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Finite element simulation and experimental validation 

of fretting wear  

I.R. McColl, J. Ding, S.B. Leen* 

School of Mechanical, Material, Manufacturing Engineering and Management 

 University of Nottingham, UK 

Abstract 

A finite element-based method is presented for simulating both the 

fretting wear and the evolution of fretting variables with number of wear 

cycles in a cylinder-on-flat fretting configuration for application to aeroengine 

transmission components. The method is based on a modified version of 

Archard’s equation and is implemented within a commercial finite element 

code. Fretting tests are employed to determine the coefficient of friction and 

the wear coefficient applicable to the contact configuration and loading 

conditions. The wear simulation technique is incremental in nature and the 

total simulation time has been minimised via mesh and increment size 

optimisation. The predicted wear profiles have been compared with 

profilometer measurements of fretting test scars.  

Keywords: wear, fretting wear, finite element, contact, friction, 

simulation, Super CMV 
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Notation 

a contact half-width  

A apparent contact area 

b width of the flat specimen  

cj minimum gap between the worn surfaces due to the wear of  

 the jth increment 

E Young’s modulus  

h total wear depth 

hi,j wear depth increment at node i for jth wear increment 

hcrit critical wear depth increment 

hm average wear scar depth 

hmax maximum wear scar depth 

H hardness of the material 

k dimensional Archard wear coefficient 

K non-dimensional Archard wear coefficient 

kl local wear coefficient 

Nt total number of wear cycles 

N increment in number of simulation wear cycles 

Ncrit critical value of N for stability 

p0 maximum Hertzian contact pressure  

mailto:s.leen@nottingham.ac.uk
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pi,j  contact pressure at node i for jth wear increment 

p(x) contact pressure as a function of x-position  

P applied normal load 

R radius of contacting surface 

si,j contact slip during a quarter cycle at node i for jth wear increment 

S total (accumulated) slip distance 

t time 

T(t) frictional force at time t 

Tmax maximum frictional force during one fretting cycle 

V total wear volume 

W wear scar width 

x,y rectangular co-ordinates 

yi,j y coordinate of node i at beginning of jth wear increment 

* applied stroke half-amplitude  

 coefficient of friction 

x, y normal stresses on planes perpendicular to the x, y axes 

,  Poisson’s ratio 

 maximum penetration depth used in ABAQUS contact algorithm 

 

Introduction 

Fretting wear is a surface degradation process in which removal of 

material is induced by small-amplitude oscillatory movement between 
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contacting components, such as flexible couplings and splines, jointed 

structures and so on. Analysis of the mechanisms of this type of surface 

damage has been extensively developed [1-4]. The main parameters affecting 

fretting wear are reported to be normal load, slip amplitude, frequency, 

contact geometry, surface roughness and material properties. The “fretting 

map” approach, established by Vingsbo et al. [5] and Vincent et al. [6], has 

shown that fretting damage evolution depends strongly on the fretting regime. 

Debris is also a critical factor influencing fretting wear. It was reported that, 

once debris accumulates on the contact surfaces and forms a compact oxide 

layer, the wear rate is significantly reduced [4]. In recent years, Godet et al. 

developed the theories of third-body tribology [7] and velocity 

accommodation mechanisms [8] to explain the role of wear debris in specific 

fretting conditions.  

Compared with the development of qualitative understanding, 

quantitative assessment of fretting wear is less well advanced. One of the 

difficulties is the absence of a “universal” and well-formulated wear 

model [9]. In addition, it is not clear how to incorporate the effect of wear 

debris into such a quantitative model. For some situations, where wear debris 

is easily eliminated from the contact area and metal-to-metal contact is 

maintained, the influence of the debris can be reasonably neglected. In such 

cases, fretting wear can therefore be regarded as a purely contact-based wear 

problem. Analytical techniques for such problems were developed by 

Korovchinsky [10], Galin [11], Galin and Goryacheva [12], amongst others. 
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Goryacheva et al. [13] proposed an analytical method to simulate fretting wear 

under partial slip conditions for two-dimensional, initially Hertzian 

configurations. In this model, Archard’s equation is applied locally to evaluate 

wear and the gap variation within the slip zones during one cycle. A stepwise 

procedure is then employed to calculate the evolution of the contact 

characteristics as a function of increasing numbers of wear cycles. 

Johansson [14] presented a finite element solution that incorporates a local 

implementation of Archard’s equation to evaluate the change of contact 

geometry and the associated changes in contact pressure. More recently, 

Oqvist [15] presented a study on the numerical simulation of mild wear 

between a cylindrical steel roller and a steel plate in a reciprocating contact 

configuration. Measurements of worn topographies were also obtained and 

good correlation between the numerically predicted and experimentally 

measured worn profiles was established over about 1 million cycles. However, 

little detail on the numerical approach employed, which was based on earlier 

work by Podra and Andersson [16], was provided by Oqvist.  

In this paper, the development and initial validation of a detailed finite 

element model, which simulates the frictional contact behaviour of a cylinder-

on-flat fretting test configuration, is first described. This finite element model 

is then employed, via geometrical updating, as the frictional contact solver for 

an incremental fretting wear simulation tool, which predicts the change of 

geometries (i.e. for both contact surfaces) and the associated evolution of 

salient fretting variables, that is, relative slip, contact pressure and sub-surface 
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stresses, during the wear process. The geometrical updating is based on nodal 

wear depths computed using a modified version of Archard’s equation for 

sliding wear. Important aspects, such as mesh refinement and optimisation of 

numbers of wear cycles per increment, for minimisation of the total simulation 

time, are discussed. Experimental testing of the same fretting configuration 

using a high-strength aerospace steel is also described. The tests employed a 

nitrided against non-nitrided contact pair, as commonly used in aeroengine 

splines, under a range of normal loads, giving rise to different fretting wear 

trends and thereby facilitating experimental validation and interpretation of 

the simulation results. This work forms the basis of a more general fretting 

wear simulation tool for complex three-dimensional geometries, with future 

incorporation of the effects of fretting debris.  

2. Experimental procedure 

2.1 Material and specimens 

The material used in this study was a high-strength alloy steel named 

Super CMV, which is employed in gas turbine aeroengine transmission 

components, such as spline couplings; the composition is shown in Table 1.  

The test materials were initially machined to specimen blanks slightly in 

excess of the required dimension of specimens. Those blanks were heated to 

940C for 45 minutes followed by oil quenching. The surface hardness after 

quenching was around 700HV0.3. The blanks were then tempered at 570C 

for 2 hours and 15 minutes, followed by air-cooling. The final hardness was 



 

 

7 

480-510HV0.3. The heat-treated blanks were finally machined and ground to 

obtain the desired shape and size for the crossed cylinder-on-flat fretting test 

arrangement. Afterwards, the flat specimens were nitrided to enhance the 

surface hardness to about 800HV0.3, following a practice commonly 

employed for improved wear performance of gas turbine aeroengine spline 

couplings.  

Figure 1a shows the topographical features of the flat specimen after 

nitriding. Figure 1b is a cross section view of the nitrided specimen. A ‘white 

layer’ with a thickness of about 6-7m can be seen. This layer has been 

identified as a heterogeneous mixture of ’-(Fe4N) and -(Fe2-3N) phases and 

contains high internal stresses in the transitional regions between the various 

lattice structures [17]. The internal stresses make the white layer very brittle 

so that it can easily spall off during fretting wear, especially under high 

contact loads. The cylindrical specimens were not nitrided.  

2.2 Fretting tests 

The fretting tests were conducted using a crossed cylinder-on-flat 

arrangement as illustrated in Figure 2. The diameter of the cylindrical 

specimens was 12 mm. The flat specimen was rigidly attached to the bed of 

the machine; the cylindrical specimen was driven by an electromagnetic 

vibrator. A linear variable displacement transducer mounted across the 

specimen holders monitored the applied stroke. The stroke was automatically 

maintained constant throughout the tests, except for the initial stages when 

manual adjustment was required. The normal load was applied by dead weight 
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via a lever. During the tests, the tangential friction force was measured by 

strain gauges attached to the drive arm. More detail on this fretting rig can be 

found in [18]. The fretting conditions used in this study are summarised in 

Table 2. 

3 Experimental results 

3.1 Coefficient of friction 

The coefficient of friction (COF), , is defined as the ratio of the 

measured maximum friction force amplitude during one cycle, Tmax, and the 

applied normal load P, as follows: 

 
P

Tmax=  (1) 

Figure 3 shows the change of COF with the number of wear cycles 

under different (normal) contact loads. COF increases rapidly in the initial 

stages of testing, especially under 185 and 500N normal loads. When the 

number of wear cycles exceeds 2000 cycles, COF tends towards a stable 

value. The initially low COF can be attributed to the presence of surface oxide 

films. Once the oxide films are eliminated, metal-metal and/or metal-wear 

particle interactions start, promoting a strong increase in COF. From Figure 3, 

it is also found that the stable COF is reduced with an increase in normal load. 

Specifically, the COF for 185N normal load is the highest at  0.8. It 

decreases to 0.75 and then 0.6 when the normal load is increased to 500 and 

1670N, respectively. This trend is consistent with previous observations [19], 
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and has been attributed to the interfacial shear stress being a function of a 

constant value 0 and a product of mean contact pressure p and the interfacial 

shear stress coefficient  [20].  

3.2 Wear results 

It is well known that the limited wear damage under fretting is difficult 

to measure. In the current study, the wear extent was evaluated from two-

dimensional surface profiles traced using a SURFCOM 200 scanning stylus 

profilometer. In general, a horizontal magnification of 85 and a vertical 

magnification of either 1000 or 2000 were employed. The unworn surfaces 

were used as the reference surface. Compact oxide debris was removed from 

the wear scar surfaces before profiling using 3% HCl solution. There were 

two objectives to the profilometry measurements. First, to obtain appropriate 

estimates of the wear coefficient for input to the wear simulation tool, and 

second, to obtain worn profiles for validation of the numerically predicted 

profiles, as described in Sections 5 and 6. This section describes how the wear 

coefficient was determined and presents a summary of the worn profiles for 

subsequent comparison against the numerical predictions. The simulation tool 

of Section 5 requires a wear coefficient, kl, expressed as the wear per unit 

local slip per unit local contact pressure.  From experimental results it is only 

possible to directly measure the wear coefficient per unit displacement per 

unit normal load.  The latter is the Archard wear coefficient, which is defined 

by:  
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SP

V
k =   (2) 

where, for fretting wear, S, the total accumulated displacement, is equal 

to *4 tN , where * is the displacement amplitude (i.e. half-stroke), V is the 

total wear volume and Nt is total number of wear cycles. 

Direct calculation of the desired wear coefficient requires knowledge of 

the local contact slips and local contact pressures.  As these are not readily 

measurable a modified form of equation (2) was used to determine an 

averaged wear coefficient from the measured wear profiles using: 

 
PN

Wbh
k

t

m

*4
=   (3) 

where W is the wear scar width, b is the width of the flat specimen and 

hm is the average wear scar depth, with respect to x-coordinate.  It should be 

appreciated that this wear coefficient is averaged across a range of contact 

pressures and slips, as well as across an appreciable number of wear cycles, 

and is thus not ideal.  However, its use is necessary until the wear simulation 

tool is sufficiently developed to enable the local contact pressures and slips to 

be calculated from the measured wear profiles.  

 The two-dimensional wear profiles in the fretting (x) direction were 

roughly similar across the width of the flat specimen and along the 

complementary length of the cylindrical specimen, so that, for present 

purposes, a representative measured profile is employed to obtain the 

necessary data for wear coefficient calculation. Figure 2 shows that the width 

of the flat specimen, b, is 10mm. The two-dimensional surface profiles for the 
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flat and cylindrical specimens are shown in Figure 4, corresponding to the 

case of 185N normal load. The mean wear depth of the measured scar, hm, is 

evaluated by averaging a series of ten discrete values of wear depth, hi, at 

different positions along the scar, from the profilometer trace. A maximum 

wear depth for the flat specimen, hmax, is also obtained from the measured 

wear scar profile. 

The wear coefficients for the cases of Table 2 are presented in Figure 5. 

The results are seen to vary with normal load. With respect to the flat 

specimen, the wear coefficient increases with normal load increase from 185N 

to 500N, and decreases when the normal load continues to increase to 1670N. 

However, the coefficients of the cylindrical specimens remain almost constant 

with respect to normal load variation. The effect of normal load on the wear 

coefficient is attributed to (a) the presence of the white layer on the surface of 

the flat specimens, which is brittle and fragments easily under high normal 

loads thus contributing to the measured wear rates, and (b) the different 

tribological behaviour of debris under different contact loads. More detailed 

interpretations on this matter will be presented in future work.  
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4. FE model for fretting contact 

4.1 Development of FE model 

The basis for the fretting wear prediction tool described in the next 

section is a detailed, two-dimensional, finite element model of the fretting test 

geometry. The general purpose, non-linear code, ABAQUS [21], was 

employed for the FE modelling, to facilitate generalization of the present 

approach to more complex applications. The finite element model is shown in 

Figure 6, where the radius of the cylinder is the same as the cylindrical 

specimen in the fretting tests. Two-dimensional, four-node, plane strain 

(linear) elements are employed throughout. The mesh (element size) in the 

contact area is very fine (about 10m) to capture the complicated variation of 

surface and sub-surface stresses and relative slip. The sharp transition from 

coarse mesh, remote from the contact region, to fine mesh, in the contact 

region, is achieved via multi-point constraints (MPCs). This is necessary to 

achieve the correct balance of detailed contact region mesh refinement, for 

modelling microscopic wear depth increments and for accurate prediction of 

the salient fretting variables, and minimal CPU time for the total wear 

simulation, e.g. 18,000 cycles. As discussed below, a typical incremental 

number of wear cycles is about 30, each increment requiring one combined 

normal and tangential loading analysis, so that a total number of 18000 wear 

cycles requires about six hundred individual FE analyses. Optimisation of the 

mesh has led to reductions in total wear simulation time from about six days 

to less than one day. The contact surface interaction is defined via the contact 
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pair approach in ABAQUS, which uses the master-slave algorithm to enforce 

the contact constraints. The nodes on the slave surface are permitted to 

penetrate the master surface by a user-controlled maximum penetration 

depth, . The cylindrical surface is chosen as the slave contact surface and a 

 value of approximately 5m is found to be satisfactory. The basic Coulomb 

friction model with isotropic friction is employed. The frictional contact 

conditions are introduced via the Lagrange multiplier approach, rather than 

the more approximate penalty method, in order to enforce exact sticking (zero 

slip) constraints between the bodies when the equivalent shear stress is less 

than the critical shear stress. During the loading scheme, linear constraint 

equations are employed to ensure uniform displacement of the nodes on the 

top surface of the cylinder. The bottom of the flat substrate is restrained from 

movement in the x and y directions. The elastic modulus and Poisson’s ratio 

of both the cylinder and flat are taken as 200GPa and 0.3, respectively. 

In order to validate the accuracy of the unworn model, comparisons are 

made with the well-known analytical solutions for the Hertzian stress 

distributions [22]. The contact pressure distribution is given: 

 
2

2

1)(
a

x
pxp o −=  (4) 

The half-width of the contact area, a, and the maximum contact 

pressure, p0, are, respectively, given by: 
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where P is the applied normal load and E* is the composite modulus of the 

two contacting bodies. For plane strain conditions the latter is given by: 
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where Ef, Ec are the elastic moduli of the flat and cylindrical bodies, 

respectively, and c, f are the corresponding Poisson’s ratios. R is the relative 

curvature given by:  
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wher Rf and Rc are the radii of the contacting surfaces. Figure 7a shows a 

comparison of p(x) from Equation (4) and the corresponding FE-predicted 

distribution using the mesh of Figure 6. Elasticity theory [22] allows the sub-

surface x and y direction normal stresses along the y-axis (principal stresses) 

to be derived: 

 ( )( ) yyaya
a

po
x 22

2/12222 −++−=
−

  (9) 

 ( ) 2/122 −
+−= ya

a

po
y  (10) 

Figure 7b shows a comparison between the latter stress distributions and 

the corresponding FE predictions. The finite element model is seen to give 

excellent agreement with the analytical solution for all three variables, thus 

indicating satisfactory mesh refinement.  
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4.2 Fretting contact under combined normal and tangential loading 

In the fretting wear tests, the crossed cylinder-against-flat specimens of 

Figure 2 are subjected to fixed normal contact loading with superimposed 

cyclic tangential displacement, for the test data shown in Table 2. This loading 

cycle must therefore be implemented within the FE model in order to permit 

wear calculations. Referring to Figure 6, the loading history for the FE model 

is as follows: a normal load is applied to Point A in the y direction, in one 

analysis step, and then a periodic x-displacement of amplitude * is imposed 

at Point B, in two subsequent analysis steps, introducing an oscillatory 

tangential friction force, T(t), on the contacting surfaces. 

The contact pressure distribution under fretting conditions is consistent 

with the Hertzian solution, since the distribution is independent of the 

tangential load or displacement when the contacting bodies have the same 

Young’s modulus [22]. Note that this is not the case in the presence of wear as 

described in Section 6. It is well known that under fretting conditions the 

actual relative slip between contacting components differs more significantly 

from the applied tangential stroke or displacement than under, for example, 

sliding conditions. It is the relative slip that is employed for fretting wear 

prediction, rather than the applied stroke, even though applied stroke is 

conventionally employed for wear coefficient evaluation from test data. This 

is due to the direct availability of the applied stroke data and the difficulty of 

estimating relative slip for a given test configuration. It is not generally 

possible to obtain the slip distribution analytically for displacement-controlled 
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conditions, although analytical solutions are available for some simplified 

configurations under load control [22]. In any case, the objective of the 

present work is to develop a general tool for application to complex 

geometries such as spline teeth. Figure 8 shows the FE-predicted relationship 

between contact slip, for an applied (at point A) bulk displacement of 2.5m, 

under a range of normal loads. The results demonstrate the evolution from the 

gross slip regime under low normal loads, e.g. 600N to 1000N, to the partial 

slip regime under higher normal loads, e.g. 1200N to 1600N; in both cases, it 

is clear that relative slip at the contact interface is significantly less than the 

applied displacement. The relative slip varies with horizontal position along 

the contact interface, being lower in magnitude at the centre than at the edges 

of contact. This spatial variation of slip gives rise to a corresponding variation 

of local wear depth with horizontal position, as shown below. 

5 Wear simulation method 

5.1. Wear model 

Following the hypothesis of Stowers and Rabinowicz [23] and as 

implemented by Johansson [14], it is assumed here that fretting wear can be 

evaluated by applying Archard’s equation to local contact conditions along a 

differential width of the contact interface. Archard’s equation for sliding wear 

is normally expressed as [24]: 

 
H

P
K

S

V
=  (11) 
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where K is the dimensionless wear coefficient and H is the hardness (MPa) of 

the material. P, S and V have been defined in Section 3. In order to simulate 

the evolution of the contact surface profiles with wear cycles, it is necessary to 

determine the wear depth locally as a function of horizontal contact 

position, x, i.e. at each contact node of the finite element model. Therefore, for 

an infinitesimally small apparent contact area, dA, the increment of wear 

depth, dh, associated with an increment of sliding distance, dS, is determined. 

This can be obtained by applying Equation (11) locally to the area dA and for 

the increment of sliding distance, dS: 

 H

dP
K

dS

dV
=

 (12) 

Then, dividing both sides by dA, the following equation is obtained: 

 
HdA

dP
K

dAdS

dV
=  (13) 

The dP/dA term is the local contact pressure, p(x), while dV/dA is 

simply equal to the required increment of local wear depth, dh, noting that h is 

a function of both horizontal position x and the total local slip distance, S. The 

following equation is thus obtained for the prediction of the increment of local 

wear depth: 

 )(xpk
dS

dh
l=  (14) 

where the quantity K/H is replaced here by kl, the local wear coefficient. 

Unfortunately, the authors are not aware of any existing method for estimating 

kl. Consequently, the best available alternative is to measure an average value 

across the complete contact width, as described in Section 3. Thus, in the 
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present study it is assumed that kl ≈ k.  The implication of Equation (14) is that 

the incremental wear depth at a given point on the contact is proportional to 

the local wear coefficient, the local contact pressure and the local increment of 

slip distance. In the numerical prediction of fretting wear described below, 

which may involve either gross slip or partial slip situations, S is assumed to 

be the total local slip distance between the contacting surfaces. Note again that 

k, and thus kl, is obtained using the applied test stroke, which will naturally 

give an underestimate of the wear volume, since the local contact interface 

slip is always less than the applied bulk displacement. The degree of 

underestimation can be expected to decrease with decreasing normal load for 

a given applied stroke, due to the diminishing difference between applied 

stroke and contact slip.  

5.2 Wear modelling procedure 

An automated, incremental, wear simulation tool has been developed 

based on the wear prediction equation of the above section. This section 

describes this development for the cylinder-on-flat test arrangement. An 

important aspect of this work is the use of the ABAQUS commercial finite 

element code; its general capabilities facilitate extension to other contact 

geometries, such as flat-on-flat or spline tooth flanks. Figure 9 shows a 

flowchart of the numerical procedure that forms the basis of the simulation 

tool. Once the finite element model of the initial, unworn geometry has been 

generated, the program can be run for any specified number of wear cycles to 

predict the corresponding worn surface profiles and the evolution of surface 
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and sub-surface contact variables. The simulation tool consists of an 

interaction between a special-purpose Fortran program and ABAQUS, 

whereby the FE model is incrementally updated, as described below, 

according to the calculated wear depths, based on the local contact pressure 

and local slip results of the FE analyses.  

The initial parameters required for the wear simulation include contact 

geometry, material properties, normal load, applied stroke and coefficient of 

friction, all of which are defined within the FE model, along with the 

governing parameters for wear modelling, namely wear coefficient kl, the total 

number of wear cycles Nt and the increment in number of wear cycles per 

step, N.  

The total number of wear cycles, Nt, is discretised into n wear 

increments and the increment of wear depth, h, at each contact node on each 

surface is then calculated incrementally, for the specified value of N. The 

choice of a suitable value for N is important for both the stability of the 

simulation and the resulting computational time, as further discussed in 

Section 7. 

Specifically, for the jth wear increment, at a given node i on either 

contact surface, the contact pressure, pi,j, and slip per cycle, 4si,j, are 

determined using the FE model of Section 4. It is assumed that pi,j and si,j are 

constant within a given increment. The increments of wear depth for the flat 

and cylindrical contact surfaces at node i in the jth increment are then given by  
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where the superscripts f and c represent the flat and cylindrical surfaces, 

respectively. Hence, the updated vertical coordinate,
f

jiy 1, + , of node i at the 

start of the j+1th wear increment for the flat surface is given by: 

 
f
ji

f
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f
ji hyy ,,1, −=+  (17) 

and the corresponding updated vertical coordinate for the cylindrical surface is 

given by: 

 j

c

ji

c

ji

c

ji chyy −+=+ ,,1,  (18) 

The jc term is the amount by which the FE model of the cylindrical 

specimen needs to be moved down vertically, i.e. a rigid body movement, to 

ensure that the contact surfaces are initially in contact at the beginning of the 

new wear increment. This term is calculated as follows: 

 ))()min(( ,,,,

f
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f

ji

c

ji

c

jij hyhyc −−+=   (19) 

It represents the minimum gap between the worn surfaces due to the wear of 

the jth increment. Repetition of these calculations for each increment of the 

total number of wear cycles then achieves the required wear simulation.  

One of the most important challenges for the general application of the 

above method to complex three-dimensional components, such as aeroengine 

spline couplings, e.g. see [25], where fretting wear assessment is critical to 

component design optimisation, is the minimisation of the wear simulation 

times. This is achieved here via a number of different aspects, including mesh 
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optimisation (see above) and wear increment optimisation (see below). 

Assessment of the slip distributions during the different stages of the 

tangential force-displacement cycle has established that the total slip distance 

for the complete cycle can be satisfactorily estimated from the slip distance, 

si,j, corresponding to the application of the positive tangential displacement 

only. Although initial development work was based on slip estimates obtained 

from incremental simulation of both the positive and negative tangential 

displacements, the use of si,j gives a significant saving of 67% on simulation 

time. This saving is simply due to the observation that it is not necessary to 

simulate the negative tangential displacement increment to get accurate 

contact slip estimates for the complete cycle, which in turn results from the 

near geometrical symmetry of the connection, even in the worn condition.  

6. Results 

6.1 Predicted wear profiles 

The latter approach has been applied for the loading conditions of 

Table 2. The coefficient of friction and the wear coefficient for each load are 

given in Section 3 and these values are employed in the respective wear 

simulations. Figure 10 shows the FE-predicted evolution of the contact 

surface profiles with increasing fretting wear cycles, for the case of 185N 

normal load. It is found that as fretting wear proceeds, a wear scar develops in 

the flat surface while the shape of the round surface is also modified. The 

contact tends towards conforming, with similar radii on both surfaces.  
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The numerically predicted worn surface profiles of the flat specimens 

after 18,000 cycles have been compared with experimental results for all three 

cases and are presented in Figure 11. The predicted values of scar width and 

maximum wear depth, together with corresponding experimental results, are 

presented in Table 3. For the low normal load case of 185N, the predicted and 

measured results are seen to correlate closely. For the 500N and 1670N cases, 

the wear scar widths are seen to be over-predicted, by 34% and 16%, 

respectively, while the maximum wear depths are under-predicted, by 44% 

and 25%, respectively.  

Figure 12 shows a comparison between the wear volumes predicted 

using: (i) the current wear simulation tool, which employs local contact slip, 

and (ii) Archard’s equation, directly, which uses the applied stroke. The wear 

volume is plotted against the number of fretting cycles for the three different 

normal loads. For the 185N load, the Archard equation approach gives very 

similar results to the wear simulation approach, whereas under the higher 

loads the disparity is seen to increase with increasing load. For the 1670N 

case, the difference is about 15%. Note that the Archard wear coefficient is 

calculated in terms of the worn surface profile at 18,000 wear cycles. Thus, it 

can be concluded that the local contact slip-based approach gives rather good 

wear volume prediction for low normal loads but underestimates the wear 

volumes for high normal loads.  This is further discussed below.  
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6.2 Evolution of contact variables 

Figure 13 shows the FE predicted evolution of the half contact width 

with increasing wear cycles, for the three load cases of Table 2. The predicted 

width for the unworn geometry is consistent with the Hertzian solution. 

However, as fretting wear proceeds, the width is obviously modified. There is 

a rapid increase in contact width over the first 2000 cycles, followed by a 

gradual reduction in the rate of increase. For subsequent cycles, the contact 

width continues to increase but at a slower rate.  

The contact pressure distribution evolves concomitantly with the 

changes of contact width. Figure 14 shows the FE predicted evolution of the 

contact pressure distribution with increasing wear cycles, for the 185N normal 

load; these distributions correspond to the zero tangential displacement 

position in the fretting cycle. The peak pressure continuously decreases as the 

distribution along the contact width finally tends towards uniform. The 

variation of peak pressure for all three cases is demonstrated in Figure 15. 

There is a dramatic reduction in peak pressure during the first thousand 

cycles, followed by a significantly more gradual reduction over the 

subsequent 17,000 cycles. After 18,000 cycles, the peak pressures for all three 

cases are predicted to have reduced to less than 30% of their initial values.  

Figure 16b shows the variation of predicted contact pressure distribution 

for the set of discrete displacements, A, B, C, D and E, as shown in 

Figure 16a, during the applied tangential displacement cycle of the 18000th 

wear cycle. It is clear that there is a significant variation of contact pressure at 
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any given position along the contact width during this cycle. Initial 

development work on the present wear simulation approach was based on the 

use of such instantaneous local pressures and the corresponding local slip 

values for the wear depth calculations. Comparison against wear simulation 

results based on the use of a ‘representative’ local contact pressure and 

corresponding local slip value, where the ‘representative’ value was taken as 

the zero tangential displacement value, established that the results agreed to 

within 5% for the 18,000 wear cycle case. The use of this ‘representative’ 

pressure improves the computational efficiency significantly, reducing the 

simulation time by approximately 60%. Consequently, the approach of 

Section 5 is based on the use of the ‘representative’ contact pressure.  

Figure 17 shows the evolution of contact slip, corresponding to the 

positive tangential displacement point of the fretting cycle (point B of 

Figure 16a), from the initial unworn case to the worn case, after 18,000 

fretting cycles. Note the significant increase in contact width from less than 

0.1 mm to about 0.5 mm, as also shown in Figure 13. The slip amplitude, 

which is predicted to increase by less than 1m, is however only negligibly 

affected by the wear damage. This small increase is attributed to the decrease 

in the contact pressure. 

7. Discussion 

The advantage of the present approach to fretting wear simulation is that 

it is based on the use of a commercial FE code and the implementation of the 

wear simulation tool only requires the development of an additional program 
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to interact with the FE code, via modification of the model input and 

processing of the analysis output, to apply the wear depth equations of 

Section 5, although such a program also needs some built-in intelligence, as 

described in the paper. The use of a commercial code as the frictional contact 

solver part of the tool facilitates generalisation to more complex components, 

as mentioned above, such as three-dimensional contact geometries and 

couplings, both for industrial application, to predict the wear-limited service 

life of such components, and also for academic research purposes, to assess, 

for example, the interaction between fretting wear and crack nucleation in 

laboratory test configurations. The method is obviously flexible and can be 

easily transferred into in-house design procedures or other FE codes to assess 

wear damage and associated changes in stress field. The use of a commercial 

code also facilitates extension or coupling to simulate related failure 

phenomena, such as fracture mechanics and crack growth.  

One of the most important aspects dealt with throughout the paper is the 

need for optimisation with respect to computational cost without sacrificing 

accuracy. Three main techniques related to this described so far are: (i) mesh 

optimisation, via mesh refinement MPCs and judicious mesh refinement; (ii) 

the use of symmetry of the tangential force-displacement loop with respect to 

contact slip, to circumvent simulation of the complete tangential part of each 

fretting cycle; (iii) the use of ‘representative’ contact pressure and slip values 

in place of the instantaneous values throughout the tangential cycle.  
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Another obvious method of reducing the simulation time is to employ a 

larger value for N. However, it is found that if N exceeds a critical value, 

Ncrit, the results become unstable, as shown in Figure 18. In this case, the 

instability occurs after only 200 cycles, but clearly the consequences are 

greater if significant computational time has been invested in a greater number 

of simulated cycles. Similar stability problems were also found in the 

numerical approaches proposed by Johansson [14] and Oqvist [15]. Ncrit is 

found to depend on a number of different input parameters, including normal 

load, stroke or slip and wear coefficient. For example, for the case of a normal 

load of 1200N, with a COF of 0.6, a stroke of 20m and a wear coefficient of 

110-8MPa-1, Ncrit is approximately equal to 30. However, it is not 

satisfactory to have to determine Ncrit iteratively for every load case. 

Fortunately, the stability problem is more directly interpreted in terms of a 

maximum allowed wear depth per increment, hcrit, which is independent of 

contact load, stroke/slip and wear coefficient and which, if exceeded, is the 

cause of the instability, via the contact algorithm of the FE code. In a given 

wear simulation, due to the decreasing contact pressure and the negligible 

change of contact slip with increasing N, the value of h correspondingly 

decreases continuously. The approach recommended here is to determine 

hcrit for one load case and then to determine the stable N for other load case 

simulations, using trial and error, by comparing the corresponding initial h to 

hcrit. Figure 19 shows how hcrit can be determined for one load case. For the 

chosen load conditions, wear simulations are carried out with a series of 
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decreasing N values, until instability occurs; it has been found that if 

instability is to occur, it will do so within the first ten wear increments. A N 

value is thus obtained for which instability does not occur and the h value 

corresponding to this N is then taken as hcrit. To ensure against instability 

for other loading conditions, it is then only necessary to check the initial value 

of h, for a chosen N, against hcrit. The latter approach can prevent 

instability but at the cost of increased computation. Oqvist [15] suggested a 

simple method to balance the simulation time and the stability, by introducing 

a varying N. This method has also been successfully implemented here.  

The comparisons of Figures 11 and 12 and Table 3 show that, as the 

normal load increases, the FE-based approach underestimates the wear 

volume, by under-predicting the maximum wear depth and over-predicting the 

wear scar width. An explanation is that there is less difference between the 

applied displacement and the calculated contact slip for low normal loads. The 

fact that contact slip decreases with increasing normal load under the same 

applied stroke has been schematically demonstrated in Figure 8 and since it 

was necessary to employ applied stroke for estimation of the wear coefficient 

(Section 3), the wear damage, based on contact slip, naturally under-estimates 

wear volume. For the low normal load, this under-estimation is small so that 

close correlation is obtained. The depth under-predictions for high normal 

loads are considered to be due to debris effects, caused by the experimentally-

observed debris retention on the cylindrical surface, which in turn causes 
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increased contact pressure and decreased contact slip, and thus increased wear 

depth, at the centre of the contact scar.  

Figure 20 shows a comparison of the measured and predicted loop for 

the 18000th cycle for the 185N case. Two main differences are observed 

between the measured and predicted loops. The first is larger inclination of the 

measured hysteresis loop, reflecting the tangential compliance of the system. 

The second difference is that the width of the measured loop is smaller than 

the predicted one. Preliminary calculations have established that applied 

normal and tangential loads do not give rise to von Mises stresses in excess of 

the yield stress, so that these differences cannot be attributed to plastic yield. 

According to Vincent [26], the loop width can be regarded as being 

approximately equal to an averaged measure of the half-cycle relative slip. 

This suggests, referring to Figure 20, that the measured slip value is less than 

the FE-predicted value. This difference can be explained in terms of the 

displacement accommodation of the fretting system. The velocity 

accommodation model proposed by Godet [8] shows that in a real 

(experimental) fretting system, the imposed displacement 2* can be partially 

accommodated by deformation of the contacting bodies, the third body 

(debris) and the associated interfaces. This suggests that the FE model 

employed needs to be enhanced in order to simulate more realistically the 

fretting conditions. Additional work is required to understand and simulate the 

mechanical behaviour of the debris and its effect on displacement (velocity) 

accommodation. This will permit better matching of the predicted and 
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measured T- loops and thus also quantitative identification of the effect of 

debris on fretting wear damage. 

Ultimately, following this future work on incorporation of debris effects, 

it is anticipated that comparisons between simulation results and measured 

results will permit estimation of the local wear coefficient, kl. The availability 

of such a local wear coefficient, independent of contact geometry and 

operating conditions, will facilitate general application to new contact 

geometries and conditions.  

The present paper has considered gross slip situations only. The issues 

of partial slip, where the contact region is divided into the stick and slip zones, 

has been dealt with in another paper.  

8. Conclusions 

An incremental method for fretting wear simulation, based on a 

modified Archard equation, has been applied to a series of gross slip cylinder-

on-flat tests on a high-strength, alloy steel for aeroengine applications. The 

measured and predicted worn surface profiles were found to correlate well for 

the low normal load case. Under high normal loads, the predicted maximum 

wear depth was under-estimated and the width of the scar was over-estimated. 

The differences are attributed to the use of stroke for wear coefficient 

calculation and the effect of debris, which was not modelled.  

During the first 1000 wear cycles, the half contact width increases 

significantly, by about 100%, while the peak contact pressure decrease 

dramatically to about 40% of the initial peak Hertzian value; subsequent 
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changes in these variables are at a slower rate. The contact pressure 

distribution was shown to evolve to a uniform distribution across the 

increased contact width. The slip between the contacting bodies was shown to 

increase slightly with wear, concomitant with the decreasing contact pressure.  

A number of techniques for minimisation of the total simulation time 

were discussed including (i) mesh optimisation, (ii) the informed use of 

‘representative’ contact pressure and slip values, to circumvent simulation of 

the full fretting cycle, and (iii) optimization of N, the increment in number of 

simulation wear cycles. A critical incremental wear depth technique for 

avoidance of stability problems associated with incorrect choice of N has 

been presented.  

Differences between the measured and predicted tangential force-

displacement loops, and the associated slip values, have been interpreted in 

terms of the displacement accommodation effects of debris.  
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Table 1 Composition of Super CMV (wt.%).  

 

C Si Mn P S Cr Mo Ni V Fe 
0.35-

0.43 

0.1-0.35 0.4-0.7 <0.007 <0.002 3.0-3.5 0.8-

1.10 

<0.3 0.15-

0.25 

Remainder 

  

 

Table 2 Fretting test conditions 

Normal load 

Initial maximum Hertzian stress 

Stroke 

Frequency 

Total number of wear cycles 

Room temperature 

Relative humidity 

185, 500,1670 N 

336, 550, 1000 MPa 

50 m 

20 Hz 

18,000  

14-20C 

40-50% 

 

 

Table 3 Comparison of FE prediction and experimental results for wear scar 

on the flat specimen after 18,000 wear cycle. Stroke is 50m. 

Normal load 

(N) 

Scar width (mm) Max. wear depth (m) 

measured predicted measured predicted 

185 0.54 0.52 2.9 3.0 

500 0.59 0.79 15.0 8.4 

1670 0.75 0.87 15.6 11.7 
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(b) 

Figure 1 SEM micrographs of nitrided flat specimen showing (a) plan view 

and (b) cross-section view, including white layer.  
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Figure 2 Schematic crossed round-against-flat specimen arrangement 
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Figure 3 Coefficient of friction versus number of fretting wear cycles. Stroke 

50 m, frequency 20 Hz.  
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(b) cylindrical specimen 

Figure 4 Measured two-dimensional surface profiles of unworn and worn flat 

and cylindrical specimen for 185 N normal load case.  
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Figure 5 Wear coefficients for the different normal loads.  
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Figure 6. Finite element model for cylinder-on-flat configuration. 
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(b) 

Figure 7 Comparison of Hertzian problem from FE prediction and analytical 

solution for (a) distribution of contact pressure and (b) subsurface stress along 

Y axis under a normal load of 1200 N.   
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Figure 8 Comparison of slip distributions for a range of normal loads, with the 

same applied displacement of 2.5 m. 
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Modified Archard equation:
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• Number of cycles per
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No

Update nodal co-

ordinates and revise

FE model

(FORTRAN)

Yes

Output results

N < Nt

 
 

Figure 9 Flow chart of the numerical method for modelling fretting wear 
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Figure 10 Predicted wear profiles for (a) cylindrical and (b) flat specimens 

under 185 N normal load case, for different numbers of wear cycles N.  



 

 

47 

-20

-15

-10

-5

0

5

10

15

-1000 -500 0 500 1000

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

Predicted

Measured

Horizontal position (m)

D
ep

th
 (


m
)

 
(a) 

      

-2 0

-1 5

-1 0

-5

0

5

1 0

1 5

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

-20

-15

-10

-5

0

5

10

15

-1000 -500 0 500 1000

 
 

(b) 

     

-20

-15

-10

-5

0

5

10

15

-1000 -500 0 500 1000-20

-15

-10

-5

0

5

10

15

0 500 1000 1500 2000  
 (c) 

 

Figure 11 Comparison of FE prediction and experimental results for worn 

surface profiles of the flat specimen, after 18,000 wear cycle, at (a) 185N 

normal load, (b) 500N normal load and (c) 1670N normal load. Stroke is 

50m.  
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Figure 12 Comparisons of predicted wear volumes and Archard’s solutions 

under different normal loads.  
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Figure 13 Evolutions of half contact widths with increasing number of wear 

cycles, N, for the different normal loads. 
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Figure 14 Predicted evolution of contact pressure with increasing number of 

wear cycles, N, under 185 N normal load case. 
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Figure 15 Evolutions of peak pressures with increasing number of wear 

cycles, N, for the different normal loads. 
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(b) 

Figure 16 (a) variation of the applied tangential displacement with time and 

(b)variation of contact pressure with the applied tangential displacement, 

during 18,000th wear cycle under 185 N normal load case. 
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Figure 17 Predicted change of relative slip distribution due to wear damage 

under 185 N normal load case. 
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(b) 

Figure 18 Effect of incremental number of fretting cycles per solution step, 

N on (a) the worn profile of the flat specimen and (b) contact pressure. Total 

simulation number of cycles 200, coefficient of friction 0.6, normal load 120 

N and stroke 20 m.    
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Figure 19. Influence of incremental wear depth, h on computational stability. 

 



 

 

56 

 

-200

-150

-100

-50

0

50

100

150

200

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

Displacement (mm)

T
a

n
g

e
ti

a
l 
fo

rc
e

 (
N

)
Measured

FE

 
Figure 20. Comparison of the FE predicted and experimental measured 

tangential force versus displacement loops for 18000th wear cycle with a 

normal load of 185 N and an applied stroke of 50 m. 
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