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Abstract 

Objectives: In patients with resectable pancreatic ductal adenocarcinoma (PDAC), 

there are few strictly pre-operative prognostic biomarkers available to guide therapy 

decisions. Radiomics has demonstrated potential prognostic value but it lacks 

external validation. We aimed to develop and externally validate a pre-operative 

clinical-radiomic prognostic model for PDAC. 

Methods: This was a retrospective international, multi-center study in patients with 

resectable PDAC who underwent pre-operative contrast-enhanced CT. Patients who 

received neoadjuvant therapy were excluded. The training cohort consisted of 352 

patients who underwent CTs at five Toronto hospitals and subsequent resection at 

Toronto General Hospital, Toronto, Canada. The external test cohort consistent of 

215 patients who underwent resection at a St Vincent’s University Hospital, Dublin, 

following pre-operative CTs performed at 34 Irish hospitals.  Segmentation was 

performed using 3d Slicer v 4.11.2. Then 116 radiomic features were extracted using 

the PyRadiomics 3.0 library. Pre-operative Cox proportional hazard models 

incorporated (a) clinical factors (clinical), (b) clinical plus radiomics features (clinical-

radiomic) and (c) a post-operative model incorporating pathological findings (TNM), 

which served as the reference standard. Outcomes were overall (OS) and disease-

free survival (DFS). Model discrimination and calibration were assessed using 

concordance index (C-index), calibration plots and mean calibration error. A 

previously validated statistical tool for batch-effect correction (Combat) was used in 

an attempt to mitigate the impact of variation in CT scanner protocols between the 

multiple study sites. 

Results:  In the validation cohort, the Radiomic signature was predictive of OS / DFS, 

with adjusted hazard ratios (HR) of 2.87 (95% CI: 1.40-5.87, p<0.001) / 5.28 (95% CI 

2.35-11.86, p<0.001) respectively, along with age 1.02 (1.01-1.04, p=0.01) / 1.02 

(1.00-1.04, p=0.03). No other clinical features were significantly associated with OS 

and DFS. Median OS was 22.9 versus 37 months (p=0.0092) and DFS 14.2 versus 29.8 
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(p=0.0023) for the high versus low-risk groups in the external cohort. Calibration was 

moderate in the external cohort, with mean absolute error 7% and 13% for OS at 3 

and 5 years respectively. The clinical-radiomic model demonstrated better 

discrimination for OS in the external cohort (C-index 0.545, 95%: 0.543-0.546) than 

the clinical model alone (0.497 95% CI 0.496-0.499, p<0.001) or the post-operative 

TNM model (0.525 95% CI: 0.524-0.526, p<0.001). Implementation of Combat to 

mitigate the impact of multi-institutional variation in CT acquisition parameters did 

not improve discrimination results. In decision curve analysis, despite superior net 

benefit compared to clinical model, the clinical-radiomic model was not clinically 

useful for most threshold probabilities.  TNM demonstrated the highest net benefit 

of the three models. 

Conclusion: A pre-operative model containing clinical variables and radiomics 

significantly improved prognostication of patients with resectable PDAC compared 

to using clinical information alone and it generalized to a large external dataset. 

Performance was similar to using pathological data (TNM), which are only available 

post-operatively. Despite superior performance compared to the clinical model, 

discrimination and clinical utility are suboptimal. This likely reflects inherent 

limitations of radiomics for PDAC prognostication, when deployed in real-world 

settings. Future work should focus upon standardization of CT acquisition protocols.  
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Chapter 1 – Introduction to Artificial Intelligence in Medical Imaging 

“Images Are More than Pictures, They Are Data” 

Gillies et al 2016 [1] 

1.1 Current Radiology practice. 

Radiology is the interpretation of medical imaging for the purposes of detection, 

diagnosis, follow-up and therapy of disease. This is performed by visual inspection of 

images by a radiologist, traditionally using printed images on radiology films, but 

more recently using digital images on computer screens. If we take the example of a 

tumour, the radiologist would use anatomical descriptions such as location, size, 

shape and relationship to surrounding structures. As radiology modalities have 

advanced, several additional methods for interrogation of body tissues have 

emerged, allowing the radiologist to comment on characteristics such as contrast 

enhancement pattern, metabolic activity (with nuclear medicine imaging) and 

microscopic attributes such the ability of water molecules to diffuse within a tissue 

on a Magnetic Resonance Imaging study. More recently, advanced computing and 

statistical techniques have evolved to potentially allow another level of tissue 

assessment. These techniques can potentially identify characteristics within the 

images which are not visible to the human eye, thereby providing additional 

biomarkers to aid the reporting Radiologist and Clinicians in decision making. The 

goal is to achieve the complete characterisation of tissues from radiology studies, 

therefore facilitating a ‘non-invasive biopsy’ [2] of tissues, with multiple advantages 

including patient safety and convenience, ease of repeatability to assess changes 

over time and sampling of the entire tissues/tumours rather than the small samples 

obtained from current needle biopsy techniques. These methods also hold the 

promise of a more personalised approach to medical care, a concept which is 

supported by multiple medical organisations worldwide, most notably the National 
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Institutes of Health (NIH) in the United States, which leads the Precision Medicine 

Initiative [3]. 

 

1.2 Artificial intelligence, machine learning and Radiomics. 

‘Any sufficiently advanced technology is indistinguishable from magic’ 

Arthur C. Clarke 

There has been increased use of computers in medicine since at least the 1960s [4, 

5], but there has been a significant shift towards research in Artificial intelligence 

(AI) over the past 15-20 years. AI is a general term, first coined by John McCarthy in 

1956 [6], which describes computer systems that can perform tasks normally 

requiring human intelligence [7]. Machine Learning (ML) is a subdivision of AI, where 

computer systems learn from exposure to labelled data. An ML algorithm is ‘trained’ 

by exposure to such data and it creates a mathematical function (equation) to fit the 

inputs (for example patients age, sex and smoking status) to the outputs (for 

example survival time post treatment). It does this by making a prediction (guess) 

which it then compares to the truth (label) and the makes adjustments to the 

algorithm in order to narrow the gap between prediction and truth. This process is 

repeated multiple times, to optimise the performance. Once training has taken place 

in a large dataset, the ML algorithm can then make predictions when exposed to 

previously unseen and unlabelled test data, with varying degrees of accuracy. 

Therefore, ML is simply a statistical method which is automated and at large scale.  

Examples of frequently used ML methods are Support Vector Machines, Decision 

Trees and Random Forests, but many experts also consider more commonplace 

statistical techniques such as linear or logistic regression to be basic forms of 

machine learning.  

The data labels for AI are also referred to as the ground truth. They may take many 

forms, for example medical images may be labelled with patient survival time, 
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pathological tumour grade or manual segmentations (contours) of organs 

performed by a radiologist. In medical imaging, the data to which the ML algorithms 

are exposed must be defined in some way by an intermediate step, for example 

certain characteristics of a tumour (such as mean CT attenuation) on an image must 

be defined by a human [8] or using a rule-based system before the ML algorithm can 

start training using this data.  This is in contrast to Deep Learning (DL), which is a 

more complex subdivision of ML, where neural networks with multiple layers can 

learn from the unprocessed data (i.e., the raw CT images from a patient). This 

unprocessed data may be accompanied by a label, which is called supervised 

learning or it may be unlabelled, which is called unsupervised learning. DL 

algorithms in medical imaging identify the image characteristics relevant to the task 

at hand de novo during the training process, hence they construct their own custom 

image features and the algorithms have very limited ability to explain this decision-

making process to humans, hence this technology has sometimes been termed a 

‘black box’ method, which lacks transparency. 

Radiomics is a less complex construct within the field of computer vision. The term 

was first proposed by Lambin et al in 2012 [9] and it combines Rad- (Radiology) with 

-omics, the latter meaning the mining of large volumes of data for precision 

medicine [10]. Radiomics is build upon the foundation of ‘texture analysis’ [5] and it 

involves extracting multiple predefined images characteristics, called radiomic 

features, from a medical image. These radiomic features are statistical 

representations which describe various facets of intensity, shape and texture of an 

image, typically of a particular body tissue, such as an organ or tumour. The features 

are defined by mathematical formulae. Once a large number of features are 

extracted from the image dataset, analysis is then performed (using classical 

statistics or ML) to identify a specific radiomic feature or group of features which are 

associated with an outcome of interest, such as a genetic profile or patient survival 

time. Hence, radiology images are converted from qualitative pictures into a dataset 

of quantitative imaging biomarkers, expressed as numbers on a continuous scale.  
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It is intended that radiomics should be performed on routine, standard of care 

images [1], thus potentially opening up the entire backlog of imaging available on 

the Picture Archiving and Communication Systems (PACS) of hospitals worldwide, 

subject to ethics oversight and approval.  Multiple studies have demonstrated that 

radiomic features can act as biomarkers for underlying biological processes or 

patient outcomes in a variety of diseases [7], however there are no examples (to the 

best of our knowledge) where a radiomic method has been deployed for clinical use 

outside of a research setting. Radiomic research is expanding yearly, as evidenced by 

a PubMed search for ‘Radiomics’ for the years 2017, 2018, 2019 and 2020, which 

returns results of 254, 519, 898 and 1,474 publications respectively.  

When approaching a task in computer vision, the decision to choose between 

different approaches (ML vs DL vs Radiomics) depends on the availability of labeled 

data, statistical methods appropriate for the domain and requirement for 

‘explainability’ of the result. Some investigators have combined ML, Radiomics and 

DL methods together, for example a number of studies have fed radiomic features 

values extracted from medical images into a Random Forest ML algorithm [11-13] in 

order to classify outcomes (rather than using more classic linear statistics methods 

such as regression analysis), while other groups have combined radiomic and DL 

features together to predict outcomes [14, 15]. 

 

1.3. Data for AI: Training and validation. 

In popular culture and the media, the focus is typically on the algorithm 

architectures used for AI (well known examples include ResNet and AlexNet), 

however it is important to remember that an AI method is only as good as the data 

upon which it is trained. The ideal training datasets for AI training are very large, 

multicenter, high quality, with accurate and relevant labels [16]. It has been shown 

that studies with larger population produce more reliable results and identify a 

significantly higher number of predictor features associated with the study 
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outcomes [17] however there are barriers to generating such databases, including 

ethical and legal barriers to accessing patient data [18, 19], we well as the significant 

labour required to curate and accurately label such datasets.  

A key challenge for AI is generalizability i.e., the successful deployment of an 

algorithm or radiomics signature using an independent cohort of patients from a 

different clinic/hospital to where the algorithm was trained, which provides an 

unbiased assessment of the model performance. Guidelines advocate that novel 

algorithms should be validated in external test datasets prior to clinical 

implementation [20], however, less than 10% of AI studies currently report this level 

of testing [21] and there are many commercially available medical imaging AI 

products which lack such evidence [22]. This deficit in the literature is likely due to 

factors including (1) difficulty in obtaining suitable datasets, (2) bias from funders 

and journals towards novelty over the more mundane task of study 

replication/validation [23] and (3) the short term goals/deadlines in most research 

groups [23]. Many researchers therefore use internal validation methods, based on 

data from the same institution as the training data, using a hold-out test set (where 

they divide their patient dataset into a training set and a test set, typically using a 

ratio of 70:30) or temporal validation (where the test set is from the same source as 

the training data but from a different time period). More technically advanced 

options are cross-validation (e.g., leave one out or k-fold cross validation) or 

bootstrap resampling. While these advanced methods are better than split samples 

at counteracting overfitting, the algorithms are still being validated on the same 

data which was used for training and hence they cannot account for true differences 

between populations (difference demographics, disease prevalence, treatment 

practices etc.) [20]. Hence, interval validation methods can often report 

overoptimistic performance and therefore external validation is the gold standard 

[2, 24]. For those AI studies which have performed external validation, several have 

shown a considerable performance drop compared to the training data [25, 26]. A 

well publicised example of this phenomenon is the disappointing 2020 results from 
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the clinical deployment of Google’s retina scanning algorithm for diabetic 

retinopathy; despite excellent performance in the lab (90% accuracy) and an 

approved European CE mark, performance was hampered during clinical 

deployment by simple factors such as poor ambient lighting in the room where the 

images were being acquired [27]. Therefore, all internal validation methods are 

considered inferior to external validation [20, 28] and the continued reporting of 

such internal performance metrics, particularly by large technology companies, has 

been derided as ‘Silicon vally-dation’ by medtech experts such as Dr Eric Topol [29].  

 

1.4. Radiomics: Pipeline overview. 

The general overview of a Radiomics study pipeline is as follows: 

(1) Identify relevant imaging studies and associated clinical data. 

(2) Segmentation of the area of interest: A region of interest is created by 

manual, semi-automatic or automated methods. The area of interest may 

be a tumour, organ or portion of an organ. 

(3) Feature extraction. 

(4) Feature selection/dimensionality reduction: using classic statistics, 

machine learning and/or neural networks. 

(5) Build the model to predict the outcome of interest, for example patient 

survival. 

(6) Test the model using internal and external validation methods. 

 

1.5. Radiomics: Features. 

Analysis of texture in images for the purposes of classification initially emerged in 

the 1970’s engineering literature [30] but medical applications were not considered 

at that time. The technology has matured over the decades since and there are now 

120 radiomic features for medical imaging which have undergone robust 



Chapter 1 – Introduction to Artificial Intelligence in Medical Imaging 

16 
 

standardization and reproducibility assessment by the Imaging Biomarker 

Standardisation Initiative (IBSI) [31]. These features are defined in a library which is 

freely available online [32].  Their number can be expanded into more than a 

thousand variables by the application of filters, for example a square root filter, 

which converts the image intensity values into their square root values before 

feature extraction. However, these filtered features have not been standardized by 

the IBSI [31] and the scientific rationale for applying these filters is not clear.  

Radiomic features are grouped into those relating to: (1) shape (n=26), (2) 

distribution of intensities throughout the region of interest (called first order 

features, n=19) and (3) relationship of voxel intensities to each other in space (called 

second order features, n=75). Examples of shape features include maximum-2D-

diameter and perimeter-to-surface-ratio. First order features include median, 

maximum and minimum attenuation. An example of a second order radiomic 

feature is ‘coarseness’, which is part of the Neighbouring Gray Tone Difference 

Matrix (NGTDM) family of second order features. NGTDM_ coarseness is defined as 

a ‘measure of average difference between the center voxel and its neighbourhood’ 

and is an indication of the spatial rate of change. A higher value indicates a ‘lower 

spatial change rate and a locally more uniform texture’ [31]. It has the following 

formula, reproduced from the Pyradiomics library [33]: 

 

∑ = Sum of 𝑃𝑖𝑆𝑖, from values 𝑖 = 1 to 𝑖 = 𝑁𝑔
𝑁𝑔
𝑖=1 . i=grey level value. Ng is the 

number of discrete gray levels. Xgl = a set of segmented voxels. Ni is the number of 

voxels in Xgl with gray level i.  Nv = the number of voxels with a valid region; at least 1 neighbor. Pi = 

the gray level probability which is equal to ni/Nv. Si = the sum of absolute differences 

for gray level i. 
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The first and second order features all depend upon the intensities of the pixels in 

the image. In computed tomography (CT) the pixel intensity is called the gray level 

and it is measured in Hounsfield units (HU).  The HU value depends upon the density 

of the material (e.g. bone vs soft tissue) but also on CT acquisition parameters used 

during that CT scan, such as tube voltage (kVp) [34]. The gray level values are 

calibrated internally (water is 0 HU and air is -1000 HU) and this calibration is 

checked regularly on every scanner as part of routine quality control. This reduces 

(but does not eliminate) the impact of variation in acquisition parameters upon the 

HU pixel values. Such a robust internal calibration does not exist for Magnetic 

Resonance Imaging (MRI), Ultrasound or Positron Emission Tomography (PET) 

studies. Hence, computed Tomography (CT) is the most common modality used in 

radiomics [17] and the fact that CT images are generated based upon a calibration to 

water using Hounsfield Units is an advantage in terms of correlating with underlying 

biology processes, compared to modalities which lack such calibration [5]. 

 

1.6. Radiomics: Biological basis.  

One of the most important goals in radiomics is linkage between the novel 

biomarker(s) and an underlying biological process [35], for example a particular 

radiomic features (or signature of features grouped together) may be associated 

with improved survival for patients with pancreatic cancer, but we would like to 

know if there is a biological meaning of this feature, perhaps correlating to a 

particular genetic mutation in the tumour which could be targeted for therapy [2]. 

Prior to the advent of radiomics, two relevant papers in this area by Segal et al in 

2007 [36] and Diehn et al in 2008 [37] identified significant associations between the 

imaging appearances of tumours and the underlying genetic oncologic mutations, 

although in contrast to radiomics, they used humans (rather than computer vision) 

to identify sematic features on the image, such as the degree of contrast 

enhancement or the presence of necrosis. For example, in the Diehn et al study, 
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they identified an association between brain tumour contrast enhancement and the 

expression of genes related to angiogenesis and tumour hypoxia (VEGF, ADM 

etc.)[37].  

Following the advent of radiomics circa 2012, numerous associations between 

radiomic signatures and tumour biology have been identified across a range of 

disease states including lung [38], brain [39], breast [40], liver [41] and pancreatic 

cancer [42, 43]. Several studies have defined radiomic models which can predict 

patient survival and subsequently identified the underlying biological meaning of 

this prediction, for example a study in Non-small cell lung cancer in which a clinical-

radiomic model was developed to predict survival, was found to correlate with 

hypoxia-related carbonic anhydrase, a glycoprotein induced by hypoxia [44]. 

Conversely, some studies have started out with a biological attribute known to 

influence survival and then created a radiomic model to predict this biological 

characteristic. This approach was taken in a study of glioblastoma, where they 

created a model to predict tissue hypoxia. They then confirmed that this radiomic 

signature could predict survival [45]. Some authors have even attempted to create 

artificial CT images from digital pathology slides, in order to explore the biological 

connection between imaging appearance and histology, with moderate success [46]. 

Such biological correlation can provide confidence in the results of radiomics studies 

[35]. In addition, the potential for non-invasive identification of biological attributes 

may be helpful in novel targeted drug trials in future. 
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1.7. Radiomics: Weaknesses. 

“Radiomics and ML are still in their infancy for healthcare and often not yet ready for 

use in daily clinical practice” 

Cuocolo and Imbriaco 2021 [22] 

Despite considerable success in radiomics research over the past decade, there 

remain several weaknesses within this field which need to be solved before the 

‘translation gap’ between research and routine clinical practice can be narrowed 

[47, 48]. Two 2020 reviews of publication quality in radiomics concluded that studies 

are generally of moderate-to-poor quality [17, 49] and these reviews identified 

issues ranging from poor reporting of study objective in the manuscripts, to more 

significant issues such as lack of external validation [22]. There are specific factors 

which makes it difficult to perform radiomic studies consistently [2] and I will 

address some major issues below: 

1.7.1. Lack of standardization in CT protocols. 

Large volumes of quality input data are key for radiomics research [2, 50] but the 

lack of standardization in the acquisition parameters used to acquire medical 

imaging causes problems [51]. Ideally, standard-of-care imaging should be used in 

radiomics, rather than controlled experimental data, in order to ensure the methods 

are widely applicable to other centres however this means that technical variation is 

common [52]. The utility of radiomic models to analyze medical images is sensitive 

to multiple technical imaging acquisition parameters [1,2][51]. The different 

appearances of a tissue depending upon these parameters do not typically affect the 

qualitative interpretation of clinical radiology examinations by experienced 

radiologists [10] but they can cause significant issues for interpretation by artificial 

intelligence systems. For example, altering the pitch factor or reconstruction kernel 

when acquiring CT images of a phantom can significantly reduce the reproducibility 

of radiomics features values in a test-retest analysis [53].  
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Several normalization methods have been proposed to address this issue, including 

grey scale discretization [54], denoising filters [55] and methods to compensate for 

different CT reconstruction kernels [56] or slice thickness [57] using convolutional 

neural networks (deep learning). Some groups have experimented with general 

adversarial networks for CT image normalisation [58]. One of the most promising 

methods is a batch-effect correction method called ‘ComBat’, which was originally 

developed to adjust for the batch-effect in genetics studies (i.e., taking into account 

that the data can be grouped into batches such as the technician who performed 

the experiment or the CT scanner used, to control for these variables). This method 

has been shown to successfully control for CT technical parameters in phantom 

studies and it is easy to use, since it is available as a package for the statistics 

program ‘R’ [59]. Multiple radiomic studies have found that Combat improved their 

results [60-62]. Such normalization techniques are not required for deep learning 

approaches, since they make these adjustments automatically [10]. 

Inter-observer variation in tumour contouring is another factor which is often raised 

in the literature as a potential confounder [3], however differences in scan 

parameters have been shown to have a larger impact on radiomic features values 

than differences in segmentation technique [63]. 

1.7.2. Lack of standardization in Radiomic software and features. 

There are at least 14 different software packages available to perform radiomic 

analysis [12, 31, 64] and they vary in terms of feature definitions, feature name and 

extraction parameters (for example gray value discretization bin width). Therefore, 

the results from many early studies in this field are difficult to interpret. It is now 

recommended that standardized software packages are used [17] and considerable 

progress has been made in this regard since the formation of the Imaging Biomarker 

Standardization Initiative (IBSI) and the 2020 publication of a standardization paper 

by Zwanenburg et al [31]. This paper was available in pre-print form on arxiv.org 

since 2016. They defined a set of radiomics features, which are available in an online 
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library [32] and a recent study confirmed that compliance with the IBSI standards 

lead to the best reproducibility in radiomics features values [64]. 

 

1.8. Radiomics: Statistics, feature standardization and feature reduction. 

The most commonly reported metric in studies which develop and/or validate risk 

prediction models is discrimination, also referred to as accuracy. This is defined as 

the ability of a model to separate individuals into groups with or without the 

disease/event (i.e., the probability that of two individuals, one with the 

disease/event and the other without the disease/event, will be correctly separated 

into high and low risk groups by the model) [65]. Discrimination depends on how 

much the predictors vary i.e., if there is minimal variance in predictor variables, it 

will be challenging to discriminate between cases [20]. A popular way to report 

discrimination is using the area under the curve (AUC) from a received operator 

curve analysis. This metric is typically used for binary outcomes [20, 66]. In a time-

to-event analysis, discrimination is the probability that the model can identify which 

patient will experience the event (for example death or disease recurrence) sooner 

and concordance Index (C-Index) is a commonly used rank-order statistic used for 

this purpose. It is a development of AUC, adapted for time-to-event analysis. C-index 

has values ranging from 0.5-1, with a value of 0.5 indicating that the model performs 

no better than random chance at the given prediction task [67].  

It has been suggested that AI studies suffer from an ‘AI chasm’ where they rely too 

much on reporting discrimination, whereas this is not the sole determinate of model 

performance [16]. Calibration is another measure which should always be reported 

in model development studies. This is defined as the agreement between the 

observed outcomes and predicted outcomes [68] (or between actual and predicted 

probabilities [67]). Discrimination is not affected by calibration. For example, two 

patients (A and B) may have probability of disease recurrence at one year of 0.2 and 

0.8, respectively. A model may have good discrimination (i.e. it may correctly 
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identify that patient B is high risk and patient A is low risk), however if it is 

miscalibrated, it may report incorrect predicted probabilities, for example 0.02 and 

0.08 for patient A and B respectively. You can see from this example that 

discrimination is not affected by calibration (i.e. patient B still has 4X the risk of 

patient A), but a doctor discussing the prognosis with patient B will grossely 

underestime the risk of disease recurrence as 0.08 rather than 0.8. Calibration 

depends both upon the algorithm itself and the population upon which it is being 

applied (i.e. demonstration of good calibration in one external dataset does not 

mean it will be well calibrated in all external datasets) [20]. One useful aspect of 

calibration is the models can be ‘recalibrated’ to a new population with relative 

ease, simply by adding an additional term to the regression equation.  

In addition to discrimination and calibration, assessment of the clinical utility of 

predictive models has been advocated by the biostatistics community over the past 

10-15 years [69]. When measuring clinical utility, efforts are undertaken to quantify 

the relative harm of false negative and false positive results, since in some clinical 

scenarios, a false negative results may be more harmful to a patient than a false 

positive (or visa versa) [70]. A popular method of assessing clinical utility is to report 

net benefit, which is a measure of true positives penalised for false negatives. This 

can be assessed over a range of risk thresholds using a method called decision curve 

analysis (DCA), which was developed by Vickers et al in 2006 [71]. The risk threshold 

is defined as ‘the minimum probability of disease at which further intervention 

would be warranted’[70]. An example of a risk threshold would be: if a patient or 

clinician was asked at what cancer risk would they decide to perfrom a biopsy; if the 

biopsy had minimal side effects, they may decide to perfom it even at a low risk 

level (<5% predicted risk of cancer), but if the biopsy had higher side effects, they 

may decide not to biopsy it unless the patient’s predicted risk was higher (>10%, 

>15% or >20%). In practical terms, it is difficult to pinpoint a precise threshold at 

which the patient/clinician will make the decision, therefore the decision curves are 

typically plotted for a clinically relevant range of thresolds, for example from 1-40%.  
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DCA was initially developed for binary outcomes, such as cancer vs no cancer on 

prostate biopsy, but has since been adapted for time-to-event analysis, where true 

and false positives are compared at a specific time point (for example 3 or 5 year 

survival) [70]. It has been acknowledged by the developers of DCA that it is not as 

intuitive to understand as a measure of discrimination [72], even to expert 

epidemiologists, however it has very popular in the medical literature and many of 

the of the highest ranked journals in medicine now endorse the use of DCA, 

including JAMA and the BMJ [72]. It must also be highlighted that like any statistical 

test, DCA can show over-optimistic results when internal validation methods are 

used, as opposed to true external validation [70] (discussed more in section 1.3. 

Data for AI: Training and validation).  

Since recent guidelines advise the use of several metrics in model evaluation [2], it 

has been suggested that the level of detail which needs to be provided in the 

methodology section of an AI / radiomics study is more than would typically fit into 

a research manuscript, which has resulted in the increasing use of supplementary 

materials in such publications [73]. 

1.8.1. Feature standardization. 

When radiomic features are extracted from an image, their values will range across 

very different scales, for example the feature ‘original_shape_Elongation’ may have 

values ranging from 0.27-0.99, while the feature ‘original_firstorder_Energy’ may 

range from 36,575-40,150,470. Therefore, a transformation is required to 

standardise the dataset prior to analysis and to ensure that results are comparable 

to other studies. Options for standardization include z-score, min-max and the 

whitening transformation from principal component analysis. All of these methods 

have been shown to improve AUC, sensitivity and accuracy (all of which are related 

metrics), however no one method emerged as the clear ‘best’ method [74]. Z-score 

is the most common used in the literature to date [75-78] and is therefore the 

methods which we have selected for our work. This method involves converting the 

actual features values into standard deviations from the mean, i.e. each features 
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value will be converted into a number which will indicate how many standard 

deviations above or below the mean it is. 

1.8.2. Feature reduction 

Radiomics is a type of ‘high dimensional’ data, meaning that there are a high 

number of predictors, often > 500, which is typically more than the total number of 

patients included in the study. This type of data is common to all ‘omics’ research 

fields including radiomics, genomics, proteomics and metabolomics, some of which 

can generate millions of variables to analyse.  Therefore, complex statistical 

strategies are required to ‘reduce’ the features to a small set relevant for the 

prediction task at hand. This is often referred to a dimensionality reduction. 

Inclusion of a feature reduction step in radiomics analysis is advised by guidelines in 

order to reduce overfitting [2] and may be performed using supervised methods, for 

example least absolute shrinkage and selection operator (LASSO) regression, or 

unsupervised methods including principal component analysis. These methods 

generally function well to prevent overfitting, provided that the study population 

size is sufficiently large [79].  

Multiple radiomic features may be highly correlated with each other, since many of 

them are minor derivations of each other, especially if filters are used (i.e., the 

square root etc.). This must be taken into account in the statistical analysis in 

radiomic studies, since many of the features reduction methods, including LASSO, do 

not address this issue. A major study in radiomics (by Aerts et al) successfully 

created a radiomic signature for survival prediction in both head and neck cancer 

and lung cancer [73] and this worked well despite a large variation in CT parameters 

/ protocols, however a subsequent analysis identified that the four features included 

in the signature were highly correlated with tumour size, hence explaining the 

robustness of the signature [80]. This is a notable result, since tumour size is already 

known to influence patient survival and it has been reported by radiologists for 

decades. If radiomics is to have an additive impact upon survival prediction, it will 
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need to be independent of such pre-existing radiological attributes such as tumour 

size. 
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Chapter 2 - Introduction to Pancreatic Ductal Adenocarcinoma (PDAC) 

2.1. Epidemiology of PDAC. 

Pancreatic ductal adenocarcinoma (PDAC) is the most common cancer arising in the 

pancreas. It is an aggressive disease which is often quite advanced at the time of 

diagnosis and it has a high mortality-to-incidence ratio [1]. The median age at 

diagnosis is 72 and it is more common in men (incidence 11.9 cases per 100,000 per 

year) compared to women (8.7 cases per 100,000 per year)[2]. In the Republic of 

Ireland (henceforward referred to as ‘Ireland’), it is the 9th most commonly 

diagnosed cancer, with an incidence of 11.64 per 100,000 population per year [2], 

compared to 13.5 per 100,000 in Canada [3]. Known risk factors for PDAC include 

advanced age, male sex, smoking, obesity, alcohol consumption and chronic 

pancreatitis [4, 5]. Current treatments are poor and the five year survival rates are 

8.2% in Ireland [2]) and 8% in Canada [3]. Worldwide it is the 7th leading cause of 

cancer related deaths [3], ranking 5th in Ireland [2] and 4th in Canada [6], accounting 

for approximately 6% of all cancer related deaths in both countries. Treatment 

outcomes have improved slowly over the past 40 years (5-year survival has 

increased from 3.1% to 8% during this period [7]) and this is mainly attributed to 

developments in adjuvant chemotherapy [8]. 

 

2.2. Diagnosis of PDAC.  

Pancreatic ductal adenocarcinoma is commonly asymptomatic in the early stages 

and this means that the disease is typically quite advanced at the time of diagnosis, 

for the majority of patients [9]. Symptoms tend to occur late in the disease and 

these include abdominal pain, back pain, nausea, yellow tinged skin/eyes (jaundice) 

and weight loss [10]. Less common presentations include gastrointestinal 

obstruction or bleeding. 
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In all patients with suspected PDAC, radiological imaging is the central component of 

investigation [11] (discussed in detail in the next section) and this may be supported 

by measurement of serum Ca19-9, a blood biomarker which is often elevated in 

PDAC. This is the only biomarker approved for use in PDAC by the United States 

Food and Drug Administration [4, 12].  However, the ultimate diagnosis of PDAC 

must be confirmed on pathology. This pathological confirmation should ideally be 

obtained prior to surgical resection, in order to rule out mimics of PDAC, such as 

autoimmune pancreatitis, however guidelines allow patients to proceed to surgery 

without pathology proof of diagnosis if the imaging is convincing and attempts at 

biopsy are not successful [10, 12, 13]. In patients who are not suitable for surgical 

resection, pathological diagnosis is mandatory prior to chemo/radiotherapy [10]. For 

patients with resectable disease (i.e., localised to the pancreas), sampling of the 

mass is usually performed by endoscopic fine needle aspiration or core biopsy. In 

patients with metastatic disease, the diagnosis is often made from percutaneous 

core biopsy of a metastatic deposit in the liver or peritoneum. 

Screening of asymptomatic patients has been successful in some types of cancer, 

including breast, cervix and colon. Screening with radiological imaging has been 

investigated in PDAC, however it has not been proven beneficial in terms or 

mortality or morbidity [4, 14]. However, there is evidence for the use of CT or MRI in 

screening for PDAC of high-risk individuals, such as those with Peutz–Jeghers 

syndrome or patients with a BRCA 1 or 2 mutation [4, 12, 14]. Ca19-9 does not have 

a role in screening for this malignancy, due to the low positive predictive value [4]. 

Hence, screening is not recommended in asymptomatic individuals [14] and there 

are no formal screening programs for PDAC in any country. 
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2.3. Imaging of PDAC. 

Radiology serves many purposes for patients with pancreatic ductal 

adenocarcinoma including diagnosis, assessment of resectability, staging, 

assessment of response to therapy and follow up post treatment. PDAC lesions may 

be visualised using a variety of non-invasive imaging modalities including ultrasound, 

computed tomography (CT), magnetic resonance imaging (MRI) and nuclear 

medicine studies with as Positron Emission Tomography (PET) [15]. However, 

contrast enhanced CT is the workhorse of PDAC imaging and is the recommended 

modality for assessment of patients with suspected or known PDAC due to its wide 

availability, high spatial resolution, rapid scanning time and excellent patient 

tolerance [10, 12, 13, 16].  

2.3.1. CT pancreas. 

CT of the pancreas is performed with a biphasic protocol, including arterial and 

venous phases. This protocol typically uses 500-700 mls of water as a negative oral 

contrast agent and acquires a late arterial (pancreatic) phase and a portal venous 

phase at 35-40 and 65-70 seconds respectively following injection of 150 mls non-

ionic iodinated contrast at a rate of approximately 4mls/second. The pancreas is 

included in the arterial phase, while the entire abdomen is included in the portal 

venous phase. This protocol provides rapid and accurate local and distant staging of 

the tumour in a single scan. A newer ‘split bolus’ protocol, which acquires arterial 

and venous phase imaging in a single scan, is available and there is evidence that it 

gives similar results to biphasic protocol, but with less radiation [16].  

The high spatial resolution afforded by modern multi-detector CT scanners with thin 

slice multi-planer reconstruction is ideal for local staging, which depends upon very 

strict criteria for tumour contact with local structures (for example, one of the 

criteria for resectability is ≤ 180 degrees of tumour contact with the portal vein, 

without vein contour irregularity [13]). Based upon this imaging, decision will be 

made to (1) treat the patient with upfront surgery (resectable patients), (2) treat the 
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patient with neoadjuvant chemotherapy +/- surgery (borderline resectable patients) 

(3) treat with chemo/radiotherapy alone (unresectable patients), (4) perform 

additional imaging for cases which are indeterminate on CT or (5) manage with 

supportive/palliative care approach. The criteria for resectability are further 

discussed in section 2.5. ‘Treatment of PDAC’. 

On CT, a typical PDAC lesion is hypoattenuating relative to the surrounding pancreas 

on the portal venous phase (Figure 1.) and this it due to reduced perfusion of 

intravenous contrast into the dense fibrous tumour compared to the surrounding 

tissue [15, 17]. There is commonly upstream pancreatic duct obstruction and/or 

distal pancreatic atrophy, which may sometimes be the only signs of disease, which 

is especially important in small isointense PDAC lesions which are not easily visible 

on CT [15]. Depending upon the location of the lesion, there may also be obstruction 

of the common bile duct, often resulting in the clinical presentation of jaundice and 

the radiological presentation of the ‘double duct sign’.  
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Figure 1. Examples of pancreatic adenocarcinoma on contrast enhanced CT. 

 

Figure 1 caption: Case examples from our study cohort. Axial slice images from contrast 

enhanced CT pancreas studies in the portal venous phase are presented, in patients with 

biopsy proven pancreatic ductal adenocarcinoma. In image A, this patient has a 

hypoattenuating 6cm pancreatic tail mass (white arrow). The insert image shows this lesion 

after segmentation. The normal pancreas is indicated by the black star (*). Image B is from a 

patient with a 2.5cm hypoattenuating pancreatic head mass (black arrow). The insert image 

shows this lesion post segmentation. The curves black arrow in the insert image points to the 

dilated common bile duct, located anterior to the mass on this axial slice. 

2.3.2. Timing of Pre-operative CT pancreas. 

The timing of pre-operative CT has been the subject of several studies [18-20]. In 

many patients with PDAC, there can be a delay from date of diagnosis to date of 

surgery because patients may require biliary drainage for cholangitis, while others 

may require more than one attempt at endoscopic sampling to achieve a conclusive 

pre-operative pathological diagnosis. Hence, this can delay surgery. If there is 

disease progression during this time interval, it can result in an aborted attempt at 

surgical resection if the surgeon identifies unexpected abdominal metastasis at the 

time of curative intent resection (so called ‘open-and-close laparotomy). The rate of 
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such ‘unexpected progression’ is a key performance indicator in hepatobiliary 

surgery centers, which they try to minimise as much as possible. Raman et al from 

Johns Hopkins hospital in Baltimore, USA performed a study on this topic in 2015 

and they identified that 25 days should be the maximum imaging-to-surgery interval 

(ISI) in order to avoid unexpected metastasis at time of curative intent surgery [18]. 

However, while prior work by our group confirmed this finding (patients with an ISI ≥ 

25 days experienced unexpected disease progression at time of attempted resection 

in 17% of cases, vs. 6% in those with ISI < 25 days) we also found that the ISI does 

not influence overall patient survival [19]. The relationship is complex and there are 

indications that survival is likely dictated more by underlying disease biology, rather 

than the ISI [20]. There is some evidence that a longer ISI may actually prolong 

survival in those who undergo resection, since the patients with more aggressive 

biology are ‘filtered’ out by the longer waiting time [19]. 

There is certainly variation in the ISI internationally, with publications from Johns 

Hopkins stating that they now aim for an ISI of 14 days or less [18], whereas the 

waiting time tends to be longer in countries with publicly funded health systems, 

such as a study from Sweden looking at patients treated between 2008-2014 which 

reported a median ISI of 42 days (range 10 to 159) [21] and our prior work from 

Ireland reported a median ISI 32.5 days (IQR 35, range 0-254) [19]. There is no 

recommendation on this topic in international PDAC guidelines [13] and the majority 

of prior studies in PDAC CT Radiomic prognostication did not even report this metric 

[22-28]; two prior studies limited ISI to four weeks [29, 30], one reported mean ISI 

one month [31] and another reported ‘95% of resections ≤ 6 months from imaging’ 

[32]. This is why we included the variable of image-to-surgery time interval (ISI) 

within the pre-operative clinical prognostic model for our study (discussed in 

chapter 4 – Hypothesis, Materials and Methods), in order to account for any 

difference between patients.  
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2.3.3. MRI pancreas. 

MRI pancreas has comparable sensitivity and specificity to CT for the diagnosis and 

local staging of PDAC [15], but it is more expensive, the scans take longer, the 

availability of MRI is limited compared to CT and some patients cannot have MRIs 

due to issues including pacemakers and claustrophobia [13]. Therefore, guidelines 

advise that MRI is reserved for problem solving [15, 16], such as in patients with 

suspected PDAC who have no definite mass visible on CT, where MRI can pick up 

lesions which are CT isointense. MRI pancreas is also indicated in patients with an 

allergy to iodinated CT contrast [13]. There is evidence that routine use of MRI liver 

has superior diagnostic performance compared to CT in detecting liver metastasis in 

patients awaiting resection [33], however this has resource implications for many 

institutions where MRI slots are limited, so it has not been incorporated into 

practice guidelines [13].  

2.3.4. Endoscopic Ultrasound and PET-CT 

Endoscopic ultrasound (EUS) of the pancreas is more invasive compared to MRI or 

CT. Therefore, it is not typically used as an initial diagnostic test, but it is commonly 

used to guided fine needle aspiration or biopsy of a suspicious pancreatic mass or 

duct stricture. It can also be used for problem solving in cases where CT and MRI 

have not identified a definite mass. PET-CT has been shown in some studies to have 

high sensitivity for PDAC diagnosis and staging, however the evidence is not 

conclusive [15] and therefore, it has not been incorporated into routine pre-

operative imaging algorithms in clinical practice. The 2019 National Comprehensive 

Cancer Network (NCCN) guidelines state that the role of PET-CT ‘remains unclear’ 

and that it is ‘not a substitute for high-quality, contrast-enhanced CT’ [13].  

Considering the clear emphasis on contrast enhanced CT in the pre-operative 

workup of patients with PDAC, this modality was chosen for the present study. 
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2.4. Biology of PDAC and assessment with radiomics. 

PDAC is a malignancy of the exocrine pancreas ductal epithelium, which is thought 

to arise from precursor lesions called pancreatic intraepithelial neoplasia. There are 

recognized modifiable risk factors for pancreatic cancer, such as obesity and alcohol 

use, however studies indicate that ~50% of PDAC cases begin with stochastic 

(random) errors which occur during DNA replication as part of normal cell division 

[5]. These cells than accumulate further mutations in a stepwise fashion, however 

there are four ‘founder’ mutations which are predominant: KRAS [in 90% of cases], 

CDKN2A, TP53 and SMAD4. These mutations facilitate the development of clonal 

expansion and invasion into adjacent pancreatic tissue [5]. Multiple additional 

mutations, including epigenetic alternations, are described in PDAC, however they 

are less frequent than the four founder mutations listed above [5].  

When the tumour cells starts to invade adjacent pancreas tissue, a healing response 

in the surrounding pancreatic stroma will be initiated, but this process is 

manipulated by signals from the cancer cells which induce the supporting stromal 

tissues to promote further tumour expansion (i.e. continuous proliferative signals 

maintain activation of stromal mesenchymal cells long after the normal healing 

response would have finished) [34]. Hence, PDAC is characterised pathologically by a 

dense fibroblastic stroma [10] which consists of extracellular matrix, stromal 

vasculature and cancer-associated fibroblasts [35], all of which are recognised as a 

key factors in the pathogenesis of this disease [35]. Immunomodulation also plays a 

role in tumorigenesis, with suppression of T-cell function within the developing 

tumour mass [5]. Once these factors combine for form a PDAC mass, the final step in 

the process is development of metastasis. There is evidence that metastasis occurs 

early in PDAC [9] and it does not appear to require specific genetic mutations, rather 

the gain of function / loss of suppression provided by the four main founder 

mutations in PDAC are enough to facilitate this process, along with epigenetic 

modifications [5, 9]. 
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Information about the biology of a PDAC lesion can be inferred from the appearance 

on pre-operative imaging. Radiomic models based on pre-operative imaging have 

been developed to predict tumour grade [30], molecular subtypes (quasi-

mesenchymal vs. non-quasi-mesenchymal) [36] and p53 status [37], although none 

of these models are externally validated and hence, they have not yet been 

appropriately tested. Some of these studies do not report the actual features 

included in their models, such as the work by Iwatate et al who aimed to predict p53 

and PD-L1 expression in PDAC using 1037 features extracted from original and 

expanded volumes of interest (hence 2074 total features) but did not report which 

were selected for the machine learning model [37]. Nonetheless, from overall 

review of the literature, it appears that two categories of Computed Tomography 

(CT) tumour characteristics are relevant to this work: tumour attenuation and 

heterogeneity.  

2.4.1 Attenuation and tumour biology. 

Well-differentiated PDAC tumours are associated with better survival and they are 

more commonly iso-attenuating (and hence difficult to see) on contrast enhanced 

CT imaging [15] compared to hypoattenuating tumours, which are associated with 

worse survival and earlier recurrence[38]. The reason for this association between 

tumor attenuation and biology has been investigated in several studies, most 

notably in a seminal 2014 paper from the MD Anderson Cancer Centre entitled 

‘Transport properties of pancreatic cancer describe gemcitabine delivery and 

response’ [17]. In this study, the authors demonstrated that the volume of stromal 

tissue within the tumour correlated negatively with tumour enhancement on CT, 

hence the appearance on routine CT could be used to estimate the percentage of 

stromal tissue within the lesion. In this study, they also intravenously infused 

chemotherapy (gemcitabine) for 12 patients during their curative intent resection 

procedure, in order to assess how much of the infused chemotherapy was being 

delivered to the tumour. When they assessed the tumours in the pathology lab, they 

found that tumor gemcitabine incorporation was related to the presence of stromal 
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tissue and hence, could be predicted by tumour enhancement on the pre-procedure 

CT.  

 

Figure 2. Attenuation of PDAC lesions. Case examples. 

 

Figure 2 caption: Case examples from our study cohort. Axial slice images from contrast 

enhanced CT pancreas studies in the portal venous phase are presented, in patients with 

biopsy proven pancreatic ductal adenocarcinoma. Image A shows a 6cm hypoattenuating 

mass (white arrow) in the pancreatic tail with median attenuation 28 HU. The insert image 

shows the lesion post segmentation. Image B shows a mildly 

hypoattenuating/isoattenuating 3.5cm pancreatic head mass (black arrows) with median 

attenuation 73 HU. The insert image shows the lesion post segmentation and the star (*) 

denotes the distended gallbladder.  

 

2.4.2. Heterogeneity and tumour biology. 

It is well recognized that intra-tumour heterogeneity is common in PDAC, however 

the degree to which this reflects underlying genetic, epigenetic or histologic 

(epithelial vs stromal cells) differences in tumour tissue is unclear [5]. A study by 
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Kaisses et al [36] was able to use CT radiomics to categorise PDAC lesions into quasi-

mesenchymal (QM) vs. non-quasi-mesenchymal (non-QM) types with an AUC of 0.92 

and the most important features in their study quantified aspects of image 

heterogeneity (Entropy-/Energy-, Uniformity/Non-Uniformity and Correlation-

/Variance-related features from the Pyradiomics library). However, the drawbacks of 

their study were the large number of predictor variables (161 selected from 1474 

extracted) compared to the study population (181 training, 26 test) and the lack of 

external validation.  

A recent publication on the topic of PDAC tumour heterogeneity by Grunwald et al 

from one of our partner labs at the University of Toronto [34] identified important 

categories of PDAC tumour micro environments (the tumour ‘stroma’) which can be 

identified on histology and correlate with patient survival and treatment response. 

Therefore, it is clear that heterogeneity in the PDAC tumour environment correlates 

with biological behaviour, but it is not yet clear whether this histological 

heterogeneity can be identified on pre-operative radiology imaging. This is the topic 

of another proposed study between our lab and that of Grunwald et al (discussed 

further in section 6.7. ‘Next steps: Building upon our study results’).  
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Figure 3. Heterogeneity of PDAC lesions. Case examples. 

 

 

Figure 3 caption: Case examples from our study cohort. Axial slice images from contrast 

enhanced CT pancreas studies in the portal venous phase are presented, in patients with 

biopsy proven pancreatic ductal adenocarcinoma. Image A shows a 2.8cm homogenous 

isoattenuating mass (white arrow) in the pancreatic head with Joint-Entropy value of 2.6 

and an ngtdm_Coarseness value of  0.048 (higher values of Joint_Entropy indicate more 

heterogeneity, whereas lower values of ngtdm_Coarseness indicate more heterogeneity). 

The insert image shows the lesion post segmentation. Image B shows a hypoattenuating and 

heterogenous 3.7cm pancreatic head mass (white arrows) with a Joint_Entropy value of 4.0 

and ngtdm_Coarseness of 0.009. The insert image shows the lesion post segmentation and 

the black arrow points to a common duct stent.  

2.5. Treatment of PDAC. 

Complete surgical resection improves overall and disease-free survival in PDAC and 

it is the only potential chance of cure. Pancreatic resection was developed by 

Whipple in the 1930s [39]. The Whipple’s procedure is a major operation which 

involves resection of the head of pancreas, common bile duct, gallbladder distal 

stomach, the first and second portions of the duodenum. Due to the complex 

anatomical relationships between the pancreas and surrounding vital structures, 
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pancreas resection is associated with significant patient morbidity, a 30-day 

mortality of approximately 5% [40, 41]  and 90-day mortality up to 7.4% [42]. The 

median overall survival for patients who undergo resection for PDAC ranges 

between 24-28 months, compared to approximately 13 months for those do not 

undergo resection [19, 43]. Resection is recommended in patients who meet specific 

criteria, as defined by international consensus guidelines, such as from the National 

Comprehensive Cancer Network (NCCN) in the United states [13], namely: (1) no 

tumour contact with a major visceral artery (coeliac artery, superior mesenteric 

artery, common hepatic artery), no tumour contact with the superior mesenteric 

vein or portal vein, or <180 degree vein contact without vein contour irregularity 

and (2) no metastatic disease. These criteria were created to maximise the chance 

that patients will undergo a complete (R0) resection, meaning that there is a 1mm 

tumour free margin surrounding the resection specimen at pathological analysis. 70-

80% of patients have advanced (stage III or IV) disease at the time of diagnosis [2, 3], 

meaning that they do not meet these criteria, and these patients are referred to as 

unresectable. There have been recent proposals to include biological features when 

selecting patients who are suitable for surgery, for example patients with CA19.9 > 

500 iu/L may be considered unresectable regardless of anatomical staging [44], but 

this has not been incorporated into guidelines. Hence, patient selection based on 

local anatomy of the tumour and patient performance status remain the factors to 

consider at multidisciplinary discussion. 

For those patients who undergo resection, post-operative (adjuvant) chemotherapy 

is advised for all [45] with either FOLFIRINOX (folinic acid, 5-fluorouracil, irinotecan 

and oxaliplatin) or Gemcitabine based regimes, as tolerated. In 2009, a third 

category was defined within the PDAC treatment algorithm, which is termed 

‘borderline resectable’ PDAC and is an intermediate stage between the resectable 

and unresectable categories. There is now a strict and complex definition of this 

patient category in the guidelines, based on local tumour anatomy, for example 

including patients with tumours which demonstrate < 180 degree contact with the 
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superior mesenteric artery [45]. Borderline resectable PDAC accounts for up to 40% 

of all PDAC cases and half of those who are not suitable for upfront resection [46]. 

The treatment algorithm for these three patient categories is outlined below (Figure 

4), however the borderline resectable and unresectable groups are not considered 

further in this study.  

 

 

Figure 4. Treatment algorithm for Pancreatic Ductal Adenocarcinoma. 

 

 

2.6. Neoadjuvant therapy in resectable PDAC. 

As outlined in section 2.1, improving treatment outcomes in PDAC has been 

challenging, despite decades of research and advancement in medical practice, with 

only marginal gains achieved over the past 40 years. It has been proposed that 

administering neoadjuvant therapy to some or all patients with resectable PDAC 

may improve outcomes when compared to the current standard of care algorithm, 

where resectable patients proceed straight to upfront resection. This theory was 

initially based upon experience from other cancers, for example rectal cancer, 

where neoadjuvant therapy has led to improved survival [47] but also from the 
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successful use of neoadjuvant chemotherapy to improve survival in patients with 

borderline resectable PDAC [48]. Some large cancer care centres, such as MD 

Anderson in the United States [8], have adopted a strategy of offering neoadjuvant 

chemotherapy to all of their resectable PDAC patients, based upon the theory that 

all patients with PDAC have radiologically occult metastatic cancer at the time of 

diagnosis [8]. The proposed benefit is to ensure that all patients receive timely 

chemotherapy, since up to 50% of patients experience a delay to commencing 

adjuvant therapy while recovering from pancreas resection and some never recover 

sufficiently to receive treatment at all [49]. It has been shown to improve complete 

(R0) resection rate and disease-free survival (DFS) [8], however prospective trials 

have failed to demonstrated an overall survival benefit [49-52]. Therefore, it has 

been proposed that better patient selection for neoadjuvant therapy may improve 

response [8] but in order to do this, we require risk models to pre-operatively 

identify patients are the highest risk of recurrence disease and poor survival. 

 

2.7. Predicting survival in PDAC. 

Preoperative risk stratification is relevant in PDAC due to the debate about 

neoadjuvant therapy [53] and may also be relevant to decisions about the 

appropriateness of surgery in patients at high risk of early recurrence [54]. After 

resection, adjuvant chemotherapy is recommended for all patients [45] therefore, 

no further significant curative-intent care decisions are taken after this timepoint. 

The goal is to pre-operatively identify patients with aggressive tumour biology [55] 

but there are challenges of obtaining sufficient tissue for analysis from pre-operative 

pancreas biopsy, because a fine needle aspiration is typically performed via 

endoscopic ultrasound rather then a core biopsy. Therefore, discrimination with 

blood or imaging biomarkers is the primary focus of research [56]. However, very 

few published clinical or radiomic models have concentrated entirely on pre-

operative data and none have undergone robust validation [25, 26, 31, 54, 57, 58].  
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For patients with radiologically resectable PDAC, there are several known clinical 

and pathological predictors of survival. The known predictors can be divided into 

pre-operative and post-operative variables (the latter group is larger):  

• Pre-operative: advanced patient age [59], Ca 19.9 levels in blood [59], 

lymphocyte-neutrophil ratio in blood [57, 60], SPan-1 level in blood 

[54], patient symptoms at presentation [57], tumour location within 

the pancreas (Head of pancreas vs body/tail) [61], size of tumour 

measured on CT [54] and skeletal muscle index [22].  

• Post-operative: pathologic T stage [62], histologic tumour grade [59, 

63], lymphovascular invasion [62], perineural invasion [62], resection 

margin status (R0/R1) [59] and pathologic N stage [59]. Tumour size is 

also associated with prognosis, however it has been shown that even 

very small tumours (<0.5cm, classified as T1a on the current AJCC 

TNM system) can metastasis in up to 31% of cases [55], therefore it is 

not a linear relationship. 

2.7.1. Pathologic vs imaging defined N stage. 

Pathologic N stage is a strong predictor of prognosis in resectable PDAC [26]. While 

grossly enlarged nodes are visible on pre-operative imaging, it has been shown that 

many lymph nodes which appear normal to the Radiologist on pre-operative CT 

actually harbour micrometastasis. In studies looking specifically at the pre-operative 

prediction of lymph node status in PDAC, there are conflicting results as to whether 

lymph node status defined based upon short-axis size on pre-operative CT can [64] 

or cannot [65] accurately predict the presence of lymph node metastasis on 

pathology. Thus, pre-operative CT is poor at predicting lymph nodes status in PDAC 

[66] but we have included it in our study for the sake of completeness.  

2.7.2. Ca 19.9. 

Ca19.9 is a plasma biomarker which can be used to support the diagnosis of PDAC, 

help with treatment response evaluation and aid in prognostication [56]. It is the 



Chapter 2 - Introduction to Pancreatic Ductal Adenocarcinoma (PDAC) 

46 
 

only biomarker approved for use in PDAC by the United States Food and Drug 

Administration [4, 12].  Unfortunately, it does have several limitations, for example 

the sensitivity for PDAC diagnosis is only 70-74% and approximately 5-10% of the 

general population are non-secretors (Lewis (a-b-) phenotype), meaning that they 

cannot express Ca19.9 at all [67, 68] (interestingly, the less well known Span-1 

antigen is not impacted by Lewis phenotype). Specificity is also compromised by the 

fact that levels can be elevated in other benign or malignant conditions including 

pancreatitis and cholangiocarcinoma. Nonetheless, it is considered the current best 

serum biomarker in this disease [67] and multiple studies have found it to be a 

significant pre-operative predictor of patient survival post resection, with hazard 

ratios (HR) for overall survival ranging from 1.37-1.86 in univariable (UVA) regression 

analysis [22, 62] and 1.1-2 in multivariable analysis (adjusted for other pre and post-

operative clinical variables) [22, 69]. HRs for early disease recurrence are 

approximately 2 in UVA [57], although there is no agreed cut-point for ca19.9 to 

differentiate high vs low risk patients. It has also been shown that the addition of 

radiomics can improve upon the prognostic performance of ca19.9 [26, 32]. 

However, it must be acknowledged that there is some inconsistency in the literature 

regarding the prognostic ability of pre-operative Ca19.9 however, with a number of 

recent studies reporting that pre-operative Ca19.9 was not a significant predictor of 

survival [29, 30], including one study which included 205 resected patients and 

excluded Ca19.9 non-secretors [68].   

Several other pre-operative biomarker candidates have been investigated, some 

with positive results including radiological markers such as pre-operative SUVmax or 

ADC quantification on PET-CT and MRI respectively, however none have been 

validated to date [56]. 

2.7.3. Prognostic models. 

The gold standard prognostic system used for all cancers is the Tumour, Node, 

Metastasis (TNM) system developed by the American Joint Committee on Cancer 

(AJCC) and it is the primary system used on a day-to-day bases at pancreas cancer 
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clinics. The AJCC updates these systems for all cancers periodically. The 6th edition 

was published in 2002 and there were no changes for PDAC in the 7th edition 

published in 2010, however refinements were made in the 8th edition in 2016, with 

changes in the definition of T stage and addition of a new N stage (from No/N1 to 

N0/N1/N2) [70]. Despite the refinements, TNM remains suboptimal for PDAC, with 

reported C-indices for prognostication of 0.572-0.699 for the 8th edition [29, 62], 

which is disappointing considering that it has the benefit of pathological data (T 

stage, N stage) which is only available after the patient has undergone surgical 

resection. Two groups have developed clinical models for prediction of PDAC 

survival [62, 71], with reported C-indices of 0.65-0.7, however these have also 

incorporated data which is only available post-operatively (such as tumour margin 

status), hence they are of no use for pre-operative decision making. One recent 

publication created an entirely pre-operative clinical model for prediction of early 

disease recurrence reporting c-index 0.85 for early recurrence, but this has not been 

robustly validated and they chose an unusual outcome of recurrence with 162 days 

of surgery, without a good explanation as to why this time interval was chosen [57]. 

In practice, none of these models are used in day-to-day hepatobiliary or oncology 

clinics and there is clearly an unmet need in this domain.  
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Chapter 3 - Evidence based Medicine Literature review: The use of 

Radiomics for survival prediction in Pancreatic Adenocarcinoma 

 

“There is undoubtedly huge potential for machine learning to transform healthcare, 

but going ‘from code to clinic’ is the hard part” 

May et al, 2021 [1] 

 

An evidence- based medicine (EBM) review was conducted using standard EBM 

methodology [2], namely; Ask a focused question, Search for the evidence, Appraise 

this evidence, Apply this evidence to clinical practice and Evaluate the performance 

of the review. 

 

3.1. Ask - Ask a focused question. 

An EBM question was generated, using the PICO [2] format. This acronym stands for 

Population/Problem (P), Intervention/Exposure (I), Comparison (C) and Outcome 

(O).  

- P: Adult patients with who have undergone complete resection for 

pancreatic adenocarcinoma. 

- I: Radiomic analysis of pre-operative CT OR texture analysis. 

- C: No comparison. 

- O: Survival. 

 

3.2. Search – Search for the evidence. 

The literature review was conducted using EBM methodology on March 8th, 2021, 

utilising the PICO question. This search was performed using the following search 
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engines: PubMed, PubMed reminer, Trip database, Embase and BMJ best practice. 

The free text search terms were: Pancreatic adenocarcinoma, pancreatic cancer, 

radiomic, radiomics, survival and the MESH terms were: humans, pancreatic 

neoplasm/diagnostic imaging, pancreatic neoplasm, precision medicine, radiology, 

diagnostic imaging. This revealed 320 results. One review article was identified [3] 

and a backward citation search was performed, adding eight more publications 

which had been not been included thus far (these were missed because they were 

older studies which used the term ‘texture analysis’ rather than radiomics. This term 

was subsequently added to the EBM search terms). One reference was a conference 

paper [4], which was found to have been published subsequently [5]. After 

application of the following exclusion criteria, the list was then reduced to 11: 

- Animal studies. 

- Studies on pancreatic neoplasms other than ductal adenocarcinoma (e.g., 

neuroendocrine tumour, intraductal papillary mucinous neoplasm) or studies 

on patients with unresectable PDAC. 

- Studies assessing imaging modalities other than contrast enhanced CT. 

- Deep Learning studies, with no radiomics component. 

- Delta radiomics studies (i.e., assessing change in radiomics over time). 

- Studies dealing with diagnosis of PDAC vs alternative pancreatic pathology 

(i.e., differentiation of PDAC from autoimmune pancreatitis). 

 

Section 3.1 and 3.2 References 

1. May, M., Eight ways machine learning is assisting medicine. Nat Med, 2021. 27(1): 
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Table 1. Prior resectable PDAC CT Radiomic studies. 

Study Population Multi-

institutional 

training 

data? 

Follow up 

(Months) 

RQS 

(score/36) 

Contour 

method 

Radiomic 

Software 

IBSI 

compliant 

software? 

Internal vs 

external 

validation 

Overall model 

Performance 

Shi et al. 

2021. 

299. Training 

(210). 

Int validation 

set (89). 

Single 

institution. 

Median: 

20.5. 

14 PV+AP 

3D 

Artificial 

Intelligence 

Kit. 

Unknown.** Internal. 

Train/test 

split. 

C-index 0.73 in 

validation for 

OS. 

Zhang et 

al. 2021. 

98. Training 

(68). 

Ext validation 

set (30) 

Single 

institution. 

Unknown. 8 PV 

2D 

PyRadiomics. 

 

Yes. External. Two-year 

survival AUC 

0.84 

XIE et al. 

2020. 

220. Training 

(147). 

Int validation 

set (73). 

Single 

institution. 

Median: 

17.4. 

14 PV 

3D 

Mazda v 4.6. 

 

No. Internal. 

Train/test 

split. 

C-Index 0.726 

in validation for 

OS. 
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Study Population Multi-

institutional 

training 

data? 

Follow up 

(Months) 

RQS 

(score/36) 

Contour 

method 

Radiomic 

Software 

IBSI 

compliant 

software? 

Internal vs 

external 

validation 

Overall model 

Performance 

Zhang et 

al. 2020. 

98. Training 

(68). 

Ext validation 

set (30) 

Single 

institution. 

Unknown. 8 PV 

2D 

PyRadiomics. 

 

Yes. External. C-Index 0.651 

in validation for 

OS. 

Li et al. 

2019. 

111. No 

train/test split. 

Single 

institution. 

Unknown. 11* PV 

2D 

Matlab. Yes. Internal. 

Cross 

validation. 

No overall 

performance 

metric 

Khalvati et 

al. 2019. 

98. Training 

(30). 

Ext validation 

set (68) 

Single 

institution. 

Unknown. 10 PV 

2D 

PyRadiomics. 

 

Yes. External. HR 1.35 in 

validation for 

OS. 
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Kim et 

al.2019. 

116. No 

train/test split. 

Single 

institution. 

Unknown. -4 AP 

3D 

In-house 

software. 

Unknown.** No validation. No overall 

performance 

metric 

Study Population Multi-

institutional 

training 

data? 

Follow up 

(Months) 

RQS 

(score/36) 

Contour 

method 

Radiomic 

Software 

IBSI 

compliant 

software? 

Internal vs 

external 

validation 

Overall model 

Performance 

Attiyeh et 

al. 2018. 

161. Training 

(113). 

Int validation 

set (48) 

Single 

institution. 

Unknown. 5 PV 

3D 

Matlab. 

 

Yes. Internal. 

Train/test 

split. 

C-index 0.74 in 

validation for 

OS. 

Yun et al. 

2018. 

88. No 

train/test split. 

Single 

institution. 

Mean 

26.3. 

2* AP 

2D 

In-house 

software. 

Unknown.** Internal. 

Cross 

validation. 

No overall 

performance 

metric 

Cassinotto 

et al. 

2017. 

99. No 

train/test split. 

Multi. Median 

19.1. 

-5 PV 

2D 

TexRAD. 

 

Unknown.** No validation. No overall 

performance 

metric 



Chapter 3 - Evidence based Medicine Literature review: The use of Radiomics for survival prediction in Pancreatic 
Adenocarcinoma 

58 
 

 

1. Lambin, P., et al., Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017. 
14(12): p. 749-762. 

Eilaghi et 

al. 2017. 

30. No 

train/test split. 

Single 

institution. 

Unknown. -5 PV 

2D 

Matlab. 

 

Yes. No validation. No overall 

performance 

metric 

RQS = Radiomics Quality score [1]. Int = internal. Ext = External. PV = Portal-venous phase. AP = Arterial phase. IBSI = Imaging Biomarker 

Standardization Initiative. AUC = Area under the curve of a received operator curve analysis. OS = Overall survival. HR = Hazard Ratio. 

*Considering cross validation as ‘validation on a dataset from the same institution’ for RQS. 

**Not enough information publicly available to determine IBSI compliance. 



Chapter 3 - Evidence based Medicine Literature review: The use of Radiomics for 
survival prediction in Pancreatic Adenocarcinoma 

59 
 

 

3.3. Appraise - Critical appraisal of the evidence. 

A description of the 11 included studies is presented in table 1. All studies reported 

a positive outcome (i.e., they were successful at using radiomics to predict the 

outcome of interest). The population sizes ranged from 30-299, with mean 

population size of 129 (StDev 73.5). Training populations ranged from 30-210 

patients.  

A previously published scoring system called the Radiomics Quality Score (RQS) was 

used to formally assess the studies [1]. This consists of 16 questions, each with a 

numerical score and a free online calculator is available [2]. The total is scored out of 

36 and it is possible to achieve a negative overall tally, since some areas are heavily 

penalised, such as lack of a validation method for study results, which receives a 

count of -5.  Some RQS questions received a negative answer for every study, for 

example question 3 asked whether phantom studies have been performed on every 

scanner in the study. Likewise, prospective studies are awarded 7 points (out of 36), 

but there were no such studies in this review. The scores in this review are generally 

low, with mean RQS 5.3 / 36 (St Dev 7.3). The highest ranking studies according to 

the RQS, were from Xie et al 2020 [3] and Shi et al 2021 [4], both with scores of 

14/36 (39%). These two studies ranked highest because they included feature 

reduction methods, reported both discrimination and calibration statistics, 

compared their results to a gold standard (TNM system) and assessed clinical utility 

using decision curve analysis. Some of the most important questions which 

discriminated between studies in this review are outlined below: 

3.3.1. Feature reduction or adjustment for multiple testing (RQS Question 5): 

There is a risk of overfitting when multiple predictor variables are used in a study. 

Overfitting is when a model fits exactly to its training data (in simple terms, it knows 

the training dataset too well, including any noise/random error in the data) and thus 

produces impressive results in training, but typically demonstrates a significant 
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performance drop on external validation. This effect can be mitigated by using a 

feature reduction step, to identify important predictor variables and discard the 

rest, prior to model building. Including such a step is rewarded in the RQS. The 

average number of extracted radiomic features across the 11 studies in this EBM 

review was 593, ranging from 4-2041. Three studies extracted less than 20 features. 

Six of 11 studies included a feature reduction step in the analysis. The use of a 

feature reduction method is advised by guidelines, however no single proven ‘best’ 

method has been demonstrated in the literature. The most common method across 

the reviewed studies (5/11 publications) was the Least absolute shrinkage and 

selection operator (LASSO). This is a form of penalized (regularized) regression, 

described as a penalized maximum likelihood shrinkage method [5], which reduces 

the values of the regression Beta coefficients of each feature. The optimum amount 

of shrinkage (called the lambda value) is determined by cross validation. Any 

predictors whose coefficients is reduced to zero can be eliminated. Hence, it is a 

useful technique for eliminating predictor variables and thus reducing the number of 

predictors under investigation. For example, the study by Xie et al [3] entered 186 

features into LASSO, from which the five features with non-zero coefficients were 

selected for use in the prediction of patient survival.   

3.3.2. Validation (RQS Question 12): 

Lack of external validation is a major drawback of the reviewed studies. Three 

publications in the review reported external validation, all of which are from the 

same research group and they focused on survival prediction using a dataset of 98 

patients from Toronto, consisting of 68 patients from one hospital for training and 

30 patients (with 10% neoadjuvant therapy [6]) from a separate Toronto hospital for 

validation [7-9] (note that there is an overlap of 55 patients from the training cohort 

from those studies and the training cohort in the present study). 

The remainder of the studies used internal validation methods such as a hold-out 

test set from the same institution as the training dataset (3/11 studies, table 1), 

cross validation (2/11) or no validation at all (3/11). Internal validation methodology 
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can often demonstrate overoptimistic model performance [10] (discussed more in 

section 1.3). Disappointingly, one of the earliest studies in this field, from 2017, had 

a cohort of 99 patients recruited from two hospitals located in Canada and France, 

yet the patients were all grouped together for analysis, missing the opportunity for 

external validation. 

3.3.3. Comparison to Gold standard (RQS Question 13): 

Comparison to a gold standard model, such as the TNM staging system, is 

recommended so that the incremental gain of using the novel biomarker can be 

accurately assessed relative to the currently available information used in the clinic 

[11, 12]. This can also to provide a benchmark for comparison to other novel 

markers/models. It is important to highlight that TNM is based upon pathological 

data and it is therefore not available until after the resection, hence it is not useful 

to make pre-operative decisions. Nonetheless, there is no established reference 

standard for pre-operative decision making in PDAC, therefore TNM is a reasonable 

model to include as gold standard, considering its ubiquity in clinical practice. 

This comparison was performed in 3/11 of the reviewed studies, despite that fact 

that 8/11 studies reported the post-operative pathological data (node status, 

tumour size) which is used to model TNM.  

3.3.4. Assessment of calibration. Assessment of clinical utility (RQS Questions 10 and 

14): 

Calibration and clinical utility are introducted in section 1.8 of this manuscript 

(Statistics, feature standardization and feature reduction). Two studies (Shi et al 

2021 and Xie et al 2020) assessed clinical utility using decision curve analysis [3, 4]. 

These two studies also explicitly assessed calibration (using calibration plots), which 

is why these studies have the highest RQS results (14/36) overall. Two additional 

studies [8, 13] considered calibration within the integrated Brier score, which is a 

metric that combines calibration and discrimination, although they did not provide 

calibration plots.  
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3.3.5. Reproducability and feature extraction software: 

While not included in the RQS, it is worth noting whether a radiomics study 

publishes the regression equation/formula used in their study (or their actual 

computer code, for a more complex model which cannot be expressed in an 

equation). This information is essential so that other groups can attempt to replicate 

their work. 2/11 studies (Shi et al 2021 and Xie et al 2020) published their model 

equations equations, so that their work can be replicated. The only drawback is that 

neither of these studies used IBSI compliant software for feature extraction (see 

table 1), therefore attempts to replicate their work would require use of the exact 

software and identical software version in order to control for this variable. An 

example of an equation, from the Xie et al paper [3] is as follows (note that the 

feature names are different to our study, since this study used the non-IBSI 

compliant ‘Mazda’ software package): 

Rad − score = 0.07342984 × S. 1.0. Entropy 

+ −0.03562417 × S. 4.0. SumAverg 

+ −0.19247206 × S. 4.4. AngScMom 

+ −0.01506736 × WavEnHLs. 2 +  0.4422464 × WavEnLLs. 3 

Of the remaining studies, 5/9 studies reported the radiomic features included in 

their models accompanied by the univariable or multivariable results (hazard ratios 

or regression coefficients) meaning that replication of their findings can be 

attempted, although only two of these used IBSI complicant software. 4/11 studies 

did not provide enough data to attempt replication. 

3.3.5. Common radiomic features across reviewed studies: 

While not included in the RQS, it is important to consider the actual radiomic 

features which were identified in the 11 studies, to search for commonly occurring 

features which are useful for PDAC prognostication. We can only do this for the 6 

studies who used IBSI compliant software, four of which reported the radiomic 

features used in their models (Table 2). One of these included a mixture of 
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conventional radiomic and deep learning features [14]. The majority of features 

(8/9) categorised different aspects of image texture, however there were no overlap 

in features between any of the studies. Only one of these studies provided the 

univariable or multivariable coefficients for the selected features, allowing for 

potential replication of their results, however this paper was from our own lab. 

Hence, there are no options for external validation of a previously published study in 

this field, unless more data can be obtained from the study authors (emails were 

sent to the authors of all studies in this review, but no replied were received).  

 

Table 2. Radiomics features identified as prognostic for PDAC in prior studies who 

used IBSI compliant software. 

Study Features 

Zhang_2021[9] Not provided 

Zhang_2020[8] - gradient_gldm_SmallDependenceEmphasis 

- gradient_glszm_SmallAreaEmphasis 

- original_glszm_LargeAreaLowGrayLevelEmphasis  

- wavelet.HLH_glszm_HighGrayLevelZoneEmphasis 

*Equation/code/formula not provided. No UVA/MV results. 

Li_2019[14] 70 conventional radiomics and 256 Deep Learning features 

were extracted. One Radiomic feature identified: shape 

feature: extent. 

*Equation/code/formula not provided. No UVA/MV results. 

Khalvati_2019[7] - Original_glcm_SumEntropy 

- Squareroot_glcm_ClusterTendency 
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*UVA and MVA results were provided. 

Attiyeh_2018[13] Not provided. 

Eilaghi_2017[6] - Tumor dissimilarity 

- Inverse difference normalized 

*Equation/code/formula not provided. No UVA/MV results. 

 

 

3.4 Apply and Evaluate - Apply the evidence in practice and evaluation impact on 

patients. 

Application of evidence in the EBM framework refers to the impact of this evidence 

upon patient management in the clinic and similarly, evaluation refers to evaluation 

your performance i.e., how effective we are at incorporating the new practice into 

our workflow/clinic, which can be assessed by departmental audit. From the above 

appraisal, it is clear that the quality of the data within the field of PDAC radiomics is 

not yet strong enough to influence clinical practice. Hence, to the best of our 

knowledge, no clinical-radiomic model is currently being used in clinical setting and 

we cannot evaluate the impact upon patient management or incorporate it into our 

clinical workflows.   

 

3.5. Conclusion of the evidence-based literature review 

Based upon the available literature, there is no conclusive evidence that CT 

Radiomics provides accurate and reliable pre-operative prognostication for patients 

with PDAC. The main issues with the literature are: Poor quality methodology (low 

RQS score), small population sizes, no robust external validation, lack of detail in the 

published manuscript to attempt replication of results and lack of any overlap 



Chapter 3 - Evidence based Medicine Literature review: The use of Radiomics for 
survival prediction in Pancreatic Adenocarcinoma 

65 
 

between prognostic radiomic features in studies to date. In addition, the reviewed 

studies have used highly curated patient cohorts with respect to CT technical 

parameters and incorporated post-operative pathological data, which is not 

available pre-operatively. There will be no translation to clinical practice unless the 

quality of this evidence can be improved, since decisions regarding neoadjuvant 

therapy, surgery etc. must be based upon solid evidence. As stated in the EBM 

literature, when such deficits in available data are identified, a research project may 

be undertaken to bridge this gap [15], which is why we embarked on the current 

study. 
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Chapter 4 – Hypothesis, Materials and Methods 

 

4.1. Hypothesis and aims 

It is clear from the evidence-based medicine review that there are weaknesses in the 

PDAC CT radiomics literature, including small sample sizes, use of non-standardized 

features definitions / software, lack of rigorous statistical methods, as well as lack of 

external validation. Therefore, we designed the present study to address some of 

these issues, guided by the Radiomics Quality Score, the Image Biomarker 

Standardization Initiative and adhering to the Transparent Reporting of a 

multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) 

guidelines [1]. The aims of this study are:  

(1) To gather a large multi-center sample of patients with radiologically 

resectable pancreatic adenocarcinoma, who have undergone resection 

following suitable pre-operative CT imaging and include a large (>100 events) 

external validation cohort from a different country.  

(2) To develop and externally validate a prognostic model, incorporating pre-

operative clinical and radiomic variables, which predicts survival in resectable 

pancreatic adenocarcinoma, using methodology and software which adheres 

to the latest international standards for studies in radiomics.  

 

4.2. Study design. 

This was a multi-center retrospective international study, for the development and 

external validation of a prognostic CT radiomic model in PDAC. It was designed in 

accordance with the latest guidelines from the International Image Biomarker 

Standardization Initiative and the European Society of Radiology [2-5]. This 
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manuscript was written in accordance with reporting guidelines from the 

Transparent Reporting of multivariable prediction model for Individual Prognosis or 

Diagnosis (TRIPOD) statement [1].  

 

4.3. Ethical approval. 

Ethics approval was granted by the Research Ethics Committees in Mount Sinai 

Hospital Toronto, Canada and St Vincent’s University Hospital, Dublin, Ireland. The 

approval letters are included in the appendix. The main issue which arose during the 

ethics application related to the transfer of patient data out of Europe, within the 

context of the European Union General Data Protection Regulation (GDPR). This 

required consultation with the Canadian Medical Protective Association (CMPA), the 

Clinical Indemnity Scheme in Ireland and the Medical Protection Society (MPS). We 

also sought advise from Professor Yann Joly from the Centre for Genomics and 

Policy in McGill University in Montreal.  Ultimately, approval was granted at both 

sites, allowing both sites to sign a data transfer agreement.  

 

4.4. Patient datasets. 

Patients were retrospectively enrolled in this study using the following inclusion 

criteria: adults who underwent resection for radiologically resectable PDAC and with 

suitable contrast enhanced pre-operative CT imaging, performed within 120 days 

prior to surgery. Patients who received neoadjuvant chemo/radiotherapy and/or 

those who died within 30 days of surgery were excluded (Figure 5).  
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Figure 5. Patient inclusion flowchart. CECT = Contrast enhanced CT. ISI = Imaging to 

Surgery time Interval.  

 

 

4.4.1. Training (internal) dataset. 

The internal cohort was retrospectively recruited from a prospective database at the 

Joint Department of Medical Imaging, University Health Network, Sinai Health 

Systems and Women’s College Hospital, Toronto, Canada. This is a tertiary referral 

institution. The CTs in this cohort were performed at five hospitals (Toronto General 

Hospital, Toronto Western Hospital, Mount Sinai Hospital, Princess Margaret Cancer 

Center and Women’s College hospital), all of which are served by the Joint 

Department of Medical Imaging. All resections were performed at one hospital 

(Toronto General Hospital) between 2005-2018, where treatment decisions are 

made in a multi-disciplinary team including surgery, oncology, radiation oncology 

and radiology, according to the NCCN guidelines [6]. These patients will be referred 

to as the training cohort in the remainder of this document.  

4.4.2. Validation (external) dataset. 

The external cohort was retrospectively recruited from a prospective database at 

the National Surgical Centre for Pancreatic Cancer, St Vincent’s University Hospital 
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(SVUH), Dublin, Ireland. The CT scans were performed at 34 separate radiology 

departments throughout Ireland. All resections were performed at SVUH between 

2010-2016. Treatment decisions were made in a multi-disciplinary team including 

surgery, oncology, pathology and radiology, according to the NCCN guidelines [6]. 

4.4.3. Makeup of training and validation datasets. 

When designing this study, a decision had to be made about splitting the data (i.e. 

keep the internal and external datasets from Canada and Ireland separate, or mix 

them together and split the data in another manner, such 70:30% 

training:validation. This topic is discussed in more detail in section 1.3, Data for AI). 

The RQS promotes keeping the validation dataset separate from the training cohort, 

giving points for validation performed using data from distinct institutes. A recent 

position paper on Radiomics methodology from European Radiology [4] highlighted 

that researchers should aim to maximise the difference between training and 

validation datasets, saying that authors who combine data from multiple centres are 

‘missing a golden opportunity to evaluate their model properly’ because non-

random spitting has been shown to reduce overfitting [4]. We therefore decided to 

keep the Toronto and Irish datasets separate, since there are undoubtedly 

substantial differences between the populations (ethnicity, North American vs 

European hepatobiliary surgical practices) which would serve to provide a robust 

test for a model developed in one cohort and tested in the other. 

4.4.4. Clinical data. 

The following clinical data were collected in both cohorts: Patient age (on day of 

surgery), gender, Imaging-to-surgery time interval in days (ISI), pre-operative Ca19.9 

result, presence of biliary stent, tumour location (head, body, tail), pathological T 

and N stages (as per AJCC TNM system 7th edition), pathological tumour size, tumour 

grade and differentiation, presence of perineural and/or lymphovascular invasion. 

Follow up was performed until 30th September 2020 and time to recurrence and/or 

death were recorded. For calculation of time to recurrence and/or death, date of 

surgery was considered day zero, which is consistent with the methodology of all 
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prior studies in this field [7-16].  Missing Ca19.9 data was handled by predictive 

mean matching imputation (a commonly used method in this field [17]), since 

imputation is preferred in the statistics literature to excluding cases with missing 

data when building prognostic models [18, 19].  

4.5. Radiomics analysis pipeline: Segmentation and features extraction. 

A flow chart of the radiomic pipeline is provided in figure 6. All studies were 

obtained in standard Digital Imaging and Communications in Medicine (DICOM) 

format. An open-source software package called DICOMsort was used to sort 

DICOM files by series number, so that the appropriate axial portal-venous series 

could be selected for analysis. An open-course software package called Dicomtocsv 

was then used to extract the following technical CT parameters from the DICOM 

header of every examination: PatientSex, StudyDescription, NumberOfReferences, 

SeriesNumber, SeriesDescription, Modality, KVP, Exposure, ExposureTime, 

XRayTubeCurrent, SpiralPitchFactor, SingleCollimationWidth, 

TotalCollimationWidth, DistanceSourceToPatient, SpacingBetweenSlices, 

PixelSpacing, SliceThickness, FilterType, Manufacturer, ManufacturerModelName, 

ReconstructionDiameter and ConvolutionKernel. 
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Figure 6. Flow chart of the data extraction and analysis steps. 

 

Figure 6: CT images were acquired from participating sites and manual 2D segmentation of 

the pancreatic tumour was performed. Radiomics features were extracted using the 

Pyradiomics library and prognostic models were developed on the training cohort. This 

model was then tested in the external cohort. 

4.5.1. Segmentation 

DICOM images were converted to Nearly Raw Raster Data (NRRD) files using 3D 

Slicer version 4.11.2, an open-source software package (https://www.slicer.org/). 

Segmentation was performed using the segmentation module of the draw tool in 

the editor module of 3D Slicer. The NRRD volume was first rotated to volume plain 

and then contours were manually drawn around the pancreatic tumours (Figure 7). 

Blood vessels and stents were avoided.  

Segmentation was performed by two radiology fellows (each with 6 years of 

radiology experience) who were blinded to the patient’s demographic, pathology 

and survival information. In the Portal venous (PV) phase, 2D segmentation was 

performed on the axial slice with the largest tumour diameter (Figure 7). Blood 

vessels and stents were avoided. Separate contours were first created 

independently by each fellow for 145 (41%) cases and these were used for inter-

https://www.slicer.org/
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rater reproducibility analysis (which is recommended by the RQS [2]). Then all cases 

were reviewed in consensus by the fellows, to create a mutually agreed upon 

‘reference’ contour. A third radiologist (> 30 years experience) decided, if there was 

lack of consensus. These consensus contours were used for all radiomics analysis.  

 

 

Figure 7. Segmentation example. 
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Figure 7 caption: Screenshot A shows an axial slice from a contrast enhanced CT at the level 

of the pancreatic tumour (arrow). In screenshot B, the tumour area has been segmented 

(arrow) in preparation for feature extraction. These images are from 3D Slicer, the open 

source DICOM segmentation software which was used for this study. 

4.5.2. Lymph node classification 

Each case was classified as positive/negative for lymphadenopathy based upon the 

presence of one or more lymph nodes with short axis diameter ≥ 1cm on the pre-

operative CT study (designated CT-N-stage). This was performed in consensus by the 

two readers.  

4.5.3. Feature extraction 

Radiomic feature extraction was performed with the PyRadiomics platform, version 

3.0 [20]. This software is compliant with the Image Biomarker Standardisation 

Initiative (IBSI) and it has been robustly validated using independent datasets [21, 

22]. It is a free, open-source software based upon the programming language 

Python, which extracts 120 IBSI compliant radiomic features and has options to 

apply filters to the images prior to feature extraction, in order to expand this 

number beyond 120. These filters perform transformations of the pixel values prior 

to radiomic features extraction, for example a square root filter will calculate the 
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square root of each pixel value. We choose to focus on original (unfiltered) features 

for our primary analysis, because (1) the IBSI has thus far excluded image filters from 

their standardization guidelines [3], (2) to reduce the chance of overfitting due to 

high numbers of predictor variables compared to the number of patients in the 

training cohort and (3) because it is easier to interpret the biological meaning of 

original features compared to filtered features (for example, it is easier to interpret 

the meaning of the median attenuation value of a tumour image, rather than the 

median value of a tumour image where every pixel value has been preprocessed 

with an exponential filter). However, since several prior PDAC radiomic studies have 

included filtered images[23], we decided to include all available filters in a sub-

analysis, in order to increase the comparability of our results to prior studies. The 

available filters in PyRadiomics are: square, square root, logarithm, exponential, 

gradient, LocalBinaryPattern2D and wavelet (low-high, high-low, high-high and low-

low), thus expanding the total number of features to 1037. All pixels were 

normalized to 1mm prior to features extraction, a technique which has been shown 

in multiple studies to reduce variability in radiomic values [24-26].  

 

4.6. Rad-score construction. 

A Rad-score was developed in the training cohort for the prediction of OS. Radiomic 

features were first standardized using Z-transformation (using the feature means 

and standard deviations from training cohort to standardize both cohorts). Then the 

following steps were performed: 

(1) In the first feature selection step, features with zero variance were removed. 

Univariable Cox Proportional Hazard (CPH) regression was then performed 

on the training cohort and significant features (p<0.05) were selected.  

(2) In the next step, we removed features with Spearman correlation coefficient 

≥ 0.8. To choose between highly correlated features, one feature was 

selected based upon robustness to outliers (i.e., median chosen over mean). 
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The decision to use Spearman vs Pearson correlation for this step was 

queried by reviewers for one of our publications arising from this work [27]. 

Either test is appropriate for our analysis, since we have large databases, and 

we are comparing continuous variables. However, Spearman is a rank 

correlation test, which is more robust, since it carries less assumptions and 

can handle continuous or categorical variables easily, even in small sample 

sizes [28]. Therefore, we decided that Spearman would be a more 

appropriate test for ‘state-of-the-art’ radiomics, if others may want to 

replicate our methodology.  

(3) The final model was then developed with the least absolute shrinkage and 

selection operator (LASSO) including previously selected features and all 

possible two-way interaction terms. The LASSO hyperparameter 

regularization penalty (λ) was optimized with 5-fold cross validation. The 

range used for tuning was 0.0012-0.1353 and the optimal λ value was 

0.0231. We used the glmnet package of R to perform LASSO. This package 

uses coordinate descent algorithm to cover the regularization parameter, λ, 

starting the algorithm from the λ value at which no predictor is selected. The 

use of optimization algorithm speeds up the optimal λ finding process and 

prevents the requirement to traverse all the potential values of λ. A numeric 

Rad-score was calculated by summing the selected feature values, weighted 

by their coefficients from LASSO (i.e. [feature value 1 x LASSO regression 

coefficient for feature 1] + [feature value 2 x LASSO regression coefficient for 

feature 2] + . . . .).   

 

4.7. Clinical, Clinical-Radiomic and TNM Model construction 

Three Cox proportional hazard models were fitted in the training cohort including (1) 

pre-operative clinical variables (clinical) (2) rad-score plus clinical variables (clinical-

radiomic) and (3) pathological TNM classification from the surgical specimen. Model 

1 and 2 cover the pre-operative scenario and model 3 served as the reference. 
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4.8. Feature harmonization.  

It has been shown that variation in technical parameters influences the performance 

of radiomics [29]. In a multisite study, variation in technical parameters is common, 

for example different manufacturer of CT scanner used at different hospitals. 

Combat is a statistical method which is used to counteract this effect by realigning 

feature values after a dataset has been grouped into batches (for example grouped 

by CT manufacturer) [26, 30]. Combat was originally developed for use in genomics 

analysis, to adjust for ‘batch-effect’, where a particular group of experiments within 

a study may be different to the rest of the group because they were performed 

using a particular batch of reagents, or by a particular technician or at a certain lab 

temperature etc. This tool has since been adopted by the radiomics community 

where it has been shown to impact positively upon results in several cancer types 

[31, 32], however, to the best of our knowledge, it has not been used in PDAC CT 

radiomics to date. It is available freely from Fortin et al [33] who have developed 

implementations for R, Matlab and Python:  

https://github.com/Jfortin1/ComBatHarmonization. To identify batch effects in our 

cohort prior to Combat implementation we performed hierarchal clustering. Then, 

the following batching variables were attempted: manufacturer, slice thickness, 

reconstruction kernel, manufacturer+slice thickness and kernel+slice thickness. For 

batching variable, a new dataset was created, separately for the training and 

external cohorts and the radiomic pipeline described in the manuscript was 

performed. 

 

 

 

 

https://github.com/Jfortin1/ComBatHarmonization
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4.9. Statistics. 

The primary study endpoints were OS and DFS. Baseline variables were compared 

between cohorts using chi square and Kolmogorov-Smirnow tests for categorical 

and continuous variables, respectively.  

Inter-rater agreement of segmentations and radiomics scores were assessed by Dice 

similarity coefficient and interclass correlation coefficient (ICC), respectively. The 

Sørensen–Dice similarity coefficient, also called the F1 score, is a ‘spatial overlap 

index’ and it can be used to characterise the amount of overlap between two image 

segmentations [34]. This metric is regularly used in comparing similarity between 

radiology image segmentations [34]. A value of 0 indicates that there is no overlap 

and a value of 1 indicates that the two segmentations are identical. ICC is a measure 

of agreement which is regularly used in radiomic inter-rater agreement analysis. It 

assesses the numeric radiomic features values compared between groups (in this 

case reader 1 and reader 2), rather than the segmentation images. Similar to Dice, 

values range from 0 (no agreement) to 1 (identical values). 

Length of follow-up was calculated using the reverse Kaplan-Meier method (event 

coded as 0 and censoring coded as 1). The association of variables with OS and DFS 

in the training and external cohorts was assessed by multivariable Cox regressions 

analysis. To evaluate the risk stratification enabled by the Rad-score, the median 

value from the training cohort was used to dichotomize both the training and 

external cohort into high risk and low risk groups. Using median cut-off for 

dichotomization is recommended in the radiomics guidelines [2], unless a previously 

published cut-off is available (hence, using optimal cut-off techniques is 

discouraged). Differences in OS and DFS between risk groups were estimated using 

the Kaplan-Meier method and compared using the log-rank test. The discriminatory 

ability for OS and DFS was evaluated using Harrell’s concordance index (c-index) and 

compared using t-tests.  95% confidence intervals (CI) were calculated based on 

2000 bootstrap replicates. Model calibration was visually assessed using calibration 
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curves and quantified using mean absolute prediction error. Clinical utility was 

assessed by comparing net benefit of the models, graphed using decision curve 

analysis [35, 36]. Missing Ca19.9 and ISI data were substituted using predictive mean 

matching imputation [37]. Imputation models were built on the training cohort, then 

used to impute both cohorts. Statistics were performed using R v3.5.0 (R project for 

statistical computing). The ‘R’ packages used were: glmnet (for Lasso), survival (for 

Cox regression), pec and RMS (for calibration results), ggplot2 (for preparing plots) 

and github.com/ddsjoberg/dcurves (for decision curve analysis).  
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Chapter 5 – Results 

5.1. Training and external cohorts. 

The training and external validation cohorts included 352 and 215 patients, 

respectively (figure 2, page 44). Median follow up was 58.6 and 61 months in 

training and external cohorts, with 249 and 151 deaths respectively. Median survival 

in the training and external cohorts was 25.03 and 26.87 months, which was slightly 

longer than prior PDAC CT radiomic studies, which ranged from 17.3-24 months [1, 

2]. DFS information was available in 97% (343/352) of patients in the training cohort 

and 92% (198/215) of patients in the external cohort. Median DFS was 12.2 and 19 

months respectively. Baseline characteristics of both cohorts are presented in table 

3, showing that the external cohort had significantly longer ISI (median 29 days vs 22 

days, p=0.0036), a higher proportion of biliary stents (55.8% vs 49.7%, p=0.042) and 

lower proportion of lymph node metastasis on pathology (63.7% vs 76.4%, p=0.002). 

There was also a significant difference in the distribution of pathological T stage 

between the two cohorts, with 7.9% T4 stage in the external cohort compared to 

0.9% in the training cohort (p<0.001). CT parameters of both cohorts are presented 

in table 4, demonstrating (1) considerable heterogeneity in CT parameters 

throughout both cohorts and (2) significant differences in the distributions of CT 

parameters between the two cohorts.  
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Table 3. Baseline patient characteristics, compared between the training and external 

datasets.  

 Training Cohort 

(n=352) 

External Cohort 

(n=215) 

p-value 

Pre-operative clinical variables 

ISI (days): Median (Q1-Q3) 

    Missing 

    Patients with ISI > 60 days 

    Patients with ISI > 90 days 

22 (24)  

0 

25 (7.1%) 

2 (0.6%) 

29 (31) 

34 

24 (11.2%) 

3 (1.4%) 

 

0.0036 

0.095 

0.306 

Ca 19.9 (kU/L): Median (Q1-Q3)     

    Missing 

107 (411.5) 

130 

83 (174) 

140 

 

0.065 

Age - Median (Q1-Q3) 66 (14) 67 (12) 0.24 

Sex (Male) 184 (52%) 124 (58%) 0.24 

Tumour location (Head) 294 (84%) 190 (88%) 0.14 

CT-N-stage (Positive) 137 (39%) 85 (40%) 0.95 

Biliary stent (Positive) 175 (49.7%) 120 (55.8%) 0.042 

Post-operative variables 

Pathologic T stage 1 

2 

3 

4 

Missing 

17 (4.8%) 

59 (16.7%) 

273 (77.6%) 

3 (0.9%) 

0 

16 (7.4%) 

20 (9.3%) 

161 (74.8%) 

17 (7.9%) 

1 (0.5%) 

 

 

 

 

<0.001 

Pathologic N stage Positive 

Missing 

269 (76.4%) 

0 

137 (63.7%) 

1 (0.5%) 

0.002 

ISI = Imaging to surgery time interval. Q1-Q3 = Interquartile range.  
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Table 4. CT technical parameters compared between the two cohorts. 

  Training 

(n=352) 

External 

(n=215) 

p 

CT 

Manufacturer 

Siemens 16 (4.5%) 103 (47.9%) <0.0001 

 Toshiba 288 (81.8%) 17 (7.9%)  

 GE 33 (9.4%) 54 (25.1%)  

 Philips 15 (4.3%) 26 (12.1%)  

 Unknown 0 15 (7%)  

Number of CT 

scanner models 

 26 24 <0.0001 

Slice Thickness ≥5mm 71 (20.2%) 112 (52.1%) <0.0001 

 3-4mm 27 (7.7%) 22 (10.2%)  

 2-2.99mm 233 (66.2%) 19 (8.8%)  

 <2mm 17 (4.8%) 58 (27%)  

 Missing 3 (0.9%) 2 (0.9%)  

No. of Recon 

Kernels used 

 13 20 <0.0001 

KVP 100 2 (0.6%) 9 (4.2%) 0.0005 

 120 346 (98.3%) 185 (86%)  

 130 1 (0.3%) 5 (2.3%)  

 140 0 1 (0.5%)  
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 Missing 3 (0.9%) 15  

Exposure (mAs) <100 197 (56%) 72 (33.5%) <0.0001 

 100-199 85 (24.1%) 77 (35.8%)  

 200-299 38 (10.8%) 12 (5.6%)  

 ≥300 6 (0.2%) 1 (0.5%)  

 Missing 26 (7.4%) 53 (24.7%)  

mAs = milliampere seconds. 

 

5.2. Rad-Score Development. 

The mean DICE similarity coefficient for the 145 two reader contours was 0.66 

(±0.26). ICC values for all features are presented in table 5. Of 116 extracted 

radiomics features, nine features with zero variance (constant values for all cases) 

were excluded. Following univariable Cox regression analysis, using the outcome of 

OS, 7 features were selected. Using a Spearman correlation coefficient cut-off ≥ 0.8, 

4 features were selected (figure 8). All the possible two-way interaction terms were 

created for the selected features. LASSO was performed on this extended feature 

space. 
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Table 5. Interclass correlation coefficient (ICC) results for the 145 double contour 

cases. The four features included in the Rad-Score are highlighted in grey. 

 

Feature ICC Feature ICC Feature ICC 

shape_Elongation 0.371712 glcm_Correlation 0.627705 glszm_GrayLevelNonUni

formity 

0.83731 

shape_MajorAxisLength 0.788304 glcm_DifferenceAvera

ge 

0.870147 glszm_GrayLevelNonUni

formityNormalized 

0.752996 

shape_Maximum2DDiameterCol

umn 

0.933547 glcm_DifferenceEntro

py 

0.892346 glszm_GrayLevelVarianc

e 

0.704487 

shape_Maximum2DDiameterRo

w 

0.965364 glcm_DifferenceVaria

nce 

0.549854 glszm_HighGrayLevelZon

eEmphasis 

0.473623 

shape_Maximum2DDiameterSlic

e 

0.802297 glcm_Id 0.886013 glszm_LargeAreaEmphas

is 

0.867205 

shape_Maximum3DDiameter 0.932459 glcm_Idm 0.888312 glszm_LargeAreaHighGr

ayLevelEmphasis 

0.786322 

shape_MeshVolume 0.998478 glcm_Idmn 0.506721 glszm_LargeAreaLowGra

yLevelEmphasis 

0.824487 

shape_MinorAxisLength 0.881003 glcm_Idn 0.629645 glszm_LowGrayLevelZon

eEmphasis 

0.492072 

shape_Sphericity 0.916071 glcm_Imc1 0.675227 glszm_SizeZoneNonUnif

ormity 

0.829723 

shape_SurfaceArea 0.982099 _glcm_Imc2 0.609499 glszm_SizeZoneNonUnif

ormityNormalized 

0.6275 

shape_SurfaceVolumeRatio 0.974063 glcm_InverseVariance 0.54421 glszm_SmallAreaEmphas

is 

0.653158 

shape_VoxelVolume 0.998605 glcm_JointAverage 0.445808 glszm_SmallAreaHighGr

ayLevelEmphasis 

0.566184 

firstorder_10Percentile 0.744635 glcm_JointEnergy 0.790809 glszm_SmallAreaLowGra

yLevelEmphasis 

0.46365 

firstorder_90Percentile 0.735985 glcm_JointEntropy 0.817108 glszm_ZoneEntropy 0.671019 

firstorder_Energy 0.596089 glcm_MCC 0.611328 glszm_ZonePercentage 0.846014 
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firstorder_Entropy 0.766121 glcm_MaximumProba

bility 

0.758479 glszm_ZoneVariance 0.85992 

firstorder_InterquartileRange 0.702731 glcm_SumAverage 0.445808 gldm_DependenceEntro

py 

0.598877 

firstorder_Kurtosis 0.407557 glcm_SumEntropy 0.675455 gldm_DependenceNonU

niformity 

0.859418 

firstorder_Maximum 0.640854 glcm_SumSquares 0.69776 gldm_DependenceNonU

niformityNormalized 

0.697648 

firstorder_MeanAbsoluteDeviatio

n 

0.748937 glrlm_GrayLevelNonU

niformity 

0.88418 gldm_DependenceVaria

nce 

0.70639 

firstorder_Mean 0.742761 glrlm_GrayLevelNonU

niformityNormalized 

0.766067 gldm_GrayLevelNonUnif

ormity 

0.892725 

firstorder_Median 0.743192 glrlm_GrayLevelVarian

ce 

0.691853 gldm_GrayLevelVariance 0.694379 

firstorder_Minimum 0.591252 glrlm_HighGrayLevelR

unEmphasis 

0.407265 gldm_HighGrayLevelEm

phasis 

0.396654 

firstorder_Range 0.656799 glrlm_LongRunEmpha

sis 

0.918148 gldm_LargeDependence

Emphasis 

0.894683 

firstorder_RobustMeanAbsolute

Deviation 

0.73518 glrlm_LongRunHighGr

ayLevelEmphasis 

0.321602 gldm_LargeDependence

HighGrayLevelEmphasis 

0.285579 

firstorder_RootMeanSquared 0.740996 glrlm_LongRunLowGra

yLevelEmphasis 

0.679033 gldm_LargeDependence

LowGrayLevelEmphasis 

0.682379 

firstorder_Skewness 0.633041 glrlm_LowGrayLevelR

unEmphasis 

0.482638 gldm_LowGrayLevelEmp

hasis 

0.482152 

firstorder_TotalEnergy 0.989443 glrlm_RunEntropy 0.679913 gldm_SmallDependence

Emphasis 

0.851577 

firstorder_Uniformity 0.74839 glrlm_RunLengthNon

Uniformity 

0.852376 gldm_SmallDependence

HighGrayLevelEmphasis 

0.633255 

firstorder_Variance 0.702045 glrlm_RunLengthNon

UniformityNormalized 

0.86765 gldm_SmallDependence

LowGrayLevelEmphasis 

0.462612 

glcm_Autocorrelation 0.376815 glrlm_RunPercentage 0.892673 ngtdm_Busyness 0.781734 

glcm_ClusterProminence 0.435666 glrlm_RunVariance 0.904747 ngtdm_Coarseness 0.510591 
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glcm_ClusterShade 0.566624 glrlm_ShortRunEmpha

sis 

0.882632 ngtdm_Complexity 0.639672 

glcm_ClusterTendency 0.658669 glrlm_ShortRunHighGr

ayLevelEmphasis 

0.48284 ngtdm_Contrast 0.647604 

glcm_Contrast 0.729356 glrlm_ShortRunLowGr

ayLevelEmphasis 

0.443553 ngtdm_Strength 0.709696 

 

Figure 8. Spearman coefficient results for the seven radiomic features which were 

selected using univariable cox regression analysis, as part of Rad-score building.  
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The final Rad-score equation comprised of 4 features and 3 two-way interaction 

terms: 

𝑅𝑎𝑑 − 𝑆𝑐𝑜𝑟𝑒 = 0.06 (𝑔𝑙𝑐𝑚𝐽𝑜𝑖𝑛𝑡𝐸𝑛𝑡𝑟𝑜𝑝𝑦) − 0.12 (𝑓𝑖𝑟𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑀𝑒𝑑𝑖𝑎𝑛)

− 0.15 (𝑛𝑔𝑡𝑑𝑚𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠) − 0.00 (𝑓𝑖𝑟𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑀𝑖𝑛𝑖𝑚𝑢𝑚)

− 0.08 (𝑓𝑖𝑟𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑀𝑒𝑑𝑖𝑎𝑛 ∗ 𝑓𝑖𝑟𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑀𝑖𝑛𝑖𝑚𝑢𝑚)

− 0.05 (𝑓𝑖𝑟𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑀𝑒𝑑𝑖𝑎𝑛 ∗ 𝑔𝑙𝑐𝑚𝐽𝑜𝑖𝑛𝑡𝐸𝑛𝑡𝑟𝑜𝑝𝑦)

− 0.08 (𝑔𝑙𝑐𝑚𝐽𝑜𝑖𝑛𝑡𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ∗ 𝑓𝑖𝑟𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑀𝑖𝑛𝑖𝑚𝑢𝑚) 

The interaction term plots are presented and discussed in figure 9. The coefficients 

of the other 3 two-way interaction terms were set to zero by LASSO and therefore, 

do not appear in the regression equation. It is important to note that 

glcm_JointEntropy and ngtdm_Coarseness have opposite signs within the Rad-score 

equation, despite the fact that they both measure texture heterogeneity. This is 

because higher values of glcm_JointEntropy and lower values of ngtdm_Coarseness 

are both associated with a more heterogenous texture, due to the way they are 

calculated from the image. The Rad-score equation was then used to calculate a 

numeric Rad-score for each patient (Figure 10). 

Figure 9. Interaction plots for the two-way interaction terms included in Rad-score. 

Figure 9 caption: Interaction plots comparing the risk score (probability of event, Y axis) 

compared with features values, stratified by interaction features values. These plots 

demonstrate that (A) the risk of death associated with increasing values of 

original_firstorder_minimum depends on the value of another feature, 

original_firstorder_median. While in patients with higher values of 

original_firstorder_median, the risk of death is negatively associated with increasing values 
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of original_firstorder_minimum, the opposite can be observed for those with lower values of 

original_firstorder_median. A similar interaction effect is observed between the features 

first_order_minimum and glcm_JointEntropy (B). For the features first_order_median and 

glcm_JointEntropy (C), the interaction effect is synergistic. With an increase in the value of 

first_order_median the risk of death is reduced regardless of the values of 

glcm_JointEntropy. However, the slope and, therefore, the impact on survival is greater at 

higher glcm_JointEntropy values compared with lower glcm_JointEntropy values. 

Figure 10. Case Examples with calculated Rad-scores. 

 

Figure 10: Axial preoperative CT images of two patients with PDAC (a, b). Green contours 

represent segmented tumour (b, d). (a,b) 55 year-old patient with high attenuation (96 HU) 

and heterogenous pancreatic tail tumour measuring 30 mm. Calculated Rad-score was low 

(0.017345). The patient died 1140 days following resection. (c, d) 81 year-old patient with a 

low attenuation (36 HU) and homogenous tumour in the pancreatic tail measuring 34mm. 

Calculated Rad-score was high (0.5590). The patient died 280 days after the resection. 
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5.3. Association of Rad-Score and clinical variables with OS and DFS.  

At multivariable Cox regression in the training cohort, including pre-operative 

clinical variables and Rad-score, only Rad-score was significantly associated with OS 

and DFS with HRs of 3.78 (95% CI: 2.2-6.5, P<0.001) and 2.81 (95% CI: 1.67-4.71, 

P<0.001) respectively (table 6). At multivariable analysis in the external cohort, only 

Rad-score and age demonstrated significant associations with OS (Rad-score HR: 

2.87, 95% CI: 1.40, 5.87, p<0.001; Age HR: 1.02 95% CI: 1.01, 1.04, p=0.01) and DFS 

(Rad-Score HR 5.28, 95% CI 2.35-11.86, p<0.001; Age HR: 1.02 95% CI: 1.00, 1.04, 

p=0.03). Univariable Cox regression analyses for OS in the training cohort for the 

four radiomic features and three interaction terms included in the Rad-score are 

presented in table 7. 

Using the median Rad-score value from the training cohort (0.029) as the cut-point, 

the median OS for the groups with high versus low Rad-score were 17.8 versus 32 

months in the training cohort (p<0.0001, figure 11) and 22.9 versus 37 months in the 

external cohort (p=0.0092, figure 9). For DFS, the high versus low Rad-score groups 

demonstrated median OS of 10.1 versus 15.2 months in the training cohort 

(p=0.00025) and 14.2 versus 29.8 months in external (p=0.0023, figure 11).  

 

Table 6. Multivariable analysis for the association between clinical variables and Rad-

score for the outcome of Overall Survival in the training and external cohorts. 

Variable Training cohort External cohort 

Overall survival 

 HR (95% C.I) p-value HR (95% C.I) p-value 

ISI (days) 1.00 (1.00-

1.01) 

0.34 1.00 (0.99, 1.00) 0.37 
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Ca 19.9 (kU/L) 1.00 (1.00-

1.00) 

0.87 1.00 (1.00, 1.00) 0.68 

Age (years) 1.00 (0.98-

1.01) 

0.57 1.02 (1.01, 1.04) 0.01 

Sex (Female) 1.03 (0.79-

1.34) 

0.85 0.98 (0.70, 1.38) 0.91 

Tumour location 

(Body/Tail) 

0.85 (0.60-

1.21) 

0.36 1.09 (0.65, 1.82) 0.76 

CT-N-stage 

(positive) 

1.09 (0.84-

1.42) 

0.52 1.12 (0.80, 1.56) 0.53 

Rad-score 3.78 (2.2-6.5) <0.001 2.87 (1.40, 5.87) <0.001 

Disease-free survival 

 HR (95% C.I) p-value HR (95% C.I) p-value 

ISI (days) 1.00 (1.00-

1.01) 

0.60 0.99 (0.98-1.00) 0.05 

Ca 19.9 (kU/L) 1.00 (1.00-

1.00) 

0.72 1.00 (1.00-1.00) 0.46 

Age (years) 0.99 (0.98-

1.01) 

0.36 1.02 (1.00-1.04) 0.03 

Sex (Female) 1.05 (0.82-

1.35) 

0.69 0.79 (0.56-1.13) 0.20 

Tumour location 

(Body/Tail) 

1.13 (0.81-

1.59) 

0.47 1.44 (0.82-2.54) 0.20 

CT-N-stage 

(positive) 

1.07 (0.82-

1.38) 

0.63 0.90 (0.63-1.30) 0.59 
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Rad-score 2.81 (1.67-

4.71) 

<0.001 5.28 (2.35-11.86) <0.001 

Abbreviation: CA 19.9 = Carbohydrate Antigen; ISI = Imaging to surgery time interval. HR = 

Hazard ratio; CI = Confidence Interval; CT-N-stage = Nodal classification based on short 

axis diameter ≥ 1cm. 

 

 

Table 7.  Univariable Cox proportional hazard analysis for the association between 

Rad-score features and Overall Survival in the training cohort. 

Variable Univariate 

 HR (95% C.I) p-value 

original_firstorder_Minimum 0.81 (0.71-0.92) 0.002 

original_firstorder_Median 0.85 (0.76-0.96) 0.01 

original_glcm_JointEntropy 1.14 (1.00-1.30) 0.05 

original_ngtdm_Coarseness 0.81 (0.70-0.94) 0.004 

original_firstorder_Median:original_firstorder_Minimum 0.95 (0.84-1.07) 0.36 

original_firstorder_Median:original_glcm_JointEntropy 0.90 (0.79-1.02) 0.08 

original_firstorder_Minimum:original_glcm_JointEntropy 0.91 (0.83-1.00) 0.05 
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Figure 11. Kaplan Meier analysis of Rad-score for overall survival and disease-free 

survival in the training and external cohorts. 
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5.4. Discrimination.  

5.4.1. Training cohort. 

Discriminatory ability for OS in the training cohort, as indicated by the c-indices, 

were 0.56 (95% CI: 0.559-561) for clinical, 0.626 (95% CI: 0.625-0.627) for clinical-

radiomic and 0.583 (95% CI: 0.583-584) for TNM models (table 7). C-indices for DFS 

were 0.561 (95% CI: 0.56-562) for clinical, 0.603 (95% CI: 0.602-603) for clinical-

radiomic and 0.594 (95% CI: 0.593-594) for TNM models. The TNM discrimination in 

our training cohort was similar to the performance in recent publications from Shi et 

al (c-index 0.59) and Xu et al [3] (c-index 0.572) but inferior to Xie et al (0.699), the 

latter likely due to the inclusion of patients with metastatic disease in their study 

(11% of their total cohort), since metastatic disease is a major predictor of survival in 

pancreas cancer. Patients with metastatic disease are do not meet NCCN criteria for 

resection [4] although the Xie et al paper does not detail what guidelines they follow 

at their institution.  

5.4.2. External cohort. 

Discriminatory ability for OS were 0.497 (95% CI: 0.496-0.499) for the clinical, 0.545 

(95% CI: 0.543-0.546) for the clinical-radiomic and 0.525 (95% CI: 0.524-0.526) for 

the TNM model. C-indices for DFS were 0.472 (95% CI: 0.47-0.473) for clinical, 0.554 

(95% CI: 0.552-0.556) for clinical-radiomic and 0.485 (95% CI: 0.484-0.486) for TNM 

(table 7). The clinical-radiomic model demonstrated significantly improved 

performance compared to the clinical model alone or TNM model for both OS and 

DFS (table 7).  
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Table 8. Discrimination performance of the models for overall and disease-free 

survival 

 C-index (95% CI)  

Training cohort 

C-index (95% CI)  

External cohort 

Outcome: Overall Survival 

Clinical Model 0.56 (0.559-0.561) 0.497 (0.496-0.499) 

Rad-score 0.616 (0.615-0.617)*†  0.564 (0.562-0.565)*† 

Clinical +Rad-score 0.626 (0.625-0.627)*† 0.545 (0.543-0.546)*† 

AJCC TNM 0.583 (0.583-0.584) 0.525 (0.524-0.526) 

Outcome: Disease Free Survival 

Clinical Model 0.561 (0.56-0.562) 0.472 (0.47-0.473) 

Rad-score 0.593 (0.592-0.594)* 0.573 (0.572-0.574) *† 

Clinical +Rad-score 0.603 (0.602-0.603)*† 0.554 (0.552-0.556)*†  

AJCC TNM 0.594 (0.593-0.594) 0.485 (0.484-0.486) 

* P-value < 0.001 compared to clinical model alone. † P-value < 0.001 compared to TNM. 

 

5.5. Calibration. 

Calibration curves demonstrate good calibration in the training cohort for the 

clinical-radiomic model (Figure 12), with mean absolute prediction error of 3% and 

2% for OS at 3 and 5 years, respectively. In the external cohort, calibration curves 

demonstrate moderate calibration (Figure 12), with mean absolute prediction error 

7% and 13% for OS at 3 and 5 years. 



Chapter 5 – Results 

97 
 

Figure 12. Calibration curves of the clinical and clinical-Radiomic models in the 

training and external cohorts at 3 and 5 years for overall survival. The y axis shows 

the observed overall survival probability, while the x axis shows the predicted overall 

survival probability.  

 

 

 

5.6. Decision Curve Analysis. 

Decision curves are presented in figure 9 for the three- and five-year survival time 

points. These demonstrate that the clinical-radiomics model demonstrates a 

marginally higher net benefit compared to a clinical model alone, however they are 

both clinically harmful (i.e. crossing below the y=zero line) at higher risk thresholds, 

indicating that there is no clear clinical utility of these models. 
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Figure 13. Decision curve analysis of the clinical and clinical-radiomic models in the 

training and external cohorts at 3 and 5 years. DFS = Disease free survival.  
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Figure 13 caption: Decision-curve analysis for the clinical and clinical-radiomic 

models for disease free and overall survival at 3 and 5 years. The y-axis displays the 

net benefit, which represents the proportion of true positive predictions given by the 

model accounting for the harms of false positive predictions. The x-axis shows the 

threshold probability, which in this analysis reflects the clinician’s/patient’s 

subjective judgment about what probability of disease recurrence would prompt 

initiation of treatment (Please note that the amount of benefit derived from the 

intervention/treatment is not taken into account in DCA – simply the ability of the 

model to classify patients into treat/no-treat groups). The ‘none’ line demonstrates 

no net benefit, since no treatment decisions are made and therefore the true and 

false positives are both zero, hence the net benefit = 0 at all threshold probabilities 

[5]. The ‘all’ line crosses the y axis at the prevalence of the event (approximately 

0.63 for OS at 3 years in the internal cohort and 0.85 for OS at 5 years), hence it 

shows a net benefit for all thresholds below the prevalence, but net harm (dips 

below the y=0 point) for all thresholds above the prevalence. 
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At low-risk thresholds, none of the models demonstrate net benefit compared with a 

‘treat all’ patients strategy, i.e., they are not clinically useful at low thresholds. The 

clinical-radiomics model demonstrated a marginally increased net benefit compared 

to the clinical model at high-risk thresholds in both cohorts. Net benefit of the 

clinical-radiomics model compared with default strategies (‘treat all’/’treat none’) in 

the external cohort was limited to only a small range of threshold probabilities (e.g., 

~55-75% for 5-year OS in the external cohort). The reference TNM model 

demonstrates superior net benefit compared to the clinical and clinical-radiomic 

models for almost all threshold probabilities, using both the outcomes of OS and 

DFS. 

 

 

5.7. Feature harmonization 

Hierarchal clustering of radiomic features was performed, stratified by CT technical 

parameters, however no clear batch effect was apparent (figure 14). Therefore, 

empirical batch groupings were created: manufacturer, slice thickness, 

reconstruction kernel, manufacturer+slice thickness and kernel+slice thickness. No 

batching combination provided an improvement in results. For example, using the 

‘manufacturer’ batch, 6 features and 5 interaction terms were selected for Rad-

score. Discrimination performance (table 8) demonstrated c-index for the clinical-

radiomic model of 0.622 (95% CI: 0.585-0.659) in the training cohort and 0.56 

(0.559-0.561) in the external cohost, which was no better than the performance 

achieved without Combat feature harmonization. 



Chapter 5 – Results 

102 
 

Figure 14. Hierarchal clustering of radiomic features, stratified by CT technical 

parameters. 
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Table 9. Discrimination performance of the model overall survival in the training and 

external cohorts created using Combat (with manufacturer batching).  

 Training 

C-Index (95% CI) 

External 

C-Index (95% CI) 

Clinical model 0.548 (0.509-0.587) 0.495 (0.494-0.497) 

Rad-score 0.613 (0.576-0.650) 0.560 (0.559-0.561) 

Rad-score + clinical 0.622 (0.585-0.659) 0.560 (0.559-0.561) 

 

5.8. Analysis with filtered features 

As described in section 4.5.3, all available PyRadiomics filters were applied in order 

to expand the total number of radiomics features to 1037. The feature selection 

pipeline described in section 4.5 was repeated using this combination of original and 

filtered. 48 features with zero variance were excluded. The remaining features were 

entered into univariable Cox proportional hazard model for OS and 257 were 

selected. This was reduced to 26 after selection using the Spearman correlation 

step. Interaction terms were then identified and all were entered into LASSO, 

resulting in a Rad-score containing 13 terms. The performance results (Table 9) 

demonstrated a large performance drop in the external cohort, with performance 

that was inferior using only original features for the analysis. This is likely due to 

overfitting in the internal cohort. 

Table 10. Discrimination performance of the model for overall survival in the training 

and external cohorts using original + filtered features (n=1037). 

 Training C-Index External C-Index 

Rad-score 0.636 0.488 

Rad-score + clinical 0.646 0.49 
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5.9 Analysis of manufacturer influence on Radiomic features. 

To assess the influence of CT scanner manufacturer on the radiomic results, we 

compared the radiomic features values from the four features included in the Rad-

score between manufacturers. We first performed analysis of variance (ANOVA) to 

compare the features across the manufacturer groups. Features which 

demonstrated significant difference between groups were retained and further 

assessed by Tukey honest significance test (HSD) test for pairwise comparisons 

between different manufacturers. A separate analysis is performed for internal 

(Toronto) and external (Irish) cohorts. For most pairwise comparisons between 

manufacturers the value of the radiomic features did not change significantly. In 9 

cases, there was a significant difference in the value of radiomic features based on 

the manufacturer, however, the results are not consistent both across cohort and 

radiomic features (table 10). 

 

Table 11. Comparison of Radscore radiomic features vs manufacturer. 

Feature Cohor

t 

Pair p.adj Cohort Pair p.adj 

original_firstorder_Median Ext Phi-GE 0.9993 Int Phi-GE 0.9691 

original_firstorder_Median Ext Sie-GE 0.7898 Int Sie-GE 0.9773 

original_firstorder_Median Ext Tos-GE 0.7917 Int Tos-GE 0.0024 

original_firstorder_Median Ext Sie-Phi 0.9752 Int Sie-Phi 1.0000 

original_firstorder_Median Ext Tos-Phi 0.7615 Int Tos-Phi 0.0152* 

original_firstorder_Median Ext Tos-Sie 0.3150 Int Tos-Sie 0.0140* 

original_firstorder_Median Ext unk-Phi 0.8617    

original_firstorder_Median Ext unk-GE 0.6957    

original_firstorder_Median Ext unk-Sie 0.9604    
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original_firstorder_Median Ext unk-Tos 0.2981    

original_glcm_JointEntropy Ext Phi-GE 0.2859 Int Phi-GE 0.9835 

original_glcm_JointEntropy Ext Sie-GE 0.9899 Int Sie-GE 0.9811 

original_glcm_JointEntropy Ext Tos-GE 0.7367 Int Tos-GE 0.0001* 

original_glcm_JointEntropy Ext Sie-Phi 0.0984 Int Sie-Phi 0.9194 

original_glcm_JointEntropy Ext Tos-Phi 0.0770 Int Tos-Phi 0.0360* 

original_glcm_JointEntropy Ext Tos-Sie 0.8563 Int Tos-Sie 0.0015* 

original_glcm_JointEntropy Ext unk-Phi 0.0091*    

original_glcm_JointEntropy Ext unk-GE 0.2220    

original_glcm_JointEntropy Ext unk-Sie 0.3042    

original_glcm_JointEntropy Ext unk-Tos 0.9391    

original_ngtdm_Coarseness Ext Phi-GE 0.6513 Int Phi-GE 1.0000 

original_ngtdm_Coarseness Ext Sie-GE 0.9725 Int Sie-GE 0.7178 

original_ngtdm_Coarseness Ext Tos-GE 0.9889 Int Tos-GE 0.8021 

original_ngtdm_Coarseness Ext Sie-Phi 0.2993 Int Sie-Phi 0.7906 

original_ngtdm_Coarseness Ext Tos-Phi 0.5853 Int Tos-Phi 0.9071 

original_ngtdm_Coarseness Ext Tos-Sie 1.0000 Int Tos-Sie 0.9313 

original_ngtdm_Coarseness Ext unk-Phi 0.0578    

original_ngtdm_Coarseness Ext unk-GE 0.3240    

original_ngtdm_Coarseness Ext unk-Sie 0.4848    

original_ngtdm_Coarseness Ext unk-Tos 0.7648    

original_firstorder_Minimum Ext Phi-GE 0.9609 Int Phi-GE 0.9993 

original_firstorder_Minimum Ext Sie-GE 0.3395 Int Sie-GE 0.8902 

original_firstorder_Minimum Ext Tos-GE 0.9929 Int Tos-GE 0.9683 



Chapter 5 – Results 

106 
 

original_firstorder_Minimum Ext Sie-Phi 0.2053 Int Sie-Phi 0.8916 

original_firstorder_Minimum Ext Tos-Phi 0.9999 Int Tos-Phi 0.9981 

original_firstorder_Minimum Ext Tos-Sie 0.4756 Int Tos-Sie 0.6413 

original_firstorder_Minimum Ext unk-Phi 0.0020*    

original_firstorder_Minimum Ext unk-GE 0.0031*    

original_firstorder_Minimum Ext unk-Sie 0.0559    

original_firstorder_Minimum Ext unk-Tos 0.0092*    

*indicates statistical significance at the <0.05 level. 

 

 

5.10. Radiomics Quality score 

The Radiomics quality score for our study is 18/36 (figure 15), which compared to a 

score of 14/36 in the two highest scoring studies to date in this field (see section 

3.3). The areas where our study gains points are: the use of median value for cut-off 

analysis when determining risk groups, the use of bootstrap resampling when 

measuring discrimination and validation using cohorts from two distinct institutions. 

Our study will also gain an additional point for ‘detection and discussion of biological 

correlates’ when our future work in this area is completed (see section 6.7), 

increasing the score to 19/36. 
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Figure 15. Radiomics Quality Score calculated on www.radiomics.world. 
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5.11. Results summary. 

We developed a clinical-radiomic model for prognostication in PDAC, based on pre-

operative CT imaging in a multi-institutional cohort of patients from Canada and 

externally assessed this model in a cohort of patients from Ireland. Our study is the 

highest quality evidence in this field to date and the only study to incorporate robust 

external validation. The model identified a signal capable of stratifying patient 

prognosis and it generalized to the external dataset, but despite superior 

performance compared to a clinical model alone, overall performance was 
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suboptimal. The reference post-operative TNM model demonstrated superior net 

benefit compared to both the clinical and clinical-radiomic models. It is likely that 

heterogeneity of CT technical factors within and between the cohorts contributed to 

poor model performance, however there was no clear ‘batch effect’ apparent to 

indicate one CT parameter in particular which was the primary influence on the 

results. Dedicated analysis of the influence of manufacturer on radiomic values did 

not reveal any consistent relationship and attempts to improve the model 

performance using Combat feature harmonization (to reduce CT parameter 

heterogeneity) and the addition of filtered radiomic features, did not prove useful. 
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Chapter 6 – Discussion and Conclusion 

6.1. Summary of results and study rationale. 

We have developed and externally validated a pre-operative clinical-radiomics 

prognostic model for PDAC, which significantly outperformed a pre-operative clinical 

model, for both outcomes of disease-free and overall survival. The Rad-score was 

the only pre-operative prognostic variable in the training cohort and the only 

prognostic factor, other than age, in the external cohort. The addition of Rad-score 

to the pre-operative clinical model significantly improved prognostication and added 

approximately 0.05 to the value of the c-Index, whereas it is suggested that a 

biomarker should be deemed relevant if it adds more than 0.005 to a model [1]. 

Compared to the reference standard TNM model, our clinical-radiomic model 

performed slightly better in terms of discrimination (clinical-radiomics model: C-

index 0.545 for OS in external cohort, 0.554 for DFS; TNM C-index 0.525 for OS 

external cohort, 0.485 for DFS) however TNM demonstrated higher net benefit 

(Figure 13). The TNM system is based upon post-operative pathological data, which 

is only available after surgical resection is complete. While it is possible to estimate 

an ‘imaging’ TNM pre-operatively, we have shown that estimating these variables on 

imaging is not accurate (for example, the CT-N-stage for the internal and external 

cohorts was 39% and 40% positive respectively vs 76.4% and 63.7% positive on 

pathology, which the gold standard. Table 3). Thus, TNM is not useful for pre-

operative decision making, which was the goal of this study.  

The importance of this work resides in the pre-operative treatment decisions for 

patients with radiologically resectable PDAC. While surgical resection is the only 

potential for cure, this treatment carries a significant risk of morbidity and mortality 

and achieves cure in only a small percentage of patients. Hence, one potential 

strategy to improve long term outcomes focuses upon pre-operative (neoadjuvant) 
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chemotherapy, which has been shown to improve disease-free survival[2]. However, 

prospective trials have not found that treating resectable PDAC patients with 

neoadjuvant therapy has improved survival and reviews of the literature have 

concluded that, on the basis of current evidence, this strategy should only be used in 

research settings at present [3]. It has been proposed that better stratification of 

patients is needed in order to identify those who will benefit from neoadjuvant 

therapy [2] based upon the theory that there is a subgroup of resectable PDAC 

patients who may benefit most. It is clear that pre-operative clinical models alone 

are inadequate, therefore the ability to contribute additional prognostic signal to a 

pre-operative model is valuable.  

 

6.2. Comparison to prior studies. 

Based upon the Radiomics Quality Score (RQS), our study is now the highest ranked 

work in the field of CT radiomics for PDAC prognostication, with a score of 18/36, 

compare to 14/36 in the two highest ranking studies to date. As highlighted in 

section 5.10, the areas where our study gained points compared to these prior 

studies are: the use of median value for cut-off analysis when determining risk 

groups, the use of bootstrap resampling when measuring discrimination and 

validation using cohorts from two distinct institutions. 

Our study is only the second in prognostic PDAC CT radiomics to utilize an external 

test cohort. It is recommended that such validation datasets should experience at 

least 100 events [4] and compared to current body of literature in PDAC radiomics 

(table 1, page 41),  our large Irish cohort (n=215) is the only test cohort to have 

exceeded this threshold. Our study thus robustly assessed clinical transportability, 

which are not sufficiently captured by prior studies. Larger number of events results 

in less variance of the c statistic, translating to narrower confidence intervals and 

hence greater confidence in the result [4] and this is true of our data (C-index for OS 

in external cohort 0.545, 95% CI 0.543-0.546) compared to prior studies from Xie [5] 
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(0.726 [0.646–0.806]) and Shi [6] (0.73 [0.66-0.79]). The international, multi-

institutional nature of our cohorts resulted in substantial heterogeneity, with a 

significantly higher proportion of pathological T4 disease (AJCC stage III) in the 

validation set compared to the training cohort and this is reflected in the 

performance decrease at validation.  

Our radiomic model identified a signal capable of stratifying patient prognosis, 

which might be enhanced in the future by the additional of novel preoperative 

biomarkers [7, 8]. However, despite the fact that our model outperformed the pre-

operative clinical model, the overall discriminatory performance falls short of 

requirements for clinical implementation. Our model c-indices of 0.545 and 0.554 

for overall and disease-free survival in the validation cohort compare to 0.72-0.74 in 

prior clinical-radiomic models, who used internal validation and incorporated post-

operative pathological data [5, 6, 9]. The group which employed external validation 

reported c-index of 0.651 in a test set of 30 patients, which is too small to draw 

conclusions [10]. Performance metrics such as c-index can be influenced by length of 

follow-up, with longer follow up associated with lower results [11]. Our median 

survival of 58.6 and 61 months are considerably longer than all previous publications 

(table 1), however our model performance falls short of prior studies in both 

training and validation and minimal clinical utility is observed in the decision curve 

analysis, therefore it is important to explore the potential reasons for this low 

discrimination. 

Our training cohort (n=352) is the largest to date in this field (prior studies ranged 

30-210 patients, table 1) and this was achieved by employing broad inclusion 

criteria. Some prior studies included only CTs with one specific reconstruction slice 

thickness [6, 12, 13], excluded any which deviated from a specific pancreatic CT 

protocol [12, 13], and/or excluded all patients with biliary stents [13]. We did not 

follow such restrictive approaches because we wanted to create and test our model 

using real-world populations which match the type of the patient data expected in 

routine clinical practice. This is recommended in guidelines on the use of radiomics 
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in clinical trials from the European Society of Radiology, who highlight that 

“Radiomic signature are best developed initially on datasets that represent diversity 

of acquisition protocols, rather than within clinical trials with standardized and 

optimised protocols, as this would risk the selection of radiomic features linked to 

the imaging process rather than the pathology” [14]. In three prior CT radiomic 

PDAC studies, all CTs were acquired with identical contrast and reconstruction 

protocols using one or two CT scanner models [9, 15, 16] whereas our training and 

external cohorts were scanned on 26 and 24 different models, respectively (table 4). 

Consequently, our data is considerably more heterogenous regarding CT parameters 

than prior publications. This is likely the major factor limiting the performance of our 

model, since radiomic models are known to be highly sensitive to variation in CT 

acquisition parameters [17]. Attempts to mitigate this effect using Combat for 

feature harmonization did not result in better discrimination performance (table 9). 

Our study design eliminate one potential source variability by using IBSI compliant 

software [18, 19], since there are at least 14 software packages available [18-20] and 

compliance with IBSI has been shown to improve feature reproducibility [18].  

In our inclusion criteria, we allowed ISI up to 120 days, whereas this varied from 1-6 

months in prior studies who reported this metric (Table 1). While the number of 

patients with a very long ISI was low (5 patients had ISI between 90-120 days, three 

from Ireland and two from Canada, p=0.306), there was a significant difference in 

the ISI between our two cohorts (table 3), with a median of 22 days (IQR 24) for the 

Canadian cohort compared to median 29 (IQR 31, p=0.0036) for the Irish cohort. 

This is why we included ISI as a variable within the pre-operative clinical model, in 

order to account for this difference between the cohorts in our analysis. As 

demonstrated in our regression analysis, the ISI did not have a significant influence 

on patient overall survival or progression free survival in either cohort (Multivariable 

analysis results, table 6). This is supported by prior research which has 

demonstrated that ISI does not influence overall survival/progression free survival, 

either in an intention-to-treat or as-treat analysis [21], suggesting that underlying 
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tumour biology is probably a larger determinate of prognosis.  This also suggests 

that the decision to use surgery date as time zero for time-to-event analysis was 

reasonable from a survival statistical viewpoint, albeit there is no data as to the 

dynamic change in radiomic features values over time, during the pre-operative 

phase of PDAC.  

There are other notable differences between our study cohorts and the populations 

in prior studies; three studies included patients who received neoadjuvant therapy 

[10, 15, 22], which may influence the appearance of the tumour and increase the ISI. 

In addition, the inclusion of patients with metastatic (M stage) disease in the Xie et 

al study was unusual [5] since this is a major determinate of survival and is a 

contraindication to resection in guidelines [23]. We excluded patients who died 

within 30 days of surgery (in order to exclude deaths related to surgical 

complications) whereas some groups extended this to 60 [12] or 90 days [15, 22], 

albeit there are no guidelines as to the best strategy in this regard.  

 

6.3. Biological meaning of the Rad-score. 

The decision to focus primarily on original (non-filtered) radiomic features in this 

study was made in an attempt to improve the interpretation of the biological 

meaning of the Rad-score and also because IBSI has not yet performed analysis and 

standardization of radiomic image filters [19]. Two themes emerged in the Rad-

score: tumours with lower attenuation (lower values of firstorder_Median and 

firstorder_Minimum) and/or tumours with more heterogenous texture (higher value 

for glcm_JointEntropy and low value for ngtdm_Coarseness) demonstrate worse 

survival.  In the most extreme cases in our cohort, these characteristics were visible 

to the human eye (Figure 10) however computer automated quantification is 

required to classify the majority of cases. The finding that tumour attenuation is of 

prognostic importance is in line with previous publications. Several studies have 

shown that PDAC lesions with less enhancement on CT (i.e., lower attenuation), 
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demonstrated inferior response to neoadjuvant chemoradiation and shorter survival 

[24, 25] and there is evidence that the degree of enhancement correlates with 

underlying tumour biology, particularly the volume of extracellular stroma within 

the lesion [24]. Similarly, lower attenuation is associated with higher grade lesions, 

higher risk of lymph node metastasis and lower DFS [12, 13].   

The finding that more heterogenous PDAC tumour are associated with worse 

survival has been previously demonstrated [16, 22] and it is consistent with many 

other tumour, such as non-small cell lung cancer [26], oesophageal squamous cell 

cancer [27] and glioblastoma [28]. However, the literature is contradictory regarding 

the effects of homogeneity vs heterogeneity in PDAC, with two early radiomic 

studies reporting that more homogenous PDAC lesions are associated with worse 

survival [13, 15]. In one publication, features from the same Gray-level co-

occurrence matrix (GLCM) family (a group of second order radiomic features) 

demonstrated opposing effects within the same model, when measured at different 

angles, offsets or contrast phases [6]. Therefore, the true biological meaning of 

specific heterogeneity features in a PDAC tumour are yet to be determined. The 

inclusion of interaction terms in our study was intended to better capture the 

complex relationship between features. Interaction effects exist when the effect of a 

predictor variable changes depending on the value of other predictor variables. In 

our analysis, the relationship between original_firstorder_minimum and survival 

probability reversed depending on the values of original_firstorder_median and 

glcm_JointEntropy, whereas the relationship between glcm_JointEntropy and 

original_firstorder_median was synergistic (Figure 9).  

 

6.4. Rad-score vs clinical-radiomic score.  

The Radiomics Quality Score (RQS) encourages the inclusion of clinical variables into 

a radiomics prediction model because this is ‘expected to provide a more holistic 

model’[29]. In particular, the authors of the RQS highlight that it is important to 
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include established prognostic clinical variables in the model in order to identify 

whether any of the radiomic features are highly correlated with the clinical data, 

which would mean that the radiomics would not add any additional predictive 

ability to the model.  The is the reason why our study focused primarily upon the 

discriminatory performance of the combined clinical-radiomic model, even though 

the Rad-score model alone performed slightly better than the combined model for 

both overall and disease-free survival in the external cohort (table 8).  

 

6.5. Study limitations 

A potential limitation of our study is the use of 2D contours. Although this is the 

most common strategy used in this field to date (Table 1, page 41), it has been 

shown that 2D and 3D contours yield different results for most variables in PDAC, 

other than a small number of attenuation features [30]. There is evidence from 

colorectal cancer that 3D contours may be more accurate [31] although there is 

opposing evidence from a recent study in gastric cancer[32], hence it is unclear 

whether any performance gain from using 3D contours is worth the extra labor 

required to perform it (3D contouring requires every axial slice of the lesion to be 

contoured, which takes considerably longer than 2D contours) [33]. It has been 

shown that the impact of CT parameter heterogeneity outweighs variation in 

segmentation [34] and this is suspected to be the dominant factor limiting model 

performance in our study. Future work should focus upon standardization of CT 

protocols. Other limitations include missing ca19.9 and ISI data, managed with 

multiple imputations and missing DFS data, albeit <10% in both cohorts. Multiple 

imputation has been demonstrated to introduce less estimation bias than excluding 

cases with missing information [4, 35] and has been used in recent similar studies in 

PDAC prognostication [36]. Finally, the 7th edition of the AJCC TNM system was used 

in this study, because this reflects the time period from which the patients in our 

study were treated (the 8th edition was published in 2016).  



Chapter 6 – Discussion and Conclusion 

117 
 

 

6.6. Conclusion. 

We have developed and externally validated a pre-operative clinical-radiomic 

prognostic model for patients with PDAC using multi-institutional cohorts. The 

model significantly improved risk stratification compared to established pre-

operative clinical variables and demonstrated similar discrimination (but lower net 

benefit) compared to the gold standard TNM model, which uses post-operative 

pathological information. While the presented model may help with pre-operative 

treatment decisions, the low discriminative performance suggests that these 

decisions remain challenging. The comprehensive statistical methodology utilised in 

this study sets a new standard for studies in PDAC CT radiomics, however 

heterogeneity of CT acquisition parameters may have contributed to the low model 

performance and future work should focus upon standardization of these protocols. 

 

6.7. Next steps: Building upon our study results. 

In our study, we designed a robust test to assess the accuracy and clinical utility of 

state-of-the-art CT radiomics for PDAC prognostication and we can conclude that 

radiomics failed this test. The reasons for the poor performance have not been 

conclusively identified, however heterogeneity of CT acquisition parameters is the 

most likely explanation. Our results are an important stepping stone for researchers 

in this area and there are multiple potential pathways which the field may take from 

this point. These are the next steps which our group has chosen: 

(1) We have established a new collaboration with a hospital in Munich, Germany 

which is affiliated with the Technical University of Munich. We have done 

this in order to expand the size of our PDAC database and to include a third 

country into the project. This will facilitate comparisons such as North 

America vs Europe, Ireland vs Germany etc.  
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(2) We are continuing our collaboration with the biostatistics group of Professor 

Wie Xu at the University of Toronto. They will take our data and attempt to 

improve upon our results using a novel high dimension feature selection 

technique which was recently developed at their lab [37]. We decided not to 

use this in our initial work, since we wanted to stay within the realm of 

classic statistics, because we felt that would be more acceptable to clinicians. 

In addition, the work we have completed thus far will serve as a baseline 

which can be compared to as they attempt to improve the results.  

(3) Our lab will now embark on a biology-correlation study, using a sub-cohort 

from the Toronto patients who have additional biological information 

available, including transcriptomic patterns which are known to associate 

with patient survival, including the Collison, Moffit, and Bailey Squamous 

subtypes [38]. This biological validation work is being led by my colleague, 

Emmanuel Salinas-Miranda, a post-doctoral fellow in the Radiomics and 

Machine Learning Lab. The provisional results indicate that there is an 

association between Rad-Score and the Bailey squamous transcriptional 

subtype, but this work is ongoing and a manuscript is in draft currently 

(January 2022).  

(4) Recent studies have identified additional pre-operative prognostic 

biomarkers in PDAC, which may contribute to our model. In particular, our 

lab is interested in body composition biomarkers derived from pre-operative 

CT, such as skeletal muscle index and visceral adiposity. Our lab has recently 

published on skeletal muscle index (SKI) in unresectable PDAC [39], so we 

plan to build upon this experience to amalgamate this biomarker into our 

prediction model. One group has already combined SKI and radiomics, where 

SKI was remained a significant predictor of prognosis in multivariable analysis 

[6]. Thus, we plan to incorporate this in the next iteration of our work.  Other 

pre-operative biomarkers which we would like to incorporate include 
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neutrophil-lymphocyte ratio and patient symptoms at diagnosis, both of 

which have been shown to have prognostic significance [7]. 

(5) We have focused in this manuscript upon the use of radiomics for PDAC 

prognostication, however there are other forms of artificial intelligence 

which can be applied to medical imaging. There have been studies using 

deep learning for PDAC prognostication, but none with a cohort as large as 

ours, and none with external validation. Hence, the dataset we have 

generated is ideal for testing this more advanced method, and that is 

something which are lab intends to pursue. 
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