuracy at the beginning of the test and frictional losses 

in the apparatus. 
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The TSL generated from the DCB test is tri-linear, following the methods 

outline in Chapter 3 and it is not possible to readily create a more accurately 

defined TSL from the standard DCB test. The simulations on both geometries 

are broadly similar with different crack propagations required to reach the 

plateau as this parameter is set by the test geometries. The TSL generated 

by the DRAFT rig has a substantially lower maximum stress, far below the 

transverse strength of this material, suggesting that it has not captured the 

correct value. Of more note is the second later peak in the tractions 

(discussed in detail above) which cannot be observed in the DCB test. 

Further refinement of the test parameters for the DRAFT rig is clearly 

necessary to more correctly capture the tractions associated with the 

intrinsic toughness.  
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Figure 4-8 A) Comparison of average experimental data using HET material in DRAFT 

method (black), finite element response in a DRAFT simulation using a TSL generated from 

the experimental DRAFT data (red) and using a TSL generated from experimental DCB data 

(Blue). B) Comparison of average experimental data using HET material in DCB method 

(black), finite element response in a DCB simulation using a TSL generated from the 

experimental DRAFT data (red) and using a TSL generated from experimental DCB data 

(Blue). C) TSL generated from experimental DRAFT data (red) and from experimental DCB 

data (blue). D) Comparison of crack lengths by physical measurement using a ruler (black) 

and approximated using the specimen compliance (red) in experimental DCB tests with the 

HET material 

4.5 Concluding remarks 

In the present study, we have described a new test method and shown how 

it can be used to investigate extrinsic toughening mechanisms in fibrous 

materials. The test method offers advantages over the standard DCB test; 

however further refinement is needed to improve the accuracy of the test 

method.  

The DRAFT apparatus aims to simplify the measurement of fracture energies 

by keeping the strain energy contribution well defined through imposition 

of a constant curvature similar to the applied moment test used by Sørensen 
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and Jacobsen [3]. In the present work, the external work can be compared 

to the strain energy stored during the applied deformation to determine the 

energy released during fracture. This method has the potential to determine 

the detailed shape of the traction separation law once the constant 

curvature is imposed on the test specimen. Comparing the two materials 

tested, which were known to have different extrinsic toughness values, 

reveals that the tractions generated are broadly similar but in the tougher 

material, the maximum separation is much higher. This understanding of the 

extrinsic toughening can help guide future material development.  

The DRAFT method was not able to accurately capture the intrinsic 

toughness and was more than an order of magnitude in difference to that 

noted by the DCB method. It is important to note that in the TSL determined 

from the DCB test, the maximum traction was a choice of the user, typically 

chosen to be the transverse toughness of the material [13,18,19]. As the 

intrinsic toughness will dictate the onset of initial crack propagation, the TSL 

determined from the DRAFT method should not be used in simulations of 

applications using the materials. The origins of the error are discussed above 

and the parameters of the test, such as the roller radius, should be changed 

to improve the measurement until closer agreement is observed. Due to the 

complexity of manufacture, it was not possible to manufacture a different 

test apparatus within the scope of the current study. In the following 

chapter, an alternative method to determine the TSL from a DCB test is 

presented to investigate if the second peak in the TSL is a true phenomenon 

of the material or a test artifact. Previous studies have looked at a second 

peak [20], but not in the context of an arbitrarily shaped TSL. A TSL with more 

than one peak poses implementation challenges which may limit their 

applicability in simulations of load cases and larger simulations in 

automotive and aerospace applications.  

In conclusion, we have presented a method to interrogate the crack growth 

release rate of materials while keeping the strain energy known. While the 

method was shown to work for idealised materials, in experimental testing 
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of two materials, the test geometry was found to introduce errors which 

made the absolute values of fracture energy not comparable to other 

measurements. The test method did reveal detailed information about the 

tractions exerted on the crack surface due to extrinsic mechanisms and 

provide insight into the differences in behaviour between materials. Further 

work is necessary to overcome the issues raised and the verify the results 

observed.  
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Chapter 5. Experimental fracture behaviour of 

composite specimens experiencing fibre bridging 

Abstract 

In literature, a bilinear damage model is commonly used to describe extrinsic 

toughening mechanisms in a traction-separation law. This type of damage 

model does not capture non-linear traction-separation behaviour. In the 

previous chapter the DRAFT method of capturing non-linear behaviour is 

described. However, the DRAFT method is not directly comparable with 

existing data. Here, a standardised fracture test method is modified to 

measure local specimen rotation. Pins are inserted into the specimen to 

increase the length of the surface normal, while images are taken 

throughout the experimental procedure. The local rotation data is related to 

interfacial traction through Euler-Bernoulli beam bending theory. The 

method presented here shows non-linear material behaviour in the traction-

separation law as seen in experimental results of the same material from the 

previous chapter. However, the resolution of the traction-separation law 

produced can be improved. Recommended improvements to the 

experimental procedure are provided. 
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Nomenclature 

𝑎 Crack length 

𝑎0 Pre-crack tab length 

𝑏 Specimen breadth 

𝐶 Compliance 

𝐸 Young’s modulus 

𝐺 Fracture energy 

𝐺𝑒𝑥𝑡  Extrinsic fracture energy 

𝐺𝑖𝑛𝑡 Intrinsic fracture energy 

𝐺0 Total fracture energy 

𝐺𝐼 Mode I fracture energy 

ℎ Thickness of one DCB specimen arm (or a single cantilever) 

𝐼 Second moment of area 

𝐿 Beam length 

𝑀 Moment  

𝑛 Order of polynomial fit to 𝜃 

𝑛𝑐𝑐 Fitting parameter used in compliance calibration calculation 

𝑃 Applied load 

𝑡 Time 

𝑢 Applied displacement 

𝑉 Shear force 

𝑥 𝑥 coordinate in cartesian coordinate system 

𝑥𝑎 First 𝑥 coordinate of cantilever beam between which the 

traction 𝜔 acts 

𝑥𝑏 Second 𝑥 coordinate of cantilever beam between which the 

traction 𝜔 acts 

𝑦 𝑦 coordinate in cartesian coordinate system 

Δ𝑎𝑠𝑠 Crack length required to achieve a steady state distribution of 

fibre bridging 

𝛿 Separation  

𝛿𝑒 Separation at the maximum traction of the intrinsic region 
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𝛿𝑓  Maximum allowable separation 

𝛿𝑖𝑛𝑡 Separation at the transition from intrinsic to extrinsic regimes 

𝜃 Rotation/slope 

�̅� Slope averaged over five frames 

𝜃𝑖 Slope of pin 𝑖 

𝜃𝑖,𝑡=0  Slope of pin 𝑖 at time 𝑡 = 0 

�̅�𝑀𝑜𝑛𝑜 Slope averaged over five frames and monotonically increasing 

𝜃𝑜𝑟𝑖𝑔 Original slope before processing 

𝜃𝑅𝐵𝑀 Slope of free end of DCB used to account for rigid body motion 

𝜅 Beam curvature  

𝜎 Traction 

𝜎𝑒𝑥𝑡  Extrinsic traction, associated with fibre bridging behaviour 

𝜎𝑖𝑛𝑡 Maximum intrinsic traction 

𝜔 Traction per unit breadth 

 

5.1 Introduction 

This chapter further examines the traction-separation law (TSL) following 

the suggestion in chapter 4 that there is a second peak in the TSL (see Figure 

5-1A). Here, a modification is made to the DCB method to analyse the shape 

of the TSL using simpler methods than in Chapter 4. In chapter 3, the DCB 

method is examined in detail, showing a clear relationship between test 

parameters and interface properties. However, in chapter 3 it was assumed 

that a trilinear traction-separation law (TSL) represented the R-curve 

response. In actuality, the trilinear TSL captured the key features of the R-

curve but not the detailed shape of the curve. The DRAFT method (described 

in chapter 4) can determine a piecewise linear TSL based on the load-

displacement response which is akin to the crack length-fracture toughness 

response. The DRAFT method captures nonlinear traction separation 

behaviour but is not practical to apply in an industry setting as the test 

apparatus is difficult to use and the results can be queried as the specimen 
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may not conform to the exact radius of the rolling arcs. The resulting data is 

not readily comparable with existing DCB tests. 

Detailed investigations of the TSL have been performed before using peel 

tests [1] and end moments applied to DCB specimens [2]. Peel tests are less 

suitable for laminate composites due to the small radius of the mandrels 

used and similar issues as with the DRAFT method can occur. Using end 

moments instead of the typical point loads on a DCB allows the use of the J-

integral method to determine tractions as a function of crack opening; 

Sørensen and Jacobsen [3] derived cohesive laws with either a plateau 

followed by a monotonic decrease in traction or a simple monotonic 

decrease in traction without a plateau. Previous studies have used digital 

image correlation (DIC) to track the motion of a timber DCB specimen and 

determine an interface law from DIC [4].  The strain energy release rate is 

determined for the images and an empirical TSL is fit to this data.  

While these test rigs can be used to derive a cohesive law, the data gathered 

is not directly comparable with existing DCB data. Therefore, a method of 

deriving a nonlinear traction-separation law (TSL) from DCB fracture tests 

would be advantageous. While most of the literature assumes a trilinear TSL 

to model extrinsic toughening, Sills and Thouless consider a traction-

separation law with a second peak in traction response suggesting a larger 

traction is present at higher separation between the surfaces [5]. This law is 

not arbitrarily shaped, however, and is a composite of typical idealised 

curves.  

Figure 5-1 shows TSL data derived from experimental results using the 

DRAFT method in chapter 4. A second peak is evident in the TSL shown 

(Figure 5-1A). Betterman et al. propose that the length of fibres affects the 

peak stress achieved and the behaviour after the peak (Figure 5-1C) [7]. It is 

feasible that a combination of these effects could produce the behaviour 

seen in chapter 4. 
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Figure 5-1 A) Traction separation laws derived from experimental DRAFT data presented in 

chapter 4. For both High Extrinsic Toughness (HET) and Low Extrinsic Toughness (LET) 

materials, a second peak in the traction response is seen at a separation of approximately 6 

mm. B) Shokrieh  calculates the TSL for three different pre-crack lengths using experimental 

measurement of the crack tip opening displacement and the J-integral [6]. C) Differing shapes 

of stress strain response proposed by Betterman et al. based on representative length of fibres 

in the material [7]. D) TSL shape measured for a DCB sandwich material by differentiation 

of the 𝐽 − 𝛿 curve and overlaid multilinear cohesive law fit (bold)  [8]. 

In computational work the TSL is commonly computed using the J-integral. 

In experimental work the TSL is typically found using approximate methods, 

such as the compliance calibration method, but a number of papers have 

experimentally determined interface laws. Shokrieh [6] tested DCB 

specimens with bridging lengths of ≈10 mm and found an exponential decay 

in the traction separation response using the simple beam theory to 

approximate the fracture toughness. Zhu measured rate dependent TSLs in 

polyurea/steel sandwich materials using tensile and shear tests [9].  In this 

study, Zhu reported that the TSL had a parabolic shape and the fracture 

toughness and peak of the TSL depend on the loading rate. Betterman et al. 

[7] show that the peak in a stress-strain response changes based on the fibre 
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properties (fibre diameter and volume fraction), with short or long fibres 

having different peaks (see Figure 5-1C). Jacobsen and Sørensen measured 

a nonlinear softening TSL and compared it to a micromechanical model of 

fibre crossover bridging. They computed a power law TSL. They compared 

experimental and computational R-curves to find good agreement between 

both [10,11]. Sørensen et al. have more recently developed a 

micromechanical model for fibre crossover bridging for mixed mode loading 

of DCB specimens [12]. They found that the toughening due to crossover 

bridging is much higher in mode II or mixed mode loading than in pure mode 

I loading. Sills and Thouless also model a discrete fibre debonding from both 

surfaces at the crack interface to investigate crack jumping [5].  

Here, a standardised double cantilever beam (DCB) test is modified to allow 

additional data to be gathered based on measurement of the rotation at 

several points on the specimen. This experiment uses pins to increase the 

length of the surface normal, which allows simple discrete measurement of 

the rotation. A digital camera is used to capture images as the test 

progresses. These images are used to infer the interfacial traction separation 

law of the material by means of relating the discrete slope measurement to 

the applied distributed load through Euler-Bernoulli beam bending 

equations. The goal of this modification is to capture the detailed interface 

response in a similar manner to the DRAFT rig (chapter 4); while using a 

standardised test that can be readily implemented in industry (chapter 3). 

Using a modified DCB test is beneficial in an industry setting as (i) the 

machining and tooling costs associated with the production of a DRAFT 

fixture do not exist. The modifications to the DCB experiment do not require 

excessive tooling. (ii) machine operators do not require training on how to 

complete a new fracture test method. (iii) gathered data is directly 

comparable with existing DCB test data. 



Chapter 5: Experimental fracture behaviour of composite specimens …  
 

120 
 

5.2 Methodology 

5.2.1 Material description & specimens 

Carbon fibre laminates were created consisting primarily of 0° plies with the 

plies either side of the central ply offset at 5° (24:[09/-5/+5/0]s). The offset 

plies prevent the occurrence of nesting in a purely unidirectional 0° 

laminate. Two material systems are considered which are known to 

experience either a high or low amount of fibre bridging/extrinsic 

toughening; hereafter referred to as HET (High Extrinsic Toughening) and LET 

(Low Extrinsic Toughening) respectively.  

Pre-cracked specimens were created by inserting a shim in between the plies 

during the manufacturing process as shown in Figure 5-2A. Specimens 

manufactured for the DCB tests were 250 mm long with a 30 mm pre-crack 

and had a height of 3 mm and breadth of 25 mm. The number of specimens 

used for each load condition is given in Table 5-1. Figure 5-2B shows the 

specimen geometry for the DCB. 

 

Figure 5-2 A) Experiment configuration including DCB specimen with load applied via a 

uniaxial tensile tester. The current delamination length is approximately 80 mm. Fibres can 

be seen bridging the interface between the laminates. A tab insert used in the manufacturing 

process to create the pre-crack at the fixed end of the specimen is also visible. B) Schematic 

diagram of the DCB specimen and loading blocks. C) Loading patterns used are load through 

(blue), load/unload (orange), and pause (grey) shown on the right of the image.  
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Table 5-1 List of DCB experiments conducted. 

Load pattern Material Number of 

samples 

Rationale 

Load through LET 1 Compare results to examine if 

unloading affects macroscopic 

behaviour 

HET 1 

Load/Unload LET 5 Standard DCB analysis 

HET 5 

Pause LET 1 Investigate if creep behaviour is 

present in the materials HET 1 

Load/Unload HET 1 Use pins to enhance the surface 

normal, increasing the accuracy 

of the measured curvature 

5.2.2 DCB methodology 

The DCB test was performed following the ASTM standard [13]. The peak in 

the load displacement plot was used to identify the onset of fracture. The 

fracture energy was determined using the Compliance Calibration method 

(Equation 5.1) (the alternative methods are discussed further in Chapter 2): 

 
𝐺𝐼 =

𝑛𝑐𝑐𝑃𝑢

2𝑏𝑎
 

5.1 

Where 𝐺𝐼 is the mode I fracture energy, 𝑃 is the applied load, 𝑢 is the load-

line displacement, 𝑏 is the specimen breadth, 𝑎 is the crack length, Δ is the 

crack tip rotation factor, 𝑛𝑐𝑐 is the exponent relating compliance 𝐶 = 𝑢/𝑃  

to crack length 

The crack length was measured using two methods (i) visually using a 

flexible, calibrated linear scale adhered to the specimen and an 

approximation based on the compliance, which provided a higher number 

of data points than the first method. The approximation gives the crack 

length as: 



Chapter 5: Experimental fracture behaviour of composite specimens …  
 

122 
 

 

𝑎 = (
3

2
𝐸𝐼𝐶)

1
3
 

5.2 

where 𝐸 is Young’s modulus, 𝐼 is the second moment of area of the beam 

and 𝐶 is the beam compliance 𝐶 = 𝑢/𝑃. 

Three loading patterns are used in the DCB experiments to examine the 

material behaviour. These loading patterns are shown in Figure 5-2C. and 

described below. In all cases the loading/unloading is performed at a 

crosshead speed of 0.1666 mm/s.  

1. Load through – a linearly increasing crosshead displacement is 

applied until the crack has propagated approximately 100 mm  

2. Load/unload –a linearly increasing crosshead displacement is applied 

until the crack has propagated 10 mm after which the crosshead is 

reversed for 10 mm of crosshead displacement (however, the 

reaction force is not permitted to fall below 20 N to prevent 

compression of fibres in the process zone). After the unloading, the 

crosshead is reversed to the original direction and proceeds until a 

further 10 mm of propagation occurs and this procedure repeats for 

10 cycles (giving a total of ≈100 mm of crack propagation).  

3. Load/Pause – a linearly increasing crosshead displacement is applied 

as in case 2; however, before reversing the crosshead direction of 

travel, the crosshead is held stationary for 30 seconds. The unloading 

and reloading of the sample proceed as in case 2 for 10 cycles.  

5.2.3 Modified DCB methodology  

In an experiment using a HET material specimen, the curvature is measured 

as described below and used to calculate the interface tractions. A series of 

holes are drilled at 5 mm centre-to-centre spacing into the top of the 

specimen to a depth of one quarter of the total thickness. The first pin is 27.5 

mm from the end of the pre-crack. Cylindrical aluminium pins are inserted 

and fixed using a cyanoacrylate adhesive. It is difficult to ensure the pins are 

perfectly normal to the specimen as the depth which they are inserted is 

shallow (0.75 mm). The initial position of the pins should aim to be normal 

to the surface. Some deviation is allowed as the change in angle of the pins 

is of interest, not the current angle. 
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During the DCB experiment, a camera (Sony RX100 mark IV) was used to 

capture sequential images of the test at 1 second intervals. The camera was 

set up on a tripod and placed orthogonal to the test specimen at 635 mm as 

shown in Figure 5-3. This experiment is conducted based on DCB 

methodology described above using a Load/unload pattern, with load 

reversals at intervals of approximately 10 mm of crack propagation.  

 

Figure 5-3 A) Schematic representation of image capture set up for DCB curvature analysis. 

B) Detailed view of the pins which are inserted one quarter of the total thickness into the 

specimen (0.75 mm). Note, the first pin is 27.5 mm from the start of the pre-crack and the 

diagram is not to scale. 

5.2.4 Image processing  

The rotation of each pin in the images is tracked and the angle of each pin 

determined which provides the slope at each point. The image processing is 

completed in stages as outlined below and shown in Figure 5-4. Matlab 

(version 2020a, Mathworks UK) is used for all image processing and the 

functions used are listed with each step where applicable.  

i. The image is cropped to only include the pins using the same 

cropping limits for all images.  

ii. Thresholds were applied to each of the red, green, and blue channels 

to create a binarized image of the beam and pins with the 

background removed.  

iii. As the binarized image contained noise, a hole fill function is run to 

fill in any pixels which are surrounded by pixels of the opposite value 

(using bwcompconn). 

iv. A quadrilateral mask is created above the beam (for each image) and 

used to identify the pins.  

v. Each pin is identified as a separate region (using bwlabel).  
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vi. In each labelled region/pin, the orientation of the region is recorded 

(using regionprops). The orientation is shown as a red line in 

Figure 5-4(vi) and defined as the angle between the major axis of an 

ellipse that has the same second moment of inertia as the region in 

question and a horizontal line.  

vii. To account for Rigid Body Motion (RBM) of the beam relative to the 

camera, the orientation of the uncracked end of the specimen is 

determined. A mask is used on the uncracked region shown in red in 

Figure 5-4(vi) and the orientation is determined using the same 

method as for the pins 

Further analysis of the data is discussed below in Section 5.3.2. 

 

Figure 5-4 Stages of image processing (shown for frame 500 of 907). (i) The original image 

with the cropped region. (ii) the cropped image binarized based on RGB thresholds and (iii) 

the binarized image after a hole fill is completed. (iv) the mask used to separate the beams 

and pins for this frame, (v) the isolated pins, and (vi) the pins with the measured orientation 

overlaid. The region in red on the right of the image is used to account for rigid body motion 

by measuring the slope of the bottom and top edge (identified as a column of at least 5 pixels) 

of the beam. 
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5.2.5 Simulations 

 

Figure 5-5 A) Finite element model of a cantilever beam subject to a distributed load 𝜔 

between 𝑥𝑎 and 𝑥𝑏 and a point load 𝑃 at the tip. Fifteen pairs of nodes on the beam are 

identified and used to track discrete rotation similar to the pins in the modified DCB 

methodology. B) Finite element model of a DCB specimen. Pairs of nodes are used to track 

discrete rotation. Cohesive elements, governed by a traction-separation law, are used to 

model the interfacial behaviour as the crack propagates. 

Two finite element models are created and analysed using Abaqus 2019 

(Dassault Systemes, RI, USA). A DCB model (Figure 5-5B) is created similar to 

those used in Chapter 3 with cohesive elements used to capture the 

delamination. In the DCB model, 15 virtual pins are created by tracking the 

deformed coordinates of 15 pairs of nodes as shown. The slope of the beam 

at each virtual pin can be determined from the slope of line connecting each 

pair.  

In the second model, a cantilever beam is subjected to an end load a 

distributed load which varies between 𝑥𝑎 and 𝑥𝑏 as follows (and as shown 

in Figure 5-5A): 

𝜔(𝑥) =

{
 
 
 

 
 
 −

𝑃

4
 =  −2.5𝑁/𝑚𝑚, 50 ≥ 𝑥 < 51 𝑎𝑛𝑑 59 ≥ 𝑥 < 60 

−
𝑃

2
 =  −5 𝑁/𝑚𝑚, 51 ≥ 𝑥 < 52 𝑎𝑛𝑑 58 ≥ 𝑥 < 59

−
3𝑃

4
=  −7.5𝑁/𝑚𝑚, 52 ≥ 𝑥 < 53 𝑎𝑛𝑑 57 ≥ 𝑥 < 58

− 𝑃 =  −10𝑁/𝑚𝑚, 53 ≥ 𝑥 < 57 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

5.3 

5.3 Results 

5.3.1 DCB results  

Here, the results of the experiments outlined in Table 5-1 are presented. For 

the DCB experiments, the results (shown in Figure 5-6) consist of load versus 
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load-line displacement and fracture resistance curves (R-curves). Only the 

loading sections of the curve are used to calculate the R-curve (i.e., the load-

line displacement is monotonically increasing). For the LET material, the 

toughness immediately reaches a steady state value at 300 J/m2. For the 

HET material, the initial toughness is ≈ 450 J/m2 and increases to a plateau 

value of ≈ 650 J/m2 over a crack growth of Δ𝑎𝑠𝑠 = 50 mm. Using the 

methods described in Chapter 3, a tri-linear TSL is created for each material 

and the parameters are given in Table 5-2. Examining the cases where a load 

reversal or a load reversal and pause were introduced, no difference is seen 

outside of the unloading/reloading loop (Figure 5-6). In all cases, the 

behaviour is similar to the monotonically loaded specimen. Hysteresis is 

seen when the crosshead is reversed and then returned to the original 

direction of travel (see inset in Figure 5-6C). Investigation of each loop shows 

no clear trend to suggest that the hysteresis is due to a material effect; 

instead, the energy loss is attributed to losses in the testing set up (e.g., 

friction at the loading blocks). Note that the crack length used is determined 

from the compliance of the specimen as described above; comparisons with 

optical measurements are included in Figure 5-7. The compliance method 

underestimates the crack length by approximately 10%. The optical 

measurements could be used to calibrate the compliance-based value – 

however, this step has not been taken here as the crack length is not critical 

to the majority of the analysis performed here.  

Table 5-2 Traction separation law parameters for LET and HET materials using the method 

outlined in chapter 3 on the R-curves presented in Figure 5-6B 

 𝝈𝒊𝒏𝒕 𝝈𝒆𝒙𝒕 𝜹𝒆 𝜹𝒊𝒏𝒕 𝜹𝒇 𝑮𝒊𝒏𝒕 𝑮𝒆𝒙𝒕 𝑮𝟎 

 (MPa) (MPa) (mm) (mm) (mm) (𝐽/𝑚2) (𝐽/𝑚2) (𝐽/𝑚2) 

LET 6 0 0.05 0.1 0.1 300 0 300 

HET 9 0.0333 0.05 0.1 11.9 450 200 650 
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Figure 5-6 A) A comparison of the load versus load-line displacement for DCB experiments 

using the LET and HET materials using the Load/unload pattern and the Load through pattern 

showing that unloading does not affect macroscopic response and B) resulting R-curves using 

the compliance calibration method. C) load versus load-line displacement with the response 

of the LET and HET materials using the Pause pattern overlaid with heavier line weights. D) 

Tri-linear traction-separation laws based on the average response of the LET and HET 

materials. 
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Figure 5-7 Comparision between the optically measured crack length (blue squares) and the 

computed values using the compliance method. The compliance was also directly measured 

from the unloading portion of the test (red circles). 

5.3.2 Modified DCB results: measuring discrete rotation using evenly 

spaced pins  

5.3.2.1 Imaged based beam slope 

Using the methods described in Section 5.2.3, the change in slope of the 

beam at each pin location 𝜃𝑜𝑟𝑖𝑔 is plotted for each image (i.e., as a function 

of time) in Figure 5-8A. The initial rotation of each pin is taken as a reference 

value and taken into account (𝜃𝑖 = 𝜃𝑖 − 𝜃𝑖,𝑡=0) as the change in angle (from 

the initial position) is the desired quantity (not the current value). The slope 

after rigid body motion is accounted for (𝜃 = 𝜃𝑜𝑟𝑖𝑔 − 𝜃𝑅𝐵𝑀) is shown in 

Figure 5-8B. The noise in the data is reduced by taking a five-frame moving 

average (Figure 5-8C). As the test included the unloading regimes discussed 

in Section 5.2.2, a subset of the frames is taken to correspond to 
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monotonically increasing crosshead displacement (Figure 5-8D). The 

propagation of the crack tip can be seen whereby each pin remains at 𝜃 = 0 

until the crack is reached and 𝜃 increases.  

 

Figure 5-8 Processing 𝜃 from measured values to monotonically increasing values. A) the 

measured change in rotation from the initial position for each frame 𝜃. B) the measured 

change in rotation for each frame minus the rotation of the free end of the DCB specimen 

(shown in Figure 5-4(vi)), accounting for rigid body motion. C) �̅� is the average value of 𝜃 −
 𝜃𝑅𝐵𝑀 over five frames and D) �̅� using only values such that �̅�𝑖 >  �̅�𝑖−1 where i denotes the 

frame number. 

5.3.2.2 Bridging tractions  

The beam displacement 𝑦, beam curvature 𝜅, bending moment 𝑀, shear 

load 𝑉 and interfacial traction 𝜔 are determined from the array of beam 

slopes (a slope value 𝜃 is available for each pin and frame (which 
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corresponds to time)). Euler-Bernoulli beam bending is assumed and the 

integrals and derivatives of 𝜃 with respect to 𝑥 are used to determine each 

quantity using the following equations (𝐸 and 𝐼 are the Young’s modulus and 

second moment of area, respectively): 

 
𝜃 =

𝑑𝑦

𝑑𝑥
 

5.4 

 
𝜅 =

𝑑𝜃

𝑑𝑥
=
𝑑2𝑦

𝑑𝑥2
=
𝑀

𝐸𝐼
 

5.5 

 
𝑉 =

𝑑𝑀

𝑑𝑥
= 𝐸𝐼

𝑑3𝑦

𝑑𝑥3
 

5.6 

 
−𝜔 =

𝑑𝑉

𝑑𝑥
= 𝐸𝐼

𝑑4𝑦

𝑑𝑥4
 

5.7 

 𝑦 = ∫ 𝜃 𝑑𝑥 5.8 

Two methods are used to perform these operations: (i) using the discrete 

values and (ii) using a polynomial fit to the 15 values of 𝜃. For the first 

method, a central difference is used to calculate the derivatives and the 

trapezoidal method is used calculate the integrals. To plot traction 𝜔 against 

separation, an average of the displacement at two points is used to calculate 

the displacement at the midpoint. Note that there is one fewer value after 

each operation and only twelve values are shown for 𝜔. The integration 

constant is found by noting that 𝑦 = 0 at the crack tip. Figure 5-9 shows 

these discrete values for two sample frames. As each derivative is taken, the 

variation from pin-to-pin increases substantially and the plot of 𝜎 (𝜎 = 𝜔/𝑏) 

vs 𝛿 shows no clear trend and, in some cases, unphysical negative tractions 

are computed.  

In the second method, an 8th order polynomial is fit to the values for 𝜃 using 

the polyfit function in Matlab which calculates the coefficients of a 

polynomial that provides the best least-squares fit to 𝜃. The order of the 

polynomial was chosen such that after taking the derivative 𝑑4𝑦/𝑑𝑥4 =

𝑑3𝜃/𝑑𝑥3, the function would still be capable of fitting the arbitrary form of 

the TSL observed in Chapter 4. A higher order was not chosen as even though 
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there were 15 pins, each pin was not always in a region where tractions were 

evident and fitting to a higher order polynomial may give unsound results. 

The order of the polynomial is discussed further below. The derivatives and 

integrals were evaluated by using the fit polynomial coefficients.  

Figure 5-9 shows these polynomials overlaid over the discrete values and the 

polynomials are evaluated every 1 mm along the x-axis. The polynomial is 

also plotted within pins 3-13 (heavy magenta lines) to show the regions 

where there is a higher confidence in the polynomial fit. In the earlier frame 

shown, the traction vs separation plot shows tractions from 0 to 0.5 mm 

separation whereas for the later frame, tractions are computed over a 

different range. For the final frames, tractions are not computed for small 

separations; therefore, to understand the traction separation behaviour, it 

is necessary to consider all of the frames together.  
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Frame 23 of 55 (𝑢 ≈  16 𝑚𝑚) 

 

Frame 40 of 55 (𝑢 ≈ 32.5 𝑚𝑚) 

 

 

Figure 5-9 Comparison of frames showing 𝑦, 𝜃, 𝜅 (∝ 𝑀), 𝑉,𝜔 along the beam (A-E, G-K) 

and the derived TSL (F, L) for two different frames. The top frame and bottom frame 

correspond to displacements 𝑢 = 16 𝑚𝑚 and 𝑢 = 32.5 𝑚𝑚, respectively. The red crosses 

denote measured values and discrete differentiation/integration of that data. The blue line 

denotes the polynomial fitted to 𝜃 and differentiation/integration of that function. The 

magenta data is also polynomial data plotted inside the two outermost pins. 
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Figure 5-10 shows the TSL using the polynomial method from each frame 

plotted on the same axis. Note that the plot only includes the region 

highlighted in magenta in Figure 5-9 for each frame. While there is not clear 

agreement between all the frames, clear trends are visible. To further 

explore these trends, a heatmap is created whereby the pixel intensity is 

related to the number of frames predicting that value of traction for each 

separation. Each pixel corresponds to 𝑑𝜎 = 0.12 𝑀𝑃𝑎 and 𝑑𝛿 = 0.12 𝑚𝑚. 

The same trends are evident in this heatmap; it is clear there is an initial peak 

at (i) followed by a trough at (ii) and a secondary peak at (iii). The value of 

stress in the intrinsic region is substantially below that suggested by the 

traditional methods which suggested a maximum traction of ≈ 9 MPa for 

the intrinsic region. The maximum separation is comparable with 11 mm for 

the tri-linear approximation and 10 mm for this method. For comparison, 

the tractions computed using the discrete method are also shown; however, 

the issues seen in the frames above are evident in the other frames also 

(Figure 5-9C).  
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Figure 5-10 A) Traction separation laws obtained from each frame of the experiment 

overlaid. The data is taken from inside the outermost pins to decrease the noise in the image. 

B) A heatmap is also provided in which the pixels are shaded in accordance with how many 

traction-separation curves pass through a given pixel. C) the traction – separation values 

derived from the discrete pin values.  

5.4 Verification & Validation of the differentiation and 

integration techniques using finite element 

To establish credibility in the method used above, two activities are 

performed. First, a test case is created using a known set of tractions applied 

to a cantilever beam (as described in section 5.2.5). In the second, a virtual 

test of a DCB is created using a known traction separation law. In both cases, 

the “pins” are replicated by tracking pairs of nodes as shown in Figure 5-5. 

5.4.1 Known tractions on a cantilever beam 

Using the finite element model of a cantilever beam from section 5.2.5, 

virtual ‘pins’ measure the rotation of the cantilever beam. A polynomial 

expression is fit to these discrete rotations in the same manner as above and 

the same methods are used to compute 𝑦, 𝜅, 𝑉 and 𝜔. A theoretical solution 

based on Euler-Bernoulli beam bending is used for comparison. For both the 
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discrete and polynomial approaches, good agreement is seen with the 

known solution (Figure 5-11). 

In the case of the polynomial, the applied traction is not fully recovered, 

although this improves as the order of the polynomial is increased (Figure 

5-11). Although in this case the  tractions are constant with respect to 

separation, the order of the polynomial must be at least 3 times greater than 

the approximate order for the shape of the traction separation law. As 

discussed above, the order of the TSL seen in Chapter 4 was 4th order and 

therefore an 8th order polynomial was used here. Figure 5-11 shows 

polynomials up to 15th order, however these higher order fits require more 

data points to be credible. Although the peak is captured more closely with 

higher orders, the response is more oscillatory in nature and this increases 

near the outer pins (highlighted with light grey shading). This oscillation, 

known as Runge’s phenomenon, is described by Fornberg and Zuev [14] as 

a problem of oscillation at the edges of an interval that occurs when using 

polynomial interpolation with polynomials of high degree over a set of 

equidistant interpolation points. The choice of 8th order is a compromise 

between higher fidelity to a TSL and fitting to the 15 data points.  
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Figure 5-11 Comparison of 𝑦, 𝜃, 𝜅, 𝑉 and 𝜔 using a theoretical Matlab model and a finite 

element cantilever beam simulation (length 100 mm) subject to a distributed load with a 

maximum value of  -10 N/mm, loaded between 𝑥 = 50 mm to 𝑥 = 60 mm and subject to an 

end load of 50 N. Pairs of nodes are used in the FE model to replicate pins as used in a 

subsequent DCB experiment, the red crosses denote measured values of 𝜃, while squares 

represent the integrated values of 𝜃 and circles represent the derivatives. The blue line 

represents a polynomial function fit to the measured values of 𝜃 and the integrals/derivatives 

of this polynomial function. The dark shaded region indicates that no pins are present in this 

section of the beam, while the light shaded region indicates the outer two pins on the beam 

where the polynomial tends to approach a large value compared to the rest of the pins. 

5.4.2 Virtual experiment with known TSL 

In the second validation, a known traction-separation law (TSL) is applied in 

a FE model of a DCB fracture test and the method above is applied without 

knowledge of the TSL. Two applied interface laws are considered, a trilinear 

TSL and a piecewise-linear exponential TSL (shown in Figure 5-12). Similar to 

the experimental method data, each frame results in a traction separation 

curve which shows a variation from frame to frame. The combined plots of 

the TSLs for each frame are plotted and in the case of the exponential law, 

good agreement is seen in terms of the peak and the tractions associated 

with the intrinsic toughness (≈ 𝛿 < 0.05 mm). A heat map using the same 

approach is also created which makes the comparison clearer. In the case of 
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the trilinear law, the sharp transition from the intrinsic region to the extrinsic 

region (at 𝛿 = 0.01 mm) is much more difficult to capture. In a real material, 

such a sharp transition is unlikely, and this virtual experiment is captured 

well for the case of the exponential methods.  

 

Figure 5-12 Predicted TSL using nodal pairs as pins (black) and applied TSL in the FE model 

(red). The TSL is treated as an unknown to generate the black lines, and only included for 

comparison. On the left is an exponential TSL with a final separation value of 0.33 𝑚𝑚 and 

𝐺 = 385 𝐽/𝑚2. On the right is a trilinear TSL with 𝜎𝑖𝑛𝑡 = 4 𝑀𝑃𝑎, 𝛿𝑓 = 1 𝑚𝑚, and 𝐺 =

220 𝐽/𝑚2. A heatmap is also provided in which the pixels are shaded according to how many 

traction-separation curves pass through a given pixel. 

5.5 Future perspectives 

Although the method described here is an improvement on that seen in 

Chapter 4 – the experimental set up is much simpler and the issue of the 

beam not remaining in contact with the roller does not arise, there is room 

for further improvement. During the experimental work, affixing the pins is 

difficult and requires complex machining of the specimen. The predicted 

TSLs show a high degree for variability and while there is substantial support 

for the second peak observed in Chapter 4, the confidence in this conclusion 
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is undermined by the variability. Two future approaches are considered, and 

some initial analysis is performed. First, the displacement of the centre line 

of one of the beams is exported from the FE simulation to assess whether 

optical tracking of a beam edge would provide sufficient data. Second, an 

alternative to the pins is considered.  

5.5.1 Image based displacement measurement on a cantilever 

The fit of the polynomials above was undermined by the number of data 

points (15); therefore, here we consider tracking the displacement at every 

point along one of the beams of the DCB. As it is not possible to track the 

rotation of these points, the algorithm above is modified to start with 𝑦 

instead of 𝜃 = 𝑑𝑦/𝑑𝑥, which requires an extra derivative to be taken. The 

same approach was taken as above in the cantilever beam validation; 

however, displacement is tracked instead of rotation. Additionally, the 

displacement of 15 discrete points is recorded and processed similar to the 

discrete 𝜃 values above. Both sets of data are plotted for each quantity in 

Figure 5-13. Displacement, rotation, and curvature based on the midplane 

displacement show good agreement with both the known solution and the 

discrete pins method, however for higher derivatives (i.e., shear and 

tractions), the agreement is poorer than for the discrete pins. Although the 

displacement data is exported from the finite element method with six 

significant figures, the computed values are incorrect due to the small value 

of dx associated with the element size.  

The effect of the data precision on the accuracy of the discrete pins is 

investigated by changing the number of significant digits in the exported 

data. By rounding to fewer digits, the computed values are seen to disagree 

with the known solution for less than three significant digits. As the 

displacements are in the order of tens of mm and the region of interest is at 

least 50 mm wide, then three significant digits corresponds to 0.1 mm (note 

that each beam in the DCB is 1.5 mm in height). Therefore, optical method 

would need at least to be able to resolve displacement in tens to hundreds 
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of microns. In the experiments above, the pixel size was approximately 60 

microns, and a smaller field of view could be used to increase the resolution.  

 

Figure 5-13 Comparison of 𝑦, 𝜃, 𝜅, 𝑉 and 𝜔 from a theoretical Matlab model and a finite 

element cantilever beam simulation (length 100 mm) subject to a distributed load with a 

maximum value of -10 N/mm between 𝑥 = 50 mm to 𝑥 = 60 mm and an end load of 50 N. 

The beam has a Young’s modulus of 𝐸 = 100 𝐺𝑃𝑎. Solid squares represent the measured 

values of displacement, while solid circles represent differentiated values. The bottom row 

shows the effect of the level of precision included in the differentiation. Here 𝑦 is rounded to 

3-5 significant figures prior to differentiation to resemble the precision of experimental 

measurements. 

5.5.2 Experimental approaches 

Based on the previous observations, a modified experimental method is 

proposed. The displacement tracking of a continuous line (the centre line in 

the FE simulation) was not shown to be feasible; therefore, image-based 

tracking of the edge of the beam or of a feature painted or otherwise added 

to the beam is not pursued further. The tracking of discrete points showed 

the most promise, therefore a new method to continue tracking discrete 
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points, but without the issues related to the pins is presented. So called 

“Secchi” discs are commonly used in impact crash tests and water depth 

measurements [15] and can provide an easily identifiable feature to track in 

the image. These discs consist of a pattern based on using alternate colours 

(yellow and black) in alternating quadrants of the circle, as shown in Figure 

5-14. The discs allow for tracking of both the rotation and the displacement 

(on a plane orthogonal to the camera view) of each point.   

 

Figure 5-14 Concept for improved test specimen using Secchi disks to measure rotation in 

DCB curvature analysis. Dimensions of specimen and disks excluded as these may be 

dictated by machining parameters. 

For a fracture test that has reached a steady state value, a point adjacent to 

the original crack tip must have undergone a separation equal to the steady 

state crack length Δ𝑎𝑠𝑠 to fully develop the fibre bridging. The spacing of the 

Secchi discs should be determined based on the number of desired discs 

over this length. Table 5-3 shows the crack growth required for different 

specimen geometries based on the TSL parameters identified for the HET 

material. Note that overall specimen length should be increased to 

accommodate the required crack propagation. These parameters (most 

importantly 𝛿𝑒𝑥𝑡) can be determined from a standard DCB test. The 

relationship between 𝛿𝑒𝑥𝑡 and Δ𝑎𝑠𝑠 is further discussed in Chapter 3. As the 

minimum order of the polynomial required is 7th order, at minimum 7 discs 

would be required to fit the polynomial; however, as discussed above, a 

larger number of data points will improve the fit. For the material thickness 

used in the tests above, the discs may be prohibitively small, and a larger 

specimen would be required. 
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Table 5-3 Relationship between beam thickness ℎ and the steady state crack length Δ𝑎𝑠𝑠 
(required to achieve a steady state distribution of fibre bridging) and hence the Secchi disks 

spacing (assuming 7 or 14 disks are used in the experiment). The beam thickness used in the 

first iteration of this experiment (2ℎ = 3 𝑚𝑚) is shown in bold. The maximum allowable 

separation is fixed at 12 mm and Young’s modulus of 100 𝐺𝑃𝑎, making this table applicable 

to the HET material.  

𝐡 𝜟𝒂𝒔𝒔 Secchi disk spacing (mm) 

7 disks 14 disks 

1 46.4159 7.7360 3.5705 

1.5 69.6238 11.6040 5.3557 

3 139.2477 23.2079 10.7114 

6 278.4953 46.4159 21.4227 

 

5.6 Concluding remarks 

In the present chapter, a new method for investigating the traction 

separation law of a laminate fibre composite is introduced. This method is 

an adaptation of the ASTM standard method and does not require additional 

fixtures (as was the case in Chapter 4). By tracking the rotation of pins 

embedded in the specimen, the rotation and hence the curvature, shear, 

and surface tractions are determined along the beam of the DCB. By 

comparing the results at numerous different crack lengths, the traction 

separation relationship can be explored over the full range of separations. 

Although this method is an improvement on the work presented in Chapter 

4, the variation from frame to frame in the TSL undermines credibility in the 

model. Through validation steps taken, future avenues are identified to 

improve the accuracy of the method, while following the same basic 

principles. As was seen in Chapter 4, analysing the difference in traction-

separation behaviour over the full range of separations is important to 

understanding the effect of manufacturing changes on the toughness of the 

laminate composites. The work presented in this chapter develops a test 

platform to quickly complete these tests. 

The validation and verification steps performed also provide interesting 

perspectives for future modifications to the test. Possible improvements are 
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suggested which would allow this method to provide deep insight into 

material behaviour while being possible to complete quickly with minimal 

changes to standard test methods. The processing techniques developed 

here can be quickly adapted to any future iterations.  
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Chapter 6. Concluding remarks and future 

perspectives 

Fibre bridging, an extrinsic toughening mechanism, is challenging to 

accurately capture in interface models; the tractions generated by fibre 

bridging are not fully understood. It is common for an experimental result to 

be replicated in-silico with a small set of parameters, but the sensitivity of 

the computational parameters is rarely examined. This leads to subjectivity 

in the choice of interface parameters. The methods described in this thesis 

allow for (i) non-subjective choice of interface parameters based on 

experimental response (which is valuable in an industry setting); (ii) 

comparison of material properties at large separations (this highlights how 

differences in manufacturing processes or material (fibre/resin) choices 

affect macroscopic properties; (iii) development of new methods or 

modification of a standardised test methods to generate traction-separation 

data. 

Fracture toughness in fibre reinforced composites is typically characterised 

using a DCB (Double Cantilever Beam) test. In Chapter 3, a systematic 

parameter study was conducted on the traction separation law used in a 

finite element model of the DCB fracture test. This exploration yielded a 

robust method of defining a trilinear traction separation law for materials 

experiencing significant extrinsic toughening based on experimental 

observations of the standardised ASTM DCB fracture test [2]. The key 

features of an experimentally determined R-curve, along with specimen 

dependent properties such as thickness and modulus, are used to determine 

the interface law. It was found that the method outlined in this chapter 

accurately captures the key features of experimentally measured R-curves 

(initial toughness, final/plateau toughness, and crack length required to 

reach the plateau value). Where further details of the shape of the R-curve 

are not needed, this method balances ease of use with accuracy and 

robustness of the results.  



Chapter 6: Concluding remarks and future perspectives 
 

145 
 

In the cases where more detail of the TSL is required, other methods can be 

used. In the existing literature, the J-integral is typically used to determine 

the traction separation law [3]. The J-integral is typically restricted to cases 

where end moments are applied to the cantilever arms of the specimen and 

can require assumptions around the form of the TSL; for example, Jacobsen 

et al. [3] assume tractions are of the form 𝜎 ∝ (𝑛 + 1)𝛿𝑛.  Such test 

methods and analyses are not always practical to conduct in an industry 

setting. The methods outlined in this thesis are much simpler to implement 

in an industrial setting and can be applied to simple measurements (key R-

curve features, specimen height, specimen modulus). Particularly, the 

interpretation of standard (end loaded) DCB results is readily implementable 

in industry.  

In Chapter 4, a novel fracture test method capable of directly measuring 

fracture toughness is discussed. This method (known as the DRAFT method) 

uses rolling arcs to apply a constant curvature to the test specimen, i.e., the 

specimen conforms to the rolling arc curvature. The analysis of this fracture 

test presented in Chapter 4 establishes the direct relationships between 

fracture energy, delamination length, and applied load. In this method, the 

delamination length is equivalent to the applied displacement assuming the 

specimen completely conforms to the rolling arc surface. The theoretical 

treatment shows how the tractions can subsequently be determined. This 

method proved effective at capturing the extrinsic behaviour of the material 

while allowing a piecewise linear traction separation law to be generated 

from the measured response.  

The material tested in Chapter 4 exhibits a second peak in the traction 

separation response of the material. It is difficult to definitively state what 

causes this secondary peak. As there are two peaks in the response, there 

are likely two mechanisms for toughening in the material – the first being 

responsible for the initial peak related to intrinsic toughening and the other 

mechanism being responsible for the secondary peak related to extrinsic 

mechanisms. As shown in Chapter 4, changes at the interface ply resulted in 
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a change only in the secondary peak. Possible explanations for this 

behaviour include: (i) Delayed onset of tension in fibres that were not fully 

extended when the layup was impregnated with resin; (ii) crack propagation 

causing bunching of fibres, which in turn increases the traction exerted by 

the bunch of fibres; (iii) an excessive peel of fibres from the debonding 

surfaces causing slack in the fibres, the slack is then removed as the crack 

propagates which increases the tensile load on the fibre and the traction 

exerted at the interface. 

Comparing the DRAFT method to the more established DCB fracture test 

method, it was found that in most cases the DCB method is sufficient to 

capture the key features of the crack growth resistance curve. However, the 

shape of the R-curve (and resulting traction-separation law) can be explored 

using the DRAFT rig. Compared to the DCB method, the DRAFT method 

provides additional detail about the shape of the transitional response in an 

R-curve before a steady state turnover of bridging fibres has been achieved. 

An important point to consider with the DRAFT rig is that the theoretical 

framework assumes that the beam fully conforms to the rolling arc radius. 

This assumption becomes less valid as the strain energy of the specimen 

increases. A recommendation of this chapter is to simulate the test using 

values approximated from a DCB test to assess the validity of using the 

DRAFT method. Modifications to the test method may improve the results 

(e.g., changing the roller radius); however, whether these are performed is 

in the context of the effort and cost required.  

Considering the data and simulations across the entire thesis, it is clear that 

the DCB method should be used to capture the intrinsic response of the 

material. Although the DRAFT method can readily capture the extrinsic 

behaviour; there is no clear sudden increase in fracture toughness that 

would be associated with the intrinsic behaviour of the material. The 

tractions predicted by this approach do not reach the maximum values 

expected; instead, a broader peak is observed in the TSL. The sharp change 
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in applied load at the beginning of crack propagation in the DCB method can 

be used to accurately determine the intrinsic toughness.  

As the DRAFT method is not directly comparable with existing fracture test 

data and required a complicated testing procedure, there was a need to 

develop a method of determining non-linear interfacial laws capable of 

including a second (or more) peak in traction-separation behaviour (as 

suggested by the DRAFT method). In a novel experiment, the DCB method 

was altered to include pins along the specimen which increases the length 

of the surface normal for image processing (Chapter 5). These pins were 

used to provide discrete measurement of local rotation along the specimen 

as the test progresses. This information is used to infer the interface TSL 

which may be non-linear in nature. The local rotation data is used to infer 

the TSL based on the fourth order differential relationship between 

displacement, rotation, curvature, shear force and traction (Euler-Bernoulli 

theory). However, the accuracy of this method can be improved upon as 

discussed in Chapter 5.  

This modified DCB experiment provided a useful proof of concept and much 

of the framework is in place for a second iteration of the experiment. A 

future, second iteration is recommended to improve the resolution of the 

achieved results by increasing the accuracy of the rotation measurement. 

Possible improvements to the experimental arrangement include: (i) 

Changing the pins to quarter shaded Secchi discs. These discs are typically 

used in impact simulations as their rotation can be easily tracked when 

completing the image processing. (ii) Increase the length of the test 

specimen. This would allow more pins or discs to be included along the 

length of the specimen, increasing the number of data points gathered per 

frame. The polynomials fit to the rotation were typically sixth order or 

higher. Ideally, the number of data points gathered should be much greater 

than the order of the polynomial used to minimise oscillatory behaviour [5].  

This thesis has performed an investigation of extrinsic toughening and 

presented methods to assess material performance and capture the 
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essential behaviour in simulations (primarily the finite element method). A 

robust method to determine a minimum set of cohesive properties from the 

industry standard test methods was developed; this work was also packaged 

in a format readily usable by industry. Two new methods of more detailed 

investigation of the cohesive behaviour were analysed. In the first method 

(the so-called DRAFT method), the investigations revealed that the bridging 

tractions do not follow the usually assumed trilinear or exponentially 

decaying form. However, a number of issues undermined full confidence in 

this method and a second method was developed. In this second approach, 

a standard DCB approach was modified to measure tractions along the 

beam. Beam curvature was determined from a series of images and used to 

calculate the changes in moments and loads along the beam.   

The work performed here provides several tools that allows extrinsic 

toughening mechanisms to be determined in a robust and objective way. 

The approaches are compatible with standard industry practices and allow 

computational techniques to be used more effectively in both the analysis 

and optimisation of materials and in larger scale simulations of applications 

involving these materials.  

6.1 Future perspectives 

While this thesis has furthered knowledge of fracture in fibrous materials, it 

can be improved upon. The methods developed in this thesis have 

limitations which are discussed in their relevant chapters. The following 

suggestions for future work could improve the methods in this thesis and 

possibly develop new methodologies based on the research presented here. 

By comparing the DCB and DRAFT methods, it is clear that the DRAFT 

method can provide a more detail traction separation response at large 

separations but does not accurately capture the intrinsic behaviour of the 

material. The DCB method does capture the intrinsic behaviour but produces 

a simplified extrinsic region of the TSL. To capture the full material response, 
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both test methods are relevant. However, there is a question as to how to 

combine the results from each test to a single traction separation law. 

The analysis of the DRAFT method highlighted that the specimen does not 

perfectly conform to the rolling arc surface. Future work could alter the test 

rig to apply a pretension to the specimen, or another method of ensuring 

the specimen conforms to the geometry. 

The modified DCB experiment in chapter 5 produces non-linear trends in the 

TSL, but the resolution of the TSL is poor. Possible improvements to this 

method are discussed in chapter 5. It is suggested that improving the 

accuracy of the rotation measurement using Secchi disks will improve the 

resolution of the result. The resolution of the peak will still be difficult to 

detect with this improvement as there are four differentiation steps in this 

experiment. It may be the case that some of these differentiation steps can 

be removed by measuring the curvature, shear, or traction directly (instead 

of the rotation).  The proposed alteration to this experiment (using Secchi 

disks) is one option to improve the accuracy of the rotation measurement. 

A laser profilometer is an alternative approach which should yield an 

accurate rotation measurement at a higher density than the Secchi disks.  

Another alternative is to bypass the need for differentiation by measuring 

the tractions exerted by the fibres directly; here the concept is to insert a 

transducer into the specimen which measures the force exerted by the 

fibres. It would also be necessary to use image tracking here to relate the 

detected force to the separation. If possible, it would be preferable to 

adhere a sensor to the specimen rather than place it inside the sample as 

the sample would be more representative of the material. This may be 

limited by the specimen and transducer/sensor used. 
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Chapter 7. Appendices 

7.1 Appendix 1 – Examining the intrinsic region of the traction-

separation law 

This appendix accompanies Chapter 3, it details an investigation into the 

relationship between macroscopic Double Cantilever Beam (DCB) behaviour 

and the traction-separation law (TSL) for a bilinear TSL – i.e., without 

extrinsic toughening. 

In the simplest case, with no fibre bridging, the traction-separation curve is 

completely defined by the stiffness 𝑘𝑐, maximum traction 𝜎𝑖𝑛𝑡, and a final 

separation 𝛿𝑖𝑛𝑡 at which the traction returns to zero. This shape of TSL is 

commonly used in mode II loading as fibre bridging is motivated by mode I 

opening [1]. Preliminary work in this study involves a systematic variation of 

the parameter space associated with the intrinsic region of the TSL, i.e., a 

law without fibre bridging present. The parameter space is explored in three 

phases: as shown below. Table 7-1 shows in detail the parameters used and 

the first column of Figure 7-1 presents the traction-separation laws input 

into the simulations in the preliminary work of this investigation. 

I. The stiffness 𝑘𝑐 varies but the traction 𝜎𝑖𝑛𝑡 and failure separation 

𝛿𝑖𝑛𝑡 are fixed. 

II. The maximum traction 𝜎𝑖𝑛𝑡 is varied. In this case the fracture energy 

𝐺𝑡𝑜𝑡𝑎𝑙 is allowed to change (the failure separation is fixed). 

i. The stiffness 𝑘𝑐 is fixed, therefore the elastic separation 𝛿𝑒 is 

variable. 

ii. The elastic separation 𝛿𝑒 is held constant; hence 𝑘𝑐 is 

variable. 

III. The maximum traction 𝜎𝑖𝑛𝑡 is varied, for each of the three stiffness 

values listed above. In this case the fracture energy 𝐺𝑡𝑜𝑡𝑎𝑙 is kept 

constant. Different shapes of traction-separation laws are examined 
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including isosceles triangles, scalene triangles, and trapezoids. 

These laws all have the same fracture energy 𝐺𝑡𝑜𝑡𝑎𝑙 as calculated by 

the integral 𝐺𝑡𝑜𝑡𝑎𝑙 = ∫ 𝜎 𝜕𝛿. 

Table 7-1 Parameters used in the preliminary investigation into the intrinsic region of 

traction-separation law. *Analyses where an alternative shape to the bilinear model are used. 

 𝝈𝒊𝒏𝒕  

(𝐌𝐏𝐚) 

𝜹𝒆 

(𝐦𝐦) 

𝜹𝒊𝒏𝒕  

(𝐦𝐦) 

𝒌𝒄  

(𝐌𝐏𝐚

/𝐦𝐦) 

𝑮𝒕𝒐𝒕𝒂𝒍  

(𝐉/𝐦𝟐) 

I 

40 

40 

40 

9𝑥10−3 

5𝑥10−3 

1𝑥10−3 

10𝑥10−3 

10𝑥10−3 

10𝑥10−3 

4444.4 

8000 

40000 

200 

200 

200 

II 

(i) 

40 

10 

4 

5𝑥10−3 

1.25𝑥10−3 

5𝑥10−4 

10𝑥10−3 

10𝑥10−3 

10𝑥10−3 

8000 

8000 

8000 

200 

50 

20 

(ii) 
10 

4 

5𝑥10−3 

5𝑥10−3 

10𝑥10−3 

10𝑥10−3 

2000 

800 

50 

20 

III 

40 

10 

10 

4 

4 

10 

(square)* 

4 (square)* 

5𝑥10−3 

5𝑥10−3 

1.25𝑥10−3 

5𝑥10−3 

5𝑥10−4 

5𝑥10−3 

5𝑥10−3 

0.01 

0.04 

0.04 

0.1 

0.1 

- 

- 

8000 

2000 

8000 

800 

8000 

8000 

8000 

200 

200 

200 

200 

200 

200 

200 

The stiffness study (Figure 7-1(A-D)) shows that the macroscopic behaviour 

of a DCB (without bridging) is not affected by the value of 𝑘𝑐. Regardless of 

the value of 𝑘𝑐, the P-u plot shows the same behaviour; hence the measured 

toughness �̂� does not vary as shown in the R-curves. 

In the strength study (Figure 7-1(E-H)), the maximum traction influences the 

peak value in the P-u plot and the plateau in the R-curve, however once 
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normalised using the total area under the TSL (i.e., the total input fracture 

energy 𝐺𝑡𝑜𝑡𝑎𝑙), the maximum traction has little effect on the R-curve. 

Finally, by varying the shape of the TSL (Figure 7-1(I-L), similar trends were 

observed; once normalised, the R-curve was the same. In contrast, the TSL 

with the very large 𝛿𝑖𝑛𝑡 was noticeably different with a gradually increasing 

toughness. However, this TSL is not representative of material with only 

intrinsic toughening as 𝛿𝑖𝑛𝑡 is unphysically large. Such behaviour is more 

appropriately examined with a TSL that incorporates bridging as explored in 

this study. 

 

Figure 7-1 Summarised input parameters and results from the intrinsic study, i.e., no fibre 

bridging present. 
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7.2 Appendix 2 – development of a Graphical User Interface 

(GUI) 

A graphical user interface (GUI) was developed for use by industry sponsors, 

Hexcel. This GUI is based on the findings presented in Chapter 3, the 

investigation into traction separation law parameters. The purpose of the 

GUI is to allow the operator to load experimental data, enter the test 

parameters and output the resultant traction separation law using the 

findings presented in Chapter 3. The GUI is also capable of creating a finite 

element analysis of an ASTM standard DCB test [2] specimen using the 

calculated traction separation law and test properties. 

The GUI is split into two interfaces; the first interface is designed to read 

experimental data, adjust test properties, and calculate the resulting 

traction separation law. The second interface allows the user to run and 

postprocess finite element simulations. Figure 7-2 and Figure 7-3 show the 

first and second interface of the GUI respectively. 

 

Figure 7-2 The first interface of the GUI which reads experimental data. 
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Experimental data can be loaded in different formats, namely as Matlab data 

structure, delimited text files or as a custom data set. The custom data set 

functionality is intended to read company text files as they may have unique 

headers or formatting. The data should contain applied load, load-line 

displacement and crack length. However, if crack length is not provided, the 

beam compliance is used to approximate the crack length by the equation 

below: 

 

𝑎 =  √
3

2
𝐸𝐼𝐶 

3

   

7.1 

The GUI also allows the user to edit fracture properties if they have been 

estimated incorrectly by the underlying code. Test parameters, such as 

modulus, are entered in edit boxes. Most properties can be manually 

overwritten, but it is not recommended as some R-curve relations outlined 

in Chapter 3 may be invalidated, depending on the property overwritten. 

Resulting traction separation laws are plotted for inspection. These 

parameters can be output to text file or Matlab data structure. It is also 

possible to load an existing TSL and continue directly to the second interface. 
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Figure 7-3 The second interface of the GUI which calculates simulation parameters and 

generates analysis files. 

The second interface reads the experimental data and traction separation 

law properties calculated or loaded in the first interface. Abaqus input files 

for an ASTM DCB test can be produced based on the current parameters by 

executing a Python script. Alternatively, only damage related keywords can 

be written to an input file, intended to be copied into an existing analysis. 

The analysis is always completed in SI units (𝑚𝑚,𝑁,𝑀𝑃𝑎, 𝑠) but the 

parameters entered can be in any unit system, a conversion is completed in 

the code. 

It is possible to run Abaqus analyses through this interface. It is also possible 

to run a Python postprocessing script and a Matlab data sorting script. Once 

data is compiled in a structured format; plotting tools allow simple 

comparison of computational and experimental results. 
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7.3 Appendix 3 - Compliance calibration method derivation 

When modelling double cantilever beams (DCBs), traction separation law 

theory (previously discussed in Chapter 2) is relevant as the interface is 

modelled using cohesive elements. The behaviour of the interface elements 

is defined by a traction separation law. These models typically measure the 

applied load, 𝑃, load-line displacement, 𝑢, and crack length, 𝑎. The 

measured fracture energy, �̂�, in finite element models within this thesis is 

approximated using the compliance calibration (CC) method, in accordance 

the ASTM standard test method [2]. The derivation of this approximation is 

included for reference. The beam compliance, 𝐶, which is the ratio of load-

line displacement to applied load is also needed in this approximation. 

The CC equation in the ASTM standards is: 

 
�̂� =

𝑛𝑃𝑢

2𝑎𝑏
 

7.2 

Where 𝑏 is the specimen width. 

The strain energy release rate in 3D is given by the partial derivative of the 

internal energy 𝛱: 

 
𝐺𝐼 = −

1

𝑏

𝜕𝛱

𝜕𝑎
 

7.3 

The strain energy is given by: 

 
𝑈 =

1

2
𝑃𝑢 

7.4 

The strain energy 𝑈 is equal to the work done which is the force by 

displacement. In this case the load is linearly increasing so the load vs 

displacement plot is triangular. Meaning the work 𝑊 =
1

2
𝑃𝑢. 

Rearranging and substituting compliance 𝐶 =
𝑢

𝑃
  for 𝑢 gives: 

 
𝑈 =

1

2
𝐶𝑃2 

7.5 
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The strain energy for a linear response: 

 𝛱 = −𝑈  7.6 

 
𝐺𝐼 = −

1

𝑏

𝜕𝛱

𝜕𝑎
=
1

𝑏

𝜕𝑈

𝜕𝑎
=
𝑃2

2𝑏

𝜕𝐶

𝜕𝑎
 

7.7 

As 𝑃 does not depend on 𝑎. 

The end deflection of a cantilever beam can be expressed as: 

 
𝑢𝑏𝑒𝑎𝑚 =

𝑃𝐿3

3𝐸𝐼
 

7.8 

In the case of a DCB specimen, 𝑢 = 2𝑢𝑏𝑒𝑎𝑚 and 𝐿 = 𝑎 

 
𝐶 =

𝑢

𝑃
= (

1

𝑃
)
2𝑃𝑎3

3𝐸𝐼
 

7.9 

 
𝐶 =

2

3

𝑎3

𝐸𝐼
  

7.10 

 𝜕𝐶

𝜕𝑎
=
2𝑎2

𝐸𝐼
 

7.11 

 
𝐺𝐼 =

𝑃2

2𝑏

2𝑎2

𝐸𝐼
=
𝑃2𝑎2

𝑏𝐸𝐼
 

7.12 

 
𝐺𝐼 =

𝑃2𝑎2

𝑏𝐸𝐼
=  
𝑃2𝑎2

𝑏𝐸𝐼
∗
2

3
∗
3

2
∗
𝑎

𝑎
=
3𝑃2𝐶

2𝑎𝑏
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Which leads to the following fracture energy equation: 

 
�̂� =

3𝑃𝑢

2𝑏𝑎
 

7.14 

The Berry method approximates the compliance with a power law: 

 
�̂� =

3𝑃𝑢

2𝑏𝑎
 

7.15 

𝐶 = 𝑘𝑎𝑛  
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Where 𝑛 and 𝑘 are determined by experiments. 𝑛 is the slope of log(𝐶) vs 

log(𝑎). 

 𝜕𝐶

𝜕𝑎
= 𝑛𝑘𝑎𝑛−1 

7.16 

 
𝐺𝐼 =

𝑃2

2𝑏
 𝑛𝑘𝑎𝑛−1 ∗

𝑎

𝑎
 

7.17 

 
𝐺𝐼 =

𝑃2

2𝑏

𝑛𝐶

𝑎
=  
𝑃2

2𝑏

𝑛𝑢 

𝑎𝑃
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This leads to the compliance calibration equation.  

 
�̂� =

𝑛𝑃𝑢

2𝑏𝑎
 

7.19 

 
𝐺(𝑎)̂ =

𝑛𝑃(𝑎)𝛿(𝑎)

2𝑏𝑎
 

7.20 
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