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Abstract

In this thesis, we study the analysis and numerical solution of second-order complex-valued reaction-

diffusion equations, and two families of fourth-order singularly perturbed problems. The problems

are all singularly perturbed, meaning that each has a parameter, ε, multiplying the highest deriva-

tive. This parameter is positive but maybe arbitrarily small. However, as ε Ñ 0, the differential

equations become ill-posed, hence the singular nature of the perturbation.

The first problem we address is the numerical solution, by finite difference methods of a second-

order, complex-valued problem. We employ specialised fitted meshes: the well-known piecewise

uniform Shishkin mesh, and the graded Bakhvalov mesh. The numerical analysis of such methods

usually rely on maximum principles, but these do not hold, in a direct way, for complex-valued

problems. So we present an approach for rewriting the equation as a coupled system of real-valued

problems, and establish that the coefficient matrix for this system is positive definite. Then we

show how to adapt the analysis of Bakhvalov [2], in the style of Kellogg et al. [20], to prove

convergence.

The second problem we address is the numerical solution of a fourth-order, real-valued reaction-

diffusion problem. The ODE is “simply supported” (see Section 1.5.3), and so has boundary

conditions that allow it to be transformed into a (weakly) coupled system of second-order reaction-

diffusion equations, involving unknowns related to the solution to the fourth-order problem, and

its second derivative.

When analysing a finite element method for solving this system, it is usually assumed that the

coupling matrix of the coupled system is pointwise coercive. However, we show that the standard

transformation (see, e.g., [47]) cannot satisfy this condition. This motivates us to propose a new

transformation which resolves this issue.

Moving on to finite difference methods for this problem, we show how to adapt the transfor-

mation in a way that leads to a maximum principle-type result. Moreover, we present an iterative

scheme for solving the continuous problem in order to derive a stability result for the differential

operator. The convergence of the finite difference scheme on a Shishkin mesh, then follows from

standard arguments.

Finally, we address the numerical solution using a fourth-order, complex-valued reaction-

diffusion problem. We extend the transformation from earlier sections to deal with this case,

again focusing on how to ensure coercivity (for a finite element method) and monotonicity (for

analysis of a finite difference scheme).
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Abstract ii

Through all these sections, numerical results are presented that verify the convergence of the

schemes, and test if the theoretical orders of convergence are observed in practice.
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Chapter 1

Introduction

1.1 Aims of the thesis

The aim of this thesis to devise new numerical algorithms that efficiently and accurately compute

solutions to differential equations whose solutions feature boundary layers. Moreover, we devise

new transformations of challenging problems which facilitate numerical analysis of finite difference

methods (FDMs) and finite element methods (FEMs).

The choice of problems we study are motivated by models based on the Rayleigh equation (see,

e.g., [11]) and the Orr-Sommerfeld equation for hydrodynamic stability, (see, e.g., [11, 25]). The

physical meaning of these models is not important to this thesis. What is important is that they

are challenging to solve using standard numerical schemes. Therefore, novel methods are required.

The methods we consider are discretization based on finite difference and finite element meth-

ods, applied on Shishkin and Bakhvalov fitted meshes. Numerically, we see that these methods

are quite successful for the problems we consider. However, the true challenge that these problems

present is that their numerical analysis cannot be approached using standard techniques directly.

So we have devised novel transforms of the problems into ones for which standard methods and

results can be applied.

Here we give a short, chapter-by-chapter summary of the thesis; a detailed overview of the

thesis’ organisation is postponed until Section 1.4. Chapter 2 serves as an introduction to the area

of numerical methods for singularly perturbed problems, by analysing the solution of a second-order

complex-valued problem using a finite difference method. As we shall see, this can be re-cast as a

coupled system of second-order real-valued problems. Variations on this idea are then developed

in the rest of the thesis.

The rest of the thesis is concerned with fourth-order problems. Chapter 3 and 4 address real-

valued problems where the boundary conditions allow us to transform the problem into a system of

two differential equations. These problems are well-studied in the literature. However, we present

a novel approach for constructing the transformation so that it yields a system which is amenable

to finite element methods (Chapter 3) and finite difference methods (Chapter 4).

1



1.2 Notation 2

Chapter 5 deals with the mathematical properties of a general fourth-order complex-valued

singularly perturbed problems with simple boundary conditions and these boundary conditions let

us re-cast the problem into coupled systems of real-valued second-order equations.

Finally, Chapter 6 and Chapter 7, we show how to analyse and solve, numerically, particular

fourth-order complex-valued singularly perturbed problems.

We conclude with some observations and suggestions for future work in Chapter 8.

1.2 Notation

We set

|~v| :“
?
~vT~v for ~v P R2.

If ~v P RN`1, then

}~v}8 :“ max
j“0,...,N

|vj |,

and

}~v}2 :“

g

f

f

e

N
ÿ

j

v2
j ,

If v and u are continuous functions on an interval D, then,

pu, vq “

ż

D

upxqvpxqdx,

}v}D :“ sup
xPD

|vpxq|,

}v}2,D :“
a

pv, vq,

and

|v|1,D :“ }v1}2,D,

where D Ă R, and most typically is a domain (or its closure), Ω, on which a differential equation is

posed, or a subdomain of that. Very often, D “ r0, 1s, and in those cases we omit the D subscript.

Given an arbitrary mesh Ω̄N “ t0 “ x0 ă x1 ă ¨ ¨ ¨ ă xN “ 1u, and a mesh function V on Ω̄N ,

the discrete maximum norm is

}V }Ω̄N :“ max
0ďjďN

|Vj |.

By ΩN we denote Ω̄N X Ω, i.e., ΩN “ tx1, x2, . . . , xN´1u. Then,

}V }ΩN :“ max
1ďjďN´1

|Vj |.

Finally, C denotes a generic constant that is independent of ε and the mesh. It can take different

values at different places.
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1.3 Background

1.3.1 Singularly perturbed problems

Singularly perturbed second- and fourth-order differential equations are considered in this thesis.

These problems have a small positive parameter ε multiplying the highest derivative. The justifica-

tion for the name “singular perturbation” is that “the nature of the differential equations changes

completely in the limit case when the singular perturbation parameter is equal to zero”, to quote

directly from [22], which is one of the seminal works in this field. To explain the key ideas, we

present two types for singularly perturbed problem: algebraic equations and differential equations.

Each type has two examples of perturbation problem, one regular and one singular, to show how

their solutions differ as the perturbation parameter approaches zero. The examples are based on

a presentation in [30], see also [36, Section 2.2].

First, we consider the case for an algebraic equation where the problem is regularly perturbed:

fpy, εq “ p4´ εqy2 ` 2εy ´ 4 “ 0. (1.1a)

Its solutions are

ypεq “
1

´4` ε
pε˘

a

ε2 ´ 4ε` 16q. (1.1b)

If we set ε “ 0 in (1.1a), and solve for y, we get y ˘ 1. Alternatively, we can set ε “ 0 in (1.1b),

and again get yp0q “ ˘1. So the perturbation problem is regular near ε “ 0.

Now, suppose we have a similar problem (1.1a), but with the perturbation parameter multi-

plying the second-order term

fpy, εq “ 2εy2 ` p4´ εqy ´ 4 “ 0. (1.2a)

Its solutions, for ε ‰ 0, are

ypεq “
1

4ε
p´4` ε˘

a

ε2 ` 24ε` 16q. (1.2b)

When ε “ 0 in (1.2a), the only solution is y “ 1. But when εÑ 0 in (1.2b) the solutions tend to

1 and ˘8. So this perturbation is singular. Now, we consider the case of a differential equation

that features a regular perturbation:

´y2 ` 4εy ´ 4 “ 0 on p0, 1q with yp0q “ 0 and yp1q “ 0. (1.3a)

Its solution is

ypx, εq “ C1e
2x
?
ε ` C2e

´2x
?
ε `

1

ε
. (1.3b)

where

C1 “
e´2

?
ε ´ 1

εpe2
?
ε ´ e´2

?
εq

and C2 “ ´
e2
?
ε ´ 1

εpe2
?
ε ´ e´2

?
εq
.

When ε “ 0 in (1.3a), the solution is ypxq “ ´2x2 ` 2x. And when ε Ñ 0 in (1.3b) then

lim
εÑ0

ypx, εq “ ´2x2 ` 2x. So this a regular perturbation.
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In Figure 1.1 we show y with ε “ 10´1 (left) and ε “ 10´3 (right); notice that there are

essentially identical. In addition, neither solution features a layer.

Figure 1.1: The solutions y to (1.3) with ε “ 10´1 (left) and ε “ 10´3 (right).

Now, suppose we have a problem that is similar to (1.3a), but with the perturbation parameter

multiplying the second derivative term:

´εy2 ` 4y ´ 4 “ 0 on p0, 1q with yp0q “ 0 and yp1q “ 0. (1.4a)

Its solution is

ypx, εq “ C3e
´2x{

?
ε ` C4e

2x{
?
ε ` 1, (1.4b)

where

C3 “
e2{
?
ε ´ 1

´e2{
?
ε ` e´2{

?
ε

and C4 “ ´
e´2{

?
ε ´ 1

´e2{
?
ε ` e´2{

?
ε
.

When ε “ 0 in (1.4a), and solution would have ypxq ” 1 on p0, 1q, but yp0q “ yp1q “ 0, which is

not possible. That is, (1.4a) is ill-posed if ε “ 0. However, considering (1.4b), for example, the left

boundary, we note that

lim
xÑ0

p lim
εÑ0`

ypx, εqq “ 0,

but

lim
εÑ0`

p lim
xÑ0`

ypx, εqq “ 1.

In Figure 1.2 we show y with ε “ 10´1 (left) and ε “ 10´3 (right); notice that they are completely

Figure 1.2: The solutions y to (1.4) with ε “ 10´1 (left) and ε “ 10´3 (right).
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different: for the smaller ε, we see that a layer has formed.

Following these examples, we give a formal definition of a singularly perturbed problem.

Definition 1.3.1. [22] Let Pε be a problem that depends on a parameter ε, and let yε be its

solution for a fixed ε. Let y0 be the solution to P0. Then we say Pε is singularly perturbed,

with respect to the norm } ¨ }˚, if

lim
εÑ0

}yε}˚ ‰ }y0}˚.

1.3.2 Uniform convergence

As seen in Figure 1.2, solutions to singularly perturbed differential equations may change abruptly,

and usually exhibits layers at the boundaries and, possibly, also interior regions. Classical methods

are not suitable for solving these problems for two reasons. Firstly, the analysis of such methods

relies on having bounds on derivatives which are independent of the problem data. Clearly, this is

not possible in layer regions. Secondly, such methods may fail to resolve these layers.

Focusing on the first issue, considering classical methods that are not uniformly convergent

for (1.4), a careful examination of numerical results shows that for fixed ε, the error may initially

decrease as the local (uniform) mesh width decreases, but then usually increases when the mesh

is further refined, because of the boundary layer, see [35, Section 2.1.3].

The classical bound for a standard finite difference method is

}y ´ yN } ď CN´2}y2}, (1.5)

where y is the exact solution to a second-order linear singularly perturbed ordinary differential

equation such as (1.4a), and yN is its numerical approximation (see [21, Chap. 1]). However,

from (1.2b), for example, we can see that

}y2pxq} “ ε´1|4´ 4ypxq| ď Cε´1.

This does not (necessarily) mean that the error will blow-up as ε Ñ 0, but, rather that the

bound (1.5) is meaningless in the singularly perturbed case. Therefore, (1.5) does not imply

convergence of the method unless N " ε´1. Since we wish to solve problems for arbitrarily small

ε, and the range of N is bounded by the limits of computing capacity, it is not possible to ensure

N " ε´1 for all ε.

It is very well-known that specialised methods, which are robust with respect to ε, are necessary

for the accurate solution of such problems [14, 22, 35, 27].

Definition 1.3.2. [22] Let uε be the solution of a singularly perturbed problem, and let uNε be

a numerical approximation of uε obtained by a numerical method with N degrees of freedom.

The numerical method is said to be “uniformly convergent” or “robust ” with respect to the

perturbation parameter ε in the norm } ¨ } if

}uε ´ u
N
ε } ď ϑpNq for N ě N0,
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with a function ϑ satisfying

lim
NÑ8

ϑpNq “ 0 and Bεϑ ” 0,

and with some threshold value that is independent of ε.

So, the goal of this thesis is to analyse methods which are uniformly convergent for singularly

perturbed problems and, moreover, to put in place the necessary analytical tools underpinning

such analyses.

1.3.3 A complex-valued example

Later chapters in this thesis are concerned with the solution of fourth-order complex-valued or-

dinary differential equations. These are somewhat neglected in the literature, so we introduce

a classic example here from hydrodynamic stability, the Orr-Sommerfeld equation, which can be

used in modelling wave-current interactions [25],

ε

ˆ

d2

dx2
´ k2

˙2

u´ i
d2u

dx2
` i

`

k2 ´ apk, xq
˘

u “ 0 for 0 ă x ă 1, (1.6a)

with boundary conditions

up0q “ 0, u1p0q “ 0, up1q “ u1, u2p1q “ v1pkq, (1.6b)

where u1 is some specified value, and v1 is a function of k. Notice that if one formally sets ε “ 0,

then it reduces to second-order, so it is singularly perturbed.

1.4 Organisation

The structure of this thesis is as follows.

In the remaining, final section of Chapter 1, we summarise some of the significant works on

the numerical solution of singularly perturbed fourth-order ordinary differential equations in the

literature, classified according to their boundary conditions. In Section 1.5.2, we discuss fourth-

order problems that can not be re-cast as a system of second-order problems, and in Section 1.5.3 we

focus on works on fourth-order problems that can be re-cast as a system of second-order problems;

the latter class are particularly of interest for Chapters 3–7.

Although the main contributions of this thesis are on fourth-order problems, we start, in Chap-

ter 2, with studying the robust numerical solution of second-order reaction-diffusion equations.

This serves two purposes:

(i) Since our approach for fourth-order problems is to reduce them to second-order systems, we

need a clear understanding of the analysis of these problems;

(ii) Since our eventual goal is to study complex-valued differential equations, we start with

complex-valued second-order problems.
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In Section 2.2, we present a model problem and explain the main properties of its solution by

showing the exact solution to a constant coefficient problem. Also, we compare real-valued and

complex-valued problems and see how the complex-valued problem differs from the real-valued one.

In Section 2.3, we introduce a suitable finite difference discretization. Furthermore, we show how

to construct standard Shishkin and Bakhvalov meshes. In Section 2.4, we transform the problem

into a system of real-valued equations. Then, we examine this system and prove an error estimate

for the computed solution. Finally, numerical results are presented in Section 2.5 as support of the

theoretical analysis.

In Chapter 3 we begin our investigation of fourth-order singularly perturbed problems, with

a note on the real-valued case, and its solution by a finite element method. In Section 3.2, we

present a problem studied by Xenophontos et al. [47]. However, as we show, the analysis of that

paper is somewhat faulty: it assumes the differential equation’s coefficients are such that a certain

coefficient matrix is, in their terminology, (pointwise) positive definite, but we observe that it

cannot be for any choice coefficients. We then propose a new transformation for the problem that

can resolve this problem. This transformation feature is a parameter that can be tuned, as needed.

We determine how this is done to ensures that the mentioned coefficient matrix is, indeed, positive

definite (although we prefer the term “coercive”). In Section 3.3, we describe a finite element

method for this problem, applied, initially, on an arbitrary mesh. We then present a suitable

Shishkin mesh for this problem. The section concludes with a report on our numerical results, for

problems with both constant and variable coefficients. We also present results in a selection of

norms, including the natural energy norm associated with system’s bilinear form, and the discrete

maximum norm, which is very commonly used for singularly perturbed problems.

In Chapter 4, we continue our investigation of real-valued fourth-order singularly perturbed

problems and their solution using finite difference methods. In Section 4.2, we introduce a family

of fourth-order ordinary differential equations, focusing on a problem studied by Shanthi and

Ramanujam [38]. As in Chapter 3, we transform the problem into into a system of two second-

order differential equations; the actual transformation is a slight simplification of that used in

Chapter 3. In Section 4.3 we present a stability result for the continuous problem, which is

analysed through a novel iterative method that we have proposed. In Section 4.4, we describe a

finite difference method for this problem, with a suitable layer-adapted mesh, and we show the

numerical analysis for this method. Finally, numerical results are presented in Section 4.5, in

support of the theoretical analysis.

In Chapter 5, we extend our work from Chapters 3 and 4, and apply it to a general fourth-

order, but now complex-valued, singularly perturbed problem. Specifically, we study a problem of

the form

´εup4qpxq ` p1` iqapxqu2pxq ´ p1` iqbpxqupxq “ fpxq on Ω :“ p0, 1q, (1.7)

with the homogeneous boundary conditions

up0q “ u2p0q “ up1q “ u2p1q “ 0.

In Section 5.2, we present a general fourth-order complex-valued problem, discuss how it can be

solved using the MATLAB Chebfun toolbox [12], and present a motivating example. In Section 5.3

we present ways of rewriting the problem in terms of real-valued systems. First, in Section 5.3.1,
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we transform our model problem into a system of two fourth-order real-valued problems. Then, in

Section 5.3.2 (following the exposition in Chapter 3) we present a further transformation into a real-

valued second-order system. Again we show how to solve this problem with Chebfun, and verify

that all three formulations are essentially equivalent. In Section 5.4 we show how to determine

the value of the parameters in the transformation (subject to reasonable assumptions) that ensure

that the resulting coefficient matrix of the system’s zero-order term is coercive. Such a result is

very important, especially in the context of finite element analysis; see Chapter 6. In Sections 5.4.2

we present a general framework for applying an eigenvalue analysis to verify coercivity, and then

in Section 5.4.3 we show how to apply this to specific cases of interest. In Section 5.5 we tackle

a different form of analysis of the differential operator. That is, we establish the stability result

of differential operator for the system of four equations solved using a Gauss-Seidel method. Such

stability results are key to proving the convergence of finite difference methods: see Chapter 7.

The approach is two-fold: first we present a new block-iterative version of the Gauss-Seidel, which

we prove to converge. Then we extend this to a fully iterative method, in order to give precise

bounds on each of the solution’s components.

Finite element methods are the main theme of Chapter 6. We, again, show that a special

transformation is required in order for a finite element analysis to work. In Section 6.2, we show

how to build on the work of Chapter 5 to ensure that the coupling matrix is coercive. This follows

some of the methodologies as Section 3.2.2, but the details are entirely different. In Section 6.3,

we describe a finite element method for this problem, applied, initially, on an arbitrary mesh.

We then present a suitable layer-adapted mesh, and we present the numerical analysis for this

method. Finally, in Section 6.4, numerical results are presented that investigate the convergence

and robustness of the method.

The final substantial chapter of the thesis is Chapter 7, where we consider a subclass of the

problems introduced in Chapter 5, and their solution using finite difference methods. Specifically,

we study

´εup4qpxq ` ap1` ζiqu2pxq ´ bp1` iqupxq “ pfr ` ifiqpxq on Ω :“ p0, 1q,

with the same boundary conditions as applied to (1.7). In essence, a finite difference method is

more demanding than a finite element method on the properties of the coupling matrix, so the

transformation used is more general than that of Chapter 6; this is discussed in Section 7.2. In

Section 7.3, we establish the stability result of the differential operator for the system of four

equations solved using a Gauss-Seidel method, based on ideas in Section 5.6, leading to bounds

on the coefficients which ensure convergence of the iterative method, bounds on the solutions to

the iterates, and a maximum/minimum principle. In Section 7.4, we describe a finite difference

method for this problem, with a suitable layer-adapted mesh, and we discuss the numerical analysis

for this method. We conclude, in Section 7.5, with two examples to verify the sharpness of the

analysis outlined in Section 7.4.3.

In Chapter 8, we conclude with a review of the main results of this thesis. We also outline

some related open problems, potential topics for future research.
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1.5 Literature Review for singularly perturbed fourth-order

ordinary differential equations

1.5.1 Introduction

The majority of the published works on the numerical solution of singularly perturbed boundary

value problems are focused on second-order problems. There have been some papers on first-order

problems (usually systems), and a relatively small number of higher-order equations (i.e., order

three or more). In this short survey, we list some of the important papers on the numerical solution

of fourth-order reaction-diffusion boundary-value problems, and discuss, where appropriate, how

they relate to this study.

Broadly speaking, these fourth-order problems may be classified into two types: those which

can easily be rewritten as systems of two second-order problems, and those for which this is not

possible. More specifically, they can be classified according to their boundary conditions: where u

is the dependent variable in the boundary value problem, and we can have

Case 1: Fourth-order problems that can not be re-cast as a system of second-order problems; most

typically u and u1 are specified at the boundary. These are called a “clamped” problems in

the seminal paper of Semper [37], and are discussed in Section 1.5.2.

Case 2: Fourth-order problems that can be re-cast as a system of second-order problems, because

the boundary conditions specify u and u2. These are called “simply supported” problems

in [37], and are discussed in Section 1.5.3.

We will briefly survey both of these. However, our main interest in Case 2. So, we give just a brief

overview of the first case.

1.5.2 Case 1

One of the earliest papers on the numerical analysis of fourth-order reaction-diffusion ordinary

differential equation was by Roos and Stynes [34]. They considered the problem

´εup4q ` papxqu1q1 ´ bpxqu1 ´ cpxqu “ fpxq, 0 ă x ă 1, (1.8a)

with zero- and first-order boundary conditions

up0q “ u1p0q “ up1q “ u1p1q “ 0. (1.8b)

The functions a, b, c, and f are assumed to be sufficiently smooth with

apxq ě α ą 0, (1.9a)

cpxq ´
1

2
b1pxq ě β ą ´α. (1.9b)
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Based on the asymptotic analysis of O’Malley [29], they give that

|upkqpxq| ď Cp1` εp1´kq{2e´x{
?
εq. (1.10)

The numerical approach is quite novel: the authors consider the problem in a variational setting,

and replace the coefficients with piecewise polynomial approximations. Specifically, on a particular

mesh, they use piecewise constant approximations, which gives an approximation to the differential

equation that is first-order in the maximum norm. However, no numerical results are presented.

Sometime later, Sun and Stynes [45] began the study of arbitrarily high-order singularly per-

turbed reaction-diffusion problems. They studied the topic of high order elliptic two-point bound-

ary value problems of reaction-diffusion type of the form

Lεu “ p´1qm`1εup2mq ` p´1qmpa2pm´1qu
pm´1qqpm´1q ` L1u “ fpxq,

upjqp0q “ upjqp1q “ 0, for j “ 0, . . . ,m´ 1,

where m ě 2 is an integer, and

L1u “
m
ÿ

k“2

p´1qm´k`1pa2pm´kq`1u
pm´k`1q ` a2pm´kqu

pm´kqqpm´kq.

The functions ar for r “ 0, . . . , 2pm ´ 1q and f are assumed to be sufficiently smooth on r0, 1s,

with

a2pm´1qpxq ą α ą 0 on r0, 1s,

and

a2pm´kqpxq ´
1

2
a12pm´kqpxq ą αm´k for k “ 2, . . . ,m,

for all x P r0, 1s and some constants αm´1 “ α and αm´kpk “ 2, . . . ,mq satisfying

k
ÿ

i“1

αm´i ą 0, for k “ 2, . . . ,m.

In the case where m “ 2, we get (1.8) by setting a2 “ a, a1 “ b, and a0 “ c.

The numerical scheme analysed in [45] is a Galerkin finite-element method with piecewise

polynomial basis functions, applied on a fitted Shishkin mesh. They present a uniform convergence

result in a weighted energy norm. Numerical results are presented for a fourth-order problem (i.e.,

m “ 2) with

apxq “ 1` xp1´ xq, bpxq “ cpxq “ 0, (1.11a)

and f is chosen so that the solution to (1.8) is

upxq “
?
εt
ep´x{

?
εq ` ep´p1´xq{

?
εq

1` ep´1{
?
εq

´ 1u `
1´ ep´1{

?
εq

1` ep´1{
?
εq
xp1´ xq ` x2p1´ xq2. (1.11b)

Guo, Huang and Zhang [15] considered a version of (1.8), but the assumptions on the problem
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data are different to (1.9). The coefficient functions a, b and f are assumed to satisfy

apxq ě α ą 0, and cpxq ´ b1pxq{2 ě β ě 0,

for all x P r0, 1s. The use a conforming finite element method (FEM) of (fixed) degree p applied

on a Shishkin mesh, they were able to prove a superconvergence error bound of pN´1 lnpN ` 1qqp

in a discrete energy norm. They present results for the example in (1.11), and also one for which

apxq “ 1, bpxq “ cpxq “ 0, and fpxq “ ´1,

so, the exact solution is

upxq “
?
ε
e´p1´x{

?
εq ` ep´x{

?
εq ´ 1´ ep´1{

?
εq

2´ 2ep´1{
?
εq

`
1

2
xp1´ xq.

Panaseti et al. [31] considered a version of (1.8) with b “ 0, and different assumptions on the

coefficient functions.

apxq ą 0, and cpxq ě 0. (1.12)

They analysed a hp-FEM, which means both the local mesh width (h) and local polynomial degree

(p) are allowed to vary (by contrast, in this thesis I focus on the standard h-FEM where one fixes

p “ 1 and allow only h to vary). They showed that this method applied on the Spectral Boundary

Layer Mesh gives a robust approximation that converges exponentially in an energy norm. They

present two examples: one with a “ c “ f “ 1, and the exact solution is available, and one with

variable coefficients apxq “ e´x, cpxq “ 0, fpxq “ e´x
2
`1, for which the exact solution is not

available.

Constantinou et al. [10] considered a version of (1.8) with b “ 0. The coefficient functions a, c

and f , which are assumed to be analytic on x P r0, 1s, but with assumptions on the problem data

that are very slightly different to (1.12), specifically

apxq ą 0, and cpxq ą 0.

Again, a hp-FEM on the Spectral Boundary Layer Mesh gives robust exponential convergence

in a stronger, more balanced norm. Also, they get robust exponential convergence in maximum

norm. They present results for the same examples in [31], and also the case where

apxq “ cpxq “ 1, fpxq “ px` 1{2q´1.

In recent work, Xenophontos [46] considered a version of (1.8) with b “ 0. He solved it

using a standard FEM with piecewise Hermite polynomials of (fixed) degree p ě 3 defined on an

exponentially graded mesh. He showed that the method converges uniformly with respect to ε,

and presented results for the same problems considered in [31].
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1.5.3 Case 2

Recall that a “simply supported” fourth-order equation can be re-cast as a system of second-order

problems because the boundary conditions specify u and u2. All of the papers reviewed here

employ this strategy. They are relevant to the work presented in Chapters 3 and 4.

Shanthi and Ramanujan [38] studied fourth-order singularly perturbed reaction-diffusion two-

point boundary value problem on the form

´εup4qpxq ` apxqu2pxq ´ bpxqupxq “ fpxq on x P p0, 1q, (1.13a)

subject to the boundary conditions

up0q “ p, u2p0q “ ´r, up1q “ q, u2p1q “ ´s. (1.13b)

The coefficient functions satisfy the following conditions

apxq ě β ą 0, (1.14a)

0 ě bpxq ě γ, γ ą 0, (1.14b)

β ´ 2γ ě k ą 0 for some k. (1.14c)

By using the boundary conditions they transformed the problem into a system of two differential

equations. They propose the transformation

w :“ ´u2. (1.15)

With this, (1.13) can be transformed into a system of two equations of the form

´E~z2 `A~z “ ~f, (1.16a)

where

~z “

˜

w

u

¸

, E “

˜

ε 0

0 1

¸

, A “

˜

a b

´1 0

¸

and ~f “

˜

´f

0

¸

. (1.16b)

The assumptions in (1.14) ensure the system satisfies a maximum principle, which is the key to anal-

ysis. The authors solve the system using a combination of asymptotic and numerical techniques,

which combines a classical finite difference scheme and an exponentially fitted finite difference

scheme.

The components of the solution to (1.16a), and their derivatives, may be bounded as

|upkqpxq| ď Cr1` ε1´k{2epx, βqs, (1.17a)

and

|wpkqpxq| ď Cr1` ε´k{2epx, βqs, (1.17b)
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where

epx, βq “ e´x
?
β{ε ` e´p1´xq

?
β{ε.

Numerical results are presented for three linear fourth-order problems. The first has a constant

right-hand side, and no reaction term:

apxq “ 4, bpxq “ 0, and fpxq “ ´1,

with the boundary conditions

up0q “ 1, u2p0q “ ´1, up1q “ 1, u2p1q “ ´1.

For the second example,

apxq “ 4, bpxq “ ´1,

and

fpxq “ ´
1

16

`

2xp1´ xq ´ 5ε`
5εpe´2x{

?
ε ´ e´2px`1q{

?
ε ` e´2p1´xq{

?
ε ´ e´2p2´xq{

?
εq

1´ e´4{
?
ε

˘

,

with the boundary conditions

up0q “ 1, u2p0q “ ´1, up1q “ 1, u2p1q “ ´1.

The third example has

apxq “ 4, bpxq “ 1, (1.18)

and

fpxq “ ´2´ pxp1´ xq{8q ´ p5ε{16q ´ p5ε{16q
e´2x{

?
ε ´ e´2px`1q{

?
ε ` e´2p1´xq{

?
ε ´ e´2p2´xq{

?
ε

1´ e´4{
?
ε

,

with the boundary conditions

up0q “ 1, u2p0q “ ´1, up1q “ 1, u2p1q “ ´1.

They also consider the semilinear problem

´εup4qpxq ` 4u2pxq ` u2pxq “ ´fpxq,

with the boundary conditions

up0q “ 1, u2p0q “ ´1, up1q “ 1, u2p1q “ ´1,

and fpxq the same as in the second example.

Notice that the example (1.18) does not satisfy (1.14b), since c is positive. To deal with this,

they propose a so-called adjoint system for (1.16a) as

´Kẑ2 `Dẑ “ ~F , (1.19a)
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where

ẑ “

¨

˚

˚

˚

˚

˝

u1

u2

u3

u4

˛

‹

‹

‹

‹

‚

, K “

¨

˚

˚

˚

˚

˝

1 0 0 0

0 ε 0 0

0 0 1 0

0 0 0 ε

˛

‹

‹

‹

‹

‚

, D “

¨

˚

˚

˚

˚

˝

0 ´1 0 0

c´ a ´c` 0

0 0 0 ´1

´c` 0 c´ a

˛

‹

‹

‹

‹

‚

, ~F “

¨

˚

˚

˚

˚

˝

0

´f

0

f

˛

‹

‹

‹

‹

‚

, (1.19b)

and

c´ :“ c´ c`, c` “

#

c if c ě 0

0 if otherwise

Shanthi and Ramanujan [39], describe the boundary value technique method to solve singularly

perturbed boundary value problems for fourth-order equations of the type

´εup4qpxq ` apxqu3pxq ` bpxqu2pxq ´ cpxqupxq “ ´fpxq on x P p0, 1q, (1.20)

with a version of boundary conditions on (1.13b). The coefficient functions apxq, bpxq, cpxq, and

fpxq are sufficiently smooth and satisfying the following conditions:

apxq ě α ą 0,

bpxq ě β ě 0,

0 ě cpxq ě γ, γ ą 0,

α´ 2γp1`∆q ě k ą 0 for some k and ∆ ą 0.

The differential equation’s domain is divided into two non-overlapping subintervals. The differen-

tial equation is solved in these intervals separately. The solutions obtained in these regions are

combined to give a solution in the entire interval. Zero-order asymptotic expansions are used to get

boundary values inside this interval. The method is applied to both linear and nonlinear equations,

the latter resolved using Newton’s method.

Numerical results are presented for a fourth-order problem with

apxq “ 4, bpxq “ cpxq “ 0 and fpxq “ 1,

Its equivalent system is decoupled. They also consider an example with

apxq “ 0, bpxq “ 4, cpxq “ 1,

Its equivalent system is a weakly coupled system. Their final example is the semilinear problem

´εup4qpxq ´ 4u3pxq ` 4u2pxq ` u2pxq “ ´fpxq.

Shanthi and Ramanujan [40], considered a version of (3.1), but with different assumptions on

the data

apxq ď ´α ă 0,

bpxq ě β ě 0,
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0 ě cpxq ě γ, γ ą 0,

α´ θγ ě k ą 0 for some θ arbitrary close to 1.

The proposed method involves a zero-order asymptotic approximation of the solution to the weakly

coupled system, to construct a type of decoupling of the first equation. Then the second equation

is solved by a fitted the numerical method involving a Shishkin mesh. An example is presented as

follows.

´εup4qpxq ´ 4u3pxq ` 4u2pxq “ ´fpxq,

where

fpxq “

$

&

%

0.7 for 0 ď x ď 0.5,

´0.6 for 0.5 ď x ď 1.

Chandru and Shanthi [8] considered a version of (2.2), but with different assumptions on the

data

bpxq ě β ą 0,

0 ě cpxq ě γ, γ ą 0,

β ´ θγ ě k ą 0 for some θ arbitrarily close to 2.

Using a computational method for solving this system and involving non-overlapping Schwarz

method applied on a Shishkin mesh. An example presented has

bpxq “

$

&

%

2x` 1, for x ď 0.5,

2p1´ xq ` 1 for x ą 0.5,
cpxq “ 0.1, fpxq “

$

&

%

´0.5, for x ď 0.5,

0.5 for x ą 0.5.

Xenophontos et al. [47] is one of the few studies to consider both the clamped and simply

supported cases. For the latter, the problem is transformed into a second-order system and then

solved using a hp-FEM on the Spectral Boundary Layer Mesh resulting in the exponential conver-

gence in the energy norm. Also, they studied the clamped case, which cannot be transformed into

a system, which is again solved with a hp-FEM. The example presented is the same as in [31].



Chapter 2

Second-order complex-valued

reaction-diffusion equations

2.1 Introduction

2.1.1 A model problem

In this chapter, we are interested in the numerical solution of a singularly perturbed, second-order,

complex-valued reaction-diffusion equation. Our model differential equation is: find u P C2r0, 1s

such that

Lu :“ ´ε2u2 ` bu “ f on Ω :“ p0, 1q, (2.1a)

subject to the boundary conditions

up0q “ u0, up1q “ u1. (2.1b)

Here ε is a positive, real-valued parameter. We assume 0 ă ε ď 1, but typically have that ε ! 1.

The coefficient function b and right-hand side function f are complex valued functions on the real

interval Ω. That is, b : Ω Ñ C, and f : Ω Ñ C. Furthermore, we assume that b, f P C4p0, 1qYCr0, 1s

(see, e.g., [33, Remark 5.1.2]).

2.1.2 A motivating example

We consider the following example: find u P C2pΩ̄q such that

´ε2u2 ` pi` 4q2u “ p4` 4iqex on Ω “ p0, 1q, up0q “ 0, up1q “ 0. (2.2)

The exact solution can be expressed as

upxq “ C1e
´p4`iqx

ε ` C2e
p4`iqpx´1q

ε `
p4` 4iqex

´ε2 ` 15` 8i
, (2.3)

16
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where

C1 “ ´
4pi´ ie

pε´4´iq
ε ` 1´ e

pε´4´iq
ε q

p´ε2 ` 15` 8iqp1´ e
p´8´2iq

ε q
and C2 “

4pie
p´4´iq

ε ´ ie` e
p´4´iq

ε ´ eq

p´ε2 ` 15` 8iqp1´ e
p´8´2iq

ε q
.

The first two terms on the right-hand side of (2.3) correspond to the left and right layer, respec-

tively.

In Figure 2.1 we show u with ε “ 1 (left), which does not features layers. In contrast, as shown

in the graph on the right for smaller ε (in this case ε “ 0.1), the solution possesses boundary layers

near x “ 0 and x “ 1, in both the real and the imaginary parts.

Figure 2.1: Real and imaginary parts of the solutions to (2.2) with ε “ 1 (left) and
ε “ 0.1 (right).

2.1.3 Comparing Real-Valued and Complex-Valued Problems

This section outlines how complex-valued problems have properties that are different from their

real-valued analogues. In particular, differential operators associated with many real-valued prob-

lems satisfy a maximum principle, a valuable tool for their analysis and the analysis of associated

numerical schemes. However, these principles do not usually directly apply to complex-valued

problems.

We begin by defining a maximum principle. Using examples of two simple cases, one for a

real-valued problem and another for a complex-valued problem, we will then illustrate how the

real-valued differential operator satisfies a maximum principle, but the complex-valued one does

not.

Definition 2.1.1. The differential operator L satisfies a maximum principle, if ψp0q ě 0 and

ψp1q ě 0, and Lψpxq ě 0, for all x P Ω, imply that ψpxq ě 0, for all x P Ω̄ [27].

When an operator satisfies a maximum principle, solutions to associated differential equations

may be analysed using barrier function techniques. For example, let us consider an analysis that

gives upper and lower bounds for the solution to a real-valued differential equation. Having done

so, we can then progress to establishing an upper bound for the solution by using the barrier

function techniques. Establishing upper and lower bound gives the stability of the operator and,
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in particular, excludes oscillations from the solution.

If Lv ě 0, vp0q ě 0 and vp1q ě 0, then, we know that v ě 0. Moreover, suppose the constant

k is such that

Lpk ˘ vq ě 0, k ˘ vp0q ě 0 and k ˘ vp1q ě 0.

Then,

k ˘ v ě 0.

So, it must be that }v}Ω̄ ď k.

To see how a problem such as (2.1) differs from the real-valued case, consider the example

´ε2u2 ` u “ 0 up0q “ 1, up1q “ 0. (2.4)

The solution is upxq – e´x{ε, which is positive and monotonic; see Figure 2.2. The associated

differential operator satisfies a maximum principle; for a proof, see [27, Chap. 6].

Figure 2.2: The solution to (2.4) with ε “ 0.1.

Now consider the complex-valued problem:

´ε2u2 ` p1`
i

2
q2u “ 0 up0q “ 1` i, up1q “ 0. (2.5)

The solution shown in Figure 2.3 is

upxq “ e´x{εpcospx{2εq ` sinpx{2εqq ` ie´x{εpcospx{2εq ´ sinpx{2εqq `Ope´1{εq.

Notice that the imaginary part of u is neither positive nor monotonic. The associated differential

operator does not satisfy a maximum principle, in the conventional sense, and the solution can

oscillate.

Nonetheless, we can apply ideas based on maximum principles. Specifically, in Section 4, we

show how to rewrite (2.1) as a system of real-valued problems. Of course, this system does not

satisfy a maximum principle itself, but we follow the example of Kellogg et al. [20] and use an

ingenious idea due to Bakhvalov to construct a related problem that does satisfy a maximum

principle [2].
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Figure 2.3: The solution to (2.5) with ε “ 0.01.

2.1.4 Outline

The structure of this Chapter is as follows. In Section 2.2, we give bounds on the solution to (2.2)

and its derivatives. In Section 2.3, we describe and analyse the finite difference method. Fur-

thermore, we show how to construct standard Shishkin and Bakhvalov meshes. In Section 2.4, we

transform the problem into a system of reaction-diffusion equations. We then examine the contin-

uous and discrete versions of this system and prove an error estimate for the computed solution.

Finally, numerical results are presented in Section 2.5 in support of the theoretical analysis. Some

standard technical results used are derived in full detail in Appendix 2.A.

2.2 Analysis of the continuous problem

Lemma 2.2.1. Let u be the solution of (2.1). Then, for 0 ď k ď 4,

||upkq||Ω̄ ď Cp1` ε´kq. (2.6)

Proof. Rearrange (2.1) as

u2 “ ε´2pbu´ fq.

From this, we have the bound

||u2||Ω̄ ď Cε´2.

Next, we differentiate equation (2.1) with respect to x to obtain

´ε2u3 ` bu1 ` b1u “ f 1.

To derive a bound for u1, we use the following construction, which is based on [27, Lemma 6.1].

Let x P Ω and construct an associated neighbourhood Nx “ pa, a` σq Ď Ω, that contains x. From

the Mean Value Theorem, there is a y P N̄x such that

u1pyq “
upa` σq ´ upaq

σ
.



2.3 The numerical method 20

So, since }u}Ω̄ ď C,

|u1pyq| ď Cσ´1.

Next, we use the Fundamental Theorem of Calculus:

ż x

y

g1psqds “ gpxq ´ gpyq.

Therefore

u1pxq “ u1pyq `

ż x

y

u2psqds.

Also, by the Mean Value Theorem for Integrals

ż x

y

u2psqds “ px´ yqu2pqq for some q P Nx.

Therefore

|u1pxq| ď |u1pyq| ` |x´ y||u2pqq|

ď Cσ´1 ` Cσε´2,

holds for any σ P p0, 1q. But the bound is sharpest if we take σ “ ε, giving

|u1pxq| ď Cε´1.

The bounds on the higher derivatives are obtained by using the differential equation and bounds

on u and u1.

2.3 The numerical method

2.3.1 The finite difference method

Consider an arbitrary mesh, ΩN :“ t0 “ x0 ă x1 ă ¨ ¨ ¨ ă xN “ 1u, where hj “ xj´xj´1. Suppose

we want to approximate u1pxjq by a finite difference approximation based only on values of u at a

finite number of points near xj . One obvious choice is to use the forward difference approximation

D`Uj :“
Uj`1 ´ Uj
hj`1

.

Note that D`Uj is the slope of the line joining pxj , Ujq and pxj , Uj`1q. Another one-sided approx-

imation is the backward difference approximation

D´Uj :“
Uj ´ Uj´1

hj
.

Finally, we have the centred approximation, which averages D´Ui and D`Ui,

D0Uj :“
1

2
pD`Uj `D

´Ujq “
1

2

ˆ

Uj`1

hj`1
` Ujp

1

hj
´

1

hj`1
q ´

Uj´1

hj

˙

.
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A standard second-order approximation of the second derivative is

δ2Uj :“ D`D´Uj “
1

~j

ˆ

Uj´1

hj
´ Ujp

1

hj
`

1

hj`1
q `

Uj`1

hj`1

˙

, (2.7)

where ~j “ pxj`1 ´ xj´1q{2.

We are particularly interested in the operator δ2. Using Taylor series, it can be shown that

|u2pxjq ´ δ
2pxjq| “

$

’

’

’

&

’

’

’

%

C|u2pαjq|,

Cphj`1 ´ hjq|u
3pαjq|,

C
`

phj`1 ´ hjq|u
3pxjq| ´ ph

2
j ´ hjhj`1 ` h

2
j`1q|u

p4qpαjq|
˘

,

(2.8a)

(2.8b)

(2.8c)

for some αj P rxj´1, xj`1s. See the Appendix for details.

The finite difference operator is defined as

LNψj :“ ´εδ2ψj ` bpxjqψj for j “ 1, . . . , N ´ 1.

The finite difference method is

U0 “ u0,

´ε2δ2Uj ` bpxjqUj “ fpxjq, for all xj P ΩN , (2.9)

UN “ up1q.

Notice that we can treat u as a mesh function. In particular uj and upxjq represent the same

quantity, and we use whichever is most convenient.

2.3.2 Shishkin mesh

We construct a standard Shishkin mesh with the mesh parameter

τS “ mint
1

4
, 2
ε

%
lnNu,

where 0 ă %2 ď min<pbpxqq. We now define two mesh transition points at x “ τS and x “ 1´ τS .

That is, we form a piecewise uniform mesh with N{4 equally-sized mesh intervals on each of r0, τSs

and r1 ´ τS , 1s, and N{2 equally-sized mesh intervals on rτS , 1 ´ τSs. Typically, when ε is small,

τS ! 1{4, the mesh is very fine near the boundaries, and coarse in the interior; see Figure 2.4.

Remark 2.3.1. In this chapter, we use τS to represent the Shishkin transition point, whereas in later

chapters we simply refer to it as τ . This is because, uniquely, this chapter considers fitted meshes

of both Shishkin and Bakhvalov meshes. Following standard notation, for Bakhvalov mesh, we use

τ to represent the point in the co-domain of the mesh generating function where the transition to

a uniform mesh takes place.

The mesh may also be specified in terms of a mesh generating function, which we now define.

Definition 2.3.1. [22, p5] A strictly monotone function ϕ : r0, 1s Ñ r0, 1s that maps a uniform
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0 1 ´ τS 1

N{2N{4 N{4

τS

Figure 2.4: The piecewise uniform Shishkin mesh ΩN .

mesh tj “ j{N, i “ 0, . . . , N, onto a layer-adapted mesh by xj “ ϕptjq, j “ 0, . . . , N , is called a

mesh generating function.

The mesh generating function ϕ, for Shishkin mesh described above, is

ϕptq “

$

’

’

’

&

’

’

’

%

4tτS t ď 1
4 ,

2p1´ τSqpt´
1
4 q ` 2τSp

3
4 ´ tq

1
4 ă t ă 3

4 ,

4p1´ τSqp1´ tq ` 4pt´ 3
4 q t ě 3

4 .

Notice that this is a piecewise linear function.

2.3.3 Bakhvalov mesh

We construct a standard Bakhvalov mesh with mesh parameters at σ ą 0, q P p0, 1{2q, typical

values of the mesh parameters are σ “ 2, q “ 1{4, where the method has order σ, and q is the

proportion of mesh points in the layer. Mesh points are xj “ j{N if σε ě %q. However, when

σε ă %q one sets

xj “

$

&

%

ϕpj{Nq for j ď N{2,

1´ ϕppN ´ jq{Nq for j ą N{2,
(2.10)

with a mesh generating function ϕ defined by

ϕptq “

$

&

%

χptq :“ ´σε
% lnp1´ t

q q for t P r0, τ s,

πptq :“ χpτq ` χ1pτqpt´ τq for t P rτ, 1{2s.
(2.11)

From (2.11) we can say that ϕ P C1r0, 1s. Moreover, for (2.11) to generate a mesh on [0,1/2] we

want ϕp1{2q “ 1{2. That will happen if τ solves the nonlinear equation

χ1pτq “
1´ 2χpτq

1´ 2τ
. (2.12)

The generating function given in (2.11), defines the mesh on r0, 1{2s and it is extended to r0, 1s by

reflection about x “ 1{2, as shown in (2.10).

The mesh is very fine and graded near the boundary, but coarse in the sense that hj “ OpN´1q

in the interior. Also, for later analysis, it is useful to note that τ ă q, because lnpq ´ τ{qq is

undefined when q ´ τ ď 0.

Remark 2.3.2. Our numerical analysis for the finite difference method on this mesh requires that
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ϕ1pτq ą 1. This is stated without proof in [2] and [20]. To see why it must be true note that

ż 1

0

ϕ1ptqdt “ ϕp1q ´ ϕp0q “ 1.

But ϕ1ptq ď ϕ1pτq for all t. Clearly

ż τ

0

ϕ1ptqdt`

ż 1

1´τ

ϕ1ptqdt ă 2τϕ1pτq, and

ż 1´τ

τ

ϕptqdt “ p1´ 2τqϕ1pτq.

So, if ϕ1pτq ď 1, then
ż 1

0

ϕptqdt ă 0,

which is not possible.

The mesh generating functions for both the Shishkin and Bakhvalov meshes are shown in

Figure 2.5.

Figure 2.5: Mesh generating functions for Shishkin and Bakhvalov meshes.

2.4 A system of reaction-diffusion equations

2.4.1 The continuous problem

We now consider the following system by rewriting (2.1) as

´ε2pur ` iuiq
2 ` pbr ` ibiqpur ` iuiq “ fr ` ifi, (2.13)

where u “ ur ` iui, b “ br ` ibi and f “ fr ` ifi, and all of ur, ui, br, fr and fi are real-valued. It

is assumed that

α :“ min
0ďxď1

p
a

brq ą 0.
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From (2.13), when we equate real terms and imaginary terms separately, we get

´ε2u2r ` brur ´ biui “ fr, (2.14a)

´ε2u2i ` biur ` brui “ fi. (2.14b)

We can write this system as

~L~u :“ ´ε2~u2 `B~u “ ~f, (2.15)

where

~u “

˜

ur

ui

¸

, B “

˜

br ´bi

bi br

¸

and ~f “

˜

fr

fi

¸

.

Since u “ ur ` iui, Lemma 2.2.1 gives that

}~upkq}Ω̄ ď Cp1` ε´kq.

Lemma 2.4.1. Assume that br ą 0. Then the matrix B is coercive, meaning that there exists a

constant α such that
?
br ě α ą 0 and

~vTB~v ě α2~vT~v for all ~v P R2. (2.16)

Proof. Assume ~v “ pv1 v2q, Then

~vTB~v “
´

v1 v2

¯

˜

br ´bi

bi br

¸˜

v1

v2

¸

.

So

~vTB~v “ brv
2
1 ´ biv1v2 ` biv1v2 ` brv

2
2 “ brpv

2
1 ` v

2
2q “ br~v

T~v.

This implies that the matrix B is coercive, with α ď
?
br.

Lemma 2.4.2. Let ~w P C2pΩq2 X CpΩ̄q2, Then

}~w}Ω̄ ď α´2}~L~w}Ω ` }~wp0q} ` }~wp1q}. (2.17)

Proof. Set v “ 1
2 ~w

T ~w, and note that p~wT ~wq2 “ 2p~wT ~w2q ` 2p~w1qT ~w1. Thus,

´2~wT ~w2 “ ´p~wT ~wq2 ` 2|~w1|2 ě ´p~wT ~wq2 “ ´2v2. (2.18)

Taking the scalar product of ~wT with ´ε2 ~w2 `B~w “ ~L~w, we get

´ε2 ~wT ~w2 ` ~wTB~w “ ~wT ~L~w.
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Then invoking (2.16) and (2.18), we get

~wT ~L~w “´ ε2 ~wT ~w2 ` ~wTB~w

ě´ ε2v2 ` α2 ~wT ~w

ě´ ε2v2 ` 2α2v.

Let us denote the differential operator on the right-hand side by

Lαv :“ ´ε2v2 ` 2α2v.

Since α ą 0, this operator satisfies the maximum principle of Definition 2.1.1.

Also, clearly |v|t0,1u ď p}~wp0q}
2 ` }~wp1q}2q{2. Now the standard maximum principle of Defini-

tion 2.1.1 for the scalar problem, with a constant barrier function

k “
1

2α2
}~w}Ω̄}~L~w}Ω `

1

2
p}~wp0q}2 ` }~wp1q}2q,

gives

}v}Ω̄ ď
1

2α2
}~w}Ω̄}~L~w}Ω `

1

2
p}~wp0q}2 ` }~wp1q}2q.

This implies that

}~w}2Ω̄ “ 2}v}Ω̄ ď }~w}Ω̄pα
´2}~L~w}Ω ` }~wp0q} ` }~wp1q}q,

because }~wp0q} ` }~wp1q} ď }~w}Ω̄. Dividing by }~w}Ω̄ gives

}~w}Ω̄ ď α´2}~L~w}Ω ` }~wp0q} ` }~wp1q}.

We now give sharp pointwise bounds on u and its derivatives. The argument is essentially the

same as in [20, Lemma 2.3], but simplified to the one-dimensional case.

Lemma 2.4.3. Let ~u be the solution to (2.15). Let % P p0,
?
brq be arbitrary but fixed. Then there

exists a constant C, which is independent of ε, such that

|~upkqpxq| ď Cr1` ε´kpe´%x{ε ` e´%p1´xq{εqs, for all x P Ω̄, (2.19)

and k “ 0, 1, . . . , 4.

Proof. For k “ 0, this is just Lemma 4.2. Otherwise, we proceed by induction. Fix % P p0,
?
brq

and set Bkpxq “ 1` ε´kpe´%x{ε ` e´%p1´xq{εq. For k “ 1, 2, 3, 4, differentiating (2.15) k times with

respect to x gives

´ε2~upk`2q `B~upkq “ ~f pkq ´
k´1
ÿ

l“0

ˆ

k

l

˙

Bpk´lq~uplq “: ~ϕkpxq,

with |~ϕkpxq| ď CBk´1pxq where the bound on ϕk is a consequence of the inductive hypothesis.
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Define û by ~upkq “ Bkû. Consider (2.15)

´ε2~u2 `B~u “ ~f.

Then

´ε2pBkûq
2 `BpBkûq “ ~ϕk,

and

´ε2Bkû
2 ´ 2ε2B1kû

1 ´ ε2B2kû`BBkû “ ~ϕk.

Dividing by Bk gives

´ε2û2 ´ 2ε2B
1
k

Bk
û1 `

`

B ´ ε2I
B2k
Bk

˘

û “
~ϕk
Bk

. (2.20)

Take the scalar product of ûT with (2.20), we get

´ε2ûT û2 ´ 2ε2ûT
B1k
Bk

û1 ` ûT
`

B ´ ε2I
B2k
Bk

˘

û “ ûT
~ϕk
Bk

.

Set vk “ pû
T ûq{2 “ |û|2{2, while noting that pûT ûq2 “ 2pûT û2q ` 2pû1qT û1. Thus,

´2ûT û2 “ ´pûT ûq2 ` 2|û1|2 ě ´pûT ûq2 “ ´2v2k.

Then invoking (2.16) and (2.20), we get

´ε2v2k ´ 2ε2B
1
k

Bk
v1k ` 2pbr ´ %

2qvk ď C}û}Ω̄,

because B2Kpxq ď ε2%2Bkpxq and ~ϕkpxq ď CBkpxq. Boundary conditions for vk follow from

Lemma 2.2.1, so now the standard maximum principle for scalar problem gives

1

2
}û}2Ω̄ “ }vk}Ω̄ ď C}û}Ω̄.

Dividing by }û}Ω̄ gives }û}Ω̄ ď C.

2.4.2 The discrete problem

The finite difference method for equation (2.15) is: find ~U such that

~LN ~Uj :“ ´ε2δ2~Uj `B~Uj “ ~fj for j “ 1, ..., N ´ 1, (2.21)

~U0 “ ~up0q, ~UN “ ~up1q,

where δ2 is as defined in (2.7), ~Uj is the approximation for ~upxjq, and the mesh, for now, is

arbitrary.

Lemma 2.4.4. The discrete operator ~LN satisfies the stability inequality

} ~W }Ω̄ ď α´2}~LN ~W }Ω ` } ~W p0q} ` } ~W p1q},

for arbitrary vector-valued functions ~W defined on Ω̄.
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Proof. Let V “ 1
2
~WT ~W . Note that

δ2 ~Wj “
1

~j

ˆ ~Wj´1

hj
´ ~Wjp

1

hj
`

1

hj`1
q `

~Wj`1

hj`1

˙

.

So

~WT
j δ

2 ~Wj “
1

~j

ˆ ~WT
j
~Wj´1

hj
´ ~WT

j
~Wjp

1

hj
`

1

hj`1
q `

~WT
j
~Wj`1

hj`1

˙

.

One can show that, in fact,

~WT
j δ

2 ~Wj “
1

2
δ2p ~WT ~W qj ´

1

2~j

ˆ

| ~Wj`1 ´ ~Wj |
2

hj`1
`
| ~Wj ´ ~Wj´1|

2

hj

˙

. (2.22)

To see this starting from (2.22),

1

2~j

ˆ

p ~WT ~W qj´1

hj
´ p ~WT ~W qjp

1

hj
`

1

hj`1
q `

p ~WT ~W qj`1

hj`1

˙

´
1

2~j

ˆ

p ~Wj`1 ´ ~Wjq
T p ~Wj`1 ´ ~Wjq

hj`1
`
p ~Wj ´ ~Wj´1q

T p ~Wj ´ ~W´1q

hj`1

˙

“
1

2~j

ˆ

p ~WT ~W qj´1

hj
´
p ~WT ~W qj

hj
´
p ~WT ~W qj
hj`1

`
p ~WT ~W qj`1

hj`1

˙

´
1

2~j

ˆ ~WT
j`1

~Wj`1

hj`1
`

~WT
j
~Wj

hj`1
´

~WT
j

~Wj`1

hj`1
´

~WT
j`1

~Wj

hj`1

`
~WT
j
~Wj

hj
`

~WT
j´1

~Wj´1

hj
´

~WT
j

~Wj´1

hj
´

~WT
j´1

~Wj

hj

˙

“
1

~j

ˆ

p ~WT ~W qj
2hj

´
~WT
j
~Wj

2hj
´
p ~WT ~W qj

2hj`1
´

~WT
j
~Wj

2hj`1
`

~WT
j
~Wj`1

hj`1
`

~WT
j
~Wj´1

2hj

˙

“
1

~j

ˆ ~WT
j
~Wj´1

hj
´ ~WT

j
~Wjp

1

hj
`

1

hj`1
q `

~WT
j
~Wj`1

hj`1

˙

“ ~WT
j δ

2 ~Wj .

It follows immediately from (2.22) that

~WT
j δ

2 ~Wj ě δ2V.

Using (2.16), we get

´ε2δ2V ` 2α2V ď ~WT ~LN ~W on ΩN ,

and

|V p0q| ` |V p1q| ď
1

2

`

} ~W p0q} ` } ~W p1q}
˘2
.

A standard discrete maximum principle for scalar problems, with a constant barrier function

K “
1

2α2
} ~W }Ω̄N }~LN ~W }ΩN `

1

2

`

} ~W p0q} ` } ~W p1q}
˘2
,

yields

}V }Ω̄N ď
1

2α2
} ~W }Ω̄N }~LN ~W }ΩN `

1

2

`

} ~W p0q} ` } ~W p1q}
˘2
.

Hence

} ~W }2Ω̄N “ 2}V }Ω̄N ď } ~W }Ω̄N

ˆ

α´2}~LN ~W }ΩN ` } ~W p0q} ` } ~W p1q}

˙

.
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Dividing by } ~W }Ω̄ gives

} ~W }Ω̄N ď α´2}~LN ~W }ΩN ` } ~W p0q} ` } ~W p1q}.

The first of our two main results of this chapter is the following theorem, which shows that

applying the finite difference method on a Bakhvalov mesh gives fully second-order ε-uniform

convergence.

Theorem 2.4.5. Let ΩN be the Bakhvalov mesh defined in Section 2.3.3, and let ~U be the solution

to (2.21) on this mesh. Then, if ~u solves (2.15),

}~u´ ~U}Ω̄N ď CN´2. (2.23)

Proof. Let ~η “ ~u´ ~U denote the error. Lemma 2.4.4 yields

}~u´ ~U}Ω̄N ď α´2}~LN p~u´ ~Uq}ΩN “ α´2}~LN~u´ ~LN ~U}ΩN

“ α´2}~LN~u´ ~f}ΩN ď α´2}~LN~u´ ~L~u}ΩN , (2.24)

because ~up0q “ ~Up0q and ~up1q “ ~Up1q. From the definitions of ~L and ~LN , we get

~LN~u´ ~L~u “ ´ε2δ2~u` ε2~u2.

Then, from (2.8b),

`

~LN~u´ ~L~u
˘

pxjq “ ε2

ˆ

´
phj`1 ´ hjq

3
~u3pxjq ´

ph2
j ´ hjhj`1 ` h

2
j`1q

12
~up4qpγjq

˙

.

Consequently,

}~LN~u´ ~L~u}Ω̄N ď ε2

ˆ

Cphj`1 ´ hjq}~u
3}Ω̄ ` Cph

2
j ´ hjhj`1 ` h

2
j`1q}~u

p4q}Ω̄

˙

. (2.25)

We construct a standard Bakhvalov mesh with mesh parameters at σ ą 0, q P p0, 1{2q. If

σε ě %q the mesh is uniform with mesh size N´1. Furthermore ε´1 ď C. Thus

ε2}δ2~u´ ~u2} ď CN´2,

by Lemma 2.2.1 and (2.25).

We next examine the case σε{% ă q. To do so, we shall only consider the analysis where j is

such that xj “ ϕptjq ď 1{2, which includes only the layer at x. The argument for xj ą 1{2 are

essentially the same.

From the construction of ϕ, one must have τ ă q. We start by showing that

1 ă χ1pτq ă
1

1´ 2q
. (2.26)
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From Remark 2.3.2, χ1pτq ą 1. Next, recall that

χptq “ ´
σε

%
lnp1´

t

q
q,

and χptq at the mesh parameter τ is

χpτq “ ´
σε

%
lnp

q ´ τ

q
q.

From (2.12), we have

χ1pτq ă
1` 2q lnp q´τq q

1´ 2τ
ă

1

1´ 2τ
ă

1

1´ 2q
,

since 2q lnppq ´ τq{qq ą 0 and τ ă q. This implies that

χ1pτq ă
1

1´ 2q
“: q̂,

which establishes (2.26).

Figure 2.6: A plot of the function ϕ and the location of τ, τ1 and τ2.

Let us introduce two points, τ1, τ2, both in p0, qq and defined so that χ1pτ1q “ q̂ and χ1pτ2q “ 1;

as we shall see, these bracket τ , as shown in Figure 2.6.

Recall that, for 0 ď t ď τ ,

χptq “ ´
σε

%
lnp1´

t

q
q,

so that

χ1ptq “
σε

%pq ´ tq
.

Because χ1pτ1q “ 1{p1´ 2qq, then

χ1pτ1q “
σε

%pq ´ τ1q
“

1

1´ 2q
,

so,

τ1 “ q ´
σεp1´ 2qq

%
.

A similar calculation shows that

τ2 “ q ´
σε

%
.
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We know that χ1pτq ą 1 and χ1pτ2q “ 1. Since χ2pτq ą 1, then χ1 is a strictly increasing function.

Therefore χ1pτq ą χ1pτ2q for τ ą τ2. Similarly τ1 ą τ . This shows that

τ2 “ q ´ σε{% ă τ ă τ1 “ q ´ σεp1´ 2qq{%.

To bound all terms in (2.25), we separately analyse the layer regions, the interior, and transi-

tional regions between these.

Since ϕptq “ χpτq for t P r0, τ s and ϕ1ptq “ χ1pτq for t P rτ, 1{2s, so ϕ1ptq ď χ1pτq ď q̂ for

t P r0, 1s. Thus,

hj “ xj ´ xj´1 “ ϕptjq ´ ϕptj´1q “

ż tj

tj´1

ϕ1ptqdt ď q̂ptj ´ tj´1q “ q̂N´1, (2.27)

for j “ 1, . . . , N.

Of course, in the region closest to the layer, the mesh width is very fine. Specifically, if j is

such that tj ă q, then, for t ă tj , we have that ϕ1ptq ď χ1pτq “ σε{%pq ´ tq ď σε{%pq ´ tjq. Hence,

hj “

ż tj

tj´1

ϕ1ptqdt ď N´1ϕ1ptjq ď N´1 σε

%pq ´ tjq
ď N´1 2σε

%pq ´ tj´1q
for tj ď q ´N´1. (2.28)

The difference between two adjacent mesh sizes on rτ, 1´ τ s is hj`1´hj “ xj`1´2xj`xj´1 “

ϕ2pt˚j qN
´2 for some t˚j P rtj´1, tj`1s. Now

ϕ2ptq ď χ2pτq “
σε

%pq ´ τq2
and

1

q ´ τ
ď

1

q ´ τ1
“
%q̂

σε
,

which gives

|hj`1 ´ hj | ď
%q̂

σε
N´2. (2.29)

Also, we have to bound the difference between adjacent mesh sizes on r0, τ s. In this region

ϕ2pt˚j q ď
σε

%pq ´ tj´1q
2
ď

4σε

%pq ´ tjq2
for tj ď q ´ 2N´1, (2.30)

which yields

|hj`1 ´ hj | ď
4σε

N2%pq ´ tjq2
for tj ď q ´ 2N´1. (2.31)

From the mesh generating function, we have

e´%xj{ε “ p
q ´ tj
q

qσ for tj ď τ, (2.32)

and

e´%xj{ε ď p
σε

%q
qσ for tj ě τ2. (2.33)

Recalling the assumption that σ ě 2, and using (2.25),(2.19), (2.27) and (2.33), we get

ε2|pδ2~u´ ~u2qpxjq| ď CN´2 for τ2 ď tj´1,
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which is the region outside the layer.

If j is such that tj ď q ´ 2N´1, and consequently, the corresponding xj is the layer region,

using (2.25) and (2.19), we get

ε2}rδ2~u´ ~u2spxjq} ď Cε2|hj`1 ´ hj | ` Cε
´1|hj`1 ´ hj |e

´%xj{ε

` Cε2|h2
j ´ hjhj`1 ` h

2
j`1| ` Cε

´2|h2
j ´ hjhj`1 ` h

2
j`1|e

´%xj´1{ε.

To bound the first term, use (2.29); for the second term, use (2.31) and (2.32); for the third

term, use (2.27); and for the fourth, use (2.28), (2.32) and q ´ tj´1 ď 3pq ´ tjq{2. This yields

ε2}rδ2~u´ ~u2spxjq} ď CN´2 for tj ď q ´ 2N´1.

If j is such that tj ą q´ 2N´1 and τ2 ą tj´1, the corresponding xj is the transition region. Thus,

q ´
2

N
ă tj ă τ2 `

1

N
“ q ´

σε

%
`

1

N
ă q `

1

N
.

It is clear that the first two inequalities here imply that ε ă 3%{pσNq. Use (2.8a):

ε2}rδ2~u´ ~u2spxjq} ď Cpε2 ` e´%xj´1{εq ď CN´2,

by (2.33) and ε ď CN´1.

Consequently, we get the bound for the truncation error in the maximum norm on the Bakhvalov

mesh. Then, from (2.24), the bound in (2.23) follows immediately.

Moving on from Theorem 2.4.5, we will prove an error estimate for the solution on the Shishkin

mesh.

Theorem 2.4.6. Let ΩN be the Shishkin mesh defined in Section 2.3.2, and let ~U be the solution

to (2.21) on this mesh. If ~u solves (2.15), then

}~u´ ~U}Ω̄N ď CN´2 ln2N. (2.34)

Proof. Let us first consider the case where ε is so large that τS “ 1{4, and, so, the mesh is

uniform with mesh size hj “ N´1 for all j. Then

1

4
ď σε%´1 lnN,

and, so, ε´1 ď 4σ%´1 lnN ď C lnN. Hence (4.21) and (2.25) give

}~LN~u´ ~L~u}ΩN ď CN´2 ln2N.

Now consider the case where ε is small enough (relative to N ) so that τS “ σε%´1 lnN ď 1{4.
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As a consequence, there exist a point x˚ “ 2ε%´1 lnN P r0, 1{2s, for which we may define

vpxq “

$

’

’

’

&

’

’

’

%

ř4
i“0

px´x˚q
i! upiqpx˚q for 0 ď x ď x˚,

upxq for x˚ ď x ď 1´ x˚,
ř4
i“0

px´x˚q
i! upiqp1´ x˚q for 1´ x˚ ď x ď 1,

and wpxq “ upxq ´ vpxq. Then Lemma 2.2.1, and the choice of x˚ demonstrate that

}vpkqpxq}Ω̄ ď Cp1` ε2´kq, (2.35)

and

}wpkqpxq}Ω̄ ď Cε´kpe´%x{ε ` e´%p1´xq{εq for 0 ď k ď 4. (2.36)

Thus, the solution ~u to (2.15) has a decomposition

~u “ ~w ` ~v. (2.37)

Here ~w is the boundary layer component and ~v is the regular component. Notice that ~w is not

explicitly constructed as the solution to a differential equation.

The error in the regular and boundary components can be written as

}δ2~u´ ~u2}Ω̄N “ }δ2~v ´ ~v2}Ω̄N ` }δ2 ~w ´ ~w2}Ω̄N .

To bound the error in the ~v term, use (2.8b) at the mesh transition points, and at other points

use (2.8c). For the layer term ~w, use (2.8a) at the mesh points and (2.8c) for other points. This

gives

ε2}δ2~u´ ~u2}Ω̄N ď CN´2 ln2N `

$

&

%

CεN´1 for j P tN4 ,
3
4Nu,

0 otherwise.
.

Next, suppose that ~η is the solution to

~LN~η “ ε2pδ2~u´ ~u2q.

To get the bound to η we use the technique of Lemma 2.2.1. Set ~V “ 1
2~η
T ~η. Then

´ε2δ2~V ` 2α2~V ď C}~η}Ω̄|~L
N~η|.

We can apply a discrete maximum principle for scalar equation by using a barrier function

~V pxjq “ C}~η}N´2pln2N ` τSε
´1ϕjq

where

ϕj “

$

’

’

’

&

’

’

’

%

xjτ
´1
S for j “ 0, . . . , N4 ,

1 for j “ N
4 , . . . ,

3
4N,

p1´ xjqτ
´1
S for j “ 3

4N, . . . , N.
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Then, we can obtain the bound for }~V } and hence }~η} ď CN´1 ln2N , independent on C and ε.

2.5 Numerical results

We now present numerical results in support of Theorem 2.4.5 and Theorem 2.4.6. For a specific

example, we tabulate global and pointwise errors and convergence rates. We do this for uniform,

Bakhvalov and Shishkin meshes. The theoretical results of Theorems 2.4.5 and 2.4.6 show that

the pointwise solutions are computed robustly on the fitted Bakhvalov and Shishkin meshes. To

verify this numerically, we compute the pointwise errors, which are defined as

ENε :“ max
i“0,...,N

|upxiq ´ Ui|.

The associated rate of convergence is

ρNε :“ log2

ˆ

ENε

E
N{2
ε

˙

. (2.38)

Recall our example problem (2.2)

´ε2u2 ` pi` 4q2u “ p4` 4iqex, up0q “ 0, up1q “ 0.

We begin our numerical investigations by presenting, in Table 2.1, the pointwise errors computed

when this equation is solved numerically by our finite difference method on a uniform mesh.

Table 2.1 gives the pointwise errors. For ε “ 1, it is clear that the error is approximately CN´2

where C « 3.05ˆ 10´2. But for ε “ 10´2 to ε “ 10´6, the error actually grows proportionally to

N2. From this, we can see that the error depends strongly and adversely on ε.

Table 2.1: Errors, EN
ε , for problem (2.2), solved on a uniform mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256 N “ 512 N “ 1024
1 1.105e-03 2.781e-04 6.961e-05 1.741e-05 4.353e-06 1.088e-06 2.720e-07
ρNε 1.991 1.999 1.999 2.000 2.000 2.000

1e-01 3.988e-02 2.050e-02 5.595e-03 1.468e-03 3.694e-04 9.267e-05 2.318e-05
ρNε 0.960 1.874 1.930 1.991 1.995 1.999

1e-02 1.359e-03 5.394e-03 2.016e-02 4.005e-02 2.794e-02 8.536e-03 2.257e-03
ρNε -1.989 -1.902 -0.990 0.520 1.711 1.919

1e-03 1.362e-05 5.448e-05 2.178e-04 8.703e-04 3.464e-03 1.355e-02 3.593e-02
ρNε -2.000 -2.000 -1.998 -1.993 -1.968 -1.407

1e-04 1.362e-07 5.448e-07 2.179e-06 8.717e-06 3.487e-05 1.394e-04 5.573e-04
ρNε -2.000 -2.000 -2.000 -2.000 -2.000 -1.999

1e-05 1.362e-09 5.448e-09 2.179e-08 8.717e-08 3.487e-07 1.395e-06 5.579e-06
ρNε -2.000 -2.000 -2.000 -2.000 -2.000 -2.000

1e-06 1.362e-11 5.448e-11 2.179e-10 8.717e-10 3.487e-09 1.395e-08 5.579e-08
ρNε -2.000 -2.000 -2.000 -2.000 -2.000 -2.000

In essence, the problem with the results shown in Table 2.1 is that, since a uniform mesh is

used, and only pointwise errors reported, the error is not computed at any point inside the layers.

To address this, and to determine if layers are resolved, we compute the maximum global error,
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which is defined as

GNε :“ max
0ďxď1

|upxq ´ Upxq|,

where Upxq represents the piecewise linear interpolant to the mesh function U , evaluated at x.

Note that, since this interpolant is globally defined, we are estimating the maximum error at all

points, including within the layers (even when the numerical solution does not resolve the layers).

As we shall see, in practice, for layer resolving meshes GNε satisfies the same bounds as ENε ; this is

explained for Shishkin meshes in [27, Thm. 8.3]. It is known that an analogous statement does

not hold for uniform meshes [14, Thm. 3.12].

In Table 2.2 we give the computed global errors, GNε , for when (2.2) is solved on a uniform

mesh (the rates of convergence are defined in the obvious way based on (2.38)). For ε “ 1, it is

again clear that the error is proportional to CN´2 where C « 0.33. But for ε “ 10´2 to ε “ 10´6,

no convergence is observed. We conclude from this that uniform meshes are unsuitable for this

problem and a layer-adapted mesh is needed.

Table 2.2: Error, GN
ε , for problem (2.2), solved on a uniform mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256 N “ 512 N “ 1024
1 6.874e-03 1.798e-03 4.594e-04 1.161e-04 2.918e-05 7.313e-06 1.831e-06

Rate 1.935 1.969 1.985 1.992 1.996 1.998
1e-01 2.683e-01 1.139e-01 3.716e-02 1.050e-02 2.779e-03 7.141e-04 1.809e-04
ρNε 1.236 1.615 1.823 1.918 1.961 1.981

1e-02 7.564e-01 6.657e-01 5.185e-01 3.304e-01 1.556e-01 5.445e-02 1.593e-02
ρNε 0.184 0.361 0.650 1.086 1.515 1.773

1e-03 8.592e-01 8.593e-01 8.316e-01 7.864e-01 6.986e-01 5.711e-01 3.930e-01
ρNε -0.000 0.047 0.081 0.171 0.291 0.539

1e-04 8.592e-01 8.593e-01 8.593e-01 8.593e-01 8.594e-01 8.493e-01 8.041e-01
ρNε -0.000 -0.000 -0.000 -0.000 0.017 0.079

1e-05 8.592e-01 8.593e-01 8.593e-01 8.593e-01 8.593e-01 8.593e-01 8.593e-01
ρNε -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

1e-06 8.592e-01 8.593e-01 8.593e-01 8.593e-01 8.593e-01 8.593e-01 8.593e-01
ρNε -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

Tables 2.3 and 2.4 present numerical results for problem (2.2) on the Shishkin mesh. Table 2.3

shows pointwise errors. Since the Shishkin mesh is uniform for large values of ε, we observe that

the first two rows of Tables 2.1 and 2.3 are the same. However, in Table 2.3, for ε “ 10´2 to

ε “ 10´6 the error is independent of ε and it is proportional to N´2, verifying that Theorem 2.4.6

is sharp. To confirm that the layers are resolved, in Table 2.4 we show the global errors. We see

that, for ε ď 10´2, the method is robust with respect to ε, and, just like the pointwise errors,

almost second-order convergent in N .
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Table 2.3: Errors, EN
ε , for problem (2.2), solved on a Shishkin mesh

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256 N “ 512 N “ 1024
1 1.105e-03 2.781e-04 6.961e-05 1.741e-05 4.353e-06 1.088e-06 2.720e-07
ρNε 1.991 1.999 1.999 2.000 2.000 2.000

1e-01 3.988e-02 2.050e-02 5.595e-03 1.468e-03 3.694e-04 9.267e-05 2.318e-05
ρNε 0.960 1.874 1.930 1.991 1.995 1.999

1e-02 2.395e-02 3.844e-02 3.680e-02 1.986e-02 6.728e-03 2.291e-03 7.209e-04
ρNε -0.683 0.063 0.890 1.561 1.554 1.668

1e-03 2.395e-02 3.844e-02 3.680e-02 1.986e-02 6.728e-03 2.291e-03 7.209e-04
ρNε -0.683 0.063 0.890 1.561 1.554 1.668

1e-04 2.395e-02 3.844e-02 3.680e-02 1.986e-02 6.728e-03 2.291e-03 7.209e-04
ρNε -0.683 0.063 0.890 1.561 1.554 1.668

1e-05 2.395e-02 3.844e-02 3.680e-02 1.986e-02 6.728e-03 2.291e-03 7.209e-04
ρNε -0.683 0.063 0.890 1.561 1.554 1.668

1e-06 2.395e-02 3.844e-02 3.680e-02 1.986e-02 6.728e-03 2.291e-03 7.209e-04
ρNε -0.683 0.063 0.890 1.561 1.554 1.668

Table 2.4: Error, GN
ε , for problem (2.2), solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256 N “ 512 N “ 1024
1 6.874e-03 1.798e-03 4.594e-04 1.161e-04 2.918e-05 7.313e-06 1.831e-06
ρNε 1.935 1.969 1.985 1.992 1.996 1.998

1e-01 2.683e-01 1.139e-01 3.716e-02 1.050e-02 2.779e-03 7.141e-04 1.809e-04
ρNε 1.236 1.615 1.823 1.918 1.961 1.981

1e-02 4.908e-01 3.624e-01 2.235e-01 1.108e-01 4.511e-02 1.615e-02 5.329e-03
ρNε 0.438 0.697 1.013 1.296 1.482 1.599

1e-03 4.908e-01 3.624e-01 2.235e-01 1.108e-01 4.511e-02 1.615e-02 5.329e-03
ρNε 0.438 0.697 1.013 1.296 1.482 1.599

1e-04 4.908e-01 3.624e-01 2.235e-01 1.108e-01 4.511e-02 1.615e-02 5.329e-03
ρNε 0.438 0.697 1.013 1.296 1.482 1.599

1e-05 4.908e-01 3.624e-01 2.235e-01 1.108e-01 4.511e-02 1.615e-02 5.329e-03
ρNε 0.438 0.697 1.013 1.296 1.482 1.599

1e-06 4.908e-01 3.624e-01 2.235e-01 1.108e-01 4.511e-02 1.615e-02 5.329e-03
ρNε 0.438 0.697 1.013 1.296 1.482 1.599

Finally, Tables 2.5 and 2.6 present the pointwise and global errors computed when (2.2) is solved

by the finite difference scheme on a Bakhvalov mesh. These numerical results are in agreement

with the theoretical result of Theorem 2.4.5: now, rather than seeing only almost second-order

convergence (i.e., with the spoiling ln2N term), we have full ε-uniform second-order convergence.

Table 2.5: Errors, EN
ε , for problem (2.2), solved on a Bakhvalov mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256 N “ 512 N “ 1024
1 1.105e-03 2.781e-04 6.961e-05 1.741e-05 4.353e-06 1.088e-06 2.720e-07
ρNε 1.991 1.999 1.999 2.000 2.000 2.000

1e-01 1.258e-02 3.321e-03 8.419e-04 2.112e-04 5.291e-05 1.323e-05 3.308e-06
ρNε 1.921 1.980 1.995 1.997 2.000 2.000

1e-02 1.257e-02 3.319e-03 8.415e-04 2.111e-04 5.288e-05 1.322e-05 3.307e-06
ρNε 1.921 1.980 1.995 1.997 2.000 2.000

1e-03 1.257e-02 3.319e-03 8.415e-04 2.111e-04 5.288e-05 1.322e-05 3.307e-06
ρNε 1.921 1.980 1.995 1.997 2.000 2.000

1e-04 1.257e-02 3.319e-03 8.415e-04 2.111e-04 5.288e-05 1.322e-05 3.307e-06
ρNε 1.921 1.980 1.995 1.997 2.000 2.000

1e-05 1.257e-02 3.319e-03 8.415e-04 2.111e-04 5.288e-05 1.322e-05 3.307e-06
ρNε 1.921 1.980 1.995 1.997 2.000 2.000

1e-06 1.257e-02 3.319e-03 8.415e-04 2.111e-04 5.288e-05 1.322e-05 3.307e-06
ρNε 1.921 1.980 1.995 1.997 2.000 2.000
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Table 2.6: Error, GN
ε , for problem (2.2), solved on a Bakhvalov mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256 N “ 512 N “ 1024
1 6.874e-03 1.798e-03 4.594e-04 1.161e-04 2.918e-05 7.313e-06 1.831e-06
ρNε 1.935 1.969 1.985 1.992 1.996 1.998

1e-01 1.051e-01 3.190e-02 8.714e-03 2.271e-03 5.795e-04 1.463e-04 3.676e-05
ρNε 1.720 1.872 1.940 1.971 1.986 1.993

1e-02 1.051e-01 3.191e-02 8.714e-03 2.272e-03 5.795e-04 1.463e-04 3.676e-05
ρNε 1.720 1.872 1.940 1.971 1.986 1.993

1e-03 1.051e-01 3.191e-02 8.714e-03 2.272e-03 5.795e-04 1.463e-04 3.676e-05
ρNε 1.720 1.872 1.940 1.971 1.986 1.993

1e-04 1.051e-01 3.191e-02 8.714e-03 2.272e-03 5.795e-04 1.463e-04 3.676e-05
ρNε 1.720 1.872 1.940 1.971 1.986 1.993

1e-05 1.051e-01 3.191e-02 8.714e-03 2.272e-03 5.795e-04 1.463e-04 3.676e-05
ρNε 1.720 1.872 1.940 1.971 1.986 1.993

1e-06 1.051e-01 3.191e-02 8.714e-03 2.272e-03 5.795e-04 1.463e-04 3.676e-05
ρNε 1.720 1.872 1.940 1.971 1.986 1.993
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2.A Derivation of truncation errors

In this appendix, we prove the following bound for u2pxjq ´ δ
2upxjq on Ω̄ which have been stated

in (2.8) by using Taylor series techniques

|u2pxjq ´ δ
2pxjq| “

$

’

’

’

&

’

’

’

%

C|u2pαjq|,

Cphj`1 ´ hjq|u
3pαjq|,

C
`

phj`1 ´ hjq|u
3pxjq| ´ ph

2
j ´ hjhj`1 ` h

2
j`1q|u

p4qpαjq|
˘

,

for some αj P rxj´1, xj`1s.

First, to prove (2.8a), by the triangle inequality

|u2pxjq ´ δ
2upxjq| ď |u

2pxjq| ` |δ
2upxjq| ď }u

2pxq}rxj´1,xj`1s ` |δ
2upxjq|.

So we need to show that

|δ2upxjq| ď C}u2pxjq}Ω̄.

By using the second order Taylor series expansion of upxjq about the points xj´1 and xj`1:

upxj´1q “ upxjq ` pxj´1 ´ xjqu
1pxjq `

1

2
pxj´1 ´ xjq

2u2pαjq, (2.40)

and

upxj`1q “ upxjq ` pxj`1 ´ xjqu
1pxjq `

1

2
pxj`1 ´ xjq

2u2pβjq. (2.41)

Multiplying hj`1 in (2.40) and hj in (2.41)

hj`1upxj´1q “ hj`1upxjq ´ hj`1hju
1pxjq `

1

2
hj`1h

2
ju
2pαjq, (2.42)

hjupxj`1q “ hjupxjq ` hjhj`1u
1pxjq `

1

2
hjh

2
j`1u

2pβjq. (2.43)

since hj “ xj ´ xj´1. Adding (2.42) and (2.43), gives

hj`1upxj´1q ` hjupxj`1q ´ phj ` hj`1qupxjq “
`hj ` hj`1

2

˘

hjhj`1u
2pγjq,

for some γj P rxj´1, xj`1s. Dividing by hjhj`1 gives

upxj´1q

hj
`
upxj`1q

hj`1
´
phj ` hj`1qupxjq

hjhj`1
“ ~ju2pγjq. (2.44)

where ~j “ pxj`1 ´ xj´1q{2. Dividing (2.44) by ~j , we get

δ2upxjq “
1

~j

„

upxj´1q

hj
`
upxj`1q

hj`1
´
phj ` hj`1qupxjq

hjhj`1



“ u2pγjq. (2.45)

This implies that

|u2pxjq ´ δ
2upxjq| ď }u

2pxq}rxj´1,xj`1s ` |u
2pγjq|.
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Second, to prove (2.8b), using the third order Taylor series expansion of upxjq about the points

xj´1 and xj`1, we get

upxj´1q “ upxjq ` pxj´1 ´ xjqu
1pxjq `

1

2
pxj´1 ´ xjq

2u2pxjq `
1

6
pxj´1 ´ xjq

3u3pαjq, (2.46)

and

upxj`1q “ upxjq ` pxj`1 ´ xjqu
1pxjq `

1

2
pxj`1 ´ xjq

2u2pxjq `
1

6
pxj`1 ´ xjq

3u3pβjq. (2.47)

Multiplying by hj`1 in (2.46) and by hj in (2.47)

hj`1upxj´1q “ hj`1upxjq ´ hj`1hju
1pxjq `

1

2
hj`1h

2
ju
2pxjq ´

1

6
hj`1h

3
ju
3pαjq, (2.48)

hjupxj`1q “ hjupxjq ` hjhj`1u
1pxjq `

1

2
hjh

2
j`1u

2pxjq `
1

6
hjh

3
j`1u

3pβjq. (2.49)

since hj “ xj ´ xj´1. Adding (2.48) and (2.49), gives

hj`1upxj´1q ` hjupxj`1q ´ phj ` hj`1qupxjq “
`hj ` hj`1

2

˘

hjhj`1u
2pxjq

`
`hjhj`1

3

˘

p
h2
j`1 ´ h

2
j

2
qu3pγjq for some γj P rxj´1, xj`1s.

Dividing by ~jhjhj`1 gives

1

~j

„

upxj´1q

hj
`
upxj`1q

hj`1
´
phj ` hj`1qupxjq

hjhj`1



“ u2pxjq `
1

3
phj`1 ´ hjqu

3pγjq, (2.50)

where ~j “ pxj`1 ´ xj´1q{2. This implies that

u2pxjq “ δ2upxjq ´
1

3
phj`1 ´ hjqu

3pγjq,

which proves (2.8b).

Finally, to prove (2.8c) use a fourth order Taylor series expansion of upxjq about the points

xj´1 and xj`1

upxj´1q “ upxjq ` pxj´1 ´ xjqu
1pxjq `

1

2
pxj´1 ´ xjq

2u2pxjq `
1

6
pxj´1 ´ xjq

3u3pxjq

`
1

24
pxj´1 ´ xjq

4u4pαjq, (2.51)

and

upxj`1q “ upxjq ` pxj`1 ´ xjqu
1pxjq `

1

2
pxj`1 ´ xjq

2u2pxjq `
1

6
pxj`1 ´ xjq

3u3pxjq

`
1

24
pxj`1 ´ xjq

4u4pβjq. (2.52)

Multiplying hj`1 in (2.52) and hj in (2.51)

hj`1upxj´1q “ hj`1upxjq ´ hj`1hju
1pxjq `

1

2
hj`1h

2
ju
2pxjq ´

1

6
hj`1h

3
ju
3pxjq `

1

24
hj`1h

4
ju
p4qpαjq,

(2.53)
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hjupxj`1q “ hjupxjq ` hjhj`1u
1pxjq `

1

2
hjh

2
j`1u

2pxjq `
1

6
hjh

3
j`1u

3pβjq `
1

24
hjh

4
j`1u

p4qpβjq.

(2.54)

since hj “ xj ´ xj´1. Adding (2.54) and (2.53), gives

hj`1upxj´1q ` hjupxj`1q ´ phj ` hj`1qupxjq “
`hj ` hj`1

2

˘

hjhj`1u
2pxjq

`
`hjhj`1

3

˘

p
h2
j`1 ´ h

2
j

2
qu3pxjq `

`hjhj`1

24

˘`

h3
j`1 ` h

3
j q
˘

up4qpγjq for some γj P Ω. (2.55)

Dividing by ~jhjhj`1 gives

1

~j

„

upxj´1q

hj
`
upxj`1q

hj`1
´
phj ` hj`1qupxjq

hjhj`1



“ u2pxjq `
1

3
phj`1 ´ hjqu

3pxjq

`
1

12
ph2
j ´ hjhj`1 ` h

2
j`1qu

p4qpγjq, (2.56)

where ~j “ pxj`1 ´ xj´1q{2. Since

1

24
ph3
j ` h

3
j`1q “

1

12
p
hj ` hj`1

2
qph2

j ´ hjhj`1 ` h
2
j`1q “

1

12
~jph2

j ´ hjhj`1 ` h
2
j`1q.

Then,

u2pxjq “ δ2upxjq ´
1

3
phj`1 ´ hjqu

3pxjq ´
1

12
ph2
j ´ hjhj`1 ` h

2
j`1qu

p4qpγjq.

which proves (2.8c).



Chapter 3

A note on a finite element analysis

of a fourth-order real-valued

singularly perturbed problem

3.1 Introduction

In this chapter, we are interested in the numerical solution of a singularly perturbed, fourth-order,

real-valued reaction diffusion equation. Our model differential equation is

´εup4qpxq ` au2pxq ´ bupxq “ fpxq on Ω :“ p0, 1q, (3.1a)

subject to the boundary conditions

up0q “ u2p0q “ 0, up1q “ u2p1q “ 0. (3.1b)

This problem is of the “simply supported” type reviewed in Section 1.5.3. As usual, ε is a positive,

real-valued parameter, and we assume 0 ă ε ď 1, but typically have that ε ! 1. The coefficient

functions, a and b, and right-hand side function, f , are real-valued functions on the interval Ω. For

these problems, it is typical to transform the problem into a (weakly) coupled system of second-

order reaction-diffusion problems. Then, when analysing a finite element method for solving this

system, it is usually assumed that the coupling matrix is pointwise coercive, which is sometimes

referred to as “positive definite but not necessarily symmetric”, in the literature. This is the

approach taken, for example, in [47]. However, in Section 3.2.1, we show that standard ideas for

transforming the problem into a system of two second-order differential equations do not yield a

coupling matrix that satisfies the coercivity condition. We then propose a new transformation,

in Section 3.2.2, which involves a coefficient-dependent parameter. We shall show how to, under

reasonable assumptions, determine the value of the parameter in the transformation that ensures

that the coupling matrix is coercive. In Section 3.3, we describe a variational formulation of (3.1)

and an associated energy norm. This leads to a finite element method for the problem, for which

40
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we present a suitable layer-adapted mesh. Finally, the section concludes with numerical validating

the expected error bounds.

We emphasise that the primary contribution of this chapter is the transformation that gives a

coercive system in Section 3.2.2. The remaining section validates the usefulness of this. Although

we briefly discuss the analysis of the finite element method and give numerical results, it is not our

main concern.

3.2 From a fourth-order problem to a coupled system

In this section we investigate how to transform (3.1) into a coupled system, in such a way that the

coupling matrix is coercive.

Definition 3.2.1. A matrix M is coercive, if there exists a constant γ ą 0 such that

~vTM~v

~vT~v
ě γ for all ~v P R2{tp0, 0qT u. (3.2)

We have already introduced this in Lemma 2.4.1, but we have repeated it here to make the

presentation self-contained. We also note that some papers in the literature, such as [47], refer

to such as matrix as being “positive definite”. However, most standard references define posi-

tive definiteness as a property that applies only to symmetric matrices. So, we will avoid this

terminology.

It will be important to determine when a given matrix is coercive. The following classical

results are very useful.

Theorem 3.2.1. [18] A real-valued nˆ n matrix B satisfies

~vTB~v ą 0 for all ~v P RN{t~0u,

if and only if M “ pB `BT q{2 is symmetric positive definite.

Theorem 3.2.2. [16, p. 402] A real-valued nˆ n symmetric matrix M is positive definite if and

only if all of its eigenvalues are positive.

3.2.1 A simple, and inadequate, transformation

Recall the problem stated in (3.1). In [47], it is assumed that the functions a, b and f are given

sufficiently smooth and that

apxq ě 0 and bpxq ě 0 for x P Ω̄. (3.3)

By using the boundary conditions, they transform the problem into a system of two differential

equations. They set ~z “ pu,wqT , where

w :“ ´u2. (3.4)
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With this, (3.1) can be transformed into a system of two equations of the form

´E~z2 `A~z “ ~f, (3.5)

where

~z “

˜

w

u

¸

, E “

˜

ε 0

0 1

¸

, A “

˜

a ´b

1 0

¸

and ~f “

˜

´f

0

¸

. (3.6)

In [47] it is written:

We assume that the matrix A is point-wise positive definite (but not necessarily sym-

metric), i.e., for some fixed γ ą 0

~vTA~v ě γ2~vT~v for all ~v P R2{tp0, 0qT u. (3.7)

That is, in our terminology, for all x P r0, 1s, A is coercive. However, for any ~v P R2,

~vTA~v “
´

v1 v2

¯

˜

a ´b

1 0

¸˜

v1

v2

¸

“ av2
1 ` v1v2p1´ bq.

So, for example, if a “ 1 and b “ 2, then ~vTA~v “ ´1 when ~v “ p1, 2qT . More generally, if b “ 1

then for any ~v with v1 “ 0, one gets ~vTA~v “ 0. Moreover, if b ‰ 1, then for any other b ě 0 and

a ě 0, we can find ~v such that ~vTA~v ă 0. So there is no sense in which both (3.3) and (3.7) are

satisfied.

3.2.2 Coercive system

In this section we propose a new transformation for (3.1), which transforms it into a system of two

differential equations. This transformation features a parameter that depends on the problem data.

We determine the parameter’s value that ensures that the coefficient matrix for the zero-order term

in the system is coercive.

In our case, we assume that a and b satisfy the following conditions:

a ě ε` r˚ ą 0, (3.8a)

b ě 1, (3.8b)

for some positive constant r˚.

Remark 3.2.1. Since we place no other assumptions on a and ε, other than their sign, the problem

(3.1) can be rescaled so that (3.8b) holds, providing, of course, that b ą 0.

We propose the transformation

w :“
u2 ´ u

α
. (3.9)

That is,

u2 “ αw ` u, (3.10)
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where α is a non-zero constant chosen depending on the problem data. When (3.10) is used

repeatedly, it gives

up4q “ αw2 ` αw ` u.

With this, (3.1) can be transformed into a system of two equations of the form

´εαw2 ` αpa´ εqw ` pa´ ε´ bqu “ f,

´u2 ` αw ` u “ 0,

(3.11a)

(3.11b)

subject to the boundary conditions

up0q “ wp0q “ 0, up1q “ wp1q “ 0. (3.11c)

We can write this system as

~L~z :“ ´

˜

εα 0

0 1

¸

~z2 `B~z “ ~f, (3.12a)

where

~z “

˜

w

u

¸

, B “

˜

αpa´ εq a´ ε´ b

α 1

¸

and ~f “

˜

f

0

¸

. (3.12b)

Next, we will use the conditions (3.8a) and (3.8b) to determine the value of the parameter

in the transformation that ensure that the coefficient matrix for the zero-order term in (3.12) is

coercive. Recall from Theorems 3.2.2 and 3.2.1 that the matrix B satisfies ~vTB~v ą 0 for all ~v if,

and only if, M “ pBT `Bq{2 is symmetric positive definite. Here

M “

˜

αpa´ εq 1
2 pa´ ε´ b` αq

1
2 pa´ ε´ b` αq 1

¸

. (3.13)

Clearly, M is symmetric. In addition M is positive definite if and only if all of its eigenvalues

are positive. We now will show that it is possible to select α in (3.11) so that its eigenvalues are

positive. The eigenvalues of M are

λ1 “
1

2

„

´ αε` αa` 1`
`

α2ε2 ` ε2 ´ 2aα2ε´ 2aε` a2α2

` a2 ` 2bε´ 2ab` α2 ´ 2αb` b2 ` 1qp1{2q


, (3.14a)

λ2 “
1

2

„

´ αε` αa` 1´
`

α2ε2 ` ε2 ´ 2aα2ε´ 2aε` a2α2

` a2 ` 2bε´ 2ab` α2 ´ 2αb` b2 ` 1qp1{2q


. (3.14b)

Since M is symmetric, λ1 and λ2 are real numbers. Clearly λ1 ě λ2 for any a, b and α. We

need to find the set of values of α for which both λi ą 0, so we will find the range of α for which

λ2 ą 0. By inspection we can see that this is

´ε` a` b´ 2
?
ab´ εb ď α ď ´ε` a` b` 2

?
ab´ εb. (3.15)



3.2 From a fourth-order problem to a coupled system 44

For any choice of α that satisfies (3.15), M is positive definite for all a and b satisfying (3.8).

For the simple case where a and b are constants, we propose taking

α “ a` b´ ε, (3.16)

but we emphasise that any choice of α between ´ε`a` b´ 2
?
ab´ εb and ´ε`a` b` 2

?
ab´ εb

will suffice.

Suppose we use the same example as presented in [47], where a “ 1, b “ 1 and ε “ 10´4. Then,

from (3.6)

A “

˜

1 ´1

1 0

¸

,

which is not coercive, since

pA`AT q{2 “

˜

1 0

0 0

¸

,

has zero as an eigenvalue. On another hand, from (3.12b) and (3.13), we have

B “

˜

1.9997 ´0.00010

1.9999 1

¸

and M “

˜

1.9997 0.9999

0.9999 1

¸

.

The eigenvalues of M are λ1 “ 2.617727 and λ2 “ 0.381972. So, M is symmetric positive matrix,

and, consequently, the matrix B is coercive.

For the analysis, it is helpful not only to show that the eigenvalues of M are positive but also

to give an ε-independent lower bound for them, which, in turn, gives an ε-independent bound for

γ in (3.7). This, we now do.

Lemma 3.2.3. Let M be the matrix defined in (3.13). If we set α “ a` b´ ε as in (3.16), then

M is positive definite, and its smaller eigenvalue λ2, is bounded below as

λ2 ą
bpa´ εq

a2 ` ab` 1
ą

br˚

a2 ` ab` 1
, (3.17)

independently of ε, where r˚ is as given in (3.8).

Proof. First, we will show that both of eigenvalues of M are positive, and, consequently, M is

symmetric positive definite. When α “ a` b´ ε, we have

M “

˜

pa` b´ εqpa´ εq a´ ε

a´ ε 1

¸

.

The smaller eigenvalue of M is λ2, as given in (3.14b), and with α “ a` b´ ε, it is

λ2 “
1

2

„

pa2 ` ab´ 2aε´ bε` ε2 ` 1q

´

ˆ

a4 ` p2b´ 4εqa3 ` pb2 ´ 6bε` 6ε2 ` 2qa2 ` p´2b2ε` 6bε2 ´ 4ε3 ´ 2b´ 4εqa

` b2ε2 ` p´2ε3 ` 2εqb` pε2 ` 1q2
˙p1{2q

. (3.18)
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We can write λ2 as the difference of two functions in a, b and ε:

λ2 “ Qpa, b, εq ´Npa, b, εq,

where

Qpa, b, εq “ p1{2qpa2 ` ab´ 2aε´ bε` ε2 ` 1q,

and

Npa, b, εq “ p1{2q
`

a4 ` p2b´ 4εqa3 ` pb2 ´ 6bε` 6ε2 ` 2qa2

` p´2b2ε` 6bε2 ´ 4ε3 ´ 2b´ 4εqa` b2ε2 ` p´2ε3 ` 2εqb` pε2 ` 1q2
˘p1{2q

.

Note that Qpa, b, εq ą 0, Npa, b, εq ě 0, and

Qpa, b, εq2 ´Npa, b, εq2 “ bpa´ εq ą 0, (3.19)

for any a, b and ε satisfying (3.8). From this we can see that Qpa, b, εq ą Npa, b, εq and, so, λ2 ą 0.

To establish a lower bound for λ2, we write

Qpa, b, εq2 ´Npa, b, εq2 “ pQpa, b, εq `Npa, b, εqqpQpa, b, εq ´Npa, b, εqq.

Therefore,

λ2 “ Qpa, b, εq ´Npa, b, εq “
Qpa, b, εq2 ´Npa, b, εq2

Qpa, b, εq `Npa, b, εq
“

bpa´ εq

Qpa, b, εq `Npa, b, εq
.

We know that

Qpa, b, εq `Npa, b, εq ă 2Qpa, b, εq

because Qpa, b, εq ą Npa, b, εq. Furthermore,

2Qpa, b, εq “ a2 ` ab´ 2aε´ bε` ε2 ` 1 “ pa´ εq2 ` bpa´ εq ` 1 ă a2 ` ab` 1.

So this, combined with (3.19) yields

λ2 ą
bpa´ εq

2Qpa, b, εq
ą

br˚

a2 ` ab` 1
,

for all a, b and ε satisfying (3.8a) and (3.8b).

Example 3.2.1. Suppose we take ε “ 10´4, a “ 2 and b “ 4 in (3.1). Then

B “

˜

11.9992 ´2.0001

5.9999 1

¸

, (3.20)

and

M “

˜

11.9992 1.9999

1.9999 1

¸

. (3.21)
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The eigenvalues of M are

λ1 “ 12.3515 and λ2 “ 0.6476.

Clearly, M is symmetric. In addition M is positive definite since the eigenvalues are positive.

Using the same data in (3.17), we get that

λ2 ą 0.6153,

which shows that the bound in (3.17) is sharp.

Theorem 3.2.4. Let B be the matrix in (3.12). If α “ a ` b ´ ε, then B is coercive (see

Definition 3.2.1), with

γ ě
br˚

a2 ` ab` 1
. (3.22)

Proof. Let M “ pBT `Bq{2. The quantity

R~vpMq “
~vTM~v

~vT~v
,

is called the Rayleigh quotient of M , for the vector ~v. From, e.g., [44, Thm 5.12],

R~vpMq ě λ2 for all ~v P R2{tp0, 0qT u,

where λ2 is the smaller of the eigenvalues of M . But, for any ~v,

~vTM~v “ 1{2

ˆ

~vT pBT~v `B~vq

˙

“ 1{2

ˆ

~vTBT~v ` ~vTB~v

˙

“ ~vTB~v,

which completes the proof.

3.3 The numerical method

3.3.1 Variational formulation

First, we denote the usual L2-inner product on the unit interval as

pq, pq :“

ż 1

0

qpxqppxqdx.

Then, the variational formulation of (3.11) is: find ~z P pH1
0 p0, 1qq

2 such that

Bp~z,~vq “ Fp~vq for all ~v P pH1
0 p0, 1qq

2, (3.23)

where

Bp~z,~vq :“ εαpz11, v
1
1q ` pz

1
2, v

1
2q ` pb11z1, v1q ` pb12z2, v1q ` pb21z1, v2q ` pb22z2, v2q, (3.24)

and

Fp~vq :“ pf, v1q
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where b11 “ αpa´ εq, b12 “ a´ ε´ b, b21 “ α, and b22 “ 1.

The energy norm on pH1
0 p0, 1qq

2 associated with the bilinear form Bp¨, ¨q on pH1
0 p0, 1qq

2 is } ¨ }B,

defined by

‖~z‖2B :“ εα
∥∥z11∥∥2

2
`
∥∥z12∥∥2

2
` γp‖z1‖22 ` ‖z2‖22q, (3.25)

where, as usual, γ is the (coercivity) constant for the matrix B as in Definition 3.2.1.

Lemma 3.3.1. Let B be a bilinear form defined in (3.24). If we set α “ a ` b ´ ε as in (3.16)

and γ defined in (3.22), then B is is coercive, with respect to ‖¨‖B; that is

Bp~v,~vq ě γ ‖~v‖2B for all ~v “ pv1, v2q P pH
1
0 p0, 1qq

2. (3.26)

Also, B is continuous (bounded), i.e., there exists on constant C such that

|Bp~z,~vq| ď C ‖~z‖B ‖~v‖B for all ~z,~v P pH1
0 p0, 1qq

2. (3.27)

Proof. From (3.24), we get

Bp~v1, ~v2q :“ εαpv11, v
1
1q ` pv

1
2, v

1
2q ` pb11v1, v1q ` pb12v1, v2q ` pb21v2, v1q ` pb22v2, v2q.

Note that pv11, v
1
1q “ ‖v11‖

2
2 and pv12, v

1
2q “ ‖v12‖

2
2. Also, from Theorem 3.2.4,

Bp~v,~vq ě pb11v1, v1q ` pb12v2, v1q ` pb21v1, v2q ` pb22v2, v2q

“

ż 1

0

~vT pxqBpxq~vpxqdx

ě

ż 1

0

γ~vT pxq~vpxqdx “ γ
`

‖v1‖22 ` ‖v2‖22
˘

.

Then (3.26) follows.

For the continuity result, using the Cauchy-Schwarz inequality, there is a constant C such that

|Bp~z,~vq| ď εα|pz11, v
1
1q| ` |pz

1
2, v

1
2q| ` |pb11z1, v1q ` pb12z2, v1q ` pb21z1, v2q ` pb22z2, v2q|

ď εα}z11}}v
1
1} ` }z

1
2}}v

1
2} ` |p~z

TB,~vq|

ď εα}z11}}v
1
1} ` }z

1
2}}v

1
2} ` }~z

TB}}~v}

ď εα}z11}}v
1
1} ` }z

1
2}}v

1
2} ` }B}max}~z}}~v}

ď Cpεα}z11}}v
1
1} ` }z

1
2}}v

1
2} ` γ}~z}}~v}q ď C}~z}B}~v}β ,

where here }B}max denotes maxi,j max0ďxď1 |bijpxq|, which is clearly bounded above. Thus (3.27)

holds.

Note that the demonstration of Theorem 3.3.1 is largely elementary, once the coercive property

of B are established. In Chapter 6 identical reasoning will be applied for a system of four equations.

The results of Lemma 3.3.1 apply directly to show that (3.23) has a unique solution. This

result is called the Lax-Milgram Lemma, and is standard in any text addressing the mathematics

of finite element methods, e.g., [6, Theorem 2.7.7] or [35, Theorem 2.43].
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3.3.2 Shishkin mesh

We construct a standard Shishkin mesh with the mesh parameter

τ “ mint
1

4
, 2
?
ε lnNu. (3.28)

We now define two mesh transition points at x “ τ and x “ 1 ´ τ . That is, we form a piecewise

uniform mesh with N{4 equally-sized mesh intervals on each of r0, τ s and r1 ´ τ, 1s, and N{2

equally-sized mesh intervals on rτ, 1´ τ s. Typically, when ε is small, τ ! 1{4, the mesh is very fine

near the boundaries, and coarse in the interior. We refer to Section 2.3 for more details.

3.3.3 Finite element method

We define S to be the subspace of pH1
0 p0, 1qq

2 made up of piecewise linear functions on the mesh

of Section 3.3.2. Then the discrete version of (3.23) is: find ~Z P S such that

Bp~Z, ~V q “ Fp~V q for all ~V P S. (3.29)

Then, noting Lemma 3.3.1, standard finite element numerical analysis can proceed based on quasi-

optimal approximation properties of the finite element space, and interpolation error estimates.

This is due to Céa’s Lemma (e.g., [6, Theorem 2.8.1] or [35, Theorem 2.44]). That is, Céa’s

Lemma gives that, for any function Ẑ in S.∥∥∥~z ´ ~Z
∥∥∥2

B
ď
C

γ

∥∥∥~z ´ Ẑ∥∥∥2

B
,

where C and γ are the constants in Lemma 3.3.1. This means, to conclude the analysis, we can

consider any Ẑ P S for which one has a bound on
∥∥∥~z ´ Ẑ∥∥∥2

B
. The most popular choice is to take

Ẑ to be the piecewise linear interpolant to ~z, see, e.g., [44, Chap. 11]. The details are standard,

so we do not give that here (see, e.g., Liu et al. [24]), but we can conclude that

∥∥∥~z ´ ~Z
∥∥∥2

B
“

∥∥u1 ´ U 1∥∥2

2
` εα

∥∥w1 ´W 1
∥∥2

2
` γp‖u´ U‖22 ` ‖w ´W‖

2
2q

∥∥∥~z ´ ~Z
∥∥∥
B

ď C1ε
1{2N´1 lnN ` C2N

´1 ` C3N
´2, (3.30)

where

~z “

˜

w

u

¸

and ~Z “

˜

W

U

¸

. (3.31)

We are specifically interested in the singularly perturbed case, where ε ! N´1. Thus, for

sufficiently small ε, and large enough N , on expects the bound in (3.30) to simplify to

∥∥∥~z ´ ~Z
∥∥∥2

B
ď CN´1. (3.32)

This is investigated in the following section.
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3.3.4 Numerical results

In this section, we present two examples. The first equation features constant coefficients and can

be solved exactly. The second equation has non-constant coefficients, and so we estimate the errors

in the numerical solutions based on a computed benchmark solution. Even though the coefficients

are non-constant, we show it is possible to find a constant α which satisfies (3.15).

We are primarily interested in the convergence of the finite element solution in the energy norm.

In particular, we would like to verify (7.32) and examine the contribution of each component in

(3.30). Although not covered by theory, we will also verify pointwise convergence.

We denote the error for given N and ε as

ENB :“
∥∥∥~z ´ ~Z

∥∥∥
B
,

where ~Z is the finite element solution, and ~z is either the true or benchmark solution, as appropriate.

In addition, ρNB denotes the convergence rate of the error in the energy norm. It is computed as

ρNB :“ log2

ˆ

ENB

E
N{2
B

˙

. (3.33)

By EN8 puq and EN8 pwq we denote the true or estimated maximum pointwise error in u and w,

respectively, and by ρN8puq and ρN8pwq the corresponding rates of convergence of u and w, i.e.,

ρN8puq :“ log2

ˆ

EN8 puq

E
N{2
8 puq

˙

and ρN8pwq :“ log2

ˆ

EN8 pwq

E
N{2
8 pwq

˙

. (3.34)

Example 3.3.1. We consider the following specific example of (3.1)

´εup4qpxq ` p4`
ε

4
qu2pxq ´ upxq “ 1` x on Ω :“ p0, 1q, (3.35)

with boundary conditions

up0q “ u2p0q “ up1q “ u2p1q “ 0.

The solution is

upxq “ ´p1` xq `
εe2x{

?
εpe´2{

?
ε ´ 2q ´ εe´2x{

?
εpe2{

?
ε ´ 2q

pε´ 16qpe´2{
?
ε ´ e2{

?
εq

`
16e´x{2pe1{2 ´ 2q ´ 16ex{2pe´1{2 ´ 2q

pε´ 16qpe´1{2 ´ e1{2q
.

As per (3.15), we take α “ 5´ 3ε{4, and then the system we solve is

´

˜

εα 0

0 1

¸

~z2 `B~z “ ~f, (3.36a)

where

~z “

˜

w

u

¸

, B “

˜

p5´ 3ε{4qp4´ 3ε{4q 3´ 3ε{4

5´ 3ε{4 1

¸

and ~f “

˜

1` x

0

¸

, (3.36b)
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with boundary conditions

up0q “ wp0q “ up1q “ wp1q “ 0. (3.36c)

For this system, γ is bounded by using Corollary 3.2.4, giving γ « 0.1394. It can be verified

numerically that γ « 0.1922 for all ε, so this is quite sharp.

In Figure 3.1 we show u with ε “ 10´1 (left) and ε “ 10´3 (right), which does not features

layers. In Figure 3.2 we show w with ε “ 10´1 (left), which does not features layers. In contrast,

as shown in the graph on the right for smaller ε (in this case ε “ 10´3), the solution possesses

boundary layers near x “ 0 and x “ 1.

Figure 3.1: The solution u to (3.35) with ε “ 10´1 (left) and ε “ 10´3 (right).

Figure 3.2: The solution w in (3.35) with ε “ 10´1 (left) and ε “ 10´3 (right).

In Tables 3.1 and 3.2, we present the error in the energy norm and the associated rates of

convergence computed when (3.35) is solved by the finite element method on the Shishkin mesh

of Section 3.3.2, but with a minor change to the transition point in (3.28), since the effective

perturbation parameter in (3.36) is αε. The numerical solution converges at a rate that is fully

first-order, independently of ε. For large ε, it is clear that the error increases as ε initially decreases.

But for ε “ 10´8 to ε “ 10´12, the method is clearly robust.

From (3.30), we see that ENB is comprised of four components. We now investigate each of

these. First in Table 3.3, we present }u1´U 1}2; it clearly shows that u1 is robustly estimated. Also,

the associated rates of convergence are fully first-order. Note that, particularly for smaller ε, the
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Table 3.1: EN
B for problem (3.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.103e-02 5.515e-03 2.758e-03 1.379e-03 6.895e-04

1.0e-02 2.750e-02 1.439e-02 7.285e-03 3.654e-03 1.828e-03
1.0e-04 2.120e-02 1.825e-02 1.384e-02 9.107e-03 5.465e-03
1.0e-06 1.434e-02 8.548e-03 5.381e-03 3.272e-03 1.891e-03
1.0e-08 1.359e-02 6.953e-03 3.627e-03 1.907e-03 9.994e-04
1.0e-10 1.351e-02 6.774e-03 3.403e-03 1.712e-03 8.610e-04
1.0e-12 1.351e-02 6.756e-03 3.380e-03 1.691e-03 8.460e-04

Table 3.2: ρNB for problem (3.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.000 1.000 1.000 1.000

1.0e-02 0.934 0.982 0.996 0.999
1.0e-04 0.216 0.399 0.604 0.737
1.0e-06 0.747 0.668 0.718 0.791
1.0e-08 0.967 0.939 0.928 0.932
1.0e-10 0.996 0.993 0.991 0.991
1.0e-12 0.999 0.999 0.999 0.999

quantities in Table 3.1 agree with those in Table 3.3, up to 3 or 4 digits, showing that }u1 ´ U 1}2

is the dominating term in
∥∥∥~z ´ ~Z

∥∥∥
B

. That is,

∥∥∥~z ´ ~Z
∥∥∥
B
« }u1 ´ U 1}2.

Table 3.3: }u1 ´ U 1}2 for problem (3.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.719e-03 8.592e-04 4.296e-04 2.148e-04 1.074e-04

1.0e-02 6.176e-03 3.089e-03 1.545e-03 7.725e-04 3.862e-04
1.0e-04 1.126e-02 5.370e-03 2.558e-03 1.218e-03 5.798e-04
1.0e-06 1.327e-02 6.609e-03 3.290e-03 1.638e-03 8.153e-04
1.0e-08 1.348e-02 6.739e-03 3.368e-03 1.683e-03 8.414e-04
1.0e-10 1.350e-02 6.752e-03 3.376e-03 1.688e-03 8.440e-04
1.0e-12 1.350e-02 6.754e-03 3.377e-03 1.688e-03 8.442e-04

Next, in Tables 3.4, 3.5 and 3.6 we present the three other components in (3.30). From Table 3.4,

we can see that, for small ε, the error term
?
αε}w1 ´W 1}2 (for fixed N) scales like ε1{2. Since

typically ε ď ln2N , this term does not dominate in Table 3.1. Furthermore, we can see that the

associated rates of convergence is only ϑpN´1 lnNq. Table 3.5 verifies that }u ´ U}2 is ϑpN´2q,

uniformly in ε, while in Table 3.6 we see that }w´W }2 is ϑpε1{2N´1 lnNq. But in all three cases,

as expected, the quantities are dominated by those in Table 3.3.

Finally, for curiosity, we verify the pointwise convergence of the method. Tables 3.7 and 3.9

show that, for sufficiently small ε, the pointwise convergence is parameter uniform. Tables 3.8

and 3.10 demonstrate that this convergence is fully second-order for u, and almost second-order

for w. This is not surprising, since, as shown in Figure 3.1 and Figure 3.2 there is no (strong)

boundary layer in u, but there is in w. This will be investigated more deeply in Chapter 4.
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Table 3.4:
?
αε}w1 ´W 1

}2 for problem (3.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.089e-02 5.448e-03 2.724e-03 1.362e-03 6.811e-04

1.0e-02 2.678e-02 1.406e-02 7.119e-03 3.571e-03 1.787e-03
1.0e-04 1.911e-02 1.775e-02 1.370e-02 9.062e-03 5.448e-03
1.0e-06 6.041e-03 5.614e-03 4.332e-03 2.866e-03 1.723e-03
1.0e-08 1.910e-03 1.775e-03 1.370e-03 9.062e-04 5.448e-04
1.0e-10 6.041e-04 5.614e-04 4.332e-04 2.866e-04 1.723e-04
1.0e-12 1.910e-04 1.775e-04 1.370e-04 9.062e-05 5.448e-05

Table 3.5: }u´ U}2 for (3.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 5.407e-05 1.353e-05 3.384e-06 8.460e-07 2.115e-07

1.0e-02 1.250e-04 3.126e-05 7.816e-06 1.954e-06 4.886e-07
1.0e-04 2.542e-04 5.150e-05 1.044e-05 2.192e-06 5.103e-07
1.0e-06 4.924e-04 1.211e-04 2.978e-05 7.323e-06 1.800e-06
1.0e-08 5.219e-04 1.303e-04 3.252e-05 8.116e-06 2.026e-06
1.0e-10 5.249e-04 1.312e-04 3.280e-05 8.199e-06 2.049e-06
1.0e-12 5.252e-04 1.313e-04 3.283e-05 8.207e-06 2.052e-06

Table 3.7: EN
8 puq for problem (3.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 2.863e-05 7.147e-06 1.786e-06 4.465e-07 1.116e-07

1.0e-02 3.280e-05 7.310e-06 1.841e-06 4.569e-07 1.140e-07
1.0e-04 7.744e-06 1.741e-06 9.876e-07 3.947e-07 1.183e-07
1.0e-06 1.378e-05 3.399e-06 8.413e-07 2.075e-07 5.118e-08
1.0e-08 1.443e-05 3.601e-06 9.021e-07 2.252e-07 5.624e-08
1.0e-10 1.449e-05 3.622e-06 9.082e-07 2.270e-07 5.675e-08
1.0e-12 1.450e-05 3.624e-06 9.088e-07 2.272e-07 5.680e-08

Table 3.8: ρN8puq for problem (3.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 2.002 2.001 2.000 2.000

1.0e-02 2.166 1.990 2.010 2.002
1.0e-04 2.153 0.818 1.323 1.738
1.0e-06 2.019 2.015 2.019 2.020
1.0e-08 2.002 1.997 2.002 2.002
1.0e-10 2.001 1.996 2.000 2.000
1.0e-12 2.001 1.995 2.000 2.000

Table 3.6: }w ´W }2 for (3.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 9.123e-05 2.281e-05 5.702e-06 1.426e-06 3.564e-07

1.0e-02 1.939e-03 5.136e-04 1.304e-04 3.272e-05 8.187e-06
1.0e-04 6.424e-03 3.763e-03 1.801e-03 7.103e-04 2.463e-04
1.0e-06 2.033e-03 1.190e-03 5.695e-04 2.246e-04 7.788e-05
1.0e-08 6.471e-04 3.768e-04 1.802e-04 7.103e-05 2.463e-05
1.0e-10 2.179e-04 1.206e-04 5.716e-05 2.249e-05 7.794e-06
1.0e-12 1.017e-04 4.247e-05 1.867e-05 7.208e-06 2.482e-06
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Table 3.9: EN
8 pwq for problem (3.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.290e-04 3.221e-05 8.050e-06 2.013e-06 5.032e-07

1.0e-02 1.350e-02 3.018e-03 7.542e-04 1.873e-04 4.683e-05
1.0e-04 1.029e-01 7.394e-02 4.005e-02 1.586e-02 4.742e-03
1.0e-06 1.029e-01 7.394e-02 4.005e-02 1.586e-02 4.742e-03
1.0e-08 1.029e-01 7.394e-02 4.005e-02 1.586e-02 4.742e-03
1.0e-10 1.029e-01 7.394e-02 4.005e-02 1.586e-02 4.742e-03
1.0e-12 1.029e-01 7.394e-02 4.005e-02 1.586e-02 4.742e-03

Table 3.10: ρN8pwq for problem (3.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 2.002 2.000 2.000 2.000

1.0e-02 2.161 2.001 2.010 2.000
1.0e-04 0.477 0.885 1.336 1.742
1.0e-06 0.477 0.885 1.336 1.742
1.0e-08 0.477 0.885 1.336 1.742
1.0e-10 0.477 0.885 1.336 1.742
1.0e-12 0.477 0.885 1.336 1.742

Example 3.3.2. We consider another example, but with variable coefficients. We will take

a “ 2x` 1, b “ 4x` 1 and f “ 1` x,

in (3.1). That is, we solve

´εup4qpxq ` p2x` 1qu2pxq ´ p4x` 1qupxq “ 1` x on Ω :“ p0, 1q, (3.37a)

with boundary conditions

up0q “ u2p0q “ up1q “ u2p1q “ 0. (3.37b)

We can not take α as in (3.16), since then it will be variable so (3.10) could not directly apply.

However, we can still choose an α that is constant (in x), and that satisfies (3.15). Specifically, we

choose α “ 2´ ε.

In Figure 3.3, we show that α satisfies (3.15).

The system we solve is

´

˜

εp2´ εq 0

0 1

¸

~z2 `

˜

p2´ εqp2x` 1´ εq ´2x´ ε

p2´ εq 1

¸

~z “

˜

1` x

0

¸

, (3.38a)

with boundary conditions

up0q “ wp0q “ up1q “ wp1q “ 0. (3.38b)

For this system, γ is bounded numerically, giving γ « 0.38197.

In Figure 3.4 we show u (left) and w (right) both for ε “ 10´3; as with u from Example 3.3.1,

the former does not features layers, but the latter does.

We will report the error for given N and ε. As before, ~Z is the finite element solution, but

since the exact solution to (3.37) is not available to us, ~z will be taken from a benchmark solution.
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Figure 3.3: Our chosen α, and its upper and lower bounds from (3.15).

Figure 3.4: The solutions z1 “ u and z2 “ w to (3.38) with ε “ 10´3.

Specifically, suppose ~z is computed on a mesh with N intervals. In that case, ~z is calculated

on a mesh with 8N intervals, but the same transition points (that is, the computational mesh is

uniformly refined three times to obtain the mesh on winch the benchmark solution is computed).

In Tables 3.11 and 3.12, we present the error in the energy norm, and the associated rates of

convergence computed when (3.37) is solved by the finite element method on the Shishkin mesh.

The numerical solution converges at a rate that is fully first-order, independently of ε: although

the error increases as ε initially decreases, for ε “ 10´8 to ε “ 10´12, the method is clearly robust.

From (3.30), we see that ENB is comprised of four components. But we will present the first

component }u1´U 1}2 in Table 3.13, which the results of this component are smaller to 3.11, up to

3 or 4 digits, showing that }u1 ´ U 1}2 is the dominating term in
∥∥∥~z ´ ~Z

∥∥∥
B

.

As discussed for Example 3.3.1, although ENB is comprised of four other error terms, it is

dominated by }u1 ´ U 1}2. This is verified in Table 3.13: The entries shown in it agree with those

in Table 3.11, up to three or four digits.

Table 3.14 shows pointwise errors for the solution u. The results are qualitatively similar to
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Table 3.11: EN
B for problem (3.37) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 2.812e-03 1.405e-03 7.025e-04 3.513e-04 1.756e-04

1.0e-02 1.126e-02 5.631e-03 2.816e-03 1.408e-03 7.040e-04
1.0e-04 1.889e-02 8.774e-03 4.079e-03 1.902e-03 8.913e-04
1.0e-06 2.445e-02 1.214e-02 6.026e-03 2.992e-03 1.486e-03
1.0e-08 2.506e-02 1.252e-02 6.254e-03 3.125e-03 1.561e-03
1.0e-10 2.512e-02 1.256e-02 6.277e-03 3.138e-03 1.569e-03
1.0e-12 2.512e-02 1.256e-02 6.279e-03 3.139e-03 1.570e-03

Table 3.12: ρNB for problem (3.37) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.001 1.000 1.000 1.000

1.0e-02 1.000 1.000 1.000 1.000
1.0e-04 1.107 1.105 1.101 1.093
1.0e-06 1.010 1.010 1.010 1.010
1.0e-08 1.001 1.001 1.001 1.001
1.0e-10 1.000 1.000 1.000 1.000
1.0e-12 1.000 1.000 1.000 1.000

Table 3.7: for sufficiently small ε, the method is ε-uniformly pointwise convergent. Table 3.15

shows, however, that the rate of convergence is fully second-order again. Table 3.16 show that the

numerical approximation of w converges pointwise, uniformly in ε, at an almost second-order rate.

We speculate that. Therefore, there is a constant C independent of ε and N , such that

‖u´ U‖8,ΩN ď CN´2 and ‖w ´W‖8,ΩN ď CN´2 ln2N.

Table 3.14: EN
8 puq for problem (3.37) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 3.746e-05 9.383e-06 2.345e-06 5.863e-07 1.466e-07

1.0e-02 5.862e-05 1.368e-05 3.362e-06 8.370e-07 2.090e-07
1.0e-04 9.283e-05 2.076e-05 4.616e-06 1.020e-06 2.241e-07
1.0e-06 1.302e-04 3.219e-05 7.975e-06 1.977e-06 4.901e-07
1.0e-08 1.340e-04 3.337e-05 8.329e-06 2.080e-06 5.197e-07
1.0e-10 1.344e-04 3.349e-05 8.365e-06 2.091e-06 5.226e-07
1.0e-12 1.344e-04 3.350e-05 8.368e-06 2.092e-06 5.229e-07

Table 3.13: }u1 ´ U 1}2 for problem (3.37) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.988e-03 9.936e-04 4.968e-04 2.484e-04 1.242e-04

1.0e-02 1.115e-02 5.576e-03 2.788e-03 1.394e-03 6.971e-04
1.0e-04 1.887e-02 8.771e-03 4.079e-03 1.902e-03 8.913e-04
1.0e-06 2.442e-02 1.213e-02 6.026e-03 2.992e-03 1.486e-03
1.0e-08 2.502e-02 1.251e-02 6.253e-03 3.125e-03 1.561e-03
1.0e-10 2.509e-02 1.255e-02 6.276e-03 3.138e-03 1.569e-03
1.0e-12 2.509e-02 1.255e-02 6.279e-03 3.139e-03 1.570e-03
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Table 3.15: ρN8puq for problem (3.37) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.997 2.000 2.000 2.000

1.0e-02 2.100 2.024 2.006 2.002
1.0e-04 2.161 2.169 2.178 2.186
1.0e-06 2.016 2.013 2.012 2.012
1.0e-08 2.006 2.002 2.001 2.001
1.0e-10 2.005 2.001 2.000 2.000
1.0e-12 2.005 2.001 2.000 2.000

Table 3.16: EN
8 pwq for problem (3.37) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.061e-04 2.651e-05 6.628e-06 1.657e-06 4.142e-07

1.0e-02 2.575e-02 5.903e-03 1.442e-03 3.600e-04 8.977e-05
1.0e-04 1.176e-01 7.448e-02 3.511e-02 1.232e-02 3.671e-03
1.0e-06 1.173e-01 7.448e-02 3.516e-02 1.234e-02 3.678e-03
1.0e-08 1.173e-01 7.448e-02 3.517e-02 1.234e-02 3.679e-03
1.0e-10 1.173e-01 7.448e-02 3.517e-02 1.234e-02 3.679e-03
1.0e-12 1.173e-01 7.448e-02 3.517e-02 1.234e-02 3.679e-03

Table 3.17: ρN8pwq for problem (3.37) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 2.001 2.000 2.000 2.000

1.0e-02 2.125 2.033 2.002 2.004
1.0e-04 0.659 1.085 1.511 1.746
1.0e-06 0.655 1.083 1.511 1.746
1.0e-08 0.655 1.083 1.511 1.746
1.0e-10 0.655 1.083 1.511 1.746
1.0e-12 0.655 1.083 1.511 1.746



Chapter 4

Finite differences for fourth-order

real-valued singularly perturbed

problems

4.1 Introduction

In this chapter we study the numerical solution, by finite difference methods, of a singularly

perturbed, fourth-order, real-valued reaction diffusion equations. Our model differential equation

is the same as Chapter 3:

´εup4qpxq ` au2pxq ´ bupxq “ fpxq on Ω :“ p0, 1q, (4.1a)

subject to the boundary conditions

up0q “ u2p0q “ 0, up1q “ u2p1q “ 0. (4.1b)

As in Chapter 3, ε is a positive, real-valued parameter that is always at most 1, but the cases of

particular interest are when ε ! 1. The coefficient functions, a and b, and right-hand side function,

f , are real-valued functions on the interval Ω.

4.1.1 Outline

In Section 4.2, we introduce a family of fourth-order ordinary differential equations, focusing on a

problem studied by Shanthi and Ramanujam [38]. As in Chapter 3, we propose a new transfor-

mation for the problem, which transforms it into a system of two differential equations. However,

whereas in Chapter 3, this was to ensure the resulting system matrix is positive definite, here we

wish to use maximum/minimum principle techniques. In Section 4.3, in Lemma 4.3.1, we establish

a stability result and maximum principle for the differential operator of the system. Also, we

57
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state and prove the bounds for the solution and its derivatives in Lemma 4.3.5. Section 4.4, we

describe a finite difference method for this problem, applied, initially, on an arbitrary mesh. We

then present a suitable layer adapted mesh, and the numerical analysis of method on this mesh.

Finally, in Section 4.5, numerical results are shown in support of the theoretical analysis.

4.2 Analysis of the continuous problem

We consider the real-valued fourth-order ordinary differential equation (4.1), and begin by dis-

cussing the assumptions made by Shanthi and Ramanujam [38]. They assumed that there exist

positive constants a˚, b˚ and k that satisfy the following conditions:

apxq ě a˚ ą 0, (4.2a)

0 ě bpxq ě ´b˚, b˚ ą 0, (4.2b)

a˚ ´ 2b˚ ě k ą 0. (4.2c)

In our case, we assume that a and b satisfy the following conditions:

a ě ε` r˚ ą 0, (4.3a)

b ě s˚ ą 0, (4.3b)

b ď ε` r˚, (4.3c)

for some positive constants r˚ and s˚.

It appears that (4.3a) is a stronger assumption than (4.2a), since the latter gives no specific

lower bound on a. Also, (4.2b) is quite different to (4.3b), in our case the function b is positive

and having the upper and lower bound, but in (4.2b) the function is negative. Finally, note that

(4.2c) is quite restrictive. For example, (4.3b) is not satisfied for ´εup4q ` u2 ´ u “ f . For that

Shanthi and Ramanujam present another technique in [38, Section 6]. This so-called “adjoint”

approach involves a system of four equations. For details, see Section 1.5.3.

4.2.1 A second-order system

To analyse and solve (4.1), we follow the approach presented in Chapter 3, and transform it into

a system of two differential equations. We propose the transformation

w :“ u2 ´ u. (4.4)

That is,

u2 “ w ` u, (4.5)
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which, when used repeatedly, gives

up4q “ w2 ` w ` u.

With this, (4.1) can be transformed into a system of two equations of the form

´εw2 ` pa´ εqw ` pa´ ε´ bqu “ f,

´u2 ` w ` u “ 0,

(4.6a)

(4.6b)

subject to the boundary conditions

up0q “ wp0q “ 0, up1q “ wp1q “ 0. (4.6c)

We can write this system as

~L~z :“ ´

˜

ε 0

0 1

¸

~z2 `B~z “ ~f, (4.7a)

where

~z “

˜

w

u

¸

, B “

˜

a´ ε a´ ε´ b

1 1

¸

and ~f “

˜

f

0

¸

. (4.7b)

The boundary conditions are

~zp0q “ ~zp1q “

˜

0

0

¸

. (4.7c)

4.3 Stability result and maximum principle

This section considers how a maximum principle analysis may be applied to the system. We will

use a Jacobi-type analysis to prove stability, which follows ideas from [19]. In doing so, we will

assume that all of the conditions in (4.3) hold.

From (4.3a) and (4.3b) note that the diagonal entries of B are positive. We can now define

decoupled operators associated with the diagonal entries of B,

L1w :“ ´εw2 ` b11w,

L2u :“ ´u2 ` u,

(4.8a)

(4.8b)

where b11 “ a´ ε.

Let us recall the standard concept of a maximum principle.

Definition 4.3.1. A differential operator L, satisfies a maximum principle on the domain Ω, if,

for any ψ for which Lψpxq is defined and non-negative, and ψ|Γ ě 0, then ψpxq ě 0, for all x P Ω̄.

Note that, if L satisfies a maximum principle and, furthermore, Lψpxq ď 0 and ψ|Γ ď 0, then

ψpxq ď 0, for all x P Ω̄.
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Lemma 4.3.1. Let ~v “ pv1, v2q
T P C2pΩq2 X CpΩ̄q2, Then

}v1}Ω̄ ď }L1v1{b11}Ω, (4.9a)

and

}v2}Ω̄ ď }L2v2}Ω, (4.9b)

where b11 “ a´ ε.

Proof. Since the arguments are analogous, only the details for L1 are given. Define the barrier

function ξ1pxq “ }pLv1q{b11}Ω for all x P Ω. We have

L1ξ1pxq “ L1

`

}pL1v1q{b11}Ω
˘

pxq “ b11pxq
`

}pL1v1q{b11}Ω
˘

ě b11pxq
`

|pL1v1q{b11pxq|
˘

“ |L1v1pxq|.

Applying the maximum principle of Definition 4.3.1 with this barrier function gives

L1pξ1pxq ˘ v1pxqq “ L1ξ1pxq ˘ L1v1pxq ě 0,

since L1ξ1pxq ě |L1v1pxq|. Thus ξ1pxq ˘ v1pxq ě 0, and, therefore, |v1pxq| ď }pL1v1q{b11}Ω.

Next, let us define ρ1 :“ b12{b11 “ pa´ ε´ bq{pa´ εq and ρ2 :“ b21 “ 1. Then, from (4.3)

0 ă pρ1ρ2qpxq “
pa´ ε´ bq

pa´ εq
pxq ă 1, (4.10)

for all x P Ω̄.

Lemma 4.3.2. Let ~z “ pw, uqT be the solution to (4.7). For k “ 0, 1, 2, . . . , we define the sequence

of vector-valued functions

~zrks “ pwrks, urksq,

where ~zr0s “ ~0, and ~zrks solves

L1w
rks “ f ´ b12u

rk´1s on Ω, and wrksp0q “ wrksp1q “ 0,

L2u
rks “ ´wrks on Ω, and urksp0q “ urksp1q “ 0,

(4.11a)

(4.11b)

for k “ 1, 2, . . . . Then limkÑ8 ~z
rks “ ~z. Moreover

}~z}Ω ď
1

1´ ρ1ρ2

`

}f}{}b11}
˘

.

Proof. For k “ 0, 1, 2, . . . , we set ~nrks “ pn
rks
1 , n

rks
2 qT and ~nrks “ ~z´~zrks. For k ě 1, from (4.8)

and (4.11), we have

L1n
rks
1 “ ´b12n

rk´1s
2 on Ω, (4.12a)

and

L2n
rks
2 “ ´n

rks
1 on Ω. (4.12b)
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From Lemma (4.3.1), we get

}n
rks
1 }Ω̄ ď }b12n

rk´1s
2 {b11}Ω ď ρ1}n

rk´1s
2 }Ω, (4.13)

and

}n
rks
2 }Ω̄ ď }n

rks
1 }Ω ď ρ2}n

rks
1 }Ω. (4.14)

So, }~nrks}Ω̄ ď ρ1ρ2}~n
rk´1s} ď pρ1ρ2q

k}~nr0s}. It follows from (4.10) that }~nrks}Ω̄ Ñ 0, and so

limkÑ8 ~z
rks “ ~z.

Setting ~Rrks “ ~zrks ´ ~zrk´1s for k “ 1, 2, . . . , (4.11) implies that

L1R
rks
1 “ b12R

rk´1s
2 on Ω,

L2R
rks
2 “ b21R

rks
1 on Ω.

(4.15a)

(4.15b)

From Lemma (4.3.1), we have

}R
rks
1 }Ω̄ ď }b12R

rk´1s
2 {b11}Ω, (4.16)

and

}R
rks
2 }Ω̄ ď }R

rks
1 {b22}Ω. (4.17)

Thus }Rrks}Ω ď ρ1ρ2}R
rk´1s}Ω. Therefore }Rrks}Ω ď pρ1ρ2q

k´1}Rr1s}Ω for k “ 1, 2, 3, . . . . Also,

since ~zr0s “ ~0,

}Rr1s}Ω “ ρ1ρ2}~z
r1s}Ω ď }f}{}b11},

and, consequently,

}Rrks}Ω ď pρ1ρ2q
k´1

`

}f}{}b11}
˘

.

Finally, since ~zr0s “ 0, and

~zrks “ Rrks `Rrk´1s ` ¨ ¨ ¨ `Rr1s,

}~z} “ lim
jÑ8

}

j
ÿ

k“1

~Rrks} ď lim
jÑ8

j
ÿ

k“1

pρ1ρ2q
k´1

`

}f}{}b11}
˘

“
1

1´ ρ1ρ2

`

}f}{}b11}
˘

.

Lemma 4.3.3. Let ~z “ pw, uqT be the solution to (4.7) with fp0q ą 0 for all x P r0, 1s, then

wpxq ě 0 and upxq ď 0.

Proof. Consider the sequence ~zr1s, ~zr2s, . . . of solutions to (4.11). We use induction on k. For

k “ 0, we have ~zr0s “ 0 and

L1w
r1s “ f ´ b12u

r0s.

Since ur0s “ 0, and f ě 0, so L1w
r1s ě 0. Thus, from Definition 4.3.1,

wr1s ě 0.

Next, we have

L2u
r1s “ ´wr1s.
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Since wr1s ě 0, we get L2u
r1s ď 0, and thus

ur1s ď 0.

For k “ n, suppose wrns ě 0 and urns ď 0. Then

L1w
rn`1s “ f ´ b12u

rns ě 0,

since urns ď 0. Thus wrn`1s ď 0. Next

L2u
rn`1s “ ´wrn`1s ě 0,

since wrn`1s ě 0. So

urn`1s ď 0.

Thus, by induction, wrks ě 0 and urks ď 0 for all k. Combining with Lemma 4.3.2, wpxq ě 0 and

upxq ď 0 for all x.

Now we give an expression for the solution and its derivative for the non-singularly perturbed

problem, which we will use on the proof for the following lemma. The proof is elementary: substi-

tute (4.19) into (4.18) to verify it, and differentiate it to verify (4.20).

Lemma 4.3.4. If upxq solves

´u2pxq ` upxq “ gpxq on p0, 1q, subject to up0q “ up1q “ 0, (4.18)

then

upxq “
1

2

ˆ

´ e´x
ż x

0

esgpsqds` ex
ż x

0

e´sgpsqds

˙

` cpe´x ´ exq, (4.19)

where c is a constant that ensures up1q “ 0, and depends on (integrals of) g, but not its derivatives.

Furthermore,

upkqpxq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

1

2

ˆ

´ e´x
ż x

0

esgpsqds` ex
ż x

0

e´sgpsqds

˙

`

k{2´1
ÿ

j“0

gp2jqpxq

`cpe´x ´ exq k is even,

1

2

ˆ

e´x
ż x

0

esgpsqds` ex
ż x

0

e´sgpsqds

˙

`

pk´1q{2´1
ÿ

j“0

gp2j`1qpxq

´cpe´x ` exq k is odd.

(4.20)

where k “ 1, 2, . . . .

We now give sharp pointwise bounds on u, w and their derivatives.

Lemma 4.3.5. Let ~z “ pw, uqT be the solution to (4.7). Then there exists a constant C, which is

independent of ε, such that

|uplqpxq| ď Cr1` εp1´l{2qβεpxqs, (4.21)

and

|wplqpxq| ď Cr1` εp´l{2qβεpxqs, (4.22)



4.3 Stability result and maximum principle 63

where βεpxq :“ e´x{
?
ε ` e´p1´xq{

?
ε and l “ 0, 1, . . . , 4.

Proof. From Lemma 4.3.2, we have pwrks, urksq ÝÑ pw, uq as k ÝÑ 8. We use induction on

k. For k “ 0, we have

}pwr0sqplq} “ 0 and }pur0sqplq} “ 0,

for all l. Next, for k “ 1, note that wr1s solves

L1w
r1s “ f,

since ur0s “ 0. So we can apply the result in e.g., [27, Lemma 6.2] to get that

|pwr1sqplqpxq| ď Cr1` εp´l{2qβεpxqs, (4.23)

for l “ 0, 1, . . . , 4.

Next, ur1s solves

L2u
r1s “ ´wr1s. (4.24)

From (4.23), it clear that

|ur1spxq| ď C. (4.25)

Also, |pur1sq2pxq| ď C, because from (4.11), we have

L2u
r1s “ ´pur1sq2 ` ur1s “ ´wr1s.

Therefore

pur1sq2pxq “ wr1spxq ` ur1spxq.

Now, we need to check |pur1sq1pxq|, |pur1sq3pxq|, and |pur1sqp4qpxq|. From Lemma 4.3.4, we can

see that

pur1sq1pxq “
1

2

ˆ

e´x
ż x

0

eswr1spsqds´ ex
ż x

0

e´swr1spsqds

˙

´ wr1spxq.

Combining this with (4.23), we get

|pur1sq1pxq| ď C. (4.26)

Differentiating (4.11), we get

pur1sq3pxq “ pwr1sq1pxq ` pur1sq1pxq, (4.27)

and so

|pur1sq3pxq| ď Cr1` ε´1{2βεpxqs. (4.28)

Differentiating (4.27), we get

pur1sqp4qpxq “ pwr1sq2pxq ` pur1sq2pxq. (4.29)
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From (4.23) and |pur1sq2pxq| ď C, we can see that

|pur1sqp4qpxq| ď Cr1` εp´1qβεpxqs. (4.30)

For k “ n, suppose

|pwrnsqplqpxq| ď Cr1` εp´l{2qβεpxqs, (4.31)

and

|purnsqplqpxq| ď Cr1` εp1´l{2qβεpxqs, (4.32)

hold for all l “ 0, 1, . . . , 4.

For k “ n` 1, note that wrn`1s solves

L1w
rn`1s “ f ´ b12u

rns. (4.33)

From (4.25), we can see that

|wrn`1spxq| ď C. (4.34)

We need to check |pwrn`1sq1pxq|, |pwrn`1sq2pxq|, |pwrn`1sq3pxq|, and |pwrn`1sqp4qpxq|. By differenti-

ating (4.33) we get

pL1w
rn`1sq1 “ pf ´ b12u

rnsq1pxq “ f 1pxq ´ b12pu
rnsq1pxq ´ b112u

rnspxq. (4.35)

From (4.32), we can see that

|pwrn`1sq1pxq| ď Cr1` εp´1{2qβεpxqs. (4.36)

Repeating the process, and using the bounds established for the lower-order derivatives, gives

|pwrn`1sq2pxq| ď Cr1` εp´1qβεpxqs, (4.37)

|pwrn`1sq3pxq| ď Cr1` εp´3{2qβεpxqs, (4.38)

and

|pwrn`1sqp4qpxq| ď Cr1` εp´2qβεpxqs. (4.39)

Next, urn`1s solves

L2u
rn`1s “ ´b21w

rn`1s. (4.40)

So, using the above bounds, along with Lemma (4.3.4), gives

|urn`1spxq| ď C, (4.41)

|purn`1sq1pxq| ď C, (4.42)

|purn`1sq2pxq| ď C,
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|purn`1sq3pxq| ď Cr1` ε´1{2βεpxqs, (4.43)

and

|purn`1sqp4qpxq| ď Cr1` εp´1qβεpxqs. (4.44)

Thus, by induction,

|pwrksqplqpxq| ď Cr1` εp´l{2qβεpxqs, (4.45)

and

|purksqplqpxq| ď Cr1` εp1´l{2qβεpxqs, (4.46)

for all k.

4.4 The numerical method

4.4.1 The finite difference method for system

Consider an arbitrary mesh, ΩN :“ t0 “ x0 ă x1 ă ¨ ¨ ¨ ă xN “ 1u, where hi “ xi ´ xi´1 and

~i “ pxi`1 ´ xi´1q{2. The standard second-order approximation of a second derivative is

u2pxiq « D2ui :“
1

hi~i
ui´1 ´ p

1

hi~i
`

1

hi`1~i
qui `

1

~ihi`1
ui`1. (4.47)

The finite difference method for equation (4.7) is: find ~Zpxiq “ pWi, Uiq
T for i “ 1, . . . , N ´ 1.

such that

~LN ~Zpxiq :“ ´

˜

ε 0

0 1

¸

D2 ~Zpxiq `Bpxiq~Zpxiq “ ~fpxiq, (4.48)

with the boundary conditions

~Zpx0q “ ~ZpxN q “ 0. (4.49)

Writing this as a system of two equations gives

~LN ~Zpxiq :“

#

´ εD2Wi ` papxiq ´ εqWi ` papxiq ´ bpxiq ´ εqUi “ fpxiq,

´D2Ui `Wi ` Ui “ 0,

(4.50a)

(4.50b)

with the boundary conditions

U0 “W0 “ UN “WN “ 0. (4.50c)

4.4.2 Shishkin mesh

We construct a standard Shishkin mesh with the mesh parameter

τ “ mint
1

4
, 2
?
ε lnNu. (4.51)
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We now define two mesh transition points at x “ τ and x “ 1 ´ τ . That is, we form a piecewise

uniform mesh with N{4 equally-sized mesh intervals on each of r0, τ s and r1 ´ τ, 1s, and N{2

equally-sized mesh intervals on rτ, 1´ τ s. Typically, when ε is small, τ ! 1{4, the mesh is very fine

near the boundaries, and coarse in the interior.

4.4.3 Numerical analysis

Define the decoupled operators

LN1 W :“ ´εD2W ` b11W,

LN2 U :“ ´D2U ` U.

(4.52a)

(4.52b)

We also mention that these scalar operators satisfy a discrete maximum principle for finite

difference operators.

Definition 4.4.1 (Discrete maximum principle). A finite difference operator LN , satisfies a dis-

crete maximum principle on the domain ΩN , if, for any ψ for which LNψpxiq is defined and

non-negative, and ψ|Γ ě 0, then ψpxiq ě 0, for all xi P Ω̄N for i “ 1, . . . , N ´ 1.

Note that, if LN satisfies a maximum principle, then, LNψpxiq ď 0 and ψ|Γ ď 0, furthermore,

ψpxiq ď 0, for all x P Ω̄N .

Lemma 4.4.1. Let ~V “ pV1, V2q
T P C2pΩq2 X CpΩ̄q2, Then

}V1}Ω̄ ď }pL
N
1 V1q{b11}Ω, (4.53)

and

}V2}Ω̄ ď }pL
N
2 V2q}Ω. (4.54)

Proof. Since the arguments are analogous, only the details for LN1 are given. Define the barrier

function η1pxq “ }pL
NV2q{b11}Ω for all x P Ω. We have

LN1 η1pxq “ LN1
`

}pLN1 V1q{b11}
˘

pxq “ b11pxq
`

}pLN1 V1q{b11}
˘

ě b11pxq
`

|pLN1 V1q{b11|
˘

“ |LN1 V1pxq|.

Applying the maximum principle of Definition 4.4.1 with this barrier function gives

LN1 pη1pxq ˘ V1pxqq “ LN1 η1pxq ˘ L
N
1 V1pxq ě 0,

since LN1 η1pxq ě |L
N
1 V1pxq|. Thus η1pxq˘V1pxq ě 0, and, therefore, |V1pxq| ď }pL

N
1 V1q{b11}Ω.

4.4.4 Theorem

We can now state the error result for the method. The proof result follows from the standard

arguments (e.g., [27, Chapter 6]) thanks to the ε-uniform stability that we have established, and

so is not included.
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Theorem 4.4.2. Let ΩN be the Shishkin mesh defined in Section 4.4.2, and let ~Z “ pW,UqT be

the solution to (4.48) on this mesh. If ~z “ pw, uqT solves (4.7), then

}~z ´ ~Z}Ω̄N :“ }û´ Û}Ω̄N ` }ŵ ´ Ŵ }Ω̄N ď CN´2 ln2N, (4.55)

for some constant C.

Remark 4.4.1. From the result of (4.55), we can see that

}ŵ ´ Ŵ }Ω̄N ď C1N
´2 ln2N, (4.56)

and

}û´ Û}Ω̄N ď C2N
´2 ln2N, (4.57)

for some constants C1 and C2. From the numerical results in Section 4.5, we can see that the error

bound in (4.56) appears sharp, but, in the bound in (4.57) appears not to be, and, in practice on

observes that

}û´ Û}Ω̄N ď C2N
´2, (4.58)

4.5 Numerical results

In this section, we will present two examples, The first one has constant coefficients, and so the

exact solution is available to us when computing errors. The second one has variable coefficients,

we do not have its exact solution, so we estimate the error using the benchmark solution computed

numerically. We report the error for given N and ε as

ẼN8 :“ max
i“0,...,N

|upxiq ´ Ui|.

The associated rate of convergence is

rρN :“ log2

ˆ

EN8

E
N{2
8

˙

. (4.59)

Example 4.5.1. Consider the following specific example of (4.1). We will take

a “ 4, b “ 2 and f “ 1,

so the problem is

´εup4qpxq ` 4u2pxq ´ 2upxq “ 1.

Written as a system this is

´εw2 ` p4´ εqw ` p2´ εqu “ 1,

´u2 ` w ` u “ 0,

(4.60a)

(4.60b)

subject to the boundary conditions

up0q “ wp0q “ 0, up1q “ wp1q “ 0. (4.60c)
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The coupling matrix is

B “

˜

p4´ εq 2´ ε

1 1

¸

.

We can see that ρ1 :“ b12{b11 “ p2´ εq{p4´ εq and ρ2 :“ b21 “ 1. Then, from (4.3)

|ρ1ρ2| “
2´ ε

4´ ε
ă 1. (4.61)

In Figure 4.1 we show u with ε “ 10´1 (left), and ε “ 10´3 (right), neither of which features

layers. In Figure 4.2 we show w with ε “ 10´1 (left), which does not features layers. In contrast,

as shown in the graph on the right for smaller ε (in this case ε “ 10´3), the solution possesses

boundary layers near x “ 0 and x “ 1.

Figure 4.1: The solutions u to (4.60) with ε “ 10´1 (left) and ε “ 10´3 (right).

Figure 4.2: The transformation w to (4.60) with ε “ 10´1 (left) and ε “ 10´3 (right).

Tables 4.1 and 4.3 present the pointwise computed when (4.60) is solved by the finite difference

scheme on Shishkin mesh. So, for small ε, we can see that the pointwise convergence is parameter

uniform. Tables 4.2 and 4.4 demonstrate that this convergence is fully second-order for u which, as

previously noted in Remark 4.4.1, suggests that the error bound is suboptimal for this component.

For the w component, we observe almost second-order convergence. That is, we observe the

logarithmic factor in practice, suggesting the bound for w is sharp.
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Table 4.1: ẼN
8 puq for problem (4.60) computed on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.8824e-05 4.7130e-06 1.1787e-06 2.9470e-07 7.3676e-08

1.00e-02 1.1731e-05 3.2272e-06 8.6635e-07 2.1815e-07 5.4638e-08
1.00e-04 8.6333e-06 1.7469e-06 3.5013e-07 6.9793e-08 1.3938e-08
1.00e-06 1.6993e-05 4.1795e-06 1.0273e-06 2.5245e-07 6.2028e-08
1.00e-08 1.8054e-05 4.5095e-06 1.1257e-06 2.8097e-07 7.0127e-08
1.00e-10 1.8163e-05 4.5434e-06 1.1359e-06 2.8394e-07 7.0972e-08
1.00e-12 1.8174e-05 4.5468e-06 1.1369e-06 2.8423e-07 7.1059e-08

Table 4.2: rρN puq for problem (4.60) computed on a Shishkin mesh.

ε N “ 16´ 32 N “ 32´ 64 N “ 64´ 128 N “ 128´ 256
1 1.998 1.999 2.000 2.000

1e-02 1.862 1.897 1.990 1.997
1e-04 2.305 2.319 2.327 2.324
1e-06 2.024 2.024 2.025 2.025
1e-08 2.001 2.002 2.002 2.002
1e-10 1.999 2.000 2.000 2.000
1e-12 1.999 2.000 2.000 2.000

Table 4.3: ẼN
8 pwq for problem (4.60) computed on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 6.6395e-05 1.6617e-05 4.1553e-06 1.0389e-06 2.5973e-07

1.00e-02 5.1087e-03 1.3945e-03 3.6594e-04 9.2109e-05 2.3112e-05
1.00e-04 1.0325e-02 7.8559e-03 3.7418e-03 1.3257e-03 4.5039e-04
1.00e-06 1.0325e-02 7.8560e-03 3.7419e-03 1.3257e-03 4.5039e-04
1.00e-08 1.0325e-02 7.8560e-03 3.7419e-03 1.3257e-03 4.5039e-04
1.00e-10 1.0325e-02 7.8560e-03 3.7419e-03 1.3257e-03 4.5039e-04
1.00e-12 1.0325e-02 7.8560e-03 3.7419e-03 1.3257e-03 4.5039e-04

Table 4.4: rρN pwq for problem (4.60) computed on a Shishkin mesh.

ε N “ 16´ 32 N “ 32´ 64 N “ 64´ 128 N “ 128´ 256
1 1.998 2.000 2.000 2.000

1e-02 1.873 1.930 1.990 1.995
1e-04 0.394 1.070 1.497 1.558
1e-06 0.394 1.070 1.497 1.558
1e-08 0.394 1.070 1.497 1.558
1e-10 0.394 1.070 1.497 1.558
1e-12 0.394 1.070 1.497 1.558

Example 4.5.2. We consider another example for (4.1), but with variable coefficients. We will take

apxq “ 2x` 1, bpxq “ 4x` 1, and fpxq “ 1` x.

We have

´εw2 ` p2x` 1´ εqw ` p´2x´ εqu “ 1` x,

´u2 ` w ` u “ 0,

(4.62a)

(4.62b)

subject to the boundary conditions

up0q “ wp0q “ 0, up1q “ wp1q “ 0. (4.62c)
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We can write this system as

´

˜

ε 0

0 1

¸

~z2 `B~z “ ~f,

where

~z “

˜

w

u

¸

, B “

˜

p2x` 1´ εq ´2x´ ε

1 1

¸

and ~f “

˜

1` x

0

¸

.

We can see that ρ1 :“ b12{b11 “ p´2x´ εq{p2x` 1´ εq and ρ2 :“ b21 “ 1. Then, from (4.3)

|ρ1ρ2| “ |
´2x´ ε

2x` 1´ ε
| ă 1, (4.64)

providing ε ă 1{2.

For this system, we will report the maximum pointwise error for given N and ε as rEN8 puq and

rEN8 pwq in u and w, respectively, and by rρN8puq and rρN8pwq the corresponding rates of convergence

of u and w.

In Figure 4.3, we plot solutions to u (left) and w (right) with ε “ 10´3. As in the previous

example, w exhibits a layer, but u does not.

Figure 4.3: The solutions to u (left) and w (right) with ε “ 10´3 to (4.62).

Tables 4.5 and 4.7 present the pointwise errors computed when (4.62) is solved by the finite

difference scheme on Shishkin mesh. The error initially increases as ε decreases, but for the

smallest values of ε, the method is robust. Tables 4.6 and 4.8 we can see that the numerical

solution converges at a rate that is a full second-order for u, and an almost second-order for w,

independently of ε.

Table 4.5: ẼN
8 puq for problem (4.62) computed on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 3.7820e-05 9.4743e-06 2.3698e-06 5.9253e-07 1.4814e-07

1.00e-02 6.5015e-05 1.7221e-05 4.3392e-06 1.0904e-06 2.7275e-07
1.00e-04 1.0654e-04 2.2285e-05 5.8369e-06 1.4701e-06 3.5802e-07
1.00e-06 2.1411e-04 5.2935e-05 1.3039e-05 3.2015e-06 7.8587e-07
1.00e-08 2.2798e-04 5.7489e-05 1.4366e-05 3.5885e-06 8.9557e-07
1.00e-10 2.2940e-04 5.7959e-05 1.4503e-05 3.6291e-06 9.0718e-07
1.00e-12 2.2954e-04 5.8006e-05 1.4517e-05 3.6332e-06 9.0835e-07
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Table 4.6: rρN puq for problem (4.62) computed on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.997 1.999 2.000 2.000

1e-02 1.917 1.989 1.993 1.999
1e-04 2.257 1.933 1.989 2.038
1e-06 2.016 2.021 2.026 2.026
1e-08 1.988 2.001 2.001 2.002
1e-10 1.985 1.999 1.999 2.000
1e-12 1.984 1.998 1.998 2.000

Table 4.7: ẼN
8 pwq for problem (4.62) computed on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 7.5637e-05 1.8954e-05 4.7427e-06 1.1857e-06 2.9645e-07

1.00e-02 1.1253e-02 3.0288e-03 7.7268e-04 1.9439e-04 4.8742e-05
1.00e-04 2.6725e-02 1.7795e-02 7.6278e-03 2.7326e-03 9.0323e-04
1.00e-06 2.6581e-02 1.7723e-02 7.5971e-03 2.7210e-03 8.9932e-04
1.00e-08 2.6567e-02 1.7716e-02 7.5940e-03 2.7198e-03 8.9894e-04
1.00e-10 2.6566e-02 1.7715e-02 7.5937e-03 2.7197e-03 8.9890e-04
1.00e-12 2.6566e-02 1.7715e-02 7.5937e-03 2.7197e-03 8.9889e-04

Table 4.8: rρN pwq for problem (4.62) computed on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.997 1.999 2.000 2.000

1e-02 1.893 1.971 1.991 1.996
1e-04 0.587 1.222 1.481 1.597
1e-06 0.585 1.222 1.481 1.597
1e-08 0.585 1.222 1.481 1.597
1e-10 0.585 1.222 1.481 1.597
1e-12 0.585 1.222 1.481 1.597



Chapter 5

A general fourth-order

complex-valued singularly

perturbed problem

5.1 Introduction

In this chapter, we are interested in the properties of certain fourth-order, complex-valued reaction-

diffusion differential equations. Specifically, we discuss how these equations can be reformulated

as coupled systems in various ways and what these formulations reveal about the equations and

their solutions. For example, they can be used to study the stability of the differential operators

or the positivity/negativity of their solutions.

Specifically, this chapter aims to present a new technique for transforming general fourth-order

complex-valued singularly perturbed problems into coupled systems of real-valued second-order

equations. This then allows us to prove the coercivity of the coupling matrix of this system,

subject to certain conditions on the coefficients. Such results can be used, in turn, in finite element

analyses; see Section 3.3.3.

We also propose an iterative approach for solving (exactly) this system, and we show that it

converges uniformly with respect to the singular perturbation parameter. This iterative process is

useful for several theoretical reasons: it allows us to establish bounds on the components of the

solution, determine their sign, and derive bounds on their derivatives. All these are useful in the

analysis of finite difference methods for these problems.

Since this chapter features a study of the mathematical properties of the equations, and not

their numerical solution, we do not discuss the approximation of solutions in this chapter. That is

the subject of Chapters 6 and 7. However, to help with the exposition, we will present the results

of some computations based on the MATLAB “Chebfun” package [12].

This chapter is organized as follows. In Section 5.2, we present a general fourth-order complex-
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valued problem, discuss how it can be solved using Chebfun, and present a motivating example.

In Section 5.3 we show ways to rewrite such a problem in terms of real-valued systems. First, in

Section 5.3.1, we transform our model fourth-order complex-valued problem into a system of two

fourth-order real-valued problems. Then, in Section 5.3.2 (following the exposition in Chapter 3)

we present a further transformation into a real-valued second-order system. Again we show how to

solve this problem with “Chebfun”, and verify that all three formulations are essentially equivalent.

In Section 5.4 we show how to determine the value of the parameters in the transformation (subject

to reasonable assumptions) that ensure that the resulting coefficient matrix of the system’s zero-

order term is coercive. Such a result is very important, especially in the context of finite element

analysis; see Chapter 6. In Sections 5.4.2 and 5.4.3 we demonstrate how to use an eigenvalue test

to apply this analysis to different cases.

In Section 5.5 we tackle a different form of analysis of the differential operator. That is, we

establish the stability result of the differential operator for the system of four equations solved using

a Gauss-Seidel method. Such stability results are key to proving the convergence of finite difference

methods: see Chapter 7. We present a new block-iterative method that extends the analysis to

this system. Also, we present a fully iterative method by using the ideas from Lemma 4.3.2 to

show that the method converges. In Section 5.6 we establish the Maximum Principle of differential

operator for the system of four equations solve by the fully iterative method. Also, we state the

bounds for the solution and its derivative in Lemma 5.6.2.

5.2 A general fourth-order problem

5.2.1 The equation

The fourth-order complex-valued reaction-diffusion differential equation we will study is, in its

most general form,

´εup4qpxq ` au2pxq ´ bupxq “ fpxq on Ω :“ p0, 1q, (5.1a)

subject to the boundary conditions

up0q “ u2p0q “ 0, up1q “ u2p1q “ 0. (5.1b)

Here, as usual in this thesis, ε P p0, 1s. However, unlike Chapters 3 and 4, we assume that the

coefficient functions, a and b, and the right-hand side function, f , are complex-valued functions on

the interval Ω, and may have non-zero imaginary parts. However, it is often convenient to express

(5.1a) in terms of real-valued coefficients:

´εup4qpxq ` par ` iaiqu
2pxq ´ pbr ` ibiqupxq “ pfr ` ifiqpxq on Ω :“ p0, 1q, (5.2)

where

a “ ar ` iai, b “ br ` ibi, and f “ fr ` ifi, (5.3)

and ar, ai, br, bi, fr and fi are all real-valued functions; of course, i “
?
´1 is the imaginary unit.
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As alluded to earlier, we are interested in the properties of the differential operator when recast

as a coupled system. Throughout this chapter, we shall endeavour to make minimal assumptions

on the problem data, and will distinguish between those needed to ensure that, for example, the

operator is coercive (see Section 5.4) and those that ensure an iterative algorithm for the system

converges (see Section 5.5). However, in all instances, we will assume that there exists a positive

% such that

arpxq ě % ą 0 for all x P Ω̄. (5.4)

5.2.2 Solving with Chebfun

As mentioned in the introduction, in this chapter, we are not interested in the numerical solution

of this equation. However, we do wish to compute (extremely accurate) solutions as part of the

exposition.

Chebfun [12] is a freely available MATLAB [26] toolbox for working with functions of real

variables. It aims to combine the efficiency of numerical computing systems (like MATLAB or

Octave [13]) and the ease of use of symbolic computing systems (like Maple [28], SageMath [41]

or Mathematica [17]). It does this by representing functions that a user defines by extremely

accurate polynomial approximations, and then performing computations on these polynomials.

Chebyshev methods are used to construct these polynomial approximations (called “chebfuns”).

Then the toolbox allows the user to perform standard tasks, such as integration or differentiation

of the functions, or even solving differential equations with these Chebfuns as coefficients. The

software makes use of MATLAB’s object-oriented programming, so that the technical details are

hidden from the user while making the package very easy to use.

The original version of Chebfun dates from 2004 [4]. However, it is under continuous develop-

ment, particularly to extend its functionality to higher-dimensional problems [12].

There has been relatively little work on applying Chebfun to solving singularly perturbed

problems, particularly because representing functions with layer-type behaviour can be difficult.

However, it is known to be feasible, if the correct splitting is used [1].

In this chapter, we wish to present methods of solving fourth-order problems iterative, where

each iterate is a second-order equation. If each of these equations can be solved exactly (rather

than numerically), we will see that the sequence converges. This is why we use Chebfun.

First, however, we will solve (5.2) non-iteratively. In Figure 5.1 to do this, where ε, ar, ai, br,

bi, fr and fi are defined terms.

Figure 5.1: MATLAB/Chebfun code to solve (5.2)

1 L = chebop(@(x,u) -epsilon*diff(u,4) + (ar+i*ai)*diff(u,2) - (br+i*bi)*u -

2 f, domain);

3 rhs =0;

4 L.bc = @(x,u) [u(0); feval(diff(u,2) ,0); u(1); feval(diff(u,2) ,1)];

5 u = solvebvp(L, rhs , options);

6 w = diff(u,2);
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5.2.3 A motivating example

We consider an example of (5.2) with ar “ 4, ai “ 2, br “ 6, bi “ 2, fr “ 1 and fi “ 0, i.e.,

´εup4qpxq ` p4` 2iqu2pxq ´ p6` 2iqupxq “ 1 on Ω :“ p0, 1q. (5.5a)

subject to the boundary conditions

up0q “ u2p0q “ 0, up1q “ u2p1q “ 0. (5.5b)

This is easily solved using the code presented in Figure 5.1, setting the appropriate values for the

coefficients. In Figure 5.2, we show the real and imaginary parts of u computed with ε “ 10´1

(left) and ε “ 10´3 (right). Note that neither feature obvious layers.

Figure 5.2: Solutions to (5.5) with ε “ 10´1 (left) and ε “ 10´3 (right).

However, there are weak layers present in the solutions to (5.5). These can be seen in Figure 5.3,

where we plot the second derivative of the solution, u2. Again, on the left, we have ε “ 10´1,

which does not feature layers, while, in contrast, on the right, for smaller ε (in this case ε “ 10´3),

there are layers near x “ 0 and x “ 1, in both the real and the imaginary parts.

Figure 5.3: The second derivative of solutions to (5.5) with ε “ 10´1 (left) and ε “ 10´3

(right).



5.3 From a complex 4th-order problem to a real 2nd-order system 76

5.3 From a 4th-order complex-valued problem to a real-

valued system of 2nd-order problems

In this section, we investigate how to transform (5.2) into a coupled system of four second-order

real-valued problems in such a way that the coupling matrix is coercive. The first step is to

transform (5.2) into a system of two real-valued fourth-order problems. Then we transform this

into a system of four real-valued, second-order differential equations.

5.3.1 Writing (5.2) as a system of real-valued, fourth-order equations

We will show how to transform a fourth-order complex-valued problem into a coupled system of

two fourth-order problems, following the ideas in Section 2.4.1 for a second-order complex-valued

problem. That is, we equate the real and imaginary parts in (5.2) separately. Specifically, as

with (5.3), we let ur and ui be real-valued functions such that

u “ ur ` iui,

and which satisfy

´εup4qr ` aru
2
r ´ aiu

2
i ´ brur ` biui “ fr,

´εu
p4q
i ` aiu

2
r ` aru

2
i ´ biur ´ brui “ fi.

(5.6a)

(5.6b)

It is clear that the solution to (5.6) satisfies (5.2). Although it is not crucial to our approach,

we note that each of these problems could be solved using the real-valued finite difference method

of Section 4.4.

The system in (5.6) can also be solved using Chebfun, with, for example, the code in Fig-

ure 5.4. We don’t present graphs of the results since they are indistinguishable from those shown

in Figure 5.3: they differ by approximately 10´16.

Figure 5.4: MATLAB/Chebfun code for solving (5.6)

1 domain = [0,1];

2 L_system = chebop(@(x,ur,ui) ...

3 [-epsilon*diff(ur ,4) + ar*diff(ur ,2) - ai*diff(ui ,2) - br*ur + bi*ui - fr;

4 -epsilon*diff(ui ,4) + ai*diff(ur ,2) + ar*diff(ui ,2) - bi*ur - br*ui - fi], ...

5 domain);

6 options = cheboppref ();

7 rhs_system = [0;0];

8 L_system.bc = @(x,ur ,ui) ...

9 [ur(0); feval(diff(ur ,2) ,0); ur(1); feval(diff(ur ,2) ,1);

10 ui(0); feval(diff(ui ,2) ,0); ui(1); feval(diff(ui ,2) ,1)];

11 [ur , ui] = solvebvp(L_system , rhs_sys2 , options);

12 wr = diff(ur ,2);

13 wi = diff(ui ,2);

However, (5.6) is just an interim transformation: we actually wish to reduce (5.6) to a system

of four second-order real-valued equations. But there is more than one way to do this, and different

approaches may have different properties (desirable or otherwise).
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5.3.2 Writing (5.2) as a system of real-valued, second-order equations

In this section, we will propose a transformation for converting the pair of real-valued fourth-order

equations (5.6) into a system of four second-order real-valued equations. The transformation fea-

tures two parameters that can be chosen to ensure that the resulting system has certain properties.

We’ll discuss a specific example that ensures that the coupling matrix is coercive.

We propose a transformation defined by introducing the term

w :“
u2 ´ βu

α
, (5.7)

where α and β are non-zero, real-valued constants chosen depending on the problem data. Clearly

(5.7) makes sense only when α ‰ 0. We discuss why β ‰ 0 in Remark 5.4.1.

The expression in (5.7) can be written as

u2 “ αw ` βu. (5.8)

Differentiating twice, we get

up4q “ αw2 ` αβw ` β2u.

With this, (5.6) can be transformed to a system of four equations of the form

´εαw2r ` αpar ´ εβqwr ´ αaiwi ` parβ ´ εβ
2 ´ brqur ` pbi ´ aiβqui “ fr,

´εαw2i ` αaiwr ` αpar ´ εβqwi ` paiβ ´ biqur ` parβ ´ εβ
2 ´ brqui “ fi,

´u2r ` αwr ` βur “ 0,

´u2i ` αwi ` βui “ 0,

(5.9a)

(5.9b)

(5.9c)

(5.9d)

with boundary conditions

up0q “ wp0q “ 0, up1q “ wp1q “ 0. (5.9e)

Setting ~z “ pwr, wi, ur, uiq
T , we can write (5.9) in matrix form:

~L~z :“ ´

¨

˚

˚

˚

˝

εα 0 0 0

0 εα 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

~z2 `B~z “ ~f, (5.10a)

where

B “

¨

˚

˚

˚

˝

αpar ´ εβq ´αai arβ ´ εβ
2 ´ br bi ´ aiβ

αai αpar ´ εβq aiβ ´ bi arβ ´ εβ
2 ´ br

α 0 β 0

0 α 0 β

˛

‹

‹

‹

‚

and ~f “

¨

˚

˚

˚

˝

fr

fi

0

0

˛

‹

‹

‹

‚

. (5.10b)

It is easy to verify that any ~z satisfying (5.10) will correspond to a solution (5.1). However,

the form of the problem in (5.10) has numerous advantages, in theory and practice, over (5.1).
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From a theoretical view point, the analysis of second-order problems is more developed than that

for fourth-order problems, so these analyses can be applied to (5.10) (most books on boundary

value problems are primarily focused on second-order equations; few even mention fourth-order

problems).

From a practical view-point, there are far more numerical solvers available for second-order

problems compared to fourth-order ones. If these solvers are for coupled systems, they can be

applied directly to (5.10); this is done in Figure 5.5 below where the Chebfun solver in MATLAB is

used. (Later, in Section 5.5 we discuss how to apply solvers for scalar equations to this problem).

We have verified that the solution given by the code in Figure 5.5 agrees with that given in

Figure 5.4 up to machine precision.

Figure 5.5: MATLAB/Chebfun code that solves (5.10)

7 B = [alpha*(ar -epsilon*beta),-alpha*ai , ar*beta -br -epsilon*beta^2, bi-ai*beta;

8 alpha*ai, alpha *(ar-epsilon*beta), ai*beta -bi , ar*beta -br -epsilon*beta ^2;

9 alpha , 0, beta , 0;

10 0, alpha , 0, beta];

11 L_system = chebop(@(x,wr,wi,ur ,ui)...

12 [-epsilon*alpha*diff(wr ,2)+B(1,1)*wr + B(1,2)*wi + B(1,3)*ur + B(1,4)*ui - real(f);

13 -epsilon*alpha*diff(wi ,2)+B(2,1)*wr + B(2,2)*wi + B(2,3)*ur + B(2,4)*ui - imag(f);

14 -diff(ur ,2)+B(3,1)*wr + B(3,2)*wi + B(3,3)*ur + B(3,4)*ui - 0;

15 -diff(ui ,2)+B(4,1)*wr + B(4,2)*wi + B(4,3)*ur + B(4,4)*ui - 0],

domain);

16 options = cheboppref ();

17 rhs_system = [0;0;0;0];

18 L_system.bc = @(x, wr, wi, ur, ui) [wr(0); wi(0); ur(0); ui(0);

19 wr(1); wi(1); ur(1); ui(1)];

20 [Wr , Wi , Ur, Ui] = solvebvp(L_system , rhs_system , options);

For the remainder of this chapter, we will consider the problem (5.1) in the form given in (5.10),

for a coercivity analysis (Section 5.4.2) and convergence of an iterative method (Section 5.4.3).

5.4 Ensuring a coercive system matrix

5.4.1 Coercivity

Recall from Definition 3.2.1, that a matrix A is coercive, if there exists a constant γ ą 0 such that

~vTA~v

~vT~v
ě γ for all ~v P R2{tp0, 0qT u. (5.11)

Furthermore, it is coercive if, and only if, the symmetric part of A, M “ pA`AT q{2, has positive

eigenvalues.

Remark 5.4.1. It is important to note that, although for any particular problem’s data, there may a

large range of possible α and β in (5.7), that can be chosen to ensure the coercivity of the coupling

matrix, it is typically required that β ‰ 0. This is significant, because it excludes the most common

form of transformations from fourth-order problems to second-order systems: setting w :“ u2.
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To see this, suppose that we did choose β “ 0. Now let ~v “ p1, 0, 0, v4q
T . Then we have

~vTB~v “
´

1 0 0 v4

¯

¨

˚

˚

˚

˝

αar ´αai ´br bi

αai αar ´bi ´br

α 0 0 0

0 α 0 0

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

1

0

0

v4

˛

‹

‹

‹

‚

,

giving

~vTB~v “ αar ` biv4.

So, for any α, ar and bi ‰ 0, we can choose v4, such that ~vTA~v “ ´1 ă 0. For example, for

the problem in (5.5) where ar “ 4 and bi “ 2, if, for example, α “ 1, then ~vTA~v “ ´1 when

v4 “ ´5{2.

In the case where bi “ 0, a similar calculation can be preformed with ~v “ p0, 1, 0, v4q
T to show

that, if β “ 0 then for any α, one can chose a v4 such that ~vTB~v ă 0.

A further justification that one cannot take β “ 0, but based on a spectral analysis of B, is

given in Remark 5.4.2.

5.4.2 The eigenvalue test for coercivity

In this section, we apply the eigenvalue test of Section 3.2.2 to the matrix B in (5.10b), in order

to determine values of α and β that ensure it is coercive.

Recall from Theorems 3.2.2 and 3.2.1 that the matrix B satisfies ~vTB~v ą 0 for all ~v if, and

only if, M “ pBT `Bq{2 is symmetric positive definite. From (5.10b), we have

B “

¨

˚

˚

˚

˝

αpar ´ εβq ´αai arβ ´ εβ
2 ´ br bi ´ aiβ

αai αpar ´ εβq aiβ ´ bi arβ ´ εβ
2 ´ br

α 0 β 0

0 α 0 β

˛

‹

‹

‹

‚

, (5.12)

and

M “ pBT `Bq{2 “ (5.13)

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

αpαar ´ εβq 0
βar ´ εβ

2 ´ br ` α

2

´βai ` bi
2

0 αpar ´ βεq
βai ´ bi

2

´εβ2 ` βar ´ br ` α

2
βar ´ εβ

2 ´ br ` α

2

βai ´ bi
2

β 0

´βai ` bi
2

´εβ2 ` βar ´ br ` α

2
0 β

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Obviously, the matrix M is symmetric. Furthermore, M is positive definite if and only if all

of its eigenvalues are positive. By direct calculation, one can observe that M has two distinct
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eigenvalues, both with geometric multiplicity two:

λ1 “
1

2

„

p´βε` arqα` β

`

ˆ

ε2β4 ´ 2εarβ
3 ` pα2ε2 ` a2

i ` a
2
r ` 2brε` 1qβ2

` p´2α2arε´ 2aibi ´ 2arbrqβ ` pa
2
r ` 1qα2 ´ 2brα` b

2
i ` b

2
r

˙1{2

, (5.14a)

and

λ2 “
1

2

„

p´βε` arqα` β

´

ˆ

ε2β4 ´ 2εarβ
3 ` pα2ε2 ` a2

i ` a
2
r ` 2brε` 1qβ2

` p´2α2arε´ 2aibi ´ 2arbrqβ ` pa
2
r ` 1qα2 ´ 2brα` b

2
i ` b

2
r

˙1{2

. (5.14b)

Since M is symmetric, λ1 and λ2 are real numbers. Consequently, we can see that λ1 ě λ2 for any

ar, ai, br, bi, α and β.

Example 5.4.1. Recall the example in (5.5) where ar “ 4, ai “ 2, br “ 6, bi “ 2 and ε “ 10´4.

Suppose we choose that α “ 14 and β “ 2. Then, from (5.10b), we have

B “

¨

˚

˚

˚

˝

55.9972 ´28 1.9996 ´2

28 55.9972 2 1.9996

14 0 2 0

0 14 0 2

˛

‹

‹

‹

‚

,

and

M “ pB `BT q{2 “

¨

˚

˚

˚

˝

55.9972 0 7.9998 ´1

0 55.9972 1 7.9998

7.9998 1 2 0

´1 7.9998 0 2

˛

‹

‹

‹

‚

.

The eigenvalues of M are λ1 “ 57.17521 and λ2 “ 0.821993. So, M is symmetric positive matrix,

and, consequently, the matrix B is coercive, and γ « 0.821993.

Remark 5.4.2. As discussed in Remark 5.4.1, it is important to note that, although typically there

maybe some freedom to chose α and β in (5.7), this freedom is not absolute. Specifically, one may

not take β “ 0. This can be observed from the calculation given in (5.14), as the following example

illustrates.

Suppose β “ 0 in (5.8). Then, we have

w :“
u2

α
. (5.15)

With this, we get

B “

¨

˚

˚

˚

˝

arα ´aiα ´br bi

aiα arα ´bi ´br

α 0 0 0

0 α 0 0

˛

‹

‹

‹

‚

. (5.16)

Suppose we use the same example as presented in (5.4.1) with ar “ 4, ai “ 2, br “ 6 and bi “ 2.



5.4 Ensuring a coercive system matrix 81

Then, from (5.16)

B “

¨

˚

˚

˚

˝

4α ´2α ´6 2

2α 4α ´2 ´6

α 0 0 0

0 α 0 0

˛

‹

‹

‹

‚

,

which is not coercive, because from Theorems 3.2.1 and 3.2.2, since

pB `BT q{2 “

¨

˚

˚

˚

˝

4α 0 ´3` α{2 1

0 4α ´1 ´3` α{2

´3` α{2 ´1 0 0

1 ´3` α{2 0 0

˛

‹

‹

‹

‚

,

has the eigenvalues λ1 “ p4α`
?

17α2 ´ 12α` 40q{2 and λ2 “ p4α´
?

17α2 ´ 12α` 40q{2.

Suppose (for argument) that λ2 ą 0 for some α. In that case one would have 4α´
?

17α2 ´ 12α` 40 ą

0, which would imply 16α2 ą 17α2 ´ 12α ` 40. But it is easy to verify that ´α2 ` 12α ´ 40 is

negative for all α (with a maximum value of ´4). Thus there is no real α for which λ2 ą 0.

Of course, one can also directly verify that the quantity λ2 “ 2α ´
?

17α2 ´ 12α` 40q2 is

maximized when α “ p6` 8
?

171q{17 « 6.324, which would give λ2 « ´0.00405.

5.4.3 Using (5.14) to determine α and β

Equipped with the results of the calculation in (5.14), for specific problem data, one can determine

if there are values of α and β for which (5.11) is satisfied and, if so, what are suitable choices. In

certain sub-classes of (5.2) one may also derive general bounds for α and β. As a demonstration,

in this section, we show how to do that for two cases. To simplify the presentation, we will always

take β “ 1; it is our experience that for any reasonable problem data, unless β is exceptionally

small, one can still find a suitable α.

Case 1: Suppose that ai “ 0 in the problem data. Then, from (5.14b), λ2 ą 0 providing that

ar ` br ´ ε´
b

4arbr ´ 4brε´ b2i ă α ă ar ` br ´ ε`
b

4arbr ´ 4brε´ b2i . (5.17)

Suppose we use the same example as presented in (5.5) but with ai “ 0, ar “ 4, br “ 6,

bi “ 2 and ε “ 10´4, so from (5.17), then one can choose any α such that

0.4083620628 ă α ă 19.59143794.

If one wants to maximise γ, then (to 8 digits) one should take α “ 2.89811046, which would

yield γ “ 0.88774662.

Case 2. Suppose that bi “ 0 in the problem data. Then, from (5.14b), λ2 ą 0 providing that

ar ` br ´ ε´
b

4arbr ´ a2
i ´ 4brε ă α ă ar ` br ´ ε`

b

4arbr ´ a2
i ´ 4brε. (5.18)

Suppose we have another example with ar “ 7, ai “ 5, br “ 3 and ε “ 10´4, so from (5.18),
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we have (to 8 digits)

2.318832366 ă α ă 17.68096763.

Again, if one wants to maximise γ, then one should take α “ 6.4617817, which would yield

γ “ 0.251261318.

5.5 Iterative solution of the second-order system

In this section, we establish a stability result for the differential operator in (5.9). To do this,

we show that (5.9) may be solved using a Gauss-Seidel method. This is for theoretical (rather

than practical purposes) since it allows us to invoke the stability theory developed for uncoupled

problems. Our general approach is quite different from that presented in [19, §II], and which we

used in Section 4.3, since that was only for two equations. Especially, the analysis in [19, §II],

for a general system of ` ě 2 equations require that the coupling matrix be strictly diagonally

dominant, a property which our system does not enjoy. In Section 4.3 we exploited the observation

in [19, Remark 2.4] to gave much less stringent conditions, but only in the case of a system of

two equations. However, we now present a new block-iterative method that extends the analysis

to a system of four equations.

To ensure convergence, we require that the problem data, and our choice of the positive

transformation parameters, α and β, satisfy the following conditions. Recalling from (5.4) that

arpxq ě % ą 0, we shall, in addition, assume

0 ď |aipxq| ă arpxq ´ εβ for all x P r0, 1s. (5.19)

Note that this implies 0 ă εβ ă arpxq, which we also use.

5.5.1 A block iterative method

To prove the convergence of the method, we’ll introduce a new “block” iterative scheme. This is

similar in style to the version for two systems, but used recursively. The key idea is that we split

the system of four equations into two systems of two equations. The semi-decoupled operators are

L̂1ŵ :“ ´εαŵ2 ` B̂11ŵ,

L̂2û :“ ´û2 ` B̂22û

(5.20a)

(5.20b)

where

B̂11 “

˜

b11 b12

b21 b22

¸

“

˜

αpar ´ εβq ´αai

αai αpar ´ εβq

¸

,

and B̂22 “

˜

b33 b34

b43 b44

¸

“

˜

β 0

0 β

¸

. (5.20c)
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For later use, we also define

B̂12 “

˜

b13 b14

b23 b24

¸

“

˜

arβ ´ εβ
2 ´ br bi ´ aiβ

aiβ ´ bi arβ ´ εβ
2 ´ br

¸

,

and B̂21 “

˜

b31 b32

b41 b42

¸

“

˜

α 0

0 α

¸

. (5.20d)

We’ll also denote

f̂1 “

˜

fr

fi

¸

.

We define

ρ :“
ˇ

ˇ

b12

b11

ˇ

ˇ “
ˇ

ˇ

b21

b22

ˇ

ˇ “
|ai|

ar ´ εβ
,

and

θ “ min
j“1,2

min
xPΩ̄

|bjjpxq| “ min
xPΩ̄

`

αpar ´ εβq
˘

.

Note that, from (5.19), we have

0 ă ρpxq ă 1 for all x P Ω̄.

Now we can state that, if a ŵ solves

L̂1ŵ “ ĝ, ŵp0q “ ŵp0q “ ~0,

for arbitrary ĝ, then it follows from Lemma 4.3.2, and the fact that 0 ă ρ2 ă 1, that

}ŵ} ď
1

1´ ρ2

}ĝ}

θ
. (5.21a)

Also, if û solves

L̂2û “ ĝ, ûp0q “ ûp0q “ ~0,

then,

}û} ď
1

β
}ĝ}, (5.21b)

which comes from the standard maximum principle, since B̂22 is a diagonal matrix.

Theorem 5.5.1. Let ŵ “ pwr, wiq
T and û “ pur, uiq

T be solution to (5.20). For k “ 0, 1, 2, . . . ,

let ŵrks and ûrks be defined as follows: set ŵr0s and ûr0s to be the vector-valued zero functions,

and, for k “ 1, 2, 3, . . . , ŵrks and ûrks to be the solutions to

L̂1ŵ
rks “ f̂1 ´ B̂12û

rk´1s subject to ŵrksp0q “ ŵrksp1q “ ~0 on p0, 1q,

L̂2û
rks “ ´B̂21ŵ

rks subject to ûrksp0q “ ûrksp1q “ ~0 on p0, 1q,

(5.22a)

(5.22b)

If

0 ă
α

β

}B̂12}

p1´ ρ2qθ
ă 1, (5.23)

then limkÑ8 ŵrks “ ŵ, and limkÑ8 ûrks “ û.
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Proof. For k “ 0, 1, 2, . . . , we set m̂rks “ û ´ ûrks, and n̂rks “ ŵ ´ ŵrks. For k ě 1, from

(5.20a) and (5.22a) we have

L̂1n̂
rks “ ´B̂12m̂

rk´1s on Ω. (5.24)

Then, from (5.21a),

}n̂rks}Ω̄ ď
1

p1´ ρ2qθ
}B̂12m̂

rk´1s} ď
1

p1´ ρ2qθ
}B̂12}}m̂

rk´1s}, (5.25)

where here }B̂12} is the usual (sub-multiplicative) matrix norm induced by the maximum vector

norm } ¨ }. Furthermore, since

L̂2m̂
rks “ ´B̂21n̂

rks on Ω. (5.26)

we get from (5.21b),

}m̂rks}Ω̄ ď
α

β
}n̂rks}Ω. (5.27)

Combining these we get that

}m̂rks} ď
α

β

1

p1´ ρ2qθ
}B̂12}}m̂

rk´1s}. (5.28)

It follows from (5.23) that }m̂rks}Ω̄ Ñ 0, and so limkÑ8 ûrks “ û. This in turn implies that

limkÑ8 ŵrks “ ŵ.

In Figure 5.6, we show the way to solve the system of two equations by a block-iterative method

that extends the analysis to a system of four equations using Chebfun.

We now turn to investigate how one can ensure that (5.23) holds for a specific example. First

note, that all the terms in inequality are positive, so it is enough to ensure that the upper bound

holds. We start by writing out the full expression:

α

β

}B̂12}

p1´ ρ2qθ
“
α

β

|arβ ´ εβ
2 ´ br| ` |bi ´ aiβ|

1´ ρ2

1

minxPΩ̄ αpar ´ εβq

“
1

β

|arβ ´ εβ
2 ´ br| ` |bi ´ aiβ|

1´ ρ2

1

minxPΩ̄ ar ´ εβ

ď
1

β

|arβ ´ εβ
2 ´ br| ` |bi ´ aiβ|

1´ ρ2

1

ar ´ εβ
.

Notice that this expression is independent of the choice of α. Furthermore, we are interested in

the case where ε is small; specifically, where ar ´ εβ « ar. In this case we get that ρ « ai{ar, and

so 1{p1´ ρ2q « a2
i {pa

2
r ´ a

2
i q. In addition, 1{par ´ εβq « 1{ar. Thus

α

β

}B̂12}

p1´ ρ2qθ
Æ

1

β

`

|arβ ´ br| ` |bi ´ aiβ|
˘ a2

i

a2
r ´ a

2
i

1

ar
.

This quantity can be (approximately, up to terms of Opεq) minimised by taking

β “ br{ar or β “ bi{ai, (5.29)

as appropriate to the specific case.

Remark 5.5.1. We stress that the calculation leading to (5.29) is only with regard to the optimal
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Figure 5.6: MATLAB/Chebfun code that implements the block-iterative algorithm
in (5.20)

1 domain = [0, 1];

2 B = [alpha*(ar -epsilon*beta), -alpha*ai, ar*beta -br-epsilon*beta^2, bi -ai*beta;

3 alpha*ai, alpha*(ar-epsilon*beta), ai*beta -bi, ar*beta -br-epsilon*beta ^2;

4 alpha , 0, beta , 0;

5 0, alpha , 0, beta];

6 L1 = chebop(@(x,wr ,wi) [-epsilon*alpha*diff(wr ,2)+B(1,1)*wr + B(1,2)*wi;

7 -epsilon*alpha*diff(wi ,2)+B(2,1)*wr + B(2,2)*wi], domain);

8 F1 = f(1:2);

9 L1.bc = @(x, wr, wi) [wr(0); wi(0); wr(1); wi(1)];

10 L2 = chebop(@(x,ur ,ui) [-diff(ur ,2) + B(3,3)*ur;

11 -diff(ui ,2) + B(4,4)*ui], domain);

12 F2 = f(3:4);

13 L2.bc = @(x, ur, ui) [ur(0); ui(0); ur(1); ui(1)];

14 Wr = chebfun(@(x)0, domain); Wi = chebfun(@(x)0, domain);

15 Ur = chebfun(@(x)0, domain); Ui = chebfun(@(x)0, domain);

16

17 MaxIterations = 12;

18 BlockTOL = 1.0e-12;

19 Diff_k = BlockTOL +1;

20 wr=Wr; wi=Wi; ur=Ur; ui=Ui;

21 k=0;

22 while ( (k<MaxIterations) && (Diff_k > BlockTOL) )

23 k=k+1;

24 RHS1 = F1 - B(1:2 ,3:4)*[Ur;Ui];

25 [Wr ,Wi] = solvebvp(L1, RHS1);

26 RHS2 = F2 - B(3:4 ,1:2)*[Wr;Wi];

27 [Ur ,Ui] = solvebvp(L2, RHS2);

28 Diffs(k, :) = [norm(wr-Wr), norm(wi-Wi), norm(ur-Ur), norm(ui -Ui)];

29 fprintf(’Iteration: (%3d) ||wr-Wr ||=%9.3e, ||wi-Wi ||=%9.3e ||ur-Ur ||=%9.3e, ||ui

-Ui ||=%9.3e \n’, k, Diffs(k,:));

30 Diff_k = max(Diffs(k,:));

31 wr=Wr; wi=Wi; ur=Ur; ui=Ui;

32 end

choice of β, with respect to optimising the rate of the convergence of the method. Indeed, in

certain cases of constant coefficients, it can ensure convergence to machine precision in two or

three iterations. But we emphasise that any choice of β for which (5.23) holds is acceptable in

theory.

Example 5.5.1. Suppose we use the same example as presented in (5.5) with ar “ 4, ai “ 2, br “ 6

and bi “ 2, also, we suppose we choose α “ 14 and β “ br{ar “ 1.5 . Then, from (5.23) we have

α

β

}B̂12}

p1´ ρ2qθ
“ 0.2223 ă 1.

In Figure 5.7, we show the convergence of the block iterative method, implemented in Chebfun,

for a solving system of four equations of the example (5.5.1). Notice that it converges rapidly:

after 8 iterations, the errors are essential “machine epsilon” (roughly 2.2ˆ 10´16).

Theorem 5.5.2. Let ŵ “ pwr, wiq
T and û “ pur, uiq

T be solution to (5.20). Define

ρ1 :“
}B̂12}

p1´ ρ2qθ
and ρ2 “

α

β
.

Then

}ŵ} ď

ˆ

1

1´ ρ1ρ2

˙ˆ

1

1´ ρ2

˙

}f̂1}

θ
, (5.30)
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Figure 5.7: Convergence of a block iterative method for solving Example 5.5.1

and

}û} ď
α

β
}ŵ} ď

α

β

ˆ

1

1´ ρ1ρ2

˙ˆ

1

1´ ρ2

˙

}f̂1}

θ
. (5.31)

Proof. Set R̂
rks
1 “ ŵrks ´ ŵrk´1s and R̂

rks
2 “ ûrks ´ ûrk´1s. Since ŵr0s ” ~0 and ûr0s ” ~0, we

have

ŵrks “
k
ÿ

j“1

R̂
rks
1 and ûrks “

k
ÿ

j“1

R̂
rks
2 ,

for k “ 1, 2, . . . . From (5.21) we get

}R̂
rks
1 } ď

1

p1´ ρ2qθ
}B̂12}}R̂

rk´1s
2 }, (5.32)

and

}R̂
rks
2 } ď

α

β
}R̂

rk´1s
1 }. (5.33)

So, from (5.32), we have

}R̂
rks
1 } ď ρ1ρ2}R̂

rk´1s
1 } ď pρ1ρ2q

k´1}R̂
r1s
1 }.

To get a bound for R̂
r1s
1 , use that R̂

r1s
1 “ ŵ

r1s
1 . Since ŵ

r1s
1 satisfies

L̂1ŵ
r1s “ f̂1, subject to ŵr1sp0q “ ŵr1sp1q “ ~0,

we can deduce that

}ŵr1s} ď
1

p1´ ρ2qθ
}f̂1}.

Therefore,

}R̂
rks
1 } ď pρ1ρ2q

k´1 1

p1´ ρ2qθ
}f̂1}.
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Since ŵrks “
řk
j“1 R̂

rks
1 and ŵ “ limkÑ8 ŵrks, we get that

}ŵ} “ lim
kÑ8

}

k
ÿ

j“1

R̂
rks
1 } ď lim

kÑ8

k
ÿ

j“1

}R̂
rks
1 }

ď lim
kÑ8

k
ÿ

j“1

pρ1ρ2q
k´1 1

p1´ ρ2qθ
}f̂1} “

ˆ

1

1´ ρ1ρ2

˙ˆ

1

1´ ρ2

˙

}f̂1}

θ
.

Since the operator L̂2 is uncoupled, it easily follows that

}û} ď
α

β
}ŵ},

which concludes the proof.

The bounds given in Theorem 5.5.2 shows that }û} and }ŵ} are bounded independently of ε

(ρ and ρ1 do depend on ε, but upper and lower bounds on them to not). These bounds can be

verified numerically. The following example does that and investigates their sharpness.

Example 5.5.2. Suppose we use the same example as presented in (5.5) with ar “ 4, ai “ 2, br “ 6

and bi “ 2, also, we suppose we choose α “ 14 and β “ br{ar “ 1.5. The solutions are shown in

Figure 5.8. One can observe that

}ŵ} « 1.46ˆ 10´2 and }û} « 2.20ˆ 10´2.

Applying from (5.30) and (5.31) we get

}ŵ} ď

ˆ

1

1´ ρ1ρ2

˙ˆ

1

1´ ρ2

˙

}f̂1}

θ
“ 0.0306,

and

}û} ď
α

β
}ŵ} “ 0.2858.

These bounds are also shown in Figure 5.8: Notice that the bounds are correct, but especially in

the case of }û}, not particularly sharp. This is largely because the bound we use in (5.21a) is quite

sharp for small ε, the same is not true of (5.21b), where the diffusion coefficient is 1.

Figure 5.8: The bound of û (left) and the bound of ŵ (right) of the example (5.5.2).
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5.5.2 A fully iterative method

In Section 5.5.1 we presented the following block-iterative method for solving (5.9): set ŵr0s and

ûr0s to be the vector-valued zero functions, and, for k “ 1, 2, 3, . . . , ŵrks and ûrks to be the solutions

to

L̂1ŵ
rks “ f̂1 ´ B̂12û

rk´1s,

L̂2û
rks “ ´B̂21ŵ

rks,

(5.34a)

(5.34b)

where

L̂1ŵ
rks :“ ´

˜

εα 0

´0 εα

¸˜

ŵ
rks
r

ŵ
rks
i

¸2

`

˜

b11 b12

b21 b22

¸˜

ŵ
rks
r

ŵ
rks
i

¸

and

L̂2û
rks :“ ´

˜

û
rks
r

û
rks
i

¸2

`

˜

b33 0

0 b44

¸˜

û
rks
r

û
rks
i

¸

So the operator L̂1 is itself a coupled pair of linear differential operators, since typically b12 ‰ 0

and b21 ‰ 0 (on the other hand, L̂2 is also a pair of linear differential operators, but they are

uncoupled). So, to get a fully iterative method, we can solve (5.34a) and (5.34b) in an iterative

way.

We now define decoupled operators associated with the diagonal entries of B in (5.12):

L1;1ψ :“ ´εαψ2 ` b11ψ,

L1;2ψ :“ ´εαψ2 ` b22ψ,

L2;1ψ :“ ´ψ2 ` b33ψ,

L2;2ψ :“ ´ψ2 ` b44ψ.

(5.35a)

(5.35b)

(5.35c)

(5.35d)

Then we can solve (5.34a) and (5.34b) iteratively, for a fixed k, as follows. We set ŵ
rk;0s
i “ ŵ

rk´1s
i ,

and solve

L1;1ŵ
rk;js
r “

`

f̂1 ´ B̂12û
rk´1sq1 ´ b12ŵ

rk;j´1s
i subject to ŵrk;js

r p0q “ ŵrk;js
r p1q “ ~0,

L1;2ŵ
rk;js
i “

`

f̂1 ´ B̂12û
rk´1sq2 ´ b21ŵ

rk;js
r subject to ŵ

rk;js
i p0q “ ŵ

rk;js
i p1q “ ~0,

(5.36a)

for j “ 1, 2, 3, . . . , setting ŵrks to be the limit of the sequence tŵrk;jsu8j“0. Then solve

L2;1û
rks
r “ p´B̂21ŵ

rksq1 subject to ûrksr p0q “ ûrksr p1q “ ~0,

L2;2û
rks
2 “ p´B̂21ŵ

rksq2 subject to û
rks
i p0q “ û

rks
i p1q “ ~0.

(5.36b)

Using the ideas from Lemma 4.3.2, and the fact that b11pxqb22pxq ą b12pxqb21pxq, the iteration in

(5.36a) converges in the sense that ŵrk;js Ñ ŵrks, as j Ñ 8, where ŵrks is as defined in (5.22a).

So this now gives a fully iterative method (i.e., we solve scalar equations at every step).

As mentioned previously, standard maximum principle results for coupled systems of two linear

reaction-diffusion operators, such as L̂1 assume the coupling (i.e., reaction) matrix is an M-matrix:

it is strictly diagonally dominant with positive diagonal entries, and non-positive off-diagonal

entries. But, of course, this last assumption cannot hold for L̂1, since b21 “ ´b12. However, we

still have diagonal dominance, so, using the iterative method just described, one can adapt the
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arguments [19, Lemma 2.3], to show that, if ŵrks solves

L̂1ŵ “ f̂ on p0, 1q, and ŵp0q “ ŵp1q “ ~0,

and ~f is such that f̂1 ě 0 and f̂2 ď 0, then ŵ1pxq ě 0 and ŵ2pxq ď 0; the arguments only require

applying the appropriate maximum/minimum condition for scalar problems.

5.6 A monotonicity result for the differential operator de-

fined in (5.9)

In this section, we consider how a maximum principle-type analysis may be applied to the system

in (5.9), by using the iteration in (5.36). This is for theoretical (rather than practical purposes)

since it allows us to invoke the stability theory developed for uncoupled problems. As such, we

are using the idea of Gauss-Seidel Iteration, which was introduced as a theoretical tool in [19,

§II], and which we applied earlier in Section 4.3. However, that was for a much simpler setting,

involving just two equations. So, although the iteration presented here is similar to that of [19,

§II], the supporting theory is very different. Specifically, in that work it is assumed that the

coupling matrix is row-diagonally dominant, which is not the case here. Thus, the details are quite

different.

Recall the concept of a maximum principle (Definition 4.3.1) and the associated minimum

principle. We now wish to investigate how related ideas can be extended to the system we consider

here.

For this analysis we require the assumption on a and b given in (5.19), which gives that

b11 “ b22 ą 0, and 0 ă
|b12|

b11
“
b21

b22
ă 1.

In addition, we assume that we can choose β sufficiently large that

0 ă
εβ2 ` br

β
ă %. (5.37a)

and
bi
β
ă ai. (5.37b)

Respectively, these ensure that

b13 “ b24 ą 0, and b14 “ ´b23 ă 0.

It transpires that the signs of the terms ur, ui, wr, and wi depend on the signs of fr and fi

(of course, other assumptions on the problem data determine if ur, ui, wr, and wi change sign or

not). The results of several examples are shown in Table 5.1, where we have taken

arpxq “ 4` x, aipxq “ ex, brpxq “ 6`
?
x, and bipxq “ e´x, (5.38)
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and, for simplicity, only one of fr and fi are non-zero.

In Figure 5.9 we show ur and ui (left) and wr and wi (right) with ε “ 10´4, a and b as given

in (5.38), and

fr “ 1, fi “ 0, α “ 14, and β “ 2. (5.39)

In Figure 5.10 we corresponding results, but for

fr “ 0, fi “ 1, α “ 14, and β “ 2. (5.40)

Table 5.1: How the signs of components of u and w depend on the sign of fr and fi,
with problem data as in (5.38)

fr fi wr wi ur ui

fr ą 0 fi “ 0 wr ą 0 wi ă 0 ur ă 0 ui ą 0
fr “ 0 fi ą 0 wr ą 0 wi ą 0 ur ă 0 ui ă 0
fr ă 0 fi “ 0 wr ă 0 wi ą 0 ur ą 0 ui ă 0
fr “ 0 fi ă 0 wr ă 0 wi ă 0 ur ą 0 ui ą 0

Figure 5.9: The solutions, u and w to (5.9), with data as in (5.38) and (5.39).

Figure 5.10: The solutions, u and w to (5.9), with data as in (5.38) and (5.40).

First note, as is easy to prove, that the sign of ur is always the opposite of wr, and the sign of

ui is always the opposite of wi. In addition, if the sign of fr (say) does not change for any x, and

fi ” 0, then sign of wr is the same as fr.
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Remark 5.6.1. One can also investigate the signs of the components of u and w in the cases where

neither fr and fi are zero. The deductions are somewhat more complex, since very particular

assumptions on the relative magnitudes of fr and fi are needed to ensure that each component

is of a particular sign (i.e., does not change the sign on the interval). Detailed derivation on the

necessary conditions to avoid this is beyond the scope of this thesis, but would make for some

interesting future work.

To establish one of these results formally, and thus establish a maximum/minimum principle

for the differential operators in (5.20), we will study the case where fr ą 0 and fi “ 0. We will

use all the assumptions on the coefficient functions, a and b in (5.37).

Remark 5.6.2. Recall the problem stated in [27, Chap. 6]

Lu :“ ´εu2 ` bu “ f on Ω :“ p0, 1q, (5.41a)

with the boundary conditions

up0q “ 0, up1q “ 0, (5.41b)

where b ě β0 ą 0 for all x. For follows directly from the usual Maximum Principle that }u} ď

}f}{β0. In our case we have

L1;1ŵ
rk;js
r “ fr ´ b12ŵ

rk;j´1s
i , (5.42)

so

}ŵrk;js
r } ď

1

minxPΩ̄pb11q
}fr ´ b12ŵ

rk;j´1s
i }, (5.43)

for k, j “ 1, 2, . . . .

Theorem 5.6.1. Let ŵ “ pwr, wiq
T and û “ pur, uiq

T be solution to (5.36) with frpxq ą 0,

fipxq “ 0 for all x P r0, 1s, and a and b satisfying the assumptions in (5.19) and (5.37). Then

wrpxq ě 0, wipxq ď 0, urpxq ď 0, and uipxq ě 0. (5.44)

Proof. Consider the sequence ŵr1s, ŵr2s, . . . of solutions to (5.36a), and ûr1s, ûr2s, . . . of solu-

tions to (5.36b). We use induction on k, and on j for each k, to show that

wrksr pxq ě 0, w
rks
i pxq ď 0, urksr pxq ď 0, and u

rks
i pxq ě 0. (5.45)

For k “ 0, we have ŵr0s ” 0 and ûr0s ” 0. For k “ 1 we have

L1;1ŵ
r1;js
r “

`

f̂1 ´ B̂12û
r0sq1 ´ b12ŵ

r1;j´1s
i ,

Recall that ŵr1;0s “ ŵr0s. So, when j “ 1, we have

L1;1ŵ
r1;1s
r “

`

f̂1 ´ B̂12û
r0sq1 ´ b12ŵ

r1;0s
i “ fr ą 0,

since fr ą 0, ûr0s “ 0 and ŵ
r1;0s
i “ 0. Consequently, ŵ

r1;1s
r ě 0. Also, }ŵ

r1;1s
r } ď fr{}b11}. Next,

L1;2ŵ
r1;1s
i “ ´b21ŵ

r1;1s
r ă 0,
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since fi “ 0, ûr0s “ 0, ŵ
r1;1s
r pxq ě 0, b21 ą 0 (from the assumption in 5.19). Furthermore, this also

gives that, for all x, |ŵ
r1;1s
i pxq| ă p}b21}{}b22}qŵ

r1;1s
r pxq.

Next, for j “ 2, 3, . . . we have

L1;1ŵ
r1;js
r “ fr ´ b12ŵ

r1;j´1s
i ą 0,

since

b12ŵ
r1;j´1s
i ď

}b12}}b21}

}b22}
ŵr1;j´1s
r ď

}b12}}b21}

}b11}b22}
fr ă fr. (5.46)

Hence, ŵ
r1;js
r ě 0. Also,

L1;2ŵ
r1;js
i “

`

f̂1 ´ B̂12û
r0sq2 ´ b21ŵ

r1;js
r “ ´b21ŵ

r1;js
r ă 0,

so ŵ
r1;js
i ď 0. Since this holds for all j, and because w

r1,js
r Ñ w

r1s
r , while w

r1,js
i Ñ w

r1s
i , we conclude

that

wr1sr pxq ě 0 and w
r1s
i pxq ď 0 for all x P r0, 1s.

For k “ 2, we have

L1;1ŵ
r2;js
r “

`

f̂1 ´ B̂12û
r1sq1 ´ b12ŵ

r2;j´1s
i “ fr ´ b13u

r1s
r ´ b14u

r1s
i ´ b12ŵ

r2;j´1s
i , (5.47)

and

L1;2ŵ
r2;js
i “

`

f̂1 ´ B̂12û
r1sq2 ´ b21ŵ

r2;js
r “ ´b23u

r1s
r ´ b24u

r1s
i ´ b21ŵ

r2;js
r . (5.48)

Recall that

B̂12 “

˜

b13 b14

b23 b24

¸

“

˜

arβ ´ εβ
2 ´ br bi ´ aiβ

aiβ ´ bi arβ ´ εβ
2 ´ br

¸

,

When j “ 1, we have

L1;1w
r2;1s
r “ fr ´ b13u

r1s
r

loomoon

ă0

´ b14u
r1s
i

loomoon

ă0

´b12ŵ
r2;0s
i ą fr ´ b12ŵ

r1s
i ą 0 (5.49)

from (5.46).

Also, we have

L1;2ŵ
r2;js
i “ ´b23u

r1s
r ´b24u

r1s
i

looomooon

ă0

´b21ŵ
r2;1s
r ă ´b23u

r1s
r ´ b21ŵ

r2;1s
r .

But

b21ŵ
r2;js
r “ αaiŵ

r2;1s
r ě αai

β

α
ûr1sr “ aiβû

r1s
r ą paiβ ´ biqû

r1s
r “ b23û

r1s
r .

So we can conclude that L1;2ŵ
r2;js
i ă 0, and, hence, that ŵ

r2;js
i ă 0.

The same reasoning applies for j “ 2, 3, . . . , showing that, for all these j, that ŵ
r2;js
r ą 0 and

ŵ
r2;js
i ă 0. Again this shows that (5.45) holds for k “ 2. Repeating the arguments inductively

gives (5.44).
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As a corollary Theorem 5.6.1, we now give pointwise bounds on wr, wi, ur, ui and their

derivatives, which are useful when deriving error estimates for finite difference and finite element

methods. The arguments are the same as those used to prove Lemma 4.3.5.

Lemma 5.6.2. Let ŵ “ pwr, wiq
T and û “ pur, uiq

T be solution to (5.36), where the assumptions

required by Theorem 5.6.1 hold. Then there exists a constant C, which is independent of ε, such

that

|wr
plqpxq| ď Cr1` εp´l{2qψεpxqs, (5.50)

|wi
plqpxq| ď Cr1` εp´l{2qψεpxqs, (5.51)

|ur
plqpxq| ď Cr1` εp1´l{2qψεpxqs, (5.52)

and

|ui
plqpxq| ď Cr1` εp1´l{2qψεpxqs, (5.53)

where ψεpxq :“ e´x{
?
ε ` e´p1´xq{

?
ε and l “ 0, 1, . . . , 4.

Example 5.6.1. Recall the example presented in (5.5), which has ar “ 4, ai “ 2, br “ 6 and bi “ 2.

We choose α “ 14 and β “ br{ar “ 1.5. Figure 5.11 shows plots of scaled fourth derivatives

(computed using Chebfun), which suggest that

|wr
p4qpxq| ď Cr1` ε´2ψεpxqs, |wi

p4qpxq| ď Cr1` ε´2ψεpxqs,

|ur
p4qpxq| ď Cr1` εp´1qψεpxqs, and |ui

plqpxq| ď Cr1` εp´1qψεpxqs,

That is, the results are shown in Figure 5.11 support the assertion that the results of Lemma 5.6.2

are sharp.

Figure 5.11: Scale fourth-order derivatives of the solution to the problem in Exam-
ple 5.6.1 with ε “ 10´3, showing that ε2wp4qpxq and εup4qpxq are bounded.

Remark 5.6.3. As shown in Lemma 5.6.2, it is important to note that, if we chose ai “ 0 and

bi “ 0 and fi “ 0 in (5.2), then we will have the case of real-valued fourth-order problem that was

proved in Chapter 4 with |u
plq
i pxq| “ 0 and |w

plq
i pxq| “ 0, for l “ 0, 1, ..., 4.



Chapter 6

A finite element analysis of a

fourth-order complex-valued

singularly perturbed problem

6.1 Introduction

In this chapter we are interested in the numerical solution of the singularly perturbed, fourth-order,

complex-valued reaction-diffusion equation introduced in Chapter 5, by finite element methods,

specifically focusing on transforming a special case of this problem into a coupled system of second-

order reaction-diffusion problems. As in Chapter 3, a key step in the analysis involves determining

if and then the coupling matrix is pointwise coercive.

In Chapter 5, the general problem, (5.2), was stated as

´εup4qpxq ` par ` iaiqu
2pxq ´ pbr ` ibiqupxq “ pfr ` ifiqpxq on Ω :“ p0, 1q, (6.1a)

subject to the boundary conditions

up0q “ u2p0q “ 0, up1q “ u2p1q “ 0. (6.1b)

To focus on a specific sub-class of problems of the form in (6.1), we will consider the case where

ar “ ai “: a, and br “ bi “: b, (6.2)

for some real-valued functions a and b. Then our model differential equation is

´εup4qpxq ` ap1` iqu2pxq ´ bp1` iqupxq “ pfr ` ifiqpxq on Ω :“ p0, 1q, (6.3a)
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subject to the boundary conditions

up0q “ u2p0q “ 0, up1q “ u2p1q “ 0. (6.3b)

As is always the case in this thesis, the singular perturbation parameter ε lies in the interval p0, 1s.

The right-hand side terms, fr and fi denote real-valued functions on the interval Ω.

As in Chapter 5 we transform the problem to a real-valued, second-order one. The simplification

of (6.2), i.e., taking ar “ ai and br “ bi is largely for exposition, since it simplifies the calculations

enough so that we can provide explicit formulae for bounds on the problem’s coefficients, and the

parameters in the transformation, that ensure the couple matrix is coercive. This is different from

what was possible Chapter 5 where we showed how to choose the parameters numerically, rather

than via a formula.

6.1.1 A motivating example

We consider the following example with a “ 2, b “ 4, fr “ 1, and fi “ 0

´εup4qpxq ` 2p1` iqu2pxq ´ 4p1` iqupxq “ 1 on Ω :“ p0, 1q. (6.4a)

subject to the boundary conditions

up0q “ u2p0q “ 0, up1q “ u2p1q “ 0. (6.4b)

In Figure 6.1 we show u with ε “ 10´1 (left) and ε “ 10´3 (right), note that the graphs are

very similar, and neither feature strong layers. However, (6.4) is still singularly perturbed, in the

sense that, as ε Ñ 0, it becomes ill-posed: it reduces to a second-order differential equation with

four boundary conditions. Furthermore, as we shall see, derivatives of u are not bounded as εÑ 0,

and so classical numerical methods cannot be analysed with standard techniques.

Figure 6.1: Real and imaginary parts of u to (6.4) with ε “ 10´1 (left) and ε “ 10´3

(right).
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6.1.2 Outline

In Section 6.2, we apply ideas based on those in Section 5.3 to rewrite (6.1), first as a system of two

fourth-order real-valued problems, and then as a coupled system of four second-order ones. As in

Section 3.2, we show that if this is done naively, the resulting coupling matrix can not be coercive

(in the sense of Definition 3.2.1). This is done in Section 6.2.2. However, most of Section 6.2 is

devoted to show how the transformation, from fourth-order to second-order, can be adapted so

that the coupling matrix is coercive. This follows the methodology of Section 3.2.2, but the details

are entirely different. In Section 6.3, we describe a finite element method for this problem, applied,

initially, on an arbitrary mesh. We then present a suitable layer-adapted mesh, and we present

the numerical analysis for this method. Finally, in Section 6.4, numerical results are presented in

support of the theoretical analysis.

6.2 From a 4th-order complex-valued problem to a coupled

system of real-valued 2nd-order problems

Recalling the ideas in Section 5.3, we show how to change the 4th-order complex-valued prob-

lem (6.3) first into coupled system of two fourth-order real-valued problems, and then into a

coupled system of four second-order equations. We begin by writing (6.3) as

´εpur ` iuiq
p4qpxq ` pa` iaqpur ` iuiq

2pxq ´ pb` ibqpur ` iuiq “ pfr ` ifiq, (6.5)

where u “ ur` iui, When we equate real terms and imaginary terms separately, we get the system

´εup4qr ` au2r ´ au
2
i ´ bur ` bui “ fr,

´εu
p4q
i ` au2r ` au

2
i ´ bur ´ bui “ fi.

(6.6a)

(6.6b)

Following the technique of Section 5.3, we will use the transformation in (5.7) to transform

this system of real-valued fourth-order into real-valued, second-order system of four differential

equations. The aim of this is to determine how to parametrise the transformation in order to

ensure that the resulting system matrix is coercive.

6.2.1 Coercive system

We begin by assuming that a, and b satisfy the following conditions:

b ą 0. (6.7a)

a P r3b´ 2
a

2b2 ´ εb, 3b` 2
a

2b2 ´ εbs. (6.7b)

Although this is a restriction on the range of problems that can be considered, we do not consider

to to be excessively so. For example, if b ” 4 and ε “ 10´4, the analysis we will present is viable

for any a with 0.6863 ď apxq ď 23.3136.



6.2 An equivalent coupled system of real-valued 2nd-order problems 97

Now we use a variation on the transformation (5.7) to convert (6.6) into a system of four

differential equations. As before, this transformation features a parameter that depend on the

problem data.

The transformation we propose is

w :“
u2 ´ u

α
. (6.8)

which is (5.7) but with β “ 1. So now

u2 “ αw ` u, (6.9)

where α is a non-zero constant chosen depending on the problem data. From (6.9),

up4q “ αw2 ` αw ` u.

With this, (6.6) can be transformed to a system of four equations of the form

´εαw2r ` αpa´ εqwr ´ αawi ` pa´ ε´ bqur ` pb´ aqui “ fr,

´εαw2i ` αawr ` αpa´ εqwi ` pa´ bqur ` pa´ ε´ bqui “ fi,

´u2r ` αwr ` ur “ 0,

´u2i ` αwi ` ui “ 0,

(6.10a)

(6.10b)

(6.10c)

(6.10d)

with boundary conditions

up0q “ wp0q “ 0, up1q “ wp1q “ 0. (6.10e)

We can write (6.10) in matrix form, this is

~L~z :“ ´

¨

˚

˚

˚

˝

εα 0 0 0

0 εα 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

~z2 `B~z “ ~f, (6.11a)

where

~z “

¨

˚

˚

˚

˝

wr

wi

ur

ui

˛

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˝

αpa´ εq ´αa a´ b´ ε b´ a

αa αpa´ εq a´ b a´ b´ ε

α 0 1 0

0 α 0 1

˛

‹

‹

‹

‚

and ~f “

¨

˚

˚

˚

˝

fr

fi

0

0

˛

‹

‹

‹

‚

. (6.11b)

Recall from Theorems 3.2.2 and 3.2.1 that the matrix B satisfies ~vTB~v ą 0 for all ~v if, and only

if, M “ pBT `Bq{2 is symmetric positive definite. Here

M “

¨

˚

˚

˚

˝

αpa´ εq 0 pa´ b´ ε` αq{2 pb´ aq{2

0 αpa´ εq pa´ bq{2 pa´ b´ ε` αq{2

pa´ b´ ε` αq{2 pb´ aq{2 1 0

pb´ aq{2 pa´ b´ ε` αq{2 0 1

˛

‹

‹

‹

‚

. (6.12)

We now will show that it is possible to select α in (6.8) so that the eigenvalues of M are positive.
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The eigenvalues of M are

λ1 “
1

2

„

aα´ εα` 1`
`

a2α2 ´ 2aα2ε` α2ε2

` 2a2 ´ 4ab´ 2aε` α2 ´ 2αb` 2b2 ` 2bε` ε2 ` 1
˘p1{2q



, (6.13)

and

λ2 “
1

2

„

aα´ εα` 1´
`

a2α2 ´ 2aα2ε` α2ε2

` 2a2 ´ 4ab´ 2aε` α2 ´ 2αb` 2b2 ` 2bε` ε2 ` 1
˘p1{2q



, (6.14)

which both have geometric multiplicity two. Since M is symmetric, λ1 and λ2 are real numbers.

Clearly λ1 ě λ2 for any a, b and α. We need to find the set of values of α for which both λi ą 0,

so we will find the range of α for which λ2 ą 0. By inspection, we can see that this is

a` b´ ε´
a

´a2 ` 6ab´ b2 ´ 4bε ď α ď a` b´ ε`
a

´a2 ` 6ab´ b2 ´ 4bε. (6.15)

For any choice of α that satisfies (6.15), M is positive definite for all a and b satisfying (6.7).

For the simple case where a and b are constants, to fix a value, we choose

α “ a` b´ ε. (6.16)

But we emphasise that any choice of α between a` b´ ε´
?
´a2 ` 6ab´ b2 ´ 4bε and a` b´ ε`

?
´a2 ` 6ab´ b2 ´ 4bε will suffice.

Example 6.2.1. Suppose we use the same example as presented in Section 6.1.1, where a “ 2, b “ 4

and ε “ 10´4. As stated in (6.15), we can choose any α P r0.7085, 11.2912s, but prefer α “ 5.9999,

as per (6.16). Then, from (6.11b) and (6.12), we have

B “

¨

˚

˚

˚

˝

11.9992 ´11.9998 ´2.0001 2

11.9998 11.9992 ´2 ´2.0001

5.9999 0 1 0

0 5.9999 0 1

˛

‹

‹

‹

‚

,

and

M “

¨

˚

˚

˚

˝

11.9992 0 1.9999 1

0 11.9992 ´1 1.9999

1.9999 ´1 1 0

1 1.9999 0 1

˛

‹

‹

‹

‚

.

The eigenvalues of M are λ1 “ 12.436366 and λ2 “ 0.5628331. So, M is a symmetric positive

matrix, and, consequently, the matrix B is coercive.

6.2.2 A non-coercive transformation

We briefly digress to explain that it is not possible to choose β “ 0 in (5.7), even though this is

the most common approach in the literature.
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Recall the transformation in [47], they set ~z “ pu,wqT , where

w :“ ´u2, (6.17)

which is equivalent to (5.7) but with α “ ´1 and β “ 0. Note that this choice of α will not satisfy

(6.15). With (6.17), the transformed (6.6) can be expressed as

´E~z2 `B~z “ ~f, (6.18)

where

~z “

¨

˚

˚

˚

˝

wr

wi

ur

ui

˛

‹

‹

‹

‚

, E “

¨

˚

˚

˚

˝

ε 0 0 0

0 ε 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˝

a ´a b ´b

a a b b

´1 0 0 0

0 ´1 0 0

˛

‹

‹

‹

‚

and ~f “

¨

˚

˚

˚

˝

´fr

´fi

0

0

˛

‹

‹

‹

‚

, (6.19)

with boundary conditions

up0q “ wp0q “ 0, up1q “ wp1q “ 0. (6.20)

For B to be coercive, we need the symmetric part of B, denoted M “ pB ` BT q{2 to be

positive definite: equivalently, to have positive eigenvalues. It is easy to show, using either of these

approaches, that M is not positive definite.

First, suppose we choose ~v “ p1, 0, 0, v4q
T , then for any a and b, we can choose v4, such that

~vTB~v ă 0. For example, if a “ 1 and b “ 2, then ~vTB~v “ ´1 when v4 “ 1.

Alternatively, one can use the spectral approach. Suppose we use the same example as presented

in Section 6.1.1, with a “ 2 and b “ 4. Then, from (6.19)

B “

¨

˚

˚

˚

˝

2 ´2 4 ´4

2 2 4 4

´1 0 0 0

0 ´1 0 0

˛

‹

‹

‹

‚

,

which is not coercive, because

pB `BT q{2 “

¨

˚

˚

˚

˝

2 0 3{2 ´2

0 2 2 3{2

3{2 2 0 0

´2 3{2 0 0

˛

‹

‹

‹

‚

,

has the negative eigenvalue λ2 “ ´1.692582. It follows then from Theorems 3.2.1, and 3.2.2 that

B is not coercive.
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6.2.3 Bounds on γ

Because of the theoretical development of Section 6.2.1, we now know that it is acceptable to set

α “ a` b´ ε in the constant coefficient case. This allows us to deduce a bound on the coercivity

parameter γ (i.e., the minimum Rayleigh quotient).

Lemma 6.2.1. Let M be the matrix defined in (6.12). If we set α “ a` b´ ε as in (6.16), then

M is positive definite, has two distinct eigenvalues, and the smaller of them λ2, is bounded below

as

λ2 ą
´b2 ` p6a´ 4εqb´ a2

4ε2 ` p´8a´ 4bqε` 4a2 ` 4ab` 4
, (6.21)

independently of ε.

Proof. Recall that M has two distinct eigenvalues, given in (6.13) and (6.14). First, we

will show that both of eigenvalues of M are positive, and, consequently, M is symmetric positive

definite. When α “ a` b´ ε, we have

M “

¨

˚

˚

˚

˝

apa` b´ εq ´ pa` b´ εqε 0 a´ ε pb´ aq{2

0 apa` b´ εq ´ pa` b´ εqε pa´ bq{2 a´ ε

a´ ε pb´ aq{2 1 0

pb´ aq{2 a´ ε 0 1

˛

‹

‹

‹

‚

The smaller eigenvalue of M is λ2, as given in (6.14), and with α “ a` b´ ε, it is

λ2 “
1

2

„

pa2 ` ab´ 2aε´ bε` ε2 ` 1q

´

ˆ

a4 ` p2b´ 4εqa3 ` pb2 ´ 6bε` 6ε2 ` 2qa2 ` p´2b2ε` 6bε2 ´ 4ε3 ´ 2b´ 4εqa

` b2ε2 ` p´2ε3 ` 2εqb` pε2 ` 1q2
˙p1{2q

. (6.22)

We can write λ2 as the difference of two functions in a, b and ε:

λ2 “ Qpa, b, εq ´Npa, b, εq,

where

Qpa, b, εq “ p1{2qpa2 ` ab´ εa´ εb` ε2 ` 1q,

and

Npa, b, εq “ p1{2q
`

a4 ` p2b´ 4εqa3 ` pb2 ´ 6bε` 6ε2 ` 3qa2

` p´2b2ε` 6bε2 ´ 4ε3 ´ 4b´ 4εqa` pε2 ` 1qb2 ` p´2ε3 ` 2εqb` pε2 ` 1q2qp1{2q.

Note that Qpa, b, εq ą 0 for any a, b and ε satisfying (6.7), and Npa, b, εq ą 0, since λ2 is real

valued. Furthermore, Qpa, b, εq2 ´Npa, b, εq2 “ pQpa, b, εq `Npa, b, εqqpQpa, b, εq ´Npa, b, εqq, so,

if

Qpa, b, εq2 ´Npa, b, εq2 ą 0 and Qpa, b, εq `Npa, b, εq ą 0,

then Qpa, b, εq ´ Npa, b, εq ą 0. We already have that Qpa, b, εq ` Npa, b, εq ą 0, where a and b
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satisfy (6.7). By squaring Qpa, b, εq and Npa, b, εq and subtracting them, we have

Qpa, b, εq2 ´Npa, b, εq2 “ ´p1{4qpb2 ´ 6ab` 4εb` a2q.

So, λ2 ą 0, since a, b and ε satisfy (6.7a).

To get a sharper lower bound, note that

λ2 “ Qpa, b, εq ´Npa, b, εq “
Qpa, b, εq2 ´Npa, b, εq2

Qpa, b, εq `Npa, b, εq
“
´p1{4qpb2 ´ 6ab` 4εb` a2q

Qpa, b, εq `Npa, b, εq
.

We know that

Qpa, b, εq `Npa, b, εq ą 2Qpa, b, εq

because Qpa, b, εq ą Npa, b, εq. Furthermore,

2Qpa, b, εq “ a2 ` ab´ εa´ εb` ε2 ` 1.

Therefore

λ2 ą
´p1{4qpb2 ´ 6ab` 4εb` a2q

2Qpa, b, εq
“

´b2 ` p6a´ 4εqb´ a2 ` 4

4ε2 ` p´8a´ 4bqε` 4a2 ` 4ab` 4
,

for all a, b and ε satisfying (6.7a) and (6.7b).

Recall Example 6.2.1, which had a ” 2, b ” 4, ε “ 10´4 and α “ 5.9999. In that case,

λ2 “ 0.5628331. The same data in (6.21) gives the bound λ2 ą 0.53841, which is reasonably sharp.

6.3 The numerical method

6.3.1 Variational formulation

The variational formulation of (6.10) is: find ~z P pH1
0 p0, 1qq

2 such that

Bp~z,~vq “ Fp~vq for all ~v P pH1
0 p0, 1qq

2, (6.23)

where

pq, pq “

ż 1

0

qpxqppxqdx,

Bp~z,~vq :“ εαpz11, v
1
1q ` εαpz

1
2, v

1
2q ` pz

1
3, v

1
3q ` pz

1
4, v

1
4q

` pb11z1, v1q ` pb12z2, v1q ` pb13z3, v1q ` pb14z4, v1q

` pb21z1, v2q ` pb22z2, v2q ` pb23z3, v2q ` pb24z4, v2q

` pb31z1, v2q ` pb33z3, v3q ` pb42z2, v2q ` pb44z4, v4q, (6.24)

and

Fp~vq :“ pfr, fi, v1, v2q,
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where b11 “ αpa´ εq, b12 “ ´αa, b13 “ a´ b´ ε, b14 “ b´a, b21 “ αa, b22 “ αpa´ εq, b23 “ a´ b,

b24 “ a´ b´ ε, b31 “ α, b33 “ 1,, b42 “ α, and b44 “ 1.

The energy norm associated with the bilinear form Bpwr, wi, ur, uiq on pH1
0 p0, 1qq

2 is

‖~z‖2B “ εα
∥∥w1r∥∥2

2
` εα

∥∥w1i∥∥2

2
`
∥∥u1r∥∥2

2
`
∥∥u1i∥∥2

2
` γp‖wr‖22 ` ‖wi‖

2
2 ` ‖ur‖

2
2 ` ‖ui‖

2
2q. (6.25)

Because we have shown that the coupling matrix is coercive, it is easy to show that the bilinear

form is too, with respect to ‖¨‖B, i.e.,

Bp~v,~vq ě ‖~v‖2B for all ~v “ pv1, v2q P pH
1
0 p0, 1qq

2. (6.26)

The arguments are identical to those in Section 3.3, and, specifically, Lemma 3.3.1. The reasoning

there can also be adapted to show that B is continuous, i.e.,

Bp~z,~vq ď C ‖~z‖B ‖~v‖B for all ~z,~v P pH1
0 p0, 1qq

2. (6.27)

It follows from the Lax-Milgram Lemma that there exists unique solution to (6.23).

6.3.2 Shishkin mesh

We construct a standard Shishkin mesh with the mesh parameter

τ “ mint
1

4
,
a

ε{% logpNqu, (6.28)

where % “ minΩpa ´ εq. Note that this transition point does not depend of α, since it scaled

the diffusion and reaction terms equally (and, thus, cancelled in the mesh parameter). We now

define two mesh transition points at x “ τ and x “ 1 ´ τ . That is, we form a piecewise uniform

mesh with N{4 equally-sized mesh intervals on each of r0, τ s and r1´ τ, 1s, and N{2 equally-sized

mesh intervals on rτ, 1 ´ τ s. Typically, when ε is small, τ ! 1{4, the mesh is very fine near the

boundaries, and coarse in the interior. We refer to Section 2.3 for more details.

6.3.3 Finite element method

We define S to be the subspace of pH1
0 p0, 1qq

2 made up of piecewise linear functions on the mesh

of Section 6.3.2. Then the discrete version of (6.23) is: find ~Z P S such that

Bp~Z, ~V q “ Fp~V q for all ~V P S. (6.29)

As previously noted in Section 3.3.3, the standard finite element numerical analysis can proceed

based on quasi-optimal approximation properties of the finite element space, and an interpolation

error estimates. That is, the error

∥∥∥~z ´ ~Z
∥∥∥2

B
:“

∥∥u1r ´ U 1r∥∥2

2
`
∥∥u1i ´ U 1i∥∥2

2
` εα

∥∥w1r ´W 1
r

∥∥2

2
` εα

∥∥w1i ´W 1
i

∥∥2

2

` γp‖ur ´ Ur‖22 ` ‖ui ´ Ui‖
2
2 ` ‖wr ´Wr‖22 ` ‖wi ´Wi‖22q, (6.30)
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is bounded as ∥∥∥~z ´ ~Z
∥∥∥
B
ď C1N

´2 ` C2ε
1{2N´1 lnN ` C3N

´1. (6.31)

If the constants C2 and C3 are of the some order, we expect the ε-robust estimate

∥∥∥~z ´ ~Z
∥∥∥
B
ď CN´1. (6.32)

This is verified in the following section.

6.4 Numerical results

In this section, we present two examples. The first equation features constant coefficients and

the second equation has variable coefficients, and in both examples, we estimate the errors in the

numerical solutions based on a computed benchmark solution. Even though the coefficients are

variable in the second example, we show it is possible to find a constant α which satisfies (6.15).

We denote the error for given N and ε as

ENB :“
∥∥∥~z ´ ~Z

∥∥∥
B
,

where ~Z is the finite element solution, and ~z is either the true or benchmark solution, as appropriate.

In addition, ρNB denotes the rates of convergence of the error in the energy norm. It is computed

as

ρNB :“ log2

ˆ

ENB

E
N{2
B

˙

. (6.33)

By EN8 puq and EN8 pwq we denote the true or estimated maximum pointwise error in u and w,

respectively, and by ρN8puq and ρN8pwq the corresponding rates of convergence of u and w, i.e.,

ρN8puq :“ log2

ˆ

EN8 puq

E
N{2
8 puq

˙

and ρN8pwq :“ log2

ˆ

EN8 pwq

E
N{2
8 pwq

˙

. (6.34)

Example 6.4.1. Suppose we take a “ 2, b “ 4, fr “ 1 and fi “ 0 in (6.3). That is, we solve

´εup4qpxq ` 2p1` iqu2pxq ´ 4p1` iqupxq “ 1 on Ω :“ p0, 1q, (6.35)

with boundary conditions

up0q “ u2p0q “ up1q “ u2p1q “ 0.

The solution u with ε “ 10´1 (left) and ε “ 10´3 (right) was already shown in Figure 6.1. In

Figure 6.2 we show w with ε “ 10´1 (left), which does not feature layers. In contrast, as shown in

the graph on the right for smaller ε (in this case, ε “ 10´3), w does possess boundary layers near

x “ 0 and x “ 1, in both the real and the imaginary parts.
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Figure 6.2: Real and imaginary parts of w to (6.4.1) with ε “ 10´1 (left) and ε “ 10´3

(right).

From (6.16), we take α “ 6´ ε, and then the system we solve is

´

¨

˚

˚

˚

˝

εp6´ εq 0 0 0

0 εp6´ εq 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

w2r
w2i
u2r
u2i

˛

‹

‹

‹

‚

`B

¨

˚

˚

˚

˝

wr

wi

ur

ui

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

1

0

0

0

˛

‹

‹

‹

‚

,

where

B “

¨

˚

˚

˚

˝

ε2 ´ 8ε` 12 ´12` 2ε ´2´ ε 2

12´ 2ε ε2 ´ 8ε` 12 ´2 ´2´ ε

6´ ε 0 1 0

0 6´ ε 0 1

˛

‹

‹

‹

‚

.

For this system, we have verified numerically that γ « 0.5631.

In Tables 6.1 and 6.2, we present the error in the energy norm and the associated rates of

convergence computed when (6.35) is solved by using the finite element method on the Shishkin

mesh. We can see that the numerical solution for this problem converges at a rate that is at an

almost first-order, independently of ε. Also, the error increases as ε initially decreases, for ε “ 10´6

to ε “ 10´12, the method is clearly robust.

Table 6.1: EN
B for problem (6.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 7.271e-03 3.636e-03 1.818e-03 9.089e-04 4.545e-04

1.0e-02 1.846e-02 9.494e-03 4.782e-03 2.395e-03 1.198e-03
1.0e-04 1.269e-02 7.198e-03 4.063e-03 2.271e-03 1.259e-03
1.0e-06 1.110e-02 5.651e-03 2.886e-03 1.477e-03 7.577e-04
1.0e-08 1.094e-02 5.482e-03 2.747e-03 1.377e-03 6.907e-04
1.0e-10 1.093e-02 5.465e-03 2.733e-03 1.367e-03 6.837e-04
1.0e-12 1.093e-02 5.463e-03 2.732e-03 1.366e-03 6.830e-04

In Table 6.3, we present }u1r ´ U 1r}2 ` }u
1
i ´ U 1i}2; it clearly shows that, for sufficiently small

ε, the quantities in Table 6.1 agree with those in Table 6.3, up to 3 or 4 digits, showing that

}u1r ´ U
1
r}2 ` }u

1
i ´ U

1
i}2 is the dominating term in

∥∥∥~z ´ ~Z
∥∥∥
B

. That is,

∥∥∥~z ´ ~Z
∥∥∥
B
« }u1r ´ U

1
r}2 ` }u

1
i ´ U

1
i}2.
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Table 6.2: ρNB for problem (6.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.000 1.000 1.000 1.000

1.0e-02 0.959 0.989 0.997 0.999
1.0e-04 0.818 0.825 0.839 0.851
1.0e-06 0.974 0.970 0.966 0.963
1.0e-08 0.997 0.997 0.996 0.996
1.0e-10 1.000 1.000 1.000 1.000
1.0e-12 1.000 1.000 1.000 1.000

Given the close agreement between the data in Tables 6.1 and 6.3, we do not present rates of

convergence for the latter; for small ε they would essentially be the same as those shown in

Table 6.2.

Table 6.3: }u1r ´ U
1
r}2 ` }u

1
i ´ U

1
i}2 for problem (6.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.290e-03 6.450e-04 3.225e-04 1.612e-04 8.062e-05

1.0e-02 4.935e-03 2.469e-03 1.234e-03 6.173e-04 3.086e-04
1.0e-04 9.543e-03 4.609e-03 2.225e-03 1.074e-03 5.179e-04
1.0e-06 1.078e-02 5.374e-03 2.678e-03 1.335e-03 6.651e-04
1.0e-08 1.091e-02 5.454e-03 2.726e-03 1.363e-03 6.811e-04
1.0e-10 1.092e-02 5.462e-03 2.731e-03 1.365e-03 6.827e-04
1.0e-12 1.092e-02 5.462e-03 2.731e-03 1.366e-03 6.829e-04

Finally, as we did for the real-valued problem in Section 3.3.4, we verify the pointwise conver-

gence of the method. This is not covered by the theory of the method, but it is interesting, at least

to compare the accuracy of the FEM and the finite difference method of Chapter 7. Tables 6.4

and 6.6 show that, for sufficiently small ε, the pointwise convergence is parameter uniform. In

Table 6.5 we show that the rate of convergence is fully second-order for u. This is to be expected

since, as shown in Figure 6.1, there is no (strong) boundary layer in u. That is u2pxq is bounded

independently of ε. In contrast, in Table 6.7 one sees only almost second-order for w, due to the

presence of the layer: see Figure 6.2.

Table 6.4: EN
8 puq for problem (6.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 2.129e-05 5.313e-06 1.328e-06 3.319e-07 8.296e-08

1.0e-02 1.494e-05 3.564e-06 8.904e-07 2.226e-07 5.564e-08
1.0e-04 4.630e-05 1.102e-05 2.623e-06 6.235e-07 1.480e-07
1.0e-06 5.406e-05 1.342e-05 3.340e-06 8.315e-07 2.070e-07
1.0e-08 5.484e-05 1.367e-05 3.413e-06 8.527e-07 2.131e-07
1.0e-10 5.492e-05 1.369e-05 3.420e-06 8.548e-07 2.137e-07
1.0e-12 5.492e-05 1.369e-05 3.421e-06 8.550e-07 2.137e-07

Table 6.5: ρN8puq for problem (6.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 2.002 2.001 2.000 2.000

1.0e-02 2.067 2.001 2.000 2.000
1.0e-04 2.071 2.071 2.073 2.075
1.0e-06 2.010 2.007 2.006 2.006
1.0e-08 2.005 2.002 2.001 2.001
1.0e-10 2.004 2.001 2.000 2.000
1.0e-12 2.004 2.001 2.000 2.000
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Table 6.6: EN
8 pwq for problem (6.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.406e-05 3.518e-06 8.795e-07 2.199e-07 5.497e-08

1.0e-02 1.154e-03 2.723e-04 6.706e-05 1.670e-05 4.172e-06
1.0e-04 2.841e-03 1.100e-03 3.739e-04 1.263e-04 4.095e-05
1.0e-06 2.841e-03 1.100e-03 3.738e-04 1.263e-04 4.095e-05
1.0e-08 2.841e-03 1.100e-03 3.738e-04 1.263e-04 4.095e-05
1.0e-10 2.841e-03 1.100e-03 3.738e-04 1.263e-04 4.095e-05
1.0e-12 2.841e-03 1.100e-03 3.738e-04 1.263e-04 4.095e-05

Table 6.7: ρN8pwq for problem (6.35) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.999 2.000 2.000 2.000

1.0e-02 2.084 2.022 2.005 2.001
1.0e-04 1.369 1.557 1.565 1.625
1.0e-06 1.369 1.557 1.565 1.625
1.0e-08 1.369 1.557 1.565 1.625
1.0e-10 1.369 1.557 1.565 1.625
1.0e-12 1.369 1.557 1.565 1.625

Example 6.4.2. We consider another example, where a and b are variable coefficients. We will take

a “ 2x` 1, b “ 4x` 1, fr “ 1` x and fi “ 0,

in (6.3). That is, we solve

´εup4qpxq ` p2x` 1qp1` iqu2pxq ´ p4x` 1qpi` 1qupxq “ 1` x on Ω :“ p0, 1q, (6.36a)

with boundary conditions

up0q “ u2p0q “ up1q “ u2p1q “ 0. (6.36b)

We can not take α as in (6.16), since then it will be variable, and thus (6.9) would not ap-

ply directly. However, we can still chose an α that is constant (in x), and that satisfies (6.15).

Specifically, we choose α “ 2´ ε; in Figure 6.3, we show that this α satisfies (6.15).

The system we solve is

´

¨

˚

˚

˚

˝

εp2´ εq 0 0 0

0 εp2´ εq 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

w2r
w2i
u2r
u2i

˛

‹

‹

‹

‚

`B

¨

˚

˚

˚

˝

wr

wi

ur

ui

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

1` x

0

0

0

˛

‹

‹

‹

‚

,

where

B “

¨

˚

˚

˚

˝

´p2´ εqε` p2x` 1qp2´ εq ´p2x` 1qp2´ εq ´ε´ 2x 2x

p2x` 1qp2´ εq ´p2´ εqε` p2x` 1qp2´ εq ´2x ´ε´ 2x

2´ ε 0 1 0

0 2´ ε 0 1

˛

‹

‹

‹

‚

.

For this system, we have verified numerically that γ « 0.382.
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Figure 6.3: Our chosen α, and its upper and lower bounds from (6.15).

In Tables 6.8 and 6.9, we present the error in the energy norm and the associated rates of

convergence computed when the coefficient functions are variable of the problem (6.36) which

solved by the finite element method on the Shishkin mesh.

We can see that the numerical solution converges at a rate that is an almost first-order, in-

dependently of ε. Again, as observed with the constant-coefficient problem, the error initially

increases as ε decreases, but for the smallest values of ε, the method is clearly robust.

Table 6.8: EN
B for problem (6.36) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 2.460e-02 1.230e-02 6.150e-03 3.075e-03 1.537e-03

1.0e-02 4.783e-02 2.472e-02 1.247e-02 6.249e-03 3.126e-03
1.0e-04 3.199e-02 2.096e-02 1.294e-02 7.618e-03 4.357e-03
1.0e-06 1.960e-02 1.069e-02 5.852e-03 3.187e-03 1.727e-03
1.0e-08 1.794e-02 9.075e-03 4.600e-03 2.335e-03 1.186e-03
1.0e-10 1.777e-02 8.898e-03 4.456e-03 2.232e-03 1.118e-03
1.0e-12 1.775e-02 8.881e-03 4.441e-03 2.221e-03 1.111e-03

Table 6.9: ρNB for problem (6.36) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.000 1.000 1.000 1.000

1.0e-02 0.952 0.987 0.997 0.999
1.0e-04 0.610 0.696 0.764 0.806
1.0e-06 0.875 0.869 0.876 0.884
1.0e-08 0.983 0.980 0.979 0.977
1.0e-10 0.998 0.998 0.998 0.997
1.0e-12 0.999 1.000 1.000 1.000

Finally, Tables 6.10 and 6.12 present the pointwise errors computed when (6.36) is solved by

the finite element method on a Shishkin mesh, and these tables show for sufficiently small ε, the

pointwise convergence is a parameter uniform. In Tables 6.11 and 6.13 demonstrate that this

convergence is fully second-order for u, and almost second-order for w.
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Table 6.10: EN
8 puq for problem (6.36) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 3.294e-05 8.248e-06 2.061e-06 5.153e-07 1.288e-07

1.0e-02 3.330e-05 7.829e-06 1.927e-06 4.800e-07 1.199e-07
1.0e-04 5.239e-05 1.217e-05 2.822e-06 6.527e-07 1.504e-07
1.0e-06 6.573e-05 1.629e-05 4.045e-06 1.005e-06 2.499e-07
1.0e-08 6.708e-05 1.670e-05 4.170e-06 1.042e-06 2.603e-07
1.0e-10 6.721e-05 1.675e-05 4.183e-06 1.045e-06 2.614e-07
1.0e-12 6.722e-05 1.675e-05 4.184e-06 1.046e-06 2.615e-07

Table 6.11: ρN8puq for problem (6.36) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.998 2.001 2.000 2.000

1.0e-02 2.089 2.022 2.006 2.001
1.0e-04 2.106 2.108 2.112 2.117
1.0e-06 2.013 2.009 2.009 2.008
1.0e-08 2.006 2.002 2.001 2.001
1.0e-10 2.005 2.001 2.000 2.000
1.0e-12 2.005 2.001 2.000 2.000

Table 6.12: EN
8 pwq for problem (6.36) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.008e-04 2.519e-05 6.300e-06 1.575e-06 3.938e-07

1.0e-02 6.946e-03 1.583e-03 3.912e-04 9.778e-05 2.442e-05
1.0e-04 2.575e-02 1.304e-02 4.779e-03 1.521e-03 4.938e-04
1.0e-06 2.574e-02 1.306e-02 4.788e-03 1.524e-03 4.948e-04
1.0e-08 2.573e-02 1.306e-02 4.789e-03 1.525e-03 4.949e-04
1.0e-10 2.573e-02 1.306e-02 4.789e-03 1.525e-03 4.949e-04
1.0e-12 2.573e-02 1.306e-02 4.789e-03 1.525e-03 4.949e-04

Table 6.13: ρN8pwq for problem (6.36) solved on a Shishkin mesh.

ε N “ 16 N “ 32 N “ 64 N “ 128
1 2.000 2.000 2.000 2.000

1.0e-02 2.134 2.016 2.000 2.001
1.0e-04 0.981 1.448 1.651 1.623
1.0e-06 0.979 1.448 1.651 1.623
1.0e-08 0.978 1.447 1.651 1.623
1.0e-10 0.978 1.447 1.651 1.623
1.0e-12 0.978 1.447 1.651 1.623



Chapter 7

The analysis of a finite difference

method of a fourth-order

complex-valued singularly

perturbed problem

7.1 Introduction

In this chapter, we study the numerical solution of the singularly perturbed, fourth-order, complex-

valued reaction-diffusion equation introduced in Chapter 5, by finite difference methods. As in

Chapter 6, we transform a special case of this problem into a coupled system of second-order

reaction-diffusion problems. However, whereas in Chapter 6, this was to ensure that the resulting

system matrix is positive definite, and here we show how to derive a maximum/minimum-type

principle principal for this system, which is typically required for the numerical analysis of finite

difference methods.

Recall the general singularly perturbed, fourth-order, complex-valued reaction diffusion equa-

tions from (5.2),

´εup4qpxq ` par ` iaiqu
2pxq ´ pbr ` ibiqupxq “ pfr ` ifiqpxq on Ω :“ p0, 1q, (7.1a)

subject to the boundary conditions

up0q “ u2p0q “ 0, up1q “ u2p1q “ 0. (7.1b)

We focus on a special case of problems of the form in (7.1) where

a :“ ar, ai “ ζa, and br “ bi “: b,

109



7.2 Transformation into a system of four second-order, real-valued problems 110

where ζ P p0, 1´ εq, for some real-valued functions a and b (a slightly stronger upper bound on ζ

is given in (7.8), along with other assumptions on a and b). Then our model differential equation

becomes

´εup4qpxq ` ap1` ζiqu2pxq ´ bp1` iqupxq “ pfr ` ifiqpxq on Ω :“ p0, 1q, (7.2a)

subject to the boundary conditions

up0q “ u2p0q “ 0, up1q “ u2p1q “ 0. (7.2b)

The singular perturbation parameter, ε, is in the interval p0, 1s. Also, the right-hand side terms,

fr and fi denote real-valued functions on the interval Ω.

7.1.1 Outline

In Section 7.2, we apply ideas similar to those in Section 5.3, to show how to first rewrite (7.2) as

a system of fourth-order real-valued problems, and then as a coupled system of second-order ones.

This yields a coupled system of four second-order real-valued differential equations.

In Section 7.3, we establish the stability result of differential operator for the system of four

equations solved using a Gauss-Seidel method ideas based on those in Section 5.6, leading to

bounds on the coefficients which ensure convergence of the Gauss-Seidel method (Corollary 7.3.1),

bounds on the solutions to the iterates (Corollary 7.3.2), and a maximum/minimum principle

(Corollary 7.3.3).

In Section 7.4, we describe a finite difference method for this problem, applied, initially, on

an arbitrary mesh. We then present a suitable layer-adapted mesh, and we outline the numerical

analysis for this method. We conclude, in Section 7.5, with two examples to verify the sharpness

of the analysis outlined in Section 7.4.3.

7.2 Transformation into a system of four second-order, real-

valued problems

In Section 5.3 we showed how to transform a general, fourth-order complex-valued problem into

a coupled system of four real-valued second-order ones. Here, we reuse that approach but restate

it since there are some simplifications in the choice of coefficients, but also because we are not

interested in the coercivity of the resulting coupling matrix.

Starting as before, we rewrite (7.2) as the fourth-order real-valued system:

´εup4qr ` au2r ´ ζau
2
i ´ bur ` bui “ fr,

´εu
p4q
i ` ζau2r ` au

2
i ´ bur ´ bui “ fi.

(7.3a)

(7.3b)
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Using the transformation in (5.7), we set

w :“
u2 ´ βu

α
(7.4)

where α and β are non-zero constants chosen depending on the problem data. This gives

u2 “ αw ` βu, and, thus, up4q “ αw2 ` αβw ` β2u. (7.5)

With this, (7.3) is transformed to a system of four equations of the form

´εαw2r ` αpa´ εβqwr ´ αζawi ` paβ ´ b´ εβ
2qur ` pb´ ζaβqui “ fr,

´εαw2i ` αζawr ` αpa´ εβqwi ` pζaβ ´ bqur ` paβ ´ b´ εβ
2qui “ fi,

´u2r ` αwr ` βur “ 0,

´u2i ` αwi ` βui “ 0,

(7.6a)

(7.6b)

(7.6c)

(7.6d)

with boundary conditions

up0q “ wp0q “ 0, up1q “ wp1q “ 0. (7.6e)

Writing (7.6) in matrix form gives

~L~z :“ ´

¨

˚

˚

˚

˝

εα 0 0 0

0 εα 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

~z2 `B~z “ ~f, (7.7a)

where

~z “

¨

˚

˚

˚

˝

wr

wi

ur

ui

˛

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˝

αpa´ εβq ´αζa aβ ´ b´ εβ2 b´ ζaβ

αζa αpa´ εβq ζaβ ´ b aβ ´ b´ εβ2

α 0 β 0

0 α 0 β

˛

‹

‹

‹

‚

and ~f “

¨

˚

˚

˚

˝

fr

fi

0

0

˛

‹

‹

‹

‚

.

(7.7b)

7.3 Stability result and maximum principle

In this section, we consider how a maximum principle analysis may be applied to the system in

(7.7). We will use the Gauss-Seidel analysis approach presented in Section 5.5. When doing so,

we assume that a, b, and ζ satisfy the following conditions:

a´ εβ ą ζa ą b ą 0. (7.8)
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In addition, we assume that we can choose β such that

0 ă
εβ2 ` b

β
ă a, (7.9a)

and
b

β
ă aζ. (7.9b)

These assumptions, with ζ P p0, 1´ εq, mean that all the results of Section 5.5 and Section 5.6 now

hold for this problem, including the results of Theorem 5.5.1, Theorem 5.5.2, Theorem 5.6.1, and

Lemma 5.6.2.

Recall the block iterative method from Section 5.5, and we apply to this system (7.6) The

semi-decoupled operators are

L̂1ŵ :“ ´εαŵ2 ` B̂11ŵ,

L̂2û :“ ´û2 ` B̂22û

(7.10a)

(7.10b)

where

B̂11 “

˜

b11 b12

b21 b22

¸

“

˜

αpa´ εβq ´αζa

αζa αpa´ εβq

¸

,

B̂12 “

˜

b13 b14

b23 b24

¸

“

˜

aβ ´ b´ εβ2 b´ ζaβ

ζaβ ´ b aβ ´ b´ εβ2

¸

,

B̂21 “

˜

b31 b32

b41 b42

¸

“

˜

α 0

0 α

¸

, and B̂22 “

˜

b33 b34

b43 b44

¸

“

˜

β 0

0 β

¸

. (7.10c)

We’ll also denote

f̂1 “

˜

fr

fi

¸

.

We define

ρ :“
ˇ

ˇ

b12

b11

ˇ

ˇ “
ˇ

ˇ

b21

b22

ˇ

ˇ “
|ζa|

a´ εβ
, (7.11)

and

θ :“ min
j“1,2

min
xPΩ̄

|bjjpxq| “ min
xPΩ̄

`

αpa´ εβq
˘

. (7.12)

Note that, from (7.8), we have

0 ă ρpxq ă 1 for all x P Ω̄. (7.13)

We restate the specific version of Theorem 5.5.1 for the ODE formulated as in (7.6).

Corollary 7.3.1. Let ŵ “ pwr, wiq
T and û “ pur, uiq

T be solution to (7.10). For k “ 0, 1, 2, . . . ,

let ŵrks and ûrks be defined as follows: set ŵr0s and ûr0s to be the vector-valued zero functions,

and, for k “ 1, 2, 3, . . . , ŵrks and ûrks to be the solutions to

L̂1ŵ
rks “ f̂1 ´ B̂12û

rk´1s subject to ŵrksp0q “ ŵrksp1q “ ~0 on p0, 1q,

L̂2û
rks “ ´B̂21ŵ

rks subject to ûrksp0q “ ûrksp1q “ ~0 on p0, 1q,

(7.14a)

(7.14b)
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Taking ρ and θ as defined in (7.11) and (7.12) if

0 ă
α

β

}B̂12}

p1´ ρ2qθ
ă 1, (7.15)

then limkÑ8 ŵrks “ ŵ, and limkÑ8 ûrks “ û.

7.3.1 Using (7.15) to determine β

We now turn to investigate how to use (7.15) in order to determine β to ensure the sequence defined

in Corollary 7.3.1 converges. First note that α, β, }B̂12}, p1 ´ ρ2q and θ are all positive, so the

lower bound in (7.15) must always hold. Also,

α

β

}B̂12}

p1´ ρ2qθ
“
|aβ ´ εβ2 ´ b| ` |aβζ ´ b|

βp1´ a2ζ2

pa´εβq2 qpa´ εβq
“
pa´ εβqr|aβ ´ εβ2 ´ b| ` |aβζ ´ b|s

βpa´ εβ ´ aζqpa´ εβ ` aζq
.

We are interested in case where ε is small; specifically, a´εβ « a. In this case, our goal is to chose

β so that
ar|aβ ´ b| ` |aβζ ´ b|s

βpa´ aζqpa` aζq
ă 1. (7.16)

For any positive β, and since pa´ aζqpa` aζq “ a2 ´ a2ζ2 ą 0, the inequality (7.16) is equivalent

to

ap|aβ ´ b| ` |aβζ ´ b|q ă βpa2 ´ a2ζ2q.

If aβ ´ b ą 0 (which, we shall see presently is consistent with (7.15)), then we are attempting to

ensure that

a2β ´ ab` a|aβζ ´ b| ă a2β ´ a2ζ2β.

That is,

´b` |aβζ ´ b| ă ´aζ2β,

or, equivalently,

b´ aζ2β ´ |aβζ ´ b| ą 0.

By inspection, we can see that this can be rearranged as

βpβ ´
2b

aζpζ ` 1q
q ą 0. (7.17)

Since β is positive, we can see that this requires

β ă
2b

aζpζ ` 1q
.

In fact, not only can one ensure that the convergence factor in (7.15) is less that 1, one can also

minimize it. From (7.16), one should choose β in the range

b

a
ď β ď

b

ζa
, (7.18)
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for constant a and b. For variable a and b, (7.18) becomes

max
0ďxď1

bpxq

apxq
ď β ď min

0ďxď1

bpxq

ζapxq
. (7.19)

We discuss this further in Section 7.5

Example 7.3.1. We consider particular case of (7.2) with ε “ 10´4, a “ 6, b “ 4, and ζ “ 0.9. We

choose β “ 0.7407 as in (7.18). If we take α “ 10´ ε, then from (7.11) we have

ρ “ 0.900011 ă 1.

Furthermore,
α

β

}B̂12}

p1´ ρ2qθ
“ 0.5263 ă 1,

which demonstrates that (7.15) is satisfied. Although we don’t present it here, we have verified

the algorithm converges in a manner that is very similar to that shown for Example 5.5.1; see

Figure 5.7.

The bounds on the solution to (7.10) are given in Theorem 5.5.2, and yield the following result.

Corollary 7.3.2. Let ŵ “ pwr, wiq
T and û “ pur, uiq

T be solution to (7.10). Define

ρ1 :“
}B̂12}

p1´ ρ2qθ
and ρ2 “

α

β
.

Then

}ŵ} ď

ˆ

1

1´ ρ1ρ2

˙ˆ

1

1´ ρ2

˙

}f̂1}

θ
, (7.20)

and

}û} ď
α

β
}ŵ} ď

α

β

ˆ

1

1´ ρ1ρ2

˙ˆ

1

1´ ρ2

˙

}f̂1}

θ
. (7.21)

Recalling (5.35), we define decoupled operators associated with the diagonal entries of B

in (7.7b):

L1;1ψ :“ ´εαψ2 ` b11ψ,

L1;2ψ :“ ´εαψ2 ` b22ψ,

L2;1ψ :“ ´ψ2 ` b33ψ,

L2;2ψ :“ ´ψ2 ` b44ψ.

(7.22a)

(7.22b)

(7.22c)

(7.22d)

As before, one can solve (7.14a) and (7.14b) iteratively, for a fixed k, as follows. We set ŵ
rk;0s
i “

ŵ
rk´1s
i , and solve

L1;1ŵ
rk;js
r “

`

f̂1 ´ B̂12û
rk´1sq1 ´ b12ŵ

rk;j´1s
i subject to ŵrk;js

r p0q “ ŵrk;js
r p1q “ ~0,

L1;2ŵ
rk;js
i “

`

f̂1 ´ B̂12û
rk´1sq2 ´ b21ŵ

rk;js
r subject to ŵ

rk;js
i p0q “ ŵ

rk;js
i p1q “ ~0,

(7.23a)
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for j “ 1, 2, 3, . . . , setting ŵrks to be the limit of the sequence tŵrk;jsu8j“0. Then solve

L2;1û
rks
r “ p´B̂21ŵ

rksq1 subject to ûrksr p0q “ ûrksr p1q “ ~0,

L2;2û
rks
2 “ p´B̂21ŵ

rksq2 subject to û
rks
i p0q “ û

rks
i p1q “ ~0,

(7.23b)

The following result comes from Theorem 5.6.1.

Corollary 7.3.3. Let ŵ “ pwr, wiq
T and û “ pur, uiq

T be solution to (7.23) with frpxq ą 0,

fipxq “ 0 for all x P r0, 1s, and a and b satisfying the assumptions in (7.8), (7.9a) and ζ P p0, 1´εq.

Then

wrpxq ě 0, wipxq ď 0, urpxq ď 0, and uipxq ě 0. (7.24)

Example 7.3.2. Suppose we use the same example as presented in (7.3.1) with fr “ x ` 1 and

fi “ 0. Then, from (7.6) we have

´εp10´ εqw2r ` p10´ εqp6´ βεqwr ´ 4.4p10´ εqwi ` p0.4´ 0.5εqur ` 0.0002ui “ x` 1,

´εp10´ εqw2i ` 4.4p10´ εqwr ` p10´ εqp6´ βεqwi ´ 0.0002ur ` p0.4´ 0.5εqui “ 0,

´u2r ` p10´ εqwr ` βur “ 0,

´u2i ` p10´ εqwi ` βui “ 0,

(7.25a)

(7.25b)

(7.25c)

(7.25d)

where β “ 0.7407.

Figure 7.1: The solutions ur, ui, wr and wi to 7.3.2 with ε “ 10´3.

In Figure 7.1 we can see that the signs of components of u and w are consistent with Corol-

lary 7.3.3. That is

wrpxq ě 0, wipxq ď 0, urpxq ď 0, and uipxq ě 0.

Also, we have straight from Lemma 5.6.2 the following result.

Corollary 7.3.4. Let ŵ “ pwr, wiq
T and û “ pur, uiq

T be solution to (7.23), where the assump-

tions required by Corollary 7.3.3 hold. Then there exists a constant C, which is independent of ε,

such that

|wr
plqpxq| ď Cr1` εp´l{2qψεpxqs, (7.26a)
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|wi
plqpxq| ď Cr1` εp´l{2qψεpxqs, (7.26b)

|ur
plqpxq| ď Cr1` εp1´l{2qψεpxqs, (7.26c)

and

|ui
plqpxq| ď Cr1` εp1´l{2qψεpxqs, (7.26d)

where ψεpxq :“ e´x{
?
ε ` e´p1´xq{

?
ε and l “ 0, 1, . . . , 4.

Example 7.3.3. Suppose we use the same example as presented in (7.3.1) with fr “ x ` 1 and

fi “ 0. Then, in Figure 7.2 we can see that the bound of components of up4q and wp4q satisfied as

per Corollary 7.3.4, and are, in fact quite sharp. That is that we observe

|wr
p4qpxq| « 1.2ε´2ψεpxq, |wi

p4qpxq| « 1.2ε´2ψεpxq,

|ur
p4qpxq| « 2ε´1ψεpxq, and |ui

plqpxq| « 2ε´1ψεpxq.

Figure 7.2: Plots of ur
p4q, ui

p4q, wr
p4q and wi

p4q to the problem in Example 7.3.3 with
ε “ 10´3, showing that the bounds in (7.26) are quite sharp in this case.

7.4 The numerical method

7.4.1 The finite difference scheme

First, for convenience, we recall from (4.47) that the definition of the standard second-order finite

difference operator on an arbitrary mesh tx0 ă x1 ă ¨ ¨ ¨ ă xN´1 ă xNu, is

D2ui :“
1

hi~i
ui´1 ´ p

1

hi~i
`

1

hi`1~i
qui `

1

~ihi`1
ui`1,
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where hi “ xi ´ xi´1, and ~i “ phi ` hi`1q{2, and tuiu
N
i“0 is any mesh function. Then the finite

difference method for (7.7) is: find ~Zpxiq “ pWrpxiq,Wipxiq, Urpxiq, Uipxiqq
T such that

~LN ~Zpxiq :“ ´

¨

˚

˚

˚

˝

εα 0 0 0

0 εα 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

D2 ~Zpxiq `Bpxiq~Zpxiq “ ~fpxiq, (7.27a)

for i “ 1, . . . , N ´ 1, and

~Zpx0q “ ~ZpxN q “ 0. (7.27b)

7.4.2 Shishkin mesh

We construct a standard Shishkin mesh with the mesh parameter

τ “ mint
1

4
,
a

ε{% logpNqu, (7.28)

where % “ minΩpa´ εq. Notice that, although the perturbation parameter in (7.27) appears to be

εα, in fact the α term cancels with that in B.

We now define two mesh transition points at x “ τ and x “ 1´ τ . That is, we form a piecewise

uniform mesh with N{4 equally-sized mesh intervals on each of r0, τ s and r1 ´ τ, 1s, and N{2

equally-sized mesh intervals on rτ, 1´ τ s. Typically, when ε is small, τ ! 1{4, the mesh is very fine

near the boundaries, and coarse in the interior. We refer to Section 2.3 for more details.

7.4.3 Numerical analysis

We have shown that the (continuous) iterative method applied to (7.7) converges, which has allowed

us to deduce the stability of the continuous operator, subject to the choice of β in the transforma-

tion. That is the primary result of this chapter. But of course, we also wish to establish that we

can compute a uniformly convergent solution using the finite difference method of Section 7.4.1 on

the mesh described in Section 7.4.2. In some sense, such a result is standard, as there are many

papers and books on this topic. However, the problem we consider is a little different from many

of those in the literature, especially regarding the finite difference solution of coupled systems of

second-order equations. Specifically, many papers consider systems which are “fully singularly

perturbed”, meaning that each equation features an arbitrarily small parameter multiplying its

leading term. However, (in the terminology of Valarmathi and co-authors, e.g. [32]) our system is

“partially singularly perturbed”, since two of the equations do not feature a small parameter. This

is different from the analysis of many papers (e.g., [23]) requires that all parameters are small,

so that the solution can be decomposed into regular and layer parts; thus, their analysis does not

apply directly to our scenario.

Fortunately, the arguments of Paramasivam et al. [32] can be applied, with some minor modi-

fications.

First, we can see that in our problem, the coefficients of the terms in the first two differential
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equations are singular perturbation parameters, εα, but the leading term in the third and fourth

equations are not singular perturbation parameters (i.e., they are 1). So this fits into the notation

of [32], with n “ 4, and m “ 2. (In [32], the presentation is also more general in that they allow

for ε1 ă ε2, but we have ε1 “ ε2, which is still covered by the theory).

Next, in [32] paper it is assumed that the coupling matrix, which we denote as B in (7.7), has

non-negative off-diagonal entries, positive diagonal entries and is strictly diagonally dominant for

all x. That is, B is an M-matrix (e.g., [5]). This in turn leads to a maximum principle, for the

continuous and discrete operators, which are then applied in the analysis; see [32, Lemma 1].

In our setting, we do not have these properties on B; indeed, as we have discussed, there is no

set of problem coefficients or choices of the transformation parameters, α and β that would give

this. But, nonetheless, we have shown the stability of the operator in Corollary 7.3.3, which is

essentially a combined maximum/minimum principle, analogous to [32, Lemma 2].

The bounds on the solution and its derivatives are presented [32, Lemma 3]. These are

for a very general problem, and so are somewhat pessimistic when translated into our simpler

setting. But, importantly, the bounds presented in Corollary 7.3.4 imply those in [32, Lemma 3].

However, in Section 3 of [32] “improved estimates” are presented for a decomposed solution which

agree exactly with those (for the undecomposed problems) in Corollary 7.3.4; see [32, Lemma 6],

where the scenario we consider is a simplified version of Case 2 in the proof (which allows for more

than one Op1q term in the second order coefficients).

Next, we note that the Shishkin mesh and finite difference schemes presented in Sections 6 and 7,

respectively, of [32], are exactly the same as we use in Sections 7.4.2 and 7.4.1. The stability results

for the discrete operator follow by standard arguments, but the proof of the robust convergence of

the numerical method, culminating in [32, Thm. 3], follows detailed numerical analysis. However,

the complications are largely due to the presence of multiple singular perturbation parameters. In

our simpler setting, we can deduce from [32, Thm. 3] the following result.

Theorem 7.4.1. Let ΩN be the Shishkin mesh defined in Section 7.4.2, and let ŵ and û be the

solution to (7.23) on this mesh. If Ŵ and Û solves (7.27), then

}~z ´ ~Z}Ω̄N :“ }û´ Û}Ω̄N ` }ŵ ´ Ŵ}Ω̄N ď CN´2 ln2N, (7.29)

for some constant C.

Proof. This follows from inspecting the arguments leading to [32, Thm. 3].

Note that (7.29) implies both

}ŵ ´ Ŵ}Ω̄N ď C1N
´2 ln2N, (7.30)

and

}û´ Û}Ω̄N ď C2N
´2 ln2N, (7.31)

for some constants C1 and C2. As we shall see in Section 7.5, the error bound in (7.30) appears
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sharp, but, in fact the bound in (7.31) appears not to be, and, in practice on observes that

}û´ Û}Ω̄N ď C2N
´2, (7.32)

7.5 Numerical results

In this section, we will present numerical results for two examples. The first example has constant

coefficient functions, a and b are constants, which simplifies the transformation, since the (constant)

parameter β can be expressed as an expression in a and b. For the second example, the coefficient

functions, a and b, and right-hand side function, f , are variable. Even though the coefficients are

variable in the second example, we show it is possible to find a constant β which satisfies (7.19).

In both examples, we estimate the errors in the numerical solutions based on a computed

benchmark solution: the errors in the tables below are computed by comparing a numerical solution

on N intervals with one computed on a mesh with 100N intervals, but using the same transition

point (so interpolation is not required). Then, for given N and ε, we denote by ENε puq and ENε pwq

the estimated maximum pointwise error in u and w, respectively. In addition, ρNε puq and ρNε pwq

represent the estimated rates of convergence for u and w, computed in the same way as in earlier

chapters (see, e.g., Section 4.5).

7.5.1 A constant coefficient example

Example 7.5.1. In our first example, we use the data from Example 7.3.2; see (7.3.1). That is, we

will solve

´εup4qpxq ` 6p1` 0.9iqu2pxq ´ 4p1` iqupxq “ x` 1. (7.33)

For the simple case we choose α “ 10 ´ ε as in (3.16), and β “ 0.7407 as in (7.18). The

transformed system can be written in matrix form (7.7) with

´

¨

˚

˚

˚

˝

εp10´ εq 0 0 0

0 εp10´ εq 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

w2r
w2i
u2r
u2i

˛

‹

‹

‹

‚

`B

¨

˚

˚

˚

˝

wr

wi

ur

ui

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

1

0

0

0

˛

‹

‹

‹

‚

, (7.34)

where

B “

¨

˚

˚

˚

˝

p10´ εqp6´ 0.7407εq ´4.4p10´ εq 0.4´ 0.5ε 0.0002

4.4p10´ εq p10´ εqp6´ 0.7407εq ´0.0002 0.4´ 0.5ε

10´ ε 0 0.7407 0

0 10´ ε 0 0.7407

˛

‹

‹

‹

‚

.

In Figure 7.3 we show the solutions ur, ui, wr and wi to (7.34) with ε “ 10´1; note that layers

are not obvious in either component. This contrasts with Figure 7.1 where, for smaller ε (in this

case, ε “ 10´3), w does possesses boundary layers near x “ 0 and x “ 1, in both the real and the

imaginary parts.
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Figure 7.3: The solutions ur, ui, wr and wi to Example 7.5.1 with ε “ 10´1; compare
with Figure 7.1

We now present numerical results for Example 7.5.1, where the solution is computed on the

Shishkin mesh of Section 7.4.3. Tables 7.1 and Tables 7.2, we present the pointwise errors for

the solutions z present it in (7.29), and the rate of convergence, respectively. We can see that

the numerical solution for this problem converges at a rate that is at an almost second-order,

independently of ε. Also, the error increases as ε initially decreases, for reported values of ε less

than 10´3 the method is clearly robust.

Table 7.1: EN
ε pzq for problem (7.5.1) computed on a Shishkin mesh

.

Real part
ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 3.754e-05 9.404e-06 2.353e-06 5.883e-07 1.471e-07

1.0e-02 8.268e-04 3.014e-04 7.869e-05 2.021e-05 5.067e-06
1.0e-04 8.294e-04 3.846e-04 1.438e-04 5.006e-05 1.640e-05
1.0e-06 8.331e-04 3.857e-04 1.441e-04 5.014e-05 1.642e-05
1.0e-08 8.335e-04 3.858e-04 1.442e-04 5.015e-05 1.642e-05
1.0e-10 8.336e-04 3.858e-04 1.442e-04 5.015e-05 1.642e-05
1.0e-12 8.336e-04 3.858e-04 1.442e-04 5.015e-05 1.642e-05

Table 7.2: ρNε pzq for problem (7.5.1) computed on a Shishkin mesh

.

Real part
ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.997 1.999 2.000 2.000

1.0e-02 1.456 1.938 1.961 1.996
1.0e-04 1.109 1.419 1.523 1.610
1.0e-06 1.111 1.420 1.524 1.611
1.0e-08 1.111 1.420 1.524 1.611
1.0e-10 1.111 1.420 1.524 1.611
1.0e-12 1.111 1.420 1.524 1.611

Tables 7.3 and Tables 7.4, we present the pointwise errors for the solutions u, and the rate of

convergence, respectively. For the former, we see that the error in both the real and imaginary

components of u is, essentially, robust for all values of ε, with minor fluctuations in the error for

larger ε. From the latter, we see that the rate of convergence is fully second-order. Note that this

suggests that the result in Theorem 7.4.1, which predicts the usual logarithmic factor in the rate

of convergence, is not entirely sharp. However, since (as we shall see) the error is dominated by

the w component, this is not consequential.
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Table 7.3: EN
ε puq for problem (7.5.1) computed on a Shishkin mesh.

Real part
ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.377e-05 3.462e-06 8.663e-07 2.167e-07 5.425e-08

1.0e-02 5.362e-06 2.635e-06 7.083e-07 1.804e-07 4.562e-08
1.0e-04 1.081e-05 2.584e-06 6.168e-07 1.478e-07 4.037e-08
1.0e-06 1.382e-05 3.435e-06 8.534e-07 2.120e-07 5.259e-08
1.0e-08 1.416e-05 3.543e-06 8.884e-07 2.220e-07 5.543e-08
1.0e-10 1.420e-05 3.554e-06 8.920e-07 2.230e-07 5.573e-08
1.0e-12 1.420e-05 3.555e-06 8.924e-07 2.231e-07 5.579e-08

Imaginary part
ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.290e-05 3.233e-06 8.085e-07 2.022e-07 5.061e-08

1.0e-02 8.828e-06 2.595e-06 6.838e-07 1.724e-07 4.326e-08
1.0e-04 8.972e-06 2.150e-06 5.153e-07 1.298e-07 3.556e-08
1.0e-06 1.135e-05 2.821e-06 7.005e-07 1.740e-07 4.317e-08
1.0e-08 1.163e-05 2.909e-06 7.293e-07 1.822e-07 4.550e-08
1.0e-10 1.166e-05 2.918e-06 7.323e-07 1.831e-07 4.575e-08
1.0e-12 1.166e-05 2.918e-06 7.326e-07 1.831e-07 4.580e-08

Table 7.4: ρNε puq for problem (7.5.1) computed on a Shishkin mesh.

Real part
ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.992 1.999 1.999 1.998

1.0e-02 1.025 1.895 1.973 1.984
1.0e-04 2.065 2.067 2.061 1.873
1.0e-06 2.008 2.009 2.009 2.011
1.0e-08 1.999 1.995 2.001 2.001
1.0e-10 1.999 1.994 2.000 2.000
1.0e-12 1.998 1.994 2.000 1.999

Imaginary part
ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.996 2.000 1.999 1.998

1.0e-02 1.767 1.924 1.988 1.995
1.0e-04 2.061 2.061 1.989 1.868
1.0e-06 2.008 2.010 2.009 2.011
1.0e-08 2.000 1.996 2.001 2.002
1.0e-10 1.999 1.994 2.000 2.000
1.0e-12 1.999 1.994 2.000 1.999

In Table 7.5 we present the errors for the w component, along with the estimate rates of

convergence in Table 7.6. The errors in Table 7.5 follow those typically observed for a second-order

reaction-diffusion equations: the error initially increases as ε decreases, but for the smallest values

of ε, the method is robust. Further, we see almost second-order for w, independently of ε, which

is entirely in agreement with Theorem 7.4.1
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Table 7.5: EN
ε pwq for problem (7.5.1) computed on a Shishkin mesh.

Real part
ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.885e-05 4.720e-06 1.181e-06 2.951e-07 7.373e-08

1.0e-02 7.815e-04 2.979e-04 7.771e-05 1.997e-05 5.005e-06
1.0e-04 7.804e-04 3.809e-04 1.425e-04 4.986e-05 1.635e-05
1.0e-06 7.804e-04 3.808e-04 1.425e-04 4.985e-05 1.635e-05
1.0e-08 7.804e-04 3.809e-04 1.425e-04 4.985e-05 1.635e-05
1.0e-10 7.804e-04 3.809e-04 1.425e-04 4.985e-05 1.635e-05
1.0e-12 7.804e-04 3.809e-04 1.425e-04 4.985e-05 1.635e-05

Imaginary part
ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 3.124e-06 7.873e-07 1.972e-07 4.935e-08 1.237e-08

1.0e-02 2.742e-04 9.834e-05 2.494e-05 6.254e-06 1.565e-06
1.0e-04 2.747e-04 1.192e-04 4.534e-05 1.555e-05 5.122e-06
1.0e-06 2.744e-04 1.192e-04 4.534e-05 1.555e-05 5.122e-06
1.0e-08 2.728e-04 1.191e-04 4.534e-05 1.555e-05 5.122e-06
1.0e-10 2.725e-04 1.191e-04 4.534e-05 1.555e-05 5.122e-06
1.0e-12 2.725e-04 1.191e-04 4.534e-05 1.555e-05 5.122e-06

Table 7.6: ρNε pwq for problem (7.5.1) computed on a Shishkin mesh.

Real part
ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.998 1.999 2.000 2.001

1.0e-02 1.391 1.939 1.961 1.996
1.0e-04 1.035 1.418 1.516 1.608
1.0e-06 1.035 1.418 1.516 1.608
1.0e-08 1.035 1.418 1.516 1.608
1.0e-10 1.035 1.418 1.516 1.608
1.0e-12 1.035 1.418 1.516 1.608

Imaginary part
ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.988 1.997 1.999 1.997

1.0e-02 1.479 1.979 1.996 1.999
1.0e-04 1.205 1.394 1.544 1.602
1.0e-06 1.203 1.395 1.544 1.602
1.0e-08 1.195 1.394 1.544 1.602
1.0e-10 1.194 1.394 1.544 1.602
1.0e-12 1.194 1.394 1.544 1.602

7.5.2 A variable coefficient example

Example 7.5.2. In this example, we take a “
?
x` 2, b “ ex{2, ζ “ 0.4, and fr “ x2`2 and fi “ 0

in (7.2). Then the problem we are solving is

´εup4qpxq `
?
x` 2p1` 0.4iqu2pxq ´

ex

2
p1` iqupxq “ x2 ` 2 on p0, 1q, (7.35)

with, as usual, homogeneous Dirichlet boundary conditions.

As per (7.5), α and β must be chosen to be constant when transforming to a system of four

second-order equations. Recalling (7.19), we must choose β so that

max
0ďxď1

bpxq

apxq
ď β ď min

0ďxď1

bpxq

ζapxq
.
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That is, for this data of this problem,

bp1q

ap1q
« 0.7847 ď β ď

bp0q

ζap0q
« 0.8839.

Therefore, we choose β “ 0.8 for the numerical results in this example; see Figure 7.4;

Figure 7.4: The upper and lower bounds for β from (7.19) when ε “ 10´4. Notice we
can choose, e.g., β “ 0.8.

We are free to choose α, since it does no impact on the convergence of the scheme; arbitrarily,

we take α “ 1. From (7.11) we have

max
0ďxď1

ρpxq “ 0.400018 ă 1,

so (7.13) is satisfied. Furthermore, from (7.15) when ε “ 10´4, we have and

α

β

}B̂12}

p1´ ρ2qθ
ď 0.7143 ă 1,

for all x P r0, 1s, so convergence is assured via Corollary 7.3.1.

The system we solve is

´

¨

˚

˚

˚

˝

ε 0 0 0

0 ε 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

w2r
w2i
u2r
u2i

˛

‹

‹

‹

‚

`B

¨

˚

˚

˚

˝

wr

wi

ur

ui

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

1

0

0

0

˛

‹

‹

‹

‚

, (7.36)

where

B “

¨

˚

˚

˚

˝

?
x` 2´ ε ´0.4

?
x` 2

?
x` 2´ ex{2´ ε ex{2´ 0.4

?
x` 2

0.4
?
x` 2

?
x` 2´ ε 0.4

?
x` 2´ ex{2

?
x` 2´ ex{2´ ε

1 0 0.8 0

0 1 0 0.8

˛

‹

‹

‹

‚

.
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In Figure 7.5 we show u with ε “ 10´1 (left) and ε “ 10´3 (right), note that the graphs are

very similar, and neither feature layers. In Figure 7.6 we show w with ε “ 10´1 (left), which does

not features layers. In contrast, as shown in the graph on the right for smaller ε (in this case,

ε “ 10´3), w does possesses boundary layers near x “ 0 and x “ 1, in both the real and the

imaginary parts.

Figure 7.5: Real and imaginary parts of the solutions u to (7.36) with ε “ 10´1 (left)
and ε “ 10´3 (right)

Figure 7.6: Real and imaginary parts of w to (7.36) with ε “ 10´1 (left) and ε “ 10´3

(right).

Tables 7.7 and 7.9 present the pointwise errors for the solutions u and w computed when (7.5.2)

is solved by the finite difference scheme on Shishkin mesh. The results are qualitatively similar to

Tables 7.3 and 7.5: the error initially increases as ε decreases, but for the smallest values of ε, the

method is clearly robust.

Tables 7.8 and 7.10, we can see that the numerical solution converges at a rate that is a full

second-order for u, and an almost second-order for w, independently of ε.
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Table 7.7: EN
ε puq for problem (7.5.2) computed on a Shishkin mesh.

Real part
ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 5.779e-05 1.450e-05 3.625e-06 9.065e-07 2.266e-07

1.0e-02 7.110e-05 1.782e-05 4.458e-06 1.115e-06 2.787e-07
1.0e-04 1.596e-04 3.420e-05 7.271e-06 1.541e-06 3.551e-07
1.0e-06 2.674e-04 6.622e-05 1.640e-05 4.044e-06 9.973e-07
1.0e-08 2.805e-04 7.043e-05 1.763e-05 4.403e-06 1.100e-06
1.0e-10 2.818e-04 7.086e-05 1.776e-05 4.441e-06 1.110e-06
1.0e-12 2.819e-04 7.090e-05 1.777e-05 4.444e-06 1.111e-06

Imaginary part
ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 8.618e-06 2.152e-06 5.384e-07 1.346e-07 3.365e-08

1.0e-02 3.086e-05 8.163e-06 2.055e-06 5.160e-07 1.290e-07
1.0e-04 4.010e-05 8.810e-06 1.896e-06 4.070e-07 9.481e-08
1.0e-06 6.669e-05 1.645e-05 4.069e-06 1.004e-06 2.478e-07
1.0e-08 6.987e-05 1.744e-05 4.359e-06 1.089e-06 2.719e-07
1.0e-10 7.019e-05 1.754e-05 4.389e-06 1.098e-06 2.744e-07
1.0e-12 7.022e-05 1.755e-05 4.392e-06 1.099e-06 2.747e-07

Table 7.8: ρNε puq for problem (7.36) computed on a Shishkin mesh.

Real part
ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.995 2.000 2.000 2.000

1.0e-02 1.996 1.999 2.000 2.000
1.0e-04 2.223 2.234 2.239 2.117
1.0e-06 2.014 2.014 2.019 2.020
1.0e-08 1.994 1.998 2.002 2.002
1.0e-10 1.992 1.996 2.000 2.000
1.0e-12 1.991 1.996 2.000 2.000

Imaginary part
ε N “ 16 N “ 32 N “ 64 N “ 128
1 2.002 1.999 2.000 2.000

1.0e-02 1.919 1.990 1.994 2.000
1.0e-04 2.186 2.216 2.220 2.102
1.0e-06 2.019 2.016 2.019 2.019
1.0e-08 2.002 2.000 2.001 2.002
1.0e-10 2.000 1.999 1.999 2.000
1.0e-12 2.000 1.999 1.999 2.000

Table 7.9: EN
ε pwq for problem (7.36) computed on a Shishkin mesh.

Real part
ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 1.441e-04 3.613e-05 9.034e-06 2.259e-06 5.647e-07

1.0e-02 1.701e-02 4.458e-03 1.145e-03 2.871e-04 7.189e-05
1.0e-04 4.111e-02 1.854e-02 7.014e-03 2.423e-03 7.968e-04
1.0e-06 4.104e-02 1.851e-02 7.004e-03 2.420e-03 7.956e-04
1.0e-08 4.102e-02 1.851e-02 7.003e-03 2.419e-03 7.955e-04
1.0e-10 4.102e-02 1.851e-02 7.003e-03 2.419e-03 7.955e-04
1.0e-12 4.102e-02 1.851e-02 7.003e-03 2.419e-03 7.955e-04

Imaginary part
ε N “ 16 N “ 32 N “ 64 N “ 128 N “ 256
1 4.127e-05 1.033e-05 2.583e-06 6.459e-07 1.615e-07

1.0e-02 2.948e-03 7.454e-04 1.868e-04 4.680e-05 1.170e-05
1.0e-04 7.199e-03 3.129e-03 1.146e-03 3.916e-04 1.281e-04
1.0e-06 7.269e-03 3.126e-03 1.144e-03 3.909e-04 1.279e-04
1.0e-08 7.298e-03 3.127e-03 1.144e-03 3.908e-04 1.279e-04
1.0e-10 7.302e-03 3.127e-03 1.144e-03 3.908e-04 1.279e-04
1.0e-12 7.302e-03 3.127e-03 1.144e-03 3.908e-04 1.279e-04
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Table 7.10: ρNε pwq for problem (7.36) computed on a Shishkin mesh.

Real part
ε N “ 16 N “ 32 N “ 64 N “ 128
ε N “ 32 N “ 64 N “ 128 N “ 256
1 1.996 2.000 2.000 2.000

1.0e-02 1.932 1.961 1.996 1.997
1.0e-04 1.149 1.402 1.533 1.605
1.0e-06 1.148 1.402 1.533 1.605
1.0e-08 1.148 1.402 1.533 1.605
1.0e-10 1.148 1.402 1.533 1.605
1.0e-12 1.148 1.402 1.533 1.605

Imaginary part
ε N “ 16 N “ 32 N “ 64 N “ 128
1 1.998 2.000 2.000 2.000

1.0e-02 1.984 1.996 1.997 2.000
1.0e-04 1.202 1.450 1.549 1.611
1.0e-06 1.217 1.450 1.549 1.612
1.0e-08 1.223 1.451 1.549 1.612
1.0e-10 1.223 1.451 1.549 1.612
1.0e-12 1.223 1.451 1.549 1.612



Chapter 8

Conclusion

8.1 Summary of thesis

The aim of this thesis has been to design algorithms for the accurate and efficient analysis and solu-

tion of second-and fourth-order boundary-layer problems, with a particular emphasis on complex-

valued problems. Although complex-valued problems are very important in applications, they have

not received much attention in the literature concerning the parameter robust solution singularly

perturbed problems. Thus there are numerous fundamental questions to be addressed, and oppor-

tunities to contribute to the emerging science in this area. This has been achieved through the

following contributions.

• We have introduced the numerical analysis of complex-valued singularly perturbed differential

equations, beginning with the convergence of a finite difference scheme for a second-order

equation on a layer-adapted mesh (Chapter 2). This is important to the rest of the thesis

because it shows, in great detail, how to analyse a finite difference method for a coupled

system of second-order equations.

• We have proposed a new transformation for a real-valued fourth-order problem to a coupled

system which gives a simple resolution to a short-coming in some published literature. There

is a parameter in the transformation that depends on the problem data, but we have shown

how it can be chosen when the problem at hand is to be solved by a finite element method

(Chapter 3), or a finite difference method (Chapter 4).

• Next we have approached the problem of analysing complex-valued fourth-order problem; in

a general setting we have shown how this can be transformed into a system of four real-valued

second-order equations. We then discussed a framework for ensuring the coupling matrix is

coercive, or the operator satisfies a monotonicity result, when given very specific values of

the problem data. (Chapter 5).

• We have investigated the applicability of that framework in the context of a special case of

problem in Chapter 5:

´εup4qpxq ` p1` iqapxqu2pxq ´ p1` iqbpxqupxq “ fpxq on Ω :“ p0, 1q,

127
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up0q “ u2p0q “ 0 “ up1q “ u2p1q “ 0,

(Chapter 6). We have shown how formulate the problem to ensure coercivity of coupling

matrix, without having to consider specific values of the problem data (other than certain

assumptions). The exact choice of the special case is mainly for exposition; the approach we

present can be applied to other, or more general, cases.

• Finally, we study another special case of the problem from Chapter 5, this time of form

´εup4qpxq ` ap1` ζiqu2pxq ´ bp1` iqupxq “ pfr ` ifiqpxq on Ω :“ p0, 1q,

up0q “ u2p0q “ 0, up1q “ u2p1q “ 0,

but from the perspective of a maximum/minimum principle-type result, which is often re-

quired for the numerical analysis of finite difference methods (Chapter 7).

8.2 Future work

There are many possible extensions of the work of this thesis that can be addressed in the future.

Of course, we do not aim to discuss all possibilities of further work related to this thesis. Instead,

I mention some directions which I think would be particularly interesting. Of course, this is my

own view and is based on my own mathematical interests.

1. In this thesis we have considered so-called “simply supported” fourth-order problems, where

the boundary conditions allow for relatively direct reframing of the problem as coupled sys-

tems. The so-called “clamped” problems are also of huge interest, but are more difficult to

solve in several ways. Firstly, it is not as clear to express the problems as lower-order sys-

tems. Secondly, the layers present are more strongly dependent on ε. That is, for the simply

supported problems, the solution and its first two derivatives are bounded independently of

ε. But for the clamped case, only the solution and its first derivative are bounded. This will

complicate both the numerical methods and their analysis.

2. The complex-valued problems we have studied feature the same boundary conditions on the

real and imaginary parts, and so, the layers present in the two components are very similar,

In particular, a simple layer-adapted mesh with a single transition point is needed near

each boundary. However, one can formulate a complex-valued problem where the boundary

conditions are different for each component, requiring a more complicated mesh for their

solution.

3. It would be very interesting to apply the methods presented here to the full Orr-Sommerfeld

problem (mentioned briefly in (1.6)), which is a complex-valued, parametrised problem, with

mixed boundary conditions (see, e.g, [11]). Moreover, the solution and its derivatives pos-

sess boundary layers. A particular version of interest, from a model of wave-current inter-

actions [25], can be expressed as follows: find the function, u, and (complex) parameter k,
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such that

ε

ˆ

d2

dx2
´ k2

˙2

u´ i
d2u

dx2
` i

`

k2 ´ apk, xq
˘

u “ 0 for 0 ă x ă 1, (8.1a)

with boundary conditions

up0q “ 0, u1p0q “ 0, up1q “ u1, u2p1q “ v1pkq, (8.1b)

where u1 is some specified value, and v1 is a function of k. Since the parameter k is to be

determined, an extra condition is needed. This is provided by the “extra” boundary condition

u3p1q “ gpup1q, u1p1q, kq. (8.1c)

This problem is complicated, and interesting, for a number of reasons.

(a) It is a boundary layer problem, so suitable layer-adapted meshes are required for accu-

rate numerical solutions.

(b) It has mixed boundary conditions, and most papers on fourth-order problems in the

literature consider only first or second-order boundary conditions. At first, the problem

(8.1a)–(8.1b) is not suitable for conversion to a coupled system. However, it can be

shown that if the boundary condition on u1p0q is replaced with one on u2p0q, then

the solution remains largely unchanged away from x “ 0. So, as a first step towards

investigating this problem, one could make this simplification.

(c) This problem is parametrised meaning that we must also solve for the unknown (com-

plex) number k using (8.1c). For that, a very accurate estimate of u1p1q is needed, again

demonstrating that layer-adapted meshes are important.

4. In [11] a version of the Orr-Sommerfeld equation is proposed which features Robin-type

boundary conditions at one boundary. These have been studied in the context of coupled

systems of singularly perturbed problems (see, e.g., [7]) and would be worthy of further

consideration, especially for complex-valued problems.

5. It would be interesting to construct a transformation based on non-constant parameters. In

various places in this thesis, we have transformed a fourth-order problem to a system by

using the transformation

w :“
u2 ´ βu

α
, (8.2)

where α and β are constants chosen depending on the problem data. (In some cases, we have

taken α “ 1 or β “ 1, but (8.2) shows the most general version to date). This gives

u2 “ αw ` βu. (8.3)

To proceed with the transformation, we then differentiate to get

up4q “ αw2 ` βu2 “ αw2 ` βαw ` β2u. (8.4)

For certain ranges of values of the problem data, we have shown how to determine values of
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α and β so that, for example, the coupling matrix is coercive. Outside of those ranges, it

may be that there there are no suitable constants α and β. To circumvent this, one could

generalise (8.2) further, and allow α and β to be non-constant. That is, one would set

u2pxq “ αpxqwpxq ` βpxqupxq. In such a scenario, instead of (8.4), we would have

up4q “ αw2 ` 2α1w1 ` α2w ` βαw ` β2u` 2β1u1 ` β2u. (8.5)

With this, the singularly perturbed, fourth-order, real-valued reaction-diffusion equation

(3.1), which presented in Chapter 3 can be transformed into a system of two equations

of the form

´εαw2 ´ 2εα1w1 ´ 2εβ1u1 ` paα´ εα2 ´ εαβqw ` paβ ´ εβ2 ´ εβ2 ´ bqu “ f,

´u2 ` αw ` u “ 0,

(8.6a)

(8.6b)

subject to the boundary conditions

up0q “ wp0q “ 0, up1q “ wp1q “ 0. (8.6c)

We can write this system as

~L~z :“ ´

˜

εα 0

0 1

¸

~z2 ´

˜

2εα1 2εβ1

0 0

¸

~z1 `B~z “ ~f, (8.7a)

where

~z “

˜

w

u

¸

, B “

˜

aα´ εα2 ´ εαβ aβ ´ εβ2 ´ εβ2 ´ b

α 1

¸

and ~f “

˜

f

0

¸

. (8.7b)

This is feasible, but leads to other challenges.

• A system has first-order derivatives. That is, (8.6a) is a convection-diffusion problem.

This presents difficulties for the finite element and finite difference solution of the equa-

tions, since the discrete systems are not stable on arbitrary meshes: solution can have

large oscillations. So the numeric methods needed would need upwinding (or similar)

for stability. The literature on the numerical solution of these problems is vast (see

surveys [35, 42, 43]) and beyond the scope of this thesis.

• The resulting system, which would be reaction-convection-diffusion in nature, would be

coupled by both first derivative and second derivative terms. That is, whereas as the

systems we have previously studied are considered to be weakly coupled, (8.6) is strongly

coupled, at least in the first equation. Again, this makes it more difficult to solve, and

to analyse.

• The task of determining the range of values of the functions α and β that ensure that

the bilinear form (for example) is coercive is clearly more challenging since, instead of

computing a single value, we need to determine suitable functions.

6. We have considered only one-dimensional differential equations, but problems in higher di-

mensions are also very interesting. Furthermore, here the coercivity results for finite element

methods will be even more important. This is because, even if an operator does not satisfy
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a maximum/minimum principle, one still finds that finite difference methods can be applied

and may give accurate solutions: only the proofs are harder. But with finite element methods,

coercivity is required for even the existence of the solutions.

Furthermore, although just about any differential equation in one dimension can be solved

by one’s choice of finite difference or finite element method, the same is not true in higher

dimensions. This is because finite difference methods are mainly applied only on simple

domain shapes (like rectangles or circles, in two-dimensions), and on tensor product grids.

For arbitrary shaped domains finite difference methods may not be feasible, and so finite

elements are required.

7. We have considered only problems with smooth data. If, for example, the right-hand side has

a discontinuity, then layers can develop in the interior of the domain. There are some very

recent papers considering this topic, see, e.g., [3, 9]. So it would be interesting to consider

such problems in the context of complex-valued problems.

8. Recall Section 5.6 where we investigated the signs of solution components under strong

assumptions on the right-hand side function f . We restricted our attention to the case

where f was strictly real or purely imaginary. As mentioned in Remark 5.6.1 more general

problems would required much more detailed analysis. This is because the sign of the solution

components would depend on relative size of fr and fi, and in a way that depends on the

other problem data. Indeed, it is possible to construct cases where solutions change sign

in the interior of the domain. A full investigation would interesting, but necessarily very

detailed.
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