
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-10T07:18:38Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Evaluations of thermal imaging technology for automotive use
cases

Author(s) Farooq, Muhammad Ali

Publication
Date 2022-06-10

Publisher NUI Galway

Item record http://hdl.handle.net/10379/17188

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


 

 

 

Evaluations of Thermal Imaging Technology 

for Automotive Use Cases 

 

 

 

 

Muhammad Ali Farooq (19234011) 

 

This dissertation is submitted in fulfillment of the requirement for the degree of 

Doctor of Philosophy. (Electrical and Electronic Engineering). 

 

 

 

 

Supervisor: Professor Dr. Peter Corocran                                        April 2022



 

 

 

 

“We crave for new sensations but soon become indifferent to them. The wonders of yesterday 

are today common occurrences” 

 

~NIKOLA TESLA – My Inventions in Electrical Experimenter (1919) 
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Abstract 

Thermal imaging has been widely used in high-end applications for instance industrial and 

military applications as it provides superior and effective results in challenging environments 

and weather conditions such that in low lighting scenarios and has aggregate immunity to visual 

limitations thus providing increased situational awareness. This research is about exploring the 

potential of thermal imaging for smart vehicular systems including both in-cabin and out-cabin 

applications using uncooled LWIR thermal imaging technology. Novel thermal datasets are 

collected in indoor and road-side environments using an especially designed low-cost, yet 

effective prototype thermal camera module developed under the Heliaus project.  

The collected data along with public datasets are further used for generating large-scale 

thermal synthetic data using the composite structure of advanced machine learning algorithms. 

The next phase of this work focuses on designing AI-based smart imaging pipelines which 

include driver gender classification system and object detection in the thermal spectrum. The 

performance of these systems is evaluated using various quantitative metrics which include 

overall accuracy, sensitivity, specificity, precision, recall curve, mean average precision, and 

frames per second.  

Furthermore, the trained and fine-tuned neural architectures on thermal data are 

deployed on Edge-GPU embedded devices for real-time onboard feasibility validation tests. 

This is accomplished by performing optimal optimization of successfully converged deep 

learning models on thermal data using SoA neural accelerators to achieve a reduced amount of 

inference time and a higher FPS rate. 

 

 

 

 

 

 
 

 
 

 

 

 

 



 

 

 

List of Figures 

Figure 1: General description (block diagram representation) of Heliaus Project .................... 2 

 

Figure 2: Main componennts of thermography ....................................................................... 11 

 

Figure 3: Microbolometer sensor array packaging [49]. ......................................................... 13 

 

Figure 4: Sample image of the thermal camera. ...................................................................... 13 

 

Figure 5: CMOS image sensor. ................................................................................................ 14 

 

Figure 6: Uncooled LWIR 640X480 prototype thermal camera. ............................................ 18 

 

Figure 7: Three core components of uncooled thermal camera. .............................................. 19 

 

Figure 8: Uncooled LWIR 640X480 camera display toolbox designed by Lynred France [31] 

for interfacing the camera, performing camera calibration, and image processing operations.

.................................................................................................................................................. 20 

 

Figure 9: Black body shape for calibrating the thermal camera. ............................................. 21 

 

Figure 10: Shuterless camera configuration windows using Lynred display toolbox. ............ 21 

 

Figure 11: Shutterless calibration algorithm outputs on a sample thermal frame captured from 

uncooled 640x480 LWIR thermal camera designed by Lynred France [31] a) pre-processed 

thermal frame, b) processed thermal frame. ............................................................................ 22 

 

Figure 12: Acquired face data of two different male subjects in 640x480 resolution by applying 

shutterless technology (a) six different facial poses of a male subject in glow color map, (b) six 

different facial poses in the grayscale color map. .................................................................... 22 

 

Figure 13: Complete image correction/ processing pipeline to produce high-quality thermal 

data. .......................................................................................................................................... 24 

 

Figure 14: Bad pixel replacement algorithm output on sample thermal frame, left side frame 

with some bad pixels spotted in blue circles and the right side is processed frame. ............... 25 

Figure 15: Thermal face data sample frames of a male subject with four different pose 

variations. ................................................................................................................................. 26 

file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163483
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163483
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163483
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163485
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163485


 

 

 

Figure 16: Thermal face data recording setup in an indoor lab environment, a) pictorial 

representation, b) thermal camera masked with yellow tape on a tripod stand, c) subject seating 

arrangement with a red background to avoid background clutters. ......................................... 26 

 

Figure 17: Thermal face data frames of three different subjects acquired in the NUIG lab 

environment with varying face poses, the first two rows show the five different  facial positions 

of male subjects, and the last row shows the facial angles of a female subject ....................... 27 

 

Figure 18: XM122 Aconeer radar sensor module for measuring the object distance. ............ 27 

 

Figure 19: Thermal data acquisition setup using radar sensor and thermal camera. ............... 28 

 

Figure 20: Initial testing of radar module by placing the sensor in from of the subject to compare 

the distance measured through the sensor and physical scale. ................................................. 28 

 

Figure 21: Distance measurement comparison using aconeer radar sensor, a) subject distance 

from the sensor: 52 cm measured through physical scale, b) subject distance from the sensor: 

0.518m/ 51.8cm highlighted in the blue box. .......................................................................... 29 

 

Figure 22: Indoor data acquisition setup in Xperi collaboration lab. The camera and radar 

sensor are mounted on the tripod stand and an external webcam is used to monitor the subject's 

movements. .............................................................................................................................. 30 

 

Figure 23: Different thermal facial poses of a male subject acquired from a 640x480 thermal 

camera. The first five rows show the subject standing at 50cm distance from the camera with 

five different facial angles and the last four rows show the subject at 100cm distance from the 

camera with four different facial angles. ................................................................................. 31 

 

Figure 24: Distance measurement results obtained through the aconeer radar sensor showing 

the value of 0.538 meters or 53.8 cm of the subject with the maximum amplitude window of 

1420.......................................................................................................................................... 32 

 

Figure 25: Thermal Data acquisition setup from roadside using M-1 approach such that by 

mounting the thermal camera at a fixed place. ........................................................................ 33 

 

Figure 26: Housing case designed for holding the thermal and visible camera for M-2 method, 

a) Camera housing structure, b) Initial thermal data recording testings by placing the camera 

inside the housing structure. .................................................................................................... 34 

 

Figure 27: Thermal Data acquisition setup using M-2 method, housing case fixed on a tripod 

stand and tripod structure is placed on car bonnet with the help of suction cups. ................... 34 

file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163495
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163495
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163495


 

 

 

Figure 28: Twelve distinct thermal frames were captured using LWIR 640X480 prototype 

thermal camera using M-1 and M-2 methods. ......................................................................... 35 

 

Figure 29: Data acqsation setup for drowsiness and cognitive load monitoring at XPERI 

Galway, a) Driving simulator setup with three wide angle monitor mounted for having real 

world driving experience, b) Different types of image sensors mounted at the  center of middle 

display to record driver facial data, c) My self seated in the driver simulator wearing EEG, 

EOG, EDA, ECG, and SpO2 sensor kits. ................................................................................ 36 

 

Figure 30: Comprehensive workflow diagram for generating the synthetic 3D facial structure 

from 2D thermal image 1: input images fed to PRNet for generating 3D facial geometry data, 

2: PRNet outputs an obj file, 3: obj file is imported to blender software, 4: final outputs 

extracted in the form of 3D thermal facial images covering different facial angles and poses.

.................................................................................................................................................. 39 

 

Figure 31: Structural layer-wise architecture of newly proposed GENNet architecture. ........ 43 

 

Figure 32: Validation accuracy and model parameters of all the CNN architectures. ............ 43 

 

Figure 33: Auto-learning bounding box anchors feature in YOLO-v5 framework, a) auto 

anchor processing during the training process of the small model with BPR of 0.985, b) auto 

anchor processing during the training process of the medium model with anchors = 4.81 and 

BPR of 0.9985. ......................................................................................................................... 46 

 

Figure 34: Small and large model training results comparison using SGD and ADAM 

optimizer. ................................................................................................................................. 47 

 

Figure 35: Structural block diagram representation of ensembling inference engine based on 

the combination block of large and x-large network variants.................................................. 48 

 

Figure 36: Inference results on nine different thermal frames using the model ensembling 

inference engine. ...................................................................................................................... 48 

 

Figure 37: Structural block diagram representation of TensorRT based optimized inference 

engine using the small network variant for deployment on edge architectures. ...................... 52 

 

Figure 38: Inference results on six different thermal frames using the TensorRT optimized 

inference engine on Nvidia Jetson Nano and Nvidia Jetson Xavier boards. ........................... 53 

 

 

file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163500
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163500
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163500
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163500
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163500
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163504
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163504
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163504
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163504
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163506
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163506
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163507
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163507
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163508
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163508
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163509
file:///H:/Thesis%20Structure/Minor%20Corrections/Final%20Thesis%20Report%20Draft%20-%20Copy.docx%23_Toc103163509


 

 

 

List of Tables 

Table 1: Comparison of CMOS and Thermal IR Sensing Technology ................................... 14 

 

Table 2: Thermal cameras similarities and differences by different manufacturers ................ 16 

 

Table 3: Infrared Region Ranges ............................................................................................. 17 

 

Table 4:  Technical details of prototype thermal camera ......................................................... 18 

 

Table 5: Indoor Face Dataset Attributes .................................................................................. 32 

 

Table 6: Outdoor thermal dataset attributes ............................................................................. 35 

 

Table 7: Comparison Analysis of Previous Yolo versions with Yolo-v5 ................................ 45 

 

Table 8: Yolo-v5 Network Variants Attributes ....................................................................... 46 

 

Table 9: Inference Results on Denso Out-Cabin Thermal Data .............................................. 49 

 

Table 10: mAP of the small model using different confidence thresholds .............................. 52 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Abbreviations 

AI: Artificial Intelligence 

LWIR: Long Wave InfraRed  

ANN: Artificial Neural Network 

CNN: Convolution Neural Network 

DNN: Deep Neural Network 

SVM: Support Vector Machines 

EU: European Union 

DMS: Driver Monitoring System 

ADAS: Advanced Driver Assistance System 

CMOS: Complementary Metal Oxide Semiconductor 

CPU: Central Processing Unit 

GPU: Graphical Processing Unit 

TPU: Tensor Processing Unit 

FPGA: Field Programmable Gate Arrays 

ASIC: Application-Specific Integrated Circuits 

YOLO: You Only Look Once 

IRT: Infrared Thermography 

RGB: Red Green Blue 

FLIR: Forward Looking InfraRed 

FPS: Frames Per Second 

AGC: Automatic Gain Control 

BPR: Bad Pixel Removal 

TD: Temporial Denoiseing 

VGA: Video Graphics Array 

2D: Two Dimensional  

3D: Three Dimensional 

GAN: Generative Adversarial Network 

CT: Computed Tomograpy

https://www.google.com/search?sxsrf=APq-WBu3hoXB_L9b_2bzE68YAlZP37ek2g:1645093663013&q=Temporial+Denoiseing&nfpr=1&sa=X&ved=2ahUKEwj_hp-7w4b2AhWBiVwKHVG4AZQQvgUoAXoECAEQMw


 

 

1 
 

Chapter 1 

Introduction  
 

Thermal infrared imaging systems based on microbolometer technology are the common 

sensor of choice for many imaging applications, including the automotive sensor suite for 

designing smart in-cabin and outdoor thermal perception systems. A microbolometer is an 

array of tiny heat-detecting sensors attached to a special type of lens that is sensitive to infrared 

radiations and can measure infrared thermal emissions emanating from the object thus such 

types of cameras don’t rely on reflected light. They can provide high-resolution imagery in the 

day as well as nighttime even in zero lighting conditions. This research work is about exploring 

the potential use of uncooled thermal cameras based on microbolometer technology for in-

cabin and out-cabin automotive applications thus enabling safe driving systems.  

 

This Ph.D. research work is a part of and correlated with the Heliaus EU H2020 project 

[1]. Heliaus project is about exploring the potential usage of low cost yet effective uncooled 

thermal imaging modules for smart automotive applications. Taking the advantage of Long 

Wave Infra-Red bandwidth (LWIR) in which all bodies emits energy depending on their 

structure and temperature, the core focus of this project is to design and deliver breakthrough 

thermal perception systems.  Such types of advanced photonics-based systems will be effective 

and beneficial for both in-cabin passenger monitoring and for observing the car surroundings 

thus enabling enhanced safety features for automotive applications. Figure 1 shows the general 

description (block diagram) representation of the Heliaus project. The manufacturing of 

thermal imaging cameras undergoes a systematic, yet complicated, production process to 

integrate the parts and it offers a wide range of benefits over conventional CMOS imaging 

devices. The operational capabilities of thermal sensors are not affected by wind, moisture, 

rain,  and other such types of harsh weather conditions. As compared to visible imaging 

cameras that depend on external lighting conditions to capture images, the thermal imaging 

module absorbs heat radiated from the body, allowing them to detect even distant objects in 

both day and nighttime conditions. Moreover, thermal cameras are capable of producing clear, 

accurate images, resulting in fewer false alarms. In this industry research project [1] we were 

involved in different work packages of this project which include work package 7 (WP-7), 

work package 8 (WP-8), and work package 4 (WP-4). As a part of these work packages, we 

worked on various tasks which includes in-door and out-cabin thermal data collection, 

synthetic thermal data generated using the composite structure of computer vision algorithms, 

face localization in thermal images, autonomous driver gender classification, and thermal 

object detection framework. The main focus of the out-cabin dataset acquisition is to further 

use that dataset to develop efficient object detection and classification framework for the 

automotive sensor suite that can work precisely in all light conditions, provide redundancy, and 

thus extends vehicle autonomy. As a consortium member of this industry-based Ph.D. program, 

we worked closely with different industrial partners which include Xperi, Lynred, Next2U, and 

Denso who were all involved and working as consortium partners in this EU-funded Project in 

solving real-world problems for automative technologies using advanced machine learning 

algorithms. 
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The use of thermal imaging and further feeding that data for training machine learning 

algorithms to build AI-based solutions can lead towards developing effective smart thermal 

perceptions systems as shown in Figure 1 for advanced vehicular systems. AI algorithms 

especially deep learning methods have gained much popularity nowadays due to their robust 

outputs for various real-world applications. Deep learning is an emerging area in the field of 

machine learning and has been introduced to achieve the goals of enhanced and improved 

prediction accuracy levels as compared to conventional machine learning methods. Deep 

learning architectures or deep neural networks (DNN) are the further extension of artificial 

neural networks and play a vital role to design artificially intelligent imaging pipelines. 

Normally the neural classifiers use one or two hidden layers of neurons, and they are most used 

for supervised machine learning tasks but on the other hand, deep neural architectures consist 

of a greater number of hidden layers which can range from three hidden layers to up till several 

hidden layers. Deep neural networks differ from conventional machine learning algorithms 

such as Support Vector Machines (SVM) as they can be trained using both supervised and 

unsupervised learning algorithms. Deep learning methodologies are used in a wide range of 

applications which includes digital signal processing, image classification, and sound 

classification. Due to their precise and robust results, these types of frameworks are widely 

used in complex image understanding and processing applications which include satellite 

imaging, medical image analysis, human biometrics, and other such types of tasks.  

In this research work, we have particularly focused on supervised learning methodology 

and used different types of CNN architectures for various in-cabin and out-cabin applications 

which include human thermography, designing thermal gender classification system, thermal 

object detection/ classification framework, and synthetic data generation. Moreover, the further 

stage of this research work focuses on the deployment of trained/ fine-tuned networks on single 

board edge-GPU devices for onboard real-time feasibility testings.  

 

Figure 1: General description (block diagram representation) of Heliaus Project 

https://www.google.com/search?q=especially&spell=1&sa=X&ved=2ahUKEwi1n72qy-P1AhWBQkEAHTAiAboQBSgAegQIARAy
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1.1. Objectives and Scope of the Work 

With the rise of new, often disruptive forms of personal mobility, the role of the automotive 

industry, and its engagement with stakeholders and end-users, as a whole is changing rapidly. 

Drivers will demand a better driving experience for themselves, their passengers, and other 

road users. The advancement in photonic technologies plays a critical role in meeting these 

requirements and expectations. The main objective of the Heliaus project is to explore the 

feasibility of improved technologies and systems in the field of thermal sensing technologies. 

These technologies will be advantageously aggregated into functional small-scale prototypes. 

These prototypes will then be used to establish augmented perception systems for a wide range 

of transport and smart mobility applications. This thesis is drafted in the context of the Heliaus 

project and discusses the role of thermal infrared imaging by integrating it with advanced 

machine learning algorithms for the development and deployment of effective thermal 

perception systems as a viable solution for drive monitoring systems (DMS) and advanced 

driver-assistance systems (ADAS). 

 

1.1.1 Intelligent Vehicular Systems 

The new ways of driving and using a vehicle as expected in the scope of smart mobility ask for 

reliable, affordable, and versatile perception systems. It is now clear that the interaction 

between the vehicles and environment (in and out cabin) has to be improved. Over the past few 

years, various safety features have been deployed into cars, including adaptive cruise control, 

driver monitoring systems, lane departure warning, blind-spot detection, out-cabin object 

detection, tracking, and other such intelligent functions. These systems play an important role 

to increase road safety by helping the drivers in smart manner [2]. These intelligent systems 

work by taking real-time data information from various optical as well as typical hardware 

sensors such as Lidar and Radar [3]. In this work, we have specifically focused on using low-

cost, yet effective uncooled thermal cameras based on microbolometer sensors as a heat 

detector for various computer vision applications that can be integrated with other intelligent 

systems for the automotive sensor suite. 

 

1.1.2 Smart Thermal Perception Systems 

The Heliaus project integrates high-performance and low-cost thermal systems, images/ data 

processing units, and advanced machine learning methods into smart thermal perception 

systems. Such type of perception systems can be used solely or in combination with other 

sensors commonly used for vehicular applications, for in-cabin monitoring, or for out-of-cabin 

applications, leading to an augmented awareness and reliability. The recent surge of interest in 

machine learning especially deep learning is due to the immense popularity and effectiveness 

of convnets [4]. In [5] authors have done an in-depth comparison of conventional machine 

learning vs deep learning algorithms thus showing the effectiveness of deep learning methods. 

Convolution Neural Networks (CNN) architectures are commonly used for designing AI-based 

intelligent imaging pipelines for numerous consumer technology applications [6-7]. In this 

research work, we have explored and employed deep learning algorithms for thermal imaging 

based smart perception system for all weather and environmental conditions. The data was 

acquired from an uncooled LWIR thermal camera developed under the Heliaus project [1]. 

This can be eventually beneficial for designing intelligent imaging pipelines effective for 

advanced vehicular systems such as image classification, object detection, and object tracking.  
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1.1.3 Deployment of AI-based Thermal Imaging Pipelines on Edge Devices for Onboard 

Automotive Installations 

The Heliaus project contributes to the development of AI solutions at the edge, as augmented 

perception systems for autonomous driving are targeted. Edge computing on embedded AI 

platforms plays a significant role in deploying and evaluating the performance of trained 

machine learning algorithms for real-time applications. Gartner predicts by the year 2025, edge 

computing will process about 75% of data generated by all use cases, including those in 

factories, healthcare, and transportation [8]. Embedded devices use different types of 

processing cores such as central processing units (CPU), graphical processing units (GPU), 

tensor processing units (TPU), field programmable gate arrays (FPGAs), and application-

specific integrated circuits (ASICs).  This study evaluates the real-time feasibility analysis of 

SoA thermal image inference networks by deploying a forward sensing thermal object 

detection system on embedded-GPU devices which includes Nvidia Jetson Nano and Nvidia 

Jetson Xavier for automotive applications.  

 

 

1.2. Summary of The Main Contributions in This Thesis 

The sections present the core contributions of this thesis which are summarized in the below 

sub-sections. In the remaining chapters of this thesis, the work related to these contributions is 

presented. In each chapter, an introductory paragraph provides the context of the research work. 

Following that, the research objectives of the work are given, followed by the contributions of 

the presented research work. The first section will explicitly summarize the WP-7 contributions 

which are mainly related to in-cabin applications. Whereas the next section will list our WP-8 

contributions which are related to out-cabin applications. The last section will list WP-4 

contributions which are related to the deployment of AI-based smart imaging pipelines on 

resource constraint embedded boards for on-board feasibility testings. 

 

1.2.1 Contribution To Work Package 7 (In-cabin Applications) of Heliaus Project  

The in-cabin applications development targeted in the context of the Heliaus project aim at 

prototyping new smart thermal systems enabling the monitoring of driver activities by 

specifying the person's soft biometrics, vital sign monitoring, and drowsiness detection. The 

main contributions related to this work package are listed below. 

1. Contribution To Indoor Thermal Data Acquisition using Protytpe LWIR Thermal Camera 

Module and Synthetic Thermal Data Generation using Computer Vision Methods 

This first phase contributes toward a novel indoor thermal face data which is acquired using a 

640x480 prototype uncooled LWIR thermal camera. This camera module is developed under 

the Heliaus project [1].  The main goal of collecting this data is to further use it for various in-

cabin applications which include synthetic thermal data generation for robust training of deep 

learning models and, the development of autonomous driver gender classification. In addition 

to collecting our thermal datasets as discussed in section 3.3.1 of chapter 3, I also contributed 

by helping our industry partner Xperi in the data collection process and participating in in-

cabin data collection as a volunteer subject. The goal of acquiring this data is to observe natural 

drowsiness behavior and high cognitive load in a simulated driving situation with several 

optical and electrical sensing modalities. Furthermore, the second phase of this work includes 

https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders/#:~:text=By%202025%2C%20Gartner%20predicts%20this%20figure%20will%20reach,are%20usually%20things%20with%20sensors%20or%20embedded%20devices.
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synthetic thermal data generation using existing thermal public and locally acquired datasets 

by employing various computer vision algorithms. The complete working methodology and 

experimental details are presented in our published conference papers [9-10].  

2. Contribution to Development of  In-Cabin Thermal gender Classification System using SoA 

CNNs 

The second important contribution is the development of an in-cabin driver gender 

classification system using SoA pre-trained deep learning architectures. In this experimental 

work [11] we have first trained the nine deep learning architectures on a large-scale CASIA 

facial dataset. In the second phase, the trained DNNs are further fine-tuned on Tufts thermal 

dataset [12-14].  The efficacy of all the thermally tuned networks is validated on unseen test 

data collected from the Carls thermal dataset [15-16] and locally acquired indoor thermal data. 

In addition to using pre-trained neural networks, a new application-specific CNN architecture, 

GENNet, is designed and its performance is evaluated against the nine pre-trained CNN 

networks.  The further details of this work are summarized in chapter 4. 

 

1.2.2 Contribution To Work Package 8 (Out-cabin Applications) of Heliaus Project  

The out of cabin applications development targeted in the context of the Heliaus project aim at 

prototyping new smart thermal systems enabling the detection, labeling, and classification of 

the objects, including human beings and other road-side objects, surrounding the vehicle by 

using computer vision algorithms based on the use of thermal images. Moreover, the main 

focus is the improvement of such perception systems in the most challenging environmental or 

light conditions. The core contributions related to this work package are listed below. 

1. Contribution To Novel Object Detection Thermal Data Acquisition using Protytpe LWIR 

Thermal Camera Module  

This first phase contributes toward a novel roadside thermal object detection data which is 

acquired using a prototype 640x480 uncooled LWIR thermal camera [17]. The main goal of 

collecting this data is to further use it for out of cabin applications which includes the 

development of the SoA thermal object detection framework that should be effective in all 

weather and environmental conditions. The further details of this data are presented in section 

3.3.2 of chapter 3. 

2. Contribution to Development of Out-cabin Thermal Object Detection/ Classification System 

using SoA YOLO Framework 

The second contribution towards this work package includes the adaptation and validation of a 

state-of-the-art object detection/ classification YOLO framework for designing an out-cabin 

smart thermal perception system with seven distinct classes including stationary as well as 

moving objects [18]. This includes the preparation and annotation of a large-scale locally 

acquired dataset of thermal images captured in different weather and environmental conditions 

for out-cabin object detection. Moreover, a new model ensemble-based inference engine is 

proposed using the combination of two best-trained models to further improve the accuracy 

metrics on test data. The further details of this work are summarized in chapter 5. 
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1.2.3 Contribution To Work Package 4 of Heliaus Project  

This work package involves the efficient real-time implementation and deployment of Neural 

Network-based processing frameworks on dedicated embedded devices. The contribution 

related to this work package is listed below. 

1. Contribution to Deployment of Object Detection/ Classification System on GPU & EDGE-

GPU devices using Advanced Neural Optimization Methods 

This major contribution to this work package incorporates further evaluating the neural 

framework with a range of model sizes to determine its suitability for porting to a resource-

constrained embedded edge platform which includes Nvidia Jetson Nano and Nvidia Jetson 

Xavier embedded boards.  Thus, to study its feasibility in the form of inference time required 

and fps rate for further automotive on-board-computer (OBC) installations. In this work [19] 

we have performed model optimization using the SoA TensorRT inference accelerator to 

implement a fast inference network on SoA embedded GPU boards (Jetson, Xavier) with 

comparative evaluations. The further details of this work are summarized in chapter 6. 

 

1.2.4 Additional Contributions 

The other contributions of this thesis incorporate a detailed study about the effective use of 

thermal imaging for human thermography [20]. The overall study emphasized the significance 

of Infrared Thermography (IRT) and the role of machine learning in thermal medical image 

analysis for human health monitoring and various disease diagnosis in preliminary stages.  In 

the second phase, we have proposed a breast tumor classification system using thermal frames 

and skin cancer classification systems using RGB dermoscopic images by applying transfer 

learning methodology for fine-tuning the selected set of pretrained deep neural networks [20-

21].  

In addition to that, I have also worked on monocular depth estimation with my fellow 

Phd colleagues. In this work, we have explored various depth datasets, SoA algorithms for 

depth estimation using 2D RGB images of different scenes and environments. In addition to 

that, we have also benchmarked the performance of the proposed depth estimation algorithm 

with other DNN algorithms [22]. The further details of these additional contributions are 

summarized in chapter 7. 

 

 

1.3. List of Publications 

The work presented in this thesis resulted in the following journal and conference papers 

publications. 

 

1.3.1 WP-7 Contribution Publications 

This section will list the number of publications related to WP-7 of the Heliaus project. In this 

work package, one journal and two conference papers have been published. The copy of the 

published papers is attached in Appendix A, Appendix B, and Appendix C of this thesis report. 

1. Farooq, Muhammad Ali, Hossein Javidnia, and Peter Corcoran. "Performance 

estimation of the state-of-the-art convolution neural networks for the thermal images-



 

 

7 
 

based gender classification system." Journal of Electronic Imaging 29.6 (2020): 

063004. 

 

2. M. A. Farooq and P. Corcoran, "Generating Thermal Image Data Samples using 3D 

Facial Modelling Techniques and Deep Learning Methodologies," 2020 Twelfth 

International Conference on Quality of Multimedia Experience (QoMEX), 2020, pp. 1-

5, DOI: 10.1109/QoMEX48832.2020.9123079. 

 

3. M. A. Farooq and P. Corcoran, "Proof-of-Concept Techniques for Generating Synthetic 

Thermal Facial Data for Training of Deep Learning Models," 2021 IEEE International 

Conference on Consumer Electronics (ICCE), 2021, pp. 1-6, DOI: 

10.1109/ICCE50685.2021.9427690. 

 

1.3.2 WP-8 Contribution Publications 

This section will list publications related to WP-8 of the Heliaus project. In this work package, 

‘C3I Thermal Automotive Dataset’ and one journal paper have been published. The copy of 

the published paper is attached in Appendix D and Appendix E of this thesis report. 

4. Muhammad Ali Farooq, Waseem Shariff, Faisal Khan, Peter Corcoran, Cosmin 

Rotariu, March 26, 2022, "C3I Thermal Automotive Dataset", IEEE Dataport, DOI: 

https://dx.doi.org/10.21227/jf21-rt22. 

 

5. M. A. Farooq, P. Corcoran, C. Rotariu and W. Shariff, "Object Detection in Thermal 

Spectrum for Advanced Driver-Assistance Systems (ADAS)," in IEEE Access, DOI: 

10.1109/ACCESS.2021.3129150. 

 

1.3.3 WP-4 Contribution Publications 

This section will list publications related to WP-4 of the Heliaus project. In this work package, 

one journal article has been published. The copy of the published paper is attached in Appendix 

F of this thesis report. 

6. M. A. Farooq, W. Shariff and P. Corcoran, " Evaluation of Thermal Imaging on 

Embedded GPU Platforms for Application in Vehicular Assistance Systems," 

Published in  IEEE Transactions on Intelligent Vehicles, DOI: 

10.1109/TIV.2022.3158094. 

 

1.3.4 Additional Contribution Publications 

This section will list other contribution publications which are not related to any specific work 

package of the Heliaus project [1], however, this work was done as additional contributions 

during my Ph.D. program. The copy of the published paper is attached in Appendix G,  

Appendix H, and Appendix I of this thesis report. 

7. M. A. Farooq and P. Corcoran, "Infrared Imaging for Human Thermography and Breast 

Tumor Classification using Thermal Images," 2020 31st Irish Signals and Systems 

Conference (ISSC), 2020, pp. 1-6, DOI: 10.1109/ISSC49989.2020.9180164.   

 

https://dx.doi.org/10.21227/jf21-rt22
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8. M. A. Farooq, A. Khatoon, V. Varkarakis, and P. Corcoran, “Advanced deep learning 

methodologies for skin cancer classification in prodromal stages,” CEUR Workshop 

Proc., vol. 2563, pp. 40–51, 2019. 

 

9. F. Khan, M. A. Farooq, W. Shariff, S. Basak and P. Corcoran, "Towards Monocular 

Neural Facial Depth Estimation: Past, Present, and Future," in IEEE Access, doi: 

10.1109/ACCESS.2022.3158950. 

 

 

1.4. Thesis Structure 

The rest of the thesis structure is as follows. 

 

Chapter 2 introduces an overview of infrared thermal imaging, different infrared spectrums, 

thermal camera hardware and different types of thermal cameras, applications of thermal 

imaging in different sectors, and commercial manufacturers of thermal cameras. Moreover, this 

chapter will further provide the details about the LWIR prototype thermal camera specifically 

designed and used during this research work for recording indoor as well as out-cabin thermal 

data for various automotive applications. 

Chapter 3 presents complete details about new thermal data acquisition using the prototype 

640x480 uncooled thermal camera. This includes types of thermal data that are being recorded 

for being utilized in different types of experimental works and data collection methods with 

complete dataset attributes. 

 

Chapter 4 presents our contributions towards work package 7 (WP-7) of the Heliaus project [1] 

which is focused on the development and validation methodologies of the thermal-IR system 

for in-cabin vehicular applications. In this work, we have developed an efficient thermal gender 

classification system using end-to-end pretrained deep learning networks as well as newly 

proposed GENNet convolution neural networks for in-cabin driver monitoring applications. 

Further details of these contributions are detailed in journal publication 1 [11]  and conference 

publications 2 [9] & 3 [10] listed in section 1.3.1.  

Chapter 5 presents our contributions towards work package 8 (WP-8) of the Heliaus project [1] 

which is focused on the development and validation methodologies of the thermal-IR system 

for out-cabin vehicular applications. In this work package, we have explored adapting and, 

modifying state-of-the-art object detection and classifier framework on thermal data with 

various distinct classes for advanced driver-assistance systems (ADAS). Further details of 

these contributions are detailed in journal publication 5 [18] listed in section 1.3.2. 

 

Chapter 6 presents our contributions towards work package 4 (WP-4) of the Heliaus project 

which further explores object detection model optimization by presenting our core 

contributions towards using advanced neural methods for deploying fast inference engines on 

embedded architectures. Further details of these contributions are detailed in journal 

publication 6 [19] listed in section 1.3.3. 

 

Chapter 7 presents additional contributions regarding human thermography and fatal disease 

diagnosis in the early stages using advanced deep learning algorithms. Moreover, it also 

highlights the research work done in collaboration with other universities and Ph.D. students. 
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Further details of these contributions are detailed in conference publications 7 [20], 8 [21] and 

journal publication 9 [22] listed in section 1.3.4. 

 

Chapter 8 outlines the main conclusions and future work based on the work contained in this 

thesis. 
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Chapter 2 

Thermal Imaging Background  

 

This chapter will mainly focus on infrared thermal imaging, applications of thermal imaging, 

thermal camera hardware, and its working methodology, the difference between CMOS and 

thermal imaging sensors, different types of thermal cameras, commercial manufacturers of 

thermal cameras, and different infrared spectrums. This chapter will further introduce the 

LWIR prototype thermal camera specifically designed and used during this research work for 

recording indoor as well as out-cabin thermal data for various automotive applications. Lastly, 

this chapter will discuss the shutter-less camera calibration method for recording high-quality 

thermal images. 

 

2.1. Thermal Infrared Imaging 

Infrared radiation was initially found in 1800 by Sir Frederick William Herschel (1738-1822), 

who is likewise popular for finding the planet Uranus as well as composing 24 orchestras [23]. 

Thermal imaging is one of the most rapidly growing imaging techniques nowadays [24]. It can 

be described as a key method for measuring the spatial temperature of various materials, 

objects, and scenes. It works by absorbing IR radiations from the objects and then generating 

heat energy indications with or without visible illumination conditions using different colour 

maps such as greyscale, iron, glow, and rainbow. These color maps are generally used to define 

different temperature ranges which eventually help us in identifying the health parameters of 

different objects. Thermography is a non-invasive tool that utilizes thermal data captured from 

the thermal camera for acquiring useful information [25]. It collects information using an array 

of infrared sensors to read infrared energy emissions (surface temperature) in order to 

determine the operating conditions of different parts of the objects as well as the human body. 

It consists of two main components: Thermo and graphy where thermo refers to temperature 

patterns of the body and graphy refers to image acquisition techniques as shown in Figure 2. 

Thermal video, thermal images, and Infrared thermography are examples of infrared imaging 

science. Thermographic cameras usually detect radiation in the long-infrared range of the 

electromagnetic spectrum (roughly 9,000– 14,000 nm or 9–14 μm) and produce images using 

that radiation, which is generally referred to as thermograms. The amount of radiation emitted 

by an object increases with an increase in the temperature; therefore, thermography helps to 

see temperature variations in a much more visible manner. 

In the general classification, thermography can be divided into two main types which 

include active thermography and passive thermography. Passive thermography works by 

pointing the IR camera at the investigated body and checking whether the investigated body is 

at a lower or higher temperature than the background. Whereas the active thermography 

approach is based on the excitation of the sample by applying external energy into it and 

subsequently measuring the thermal response from it. Therefore, active thermography is a fully 

dynamic process requiring different methods of image processing [26]. The second part of this 

chapter focuses on the real-world health monitoring applications of the human body using 
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infrared thermography (IRT). The human body temperature is considered the most important 

vital parameter that can be used for further diagnosis of normal as well as fatal diseases. 

 

Figure 2: Main componennts of thermography 

Thermography has several advantages such as it is contactless, provides high speed, is portable, 

durable, used for Non-Destructive Testing (NDT), and eventually, it can inspect large areas, 

therefore, it is applicable in a wide range of real-world applications [27]. For instance, in the 

health sector thermal cameras can be used to monitor different health parameters of a body 

such as fever measurement, and blood pressure measurement. Moreover, it can be used for 

disease diagnosis, cancer lesion segmentation, and infection detection [28]. In the aerospace 

industry, it can be used to detect Carbon/epoxy composites, delamination/impact, and monitor 

engine performance [29]. In Automotive Industry, it can be used for continuous monitoring of 

composite structures, non-destructive testing, spot welds, and adhesive bonds [30]. In the 

power and electrical sector, it is used for measuring the performance of wind turbine blades, 

coating uniformity, and delamination in composites [31]. Moreover, it can be used for an 

extensive range of electrical applications such as the detection of unbalanced Loads, detection 

of loose or corroded connections, and detection of winding insulation failure in electric motors 

[32].  In the defense industry, thermal cameras which are specially designed for military 

applications are deployed in military hardware for performing specialized operations in rough 

environmental conditions especially in the nighttime to achieve precision accuracy [33]. Lastly, 

it is also beneficial for agricultural applications as it plays a vital role in the agriculture and 

food industry. It is used for predicting water stress in yields, forecasting and scheduling 

irrigation in a good time frame, pathogen, and disease diagnosis in flowers, predicting fruit 

yield, evaluating the maturing of fruits, bruise detection in fruits and vegetables, and 

temperature distribution during cooking [34]. 

 

2.1.1 Effective Factors for Thermal Imaging 

Thermal imaging is one of the most sensitive applications. Therefore, three important factors 

need to be considered while collecting the data or making large datasets for various real-time 

applications using different types of thermal cameras. These factors are described below. 

 

https://www.twi-global.com/what-we-do/services-and-support/asset-management/inspection-of-composites
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1. Environmental Factors: These factors mainly depend upon outdoor and indoor 

environmental conditions such as ambient temperature, air, and atmospheric pressure, 

relative humidity, and the radiation source. Indoor environmental conditions can be 

controlled, however, the outdoor environment cannot be controlled due to natural 

ecological features. 

 

2. Individual Factors: These factors are generally dependent on the human body's intrinsic 

and extrinsic characteristics that can affect the overall body temperature. Intrinsic factors 

are generally due to biological and anatomical constraints such as age, gender, hair density, 

metabolic rate, skin irradiation, genetics, blood pressure, and emotions. The extrinsic 

aspects that can affect body temperature include food intake, drug consumption, 

stimulants, cosmetics, ointment, etc. However, these factors can vary from person to 

person, and it is nearly impossible to control them.  

 

3. Technical Factors: These factors are generally due to the camera electronics, electronic 

components noise, camera position, camera distance from the subject, calibration, 

selection of Region of Interest (ROI), appropriate selection of image processing and 

machine learning algorithm, and statistical analysis, etc. In general, as compared to 

environmental and individual, technical factors are controllable by using modern 

technological solutions. 

 

 

2.2. Working Principle of Thermal Cameras 

Thermal cameras are equipped with microbolometer image sensors. A microbolometer 

comprises thousands of tiny heat-detecting sensor elements as shown in Figure 3. Each element 

has a micro resistor which changes its resistance as the camera detects heat radiations. The 

thermal camera focuses heat onto the elements which in turn heat up.  The working principle 

of these cameras functions by detecting the change in resistance resulting from the absorption 

of IR radiant energy normally within the wavelength between 9–14 um. The change in 

resistance is measured and then processed into temperature values which are represented 

graphically in the form of thermal images. The development and working methodology of 

different types of infrared sensors and detectors are comprehensively defined by Zhang, et al. 

[35]. Thermal imaging is a non-invasive imaging method acquired using thermal cameras. 

These cameras can measure the temperature of the body without the need for direct contact. To 

collect thermal images for various applications including human thermography different types 

of thermal cameras are used which are equipped with InfraRed (IR) or thermal detector sensors. 

Figure 4 displays the sample image of generic thermal cameras. Thermal cameras are available 

in different variants designed for specialized applications. It includes thermal cameras for 

drones, mobile thermal cameras for apple and android devices, scout, and thermal security 

cameras. These thermal detectors are generally divided into two main categories which include 

cooled and uncooled, respectively. The recent advancements in solid-state electronic chips, it 

has eventually cleared the path for the creation of more up-to-date thermal detectors with good 

accuracy and precision levels. Presently, the thermal affectability of the cooled cameras is 

about 0.05 °C contrasted with 0.01 °C of uncooled cameras.  

 



 

 

13 
 

 

Figure 3: Microbolometer sensor array packaging [49]. 

 
Figure 4: Sample image of the thermal camera. 

 

These cameras have numerous favorable circumstances, including space and high-temperature 

accuracy and portability. Moreover, these lightweight uncooled thermal cameras are 

manufactured by thin-film silicon innovation, thus they are less expensive compared to cooled 

thermal infrared cameras. The latest uncooled thermal cameras have extensively achieved 

improved thermal imaging capabilities for providing exceptional performance in different real-

time applications such as human thermography, machine health monitoring, high tension 

electrical cable inspections, and other such applications [36-38]. 

 

2.3. Difference Between CMOS Image Sensors & Thermal Image Sensors 

The working principle of a Complementary Metal Oxide Semiconductor (CMOS) image sensor 

was established in the latter half of the 1960s. However, the device was yet not commercialized 

until microfabrication technologies became advanced enough in the 1990s. A Complementary 

Metal Oxide Semiconductor (CMOS) camera sensor as shown in Figure 5 is a type of imager 

that collects visible light ranging from 400~700nm band (which is the same spectrum that the 

human eye perceives) and converts that to an electrical signal. In the next stage, it organizes 

that information to render images and video streams. Image sensors assembled into today's 

digital/ RGB cameras and mobile phone cameras mostly use either the CCD (charge coupled 

device) or CMOS technology. Visible cameras are designed to create images, capturing light 

in red, green, and blue wavelengths (RGB) for accurate color representation. As compared to 

the human eye which requires visible light, RGB cameras also require light in the visible 

spectrum to generate images. Due to this reason the visible cameras are considered unfavorable 

for producing adequate outputs in low-lighting or zero lighting conditions. Their performance 

is also significantly reduced by harsh atmospheric conditions such as fog, haze, smoke, heat 
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waves, and smog. This limits their usage and applications to daytime and clear weather 

conditions mostly.  

 

Figure 5: CMOS image sensor. 

In comparison to this thermal infrared cameras do not require any additional visible light 

conditions to operate and have the ability to generate high contrast images even in night-time 

scenarios. This means that thermal cameras can be deployed very subtly while remaining 

highly effective. This makes thermal cameras the perfect choice for the day as well as night-

time or low lux scenes applications. Moreover, the thermal cameras are highly effective in 

diversified environmental conditions such as fog, haze, smoke, or sandstorms that can deter the 

performance of visible cameras thus making them ineffective in challenging environmental 

conditions.  In this thesis, the main reason for selecting thermal imaging technology for 

vehicular applications is to develop intelligent systems that should remain effective and 

functional irrespective of lighting conditions and provide robust results in diversified weather 

and environmental conditions. Table 1 shows the comparison of CMOS and thermal imaging 

sensing technology by analyzing various factors.  

Table 1: Comparison of CMOS and Thermal IR Sensing Technology 

 

2.3.1. Types of Thermal Cameras  

Thermal cameras which are available commercially can be divided into two broad categories. 

It includes cooled thermal cameras and uncooled thermal cameras.  

Sensor  Thermal IR  CMOS 

Pixel Signal Electron Packet Voltage 

Chip Signal Digital Digital 

Fill Factor High Moderate 

Responsivity High Moderate-High 

Noise Level Low Moderate – High 

Dynamic Range High Moderate 

Uniformity High Low 

Resolution Low – Moderate Low – High 

Speed Moderate - High Moderate - High 

Power Consumption Low - High Low - Moderate 

Complexity Low Moderate 

Cost Moderate - High Moderate 
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Cooled Thermal Camera: The latest cooled technology thermal cameras are equipped with an 

imaging sensor that is integrated with a cryocooler. It is the type of device that brings down the 

sensor temperature to cryogenic temperatures. It is necessary to decrease the sensor 

temperature to eventually reduce the thermally actuated noise to a level beneath that of the sign 

from the scene being imaged. Cryocoolers have moving parts made to very close mechanical 

tolerances that wear out after some time along with helium gas that gradually works its way 

past gas seals. Cooled thermal imaging technology is considered the most sensitive type of 

thermal imaging technique that has the ability to even detect minute temperature differences 

between the objects which are very useful for applications that require precise and robust 

results. They can generate a picture in the mid-wave infrared (MWIR) band and the long-wave 

infrared (LWIR) band of the range where the thermal complexity is high because of blackbody 

material science. The thermal difference is the adjustment in signal for an alteration in target 

temperature. The higher the thermal difference, the simpler it is to identify objects against a 

foundation that may not be a lot colder or hotter than the object. 

Uncooled Thermal Cameras: These cameras are built on the technology in which the imaging 

sensor does not require cryogenic cooling. A typical detector model depends on the 

microbolometer, a modest vanadium oxide resistor with an enormous temperature coefficient 

on a silicon component with a huge surface region, low heat limit, and great thermal 

segregation. It works by detecting changes in scene temperature which in turn causes changes 

in the bolometer temperature. These temperature changes are then converted to electrical 

signals and finally, they are processed into an image. Uncooled sensors are intended to work 

in the long wave infrared (LWIR) band, where global temperature targets discharge the greater 

part of their infrared energy [39]. Comparing the price of uncooled cameras, they are relatively 

cheaper than cooled thermal camera since it does not require cryocoolers which is expensive. 

The sensors can be made in fewer strides, with better returns comparative with cooled sensors 

and more affordable vacuum bundling. 

 

2.3.2 Commercially Available Thermal Cameras 

With recent advancements in technology and the evolving market of precision sensors and 

cameras, many companies are providing commercial systems and solutions which is 

specifically designed for various thermal imaging applications such as human thermography.  

The overall system comprises two major parts which include hardware systems and software 

programs. Currently, third-generation thermal cameras are available in commercial markets 

which mainly consist of focal plane arrays (FPA) detectors.  These detectors use photon 

detectors also referred to as cooled technology and thermal detectors referred to as uncooled 

technology. Uncooled detectors are highly preferable for biomedical applications, fire safety, 

and transportation applications whereas cooled detectors are generally used for high-end 

military and scientific applications. 

A. FLIR Systems: It is one of the largest commercial manufacturers specializing in the design 

and production of thermal imaging cameras and imaging sensors for different commercial 

and government applications. The company was established in 1978 in the United States 

of America (USA) and took its name from the acronym forward looking camera (FLIR).  

FLIR infrared cameras are by and large independent camera models that offer exact, 

quantitative, and top to bottom estimations. FLIR cameras uncover temperature varieties 

even under 0.02 °C (20 mK) which means the most profound body or skin recognition is 

exceptionally conceivable in biomedical applications. The high probability of precision 

https://en.wikipedia.org/wiki/Thermal_imaging
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accuracy of FLIR cameras in biomedicine, it provides medical researchers and analysts to 

extract an increasingly and extensive informative outcome [40-41]. 

 

B. Seek Thermal: Seek thermal is one of the leading manufacturers of thermal cameras for 

commercial applications. The company was founded in the year 2012. The company is well 

known for its low-cost and high-resolution thermal cameras and thermal cores thus 

advancing the state-of-the-art military and professional-grade thermal technologies. The 

company is manufacturing its products and solutions for different commercial and 

government sectors such as biomedical, firefighting, and law enforcement agencies. SEEK 

thermal cameras mostly rely on thermal detectors that enable them to record infrared-based 

thermal pictures, especially in the area of biomedicine and other business exchanges. The 

company is more focused on designing Smartphone-based Seek thermal cameras that can 

be easily interconnected with android and other smartphones along with their applications 

thus transforming a cell phone into a professional thermal camera. In addition to that SEEK 

thermal cameras are more preferred as they are more prudent than other thermal camera 

models [42]. 

 

C. Infratec: Infratec stands among one of the largest suppliers of thermal cameras for different 

applications and specialized hardware equipment for medical applications for 

approximately 25 years. The company has been providing thermal imaging technology 

according to customer requirements assigned with safety and security tasks. The 

performance scope of the hardware equipment is perfected by expert consultancy by 

providing continuous staff training [43]. 

Table 2 provides comprehensive information regarding the differences and similarities of 

infrared thermal cameras manufactured by different companies. 

Table 2: Thermal cameras similarities and differences by different manufacturers 

Company FLIR Infrared 

Camera 

SEEK infrared Camera Infratec Thermal 

Camera 

Area of 

Application 

Biomedicine, 

building, 

scientific 

research areas 

Buildings, biomedicine, 

outdoors 

Biomedicine, 

commercial 

Type of Detector Thermal and 

Photon 

Thermal Thermal and 

Photon 

Generation 3rd generation 3rd generation 3rd generation 

Infrared 

Spectrum 

3-14um 3-14 um --- 

Portability/ 

Mobility 

Standalone and 

smartphone-

based 

Smartphone-based Standalone 

Type of 

Measurement 

Quantitative and 

Qualitative 

Qualitative Quantitative and 

Qualitative 

Power Source Battery-powered Works on Cellphone battery Battery-powered 
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2.3.3 Infrared Spectrums  

The infrared region is situated between the visible and microwave regions of the 

electromagnetic spectrum as shown in Table 3 [44]. Since hot objects/ bodies radiate energy in 

the infrared band, it is also referred to as the heat region of the spectrum.  

Table 3: Infrared Region Ranges 

Energy Wave Number 

 

 
Gamma-ray X-ray Ultraviolet 

 

Visible 

 

Infrared Microwaves Radio 

waves 

Nuclear 

transition 

Internal 

electronic 

transitions 

Electronic 

valence 

transition 

 

 Molecular 

Vibration 

Molecular 

Rotation 

Spin 

orientation 

Magnetic 

Field 

Wavelength 

 

 

The higher the temperature of an object, the higher will be the spectral radiant energy, or 

emittance, at all wavelengths and the shorter the predominant or peak wavelength of the 

emissions. Peak emissions from objects at room temperature occur at 10 µm. The infrared 

region is usually divided into different wavelength regions which include near infrared (NIR), 

shortwave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared spectrum 

(LWIR). 

Near Infrared (NIR): NIR cameras can detect the wavelengths of light directly adjacent to the 

visible light spectrum. Unlike conventional thermal cameras, NIR cameras still detect photons 

like conventional RGB cameras in the visible light spectrum, just at a different wavelength. In 

the NIR spectrum, there are more detectable photons at night, which makes NIR cameras an 

important source of imaging for night vision and especially military surveillance operations. It 

works in infrared wavelength spectrum ranging from 0.75um – 1.4um [45]. 

Shortwave Infrared (SWIR): SWIR also referred to as shortwave infrared detectors offer unique 

capabilities that are often corresponding to LWIR and MWIR imaging. A SWIR detector is a 

type of photodetector, like cooled LWIR or MWIR detector. Unlike LWIR or MWIR imaging, 

SWIR imaging mainly uses reflected light. This is very similar to visible cameras or the human 

eye. Therefore, SWIR images are comparable to binary visible images in resolution and detail. 

It generally works in infrared wavelength spectrum ranging from 1.4um – 3μm and frequency 

band 100–214 terahertz. These cameras can be effectively used for the day as well as night 

vision imaging.  

Midwave Infrared (MWIR):  The MWIR thermal cameras operate in the wavelength spectrum 

ranging from 3–8 um and frequency band of 37–100 THz. These cameras do not require any 

external light to capture the image as it has the capability to generate an image from the thermal 

infrared radiation emitted from the body or the object. The brightness of the object acquired 

from the MWIR thermal imager depends on two major factors which include the object’s 

temperature and its emissivity which can be described as a physical property of materials that 

explains how efficiently it radiates. The main goal of MWIR cameras is to acquire high-quality 

10^8 
10^1 10^4 10^-3 
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images with detailed temperature information and are commonly used for industrial and 

military applications. 

Longwave Infrared (LWIR): Longwave Infrared thermal cameras are also commonly referred 

to as uncooled thermal cameras. These cameras are designed to operate in the IR band of the 

electromagnetic spectrum ranging from 8μm to 14μm also known as the LWIR spectrum. Such 

types of cameras are commonly used for mid-range applications and has the ability to operate 

in hot as well cold temperatures depending upon the camera hardware designs. As compared 

to MWIR thermal LWIR thermal camera has better operational capabilities, especially in foggy 

weather. Moreover, these cameras are inexpensive as compared to cooled thermal cameras.  

 

2.4. LWIR Prototype Thermal Camera 

In this project [1] a specialized uncooled LWIR prototype thermal camera has been developed 

by Lynred France [46] which is further used for all the work package related applications. The 

prototype camera embeds the LWIR sensor for collecting data in 640x480 VGA resolution for 

in-cabin as well as outdoor environmental conditions. It has a focal length of 7.5 mm and F-

number of 1.2. Figure 6 shows the images of the thermal camera used in this project. The 

camera is built using uncooled microbolometer-based technology. It is an affordable and 

lightweight thermal imaging module specially designed to be integrated with AI-based 

algorithms to extract useful information. The core benefits of this camera include 

• Enabling high image quality with low power consumption 

• Compact size dimension thus allowing it easily to be fixed anywhere in the car 

• Providing agility of configurations and addressing the median volumes application 

makers. 

 

Figure 6: Uncooled LWIR 640X480 prototype thermal camera. 

The designed camera module works on plug and plays technology using a USB interface with 

16 bits streaming and recording options. Table 4 provides the complete technical details of the 

thermal imaging camera. 

Table 4:  Technical details of prototype thermal camera 

Specifications 

Uncooled prototype 

thermal camera 

Camera features Details 

Type Long Wave Infrared Micro-bolometer technology 

with 17 μm pixel pitch  
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Resolution 640 x 480 pixels  

Spectral Response  8 -14 μm  

Focal length  7.5 mm  

Power consumption < 950 milliwatt  with 30fps recording  

Interface USB Micro USB type B female, 

USB 2.0 compliance  

Full frame rate 120 hertz  

Standard frame rate 30 hertz  

Export frame rate 9 hertz  

Calibration Methods Shutterless  With additional image 

processing algorithms like Bad 

pixel removal (BPR), non-

uniformity correction (NUC), 

and automatic gain correction 

(AGC) 

Camera Dimensions 

(Length x Width x Height)  

30 x 30 x 24 mm³ 

 

Excluding optics and shutter 

Camera weight < 40 grams  

 

2.4.1  Shutterless Calibration of Uncooled Prototype Thermal Camera 

Due to the rapid development of micro and nanotechnology, microbolometers have become 

significantly inexpensive and more effective. An uncooled IR camera comprises of three main 

components as depicted in Figure 7.  

 

Figure 7: Three core components of an uncooled thermal camera. 

These components along with the camera calibration methods play a critical role in ensuring 

the quality of an IR camera. The calibration is implemented both in the hardware and the 

software (firmware) [47].  

 The correction methods for infrared imagers and radiometric cameras vary in the required 

calibration effort [48]. Radiometrically calibrated thermal cameras typically use optical 

shutters for runtime re-calibration purposes to regularly correct thermal drift influences on the 

measurement. The calibration procedure for the shutter-based compensation approach is 

comprehensively presented in one of the study proposed by Budzier and Gerlach [47]. But the 

optical shutter is often the size limiting module of an infrared camera since it has to cover the 

entire aperture. Another drawback of the shutter-based compensation method is the interruption 

of the measurement during recalibration. Therefore, shutter-less infrared cameras are 

advantageous, especially for critical real-world applications [49]. Such types of thermal 

imagers rather than relying on a physical optical shutter to rectify thermal drifts rely on a 

IR Optics 

Sensor arrays  

Processor-based camera electronics  
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software approach for image correction. In this method, the shutterless calibration is performed 

in the camera software/ toolbox.  

 The prototype thermal camera module is operated through a specialized toolbox built 

using the camera SDK library. Figure 8 shows the software toolbox GUI for interfacing the 

camera, loading the plugins, calibrating the camera using shutterless technology, applying 

various processing operations such as automatic gain correction, bad pixel removal, tone 

mapping and lastly recording the images or video streams using the Microsoft Windows 

platform. 

 

Figure 8: Uncooled LWIR 640X480 camera display toolbox designed by Lynred France [31] for interfacing the 

camera, performing camera calibration, and image processing operations. 

The initial temperature calibration of the uncooled LWIR prototype thermal camera is done via 

a specialized black body to provide the hot and cold reference temperature values. A black 

body is a perfect physical structure that absorbs all incident electromagnetic radiation, 

regardless of frequency or angle of incidence. The name "black body" is given since it can 

absorb all colors of light. A black body also emits black-body radiation. Figure 9 shows the 

black body structure utilized for calibrating the prototype thermal camera. 

 Shutterless technology allows uncooled IR engines and thermal imaging sensors to 

continuously operate without the need for a mechanical shutter for Non-Uniformity Correction 

(NUC) operations. Such type of technology provides proven and effective results in poor 

visibility conditions ensuring good quality thermal frames in real-time testing situations. For 

this, we have used a low-cost blackbody source to provide three different constant reference 

temperatures values referred to as T-ambient1-BB1 (hot uniform scene with a temperature 

value of 40 degree centigrade), T-ambient1-BB2 (cold uniform scene with the temperature 

value of 20 degree centigrade), and T-ambient2-BB1 (either hot or cold uniform scene but with 

different temperature value). The imager can store up to 50 snapshots and select the best 

uniform temperature scenes for calibration purposes. Once the uniform temperature images are 

https://en.wikipedia.org/wiki/Physical_object
https://en.wikipedia.org/wiki/Absorption_(electromagnetic_radiation)
https://en.wikipedia.org/wiki/Electromagnetic_radiation
https://en.wikipedia.org/wiki/Angle_of_incidence_(optics)
https://en.wikipedia.org/wiki/Black-body_radiation
https://www.engineerlive.com/Oil-and-Gas-Engineer/Instrumentation/Thermal_imaging_camera_stations_%26lsquo%3Bsee%26rsquo%3B_through_fog_or_in_darkness/18362/thermal+imaging/
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recorded the images are loaded in the camera display toolbox in shutterless confirmation as 

shown in Figure 10 to finally calibrate the shutterless camera stream 

 

Figure 9: Black body shape for calibrating the thermal camera. 

 

 

Figure 10: Shuterless camera configuration windows using Lynred display toolbox. 

Figure 11 depicts the results of pre and post-processed captured thermal frames using 

shutterless algorithms on thermal frame capture through the prototype 640x480 thermal IR 

camera in an outdoor environment. Figure 12 shows the sample thermal frames of two different 

subjects in the form of six different facial poses acquired through an uncooled prototype camera 

and using the shutterless algorithm which is enabled through camera GUI as shown in Figure 

8 under controlled lighting conditions and in-door environment. It is pertinent to mention that 

email consent is taken from all the subjects before recording their data. The email prints of 

these consent forms are attached in the Appendix K of this report. 
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a 

b 

a b 

Figure 12: Acquired face data of two different male subjects in 640x480 resolution by applying shutterless 

technology (a) six different facial poses of a male subject in glow color map, (b) six different facial poses in the 

grayscale color map. 

 

Figure 11: Shutterless calibration algorithm outputs on a sample thermal frame captured from uncooled 640x480 

LWIR thermal camera designed by Lynred France [31] a) pre-processed thermal frame, b) processed thermal 

frame. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Before  After 



 

 

23 
 

Chapter 3 

Thermal Data Acquisition Methodologies & Regulatory Compliance   
 

This chapter will present complete details about new thermal data acquired locally using the 

prototype 640x480 uncooled thermal camera. This includes types of thermal data that are being 

recorded for being utilized in different types of experimental works and data collection methods 

with complete dataset attributes. The main reason for collecting these datasets beyond publicly 

available thermal datasets is to complement the requirement of the large-scale thermal dataset 

and further generalize and validate the CNN networks on locally acquired datasets. The second 

phase of the chapter will explore the significance of thermal data synthesis that can be used to 

fulfill the requirement of big data for optimal training of deep learning algorithms. Following 

this, the chapter will highlight methods and techniques for generating large-scale synthetic 

thermal datasets and my related publications as contributions towards synthetic thermal data 

generation. 

 

3.1. Overview of Thermal Data Acquisitions  

This section will discuss different types of thermal data that are being recorded/ acquired 

locally for training and validation purposes while using different types of deep learning models. 

All these datasets are acquired using the prototype thermal camera developed under the Heliaus 

project [1] that embeds the Lynred [46] LWIR sensor. The complete camera details and 

technical specifications of this camera module can be found in chapter 2, section 2.6. During 

this project, we have collected two different types of datasets which are as follows. 

1. Indoor thermal facial data as a part of WP-7 of Heliaus project 

2. Out-cabin thermal object detection data as a part of WP-8 of Heliaus project 

 

3.1.1 Indoor Thermal Facial Data  

This dataset is comprised of thermal facial images acquired from both male and female subjects 

who agreed to take part in this research work and provided email consent to record their data. 

The data is recorded indoor environmental conditions with controlled lighting conditions. This 

data is useful to carry out empirical work in relation to designing effective in-cabin drive and 

passenger monitoring systems for enabling enhanced safety features. The subjects were seated 

at a fixed distance from the camera. The collected dataset is used in various types of 

experimental work which includes thermal gender classification, and synthetic thermal data 

generation, using computer vision-based algorithms. It is important to mention that all the data 

collected during this work is fully in compliance with university data collection rules and 

regulations. We obtained email consent from all the subjects before collecting their data. All 

the consent forms are attached in the Appendix K of this thesis report. 

3.1.2 Out-cabin Thermal Object Detection Data 

This dataset is acquired in outdoor environmental conditions and at different timings such that 

daytime, evening time, and night-time. The dataset is consisting of several classes of roadside 
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objects such as cars, pedestrians, bikes, bicycles, poles, and buses. This data is useful to carry 

out pragmatic work in relation to designing effective road monitoring systems for providing 

comprehensive out-cabin information to the driver. The collected dataset is used in various 

types of experimental work which includes designing thermal imaging-based object detection 

and classification system, object detection networks optimization using advanced neural 

accelerators methods which include TensorRT [51], and deploying the trained networks on 

resource-constrained edge devices such Nvidia Jetson Nano [52] and Nvidia Jetson Xavier NX 

embedded boards [53]. It is important to mention that the level of person facial detail, and 

specific information such as vehicular number plates that can be obtained from the thermal data 

recorded in the outdoor environment, even in optimal situations, is significantly lower than 

could be obtained from a typical thermal camera that is optimized for facial detection and 

recognition which is obligatory under the General Data Protection Regulations (GDPR) and 

therefore all the data was recorded with GDPR consent obtained from NUIG data protection 

office. The complete report submitted to the university data protection officer is attached in 

appendix J of this thesis report. More specifically this report addresses specific concerns 

regarding the risk to reconstruct facial detail with sufficient resolution to implement a useful 

facial recognition (FR) and thus to identify individuals and other sensitive information such as 

vehicular number plates within thermal image data.  

 

3.2. Image Correction Pipeline 

This section will explain the adapted image correction pipeline for acquiring high-quality 

thermal frames for in-cabin and out-cabin vehicular applications. Once the images are refined 

using shutterless camera calibration as discussed in chapter 2 section 2.4.1 the next stage, 

employs various real-time image processing-based correction methods to transform the 

acquired thermal into high-quality thermal frames. This processed data is further used for 

various computer vision tasks in the context of advanced vehicular applications. Figure 13 

shows the adapted three-stage image correction/ processing pipeline. 

 

Figure 13: Complete image correction/ processing pipeline to produce high-quality thermal data. 

As shown in Figure 13 the whole image processing pipeline consists of three separate image 

correction techniques which incorporate automatic gain correction (AGC), bad-pixel 

replacement (BPR), and temporal denoising (TD). The additional details of these methods are 

provided along with the correction results are provided as follows. 

1. Gain Correction/ Automatic Gain Control: The AGC working principle is based on 

increasing the intensifier gain if the video scene is too dim and decreasing the gain if the 

video scene is too bright. AGC functions by performing two sets of threshold assessments 

on the video signal, a level assessment, and a count assessment. First, it level-compares 

Output 

Image Processing Pipeline 

Automatic Gain Control 

Bad-Pixel Replacement 

Temporal Denoising 
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the magnitude of the signal, pixel-by-pixel, from the camera; a level threshold defines 

where this comparison is made. Then the AGC performs a count comparison of the 

accumulated bright pixels (the integrated scene brightness) in each video frame. A count 

threshold determines when the number of counted pixels defines a bright scene [54]. 

 

2. Bad Pixel Replacement: Every pixel in the infrared focal plane arrays (FPA) is 

distinguished by its offset level, its sensitivity, and its noise level. The pixels that cannot 

be corrected by the non-uniformity correction (NUC) procedure are usually labeled as bad 

pixels. Bad pixels rectification is a necessary step as without replacing the bad pixels from 

the acquired thermal frames can result in poor quality of both the image and the accuracy 

of the measured data. We can explore several methods which can be used to identify and 

replace bad pixels, however, the most common and widely used approach is the nearest 

neighborhood algorithm. This method works by characterizing the signal of the bad pixel 

which is then replaced by the weighted average of its neighboring pixels. However, the 

core requirement for this approach to work effectively is that the neighboring pixels should 

not be the bad pixels. The bad-pixel replacement process is performed by the prototype 

camera in real-time, after running the shutterless camera calibration [55]. Figure 14 shows 

the results of BPR algorithms on the sample thermal frame. 

 

 

 

 

 

 

 

 

 

 

3. Temporal Denoising: Temporal noise is a type of random noise that diverges 

independently from image to image, as compared to fixed-pattern noise, which remains 

consistent but it is difficult to measure because it is usually much lower than temporal 

noise. The temporal denoising technique is commonly used to eliminate temporal noise 

from the thermal frames after the shutterless algorithm is applied.  

 

3.3. Data Collection Methods with Complete Dataset Attributes 

This section will describe the complete data acquisition methods along with dataset attributes 

for both of the locally acquired datasets which include indoor thermal facial data and roadside 

thermal object detection data.  

3.3.1. Indoor Data Collection Methods and Dataset Attributes 

This dataset is acquired at two different locations i.e., National University of Ireland Galway 

(NUIG) and XPERI corporation. The data is acquired in an indoor lab environment using a 

prototype camera based on an uncooled micro-bolometer thermal array that embeds a Lynred 

Before  After 

Figure 14: Bad pixel replacement algorithm output on sample thermal frame, left side frame with some bad pixels 

spotted in blue circles and the right side is processed frame. 
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a b c 

[46] Long Wave Infrared (LWIR) sensor developed under the Heliaus EU project [1]. The 

camera is mounted on a tripod stand and the tripod stand is placed at nearly 60 - 65 cm from 

the subject. The height of the thermal camera on the tripod stand is adjusted physically such 

that it covers the entire face structure along with the shoulders in the recorded video.  Figure 

15 shows recorded sample thermal facial sample frames of a male subject during the data 

recording setup. The complete data recording setup is represented in Figure 16. 

 

Figure 15: Thermal face data sample frames of a male subject with four different pose variations. 

 

Figure 16: Thermal face data recording setup in an indoor lab environment, a) pictorial representation, b) 

thermal camera masked with yellow tape on a tripod stand, c) subject seating arrangement with a red background 

to avoid background clutters. 

A total of six subjects took part in this process. The video was recorded at 30 frames per second 

(FPS) in 640x480 resolution and stored in avi format. The recorded video stream was then 

converted into facial frames for further experimental work. The video data covers various facial 

angles to obtain comprehensive facial data. Figure 17 shows the recorded thermal frames 

extracted from the video files of three different subjects who took part in this study. 

In the second phase, thermal face data is collected at the Xperi collaboration lab with 

slight changes in the overall data recording setup. This data is acquired by integrating a radar 

sensor in the overall data acquisition setup to record the data at varying distances from the 

thermal camera with precise distance measurements. For this purpose acconeer radar sensor 

XM122 [56] is also mounted on the tripod stand along with the thermal camera. The XM122 

IoT Module from Acconeer is a low-power connected radar module with an optimized circular 

Data Acquisition Setup 

Subject 
Thermal Camera 

60 cm 

Video Recorder 
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form factor with an overall diameter of thirty-three mm. The Acconeer sensor is an mm 

wavelength pulsed coherent radar, which works by transmitting the radio signals in short pulses 

which hits the object and rebounces back thus measuring the relative distance of the object 

from the sensor. It can be used as a separate module where it can be embedded for the 

customized applications on top of the Acconeer Radar System Software (RSS) using the 

designed Application Programming Interface (API). It can also be used with an external host 

controller where different interface protocols can be used such as SPI, I2C, and, UART for 

communication with the module. The sensor comes with Sofware Development Kit (SDK) for 

connecting and using the sensor for outside applications. Figure 18 shows the XM122 radar 

sensor module from the front and back sides. 

 

Figure 17: Thermal face data frames of three different subjects acquired in the NUIG lab environment with 

varying face poses, the first two rows show the five different  facial positions of male subjects, and the last row 

shows the facial angles of a female subject 

 

Figure 18: XM122 Aconeer radar sensor module for measuring the object distance. 

The key features of this sensor are as follows. 

1. The sensor is designed for distance measurement with high precision (millimeter accuracy). 

2. It can perform relative measurement with µm accuracy. 

3. It can be for various applications such as parking lot sensing, tank level measurement, 

presence detection, waste bin level measurement, etc.  
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Figure 19 shows the graphical representation of the data acquisition setup using the aconeer 

radar sensor. 

 

Figure 19: Thermal data acquisition setup using radar sensor and thermal camera. 

Before doing the actual data acquisition process some preliminary sensor testings were done 

by placing the sensor in front of the subject (person) and measuring the real-time distance of 

the subject from the camera. The measured distance values are cross-validated using the 

physical measurement scale. The complete setup is depicted in Figure 20.  

    

Figure 20: Initial testing of radar module by placing the sensor in from of the subject to compare the distance 

measured through the sensor and physical scale. 

Figure 21 shows the distance measured through the physic scale and results obtained through 

the sensor module. By comparing the distance values measured through physical scale and 

sensor module it can be concluded the radar sensor measures distance with good accuracy. 

After doing the initial sensor testings the next phase is to collect actual thermal data of the 
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b 

subjects at various distances from the camera. The logic behind this type of acquisition is to 

gather more comprehensive test data keeping in mind the in-cabin driver monitoring and 

passenger monitoring systems. Driver Monitoring Systems (DMS) make today's car journey 

safer and more reliable. Because of continued progress in the domain of optical solutions and 

machine learning algorithms, we can reliably detect some of the major accident-causing factors 

such as distraction, drowsiness, or even sudden incapacitation. Driver monitoring allows in-

time reactions to prevent accidents from happening, therefore it will become a more important 

requirement for the automotive industry with the passage of time. Also, it plays an important 

role in the safety of partially automated driving systems. In this data acquisition process, three 

different distance markings are created from the camera which include 50 cm, 100 cm, and 150 

cm. The subjects are asked to stand on those marking points and their actual distance from the 

camera is determined through the aconeer radar sensor. Figure 22 shows the indoor data 

collection setup. The overall data is collected using three different marking points from the 

camera which include 50 meters distance, 100 meter distance, and, 150 meters distance. This 

is done to complement the requirement for optimal training of DNN networks on locally 

acquired data for in-cabin vehicular applications. 

 

 

Figure 21: Distance measurement comparison using aconeer radar sensor, a) subject distance from the sensor: 

52 cm measured through physical scale, b) subject distance from the sensor: 0.518m/ 51.8cm highlighted in the 

blue box. 
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Figure 22: Indoor data acquisition setup in Xperi collaboration lab. The camera and radar sensor are mounted 

on the tripod stand and an external webcam is used to monitor the subject's movements.  

During the data recording process subject were asked to rotate their face from 0 degree to 90 

degree right and 90 degree left. Similarly, subjects were asked to move their head in all the 

direction to capture comprehensive facial poses (yaw, pitch, and roll) for further experimental 

work. Figure 23 shows the various thermal facial poses of a male subject at a different 

distances. 
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Figure 23: Different thermal facial poses of a male subject acquired from a 640x480 thermal camera. The first 

five rows show the subject standing at 50cm distance from the camera with five different facial angles and the last 

four rows show the subject at 100cm distance from the camera with four different facial angles. 



 

 

32 
 

Figure 24 shows the aconeer sensor graphical distance reading at one of the data recording 

instances. It can be observed from Figure 24 that the subject is nearly at a distance of 53.5 cm 

from the camera using physical markings. For the same point, the sensor reading was 0.538 

meters or 53.8 cm which is nearly equal to physical scale readings. Moreover, the subject facial 

position is 90 degrees right. The same type of data was recorded in the case of all the subjects. 

 

 

 
 

 

 

 

 

 

 

 

 

 

Table 5 shows the indoor thermal facial data attributes of indoor thermal facial data collected 

in the NUIG lab environment and Xperi collaboration lab. 

Table 5: Indoor Face Dataset Attributes 

S. No  Indoor 

Location 

No of 

Subjects 

No of the 

shortlisted 

frames 

Frames 

Per 

Second 

(FPS) 

Key features 

1 National 

University of 

Ireland  

Engineering 

lab  

Five  600 30 • includes 5 different 

face poses  

2 Xperi Galway 

Collaboration 

lab 

Three  400 30 • includes 10 

different face poses  

• Data were collected 

at three different 

distance points from 

the camera 

 

Figure 24: Distance measurement results obtained through the aconeer radar sensor showing the value of 0.538 

meters or 53.8 cm of the subject with the maximum amplitude window of 1420. 
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3.3.2. Out-cabin Data Collection Methods and Dataset Attributes 

In the next phase, a new thermal dataset is collected in outdoor environmental conditions. This 

dataset is comprised of six distinct classes which include stationary objects i.e., poles as well 

as moving class objects which include cars, persons, buses, bikes, and bicycles. The main 

reason for including all these class objects is that they are most commonly found on the 

roadside and can be useful for designing effective video analysis-based thermal object 

detection systems for getting a complete overview of car surroundings. This will eventually 

help in implementing advanced safety features for intelligent vehicular systems. The dataset is 

collected in two different methods which are referred to as M-1(By mounting the thermal 

camera at a fixed place) and M-2 (by mounting the thermal camera on the car) methods. The 

complete details of these methods along with the comprehensive data acquisition process are 

provided below. The dataset was collected in the daytime, evening time and, nighttime with 

challenging weather conditions such as windy weather, fog conditions, and cloudy weather to 

incorporate sufficient data diversity. The overall dataset was collected in Galway county 

Ireland. 

1. M-1 Method 

In, the first approach (M-1) the data is collected in a stand-alone method by placing the camera 

at a fixed place. The camera is installed on the tripod stand at a fixed height of nearly 30 inches 

such that the roadsides objects are covered completely in the recorded video. The thermal video 

stream is recorded at 30 frames per second (FPS). The data is recorded in different weather and 

environmental conditions. Figure 25 shows the M-1 data acquisition setup for collecting the 

data from the roadside. 

 

Figure 25: Thermal Data acquisition setup from roadside using M-1 approach such that by mounting the thermal 

camera at a fixed place. 

The overall datasets are collected from roadside and alleyway views in the morning time, 

evening time, and nighttime conditions.  

2. M-2 Method 

In the second method (M-2) the data acquisition setup holding the thermal camera and RGB/ 

visible camera is installed over the electric car and data is recorded in the mobile method. For 

this, a specialized waterproof camera housing case was printed using a 3D printer to hold the 

thermal camera in the precise position and angle to cover the entire roadside environment. The 
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a b 

housing case also contains a visible camera to get initial visible images as reference data thus 

allowing us to adjust the thermal camera at an appropriate angle and field of view. Figure 26 

shows the camera housing structure and thermal camera video recording setup by placing the 

camera in the case. After doing the initial video recording testing the housing case is fixed on a 

suction-based tripod stand thus allowing us to easily fix and remove the complete structure from 

the car bonnet. Figure 27 shows the camera housing case mounted on the tripod structure and 

the overall data recording setup fixed on the car bonnet. 

 

Figure 26: Housing case designed for holding the thermal and visible camera for M-2 method, a) Camera housing 

structure, b) Initial thermal data recording testings by placing the camera inside the housing structure. 

After doing the initial video recording testing the housing case is fixed on a suction-based 

tripod stand thus allowing us to easily fix and remove the complete structure from the car 

bonnet. Figure 31 shows the camera housing case mounted on the tripod structure and the 

overall data recording setup fixed on the car bonnet. 

 

Figure 27: Thermal Data acquisition setup using M-2 method, housing case fixed on a tripod stand and tripod 

structure is placed on car bonnet with the help of suction cups. 

Figure 28 shows the twelve sample thermal frames extracted from the video sets while 

recording the data using the M-1 and M-2 methods. These thermal frames show the various 

class objects as discussed in section 3.1.2. The complete dataset is consisting of a total of 6 

video sets, 39,770 distinct thermal frames and 2200 ground-truth annotated frames. The 

complete dataset attributes are summarized in Table 6. The main reason for collecting the data 

in two different methods is to bring variations and collect distinctive local data in different 

environmental and weather conditions. This data is further used for robust training of YOLO-
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v5 end-to-end deep learning architectures to deploy Thermal-YOLO frameworks on embedded 

GPU hardware for enabling enhanced video analysis-based safety features for driver assistance. 

The complete dataset is published and open-sourced through IEEE Dataport (Link: https://ieee-

dataport.org/documents/c3i-thermal-automotive-dataset) [17]. 

 

Figure 28: Twelve distinct thermal frames were captured using LWIR 640X480 prototype thermal camera using 

M-1 and M-2 methods. 

Table 6: Outdoor thermal dataset attributes 

Locally acquired dataset attributes  

Data collection 

method with frame 

properties 

Total 

number of 

extracted 

frames  

Processing 

Method 

Environment Time and 

weather 

conditions  

M-1 

Camera mounted at a 

fixed place 

 

96 dpi (horizontal 

and vertical 

resolution) with 

640x480 image 

dimension 

8,140 

 

Shutterless, 

AGC, BPR, 

TD 

 

Roadside  Daytime with 

cloudy weather 

680 Alleyway Evening time 

cloudy weather 

4,790 Roadside Night-time with 

light cloudy and 

windy weather 

M-2 

Camera mounted on 

the car 

(Driving condition) 

 

96 dpi (horizontal 

and vertical 

resolution) with 

9,600 Shutterless, 

AGC, BPR, 

TD 

 

Industrial Park Daytime with 

clear weather and 

light foggy 

weather 

11,960 Downtown  Evening time 

with partially 

cloudy and windy 

weather  

https://ieee-dataport.org/documents/c3i-thermal-automotive-dataset
https://ieee-dataport.org/documents/c3i-thermal-automotive-dataset
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a b 

c 

Figure 29: Data acqsation setup for drowsiness and cognitive load monitoring at XPERI Galway, a) Driving 

simulator setup with three wide angle monitor mounted for having real world driving experience, b) Different 

types of image sensors mounted at the  center of middle display to record driver facial data, c) My self seated in 

the driver simulator wearing EEG, EOG, EDA, ECG, and SpO2 sensor kits. 

640x480 image 

dimension 

 

4,600 Shutterless, 

AGC, BPR, & 

TD  

Downtown Night-time with 

clear weather 

conditions  

frames Daytime: 

17,740 

(44.61%) 

Evening time: 

12,640 

(31.78%) 

Night-time: 

9,390 (23.61%) 

Total: 39,770   

 

3.4. Contribution to In-Cabin Data Acquisition By Xperi 

In addition to collecting our thermal datasets as discussed in section 3.3.1 and section 3.3.2, I 

also contributed by helping the team of engineers in Xperi for developing data tool that 

synchronizes and reads multimodal data in a single GUI to further used for in-cabin 

applications. Moreover, I also participated as a volunteer subject in Xperi in-cabin data 

collection. Xperi was undertaking very substantial data and the goal of this data was to observe 

natural drowsiness behavior and high cognitive load in a simulated driving situation with 

several optical and electrical sensing modalities. The main purpose of this extensive data is to 

further use it to help in improving driver safety by enhancing the driver and occupant 

monitoring systems by including robust drowsiness and cognitive load detection and prediction 

capabilities. As mentioned the acquired dataset was to be used for in-cabin applications, 

therefore rather than collecting such type of extensive data in the university environment and 

due to certain covid restrictions at that time, I supported the data acquisition team in Xperi by 

providing technical assistance and also participating as volunteer subject. Figure 29 shows the 

overall data acquisition setup at the Xperi Galway office. 
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The proposed research involves approximately 5 hours in a driving simulator (with 

breaks) while the volunteer sits in a driving simulator and is asked to perform various tasks 

while the data is recorded with several sensing modalities. These sensing modalities include 

EEG, EOG, EDA, ECG, SpO2, NIR, RGB, Audio, and Thermal IR. The foremost purpose of 

including the joint fusion of various electronic and optical sensors is to collect and further 

analyze the electrical activity data from the brain, heart rate data, data about eye muscle 

movements, data on the perspiration around the skin of the wrist, and temperature-related 

information.  

 

3.5. Investigations in Data Synthesis, Data Augmentation & Generative methods 

Deep Neural Networks (DNN), such as Convolutional Neural Networks (CNN), are bridging 

the gap of automation and have made an incredible improvement in discriminative tasks, but it 

needs lots of training data for achieving optimal training results and robust validation results 

in many computer-vision applications. The state-of-the-art pretrained architectures are 

requiring substantial volumes of training data such as annotated data for the training of object 

detection models. However, such an approach is costly, prone to errors, and labor as well as 

time-intensive, especially in highly complex, dynamic production and real-time environments. 

To overcome this barrier, synthetic data can be created by using suitable training datasets as 

seed data and utilized for accelerating the training phase of DL. Synthetic data is a type of data 

that is generated artificially instead of being generated by actual events. The generation of 

synthetic data is far cheaper compared to data acquisition and in many cases, these data samples 

come with annotated labels. It is often generated with the help of computer vision algorithms 

and is used for a wide range of activities for instance generating new test data for validating 

the performance of trained architectures, and in deep learning models tuning for specific 

applications. It is difficult to find large-scale datasets in thermal imaging modality therefore 

synthetic data plays a pivotal role at this point for optimal generalization of deep learning 

architectures. Finally, but equally importantly, since this data is generated using artificial 

methods, there are no underlying GDPR/privacy concerns and it can be used freely. After an 

extensive study of various methods for generating synthetic data, we have concentrated on 

three different methods for generating synthetic thermal data using the existing thermal 

datasets. These methods are as follows. 

 

1. Data augmentation or data transformation 

2. Generating fake thermal data using StyleGAN (Generative Adversarial Networks) 

3. 2D to 3D face reconstruction using end-to-end PRNet (deep learning networks) 

The generated synthetic data using these methods were used for the training purposes of 

pretrained CNN architectures for thermal gender classification. The performance of CNN 

models was presented, compared, and discussed in one of our published study [9]. The results 

indicate that CNNs trained on synthetically generated datasets have acceptable performance as 

compared to the model trained on raw thermal data. 

3.5.1. Data Augmentation 

To develop an effective deep learning model, the validation error must continue to reduce with 

the training error as well. Data Augmentation is a very powerful method for achieving this 
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goal. The augmented data will correspond to a more comprehensive set of possible data points, 

thus minimizing the distance between the training and validation set, as well as any future 

testing sets for further validation of trained DNN. Data augmentation can be defined as the 

method to increase the existing data by adding new copies of data samples with slight 

modifications thus producing the data diversity [57]. This approach helps in preventing 

overfitting in the DNN [57]. In this work [9], we have mainly focused and implemented various 

geometric data transformation methods (Appendix A) on exiting thermal datasets as the seed 

data to generate modified data samples. 

3.5.2. Generating fake thermal data using StyleGAN (Generative Adversarial Networks) 

Generative Adversarial Networks (GANs) is a method of generative modeling that is based on 

deep learning methods such as CNN. It works in an unsupervised learning fashion by learning 

the patterns in the input data such that the trained network can be used to generate new data 

samples. The main concept of GAN architecture was first presented in 2014 by Ian Goodfellow, 

et al. titled as “Generative Adversarial Networks” [58]. In this work [9], StyleGAN [59] has 

been employed for generating synthesized thermal facial samples (Appendix A) by using the 

existing thermal facial datasets as seed data. StyleGAN is state of art GAN network introduced 

by NVIDIA researchers having the capability to generate seemingly vast numbers of high-

resolution data samples. In our experimental work, the styleGAN network was trained on a 

variety of thermal datasets which include the tufts dataset, carl dataset, and Laval face motion 

thermal datasets. The complete experimental details regarding the training and testing 

approaches of styleGAN are published in our conference papers titled as “Proof-of-Concept 

Techniques for Generating Synthetic Thermal Facial Data for Training of Deep Learning 

Models” at the 39th International Conference of Consumer Electronics (ICCE 2021) [9]. 

3.5.3. 2D to 3D face Reconstruction using End-to-End PRNet  

This method is used to generate multiple 3D facial geometric structures using the single 2D 

thermal facial frame. This is achieved by using a pretrained end-to-end convolution net referred 

to as Position Map Regression Network (PRNet) [60]. The overall network structure functions 

by transferring the input image into a position map. In the second step, the encoder-decoder 

method is employed for learning the transfer structure. The encoder block comprises of single 

convolution layer which is followed by a series of ten residual blocks for performing 

downsampling operations on the data. The decoder block comprises seventeen transposed 

convolutions blocks to generate the predicted output position map. PRNet CNN uses Rectified 

linear Unit (ReLU) activation functions and a kernel size of four is applied for each of the 

convolution layers and transposed convolution layers. Figure 30 shows the complete workflow 

diagram from our work [10] for generating synthesized 3D facial geometric structures from 

single 2D thermal frames. 

The complete experimental details for generating the synthesized 3D facial structures 

using PRNet is published in our conference papers titled as “Generating Thermal Image Data 

Samples using 3D Facial Modelling Techniques and Deep Learning Methodologies” in the 

12th International Conference on Quality of Multimedia Experience (QoMEX 2020) [10]. The 

copy of the paper published based on this section is presented in Appendix B. 
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Figure 30: Comprehensive workflow diagram for generating the synthetic 3D facial structure from 2D thermal 

image 1: input images fed to PRNet for generating 3D facial geometry data, 2: PRNet outputs an obj file, 3: obj 

file is imported to blender software, 4: final outputs extracted in the form of 3D thermal facial images covering 

different facial angles and poses. 

 

3.6. Conclusion on Data Acquisition & Synthesis in Thermal Imaging 

This section will highlight the focal applications of acquired thermal and publicly available 

thermal datasets, along with the artificially generated synthetic thermal data in various 

experimental work carried out under this project. For outdoor thermal data, we have obtained 

approval from the university data protection officer. The locally acquired data along with the 

public datasets is used in the diversified application for in-cabin driver monitoring as well as 

out-cabin monitoring systems. These applications are as follows. 

1. Thermal gender classification system 

The further details of our contributions related to the thermal gender classification system are 

presented in Chapter 4 and the complete published study is attached in Appendix C of this 

thesis report. 

2. Object detection in thermal spectrum for ADAS 

The further details of our contributions related to object detection in thermal spectrum are 

presented in Chapter 5 and the complete published study is attached in Appendix E of this 

thesis report. 

3. Object detection algorithm optimization for deployment on Embedded GPU devices. 

The further details of our contributions related to object detection algorithm optimization for 

deployment on embedded GPU devices are presented in Chapter 6 and the complete published 

study is attached in Appendix F of this thesis report. 

4. Face localization and facial landmarks detection in thermal images 

The further details of face localization and facial landmarks detection in thermal images are 

presented in additional experimental work which is attached in Appendix L of this thesis report. 
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Chapter 4 

Contribution To Development of In-Cabin Thermal Gender 

Classification System using SoA CNNs 
 

Gender classification found many useful applications in the broader domain of computer vision 

systems such as in-cabin driver and occupant monitoring for autonomous vehicles, smart 

surveillance systems, people counting especially in crowded areas, etc. This chapter will focus 

on core contributions towards the development of an efficient thermal gender classification 

system using end-to-end convolution neural networks for in-cabin driver monitoring 

applications. This was our first extensive experimental work carried out under WP-7 of the 

Heliaus project using neural classification algorithms. The goal of this work is to develop a 

thermal soft biometrics classification framework, compliment the behavioral work of 

NEXT2U, and the facial analytics and super image resolution work of Xperi for WP-7.  

 

4.1. Research Objectives 

The Heliaus project [1] focuses on the sense and think part of the perception process for both 

in and out-of-cabin applications. Therefore acquiring human body details is very necessary 

nowadays, especially for human-computer interaction systems, where the machine needs to 

classify the person's characteristics using various types of data. It includes face recognition, 

gender classification, facial expressions recognition, and drowsiness detection. The human 

gender classifications system is a crucial requirement for many critical systems such as 

autonomous vehicles, and smart surveillance systems deployed at public places such as airports 

and railways stations, shopping centers, government buildings, etc. The most important 

applications include smart driver monitoring systems (DMS) for autonomous vehicles where 

the system acquires useful information about the driver to configure vehicle responses and 

configuration to ensure maximum comfort and vehicle safety. For instance, it can be used to 

better predict driver cognitive response, driver behavior, and intent, and finally knowledge of 

gender can be useful for safety systems such as airbag deployment that may adapt to driver 

physiology. 

 We can find various algorithms in the fields of computer vision and machine learning 

for efficient gender classification. Previous studies have proposed many different methods for 

the gender classifications system which can be divided into two main categories voice data [61] 

and video/ image data [62]. The joint approach of both methods can lead towards better 

accuracy levels, however, the noise generated through analog sensing devices like microphones 

greatly affects the results. Conventional machine learning algorithms like Support Vector 

Machines (SVM) are used for different types of biometric classification systems such as 

fingerprint identification, face recognition, gender classification but the main drawback of 

these classifiers is that it depends on manual feature engineering process (hand crafted features) 

using various algorithms which mainly includes PCA (Principal Component Analysis) and 

LDA (Linear Discriminant Analysis). PCA performs linear operations to create new features. 

PCA fails when the data is non-linear and is not able to create the hyperplane or decision 

boundary between different classes [63] thus the effectiveness/ accuracy of traditional machine 
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learning algorithms is significantly affected if the features are not extracted precisely. 

Moreover, the performance of SVM will underperform and drops sharply in cases where the 

total number of feature values for each data point exceeds the number of training data samples 

and also when the provided data is noisy such that target classes are overlapping with each 

other. Thus, to overcome such types of challenges we have typically focused on Deep Neural 

Networks (DNN) as it plays an imperative role in achieving more accurate and robust results. 

In recent years, Convolutional Neural Networks (CNNs) have become the state-of-the-art for 

object classification/ recognition and detection tasks in the domain of computer vision for 

diversified real-world applications. Typically, a CNN structure consists of several 

convolutional layers, max-pooling layers followed by fully-connected (FC) layers. As 

compared to traditional machine learning algorithms such as support vector machines (SVM) 

which mainly relies on manual feature engineering process the CNN can self-extract the feature 

values also referred to as automated feature extraction using raw pixel values from the provided 

image/ video data.  Indeed, the real quality of deep learning models comes from an extensive 

feature engineering process than from the modelling technique itself [64]. While specific 

machine learning techniques may work best for tasks (problem/dataset), features are the 

universal drivers/critical components for any modelling application. Extracting as much 

information as possible from the available datasets is crucial to creating an effective solution. 

The second most important factor is the training data and fine-tuning process of traditional and 

deep learning models. Support vector machines effectively use only a subset of a dataset as 

training data. This is because they reliably identify the decision boundary on the basis of the 

sole support vectors. Therefore, for well-separated classes, the number of observations required 

to train an SVM isn’t high. With regards to convolution neural networks, instead, the training 

takes place based on the batches of data that feed into it. This means that the specific decision 

boundary that the neural network learns is highly dependent on the order in which the batches 

of data are presented to it. This, in turn, requires processing the whole training dataset without 

the need to break the datasets into smaller subsets. Moreover, the rapid developments in the 

world of deep learning, image classification, detection, and segmentation has been further 

accelerated by the advent of the transfer learning technique. Transfer learning allows us to use 

pretrained models such as Inception-v3 [65], and EfficientNet [66] which are already trained 

on a big dataset, we can further use these models for custom tasks. Consequently, reducing the 

cost of training new deep learning models and since the datasets have been vetted, we can 

achieve precision accuracy and optimal generalization of the model with reduced computation 

cost and lesser training time. Once the networks are trained by the appropriate splitting of 

datasets and selecting proper loss function, generalizations, and optimization techniques, the 

trained DNN models can be deployed and used rapidly to predict the results on unseen test 

data.  

Further, we have highlighted some of the published studies to compare the performance 

of CNN over SVM for different applications and their respected outcomes. In one of the recent 

study titled  “Critical Comparison of the Classification Ability of Deep Convolutional Neural 

Network Frameworks with Support Vector Machine Techniques in the Image Classification 

Process” by Robert Kelly [67], the performance of CNN and SVM classifiers is evaluated on 

a dataset of approx. 55,000 images. This dataset was used to assess the classification potential 

of each methodology, in terms of training, implementation, and the ability to engineer 

parameters and features for successful classifications on a very large dataset. The individual 

performance of each of these methods was compared using different parameters which include, 

training time, confusion matrix, and ease of use to assess which has the higher classification 

potential. The overall outcomes in the form of various experimental hypotheses indicate that 
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the application of deep learning techniques had an adequate edge over SVM approaches in both 

accuracy and data handling, that to not natively avail of the computational power of deep 

learning models. In another study [68] authors have compared the performance of three 

different machine learning methods which incorporates CNN, ANN, and SVM for medical 

image analysis using CT, MR, and X-ray imaging datasets. The experimental results concluded 

that CNN exhibited higher accuracy as compared to SVM and ANN methods. Moreover, the 

study further summarizes that CNN has a significant advantage as it exhibits a key attribute to 

accurately identifying clinical images with less amount of data and in a shorter period; thus, 

incorporating CNN into computer-aided medical image processing and inspection systems is 

beneficial. 

 In this work, we have developed an AI-based autonomous thermal gender classification 

system using a set of pretrained CNN architectures and proposing a novel CNN architecture 

referred to as ‘GENNET’. This work belongs to work package 7 (WP-7) of the Heliaus project 

[1] which is focused on the development and validation methodologies of the thermal-IR 

system for in-cabin vehicular applications. 

 

4.2. Summary and Discussions of Contributions  

In this work, diverse thermal and RGB public datasets had being utilized which include Tufts 

thermal face database, Casia Dataset, and Carl thermal dataset for training and validation 

purposes of deep learning architectures. The main contributions of this work are presented in 

bullet form. 

• In the first phase, we have trained nine state-of-the-art pre-trained networks from 

scratch (by unfreezing all the network layers) on a large-scale casia facial dataset [69]. 

These models includes AlexNet, VGG-19, MobileNet-v2, Inception-v3, ResNet-52, 

ResNet-50, ResNet-101, DenseNet-121, Dense-201 and EfficientNet-B4. The trained 

architectures are further fine-tuned using Tufts public thermal dataset [12-14]. 

 

• In addition to employing the pretrained architectures [11], the main contribution of this 

work is designing a novel CNN architecture ‘GENNet’ for the thermal gender 

classification task, and further its performance is compared against all the pre-trained 

state-of-the-art architectures. The structural block diagram representation of the 

GENNET architecture is shown in  Figure 31. 

 

• In the second phase, the overall efficacy of a wide range of pretrained CNN along with 

newly proposed GENNet architectures is validated on the combination of two different 

test datasets which includes Carl thermal public dataset [15-16] and newly acquired 

thermal data in the NUIG indoor lab environment. The complete details of the test set 

can be found in (Appendix C). 

 

• For rigorous validation tests of all the trained architectures on thermal data we have 

used nine different quantitative metrics. These include accuracy, sensitivity, specificity, 

precision, negative predictive value, False Positive Rate (FPR), False Negative Rate 

(FNR), Matthews Correlation Coefficient (MCC), and F1-score. 
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              Figure 31: Structural layer-wise architecture of newly proposed GENNet architecture. 

• The overall test accuracy along with the number of model parameters of all the 

architectures is shown in Figure 32. The EfficientNet-B4 model achieved the highest 

test accuracy of 93.3% followed by the DenseNet-201 and the proposed GENNet 

network which has achieved an overall testing accuracy of 92.2 and 91.1% however, 

GENNet architecture is good for a compute-constrained thermal gender classification 

use-case as it performs significantly better than other low-parameter models. 

 

 

 

              Figure 32: Validation accuracy and model parameters of all the CNN architectures. 

The complete working methodology and experimental details of this work is published in the 

Journal of Electronic Imaging (JEI) by SPIE titled “Performance Estimation of the State-of-

the-Art Convolution Neural Networks (CNN) for Thermal Images-Based Gender 

Classification System” [11]. This paper presents and summarizes the training and validation 

results of all the models along with the newly proposed GENNet architecture. The copy of the 

published paper based on this section is presented in Appendix C. 
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Chapter 5 

Contribution To Development of Out-cabin Thermal Object Detection/ 

Classification System using SoA YOLO Framework 
 

Object detection in thermal infrared spectrum provides a more reliable data source in low-

lighting conditions and different weather conditions, as it is useful both in-cabin and outside 

for pedestrian, animal, and vehicular detection as well as for detecting street signs & lighting 

poles. The core contribution in this work includes the design and development of smart thermal 

perception system for the automotive sensor suite by exploring and modifying state-of-the-art 

object detection and classifier framework on thermal vision with various distinct classes for 

advanced driver-assistance systems (ADAS). This work is carried under WP-8 of the Heliaus 

project focused towards out of cabin applications. 

 

5.1. Research Objectives 

Advanced Driver-Assistance Systems (ADAS) has become a developing consumer technology 

product and the evolution of this technology over time intends to provide extended safety 

advantages and trustworthy means of transportation. Numerous technologies are directly 

associated with ADAS which includes, sensor fusion for real-time data logging, and object/ 

obstacle detection and tracking system using advanced machine learning algorithms. This will 

enable the drivers to monitor the external environment, sense external objects, and predict 

results that the driver needs to be aware of thus providing a deeper perception of the entire road 

network. In this work, we have particularly focused on developing an out-cabin thermal object 

detection/ classification system as forward sensing (F-sense) system for vehicular technology. 

The main advantages of such type thermal environmental perceptions include.  

1. The system can sense and analyze its environment reliably and accurately 

2. Further such systems can interact with the driver to request him to intervene appropriately 

Current ADAS largely rely on computer vision and machine learning which uses visible 

(RGB) or RGB + near-infrared (NIR) cameras as a sensor. The alternative is ultrasonic, lidar, 

and radar-based [70] hardware sensors. Practical systems often leverage both camera + radar 

and lidar.  However, the mentioned sensors and imaging modalities have some of their 

limitations.  For instance, lidar provides a sparse three-dimensional (3D) map of the 

environment, but small objects like pedestrians and cyclists are difficult to detect especially 

when they are at a distance [71]. The RGB camera operates inadequately in unfavorable 

illumination conditions such as low lighting, sun glare, and glare from the headlight beam. 

Radar has a low spatial resolution to detect pedestrians accurately [71]. Also, large objects such 

as cars can saturate the performance of the receiver if they are closer to the transmitter, and 

lastly, the performance of the radar is severely affected as the radio signals can face enough 

natural interference.  

The current advancement in bolometer technology has led to cheaper yet more effective 

solutions in the form of the development of uncooled thermal cameras. These cameras can 
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replace the conventional sensors such as Lidar and Radar or can be integrated with the existing 

hardware sensors to provide more comprehensive information about road-side environmental 

perception. Since thermal imaging is invariant to illumination changes, occlusions, and 

shadows it provides improved situational awareness that results in deploying more robust, 

reliable, and safe systems for intelligent vehicular systems. AI-based imaging pipelines are 

commonly used for designing intelligent objection detection-based video perceptions systems. 

To accomplish this goal we had focused on using a state-of-the-art YOLO-v5 framework [72] 

for training and deploying thermal object detection system on GPU and Edge-GPU platforms. 

This work belongs to work package 4 (WP-8) of the Heliaus project [1] which is focused on 

the development and validation methodologies of the thermal-IR system for out-cabin 

vehicular applications. 

The main reason for selecting the YOLO-v5  framework for thermal data as compared 

to all the previous versions of YOLO released is that YOLO-v5 is different, as this is a PyTorch 

implementation rather than a fork from the original Darknet library. Moreover, the YOLO v5 

has a Cross-Stage-Partial (CSP) backbone and PA-NET neck. The foremost improvements 

include mosaic data augmentation and auto-learning bounding box anchors. The detailed 

comparative analysis of the recently released Yolo-v5 with all the previous versions is 

presented in Table 7.  

Table 7: Comparison Analysis of Previous Yolo versions with Yolo-v5 

Yolo Version  Training Dataset Validation 

mAP  

FPS Implementation 

Framework  

YOLO [73] VOC 2007 + 2012 63.4 45 DarkNet 

YOLO-v2  (608x608) 

[74] 

MSCOCO 48.1 40 DarkNet 

YOLO-v3 (608x608) 

[74] 

MS COCO  57.9 20 DarkNet 

YOLO-v4 (608x608) 

[75] 

MSCOCO 43.5 62 DarkNet 

YOLO-v5 (640x640) 

[72] X Large Model 

MSCOCO 68.9 83 PyTorch 

 

It can be observed from the above table that YOLO-v5 has comparatively achieved better 

validation results in terms of the highest mean average precision and frames per second on the 

COCO dataset as compared to the previous version of the YOLO framework. 

 

5.2. Summary and Discussions of Contributions  

Object detection algorithms are normally trained on one or two datasets for various computer 

vision applications. However, such type of method is not successful when coming to ADAS 

application. This is due to the fact that including image data from one specific dataset that is 

collected in certain areas, means that an object detector will be trained or fine-tuned on 

mentioned datasets which may not perform optimally when it is tested with another dataset that 

contains image data gathered from another city/ environment with different scene contexts. To 

cater to this challenge, we have selected five different thermal datasets for optimal training of 
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a 

b 

various network variants of the YOLO framework. These datasets include OSU-thermal [76], 

CVC-09 [77], KAIST multispectral dataset [78], FLIR-ADAS dataset [79], and locally 

acquired object detection data as discussed in chapter 3 section 3.2.2 [17]. The foremost 

contributions of this work are highlighted in bullet form. 

• In the first phase, we have performed the optimal training of four different network 

variants of Yolo-v5 frameworks. These models include small variant, medium variant, 

large variant, and extra-large variant. The individual model attributes of five different 

network variant available in the YOLO-v5 framework [72] is provided in Table 8.  

Table 8: Yolo-v5 Network Variants Attributes 

 

 

 

 

 

 

• As mentioned in section 5.1 the YOLO-v5 framework is published with notable 

improvements which include auto-learning bounding box anchors and mosaic data 

augmentation. This means that rather than computing the anchor values manually as 

was required in the previous versions of YOLO for optimal training of the CNN 

networks the anchors are computed automatically before the training process. The 

anchors are evaluated against the training dataset in combination with the training 

settings which incorporates image size (640X640 in our case), and the number of 

classes (Nc=6 in our case). If the Best Possible Recall (BPR) is below the threshold 

then the anchors are determined not to be a good fit for custom training data, and thus 

new anchors are computed to replace them using a genetic algorithm optimizer 

initialized by K-means centroid-based algorithm. This is all transparent and fully 

displayed at the beginning of the training workspace as shown in Figure 33. 

 

 

  

 

 

 

 

 

 

 

 

S. 

No 

Model Image size 

(pixels)  

Parameters 

(million) 

Flops @640 

(B) 

mAP @COCO 

Dataset (%) 

1 Small  640 7.2  16.5 56.0 

2 Medium 640 21.2  21.2 63.9 

3 Large  640 46.5  46.5 67.2 

4 X-Large 640 86.7 86.7 68.9 

Figure 33: Auto-learning bounding box anchors feature in YOLO-v5 framework, a) auto anchor 

processing during the training process of the small model with BPR of 0.985, b) auto anchor processing 

during the training process of the medium model with anchors = 4.81 and BPR of 0.9985. 
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• Secondly, for optimum convergence/ adaptation of CNN models on thermal data 

besides the auto-learning bounding box anchors, we have used two different optimizers 

which include SGD and Adam as discussed in section 3A of our published paper [18] 

(Appendix E). After doing the initial experimental training process we have shortlisted 

SGD optimizer for the training process of all the network variants as it performs 

significantly better when compared to Adam optimizer. The graphical results 

comparisons of small and large network variants extracted via Tensorboard are 

demonstrated in Figure 34. It can be observed from the below figure that in the case of 

both the models the training mean average precision curve is much higher using the 

SGD optimizer. 

 

                Figure 34: Small and large model training results comparison using SGD and ADAM optimizer. 

• During the training phase rather than using fixed learning rate we have used one cyclic 

learning rate by defining base (lower bound) and maximum learning rate (upper bound) 

values. It works by updating the LR value back and forth between the defined bound 

values after every batch. Moreover, during the training, we have employed different 

data transformation methods to bring enough data diversity/ variation which will 

eventually be helpful for the deep learning models to learn thermal data features more 

robustly. Alongside conventional data transformational methods, we have used the 

Mosaic Augmentation method. It is an advanced form of image augmentation operation 

which works by combining different training samples in one image with varying ratios. 

It helps the network to learn how to identify the objects at a smaller scale than normal. 

 

• In the second phase, the performance evaluation of all the trained models is validated 

using three different test approaches which include test-time with no augmentation 

(TTNA), test-time augmentation (TTA), and test-time with model ensembling (ME). 

Model ensembling or ensembling engine refers to using multiple trained networks in a 

parallel manner to produce one optimal predictive inference model (Appendix D). In 

this study, we have tested the performance of individually trained variants of the Yolo-

V5 framework and selected the best combination of models which in turn helps in 

achieving better mean-average precision (mAP) scores for the validation purpose on 

test data. Figure 35 shows the structural block diagram of the proposed ensembling 

inference engine for the thermal object detection/ classification system. 

 

Small model Large model 
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Figure 36 shows the inference results on nine different challenging thermal frames with 

complex scenarios like multiple objects with overlapping classes, object scale and 

viewpoint variations, and different weather conditions. These frames are selected from 

public test data as well as locally acquired data as discussed in chapter 3 section 3.3.2. 

It can be observed that the ME engine has performed significantly well on complex 

thermal frames. 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

For a rigorous validation test of all the thermally tuned network variants of the Yolo- 

 

Small model 

Medium model 

Large model 

X-large model 

Best 

Network 

Pool 

Using 

mAP 

metrics 

Large model 

X-large model 

Ensembling 

inference 

engine 

Test data 

Figure 35: Structural block diagram representation of ensembling inference engine based on the 

combination block of large and x-large network variants. 

Figure 36: Inference results on nine different thermal frames using the model ensembling inference 

engine. 
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• For a rigorous validation test of all the thermally tuned network variants of the Yolov5 

framework, four different quantitative metrics have been employed. These include 

mean average precision, overall model precision, recall, and inference time required per 

frame. The experimental validation details can be found in section IV of Appendix D. 

 

The complete training methodology along with the detailed experimental results is presented 

and published in IEEE Access Journal titled “Object Detection in Thermal Spectrum for 

Advanced Driver-Assistance Systems (ADAS)”. The copy of the published paper based on this 

section is attached and presented in Appendix E of this report. 

 

5.3. Further Experimental Results on Denso Out-Cabin Thermal Data  

In addition to our work discussed in section 5.2, the efficacy of thermally tuned object detection 

models was also validated on extensive out-cabin thermal data acquired by Denso Germany. 

Denso was working as an industry consortium partner in the Heliaus project. DENSO [80] 

expertises in camera base algorithm development and collecting new diversified thermal 

datasets for algorithms training, and validation. The extensive out-cabin data gathering and 

thus the creation of relevant and diversified thermal image sets was also a valuable outcome of 

the project. Table 9 shows the inference results on various challenging thermal frames acquired 

by Denso in different environmental and weather conditions using the prototype 640x480 

thermal camera developed by Lynred France under the Heliaus project. 

 

Table 9: Inference Results on Denso Out-Cabin Thermal Data 

Frame and Algorithms 

Details 

Input image Inference results 

Frame details: Acquired 

in the daytime with 

shutterless camera 

calibration and applying 

image correction pipelines 

Models used: X-large 

model using test-time 

with no augmentation   
  

Frame details: Acquired 

in the nighttime with 

shutterless camera 

calibration and applying 

image correction pipelines 

Models used: X-large 

model using test-time 

with no augmentation   
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Frame details: Acquired 

in the nighttime with 

shutterless camera 

calibration and applying 

image correction pipelines 

Models used: X-large 

model using test-time 

augmentation   
  

Frame details: Acquired 

in the daytime with 

shutterless camera 

calibration and applying 

image correction pipelines 

Models used: large model 

using test-time 

augmentation   
  

Frame details: Acquired 

in the daytime with 

shutterless camera 

calibration but without 

applying image correction 

pipelines 

Models used: small and x-

large model using model 

ensembling approach 
  

Frame details: Acquired 

in the nighttime with 

shutterless camera 

calibration but without 

applying image correction 

pipelines 

Models used: small and x-

large model using the 

model ensembling 

approach 

  

 

It can be observed from Table 9 that trained networks performed well on some of the 

challenging and newly acquired (unseen) thermal frames. The trained detectors show robust 

results on thermal frames without applying the image correction pipeline as shown in row 5 

and row 6 of Table 9 thus detecting and predicting most of the class objects with high 

confidence scores values. 
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Chapter 6 

Contribution To Deployment of Thermal Object Detection/ 

Classification Framework on GPU & EDGE-GPU devices using 

Advanced Neural Optimization Methods 
 

This chapter will highlight the main contributions by further optimizing and deploying the 

neural networks on GPU as well as resource-constrained edge devices which include Nvidia 

Jetson Nano and Nvidia Jetson Xavier development boards. The thermally tuned YOLO 

architectures are further optimized using SoA inference accelerator to produce higher frames 

per second (FPS) and lower inference time. The main reason for performing the quantization 

process is to check the feasibility of thermally tuned object detection models for real-time 

onboard testing when deploying the models on edge hardware for the automotive sensor suite. 

This work is carried out under WP-4 of the Heliaus project focused towards the deployment of 

neural network-based processing frameworks on dedicated embedded devices. 

 

6.1. Research Objectives 

Object detection algorithms have currently encountered numerous challenges due to the 

demands of high inference speed and accuracy, especially for real-time scenarios. While the 

inference speed depends mainly on hardware resources such as GPU and Edge-GPU devices 

and the complexity of the network. On the other hand, the accuracy depends mainly on the 

algorithm adopted for the system. In the current scenario where the hardware technology is 

evolving and developing rapidly, the object detection algorithms are expected to perform at 

higher speeds in near future. Currently, the best preference for deploying the object detector 

algorithms with the automotive sensor suite is the selection of a network that can balance 

efficiently the inference speed and detection accuracy. To achieve this purpose, we selected 

various network variants of state-of-the-art YOLO-v5 [72] as shown in Table 8 (in chapter 5) 

for the thermal object detection task. The performance of successfully converged models on 

thermal data is validated on different hardware resources which include GPU, Nvidia Jetson 

Nano [52], and Nvidia Xavier [53] edge development boards for real-time onboard feasibility 

evaluations. 

 

6.2. Summary and Discussions of Contributions  

In this work, the core emphasis is to achieve good speed (reduced inference time) since we are 

typically focusing to run the networks on embedded architectures as well as adequate accuracy 

level (mAP) with the reduced false alarm rate. To accomplish this task and successfully deploy 

the thermal-YOLO architectures on GPU &  edge embedded architectures we have adapted 

SoA techniques for performing model optimization without compromising/ affecting the 

overall model accuracy. The main contributions of this work are highlighted in bullet form. 
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• In the first phase, we have performed the precise quantitative test of all the thermally 

tuned models by analyzing the performance of these architectures using four different 

metrics which includes include recall, precision, mean average precision (mAP), and 

frames per second rate (FPS). For this purpose three different confidence thresholds 

intervals i.e 0.4, 0.2, and 0.1, and the intersection of union (IoU) intervals i.e 0.6, 0.4, 

& 0.2 were employed. It is noticeable from Table 10 that by decreasing the confidence 

threshold value of the thermally tuned small-YOLO variant the mAP increases 

gradually. However, by decreasing the confidence threshold too much, we can lead to 

high mAP but with high false alarms rate (wrong bounding box locations) and higher 

inference speed which is eventually not good for an optimal thermally tuned model 

focused to be deployed on embedded architectures. 

Table 10: mAP of the small model using different confidence thresholds 

Network Confidence Threshold mAP 

Small variant 0.4 45% 

Small variant 0.2 47.4 

Small variant 0.1 48.3 

 

The complete results of all the four quantitative metrics for all the modes are presented 

in section V-C of Appendix F. 

 

• In the second phase, model optimization is performed using the SoA TensorRT 

inference accelerator to implement a high-speed inference network on SoA embedded 

GPU boards (Jetson and Xavier) with evaluations. The primary motivation for this is to 

boost the FPS rate for real-time evaluations and on-board feasibility testing on edge 

devices. Second, it uses several optimization strategies to reduce onboard memory 

footprints on the target device. Figure 37 shows the block diagram representation of the 

proposed optimized inference engine for embedded architectures. Whereas Figure 38 

shows the inference results on various thermal frames using the TensorRT inference 

accelerator engine [51]. The comprehensive experimental details of model optimization 

is presented in section VI of Appendix F. 
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Figure 37: Structural block diagram representation of TensorRT based optimized inference engine using 

the small network variant for deployment on edge architectures. 
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Figure 38: Inference results on six different thermal frames using the TensorRT optimized inference 

engine on Nvidia Jetson Nano and Nvidia Jetson Xavier boards. 

 

 

 

 

 

 

 

 

 

  

 

 

The optimized version of the smaller network variant achieved 60 FPS on the Nvidia 

Jetson Xavier development board and 11 FPS on the Nvidia Jeston Nano board. 

• Moreover while running the inference and quantitative test we closely monitor the 

temperature ratings of different hardware peripherals on both Edge-GPU platforms 

using a specialized jetson-stats open-source python library. It is done to avoid the 

overheating effect which can harm the onboard processor and affect the overall 

operational capability of the system. 

 

The complete working methodology along with the detailed experimental results is presented 

and published in IEEE Transactions on Intelligent Vehicles Journal titled “Evaluation of 

Thermal Imaging on Embedded GPU Platforms for Application in Vehicular Assistance 

Systems” [19]. The copy of the published paper based on this section is attached and presented 

in Appendix F of this report. 
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Chapter 7 

Additional Contributions 
 

This chapter will summarize my additional contributions along with some of my secondary 

publications related to these contributions.  

 

7.1. Discussions of Contributions towards Human Thermography  

In the first part, I explored infrared thermal imaging for human thermography and cancer 

diagnosis using thermal and RGB Dermoscopic imaging. Human thermography is an integral 

medical diagnostic tool for detecting heat patterns and measuring quantitative temperature data 

of the human body as shown in Figure 1 of chapter 2. It can be used in conjunction with other 

medical diagnostic procedures for getting comprehensive medication results. Infrared 

Thermography (IRT) plays a vital role in detecting abnormal temperature patterns in human 

organs which can be further used for detecting low-risk as well as fatal diseases in their early 

stages. Human thermography can be effectively used for a wide range of disease detection and 

classification, in both male and female gender some of which are discussed in Appendix G.  

Alongside the advantages of human thermography, there are also certain disadvantages 

of thermography. The advantages and disadvantages of human thermography are discussed 

below. 

Advantages  

• It is a type of non-invasive and painless technique. 

• It provides a user-friendly and easy seating examination process for the patients. 

• The minimal time required to perform the overall test is about 2 to 3 min. 

• The test results are much easier to judge by monitoring the difference in colour changes 

(gradient: −0.05 °C)  

• There are many different methods available to store the thermographic results also 

known as thermograms. Such as we can use simply use paper printing, Xerox paper 

printing, or coated with a material that changes colour on heating also known as thermal 

printing. Secondly, we store the thermograms on modern storage techniques such as 

magnetics devices which include hard-drive, compact discs, and flash drives. 

• One of the biggest advantages of thermography is that it does not produce any harmful 

radiations like conventional medical examinations such as Computed Tomography 

(CT) scan machines, mammography, and X-Ray test which uses low-dose X-rays to 

take pictures from inside the human organ. 

 

Disadvantages  

• The hardware required for performing thermographic tests such as high resolution 

cooled thermal cameras are very expensive  

• The sensitivity and resolution of the camera reduces with variation in distance and angle 

of view 

• There are many different factors such as environmental and body factors which can 

affect the overall thermal imaging results. 
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The core importance of IRT is highlighted in one of our publications titled “Infrared Imaging 

for Human Thermography and Breast Tumor Classification using Thermal Images” published 

in the 31st Irish Signals and Systems Conference (ISSC) [20]. In the first portion of this 

publication, we have discussed various disease diagnoses using thermography whereas the 

second part of the paper discusses breast tumor classification system using computer vision 

and machine learning-based algorithms. The copy of the published paper based on this section 

is attached and presented in Appendix G of this report.  

In addition to that, I have also worked on skin cancer diagnosis using RGB dermoscopic 

images. Dermoscopic diagnosis refers to a non-invasive skin imaging method, which has 

become an essential tool in the diagnosis of melanoma and other pigmented skin lesions. 

However, performing dermoscopy using conventional methods may reduce the diagnostic 

accuracy which can lead to more chances of errors. These errors are generally caused by the 

complexity of lesion structures and the subjectivity of visual interpretations. In this work, I 

have proposed AI-based computer-aided diagnosis system for skin cancer classification in 

prodromal stages [21]. The copy of the published paper based on this section is attached and 

presented in Appendix H of this report. 

 

7.2. Discussions of Contributions towards Monocular Depth Estimation   

Depth estimate is an important step in inferring scene geometry from two-dimensional images. 

Given only a single RGB frame as input, the objective of monocular depth estimation is to 

estimate the depth value of each pixel or infer depth information. In this work, we have 

investigated the facial depth datasets and loss functions generated in the field of computer 

vision for facial depth estimation problems. In the next step, we have presented the 

implementation details of how neural depth networks work, as well as their associated 

evaluation matrices, which are summarized in our published study [22]. In addition to this, a 

SoA neural architecture for facial depth estimation is proposed, along with a comparative 

evaluation with other SoA methods [22]. The complete study along with experimental details 

titled ‘Towards Monocular Neural Facial Depth Estimation: Past, Present, and Future’ can be 

found in Appendix I of this report. 
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Chapter 8 

Conclusion and Future Work   
 

In this thesis, we addressed the problem of designing a smart thermal perception system for 

driver assistance applications thus providing enhanced safety and reliability features using a 

low-cost yet reliable LWIR uncooled thermal camera module. Such type of system can be 

beneficial and integrated with the existing automotive sensor suite for advanced vehicular 

systems.  

 

8.1. Experimental Outcomes of this Thesis  

In earlier chapters, we have introduced various works undertaken during the course of this 

Ph.D. research. Here we summarise the main findings of this work, placed in the context of the 

main goals & objectives presented in the introduction chapter (chapter 1) of this report. The 

core experimental outcomes of this work are as follows. 

1. In chapter 3 we have presented our contributions for large scale thermal synthetic data 

generated using the composite structure of advanced computer vision algorithms which 

includes data transformation/ augmentation, synthetic data generation using styleGAN 

based generative adverisal network, and single 2D image to 3D thermal face 

reconstruction using end to end Position Map Regression Network (PRNet).  

2. In chapter 4 we have presented our contributions towards the design and validation of 

driver/ occupant gender classification system in the thermal spectrum by retraining and 

fine-tuning a set of SoA pretrained deep convolutional neural networks (CNN) which 

includes Alexnet, VGG, MobileNet, ResNet, Inception-v3, DenseNet, and EfficientNet 

architectures. In addition to that, we have proposed an entirely new CNN (GENNet) 

designed for the thermal gender classification task, and its performance was 

benchmarked with other SoA pretrained architectures. The EfficientNet model attained 

the maximum testing accuracy of 93% followed by the DenseNet-201 and the proposed 

GENNet network which had achieved an overall testing accuracy of 92% and 91% 

respectively. However, the performance evaluation of GENNet architecture shows that 

a smaller, more lightweight network can perform better when trained directly on data 

for a specific imaging application.  

3. In chapter 5 we have presented our contributions towards adaptation and validation of 

a state-of-the-art object detection/ classification framework (Yolo-v5) for designing 

smart thermal perception system with seven distinct classes including stationary as well 

as moving objects. Four different network variants were trained on four different public 

datasets as well as locally gathered novel test data. Moreover, three different testing 

approaches were used for rigorous validation of all the trained networks which includes 

test-time with no augmentation (TTNA), test-time augmentation (TTA), and test-time 

with model ensembling (TTME) methodology. Lastly, a new model ensemble-based 

inference engine is proposed using the combination of X-large and large model which 

proves to be the best network coupler thus producing the results as one optimal 

inference engine. The TTME inference engine further improves the accuracy metrics 

on overall test data. Also, the performance of trained detectors shows robust detection 
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and classification results when tested on large-scale out-cabin thermal data acquired by 

Denso. This shows that trained models have learned optimal feature information to 

perform precisely on a wide range of test data. 

4. In chapter 6 our contributions mainly focus on further optimization of thermally tuned 

object detection models. This is done since we are typically focusing to run the 

networks on low-power embedded architectures for real-time onboard feasibility 

testings. The process of model optimization is attained using TensorRT inference 

accelerator to implement a  fast inference compute engine on embedded GPU boards 

which included Nvidia Jetson Nano and Nvidia Xavier development boards. After the 

successful execution of model optimization,  we were able to achieve a frame rate of 

11 FPS on (4 core CPU) Nvidia  Jetson and subsequently a very high frame rate of 60 

FPS on 6 core CPU) on the Nvidia Jetson Xavier board. The current SoA GPU engines 

are adequate for running optimized machine learning models but, realistically, they are 

running very hot and further improvements are needed before real-time, energy-

efficient AI can be implemented in automotive use cases. 

It is important to mention that during the entire experimental training process of a wide range 

of CNN models we had particularly focused on two different SoA optimizers which include 

SGD [81] and ADAM [82]. The best optimizer was selected in accordance with other network 

hyperparameters and training data tasks. Both of these optimizers have their benefits.  SGD 

optimizers mostly operate in a small-batch regime wherein a fraction of the training data, 

usually, 32-512 data points, is sampled to compute an approximation to the gradient. On the 

other hand, the Adam optimizer combines the best properties of the AdaGrad and RMSProp 

algorithms to provide an optimal algorithm that can handle sparse gradients on noisy data. 

 

8.2. Dataset Contributions  

The dataset contributions of this work resulted in the form of novel indoor thermal facial data 

and out-cabin object detection data collection as discussed in chapter 3. The summarized details 

of these datasets are provided below. 

1. Indoor data is comprised of thermal facial images acquired from both male and female 

subjects who agreed to take part in this research work. The data was recorded in indoor 

environmental conditions with controlled lighting conditions. This data is useful to 

carry out empirical work in relation to designing effective in-cabin driver and passenger 

monitoring systems for enabling enhanced safety features. The collected dataset was 

used in various types of experimental work which included thermal gender 

classification, thermal face detection, and eye detection for generating drowsiness alerts 

using computer vision-based algorithms. 

2. A novel out-cabin thermal data is acquired and annotated consisting of  >35k distinct 

640x480 frames using a prototype thermal camera module based on micro-bolometer 

technology. The overall data is recorded in two different methods (M1 & M2) such that 

by mounting the camera at a fixed place and in the second method the data is recorded 

by mounting the camera on an electric car. The recorded thermal frames incorporate 

data variations in the form of diverse weather and environmental conditions. 
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8.3. Future Work 

Many different adaptation tasks related to 3D depth estimation using thermal images, training 

and validation testings of mask segmentation and instance segmentation algorithms on thermal 

data, and related experimental work have been left for the future due to lack of time (i.e. the 

experiments with real + synthetic data are usually very time consuming, requiring even days 

to optimally retrain a model from scratch on thermal data). Future work concerns deeper 

analysis for optimal training and validation mechanisms of deep learning architectures, new 

proposals to try different methods, or simply curiosity. As the possible future directions, these 

are some of the ideas that I would like to further explore and give the opportunity to research 

the community to further work on these aspects which are as follows. 

1. Design and implementation of SoA mechanism to build high-quality 3D depth maps 

from multiple thermal images using depth estimation models which can be beneficial 

for in-cabin and out-cabin applications. 

 

2. Extensive ADAS datasets should be gathered and open-sourced with synchronization 

of various imaging modalities such as depth data, event data, thermal data, near-infrared 

data. These data can be beneficial for optimal training of deep learning models for in-

cabin and out-cabin applications. 

 

3. Moreover, the joint fusion of RGB and thermal imaging can be advantageous and taken 

into consideration for better training of deep learning networks for in-cabin as well as 

out-cabin applications. More experiments need to be made to come up with an optimal 

solution for producing fused images thus building a single multiset or multiway 

structure with all images involved or connecting the related individual images through 

regression and deep learning models. 

 

4. The deployment of optimized trained networks on more powerful single-board edge 

devices with a higher flop rate and less operating power for optimal performance, thus 

tailoring it for real-time onboard deployments. 

 

5. Finally, the current out-cabin work just focuses on object detection/ recognition,  but it 

can be modified and enhanced to incorporate image segmentation, road lane detection, 

traffic signal, and road signs classification,  and object tracking for estimating objects 

distance from vehicle thus providing comprehensive data for enhanced driver 

assistance. 
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Abstract— Thermal imaging has played a dynamic role in the 
diversified field of consumer technology applications. To build 
artificially intelligent thermal imaging systems, large scale 
thermal datasets are required for successful convergence of 
complex deep learning models. In this study,  we have highlighted 
various techniques for generating large scale synthetic facial 
thermal data using both public and locally gathered datasets. It 
includes data augmentation, synthetic data generation using 
StyleGAN network, and 2D to 3D image reconstruction using deep 
learning architectures.  Training and validation accuracy of Wide 
ResNet CNN for binary gender recognition task is improved by 
4.6% and 4.4% using original and newly generated synthetic data 
with an overall test accuracy of 83.33%. 

Keywords—Infrared Imaging, LWIR, Synthetic Data, GAN, 
Augmentation,  Deep Neural Networks, Wide ResNet 

I. INTRODUCTION  

 The emerging potential of thermal imaging for consumer 
applications and the building of low-cost LWIR thermal 
cameras based on un-cooled sensor technologies is an emerging 
area of research. As compared to the RGB camera, the thermal 
camera has its own advantages which includes invariance to 
illumination changes, an ability to operate even in complete 
darkness, and provides robust results in the event of shadows 
and some occlusions. Thermal imaging is used in various 
Consumer Technology (CT) applications [35] including human 
thermography for disease diagnosis [1, 2], thermal gender 
classification [3], human-computer interface systems [4], in-
cabin driver and occupant monitoring systems [34].  

 Modern thermal cameras come with Shutter-less calibration 
and associated image correction methods such as Non-
Uniformity Correction (NUC) and bid pixel replacement are 
usually applied for real-time processing to produce high-quality 
thermal sensor data. The resulting thermal images can be 
employed in a variety of computer vision applications including 
pedestrian detection, facial recognition [6], object classification 
[7], and segmentation tasks. However, one drawback of thermal 
imaging is that there are not many publically available datasets 

and thus it is challenging to build the large training datasets 
essentially required to train and fine-tune state-of-art (SoA) 
Convolution Neural Networks (CNN). In this study, this is 
addressed by proposing a combination of data augmentation, 
data generation using Generative Adversarial Networks 
(GANs), and 2D-3D image reconstruction to enable building 
substantial numbers of additional synthetic data samples using 
existing thermal datasets as the seed data. 

II. Background 

 Deep learning models are generally considered as data-
hungry models [17]. It requires a vast amount of training data 
[8] along with proper optimization and regularization techniques 
to avoid network overfitting and underfitting thus achieving 
robust results [9]. This problem can be overcome by using data 
augmentation [12], smart augmentation [14], and synthetically 
[13] generated datasets. To generate extensive thermal data 
artificially, from existing datasets, different methods can be used 
which includes applying various image transformations to the 
original dataset. These transformations include image rotation, 
random translations, image cropping, image flipping which 
additionally includes horizontal and vertical flipping,  image 
shifting, and padding. This method seems to be dynamic and 
beneficial, not only for the low-data cases but for the imbalance 
datasets, and also for models trained on large datasets such as 
Imagenet [15, 16]. Fully synthetic datasets that are generated 
using computer vision and machine learning tools can be used 
for diversified computer vision applications such as pose 
estimation, optical flow, real-time object detection for 
autonomous driving systems, and text detection [19]. Hu et al. 
[18] produce novel face images by blending parts of different 
donor face images. It was done by compositing real facial 
images thus generating a new set of synthesized data images. In 
one of the recent studies by Adam, et al [19] authors have used 
synthetic data for the face recognition task. They have used a 3D 
morphable facial model for generating images with random 
amounts of facial identities. In another study, the authors 
presented Virtual KITTI [20],  by using synthetically generated 
data to train an end-to-end convolutional neural network for 
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object detection, tracking, and scene segmentation tasks for self-
driving systems. Similarly, Abbasnejad et al. [21] trained a 
convolutional neural network using synthetic data for expression 
analysis tasks. The authors achieved exceptional results in action 
unit classification on real data. Further, GAN networks are 
widely used as an image to image translation models such that 
converting thermal data to synthesized visible data that can be 
effectively used for training deep learning networks. 

III. IMPLEMENTATION METHODOLOGY  

In this section, we have described the proposed methodology 
used in this study. Fig. 1 explains the comprehensive block 
diagram representation for generating large-scale thermal data 
using existing thermal datasets that can be effectively used for 
smart thermal imaging systems. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Block diagram representation of generating large scale thermal data 
using three different methods. 

 As shown in Fig. 1 the first step includes data collection and 
data acquiring using a thermal camera. In this study, we have 
used three publically available thermal face datasets which 
include tufts [22-24], carl [27-28], and laval facial thermal 
dataset [29]. Tufts dataset [22-24] has been published recently 
with data samples from 6 different image modalities which 
include visible, near-infrared, thermal, computerized sketch, a 
recorded video, and 3D images. Moreover, we have gathered our 
thermal dataset using the LWIR thermal camera which is 
discussed in the next section of this paper. The recorded thermal 

data is processed using the non-uniformity correction (NUC) 
method to adjust the gain and offset for each pixel thus 
producing a more accurate image. Thermal images have a 
relatively low signal-to-noise ratio (SNR) [2]. Keeping this in 
view, sometimes digital image processing techniques are 
utilized to improve the nature of inferior quality pre-recorded 
LWIR thermal data. In the second step, we have proposed three 
different methods for generating thermal synthetic data as 
shown in Fig. 1. The methods employed in this work are various 
data augmentation operations, synthetic fake data generation 
using StyleGAN, and single 2D to 3D thermal image 
reconstruction using PRNet.  

      Finally, in the third step, the effectiveness of generated 
synthetic data has been validated by training state of art Wide 
ResNet CNN for binary gender classification task using both 
original and newly generated synthetic data samples.  

IV. APPLIED METHODS AND EXPERIMENTAL RESULTS FOR 

GENERATING LARGE SCALE THERMAL DATA 

In this section, we have explained various methods used in 
this study along with their experimental results for generating 
new thermal data samples using the tufts [22-24], carl [27-28], 
and laval motion face thermal dataset [29]. 

A. Data Augmentation  

       Supervised learning methods require sufficiently large 
datasets for accurate model training. Image augmentation is 
considered a beneficial technique in increasing the size of the 
training set without acquiring new images. It works by bringing 
supplementary variations in existing data. The generated data 
samples can be used for robust training of deep convolutional 
neural networks thus to avoid overfitting, underfitting and 
better generalize the model for the customized task. There are 
many different types of image augmentation methods that can 
be used in accordance with the type of dataset and respective 
application. Table 1 shows the different types of image 
augmentation operations available and applied in the Keras 
framework for performing thermal image augmentation. 

TABLE I.  DIFFERENT TYPES OF IMAGE AUGMENTATIONS 

Image  Augmentations/ Transformations 

Rotation Perform image rotation by 30-degree angle. 

Flipping  Perform image flipping operations. It includes horizontal 
flipping and verticle flipping. 

Cropping  Perform image cropping at a random location.  

Padding  Performs image padding operation with the provided 
padding value. 

Zooming  Performs image zooming with the specified zoom range 
of 0.15. 

Shifting  Image shift is used to add shift-invariance to the images 

Affine  Perform affine transformation to the image by provided 
parameters keeping center invariant. 

Large scale data generation 
using  thermal datasets 

Data Augumentation 

Synthetic Data Generation  
using StyleGAN 

Synthetic 2D-3D Data Generation using  
PRNet  

Feature Extraction   

Deep learning pipeline for thermel gender classification   

Wide Resnet Training   output
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Fig. 2 shows 9 new training samples generated from a single 
image of a male and female subject from tufts datasets [22-24] 
using Table 1 image transformation methods. 
 

 
 

 

 

 

 

 

Fig. 2. Image augmentation results: (a) male subject image, (b) female subject 
image, (c) newly generated male data samples using six different image 
augmentation methods, and (d) newly generated female data samples using 
image augmentation. 

B. Synthetic Fake Data Genenration using GANs   

Generative Adversarial Networks (GANs) are the types of 
deep neural networks having the capability to generate fake 
data samples from scratch. The networks work by feeding 
random noise as the input and once these networks are trained 
by the selection of proper hyperparameters we can generate 
realistic data samples. The newly generated fake data samples 
in the data-limited situation along with original data can be used 
for optimal training of Convolution Neural Networks (CNN). 
In this study, we have used StyleGAN [33] for generating 
synthesized thermal facial samples. StyleGAN [33] is a state of 
art GAN network introduced by NVIDIA researchers having 
the ability to generate seemingly infinite numbers of high-
resolution data samples. For network training, we have used 
tufts [22-24], carl [27-28], and laval face motion thermal 
datasets [29]. Training data comprises varying facial angles, 
different facial expressions, and subjects with and without 
glasses. Fig. 3 shows some of the input training samples. 

  

 

 

 

 

 

 

 

Fig. 3. GAN training data samples (a) varying facial angles of a male subject, 
(b) four different male subjects with and without glasses, (c)  male subjects with 
different facial expressions (surprise, neutral and happy). 

Fig. 4 shows the training structure along with network 
hyperparameters of StyleGAN architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. StyleGAN training pipeline with a selected set of network 
hyperparameters. 

Fig. 3 and Fig. 4 shows the comprehensive representation of 
input data and network parameters for generating synthesized 
thermal outputs. During the training phase, the network was 
trained for 150,000 epoch with a learning rate of 1e-4. For 
optimal training of the GAN network, the gradient 
accumulative mechanism is configured for six steps.  It works 
by splitting the batch of samples into several mini-batches of 
samples that will run sequentially. The training process is 
completed in 122 hours with a final generative loss of  0.37 and 
discriminator loss of 0.24. Fig. 5 shows the intermediate results 
at different epochs in the form of generated synthetic thermal 
male facial samples. 

 

 

 

Fig. 5. Synthetic fake thermal facial samples generated using StyleGAN. 

Fig. 6 shows some of the generated facial outputs using the 
trained model in the PyTorch deep learning framework. 
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Fig. 6. StyleGAN trained model outputs by generating synthetic thermal face 
samples. 

        It can be observed from Fig. 6 that the GAN network 
generated thermal facial outputs in different variety which 
includes different facial angles, subjects with and without 
glasses, different temperature patterns, and different hairstyles.  
However, results are yet not very robust since facial features are 
blurred as compared to real thermal facial images. This can be 
overcome by increasing the training data and last but not least 
more robust fine-tuning of the GAN networks. 

C. 2D to 3D Synthetic Data Genenration using PRNet 

This section will present another state of art method from 
our published paper at Qomex 2020 conference [31]. This 
method works by generating three-dimensional (3D) synthetic 
facial geometry structures by employing PRNet [32] on a new 
set of 2D thermal facial thermal images that are acquired 
locally. It is an end to end deep learning architecture referred to 
as Position Map Regression Network (PRN). The system is 
trained to reconstruct and produce 3D facial images by using a 
single RGB frontal image of a person [32]. The network works 
by transferring the input image into a position map. In the next 
stage, the encoder-decoder structure is used for learning the 
transfer structure. In this work, we have used the 
aforementioned network for generating 3D facial geometry 
structures by using the frontal thermal facial image. The trained 
network uses Rectified linear Unit (ReLU) activation functions 
and finally outputs an obj file. The obj file is then imported into 
blender software for generating 3D thermal facial images 
covering different facial angles and poses. The same approach 
is validated on our gathered thermal facial dataset. The data is 
acquired using an LWIR uncooled 640x480 thermal camera 
developed under the Heliaus project [5]. The focal length of the 
camera is 7.5 mm and it has F-number of f/1.2. The prototype 
thermal camera is shown in Fig. 7 whereas Fig. 8 shows the 
locally acquired thermal faces of four different subjects in an 
indoor lab environment. 

 
 

 
 
 
 
 

Fig. 7. Prototype thermal VGA camera (a) side view, (b) front view and, (c) 
back view of the camera. 

 
 

 

 

Fig. 8. Thermal image of four different male subjects acquired in an indoor 
lab environment using uncooled thermal cameras. 

Fig. 9 shows the facial depth map along with 3D geometry 
structures of the male subject generated through PRNet and 
extracted through blender software using a single frontal frame 
from Fig. 8. 

 

 

 

 

  

 

Fig. 9. 3D synthetic facial thermal structures outputs (a) male subject image 
acquired in an indoor lab environment, (b) Haar cascade face detector, (c) 
extracted face, (d)  3D facial mesh, (e) 3D depth map generated through PRNet 
and, (f) different face yaw angles extracted through blender software. 

V. PERFORMANCE ANALYSIS OF DEEP LEARNING MODEL ON 

ORIGINAL AND SYNTHETICALLY GENERATED DATASETS 

         In this section, we have analyzed the performance of 
state-of-the-art deep learning architecture for thermal gender 
recognition task using transfer learning. For the proposed study 
we have used Wide ResNet [30] convolution neural network. 
The wide ResNet architecture is a modified version of 
originally designed ResNet architecture having an extended 
number of channels with a total of 68.9 million parameters. 
Complete experimental techniques for the training of Wide  
ResNet 50-2 are shown in Table II. The overall training data is 
divided into a ratio of 80% and 20% for training and validation 
sets respectively. The model is trained in pytorch deep learning 
framework on a server-grade machine equipped with 32 GB of 
Ram and 12 GB TITIAN X graphic card. The model is fine-
tuned via transfer learning by adding a few additional layers 
such that the last FC layer is connected to a linear layer having 
256 outputs. It is further fed into the rectified linear unit (ReLU) 
and dropout layers with the dropout ratio of 0.4 followed by a 
final FC layer, which has binary output corresponding to the 
number of classes in tufts dataset. 

      Fig. 10 shows the training results in the form of accuracy and 
loss graph of all the Table II experiments. It can be observed 
from Fig. 10 that experiment 3 got the highest training and 
validation results as compared to experiment 1 and experiment 
2. By taking a close look, we can analyze that the training and 
validation accuracy of experiment 3 is improved by nearly 4.6% 
and 4.4% with lower loss values as compared to experiment 1. 
Thus, we can establish that original thermal images along with 
processed data, and generated synthetic data, improves the fine-
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Training Loss  = 0.22 
Validation Loss  = 0.33 

Training Accuracy  = 92.01% 

Validation Accuracy  = 89.01% 

Training Loss  = 0.21 

Validation Loss  = 0.30 

Training Accuracy  = 95.89% 

Validation Accuracy  = 89.76% 

Training Loss  = 0.17 
Validation Loss = 0.296 

tuning process of the deep learning model. The performance of 
the best-trained model i.e experiment 3 is cross-validated using 
the carl thermal facial data along with a locally gathered 
dataset. The models achieve an overall accuracy of  83.33% on 
unseen test data. 

TABLE II.  TRAINING EXPERIMENTS 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Wide ResNet training results (a) Table II experiment 1: training 
accuracy of 91.28% and validation accuracy of 85.34%,  (b) Table II 
experiment 2: training accuracy of 92.01% and validation accuracy of 89.01%, 
(c) Table II experiment 3: training accuracy and loss of 95.89 and 0.17 and 
validation accuracy and loss of 89.76% and 0.29. 

VI. CONCLUSION  

       In this study, we have presented various methodologies for 
generating synthetic thermal facial samples. The methods 
employed in this study includes various data transformations, 
which include rotation, flipping, zooming, cropping, padding, 
and affine transformation. Secondly, state of art StyleGan 
architecture is used for generating synthetic fake thermal facial 
samples. The generated face outputs demonstrate different face 
angle variations, different hairstyles, image perspective, and 
with and without glasses. Lastly, we have shown 2D-3D 
synthetic image reconstruction using a deep learning method by 
employing state-of-the-art PRNet. The effectiveness of these 
methods has been evidenced by analyzing improved training 
results of Wide ResNet Convolution Neural Network (CNN) 
architecture for the binary gender recognition task. For future 
work, we can work on other advanced transformation methods 
such as thermal to visible image translation/ neural style 
transfer. This can be performed by training advanced GAN 
architectures which include cycleGAN and pix-to-pix networks 
thus producing synthetic visible data extracting features from 
thermal data. Moreover, the efficacy of these methods can be 
validated on other classification tasks such as thermal facial 
expression analysis.  
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Abstract—Methods for generating synthetic data have 
become of increasing importance to build large datasets 
required for Convolution Neural Networks (CNN) based deep 
learning techniques for a wide range of computer vision 
applications. In this work, we extend existing methodologies to 
show how 2D thermal facial data can be mapped to provide 3D 
facial models. For the proposed research work we have used 
tufts datasets for generating 3D varying face poses by using a 
single frontal face pose. The system works by refining the 
existing image quality by performing fusion based image 
preprocessing operations. The refined outputs have better 
contrast adjustments, decreased noise level and higher 
exposedness of the dark regions.  It makes the facial landmarks 
and temperature patterns on the human face more discernible 
and visible when compared to original raw data.  Different 
image quality metrics are used to compare the refined version 
of images with original images.  In the next phase of the 
proposed study, the refined version of images is used to create 
3D facial geometry structures by using Convolution Neural 
Networks (CNN). The generated outputs are then imported in 
blender software to finally extract the 3D thermal facial outputs 
of both males and females. The same technique is also used on 
our thermal face data acquired using prototype thermal 
camera (developed under Heliaus EU project) in an indoor lab 
environment which is then used for generating synthetic 3D face 
data along with varying yaw face angles and lastly facial depth 
map is generated. 

Keywords— thermal, CNN, synthetic, deep learning, 2D, 3D, 
LWIR 

I. INTRODUCTION 

 With the recent advancements in technology and the 
growing requirements for larger datasets, it is very important 
to extract maximum information from the acquired data. 
Visible or RGB data is most commonly used for a wide range 
of computer vision applications however it is not able to 
generate temperature patterns of the specific body which is an 
important factor in critical applications. Thermal cameras can 
capture the temperature patterns of the human body by sensing 
the emission of infrared radiation. Thermal data of the human 
body is considered to be very important for many applications 
such as human disease diagnosis in early stages by extracting 
human facial and body temperature patterns and medical 
image analysis techniques and creating 3D synthetic thermal 
face data for visualization and animations. In the proposed 
study we have proposed 3D synthetic thermal face data 
generation by using advanced deep learning methods inspired 
by Feng, Yao, et al [1]. Such types of data can be used in 

different types of human biometric applications such as 
thermal facial recognition systems, gender classification 
system, emotion recognition systems.   

As compared to 2D facial images 3D facial structures can 
help in dealing with the problem of varying human poses and 
occlusions. Deep learning algorithms have played a vital role 
in solving many computer vision applications including 3D 
data creation by taking advantage of convoluting neural 
networks (CNN). CNN is well known for its self-feature 
extraction from the raw pixel of images rather than relying on 
handcrafted features which are subsequently required for 
conventional machine learning algorithms.  

The rest of the paper is structured as follows, section II 
provides the background and related research for creating 
synthetic data, section III describes the proposed methodology 
regarding image refinement and deep learning for generating 
the 3D facial structures, section IV provides experimental 
results and lastly, section V describes the conclusion and 
future work. 

II. Background 

      Synthetic data can be considered as a repository of data 
that is not collected from real-world experiments, but it is 
generated programmatically by using different algorithms and 
methodologies from the domain of machine learning and 
pattern recognition. The most common approach for 
generating synthetic data is to pick the work of 3D artists they 
have done by creating real-time virtual environments for video 
gaming. In [2] authors have captured datasets from the Grand 
Theft Auto V video game. The authors mainly emphasize on 
using semantic segmentation methods. Authors have captured 
the communication between the game and the graphics 
hardware. Through this approach, they have cut the labeling 
costs (in annotation time). Weichao Qiu and Alan L. Yuille 
[4] have developed UnrealCV which is an open-source plugin 
for the popular game engine Unreal Engine 4. It works by 
providing commands that allow us to get and set camera 
location, field of view and get the set of objects in a scene 
together with their positions. C. Choi and H. I. Christensen in 
[6] created a dataset of 3D models of household objects for 
their tracking filter. Moreover, Hodan et al. [7] provide a real 
dataset of textureless objects supplemented with 3D models of 
these objects. Deep learning has been extensively used for 
generating 3D data especially biometrics data for various real-
world applications. Dou, Pengfei, Shishir K. Shah, and 

978-1-7281-5965-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: NATIONAL UNIVERSITY OF IRELAND GALWAY. Downloaded on March 08,2022 at 18:19:19 UTC from IEEE Xplore.  Restrictions apply. 



b 

a 

h f e g 

Ioannis A. Kakadiaris [8] and Tuan Tran, Anh, et al [9] have 
proposed an end to end CNN architectures to directly estimate 
the 3D morphable models (3DMM) shape parameters. In this 
study, we have proposed a novel method to generate a 
comprehensive 3D thermal facial structure by using state of 
art CNN architecture. 

III. PROPOSED METHODOLOGY  

This section of the paper will mainly focus on the proposed 
algorithm for generating 3D synthetic face data from a single 
2d thermal image. We have utilized the tufts thermal face 
dataset [10-12] since this dataset has published recently with 
data samples from 6 different image modalities which include 
visible, near-infrared, thermal, computerized sketch, a 
recorded video, and 3D images. The dataset consists of images 
of both males and females genders. It was acquired in an 
indoor environment using FLIR Vue Pro Camera with 
constant lighting.  Fig. 1 displays sample thermal images of 
both male and female subjects from the tufts dataset [10-12]. 

 

 

 

 

 

 

Fig. 1. Thermal face images from tufts dataset a) male samples, b) female 
samples 

In the first phase, the system works by taking a single frontal 
pose and producing the refined version of the image to make 
facial features such as eyes, lips, nose and temperature 
patterns on the face more visible and vibrant.  This approach 
works by applying various image preprocessing operations 
built on multi-scale fusion principles inspired by Ancuti, 
Cosmin, Codruta Orniana Ancuti, Tom Haber, and Philippe 
Bekaert Ancuti [13].   

A. 2D Image Processing 
      The algorithm consists of six main steps. In the first step, 
algorithms work by applying a simple white color balance 
which is color corrections operation to remove the unlikely 
color casts in order to render specific colors in an image. The 
resulting outputs are color corrected version with reduced 
noise levels as compared to original raw data. In the second 
stage, Contrast limited Adapt Histogram Equalization 
(CLAHE) is applied to enhance the visibility of confined 
details by improving the contrast of local regions in the 
image.  It is done to achieve optimal contrast levels in the 
input image. In the next stage, different types of weighs are 
applied to increase the exposure levels in the dark regions. 
This is achieved by applying four different types of weights 
which include laplacian contrast weights, local contrast 
weights, saliency contrast weights, and exposedness weights 
[13]. Laplacian weights are generally used to enhance the 
global contrast of the image. Local contrast weights are 

applied to strengthen the local contrast appearance since it 
advantages the transitions mainly in the highlighted and 
shadowed parts of images. It is computed as the standard 
deviation between pixel luminance level and the local 
average of its surrounding region as shown in equation 1[13]. 
 ௟ܹ௖ ,ݔ)	 (ݕ = ௞ܫ)ܫܫ −	 ௐ௛௖௞ܫ  (1)									ܫܫ(
Where ௟ܹ௖ ,ݔ)	 (ݕ  represent the symbol for local contrast 
weights, ܫ௞ represents the luminance channel of the input and         
the ܫௐ௛௖௞  represents the low-passed version of it. 

      Saliency weights are applied to emphasize the 
discriminating objects that lose their prominence especially 
in the dark regions and exposedness weights are finally 
applied to evaluate how well the pixel is exposed. The 
weights are measured by using the saliency algorithm of 
Achanta et al.[18]. Fig. 2 represents the complete multi-scale 
fusion image refinement process on the thermal frontal face 
image from the tufts dataset [10-12]. 
 
 
 
 

 
 
 

 
 
 

 
Fig. 2. Complete multi-scale image fusion algorithm pipeline to produce a 
refined version of an image a) input image, b) white color balance applied, 
c) histogram equalization applied, d) laplacian contrast weight applied, e) 
local contrast weights applied, f) saliency weights applied, g) exposedness 
weights applied, h) final output image 

B. 2D to 3D Image Reconstruction 
Once the images are refined in the second stage, we have 

used end to end convolution neural network also referred to as 
Position Map Regression Network (PRN) [1] to reconstruct 
the 3D images from a single frontal face pose thermal image. 
The authors in [1] had proposed the CNN network which was 
trained to generate 3D facial structures using one single RGB 
image.  

The network works by transferring the input image into a 
position map. In the next stage, the authors have used the 
encoder-decoder structure for learning the transfer structure. 
The encoder structure is consisting of one convolution layer 
which is followed by a series of ten residual blocks for 
performing downsampling operation. The decoder structure is 
consisting of seventeen transposed convolutions blocks in 
order to generate the predicted output position map. The 
proposed CNN networks use Rectified linear Unit (ReLU) 
activation functions and a kernel size of four is used for each 
of the convolution layers and transposed convolution layers. 
A customized loss function was built to learn the parameters 
to a better extent by measuring the difference between the 
ground truth position map and the network output. The loss 
function utilizes the weight mask which is the grey image 
recording the weight of each map on the position map. The 
weigh mask is of the same size and pixel to pixel 
correspondence when compared with the position map. The 
loss function is defined in equation 2  [1].   

This project (https://www.heliaus.eu/) has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement No 826131. The JU receives
support from the European Union’s Horizon 2020 research and innovation
program and France, Germany, Ireland, Italy. 
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Where ܲݏ݋	ݑ), 	(ݒ represent predicted position map, ܲݑ)~ݏ݋, 	(ݒ  represents ground truth position map and W(u, v)		represents the weight mask. 
 
In this study, we have used the same network for generating 
synthetic 3D facial geometry structures using one single 
image. However, instead of using the visible image we have 
utilized thermal facial images to validate the effectiveness of 
the network. The network initially produces .obj file which is 
then imported in blender software [14] to generate the 3D 
facial geometry as the output. The complete workflow 
diagram is shown in Fig. 3 
 
 
 

 

 

 

 
 

 

 

Fig. 3. Complete workflow diagram for generating the synthetic 3D facial 
structure from single 2D thermal image 1: input image fed to PRNet for 
generating 3D facial data, 2: output obj file, 3: obj file imported to blender 
software, 4: final outputs extracted in the form of 3D thermal facial images 
covering different poses  

IV. EXPERIMENTAL RESULTS 

        The overall algorithm was implemented using Matlab 
R2018a for applying fusion based image preprocessing 
methods as discussed in Section III to produce the refined 
version of images. TensorFlow [15] deep learning framework 
was used for generating 3D facial structures using the pre-
trained PRNet [1]. The system was deployed and tested on the 
Core I7 machine with 32 GB of RAM equipped with NVIDIA 
RTX 2080 Graphical Processing Unit (GPU) having 8GB of 
dedicated graphic memory.  

 The first phase of the experimental results shows the 
refined outputs obtained by applying fusion based image 
preprocessing operations. It makes the facial features and 
temperature patterns of the face more visible by reducing the 
overall noise and adjusting the optimal brightness and 
contrast levels in the image. It is shown in Fig. 4. 

 

 

 

 

 

Fig. 4. Image preprocessing results a) input images of two different subject 
(male and female), b) refined outputs with more visible facial features 

 In the proposed study we have used different image 
quality metrics which include Naturalness Image Quality 
Evaluator (NIQE) [16] and Blind/Reference less Image 
Spatial Quality Evaluator (BRISQE) [17] score to compare the 
enhanced version of images with original (ground-truth) 
images. It is shown in Table I. 

TABLE I.  IMAGE QUALITY METRICS 

Image NIQE Score BRISQUE 
Score 

 3.0323       
lower is better 

18.2226       
lower is better 

 3.3350 37.2575 

 2.9099        
lower is better 

29.4339      
lower is better 

 3.6029 35.7555 

 2.7059         
lower is better 

12.0921       
lower is better 

 3.4460 33.5439 

The main reason for employing these two metrics is that it 
does not require any reference image. Therefore, these metrics 
are also known as no-reference or objective-blind image 
quality analyzers. The lower NIQE and BRISQUE scores of 
processed images (bolded) reflect that image quality is 
improved significantly by applying the image refinement/ 
preprocessing techniques. The second phase of the 
experimental results demonstrates the 3D facial structures 
generated through PRNet [1] and extracted through blender 
software using a refined version of the thermal image. It is 
shown in Fig. 5  

 The same process is used to produce varying 3D facial 
poses of both male and female samples from the tufts      
dataset [10-12]. It is shown in Fig. 6. 

 

 

 

 

 

 

Fig. 5. Image preprocessing results a) input images of two different subject 
(male and female), b) refined outputs with more visible facial features c) 3D 
face geometry generated in blender software, d) different face poses of the 
subject 
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Fig. 6. 3D synthetic face structure of  both male and female gender a) 
refined input images of female and male, b) synthetic 3D outputs with 
varying face poses 

Further, the second phase of experimental results 
demonstrate 3D facial structures using our dataset. The data is 
gathered in the indoor lab environment using a prototype 
thermal camera that embeds a Lynred [20] LWIR sensor 
developed under the Heliaus EU project [19]. Fig. 7 displays 
the prototype thermal camera model being used for the 
proposed research work whereas Table II provides the 
technical specifications of the camera. 

 

 

 

 

Fig. 7. Prototype thermal VGA camera model for acquiring local data 

TABLE II.  TECHNICAL SPECIFICATIONS OF PROTOTYPE THERMAL 
CAMERA 

 

 

 

 

 

 

 

The data is collected by mounting the camera on a tripod stand 
with the fixed distance (nearly 60 centimeters) from the 
subject  The data acquisition structure is shown in Fig. 8.   

 

 

 

 

 

 

 

 

 

Fig. 8. Data acquisition setup in the indoor university lab environment, 
prototype thermal camera mounted on tripod stand placed at a fixed distance 
(nearly 60 centimeters) from the subject 

 We have collected data in two different modalities 
which include RGB and thermal respectively. For 
preliminary testing, only male subjects took part in this study. 
The data is gathered by recording the video and then 
extracting the image sequence from the video. Fig. 9 displays 
frontal face poses of two different subjects referred to as 
subject A and subject B who have taken part in this study 
along with their processed thermal outputs. 

 

 

 

 

 

 

 

 

Fig. 9. Face data samples of  two different subjects (first-row subject A, 
second-row subject B) acquired in an indoor lab environment a) visible 
image, b) thermal image, c) processed thermal image 

After collecting the data, the same technique is used to 
generate 3D facial structures. Along with 3D facial structures, 
we have also generated a facial depth map. It is exhibited in    
Fig. 10.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Synthetic 3D facial structure results with depth map on our own        
data a) RGB and thermal Obj file imported in Blender software, b) 3D facial 
mesh of subject A and subject B, c) different face yaw angles of subject A 
and subject B 

Specifications 

Type Long Wave Infrared (LWIR) 

Resolution 640 x 480 pixels 

Quality VGA 

Focal length  7.5 mm 
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Lastly, we have generated the facial depth map on our 
collected lab data using the PRNet [1]. The main goal of 
generating the facial depth map is to provide more 
comprehensive and reliable 3D information which can be 
further used for facial recognition systems in conjunction with 
different 3D facial poses. It is shown in Fig. 11.   

 

 

 

 

 

Fig. 11.  Face depth map generated a) subject A facial depth map,  b) subject 
B facial depth map 

V. CONCLUSION AND FUTURE WORK 

In the proposed study we have incorporated advance 
deep learning model PRNet [1] for generating synthetic 3D 
thermal facial structures from the single thermal frontal 
image. Such type of data can be found useful in a variety of 
real-time computer vision and machine learning applications 
such as medical image analysis, extracting facial and body 
temperatures for in-cabin driver monitoring systems, 
visualization, and animation creation. As compared to 
conventional data generation techniques such as data 
augmentation and data transformation that can produce 2D 
outputs, 3D synthetic data can be found more robust and 
realistic especially when training deep neural networks for 
critical applications. Along with thermal and visible data, we 
can use this methodology to create synthetic data from other 
image modalities such as infrared, near-infrared and 
grayscale data. Moreover, as future work, we can train CNN 
networks to generate 3D facial textures that can be aligned 
with 3D mesh for generating animations, different facial 
expressions and facial emotions with varying lighting 
conditions, and occlusions.   
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Abstract. Gender classification has found many useful applications in the broader domain
of computer vision systems including in-cabin driver monitoring systems, human–computer
interaction, video surveillance systems, crowd monitoring, data collection systems for the retail
sector, and psychological analysis. In previous studies, researchers have established a gender
classification system using visible spectrum images of the human face. However, there are many
factors affecting the performance of these systems including illumination conditions, shadow,
occlusions, and time of day. Our study is focused on evaluating the use of thermal imaging to
overcome these challenges by providing a reliable means of gender classification. As thermal
images lack some of the facial definition of other imaging modalities, a range of state-of-the-art
deep neural networks are trained to perform the classification task. For our study, the Tufts
University thermal facial image dataset was used for training. This features thermal facial images
from more than 100 subjects gathered in multiple poses and multiple modalities and provided
a good gender balance to support the classification task. These facial samples of both male and
female subjects are used to fine-tune a number of selected state-of-the-art convolution neural
networks (CNN) using transfer learning. The robustness of these networks is evaluated through
cross validation on the Carl thermal dataset along with an additional set of test samples acquired
in a controlled lab environment using prototype uncooled thermal cameras. Finally, a new CNN
architecture, optimized for the gender classification task, GENNet, is designed and evaluated
with the pretrained networks. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.29.6.063004]

Keywords: deep convolution neural networks; thermal imaging; gender classification; long-
wave infrared; transfer learning.
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1 Introduction

Uncooled thermal imaging is approaching a level of maturity where it can be considered as an
alternative to, or as a complimentary sensing modality to that of visible or NIR imaging. Thermal
imaging offers some advantages as it does not require external illumination and provides a very
different perspective on an imaged scene than a conventional CMOS-based image sensor. The
proposed research work is carried under HELIAUS1 project, which is focused on in-cabin driver
monitoring systems using thermal imaging modality. The driver gender classification in a vehicle
can help to improve the personalization of various features (e.g., user interfaces and presentation
of data to the driver). It can also be used to better predict driver cognitive response,2 driver
behavior, and intent, and finally knowledge of gender can be useful for safety systems such
as airbag deployment that may adapt to driver physiology. In summary, automotive manufac-
turers are interested to have the knowledge of driver gender within the vehicular environment for
designing smarter and safer vehicles. Alongside this, there are many other applications of ther-
mal human gender classification systems. In security systems, thermal imaging can easily detect
people and animals even in total darkness. In human–computer interaction systems, thermal
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imaging can provide complimentary information, determining subtle fluctuations in facial tem-
peratures that can inform on the emotional status of a subject. In other human–computer inter-
action systems, the systems may need to classify the individual person and/or their facial
expressions and voices3 in order to effectively interact with them thus gender information serves
as a source of soft biometrics.4 In medical applications, human thermography provides an im-
aging method to display heat emitted from a human body surface thus helping us to understand
unique facial thermal patterns in both male and female gender.5 Human thermography helps us to
better understand that central and peripheral thermoreceptors are distributed all over the body
including on the human face and are responsible for both sensory and thermoregulatory
responses to maintain thermal equilibrium. Studies have shown that heat emission from the sur-
face of the body is symmetrical. All these studies measured differences between the left and right
side of different areas of the head.6,7,8

The literature reports that in healthy subjects the difference in skin temperature from side to
side of the human body is as small as 0.2°C.8 The heat emission from the human body is related
to cutaneous vascular activity, yielding enhanced heat output on vasodilation, and reduced heat
amount on vasoconstriction.9 The medical literature reports that a significant difference has been
observed between the absolute facial skin temperature of men and women during the clinical
studies of facial skin temperature.9 Men were found to have higher temperatures compared to
women overall; 25 anatomic areas were measured on the face including upper lips, lower lips,
chin, orbit, and the cheek. According to another study, the basal metabolic rate of a healthy
30-year-old male with a height of 5 ft, 7 in weight of 64 kg, and who has surface area of about
1.6 m2 dissipates about 50 W∕m2 of heat; on the other hand the basal metabolic rate of healthy
30-year-old female with the height of 5 ft, 3 in the weight of 54 kg, and who has surface area of
1.4 W∕m2 dissipates about 41 W∕m2 of heat. In addition, women’s skin is expected to be cooler
since less heat is lost per unit of body surface area.9 However, thermal patterns whether in the
case of male or female also depend on many other factors such as age, human body intrinsic and
extrinsic characteristics, outdoor environmental conditions, and technical factors such as camera
calibration, and the field of view (FoV). Moreover, it also depends on factors such as drinking,
smoking, various diseases, and using medications.

The preliminary focus of this study is on binary human gender classification, however, the
same system can be retrained for third or multi-class (non-binary) gender classification tasks
if such datasets are available.

In this study, the Tufts thermal faces10–12 and Carl thermal faces datasets13,6 are used to train
and test a selection of state-of-the-art neural networks to perform the gender classification task.
Figure 1 shows some examples of thermal facial images with varying poses from the Tufts data-
set and frontal facial poses from the Carl dataset. The complete workflow pipeline is detailed in
Sec. 3 of this paper. In addition to using pretrained neural networks, a new CNN architecture,
GENNet, is provided. This is designed and trained specifically for the gender classification task
and is evaluated against the pretrained CNN networks. In addition, a new validation set of
thermal images is acquired in controlled laboratory conditions using a new prototype uncooled
thermal camera and is used as a second means of cross-validating all the pretrained models along
with GENNet architecture. The evaluation results are presented in Sec. 4.

Fig. 1 Sample images from Tufts and Carl thermal face database: (a) male subject with four
different face poses from the Tufts dataset; (b) female subject with four different face poses from
the Tufts dataset; and (c) male and female subjects (frontal face pose) from Carl database.
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2 Background/Related Work

This section focuses on the background research and previous studies on gender classification
using CNNs.

2.1 Gender Classification Using Conventional Machine Learning Methods

Makinen and Raisamo14 and Reid et al.15 provided a detailed survey of the gender classifications
method in their studies. One of the early techniques for gender recognition reported in Ref. 16
utilized a neural system trained on a small arrangement of close frontal face pictures. In Ref. 17,
the consolidated 3D structure of the head (captured by a laser scanner) and picture intensities
were utilized for characterizing genders. Support vector machine (SVM) classifiers were
employed by Ref. 18 where the authors evaluated the performance of SVM with an overall error
rate of 3.4% when compared with other traditional classifiers including linear, fisher linear
discriminant, nearest neighbor, and radial basis functions. Instead of using SVM,19 Baluja and
Rowley20 referred to AdaBoost for gender classification tasks using a set of low-resolution gray-
scale images. Perspective invariant age and gender recognition was performed by Ref. 21 using
arbitrary viewpoints. Recently, Ullah et al.22 utilized the Webers local surface descriptor23 for the
gender recognition system, showing near-perfect execution on the facial recognition technology
(FERET) benchmark.24 In Ref. 25, shape, texture, and color features were extracted from frontal
faces, thus obtaining robust outcomes on the FERET benchmark. In an attempt by Arun and
Rarath,26 unique mark pictures are used, and the input images are represented by a feature vector
consisting of ridge thickness to valley thickness ratio and ridge density. Further, they used SVM
to categorize subjects into male and female classes accordingly. In addition to the gender clas-
sification system using the visible spectrum, the possibility of deducing gender information from
thermal and NIR spectrum is also gaining much interest. Chen and Ross27 claimed to be the first
proposing human faces-based gender classification system using thermal and NIR data. The
authors have selected three different conventional feature extraction methods for gender repre-
sentation including linear binary patterns, principle component analysis, and pixels from low-
resolution facial images. For gender recognition, they have used SVM, LDA, Adaboost, random
forest, Gaussian mixture model, and multi-layer perceptron classifiers. Their experimental
results conclude that SVM for histogram-based gender classification results in much better
performance on NIR and thermal spectra. Nguyen and Park28 proposed a gender classification
system using joint visible and thermal spectrum data of the human body. The classification
accuracies in Ref. 28 are measured by employing different feature extractors including HoG
and MLBP.29 Their experimental results demonstrated an improvement in classification accuracy
using the joint data from visible and thermal image spectrums. Similarly, in another study
reported in Ref. 30, the author’s utilized multimodal datasets consisting of audiovisual, thermal,
and physiological recordings of male and female subjects. The authors extracted feature values
from these datasets, which were later used for automatic gender classification purposes. In both
studies, authors used conventional machine learning algorithms for feature extraction rather than
using advanced deep learning methodologies.

2.2 Gender Classification Using Deep Learning-Based Methods

Due to the fact that much potential is laid in deep CNN structures, they are widely used for
diversified applications especially where more precise and robust accuracy levels are required
such as medical image analysis, surveillance systems, object detection, and autonomous clas-
sification systems.31 Canziani et al.32 listed many pretrained models that can be used for various
practical applications in their study. They analyzed the overall performance of these pretrained
models by computing the accuracy levels and the inference time needed for each model. Dwivedi
and Singh33 provided a comprehensive review of deep learning methodologies for robust gender
classification using the GENDER-FERET34 face dataset. In their study, they have compared the
performance of various CNN architectures. Moreover, they have selected one of the architec-
tures as a baseline model, and by changing different parameters like the number of fully con-
nected (FC) layers and the number of filters they have created different models. The authors
achieved the best accuracy of 90.33% with the base model architecture of CNN. Ozbulak et al.35
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have investigated two different deep learning strategies including fine-tuning and SVM
classification using CNN features. They were applied on different networks including their
proposed task-specific GilNet model and pretrained domain-specific VGG36 and Generic
AlexNet37-like CNN model for building robust age and gender classification system using the
Adience38 visible spectrum dataset. The experimental results from their study show that trans-
ferred models outperform the GilNet model for both age and gender classification tasks by
7% and 4.5%, respectively. In a more recent study, Manyala et al.39 investigated the overall
performance of two CNN-based methods for gender classification using near-infrared (NIR)
images. In the first method, a pretrained VGG-Face40 was used for extracting features for gender
classification from a convolutional layer in the network, whereas the second method used
a CNN model obtained by fine-tuning VGG-Face to perform gender classification from
periocular images. The authors had achieved the classification accuracy of 81% on an in-house
dataset, which was gathered locally.

Further in a more recent study, Baek et al.41 used the combined data of both visible and NIR
spectrum for performing robust gender classification using full human body images in surveil-
lance environment. The system works by deploying two CNN architecture to remove the noise of
visible-light images and enhance the existing image quality to improve gender recognition
accuracy. The overall system performance was evaluated on desktop pc as well as on Jetson
TX2 embedded system.

3 Research Methodology

The goal of this work is to evaluate the potential of thermal image facial data as a means of
gender classification. The thermal image data are analyzed with a selected set of nine state-
of-the-art neural networks. These pre-existing convolution neural networks are adapted for
the thermal data using transfer learning. In addition, a new CNN model is proposed, and its
performance is compared against nine state-of-art pretrained networks.

Initially, all the pretrained networks are first trained on the Casia Face dataset42 since Tufts
thermal training dataset10–12 does not contain enough images, an important requirement for opti-
mal training of deep neural networks. This face dataset is used to extract low-level features for
building the baseline architecture. In the second stage, the Tufts thermal face database10–12 is
used for transfer learning. This dataset consists of 113 different subjects and comprises images
from six different image modalities that include visible, NIR, thermal, computerized sketch, a
recorded video, and 3D images of both male and female classes. The thermal face dataset was
acquired in a controlled indoor environment using constant lighting that was maintained using
diffused lights. Thermal images were captured using FLIR Vue Pro Camera,43 which was
mounted at a fixed distance and height.

Figure 2 represents the complete workflow diagram of the overall gender classification
system.

3.1 Initial Training and Transfer Learning of Pretrained Networks

This research takes advantage of the pretrained networks by freezing and unfreezing all the
layers and adding customized final layers to generalize the model for the target autonomous
gender classification task from thermal image datasets. The main reason for using these pre-
trained networks is they already learned low-level feature values such as edges and textures
by training the networks on very large and varied datasets. This process helps in obtaining useful
results even with a relatively small training dataset since the basic image features have already
been learned by the pretrained model using larger datasets like ImageNet.44 Further, the classifier
is trained to learn the higher-level features in the proposed thermal dataset images.

A typical CNN system comprises certain layers including convolution layers, pooling layers,
dense layers, and FC layers. There are various pretrained networks available that can be effi-
ciently used for different types of visual recognition, object detection, and segmentation tasks.
For the proposed study, the following pretrained neural networks are utilized: ResNet-50,45

ResNet-101,45 Inception-V3,46 MobileNet-V2,47 VGG-19,36 AlexNet,37 DenseNet-121,48

DenseNet-20,48 and EfficientNet-B449 networks. These models are chosen as they are commonly
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trained using the ImageNet44 dataset, each model has a different architectural style, they provide
a good trade-off between accuracy and inference time,50 and in addition, they are the state-of-the-
art for image classification tasks. Thus an impartial performance comparison of these networks
can be made for the thermal gender classification task.

ResNet45 architecture mainly relies on the residual learning process. The network is
designed to solve complex visual tasks using more deeper layers stacked together. ResNet-50
is a 50-layer Residual Network. The other variants from the ResNet family include ResNet-10145

and ResNet-152.45 Resnet-50 network was initially trained on ImageNet,44 which consists of
a total of 1.28 million images from 1000 different classes. The Inception-v3 is made up of
48 layers stacked on top of each other.46 The Inception-v3 model was initially trained on
Imagenet44 as well. These pretrained layers have a strong generalization power as they are able
to find and summarize information that will help to classify various classes from the real-world
environment.

MobileNet-V2 is considered as efficient deep learning architecture proposed by Sandler
et al.47 specifically designed for mobile and embedded vision applications. It is a lightweight
deep learning architecture with the working principle of using depth-wise separable convolutions
meaning that it performs a single-convolution operation on each color channel rather than com-
bining all three and flattening them. This has the advantage of filtering the input channels.

DenseNet48 architecture also referred to as dense convolutional neural network is a state-of-
the-art variable-depth deep convolutional neural architecture. It was designed to improve
the architecture of ResNet.45 The principle design feature of this architecture is channel-wise
concatenation, with every convolution layer that has access to the activations of every layer
preceding it. DenseNet family has different variants including DenseNet-121, DenseNet-169,
DenseNet-201, and DenseNet-264.

VGGNet36 was developed by the Visual Geometry Group from the University of Oxford.
Like ResNet45 and Inception-V3,46 this network was also originally trained on ImageNet.44

The network was designed with the significant improvement compared to AlexNet architec-
ture,37 which was more focused on smaller window sizes and strides in the first convolutional
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Fig. 2 Workflow diagram for autonomous gender classification system using thermal images.
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layer. VGG architecture can be trained using images with (224 × 224) pixel resolution. The main
attribute of VGG architecture is that it uses very small receptive fields (3 × 3 with a stride of 1)
compared to AlexNet37 (11 × 11 with a stride of 4). In addition to this, VGG incorporates
1 × 1 convolutional layers to make the decision function more non-linear without changing the
receptive fields. The architectures come in different variants including VGG-11, VGG-16, and
VGG-19.

EfficientNet49 was recently published and designed using a compound scaling method. As
the name suggests the network proved to be a competent and optimum network by achieving
state-of-the-art results on the ImageNet dataset. Table 151 provides a more comprehensive com-
parison of these architectures highlighting their attributes, number of parameters, the overall
error rate on benchmark datasets, and their respective depth.

As discussed in the previous section, all the pretrained networks are initially trained on the
Casia Face database42 since the Tufts thermal training dataset10–12 does not contain a sufficient
number of images. Casia facial dataset42 consists of facial images of different celebrities (38,423
distinct subjects) in the visible spectrum. This facial dataset has been used to extract low-level
feature values for building a baseline architecture. The networks are trained using a total of
30,887 frontal facial images of different celebrities from both genders. The data were split
in the ratio of 90% for training and 10% for validation. To better generalize and regularize the
base model for final fine-tuning on the thermal dataset, certain data transformations are per-
formed on the Casia42 training data including random resizing of 0.8, random rotation of 15 deg,
and flipping. The logic for performing these transformations is that it will bring supplementary
data variations for optimal training of the baseline architectures keeping in view the final fine-
tuning process on thermal images. Figure 3 displays the Casia data samples along with training
data transformation results. The initial training is done by adding a small number of additional
final layers to enable generalization and regularization of all the pretrained models. In the case of
ResNet-50 and ResNet-101 networks, the last FC layer is connected to a linear layer having 256
outputs. It is further fed into the rectified linear unit (ReLU)52 and dropout layers with the drop-
out ratio of 0.4 followed by a final FC layer, which has binary output corresponding to the two
classes in the Casia dataset. A similar formation of final layers is inserted by transforming the
number of features to the number of classes in all the pretrained networks. Each of these net-
works is further fine-tuned using a training dataset comprising of thermal facial image samples.
The fine-tuning is achieved using transfer learning techniques.53

The models were trained using the PyTorch framework.54 Binary cross-entropy is used as
the loss function during training along with a stochastic gradient descent (SGD)55 optimizer.
The final training data include male and female thermal images as shown in Fig. 4.

Table 1 Performance comparison of state-of-the-art CNN

CNN
Number of
parameters Top 5 error rate Depth Main attributes

AlexNet 62 M ImageNet: 16.4 8 Uses ReLU, dropout, and overlap pooling

VGGNet 138 M ImageNet: 7.3 19 Homogenous topology, uses small size kernels

Inception-V3 24 M ImageNet: 3.5 159 Replace large size filters with small filters

MobileNet 2.2 M ImageNet: 10.5 17 The width multiplier uniformly reduces the
number of channels at each layer, fast
inference

ResNet-50 26 M ImageNet: 3.6 152 Residual learning, identity mapping-based skip
connection

ResNet-101 43 M

DenseNet-121 7.2 M CIFAR-10+: 3.46 190 Cross-layer information flow

DenseNet-201 18.6 M

EfficientNet-B4 19 M ImageNet: 2.9 Compound coefficient scaling method, 8.4 ×
smaller and 6.1 × faster than other convnets

Farooq, Javidnia and Corcoran: Performance estimation of the state-of-the-art convolution. . .

Journal of Electronic Imaging 063004-6 Nov∕Dec 2020 • Vol. 29(6)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12 Oct 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



In order to better fine-tune the networks, the thermal training data are augmented by intro-
ducing a selection of image variations. These are achieved using the transformation operations
shown in Table 2.

During the fine-tuning phase, the SGD55 and the Adam56 optimizers are used to compare
their respective performance. This is discussed in Sec. 4. As compared to gradient descent
(GD) where the full training set is used to update the weights in each iteration, in minibatch
SGD,55 the dataset is split into randomly samples minibatches, and the weights are updated in
separate iterations for each minibatch (not element-wise unless minibatch size is 1). Moreover,
minibatch SGD55 is computationally less expensive and minimizes losses faster than GD as it
cycles through the full training data, just in the form of chunks as opposed to all at once.
The Adam56 optimizer is an adaptive learning rate optimizer and is considered one of the best
optimizers for training convolution neural networks. As compared to minibatch SGD, Adam
optimizer also uses the SGD algorithm. However, it implements an adaptive learning rate and

Fig. 3 Facial samples from two different datasets: (a) male and female data samples from Casia42

database; (b) male and female samples from Tufts thermal images;10–12 and (c) PyTorch data
transformations on Casia dataset.

Training

data

Male sample

Female sample

Convolution neural network

Male

Female

Fig. 4 Training data comprising of male and female samples for network training.

Table 2 Training data transformation

Transformation type Data variation

Resized cropping Size = 256,
scale = (0.8, 1.0)

Rotation 15 deg

Flipping Horizontal

Center cropping Size: 224

Tensor conversion —

Mean and standard deviation
normalization

[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]
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can determine an individual learning rate for each parameter. Figure 5 shows the generalized
training structure for all the pretrained networks. The training data are split into the ratio of
80% and 20% for training and validation purposes, respectively. To achieve a fair evaluation
baseline, all the pretrained networks are fine-tuned using the same hyper-parameters on the one
train dataset. These parameters are provided in Table 3.

3.2 New CNN Model GENNet

To analyze the validity of the existing thermal images, a novel CNN network is designed that is
referred to as GENNet and its performance is compared against the pretrained state-of-the-art
architectures. The structural block diagram representation of the proposed network is shown in
Fig. 6. The overall network structure is consisting of four main blocks. The first three blocks

Fig. 5 CNN training structure: network A indicates pretrained networks with initial weights and
network B indicates transfer learning process with new weights for thermal gender classification.

Table 3 Pretrained networks hyperparameters

Network hyperparameters

Batch size 32

Epochs 100

Learning rate 0.001

Momentum 0.9

Loss function Cross-entropy

Optimizer SGD and Adam

Input layer

Maxpooling 
layer 1

Maxpooling 
layer 2 

Maxpooling 
layer 3 

Fully connected layer 1

Output 
layer

Convolution layer 1 Convolution layer 2 Convolution layer 3 
Fully connected layer 2

Fig. 6 Structural representation of GENNet CNN model for thermal images-based gender
classification.
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contain sequential layers in the form of 2D convolutions each followed by the ReLU52 activation
function, max-pooling, and dropout layers. The fourth block consists of two FC layers. The first
FC layer is followed by the ReLU activation function52 and dropout layer, whereas the second and
last FC layer of the overall network converts the corresponding number of features to the number of
outputs. The layer-wise detail of the GENNet model is provided in Appendix A (Table 7).

Like all other pretrained networks, GENNet is initially trained on the Casia facial database42

and later fine-tuned on Tufts thermal dataset.10–12 The same division of thermal training data is
used along with the same hyperparameters as it was utilized for other pretrained models. Once the
network is fine-tuned, it is tested on the combination of two new datasets as discussed in Sec. 4.3.

4 Experimental Results

PyTorch54 deep learning platform is used to fine-tune and train all the pretrained models as well
as the proposed GENNet model. These experiments are performed on a machine equipped with
NVIDIA TITAN X graphical processing unit with 12 GB of dedicated graphic memory.

4.1 Training and Validation Results of CNN Architectures by
Unfreezing the Layers

In this part of the experimental study, all the networks are retrained by unfreezing all the original
network layers to improve the feature learning process on thermal data. As described and shown
in ablation study Sec. 6, transfer learning while freezing the network layers and using both SGD
and ADAM optimizer we cannot achieve optimal training and validation accuracy in the case of
most of the models. The experimental results using freezed network layer are depicted in Fig. 14.
During this fine-tuning process, both Adam and SGD optimizers were employed and the best
results in the case of each model were selected. Most of the models performed well, achieving
better training and validation accuracy as shown in Fig. 7. AlexNET is specifically trained using
a fixed learning rate and it utilizes a one-cycle learning policy to achieve a better convergence.
The initial learning rate of the network is set to 0.001 and momentum to 0.9. The final learning
rate of the network was 0.0003. Using a smaller learning rate makes a model converge more
efficiently but at the expense of the speed, whereas using a higher learning rate can lead to model
divergence. Thus to overcome this issue, the learning rate needs to be adjusted automatically.
One cycle LR works by increasing and then decreasing the learning rate according to a fixed
schedule during the complete training process of a CNN. The main goal of performing these
techniques is to optimize all the models as well as that of the newly proposed GENNET archi-
tecture. Figure 7 shows the training and validation accuracy chart of all the retrained networks
along with the newly proposed GENNet architecture.

It can be observed that most of the models performed significantly well by getting training
accuracy above 96% and validation accuracy greater than 90%. The inception-V3 achieved the
highest training accuracy with the lowest training loss of 0.008. The Efficientnet-B4 network
achieved the highest validation accuracy of 96.98% with a validation loss of 0.11. The newly
proposed GENNet model for task-related thermal gender classification achieves the overall train-
ing and validation accuracy of 97.86% and 92.26% with loss of 0.08 and 0.15, respectively. The
trained models are further used for cross-validating their performance on the new test data as
discussed and shown in the subsections.

AlexNe
t

VGG-
19

Mobile
Net-V2

Inceptio
n-V3

ResNet-
50

ResNet-
101

DenseN
et-121

DenseN
et-201

Efficien
tNet-B4

GENNe
t

Training accuracy% 96.61 99.86 99.73 99.98 99.91 99.48 99.42 99.6 99.73 97.86

Validation accuracy% 92.2 96.55 94.84 90.53 94.13 94.18 95.81 96.24 96.98 92.26

85

90

95

100

Training and validation accuracy

Training accuracy% Validation accuracy%

 

Fig. 7 Accuracy charts of all the networks by unfreezing the network layers.
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4.2 Local Thermal Data Acquisition

To further validate the effectiveness of all the pretrained models and provide an additional mode
of comparison with the newly proposed CNN GENNet model, a live thermal facial dataset was
gathered using a new prototype thermal camera. The data are acquired in an indoor lab envi-
ronment using a camera-based on a prototype uncooled microbolometer thermal camera array
that embeds a Lynred57 long-wave infrared (LWIR) sensor developed under the Heliaus EU
project.1 Figure 8 displays the prototype thermal camera model being used for the proposed
research work to gather this live dataset, whereas Table 4 provides the technical specifications
of the camera.

To take comprehensive facial information during the data acquisition process, we have
calculated other important parameters including the lens aperture, angular field of view (AFOV),
height and width of the sensor, and working distance as shown as follows:58

EQ-TARGET;temp:intralink-;e001;116;585F − number ¼ focal lengthðfÞ
diameterðDÞ ; (1)

EQ-TARGET;temp:intralink-;e002;116;528diameterðDÞ ¼ focal lengthðfÞ
F number

¼ 7.5

1.2
¼ 6.25 ≈ 6 mm; (2)

EQ-TARGET;temp:intralink-;e003;116;495height of sensorðhÞ ¼ horizontal pixels � pixel spitch ¼ 640 � 17 ¼ 10.88 mm; (3)

EQ-TARGET;temp:intralink-;e004;116;473width of sensorðwÞ ¼ vetricle pixels � pixel spitch ¼ 480 � 17 μm ¼ 8.16 mm; (4)

EQ-TARGET;temp:intralink-;e005;116;451AFOV ¼ 2 � tan−1 h
2f

¼ 2 � tan−1 10.88 mm

2 � 7.5 mm
¼ 71.9 ≈ 72 deg; (5)

EQ-TARGET;temp:intralink-;e006;116;416working distanceðWDÞ ¼ focal lengthðfÞ � HFOV
height of sensorðhÞ ¼ 7.5 � 890

10.88
≈ 60 cm: (6)

The data are collected by mounting a camera on a tripod at a fixed distance of 60 to 65 cm.
The height of the camera is adjusted manually to align the subject’s face centrally in the FoV.
Shutterless59 camera calibration at 30 FPS is used to acquire the data. The data acquisition setup

Fig. 8 Prototype thermal VGA camera model for acquiring local facial data.

Table 4 Technical specifications

Prototype thermal camera specifications

Quality and type VGA and LWIR

Resolution 640 × 480 pixels

Focal length (f ) 7.5 mm

F -number 1.2

Pixel pitch 17 μm

HFOV 90 deg, 890 mm
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is shown in Fig. 9. A total of five subjects consensually agreed to take part in this study. The data
were gathered by recording videos stream of each subject covering different facial poses and then
generating image sequences from the acquired videos.

Figure 10 illustrates a few samples of the captured data including both male and female
subjects.

4.3 Testing Results of State-of-the-Art CNN

All the trained models are tested on the combination of the two different datasets including
Carl13,6 and the locally gathered indoor thermal dataset. This is done to cross-validate the
effectiveness of all the trained classifiers, as discussed in Sec. 1. The best models achieving
the highest training and validation accuracy from Sec. 4.3 are selected for the cross-validation
experiment. The test data contain a total of ninety samples. The overall performance of all
the networks on test data is measured using the accuracy metric as shown in the following
equation:60

Fig. 9 Indoor lab environment data acquisition setup.

Fig. 10 Test cases of three different subjects acquired in the lab environment with varying face
pose: (a), (b) the varying facial angles of male subjects and (c) the different facial angles of
a female subject.

Farooq, Javidnia and Corcoran: Performance estimation of the state-of-the-art convolution. . .

Journal of Electronic Imaging 063004-11 Nov∕Dec 2020 • Vol. 29(6)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 12 Oct 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



EQ-TARGET;temp:intralink-;e007;116;549accuracyðACCÞ ¼ tpþ tn

tpþ tnþ fpþ fn
× 100; (7)

where tp, fp, fn, and tn refer to true positive, false positive, false negative, and true negative,
respectively. ACC in Eq. (7) means overall testing accuracy.

Figure 11 illustrates the calculated test accuracy along with total number of parameters chart
of all the models. A confusion matrix for five of the best models is presented in Fig. 12 to better
elaborate on the performance of each model on different genders.

By analyzing Fig. 11, we can observe that GENNet model performed significantly well
among other low-parameter models by achieving total test accuracy of 91%, equal to the test
accuracy of the VGG-19 model. However, VGG-19 has 138 million parameters, which is the
highest number of parameters among all other models.

Figure 13 shows a number of failed predictions by the studied state-of-the-art models. The
results display the model name along with the predicted output class.
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Fig. 11 Test accuracy and model parameters chart of all the CNN architectures.

Fig. 12 Confusion matrix depicting the performance of (a) VGG-19; (b) ResNet-50; (c) DenseNet-
201; (d) EfficientNet-B4; and (e) GENNet models.
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In order to understand how effective, the models are for the custom classification task, eight
different quantitative metrics are employed in addition to the accuracy metrics thus providing
a detailed performance comparison of all the trained models. The additional metrics include
sensitivity, specificity, precision, negative predictive value, false positive rate (FPR), false neg-
ative rate (FNR), Matthews correlation coefficient (MCC), and F1-score. Sensitivity, specificity,
and precision are the conditional probabilities where sensitivity also termed as recall is defined as
the probability of given positive example results in positive test, specificity is the probability of
given negative example results in negative test, whereas precision provides what proportion of
positive identifications was actually correct. The FPR is the proportion of negative cases incor-
rectly identified as positive cases in the data, whereas FNR also known as miss rate is the pro-
portion of positive cases incorrectly identified as negative cases. F1-score describes the
preciseness (such that how many instances it predicts correctly) and robustness (such that it
does not miss a significant number of instances) of the classifier. MCC produces a more inform-
ative and reliable statistical score in evaluating binary classifications in addition to accuracy and
F1-score. It produces a high score only if the trained classifier obtained good results in all the
four confusion matrix categories including true positives, false negatives, true negatives, and
false positives. The numerical results are presented in Table 5. The best and worst value per
metric is highlighted in bold and italics.

5 Discussions

This section will discuss the overall performance of each model along with its individual training
and inference time required compared to other models and individual parameters of each model.
Table 6 presents the numerical values of this comparison.

• AlexNet model achieved the best inference time and sensitivity compared to the other
models, but it has a low specificity and precision scores.

• EfficientNet-B4,49 DenseNet-201, and GENNet model has achieved an optimal F1-score
followed by VGG-19 and ResNet-50 architectures. Also EfficientNet-B449 achieved the
highest testing accuracy of 93% and best MCC61 scores, however, EfficientNet-B4 requires
the highest training time.

• DenseNet-201 also proved to be one of the best models achieving the second best speci-
ficity and second lowest FPR. The total test accuracy of the model is 91%, however,
it requires the highest inference time and relatively higher training time as compared to
other models thus making it a computationally expensive model.

• The bigger architectures such as ResNet, DenseNet, and EfficientNet have good sensitivity
and less FNR, however, the inference time required by these architectures is relatively high
compared to other models.

• Although the proposed model GENNet has a high false-positive rate, but as a trade-off,
it achieved the optimal test accuracy of 91% along with good sensitivity, F1 score, negative

Fig. 13 Individual false prediction test case results: (a) AlexNet model: female gender misclassi-
fied as male gender; (b) MobileNet: female gender misclassified as male gender; and (c) GENNet:
male gender misclassified as female gender.
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predictive value, and lowest FNR when compared to other low or nearly equivalent param-
eter models. In addition to this, the model requires the least inference time like AlexNet.

• By analyzing the low-specificity value of all the models except EfficientNet-B4 compared
to the sensitivity metric as shown in Table 7, it can be concluded that low can be overcome
by using a significant amount of thermal training data to better generalize the capabilities
of DNN.

• Moreover, currently, the main focus is on gender classification for in-cabin driver mon-
itoring systems using thermal facial features. The current technique can be expanded to
face recognition and obtaining other biometrics information in random outdoor environ-
mental conditions. For instance, in law enforcement applications62 this system can be made
more effective by capturing data through CCTV recordings. The recorded data can be used
for training and thus performing multi-frame detection and classification tasks such as hat
and mask detection, and then subsequently classifying the person’s gender. This can be
achieved by training advanced deep learning algorithms63,64 such as human body instance
segmentation and recognition.

Table 5 Different quantitative metrics. The best value per metric is highlighted in bold, and the
worst value per metric is highlighted in italics.

Quantitative metrics comparison of all the models

Models Sensitivity Specificity Precision

Negative
predictive
value FPR FNR

F1-
score MCC

AlexNet 0.98 0.54 0.77 0.95 0.45 0.02 0.86 0.61

VGG-19 0.93 0.88 0.93 0.88 0.11 0.07 0.92 0.81

MobileNet-V2 0.87 0.86 0.90 0.81 0.14 0.12 0.89 0.72

Inception-V3 0.96 0.77 0.87 0.93 0.23 0.04 0.91 0.77

ResNet-50 0.93 0.85 0.91 0.88 0.14 0.07 0.92 0.78

ResNet-101 0.98 0.60 0.79 0.95 0.40 0.02 0.87 0.66

DenseNet-121 0.93 0.74 0.85 0.87 0.25 0.07 0.88 0.69

DenseNet-201 0.93 0.91 0.94 0.88 0.09 0.07 0.93 0.83

EfficientNet-
B4

0.90 0.97 0.98 0.87 0.03 0.09 0.94 0.86

GENNet
Model

0.98 0.80 0.89 0.96 0.20 0.02 0.93 0.82

Table 6 Comparison of total training and testing time required by all the models and individual
model parameters

Models
Alex
Net

VGG-
19

Mobile
Net-
V2

Inception-
V3

Res
Net-
50

Res
Net-
101

Dense
Net-
121

Dense
Net-
201

Efficient
Net

GEN
Net

Average training time required
for each epoch (s)

2.66 12.19 4.55 6.2 6.4 10.3 8.3 11.33 15.13 3.1

Overall training time required (s) 266 1220 455 620 640 1030 830 1130 1513 310

Inference time required for
complete test data (s)

3.6 13.2 4.1 8.3 7.2 11.2 7.4 9.3 7.2 3.6

Parameters (million) 62.3 138 2.2 24 26 43 7.2 18.6 19 M 16.8
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6 Ablation Study

This section shows an ablation study by analyzing the results of the nine state-of-the-art deep
learning networks by freezing the network layers as discussed in Sec. 3.1. Figure 14 presents the
overall performance of all the pretrained architectures initially trained on Casia dataset42 and
fine-tuned on thermal facial images from Tufts dataset.10–12 The networks were trained using
both SGD and Adam optimizer, and the best training and validation results in the case of each
model were selected. It is important to mention that during the training phase the data are di-
vided subject-wise and all the eight poses of each particular subject are used for training and
validation purposes, respectively. This is done to avoid bias and to do optimal inductive learn-
ing. Figure 14 presents the training and validation accuracy and loss chart of all the pretrained
models.

Among all the models ResNet-50 architecture scores highest with the validation accuracy of
90.49% followed by MobileNet-V2 with a validation accuracy of 89.18% using the SGD opti-
mizer. However, AlexNet, VGG, and EfficientNet architectures do not perform well as compared
to other models thus getting the lower validation accuracy and higher loss values. However,
it was not possible to achieve an optimal training outcome as most of the models have accuracy
levels below 95% with freeze layer configuration. By analyzing the accuracy and loss charts in
Fig. 14, it is clear that during the finetuning process of all the pretrained models DenseNet-20148

and AlexNet achieves the highest training accuracies of 95.16% (using SGD optimizer) and
93.61% (using Adam optimizer) with the lowest training losses of 0.14 and 0.18, respectively.
MobileNet-V247 architecture achieved the best validation accuracy of 89.18% with a validation
loss of 0.28 (using SGD optimizer). However, it achieved a lower training accuracy of 90.32%
with validation accuracy of 90.16% when the model was trained using Adam optimizer. The
DenseNet-201 model scored second best with a validation accuracy of nearly 88% (using
SGD optimizer). The VGG-19 architecture was unable to achieve good accuracy scores com-
pared to the other pretrained models with overall validation accuracy of only 81% and the highest
validation loss of 0.46.

7 Conclusions and Future Work

In the proposed study, we have proposed a new CNN architecture GENNet for autonomous
gender classification using thermal images. Initially, all the models including pretrained models
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Fig. 14 Accuracy and loss charts of all the networks trained using freezed layer configuration.
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as well as newly proposed GENNet models are trained on a large-scale human facial structures,
which eventually help us to fine-tune the model on smaller thermal facial data more robustly. In
order to achieve optimal training accuracy and less error rate, all the networks are trained using
two different state-of-the-art optimizers including SGD and Adam optimizers and picked the best
results in the case of each model. The trained models are cross-validated using two new thermal
datasets including the public as well as the locally gathered dataset. The EfficientNet-B4 model
achieved the highest training accuracy of 93% followed by the DenseNet-201, and the proposed
network has achieved an overall testing accuracy of 92% and 91%. However, GENNet archi-
tecture is good for a compute-constrained thermal gender classification use-case as it performs
significantly better than other low-parameter models.

For future work, we can work on the grouping of different datasets and fusions of features
that can eventually push toward the horizon for the advancement of deep learning. In the same
way, we can use techniques to generate new data from the existing data such as smart augmen-
tation techniques, GANs, and last but not least generating synthetic data that can aid us in
increasing the accuracy levels and reducing the overfitting of a target network. Moreover,
multi-scale convolutional neural networks can be designed for performing more than one human
biometrics task such as face recognition, age estimation, and emotion recognition using thermal
data. For example, face recognition using thermal imaging can be performed using blood per-
fusion data by extracting blood vessels patterns, which are unique in all human beings. Similarly,
emotion recognition can be performed by learning specific thermal patterns in human faces while
recording different emotions.

Appendix A

Table 7 shows the complete layer-wise architectural details of the newly proposed GENNet
model for task-specific thermal gender classification.

Table 7 Layer wise architecture of GENNet. Output shape is shown in brackets along with kernel
size, no of stride, padding, and number of network parameters

Block-1 Block-2 Block-3 Block-4

Conv 2D-1
[16, 16, 250, 250]

Conv 2D-5
[16, 32, 125, 125]

Conv 2D-9
[32, 64, 62, 62]

FC-1/linear-13
[65536, 256]

Kernel size = 3 Kernel size = 3 Kernel size = 3 No of param =
16,777,472

Stride = 1 Stride = 1 Stride = 1

Padding = 1 Padding = 1 Padding = 1

No of param = 448 No of param = 4,640 No of param = 18,496

ReLU-2
[16, 16, 250, 250]

ReLU-6
[16, 32, 125, 125]

ReLU-10
[32, 64, 62, 62]

ReLU-14

MaxPool 2D-3
[16, 16, 125, 125]

MaxPool 2D-7
[16, 32, 62, 62]

MaxPool 2D-11
[32, 64, 32, 32]

Dropout (0.5)-15

Kernel size = 2 Kernel size = 2 Kernel size = 2

Stride = 2 Stride = 2 Stride = 2

Padding = 1

Dropout (0.5)-4
[16, 16, 125, 125]

Dropout (0.5)-8
[16, 32, 62, 62]

Dropout (0.3)-12
[32, 64, 32, 32]

FC-2/linear
[256, 1]

Total no of param =
16,801,570
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Appendix B

During the experimental work, when training the GENNet model from scratch using only ther-
mal dataset, we were unable to achieve precise training and validation accuracy with greater loss
values, which eventually results in low testing accuracy. The experiments were carried using
different optimizers including adaptive learning rate optimization Adam56 as well as SGD,55

but the same results were observed. The experimental results are demonstrated in Fig. 15.
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ABSTRACT AI-based smart thermal perception systems can cater to the limitations of conventional imaging
sensors by providing a more reliable data source in low-lighting conditions and adverse weather conditions.
This research evaluates andmodifies the state-of-the-art object detection and classifier framework for thermal
vision with seven key object classes in order to provide superior thermal sensing and scene understanding
input for advanced driver-assistance systems (ADAS). The networks are trained on public datasets and is
validated on test data with three different test approaches which include test-time augmentation, test-time
with no augmentation, and test-time with model ensembling. Additionally, a new model ensemble-based
inference engine is proposed, and its efficacy is tested on locally gathered novel test data comprising of
20K thermal frames captured with an uncooled LWIR prototype thermal camera in challenging weather
and environmental scenarios. The performance analysis of trained models is investigated by computing
precision, recall, and mean average precision scores (mAP). Furthermore, the smaller network variant of
thermal-YOLO architecture is optimized using TensorRT inference accelerator, which is then deployed on
GPU and resource-constrained edge hardware Nvidia Jetson Nano. This is implemented to explicitly reduce
the inference time on GPU as well as on Nvidia Jetson Nano to evaluate the feasibility for added real-time
onboard installations.

INDEX TERMS Thermal-infrared, object detection, advanced driver-assistance systems, deep learning, edge
computing.

I. INTRODUCTION
Thermal cameras can be used for object detection in both
day and night-time environmental conditions [1]. Since it
is invariant to illumination changes, occlusions, and shad-
ows it provides improved situational awareness. Moreover,
by integratingwith AI-based imaging pipelines we can design
intelligent thermal perception systems to detect multiple
objects of different classes. Such systems can be beneficial
for advanced driver assistance systems (ADAS) & environ-
ment monitoring methods. Vehicular perception systems has
become an emerging consumer technology application and
the evolution of this technology over time aims to provide
extended safety benefits and reliable means of transporta-
tion. Various key technologies are directly associated with

The associate editor coordinating the review of this manuscript and

approving it for publication was Khin Wee Lai .

intelligent vehicular systems which includes, sensor fusion
for real-time data logging, and object/ obstacle detection and
tracking system using machine learning algorithms. This will
empower the drivers to monitor the external environment,
detecting external objects, and predict events that the driver
needs to be aware of thus providing a deeper understanding
of the entire road surroundings.

There is a range of sensors commonly used for designing
smart perception systems for automative sensor suite such as
lidar and radar. Practical systems often leverage both visible
imaging solutions along with the array of hardware sensors.
However, visible imaging has some limitations. For instance,
the RGB camera operates inadequately in unfavorable illu-
mination conditions such as low lighting, sun glare, and glare
from the headlight beam. Moreover, typical automative sen-
sors (radar and lidar) leverage some drawbacks in computer
vision applications as discussed in [2].
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Recent developments in microbolometer technology have
led to lower costs for uncooled thermal imaging sensors.
These sensors in the automotive suite can complement
or even be integrated with existing technology, offering
a particular advantage that as they sense the thermal
emissivity of objects, and they can operate independently
of lighting conditions, therefore, making it a more con-
sistent solution for enhanced environmental perception
systems [3].

Object detection plays a key role in designing intelligent
perception systems. However, the robustness of object detec-
tion algorithms on thermal data has yet not achieved vigorous
results and is still a challenging research area, in the field
of computer vision [4]. It is due to two important factors
which include lack of availability of large-scale thermal
datasets as compared to visible datasets [3] and secondly
most of the established DNN architectures are pre-trained
on visible datasets [5], [6] thus making it a stimulating task
to appropriately converge on thermal data features which is
an essential requirement for robust training of deep learn-
ing models. Moreover, some of the constraints in publicly
available datasets also lead towards the challenge in opti-
mum training of dense models on thermal imaging. Such
that some of the publicly available thermal data consist
of video sequences however with little variability in the
scene, i.e., weather conditions, light conditions, and per-
son heat radiation. This drawback reduces the generaliza-
tion of object detectors. Furthermore, some of the thermal
datasets available for roadside object detection are mainly
captured from the frontal view [7]. To overcome such com-
plexities four different thermal public datasets are employed
for including sufficient data diversity and robust training of
deep learning models as shown in table 1. These datasets
are captured in different environmental and weather con-
ditions, varying object distance from the camera, and dif-
ferent view angles thus making it beneficial for optimal
training and proper generalization of YOLO object detection
algorithm.

In this study, we have focused on thermal object detec-
tion using state-of-the-art YOLO-v5 [8], [9] end-to-end deep
learning framework as it can play a key element in the suc-
cessful implementation and deployment of object detection
and classification at thermal wavelengths. The main goal is to
achieve robust inference results by doing optimal training and
fine-tuning of CNN architectures using two different optimiz-
ers (SGD and ADAM) and selecting an appropriate set of
network hyperparameters. The efficacy of trained networks
is validated and computed using various accuracy metrics by
running the inference test on complex test data accumulated
from unseen public data and locally acquired novel test data.
The overall validation tests are performed by incorporating
three different test approaches which include test-time with
no augmentation (TTNA), test-time augmentation (TTA), and
test-time with model ensembling (TTME) for improved test
accuracy.

TABLE 1. Publicly available thermal datasets attributes.

A. MAIN CONTRIBUTIONS OF THIS PAPER THE CORE
CONTRIBUTIONS OF THIS RESEARCH WORK INCLUDE
• Adaptation and validation of a state-of-the-art object
detection/ classification framework for designing smart
thermal perception system with seven distinct classes
including stationary as well as moving objects. More-
over, a new model ensemble-based inference engine
is proposed using the combination of two best-trained
models to further improve the accuracy metrics on test
data.

• A novel test dataset is captured using an uncooled
LWIR thermal camera developed under Heliaus
EU project [10] in different environments and

156466 VOLUME 9, 2021



M. A. Farooq et al.: Object Detection in Thermal Spectrum for ADAS

weather conditions. A total of 20,000 thermal frames
have been acquired and selected for this study consisting
of seven different class objects.

• Evaluating a neural framework with a range of model
sizes to determine its suitability for porting to a
resource-constrained embedded edge platform (Nvidia
Jetson). Thus, to study its feasibility for further automo-
tive on-board-computer (OBC) installations [11].

II. BACKGROUND/RELATED WORK
Common practices in ADAS architecture have been estab-
lished over the years. Most of these systems divide the task of
safe and advanced driving into subcategories and employ an
array of sensors and algorithms on various hardware modules
for diversified tasks. Machine learning and specifically deep
learning models [12] have become dominant in many of these
tasks among which object detection is one of them. This
section will mainly focus on the published studies exploring
state-of-the-art object detection methods, and the reported
results that investigate the area of object detection in the
thermal spectrum. It includes various object classes such as
pedestrian and vehicle detection.

A. OBJECT DETECTION IN THERMAL SPECTRUM USING
MULTIMODAL AND DEEP LEARNING METHODS
The first phase explores multimodal machine learning meth-
ods that mainly rely on manually extracted feature vec-
tors which are then fed to different types of classifiers and
detectors for performing object detection in thermal spec-
trum either offline or in real-time. Olmeda et al. [13], pro-
posed pedestrian detection in FIR images by using a new
feature descriptor, the histograms of oriented phase energy
(HOPE), and an adaptation of the latent variable based on
the support vector machine (SVM). The authors concluded
that histogram-based features perform exceptionally well as
compared to other Linear binary patterns (LBP) and Prin-
cipal Component Analysis (PCA). Besbes et al. [14] pro-
pose a pipeline for pedestrian detection in thermal images
by using a hierarchical codebook of Speeded Up Robust
Features (SURF) in the head region, taking advantage of the
brightness of this area inside the regions of interest (ROIs).
The reported experimental results show improved accuracy
as compared to Haar-like Adaboost-cascade, linear SVM,
and MultiFtr pedestrian detectors, trained on the FIR images.
Coming towards more recent studies Lahmayed et al. [15]
presented a method based on three different feature extrac-
tors. It includes multi-threshold and Histogram of Oriented
Gradients (HOG) and Histograms of Oriented Optical Flow
(HOOF) colour features combined with an SVM using both
thermal infrared and visible light images. The authors val-
idated their algorithm on three different datasets i.e., OSU
colour thermal dataset [16], video analytic dataset, and LITIV
dataset [17]. However, the main drawback of conventional
machine learning classifiers such that SVM [18] cannot per-
form well with big datasets, and noisy data such that target
classes are overlapping with each other.

The second phase explores deep learning and most specifi-
cally convolution neural networks (CNN)which have become
an emerging trend for building intelligent imaging pipelines.
This is due to the fact that end-to-end CNN models have
proved their strengths in various computer vision applications
by achieving robust and precision accuracy as compared to
multimodal conventional machine learning methods. There
are various state-of-the-art published deep learning-based
object detection frameworks which include YOLO [19],
Single Shot MultiBox Detector (SSD) [20], R-CNN [21],
Fast R-CNN [22], and Mask R-CNN [23]. However, all these
frameworks are built, trained, and tested on visible data.
In this study, the prime focus is to explore the robustness of
the object detector i.e., YOLO in thermal infrared spectrums.
Various published studies [24]–[28] can be found where deep
learning is employed for object detection in thermal images.
In these studies, authors have used thermal data for object
detection i.e., pedestrian detection in differing illumination
conditions. The system works by extracting the feature maps
from multispectral images. In the next step, these feature
maps are fed to state-of-art object detectors which include
faster-RCNN [29] and YOLO [19]. Recently Authors in [30]
have used a YOLO detector for automatic human detection
for surveillance application. The results concluded that due
to the vast variation between visual and thermal data, the
original YOLO model [19] has not achieved satisfactory
outcomes by scoring the average precision (AP) of just 23%
for single class person detection task in different weather con-
ditions. Herrmann et al. [31] tested the Single Shot Detector
(SSD) object detector by applying different pre-processing
techniques to assess the performance of the detector on
thermal data. They used KAIST [32] dataset for performance
evaluation. The authors also worked with Maximally Stable
Extremal Regions (MSERs) and later on classify the detected
proposals by using CNN. The approach was tested on the
OSU thermal pedestrian [14], OSU colour thermal [16],
and Terravic motion IR [33] datasets. Recently,
Huda et al. [7] used a YOLO object detector for person
detection in the thermal spectrum. The authors had cre-
ated their outdoor thermal dataset for transfer learning the
YOLO-v3. The trained models were tested on three dif-
ferent public datasets which include CVC-09 [34], OSU-
Thermal [16], and BU-TIV-atrium [35]. Similarly, in another
recent study by Farzeen et al. [3] authors have explored
domain adaption through style transfer methodology. These
authors have used GAN architectures and cross-domain mod-
els on thermal and visible spectrum images. In the next stage,
the style consistency approach is used for object detection
by using two different public datasets, FLIR ADAS [36] and
Kaist Multi-spectral dataset [32]. The authors established that
adapting the low-level features from source domain to target
domain using domain adaptation increases the mean average
precision by approximately 10%. As per our finding, no pub-
lished studies can be listed where authors have investigated
the real-time feasibility of object detection algorithms in the
thermal spectrum on edge devices for ADAS applications.
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FIGURE 1. Sample images under varying environmental conditions from
four different public datasets (a) CVC-09 dataset: frame acquired in day
time road environment, (b) CVC-09: frame acquired in night-time road
environment, (c) FLIR ADAS dataset: frame acquired in cloudy weather
and road environment, (d) KAIST dataset: frame acquired in day time
campus environment, (e) KAIST dataset: frame acquired in day time road
environment, (f) KAIST dataset: frame acquired in night-time road
environment, (g) OSU-thermal dataset: frame acquired in day-time with
light rain in Ohio State University campus, (h) OSU-thermal dataset: frame
acquired in day-time with partly cloudy weather in the campus
environment and (i) OSU-thermal dataset: frame acquired in day-time
with haze/ dusty weather conditions in the university campus
environment.

III. PROPOSED METHODOLOGY
This section mainly focuses on the proposed methodol-
ogy for robust training of state-of-the-art YOLO-v5 frame-
work [8], [9] for out-cabin object detection in the thermal
spectrum. Yolo was first introduced by Redmon et al. [19]
for real-time object detection. YOLO is considered one of
the fastest and finest deep learning algorithms for object
detection in images, videos, and real-time camera streams.

The algorithm utilizes regression techniques thus training
the whole image at once to optimize the overall performance.
Moreover, it detects the class objects with their probabilities
scores at the same time without requiring region proposals.
YOLO-v5 is natively implanted in PyTorch whereas all prior
models in the YOLO family leverage Darknet deep learning
framework [37]. The networks are trained to detect seven dif-
ferent objects which include pedestrian/ person, vehicles (car,
bus, bike, and bicycle), animal (dog), and light/ sign poles. All
these objects are commonly found on the roadside thus it will
provide a better perspective for the driver’s assistance. In this
study, we have reviewed four large-scale datasets in the ther-
mal domain. These datasets are available publicly and pro-
vide image sources with differing outdoor environmental and
weather conditions. These datasets include the OSU Thermal
pedestrian [16] database, KAISTMulti-Spectral dataset [32],
FLIR ADAS dataset [36], and CVC-09 [34] datasets.
Figure 1 shows the sample images from these datasets under
different environmental and lighting conditions.

Table 1 provides the complete dataset attributes of all four
datasets used in this study. The selected set of public datasets
is used for optimal training and testing of four different net-
work variants of YOLO-v5 named as X-large, large, medium,

FIGURE 2. Complete block diagram representation for object detection in
thermal spectrum for driver assistance using end-to-end YOLO-v5
architecture.

and small models. Most of these datasets are specifically
gathered and proposed for autonomous driving applications.
We have used data samples from four different public datasets
as shown in table 1 for the training of all four network
variants of YOLO-v5 architecture. The numeric performance
comparison of all the model variants has been evaluated in
the experimental results and discussion section thus summa-
rizing the best models in terms of precise accuracy and lower
inference time. The trained networks are tested on both public
as well as locally gathered datasets.

A. TRAINING AND LEARNING APPROACH
In this work, we have included roadside objects for
driver assistance comprising of seven different classes.
Figure 2 shows the complete block diagram representation of
the proposed methodology used in this study. It includes four
different vehicles (i.e., bicycles, bikes (motorbikes), buses,
cars), dogs in animal class, pedestrians or people, and road-
side poles as shown in figure 2. The data samples from these
classes are demonstrated in figure 3.

The individual class-wise training data distribution is
shown in figure 4. A total of 32,715 data samples has been

156468 VOLUME 9, 2021



M. A. Farooq et al.: Object Detection in Thermal Spectrum for ADAS

FIGURE 3. Seven different data classes for training YOLO-v5 in thermal
spectrum a) bicycle, b) bike, c) bus, d) car, e) dog, f) person, g) sign/street
pole.

FIGURE 4. Class-wise distribution of complete thermal data used during
the training process.

used along with their respective class labels in the training
process of the YOLO-v5 framework. Figure 5 shows the data
distribution of all the classes.

In this work, we have focused on using Ultralytics [8], [9]
resource for the training of YOLO-v5 architecture on vari-
ous public thermal datasets. During the training process, the
configuration file is updated accordingly to our requirements
specified in the head layer to adapt the number of classes
(7 classes) on our dataset. To achieve precise training
accuracy, we have trained all the network variants of
YOLO-v5 architecture using both Stochastic Gradient Decent
(SGD) [38] with the momentum of 0.9 as well as Adaptive
learning rate optimization (Adam) [39] optimizer. SGD is
considered a state-of-the-art optimizer for training deep con-
volution neural networks. It works by performing parameter
update for each training batch rather than updating the whole
training batch at once. It performs faster on large training
samples. Moreover, it is computationally less expensive and
has the ability to converge much faster as compared to batch
Gradient Decent (GD) optimizer [40]. Adaptive learning rate
optimization (Adam) algorithm work by taking advantage of
adaptive learning rates thus computing the individual learning
rate for individual parameters. It has various key benefits

FIGURE 5. Training data distribution a) un-distributed data samples,
b) class-wise clustered training data samples.

in comparison to other state-of-art optimizers which include
invariant to diagonal rescale of the gradients, it requires less
amount of memory, it is computationally more resourceful
and lastly, it is more appropriate for noisy gradients. Lastly
in this work rather than relying on one fixed learning rate
we have used a one-cycle learning policy to find the optimal
learning rate for our custom thermal training set. The main
reason for using this method is to achieve robust results
during the training process of complex network variants of
YOLO-v5 architecture. The algorithmworks by following the
Cyclical Learning Rate (CLR) to achieve faster training time
with the regularization effect.

B. TRAINING DATA AUGMENTATION/TRANSFORMATION
Deep learning models are not considered ideal solutions
with limited data options. To overcome this challenge, large
data sets are required to perform optimal training of net-
works. Data augmentation is an effective way of producing
many new training samples with diversity using the existing
datasets. The synthetically generated data samples can be
used with the original data to build large training sets. In this
work, we have used various data transformation methods as
shown in block 4 of figure 2. The further details of each
augmentation method are as follows.

• Flipping: This method is used to perform image flipping
in different directions which include up, down, left, and
right directions. It helps the model to be insensitive to
subject orientation.

• Rotation: This method is used to add variability to rota-
tions thus helping the model to be more resilient to the
camera roll.

• Image cropping: This technique is used to augment
changeability to positioning and size. It helps the model
to be more resilient to subject translations and camera
positions.

• Image shearing: It is used to add shifting to the image by
providing desired vertical and horizontal angles.

• Translation: It is used to move the image along the hori-
zontal and vertical axes. This method of transformation
is very useful as objects can be located almost anywhere
in the image.

• Mosaic transformation: It is considered an advanced
form of image augmentation operation. It works by
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FIGURE 6. Mosaic transformation formed by combining four different
training samples with different class labels including cars labeled as 3,
person labeled as 5 and poles labeled as 6.

FIGURE 7. Annotated sample images with tight bounding boxes from two
different datasets a) CVC-09 dataset sample (road-side view), b) KAIST
dataset sample (road-side parking).

combining different training samples in one image with
varying ratios. We have employed this augmentation
method during the training process. It helps the model
to learn how to identify the objects at a smaller scale
than normal. It also encourages the model to local-
ize different types of images in different portions of
the frame. Figure 6 shows the mosaic transformation
of four different training samples with different class
labels.

C. DATA ANNOTATIONS
In this study, we have performed manual bounding-based
annotations for all the thermal classes. Tight bounding
box-based annotations were performed on all the frames
for the training of YOLO-v5 framework. All the network
variants are trained to detect and classify bicycles, bikes,
buses, cars, dogs, pedestrians, and roadside poles in stimulat-
ing environmental conditions which include sunny weather,
cloudy weather, night-time with total darkness, daytime, and
other challenging environmental conditions. Table 2 shows
the respective distribution of all the annotated frames selected
from four different public datasets in varying environmental
conditions.

Fig. 7 shows some of annotated training data sam-
ples in different environmental conditions which are
selected from two different datasets and depicting different
objects.

D. LOCALLY RECORDED TESTING DATA USING LWIR
THERMAL CAMERA
The trained network variants are tested on both public as
well as newly gathered test data to validate the efficacy of

TABLE 2. Existing thermal dataset annotations.

FIGURE 8. Uncooled LWIR prototype thermal camera images from
different angles developed under the Heliaus EU project [37].

TABLE 3. Technical specifications of protoype LWIR thermal camera.

YOLO-V5 framework. The new test data is acquired using
a prototype thermal camera specifically designed for this
project. It is based on an uncooled micro-bolometer ther-
mal camera array that embeds a France [41] Long Wave
Infrared (LWIR) sensor. Figure 8 shows the images of the
prototype thermal camera used in this research project [10].
Whereas table 3 shows the technical specifications of the
uncooled thermal camera. The data is collected in two dif-
ferent approaches. In, the first approach the data is gathered
in a stationary manner by placing the camera at a fixed place.
The camera is mounted on the tripod stand at a fixed height of
nearly 35 inches such that the roadsides objects are covered
in the video stream. The thermal video stream is recorded
at 30 Frames Per Second (FPS). The data is recorded in
different weather conditions.

The data acquisition setup is shown in figure 9 whereas
figure 10 shows the complete roadside view captured from
logitech RGB Camera.
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FIGURE 9. Data acquisition setup by mounting the camera at a fixed place
and height, a) thermal and RGB camera mounted at a height of 0.9 meters
from the ground surface, b) roadside field of view showing two-way main
road and the one-way thin road joining the two-way main road.

FIGURE 10. Visual frame in the evening time with cloudy weather
showing the complete roadside view.

In the second approach rather than collecting data in a
static approach the camera is mounted in the car and data
is collected through the car. The main reason for collecting
data in two different approaches is to check the effective-
ness of trained network variants of YOLO-v5 framework
on diversified and distinctive local data in different weather
and environmental conditions. Figure 11 shows the thermal
camera along with the visible camera setup on the car.

Figure 12 shows the recorded sample thermal frames in the
day, evening, and nighttime with different weather conditions
using both by placing the camera at a fixed place and by
mounting the camera on the car.

IV. EXPERIMENTAL RESULTS ON GPU AND EDGE DEVICE
This section will exhibit the thermal object detection results
along with the performance comparison of four different net-
work variants of YOLO-v5 framework. In this study, different
testing approaches have been employed thus making a fair
numeric comparison between these approaches on the test
dataset. These methods along with their experimental results
are further discussed in subsections. Moreover, in this study,
we have deployed the smallest model variant (in terms of
having the least number of model parameters), and yet the

FIGURE 11. Data acquisition setup by mounting the cameras on the car,
a) thermal and RGB camera sealed in the white box and fixed on a
suction tripod mount, b) closer view of the 3d printed white box holding
thermal and visible cameras.

FIGURE 12. Recorded thermal data samples in different weather
conditions by placing the camera on the car and by placing the camera at
a fixed place, a) daytime with sunny weather, b) evening time with cloudy
weather, c) nighttime with partially cloudy and windy weather.

fastest network variant (in terms of least inference time) of
YOLO-v5 framework onNvidia Jetson edge device [11]. This
will eventually help us in the form of trainedmodel portability
for diversified ADAS applications.

In the initial phase of experimental results, we have used
the pre-trained weights and tested them on thermal datasets
without undergoing any training process. However, the results
were not satisfactory as detector was unable to detect most
of the objects in thermal frames. In the next phase, we have
trained all the networks of YOLO-v5 from scratch and used
newly trained model weights for evaluation on five different
thermal test datasets (4 are public and 1 is local).

A. TRAINING CONFIGURATION AND TESTING
APPROACHES
This section will mainly focus on the training configuration
using two different optimizers which include SGD and Adam
employed in this study and different testing approaches. The
complete training configuration is provided in table 4. The
training process is performed on a server-grade machine
equipped with XEON E5-1650 v4 3.60 GHz processor,
32 GB of ram, and GEFORCE RTX 2080 graphical process-
ing unit. It comes with 12 GB of dedicated graphical memory,
memory bandwidth of 616 GB/second, and 4352 cuda cores.
During the training process, the training batch size is fixed
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TABLE 4. YOLO-v5 training configuration.

to 4. The training process is performed on Pytorch deep
learning framework [42]. It is important to mention that we
have trained all the networks from scratch by un-freezing
all the network layers and building new weights rather than
transfer learning the networks to adapt the models for thermal
data.

In the proposed study three different test-time approaches
are employed which include test-time with no augmentation
(TTNA), test-time augmentation (TTA), and test-time with
model ensembling (TTME)methodology. The details of these
are methods are as follows.

• TTNA: It is referred to as a conventional testing
approach used for the unseen testing data provided to
the trained object detection models. In this method,
we don’t perform any data augmentation/ transforma-
tion. Since no additional data augmentation operations
are performed, the inference time depends on how dense
the trained model is.

• TTA: Test-time augmentation is often helpful to achieve
more robust results in the form of high inference accu-
racy from trained networks. Test-time augmentation is
an extensive application of data augmentation applied
to the test dataset. Specifically, it works by creating
multiple augmented copies of each image in the test
set, having the model make a prediction for each, then
returning an ensemble of those predictions. However,
since the test dataset is enlarged with artificially aug-
mented images the inference time also increases as com-
pared to TTNA which is one of the drawbacks of this
approach. In this study, test-time augmentation method
is performed on the test dataset by incorporating three
different augmentation methods which include image
shifting, cropping, and flipping.

• TTME: This is a technique for establishing the per-
formance of multi-modal trained network variants on
the test datasets. In machine learning model ensem-
bling or ensemble learning refers to as using multiple

trained networks at the same time in a parallel man-
ner to produce one optimal predictive inference model.
In this study, we have tested the performance of individ-
ually trained variants of the YOLO-v5 framework and
selected the best combination of models which in turn
helps in achieving better mean-average precision (mAP)
scores on the validation set. However, as the trade-off,
the individual inference time on each test frame/ image
increases relatively as compared to TTNA methods.

B. TRAINING RESULTS
This section will summarize the training results of all the
network variants of YOLO-v5 framework. The training accu-
racy and loss results are analyzed using different quantitative
metrics to fully evaluate the effectiveness of all the trained
models. The overall loss in the YOLO-v5 framework is cal-
culated as compound lost based on three different scores
which include objectness score, class probability score, and
bounding box regression score. In this study, we have used
Binary Cross-Entropy (BCE) with Logits Loss function in
pytorch for loss calculation of class probability and object
score. Whereas, the model accuracy is computed in terms
of recall rate, model precision, and mean average preci-
sion (mAP). These accuracy metrics are explained below
respectively.

1) RECALL AND PRECISION
In machine learning recall or sensitivity is counted as a crit-
ical statistical tool which is also referred to as true positive
rate. It is defined as the ratio of true positive and the total
amount of ground truth positives. The precision of any class
is defined as the ratio of true positive (TP) and the sum of
predicted positives. It is also referred to as positive predicted
values. Equation (1) shows the formula of recall and precision
metrics.

Recall=
tp

tp+ fn
× 100 Precision=

tp
tp+ fp

× 100 (1)

where tp is the true positives, fn is defined as false negatives
and fp is the false positives.

2) MEAN AVERAGE PRECISION (MAP)
The mean average precision (mAP) is a standard metric
used to measure the performance of deep learning models
trained for applications such as information retrieval and
object detection tasks. It is defined as the area under the
Precision-Recall curve. The mAP for the object detection
model is the average of the AP computed for all the classes.
Equation (2) shows the formula for calculating the AP.

AP =
∑

Recalli
Precision (Recalli) = 1 (2)

As mentioned earlier in (Section III-A), we have used both
SGD and ADAM optimizers during the training process and
selected the trained models with the best performance for
validation on the public as well as locally gathered test data.
Table 5 shows the area under the Precision-Recall curve for
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TABLE 5. YOLO-v5 training results of all the four network variants.

all the classes of four different network variants trained from
scratch using both SGD and ADAM optimizer. Also, during
the training process, we have made a comparative analysis
of total graphical memory usage and the total training time
required for all the models.

For a better understanding of the performance compari-
son of all the models, table 6 shows the numerical results
of all the accuracy metrics, loss metrics, graphical memory
usage, and overall training time required using both SGD
and ADAM optimizer. It can be observed and summarized
from table 5 and table 6 that models trained using SGD
optimizer have performed significantly better as compared to
models trained using ADAM optimizer in the terms of better
mAP value, better precision scores, lower GPU usage, lower
training time, and finally lower losses. Also, by analysing the

TABLE 6. YOLO-v5 trained models accuracy and loss comparisons.

FIGURE 13. Training and Loss graphs of X-large model using SGD
optimizer a) bounding-box loss, b) objectness loss, c) classification loss,
d) model Precision, e) model recall curve, and f) mean average
precision (mAP).

individual performance of all the models, the X-large model
has achieved the best mAP score of 91.31% with the lowest
losses as compared to all other models. Whereas the medium
network variant has scored the second-best mAP score of
91.26% along with the highest recall rate of 94.51% among
all the models. In terms of the highest precision scores, the
large and x-large model has outperformed all other models
thus achieving the best precision score of 75%.

Figure 13 shows the accuracy and loss graphs of the
x-large model as it has achieved exceptional performance
in terms of the highest map scores and lower loss values
when analysing the performance of other network variants of
YOLO-v5 framework. However, as the trade-off, this model
requires the highest training time and greater GPU usage
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TABLE 7. Test data collected from public datasets.

which makes it computationally more expensive. The overall
model is consisting of 407 layers, 88.47 million gradients,
and the final trained model weight size is 173 mb.

C. VALIDATION RESULTS ON PUBLIC AND LOCALLY
GATHERED TEST-DATA
In the first phase, the performance of YOLO-v5 trained
networks is evaluated on the unseen data gathered
from publicly available datasets. As discussed earlier in
(Section IV-A) three different test approaches are used which
include TTNA, TTA, and TTME to validate the efficacy
of four different networks of YOLO-v5 architecture. The
training results signify that the SGD optimizer has performed
better than the ADAM optimizer, however, during the testing
phase, we have included the results extracted from trained
networks using ADAM optimizer thus making fair testing
evaluation among all the set of trained models. The test data
comprises different weather conditions, different environ-
ments/ places, and varying distances of the objects from the
camera. Table 7 shows the total number of frames used as the
test data from four different publicly available datasets along
with their respective attributes.

In the first segment, the inference test is run on test data
using the TTNA approach. Whereas, in the second part we
have run the inference results using the TTA approach. Dur-
ing the complete testing phase, the confidence threshold is
set to 0.5. Figure 14 shows the sample results on sixteen
different frames selected arbitrarily from the test-set using
the TTNA approach and models trained using the SGD opti-
mizer [38]. These frames consist of either single or multiple
objects in the thermal spectrum from seven different classes
as shown in figure 3. The test results are sub-divided into four
parts extracted from four different network variants of the
YOLO- v5 framework.

It can be observed from figure 14 that inference results
on test data using different network variants trained on ther-
mal data have improved significantly as compared to results
when just using the pre-trained weights. However, by closely

FIGURE 14. Object detection inference results with class confidence
scores on sixteen different frames from four different public datasets
using test-time without augmentation approach (TTNA) a) results
extracted using small network variant, b) results extracted using medium
network variant, c) results extracted using large network variant and
d) results extracted using x-large network variant.

analysing the results still, we are unable to detect and classify
some of the objects in thermal frames with challenges like
scale and view-point variations, occlusions, and overlapping
classes. For instance, in figure 14 (a) frame 2 smaller version
of the thermal object detector is unable to detect the car close
to the camera mounted on another car for recording the data.
Similarly, in figure14 (b) frame 1 rather than detecting two
cars, the medium model can detect only one car.

To overcome these issues and further improve the test
accuracy, the inference test is run using the test-time aug-
mentation (TTA) approach. The average inference time per
frame using the TTNAmethod varies depending on the size of
the model. The average inference time using the small model
is 11 milliseconds whereas the average inference time using
the x-large model is 21 milliseconds. Figure 15 depicts the
inference results on eight different samples from the test data
using TTA approach and four different network variants of
the YOLO-v5 framework using SGD optimizer [38]. It can
be observed that results are improvedmarginally as compared
to the TTNA approach and significantly as compared to using
originally pre-trained weight. This technique helps in detect-
ing and classifying the object in the thermal spectrum more
robustly with data complications such as occlusion, overlap-
ping classes, scale variation, and varying environmental con-
ditions. However, as the trade-off the average inference time
per frame by employing TTA method increases as compared
to TTNA method since additional augmentation operations
are performed during the testing phase.

Table 8 shows the numerical performance comparison
between TTNA and TTA for all the network variants by
computing the mAP, precision, recall rate, and average infer-
ence time required per image. For this purpose, we have
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TABLE 8. YOLO performance evaluation on test images from public datasets (The best value per metric is highlighted in green and emboldened).

FIGURE 15. Object detection inference results with class confidence
scores on eight different frames from four different public datasets using
test-time with augmentation approach (TTA) a) results extracted using
small network variant, b) results extracted using medium network variant,
c) results extracted using large network variant and d) results extracted
using x-large network variant.

short-listed a test-set of 250 frames with image complexities
like occlusions, scale and viewpoint variations, and especially
multiple objects with closely overlapping classes from the
overall test data as shown. By analyzing the results from
table 8, we can summarize that the large model using TTA
method and SGD optimizer has achieved the best mean
average precision, recall rate, and precision score of 86.6%,
90.2%, and 86.5% respectively as compared to other network
variants of YOLO-v5 framework.

To further enhance the testing accuracy and explicitly
reduce the inference time as compared to the TTA method
a third testing approach i.e., model ensembling is used in this
study. In this approach, we have tried various combinations
of models by running them in ensembling style and selected
a new set of two best models by evaluating their performance
on test data as shown in figure 16.

FIGURE 16. Model ensembling inference engine architecture.

FIGURE 17. Model ensembling inference results on four different frames
with multiple objects, overlapping classes, varying distance of the object
from the camera, and different environmental and weather conditions.

As demonstrated in figure 16 the newly proposed ensem-
bled inference engine consists of large and x-large models to
produce one optimal predictive model. It is then evaluated
on the test data as shown in table 7. Figure 17 shows the
individual inference results on four selected frames with
complex scenarios like multiple objects with overlapping
classes, occlusions, object scale, and viewpoint variations,
and different weather conditions.

Whereas, table 9 shows the numerical performance in
terms of mAP, precision, recall rate, and average inference
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TABLE 9. Model ensembling performance evaluation on test images from
public datasets.

TABLE 10. Locally gathered test data from uncooled LWIR camera.

time required per image using the model ensembling method.
In the second phase, we have used the same model ensem-
bling approach to validate its robustness on locally gath-
ered novel test data. As mentioned earlier in (Section III-D),
test data is collected in two different methods which
include mounting the camera at a fixed place, and in the
second method, data is gathered by mounting the cam-
era on the electric car and driving it around the univer-
sity campus and city side. The locally gathered test data
comprises different weather conditions, different environ-
ments/ places, different lighting conditions (day, evening and
night time), multiple objects of different classes, and scale
variations.

Table 10 shows the total number of short-listed frames used
as the test data from our locally generated dataset along with
their respective attributes.

Figure 18 displays the inference results on eight distinct
thermal frames gathered from the uncooled prototype LWIR
camera used in this project. It can be observed that an pro-
posed ensemble inference engine comprising of x-large and
large network variant has achieved precise results as it can
detect and classify multiple objects of different classes in
newly gathered local test data.

However, to further investigate its effectiveness on local
test data, we have computed various accuracy metrics which
include precision, recall, mAP, and mean inference time
required per image as it was computed in the case of public
datasets on a set of 250 thermal frames. These results are
shown in table 11.

FIGURE 18. Model ensembling inference results on eight different frames
acquired from prototype thermal camera with multiple objects,
overlapping classes, the varying distance of the object from the camera,
and different environmental and weather conditions.

TABLE 11. Model ensembling performance evaluation on test images
from the locally gathered dataset.

D. DEPLOYMENT AND VALIDATION RESULTS ON EDGE
COMPUTING
After successful convergence and testing of YOLO networks
on GPU architecture, in the next step, we drive towards the
deployment of the trained network on edge-inference archi-
tecture. The primary goal is to create a flexible, scalable,
secure, and more automated hardware system thus allowing
us to easily export the trained network weights for easy model
portability. It will be beneficial when integrating the edge
devices with thermal camera for deploying it in intelligent
automotive sensor suite for real time analysis. The core ben-
efits of deploying the trained machine learning (ML) model
on edge devices include.

1. The edge hardware is assumed to be more energy-efficient
since it requires less amount of power resources as com-
pared to single or clustered-based CPU and GPU server
machines.
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FIGURE 19. Nvidia Jetson nano developer kit for deploying the YOLO-v5
trained networks.

2. Locating and processing inference at the edge architecture
lies in saving communication power.

3. Finally, the cost of edge-based inference hardware is
considerably less as compared to other computational
hardware such as field-programmable gate arrays (FPGA)
and GPUs.

For this study, Nvidia Jetson Nano [11] developer kit is
selected to evaluate the performance of YOLO-v5 trained
model on thermal test data. It is a small yet powerful edge
computer that allows us to run multiple neural networks
in parallel manner for several computer vision applications
such as image classification, object detection, segmentation,
and speech processing. It is considered as all in an easy-
to-use platform that runs in as little as five watts of power.
Figure 19 shows the Nvidia Jetson nano developer kit
equipped with CPU QUAD-core ARM A57 at 1.43 GHz and
GPU 128-core Maxwell. It comes with a memory of 4 GB,
64-bit, LPDDR4 25.6 GB/s. Jetson nano has a total of four
USB 3.0 ports, HDMI port, an ethernet port, and a barrel
connector to power it via five volts and 4-ampere supply.

The small network variant of the YOLO-v5 framework
is selected for further optimization as it has the minimum
number of model parameters and requires the least inference
time as compared to other models of YOLO which makes
it computationally less expensive and cost-effective model.
For better optimization, and further reduce the inference time
we have used TensorRT inference optimizer [43]. It is a type
of deep learning inference optimizer and runtime engine that
delivers low latency and high throughput for deep learn-
ing inference applications. TensorRT-based inference engines
can perform up to 40× faster than CPU-only platforms.
The optimized inference models can be easily deployed to
hyper-scale data centres, embedded and edge devices, and
automotive product platforms. Figure 20 shows the adapted
structural architecture design for converting the YOLO-v5
small deep learning model converged on thermal data to
an optimized inference engine. As shown in figure 20 the
process overflow for converting the trained network variant
of the YOLO-v5 framework to TensorRT based optimized
inference engine is consists of six main steps. In the first step,
it maximizes throughput by quantizingmodels to 8-bit integer
data type while preserving the accuracy. In the second step,
it improves the use of GPUmemory and bandwidth by fusing

FIGURE 20. Structural architecture for converting YOLO-v5 trained
network to TensorRT optimized inference engine.

nodes in a kernel. In the next step, it performs Kernal auto-
tuning. In the fourth step, it minimizes memory footprints
and re-uses memory for tensors efficiently. In the last steps,
it processes multiple input streams in parallel and finally opti-
mizes neural networks periodically with dynamically gener-
ated kernels [43]. Once the model is optimized successfully,
it is serialized and deserialized to run the inference test.

Fig. 21 shows the inference results on six different thermal
frames from the public as well as locally gathered test data.
The generated results are in the form of bounding boxes with
the respective class number. Figure 22 shows the test data
results on 400 images in the form precision-recall curve for all
the classes from both local and public test data on Jetson nano.
Table 12 shows the comparative analysis of the inference time
per frame and FPS rate between the typically trained model
tested on GPU, optimized/ accelerated version of the model
tested on GPU, and accelerated version of the model tested
on Nvidia Jetson nano.

It can be observed from table 12 that inference time has
reduced to nearly 55% on GPU by using the optimized
version of the YOLO-v5 model through TensorRT which
will eventually benefit us when running the inference test
with a large number of test frames and subsequently running
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FIGURE 21. Inference results on Nvidia Jetson nano using TensorRT
optimization engine by showing respective class numbers, a) inference
results on public datasets, b) inference results on the locally gathered
test dataset.

FIGURE 22. Test data results for all the classes on Jetson Nano using
small network variant with an overall mAP of 74.1%.

TABLE 12. Inference time and FPS comparison on GPU and Jetson Nano.

the inferences on higher frames per second (FPS) videos.
Whereas on Nvidia Jetson it requires nearly 320 milliseconds
average inference time per frame and FPS rate of 3 with an
image resolution of 640 × 640 pixels.

V. DISCUSSION/ANALYSIS
This section will mainly emphasize individual training and
testing performance comparison of all the model variants of
YOLO framework.

• The small variant requires the lowest inference time
among all other models with the mAP score of 85.4%
using TTA approach which is nearly equal to the mAP
score of the model ensembling method that is 85.5%
during the testing phase.

• The medium model tends to achieve the best precision
score of 90.5% using TTNA method and the best recall
score of 90.1% using the TTA method among all other
models during the testing phase. However, this model
was unable to achieve robust mAP scores during both
the training and testing phases.

• The large variant proves to the best network by achieving
the highest mAP scores using both TTNA and TTA
methods of 84.1% and 86.6% respectively during the
testing phase as compared to other trained networks.
However, it requires a longer inference time specifi-
cally when using the models with TTA method which
is nearly 35 milliseconds per frame.

• The X-large model turns out to be the best-trained model
thus scoring the highest mAP score of 91.31% and
lowest losses using the SGD optimizer but during the
testing phase, the model was unable to achieve excep-
tional accuracy on the validation/ test set along with
the highest inference time using both TTNA and TTA
methods. However, this model comes up with the best
possible match with large network variant in the model
ensembling method.

• By examining the overall performance of all the mod-
els, we can conclude that test accuracy using the TTA
approach is significantly better as compared to TTNA.
However, as a trade-off, the TTA method requires huge
inference time which makes it a computationally more
expensive method.

• Figure 23 shows the maximum and minimum inference
time comparison chart of all the trained models tested
on GPU using three different testing approaches. It can
be observed that small network variant requires the least
inference time using both TTA and TTNA methods
thus making this model computably the least expensive
and ideal network for real-time deployments especially
on edge devices with comparatively less computational
power. Also, the minimum and maximum time required
by TTME approach is smaller as compared to TTA
method which makes it more time-efficient networks.

• TensorRT optimizer has been used to further speed up
the deep learning inference using Thermal-YOLO small
network variant on GPU as well as edge embedded
platform Nvidia Jetson Nano [11]. However, the per-
formance of the optimized model is much superior on
GPU as compared to Jetson Nano which is evidenced
by the fact that the ratio of FPS rate between Jetson nano
and GPU is 3:170. Also, the average inference time per
frame on Jetson nano is nearly 98% more as compared
to inference time on GPU.

• Lastly, the newly trained model weights performed
much better as compared to pre-trained weights
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FIGURE 23. Inference time comparison chart of the trained models on
GPU using test-time with no augmentation, test-time with augmentation,
and test-time with model ensembling methods.

however still in some of the most complex thermal
frames, models seem to provide inadequate results
which are discussed and shown in some of the cases as
follows.

A. CASE 1

These results are obtained using the small network variant
using TTNA method. It can be observed from the left side
input frame that five people can be seen from a human
perspective marked with manually annotated green boxes for
better understanding. The right-side frame shows the detector
output. The network was only able to detect three people
since the second person was putting a hand in front of her
face whereas the fourth person view was a side pose with
occluded vision thus detector was unable to detect the second
and fourth person. Moreover, we can see a second person
holding a baby walker however the detector miss-classified
it as a bike.

B. CASE 2

This result is obtained using the large variant using
TTA method. There is a total of five objects in this frame

FIGURE 24. Inference results along with person tracking using
DeepSORT [44] by assigning id 1 a) frame 1, b) frame 15, c) frame 23.

(three cars and two people). The detector was able to detect
four objects with good confidence scores however, it was
failed in detecting one other person as demonstrated in the
left side frame. This is because the person is riding the bike
with occluded vision (wearing the helmet) which makes his
facial features obstructed thus the model fails to detect and
classify it.

VI. CONCLUSION/FUTURE WORK
In this work, we have proposed smart thermal perception
systems effective for all lighting conditions using AI-based
object detection pipeline for the automotive sensor suite.
Four different network variants of the YOLO-v5 framework
have been employed and trained using four different public
datasets using SGD aswell as ADAMoptimizer. TheX-Large
model turns out to be the best-trained model thus achieving
the highest mean average precision. The performance esti-
mation of trained network variants is validated using both
public as well as locally gathered new test data in different
weather and environmental conditions. The Large network
variant comprising 47.4 million parameters has achieved the
best mAP score of 84.1% using TTNA and 86.6% using the
TTA method. To further reduce the inference time as com-
pared to the TTAmethodwithout compromising the accuracy,
the test-time with model ensembling (TTME) methodology
has been used. X-large and large model proves to be the
best network coupler thus producing the results as one opti-
mal inference engine. The proposed model ensembling-based
thermal inference engine achieves the overall mAP of 85.5%
on test data accumulated from public datasets and 70% on
locally gathered test data respectively. Secondly, we have
used TensorRT optimizer to further reduce the model infer-
ence time that can eventually help in real-time deployments,
especially on edge devices. The optimized version of the
smaller trained model is tested on both GPU as well as Jetson
nano thus getting 170 FPS on GPU and 3 FPS on jetson
nano.

As the possible future directions, these systems can be
deployed on more powerful edge devices with a higher flop
rate and less operating power for optimal performance, espe-
cially in real-time environments. Moreover, we intend to
include more thermal classes thus making the overall sys-
tem more mature and robust. In addition to this, we can
further integrate the current object detection system with
object tracking thus estimating the position of an object,
as well as incorporating position predicted by dynamics.
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This will eventually help us in counting the number of
vehicles, pedestrians, etc., along with their approximate
estimated distance. One such example is demonstrated in
figure 24 where we have integrated deep association met-
rics [44] tracking with YOLO-v5 for person tracking on three
different thermal frames selected from locally gathered test
data.
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Abstract—This study is focused on evaluating the real-time5
performance of thermal object detection for smart and safe ve-6
hicular systems by deploying the trained networks on GPU &7
single-board EDGE-GPU computing platforms for onboard au-8
tomotive sensor suite testing. A novel large-scale C3I Thermal9
Automotive dataset comprising of >35,000 distinct frames is ac-10
quired, processed, and open-sourced in challenging weather and11
environmental scenarios. The dataset is recorded from a lost-cost12
yet effective uncooled LWIR thermal camera, mounted stand-alone13
and on an electric vehicle to minimize mechanical vibrations.14
The state-of-the-art YOLO-v5 networks variants are trained us-15
ing four different public datasets as well newly acquired local16
dataset for optimal generalization of DNN by employing SGD17
optimizer. The effectiveness of trained networks is validated on18
extensive test data using various quantitative metrics which include19
precision, recall curve, mean average precision, and frames per20
second. The smaller network variant of YOLO is further opti-21
mized using TensorRT inference accelerator to explicitly boost the22
frames per second rate. Optimized network engine increases the23
frames per second rate by 3.5 times when testing on low power24
edge devices thus achieving 11 fps on Nvidia Jetson Nano and25
60 fps on Nvidia Xavier NX development boards.26

Index Terms—ADAS, object detection, thermal imaging, LWIR,27
CNN, edge computing.28

I. INTRODUCTION29

THERMAL imaging is the digital interpretation of the in-30

frared radiations emitted from the object. Thermal imaging31

cameras with microbolometer focal plane arrays (FPA) is a32

type of uncooled detector that provides low-cost solutions for33

acquiring thermal images in different weather and environmental34

conditions. These cameras when integrated with AI-based imag-35

ing pipelines can be used for various real-world applications. In36
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this work, the core focus is to design an intelligent thermal object 37

detection-based video analysis system for automotive sensor 38

suite application that should be effective in all light conditions 39

thus enabling safe and more reliable road journeys. Unlike other 40

video solutions such as visible imaging which mainly relies on 41

reflected light thus having the greater chances of being blocked 42

by visual impediments, thermal imaging does not require any 43

external lighting conditions to capture quality images and it can 44

see through visual obscurants such as dust, light fog, smoke, 45

or other such occlusions. Moreover, the integration of AI-based 46

thermal imaging systems can provide us with a multitude of 47

advantages from better analytics with fewer false alarms to 48

increased coverage, provide redundancy and, higher return on 49

investment. 50

In this research work, we have focused on utilizing ther- 51

mal data for designing efficient AI-based object detection and 52

classification pipeline for Advanced Driver-Assistance Systems 53

(ADAS). Such type of thermal imaging-based forward sens- 54

ing (F-sense) system is useful in providing enhanced safety 55

and security features thus enabling the driver to better scruti- 56

nize the complete road-side environment. For this purpose, we 57

have used state-of-the-art end-to-end deep learning framework 58

YOLO-v5 on thermal data to predict 6 distinct objects, which 59

include person, car, street-pole, bike, bicycle, and bus. In the 60

first phase, a novel thermal dataset (https://github.com/Mali- 61

Farooq/Thermal-YOLO) is acquired for training and validation 62

purposes of different network variants of YOLO-v5. The data 63

is captured using a prototype low-cost microbolometer based 64

uncooled LWIR thermal camera with a resolution of 640x480, 65

specifically designed under the ECSEL Heliaus research project 66

[1]. The raw thermal data is processed using shutterless cam- 67

era calibration, automatic gain control, bad-pixel removal, and 68

temporal denoising methods. 69

Furthermore, the trained network variants are deployed and 70

tested on two state-of-the-art embedded GPU platforms, which 71

include NVIDIA Jetson nano [2] and Nvidia Jetson Xavier 72

NX [3]. Thus, studying the extensive real-time and on-board 73

feasibility in terms of various quantitative metrics, inference 74

time, FPS, and hardware sensor temperatures. 75

The core contributions of the proposed research work are 76

summarized below: 77
� Preparation and annotation of a large-scale C3I thermal au- 78

tomotive open-access dataset captured in different weather 79

and environmental conditions. 80

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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TABLE I
EXISTING SOA THERMAL DATASETS

� A detailed comparative evaluation of SoA object detection81

based on a modified YOLO-v5 network, fine-tuned for82

thermal images using this newly acquired dataset.83
� Model optimization using TensorRT inference accelerator84

to implement a fast inference network on SoA embedded85

GPU boards (Jetson, Xavier) with comparative evaluations.86
� A determination of realistic frame rates that can be87

achieved for thermal object detection on SoA embedded88

GPU platforms.89

II. BACKGROUND90

ADAS (Advanced Driver Assistance Systems) are classified91

as AI-based intelligent systems integrated with core vehicu-92

lar systems to assist the driver by providing a wide range of93

digital features for safe and reliable road journeys. Such type94

of system is designed by employing an array of electronic95

sensors and optical mixtures such as different types of cameras96

to identify surrounding impediments, driver faults, and reacts97

automatically.98

The second part of this section will mainly summarize the99

existing/ published thermal datasets along with their respective100

attributes. These datasets can be effectively used for training and101

testing the machine learning algorithms for object detection in102

the thermal spectrum for ADAS. The complete dataset details103

are provided in Table I.104

A. Related Literature 105

We can find numerous studies regarding the implementation 106

of object detection algorithms using AI based conventional 107

machine learning as well as deep learning algorithms. Such 108

type of optical imaging-based systems system can be deployed 109

and effectively used as forward sensing methods for ADAS. 110

Advanced Driver-Assistance Systems (ADAS) is an active area 111

of research that seeks to make road trips more safe and se- 112

cure. Real-time object detection plays a critical role to warn 113

the driver thus allowing them to make timely decisions [13]. 114

Ziyatdinov et al. [13] proposed an automated system to detect 115

road signs. This method uses the GTSRB dataset [14] to train on 116

conventional machine learning algorithms which include SVM, 117

KNN, and Decision Trees classifier. The results proved that 118

SVM and K – nearest neighbour (k-NN) outperforms all other 119

classifiers. Autonomous cars on the road require the ability to 120

consistently perceive and comprehend their surroundings [15]. 121

Oliver et al. [15] presented a procedure to use Bernoulli particle 122

filter, which is suitable for object identification because it can 123

handle a wide range of sensor measurements as well as object 124

appearance-disappearance. Gang Yan et al. [16] proposed a 125

novel method to use HOG to extract features and AdaBoost and 126

SVM classifiers to detect vehicles in real-time. The histogram 127

of oriented gradients (HOG) is a feature extraction technique 128

used for object detection in the domain of computer vision 129

and machine learning. The study concluded that the AdaBoost 130

classification technique performed slightly better than SVM 131

since it uses the ensemble method. Authors in [17], proposed 132

another approach to detect vehicles on road using HOG filters 133

to again extract features from the frames and then classify them 134

using support vector machines and decision tree classification al- 135

gorithms. Furthermore, SVM achieved 93.75% accuracy, which 136

outperformed decision tree accuracy on classifying the vehicles. 137

These are some of the conventional machine learning object 138

detection techniques used for driver assistance system till date. 139

The main drawback of traditional machine learning techniques is 140

that the features are extracted and predefined prior to training and 141

testing of the algorithms. When dealing with high-dimensional 142

data, and with many classes conventional machine learning 143

techniques are often ineffective [18]. 144

Deep learning approaches have emerged as more reliable and 145

effective solutions than these classic approaches. There are many 146

state-of-the-art pre-trained deep learning classifiers and object 147

detection models which can be retrained and rapidly deployed 148

for designing efficient forward sensing algorithms [19]. YOLO 149

(you only look once) object classifier provides sufficient per- 150

formance to operate at real-time speeds on conventional video 151

data without compromising the overall detector precision [20]. 152

Veta et al. [21] presented a technique for detecting objects at a 153

distance by employing YOLO on low-quality thermal images. 154

Another research [22] focused on pedestrian detection in thermal 155

images using the histogram of gradient (HOG) and YOLO 156

methods on FLIR [9] dataset and computed performance with 157

a 70% accuracy on test data using the intersection over union 158

technique. Further, Rumi et al. [23] proposed a real-time human 159

detection technique using YOLO-v3 on KAIST [10] thermal 160
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TABLE II
COMPARISON ANALYSIS OF PREVIOUS YOLO VERSIONS WITH YOLO-V5

dataset, achieving 95.5% average precision on test data. Authors161

in [24] proposed a human detection system using YOLO object162

detector. The authors used their custom dataset recorded in163

different weather conditions using FLIR Therma-CAM P10164

thermal camera. Using five Siamese networks, the authors in165

[25] proposed a data-driven appearance score based on an in-166

novative edge-based descriptor. The network was trained on a167

locally gathered single class pedestrians’ dataset to obtain robust168

outcomes with an average precision of 86.2%.169

Focusing on road-side objects, authors in [26] used YOLO-v2170

object detection model to enhance the recognition of tiny vehicle171

objects by combining low-level and high-level features of the172

image. In [27], the authors proposed a deep learning-based173

vehicle occupancy detection system in a parking lot using a ther-174

mal camera. In this study authors had established that YOLO,175

Yolo-Conv, GoogleNet, and ResNet18 are computationally more176

efficient, take less processing time, and are suitable for real-177

time object detection. In one of the most recent studies [28],178

the efficacy of typical state-of-the-art object detectors which179

includes Faster R-CNN, SSD, Cascade R-CNN, and YOLO-v3180

was assessed by retraining them on a thermal dataset. The results181

demonstrated that Yolo-v3 outclassed other object SoA object182

detectors. As compared to all the previous versions of YOLO183

released, YOLO-v5 has a Cross-Stage-Partial (CSP) backbone184

and PA-NET neck. The foremost improvements include mosaic185

data augmentation and auto learning bounding box anchors. The186

detailed comparative analysis of the recently released Yolo-v5187

with all the previous versions is presented in Table II.188

It can be observed from Table II that YOLO-V5 has compar-189

atively achieved better validation results in terms of the highest190

mean average precision and frames per second on COCO dataset191

as compared to the previous version of YOLO framework. The192

optimal training and fine-tuning process of CNN to predict193

objects in low resolution, grayscale, and thermal infrared imag-194

ing (with lack of color information) and further optimizing the195

trained network to be deployed on edge devices is a challenging196

task [25]. For this task, Yolo-v5 open-source object detection197

framework is employed as it has better detection results than198

the previous YOLO versions as shown in Table II. In one of our199

recently published study [33], we have proposed a novel state-200

of-the-art YOLO-v5 based thermal object detection algorithm201

trained on public datasets and validated the performance on GPU202

with a maximum FPS rate of 170 and 3 FPS on Nvidia-Jetson 203

Nano. 204

The main contribution of this research work is the establish- 205

ment of a novel C3I thermal automotive dataset, which is then 206

used to train the YOLO-v5 object detection algorithm along 207

with four other public datasets. This study produced superior 208

outcomes on thermal data and advances the state-of-the-art in the 209

form of higher FPS rate and less inference time by optimizing the 210

trained networks using TensorRT neural accelerator which were 211

then deployed on both the edge-GPU devices which includes 212

Nvidia Jetson Nano and Nvidia Jetson Xavier devices. 213

B. Object Detection on Edge Devices 214

AI on edge devices benefit us in various methods such that 215

it speeds up decision-making, makes data processing more reli- 216

able, enhances user experience with hyper-personalization, and 217

cuts down the costs. While machine learning models have shown 218

immense strength in diversified consumer electronic applica- 219

tions, the increased prevalence of AI on edge has contributed 220

to the growth of special-purpose embedded boards for various 221

applications. Such types of embedded boards can achieve image 222

inference at higher frames per second (fps) and low power 223

usage. Some of these board includes Nvidia Jetson Nano, Nvidia 224

Xavier, Google Coral, AWS DeepLens, and Intel AI-Stick. Au- 225

thors in [34], [35] proposed a raspberry pi-based edge computing 226

system to detect thermal objects. Sen Cao et al. [36] developed a 227

roadside object detector using KITTI dataset [37] by training an 228

efficient and lightweight neural network on Nvidia Jetson TX2 229

embedded GPU. 230

In another study [38] authors proposed deep learning-based 231

smart task scheduling for self-driving vehicles. This task man- 232

agement module was implemented on multicore SoCs (Odroid 233

Xu4 and Nvidia Jetson). 234

The overall goal of this study is to analyze the real-time 235

performance feasibility of Thermal-YOLO object detector by 236

deploying on edge devices. Different network variants of yolo- 237

v5 framework are trained and fine-tuned on thermal image 238

data and further deployed on the Nvidia Jetson Nano [2] and 239

Nvidia Jetson Xavier NX [3]. These two platforms, although 240

from the same manufacturer provide very different levels of 241

performance and may be regarded as close to current SoA in 242

terms of performance for embedded neural inference algorithms. 243

III. THERMAL DATA ACQUISITION AT SCALE FOR ADAS 244

This section will mainly cover the thermal data collection 245

process using the LWIR prototype thermal imaging camera. 246

The overall data is consisting of more than 35K distinct thermal 247

frames acquired in different weather and environmental condi- 248

tions. The data collection process includes shutterless camera 249

calibration and thermal data processing [39], using the Lynred 250

Display Kit (LDK) [40], data collection methods, and overall 251

dataset attributes with different weather and environmental con- 252

ditions for comprehensive data formation. 253
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Fig. 1. LWIR thermal imaging module images from different view angles.

A. Prototype Thermal Camera254

For the proposed research work we have utilized an uncooled255

thermal imaging camera developed under the HELIAUS project256

[1]. The main characteristic of this camera includes its low-257

cost, lightweight, and sleek compact design thus allowing to258

easily integrate it with artificially intelligent imaging pipelines259

for building effective in-cabin driver-passenger monitoring and260

road monitoring systems for ADAS. It enables us to capture261

high-quality thermal frames with low-power consumption thus262

proving the agility of configurations and data processing algo-263

rithms in real-time. Fig. 1 shows the prototype thermal camera.264

The technical specifications of the camera are as follows, the265

camera type is a VGA long-wave infrared (LWIR) with a spectral266

range from 8-14 µm and a camera resolution of 640x480 pixels.267

The focal length (f) of the camera is 7.5 mm, F-number is268

1.2, the pixel pitch is 17 µm, and the power consumption is269

less than 950mW. The camera relates to a high-speed USB270

3.0 (micro-USB) port for the interface. Moreover, the camera271

has a frame rate of 30 FPS. The camera has a thermal time272

constant of 12 ms. It is a time parameter that shows how quickly273

the bolometer reacts to the incoming flux change and reaches274

its expected level. Moreover, the camera comes with flat field275

correction (FFC) to remove non-uniformities in the thermal276

frames caused by optical factors. The FFC method nearly takes277

100 ms to 300 ms time frame.278

The data is recorded using a specifically designed toolbox.279

The complete camera calibration process along with the data280

processing pipeline is explained in the next section.281

B. Shutterless Calibration and Real-Time Data Processing282

This section will highlight the thermal camera calibration283

process for shutterless camera configuration along with real-time284

data processing methods for converting the raw thermal data285

to refined outputs. Shutterless technology allows uncooled IR286

engines and thermal imaging sensors to continuously operate287

without the need for a mechanical shutter for Non-Uniformity288

Correction (NUC) operations. Such type of technology provides289

proven and effective results in poor visibility conditions ensuring290

good quality thermal frames in real-time testing situations. For291

this, we have used a low-cost blackbody source to provide292

three different constant reference temperature values referred293

to as T-ambient1-BB1 (hot uniform scene with temperature294

value of 40-degree centigrade), T-ambient1-BB2 (cold uniform295

scene with the temperature value of 20 degrees centigrade), and296

T-ambient2-BB1 (either hot or cold uniform scene but with297

different temperature value). The imager can store up to 50298

snapshots and select the best uniform temperature scenes for299

Fig. 2. Thermal camera calibration (a) blackbody source used for LWIR
thermal camera calibration, (b) uniform scene: temperature set to 40.01 degree
centigrade.

Fig. 3. Prototype thermal camera SDK for loading constant reference temper-
atures values for shutterless camera calibration.

Fig. 4. Shutterless algorithm results on sample thermal frame captured from
640x480 LWIR thermal camera designed by Lynred France [40].

calibration purposes. Fig. 2 shows the blackbody used for the 300

thermal camera calibration. 301

Once the uniform temperature images are recorded the im- 302

ages are loaded in camera SDK as shown in Fig. 3 to finally 303

calibrate the shutterless camera stream. Fig. 4 shows the results 304

before applying shutterless calibration and processed results 305

using shutterless algorithms on thermal frame capture through 306

the prototype thermal IR camera. 307

In the next phase, various real-time image processing-based 308

correction methods are applied to convert the original thermal 309

data to produce good-quality thermal frames. Fig. 5 shows the 310

complete image processing pipeline. 311

As shown in Fig. 5 image processing pipeline consist of 312

three different image correction methods which include gain 313
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Fig. 5. Thermal image correction pipeline.

Fig. 6. Bad pixel replacement algorithm output on sample thermal frame, left
side frame with some bad pixels and the right side is processed frame.

correction, bad-pixel replacement, and temporal denoising. The314

further details of these methods are provided as follows.315

1) Gain Correction Automatic Gain Control (AGC): Ther-316

mal image detectors, based on flat panels, suffer from irregular317

gains due to the non-uniform amplifiers. To correct the irregular318

gains, a common yet effective technique referred to as automatic319

gain control is applied. It is usually based on the gain map. By320

averaging uniformly illuminated images without any objects, the321

gain map is designed. By increasing the number of images for322

averaging provides a good gain-correction performance since323

the remained quantum noise in the gain map is reduced [40].324

2) Bad Pixel Replacement (BPR): This is used to list bad325

pixels estimated at the calibration stage. It works by tracking326

potential new bad pixels by looking at pixel neighbourhood also327

known as the nearest neighbour method. Once it traces the bad328

pixels in the nearest neighbor it replaces them with good pixels.329

Fig. 6 demonstrates one such example.330

3) Temporal Denoising (TD): The consistent reduction of331

image noise poses a frequently recurring problem in digitized332

thermal imaging systems and especially when it comes to333

un-cooled thermal imagers [41]. To mitigate these limitations334

for better outputs different methods are used which include335

hardware as well software-based image processing methods336

such as temporal and spatial denoising algorithms. The temporal337

denoising or temporal filtering method is typically performed to338

decrease the temporal noise and prevent temporal vibrations in339

the thermal frames. While acquiring the video sequence from340

an uncooled thermal camera, the pixel values can vary with341

the passage of time. This method is employed to smooth out342

the variations of pixel values at a given position thus producing343

refined thermal output. In commercial solutions, it usually works344

by gathering multiple frames and averaging those frames to345

cancel out the random noise among the frames. In our data acqui-346

sition process, this method is used after applying the shutterless347

Fig. 7. High-quality thermal frames after applying the shutterless calibration
algorithm and image correction methods.

Fig. 8. Data Acquisition setup by placing the camera at a fixed place
(a) camera mounted on a tripod stand, (b) complete daytime roadside view,
(c) video recording setup at 30 fps, (d) evening time alleyway view.

algorithm. Fig. 7 shows the sample thermal images in the form of 348

outcomes after applying shutterless algorithms and all the image 349

processing-based corrections methods as shown in Fig. 5. 350

C. Data Collection Methods and Overall Dataset Attributes 351

This section will highlight different data collection ap- 352

proaches adopted in this research work. The data is collected 353

in two different approaches. In, the first approach (M-1) the data 354

is gathered in an immobile method by placing the camera at 355

a fixed place. The camera is mounted on the tripod stand at a 356

fixed height of nearly 30 inches such that the roadsides objects 357

are covered in the video stream. The thermal video stream is 358

recorded at 30 frames per second (FPS). The data is recorded 359

in different weather and environmental conditions. Fig. 8 shows 360

the M-1 data acquisition setup. In the second method (M-2) the 361

thermal imaging system is mounted over the car and data is 362

acquired in the mobile method. The prime reason for collecting 363

the data in two different methods is to bring variations and 364

collect distinctive local data in different environmental and 365

weather conditions. For this, a specialized waterproof camera 366

housing case was designed to hold the thermal camera in the 367

correct position and angle to cover the entire roadside scene. 368

The housing case is fixed on a suction-based tripod stand thus 369

allowing us to easily fix and remove the complete structure from 370

the car bonnet. The housing case also contains a visible camera 371

to get initial visible images as reference data thus allowing us 372

to adjust both the camera positions in proper angle and field of 373

view. 374

Fig. 9 shows the camera housing case along with the initial 375

data acquisition setup whereas 376

Fig. 10 shows the housing case fixed on the tripod structure 377

and complete M-2 acquisition setup mounted on the car. The 378

overall dataset is acquired from Galway County Ireland. The data 379

is collected in form of short video clips and more than>35000 380
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Fig. 9. Data acquisition setup through car (a) camera housing case holding
thermal and visible camera, (b) initial data acquisition testing phase.

Fig. 10. Complete data acquisition setup mounted on the car (a) camera
housing fixed on a suction tripod stand, (b) data acquisition kit from the front
view, (c) data acquisition kit from the side view.

Fig. 11. Six different thermal samples acquired using LWIR 640 × 480
prototype thermal camera showing various class objects.

unique thermal frames have been extracted from the recorded381

video clips. The data is recorded in the daytime, evening time,382

and night-time which is distributed in the ratio of 44.61%,383

31.78%, and 23.61% respectively of overall data. The complete384

dataset attributes are summarized in Table III. The acquired385

data comprises distinct stationary classes, such as road signs386

and poles, as well as moving object classes such as pedestrians,387

cars, buses, bikes, and bicycles.388

Fig. 11 shows the six distinct sample of thermal frames cap-389

tured in different environmental and weather conditions using390

M1 and M2 methods. These samples show different class objects391

such as buses, bicycles, poles, person, and cars. Most of these392

objects are found commonly on the roadside thus providing the393

driver a comprehensive video analysis of car surroundings.394

TABLE III
NEW C3I THERMAL AUTOMATIVE DATASET ATTRIBUTES

The recorded thermal datasets provide a greater number of 395

thermal frames and extensive thermal data variations as com- 396

pared to the FLIR open-source dataset. The acquired novel 397

thermal datasets provide more than 35k distinct thermal frames. 398

Moreover, the acquired LWIR dataset is collected in diverse 399

weather, day, and environmental conditions which include day- 400

time, evening time, and night-time with cloudy, windy, and 401

light foggy weather conditions. Further, the newly proposed 402

dataset is recorded in two different ways which include M1 and 403

M2 methods where M1 refers to static data collection method 404

by placing the camera at a fixed place and M2 refers to data 405

collection method by mounting the camera on the car. The 406

complete dataset attributes are provided in Table III. 407

IV. PROPOSED METHODOLOGY 408

This section will detail the proposed methodology and train- 409

ing outcomes from the various network variants tested in this 410

study. 411

A. Network Training and Learning Perspectives 412

The overall training data comprises both locally and publicly 413

available datasets. The complete training data is divided in the 414
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Fig. 12. Depicts the respective class-wise training samples distributions.

Fig. 13. Block diagram depicts the steps taken to evaluate the performance of
YOLO v5 on local and public datasets.

ratio of 50% - 50% where 50% of data is selected from locally415

acquired thermal frames whereas the rest 50% of the training416

data is leveraged from public datasets. Six distinct types of road-417

side objects for driving assistance are included in training and418

validations sets. Fig. 12 shows the class-wise data distribution.419

In the training phase of the YOLO-v5 [32] framework, a420

total of 59150 class-wise data samples were utilized, along with421

their corresponding class labels. Fig. 13 shows the complete422

block diagram representation of our algorithm to validate the423

performance of trained networks on the public as well as locally424

gathered datasets.425

B. Data Annotation and Augmentation426

The overall data annotations were performed manually using427

an open-source bounding box-based annotations tool LabelImg428

TABLE IV
TRAINING RESULTS

[42] for all the thermal classes in our study. Annotations are 429

stored in YOLO format as text files. During the training phase 430

all the YoloV5 network variations which include small, medium, 431

large, and x-large networks have been trained to detect and clas- 432

sify six different classes in different environmental conditions. 433

Large-scale datasets are considered a vital requirement for 434

achieving optimal training results using deep learning architec- 435

tures. Without the need of gathering new data, data augmentation 436

allows us to significantly improve the diversity of data available 437

that can be effectively used for training the DNN models. In 438

the proposed study we have incorporated a variety of data aug- 439

mentation techniques which involve cropping, flipping, rotation, 440

shearing, translation, mosaic transformation for an optimum 441

training of all the network variants of the YOLO-v5 framework. 442

C. Training Results 443

As discussed in Section A of Section IV all the networks 444

are trained using the combination of public as well as the locally 445

gathered dataset. Training data from public datasets are included 446

from four different datasets which include FLIR [9], OST [4], 447

CVC [5], and KAIST [10] datasets. Secondly, we have used ther- 448

mal frames acquired from the locally gathered video sets using 449

both M1 and M2 methods. The training process is performed on 450

a server-grade machine with XEON E5-1650 v4 3.60 GHz pro- 451

cessor, 64 GB of ram, and equipped with GEFORCE RTX 2080 452

Ti graphical processing unit. It comes with 12 GB of dedicated 453

graphical memory, memory bandwidth of 616 GB/second, and 454

4352 cuda cores. During the training phase, the batch size is fixed 455

to 32 and as an optimizer, both stochastic gradient descent (SGD) 456

and ADAM optimizer were used. However, we were unable 457

to achieve satisfactory training results using ADAM optimizer 458

as compared to SGD thus selected SGD optimizer for training 459

purposes. Table IV shows the performance evaluation of all the 460

trained models in the form of mean average precision (mAP), 461

recall rate, precision, and losses. 462

By analyzing Table IV, it can be observed that the large model 463

performed significantly better when compared to other models 464

with an overall precision of 82.29%, recall rate of 68.67%, and 465

mean average precision of 71.8% mAP. Fig. 14 shows the graph 466

results of yolo-v5 large model. The figure visualizes obtained 467

PR-curve, box loss, object loss, and classification loss. During 468

the training process, the X-large model consumes the maximum 469

amount of hardware resources with the largest training time as 470



8 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 00, NO. 00, 2022

Fig. 14. Training results of YOLO-v5 large model using SGD optimizer.

Fig. 15. GPU resource utilization during the training process of x-large
network, (a) 85% (9.78 GB) of GPU memory utilized, (b) 90% (585 watts)
of GPU power required and, (c) 68 C of GPU temperature with the maximum
rating of 89 C.

compared to other network variants with overall GPU usage of471

9.78 GB and a total training time of 14 hours. Fig. 15 shows the472

overall GPU memory usage, GPU power required in percent-473

ages, and GPU temperature in centigrade scale while training474

the largest x-large network variant of the yolo-v5 framework.475

V. VALIDATION RESULTS ON GPU AND EDGE DEVICES476

This section will demonstrate the object detection validation477

results on GPU as well as on two different embedded boards.478

TABLE V
TEST DATASET

A. Testing Methodology and Overall Test Data 479

In this research study, we have used three different testing 480

approaches which include the conventional test-time method 481

with no augmentation (NA), test-time augmentation (TTA), and 482

test-time with model ensembling (ME). TTA is an extensive 483

application of data augmentation applied to the test dataset. It 484

performs by creating multiple augmented copies of each image 485

in the test set, having the model make a prediction for each, 486

then returning an ensemble of those predictions. However, since 487

the test dataset is enlarged with a new set of augmented images 488

the overall inference time also increases as compared to NA 489

which is one of the downsides of this approach. TTME or 490

ensemble learning refers to as using multiple trained networks 491

at the same time in a parallel manner to produce one optimal 492

predictive inference model [43]. In this study, we have tested 493

the performance of individually trained variants of the Yolo-v5 494

framework and selected the best combination of models which 495

in turn helps in achieving better validation results. 496

After training all the networks variants of yolo-v5, the per- 497

formance of each model is cross-validated on a comprehensive 498

set of test data selected from the public as well as locally 499

gathered novel thermal data. Table V provides the numeric data 500

distribution of the overall validation set. 501

B. Inference Results Using YOLO Network Variants 502

In the first phase, we have run the rigorous inference test on 503

GPU as well as Edge-GPU platforms on our test data using 504

the newly trained networks variants of yolo framework. The 505

overall test data is consisting of nearly ≈31000 thermal frames. 506

Fig. 16 shows the inference results on 9 different thermal frames 507

selected from both public as well as locally acquired data. These 508

frames have data complications such as multiple class objects, 509

occlusion, overlapping classes, scale variation, and varying 510

environmental conditions. The complete inference results are 511

available on our github repository (https://github.com/Mali- 512

Farooq/Thermal-YOLO). 513

In the second phase, we have run the combination of differ- 514

ent models in a parallel manner using the model ensembling 515

approach to output one optimal predictive engine which can 516

be further used to run the inference test on the validation set. 517
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Fig. 16. Inference results on nine different frames selected from test data.

TABLE VI
MODEL ENSEMBLING

Fig. 17. Inference results on three different frames using model ensembling
method.

The different combination of these models is shown in Table VI518

respectively where 1 indicates that the model is in active state519

and 0 means the model is in a non-active state.520

With the model ensembling method small and large models521

(A1) turn out to best model combination in terms of achieving the522

best mAP, recall, and relatively less amount of inference time per523

frame thus producing optimal validation results. These results524

are examined in further parts of this section. Fig. 17 shows the525

inference results using A1 model ensembling engine on three526

different thermal frames selected from the test data. The first527

frame is selected from the public dataset whereas the other two528

frames are selected from the locally acquired thermal dataset.529

By closely analyzing the results it can be observed that model530

ensembling based inference engine has performed significantly531

well on diversified test data with image complexities like occlu-532

sions and overlapping classes.533

Fig. 18. Test data samples with the object at varying distances from the camera,
(a) near-field distance, (b) mid-field distance, (c) far-field distance.

TABLE VII
QUANTITATIVE RESULTS ON GPU

C. Quantitative Validation Results on GPU 534

The third part of the testing phase shows the quantitative 535

numerical results of all the trained models on GPU. To better 536

analyze and validate the overall performance for all the trained 537

models on test data, relatively a smaller set of test images has 538

been selected from the overall test set. For this purpose, a subset 539

of 402 thermal frames is selected to compute all the evaluation 540

metrics. The selected images consist of different roadside objects 541

such as pedestrians, cars, and buses under different illumination 542

and environmental conditions, time of day, and distance from the 543

camera. The objects are either far-field (between 11-18 meters), 544

mid-field (between 7-10 meters), or near-field (between 3-6 545

meters) from the camera. Fig. 18 shows selected views from 546

the test data for quick reference of the reader. 547

The performance evaluation of each model is computed using 548

four different metrics which include recall, precision, mean 549

average precision (mAP), and frames per second rate (FPS). 550

Table VII shows all the quantitative validation results on GPU. 551
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TABLE VIII
CLASS-WISE QUANTITATIVE RESULTS

Fig. 19. Precision-Recall (PR) cruve of X-Large model showing the average
precision value for all the six classes.

During the testing phase batch size is fixed to 8. Also, three552

different testing configuration is selected thus having separate553

confidence threshold values and the intersection of union val-554

ues at each validation phase. Confidence threshold defines the555

minimum threshold value, or in other words, it is the minimum556

confidence score above which we consider a prediction as true. If557

it’s below the threshold value, we consider the prediction as “no”.558

The last row of Table VII shows the best ME results using A1559

configuration from Table VI with a selected confidence threshold560

of 0.2 and IoU threshold of 0.4.561

For futher in-depth analysis of all the trained network variants562

of YOLO-v5 framework we have presented class-wise quan-563

titative results. The Table VIII shows the individual average564

precision, for all the six classes of four different thermally565

tuned models. It should be noted that these results are extracted566

using test time with no augmentation approach with confidence567

threshold of 0.1 and IoU threshold of 0.2.568

As it can be observed from above Table VIII that although the569

large model has achieved the highest mean average precision570

however by observing the class-wise performance, the X-large571

model has achieved the highest average precision value for the572

maximum number of classes (i.e. bike, bus, and person). Fig. 19573

shows the precision-recall curve for all the classes of the x-large574

model.575

D. Quantitative Validation Results on Edge-GPU Devices576

This section will review the quantitative validation results577

on two different Edge-GPU platforms (Jetson Nano & Jetson578

Xavier NX). It is pertinent to mention that Jetson Xavier NX579

TABLE IX
HARDWARE SPECIFICATION COMPARISON

development kit embeds more computational power in terms of 580

GPU, CPU, and memory as compared to Nvidia Jetson Nano. 581

Table IX shows the hardware specification comparison of both 582

boards. 583

On Jetson Nano we have validated the performance of the 584

small version only whereas on Jetson Xavier NX we have 585

evaluated the performance of smaller and medium versions of 586

models due to the memory limitations and constrained hardware 587

resources on these boards. During the testing phase, we have 588

selected the highest power modes on both boards to provide the 589

utmost efficiency thus utilizing maximum hardware resources. 590

For instance, on Nvidia Xavier board NX we have selected 591

‘Mode Id: 2’ which means the board is operating in 15-watt 592

power mode with all the six cores active with a maximal CPU 593

frequency of 1.4 gigahertz and GPU frequency of 1.1 gigahertz. 594

Similarly, on Nvidia Jetson Nano all the four CPU cores were 595

utilized with overall power utilization of 5 watts. Table X shows 596

the quantitative validation results on ARM processor based 597

embedded boards. 598

For a better and more comprehensive valuation of thermally 599

tuned networks, we have demonstrated the performance of the 600

smaller network variant on various environmental conditions as 601

shown in Table XI which includes alleyways, roadside, industrial 602

park, and downtown. The main reason for shortlisting the smaller 603

network variant is it requires the least computational resources 604

and shows effective results on both edge-GPU devices. As it can 605

be observed from Table XI we have obtained the highest mean 606

average precision of 71.9% on roadside environmental thermal 607

frames which is highlighted in green color. 608

E. Real-Time Hardware Feasibility Testing 609

While running these tests we closely monitor the temperature 610

ratings of different hardware peripherals on both Edge-GPU 611
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TABLE X
QUANTITATIVE RESULTS ON EDGE PLATFORMS

TABLE XI
QUANTITATIVE RESULTS ON DIFFERENT ENVIRONMENTAL CONDITIONS

Fig. 20. External 5-volt fan unit mounted on Nvidia Jetson Nano processor
heatsink to avoid onboard overheating effect while running the inference testing.

platforms. It is done to prevent the overheating effect which can612

damage the onboard processor or effect the overall operational613

capability of the system. In the case of Nvidia Jetson Nano, a614

cooling fan was mounted on top of the processor heatsink to615

reduce the overheating effect as shown in Fig. 20.616

The temperature ratings of various hardware peripherals are617

monitored using eight different on-die thermal sensors and618

Fig. 21. Temperature rating difference of different onboard hardware periph-
erals on Jetson Nano (a) without fan: A0 thermal zone = 65.50 C, CPU = 55
C, GPU = 52 C, PLL: 53.50, overall thermal temperature = 53.50 C, (b) with
external fan: A0 thermal zone = 45.50 C, CPU = 33 C, GPU = 33 C, PLL: 33,
overall thermal temperature = 32.75 C.

one on-die thermal diode. These temperature monitors are re- 619

ferred to as CPU-Thermal, GPU-Thermal, Memory-Thermal, 620

and PLL-Thermal (part thermal zone). External fans help us in 621

reducing the temperature rating of various hardware peripherals 622

drastically as compared to without mounting the fan. For this 623

jetson-stats open-source python library [44] have been used. 624

Jetson-stats is a package for monitoring various onboard hard- 625

ware resources such as real-time information of CPUs status, 626

Memory, GPU, disk, fan, temperature rating, and all status about 627

Jetson clocks. Fig. 21 shows the temperature rating difference 628

of onboard thermal sensors while running the smaller version 629

of the model on Nvidia Jetson Nano without and with mounting 630

the external cooling fan. 631

It can be examined from Fig. 21(b) that by mounting an 632

external cooling fan the temperature rating of various onboard 633

peripheral on Jetson Nano was reduced by nearly 30% thus 634

allowing us to operate the board at its maximum capacity for 635

rigorous model testing. Fig. 22 shows the Nvidia Jetson running 636

at its full pace (with an external fan) such that all the four cores 637

running at their maximum limit (100% capacity) while running 638

the quantitative and inference test by deploying the smaller 639

network variant of the yolo-v5 framework. 640

Fig. 23 shows the temperature rating difference of onboard 641

thermal sensors while running the smaller version of the model 642

on Nvidia Jetson Xavier NX board. Whereas Fig. 24 shows 643

the CPU and GPU usage while running the smaller variant of 644

YOLO-v5 framework for quantitative validation and inference 645

test on Nvidia Xavier NX development kit. 646

VI. MODEL PERFORMANCE OPTIMIZATION(S) 647

This section will mainly aim at further model optimization us- 648

ing TensorRT [45] inference accelerator tool. The prime reason 649

for this is to further increase the FPS rate for real-time evaluation 650

and on-board feasibility testing on edge devices. Secondly, it 651
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Fig. 22. Nvidia Jetson Nano running at MAXN power mode with all the
cores running at their maximum capacity while running the inference test and
quantitative validation test.

Fig. 23. Temperature rating of different onboard hardware peripherals on
Jetson Xavier NX (a) A0 thermal zone = 41.50 C, AUX: 42.5 C, CPU = 44 C,
GPU = 42 C, overall thermal temperature = 42.80 C.

helps in saving onboard memory footprints on the target device652

by performing various optimization methods.653

TensorRT [45] works by performing five modes of opti-654

mization methods for increasing the throughput of deep neural655

networks. In the first step, it maximizes throughput by quantizing656

models to 8-bit integer data type or FP16 precision while pre-657

serving the model accuracy. This method significantly reduces658

the model size since it is transformed from originally FP32 to659

FP16 version. In the next step, it uses layer and tensor fusion660

techniques to further optimize the usage of onboard GPU mem-661

ory. The third step includes performing kernel auto-tuning. It is662

the most important step where the TensorRT engine shortlists the663

best network layers, and optimal batch size based on the target664

GPU hardware. In the second last step, it minimizes memory665

footprints and re-uses memory by distributing memory to tensor666

only for the period of its usage. In the last steps, it processes667

multiple input streams in parallel and finally optimizes neural668

networks periodically with dynamically generated kernels [45].669

In the proposed research work we have deployed a smaller670

variant of yolo-v5 using TensorRT inference accelerator on both671

edge platforms Nvidia Jetson Nano and Nvidia Jetson Xavier672

NX development boards to further excel the performance of the673

trained model. It produces faster inference time thus increasing674

the FPS on thermal data which in turn helps us in building an675

effective real-time forward sensing system for ADAS embedded676

applications. Fig. 25 depicts the block diagram representation of677

Fig. 24. Nvidia Jetson Xavier running at 15-watt 6 core power mode, (a) all
the CPU cores running at its maximum capacity while running the quantitative
validation test, (b) 69% GPU utilization while running the inference test with
an image size of 128 x 128.

TABLE XII
TENSORRT INFERENCE ACCELERATOR RESULTS

deployment phase TensorRT inference accelerator on embedded 678

platforms. Table XII shows the overall inference time along 679

with FPS rate on thermal test data using TensorRT run-time 680

engine. By analyzing the results from Table XII , we can deduce 681

that TensorRT API supports in boosting the overall FPS rate 682

on ARM-based embedded platforms by nearly 3.5 times as 683

compared to the FPS rate achieved by running the non-optimized 684

smaller variant on Nvidia Jetson Nano and Nvidia Jetson Xavier 685

boards. The same is demonstrated via graphical chart results in 686

Fig. 26. 687
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Fig. 25. Overall block diagram representation of deployment and running
TensorRT inference accelerator on two different embedded platforms.

Fig. 26. FPS increment rate of nearly 3.5 times on Jetson Nano and Jetson
Xavier NX embedded boards using the TensorRT built optimized inference
engine.

Fig. 27 shows the thermal object detection inference results688

on six different thermal frames from the public as well as locally689

acquired test data produced through the neural accelerator.690

VII. DISCUSSION/ANALYSIS691

This section will review the training and testing performance692

of all YOLO-v5 framework model variants.693
� During the training phase, the larger network variant of694

YOLO-v5 outperforms other network variants scoring the695

highest precision of 82.29% and a mean average precision696

(mAP) score of 71.8%.697
� Although the large network variant performed significantly698

better during the training phase, the small network variant699

also performed well with an overall precision of 75.58%700

and mAP of 70.71%. Also, it gains a higher FPS rate on701

Fig. 27. Inference results using optimized smaller variant through TensorRT
neural accelerator, (a) Object detection results on public data, (b) Object Detec-
tion results on locally acquired thermal frames.

Fig. 28. Quantitative metrics comparison of small and large network variants.

GPU during the testing phase as compared to the large 702

model. Fig. 28 summarizes the quantitative performance 703

comparison of small and large network variants of yolo 704

framework. 705
� Due to the lesser number of model parameters of smaller 706

architecture as compared to larger network variant (7.3M 707

Vs 47M model parameters) and faster FPS rate on GPU 708

during the testing phase as shown in Fig. 27 this model 709

is shortlisted for validation and deployment purposes on 710

both the edge embedded platforms Nvidia Jetson Nano and 711

Nvidia Jetson Xavier NX kits. 712
� During the testing phase, it was noticed that by reducing the 713

confidence threshold from 0.4 to 0.1 and the IoU threshold 714

from 0.6 to 0.2 in three stepwise intervals, the model’s mAP 715

and recall rates increased significantly, but the precision 716

level decreases. However, the FPS rate remains effectively 717

constant in most of the trained model cases. 718
� TTA methods achieved improved testing results when com- 719

pared to the NA method however the main drawback of 720

this method is that the FPS rate drops substantially which 721

is not suitable for real-time deployments. To overcome 722

this problem a model ensembling (ME) based inference 723
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engine is proposed. Table VII shows the ME results by724

running large & small model in parallel configuration with725

a confidence threshold of 0.2, and an IoU Threshold of 0.4.726

The ensembling engine attains an overall mAP of 66% with727

a frame rate of 25 FPS.728
� When comparing the individual hardware resources of729

both the edge platforms (NVidia Jetson Nano and Jetson730

Xavier), Xavier is computationally more powerful than731

the Jetson Nano. Note that due to memory limitations732

and the lower computational power of the Jetson only the733

small network variant was evaluated on the Jetson Nano,734

whereas both the smaller and medium network variants735

were evaluated on the Jetson Xavier NX.736
� It was observed that throughout the testing phase, it was737

important to keep a close eye on the operational tempera-738

ture ratings of different onboard thermal sensors to avoid739

overheating, which might damage the onboard components740

or affect the system’s typical operational performance.741

Active cooling fans were used on both boards during742

testing, and both ran at close to their rated temperature743

limits.744
� This study also included model optimization using Ten-745

sorRT [45] inference accelerator tool. It was determined746

that TensorRT leads to an approximate increase of FPS rate747

by a factor of 3.5 when compared to the non-optimized748

smaller variant of yolo-v5 on Nvidia Jetson Nano and749

Nvidia Jetson Xavier devices.750
� After performing model optimization, the Nvidia Jetson751

produced 11 FPS and Nvidia Jetson Xavier achieved 60752

FPS on test data.753

VIII. CONCLUSION754

Thermal imaging provides superior and effective results in755

challenging environments such that in low lighting scenarios756

and has aggregate immunity to visual limitations thus making it757

an optimal solution for intelligent and safer vehicular systems.758

In this study, we presented a new benchmark C3I thermal759

automotive dataset that comprises over 35K distinct frames760

recorded, analyzed, and open-sourced in challenging weather761

and environmental conditions utilizing a low-cost yet reliable762

uncooled LWIR thermal camera. All the YOLO v5 network763

variants were trained using locally gathered data as well as764

four different publicly available datasets. The performance of765

trained networks is analyzed on both GPU as well as ARM766

processor-based edge devices for onboard automotive sensor767

suite feasibility testing. On edge devices, the small and medium768

network edition of YOLO is deployed and tested due to cer-769

tain memory limitations and less computational power of these770

boards. Lastly, we further optimized the smaller network variant771

using TensorRT inference accelerator to explicitly increase the772

FPS on edge devices. This allowed the system to achieve 11773

frames per second on jetson nano, while the Nvidia Jetson774

Xavier delivered a significantly higher performance of 60 frames775

per second. These results validate the potential for thermal776

imaging as a core component of ADAS systems for intelligent777

vehicles.778

As the future directions, the system’s performance can be 779

further enhanced by porting the trained networks on more ad- 780

vanced and powerful edge devices thus tailoring it for real-time 781

onboard deployments. Moreover, the current system focuses on 782

object recognition, but it can be further trained and modified 783

to incorporate image segmentation, road and lane detection, 784

traffic signal and road signs classification, and object tracking 785

for providing comprehensive driver assistance. 786
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Abstract— Human thermography is considered to be an 
integral medical diagnostic tool for detecting heat patterns and 
measuring quantitative temperature data of the human body. It 
can be used in conjunction with other medical diagnostic 
procedures for getting comprehensive medication results. In the 
proposed study we have highlighted the significance of Infrared 
Thermography (IRT) and the role of machine learning in 
thermal medical image analysis for human health monitoring 
and various disease diagnosis in preliminary stages. The first 
part of the proposed study provides comprehensive information 
about the application of IRT in the diagnosis of various diseases 
such as skin and breast cancer detection in preliminary stages,  
dry eye syndromes, and ocular issues, liver disease, diabetes 
diagnosis and last but not least the novel COVID-19 virus. 
Whereas in the second phase we have proposed an autonomous 
breast tumor classification system using thermal breast images 
by employing state of the art Convolution Neural Network 
(CNN). The system achieves the overall accuracy of 80% and 
recall rate of 83.33%. 

Keywords—Infrared Thermography, Deep Neural Networks,  
Thermal camera, Computer Aided Dignosis, Classification 

I. INTRODUCTION 

 Thermal imaging is one of the most rapidly growing 
imaging techniques nowadays [1]. It can be described as a key 
method for measuring the spatial temperature of various 
materials, objects, and scenes. It plays a pivotal role in 
detecting abnormal temperature patterns of the human body. 
It works by absorbing IR radiations emitted from the human 
body and then generating heat energy indications with or 
without visible illumination conditions. The heat maps are 
generated in different color schemes such as iron, grayscale 
and rainbow thermals maps. These color maps are generally 
used to define different temperature ranges which eventually 
help us in identifying the health parameters of the human 
body. Fig. 1 shows the heat map in five different color maps 
of the thermal human face of the healthy subject. These 
images are acquired using an uncooled prototype thermal 
camera developed under the Heliaus EU project [29].  

Thermography is the most common technique for 
acquiring valuable information using thermal cameras [2]. It 
collects information using an array of infrared sensors to read 
infrared energy emissions (surface temperature) to determine 
the operating conditions of different parts of the human body. 
It consists of two main components: Thermo and Graphy 
where Thermo refers to temperature patterns of the body and 

 

 

 

Fig. 1. Visualization of different temperature color maps of a thermal facial 
image a) greyscale, b) glow, c) HSV, d) iron, e) rainbow. 

Graphy refer to image acquisition techniques as shown in     
Fig. 2.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Main components of human thermography. 

Thermographic cameras usually detect radiation in the long-
infrared range of the electromagnetic spectrum (roughly 
9,000– 14,000 nm or 9–14 μm) and produce images using that 
radiation, which is generally referred to as thermograms. The 
amount of radiation emitted by an object increases with an 
increase in the temperature; therefore, thermography helps in 
analyzing the minute temperature variation patterns. In the 
overall classification, thermography can be divided into two 
main types which include active thermography and passive 
thermography. The passive thermography works by pointing 
the IR camera at the investigated body and checking whether 
the investigated body is at a lower or higher temperature than 
the background. Whereas, the active thermography approach 
is based on the excitation of the sample by applying external 
energy into it and subsequently measuring the thermal 
response from it. Therefore, active thermography is a fully 
dynamic process requiring different methods of image 
processing [3]. 

II. BACKGROUND RESEARCH  

The human body temperature is considered as a vital 
parameter that can be used for human health monitoring and 
various disease diagnosis. Measuring temperature with 
thermal camera systems comes with advantages such as non-
contact and non-invasive diagnostic procedures. Moreover, 
thermography is a patient-friendly method and does not only 
provide conventional temperature measurement but also 
gives a comprehensive image of a patient’s body temperature 
distribution which can be ultimately used to extract essential 
information regarding the overall body health [2]. Human 
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clinical thermography depends on the exact examination of 
the skin surface temperature as an impression of the typical 
or anomalous physiology of the human [4]. There is a wide 
range of conventional medical imaging methods that give the 
field of internal imaging of the human body from outside 
inspection. For instance, we can remotely infuse and follow 
the radioactive isotopes to the body. The process of radiology 
works by utilizing the x-ray beam integrating with matter for 
plotting the internal structure of the body, yet these methods 
have weaknesses like low affectability and risk of harmful x-
ray radiations, particularly when being emanated for a long 
time [5]. In comparison to this, infrared thermography is a 
patient-friendly technique, that provides a non-invasive 
detailed temperature distribution of human body. Thus it does 
not have destructive impacts of the harmful radiation which 
can be caused by conventional medical imaging procedures 
like x-ray, gamma rays, and Computed Tomography (CT) 
scans. In short, thermal imaging benefits us my analyzing 
abnormal temperature patterns of the human body that are the 
natural indication of any type of disease [6, 7]. However, the 
use of infrared thermal imaging in humans is dependent on 
different factors that need to be considered while acquiring 
such datasets. It includes environmental factors, individual 
factors dependent on human body intrinsic and extrinsic 
characteristics, and last but not least technical factors such as 
camera calibration, field of view (FoV) and subject distance 
from camera [20]. 

 

III. HUMAN THERMOGRAPHY FOR VARIOUS DISEASE 

DIAGNOSIS 

This section will mainly focus on various human disease 
detection using human thermography based health 
monitoring system and diagnostic tools. 
 

A. Infrared Thermography for Cancer Detection 

Cancer or carcinoma tumors can be defined as one of the 
most fatal diseases in the human body. It is generally due to 
the abnormal growth of cells in any specific part of the body. 
It has the possibility of spreading to other parts of the body 
which can eventually lead to more serious medical conditions 
thus making it untreatable. Therefore, the detection of cancer 
in preliminary stages is a prime objective that allows doctors 
and specialists to perform specialized medical treatments to 
eventually cure the patients. Conventional medical 
procedures such as biopsy tests to check blood samples of 
infected areas of the body are often very painful for the 
patients. However, thermography can be efficiently used to 
detect different types of cancer in any part of the body. The 
process is painless as it provides non-contact and non-
invasive diagnostic procedures. The process of thermography 
simply works by detecting the higher temperature in specific 
parts of the body thus the radiation compression also 
increases. It is due to more amount of heat generated from 
abnormal cancerous cells. Tumors can cause an increment in 
metabolism rate and blood flow which transports local stains 
with high temperatures in place that can be easily detected via 
the process of infrared thermography [2, 8]. IRT can be 
effectively used for different types of cancer detection in 
early stages which includes breast cancer detection [2], skin 
cancer detection [9], and brain tumor diagnosis [10]. 

B. Infrared Thermography for Diabetes Diagnosis 

Diabetes is the most rapidly growing disease in middle and 
low-income countries [27]. The more severe stages can cause 
paralysis and leg issues. The main reasons for these issues are 
low blood flow referred to as vascular disorder and the loss of 
feeling or weakness also knowns as neuropathy in medical 
terminology. During such type of disease patients normally 
undergoes abnormal skin temperature, thus making 
thermography an appropriate tool for diagnosis of vascular 
disorder or neuropathology.  Such types of abnormal thermal 
patterns happen in the patient’s leg and hands like temperature 
decrement in foot and toes. Generally, a diabetic patient 
suffers from higher temperature with average thermal 
readings of about 30.2 ± 1.3°C [15]. Therefore, infrared 
thermography plays a vital role in the initial diagnosis of 
diabetes in the human body which will eventually aid the 
doctors and specialists to provide appropriate treatment to 
their patients [11].  

Vision Quest [12, 30] has developed a thermal optical 
imaging system capable of detecting early symptoms of 
diabetic peripheral neuropathy in the plantar foot, which 
accounts for about 25% of hospital stays among diabetes 
patients. The system works by recording the thermalized 
video of the patient’s foot during recovery from cold 
provocation. The overall system comprises of high end and 
low noise infrared camera which is periodically calibrated to 
minimize thermal sensitivity to less than 0.50 °C. The system 
works by extracting the post images referred to as functional 
signals to detect dynamic changes in microvascular blood 
flow which are then analyzed. According to their initial 
research, the system can show visible statistical and 
significant differences between normal patients and subjects 
who have been diagnosed with peripheral neuropathy.  
 

C. Thermography for Diagnosis of Liver Disease 

Thermal Imaging especially near-infrared imaging is 
widely used for prodromal detection of chronic liver diseases. 
One such type of disease is liver fibrosis. It is a pathological 
process that can escalate to a more severe stage medically 
referred to as cirrhosis which eventually results in liver 
failure at its final stages. It is considered to be one of the 
major public health concerns that affect hundreds of millions 
of people in both developed and developing countries [13]. 
Therefore, early detection of liver fibrosis is of prime cause 
thus preventing them from the development of cirrhosis with 
chronic liver disease. Conventionally the level of fibrosis is 
examined by histological assessment using Mason’s 
Trichrome stain performed by two different senior 
pathologists in a single-blind test and the severity of fibrosis 
is measured using Meavir Score shown in Table I. 

TABLE I.   FIBROSIS SEVERITY SCALE 

 
 
 
 
 
But the process is time-consuming and requires years of 
experience for correct diagnosis. In fibrosis, De novo 
formation of such blood vessels can increase the surface 
temperature of the human liver however if the fibrosis 

This project has received funding from the ECSEL Joint Undertaking (JU) 
under grant agreement No 826131. The JU receives support from the 
European Union’s Horizon 2020 research and innovation program and 
National funding from France, Germany, Ireland (Enterprise Ireland 
International Research Fund), and Italy. 

S:No Level Description 
1. F0 No fibrosis  
2. F1 Mild fibrosis  
3. F2 Moderate fibrosis 
4.  F3-F4 Advanced fibrosis 
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advances to further stages i.e F3 cirrhosis, an excessive 
accumulation of connective tissue is observed in the liver and 
it results in the decrement of the surface temperature of the 
organ. These abnormal patterns of thermal temperature in 
lever can be easily detected by thermal imaging cameras 
which can be eventually used for the early diagnosis of liver 
fibrosis with high precision thus curing the patients from 
growing it into advanced stages [13].  
 

D. Thermography for Eye Ocular Issues 

Thermology is used in the field of human ophthalmology 
for the diagnosis of dry eye syndromes and ocular issues [14] 
by observing the eye physiology. The process of non-
intrusive Infrared thermography (IRT) works by detecting the 
abnormal temperature behaviors of dry eye which is nearly 
about (32.38 ± 0.69°C). It is slightly higher as compared to 
the temperature of a healthy eye which is about (31.94 ± 0.54 
°C) [15]. Generally, the horizontal temperature distribution in 
heathy eye organ is symmetrical and it is relatively low in the 
geometric center of the cornea as shown in Fig. 3 (image 
reproduced by the author's permission).  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 3. Thermographic test image of a human eye, a) Horizontal 
temperature distribution of healthy cornea, b) Horizontal line in the graph 
indicates the thermal characteristics [15]. 

E. Infrared Imaging for Detecting Novel COVID-19 Virus 

Currently, coronavirus has become one of the largest 
widespread disease throughout the world. According to the 
reported statistics and figures [16] around 194 countries [16] 
have been affected with more than 5.1 million cases all over 
the world and more than 330,000 [16] people died due to it. 
Medically it has been termed as COVID-19 and it has been 
declared as a pandemic from the World Health Organization 
(WHO) [28]. The symptoms of this disease appear in 2-14 
days and the immune system of the affected person detects an 
infection that results in raise of core body temperature. Other 
symptoms of this virus include dry cough, tiredness and last 
but not least shortness of breath. Since high temperature is 
one of the prime symptoms [31] of this disease thermal 
imaging devices can be effectively used to detect the elevated 
temperature pattern in the human body. Numerous airports 

around the world [17] have installed thermal imaging 
cameras also referred to as heat scanners for the robust 
screening of the passengers. Further image processing and 
computer vision based algorithms are used to generate a color 
palette that represents different temperature scales that aids 
in the diagnosis of this virus. In the wake of widespread of 
COVID-19 virus, FLIR [18] is experiencing increased 
demand for its hand-held T-series products as well as its 
A310 fixed-mounted thermal imaging camera [19].  

IV. ROLE OF IMAGE PROCESSING AND MACHINE LEARNING 

FOR EFFECTIVE HUMAN THERMOGRAPHY 

      Thermal waves are exponentially reduced in an 
environment, and hence the thermal effects of abnormalities 
are often subtle. Moreover, thermal images also suffer from a 
relatively low signal-to-noise ratio (SNR) [2]. Thus, digital 
image processing plays a vital role in providing reliable 
solution such that by applying a variety of filters in both 
frequency and time domain to overcome these factors [2, 32]. 
Digital image processing techniques are used offline to 
enhance the quality of low quality pre-recorded thermal 
images of the human body to better visualize the image from 
both human and machine perspective. It works by providing 
dynamic contrast control, edge preservation [2], and removing 
unwanted noise from the image by applying different 
algorithms such as applying various filtering methods, 
thresholding techniques and, probabilistic models. Once the 
images are refined, the enhnaced outputs of thermal imaginary 
datasets can be fed into a variety of machine learning 
algorithms to extract meaningful information which can 
ultimately help us to detect any type of abnormalities in the 
human body. Fig. 4 illustrates the generic comprehensive 
block diagram representation of a thermal imaging based 
Computer Aided Dignosis (CAD) system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Comprehensive block diagram representation of thermal imaging 
based Computer Aided Dignosis (CAD) system. 

As illustrated in Fig. 4 the overall system works by acquiring 
images using different types of thermal cameras such as 
mobile thermal cameras, LWIR thermal cameras, and NIR 
thermal cameras. In the next step, the acquired data is 
processed using image processing algorithms to produce 

Machine learning pipeline 
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1 refined outputs. Refined outputs are then fed as input data in 
a variety of machine learning algorithms to extract important 
feature values. Conventional machine learning classifiers 
such as Support Vector Machines (SVM) and Naive Bayes 
mainly rely on handcrafted features that are engineered 
manually using a variety of feature extractors thus having 
chances of higher error rate. Also, the SVM classifier is not 
computationally efficient when dealing with large datasets. 
As a solution to this Deep Neural Networks (DNN) plays a 
prime role since it uses learned feature values that are self 
extracted from raw pixel images. Therefore, DNN benefits us 
by providing high accuracy and mitigating the drawbacks 
handcrafted feature engineering. DNN is extensively used for 
classification and segmentation applications in medical 
imaging to provide the second opinion to doctors and 
specialists. To train these networks, different types of 
network hyperparameters are used to achieve optimal 
generalization and regularization in DNN networks. It 
includes the selection of appropriate error function, 
optimizers, learning rate, momentum, batch size, and the 
number of iterations. Finally, the networks are trained to 
achieve precise and robust accuracy levels which are 
validated by performing cross-validation on unseen test data. 

V. PROPOSED METHODOLOGY FOR BREAST CANCER 

CLASSIFICATION USING DEEP LEARNING  

In this section, we have proposed a breast tumor 
classification system using thermography images of breast 
cancer by applying deep learning methodologies as discussed 
in Section IV. It is the most common type of cancer 
throughout the world and found very commonly in women. In 
2020 it is expected that about 276,480 new cases of invasive 
breast cancer are to be diagnosed in women only in the U.S 
along with 48,540 new cases of non-invasive (in situ) breast 
cancer [26]. However, if it is detected in preliminary stages it 
is treatable by taking suitable medical measures. 

In our study, we have utilized DMR - Database for 
Mastology Research [21]. It is a type of online platform that 
stores and manages mastologic images for early detection of 
breast cancer. The dataset is consisting of different modalities 
of breast cancer images which include thermography images, 
mammography images, MRI images, and ultrasound images. 
The dataset was collected using FLIR SC-620 camera [22] 
from 287 patients of different age groups. The overall dataset 
includes images using static and dynamic data acquisition 
protocols. In static data acquisition set up the body of the 
patient must achieve thermal balance in a controlled 
environment whereas dynamic protocols are used to inspect 
the skin temperature recovery caused by thermal stress after 
cooling the patient by electric fan. For the proposed study we 
have used data acquired through the dynamic protocol as it 
provides extensive thermal data as compared to static data. 
Dynamic data acquisition provides a set of 20 images and 2 
additional lateral images of each patient which was acquired 
during a certain interval of time. Considering the dynamic 
methodology, we have used data of 40 patients, among which 
18 patients belong to the cancerous class and 22 patients 
belong to the healthy (benign) set.  We have utilized a pre-
trained Inception-v3 deep neural network [23] network for 
effective classification between benign and cancerous cases. 
Fig. 5 shows the complete workflow diagram of the proposed 
system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

Fig. 5. Complete workflow diagram for autonomous breast cancer 
classification system. 

A. Image Processing  

      As shown in Fig. 5, in the first phase system works by 
performing the image preprocessing operations which 
includes applying initial sharpening filter and then applying 
Contrast Limited Adapt Histogram Equalization (CLAHE) 
operations on original images provided in the dataset. The 
sharpening filter is used to increase the contrast in the images, 
especially where different color channels meet. CLAHE 
operation is used for performing intensity normalization in 
the image. It works by taking different parameters which 
include distribution and clip limit. Distribution specifies the 
spreading scale that histogram equalization will utilize as the 
basis for generating the contrast transform function. Clip 
limit is generally defined as an overall contrast enhancement 
threshold limit. We have used uniform distribution function 
that creates a flat histogram and clip limit is set to 0.01. The 
main purpose of applying the image preprocessing operation 
is to refine the existing image quality by making the high-
level features more descriptive which will be further used for 
training the CNN network. The same preprocessing 
techniques are applied to whole training data. Fig. 6 shows 
the preprocessing operations applied to one of the test cases 
from DMR - Database for Mastology Research [21]. 
 
 

 
 
 
 
 

Fig. 6. Preprocessing operations applied on thermographic breast tumor 
image a) original image, b) sharpened image, c) contrast limited adapt 
histogram equalization image. 

Input data 
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B. Deep Neural Network Training  

In the second stage, the processed images along with 
original images are used for training the state-of-the-art 
inception-v3 [23] network. It is a 48-layer deep neural 
network designed by Google Brain which was initially 
trained on ImageNet library [24]. The main reason for 
employing this network, it uses multiple features from 
multiple filters which improve the overall performance of the 
network. Moreover, all the established architectures before 
the inception network performed convolution on the spatial 
and channel-wise domain together. By performing the 1x1 
convolution, the inception block is doing cross-channel 
correlations,  thus ignoring the spatial dimensions. It is then 
followed by cross-spatial and cross-channel correlations 
using the 3x3 and 5x5 filters. In the proposed study we have 
used the weights of the pre-trained inception -v3 network and 
retrained the last layers of the network for our custom breast 
tumor classification task by applying transfer learning. 

VI. EXPERIMENTAL RESULTS 

The overall algorithm is implemented using Core I7 sixth-
generation machine equipped with NVIDIA RTX 2080 
Graphical Processing Unit (GPU) having 8GB of dedicated 
graphic memory. As discussed in Section V we have first 
applied image preprocessing operations to refine the original 
images provided in the dataset. The processed images along 
with original images (input image size of 299 x 299) are used 
for training the state-of-the-art inception-v3 [23] network 
using TensorFlow deep learning platform as exhibited in   
Fig. 7. 
 

 
 
 
 
 

 
 
 
 

Fig. 7. Training of inception-v3 architecture for breast tumor 
classification. 

The data is distributed in the ratio of 70%, 20% and 10% for 
training, validation, and testing purposes in an empirical 
fashion. After getting unsatisfactory training and validation 
experimental results in the initial stages, the following set of 
network hyperparameters is selected as shown in Table II to 
avoid model overfitting and achieve optimal generalization. 

TABLE II.  INCEPTION-V3 TRAINING PARAMETERS 

Epochs Learning 
Rate 

Batch 
size 

Optimizer Error 
function 

5000 0.001 32 Stochastic 
Gradient Decent 

(SGD) 

Binary 
Cross-

Entropy 

 
The system achieves the overall training accuracy of 93.73% 
and validation accuracy of 91.32%. Fig. 8 shows the accuracy 
and loss graph of the inception-v3 network. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Inception-v3 network training and loss graphs a) training and 
validation accuracy graph, b) loss graph of inception-v3 network. 

        The classifier is then cross-validated on unseen test 
cases to check the overall test accuracy of the network. It is 
important to mention that the trained network is tested 
without applying any of the preprocessing operations on test 
data to validate the overall robustness of inception-v3 
architecture. Fig. 9 shows the results of the correct prediction 
on two random test cases along with the confidence scores 
and individual inference time required. The overall 
performance of the inception-v3 network on test data has 
been evaluated using five different quantitative measures 
which include accuracy, sensitivity, specificity, precision, 
and F1 score [25]. The results of these metrics are shown in 
Table III. 

TABLE III.  QUANTITIVELY METRICS RESULTS 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Inference results on two random correct cases a) Patient 1 
prediction: benign case with a confidence score of 55.61% and 
inference time 0.106 second, b) Patient 2 prediction: cancerous case 
with a confidence score of 99.99 % and inference time of 0.111 
second. 

VII. CONCLUSION AND FUTURE WORK 

     The main objective of the entire study is to emphasize 
the importance of  thermography and role of machine learning 

Metrics Score 

1. Accuracy 80% 
2. Sensitivity /Recall 83.33% 
3. Specificity 77.77% 

4. Precision 71.43% 
5. F1 Score 76.89% 

Inception-v3  
Network  
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in thermal medical image analysis for human health 
monitoring and disease diagnosis in prodromal stages. 
Technologically advanced platforms for performing effective 
human thermography are also referred to as Computer-Aided 
Diagnosis System (CAD) and is considered to be a sixth sense 
and reliable second opinion for doctors, specialists and 
medical experts. This has been evident in our study by 
proposing a breast tumor classification system using grayscale 
thermal images. The system works by employing sate of art 
inception-v3 architecture for performing precise classification 
between benign and malignant (cancerous) cases. The system 
achieves the overall accuracy of 80% and the sensitivity of 
83.33%.    

For future prospects, we believe that extensive use of 
smartphone-based and commercial grade thermal cameras 
could make human thermographic data widely accessible for 
investigating in depth details in this area. Moreover, advanced 
computational techniques such as machine learning and deep 
learning algorithms can be integrated with existing thermal 
cameras hardware to come up with the concept of smart 
thermal diagnosis systems. Such types of systems can be 
deployed in cars for in-cabin Driver Monitoring Systems 
(DMS) for making correct predictions about the driver's health 
promptly. 
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Abstract. Technology-assisted platforms provide reliable solutions in almost every field 
these days. One such important application in the medical field is the skin cancer classi-
fication in preliminary stages that need sensitive and precise data analysis. For the pro-
posed study the Kaggle skin cancer dataset is utilized. The proposed study consists of 
two main phases. In the first phase, the images are preprocessed to remove the clutters 
thus producing a refined version of training images. To achieve that, a sharpening filter 
is applied followed by a hair removal algorithm. Different image quality measurement 
metrics including Peak Signal to Noise (PSNR), Mean Square Error (MSE), Maximum 
Absolute Squared Deviation (MXERR) and Energy Ratio/ Ratio of Squared Norms 
(L2RAT) are used to compare the overall image quality before and after applying pre-
processing operations. The results from the aforementioned image quality metrics prove 
that image quality is not compromised however it is upgraded by applying the prepro-
cessing operations. The second phase of the proposed research work incorporates deep 
learning methodologies that play an imperative role in accurate, precise and robust clas-
sification of the lesion mole. This has been reflected by using two state of the art deep 
learning models: Inception-v3 and MobileNet. The experimental results demonstrate no-
table improvement in train and validation accuracy by using the refined version of images 
of both the networks, however, the Inception-v3 network was able to achieve better val-
idation accuracy thus it was finally selected to evaluate it on test data. The final test ac-
curacy using state of art Inception-v3 network was 86%. 

Keywords: Melanoma, CNN, DNN, Dermoscopy, Inception-v3, MobileNet, 

1 Introduction 

Cancer nowadays is one of the greatest growing groups of diseases throughout the 
world, among which skin cancer is most common of them. According to stats and fig-
ures, the annual rate of skin cancer is increasing at an alarming rate each year [1]. The 
modern medical science and treatment procedures prove that if skin cancer is detected 
in its initial phase then it is treatable by using appropriate medical measures which 
includes laser surgery or removing that part of the skin which ultimately could save a 
patient’s life. Skin cancer has two main stages which include malignancy and mela-
noma among which melanoma is fatal and comes with the highest risk. In most cases, 
malignant mole is clearly visible on the patient’s skin which is often identified by the 
patients themselves.  

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License 
Attribution 4.0 International (CC BY 4.0).
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      Dermoscopic diagnosis refers to a non-invasive skin imaging method, which has 
become a core tool in the diagnosis of melanoma and other pigmented skin lesions. 
However, performing dermoscopy using conventional methods may lower down the 
diagnostic accuracy which can lead to more chances of errors. These errors are gener-
ally caused by the complexity of lesion structures and the subjectivity of visual inter-
pretations [18].   
     Computer-Aided Diagnosis (CAD) system is a type of digitized platform based on 
advanced computer vision, deep learning, and pattern recognition techniques for skin 
cancer classification. For the proposed study we have designed a CAD system for skin 
cancer classification by utilizing advanced deep neural networks. The system consists 
of the following steps: Firstly, a preprocessing of the digital images which includes 
removing clutter such as hair from that part of the skin where the pigmented mole is 
present and applying a sharpening filter to make that area more clear and visible thus 
minimizing the chances of error. The next essential step includes the feature extraction 
and classification process to extract the results for the cases under consideration by 
utilizing deep learning techniques. Section 2 presents the background and related study 
and highlights the medical aspects regarding skin cancer. Section 3 describes the de-
tailed methodology of the proposed system whereas Section 4 presents the implemen-
tation and experimental results of the proposed study. Section 5 draws the overall con-
clusion of the paper.  

2 Background/ Related Work 

The human skin is the largest organ of the overall human body. It covers all other organs 
of the body. It guards the entire body from microbes, bacterium, ultraviolet radiation, 
helps to regulate body temperature and permits the sensations of touch, heat, and cold 
[2].  

2.1 Skin Moles and Skin Cancer 

Mole or nevus on human skin can be described as a dark, erected spot comprised of 
skin cells that are grown in a group rather than individually. These cells are generally 
known as melanocytes which are responsible for producing melanin, the pigment color 
in our skin. The main reason behind mole development on human skin is predominantly 
because of direct sun exposure and any kind of extreme injury. The fair skin population 
has a greater ratio of skin moles due to the lower quantity of melanin (natural pigments) 
in their skins [3]. There are three different kinds of skin malignant growth, which in-
clude Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), and Melanoma. 
Malignancy is a description of the “stage” of cancer. These malignant growths are crit-
ical however, Melanoma comes with the highest risk level and it is discovered more 
frequently in individuals maturing under 50 years for men and over 50 years for women 
[4]. 
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2.2 Related Work/ Previous Studies 

The study proposed by Simon Kalouche utilizes [5] computer vision-based deep learn-
ing methods to detect skin cancer and more specifically melanoma. Their dataset was 
trained on 3 different learning models including a logistic regression model, fine-tuned 
VGG-16 and multi-layer perceptron deep neural network to achieve a significant 
amount of classification accuracy. Their results show that their algorithm ability to seg-
ment moles and classify skin lesions is 70% to 78%. Md Zahangir et al [6] presented 
the Inception Recurrent Residual Convolutional Neural Network (IRRCNN) method 
for breast cancer classification on BreakHis and some other publicly available datasets. 
They compared their experimental results against existing machine learning techniques 
in terms of patch-based, image-based, patient-level and image-level classification. 
Their IRRCNN models provide efficient classification in terms of Area Under the 
Curve (AUC), global accuracy and the ROC curve. Andre Esteva et al [7] demonstrated 
classification of skin cancer using a single CNN, which they have achieved by end to 
end training using image data which is based on disease and pixel labels. In their work, 
they utilized a large dataset of clinical images that consist of several diseases. 

3 Methodology  

In the proposed study, an efficient skin cancer diagnosis system has been implemented 
for precise classification between malignant melanoma and benign cases. The complete 
algorithm consists of several steps starting from the input phase of applying image pre-
processing ranging to the analysis of the case under consideration in the form of the 
probability of lesion Malignancy. Fig. 1 shows the complete workflow of the proposed 
algorithm. 

3.1 Image Preprocessing 

For the proposed study, the Kaggle skin cancer dataset [8] consisting of processed skin 
cancer images of ISIC Archive [9] has been utilized. The dataset has a total of 2637 
training images and 660 testing images with a resolution of 224 x 224. It is consists of 
two main classes which include melanoma and benign cases. For image preprocessing 
two major operations have been applied which includes an initial sharpening filter fol-
lowed by hair removal filter using dull razor software [10]. These were selected in order 
to remove the clutter. The results of the image preprocessing operations on two random 
sample cases are shown in Fig. 2. 

It is noteworthy that image quality is refined after applying the image preprocessing 
operations. This is shown in Section 4 of the paper where the results from four different 
image quality metrics Peak Signal to Noise Ratio (PSNR), Mean Squared Error (MSE), 
Maximum Absolute Squared Deviation (MXERR) (MXERR) and Ratio of Squared 
Norms (L2RAT) on both ground truth images, and preprocessed images are presented.  
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Fig 1. Workflow diagram of the proposed method 

 
 
  
  
  
  
  

   

   

 

 

Fig. 2. Image preprocessing operations a) original image, b) initial Matlab sharpening filter, c) 
hair removal using dull razor software [10] 



5 

3.2 Feature Extraction and Classification 

In the next step, the processed images are fed to state-of-the-art deep neural networks 
in order to perform the feature extraction and classification steps. In this work, the In-
ception-v3 and MobileNet deep learning architectures are utilized. These architectures 
play a vital role by extracting feature values from raw pixel images.  The Inception-v3 
has state of the art performance in the classification task. It is made up of 48 layers 
stacked on top of each other [11]. The Inception-v3 model was initially trained using 
1.2 million images from Imagenet [12] of 1000 different categories. These pre-trained 
layers have a strong generalization power and they are able to find and summarize in-
formation that will help to classify most of the images from the real-world environment. 
For the proposed study we have utilized this network for our custom classification task 
by retraining the final layer of the network thus updating and finetuning the softmax 
layer, by applying the method of transfer learning. This was preferred as the amount of 
data available for this task is limited and training the Inception-v3 from the beginning 
would require a lot of time and computational resources. Therefore, by fine-tuning the 
inception v3 model, we take advantage of its powerful pre-trained layers and thus being 
able to provide satisfying accuracy results even with a limited amount of data. Mo-
bileNet is one of the other finest deep learning architectures proposed by Howard et 
al. 2017 [13] specifically designed for mobile and embedded vision applications. Mo-
bileNet is counted as a lightweight deep learning architecture. It uses depth-wise sepa-
rable convolutions that means it performs a single convolution on each color channel 
rather than combining all three and flattening it. This has the effect of filtering the input 
channels. For our experiments, the networks were trained with two different types of 
data. The networks were trained with the original images and also with the images after 
applying the preprocessing operations to them. The training and validation accuracy 
were examined in order to study the effect of the training on the networks with the two 
different types of data. Finally, the accuracy on the test set is calculated in order to 
evaluate the overall performance of the classifiers 

4 Implementation and Experimental Result 

The overall algorithm was implemented using Matlab R2018a for computing image 
quality metrics and TensorFlow [14] for training the classifiers. The system was trained 
and tested on a Core I7 sixth-generation machine equipped with NVIDIA RTX 2080 
Graphical Processing Unit (GPU) having 8GB of dedicated graphic memory. The first 
part of the experimental results displays the image quality metrics measured for both 
benign and malignant melanoma cases before and after applying the image prepro-
cessing operations. It is displayed in Table 1. 
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Table 1. Image Quality Metrics  
 

Image PSNR MSE MAXERR L2RAT Dimension 

 

19.4205 743.0656 99 0.9657 224 x 224 

 

21.5481 655.2738 99 0.9801 224 x 224 

 

22.1285 398.3229 99 0.9868 224 x 224 

 

23.2953 304.4737 99 0.9902 224 x 224 

 

22.4291 371.6785 99 0.9852 224 x 224 

 

24.0840 329.9128 99 0.9903 224 x 224 

 

18.6732 882.5930 99 0.9681 224 x 224 

 

19.3975 847.0221 99 0.9747 224 x 224 

 
The experimental results show clearly that image quality is not comprised however it 
is upgraded which is evident from high PSNR values and other metrics after applying 
image preprocessing operations especially the hair removal filter. The image quality 
metrics were carried out on more than fifty images and the same observations were 
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measured. The second part of the experiments includes the training of the classifiers 
using the two state of the art deep learning networks i.e. Inception-v3 and MobileNet. 
For Inception-V3 the data was resized to 299 x 299 since the network has an image 
input size of 299 by 299. The classifiers were trained on both sets of images i.e. original 
(ground truth) images and images after applying the preprocessing operations to them. 
Both the networks were trained using the same hyperparameters.  The learning rate was 
set to 0.005 with a batch size of 32 and total iterations were set to 5000. The training 
data was split in the ratio of 75% and 25% for training and validations images respec-
tively. Fig. 3 and Fig. 4 display the training and validation accuracy graphs along with 
the error rate (cross-entropy) graph of MobileNet and Inception-v3 networks. 
 
 
 

 
  
 
 

 

 

 
 
 
  

  
 

 
 

 
 

 

Fig. 3. Accuracy and loss graph of MobileNet network  a), training and validation accuracy be-
fore applying image preprocessing operations  b), training and validation accuracy after applying 
image preprocessing operations  c), training and validation loss before  applying image prepro-
cessing operations and d) training and validation loss after applying image preprocessing opera-
tions 

The accuracy graphs in Fig. 3 show that training and validation accuracy before apply-
ing the image preprocessing was 86% and 79.8% and it was increased to 89% and 
85.9% by using a refined version of images obtained after applying the image prepro-
cessing operations. Similarly, the validation error rate was also decreased from 61% to 
32% by using the refined version of images. 
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Fig. 4. Accuracy and loss graph of Inception-v3 network a), training and validation accuracy 
before applying image preprocessing operations  b), training and validation accuracy after apply-
ing image preprocessing operations  c), training and validation loss before  applying image pre-
processing operations and d) training and validation loss after applying image preprocessing op-
erations 

The accuracy graphs in Fig. 4 show that training and validation accuracy before apply-
ing the image preprocessing was 88.3% and 84.2%. By using the refined version of 
images training accuracy tends to remain the same thought the validation accuracy was 
increased to 86.1%. Similarly, the validation error rate was also decreased from 36% to 
32.3% by using the refined version of images. 

Overall, in both networks, significant improvements were measured after using the 
refined version of images. The experimental results show that the Inception-v3 network 
was able to achieve better validation accuracy using a refined version of training data 
i.e. 86.1 % thus we will be using the Inception-v3 network for evaluating it on the test 
data. For evaluating the classifiers on the test data, we have picked numerous cases 
from the test set from both classes, benign and malignant melanoma among which vis-
ually complex and challenging test cases were selected for the proposed research work. 
It is pertinent to mention that the network was tested using the original images (unre-
fined version) to test the overall effectiveness of the classifier. Fig. 5 shows some of 
the results predicted correctly on test images. Table 2 illustrates the complete results on 
visually complex test cases selected for the proposed study which will be further used 
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to evaluate overall testing accuracy, sensitivity (true positive rate), specificity (true neg-
ative rate) and precision metrics. The rows highlighted with red color indicates the mis-
classified test cases when compared with ground truth results. 
 
 
 
 
  
  

 

  

Fig. 5. Test case results on two random cases using Inception-v3 network a) case 4 – (benign = 
Low risk = 98.4% confidence level), b) Case 16 – (malignant melanoma = high risk = 97.8% 
confidence level). 

Table 2. Individual Test Case Results  
 

Test 
Case 

Predicted results using  
Inception-v3 Network trained 

on original images 

Predicted results using  
Inception-v3 Network trained 

on processed images 

Ground 
truth 

Results 

1 Benign – Low risk – 97.8% Benign – Low risk – 84.6% Low risk 

2 Malignant–High risk – 91.8% Malignant – High risk – 89.1% High risk 

3 Benign – Low risk – 98.4% Benign – Low risk – 96.9% Low risk 

4 Benign – Low risk – 98.4% Benign – Low risk – 98.4% Low risk 

5 Malignant – High risk – 96.4% Malignant – High risk – 95.7% Low risk 

6 Malignant – High risk – 98.7% Malignant – High risk – 96.2% High risk 

7 Malignant – High risk – 98.8% Malignant – High risk – 97.8% High risk 

8 Malignant – High risk – 99.4% Malignant – High risk – 99.3% High risk 

9 Benign – Low risk – 71.2% Benign – Low risk – 60.7% Low risk 

10 Malignant – High risk – 85.9% Malignant – High risk – 76.8% Low risk 

11 Malignant – High risk – 99.5% Malignant – High risk – 99.3% High risk 

12 Malignant – High risk – 98.5% Malignant – High risk – 99.2% High risk 

13 Malignant – High risk – 70.9% Malignant – High risk – 87.4% High risk 

14 Benign– Low risk – 74.8% Malignant – High risk – 92.3 % High risk 

a b 
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15 Malignant – High risk – 97.5 % Malignant – High risk – 98.7 % High risk 

16 Malignant – High risk – 99.0 % Malignant – High risk – 97.8 % High risk 

17 Benign – Low risk – 96.1% Benign – Low risk – 97.0 % Low risk 

18 Benign – Low risk – 86.4% Benign – Low risk – 86.2 % Low risk 

19   Benign – Low risk – 99.4% Benign – Low risk – 99.1 % Low risk 

20 Malignant –High Risk– 50.2% Benign – Low risk – 59.0 % Low risk 

21 Malignant – High risk – 81.9 % Benign – Low risk – 64.1 % High risk 

 
The overall performance of the Inception-v3 network on test data has been evaluated 
using five quantitative measures: Accuracy, sensitivity, specificity, precision and F1 
score [15,19]. These measures are computed using the following forms. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 𝑋 100             (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑇𝑃𝑅)/ 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 𝑋 100              (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑇𝑁𝑅) =  
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 𝑋 100                (3) 

                    𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 (𝑃𝑃𝑉) =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 𝑋 100            (4) 

        𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2  𝑋 
𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  𝑋 100     (5) 

 
Where 𝑡𝑝,𝑓𝑝, 𝑓𝑛, 𝑎𝑛𝑑 𝑡𝑛 refer to true positive, false positive, false negative, and true 
negative. ACC in (1) means overall testing accuracy, TPR in (2) means true positive 
rate, TNR in (3) refers to true negative rate while PPV in (4) is an abbreviation for 
positive prediction value. 
 

Table 3 illustrates the results of all the four quantitative measures: Accuracy, sensi-
tivity, specificity, and precision of the Inception-v3 network before and after using the 
image preprocessing operations on test data. It can be observed that testing accuracy is 
increased to 86% by training the classifier using the refined version of images. 
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Table 3. Overall Quantitative Metrics Results on Test Data 
 

Quantitative 
measures 

Inception-v3 network  
trained on original images 

Inception-v3 Network trained 
on refined (processed) images 

Accuracy 81% 86% 

Sensitivity 87.5% 89% 

Specificity 77% 83% 

Precision 70% 80% 

F1 Score 77%  84% 

5. Conclusion and Future work 

The main purpose of the proposed study was to improve the overall accuracy level of 
two state of art deep learning networks which include Inception-v3 and MobileNet by 
using the refined version of skin cancer images obtained after applying image prepro-
cessing operations. The experiments were conducted using the Kaggle Skin Cancer Da-
taset by applying initial sharpening filter and hair removal algorithms. Initially, we ap-
plied these algorithms as image pre-processing mechanisms to remove the clutters thus 
producing the refined version of images. Different image quality metrics including Peak 
Signal to Noise (PSNR), Mean Square Error (MSE), Maximum Absolute Squared De-
viation (MXERR) and Energy Ratio/ Ratio of Squared Norms (L2RAT) were used to 
compare the image quality before and after applying the pre-processing techniques. 
These metrics prove that image quality was upgraded after applying sharpening filter 
and hair removal algorithms. In the next phase of experimental results, we have seen 
substantial improvement in training, validation and test accuracy after applying image 
pre-processing operation. Thus, we have achieved an overall test accuracy of 86% using 
state of the art Inception-v3 network by fine-tuning the last layer of the network with a 
refined version of kaggle skin cancer training dataset. 

For future work, more image pre-processing techniques like neural networks based 
super image algorithms and other such techniques could be used to improve the image 
quality to a better extent. Moreover, other state of the art deep neural networks such as 
ResNet-101 [16], Xception [17] could be utilized in order to improve the accuracy lev-
els. 
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ABSTRACT This article contains all of the information needed to conduct a study on monocular facial depth
estimation problems. A brief literature review and applications on facial depth map research were offered
first, followed by a comprehensive evaluation of publicly available facial depth datasets and widely used
loss functions. The key properties and characteristics of each facial depth map dataset are described and
evaluated. Furthermore, facial depth maps loss functions are briefly discussed, which will make it easier
to train neural facial depth models on a variety of datasets for both short- and long-range depth maps.
The network’s design and components are essential, but its effectiveness is largely determined by how it is
trained, which necessitates a large dataset and a suitable loss function. Implementation details of how neural
depth networks work and their corresponding evaluation matrices are presented and explained. In addition,
an SoA neural model for facial depth estimation is proposed, along with a detailed comparison evaluation
and, where feasible, direct comparison of facial depth estimation methods to serve as a foundation for a
proposed model that is utilized. The model employed shows better performance compared with current
state-of-the-art methods when tested across four datasets. The new loss function used in the proposedmethod
helps the network to learn the facial regions resulting in an accurate depth prediction. The network is trained
on synthetic human facial depth datasets whereas for validation purposes real as well as synthetic facial
images are used. The results prove that the trained network outperforms current state-of-the-art networks
performances, thus setting up a new baseline method for facial depth estimations.

INDEX TERMS Facial depth datasets, loss functions, neural depth estimation, empirical and systematic
evaluation.

I. INTRODUCTION
The process of obtaining 3D information from a 2D frame is
known as depth estimation. Depth estimation is used in diver-
sified computer vision applications such as augmented real-
ity, posture estimation, 3D reconstruction, object detection
and recognition, semantic segmentation and -human-machine
interaction, weather forecast, and autonomous vehicles. The
ground truth depth information used to estimate depth is
beneficial for developing reliable navigation systems for
intelligent vehicles, environmental reconstruction, and image

The associate editor coordinating the review of this manuscript and

approving it for publication was Junhua Li .

interpretation to understand the objects in the image and the
scene behind them.

Face depth estimation is a challenging subject that has
been explored in conjunction with face motion [1], facial
analysis, and facial recognition [2], [3]. Many methods for
estimating face depth have been presented in recent years,
notably 3D from stereo replicating [4], 3D morphable model-
based methods [5], [6], shape from shading (SfS) [5], [6],
shape from motion techniques (SfM) [6], [7], and statistical
techniques [8], [9]. Due to the facial symmetry of facial
areas, the stereo matching procedure for face depth estima-
tion is more complicated (regardless of utilizing the local or
global technique), particularly when the system is binocular
and therefore only one stereo pair is used. Stereo matching
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methods can estimate a reasonable depth or disparity map
for facial depth estimation, but these approaches are more
sophisticated, requiring the use of a local or global proce-
dure. Because of the similarity of the face areas, particularly
when using a binocular setup with only one pair of stereo
images. All stereo approaches are limited by the similarity
characteristics of the facial information. Furthermore, the
similarity of the pixels values results in more spikes, holes,
and particularly uncertain disparities in the depth map.

The computer vision field has conventionally approached
the field of depth maps in a variety of methods, such as
with stereo or multi-view cameras [10], [11], structure from
motion [12], [13], and depth from light diffusion & shad-
ing [14], [15]. The described methods face many difficul-
ties, such as missing pixel values and depth consistency,
which result in inconsistencies in depth maps. In addition, the
camera calibration, camera setup, and post-processing tech-
niques are computationally expensive and time-consuming.
The research community has explored the monocular depth
estimation task using only a single image which is muchmore
straightforward and suitable for consumer applications. The
credit goes to significant advances in machine learning-based
networks [16]–[20]. In the first part of the paper, we have
given a detailed evaluation of publicly available facial depth
datasets and widely used loss functions in facial depth esti-
mation networks, thus to better understanding the problem
of facial depth maps. The key characteristics and properties
of the facial depth datasets are presented and compared, fol-
lowed by the loss functions employed. The implementation
specifics of how neural depth networks work, as well as the
evaluation matrices that correlate to them, are shown and
described. A full comparison evaluation and, where possible,
direct comparison of facial depth estimation methods are
performed in the second phase of the paper to serve as a
foundation for a proposed model that is used. When tested
across four datasets, the proposed model outperforms current
state-of-the-art approaches. The suggested method’s unique
loss function aids the network in learning the facial areas,
resulting in an accurate depth prediction. The network is
trained using synthetic human facial depth datasets, and real
and synthetic facial images from four facial depth datasets are
used for validation.

A. RESEARCH CONTRIBUTIONS
Following thorough research over the previous few years,
image-based facial depth estimation using deep learning algo-
rithms has demonstrated promising results. However, the
field is still in its early stages, and more improvements are
expected to address issues and challenges such as data selec-
tion for training, generalization to unknown environments,
fine-scale depth estimation, reconstruction versus recogni-
tion, handling multiple objects in the presence of occlusions,
and cluttered backgrounds, data imbalance and how to select
an appropriate loss function and neural model for facial depth
estimation.

This paper aims to provide all of the key information
for conducting a study on monocular facial depth estima-
tion challenges. First, a brief review of the literature and
applications of facial depth map research was presented,
followed by a detailed analysis of publicly available facial
depth datasets and commonly used loss functions. To better
understand the facial depth map problem, the facial depth
dataset’s key characteristics and properties are described and
evaluated, followed by the loss functions used. For each
dataset, the dataset description, metadata, ground truth, and
relevant data (year of publishing, ground truth information,
image size, type, objects per image, and several images)
are listed systematically. In addition, each loss function is
presented in such a way that the research community can
select the best loss function for their requirements. The imple-
mentation details of how neural depth networks work are
demonstrated and explained, as are the evaluation matrices
that correspond to them. In the second section of the paper,
a complete comparison evaluation and, where possible, direct
comparison of facial depth estimation methods are conducted
to serve as a foundation for a proposed model that is used.
The model outperforms current state-of-the-art techniques
when tested across four datasets. The unique loss function of
the suggested method supports the network in learning the
facial areas, resulting in an accurate depth prediction. The
network is trained with synthetic human facial depth datasets
and validated with real and synthetic facial images from four
facial depth datasets.

B. CHALLENGES AND DEVELOPMENTS
Monocular facial depth estimation based on deep learn-
ing (DL) has been intensively explored and advanced over
the last few years. However, still, several limitations need
to be addressed. This section covers the major issues and
discusses potential directions for monocular facial depth esti-
mation maps research. By utilizing a deep learning network,
we can extract many features simultaneously, such as seman-
tic information, optical flow features, and depth features.
While semantic segmentation will be incorporated into depth
estimation, it will remain a separate module that performs
autonomous tasks. Additionally, there are typically numerous
sub-networks capable of learning depth estimation, visual
odometry, and flow estimation. However, such networks are
not adequately connected, which results in a large set of
network parameters, which eventually requires an increased
memory footprint. How to improve the network’s integration
is a research direction that is worth exploring as the future
direction of this research work.

The quality of the training data has a significant impact
on the generalization and reliability of the deep learning
model. To increase facial depth estimation accuracy, more
data with higher quality and a wider variety of scene types
is required. However, the facial depth estimation datasets
currently available are quite small, and creating a new dataset
is time-intensive and expensive. At the moment, several
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researchers generate a large number of images for facial depth
estimation using a variety of software, but the quality is incon-
sistent. A future research goal will be to provide a dataset
for monocular facial depth estimation that is compatible with
deep learning models.

Realistic environments are frequently complex, having a
high amount of moving objects, occlusions, changing light
conditions, and changing weather. However, the majority of
existing facial depth estimation models assume an optimum
environment. Although some researchers have attempted to
address dynamic objects and occlusion scenarios and have
made considerable progress lately, the problem of improving
the facial depth estimation of complicated scenes for real-
world applications remains a key future research field.

Facial depth estimation is a challenging stage in the devel-
opment of practical applications such as augmented reality
(AR), virtual reality (VR), robotics and autonomous vehicles.
However, the resolution of the estimated facial depth is often
limited in most existing facial depth estimation algorithms to
maximize computational effectiveness.

The fundamental module of SLAM is image depth estima-
tion, which is deeply connected with commercial applications
such as autonomous driving. However, researchers frequently
design deeper networks with more parameters and constraints
to accomplish depth estimation, which needs more compu-
tational cost and hence does not fulfil the real-time require-
ments of modern applications. Thus, a future research area
will be to determine how to use a lighter network for real-
time estimation while maintaining prediction accuracy.

The rest of the paper is organized as follows: Section 2 dis-
cusses related work in the domain of facial depth estimation,
especially related studies, or surveys. Section 3 presents the
results of a bibliometric investigation, a thorough examina-
tion of depth datasets, and further discusses the most used
loss functions. Section 4 presents the implementation details
of how facial depth neural networks work followed by some
comparative analysis of the facial depth estimation methods.
Section 5 presents evaluationmatrices and section 6 describes
and illustrates the most recent SoA depth estimation model,
which is discussed and chosen for facial depth estimation.
Section 7 shows the experimental results, discusses the train-
ing approach, and compares the trained model to SoA meth-
ods in a brief comparison study. Section 8 includes a detailed
discussion of the experimental results while section 9 pro-
vides the conclusion and future research directions.

II. RELATED WORKS
Datasets are the foundations for evaluating the behaviour
and validating the results of artificial intelligence networks,
and they play a critical role in scientific research. Another
important building block is to use an appropriate loss func-
tion to improve the deep network’s training performance.
An in-depth analysis of various facial depth datasets is per-
formed, and depth regression loss functions for both short and
long-range depth datasets are proposed in the next sections.

This section focuses mostly on related facial depth estimation
research and applications.

A. FACIAL DEPTH ESTIMATION APPLICATIONS
Human face images are among the most common images,
and they play an important role in many visual interpreta-
tions. Since the facial parts separation in a human face is
well-known in human anthropometry, it is possible to find the
distance of a human focus from a single image frame with
good accuracy provided an understanding of the camera’s
field-of-view. The research community in today’s fast-paced
technological environment wants more realistic representa-
tions, thus 3D representations of 2D images are becoming
increasingly important. These methods are categorized into
the following primary categories based on their applications.

1) FEATURE EXTRACTION METHODS
The expressions on people’s faces reveal information about
individuals. Faces identify people, and one may infer how
others are feeling from their expressions. Face feature extrac-
tion can help in the improvement of face depth maps tasks.
In the realm of computer vision, facial feature depth estima-
tion and 3D reconstruction are popular topics. In computer
vision-related applications such as detection and recognition,
especially under shifting posture lighting, and expression, 3D
information gives significant benefits in overcoming diffi-
culties associated with 2D images (PIE) [14]. Methods have
been shown in the SoA to be a potential solution to several of
problems in facial depth maps [20]–[25].

2) FEATURE FUSION METHODS
Feature fusion offers a full description of image features’ rich
internal information, and following dimensionality reduc-
tion, compact representations of integrated features can be
obtained, resulting in decreased computational complexity
and better performance of facial depth maps. 3D reconstruc-
tion helps in the resolution of difficulties in 2D images as
well as the improvement in performance in a variety of
tasks. Several approaches have been offered in the last few
years [26]–[34] for facial depth estimation tasks.

3) IMAGE PROCESSING FILTRATION METHODS
For the successful application of depth information, quality is
critical. Visually undesirable rendered views are frequently
produced when a depth map is distorted by large feature-
less artefacts. A robust depth image post-filtering technique
should be considered for further 3D video transmission. Fil-
tering of depth maps has primarily been studied from the
viewpoint of increasing resolution [35]–[37]. There are a
variety of post-processing techniques for restoring natural
images [38]. Filtering algorithms included Gaussian smooth-
ing and the H.264 in-loop deblocking filter [39], as well as a
local polynomial approximation (LPA) [40] and bilateral fil-
tering [41], which use edge-preserving structure information
from the colour channel to refine rough depth maps [42].
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TABLE 1. Properties of feature, fusion, and image processing filtration methods.

Table 1 shows the corresponding methods categorized
into feature extraction, feature fusion, and image process-
ing filtration with their respective use cases and strategies
involved.

a: FACIAL DEPTH IN 3D FACE RECOGNITION
Face recognition (FR) has been used for human identification
for ages. With the advances of deep neural networks (DNNs),
both face identification (one-to-many) and face verification
(one-to-one) have achieved state-of-the-art results. Despite
these advances, there are still a few limitations due to external
conditions like viewing angles, human appearances like facial
expressions, occlusions, scene lightings. To overcome these
factors researchers, use other modalities like depth and sur-
face normal. The availability of low-cost RGB-D consumer
level sensors like Microsoft Kinect and Intel Real Sense
which simultaneously capture depth data of the scene and the
colour intensity make these multimodal data more accessible.
Depth information can be very useful in FR because it helps
to retrieve geometric information of the face in the form of
dense 3D points. RGB-D FR can be categorized broadly into
two classes – handcrafted feature-based method and deep
learning-based methods. Table 2 shows the corresponding
details of the listed methods for this subsection.

B. FACIAL DEPTH FROM STEREO AND MULTI-VIEW
Using two or more cameras, depth can be derived from stereo
or multi-view. A process known as stereo matching is used to
produce this map. The primary notion is that triangulation and
stereo matching can be used to estimate depth in a variety of
applications, including object grasping, collision avoidance,

broadcasting, robotic navigation, and multimedia. The most
frequently usedmethods formeasuring face depth from stereo
methods are designed on fitting the computed depth to a
generalized 3D model [49]–[51]. For facial depth estimation,
a passive stereo system for 3D human face reconstruction and
recognition at a distance method is introduced [52]. Using
a Kinect camera and a face detection algorithm, a method
was able to reliably locate the human head and estimate head
posture. To locate the detailed facial characteristics, a depth
AAM algorithm is designed [53]. In a passive stereo vision
system, a method for estimating facial depth is introduced.
Themethod relies on the fast creation of facial disparitymaps,
which does not necessitate the use of expensive instruments
or generic face models. It entails including face attributes in
the disparity estimate process to improve 3D face reconstruc-
tion [54].

The primary drawbacks of these approaches are the long
processing times associated with the fitting phase (due to
the high computational complexity) and the need for human
setup, as seen in [51]. Another drawback of these approaches
is that the generated faces resemble the generic model rather
than their model. It’s also particularly sensitive to noise
because it calculates curves using the second derivative.

C. FACIAL DEPTH FROM 2D, MONOCULAR IMAGES
The monocular depth estimation method uses only a single
RGB image as input to predict the depth value of each pixel
or infer depth information. The following methods use a
monocular depth strategy. Monocular depth maps are simple
to set up, especially when it comes to camera calibration,
and only require a single image to estimate depth. It can also

29592 VOLUME 10, 2022



F. Khan et al.: Towards Monocular Neural Facial Depth Estimation: Past, Present, and Future

TABLE 2. Properties of facial recognition depth maps methods.

give a variety of monocular visual cues, such as gradients and
texture variations, colour, and defocus, that have previously
been underutilized in such systems and can be used even in
texture fewer areas. Table 3 shows the corresponding details
of the listed methods from this section.

D. FACIAL DEPTH THROUGH DOMAIN TRANSLATION
The domain translation which is also known as image transla-
tion requires learning a parametric mapping function between
two separate domains. Per-pixel classification or regression
issues are frequently used to solve image-to-image translation
challenges [48]–[62]. Borghi et al. [30], [51] suggested a
method for computing the appearance of a face based on a
standard CNN that combines characteristics of autoencoders
and fully connected convolutional networks (FCN). Several
recent studies have investigated the image-to-image transla-
tion problem by developing a mapping between two frames
using conditional generative adversarial networks [52], [63].
Authors in [53] and [64], proposed an approach with the
pix2pix model, which synthesizes images from semantic
labelling and then reconstructs objects from edges and colour-
izes images. Aissaoui et al. [54], [65] provided a framework
of linked GANs that can synthesize pairs of similar images
in two separate contexts. This research also focuses on the
domain translation problem to create visually attractive facial
depth maps with sufficient discriminative information for
face recognition.

The authors [66] present a novel framework for learn-
ing (1) RGB face parsing, (2) depth face parsing,
and (3) RGB-to-depth domain translation together for facial
depth maps. In [67], the authors suggest a new Deterministic
Conditional GAN that is efficient for face-to-face translation
from depth to RGB and is trained on labelled RGB-D face
datasets. Whereas the network cannot reconstruct the exact
somatic attributes of unknown focus on the individual, it can

reconstruct plausible faces which is sufficient for use in
various pattern recognition applications. In [68] a method
proposes face from depth for head pose estimation on depth
images for estimating head and shoulder pose based solely
on depth images to create a complete end-to-end system.
The proposed method also incorporates head detection and
a localization module for facial depth estimation.

E. FACIAL DEPTH MAP DENOISING
Two forms of noise which include holes and spikes impact
the depth data generated by the face reconstruction process.
Pixels with unknown depth values are referred to as holes.
During the disparity estimation procedure, the disparity val-
ues for these pixels are set to zero. They arise when there is an
obstruction or poor light. Spikes are pixels having an incor-
rect depth estimation. They are mostly caused by incorrect
matching and occur inhomogeneous areas where pixels have
similar intensity values.

Various approaches for face depth map de-noising have
been presented in the literature. These methods are divided
into two categories: global and local. To eliminate spikes and
fill holes, global approaches apply noise reduction filters to
the hole depth image. For this, the median filter is frequently
used. Authors in [69] and [70], proposed a Gaussian filter
method that works to soften the data and eliminate spikes
in the z-coordinate. To eliminate spikes, fill tiny gaps, and
smooth the data, the authors in [71] utilized three median
filters with different variances. For minor noises, these types
of filters can produce optimal results. However, if the noisy
region is big, these filters will not be able to remove the
noise; instead, they will just modify the pixel values by their
surrounding pixels.

In [49] by processing the data row by row, with the first
and last non-zero pixels in each row being chosen by a sweep
of the depth images. This procedure is continued until no
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TABLE 3. Properties of facial depth from 2D monocular images methods.

more pixels are produced. The filling process usually involves
utilizing an interpolation technique or a local median filter
after determining the hole’s boundaries. This method is more
accurate than the global method since it just processes noises
and leaves the non-noisy data alone. Since holes have a
known value (zero or undefined), it can only handle those;
spikes, on the other hand, have a random value, therefore it
can’t be used to eliminate them.

The authors [72] suggested an edge-guided deep neural
network for the super-resolution of a single facial depth map.
It is divided into two sub-networks: edge prediction and depth
reconstruction. The edge prediction sub-network generates an
edge guidance map that is used to guide the depth recon-
struction sub-network in recovering sharp edges and fine
constructions. Jovanov et al. [73] proposes a time-of-flight
depth camera-specific wavelet-based depth video denoising
approach based on multi hypothesis motion estimation for
facial depthmaps. In [74] authors proposed amethod and sys-
tem for super-solving and recovering the facial depth maps.
The main idea of this approach is to use a learning-based
technique to gather reliable face priors from a high-quality
facial depth map to improve the depth images.

III. PUBLICLY AVAILABLE FACIAL DEPTH ESTIMATION
DATASETS AND LOSS FUNCTIONS
This section provides an overview of the most commonly
used facial image depth datasets, including their respective
descriptions in tabular form.

There are several useful datasets available for training
depth estimation methods both multi-view and monocular
images of human faces. The collection’s general data con-
tains information on the number of objects, scenarios, and
RGB and depth images. Among the numerous types of data

FIGURE 1. The number of facial depth datasets that are publically
available each year.

contained within every dataset, the ground truth contains
depth, mesh, cameras trajectories, videos, positions, point
cloud, semantics label, trajectories, and dense multi-class
labelling. As the field of face image depth estimation research
grows in popularity, more work is being put into creat-
ing higher and additional informative depth maps datasets.
Fig. 1 shows the number of new publicly available facial
depth maps datasets and their corresponding number of cita-
tions becoming available each year over the period for the last
ten (10) years. Table 4-6 tabulates a comparison analysis for
the data existing in each dataset.

A. FACIAL AND POSE DEPTH DATASETS
The depth camera sensor should be capable of faster human-
skeletal tracking in addition to being a low-cost camera sensor
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that outputs both RGB and depth information. This kind of
tracking can provide the precise position of human body
joints throughout a period, making comprehensive human
behaviour investigations easier and quicker. As a conse-
quence, there has been a lot of interest in inferring human
faces from depth images and synthesizing depth and RGB
images. Several new facial depths maps datasets have been
generated in recent years to assist in the confirmation of
humanoid facemask action analysis methods. The details of
these datasets are provided in the following section.

1) BIWI
This dataset [75] comprises 15K images of 20 different sub-
jects which included 6 female subjects and 14 male subjects
(4 people were recorded twice). Moreover, this dataset pro-
vides the depth image of 640 × 480 pixels resolution, the
corresponding visible image of 640 × 480 pixels size, and
lastly, it also offers the annotation for every image. The depth
data is captured using a Kinect v1 sensor. The dataset consist
of the head poses with the range of around +−75 degrees
yaw and +−60 degrees pitch. The overall dataset includes
the head’s 3D location and rotation as the ground truth data.

2) EURECOM KINECT FACE
This dataset provides multimodal facial data of 52 subjects
among which 14 are female, and 38 are male subjects. Eure-
com Kinect Face dataset [76] incorporates the depth data
which is acquired from Kinect v1 sensor. This data was
gathered at different times in the form of two-fold intervals
with an average time gap of half month. The recorded data
in two different intervals provides the facial frames of each
subject in nine situations with various lighting and occlusion
conditions and facial expressions which include a neutral face
and smiling face.

The provided data incorporates facial data with open
mouth, and different occlusions such that strong illumination,
eyes occlusion by wearing sunglasses, mouth occlusion by
covering it with hand, face side occlusion by placing a paper.
The overall dataset provides the RGB colour images, the 3D
images, and the depth map which is provided in the forms of
the bitmap depth image and the text file containing the actual
depth levels acquired from the Kinect sensor. The dataset also
incorporates six distinct manual facial landmarks positions
which comprise of right and left eye, right and left corner of
the mouth, the tip of the nose, and the chin.

3) PANDORA
This dataset [30] provides a total of 250K full-resolution
RGB, their corresponding depth data, and their annota-
tions are also included in this dataset. The depth data is
acquired from a Kinect v2 sensor. The Pandora dataset is
frequently used for various computer vision tasks such that
head poses estimation, head centre localization, and shoulder
pose estimation.

4) FACESCAPE
The FaceScape dataset [78] includes large-scale 3D facial
models, parametric models, and multi-view images all are
recorded in high-quality. The dataset also provides the
subject’s age and gender, as well as the camera settings
configuration. The dataset is made publicly available for
non-commercial research purposes. This dataset is consist-
ing of 3D faces acquired from 938 subjects. The overall
data comprises 18,760 textured 3D faces, with 20 distinct
facial expressions. The dataset provides topological infor-
mation in all the 3D models by processing pore-level facial
geometry. For rough shapes and intricate geometry, fine 3D
facial models can be expressed as a 3D morphable model,
it is represented as displacement maps. A unique methodol-
ogy is proposed that takes advantage of the large-scale and
high-accuracy dataset by utilizing a deep neural network to
extract expression-specific dynamic characteristics.

5) 3DMAD
The 3D Mask Attack Database [77] (3DMAD) contains
76500 frames of 17 different subjects captured using the
Kinect v1 depth sensor. Each frame is made up of a depth
image with an image dimension of 640 × 480 pixels – 1 ×
11 bits, a matching RGB image with an image dimension of
640 × 480 pixels – 3 × 8 bits, and precisely labelled eye
locations (concerning the RGB image). Data is gathered in
three distinct sessions for each subject, with each session
consisting of five recordings with each recording including
300 frames. The overall data is recorded from the frontal
view with neutral expression in controlled environmental
conditions. The complete data is gathered in three different
sessions. The first two events are for real-world samples,
wherein people are recorded for two weeks. A single operator
collects 3D mask attacks in the third session (attacker).

6) SYN HUMAN FACE
The SYN Human FACE [59] includes extensive high-quality
3D face models and their corresponding 2D RGB, pixel-
accurate ground truth depth images. The suggested frame-
work works as follows: In Character Creator, a collection
of virtual human models is built using the real 100 head
models. To generate additional data variations, the texture
and morphology of the models are modified. These models
are then imported to iClone for incorporating the data with
five different facial expressions. The mesh, textures, and
animation keyframes for the completed iClone models with
individual face emotions are then exported in FBX format.

In the next phase head movement (yaw, roll, and pitch)
was applied on all the models in Blender to acquire the
head pose. The FBX files are then imported and scaled in
the Blender world coordinate system. To replicate the real
work environment, lights and cameras are included in the
scene, whose properties are then adjusted accordingly. The
camera sensor near and far clips have been set at 0.01 meters
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TABLE 4. Comparison between data representations.

and 5 meters, correspondingly. The sensor size and field of
view (FOV) is set to 60 degrees and 36 mm, accordingly.
The render layer’s RGB and Z-pass outputs are then set
up in the compositor to produce the final result. In posture
mode, the head and shoulder joints are recognized, the head

mesh has pivoted those bones, and the keyframes are stored
to apply the rotation.

Finally, the RGB and depth images are created by ren-
dering all of the keyframes. The matching head position
(yaw, pitch, and roll) is produced using the Blender soft-
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TABLE 5. Datasets of facial depth, pose, and recognition.

ware’s python module. For each frame, the RGB images are
rendered with a resolution size of 640 × 480 pixels which
are then stored in jpg format. Whereas the corresponding
depth data is saved in a raw file (.exr format). Moreover, the
head poses information for each frame is documented and
stored in a text (.txt) file. The rendering process for each 2D
frame nearly takes an average time duration of 26.3 seconds
which is done using the Cycle Rendering Engine, provided
in Blender software which is a type of physically-based path
tracer for production rendering. The overall dataset consists

of around 3,500k frames, with around 3.5k 2D frames per
person.

The data is stored in a separate folder where each folder
contains the data of 100 face models. Each face model’s
produced RGB images, as well as the resulting depth and
head posture, are saved in three separate routes for three
different backgrounds: plain, textured, and sophisticated. The
synthetic dataset was used to create the sample images, which
included ground truth depth images and various backdrops
(basic, textured, and sophisticated).
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7) BARACCA DATASET
The recent interest and growth in depth sensors have sup-
ported different methods to instinctively assess the anthropo-
metricmeasurements, rather than utilisingmanual procedures
and expensive 3D scanners. Normally, the application of
depth data is limited due to the lack of depth-based public
datasets including accurate anthropometric annotations. As a
result, the authors [79] introduced a better dataset, Baracca,
that was constructed specifically for the anthropometric mea-
surements and vehicle perspective, including both in-cabin
and outside views. This is a type of multimodal dataset that
was created with synchronized depth, infrared, thermal, and
RGB cameras to meet the needs of the automobile industry.
The depth data is recorded using the Pico Zense DCAM710
depth sensor. The spatial resolution of the RGB sensor is
1920× 1080 pixels, whereas the infrared/depth sensor has a
resolution of 640×480 pixels. A total of 30 subjects (26 male,
and 4 female) took part in the data acquisition process.

8) LOCK3DFACE
The Lock3DFace dataset [80] contains 5671 RGBD facial
videos from 509 people, each with a unique facial expression,
position, occluded, and moments. The database was collected
throughout two periods. The very first event’s neutral images
are used as training examples, while the final three variations
are used to create the 3 test procedures for position, occluded,
and expressions. All the images from the second run, in all
variants, make up a fourth validation set.

9) CURTINFACES
CurtinFaces [81] is a well-know RGBD face database that
includes over 5000 co-registered RGBD images of 52 par-
ticipants taken using a Microsoft Kinect. The front left, and
right postures are the initial three images for each person.
The remaining 49 images include 35 images with 5 different
illumination variations and 7 different emotions, as well as
7 distinct positions captured with 7 facial variations. Images
with sunglasses and arm occluded are also included in this
collection.

10) IIIT-D RGB-D
The IIIT-D RGB-D dataset [82] includes 4605 RGBD images
from 106 people collected for two periods using a Microsoft
Kinect. Each participant was captured with modifications
in attitude, emotion, and glasses under typical illumination
conditions. The datasets which were before the procedure,
which included a 5 cross-validation approach, in the tests set.
The head is cropped for each image in the data.

11) KASPAROV
The KaspAROV dataset [46], which comprises automatic
facial videos from 108 participants is captured by Microsoft
Kinect v1 and v2 cameras. Every subject is shown in videos,
each shot at a separate time. A total of 432 videos with
117,831 images are included in the dataset. Because the

Kinect v2 sensor data had higher Rgbd image registration
than the Kinect v1 sensor information.

B. FACIAL DEPTH ESTIMATION LOSS FUNCTIONS
On the reference depth map, deep learning-based algorithms
commonly improve a regression model. The key problem for
the SoA approaches in deep regression problems is determin-
ing a suitable loss function. Neural networks make use of
optimization algorithms.

This error is calculated using the loss function that eval-
uates how well or badly the model behaves. Neural depth
models have been used to estimate depth from one or many
2-D images using a variety of interesting loss functions for
depth estimation challenges. This section lists the common
loss functions that are used to estimate facial depthmaps from
one or multi 2D frame images.

1) ADVERSARIAL LOSS FUNCTION
The binary categorical cross-entropy loss function, which is
used for face depth estimation in adversarial training mod-
els [20], [21], is defined as follows:

Lbcc(y, r) = −
1
N

∑N

i=1
[rilog yi + (1− ri) log (1− yi)]

(1)

The discriminator output is subjected to yi = D(Ii), where yi
is the prediction discriminator for the i-th input depth map
and ri is the corresponding ground truth. The goal of the
generator model is to create images similar to the GT depth
and the discriminator model. The mean squared error (MSE)
loss function is used to achieve the first goal.

LMSE
(
yg, yd

)
=

1
N

∑N

i=1
‖G(ygi )− y

d
i ‖

2
2 (2)

where yg and yd are the input images and the output depth
map. In the second stage of the network, feed created depth
images into the discriminator and use the adversarial loss
on the discriminator predictions to see if the generated
images can trick the discriminator model. Next, while main-
taining the discriminator weights constant, back-propagate
the gradients up to the generator model input and modify
the generator parameters. As a result, the goal of solving the
back-propagation problem is to minimize:

θ̂g = arg minθg LG
(
yg, yd

)
(3)

where LG is a balanced sum of two components and can be
defined as:

LG
(
yg, yd

)
= λ · LMSE

(
yg, yd

)
+ Lbcce

(
G
(
yg
)
, 1
)

(4)

in which λ is a weighting parameter that controls the influ-
ence.

2) GAN LOSS FUNCTION
The loss function [20], [21] in the GAN-based facial depth
model is divided into two parts: 1) Generator Loss: The gen-
erator loss is the sigmoid cross-entropy loss of the generated
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TABLE 6. Publicly available depth datasets and properties for faces and poses.
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TABLE 6. (Continued.) Publicly available depth datasets and properties for faces and poses.

images and an array of ones. The L1 loss function (MAE)
is utilized to calculate the absolute difference between the
target and generated images. This determines how similar
the anticipated image is to the actual image. The following
formula can be used to compute the total generator loss:

LGen_loss = Gan_loss+ λ ∗ L1−loss (5)

Here λ is set as 100.

MAE =
(
1
n

)∑n

i=1
|ri − ti| (6)

where ri is the prediction and ti are the true value. 2) Discrimi-
nator Loss: The discriminator takes real images and generated
images as its input. The sigmoid cross-entropy loss of the real
images and an array of ones is called real loss. Then the total
loss can be calculated by the summation of real loss and the
generated loss:

T_loss = Real_loss+ Generated_loss (7)

3) STRUCTURAL SIMILARITY (SSIM) LOSS
SSIM [81] is used to determine the perceived differences
between the two similar images. (L_SSIM) represents the loss
function for the structural similarity index measure (SSIM)
and can be defined as:

LSSIM (r, t) =
(
1− LSSIM (r, t)
MaxDepth

)
(8)

4) SCALE SHIFT-INVARIANT LOSS
For a single ag image, the scale-shift-invariant loss [81] is
defined as

LSSI (r, t) =
1
2N

∑N

i
ρ(r, t) (9)

where (ρ is the scale-invariant loss).

5) PRE-PIXEL SMOOTHNESS LOSS
Because image gradients commonly have depth inconsisten-
cies, a per-pixel smoothness loss [83] is used in conjunction
with the L_SL reprojection loss to make the inverse depth

prediction better. The following formula is used to determine
the (L_SL) loss:

LSL(r, t) =
∑N

i
∂xdte−∂x (r,t) + ∂ydte−∂y(r,t) (10)

where N denotes the number of valid pixels, ∂d denotes the
disparity gradient, and e−∂x,y(r,t) denotes the edges.

6) RECONSTRUCTION LOSS
When training, the network estimates disparity, and the input
image is generated using the bilinear samples, utilized to
recreate the image. At the local level, the bilinear sampler
is completely differentiable and easily integrated into a net-
work. A LHuber and SSIM is represented as follows: which
computes the inconsistencies between both the input image
and the regenerated image when coupled as a photometric
image reconstruction loss [19].

LR(r, t) =
1
N

∑N

i

1− LSSIM (r, t)
2

+ (1− α)LHuber ((r, t))

(11)

7) SCALE-INVARIANT LOSS
When training the model, depth estimation methods use the
GT depth y and the predicted log depth maps. Scale-invariant
loss function [81] (LSI ) can be represented by (LSI ) for the
depth values and is defined as:

LSI (r, t) =
1
N

∑N

i
(log (ri)− log (ti))2

−
λ

N

(∑N

i
log (ri)− log(t i)

)2

(12)

where λ refers to the balance factor.

8) BERHU LOSS
The OLS estimator is effective in the circumstance of check-
ing for data with outliers or massive errors. Berhu loss, on the
other hand, is designed to preserve good attributes in the face
of Gaussian noise. Berhu loss function [81] (LBerhu) is defined
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TABLE 7. Loss functions categorized in terms of the use case applications.

as:

LBerhu(r, t) =

 (ri − ti) if (ri − ti) ≤ c,
(ri − ti)2 + c2

2c
if (ri − ti) > c,

(13)

where ri, ti are ground truth and predicted depth maps.

9) HUBER LOSS
MSE is thought to be better at detecting outliers in a dataset,
but MAE is expected to be better at preventing them. Data
that appear to be outliers, on the other hand, should not be
studied, and those points must not be assigned much weight.
As a result, the Huber loss function [81] (L_Huber) is defined
as:

LHuber (r, t) =

 (ri − ti) if (ri − ti) ≥ c,
(ri − ti)2 + c2

2c
if (ri − ti) < c,

(14)

where ri, ti are ground truth and predicted depth maps.
Table 7 shows the loss function categorized according to

their use in depth estimation and their respective use case
applications.

IV. IMPLEMENTATION DETAILS OF NEURAL DEPTH
ESTIMATION NETWORKS
Convolutional neural networks (CNN) are the form of a
learning algorithm for data processing with a uniform grid,
such as images, that is intended to acquire provides scalable
features from low- to high-level structures efficiently and
adaptively. Convolution, pooling, and fully connected layers
are the three types of layers (or building blocks) that make up
CNNs. Convolution and pooling layers are the initial layers
that extract features, while the third, a fully connected layer,
transmits these characteristics into the final output, such as
classification or multiple regression analysis. A convolution
layer is an important part of CNN, which is made up of a
stack of mathematical computations like convolution, which
is a specific sort of linear operation. Because a feature can
appear everywhere in a digital image, image pixels are saved
in a two-dimensional (2D) grid, i.e., an array of numbers and a
small grid of parameters called the kernel, and an optimizable
feature extractor, is implemented at every image position,
CNNs are extremely efficient for image analysis. Features
extracted can evolve hierarchical structures and progressively
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TABLE 8. Performance evaluation of monocular depth estimation based deep learning models on IIIT-D RGB-D [82], KASPAROV [46], CURTIN FACES [81],
and LOCK3DFACE [80].

more complicated as one layer passes its results into the next
layer. Training is the process of adjusting parameters such as
kernels to reduce the disparity between outputs and ground
truth labels using optimization algorithms like backpropaga-
tion and gradient descent. Fig. 2 illustrates the comprehensive
implementation details.

The performance of 2D facial depth estimation has been
greatly enhanced because of the use of Deep Learning CNNs.
Facial depth maps are learned directly from 2D RGB-D
facial images by training deep neural networks on large
datasets. Different deep learning models (i.e; VGG, Autoen-
coder, ResNet, encoder-decoder, inception, DenseNet) are
used for facial depth maps which are trained on 2D face
depth images. These models typically consist of CNN, FC,
SoftMax layers followed by an appropriate loss function that
can minimize the errors of the training networks. Weights of
the networks are mostly randomly initialized. The datasets
can be augmented in several ways (pose augmentation, reso-
lution, transformation, rotation, cropping, and flipping) using
a range of images to enlarge training datasets and can achieve
better accuracy. Table 8, shows some comparison analysis
of the deep learning-based models for facial depth estima-
tion on iiit-d rgb-d [82], kasparov [46], curtin faces [81]
and lock3dface [80] datasets. Note that we were unable to
compare other qualitative evaluation metrics mentioned in
Table 8 due to technical difficulties with publicly avail-
able codes and a lack of instructions for these methods

listed in Table 8, and the accuracy results are obtained
from their related articles. A CNN-based system has three
major components, a training phase, data pre-processing,
and model design. To train the model, deep learning-based
techniques usually require a significant number of datasets.
In CNN-based facial depth maps research, a shortage of
large-scale realistic face depth datasets remains an outstand-
ing topic. Because CNN has a lower tolerance for pose
changes, suitable data preparation or synthetic data can
enhance accuracy before transmitting the data to the model.
In addition, selecting an appropriate CNN and loss function
are critical.

V. EVALUATION METRICS FOR FACIAL DEPTH
ESTIMATION
The most used quantitative metrics for evaluating the perfor-
mance of monocular facial depth estimation methods are pro-
vided in Table 9. These are not limited to 8 metrics, however,
most of the published articles used these quantitative metrics
to analyze the performance of the trained depth estimation
models.

VI. FACIAL DEPTH ESTIMATION MODEL
Many consumer applications including robotics, augmented
reality and advanced driving monitoring systems can benefit
from facial depth estimation neural depth networks from
single images. A methodology for creating depth maps from
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FIGURE 2. A look at the design of a CNN and how it’s trained for facial depth estimation. Convolution layers, pooling layers (e.g., max-pooling), and
fully connected (FC) layers are the building components that make up a CNN. The success of a model with certain kernels and weights is evaluated
using a loss function and forward propagation on a training dataset, and learning parameters, such as kernels and weights, are adjusted using the
gradient descent process. The term ‘‘corrected linear unit’’ refers to a linear unit that has been rectified.

TABLE 9. Quantitative metrics used for performance evaluation of
monocular facial depth estimation.

single images of human faces is presented in this section,
which utilizes the source face depth and corresponding
ground truth depth using neural networks.

Existing facial depth map algorithms may produce depth
maps with comparable accuracy, but they suffer from diffi-
culties such as missing values and depth similarities, which
result in holes in depth images. As an alternative, the model

used in this study automates the collection of optimal param-
eters, reducing model complexity during the training process
for facial depth estimation.

A recent SoA LapDepth [68] model is chosen to accom-
plish high-quality facial depth estimation from a single 2D
frame. By applying the Laplacian pyramid-based decom-
position technique to the decoding process, the suggested
method intends to successfully restore local details (i.e., depth
boundaries) as well as the global layout of the depth map.
The depth residual including local details, which suitably
describe depth attributes of different scale-spaces, is created
using Laplacian residuals of the input colour image guidance
encoded features. To improve the efficiency of this decoding
process, the authors [87] introduce weight standardization to
the pre-activation convolution block, which greatly helps in
estimating depth residuals. First, describe the overall archi-
tecture of the proposed decoder for monocular facial depth
estimation in this section. The entire decoding procedure will
then be detailed, including the influence of weight standard-
ization. Finally, the loss functions utilized to train the model
architecture are discussed.

A. ARCHITECTURE DETAILS
The proposed neural depth network for single image facial
depth maps mechanism is provided in this section, as well as
the suggested loss function for improving the training process
over the training data.

1) ENCODER MODEL
The proposed method’s general architecture is demonstrated
in Fig. 3 [87]. The suggested decoder for restoring depth
residuals is connected to the pre-trained encoder in the
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network. ResNext10 [56] is used in the encoder phase,
which has been pre-trained for image classification. The
input colour image is compressed as latent information using
densely layered convolution blocks on the encoder. The spa-
tial size of such features shrinks to a fraction of the origi-
nal resolution, but they compactly contain the colour-depth
relationship in the embedding space, which is learned from
various scene geometries. For the convolution block of the
encoder, the authors utilize the Dense ASPP approach [88]
with four dilation rates of 3, 6, 12, and 18 to extract more
dense contextual information.

The suggested decoder is separated into many Lapla-
cian pyramid branches. One branch, which is in charge of
the Laplacian pyramid’s topmost level, undertakes decoding
work to restore the depth map’s global layout. The depth
residuals are generated by other branches using latent features
led by Laplacian residuals of the input colour image at the
matching scale. Using point-wise addition, this depth residual
is gradually integrated with the middle depth map, which
is the result of the higher level of the Laplacian pyramid.
The decoding technique is based on a five-level Laplacian
pyramid. All convolution layers in the decoder have a filter
size of 3× 3.

B. DECODER MODEL
The laplacian residual of the input colour image is derived
in the first phase. For all scaling methods in the suggested
methodology, downsampling the initial input image, upsam-
pling, and bilinear interpolation are used. Concatenated fea-
tures are input into layered convolution blocks, and the output
is added pixel-by-pixel. The one-channel output, which is
made up of stacked convolution blocks, has the same spatial
resolution as the input colour image. It’s important to note that
input guides the decoding process to precisely restore local
characteristics of various size areas, which aids in revealing
depth boundaries without distortions. Finally, starting at the
top of the Laplacian pyramid, the depth map is gradually
recreated. The weight standardization in the pre-activation
convolution block, which is the core module of the decoder,
is made to produce the decoding process for monocular facial
depth estimation more effectively. Because the depth map is
reconstructed using an iterative accumulation of depth resid-
uals, it is preferable for the projected depth residual to have
a balancing of negative and positive values to estimate depth
information reliably and accurately. During backpropagation,
which is calculated from each layer of the laplacian pyramid,
the decoder is capable of improving the flow of gradient
by normalizing them. This is preferable for maintaining the
colour-to-depth translation’s stability based on residual infor-
mation. The procedure is anticipated to be able to effectively
understand the important connection between colour and
depth values for facial images by combining this benefit with
the Laplacian pyramid-based decomposition technique.

C. LOSS FUNCTION
The facial depth estimation task’s final goal is to find a
function that predicts the depth from an input image. (Lsilog)

is the most common loss function that is found in the lit-
erature more helpful for depth estimation, The network’s
trainable parameters are tuned based on the loss function,
which employs properly scaling the loss function’s range
can improve converging and training outputs while putting
a stronger focus λ on decreasing error variance, leading in a
Silog loss function [89]. (Lsilog) is defined:

Lsi(di, d∗i ) =
1
N

∑N

i
(log(di)− log(d∗i ))

2

−
λ

N
(
∑N

i
log(di)− log(d∗i ))

2
(15)

where λ is the balance factor and N is the number of pixels.
By rewriting the equation. 15:

Lsilog(di, d∗i )=
1
N

∑N

i
(log(di)−log(d∗i ))−

1
N

∑i

N
(di−d∗i )

2

+ (1−λ)
1
N

∑i

N
(di−d∗i )

2

(16)

In log space, the combined Silog loss is defined as:

Lsilog(di, d∗i ) = α
√
Lsilog(di, d∗i ) (17)

VII. EXPERIMENTAL RESULTS
The experimental results are presented in this section show
how well the proposed model performs. The purpose of these
experiments is to see how well synthetic facial depth data
can be used to estimate facial depth estimation. A set of SoA
depth estimation single image neural networks is used to ana-
lyze and compare the human facial depth estimation. Further-
more, the model is first trained on a synthetic human facial
depth dataset, after which it is evaluated against four different
datasets (Pandora, Eurecom Kinect Face, Biwi Kinect Head
Pose, and Synthetic human face datasets) explained in section
3. After that, there is a brief comparison analysis (evaluation
results of the SoA to the proposed model) is presented. The
experiments show that a model trained on a large and diverse
set of facial depth images, along with the appropriate training
methods, produce SoA results in a variety of scenarios. The
zero-shot cross-dataset transfer technique is used to demon-
strate this process.

A. TRANING METHODOLOGY
The proposed approach is designed in the PyTorch tool. The
suggested decoder’s parameters (i.e., the network’s weights)
are all initialized using the approach described in [88]. The
proposed decoder has group normalization in each layer,
which is known to be batch size independent. The model is
trained on a synthetic human facial depth dataset (described in
section 3), which was divided into training and validation sets
with 0.8 and 0.2 ratios for facial depth estimation. The net-
work is trained using the Adam optimizer for 50 epochs with
a batch size of 6, with power and momentum set to 0.9 and
0.999, respectively. For the encoder and decoder, the weight
decaying factor is set to 0.0005 and 0. Using a polynomial
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FIGURE 3. The overall architecture of the proposed method for monocular facial depth estimation.

decay with the power of 0.5, the learning rate is first set to
10−4 and then gradually decreased until it reaches 10−5. The
overall training process is conducted on a machine equipped
with two TITAN 1080 GPUs, which takes a time duration
of 72 hours. The model has 73M parameters and to avoid
overfitting, the online data augmentation method is used in
the training process. For the SYN HUMAN FACE dataset,
training samples are randomly cropped to 512 × 416 pixels
before being randomly rotated in the range of [3, 3] degrees.
With a ratio of 0.5, input images are also horizontally flipped.
Furthermore, the scale factor picked from the range of
[0.9, 1.1] is used to alter the brightness, colour, and gamma
values of the input colour images.

B. EXPERIMENTAL DETAILS AND RESULTS
The first phase of this subsection explains the training dataset
that was used to train the neural depth model for facial depth
estimation. The second part explains the testing and evalua-
tion process used to evaluate the model’s generalization per-
formance. For evaluations, RootMean Square Error (RMSE),
logRootMean Square Error (RMSE (log)), Absolute Relative
difference (AbsRel), Square Relative error (SqRel) andAccu-
racies are used defined in Table 9. Four test datasets were
chosen based on the diversity and accuracy of their ground
truth. The model’s performance is compared to existing SoA
approaches in the final phase. Table 10 summarizes all of the
information from this study’s experiments.

1) MODEL TRAINING DATASET
The synthetic human facial dataset having various variations
including camera location, light position, body-pose, facial
animations, scene illuminations, and pixel-accurate ground
truth depth is used for training the proposed neural depth
model for facial depth maps. This dataset is briefly explained

TABLE 10. Information about how experiments have been conducted.

in (section 3-part A subsection 6. Before conducting any
experiments, the training data is processed and split into three
sets: training set 80%, validation set 20%, and test set 10%,
each having its ground truth depth.

2) TEST DATASETS
For comparison purposes, the zero-shot cross-dataset transfer
protocol is utilized. The model was trained on a single dataset
before being tested on unseen test datasets. The four datasets
described in (section 3-part A) were chosen for testing and
evaluation (i.e, Pandora, Eurecom Kinect Face, Biwi Kinect
Head Pose, and Synthetic human face datasets).

3) MODEL PERFORMANCE EVALUATION
The performance of the facial depth estimation model
LapDepth [87] is compared to the SoA models (i.e., MiDaS
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FIGURE 4. Qualitative results in a sample of the synthetic human facial test dataset that was not used for training or validation. Input RGB images,
ground truth images, predicted depth images, predicted depth images (Greys), and predicted depth images are shown from left to right.

[90], DPT [91], and BTS [89]) on the synthetic human facial
dataset in Fig. 4 and Table 11. All of the training and testing
experiments in this work have been coded and are available
on Github. The network achieves SoA results, as shown in
Table 11. The proposed model qualitative results against SoA
approaches are shown in Fig. 5 and Fig. 6. As shown in
Fig. 5, the results demonstrated a details information and
consistency, indicating that the proposed chosen approach
works better at facial depth estimation. The model outper-
formed SoA both numerically and qualitatively in tests across
a variety of real and synthetic images and set a new SoA for
facial depth estimation.

In comparison to other SoA methods, the LapDepth
approach performed best in terms of accuracy and depth
range, according to the comparison analysis Table 11 and
Fig. 6. As shown in Table 11, the network achieved
0.0281 RMSE and 0.9976 threshold accuracy on a synthetic
human facial dataset (row 8). For better visualization, the
results are shown in the different colour maps. Note that,
predicted depth images (Greys) indicate the inverse depth
map Fig 4.

As mentioned before the most commonly used quantitative
metrics for evaluating the performance of trained monocular
facial depth estimation methods are provided in Table 9.
Based on the metrics in Table 11 i.e.; RMSE, RMSElog,
SqRel, AbsRel, and accuracies one can compare and decide
which method performance is better.

The model is compared with the SoA models (i.e.;
MiDaS [90], DPT [91], and BTS [89]) for comparison, and
the qualitative results are shown in Fig. 5. We were unable to
train the techniques (i.e. MiDaS, DPT) from scratch due to
unavailability of the training codes and a lack of instructions,

and hence simply fine-tuned the model checkpoint for testing
and validation purposes. The method BTS is initially trained
on a training dataset before being put to the test on four
different datasets. The suggested method has an advantage
over the BTS and other SoA methods, as shown in Fig. 5.
The model can recover fine details such as facial information
and backgrounds since it is trained on pixel-accurate ground
truth depth facial data. Pandora, Eurecom Kinect Face, and
Biwi Kinect Head Pose are among the datasets that rarely
capture those datils. It is difficult to learnwhen training neural
depth networks due to a very sparse ground truth depth. It is
noticed that the method LapDepth successfully preserves the
facial depth information even with complicated geometries
as compared to the rest of the SoA approaches. As can
be seen in Fig. 6, the results show improved information
and consistency, demonstrating that the works were better at
depth estimation on real facial depth datasets. The network
was not used for training or validation, and the method was
exclusively trained on synthetic human facial depth datasets
and tested on real datasets. In fig. 5, the results in the 4th

column predicted depth images (Greys) indicate the inverse
depth maps that is originally used by MiDaS [90]. The rest
of the comparison results are respectively calculated with the
same scale while predicting the depth estimation models.

VIII. DISCUSSION
The results presented in the previous section are discussed in
the following section.

1. The model is trained by using only the Synthetic
Human Facial Depth Dataset and evaluated against
four different datasets, including the Pandora dataset,
Eurecom Kinect Face dataset, Biwi Kinect Head Pose
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TABLE 11. Quantitative evaluations on the SNY human face dataset [59].

FIGURE 5. From left to right, qualitative results of facial monocular depth estimation algorithms (Input: input RGB images; GT: ground truth images; Ours:
LapDepth [87], MiDaS [90], DPT [91], and BTS [89] applied to the Synthetic human facial dataset [59]).

dataset, and the test Synthetic Human Facial Depth
Dataset, as well as real images, in the testing phase. The
results demonstrate that the trained model outperforms
the other SoA approaches MiDaS, DPT, and BTS. It is
important to mention that the low size and diversity
of the Pandora dataset, Eurecom Kinect Face dataset,
Biwi Kinect Head Pose dataset do not perform well on
the generalization performance of the studied models,
as shown in Fig. 6. Furthermore, most depth GT are
error-prone due to practical restrictions in data gather-
ing. The depth GT data is particularly prone to mistakes
in these datasets that make it difficult for models to
learn robust facial depth information.

2. Synthetic facial data will, of course, lack the same
level of detail in terms of skin features as compared
to real-world image data. However, considering the
numerous advantages of utilizing synthetic data to train

a neural depth model, it acquires comparable accuracy
to real-world data as shown in Fig. 6.

3. When the new loss function is utilized in the final
set of experiments, the model outperforms SoA when
the network is trained entirely on synthetic data. As a
result, it is rational to assume that employing a scalable
loss function and training technique helps in acquiring
greater accuracy and facial depth information.

4. The model measure how effectively the created faces
preserve the individual visual features of the subjects,
which requires both high and low-level features to
work effectively. The suggested model allows for the
maximum test accuracy and outperforms the previous
models that have been examined. Based on the results,
the model can estimate both high-level and low-level
aspects of facial depth maps, resulting in realistic and
discriminative results.
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FIGURE 6. The results of a facial monocular depth estimation method’s qualitative evaluation. It demonstrates how to use data from several,
independent sources to estimate facial depth in a single view, despite changing and unknown depth range and scale. The method allows for broad
generalization across datasets. Input images at the top. Middle: depth maps predicted by the approach provided. Bottom: corresponding point clouds
as seen from a different perspective. Open3D [95] was used to render point clouds. Images from the Synthetic human facial dataset, the Pandora
dataset, the Eurecom Kinect Face dataset, and the Biwi Kinect Head Pose dataset, as well as a real image of the main authors that were not seen
during training.

5. Using the model predicted depth maps, as shown in
Fig. 6 (row 3 and 6), the corresponding point clouds
can be generated from a different perspective. Many
developing visual applications require quick, direct,
and exact depth information, which points clouds
deliver. To localize and navigate, autonomous tech-
nologies such as robots, augmented reality devices,
and self-driving cars rely on depth. In high-end smart-
phones, depth also enables computational photography
functions like auto focus and portrait mode, which are
especially useful at night when depth is difficult to
obtain with traditional cameras but is readily available
from a LiDAR.

IX. CONCLUSION AND FUTURE RESEARCH
This paper investigated the comprehensive details of facial
depth datasets and loss functions generated in the field of
computer vision for facial depth estimation problems. In var-
ious facial depth map tasks based on deep learning net-
works, publicly available facial depth datasets and facial
depth-based loss functions have obtained robust results. The
facial depth datasets are utilized in a variety of applications,
including person detection and action recognition, face and
pose detection, and biomedical applications. Implementation
details of how neural depth networks work, as well as their
associated evaluation matrices, are presented in this study.
In addition to this, SoA neural architecture for facial depth
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estimation is proposed, along with a comparison evaluation.
The proposed model outperforms current SoA techniques
when tested against four different datasets. The proposed
method’s unique loss function helps the network in learning
information aspects more robustly thus providing a detailed
prediction. The training is done using synthetic human facial
depth datasets, while the evaluation is done with real as
well as synthetic facial images. The results prove that the
proposed neural model outperforms current SoA networks,
thus establishing a new benchmark for facial depth mapping
and research aspects. Also, the achieved results presented in
this paper can be utilized as a reference for better facial depth
estimation model design and validation purposes.

Future research can be focused on developing more robust
neural networks, as well as paying more attention to the
newly developed facial depth datasets to obtain pixel-accurate
ground truth depth maps. Because the currently available
datasets have issues, particularly with realistic human faces,
they can be employed in a range of real-world applications
such as in-cabin driver monitoring, robotics, and 3D face
reconstructions if these difficulties are addressed.

Finally, the available SoA depth estimation models can be
reconsidered for the prediction of facial depth maps because
they are mostly used for indoor and outdoor scene tasks and
have not been extensively studied for human faces. They can
also be investigated for other tasks such as single view facial
recognition and surface normal prediction, 3D reconstruc-
tions, and while training on datasets both real and synthetic.
The GitHub code is available online and can be found at
this URL https://github.com/khan9048/LapDepth-for-Facial-
depth-estimation-.
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Subject: Facial Recognition (FR) from Thermal Camera Data 
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Scope of this Document 
The C3 Imaging group has gathered and annotated a large dataset of thermal camera images. These 

are obtained from a vehicle-mounted camera around Galway city and consist of roadway scenes with 

pedestrians, cyclists, vehicles. The goal of this document is to explain that the thermal image data of 

these objects/individuals cannot be used to reconstruct a face or vehicle numberplate in sufficient 

detail to identify an individual or a particular vehicle.  

More specifically this document addresses specific concerns regarding the potential to reconstruct 

facial detail with sufficient resolution to implement a useful facial recognition (FR) and thus to identify 

individuals within thermal image data.   
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Technology Background - Thermal Vs Conventional Digital Cameras 
There are a number of significant differences between thermal imaging, in particular the type of 

thermal sensor used in the camera we have employed to gather data and conventional CMOS sensors 

in digital cameras. These are discussed in this section, in particular with a focus on the suitability and 

performance of thermal imaging when applied for facial recognition.  

 

 

Thermal Imaging Technology used in this Study 
The thermal image capture is performed using uncooled microbolometer sensing elements. Each 

‘pixel’ of the image sensor is effectively an independent micro-bolometer. The current state-of-art 

for this sensor technology is described in this document:  

• Yu L, Guo Y, Zhu H, Luo M, Han P, Ji X. Low-Cost Microbolometer Type Infrared Detectors. 

Micromachines. 2020 Sep;11(9):800.  https://www.mdpi.com/2072-666X/11/9/800/pdf  

 

Face Recognition with Thermal Imaging 
A useful and quite recent study on the use of thermal imaging for facial recognition is provided in:  

• Mallat K. Efficient integration of thermal technology in facial image processing through interspectral 

synthesis Dissertation (Doctoral dissertation, Sorbonne Université). https://tel.archives-

ouvertes.fr/tel-03152793/document  

Here we provide an exemplary receiver-operating-characteristic (ROC) curve comparing state-of-art 

visible FR with pure thermal and a number of inter-spectral techniques studied in this thesis.  

Note that the ROC curve for visible-

light FR is almost ideal whereas that 

for pure thermal facial recognition is 

almost diagonal, indicating that there 

are nearly as many false negatives as 

true positives and conversely, as 

many false positives as true negatives 

for the thermal data. In essence facial 

recognition based on thermal image 

data is far less reliable than facial 

recognition based on visible, 

reflected light.  

This figure and the general findings of 

this research work indicate that SoA 

for purely thermal-image based facial 

recognition is significantly less 

accurate when a like-for-like 

evaluation is performed, and thermal 

image data needs to be supplemented with additional inter-spectral data to achieve useful results. 

Even when supplemented in this manner it performs less effectively than FR algorithms based on 

visible-light and conventional digital cameras.  

Figure 1 ROC curves for visible, thermal and combination techniques from 
the literature [Figure 4.7(a) taken from Mallat's thesis] 

https://www.mdpi.com/2072-666X/11/9/800/pdf
https://tel.archives-ouvertes.fr/tel-03152793/document
https://tel.archives-ouvertes.fr/tel-03152793/document


In the next sections some technical explanations are provided as to why thermal imaging performs so 

poorly for facial recognition.  

 

Calibration of Thermal Cameras 
Thermal cameras are sensitive to a wide temperature range. For uncooled microbolometers, the 

unconditioned sensing characteristic curve ranges from –273 degrees Celsius up to temperatures of 

several hundred degrees Celsius. In a thermal camera, this sensing response is adjusted to a much 

narrower range by adding specialized electronic circuits to condition the sensing response and 

calibrate the sensor output to a specific temperature range.  

When a camera is adapted specifically for observing human faces it will be conditioned to a narrow 

temperature range around that of body temperature – typically 37 degrees +/- 5 degrees as the body 

temperature is not likely to rise above 40 degrees or drop below 32 degrees. With an example 10-

degree temperature range, the sensitivity for 8-bit imaging is about 0.04 degree Celsius per bit-change 

of data for a typical thermal camera optimized for facial recognition purposes. Where there is a +/- 1-

degree variation across a facial region a camera that is calibrated for FR can utilize 50 of 255 

quantization levels to provide useful facial information, or about 5.5 of the 8-bit range is useful to 

extract relevant data. 

However, the camera used to capture the data for this NUIG project was calibrated for a wider 

temperature range due to the use case of ambient thermal image data acquisition in roadway 

scenarios. Thus, the operating range is from c.–20 degrees up to +40 degrees Celsius representing a 

sensitivity of 0.25 degrees per bit-change of data. For this camera only c.8 of 255 quantization levels 

are available across a face region, or 3 of 8 bits.  

It is thus clear that the level of detail that can be obtained from the thermal data recorded in the NUIG 

dataset, even in optimal situations, is significantly lower than could be obtained from a typical thermal 

camera that is optimized for facial recognition. 

 

Size and Quality of Facial Crops 
The facial crop size used by Mallat (Chapter 4, https://tel.archives-ouvertes.fr/tel-03152793/document) in 

both visible and thermal regions is 160x120 pixels (section 4.4.1 of Mallat) and this is a typical size 

used for facial recognition applications.  

The NIST website,   https://pages.nist.gov/frvt/html/frvt11.html , contains performance verifications 

for all public state-of-art visible-light facial recognition algorithms across a range of publicly available 

test datasets. NIST recommends that ideally a crop size of 240x240 pixels should be used for tests and 

comparisons between FR algorithms, but some of the test datasets do include faces crops of smaller 

size to reflect situations where a person is more distant from the camera.  

The key takeaway from the NIST website is that almost all the test datasets used are > 120x120 pixels, 

although recently a more challenging dataset with 80x80 face crops has been added to the 

recommended test datasets to be used in comparison studies.  

To get an additional expert opinion we have engaged in informal discussions with a local expert, 

Gabriel Costache from Xperi, Galway. He manages an engineering group that spent 6 months doing 

extensive testing of state-of-art facial recognition algorithms about 2 years ago, and continues to do 

bi-annual reviews on the latest advances in this field. From these discussions it was learned that their 

https://tel.archives-ouvertes.fr/tel-03152793/document
https://pages.nist.gov/frvt/html/frvt11.html


group has  some level of success with reconstructing conventional facial crops as small as 45x45 pixels 

by employing bicubic super-resolution algorithms, and enlarging to 90x90. However, while the 

performance was acceptable for some use cases it was significantly impaired when compared with 

original 90x90 or larger face crops. These tests were based on high-quality original facial image crops 

with a well-focused visible-light camera which can effectively use the full 8-bits of data resolution.  

Another recent study has shown that it is possible to extend visible-light FR to even smaller face crops: 

https://openaccess.thecvf.com/content_ICCVW_2019/papers/RLQ/Mynepalli_Recognizing_Tiny_Fac

es_ICCVW_2019_paper.pdf 

However, the starting point for all such experiments is a set of larger high-quality visible-light face 

crops and the percentage of true positives for crops smaller than 30 pixels is less than 40% even with 

state-of-art super-resolution.  

For thermal data where the dynamic range is less than 3 of 8 bits resolution (8 of 255 quantization 

levels for 8-bit image data) the reconstruction of any significant detail from face images smaller than 

45 pixels would be completely unfeasible. For larger face regions the level of detail that could be 

reconstructed will be substantially lower than what could be obtained from a well calibrated thermal 

camera. And a well-calibrated thermal camera has a significantly poorer performance than that of a 

visible camera as discussed above.  

In the next section we summarize our findings on thermal image quality and the suitability of thermal 

imaging for facial recognition.   

  

https://openaccess.thecvf.com/content_ICCVW_2019/papers/RLQ/Mynepalli_Recognizing_Tiny_Faces_ICCVW_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCVW_2019/papers/RLQ/Mynepalli_Recognizing_Tiny_Faces_ICCVW_2019_paper.pdf


Conclusions on Thermal Facial Quality  
From the above discussion based on SoA research literature, the following conclusions can be 

drawn:  

• The camera used in this study was not calibrated for Facial Recognition (FR) and thus has 

significantly less quantization levels available to resolve the details of facial regions than 

would normally be considered useful for thermal facial recognition.  

• Given that a large facial crop is available – typically larger than 120x120 pixels – the results 

from Mallat show that well-callibrated thermal imaging on its own performs very poorly when 

a like-for-like study is made compared with visible-light FR.   

• For visible light FR the practical limit of crop size for reconstruction to high-quality original 

images suitable for FR is around 30x30 pixels, but for any pragmatic levels of accuracy (i.e. > 

50% true positives) at a minimum, 45x45 pixel facial crops of high quality are required.  

Based on these conclusions it was decided to perform an analysis of the annotated dataset to 

determine any image frames with thermal facial crops that are larger than 45x45 pixels. Even though 

it is highly unlikely that a reconstruction of the facial details could be achieved from these face crops 

they will be inspected manually. Such a manual inspection will allow us to reach a determination if 

any of these larger regions might be frontally oriented and have a significant level of local detail on 

the face region.  

The next section of this report details the procedures and methodology employed to review the 

annotated dataset, select any higher-risk face crops, and make an individual determination on each 

of those.  

  



Study and Review of the Dataset 
In this section the dataset is tested  to determine any image frames with face crops that might be 

sufficiently large to pose a risk that personal face data could be reconstructed.  

 

Methodology to Detect Face Crops > 45x45 pixels 
The main thermal dataset comprises c.26,000 annotated thermal image frames of VGA (640x480) 

resolution. As it would not be feasible to inspect each image frame individually the first step of the 

review process is to apply a face-crop detector to determine which image frames have face crops and 

the range of crop sizes.  

To detect face crops and identify their range of sizes a modified version of the MTCNN face detector 

was employed, and can be found at this URL:  

https://github.com/JustinGuese/mtcnn-face-extraction-eyes-mouth-nose-and-speeding-it-up  

The face detector is applied using the following methodology:  

Step 1:  Each frame is searched using MTCNN for faces across multiple region sizes;  

Step 2:  If at least one face region is detected the frame is marked positive for face crop;  
The detected faces are cropped and copied to a separate folder; 

Step 3:  Each folder is inspected to determine the size of face crops;  

Step 4: Frames with crops > 45x45 pixels are marked and removed from the dataset; 
 

The dataset comprises three main sub-sets, one acquired in daytime conditions, one in evening/dusk 

conditions and a third set in night-time conditions. The results of applying the face crop detection on 

each of these subsets is provided in the tables below.  

Daytime Image Frames  

Total Frames 9600 

Frames with Face Crops 205 

Cropped Faces < 20X20 10 

Cropped Faces > 20X20 26 

Cropped Faces > 30x30 0 

Cropped Faces > 45x45 201 

Total No of Facial Crops: 237 

Frames removed 201 
 

Evening/Dusk Image Frames  

Total Frames 11,960 

Frames with Face Crops 526 

Cropped Faces < 20X20 320 

Cropped Faces > 20X20 147 

Cropped Faces > 30x30 59 

Cropped Faces > 45x45 0 

Total No of Facial Crops: 526 

Frames removed 0 
 

Nighttime Image Frames  

Total Frames 4600 

https://github.com/JustinGuese/mtcnn-face-extraction-eyes-mouth-nose-and-speeding-it-up


Frames with Face Crops 526 

Cropped Faces < 20X20 6 

Cropped Faces > 20X20 1 

Cropped Faces > 30x30 0 

Cropped Faces > 45x45 0 

Total No of Facial Crops: 7 

Frames removed 0 
 

It can be seen that only the first dataset has a significant number of larger face crop. These have 

been removed from the dataset to be made available publicly and a list of the removed image 

frames is provided in Appendix A.  

  



Risk Analysis 
While this report has focused on face regions within the image data there are other potential risks. 

Car number plates and bus numbers could be potentially identified. Each of these specific risks are 

discussed separately in this section. A risk assessment form is completed and appended as Appendix 

C.  

 

Risk Assessment  - Potential to Identify an Individual from Facial Data 
This is considered the most significant risk involved in making this dataset available publicly. However 

the details provided in the earlier sections of this report and the measures taken to remove any larger 

size facial crops have protected against this risk.  

As indicated previously in this report the quality of facial data recorded in thermal images acquired in 

this study and the level of detail that can be potentially reconstructed is so low that this risk is 

essentially, non-existent. Some examples are shown in Appendix B.  

Risk Assessment – Reconstruction of Vehicular Number Plates 
This is considered a less significant risk as, even if it were possible to partially re-construct vehicular 

number plates this would only identify a particular vehicle and not the driver or other occupants. But 

again, as thermal imaging relies on emission of thermal radiation, and as number plates are non-

emissive it is unlikely that sufficient details could be discerned, even with advanced reconstruction 

algorithms.  

On a sunny day it might be possible for dark letters and numbers to absorb heat from the sun and thus 

appear with a higher level of thermal emissivity than the white background of a number plate which 

would reflect heat form the sun. In a cloudy environment number plates and the numbers and letters 

are at a uniform temperature and thus no details can be discerned. As our data was acquired in 

overcast conditions throughout this eliminates any risks that number plate details will be discernible. 

Separately it is challenging even with conventional digital-cameras, to discern and reconstruct number 

plates in normal traffic conditions from lower resolution cameras, such as the VGA (640x480 pixels) 

resolution available from the thermal imager. An example comparison between conventional camera 

imaging of number plates, compared with thermal imaging is provided in Appendix B.  

Our conclusion is that both the risk here and the resulting consequence are extremely low.  

Risk Assessment – Reconstruction of Public Transport Bus Numbers 
It may be feasible to determine the route numbers of public bus transportation due to the use of LED 

illumination for these numbers as the lighting may be thermally emissive. However from our 

inspection of several examples in the dataset this seems to be unlikely as the glass cover for these 

numbers on the bus appears to absorb any thermal emissivity. A comparative example is provided in 

Appendix B showing a very faint level of detail.  

Even if it were feasible to reconstruct bus numbers this only reveals the bus-route, but not any 

passenger identities or even the bus driver identity as no time or date information is provided with 

this dataset. Thus given the knowledge that the data was gathered in Galway town, and even if bus 

routes could be identified, the associated consequences of this aren’t of significance in terms of 

personal data privacy.    

  



Appendix A – List of Frames Removed from the Dataset 
 

Daytime Image Frames Frame Number 
Sequence 1 from-car-1 2410 

from-car-1 2411 

from-car-1 2412 

from-car-1 2413 

from-car-1 2414 

from-car-1 2415 

from-car-1 2416 

from-car-1 2417 

from-car-1 2418 

from-car-1 2419 

from-car-1 2420 

from-car-1 2421 

from-car-1 2422 

from-car-1 2423 

from-car-1 2424 

from-car-1 2425 

from-car-1 2425 
  

Sequence 2 from-car-1-4813  

from-car-1-4814 

from-car-1-4815 

from-car-1-4816 

from-car-1-4817 

from-car-1-4818 

from-car-1-4819 

from-car-1-4820 

from-car-1-4821 

from-car-1-4822 

from-car-1-4823 

from-car-1-4824 

from-car-1-4825 

from-car-1-4826 

from-car-1-4827 

from-car-1-4828 

from-car-1-4829 

from-car-1-4830 

from-car-1-4831 

from-car-1-4832 

from-car-1-4833 

from-car-1-4834 

from-car-1-4835 

from-car-1-4836 

from-car-1-4837 

from-car-1-4838 

from-car-1-4839 

from-car-1-4840 

from-car-1-4841 

from-car-1-4842 

from-car-1-4843 

from-car-1-4844 

from-car-1-4845 

from-car-1-4846 

from-car-1-4847 

from-car-1-4848 

from-car-1-4849 

from-car-1-4850 

from-car-1-4851 

from-car-1-4852 

from-car-1-4853 



from-car-1-4854 

from-car-1-4855 

from-car-1-4856 

from-car-1-4857 

from-car-1-4858 

from-car-1-4859 

from-car-1-4860 

from-car-1-4861 

from-car-1-4862 

from-car-1-4863 

from-car-1-4864 

from-car-1-4865 

from-car-1-4866 

from-car-1-4867 

from-car-1-4868 

from-car-1-4869 

from-car-1-4870 

from-car-1-4871 

from-car-1-4872 

from-car-1-4873 

from-car-1-4874 

from-car-1-4875 

from-car-1-4876 

from-car-1-4877 

from-car-1-4878 

from-car-1-4879 

from-car-1-4880 

from-car-1-4881 

from-car-1-4882 

from-car-1-4883 

from-car-1-4884 

from-car-1-4885 

from-car-1-4886 

from-car-1-4887 

from-car-1-4888 

from-car-1-4889 

from-car-1-4890 

from-car-1-4891 

from-car-1-4892 

from-car-1-4893 

from-car-1-4894 

from-car-1-4894 

from-car-1-4896 

from-car-1-4897 

from-car-1-4898 

from-car-1-4899 

from-car-1-4898 

from-car-1-4900 

from-car-1-4901 

from-car-1-4902 

from-car-1-4903 

from-car-1-4904 

from-car-1-4905 

from-car-1-4899 

from-car-1-4898 

from-car-1-4900 

from-car-1-4901 

from-car-1-4902 

from-car-1-4903 

from-car-1-4904 

from-car-1-4905 

from-car-1-4899 

from-car-1-4898 

from-car-1-4900 



from-car-1-4901 

from-car-1-4902 

from-car-1-4903 

from-car-1-4904 

from-car-1-4905 

from-car-1-4906 

from-car-1-4907 

from-car-1-4908 

from-car-1-4909 

from-car-1-4910 

from-car-1-4911 

from-car-1-4912 

from-car-1-4913 

from-car-1-4914 

from-car-1-4915 

from-car-1-4916 

from-car-1-4917 

from-car-1-4918 

from-car-1-4919 

from-car-1-4920 

from-car-1-4921 

from-car-1-4922 

from-car-1-4923 

from-car-1-4924 

from-car-1-4925 

from-car-1-4926 

from-car-1-4927 

from-car-1-4928 

from-car-1-4929 

from-car-1-4930 

from-car-1-4931 

from-car-1-4932 

from-car-1-4933 

from-car-1-4934 

from-car-1-4935 

from-car-1-4936 

from-car-1-4937 

from-car-1-4938 

from-car-1-4939 

from-car-1-4940 

from-car-1-4941 

from-car-1-4942 

from-car-1-4943 

from-car-1-4944 

from-car-1-4945 

from-car-1-4946 

from-car-1-4947 

from-car-1-4948 

from-car-1-4949 

from-car-1-4950 

from-car-1-4951 

from-car-1-4952 

from-car-1-4953 

from-car-1-4954 

from-car-1-4955 

from-car-1-4956 

from-car-1-4957 

from-car-1-4958 

from-car-1-4959 

from-car-1-4960 

from-car-1-4961 

from-car-1-4962 

from-car-1-4963 

from-car-1-4964 



from-car-1-4965 

from-car-1-4966 

from-car-1-4967 

from-car-1-4968 

from-car-1-4969 

from-car-1-4970 

from-car-1-4971 

from-car-1-4972 

from-car-1-4973 

from-car-1-4974 

from-car-1-4975 

from-car-1-4976 

from-car-1-4977 

from-car-1-4978 

from-car-1-4979 

from-car-1-4980 

from-car-1-4981 

from-car-1-4982 

from-car-1-4983 

from-car-1-4984 

from-car-1-4985 

from-car-1-4986 

from-car-1-4987 

from-car-1-4988 

from-car-1-4989 

from-car-1-4990 

from-car-1-4991 

from-car-1-4992 

from-car-1-4993 

from-car-1-4994 

from-car-1-4995 

from-car-1-4996 

 

  



Appendix B – Data Examples 
 

Thermal Face Crops – Example #1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

90 x 90 cropped face  

MTCNN Face Detector 

Thermal frame 



Thermal Face Crops – Example #2 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Person 1 

Thermal frame 

Person 2 

MTCNN Face Detector 



RGB Vs Thermal Image Comparison - Number Plate Data 
 

 

 

 

  



RGB Vs Thermal Image Comparison – Bus Number Detail 
 

 

 

 

 

  



Appendix C – Risk Assessment  
 

HAZARD          HAZARD 

OUTCOME 

RISK ASSESSMENT CRITERIA 

A. Likelihood  

B. Severity/ 

Consequence  

of exposure 

         A           B 

RISK 

ASSESSMENT 

 

 

(A X B) 

CONTROLS/ARRANGEMENTS  

 List existing controls according to the "hierarchy of 
controls". 

 Indicate status of measures 
To do - action date given 

Completed - √ 

Ongoing - underlined 

PERSON RESPONSIBLE RESOURCES 

Reconstruction 

of facial data to 

allow 

identification of 

individual 

persons 

Individual persons 

recognized 

triggering GDPR 

violation 

< 1 4 < 4 Considered a minor risk.  

From an abundance of caution, remove all face  

regions > 45x45 pixels (done) 

  

Number plate 

reconstruction 

Individual vehicle 

identified with 

indirect association 

to vehicle owner 

< 1 3 < 3 Considered a minor risk as no explicit GDPR  

Violation (not possible to determine driver).  

  

Public bus 

number 

reconstruction 

Vehicle identified  <1 1 <1 Considered trivial risk; no explicit GDPR  

Violation (not possible to identify passengers). 

  

Building 

Identification 

Person identified 

by proximity to 

building 

<1 1 <1 Considered trivial risk; no explicit GDPR  

Violation; no time or date information so not 

possible to definitively associate a person with  

a particular building. 

  



 

 

 

 

 

Likelihood Guide Description  Severity Guide Description 

5 Very likely/imminent – certain to happen  5 Catastrophic - fatality, catastrophic damage 

4 Probable – a strong possibility of it happening  4 Major – significant injury or property damage, hospitalisation 

3 Possible – it may have happened before  3 Moderate - injury requiring further treatment, lost time 

2 Unlikely - could happen but unusual  2 Minor - first aid injury, no lost time 

1 Rare – highly unlikely to occur  1 Very minor – insignificant injury 

 
Severity (S)  Risk Rating (RR) Action  

1 2 3 4 5  High Risk Stop the task/activity until controls can be put into place to reduce the risk to an acceptable level  

Li
ke

lih
o

o
d

 (
L)

 

5 5 10 15 20 25  

4 4 8 12 16 20  Medium Risk Determine if further safety precautions are required to reduce risk to as low as is reasonably 

practicable 
3 3 6 9 12 15  

2 2 4 6 8 10  

1 1 2 3 4 5  Low Risk No further action, keep under review 

Signature of  

Risk Assessor  
Name / job 

title: 
Director C3Imaging Group, NUIG 

Details of any persons 

consulted 
Gabriel Costache, Director Engineering, Xperi Ltd., Galway  



Appendix K 
 

Subject Consent Forms  
 



1

Farooq, Muhammad Ali

From: Adrian Ungureanu <ung.adrian@yahoo.com>
Sent: Wednesday 19 February 2020 14:35
To: Farooq, Muhammad Ali
Subject: Re: Thermal Facial Database Permission  Required  for GDPR

Hello, Ali 
 
I confirm that you can use those pictures of me in your work. 
 
 
I confirm that the nature, demand and possible risks of the research have been 
explained to me and I understand and accept them. I understand that my consent is 
entirely voluntary and that I may withdraw at any time from the research project 
without proper explanation or penalty. I also consent that my data will be publicly 
available for further research studies 
 
All the best, 
Adrian 
 
Sent from Yahoo Mail on Android 
 
On Wed, Feb 19, 2020 at 14:05, Farooq, Muhammad Ali 
<M.Farooq3@nuigalway.ie> wrote: 

  

Hello Friends, 

  

I hope you all are doing well. 

  

Currently, I am finalizing my publication under Heliaus Project titled as  

  

“Performance Estimation of the State of Art Convolution Neural Networks (CNN) for 
Thermal Images-Based Gender Classification System” 

  

  

I have gathered your datasets in the lab and I am using it my paper.  
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These are the facial poses from different angles as shown in the below figure  

  

  

Of course, it does not includes visible images (Just thermal). 

  

If you guys are willing to get these images published it and available on GitHub 
repository  you just have to reply this email with the following lines”  

  

  

“ I confirm that I have read the information provided dated ________________ for the above 
study. I confirm that the nature, demand and possible risks of the research have been 
explained to me and I understand and accept them. I understand that my consent is 
entirely voluntary and that I may withdraw at any time from the research project 
without proper explanation or penalty. I also consent that my data will be publicly 
available for further research studies” 

  



3

  

Thank you 

  

  

Best Regards, 

Muhammad Ali Farooq 

PhD Researcher 

HELIAUS Project 

College of Engineering and Informatics 

National University of Ireland Galway (NUIG) 

  

  

  

  

  

  

  

  

  

  

  

  



1

Farooq, Muhammad Ali

From: KHATOON, ASMA
Sent: Wednesday 19 February 2020 15:21
To: Farooq, Muhammad Ali; Adrian Ungureanu
Cc: Corcoran, Peter
Subject: Re: Thermal Facial Database Permission  Required  for GDPR

Hi Ali, 
 
Please see my response below. I don't exactly remember the date when you collected the data so you can put the 
date yourself. 
 
“ I confirm that I have read the information provided dated ________________ for the above study. I confirm that 
the nature, demand and possible risks of the research have been explained to me and I understand and accept 
them. I understand that my consent is entirely voluntary and that I may withdraw at any time from the research 
project without proper explanation or penalty. I also consent that my data will be publicly available for further 
research studies” 
 
 
Best Regards, 
Asma  

From: Farooq, Muhammad Ali <M.Farooq3@nuigalway.ie> 
Sent: Wednesday, February 19, 2020 2:05:09 PM 
To: Adrian Ungureanu <ung.adrian@yahoo.com>; KHATOON, ASMA <A.KHATOON1@nuigalway.ie> 
Cc: Corcoran, Peter <peter.corcoran@nuigalway.ie> 
Subject: Thermal Facial Database Permission Required for GDPR  
  
  
Hello Friends, 
  
I hope you all are doing well. 
  
Currently, I am finalizing my publication under Heliaus Project titled as  
  

“Performance Estimation of the State of Art Convolution Neural Networks (CNN) for 
Thermal Images-Based Gender Classification System” 

  
  

I have gathered your datasets in the lab and I am using it my paper.  
  
  
These are the facial poses from different angles as shown in the below figure  
  



2

  
Of course, it does not includes visible images (Just thermal). 
  
If you guys are willing to get these images published it and available on GitHub 
repository  you just have to reply this email with the following lines”  
  
  
“ I confirm that I have read the information provided dated ________________ for the above 
study. I confirm that the nature, demand and possible risks of the research have been explained 
to me and I understand and accept them. I understand that my consent is entirely voluntary 
and that I may withdraw at any time from the research project without proper explanation or 
penalty. I also consent that my data will be publicly available for further research studies” 
  
  
Thank you 
  
  
Best Regards, 
Muhammad Ali Farooq 
PhD Researcher 
HELIAUS Project 
College of Engineering and Informatics 
National University of Ireland Galway (NUIG) 
  
  
  
  
  
  
  
  



3

  
  
  
  



1

Farooq, Muhammad Ali

From: Andrade, Evismar
Sent: Monday 24 February 2020 12:35
To: Farooq, Muhammad Ali
Subject: Re: Thermal Facial Database Permission  Required  for GDPR

I confirm that I have read the information provided dated 24/02/2020 for the above study. I 
confirm that the nature, demand and possible risks of the research have been explained to me 
and I understand and accept them. I understand that my consent is entirely voluntary and that 
I may withdraw at any time from the research project without proper explanation or penalty. 
I also consent that my data will be publicly available for further research studies” 
 
Regards, 
Evismar 
 
 

From: "Farooq, Muhammad Ali" <M.Farooq3@nuigalway.ie> 
Date: Monday 24 February 2020 at 12:32 
To: "Andrade, Evismar" <evismar.andrade@nuigalway.ie>, "ANDRADE, EVISMAR" 
<E.ANDRADE1@nuigalway.ie> 
Cc: Muhammad Ali Farooq <MuhammadAli.Farooq@xperi.com> 
Subject: FW: Thermal Facial Database Permission Required for GDPR 
 
  
  
Hello Evismar, 
  
I hope this email finds you well. 
  
Currently, I am finalizing my publication under Heliaus Project titled as  
  

“Performance Estimation of the State of Art Convolution Neural Networks (CNN) for 
Thermal Images-Based Gender Classification System” 

  
  
  
These are the facial poses from different angles as shown in the below figure  
  



2

  
Of course, it does not includes visible images (Just thermal). 
  
If you are willing to get these images published it and available on GitHub repository  you 
just have to reply this email with the following lines”  
  
  
“ I confirm that I have read the information provided dated ________________ for the above 
study. I confirm that the nature, demand and possible risks of the research have been explained 
to me and I understand and accept them. I understand that my consent is entirely voluntary 
and that I may withdraw at any time from the research project without proper explanation or 
penalty. I also consent that my data will be publicly available for further research studies” 
  
  
Thank you 
  
  
Best Regards, 
Muhammad Ali Farooq 
PhD Researcher 
HELIAUS Project 
College of Engineering and Informatics 
National University of Ireland Galway (NUIG) 
  
  
  
  
  
  
  
  



3

  
  
  
  



1

Farooq, Muhammad Ali

From: Moustafa, Mohamed
Sent: Monday 18 October 2021 13:58
To: Farooq, Muhammad Ali
Subject: Re: Thermal Facial Database Permission  Required  for GDPR

I Mohamed Moustafa confirm that I have read the information provided dated 18/10/2021 
for the above study. I confirm that the nature, demand, and possible risks of the research 
have been explained to me and I understand and accept them. I understand that my consent 
is entirely voluntary and that I may withdraw at any time from the research project without 
proper explanation or penalty. I also consent that my data will be publicly available for 
further research studies 

From: Farooq, Muhammad Ali <M.Farooq3@nuigalway.ie> 
Sent: Monday, October 18, 2021 1:54:20 PM 
To: Moustafa, Mohamed <M.Moustafa1@nuigalway.ie> 
Subject: Thermal Facial Database Permission Required for GDPR  
  
Hello Mohammad, 
  
I hope you all are doing well. 
  
Currently, I am in the writing phase of my thesis report. During my experimental work, I 
have collected your thermal facial data for various experiments. Now I need your approval 
for using your thermal facial pictures.  
  
Of course, it does not includes visible images (Just thermal). 
  
If you are willing to get these images published in my Ph.D. report you just have to reply to 
this email with the following lines”  
  
  
“ I ___________ confirm that I have read the information provided dated ________________ 
for the above study. I confirm that the nature, demand, and possible risks of the research have 
been explained to me and I understand and accept them. I understand that my consent is 
entirely voluntary and that I may withdraw at any time from the research project without 
proper explanation or penalty. I also consent that my data will be publicly available for further 
research studies” 
  
  
Thank you 
  
  
Best Regards, 
Muhammad Ali Farooq 
PhD Researcher 
HELIAUS Project 
College of Engineering and Informatics 
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National University of Ireland Galway (NUIG) 
  
  
  
  
  
  
  
  
  
  
  
  



1

Farooq, Muhammad Ali

From: Paul Kielty <Paul.Kielty@xperi.com>
Sent: Wednesday 19 February 2020 17:11
To: Farooq, Muhammad Ali
Subject: Re: Thermal Facial Database Permission  Required  for GDPR

 
I confirm that I have read the information provided dated   19/02/2020   for the above study. 
I confirm that the nature, demand and possible risks of the research have been explained to 
me and I understand and accept them. I understand that my consent is entirely voluntary and 
that I may withdraw at any time from the research project without proper explanation or 
penalty. I also consent that my data will be publicly available for further research studies. 
 
Paul Kielty 

From: Farooq, Muhammad Ali <M.Farooq3@nuigalway.ie> 
Sent: Wednesday 19 February 2020 16:52 
To: Paul Kielty <Paul.Kielty@xperi.com> 
Subject: Thermal Facial Database Permission Required for GDPR  
  

  This message has originated from an External Source. Please use proper judgment and caution when opening 
attachments, clicking links, or responding to this email. 

 
Hello Friends, 
  
I hope you all are doing well. 
  
Currently, I am finalizing my publication under Heliaus Project titled as  
  

“Performance Estimation of the State of Art Convolution Neural Networks (CNN) for 
Thermal Images-Based Gender Classification System” 

  
  
  
These are the facial poses from different angles as shown in the below figure  
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Of course, it does not includes visible images (Just thermal). 
  
If you are willing to get these images published it and available on GitHub repository  you 
just have to reply this email with the following lines”  
  
  
“ I confirm that I have read the information provided dated ________________ for the above 
study. I confirm that the nature, demand and possible risks of the research have been explained 
to me and I understand and accept them. I understand that my consent is entirely voluntary 
and that I may withdraw at any time from the research project without proper explanation or 
penalty. I also consent that my data will be publicly available for further research studies” 
  
  
Thank you 
  
  
Best Regards, 
Muhammad Ali Farooq 
PhD Researcher 
HELIAUS Project 
College of Engineering and Informatics 
National University of Ireland Galway (NUIG) 
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Appendix L 
 

Additional Experimental Work Related to Face Localization and Facial 

Landmark Detection in Thermal Images  
 



Face Localization and Facial Landmark Detection on Thermal Data 

for In-Cabin Driver Monitoring Application 
 

This study presents the working methodology and experimental results of effectual face 

detection and facial landmarks detection algorithms adapted for thermal facial data for in-cabin 

driver monitoring applications related to WP-7 of the Heliaus project. The efficacy of these 

algorithms is validated on the thermal data acquired from the prototype LWIR uncooled 

thermal camera. 

 

1. Working Methodology 

This section will be explaining the working methodology of non-contact thermal facial 

detection systems.  Figure 1 shows the complete workflow diagram of the proposed system. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

The acquired video sets from the prototype thermal camera (as explained in section 3.3.1 of 

chapter 3) are first converted to image data. Once the frames are created, the next phase 

Image 

cropping 

 400x300 

Video recording 

using different 

colour maps 

Video to image 

conversion 

(640x480) 

Frame 

selection  

Haar Cascade 

Face detector 

Face 

extraction 

Face Landmark 

Detection 

Figure 1: Block diagram representation of face localization and facial landmarks detection on thermal data. 



includes selecting the best set of thermal frames showing different facial angles. The third step 

includes image cropping which is done using the OpenCV library. It is done to select the upper 

body and mainly the facial area (as the region of interest). The frames are cropped into 400x300 

resolution. The next step includes applying the HAAR Cascade [65] to detect and localize the 

face area in the thermal frame. Lastly, we have applied an end-to-end CNN network to detect 

the facial landmarks on the extracted face frame using the Haar Cascade face detector. 

 

2. Face Detector 

This section will explain the working principle of the HAAR Cascade face detector algorithm 

to perform face detection in the desired frame. It is achieved by employing a haar feature-based 

cascade classifier. The algorithm was proposed by [65] and is based on the Viola-Jones 

detection method [65]. It is based on the Haar wavelet technique to analyse pixels in the image 

into squares by function. It uses important image concepts to compute the features detected. 

Haar Cascades uses the Ada-boost learning algorithm which selects a small number of 

important features from a large training set to give an efficient result. In the second stage, it 

uses cascading techniques to detect the face in an image. It can be trained and used for various 

computer vision applications such as palm detection, and object detection tasks. The network 

is originally trained on RGB data, however, in this study, we have used the viola jones 

algorithm to validate its effectiveness on thermal facial data. 

 

3. Face Localization and Facial Landmarks Detection Results  

This section will present the result analysis of face detector algorithms on thermal frames of 

different subjects acquired from prototype uncooled LWIR thermal imaging sensor. Once the 

data is acquired, a subset of 70 frames was selected which was extracted from 6 different video 

recordings where the haar cascade face detector was applied. The results demonstrate the 

optimal performance in the form of precise face detection/ localization results. For this purpose, 

a special Graphical User Interface (GUI) was designed in MATLAB R2018 which was 

installed on a Core I7 machine with 32GB Ram. The system GUI is depicted in Figure 2.  

 

Figure 2: Complete system Graphical User Interface (GUI). 



Figure 3 shows the face detection results on various face poses of three different male subjects 

using the Haar Cascade Face detector. The results were acquired using Matlab software. 

 

Figure 3: Haar Cascade face detector results on three different male subjects, (a) subject-1 at 60 cm distance 

with two different facial poses and with and without glasses, (b) Subject-2 at 70cm distance with different frames 

and without glasses, (c) Subject-3 at 80cm distance with different facial poses and with glasses. 

Figure 4 shows the histogram representation of the overall temperature distribution of the 

cropped thermal face region using the HAAR Cascade face detector algorithm. The results 

show the histogram representation on the cropped region of interest of two male subjects 

a 

b 

c 



captured from the LWIR uncooled prototype thermal camera in an indoor lab environment as 

demonstrated in Figure 4. 

 

 

Figure 4: Facial temperature distribution histogram (a) facial thermal image of male subject A with minimum/ 

maximum temperature scale and Histogram of thermal images showing temperature distribution in the form of 

grey-level distribution, (b) facial thermal image of male subject B with respective temperature distribution 

histogram of the cropped facial region. 

The second phase of the experimental results shows the key facial features by detecting 68 

facial landmarks using the localized thermal facial region. The facial landmark detector is 

applied using the dlib library which is inspired by the published study of Kazemi and Sullivan 

(2014) titled ‘One Millisecond Face Alignment with an Ensemble of Regression Trees’ [66]. 

This method works in two steps which are as follows. 

1. A training set of labeled facial landmarks on an image. These images are manually labeled, 

specifying specific (x, y)-coordinates of regions surrounding each facial shape. 

2. Given this training data, an ensemble of regression trees are trained to estimate the facial 

landmark positions directly from the pixel intensities themselves (i.e., no “feature 

extraction” is taking place in this method). 

The output results of this method produce facial landmarks either offline or in real-

time with high-quality predictions. In this research work, we had used the pretrained facial 

landmark detector by using the dlib library to estimate the location of 68 (x, y)-coordinates that 

a 

b 

https://pdfs.semanticscholar.org/d78b/6a5b0dcaa81b1faea5fb0000045a62513567.pdf


map to facial structures to validate its efficacy on thermal data. Figure 5 shows the six facial 

landmarks located at six different face key features. 

 

Figure 5: Six different facial points marked as T1-T6, 1) Forehead, 2) center of the right eye, 3) center of the left 

eye, 4) tip of the nose, 5) right side of the lip, 6) left side of the lips. 

Figure 6 shows the results of 68 (x, y)-coordinates facial landmark detector on six thermal 

frames extracted from an acquired video sequence of a male subject wearing glasses. These 

thermal frames show different facial angles and varying distances from the camera.  

 

Figure 6: Six different frames showing the output of Dlib based 68 facial landmark detection algorithm. The 

results are validated on six different facial angles with nearly 5-15 degree angle variation and varying distances 

of the subject’s face from the camera. 

 



4. Conclusions  

In this work, we have mainly focused on using conventional computer vision algorithms for 

face localization and landmark detection on thermal data for in-cabin applications. These types 

of systems can be further used to extract facial thermal information for drowsiness detection. 

The performance was tested on locally gathered test data. However, we can further improve 

the efficacy of these algorithms by training and fine-tuning them on large-scale thermal data as 

future research work. 

 


