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a b s t r a c t 

Deep neural generative models such as Variational Auto-Encoders (VAE) and Generative Adversarial Net- 

works (GAN) give promising results in estimating the data distribution across a range of machine learning 

fields of application. Recent results have been especially impressive in image synthesis where learning 

the spatial appearance information is a key goal. This enables the generation of intermediate spatial data 

that corresponds to the original dataset. In the training stage, these models learn to decrease the dis- 

tance of their output distribution to the actual data and, in the test phase, they map a latent space to the 

data space. Since these models have already learned their latent space mapping, one question is whether 

there is a function mapping the latent space to any aspect of the database for the given generator. In 

this work, it has been shown that this mapping is relatively straightforward using small neural network 

models and by minimizing the mean square error. As a demonstration of this technique, two example 

use cases have been implemented: firstly, the idea to generate facial images with corresponding land- 

mark data and secondly, generation of low-quality iris images (as would be captured with a smartphone 

user-facing camera) with a corresponding ground-truth segmentation contour. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Deep neural networks are a key driver of contemporary ma- 

chine learning and artificial intelligence research and have begun 

to infiltrate the consumer world [1] . Advanced deep learning tech- 

niques are used to solve a wide range of long-standing problems in 

pattern recognition science. These approaches are famous for their 

power in designing and implementing regression and classification 

models. 

Deep neural networks have shown great success when used as 

generative models. These models learn the distribution of a specific 

dataset and generate new samples from the learned Probability 

Distribution Function (PDF). Classical methods include Variational 

Bayesian and Markov Chain Monte Carlo models, which have been 

used to model the data distribution. Taking advantage of the neural 

networks non-linearity in defining the generative model goes back 
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to early 20 0 0 when [2] used tanh , the nonlinearity of a small neu- 

ral network, in modelling the data distribution. These models are 

usually limited to small-sized problems due to the problem com- 

plexity and they are also computationally prohibitive. 

1.1. Deep neural networks as generator 

With the emergence of the low-cost, high-performance hard- 

ware for training deep neural networks, it became feasible to train 

and test big networks and recently the generative models have also 

been taking advantage of deep neural networks in learning large 

size problems including image and sound generation. 

In [3] , the authors introduced two models to learn the data 

distribution. 1. PixelRNN which is composed of 12 2D Long Short 

Term Memory (LSTM) layers in which the LSTM units are applied 

in row and diagonal directions, namely RowLSTM and Diagonal 

BiLSTM respectively. 2. PixelCNN which is a fully convolutional 

deep neural network used to predict the conditional distribution 

at each pixel location. Since these models do not make use of la- 

tent space mapping, the framework proposed in this paper does 

not apply to them. 

Variational Auto-Encoders (VAE) [4] are another approach for 

constructing a generative model. In this idea, the bottleneck of the 

auto-encoder network forms the latent space for the generative 

model. The encoder maps the input image to the latent space and 

https://doi.org/10.1016/j.patrec.2018.10.025 
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Table 1 

Phrases used throughout the paper, their definitions and symbols. 

Phrase Definition Symbol 

Latent variable A latent variable is a variable that is not observed but is used to describe the model or the 

observed data. 

z 

Latent space Latent space is the space of the latent variable Z-space 

Aspect of dataset An output of any local operation on the samples of the data –

Perfect generator A generator that gives the one-to-one correspondence between samples in the Z-space 

and every image in the database 

G () 

Perfect inverse of 

generator 

A function that for each image in the database gives the corresponding Z-space sample G −1 () 

Perfect aspect 

generator 

Accepts the image and generates the perfect output for the specific aspect of the image T 

Aspect generator Generates the data aspect directly from the latent space G a () 

Deep neural 

sample generator 

The generator from VAE, GAN, etc. Learns the data distribution and generates new 

samples. It is considered an approximation of the perfect generator. 

G ∗() 

the decoder is a generator that maps the latent space into the sam- 

ple space. The main difference between VAE and ordinary auto- 

encoders is the constraint on the latent space distribution. In VAE, 

the latent space is forced to obtain the Gaussian distribution by 

reducing the Kullback–Leibler (KL) divergence between the latent 

space distribution and the Gaussian. In practice, this is done by 

adding a term to the loss function to optimize the KL divergence in 

addition to the mean square error of the auto-encoder. The down- 

side of this approach is that the network generates blurred images 

due to the mean square error loss [5] . 

Generative Adversarial Networks (GAN) presented by [6] are an- 

other type of generative model wherein two deep neural networks 

(a generator and a discriminator) are engaged in a min-max game. 

The generator accepts samples from the latent space with a uni- 

form distribution. A deep neural network (the generator) converts 

this latent sample into a signal in the shape of the original dataset. 

The discriminator accepts the signal from the generator and also 

the original samples from the database and performs a binary clas- 

sification task of whether it is drawn from the database or not. Au- 

thors in [6] show that the min-max loss function of GAN decreases 

the Jensen–Shanon Divergence (JSD) between the generator output 

and the data distribution. 

1.2. Proposed problem 

A latent variable is a variable that is not observed but is used 

to describe the model or the observed data. Latent variables are 

said to exist in a “Latent space.” Generative models like VAE and 

GAN consider a latent variable for each data point and map the la- 

tent space to the data space by reducing the divergence between 

their output and data distribution. In this work, a new problem is 

defined: by knowing the generator for a database, is there a func- 

tion mapping the latent space onto any aspect of the database? 

(For the definition of ‘aspect’, see Table 1 ) and if so, how can this 

mapping be defined? In this work, it has been shown that a deep 

neural network is able to accomplish this mapping and the loss 

function can be as simple as mean square error, i.e., there is no 

need to enter the divergence into the objective of the mapping 

anymore. Solving such a problem has several applications, includ- 

ing consumer electronic design and data augmentation for regres- 

sion problems. To the best of our knowledge, this is the first time 

such a problem has been considered in the literature. 

The most relevant research work is that of the Gender Preserv- 

ing Generative Adversarial Network (GP-GAN) [7] where adversar- 

ial networks are exploited to synthesize faces from the landmarks. 

The generator sub-network in GP-GAN is based on UNet [8] and 

DenseNet [9] architectures while the discriminator sub-network 

is based on [10] . Note that the network is using a new gender- 

preserving loss in parallel with the perceptual loss. 

Another relevant study, Age-cGAN [11] , employs a GAN to gen- 

erate random faces and corresponding facial metadata. The focus 

of Age-cGAN is identity-preserving face aging where the person’s 

facial attributes are altered to age his/her face while the identity is 

preserved. The generator and discriminator sub-networks of Age- 

cGAN have the same architecture as [12] . This network can be used 

to synthesize augmented facial datasets incorporating aging of sub- 

jects. 

The rest of the paper is organized as follows. Section 2 presents 

the proposed method in detail. Two individual observations are il- 

lustrated in Section 3 to generate random samples and their cor- 

responding aspects. Finally, the conclusion and future works are 

presented in Section 4 . 

2. Proposed method 

2.1. Problem definition 

The definitions of the phrases used in this work are given in 

Table 1 . 

Problem definition : For a given database, if there is a perfect 

generator mapping a latent space into the data space (since the 

generator is a local operation on the latent variable) by consider- 

ing the data processing inequality, one can argue that the latent 

space includes all the information of the database. This indicates 

that any aspect of the dataset is extractable from the latent space 

alone. The problem considered in this work is to find a local op- 

eration that maps the latent space to the aspect space for a given 

generator and aspect. To the best of our knowledge, this is the first 

time such a problem has been defined. Solving this problem can 

facilitate high-speed implementation of regression solutions (in the 

presence of a real-time inverse of the generator) which is a valu- 

able solution in consumer electronic design. Another application 

will be data augmentation for regression problems. More discus- 

sion on applications of the proposed idea is given in Section 4 . 

Naïve solutions : Suppose that there is a deep neural generator 

G 

∗ mapping a uniformly distributed latent variable z ∗r to the data 

point x ∗r . This mapping is shown by x ∗r = G 

∗( z ∗r ) . A new generator 

could be trained just for the specific data aspect, but training a 

new generator specifically for a feature set of the database would 

map an entirely different latent space (let’s call it Z l -space) to the 

feature space. It is not trivial to find the correpondance between 

the Z 

∗
r -space and Z l -space. The other naïve solution would be to 

train a single model to learn the data and the feature distribution 

at the same time. This solution comes with complexities in imple- 

mentation procedures. Since the feature and the data space might 

not be from the same class and since the dimension and the objec- 

tive function for each output could be totally different, the single 

model solution would not converge to a reasonable output. 
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Proposed solution : Inverse transform sampling theorem de- 

clares that by knowing the probability distribution of a random 

variable x r , there is a transformation, mapping a uniformly dis- 

tributed random variable z r into the space of x r . This theorem re- 

quires the cumulative distribution function of x r (shown as F ( x r )) 

to be known. In this approach, it has been shown [13] that the 

distribution of the output of the inverse of the cumulative distri- 

bution function for z r is same as the distribution of x r . In other 

words p( F −1 ( z r ) ) = p( x r ) , where p is the probability distribution 

function. 

Since the generator network accepts a uniform random variable 

and transforms it to the image space, this network is learning an 

approximation of the data distribution. In fact, the network acts 

like the inverse of the cumulative distribution function of x r . At 

the same time, from the signal processing inequality principle, any 

local operation on the data does not insert any new information 

into the data. This provides justification for the ability of a neural 

network to learn the distribution of any aspect of the data for a 

given generator (as far as the aspect is provided by applying lo- 

cal operations on the data). Our results, firstly, demonstrate that it 

is possible to train a network that learns the distribution of land- 

mark annotations for a face generator and secondly, another net- 

work was trained that learns the segmentation for an iris gener- 

ator. More information on these two experiments are provided in 

Section 3 . 

Suppose that there is a perfect generator, mapping Z r -space to 

the data space, x r = G ( z r ) . And the perfect inverse of the genera- 

tor is shown by G 

−1 where for each image x r in the database, the 

inverse of the generator gives the corresponding Z r -space sample 

z data = G 

−1 ( x r ) . In fact, the inverse of the generator acts as the cu- 

mulative distribution function of x r . Therefore, the latent space will 

be reconstructed from applying the inverse of the generator to all 

the samples in the database. 

The output space of the inverse of the generator is called Z data - 

space which is a subspace of Z r -space, but its distribution can 

be non-uniform in real life applications due to finite number of 

samples available in the database. This Z data -space and the per- 

fect generator G contain all the information about the database, i.e., 

by knowing the Z data -space and the perfect generator G , one can 

recreate the database. Since all the aspects of the database can be 

extracted using local operations on the data itself, considering the 

signal processing inequality, no further information is needed to 

produce any aspect of the database if Z data -space and G are known. 

In fact, since G is a local operation itself, any aspect of the database 

is extractable solely from knowing Z data -space. 

2.2. Mapping to the aspect-space 

In this work, the aspect of a database is defined as the output 

of any local operation on the data samples. For example, the facial 

landmark detector gives an aspect (the landmark positions) of its 

input image or an iris segmentor returns an aspect (the binary seg- 

mentation map) of its input iris image. Signal processing inequal- 

ity principle states that the information inside a database will not 

increase by applying any local operation on it. For example, the in- 

formation inside the landmarks of a face is obviously less than the 

information that is carried by the corresponding face image. And 

as stated earlier, all the information of the database is extractable 

solely from knowing Z data -space. This means that any aspect of the 

data could be derived from just Z data -space. 

Suppose that for a given database there is a perfect aspect gen- 

erator, T , which accepts the image x data and generates the perfect 

output for the specific aspect of the image T ( x data ). This generator 

can be a human, drawing the facial landmarks or a super computer 

extracting features from an image. Note that they are local opera- 

tions applied to an input sample. Suppose that these calculations 

are simple enough to be estimated by a non-linear network G a . 

Since all the database information is already present in the Z data - 

space, this network is able to map the Z data -space to the aspect 

space. To train the aspect generator network the mean square er- 

ror loss function between G a and the perfect aspect generator T is 

decreased given by: 

loss = E z∼p Z data 
( z ) 

{
( G a ( z ) − T ( G ( z ) ) ) 

2 
}
, (1) 

where p Z data 
(z) is the probability distribution of Z data . This loss 

function could be re-written as: 

loss = 

∫ 
z∼p Z data 

( z ) 

p Z data 
( z ) ( G a ( z ) − T ( G ( z ) ) ) 

2 dz . (2) 

Since p Z data 
(z) is positive for every z in Z data -space and the 

second term in the integration is always positive as well, the min- 

imum of this integral is zero and is achieved if and only if: 

G a ( z ) = T ( G ( z ) ) , ∀ z in Z data −space . (3) 

The interesting part of the proposed method is that while the 

perfect generators on the right side of Eq. 3 are potentially very 

complicated, the aspect generator G a ( z ) can be small and simple. 

This is understandable by considering that the perfect aspect gen- 

erator T , needs to compress the information of the G ( z ) and rule 

out the unnecessary information generated by the perfect genera- 

tor G , in order to produce the desired aspect. But on the left side 

of the equation, the aspect generator G a , bypasses all the complex- 

ity of T and G and maps the latent space Z data -space to the as- 

pect space. Adding any terms to reduce the divergence between 

the distribution of the aspect generator G a and perfect aspect gen- 

erator T , is unnecessary since the latent space Z data -space where 

the samples are drawn from is already learnt by the inverse of the 

generator. 

Generating random samples drawn from a specific distribution 

is one of the most appealing application of Deep Neural Networks 

which became feasible by introducing the deep generative mod- 

els specially GAN. In the original GAN idea, the network learns the 

data distribution and is able to randomly generate samples from 

the same distribution. In this work, this idea is extended by learn- 

ing the latent space for GAN and map it to any aspect of the data. 

The main novelty of the proposed method is to take advantage 

of the learned latent space (known as Z data -space) to train a sec- 

ond generator G a which learns any aspect of the database from the 

latent space without the presence of any intermediate processing 

unit. This is while in the inference stage the two generators G and 

G a are blind to each other, e.g., these two generators accept the 

same latent space sample and the aspect generator G a provides 

output matches the output of the original generator G . Being able 

to generate a random sample alongside with its aspect have several 

applications including augmentation of data and expand a database 

containing the images and ground truth for each sample. Another 

contribution of this work is the versatility of the method. It is ap- 

plicable to any aspect of the database. Eqs. 1 to 3 hold for any data 

type. In the observations conducted in Section 3 , the aspects are 

point sets in one of the cases and a binary map in the second one. 

As far as the generator converges and the aspect is extractable by 

a local operation, the proposed method maps the latent space into 

the aspect space. Training a separate network just for generating 

the aspect takes an essential part in the versatility of the method. 

To the best of our knowledge this is the first time this problem is 

considered and solved. 

In the following section, the results of the proposed method are 

presented for a face generator when the aspect is the facial land- 

marks and another observation is done for low-quality iris gener- 

ation while the aspect is considered to be the binary map of the 

iris. 
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3. Results and simulations 

In this section, two different sets of data and various aspects 

of these datasets are presented. At first, a generator is trained on 

CelebA [14] database and the aspect of this database is a 49 point 

facial landmarks [15] generated for each image. The second simu- 

lation is done on an augmented version of the Bath800 [16] and 

CASIA10 0 0 [17] iris database, while the aspect is considered to be 

the iris segmentation map. These observations are described in de- 

tail in the following sections. 

The Boundary Equilibrium Generative Adversarial Network (BE- 

GAN) [18] scheme has been used to train the deep neural gen- 

erator. In the BEGAN framework, the generator is similar to the 

generator in the original GAN method, but the discriminator is a 

deep auto-encoder and the loss function reduces the Wasserstein 

distance between the error of the auto-encoder for generated and 

original data. The reasons for selecting BEGAN are the simplicity of 

implementation and the high-quality results of the generator. The 

BEGAN implementation is described in detail in Appendix A . 

Since the generator learned the distribution of the database, 

it can map an N z dimension random vector onto an interpola- 

tion point of the database distribution where N z is the dimen- 

sionality of the latent space. The reverse applies as well. Having 

an image from the dataset, one can estimate the sample in the 

Z r -space, which, when fed to the generator, will generate the im- 

age. The method used in this work is similar to one presented in 

[18] wherein the sample from the Z r -space is approximated by op- 

timizing the error function: 

err = | x r − G 

∗( z r ) | , (4) 

where x r is the sample image and G 

∗ is the generator function. 

In all examples, the ADAM optimizer is used to solve the prob- 

lem, with learning rate, β1 , and β2 equal to 0.1, 0.9, and 0.999, 

respectively. So the inverse of the generator accepts an image and 

produces the latent value for the given sample. If one applies the 

inverse of the generator to all the samples in the database, the out- 

put is a space of latent variables, which is a subset of Z r –space 

called Z data –space. As described before, this new space does not 

need to be uniformly distributed. One can also call this space the 

learnt latent space since it is derived from the inverse of the gen- 

erator. In our experiments, this learned latent space is used to pro- 

duce the aspect of the database. 

3.1. Experiment 1: face + landmarks 

3.1.1. Database 

The CelebA dataset [14] consisting of 202,599 original images 

with 40 unique attributes is used for training the GAN framework. 

The OpenCV frontal face cascade classifier [19] is used to detect 

facial regions, which are cropped and resized to 128 × 128 pix- 

els. Initial landmark detection is performed using the method pre- 

sented in [15] due to its ability to be effective on unconstrained 

faces. Authors in [15] have augmented the original cascade regres- 

sion framework of [20] by proposing an incremental algorithm for 

cascade regression learning. This method personalizes the Super- 

vised Descent Method (SDM) [21] for facial point localization, ini- 

tializing the SDM offline on a large database of faces and using 

newly tracked faces to update it incrementally. The detector in 

[15] uses a discriminative 3D facial deformable model fitted to the 

2D image. The detector was trained on the 300 W dataset [22] . It 

estimates a set of 49 landmarks defined by the contours of eye- 

brows, eyes, mouth, and the nose as shown in Fig. 1 . 

3.1.2. Generating data, inverse of the generator and aspect mapping 

Using the BEGAN framework, a generator has been trained on 

the CelebA database. The latent space is considered to be 64 di- 

Fig. 1. Facial landmark detection from the discriminative deformable model [15] . 

Fig. 2. Generating a random set of images using BEGAN framework on CelebA 

dataset. 

Fig. 3. The inverse of the generator can produce an accurate estimate of the latent 

value corresponding to each image in the database. 

mensions. The ADAM optimizer was used with learning rates β1 , 

and β2 equal to 0.0 0 01, 0.5, and 0.999, respectively. BEGAN was 

trained with the Lasagne library and Theano library in Python. A 

Geforce 1080ti desktop GPU was used to train the generator. Some 

randomly generated samples are shown in Fig 2 . 

The inverse of the generator ( Eq. 4 ) is then applied to all images 

in the dataset. All the outputs of the inverse of the generator make 

the Z data –space. Fig. 3 shows how well the inverse of the genera- 
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Fig. 4. Proposed method; the landmark generator maps Z-space onto a “learned”

landmark space. 

Table 2 

The architecture of the landmark generator. It is a small, fully connected 

deep neural network. 

Layer name Layer kind Number of nodes Activation 

Input Layer Input 64 —

First Hidden Fully connected 128 RELU 

Second Hidden Fully connected 128 RELU 

Third Hidden Fully connected 128 RELU 

Output Layer Fully connected 98 Sigmoid 

tor works. In this figure, the estimated latent sample is fed to the 

generator and a very similar image is generated at the output. 

Knowing all the samples in the Z data –space and also landmarks 

for each image (the output of perfect aspect generator T described 

in Section 2.1 ), an aspect generator is trained, mapping the Z data –

space to the landmark space. See Fig 4 . 

The architecture of the Landmark Generator network trained to 

approximate the landmarks is shown in Table 2 . This network ac- 

cepts 64-dimensional samples from the Z r -space and the output is 

a set of 98 dimensions corresponding to 49 2D landmark points. 

The loss function for this network is the Mean Square Error 

given by: 

loss = 

1 

B N × 98 

B N ∑ 

k =1 

98 ∑ 

i =1 

( o i − t i ) 
2 
, (5) 

wherein o i is the i ’th output of the output layer, t i is the i ’th tar- 

get value, and B N is the batch size which is set to 16. The ADAM 

optimizer is used to train the network with learning rates β1 , and 

β2 equal to 0.0 0 03, 0.9, and 0.999, respectively. The training was 

done for 10 0 0 epochs using all data. No validation and test set 

were used in the method. 

Adding validation and test sets made the results less accurate, 

since after reducing the number of samples in the training set, the 

network was blind to some examples and could not reconstruct 

the landmark distribution accurately. To the best of our knowledge, 

this is the first attempt to generate samples and their correspond- 

ing landmarks at the same time. 

In the feedforward step shown in Fig 5 , a uniformly distributed 

random vector is fed concurrently into the Generator (from BE- 

GAN) and the Landmark Generator. The first generates a random 

interpolated face, and the Landmark Generator provides a 2D set 

of landmarks corresponding to the generated face. 

Fig. 6 shows example results. Initial results show the Landmark 

Generator has learned to map a set of landmark points from the 

same Z r -space as the facial generator, with good generalization 

across varying pose & illumination conditions. 

In [18] , the authors investigate the continuity of the face distri- 

bution given by the BEGAN face generator by feeding it a random 

set of numbers, interpolating two samples in Z r -space and observ- 

Fig. 5. Feedforward of the proposed method. The uniformly distributed random 

vector is fed to the Generative network given by BEGAN, and the Landmark Gener- 

ator from the proposed method produces the landmark positions for the generated 

face image. 

Fig. 6. Random generated faces and their corresponding landmarks. 

ing the gradual changes from one face to another. To investigate 

the continuity of the landmark estimator distribution, the same 

approach is used. The z r vectors for a given image and its mir- 

ror image are estimated using the inverse generator method and 

14 interpolation points between the two Z r -space samples are fed 

into the face generator and Landmark Generator networks. One ex- 

ample result from this experiment is shown in Fig. 7 . This figure 

shows that the landmark distribution estimated by the Landmark 

Generator network is smooth in the Z r -space. More results, includ- 

ing illumination variation and pose variation are presented in a 

video 1 that is generated by smoothly moving the latent variable 

to make the face and landmarks. 

3.2. Experiment 2: Iris + segmentation 

3.2.1. Dataset 

In this experiment, two iris databases (Bath800 and CASIA1000) 

have been used to learn the generator. Bath800 is made of 31,997 

iris images with a resolution of [1280 × 960] taken from 800 

individuals and CASIA10 0 0 has 20,0 0 0 Near Infrared images with 

a resolution of [640 × 480]. All these images are resized to 

[128 × 96] in this experiment. None of these databases are pro- 

vided with ground truth, but since they are high-quality datasets 

1 https://youtu.be/PWdT3Q5T5U8 

https://youtu.be/PWdT3Q5T5U8
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Fig. 7. Interpolating in the Z r -space between a face and its mirror image indicates 

strong continuity for both BEGAN and the landmark generator. 

Fig. 8. Iris samples after applying augmentation and their corresponding segmen- 

tation map. 

taken in highly constrained conditions, any industry standard seg- 

mentation tool will give a reasonably high-quality segmentation 

result. In this work, the segmentation provided by a commercial 

iris segmentation tool (MIRLIN [23] ) is treated as the ground truth 

for the segmentation task. To increase the number of samples in 

the database, several augmentation techniques have been applied 

to the original dataset, including contrast reduction inside and out- 

side of the iris region and adding shadow and motion blur. For a 

detailed description of the augmentation process, see [24] . Some 

samples of the database after applying the augmentation and their 

corresponding ground truth maps are shown in Fig 8 . 

After the augmentation process, there are 262 K samples in our 

training set. This database is designed initially to train a deep neu- 

ral network, segmenting low-quality iris images [24] . In this sec- 

tion, it is used to show that the aspect of the dataset could be 

something more than points or features of the image. In fact, it 

can be the same size as the image like a binary map. 

Fig. 9. The random samples drawn from the generator trained using the BEGAN 

method on the low-quality iris database. 

3.2.2. Generating data, inverse of the generator and aspect mapping 

The method to train the deep neural generator is exactly simi- 

lar to the previous experiment. The BEGAN scheme has been used 

to learn the data distribution for the low-quality iris database. The 

only difference is the size of the images where in the previous ex- 

periment, the face images were 128 × 128, but in this experiment, 

the images are 128 × 96. The latent space is 64 dimensions. The 

ADAM optimizer was used with learning rate, β1 , and β2 , equal to 

0.0 0 01, 0.5, and 0.999, respectively. The BEGAN model was trained 

with the Lasagne library and Theano library in Python. A Geforce 

1080ti desktop GPU was used to train the generator. Some ran- 

domly generated samples are shown in Fig 9 . The next step is to 

apply the inverse of the generator to all samples in the dataset. 

The inverse of the generator accepts an image and estimates its 

corresponding latent space sample. After applying the inverse of 

the generator to all samples in the dataset, the Z data -space values 

for all the samples are acquired. 

In this experiment, the aspect of the dataset is the binary seg- 

mentation map of the iris image. The perfect aspect generator T is 

the iris segmentation tool (MIRLIN [23] ) described in the previous 

section. The architecture of the aspect generator network (mapping 

the latent space to the aspect space) is exactly similar to the gen- 

erator in BEGAN, as described in Appendix A . 

The loss function for the aspect generator is the mean square 

error given by: 

loss = 

1 

B N × 96 × 128 

B N ∑ 

k =1 

96 ∑ 

i =1 

128 ∑ 

j=1 

(
o i j − t i j 

)2 
, (6) 

where o ij is the ( i, j )’th pixel of the output layer, t ij is the ( i, j )’th 

pixel of the target (iris segmentation map), and B N is the batch 

size, which is set to 16. The ADAM optimizer is used to train the 

network with the learning rate, β1 , and β2 , equal to 0.0 0 03, 0.9, 

and 0.999, respectively. The training was done for 1,0 0 0 epochs us- 

ing all data. No validation and test set were used in the method. 

The feedforward model is shown in Fig 10 . 

The results of this experiment are shown in Fig 11 . In this fig- 

ure, the iris image is generated by the generator trained in the BE- 

GAN method and the segmentation maps are generated using the 

proposed aspect generation method. 
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Fig. 10. The feedforward model for generating a random low-quality iris image and 

its corresponding segmentation map. 

Fig. 11. Randomly generated low-quality iris images and their corresponding seg- 

mentation maps. First and third columns are randomly generated iris images; sec- 

ond and forth columns are their corresponding segmentation maps created by the 

proposed framework. 

In order to investigate the continuity of the mapping for both 

the iris and the segmentation, a video 2 illustrates the smooth 

changes in both the iris samples and the segmentation. The se- 

quences are created by smoothly moving the latent sample in the 

Z r -space. 

4. Conclusion and future works 

One of the most amazing applications of the deep neural net- 

works is to learn the data distribution and draw new samples from 

the learned distribution. VAE and GAN are two successful imple- 

mentations of such an application. In each of these methods, the 

objective is to reduce the divergence of the generator output and 

the original data. These methods also take advantage of using a la- 

tent space that gives an opportunity to manipulate data and also 

learn any aspect of the database straight from the latent space. 

After training the generator, it can be considered as a determin- 

istic local nonlinear operation that maps the latent space onto the 

data space. Considering the data processing inequality, any local 

operation on the data set cannot inject extra information to the 

data. This means that all information of the individual samples is 

already in the latent space. This explains why any aspect of the 

database can be extracted straight from the latent space. 

In this work, it has been shown that the previous statement is 

true and different aspects of the database, landmarks for the face 

and segmentation map of an iris image can be mapped from the 

latent space. 

2 https://youtu.be/BY9cVZPmgRU 

There are several applications for the presented framework. 

Since the latent space is smaller than the actual data space, this 

method can be used as a compression method. The feature extrac- 

tion from latent space is fast, which is useful in designing fast con- 

sumer electronic devices. The other application is using the gener- 

ative models as an augmentation technique. Data augmentation is 

a crucial step for modern machine learning frameworks, including 

deep learning approaches. New deep neural networks need a large 

number of samples to be trained in order to avoid overfitting. The 

augmentation process introduces a certain amount of uncertainty 

into the database, which helps the network prevent overfitting and 

generalizes the results. To the best of our knowledge, augmenta- 

tions presented for regression problems are all applied in the im- 

age space. These operations include flipping, rotating, manipulat- 

ing the contrast and illumination of the image, and applying dis- 

tortions to the image. The framework presented in this work can 

utilize the data and ground truth generation in latent space. Our 

observations show that the mapping for both the data generator 

and aspect generator is continuous and smooth in the latent space. 

This gives the opportunity to generate a large number of samples 

and their corresponding ground truth, thus expanding the database 

by introducing more variations through the generation of multiple 

intermediate samples. Future work will include the investigation of 

the influence of the generative augmentation technique in training 

regression networks. 
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Appendices 

A. Boundary Equilibrium Generative Adversarial Networks 

In this work, the Boundary Equilibrium Generative Adversar- 

ial Network (BEGAN) presented in [18] is implemented to train a 

generator. In this approach, the discriminator network is an auto- 

encoder and the generator architecture is the same as the de- 

coder part of the discriminator. The encoder and decoder parts are 

shown in Fig. A.1 and Fig. A.2 , respectively. 

In the encoder, all kernels are 3 × 3 and ELU [25] nonlinearity 

is used in all layers apart from the red layers where the kernel size 

is 1 × 1 and no nonlinearities are employed. Also no non-linearity 

is applied to the fully connected layers. In the decoder network, 

all convolutional layers have 64 channels, while in the encoder, the 

number of the channels is gradually increased to 128, 192, and 256 

after each pooling layer. 

Suppose that x is the real data coming from the database, z is 

a sample from the uniformly distributed random space Z , D is the 

auto-encoder function with the loss defined by: 

L ( v ) = | v − D ( v ) | 2 , (A.1) 

where v is the input to the auto-encoder. The objectives for BEGAN 

given by [18] are: 

https://youtu.be/BY9cVZPmgRU
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Fig. A.1. Encoder architecture for BEGAN. 

Fig. A.2. Decoder architecture for BEGAN. 

{ 

L D = L ( x ) − k t .L ( G ( z D ) ) , for θD 

L G = L ( G ( z G ) ) , for θG 

k t+1 = k t + λk ( γL ( x ) − L ( G ( z G ) ) ) , for each training step t 

(A.2) 

where L D is the discriminator loss, L G is the generator loss, G ( v ) is 

the output of the generator for input vector v, γ is the equilibrium 

hyper parameter set to 0.5 in this work, and λk is the learning rate 

for k . The ADAM optimizer is used with learning rates β1 , and β2 , 

equal to 0.0 0 01, 0.5, and 0.999, respectively. BEGAN was trained 

with the Lasagne library on the top of Theano library in Python. 
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