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Abstract

With the increasing availability of data in environmental geochemistry, one of the biggest
challenges is to extract useful knowledge and interpretable information from large and
diverse data sources. The unprecedented volume and complexity of datasets make it
difficult to rely on traditional tools for data analysis, which requires the applications and
development of GIS-based spatial techniques. In this thesis, four advanced spatial analysis
and machine learning (ML) techniques: (1) hot spot analysis (Get-is Ord Gi"); (2)
Geographically weighted regression (GWR); (3) K-means clustering analysis; and (4)
Geographically Weighted Pearson Correlation Coefficient (GWPCC) were deployed to
investigate the spatial patterns and to extract hidden information in large-scale datasets.

The total organic carbon (TOC) and potentially toxic elements (PTES) were studied based
on datasets of GEochemical Mapping of Agricultural Soil (GEMAS) of EuroGeoSurveys
and Tellus of Geological Survey of Ireland. On the one hand, the TOC contents are
receiving increasing attention in agricultural soils as an important indicator of soil nutrient,
not only due to their close relationship with soil fertility, but also with carbon dioxide (CO)
in the atmosphere. On the other hand, the advanced spatial techniques played important
roles to evaluate concentrations and spatial variation of PTEs affected by multiple
influencing factors from natural and anthropogenic sources. These studies provide
demonstrations of applications of these advanced analytical techniques as possible

solutions to the challenges of data analytics in the big data era.

(1) The hot spot analysis was performed on a total of 2,108 agricultural soil samples based
on GEMAS data and revealed an overall negative correlation between TOC and pH,
which was in line with the general relationship between these two variables. However,
a ‘special’ feature of co-existence of comparatively low TOC and pH values was also
identified in north-central Europe. It has been found that these ‘special’ patterns are
strongly related to the high concentration of quartz (SiO.) in the coarse-textured glacial

sediments in north-central Europe.
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(2) The GWR further explored the spatially varying relationships between TOC and pH
based on the GEMAS data, with more than 50% original negative relationship changed
to positive at the continental level. The significant positive correlations clustered in
central-eastern Europe, while negative correlations were observed mainly in northern
Europe. Mixed relationships occurred in southern Europe. Such results further
highlighted the influences of the extensive occurrence of quartz-rich soils and climate
factors on the ‘special’ positive correlations. In addition, anthropogenic inputs also
interfered the relationships in the mixed southern European areas.

(3) The integration of hot spot analysis and K-means clustering analysis was applied to
investigate the spatial patterns for 15 PTEs and associations with their controlling
factors based on the Tellus data under the complicated geological background of
Northern Ireland (NI). The spatial clustering patterns for the 15 PTEs from hot spot
analysis and hidden patterns of 6,862 soil samples from K-means clustering were
consistent with each other, highlighting the dominant control of peat and basalt in the
topsoil of Northern Ireland.

(4) The GWPCC found that the relationships between lead (Pb) and aluminium (Al) are
spatially varying, with both positive and negative correlations in the topsoil of northern
half of Ireland based. The ‘special’ negative correlations were observed in more than
35% of the whole study area, mainly clustered in the north-eastern and western Ireland.
The positive correlations were observed in the midlands. Mixed relationships of both
negative and positive correlations occurred in the eastern coastal areas. The majority
of negative correlation patterns showed clear association with blanket peat, which can

be attribute to long-distance transportation of Pb from atmospheric deposition.

The main scientific contributions to the advancements in environmental geochemical

studies of this research include the following:

(1) identified a ‘special’ feature of positive relationship of low TOC contents and low pH

values in the north-central Europe;
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(2) introduced the topic of ‘spatially varying relationships between TOC and pH’ which
provide added value and clarification to the understanding of the controversy of their

complicated relationship in the literature;

(3) provided latest understanding and classification of 15 PTEs in the topsoil of NI to
enhance the current knowledge of their controlling factors under the complicated

geological background;

(4) proved and observed the spatially varying relationships between Pb and Al which are

associated with atmospheric deposition and anthropogenic activities.

Overall, these novel findings indicated that the spatial techniques have strong efficiency in
processing large-scale datasets, providing demonstration and evidence for the application
of GIS-based advanced spatial analysis on identification of the hidden spatial patterns for
TOC and PTEs in the topsoil and to associate them with related influencing factors. These
analytical results enhanced the current knowledge for soil management and risk assessment,

and can be applied in environmental studies elsewhere.

Keywords: Geographic information system (GIS); Total organic carbon (TOC); pH; Hot
spot analysis; Geographically weighted regression (GWR); Spatially varying
relationships; Potentially toxic elements (PTEs); Lead (Pb)
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Chapter 1
Introduction




Introduction

1.1 General introduction

1.1.1 Background of spatial analysis in environmental geochemistry

Geographic Information System (GIS) is a conceptual framework for collecting, managing and
analysing geographic and spatial data (Clarke, 1986). It is an emerging computer-based tool
that provides a platform to integrate geographic information and attribute data. With the unique
functions of editing, managing and visualising geographic information, GIS has become a
popular technique for revealing patterns and deeper insights of spatial data. It is originated in
geography and geoscience, which has now also been applied in other fields such as engineering,

transportation, economics and telecommunications, etc. (Maliene et al., 2011).

Since the 1990s, with the development of GIS, the exploratory research on environmental
geochemistry has gradually relied on geostatistical analysis and modelling of spatial data
(Burrogh and McDonnell, 1998). The datasets sampled for specific environmental variables
and regions have been widely applied for environmental planning, management and risk
assessment (Zhang et al., 2008a; Sollitto et al., 2010; Burrough et al., 2015). However, as the
data volume and diversity continue to increase in the big data era, classical statistics are
proposed as lacking of efficiency in data analysis of large-scale and multivariate datasets (Zuo,
2017). In recent years, spatial machine learning (SML) has been adopted in environmental
studies as a novel and efficient approach for data mining. The SML techniques are the
combination of advanced spatial techniques and machine learning algorithms (MLAS) applied
onto the spatial data of environmental geochemistry (e.g., Kanevski et al., 2009; Li etal., 2011),
including classification, prediction, visualisation, identification of cluster patterns and spatial
relationships, etc. (Zhang, 2020). These techniques have the potential prior to the conventional
techniques in revealing hidden spatial patterns, which are helpful to extract useful geochemical
knowledge and associations from these patterns (Xie et al., 2004; Meshkani et al., 2011;
Sergeev et al., 2019; Rahmati et al., 2020). In this thesis, four spatial analysis and SML
techniques of hot spot analysis (Getis-Ord G;" statistic), geographically weighted regression
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Introduction

(GWR), K-means clustering analysis and Geographically Weighted Pearson Correlation
Coefficient (GWPCC) were employed to investigate the spatial distribution patterns and
spatially varying relationships of soil TOC and selected PTEs based on the GEMAS and Tellus
datasets, respectively. These studies provide demonstration of applications of these advanced
analytical techniques in environmental studies from both local and regional scales, and these
spatial patterns provide an effective way to associate with related influencing factors or
pollution sources. Moreover, considering the rapid development of spatial techniques in the
big data era, the existing problems and possible solutions of GIS-based spatial analysis in

environmental geochemistry were also reviewed and summarised.

1.1.2 TOC in European agricultural soil

Soil TOC content is a measure of the carbon stored in organic matter (OM), which is an
important indicator of soil quality and productivity. In addition, soil is regarded as the largest
organic carbon (OC) sink in the terrestrial ecosystem, with total amounts of carbon two or three
times higher than that in the atmosphere or terrestrial vegetation (Batjes, 1996; Job&gy and
Jackson, 2000; Schmidt et al., 2011). Therefore, even minor changes of TOC contents in soils
can influence the atmospheric CO> concentrations (Johnston et al., 2004). The sequestration,
decomposition and release of OC in soils play important roles in global carbon cycle, which is
of great significance for mitigating global climate change and maintaining ecosystem services
and functions (Yang et al., 2007). Due to the importance of TOC, its content has been widely
studied on national and regional scales, such as Ireland (Zhang and McGrath, 2004; Zhang et
al., 2011), France (Martin et al., 2011), Belgium (Meersmans et al., 2011), Spain (Rodr Quez
Mart m et al., 2016) and the United Kingdom (Bradley et al., 2005). However, previous studies
mainly focused on the storage and ignored the spatial variation and dynamic of TOC by using
traditional statistical methods. As an essential component of agricultural soil, TOC exhibits a
high degree of spatial variability at both horizontal and vertical levels under the complicated
influencing factors including both natural and anthropogenic ones, such as climate, topography,

soil properties, soil parent materials, fertiliser inputs and agricultural management (Jenny,
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1980; Jackson et al., 2002; Lal, 2005; Jandl et al., 2007). In this case, it requires an improved
way to explore the spatial variation patterns and varying relationships for TOC contents in
agricultural soil. For example, the negative relationship between TOC contents and pH values
in soils has been widely reported in previous studies (McGrath and Zhang, 2003; Korkang
2014; Reisser et al., 2016; Gebrehiwot et al., 2018; Zhang et al., 2018), while the positive
relationship was also proposed in few study areas (Wang et al., 2010; Luo et al., 2017). These
studies are based on global statistics or models (e.g., ordinary linear regression, correlation
analysis), which cannot capture the varying relationships at different sampling locations.
However, considering the complicated influencing factors on these two variables, the
contradictory relationships should be objectively evaluated at the local scales, which can be
done by Getis-Ord G;~ statistic and GWR model. These two techniques can reveal the
clustering patterns of positive and negative relationships, providing effective ways to
investigate the spatial relationships between the soil TOC contents and pH values. Since the
spatially varying relationships between soil TOC contents and pH values have not been

quantitatively researched yet, it is a worthwhile topic at the European continental level.

1.1.3 PTEs in soils of Ireland

Exposure to excessive accumulation of PTE concentrations is harmful to human health,
especially the highly toxic elements such as arsenic, cadmium, cobalt and lead (Bellinger, 2004;
Zahran et al., 2009). Therefore, understanding the sources of PTEs is important for
environment management and sustainability (Shazili et al., 2006; Huang et al., 2007).
Considering the complicated geological background of the topsoil of NI, the hidden spatial
patterns and controlling factors for the selected 15 PTEs including arsenic (As), barium (Ba),
bismuth (Bi), chromium (Cr), cobalt (Co), copper (Cu), nickel (Ni), manganese (Mn),
molybdenum (Mo), lead (Pb), antimony (Sb), tin (Sn), uranium (U), vanadium (V) and zinc
(Zn) were identified by the combination of two SML techniques of hot spot analysis and K-
means clustering analysis in the topsoil of NI. These two spatial clustering techniques have the

potential to discover the spatial clustering patterns of high and low values of 15 PTEs and soil
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samples, which provides an efficient way to reveal the clear spatial association between these

patterns and their controlling factors with different geological features.

Moreover, among all the PTEs, the concentration and variation of Pb are the worthiest of
attention in the environmental studies (Nriagu, 1983), due to its fate is extremely susceptible
to interference from anthropogenic factors in the environment (Saby et al., 2006; Cheng et al.,
2015). As a promising way to associate with influencing factors, the spatially varying
relationships between Pb and Al concentrations were investigated by the GWPCC technique
in the topsoil of northern half of Ireland. The element Al is a basic constituent of silicate clays,
and Pb can not only be adsorbed to clay but it is also present in primary silicates as K-feldspar
and mica (Spark, 2010). It is a conservative lithogenic element and often used as reference
element (Shotyk et al., 2002; Sezgin et al., 2003; Le Roux et al., 2004), which is chemically
stable and its fate in the environment media is not easily affected by human activities. The
original relationship between Pb and Al is positive under most natural conditions due to their
similar chemical properties (Schropp and Windom, 1988; Spark, 2010), which is expected for
soils derived from continental crust (Walsh and Barry, 1957). However, this general
relationship may be interfered by external factors including both natural and anthropogenic
influence at a certain extend. Thus, the spatially varying relationships that revealed by GWPCC
are able to be associated with related potential pollution sources of Pb, which is an interesting
topic and can be also applied to identify influencing factors for other PTEs in the environmental
studies elsewhere.

1.2 Existing policies on soil contamination of European Union

(EU) and Ireland

Soil has the ability to buffer, filter, retain and degrade pollutants, and is regarded as a necessary

but non-renewable resource based on its nature, providing food, biomass and raw materials to
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humans (Mongwe and Fey, 2004; Swartjes et al., 2008; Ceci et al., 2019). Due to the
inseparable relationship between soil and terrestrial ecosystem, even some minor pollution or
damage to its structure will also affect other environmental media. For example, soil is
considered as the largest OC pool, and the sequestration of OC in the soil can reduce the
emission of CO: into the air, and thus effectively reduce the greenhouse effect. Soil
degradation and contamination is one of the main threats affecting global soil health (FAO and
ITPS, 2015). However, soil pollution is unique and invisible, while its impact is only visible
when the pollution level has serious impacts on the environment and human health (Rodr guez
Eugenio et al., 2018).

At present, extensive legislation for soil protection has been proposed at the European
continental level, taking the EU Soil Thematic Strategy as core (R&nbke et al., 2004; EC,
2006). The Soil Thematic Strategy identified the main threats to EU soils, including soil
erosion, sealing and landslides, soil contamination, the loss of soil OM and biodiversity, soil
compaction and salinisation (EC, 2006; Montanarella and Panagos, 2015). It introduced soil
degradation trends in Europe and the world, as well as the challenges of ensuring protection.
Although the European Commission (EC) withdrew the proposal for the Soil Framework
Directive in 2014, the EU and its member states pledged to work on soil protection and study
how to best achieve this goal in the future. In addition, other existing laws are mainly focused
on the environmental objectives that are not explicitly on soil, such as reducing pollution,
offsetting greenhouse gas emissions and preventing other environmental threats, such as
Environmental Liability Directive (2004/35/EC), Industrial Emissions Directive (2010/75/EU),
Environmental Impact Assessment Directive (85/337/EEC) and Sewage Sludge Directive
(86/278/EEC), etc. In May 2020, the EC adopted the 2030 Biodiversity Strategy based on the
European Green Deal, which aims to improve the ecosystem and achieve the sustainability of

human habitation through long-term efforts.

In Ireland, the Environmental Protection Agency (EPA) is an official agency dedicated to

environmental protection and improvement, which encourages local researchers to conduct
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environmental monitoring and assessment. According to the current EU regulations and
framework, both the EU and Ireland have carried out geochemical mapping of regional atlas
to achieve the goal of environmental and soil assessment, including the GEMAS project
(Reimann et al., 2014) and Tellus survey (Knights and Glennon, 2013).

1.3 Research hypothesis

Based on the literature review, three main research gaps related to spatial analysis in soil
geochemistry were identified, including large-scale datasets, spatial patterns and spatially
varying relationships between environmental variables. The big data era of soil geochemistry
brings computational and statistical challenges to traditional techniques, as these techniques
are reported lack efficiency on capturing hidden patterns or special features in large-scale
datasets. Moreover, previous studies considered that the spatial relationships between
environmental variables was spatially constant, while often ignoring their heterogeneity and

spatially varying relationships between studied variables.

According to this, the specific research hypotheses of this thesis include:

(1) The spatial relationships between TOC and pH values are not constant, but spatially varying
in different sampling locations across the European continent and can be captured by GWR

model;

(2) The controlling factors for the 15 PTEs under the complicated geological background can
be better evaluated through the hidden spatial patterns revealed by the advanced spatial

clustering techniques;

(3) The spatially varying relationships between Pb and Al concentrations exist in the topsoil
of Ireland, and the potential pollution sources of Pb can be associated with the spatial
relationships revealed by the local statistics in the GWPCC approach.
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1.4 Research objectives

The overall aims and objectives of this thesis is to use of GIS-based advanced spatial analysis
to identify spatial patterns for soil nutrients (i.e., TOC) and PTEs based on the large-scale
datasets (Fig. 1.1). These spatial patterns can be used to extract hidden knowledge and
geochemical associations with different influencing factors and pollution sources, which are
vital to the research of environmental geochemistry, as they are difficult to capture by
traditional techniques. To this end, this thesis applied four spatial analytical technologies to
demonstrate the process of identifying spatial patterns and extracting geochemical knowledge,
and provided a summary of the development and applications of GIS-based spatial analysis.
The unified link of these four papers in this thesis is the applications of different advanced
spatial analysis technigues on identification of hidden patterns of soil geochemical mapping in
large-scale datasets. These spatial patterns and spatially varying relationships between
environmental variables can provide examples and evidence of application of SML in the big
data era, as well as provide substantially supportive guidance on the soil monitoring and

pollution assessment for relevant stakeholders and local government.



Introduction

+ 073--032
© 03 -017L
£.16--003
002-0
001-0.1

Spatially varying relationships |
between TOC and pH I

Spatial clustering patterns for |
15 PTEs and soil samples |

“ Spatially varying relationships
between Pb and Al

Figure 1.1 Overall research objectives of four studies in this thesis.

Specifically, the research objectives of identification of the co-existence of low TOC contents

and low pH values in north-central Europe are:

(1) to reveal the spatial distribution patterns of TOC and pH;

(2) to identify the spatial relationship between soil TOC contents and pH values using hot spot
analysis;

(3) to explore influencing factors of the special pattern of co-existence of both low TOC and

pH values.

The research objectives of investigating spatially varying relationships between TOC contents
and pH values in European agricultural soil are:
(1) to investigate the spatially varying relationships between TOC contents and pH values
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using GWR model;

(2) to study the effects of bandwidths for identifying different patterns of the spatially varying
relationships;

(3) to explore the influencing factors on the special positive relationship between TOC and pH

values.

The research objectives of discovering hidden spatial patterns and their associations with

controlling factors for PTEs in the topsoil of Northern Ireland are:

(1) to identify the spatial clustering patterns for 15 PTEs using hot spot analysis;

(2) to reveal the hidden patterns of soil samples using K-means clustering analysis;

(3) to explore the geochemical association between the spatial patterns and controlling factors
on PTEs.

The research objectives of exploring main influencing factors of spatially varying relationships

between Pb and Al concentrations in the topsoil of northern half of Ireland are:

(1) to investigate the spatial relationships between Pb and Al concentrations using GWPCC
based on the currently available Tellus data set in the topsoil of northern half of Ireland;

(2) to identify the spatial associations with different influencing factors from the local
correlation patterns;

(3) to further explore the underlying mechanisms between the ‘special’ negative correlation

and potential pollution sources of Pb distribution.

1.5Structure of Thesis

Chapter 2 reviews the development and applications of GIS-based spatial analysis, with the
focus on the existing problems and possible solutions in the big data era of environmental

geochemistry. It also summarises the applications of spatial analysis on the distribution and

10
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variation of TOC and PTEs, including the associations with influencing factors from both

natural and anthropogenic aspects.

Chapter 3 demonstrates the materials and methodologies used in this thesis, including soil

sampling process, background of study area, data analysis and specific methodologies used in
this study.

Chapter 4 comprises five published papers with their summaries and personal dedication

descriptions.

Chapter 5 discusses the overview of the research process in this thesis, and highlights how the
researches relate to each other, as well as the contributions and advancements to the current

literature and wider research community.

Finally, Chapter 6 concludes the results of five papers, and recommends policy-relevant

strategy and puts forward future research.

11
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Literature review

2.1 Overview

This chapter briefly reviewed the literatures on the development and applications of GIS-
based spatial analysis in the big data era of environmental geochemistry, with focus on the
existing problems and possible solutions from the spatial analysis perspective. As advanced
and effective methods for environmental data mining, they are often applied to identify the
spatial distribution and patterns of nutrients (e.g., TOC) and potentially toxic elements
(PTEs) in the soil at the local or regional scale. Therefore, this chapter also summarised
the applications of GIS-based spatial analysis techniques on the distribution and variation
of TOC and PTEs, in order to provide a better understanding of geochemical knowledge
and associations with related influencing factors from both natural and anthropogenic

Sources.

2.2 Compositional data analysis

Compositional data are non-negative data that carry relative (rather than absolute)
information (Pawlowsky-Glahn and Buccianti, 2011). These data usually have a constant
and constrained sample value. For example, the sum of proportions or percentages is 1 or
100%. These percentage data are considered as closed data (Aitchison, 1986, Buccianti et
al., 2006), and it requires pre-processing (e.g., data transformation) to open these data to
destroy the closure effects before the statistical or multivariate analysis of these data. To
deal with this problem, log-ratio data transformation is recommended in current literature
(Aitchison, 1986, Egozcue et al., 2003). However, in spatial analysis or geostatistics, many
parametric techniques still require normal distribution of input datasets. Therefore, there is
still controversy about the topic of compositional data, and the choice of data

transformation method is under debate in the current literature.
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Regarding these issues, the research in this thesis decided to follow the purpose of
parametrical statistical analysis and spatial analysis, while data transformation is needed
for the data which do not follow a normal distribution. Otherwise, non-parametric methods
should be considered. When the data follow a lognormal distribution, the logarithm
transformation is sufficient (Limpert et al., 2001). For the more general positively skewed
distribution, a normal score transformation or Box-Cox transformation is recommended
(Zhang et al., 2008). For compositional data, log-ratio transformations (e.g., centred log-

ratio, isometric log-ratio) are recommended (e.g., Aitchison, 1986; Filzmoser et al., 2009).

2.3 Development and applications of GIS-based spatial

techniques in environmental geochemistry

Data in environmental geochemistry are typical spatial data, containing geographic
coordinates (i.e., longitude and latitude) and geochemical attributes (e.g., element
concentrations), which can be stored in a geographical information system (Goodchild et
al., 1992). The research on environmental geochemistry mainly relies on spatial data
analysis in the GIS. This is different from traditional techniques because it requires
considering of both geographic locations and attributes (Goodchild, 1987). Historically,
environmental geochemical data were processed by using classic univariate statistics in
most studies. Since the 2,000s, the combination of multivariate statistical analysis and GIS-
based spatial analysis has become the mainstream tool in environmental geochemical
studies (Hou et al., 2017). This is not only due to the growth of available data sets from
geochemical survey, but also benefits from the advancement of the ability to manage large

spatial data sets in the GIS platform.

With the improvement of computer hardware and software, a growing number of spatial
analysis techniques have been integrated into GIS (Bailey, 1994; Fotheringham and
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Rogerson, 2013), which has made great contributions to the environmental monitoring and
assessment (Zhang and Selinus, 1998). As the amount of geoscience data continues to
increase, the field of environmental geochemistry has also entered the era of big data. The
development and applications of multivariate statistical analysis and spatial analysis on the
spatial data bring new insights and opportunities to geochemical mapping, exploration as
well as environmental and health assessment (Overpeck et al., 2011, Reichman et al., 2011).
However, although various statistical and spatial analysis techniques existing, it is
important to understand the advantages and disadvantages of these techniques and the
practical problems that can be solved. Review on the past literature, several major problems
in environmental geochemistry include probability distribution, spatial structures and
patterns, correlation and spatial relationships, background and thresholds, visualisation,
prediction, outlier detection and distinction of natural and anthropogenic factors (Darnley,
1990; Zhang and Selinus, 1998; Reimann and de Caritat, 2005; Zhang et al., 2008a).

Probability distribution is always the first step of spatial analysis in environmental
geochemistry, as many multivariate statistical analysis and spatial analysis of geochemical
data are based on the assumption that the data under study follows a normal distribution.
In addition, the spatial structures and distribution patterns of the concentration for
geochemical elements can reflect various geochemical phenomena and processes, and thus
quantifying the spatial patterns can provide a deeper understanding of geochemical
knowledge. Similarly, quantitatively evaluate the strength of the correlation or spatial
relationships between geochemical variables can reveal more information in the datasets
(Franzese and luliano, 2019). The background in environmental geochemistry can be
defined as the natural concentration of harmful substances that are not disturbed by local
human activities (Porteous, 1996), while technologies such as visualisation and prediction
can provide better understanding on the concentration and distribution of nutrients or PTEs.
Moreover, outlier detection and differentiate natural and anthropogenic factors are
regarded as the ultimate issues due to their important relationships between environment

and health (Wong et al., 2006). However, when dealing with multivariate datasets, these
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problems cannot be solved in a simple or efficient way by using traditional techniques.
Recently, with the increase in the amount of environmental geochemical data, a variety of
advanced spatial analysis and statistical techniques have become useful and effective
methods for outlier detection and potential sources identification at the local and regional
level (Hou et al., 2017; Pan et al., 2017; Yadav et al., 2019), with spatial autocorrelation
analysis (Ord and Getis, 1995), hot spot analysis (Getis and Ord, 1992; Anselin, 1995) and
GWR models (Brunsdon et al., 1996; Fotheringham et al., 2002) being the most popular
(e.g. Liang et al., 2017; Wu et al., 2019; Reyes et al., 2020). In response to these existing
problems, some possible solutions using advanced spatial analysis are summarised in Table
2.1.
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Table 2.1: Existing problems and possible solutions of spatial analysis in environmental geochemistry

Existing problem Possible solution Example Reference

Compositional data/closure  Log-ratio transformation Centred log-ratio transformation was applied before Xu et al., 2021

effect multivariate analysis of PTEs

Probability distribution Data transformation (e.g., box-cox, The influence of data transformation on identification = Zhang et al., 2008a
normal score), K-S test of pollution hotspots

Spatial structures and spatial autocorrelation, variogram, Spatial distribution of total organic carbon (TOC) Xu et al., 2019

patterns fractal/multifractal

Correlation and spatial PCC, PCA, GWR Spatially varying relationships between TOC and pH ~ Xu and Zhang,

relationships 2021

Background and thresholds

Visualisation

Prediction

Outlier detection

Distinction between natural

and anthropogenic factors

Plot (e.g., histogram, boxplot),
regression analysis, fractal/multifractal

IDW, Kriging

Kriging, multivariate regression, GWR

Univariate statistics, PCA, LISA

EF, hot spot analysis, GWR

Establishing geochemical background and threshold
for 53 chemical elements

Visualisation of point-to-area data transformation for
environmental health research

Spatial modelling and mapping of soil organic carbon
Identification of contamination hotspots of rare earth
elements

Spatially varying relationships between Pb and Al

Reimann et al.,
2018
Meng et al., 2019

Zhang et al., 2011
Yuan et al., 2018

Yuan et al., 2020
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2.4 Big data era and spatial machine learning

The ‘four Vs’ characteristics of big data are exemplary in the field of environmental
geochemistry: volume, variety, velocity and veracity (see Fig. 2.1; Reichstein et al., 2019).
In the big data era of environmental geochemistry, one of the striking challenges is to
extract useful knowledge and interpretable information from large and diverse data sources.
The unprecedented volume and complexity of these data makes it difficult to rely on
traditional tools for data management and processing (Vitolo et al., 2015), which requires
the improvement of spatial techniques and statistical models. In recent years, the
development of machine learning algorithms (MLA) become useful tools for processing
problems on prediction, classification and regression, which have been widely applied in
data mining and problem-solving in environmental geochemistry. In addition to traditional
MLA, the commercial ArcGIS software developed by Environmental Systems Research
Institute (ESRI) also supports SML technology by integrated advanced spatial analysis
techniques. GIS-based SML technology can be also used to process prediction,
classification and identification of hidden patterns of clusters. At present, the combination
of classical MLA and SML technique has played a key role on spatial problem-solving in
environmental geochemistry (Reimann et al., 2011; Fotheringham and Rogerson, 2013;
Povak et al., 2014; Tarasov et al., 2018; Ghezelbash et al., 2019; Du et al., 2020; Xu et al.,
2021). Moreover, incorporating geographical concepts directly into the spatial methods of
calculation can lead to a deeper understanding of spatial data (Bennett, 2018). In the future,
as the intersection of GIS and ML continues to expand, spatial analysis is expected to play

a more important role in environmental geochemical studies.
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Figure 2.1: Characteristics and challenges of environmental geochemistry in the big data era
(reproduced from Reichstein et al., 2019).

Another challenge is to explore the spatio-temporal trends of environmental geochemical
data. Regional geochemical surveys are usually large-scale and time-consuming, and thus
it is difficult to regularly conduct field works and collect samples (e.g., soil samples) over
a long period of time. The spatial analysis of GIS is mature in identifying spatial
distribution patterns, while it is difficult to deal with temporal variation due to the update
and monitoring at the sampling locations. Therefore, it requires the advancement of spatio-
temporal analysis models and combination with real-time data on regular environment

monitoring in the future.
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2.5 The applications of GIS-based spatial analysis on TOC

2.5.1 Spatial distribution and variation of TOC

As an important indicator of soil fertility and atmospheric environment, studies on the
spatial distribution and variation of TOC contents are able to contribute to the improvement
of agricultural productivity as well as mitigating global warming. Therefore, G1S-based
spatial analysis techniques have been widely applied on quantification and visualisation of
the spatial distribution patterns for TOC contents (Kumar et al., 2013). For example,
McGrath and Zhang (2003) used spatial interpolation technique and local Moran’s I index
to investigate the spatial distribution and outliers of soil TOC contents in the grassland of
Ireland. Subsequently, they performed spatial statistical techniques to explore the spatial-
temporal changes of soil TOC contents during two period between 1964 and 1996, and
successfully identified a significant increase of TOC storage in the eastern coastal areas
(Zhang and McGrath, 2004). With the improvement of mapping and prediction
requirements, an increasing number of advanced statistical techniques and regression
models have been used to identify the spatial distribution patterns of TOC contents at the
regional level. Meersmans et al. (2008) performed multiple regression model to assess the
spatial distribution of TOC in Belgium. Zhang et al. (2011) introduced various
environmental covariates into the GWR model and greatly improved the accuracy for
prediction and mapping of soil TOC in Ireland. Moreover, in recent years, the development
of SML has significantly improved the accuracy and efficiency of regional surveying and
mapping on TOC contents (e.g., Were et al., 2015; Chen et al., 2019). These advanced
spatial techniques have been proved to have greater potential over traditional spatial
interpolation methods in predicting and mapping the spatial patterns of TOC content
(Bhunia et al., 2018).

However, the previous studies mainly focused on mapping and prediction on TOC content
in the soils, while they often ignored its spatial variation and dynamic. Total organic carbon
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is a dynamic component of the terrestrial system, with not only internal changes at
horizontal and vertical level, but also external exchanges with the atmosphere and the
biosphere (see Fig. 2.2) (Zhang and McGrath, 2004). The influences on the spatial variation
of TOC content are extremely complicated which include both natural and anthropogenic
factors. The natural factors include topography, climate (i.e., temperature, precipitation),
soil parent materials (PMs) and soil properties (e.g., pH, soil texture), while anthropogenic
factors are related to human activities, such as land use, cultivation method, site
management and fertilisers etc. (Jenny, 1980; Jackson et al., 2002; Lal, 2005; Jandl et al.,
2007). Although all of these factors play some roles on the soil TOC content in different
regions, most of them generally follow similar spatial patterns (Wiesmeier et al., 2019).
For example, a climate of low temperature and high rainfall is conducive to the
accumulation of OM (Rustad and Fernandez, 1998). Also, the TOC content in clay and silt
particles is significantly higher than that of coarse-grained soil (Schimel and Parton, 1986).
In addition, it is considered that land use and cultivation method have a great influence on
TOC content, especially in poor quality soils, such as arid or semi-arid regions (West et al.,
1994; Su et al., 2009). Therefore, the investigation on the spatial relationships between
TOC and various environmental variables as well as related human factors is extremely

important, which is able to provide a better understanding for its dynamic and variation.
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Figure 2.2: The simplified carbon cycle biosphere map (reproduced from www.biochar.org).

2.5.2 Spatially varying relationships between TOC contents and
pH values

Soil pH value is considered as the most important parameter among all the environmental
variables and influencing factors that related to TOC content. This is because pH is one of
the key variables that determine the availability of almost all essential plant nutrients
(Fabian et al., 2014). The ability of soil to maintain and supply nutrients is closely related
to its cation exchange capacity (CEC), which is affected by soil pH values. Moreover, the
natural inherent relationship between TOC and pH is well known (McGrath and Zhang,
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2003; Fabian et al., 2014). Generally, the TOC contents and pH values have been found to
maintain a negative correlation under natural conditions at various scales, a feature
attributed to their innate internal relationship (Andersson and Nilsson, 2001; Reisser et al.,
2016). The overall negative correlation between TOC contents and pH values could be
related to multiple processes. Organic Carbon is the progenitor of carbonic acid, and its
decomposition releases organic acids, leading to lower soil pH values (McGrath and Zhang,
2003). On the contrary, relatively high pH values accelerate the decomposition of soil
organic carbon, and thus resulting in a decrease in TOC storage capacity (Andersson and
Nilsson, 2001). However, due to complex influencing factors, this original negative

relationship may be disturbed or masked at the local scale.

Previous studies have only briefly discussed the inherent negative correlation between
TOC and pH, and only a few papers have conducted quantitative analysis on their negative
correlation. The reviewed relevant literatures are listed in Table 2.2, as examples, four
references with quantitative statistical analysis on the relationship between these two
variables were found (McGrath and Zhang, 2003; Korkang 2014; Wang et al., 2016;
Gebrehiwot et al., 2018). However, contradictory results of positive correlation have been
reported in a limited number of two papers (Wang et al., 2010; Luo et al., 2017). The
positive correlation is due to the combination of complex influencing factors and is worthy
of further study. Moreover, their relationships can be varying at different locations of sub-
regions (de Moraes Sa et al., 2009) or different soil layers (Zhang et al., 2018). When
considering the ‘location’, the concept of ‘spatially varying relationship’ has not been well
understood, which is the focus of this research. The concept of ‘spatially varying
relationship’ refers to that the relationships between independent variable and dependent
variable(s) are not constant over the space (Fotheringham et al., 2002), but constantly
varying with the change of spatial locations. Use of the local statistical methods such as
hot spot analysis (Getis-Ord Gi* statistic) and GWR is helpful to quantify the varying

relationship between input environmental variables over space in an objective way.
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Table 2.2: Overview of relationships between TOC and pH values in the past literatures.

Relationship Author(s) Method Descriptions Reasons
Negative McGrath and Global Pearson (linear)  Negative correlation between TOC and pH Innate relationship: organic acids lead to
correlation Zhang, 2003 correlation coefficient value in Ireland (» =0.17) low pH
Korkang, S. Y., Global Pearson (linear)  Negative correlation between TOC and pH Innate relationship: organic acids lead to
2014 correlation coefficient value (r =-0.274) low pH
Wang et al., 2016  Global Redundancy pH value negatively correlated with impact Innate relationship: organic acids lead to
analysis (RDA) on soil organic carbon low pH
Gebrehiwot et Global Pearson (linear)  (r=-0.126) Weak negative correlation was Innate relationship: organic acids lead to
al., 2018 correlation coefficient observed between TOC and pH value low pH
Positive Wang et al., 2010  Global Pearson (linear)  Positive relationship between TOC and pH Complex influences of soil bulk density and
correlation correlation coefficient value in the study area (» = 0.549, p =0.000) landscape, while the causative relationship
between TOC and pH is complicated
Luoetal,2017  Path model (i.e., pH significantly and positively associated Combination of soil properties (e.g., particle
structural equation with TOC size, CEC, clay and silt) and climate factors
model)
Contradictory de Moraes Saet  Global Pearson (linear)  Changes in the relationships between TOC Tillage chronosequence is the key factor to
relationships al., 2009 correlation coefficients  concentration and pH values in the tillage influence the soil pH values, and thus the
chronosequence original negative relationship changes
Zhang et al., Liner regression model  Significant and positive correlation of soil pH  Slope, climate, grazing intensity are main
2018 value with storage of TOC was found for all reasons for the contradictory relationships

soil layers except for 10-20 cm (negative)
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2.6 The application of GIS-based spatial analysis on PTEs

2.6.1 Potentially toxic elements (PTES)

Reimann et al. (2018) defined the background knowledge and thresholds of PTEs in detail
based on GEMAS data in European agricultural soil, including silver (Ag), boron (B),
arsenic (As), barium (Ba), bismuth (Bi), cadmium (Cd), cobalt (Co), chromium (Cr),
copper (Cu), mercury (Hg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb),
antimony (Sb), selenium (Se), tin (Sn), uranium (U), vanadium (V) and zinc (Zn). These
PTEs are inherently non-biodegradable, and excessive emissions will cause abnormal
enrichment of PTE concentrations in the environment (Wong et al., 2006). Although some
PTEs (e.g., Cu and Zn) are regarded as essential elements for the growth of animals and
plants, the presence of other PTEs can be highly toxic to plants and organisms, especially
As, Cd, Hg and Pb (Kabata-Pendias, 2004; Hooda, 2010; Zeng et al., 2011). In urban
environments, especially in urban soils, humans may be exposed to long-term input and
accumulated PTE through inhalation, ingestion and dermal contact (Boyd et al., 1999,
Mielke et al., 1999). Inorganic arsenic is highly toxic (J&up, 2003). Long-term As
exposure can cause gastrointestinal symptoms, high blood pressure and chronic
cardiovascular disease, etc. It may seriously damage the cardiovascular and central nervous
system, and even lead to death (WHO, 2001). In addition, long-term exposure of the human
body to Cd may cause kidney damage, and inhalation of cadmium dust or particles may
even be life-threatening (Seidal et al., 1993; Barbee and Prince, 1999). Mercury is a global
pollutant that affects the health of humans and ecosystems. The mercury pollution in the
environment is mainly driven by anthropogenic emissions, and it greatly exceeds natural
geogenic sources (FAO and UNEP, 2021). Lead is the most frequently reported soil
pollutant over the world, and the exposure to Pb pollution can cause irreversible damage
to the nervous system, especially for children, which are more susceptible to Pb
contamination from urban soil (Li et al., 2011). For children, severe Pb damage includes
symptoms such as mental decline, lack of attention, and anaemia (Bellinger, 2004; Counter
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et al., 2008; Zahran et al., 2009). Moreover, the increase of Pb concentration in urban
environment is closely related to the increase in the crime rate (Mielke and Zahran, 2012).
Long-term exposure to Zn can affect cholesterol balance and fertility (Zhang et al., 2012),
and Cu, Ni and Cr above the background values can also have adverse effects on the human
body (USEPA, 2000). Therefore, identification of the spatial patterns of PTEs and
assessment on their ecological and health risks has become one of the most important tasks
in the current environmental research in many developed and developing countries
(Rodriguez et al., 2007).

2.6.2 Sources and background of PTEs in the soils

Soil is regarded as the most important sink of PTEs (Wong et al., 2006), receiving
contamination from both disposals from the ground and atmospheric deposition.
Potentially toxic elements are usually found at trace levels in soils and plants, while the
concentrations of PTESs in the soil have been increasing since the industrial revolution. To
date, there are some special challenges in solving the soil PTE contamination (Hou et al.,
2017):

(1) Potentially toxic elements are not biodegradable, and their concentrations are naturally
accumulated in the soil rather than reduced (Maas et al., 2010);

(2) They have a wide range of health effects on humans, and the difference in

bioavailability makes health risk assessment more complicated (Walker et al., 2003);

(3) There are many sources of diffusion for PTE pollution (Nriagu and Pacyna, 1988).

Therefore, the quantitative assessment of elevated PTE concentrations on the environment

and health has always been the key focus of research in environmental studies, which

includes not only the investigation on the increase in PTE concentrations caused by natural

factors (Spijker, 2005; Jordan et al., 2007; Zhang et al., 2008b; Argyraki and Kelepertzis,

2014), but also focusing more on the evaluation of elevated concentrations associated with
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anthropogenic factors (Hursthouse, 2001; Morillo et al., 2007; Meunier et al., 2010; Okorie
et al., 2011). When there is no human interference, PTEs usually exist in trace levels and
will not cause negative effects on the environment or human health (Alloway, 2013a).
Natural factors are mainly related to geogenic occurrences, as well as soil formation and
parent materials (Tipping et al., 2006; Reimann et al., 2014; Birke et al., 2017). Generally,
each lithology has a relatively fixed control on a single element, and the overall
associations between the 15 selected PTEs and different lithologies are summarised in
Table 2.3. On the other hand, anthropogenic sources are related to human activities,
including industrial, waste, traffic (vehicle emissions, fuel) and agricultural inputs, etc (e.g.,
Cloquet et al., 2006, Ettler et al., 2008, Aelion et al., 2009, Davis et al., 2009, Dao et al.,
2014). The elevated PTE concentrations caused by geogenic sources are predominantly
reflected in large and continuous spatial patterns, which are usually observed at a relatively
large-scale area or with less human activities (Gloaguen and Passe, 2017; Jia et al., 2020;
Xuetal., 2021). On the contrary, anthropogenic pollution is mainly characterised by points
and scattered patterns on the spatial distribution maps of PTE concentrations, which is
usually observed around urban areas with intensive industrial activities, mining and traffic
emission (Zhang, 2006; Marchant et al., 2011; Delbecque and Verdoodt, 2016).
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Table 2.3: Summary of the existing literatures on concentrations for selected PTEs in different bedrocks and geological features

Element High concentration Low concentration Reference

As Greywacke (shale), Basalt, quartzite, sandstone Smedley and Kinniburgh, 2002; Tarvainen et al., 2013; Mcllwaine et
mudstone, schist al., 2017

Ba Carbonate, granite Limestone, mafic (basalt) Reimann et al., 2007; Reimann et al., 2014

Bi Granite, shale Sandstone Reimann et al., 2014

Co Greenstone, basalt Limestone, sandstone Farmer, 2014; Mcllwaine et al., 2014; Albanese et al., 2015

Cr Basalt limestone, granite Farmer, 2014; Mcllwaine et al., 2014; Albanese et al., 2015

Cu Basalt, shale Granite, organic matter Wedepohl, 1978; Reimann et al., 2014; Albanese et al., 2015

Mn Basalt Granite, quartzite, schist Reimann et al., 2007; Reimann et al., 2014

Mo Granite, greywacke Basalt Mcllwaine et al., 2017; Reimann et al., 2018
(shale), schist

Ni Basalt, shale Granite, limestone, quartzite, sandstone Farmer, 2014; Reimann et al., 2014; Albanese et al., 2015; Jordan et

al., 2018

Pb Granite, peat, shale Basalt, limestone Mcllwaine et al., 2014; Reimann et al., 2014; Palmer et al., 2015

Sb Coal, peat Basalt, sandstone Reimann et al., 2014; Mcllwaine et al., 2015

Sn Granite, peat, shale Basalt, limestone Reimann et al., 2014; Mcllwaine et al., 2015

U Granite, shale Basalt, sandstone Alloway, 2013b; McKinley et al., 2013; Négrel et al., 2018

\% Basalt, shale Limestone Barsby et al., 2012; Reimann et al., 2014

Zn Alluvium, basalt, shale  Granite Reimann et al., 2014; Mcllwaine et al., 2017
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At present, based on large-scale regional survey, the background values and thresholds of

soil PTEs have been established in different countries and regions, such as Finland (MEF,
2007), China (Wei and Yang, 2010), Australia (Reimann and de Caritat, 2017) and Europe
(Carlon et al., 2007; Reimann et al., 2018), etc. The threshold (or baseline) is defined as
the conservative concentration of PTE in the soil (Reimann et al., 2018), which indicates

that no adverse effects on the environment and humans are expected to occur below this

concentration. In contrast, the PTE concentration exceeds the soil background and

threshold values are likely to cause adverse impacts on the environment and human body,

especially through plants and crops in the agricultural soil (Reimann et al., 2014b).

Table 2.4: Thresholds and guideline values for selected PTEs in Europe (extract from MEF, 2007)

Element Threshold value Lower guideline value Higher guideline value
(mg/kg) (mg/kg) (mg/kg)

As 5 50 100

Cd 1 10 20

Co 20 100 250

Cr 100 200 300

Cu 100 150 200

Hg 0.5 2 5

Ni 50 100 150

Pb 60 200 750

Sb 2 10 50

\% 100 150 250

Zn 200 250 400

2.6.3 Spatial distribution patterns and source identification of soil

PTEs

Due to the complexity of the geochemical background, the concentration of PTE is usually

influenced by multiple controls that combined both natural and anthropogenic factors, and
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thus it is difficult to distinguish the potential sources of PTEs in the soil. The spatial
distribution patterns of PTEs can usually be related to the source of enrichment, thereby
revealing the spatial association with pollution sources from the local perspective. Looking
back in history, it is a common way to apply classical statistics to the spatial distribution
of PTE in soil (Webster et al., 1994; Einax and Soldt, 1995; Markus and McBratney, 1996).
Geostatistical methods are useful tools for analysing and predicting the values of soil
geochemical variables that associated with spatial or spatiotemporal phenomena
(Goovaerts, 2005). However, it is still difficult to distinguish the source of element
concentration only based on their spatial distribution patterns, while the combination of
multivariate analysis and geostatistics is regarded as a more effective method. This method
usually involves performing principal component analysis (PCA) or factor analysis (FA)
and using geostatistical tools to map the derived components (factors) scores (Rodr guez
etal., 2006, Lpez et al., 2008, Lado et al., 2008). The combination of multivariate analysis
and geostatistics provides a way to analyse multiple elements of the entire data set instead
of an individual element, and describe the complex relationship and influencing factors of
PTE in soil more precisely than univariate statistics (Bortvka et al., 2005). In recent years,
with the development of GIS platforms, advanced spatial analysis and SML technologies
can be easily performed on identification of the hidden patterns of PTEs and reveal the
spatial association with pollution sources (Fotheringham and Rogerson, 2013; Hou et al.,
2017). The GIS and GIS-based spatial technigues have been proven as promising tools for
understanding the background of PTEs and studying the soil contamination (Zhou and Xia,
2010; Yuan et al., 2018; Meng et al., 2020).

2.6.4 Spatially varying relationships between Pb and Al in the soils

The spatial relationships and correlations between geochemical variables contain a large
amount of information (Reimann and de Caritat, 2005), while many traditional statistical
techniques do not have the potential to capture the role of spatial correlations (Hou et al.,

2017). The development of the GWR model solved the limitation of exploring the spatially
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varying relationships between geochemical elements and environmental variables
(Brunsdon et al., 1996; Fotheringham et al., 2002), and has been widely applied on the
pollution assessment and source appointment of PTEs (e.g., Fei et al., 2019; Liu et al.,
2020).

Lead is considered to be one of the most common human-controlled PTEs in the soils.
Previous studies have widely reported the abnormally elevated concentrations of Pb in soil
caused by human activities in urban and industrial areas, including mining, leaded gasoline,
coal combustion, industrial waste and construction, etc (e.g., Li et al., 2014; Marrugo-
Negrete et al., 2017; Wu et al., 2019). In addition, the use of leaded gasoline and traffic
emission in urban areas can cause Pb pollution in the air, which in turn pollutes rural soil
through atmospheric deposition (Shotyk, 2002; Nov& et al., 2003). The relationship
between Pb and other reference elements (e.g., Al, Ti, Zr) generally maintains a positive
correlation under most natural conditions (Schropp and Windom, 1988; Spark, 2010),
which could be expected for soils derived from continental crust (Walsh and Barry, 1957).
This relationship has been used to distinguish the natural and anthropogenic sources
(Shotyk et al., 2002; Sezgin et al., 2003; Le Roux et al., 2004). However, the original
positive correlation may be interfered or masked by external influences. Therefore, the
varying relationships (i.e., negative correlation) or weakened relationships that explored
by GWR and GWPCC can provide an effective way to indicate the spatial association with
potential pollution sources. For example, Yuan et al. (2020) applied GWR to identify the
spatially varying relationships between Pb and Al concentrations in the urban soil of
London that associated by natural and human influence, and highlighted the effects of
industry and green space in urban environment. In the big data era, the patterns of spatially
varying relationships have great prospects and are worthy of further exploration.
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2.7 Summary

The literature review summarised the development and applications of GIS-based spatial
analysis in the big data era of environmental geochemistry, as well as the opportunities and
challenges for environmental data mining. In addition, this chapter also specifically
discussed the applications of GIS-based spatial analysis on the distribution patterns and
spatially varying relationships of TOC and PTEs, which aimed to identify the potential

influences from natural and anthropogenic factors.

Overall, the past literature indicated that GIS and GIS-based spatial techniques: (1) provide
a promising and efficient way for processing environmental geochemical data sets; (2) can
be used to reveal the spatial relationships and hidden spatial associations between
geochemical variables; (3) can be used to identify and visualise the spatial distribution
patterns and variation of TOC; (4) can be used to distinguish the natural and anthropogenic

sources and controlling factors of PTE.
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3.1Study area and scales

In order to demonstrate the exploration of GIS-based spatial analysis for different
environmental geochemical data sets, three large-scale regional data sets were studied in
different research areas, including GEMAS project data in European agricultural soil, and

Tellus survey data in Northern Ireland and the republic of Ireland, respectively.

Based on different study areas and datasets, there are different research scales of local,
regional and national level in this study, which need to be elaborate here to make a clear
statement. The local scale refers to a localised research area (i.e., county level in this study),
using local statistics in these advanced analytical techniques to study the hidden spatial
patterns of TOC and PTEs. The regional and national scale refers to a wider research area
(i.e., European continent, Northern Ireland and Republic of Ireland) which requires large
amount of sampling works from geochemical surveys. It is worth noting that the choice of
research scale needs to be carefully considered based on the availability of datasets, and
the scales used for different spatial analysis techniques are not the same. There is no actual
limitation on the big datasets in the advanced spatial analysis techniques. Generally, for
low-density and large-scale sampling survey (e.g., GEMAS), larger scale is applicable.
While smaller scale is more suitable for discovering interesting spatial patterns within a

low-density dataset.

3.1.1 European continent

The European continent is completely located in the northern hemisphere, mostly in the
eastern hemisphere, located in the western part of Eurasia and occupies one-fifth of its total
landmass. The European continent is surrounded by the sea on three sides, its maritime
boundaries include the Arctic Ocean to the north, the Atlantic Ocean to the west and the
Mediterranean Sea, the Black Sea and the Caspian Sea to the south (Berentsen, 1998).

Europe is mainly located in a temperate climate zone with a mild climate. The climate in
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the west is more oceanic, while the climate in the east is even less. The geological
conditions of European continent are very different, complex and diverse, and have created

wide variety of landscapes across the whole continent.

3.1.2 Northern Ireland

Although the total area of Northern Ireland (N1) is only 14,120 square km?, with 13,480
square km? land area and 640 square km? inland water area, it is a microcosm of geology
of the earth (Zhang et al., 2007). The history of bedrock in NI covers almost every period
from Mesoproterozoic to Paleogene, and almost all known types of rocks can be found. A
simplified bedrock geology map is displayed in Fig. 3.1, with the locations of the peatland
overlaid. The history of NI involves the development of ice sheets and meltwater from the
last 100,000 years, which resulted in more than 80% of the bedrock being covered by
various superficial deposits (e.g., alluvium, peat). According to reports, peatlands account
for more than 12% of the total land area (Davies and Walker, 2013), which is a major soil
subtype in NI. The north-eastern part is composed of a large area of extrusive basalt, and
the north-western area is dominated by psammites (schist). The south-western terrain is a
mixture of sandstone, mudstone and limestone, while south-eastern is controlled by

greywacke shales, as well as significant granite intrusions were found in this area.

Northern Ireland is rich in minerals, includes iron ore, lead, coal and salt. Nowadays, there
are more than 2,000 abandoned mines, most of them worked during the 18" and early 20"
centuries. In recent years, gold, lignite and industrial minerals have dominated in
commercial mining exploration activities in NI. For example, the county Tyrone is reported
to hold “one of the most promising undeveloped gold deposits over the world” (Dalradian,
2019). In addition, there are two main urban areas in Northern Ireland: the Belfast

Metropolitan Area and Londonderry.
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Figure 3. 1: Simplified bedrock geology maps of Northern Ireland and areas of peatland
(original GIS shapefiles from GSNI, 1998).

3.1.3 Northern half of Ireland

The island of Ireland is in the north-western Europe, with a total area of 84,421 km?,
containing a diverse geology of two major domains including the continent of Laurentia in
the north and Gondwana in the south. Due to the availability of only 50% on the
geochemical surveys have been completed by the current Tellus dataset in Ireland, the
study area is the northern half of Ireland. Based on the bedrock unit map from Geological
Survey of Ireland (GSI), a simplified bedrock map of the study area is classified and shown
in Fig. 3.2a (McConnell and Gately, 2006), mainly comprises basalt, clay, granite,
greywacke shale, limestone, sandstone and schist. There are two main types of peat in the
island (Fig. 3.2b), including blanket peat and basin peat. The blanket peat is mostly
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concentrated in the mountains of the north-eastern and western coastal of Ireland, while
basin peat is mainly distributed in the central part of midland areas. It is reported that
mineral deposits are enriched in Ireland, especially in the western and north-eastern part
(counties Mayo, Galway, Tyrone and Down) (EPA, 2009; Lusty et al., 2012). In addition,
there are three major urban areas, including Galway in the west, Dublin in the east and

Belfast in the north-eastern areas.

Basalt
I ciay
- Granite

Greywacke shale

Blanket peat
Basin peat
I Urban areas

Limestone

Sandstone

Figure 3.2: Maps showing background of study area: a) simplified bedrock map (original
1:500,000 shapefile from GSI, 2006); b) spatial distribution of locations for peatland and urban
areas.

3.2S0il sampling and analyses

3.2.1 GEMAS project data

GEochemical Mapping of Agricultural Soil (GEMAS) is a collaborative project between
the Geochemistry Expert Group of EuroGeoSurveys (EGS) and Eurometaux (Reimann et
al., 2014a, Reimann et al., 2014b). The GEMAS project mainly targets on agricultural and
grazing land soil. During 2008 and early 2009, a total of 2,108 agricultural and 2,024

grazing land soil samples were collected, covering 33 European countries and
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5.6 million km? (Reimann et al., 2014a). The sampling locations are presented in Fig. 3.3.
Soil samples from agricultural and grazing land were taken at depths of 0—20 and 0—10 cm,
respectively (ECHA, 2012). The sample density was 1 site per 2,500 square km?. Each
sample was taken as composite samples from five sub-sites, with an average weight of
approximately 3.0 kg. All soil sampling materials and equipment, especially the bags used
for packing samples were centrally provided to the field sampling teams (EGS, 2008). After
collection, soil samples were prepared in the central laboratory of the Geological Survey
of Slovakia and completed by May 2009. The soil samples were air-dried and sieved
through a nylon sieve of 2 mm pore size, and subsequently homogenised and split into 10
aliquots for further study and analysis (Mackovych and Lucivjansky, 2014). Specifically
for the study of spatial relationship between TOC and pH, the soil pH value was determined
at NGU laboratory by measurement in 0.01 M CaClz-solution extraction using pH meters
(Fabian et al., 2014), and TOC content was determined at FUGRO Consult GmbH in
Germany (now KIWA Control GmbH) (Reimann et al., 2011). In order to remove any
inorganic carbon, 1 g sample was treated with hydrochloric acid (4 mol™) and left to stand
at room temperature for 4 hours. Then, the sample was dried in an oven at 70<C for 16
hours. Then, 100-200 mg per sample was placed into the furnace and TOC determined by
IR spectroscopy (Reimann et al., 2014a; Matschullat et al., 2018).
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Figure 3.3: Spatial distribution maps showing sampling locations of GEMAS project data and
study area in European agricultural soil: a) TOC; b) pH.

3.2.2 Tellus survey data

The Tellus project is a national-level collaborative project aimed at collecting geophysical
and geochemical data across the entire island of Ireland. It is managed and undertaken by
Geological Survey Ireland (GSI) and Geological Survey of Northern Ireland (GSNI) in
Republic of Ireland and NI, respectively. During 2004 and 2019, a total of 17,867 regional
topsoil samples (surface to 20 cm depth) were collected in the northern half part, marking
more than 50% completion in geochemical survey of Ireland. Each sample was taken as
composite samples from five sub-sites (approx. 750 g), with sampling density is on an
average of one sample per 4 km? and 2 km? in Ireland and NI, respectively. In the republic
of Ireland, the sample density was increased to one site per 2 km? in the urban areas of
Galway and Dublin. All samples were collected in paper bags and air-dried initially before
further preparation process. Then, the samples were sieved through a 2 mm pore size nylon
mesh, while repetition was prepared by shallow-splitting of each duplicate sample. After
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sample preparation, the geochemical composition was analysed in the laboratory by

Inductively Coupled Plasma (ICP-OES/-MS) method following aqua regia digestion and

X-ray fluorescence (XRF) analysis under a series of strict quality controls. Specific details

on the sampling program, including protocols, and all data are publicly available from the

Geologic Survey of Ireland (https://www.gsi.ie/tellus).

Specifically, the data used for the study of discovering hidden spatial patterns for 15 PTEs

in the topsoil of NI was 6,862 regional topsoil samples which collected between 2004 and

2006 (Fig. 3.4). For the study of the spatially varying relationships between Pb and Al in

northern half of Ireland, the total number of samples was 17,798 (69 samples with missing

values were excluded) (Fig. 3.5).
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Figure 3.4: Spatial distribution map with locations of 6,862 topsoil samples in Northern Ireland.
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Figure 3.5: Spatial distribution map with locations of 17,798 topsoil samples in the northern part
of the island of Ireland.

3.3Data analysis

3.3.1 Descriptive statistics

3.3.1.1 Representatively descriptive parameters

The first step in processing environmental geochemical data is usually to explore the
descriptive parameters and examine the probability distribution of the variables in the data
set. The descriptive parameters used in this study include the total number of samples,

minimum, maximum, percentile (i.e., 25%, 75%, 95%), mean and median value, standard
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deviation (SD), coefficient of variation (CV) and detection limit (DL), etc. Summarising
the descriptive parameters of the studied variables provides a way to understand the
background knowledge of the concentration of soil elements in the study area. The measure
of SD and CV can reflect the degree of dispersion of the data set, with usually larger values
indicating the existence of potential outliers (extreme high values). These outliers will
interfere the results of spatial analysis and statistics, and should be carefully treated prior

to the further analysis.

3.3.1.2 Probability distribution

Many multivariate analysis and spatial analysis of geochemical data are based on the
assumption that the data under study follows a normal or lognormal distribution. However,
previous research has proposed that most elements are not normally or lognormally
distributed under natural conditions (e.g., Zhang and Selinus, 1998; Reimann and
Filzmoser, 2000), instead, they usually display a right skewed distribution due to the
presence of outliers in the data set. Therefore, it is necessary to test the probability
distribution of variables through probability plots before further analysis, such as
histograms and Quantile-Quantile (Q-Q) plots. The histogram shows the frequency
distribution and aggregate the data into different groups. In the case of a large amount of
data, superimposing the histogram and the normal probability curve can simply and
effectively examine the normality of the input variable (Lin and Mudholkar, 1980). On the
other hand, the Q-Q plot displays the expected values of normal distribution against the
actual values for studied variables (Wilk and Gnanadesikan, 1968). If the values are

normally distributed, the points should cluster near to a straight line on the plot.
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3.3.2 Data treatment

3.3.2.1 Data transformation for GEMAS data in European agricultural soil

As mentioned earlier, the spatial analysis and statistics (i.e., Getis-Ord G; statistic; GWR
model) is required the normality of input variables. However, the TOC contents and pH
values in the GEMAS data set do not follow a normal distribution. The significance of
Kolmogorov-Smirnov normality test (K-S test p value < 0.05) also suggested the non-
normality of raw data. Therefore, in order to limit the impact of outliers and deal with ‘non-
normality’ of the raw data prior to the spatial analysis (Zhang et al., 2008a), a normal score
transformation was applied to the raw data set of TOC and pH. The normal score
transformation is regarded as an efficient tool to transform the original distribution of a

data set to a near symmetrical distribution.

3.3.2.2 Data transformation for Tellus data in Northern Ireland

The spatial clustering patterns of 15 PTEs and soil samples were investigated by the hot
spot analysis and K-means clustering analysis in the topsoil of NI. Data without
transformation can lead to relatively unreliable results of spatial clustering analysis. For
hot spot analysis, data transformation is a standard process as it belongs to a parametric
statistic. The effects on the raw data and results of different transformation methods have
been discussed in previous studies (e.g., Zhang et al., 2008a, Xu et al., 2019). For K-means
clustering analysis, centred log-ratio (clr) transformation and isometric log-ratio (ilr)
transformation have been reported as better methods to capture spatial hidden patterns in
the geochemical datasets (Templ et al., 2008). Therefore, for consistency, a clr-

transformation was subjected to the raw data based on 15 variables of PTEs.
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3.3.2.3 Data transformation for Tellus data in the northern half of Ireland

The spatial relationships between Pb and Al were studied by GWPCC in the topsoil of the
northern half of Ireland. The GWPCC also belongs to parametric spatial statistic that
depends on classic statistical parameters (i.e., mean value), which requires the normality
of distribution for the data. However, the raw Tellus data set of Pb and Al do not follow a
normal distribution, thus necessary data transformation process is required. In order to meet
the normality requirement of GWPCC (Fotheringham et al., 2002), the normal score

transformation was performed on the Pb and Al concentrations.

3.3.3 Spatial analysis

3.3.3.1 Inverse distance weighted interpolation

Inverse distance weighted (IDW) interpolation is a deterministic interpolation method,
which is widely used in environmental and geochemical mapping as the simplest spatial
interpolation method (Shepard, 1964; Wackernagel, 1998). The IDW interpolation can
predict values in unsampled locations by using weights on the measured values of
surrounding sampled points within a defined distance (Robinson and Metternicht, 2006).
It assumes that each estimated point has a local influence that diminishes with distance,
and, thus, gives a higher weight to points that are closer to the prediction point, and the
weights gradually decrease as a function of distance. The IDW interpolation has two main
parameters, including the power value and the number of neighbours (Zhang et al., 2011).
However, there is no standard criteria for determining the optimal parameters, which
depends on the actual objectives of study. The power was chosen as 2 and the searched
neighbours were between 10 to 15, which is able to create smooth surface at the regional

level.
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In this study, the IDW interpolation was used to produce the continuous colourful surface
maps for the spatial distribution of 15 PTEs concentration in NI, and the concentration of
Pb and Al in the island of Ireland.

3.3.3.2 Hot spot analysis (Getis-Ord G;" statistic)

Hot spot analysis is a mapping technique that can reveal spatial clusters based on the
distance between samples, and can identify locations with statistically significant high and
low values in a certain geographic area based on a calculated distance. This particular
analysis groups samples based on the similar high or low values which are found in a cluster.
In fact, hotspot analysis requires the presence of clustering within the spatial data set. The
hot spot analysis is based on Tobler's First Law of Geography, which states that “everything
is related to everything else, but near things are more related than distant things” (Tobler,
1970). This first law is the foundation of the fundamental concepts of spatial dependence

and spatial autocorrelation.

Getis-Ord G;i” statistic (local Gi" statistic) is a measure of spatial autocorrelation from a
local perspective (Ord and Getis, 1995), which belongs to one of the methods of the hot
spot analysis. The local Gi” statistic returns the z-scores and p-values by calculating the
local sum for the values of each feature and its corresponding neighbours. A high z-score
and a small p-value for a feature indicate a significant hotspot (high-value cluster). On the
same premise, a low negative z-score and a small p-value indicate a significant cold spot
(low-value cluster). A statistically significant hotspot is a location surrounded by other
samples with high values (the reverse applies for a cold spot). Also, this tool can help
identify hot and cold spots with different significant levels, so priorities can be set up based
on practical situations and requirements. The equations for calculation of Getis-Ord Gi*
statistic are given below (Getis and Ord, 1992):
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where i is the centre of the local neighbourhood; x; is the value of the variable in the sample
at location j; w; ; is the spatial weight between sample locations I and j; n is the total

number of samples.

The following equation calculates the mean value of the whole data set:

j
¥ = (3.2)

and the standard deviation of the whole data set is calculated by the following equation:

S = ’%1 — (X)2 (3.3)

In this study, Getis-Ord Gi* statistic was used to identify the spatial clustering patterns for
TOC contents and pH values in European agricultural soil, and the spatial clustering
patterns for the 15 PTEs concentration in the topsoil of NI. The distance bands for GEMAS
data in European continent and Tellus data in Northern Ireland were 100,000 m and 3,000

m, respectively.
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3.3.3.3 Geographically weighted regression (GWR)

Since the 1990s, the GWR model is known as a powerful method to explore spatial non-
stationarity and capture spatially varying relationship (Brunsdon et al., 1996; Fotheringham
et al., 2002). This technique is an extension of ordinary regression model, such as Ordinary
Least Square (OLS), and is used to reveal spatial relationships between the dependent and
independent variable(s) from the local perspective (Fotheringham et al., 2001). The GWR
can generate a set of regression coefficients at the local level that reveal how the
relationship between the input variables change over space (Fotheringham et al., 2002),
while the spatial patterns of such local parameters cannot be identified by the traditional
regression model (e.g., OLS). The traditional regression model assumes the studied
relationship is linear and spatially constant over the space, and thus the estimated
parameters (i.e., regression coefficients) remain the same in the whole study area (Tu and
Xia, 2008). These conventional techniques should be regarded as global statistics. On the
contrary, the GWR has the potential to estimate the local regression coefficients at each
sample site by allowing the parameter estimation between the dependent and independent
variable(s) to vary concurrently at each location (Fotheringham et al., 2002; Kumar et al.,
2012). Therefore, GWR can explore the spatially varying relationships between input
variables by including the spatial coordinates of each sample site, which are often ignored

in the traditional linear regression modelling. The traditional OLS equation is:

Vi = Bo+ B1xi1 + & (3.4)

where y; is the value of the dependent variable (TOC) at the i location, x;; is the value of
independent variable (pH) at the i location, 3, is the intercept on the y-axis, §; is the
regression coefficient that is estimated for the independent variable (pH) at location i, and

g; 1s the error term.
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Based on Fotheringham et al. (2002), the GWR model can estimate local coefficients rather
than global ones by adding the geographical location in the function, which is expressed

as:

Vi = Bo(i, vi) + B1 (Ui, vi)xin + & (3.5)

where (y;, v;) represent the coordinates for sample location i, B, (u;, v;) is the intercept for
location i, and B, (u;, v;) is the local regression coefficient for the independent variable (pH)

at location i.

In contrast with the ordinary regression model, the local regression coefficients in GWR
can be estimated by using a weighted function (Fotheringham et al., 2002), as expressed
by the following equation:

Blusvi) = (XTW (g, v)X) T XTW (ug, v))Y (3.6)

where X is the matrix formed by the values of the independent variable x; Y is the
corresponding matrix generated by the values of the dependent variable y; W (u;, v;)
represents the weight matrix chosen to ensure that observations closer to the specific

location (u;, v;) have greater influence on the final result.

There are two important parameters when implementation of GWR model, including the
kernel function and bandwidth. The adaptive kernel type was selected as the weight
function because it can reduce the ‘border effect’” when sample sites are located near to
coastal or country border areas (Zhang et al., 2011), which is suitable for the study area

(i.e., European continent). There are two types of bandwidths in the GWR model, one is
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the spatial distance and the other is the number of nearest neighbours. By applying the
adaptive kernel function, the latter bandwidth was selected. The bandwidth was chosen by
using the AIC function, which is effective in finding the ‘optimal’ distance band in the
GWR model (Fotheringham et al., 2002). Regarding technical details, there is no consensus
on the choice of the ‘best’ bandwidth and this has been extensively debated in the literature
(e.g., Farber and Pa’ez, 2007; Guo et al., 2008). The GWR results vary by selecting
different bandwidths and spatial weights. With smaller bandwidth, it can reveal more
spatial variation at the local level, and the spatial patterns of regression coefficients are
scattered over the study area. With larger bandwidth, the GWR approach tends to reach a
global regression, and the spatial patterns of the estimated parameters become larger and
smoother. Therefore, the selection of bandwidth depends on the specific aims and
objectives of the research. Considering the research objectives to reveal the spatially
varying relationships between TOC and pH at different scales, eight different bandwidths
(with the number of neighbours being 25; 50; 75; 100; 125; 150; 200; 250) were

investigated in this study.

3.3.3.4 Geographically Weighted Pearson Correlation Coefficient (GWPCC)

Geographically Weighted Pearson Correlation Coefficient (GWPCC) is an extension of
traditional Pearson Correlation Coefficient (PCC) which adopts the concept of
geographical weights (GW) around observations for calculating local statistics
(Fotheringham et al., 2002; Kalogirou, 2012). The traditional PCC is regarded as a global
statistic that assumes the measured correlation between two variables are constant and
remain the same across the study area (Tu and Xia, 2008), and thus cannot capture the
correlation at the local level. Based on the same principle as GWR, the GWPCC estimates
the local correlation coefficients at each sample point by measuring the parameters of
relationship locally (Fotheringham et al., 2002). Therefore, it can capture the spatially
varying relationships between input variables by including the information of spatial
locations for each sample site, which are ignored by traditional PCC. Moreover, the local

coefficients of GWPCC can represent strong or weak correlation between variables, rather
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than the regression (slope) coefficients in the GWR (Xu and Zhang, 2021). A series of
significance tests are provided by GWPCC, which can identify the local variations at

different significance levels (Kalogirou, 2014). The formula of traditional PCC is:

PMIRCIEEINCTESD)
\/Zl (=% \/Zl i = )

(3.7)

where x; is the value of Al at the i™" location, y; is the value of Pb at the i location, x is
mean value of Al which is calculated by Y:I*, x;/n, ¥ is the mean value of Pb which

calculated by Yi-; ¥;/n, nis the total number of samples.

The GWPCC can estimate local correlation coefficients (r;) at a location i by adding

geographical weighting w;; in the equation, which is expressed as (Kalogirou, 2014):

" Wy - D - )
gwpce; = zi:l : (3.8)
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where X is the geographically weighted mean value of Al which calculated by

Z W”x‘/Z w;j, ¥ is the geographically weighted mean value of Pb which
i i=1

calculated by z Wl]yl/z

The weights are calculated by a bi-square function expressed as:
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1-— @ 2 2 ifd; <h
wij = [ h; ] 11 dj; i (3.9)
0 otherwise

where d;; is the distance between location i and J, h; is the selected bandwidth (nearest

neighbours) using adaptive kernel type function of location i.

As same concept with GWR, bandwidth is an important parameter in the GWPCC and also
other GW models, which has been extensively debated in the literature (e.g., Farber and
P&z, 2007; Guo et al., 2008; Gao and Li, 2011). The details of the discussion of bandwidth
selection can be found in section 3.3.3.3. Also, the adaptive kernel type was chosen to
reduce the ‘border effect’ in the study area (i.e., island of Ireland), and the technically
optimal bandwidth was chosen by AIC (n = 43). Considering the research objectives of
revealing large and smooth patterns of local correlation, six bandwidths with large nearest
neighbours (43; 100; 150; 200; 250; 300) were investigated. In this study, the GWPCC was
applied to explore the spatially varying relationships and local correlations between Pb and

Al in the topsoil of the northern half of Ireland.

3.3.4 Multivariate analysis

3.3.4.1 Correlation analysis

Correlation analysis is a bivariate method used to quantitatively evaluate the strength of
the relationship between two variables (Franzese and luliano, 2019). A statistically
significant high correlation indicates that there is a strong relationship between these two
variables, while a statistically significant weak correlation indicates that these two
variables are poorly related (Koch and Link, 2002). The most popular correlation analysis
method is Pearson's correlation coefficient analysis. However, it has the prerequisite of

‘normality” for environmental geochemical data sets. Another commonly used correlation
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analysis technique is Spearman's correlation coefficient analysis, which belongs to the non-
parametric statistic, and does not carry any assumptions on the distribution of the data set.
Therefore, in this study, Spearman's correlation coefficient was used to investigate the
correlation among TOC, pH and other environmental variables in the European agricultural
soil.

3.3.4.2 Principal component analysis (PCA)

Principal component analysis (PCA) is one of the most popular methods in multivariate
statistical analysis, which has become a standard approach and widely used to extract
useful geochemical information. It combines multiple correlated variables into fewer
principal components based on correlation or covariance matrix. These components are not
correlated with each other, which can represent the interrelationships between the multi-
variables in the original data set (Jolliffe, 2002). The advantage of adopting these extract
components is that the input data sets can be replaced by fewer comprehensive indicators
with as little loss of information as possible (Jolliffe, 2002), and this step is called
dimension reduction. The appropriate number of components can be determined by a
significant inflection point on the output scree plot (Cattell, 1966). In addition, PCA can
enhance the interpretability of results among multiple variables by selecting appropriate
rotation methods (Cheng et al., 2006), including Varimax, Promax, Oblimin and Quartimin
(Carroll, 1953; Kaiser, 1958; Hendrickson and White, 1964; Harman, 1976). In this study,
PCA was performed to reduce dimension for the 15 PTEs in the topsoil samples of NI prior

to the K-means clustering analysis.

3.3.4.3 K-means clustering analysis

K-means clustering analysis is a partitioning clustering algorithm, which is adopted as the
most widely used clustering method in ML and data mining due to its simplicity and
efficiency (Han and Kamber, 2006). It is usually performed as the initial step of data
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analysis, which has been proved to be powerful for capturing the hidden spatial patterns in
environmental geochemistry (e.g., Bengio etal., 2013; LeCun et al., 2015; Zuo et al., 2017).
The principle of K-means clustering is to partition the space into k non-overlapping clusters,
and classify each observation to the nearest centre in order to minimise the within-cluster
variance as well as maximise the between-cluster variance (Hartigan, 1975; Alizadeh et al.,
2017). In other words, it aims to divide the samples with higher similarity into the same
cluster, while the samples between each cluster are very dissimilar. The function of K-

mean clustering is presented as follow (MacQueen, 1967; Hartigan and Wong, 1979):

] = i z Il — el (3.10)

i=1 jecC;

Where J is the objective function, C; is the i cluster, n; is the number of samples in it"

cluster, distance function d;; = ||x; —,ul.||2 represents the calculation of the distance
between each sample point x; and centroid x; in the i"" cluster. The centroid 4; can be

calculated based on the function as below:

1
= — ; 3.11
'ul |Ci| Z.x] ( )

The implementation of K-means clustering algorithm can be summarised in the following
steps (Zagouras et al., 2013):

(1) Randomly initializing the cluster centroid s, u,, ..., 14;
(2) Calculating the distance function d;; between each sample point x; and centroid g; in
the i cluster. The distance function d;; was based on the Euclidean distance in this

study.
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(3) Moving each sample point x; to the cluster of its nearest centroid and update

earest’

cluster centroids from which sample points have been disjointed or reassigned.

(4) Computing the objective function J, as given above in formula (1). If function J
converges, the centroids do not change from the previous iterations, and the K-means
clustering algorithm derives the final centroids of cluster. Otherwise, the step 2 and 3

are repeated until the objective function J converges.

The number of clusters is an important parameter when using the partition clustering
(Weatherill and Burton, 2008). The choice of optimal cluster numbers can be achieved by
various methods and the prior knowledge, including Davies-Bouldin Index (Davies and
Bouldin, 1979), Silhouette method (Rousseeuw, 1987), elbow method (Ketchen and Shook,
1996), information criterion approach (Goutte et al., 2001). In this study, Silhouette method
was applied to choose the appropriate cluster number. It can provide succinct graphics to
display the quality of classification, as well as silhouette values to interpret and validate
the consistency of clusters within samples (Rousseeuw, 1987). The silhouette values can
represent how similar an observation belongs to its cluster compared to others, where a
high value implies the good cohesion of one object to its own cluster and poor match with
adjacent clusters. This principle corresponds well to the classification criteria of cluster

analysis.

In this study, K-means clustering analysis was performed to reveal the hidden spatial

patterns of the topsoil samples based on the 15 PTEs in NI.

3.3.5 Computer software

All the data sets are stored in Microsoft Excel (ver. 2016), and data statistics were
computed in SPSS (ver. 24). The normal score transformation was conducted in SPSS (ver.

24), and clr-transformation was conducted using R project (ver. 3.56). All the spatial
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distribution maps were produced using IDW interpolation in ArcGIS (ver. 10.4). The Getis-
Ord G;” statistic and GWR were also performed in ArcGIS (ver. 10.4). Principal component
analysis was conducted in SPSS (ver. 24), while K-means clustering was compiled using
‘cluster’ package (ver. 2.10) in R project (Maechler et al., 2019; https://cran.r-
project.org/web/packages/cluster/cluster.pdf). The local correlation coefficients and their

significance level were calculated using the GWPCC in the R package ‘Ictools’ (ver. 3.56,

in http://cran.r-project.org/web/packages/Ictools/index.html).

3.4 Summary

This chapter describes the background knowledge of the study area in European continent,
Northern Ireland and the northern half of Ireland. In addition, the sampling locations,
preparation and laboratory analysis for the GEMAS project and Tellus survey data were
also discussed. Furthermore, the detailed information about methodologies and data

analysis were provided in this chapter.
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4.1 ldentification of the co-existence of low total organic carbon
contents and low pH values in agricultural soil in north-central Europe

using hot spot analysis based on GEMAS project data

Xu, H.F., Demetriades, A., Reimann, C., Jimeénez., J.J., Filser, J., Zhang, C.S., 2019.
Identification of the co-existence of low total organic carbon contents and low pH values
in agricultural soil in north-central Europe using hot spot analysis based on GEMAS project
data. Sci. Total Environ. 678, 94-104.

Summary: This paper investigated the spatial patterns of TOC contents and its relationship
with pH values using hot spot analysis (Getis-Ord Gi" statistic) based on 2,108 topsoil
samples that collected from GEMAS project in European agricultural soil. The overall
patterns revealed by the hot spot maps showing a general negative relationship between
these two variables at the European continent scale. High TOC contents accompanying low
pH values in the north-eastern Europe, while low TOC with high pH values in the southern
part. Moreover, a ‘special’ feature of co-existence of comparatively low TOC contents and
low pH values in north-central Europe was also identified by hot spot analysis, and this
hidden pattern showed clear association with high concentration of SiO» (quartz) in the
coarse-textured glacial sediments in north-central Europe. The results demonstrated that
hot spot analysis is effective in highlighting the spatial patterns of TOC in European
agricultural soil and helpful to identify hidden relationships between environmental

variables.

My contribution in this paper accounted for ~80% in reviewing literatures, exploring

data and writing manuscript.
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1. Introduction

Global climate change currently is an important research topic
(Mathieu et al., 2015; Fang et al., 2017), as the concentration of carbon
dioxide in the atmosphere has increased continuously during the past
decades (Yu etal., 2014; O'Rourke et al., 2015). Soil is regarded the larg-
est pool of organic carbon (OC) in the terrestrial ecosystem, with total
amounts of carbon two or three times higher than that in the atmo-
sphere or terrestrial vegetation (Eswaran et al., 1993; Batjes, 1996;
Jobaggy and Jackson, 2000; Schmidt et al., 2011). Therefore, even
small changes in soil organic carbon storage can influence the atmo-
spheric CO, concentration (Johnston et al., 2004; Xu et al.,, 2011a). The
preservation and release of this large OC pool has been considered as
a vital factor in controlling atmospheric CO, concentrations (Pan et al.,
2003). This has increased interest in soil organic carbon sequestration
as a helpful way to offset carbon dioxide emissions (Lenka and
Lal, 2013). Nowadays, due to the current low OC content in agricultural
soil at the global level, they are likely to store about 5500-6000 Mt CO,-
eq-yr~ ' by 2030 (Smith et al., 2008). Moreover, a high level of total or-
ganic carbon (TOC) in agricultural soil significantly raises the nutrient
levels and improves soil structure conditions (Tiessen et al., 1994; Hati
et al., 2007). Hence, studies on TOC in agricultural soil can contribute
to the improvement of agricultural productivity as well as mitigating
global warming.

Due to the importance of soil organic carbon pools in terrestrial eco-
systems, much effort has focused on the study of TOC contents at na-
tional and regional scales. For instance, the organic carbon stock has
been investigated at the national level in some European countries, in-
cluding Belgium (Meersmans et al., 2011), Ireland (Zhang and
McGrath, 2004; Xu et al., 2011b), the United Kingdom (Bradley et al.,
2005), France (Martin et al., 2011) and Spain (Rodriguez Martin et al.,
2016). In addition, the dynamics and influencing factors of TOC contents
in soil have also been widely studied (McGrath and Zhang, 2003; Reisser
et al, 2016; Zhang et al, 2018). The influencing factors of TOC contents
include both natural and anthropogenic ones, such as land use, eleva-
tion, climate, parent materials, soil properties (e.g., pH, soil texture), cul-
tivation method, human input (e.g., fertilisers) and site management
(Jenny, 1980; Guo and Gifford, 2002; Jackson et al., 2002; Lal, 2005;
Jandl et al., 2007). Deploying some of these factors can effectively in-
crease the OC sequestration in soil, but this requires evaluating reliably
changes based on statistically sound analysis.

Hot spot analysis can investigate where the spatial features under
study are concentrated (Alessa et al., 2008). It is based on the method-
ologies of Local Moran's [ and Getis-Ord Gi* (or referred to as Gi* statis-
tic) (Braithwaite and Li, 2007). The Gi* statistic takes the values of all
neighbouring features into consideration and reports the hot and cold
spots at different statistically significance levels. Hot spot analysis has
been widely used in crime rates analysis, traffic accidents, epidemiol-
ogy, economic geography, species populations and demographics
(e.g., Barro et al., 2015; ESRI, 2016; Lu et al.,, 2017; Ansong et al.,
2018). In recent years, it has been often applied in studies of environ-
mental science (Zhang et al.,, 2012; Tran et al., 2017; Kumar et al.,
2018), spatial clusters of diseases (Wang et al., 2012; Wang et al.,
2016) and biodiversity (Di Minin et al., 2013).
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The relationship between soil TOC contents and pH values has been
reported in numerous studies (McGrath and Zhang, 2003; Reisser et al.,
2016; Zhang et al., 2018). This study attempts to employ hot spot anal-
ysis to directly reveal spatial patterns by identifying hot and cold spots
of TOC and pH at the European scale based on the GEMAS data set.
This approach should help to identify ‘hidden’ relationships and pat-
terns. TOC contents and pH values in agricultural soil samples are pre-
sented in the GEMAS atlas (Reimann et al., 2014a). TOC is also
discussed in Baritz et al. (2014) and Matschullat et al. (2018), and pH
values are presented in Fabian et al. (2014).

The objectives of this study were: (1) to study the spatial distribu-
tion patterns of TOC and pH in European agricultural soil based on
GEMAS data using hot spot analysis; (2) to identify the spatial relation-
ship between soil TOC contents and pH values at the European scale
using mapping techniques based on hot spot analysis, and (3) to explore
influencing factors of the special pattern of co-existence of low TOC con-
tents and low pH values in north-central Europe.

2. Data and methods
2.1. The GEMAS project

GEMAS (GEochemical Mapping of Agricultural Soil) was a
collaborative project between the Geochemistry Expert Group of
EuroGeoSurveys (EGS) and Eurometaux (Reimann et al., 2014b,
2014c). The GEMAS project aimed at generating consistent soil geo-
chemistry data at the continental-scale based on REACH regulation re-
quirements (EC, 2006). The GEMAS project mainly focused on
agricultural and grazing land soil, with a total of 2108 agricultural
(Ap) and 2023 grazing land (Gr) soil samples collected during 2008
and early 2009, covering 33 European countries and 5.6 million km?
(Reimann et al., 2014b, p.24). Soil samples from agricultural and grazing
land were taken at depths of 0-20 and 0-10 cm, respectively, according
to the REACH regulation specifications (ECHA, 2012). The entire project
area was covered by a 50 x 50 km grid and within each cell of 2500 km?
one sampling site of each sample type (Ap and Gr) was chosen. It was in
general decided to follow the sample density used in the Baltic Soil Sur-
vey project (Reimann et al., 2003). This was a practical design as it
allowed the collection of Ap and Gr samples evenly all over Europe
with a very different spatial distribution of agricultural and grazing
land. Thus, the field teams were free to choose where they took the
soil samples from Ap (agricultural) and Gr (grazing) land in each grid
cell (2500 km? area) (Reimann et al., 2014b, p.33). All soil sampling ma-
terials and equipment, especially the bags used for packing samples
were centrally provided to the field sampling teams (EGS, 2008).

2.2. Soil sampling

The agricultural land (arable land, Ap) soil samples were used in this
study. The samples of an average weight of approximately 3.0 kg each,
were taken as composite samples from five sub-sites from the corners
and centre of a 10 x 10 m square. Each sampling site was carefully re-
corded and replicated on-site at every 20 sites (EGS, 2008).
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There were 13 samples with missing TOC values in the GEMAS data-
base, thus the corresponding 13 pH sample values were excluded. The
total number of Ap soil samples used in this study was, thus, 2095
(Fig. 1).

2.3. Soil sample preparation and analysis

All soil samples in the GEMAS project were prepared in the central
laboratory of the Geological Survey of Slovakia and completed by May
2009. The soil samples were air-dried and sieved through a nylon
sieve of 2 mm pore size, and subsequently homogenised and split into
10 aliquots for further study and analysis (Mackovych and
Lucivjansky, 2014). The Geological Survey of Norway (NGU) prepared
a list of random numbers for each sample set, allowing insertion of an-
alytical replicates and project standards in batches of twenty samples,
so that quality control samples could not be recognised by the analytical
laboratories.

Soil pH was determined at NGU laboratory by measurement in
0.01 M CaCl,-solution. Total organic carbon (TOC) was determined
at FUGRO Consult GmbH in Germany (now KIWA Control GmbH)
according to the ISO standard 10694 (1SO, 1995; Reimann et al.,
2011).

In order to generate harmonised and comparable data sets across
national borders, all elements and parameters were analysed in the
same laboratory and under strict quality control procedures. Reimann
et al. (2009, 2011), Birke et al. (2014) and Demetriades et al. (2014)
have already clearly described the analytical methods and quality con-
trol procedures.

2.4. Hot spot analysis

Hot spot analysis can identify locations with statistically significant
high and low values over a geographical area by aggregating sample
values that are in proximity to one another based on a calculated dis-
tance. This particular analysis groups samples when similar high (hot)
or low (cold) values are found in a cluster. In fact, hotspot analysis re-

“everything is related to everything else, but near things are more related
than distant things” (Tobler, 1970). This first law is the foundation of
the fundamental concepts of spatial dependence and spatial
autocorrelation.

In this study, the Getis-Ord Gi* statistic (Ord and Getis, 1995), which
is a measure of spatial autocorrelation from a local perspective, was
used to identify the high and low spatial clusters in the GEMAS Ap
data set for soil total organic carbon (TOC) and pH using ESRI's ArcMap
software version 10.4. This technique calculates the local sum for a fea-
ture and its neighbours, and is compared proportionally to the sum of all
features, i.e., in this case the Ap sample values of TOC and pH and the
corresponding neighbouring sample values. When the local sum is
very different from the expected local sum, and this difference is too
large to be the product of random choice, a statistically significant z-
score results. A high z-score and a small p-value for a feature indicate
a significant hotspot (high value cluster). On the same premise, a low
negative z-score and a small p-value indicate a significant cold spot
(low value cluster). A statistically significant hotspot is a location
surrounded by other samples with high values (the reverse applies for
a cold spot). Also, this tool can help identify hot and cold spots with dif-
ferent significant levels, so priorities can be set up based on practical sit-
uations and requirements. The equations for the calculation of Getis-
Ord Gi* statistic are given below (Getis and Ord, 1992; ESRI, 2016):

.

where i is the centre of the local neighbourhood; ; is the value of the
variable in the sample at location j; w;; is the spatial weight between
sample locations i and j; n is the total number of samples.

The following equation calculates the mean of the whole data set:
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Fig. 1. Growing dot maps showing agricultural soil sampling locations and TOC contents and pH values in European agricultural soil: a) TOC contents; b) pH values (n = 2095).
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and the standard deviation of the whole data set is calculated by the fol-
lowing equation:

x)?

"]XZ-
S:\ n’—

(3)

The final Gi* statistic returned for each location is a z-score. For pos-
itive z-scores, with statistically significant positive values, the higher the
z-score the more intense is the clustering of high-values (hot spots).
Similarly, for statistically significant negative z-scores, the lower the z-
score is, the more intense is the cluster of low-values (cold spots). The
z-score indicates the statistical significance of the cluster at a specified
level. For 99%, 95% and 90% significance levels, the z-score should be be-
tween +2.58, +1.98 and +1.58, respectively. In this paper, the TOC
values were divided into seven classes based on the statistical results.

2.5. Data transformation and computer software

The GEMAS TOC and pH data were treated using different computer
software programs. In order to limit the impact of outliers and non-
normality of the raw data on spatial analysis, a normal score transfor-
mation was applied to the raw data set. The normal score transforma-
tion is regarded as an efficient tool to transform the original
distribution of a data set to a relatively standard normal distribution.
This tool ranks the data from the lowest to the highest value and
matches these ranks to equivalent ranks produced in the normal distri-
bution. Zhang et al. (2008) have discussed the effects of normal score
transformation in spatial analysis in detail. The data transformation
and descriptive statistics were calculated using SPSS (version 21.0)
and Microsoft Excel. Hot spot maps were produced with ESRI's GIS soft-
ware ArcMap (version 10.4).

3. Results and discussion
3.1. Descriptive statistics for TOC contents and pH values

It is well-known that geochemical data do not belong to the classical
Euclidean space and should be considered in their own Euclidean geom-
etry on the simplex (Aitchison, 1986; Filzmoser et al., 2009, 2010, 2014;
Egozcue and Pawlowsky-Glahn, 2011; Reimann et al., 2012). However,
the Gi* statistic is a parametric spatial statistic that depends on classical
statistical parameters (mean and standard deviation). Hence, it is neces-
sary to estimate some parametric descriptive statistics for the raw data
of TOC and pH (Table 1). The median values of TOC and pH are 1.80 and
5.77 wt%, respectively. For pH values, the median value (5.77) for the
GEMAS agricultural soil samples is very close to that (5.5) of the
FOREGS data set (De Vos et al., 2006), indicating that the majority of
European agricultural soil samples are acidic or weakly acidic. The
GEMAS data median for TOC (1.80%) is also close to the FOREGS data
set in topsoil (1.73 wt%).

The large differences among the median, 75th percentile and the
maximum value indicate the existence of potential high-value outliers
(Zhang et al., 2009). Histograms of TOC contents with the normal distri-
bution curve superimposed are shown in Fig. 2a. The raw data exhibit a
long tail towards higher TOC contents, suggesting the existence of high-

Table 1
Descriptive statistics for TOC and pH in European agricultural soil (TOC in wt#%;
n = 2095)).

Parameter Min 25% Mean Median 75% Max SD
TOC 0.40 12 255 1.80 26 46.0 3.98
pH 3.32 496 5.88 5.77 7.03 7.98 1.10

SD: standard deviation.
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value outliers. The normal score transformed data of TOC contents
display a relatively symmetrical distribution in Fig. 2b (K-S test p
value = 0.001 < 0.05). Although it does not perfectly obey the normal
distribution, it still greatly reduces the influences of outliers in original
data set. Therefore, the normal score transformed data were used for
further spatial analysis in this study.

The pH values show an overall symmetrical statistical distribution,
asdepicted by the superimposed normal distribution curve (Fig. 2c), be-
cause the logarithmic transformation was already performed on con-
centrations of H" to obtain the pH value. However, the pH histogram
shows two distinct peaks with a break point at about 6.5, indicating
the existence of two ‘populations’, and the majority of Ap soil samples
being overall acidic (<7 pH). The samples in the ‘population’ with high
PH values (e.g., 7.00-7.98) are mostly located in the Mediterranean
area (see Fig. 1), where the major soil parent materials are limestone
and marble. For consistency and to obtain a symmetrical distribution,
the pH values were also subjected to the normal score transformation
prior to spatial analysis (Fig. 2d; K-S test p value = 0.2 > 0.05).

3.2. Hot spot analysis of TOC

Hot spot analysis is an important tool in identifying spatial patterns
by pinpointing the location and clustering in the TOC data. The hot spot
identification results of TOC are affected by various factors, including the
logarithmic transformation of the raw data set. To reduce the effects of
spatial outliers, the spatial weight relationships between each feature,
and the choice of distance band are important factors (Zhang et al.,
2008). Two key factors on hot spot analysis are discussed here: data
transformation and the distance band.

3.2.1. Effects of data transformation on identification of hot and cold spots

Comparison of the spatial distribution between the raw and nor-
mal score transformed data of TOC contents is shown in Fig. 3. For the
purposes of an absolute comparison, the input parameters for both
maps were kept the same, i.e., a fixed distance band of 100 km. The
maps show great differences between the raw (Fig. 3a) and normal
score transformed data (Fig. 3b). The map of normal score trans-
formed data identifies a greater number of significant hot spots in
northern Europe, the United Kingdom and Ireland. Significant cold
spots are shown in central and southern Europe, i.e., Portugal,
Spain, south-eastern and north-central France, northern Italy, east-
ern Sicily, Hellas, Hungary, north-eastern Germany, Poland and
Ukraine (Fig. 3b). In contrast, there was no significant cold spot on
the raw data map, an expected outcome because of the strongly
right-skewed data distribution (Fig. 3a).

After data transformation, the effects of outliers (extremely high
values) on the spatial analysis of TOC contents were reduced, as they
were ‘scaled’ closer towards the majority of the data. Before data trans-
formation, the mean value of TOC contents was comparatively high due
to the existence of outliers (see Fig. 2a), and the total number of signif-
icant hot spots identified by Gi* statistics was relatively small (Fig. 3a).
Therefore, the number of TOC hot spots was less than that after data
transformation. In addition, a number of cold spots were identified on
the map (see Fig. 3b). This is because the normal score transformation
makes both high and low values evenly distributed by ranking them
in order (Zhang et al., 2008). It is, therefore, demonstrated that data
transformation is an important influencing factor in identifying spatial
distribution patterns on hot and cold spot analysis maps. Due to the
non-normality of geochemical data distributions (Reimann and
Filzmoser, 2000) and the existence of outliers, the transformed TOC
and pH data were used for hot spot analysis.

3.2.2. Effects of different distance bands on identification of hot and cold
spots

There is no widely accepted criteria to select the optimal distance
band, because this depends on the sampling density of the geochemical
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score transformed data of pH.

It can be clearly seen that the results are different for the four dis-

tance bands. When the shortest distance band (20 km; Fig. 4a) is exam-

the distance band should not be longer than half the

maximum distance between all sample pairs and not shorter than the
sampling interval (Zhang et al., 2008). To investigate the effects of dif-
ferent distance bands on hot spot analysis of TOC data, four distance
bands were applied in this study: 20, 50, 75 and 100 km, and the

resulting maps are shown in Fig. 4.

survey. In general

ined, the hot and cold spot results for the majority of soil samples are
insignificant. Only a few hot spots were identified in northern Europe
and the United Kingdom, with a few cold spots in Spain, north-east

Germany and Poland.

Cold Spot - 99% Confidence
Cold Spot - 95% Confidence

Cold Spot - 90% Confidence
Not Significant

Hot Spot - 90% Confidence
Hot Spot - 95% Confidence
Hot Spot - 99% Confidence

Cold Spot - 99% Confidence
Cold Spot - 95% Confidence

Cold Spot - 90% Confidence

Not Significant

Hot Spot - 90% Confidence
Hot Spot - 95% Confidence
Hot Spot - 99% Confidence

Fig. 3. Spatial distribution map of significant TOC hot and cold spots calculated using a distance band of 100 km: a) raw data; b) normal score transformed data.
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Fig. 4. Spatial distribution maps of significant TOC hot and cold spots calculated by using different distance bands: a) 20 km, b) 50 km, ¢) 75 km and d) 100 km.

When the distance band is increased to 50 km (Fig. 4b), the number
of significant hot and cold spots increases. Hot spots are clustered in
northern Europe, mainly in Fennoscandia, United Kingdom and
Ireland, while cold spots show more intensive clusters in central and
southern Europe.
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The total number of significant hot and cold spots increased enor-
mously at the distance band of 75 km, which clearly reveals the spatial
distribution patterns of TOC in European agricultural soil (Fig. 4c). Over-
all, the TOC content of agricultural soil in northern Europe is higher than
that in central and southern Europe. In Fig. 4c, the majority of significant
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hot spots are located in Fennoscandia, United Kingdom and Ireland,
with a small number of hot spots clustered in Switzerland, Austria,
southern France, north-west Spain, Croatia, Montenegro, south-
western and south-central Ukraine. Cold spots mainly occur in Poland,
Germany, France, north-western Ukraine and southern Europe
(e.g., Portugal, Spain, Italy and Hellas).

When the distance band is increased to 100 km, there is a greater
number of hot spots shown on the map (Fig. 4d ), suggesting a strong in-
fluence of distance band on hot spot analysis results. As the distance
band is increased, the number of significant hot spots increases. How-
ever, the numbers of significant hot and cold spots did not change
much as the distance band increased further than 100 km. Therefore,
taking into consideration the different distance band influence, it
seems that the distance band of 100 km is the optimal among the four
selected bands for revealing the spatial patterns of TOC between north
and south at the European-scale. The range of influence depends, of
course, on the distance between samples, and the studied variable, as
well as the interpolation algorithms. In another GEMAS spatial analysis
study of the Ni distribution in agricultural soil, the triangular irregular
network (TIN) raster map with a smoothing window size of 110
x 110 km revealed best the large-scale spatial trends and patterns

H. Xu et al. / Science of the Total Environment 678 (2019) 94-104

(Jordan et al., 2018). Therefore, the optimal distance band for the
GEMAS sampling design appears to be around 100 km.

3.3. Spatial relationships between TOC and pH in European agricultural soil

3.3.1. Spatial distribution of TOC and pH

There is a generally negative relationship between TOC and pH
values, i.e., soil samples with high TOC contents contain more organic
matter and more organic acids, resulting in low pH values (Fabian
etal, 2014). However, due to complicated influencing factors, such a re-
lationship may be interfered. The spatial patterns of pH hot and cold
spots are shown in Fig. 5. When compared with the TOC hot and cold
spots spatial patterns in Fig. 4, the overall negative relationship between
TOC and pH data in European agricultural soil is observed. Soil TOC in
southern Europe is significantly lower than that in northern Europe,
while soil pH values in southern Europe are significantly higher than
those in northern Europe, showing opposite spatial distribution pat-
terns between TOC and pH on hot and cold spot maps.

The most interesting pattern found in this hot and cold spot analysis
study is that both low TOC contents and low pH values are observed in
north-central Europe (Poland, Germany and north-western Ukraine).

pH
e Cold Spot - 99% Confidence
e Cold Spot - 95% Confidence
©  Cold Spot - 90% Confidence
Not Significant
® Hot Spot - 90% Confidence
¢ Hot Spot - 95% Confidence
® Hot Spot - 99% Confidence

Fig. 5. Hot and cold spot map of pH values calculated at a distance band of 100 km.
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This feature does not follow the overall negative correlation between
TOC and pH values. The agricultural soil at these locations has a partic-
ularly high concentration of SiO,. Here coarse-grained sediments of
the last glaciation occur (Reimann et al., 2014a). A different soil parent
material can thus cause special patterns of TOC and pH values in
north-central Europe, which will be further explored in the following
sections.

3.3.2. Environmental factors associated with negative relationship between
TOC and pH

Spearman rank correlation coefficients were calculated to measure
the relationship among TOC, pH and other selected environmental pa-
rameters (Table 2). The Spearman rank correlation coefficient between
two variables is equivalent to the Pearson correlation coefficient be-
tween the rank values of the two variables (Caruso and Cliff, 1997),
while the Spearman index does not require the normality of the data.
Due to sample size effect of the large number of samples (e.g., n
>100) used for correlation analysis in this study, the significant levels
need to be carefully interpreted (Zhang et al., 2005).

Except altitude, all other parameters (temperature, precipitation,
clay+silt and SiO;) showed significant correlations with TOC and pH.
Nevertheless, temperature and clay+silt contents showed weak
negative correlation with soil TOC, and weak positive correlation
with pH values in European agricultural soil. Interestingly, the concen-
tration of SiO, is negatively correlated with both TOC and pH (r =
—0.379 and r = —0.322, respectively), which could be affected by the
special relationship between high SiO, and both low TOC contents and
pH values in central-eastern Europe.

The overall negative correlation between TOC contents and pH
values could be related to multiple processes. Organic Carbon is the pro-
genitor of carbonic acid, which contributes to reducing the rate of deg-
radation of organic matter by microorganisms in soil (McGrath and
Zhang, 2003). Meanwhile acid deposition influences soil pH values in
forests (White et al., 1995; White and Cresser, 1998). Although this pro-
cess is obvious in forests, it will also affect agricultural soil to a certain
degree if there is no other buffer system in soil (Fabian et al., 2014).
Thus, due to the limited biomass of plants, comparatively low residue
input contributes to a low soil organic matter level. In addition, the
leaching of dissolved organic carbon is generally accelerated by rela-
tively high pH values, resulting in a decreased organic carbon content
in surface soil (Andersson and Nilsson, 2001).

Climate also plays a key role on soil TOC contents and pH values.
High precipitation and low temperature tend to cause a decreased de-
composition of organic matter, favouring, thus, the accumulation of
humus (Jenny, 1980), and in turn affecting the content of TOC. Further-
more, several studies have reported that climate (characterised by tem-
perature and precipitation) is an important determinant of
physicochemical properties in soil (Liu et al., 2013). For instance, an in-
crease in rainfall may contribute to a higher salt leaching rate. Leaching
of base cations can result in significant reduction in soil pH values
(Darilek et al., 2009). Wet conditions facilitate the formation of stable
soil organic carbon (SOC) mineral surfaces by enhanced weathering of
soil parent materials (Mikutta and Kaiser, 2011; Doetterl et al., 2015).
Temperature also greatly influences the microbial decomposition of or-
ganic matter because of its complex molecular properties with the high
intrinsic sensitivity to temperature (Davidson and Janssens, 2006;
Conant et al., 2011).

Although this relationship is controlled by a variety of constraints,
many studies suggest that TOC contents decrease with increasing tem-
perature (Jobaggy and Jackson, 2000; Sleutel et al., 2007), and humid
and cool conditions favour the stock of soil organic carbon at global
scale (Post et al., 1982).

Itis clear from the hot and cold spot maps (Figs. 4c and 5) and spatial
distribution maps, plotted with a different interpolation method (see
Reimann et al., 2014b, p.193), that the TOC contents in Fennoscandia
are significantly higher than in other areas. This is due to the natural fac-
tor that agricultural soil in northern Europe is generally acidic, resulting
from long-term low temperature and high average annual rainfall. In
contrast, soil in southern Europe has comparatively high pH values,
higher annual temperature and less rainfall resulting in lower TOC con-
tents. Therefore, mapping TOC and pH by hot spot analysis at the
European scale can spatially identify their relationships.

3.3.3. Effects of quartz on both low soil TOC contents and pH values in
north-central Europe

The co-existence of low TOC contents and low pH values was ob-
served in north-central Europe, both of which are clearly identified as
cold spots on the hot and cold spot analysis maps (see Fig. 5). They
are further confirmed as low values on the colour surface interpolated
maps (see Reimann et al., 2014b, p.132, 193). Due to the high concentra-
tion of silica in the coarse-grained sediments from the last glaciation,
the soil in this region does not follow the same pattern between TOC
and pH at the European scale. These glacial sands consist almost exclu-
sively of quartz (SiO,) and some feldspar. A hot and cold spot map of
SiO, concentration was plotted showing that most of the SiO, hot
spots occur in north-central Europe, covering north-western Ukraine,
Poland, Lithuania, Estonia, Denmark, northern Germany, The
Netherlands and Belgium (Fig. 6). While the cold spots are mainly con-
centrated in eastern Spain, southern France, Italy and parts of the Balkan
countries. Poland is characterised by a particularly high concentration of
Si0, (quartz) in agricultural soil, which accounts for 73.6% in the soil
parent materials (SPM) based on the GEMAS Ap data set. These
coarse-grained, quartz-rich sediments were deposited by the glaciers
of the last ice age (Holzhauser et al., 2005; Piotrowski et al., 2006;
Woronko and Bujak, 2018).

The importance of SPM on TOC can be attributed to differences in
quartz (Si0,) contents (Badgery et al., 2013). Generally, the occurrence
of quartz is directly related to coarse-grained sandy soil. Soil formed on
these coarse-grained glacial sediments contains larger particles and a
greater proportion of sand. Some researchers have demonstrated a di-
rect effect of soil properties (e.g., particle size, sand proportion) on
SOC contents (Kern, 1994; Homann et al., 1998; Percival et al., 2000).
Several studies have reported that the sequestration of organic mate-
rials in soil is texture-dependent and highly correlated with the per-
centage of fine particles (Scott and Cole, 1996; Hassink et al., 1997).
Soil with high sand content exhibits low OC storage due to its low aggre-
gate stability (Le Bissonnais and Arrouays, 1997), while heavy clay and
silty clay show higher OC contents.

However, the low soil pH values can also be related to high concen-
tration of SiO, (quartz). These glacial sediments and moraines contain
little Ca®>* to buffer the soil pH values due to the coarse-grained parti-
cles (Fabian et al., 2014), leading to acidification of agricultural soil. In
addition, the perennial cold climate in north-central Europe has also a

Table 2

Spearman's rank correlation coefficients of TOC contents and pH values and selected environmental variables (n = 2095).
Parameter TOC (wt%) pH Altitude (m) Clay + silt (%) Temperature (°C) Precipitation (mm/yr) SiO, (%)
TOC 1.000 —0.162" —0.003 —0.082" —0.408° 0.213" -0.379°
pH —0.162° 1.000 0.002 0.410° 0.449° —0.107° —0.322°

@ Correlation is significant at the 0.01 level (2-tailed).
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Fig. 6. Hot and cold spot map of SiO, concentrat

direct impact on acid soil in these countries, which has been confirmed
by global temperature models (e.g., Hijmans et al., 2005).

It should be mentioned that although the glacial deposits extend
northward to the Baltic States (Estonia, Latvia, see Fig. 6), the soil pH
values were not low in these areas. This may be attributed to the occur-
rence of limestone in these areas resulting in a sufficient amount of Ca*
to buffer the acid in soil, leading to comparatively higher pH values than
those in north-central Europe.

4. Conclusions

This study identified the spatial distribution patterns of soil TOC con-
tents in agricultural soil at the European scale based on the GEMAS Ap
data set. The comparison of TOC contents and pH values in European ag-
ricultural soil shows that they are negatively correlated. However, a sig-
nificant observation is the co-existence of both low TOC contents and
low pH values in agricultural soil in north-central Europe. This ‘unusual’
spatial pattern is attributed to the high concentration of SiO, (quartz) in
the coarse-grained glacial sediments, resulting in a high proportion of
sand in the coarse-textured soil of this area. Climate (temperature and
precipitation), soil parent material and soil texture appear to be the
main influencing factors for the observed overall spatial distribution
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ions calculated at a distance band of 100 km.

patterns of TOC and pH in Europe. Their special spatial pattern in
north-central Europe is mainly related to the special pattern of the last
glacier deposition. The observation of such special spatial pattern
found in this study was achieved based on hot spot analysis, demon-
strating its potential power in identifying hidden spatial patterns in en-
vironmental geochemical studies. For the successful application of the
method the data needed to be normal-score transformed to reach an
as symmetrical distribution as possible. Testing different distance
bands, a distance of 100 km provided optimal results for the GEMAS
Ap data set.
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4.2 Investigating spatially varying relationships between total organic
carbon contents and pH values in European agricultural soil using

geographically weighted regression

Xu, H.F., Zhang, C.S., 2021. Investigating spatially varying relationships between total
organic carbon contents and pH values in European agricultural soil using geographically

weighted regression. Sci. Total Environ., 752, 141977.

Summary: This paper investigated the spatial relationships between TOC contents and pH
values using GWR based on 2,108 topsoil samples that collected from GEMAS project in
European agricultural soil. The existence of the spatially varying relationships between
these two variables were revealed in more than 50% of the study area, with negative and
positive local coefficients simultaneously observed on the continental level. The novel
finding of ‘special’ positive correlations was observed in central-eastern Europe, while
original negative correlations were found mainly clustered in northern Europe. Mixed
relationships occurred in southern Europe. A strong association between the positive
patterns and specific natural factors, especially the quartz-rich soil was revealed in the
central-eastern part of Europe. Also, the mixed relationships in southern European areas
indicated the influence from anthropogenic inputs. Our results proved that the GWR is a
powerful and effective technique for revealing the spatially varying relationships, and thus
provides a new way to further explore the related influencing factors on the spatial
distribution of TOC and pH.

My contribution in this paper accounted for ~90% in reviewing literatures, exploring

data and writing manuscript.
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Total organic carbon (TOC) has received increased attention in recent years, not only as an important indicator in
soil fertility, but also due to its close relationship with the atmosphere. Generally, soil TOC and pH values follow a
negative correlation, which was revealed by traditional statistical methods. However, the conventional global
models lack the ability to capture the spatial variation locally. In this study, spatially varying local relationships
between TOC and pH values are studied by geographically weighted regression (GWR) on continental-scale
data of European agricultural soil from the project ‘Geochemical Mapping of Agricultural and Grazing land Soil’
(GEMAS). In this study, TOC is the dependent and pH the independent variable. Both negative and positive
local correlation coefficients are observed, showing the existence of ‘special’ spatially varying relationships be-
tween TOC and pH values. Original negative relationships change to positive values in more than 50% of the
study area. Novel finding of significant positive correlations is observed in central-eastern Europe, while negative
correlations are found mainly in northern Europe. Mixed relationships occur in southern Europe. These special
patterns are strongly associated with specific natural factors, especially the extensive occurrence of quartz-rich
soil in the central-eastern part of Europe. Anthropogenic inputs may have also played a role in the mixed south-
ern European areas. The GWR technique is powerful and effective for revealing spatially varying relationships at
the local level. Thus, it provides a new way to further explore the related influencing factors on the TOC and pH
spatial distribution.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years, more researchers are focusing on global climate
change, especially global warming caused by the greenhouse effect
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(e.g., Tashi et al., 2016). This is an urgent problem that needs to be
solved by international collaboration as the concentration of carbon di-
oxide in the atmosphere continues to increase (O'Rourke et al., 2015).
Soil is regarded as the largest organic carbon (OC) pool in the terrestrial
ecosystems, and even a slight variation of OC stock in soil can influence
the atmospheric CO, concentration (Batjes, 1996; Johnston et al., 2004;
Martin etal,, 2011; Schmidt et al., 2011; Lenka and Lal, 2013). Therefore,
conservation (e.g., carbon sequestration) of this large soil OC pool is
considered to be one of the most vital solutions to offset CO, emissions
in controlling the concentration of atmospheric CO, (Pan et al., 2003;
Conforti et al,, 2017). Numerous studies have been conducted in terres-
trial ecosystems to investigate the temporal and spatial variation of soil
total organic carbon (TOC) storage at different scales (e.g., Pan et al.,
2010; Arrouays et al.,, 2012; Stockmann et al., 2015) and the influencing
factors (Jenny, 1980; Jackson et al., 2002; McGrath and Zhang, 2003;
Reisser et al., 2016). These studies have demonstrated that TOC stocks
and dynamics are related to atmospheric CO, concentration, while its
soil fertility and quality are also linked to agricultural productivity as
other important indicators (Stockmann et al., 2015).These factors can
be categorised into natural, such as soil properties (i.e., soil texture,
pH), climate (i.e., temperature and precipitation), soil parent materials,
topography, and anthropogenic, including land use and management,
human input (e.g., fertilisers) (Jenny, 1980; Post et al., 1982; Jackson
et al., 2002; Stockmann et al., 2013; Wiesmeier et al., 2015). Although
all these factors have effects on soil organic carbon contents in different
regions, some of them generally follow similar spatial patterns
(Wiesmeier et al., 2019). For example, a cold and wet environment is
conducive to the accumulation of soil organic carbon, while high tem-
perature and low rainfall may lead to low soil organic carbon storage
at both regional (Baritz et al., 2010; Badgery et al., 2013) and continental
scales (Jobdggy and Jackson, 2000). As a result, TOC and pH have been
found to maintain a generally negative correlation under natural condi-
tions at various scales, a feature attributed to their innate internal rela-
tionship (Andersson and Nilsson, 2001; Reisser et al., 2016). Organic
matter on decomposition releases organic acids, leading to lower soil
pH values. In addition, relatively high pH values accelerate the decom-
position of soil organic carbon, resulting in a decrease in TOC storage ca-
pacity (Andersson and Nilsson, 2001; McGrath and Zhang, 2003). The
ability of soil to maintain and supply nutrients is closely related to its
cation exchange capacity (CEC). However, the cation and anion ex-
change capacity are affected by soil pH values. TOC is an important indi-
cator for evaluating soil fertility and nutrition. Therefore, systematic
research on the internal relationship between TOC and pH is an impor-
tant topic, which is helpful on the agricultural management.

Recently, Xu et al. (2019) identified a ‘concealed pattern’ with posi-
tive correlations between TOC and pH values in central-eastern Europe
and related it to the coarse soil materials of last glacier deposit. This in-
dicated the existence of different relationships between these two var-
iables at the regional scales and does not follow the general negative
relationship. However, the concept of ‘spatially varying relationship’ be-
tween TOC and pH values was not developed until we used a different
method of GWR in this paper. The negative correlation between TOC
and pH has been well recognized in the literature. It can be regarded
as the original and innate relationship between TOC and pH value so
most papers only have a general discussion on it (e.g. Andersson and
Nilsson, 2001; Fabian et al., 2014; Reisser et al., 2016). As examples,
we have chosen four references with quantitative statistical analysis
on the relationship between them (McGrath and Zhang, 2003;
Korkang, 2014; Wang et al., 2016; Gebrehiwot et al., 2018). However,
there are contradictory results of positive correlation reported in a lim-
ited number of two papers (Wang et al., 2010; Luo et al., 2017). The pos-
itive correlation is due to the combination of complex influencing
factors, which deserves further investigations Meanwhile, the relation-
ships can be different at different locations of sub-regions (de Moraes Sa
et al., 2009; Xu et al., 2019) or different soil layers (Zhang et al., 2018).
While the ‘location’ is considered, the concept of ‘spatially varying
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relationship’ has not been well recognized which is the focus of this
study. Use of the local statistical methods such as geographically
weighted regression (GWR) is helpful to quantify the varying relation-
ship over space in an objective way, while the division of sub-regions
in the existing literature was fairly arbitrary (see Table 1).

Based on the literature, the following research challenges and gaps
exist:

1. Contradictory results of the relationship between TOC and pH value
have been found in the literature, making the relationship an inter-
esting topic for further investigation.

2. These contradictory results were obtained using global parameter of
correlation analysis applied in arbitrarily divided sub-regions.

3. The reasons to the positive correlation remain complicated, which
warrantees the need for further investigations in different study
areas to explore the reasons.

4. No concept of ‘spatially varying relationship between TOC and pH
value' has been proposed in the literature.

This paper attempts to address these challenges and gaps using the
local statistical method of GWR to analyse the TOC contents and pH
values in European agricultural soil, extracted from the database of the
project ‘Geochemical Mapping of Agricultural and grazing land Soil’
(GEMAS), which covers 33 European countries and an area of about
5,600,000 km? (Reimann et al., 2014a). As explained in Xu et al.
(2019), TOC is affected not only by pH but by many other factors such
as climate, soil type, and human activities. It needs to be acknowledged
that besides pH value, other factors can be included in the GWR model.
However, in this study, our focus is not modelling TOC, but revealing the
spatially varying relationship between TOC and pH values. Thus, we
have only chosen pH value with a focus on the assumption that the re-
lationship between TOC and pH value is not always negative as com-
monly known, but spatially varying. In addition, it should be
emphasised that the concepts of ‘spatial heterogeneity' and ‘spatially
varying relationship’ are different. ‘Spatial heterogeneity’ mostly refers
to the variation of concentrations of chemicals over space in this con-
text, while we are focusing on the ‘relationship’. To our knowledge,
this is the first research focusing on spatially varying relationships be-
tween TOC and pH values.

The objectives of this research are: (1) to study the spatially varying
relationships between TOC contents and pH values in European agricul-
tural soil; (2) to investigate the effects of different bandwidths in GWR
for identifying different patterns of the spatially varying relationships,
and (3) to explore the related influencing factors on the spatially vary-
ing relationships between TOC and pH values.

2. Methods
2.1. Soil sampling

The GEMAS agricultural soil data were used in this study. GEMAS is
one of the largest European projects carried out by the Geochemistry
Expert Group of EuroGeoSurveys (EGS) in collaboration with
Eurometaux associated companies (Reimann et al., 2014a, 2014b).
This project aimed at establishing an internally consistent soil geochem-
ical data set at the European scale according to the specifications of the
REACH regulation (EC, 2006). From summer 2008 to early 2009, a total
of 2108 agricultural (Ap) soil samples were collected across 5.6 million
square kilometres in 33 European countries at a sampling density of 1
sample/2500 km? (Reimann et al., 2014d, p.24). The REACH regulation
specifies that agricultural soil samples should be taken at a depth of
0-20 cm (ECHA, 2012), which is the ordinary ploughing depth (Ap ho-
rizon). Each sample of about 3.0 kg weight was a composite from five
sub-sites, taken from the four corners and centre of a 10 x 10 m square.
Duplicate field samples were collected at every 20th site (EGS, 2008).

The maps of TOC contents and pH values in European agricultural
soil samples are shown in Fig. 1. There are 13 missing TOC values in
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Table 1
Overview of relationships between TOC and pH values in the past literatures.
Relationship Author(s) Method Descriptions Reasons
Negative McGrath Global Pearson (linear) Negative correlation between TOC and pH value  Innate relationship: organic acids lead to low pH
correlation  and Zhang, correlation coefficient inlreland (r = 0.17)
2003
Korkang, Global Pearson (linear) Negative correlation between TOC and pH value  Innate relationship: organic acids lead to low pH
2014 correlation coefficient (r=—0274)
Wang et al, Global Redundancy analysis ~ pH value negatively correlated with impact on Innate relationship: organic acids lead to low pH
2016 (RDA) soil organic carbon
Gebrehiwot ~ Global Pearson (linear) (r = —0.126) Weak negative correlation was Innate relationship: organic acids lead to low pH
et al, 2018 correlation coefficient observed between TOC and pH value
Positive Wang et al,, Global Pearson (linear) Positive relationship between TOC and pH value  Complex influences of soil bulk density and landscape,

correlation 2010 correlation coefficient
Luo et al., Path model (i.e., structural
2017 equation model) TOC
Contradictory  de Moraes  Global Pearson (linear)
relationships Saet al., correlation coefficients
2009 chronosequence
Zhang et al., Liner regression model

in the study area (r = 0.549, p = 0.000).
PpH significantly and positively associated with

Changes in the relationships between TOC
concentration and pH values in the tillage

Significant and positive correlation of soil pH
2018 value with storage of TOC was found for all soil

while the causative relationship between TOC and pH is
complicated.

Combination of soil properties (e.g. particle size, CEC, clay
and silt) and climate factors

Tillage chronosequence is the key factor to influence the soil
pH values, and thus the original negative relationship
changes.

Slope, climate, grazing intensity are main reasons for the
contradictory relationships.

layers except for 10-20 cm (negative).

Xu et al., Global Spearman correlation
2019 coefficients and Hot spot
analysis (Getis-Ord Gi*)

Negative in European continent
Positive in north-central Europe

Innate relationship of negative correlation at regional level,
while local statistics observed positive correlation due to
the influence of quartz in central Europe.

the GEMAS database, so the corresponding samples with pH values
were excluded. Therefore, the total number of soil samples used in
this study is 2095 (see Fig. 1). Due to the spatial scale issue, the number
of samples can be endless. Our purpose is to investigate the spatial pat-
terns at the continental-scale, and to discover if local and regional pat-
terns emerge. While more samples are favourable, the GEMAS
project's average sampling density at 1 sample/2500 km? is good
enough to reveal spatial patterns at the continental-scale.

Total organic carbon contents are discussed in Baritz et al. (2014)
and Matschullat et al. (2018), and pH values in Fabian et al. (2014).

The detailed description of TOC and pH in agricultural soil samples can
be found in the GEMAS project atlas (Reimann et al., 2014c).

2.2. Sample preparation and analysis

In the GEMAS project, to produce comparable data sets across na-
tional borders, all soil samples were prepared and analysed in the
same laboratory for the same suite of determinants following a strict
quality control procedure, which is described in Reimann et al. (2009,
2011) and Demetriades et al. (2014). Sample preparation involving

TOC (%)
+ 040-1.00 ;
*+ 1.01-150
1.51-2.00
2.01-250
2.51-3.00
« 3.01-350

0/ 250 500 *"“‘""‘i""\i

pH
« 3.32-450
« 451-5.00 '
¢ 5.01-5.50
5.51 - 6.00
6.01 - 6.50
* 6.51-7.00

7.01-7.98

Fig. 1. Coloured symbol maps showing agricultural soil sampling locations, with (a) TOC contents and (b) pH values in European agricultural soil samples based on GEMAS project data

(n=2095).
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air-drying, sieving through a 2 mm nylon sieve, homogenisation and
splitting into 10 aliquots was performed at the Geological Survey of
Slovakia (Mackovych and Lutivjansky, 2014). Randomisation of sam-
ples and insertion of analytical replicates and project reference samples
were carried out at the Geological Survey of Norway (NGU).

For the parameters used in this study, TOC was determined by the ISO
standard 10,694 method (ISO, 1995) at FUGRO Consult GmbH (now
KIWA) in Germany, and pH was measured in 0.01 M CaCl,-solution at
the Geological Survey of Norway (Reimann et al., 2011, 2014c).

2.3. Geographically weighted regression

Geographically weighted regression (GWR) is known as a powerful
method for capturing the spatially varying relationships and exploring
spatial non-stationarity since the 1990s (Brunsdon et al., 1996;
Fotheringham et al., 2002). It has been widely used in various fields, in-
cluding agricultural, urban (e.g., land use), social environmental and
health studies (Kumar et al., 2012; Lu and Liu, 2016; Li et al., 2017;
Margaritis and Kang, 2017; Feuillet et al., 2018). This approach is an ex-
tension of ordinary regression, and is used to reveal spatial relationships
between the dependent and independent variable(s) at the local level
(Fotheringham et al., 2001). The routine generates a set of regression
parameters at the local level that reveal how the relationship between
the input variables change over space (Fotheringham et al., 2002). The
spatial patterns of the local parameters are used to further investigate
the possible factors governing the varying relationships that are not
identified by the traditional regression model, such as Ordinary Least
Square (OLS). Traditional regression estimates the global statistic that
assumes the relationship studied is linear and spatially constant, so
the estimated parameters remain the same for the whole study area
(Tuand Xia, 2008). It estimates local regression coefficients at each sam-
ple site by measuring the ‘features’ locally, allowing the parameter esti-
mation between the dependent and independent variable(s) to vary
concurrently at each location (Fotheringham et al., 2002; Kumar et al.,
2012). Therefore, GWR can explore the spatially varying relationships
between variables by including the spatial coordinates of each sample
site, which are ignored in the traditional linear regression modelling.
In this study, TOC is used as the dependent variable and pH as the sole
independent variable. The traditional OLS equation is:

Yi=Bo+ BiXa + & (1)

where y; is the value of the dependent variable (TOC) at the ith location,
X;1 is the value of independent variable (pH) at the ith location, 3 is the
intercept on the y-axis, [3; is the regression coefficient that is estimated
for the independent variable at location i, and &; is the error term.

Based on Fotheringham et al. (2002 ), the GWR model can estimate
local coefficients rather than global ones by adding the geographical lo-
cation in the function, which is expressed as:

Yi = Bo(li, vi) + By (1, vi)Xin + &i (2)

where (1, v;) represent the coordinates for sample location i, 3o(t4, v;) is
the intercept for location i, and £3; (i, v;) is the local regression coeffi-
cient for the independent variable (pH) at location i.

In contrast with the ordinary regression model, the local regression
coefficients in GWR can be estimated by using a weighted function
(Fotheringham et al., 2002), as expressed by the following equation:

B, vi) = (xTW(yi.vi)X)“'xTW(yi.vi)y 3)

where X is the matrix formed by the values of the independent variable
x (pH); Yis the corresponding matrix generated by the values of the de-
pendent variable y (TOC); W(y, v;) represents the weight matrix chosen
to ensure that observations closer to the specific location (1,v;) have
greater influence on the final result.
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The adaptive kernel type was selected as the weight function be-
cause it can reduce the ‘border effect’ when sample sites are located
near to coastal or country border areas (Zhang et al., 2011), which is
suitable for this study area. It needs to be mentioned that while the
term ‘bandwidth’ is widely used in GWR, it is more suitable to use the
term ‘area of influence’ in the two-dimensional geographical space.
However, for the sake of consistency, the term ‘bandwidth’ is used in
this paper. There are two types of bandwidth in the GWR model, one
is the spatial distance and the other is the distance between the neigh-
bours of the sample points. By applying the adaptive kernel function, the
latter bandwidth was selected for this study by ascribing a weight of ‘1’
for sample sites within the selected bandwidth and ‘0’ for sample sites
outside. The bandwidth was chosen by using the Akaike Information
Criterion (AIC), which is effective in finding the ‘optimal’ distance
band in the GWR model (Fotheringham et al., 2002). This method can
calculate the most suitable bandwidth for the model by weighing the re-
lationship between the goodness-of-fit and the simplicity of the model
(Akaike, 1974), which is widely applied in statistical inference. Regard-
ing technical details, there is no consensus on the choice of the ‘optimal’
bandwidth to define the ‘local’ range of influence, which is an important
input parameter in the GWR model. This has been extensively debated
in the literature (e.g., Farber and Paez, 2007; Guo et al., 2008). The re-
sults vary by selecting different bandwidths and spatial weights. The
GWR technique captures the spatially varying relationship by fitting a
local regression model at each sample location, weighing the values of
neighbouring sampling sites by a function of distance band from that
particular sample location. The neighbours closer to the sample location
have a stronger influence on the model results than the observations
that are farther away (Fotheringham et al., 2002). In other words,
with larger bandwidth, the GWR approach tends to reach a global re-
gression, and the spatial patterns of the estimated parameters become
larger and smoother across the study area. Due to its importance on
the estimation of local coefficients, eight different bandwidths (with
the number of neighbours being 25; 50; 75; 100; 125; 150; 200; 250)
were investigated in this research.

In order to discuss the correlation between the dependent (TOC) and
independent (pH) variables, a local correlation coefficient (r) was calcu-
lated, using the following equation:

Coefficient (r) = \/Rlzocal X C/:q @

where R,y is the deterministic coefficient R? from the GWR model, in-
dicating how well the variation of TOC contents can be explained by pH
values (ranging from 0 to 1), and C is the local regression coefficient
which is the same as f3;(u;,v;) in Eq. (3).

The original results of local regression coefficients only represent the
slope coefficients (Gao and Li, 2011). The higher values of regression co-
efficients demonstrate that changes of soil pH values can lead to greater
changes of TOC contents. However, by calculating the local correlation
coefficient (r), strong and weak correlations can be presented between
dependent and independent variables. Eq. (4) is equivalent to Geo-
graphically Weighted Pearson Correlation Coefficient (GWPCC), which
is a statistic based on geographical location weighting moments,
adopting the concept of geographical weights around samples for calcu-
lating local statistics (Kalogirou, 2014). The core concept of GWPCC is
the same with that of GWR (Fotheringham et al., 2002), and it can pro-
vide a significance test of local coefficients. By controlling the same
input parameters with the GWR model, the significance test can indi-
cate whether the spatially varying relationships at the local (site-spe-
cific) level are significant or not.

2.4. Data transformation and software

It is well-known that geochemical data do not belong to the classical
Euclidean space and should be considered in their own Euclidean
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geometry on the simplex (Aitchison, 1986; Filzmoser et al., 2009, 2010,
2014; Egozcue and Pawlowsky-Glahn, 2011; Reimann et al., 2012).
However, classical statistical methods are still used in the treatment of
geochemical data because they provide interpretable patterns. So, in
this case, all data sets (TOC and pH) were subjected to a normal score
transformation in SPSS (ver. 24) to deal with ‘non-normality’ of the
data and to reduce the effects of potential outliers (Zhang et al., 2008).
Geographically weighted regression and local correlation coefficients
(r) were estimated in ArcGIS (ver. 10.4), while the significance test
was calculated in the R package Ictools (ver. 3.56, in http://cran.r-
project.org/web/packages/Ictools/index.html). All statistics were esti-
mated in SPSS (ver. 24) and Microsoft Excel (ver. 2016), and all maps
produced in ArcGIS (ver. 10.4).

3. Results and discussion

3.1. Basic statistics and background of TOC and pH in European
agricultural soil

The basic statistics for TOC and pH in European agricultural soil can
be found in the Table 1 in Xu et al. (2019). The median values of TOC
and pH are 1.80 (wt%) and 5.77, respectively, which are close to those
of the FOREGS data set (De Vos et al., 2006). The large difference be-
tween the minimum (0.40 wt%) and maximum (46.0 wt%) for TOC con-
tents indicates the strong variation across the study area. For soil pH
values, the low median value (5.77) indicates that agricultural soil is
generally acidic at the European scale. More details of the two variables
across different countries can be found in the boxplot comparison in the
GEMAS atlas (see Reimann et al., 2014a, p.131, 190). Generally, higher
TOC contents with comparatively lower pH values are mainly concen-
trated in northern Europe (i.e., Fennoscandia, the United Kingdom and
Ireland). The majority of samples with lower TOC contents and rela-
tively higher pH values occur in southern Europe (see Fig. 1).

The Quantile-Quantile (Q-Q) plot (Fig. 2) displays the expected
values of normal distribution against the actual values for TOC and pH.
The Q-Q plot shows whether the variables follow the normal distribu-
tion (Wilk and Gnanadesikan, 1968). If the values are normally distrib-
uted, the points should cluster near to a straight line on the plot, which
is not the case for the studied variables. The long tail towards higher TOC
contents indicates the existence of potential outliers (extremely high
values) in the data set (Fig. 2a). Due to the non-normality and existence
of potential outliers, data transformation is widely applied prior to use
of GWR (e.g. Fotheringham et al., 2002; Zhang et al., 2011; Joseph
etal, 2012; Yuan et al., 2020). To limit the influences of potential out-
liers and to satisfy the normality requirement of GWR, normal score
transformation (NST) was applied to the TOC data, as NST is an effective

20 a)

Expected Normal Value

-10 0 10 20 30 40 50
Observed Value (TOC wt%)

statistical data transformation for such a purpose (Fotheringham et al.,
2002; ESRI, 2016). In Fig. 2b, the pH values show that values between
4.0 and 6.0 are close to the normal distribution line. This is because
the concentrations of H* have already been logarithmically trans-
formed to obtain the pH values. Prior to the analysis of this study, the
pH values were also transformed to a normal distribution to maintain
consistency and to achieve a near symmetrical distribution.

A Spearman'’s rank correlation coefficient was calculated between
TOC and pH; the result shows a weak negative correlation (r =
—0.19, p < 0.01). In fact, these two variables generally follow a weak
negative correlation at the European continental scale. Soil with higher
organic carbon (OC) content generally contains higher organic matter
(OM), which secretes organic acids, making the soil acidic and, thus,
resulting in a lower pH value (Fabian et al., 2014). However, due to
the complex factors affecting each sampling site, the relationship may
be interfered at the local scale.

3.2. Spatially varying relationships between TOC and pH in European
agricultural soil

As motioned earlier, bandwidth is regarded as an important param-
eter in applying GWR (Guo et al., 2008). In this study, the Akaike Infor-
mation Criterion (AIC) was applied to find the ‘optimal’ bandwidth at
the European scale. Based on this ‘optimal’ bandwidth, seven additional
bandwidths were used for comparison. The results of local regression
coefficients between TOC and pH, using eight different bandwidths in
the GWR model (n = 25; 50; 75; 100; 125; 150; 200 and 250), are
shown in Fig. 3.

Spatial variation between TOC and pH is observed among all band-
widths (see Fig. 3), suggesting that spatially varying relationships exist
between the two variables in the study area. When using the optimal
distance band calculated by the AIC (n = 75, see Fig. 3c), patterns show-
ing different degrees of spatial variation are observed. The spatial pat-
terns can be divided into three groups: northern, central-eastern and
southern Europe. Except for the central part of Sweden and Norway,
there appears to be a negative correlation between TOC contents and
pH values in agricultural soil in northern Europe, with original negative
relationships between the two variables maintained. The central-
eastern part of Europe is the most noteworthy, with only positive coef-
ficients being observed. Especially in Ukraine, Poland and eastern
Germany, the local coefficients are relatively high, ranging from 0.27
to 0.72, suggesting that changes of pH values are associated with rapid
changes of TOC contents. Relatively mixed relationships are found in
southern Europe, with the local coefficient showing a significant varia-
tion. Except for the positive regression coefficients in central France,
north-west Italy, Switzerland and north-eastern Bulgaria, the

10 b) .
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o
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Fig. 2. Q-Q plots of TOC contents and pH values in European agricultural soils: raw data of (a) TOC (%), and (b) pH. Black line shows the expected normal distribution, and the grey dots the

actual sample values.
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Fig. 3. Local regression coefficient maps between TOC and pH using different number of
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f) n = 150; g) n = 200; h) n = 250.
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relationship in other regions is generally weak positive to negative.
These patterns suggest that soil TOC contents and pH values in agricul-
tural soil in southern Europe may be influenced by other factors, such as
climate and, possibly, agricultural activities. This implies that the rela-
tionship between TOC and pH is greatly interfered, even with changed
relationships from generally negative to positive direction.

The local regression coefficient of the smaller bandwidths (n = 25,
50) is estimated from the values of neighbouring sample sites, which
are closer to the sample location for which the local regression coeffi-
cient is calculated, leading to results that change rapidly across the
whole area (Foody, 2004; Bickford and Laffan, 2006). This is reflected
in the increased total number of local regression coefficients that change
from negative to positive values (see Table 2). However, comparing
these results with those of the optimal bandwidth (AIC, n = 75), the in-
creased number of high positive local regression coefficients only ap-
pear in the United Kingdom (UK) and Ireland, as well as in the
northernmost parts of Finland and Norway. With the larger bandwidths
(n = 100, 125, 150 and 250), the variation of the local regression coef-
ficients becomes smaller and some variation is less visible on the maps
(e.g., south-western UK, central part of Italy and Estonia). This is due to
the fact that the larger bandwidths tend to make GWR a relatively more
global model (Fotheringham et al., 2002; Guo et al., 2008).

There are no standard criteria for selecting the ‘best’ bandwidth in
GWR. By comparing multiple bandwidths, the spatially varying rela-
tionships between TOC and pH can be effectively revealed at different
scales. The statistics of performance for GWR results are summarised
in Table 3, including values for AICc, R? and adjust R%. Comparing the op-
timal bandwidth with the other distance bands, the model appears to
perform better with the 75-neighbour bandwidth because it has rela-
tively higher R? and lowest AICc values. Highest R? and adjust R? were
found in 25-neighbour bandwidth. However, AICc value is the preferred
measurement to compare GWR models (ESRI, 2016), while lower AICc
value means better performance of the GWR model. The second lowest
AICc value is found in 125-neighbour bandwidth (see Table 3). In fact,
this bandwidth (Fig. 3e) reveals large and continuous spatially varying
relationships that divide the whole continent into three zones
(i.e., northern, central-eastern and southern Europe). With increasing
bandwidth (number of neighbours), large spatial patterns become visi-
ble and local variations disappear or are subdued. Results from smaller
bandwidths tended to be noisy, thus we focused on the distance band
of n = 125 which showed large patterns while revealed sufficient de-
tails for capturing the spatially varying relationships between TOC and
pH values.

3.3. Spatially varying relationships between TOC and pH

3.3.1. Explanation of the results in GWR

Mapping the local regression coefficient, local R?, local correlation
coefficient (r), significance and standardized residuals, provide an effi-
cient and direct approach to investigate the spatially varying relation-
ships between TOC and pH values. Both positive and negative local
regression coefficients are observed (see Figs. 3e and 4a), and the per-
centage of positive values account for 52.2% of the variation (see
Table 2), suggesting that the relationship between TOC and pH is
perturbed over more than half of the European continent.

Strong positive correlations are observed in central-eastern Europe
(i.e., north-eastern Germany, Poland and Ukraine), central part of
Norway and Sweden, central France and north-eastern Bulgaria. Strong
negative correlations are mainly found in Ireland, the UK, southern
Finland, Estonia, Denmark, The Netherlands, Belgium, Luxembourg,
south-western Germany, Croatia, Bosnia and Herzegovina, and Italy
(Fig.4a). Some weak positive correlations are observed in northernmost
Finland (except Estonia), Latvia, Mediterranean areas, Czech Republic,
Slovakia, Austria, Hungary, Switzerland, Spain and Hellas. Weak nega-
tive correlations occur in northern Sweden and Finland, western
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Table 2

Summary statistics for GWR output of local regression coefficients at different bandwidths, and the percentage of negative and positive coefficients.

Bandwidth (n)* Min. Q25 Median Q75 Max. % of negative values % of positive values

—1.83 -0.25 0.04 0.28 135 449 55.1
25

-1.01 —0.23 0.03 0.21 0.76 46.9% 53.1
50

—0.87 —0.22 0.02 0.17 0.72 478 522
75

—-0.79 —0.21 0.01 0.15 0.70 483 51.7
100

—0.73 —0.20 0.01 0.15 0.63 478 522
125

—0.68 -0.19 0 0.14 0.59 489 51.1
150

—0.66 —0.18 —0.01 0.12 0.53 521 479
200

—0.63 —0.17 0.01 0.11 049 53.6 46.4
250

“ n: number of neighbours.

Norway, north-western Iberia, Serbia, central and southern Italy, and
Sicily.

Higher local R? and significant (p < 0.05) positive correlation is only
observed in central Sweden and Norway, central-eastern Europe, north-
central France and north-eastern Bulgaria (Figs. 4b, c). This suggests
that the spatially varying relationship in these agricultural soil samples
is more significant, and the variation of TOC contents can be better ex-
plained by pH values than in other areas. In contrast, significant nega-
tive correlations with higher local R? (Figs. 4a, ) occur in Ireland, UK,
northern Sweden, southern Finland, south-western Norway, Denmark,
The Netherlands, Belgium, Luxembourg, south-western Germany,
north-western Iberia, Croatia, Bosnia and Herzegovina, Italy, Sicily, Sar-
dinia and Corsica. However, the spatial relationship between TOC and
pH in the remaining areas cannot be explained well in GWR
(p > 0.05). Therefore, the spatial distribution of the GWR model results
can effectively reveal the spatially varying relationships between TOC
and pH in European agricultural soil at the local scale. However, it is ac-
knowledged that the R? values are still low, and they are related to mul-
tiple influencing factors. Within our expectation, there are large areas of
non-significant findings, due to the complicated influencing factors. The
non-significant results are also a part of the ‘spatially varying relation-
ships’ found in this study, which are equally important as the ‘signifi-
cant’ results. The map for standardized residuals is illustrated in
Fig.4d, which did not show obvious spatial patterns. Also, the spatial au-
tocorrelation test (Moran's I) on the standardized residuals indicated
the significant results (p < 0.05, z-score = 2.99). However, it needs to
be recognized that the significance level is related to the large sample
size, and thus should be carefully interpreted (e.g. Cornfield, 1966;
Gingerich, 1995; Zhang et al., 2005). More importantly, the purpose of
this study is not to model TOC, but to reveal the relationship between
TOC and pH value only.

3.3.2. Potential factors influencing the spatially varying relationships
It is acknowledged that it is challenging to explore the causal effects
between TOC contents and pH values in European agricultural soil,

Table 3

Summary of the performance statistics of eight bandwidths for GWR results.
Bandwidth (n) AlCc R? Adjust R?
25 5192.17 0.58 0.43
50 5053.85 0.48 039
AIC (75) 5039.47 0.46 0.42
100 5048.57 0.44 0.39
125 5036.14 0.42 038
150 5079.80 0.38 035
200 5111.82 0.36 0.34
250 5142.41 034 033

which it is the universal issue for all the statistical methods: relationship
does not mean causal effects. However, based on the association of the
patterns of spatially varying relationships in different areas, the poten-
tial influencing factors can be explored. In addition, the Spearman corre-
lation coefficient analysis of relevant environmental factors between
TOC and pH was conducted in our previous study (see Table 2 in Xu
et al,, 2019). Based on this, the spatially varying relationships between
TOC and pH can be discussed quantitatively, although not in depth.

The spatial distribution of TOC is strongly influenced by environ-
mental factors, like pH, potential hazardous and nutrient elements
(Khaledian et al., 2017; Wiesmeier et al., 2019). It is reported that the
impacts of chemical elements and physicochemical parameters in
European agricultural soil are dominated by natural conditions
(e.g., Fabian et al., 2014; Matschullat et al., 2018; Négrel et al., 2019). Ag-
ricultural soil in northern Europe shows a large area of negative correla-
tion between TOC and pH, except for central Sweden and Norway
(Fig. 4a). This can be attributed to the acidic soil under natural condi-
tions in Fennoscandia, with higher TOC contents in the long-term cold
and wet environment.

In central-eastern European countries where the positive relation-
ships between TOC and pH values are clearly observed, quartz-rich
soil tends to show strong positive correlation across this large and con-
tinuous area (see Fig. 1 and Reimann et al., 2014c, p. 98, 193). Similar
positive correlations are also found in other areas (i.e., Sweden,
Norway and France; see Figs. 3d and 4a). This is due to the high concen-
tration of SiO, in the coarse-grained sediments from the last ice age
(Piotrowski et al., 2006). To further explore this feature, the spatial rela-
tionships between TOC and SiO, at the local level were analysed using
the GWR model and the results are shown in Fig. 5. Only negative
local regression coefficients and correlation are observed (Figs. 5a, b),
indicating the spatially ‘stationary’ relationships that exist between
these two variables. It is worth noting that the local coefficients of all
sample points are significant (p < 0.05), suggesting the strong and rel-
atively spatially stable relationship between SiO, and TOC. Relatively
stronger correlation and higher R? values are clustered in northern
and central Europe. However, the overall values of local R? (0-0.68) in
this model are much higher than those in the model between TOC and
pH (see Fig. 5¢), suggesting that their relationships are strongly corre-
lated, and the concentration of silica can largely explain the variation
of TOC contents. In other areas, lower quartz contents may also play a
role in the spatially varying relationships between TOC and pH. Thus,
the spatial variations are mixed and complicated (see Fig. 4c).

The glacial sediments in central-eastern Europe are almost entirely
composed of quartz (SiO,) and some feldspars, featuring large particle
size and good permeability. The soil parent material (PM) and the con-
centration of quartz are vital factors associated with soil organic carbon
(SOC) contents (Badgery et al., 2013). Soil formed on these coarse-
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Fig. 4. Spatial variation of GWR regression outputs using 125 number of neighbours: a) local correlation coefficient (r); b) Local R%; ¢) Significance, and d) Standardized residuals.

textured glacial deposits contain a larger proportion of quartz with
larger particle sizes, which contribute to lower soil organic carbon
stock due to the lower aggregation stability in this sandy soil (Kern,
1994; Le Bissonnais and Arrouays, 1997; Homann et al., 1998;
Wiesmeier et al., 2019), resulting in a significant decrease in TOC con-
tent. In addition, the low soil pH values can also be attributed to these
quartz-rich soils. Due to the coarse-grained particle sizes, these soils
contain little Ca®* to buffer the soil pH (Fabian et al,, 2014), leading to
lower pH values of east-central European agricultural soil. Therefore,
the overall negative relationship between TOC and pH is locally dis-
turbed. Both quartz and clay are significantly related to TOC, while the
absolute value of correlation coefficient with quart (r = —0.379) is
higher than clay (r = 0.202), highlighting the main control of quartz
on the positive relationship between TOC and pH in the central-
eastern Europe. When the particle size of quartz-rich soil is large, it is
not tended to favour the TOC storage.

In southern Europe, the spatial relationship between soil TOC con-
tents and pH values becomes mixed and could not completely corre-
spond to natural factors. On the other hand, anthropogenic inputs,
such as lime, fertilisers and tillage management may play some roles
in the mixed areas. Due to the special lower TOC contents in southern
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Europe, crops need to rely on external inputs to sustain growth and nu-
trition. Such practices, however, change the soil properties, resulting in
the overall negative correlation to be interfered at the local level.

4. Conclusions

This study investigated the spatially varying relationships between
soil TOC contents and pH values across the European continent by
using the GEMAS project agricultural soil data. The results confirmed
that the relationships between TOC and pH are spatially varying in
European agricultural soil samples at the local level, whereas both neg-
ative and positive correlations are identified using the GWR technique.
Negative correlations are mainly observed in northern Europe and sig-
nificant positive correlations are clustered in central-eastern areas,
while comparatively mixed relationships between TOC and pH occur
in southern Europe. The positive correlation between these two vari-
ables in central-eastern Europe is attributed to natural factors,
i.e., these areas have low pH values, quartz-rich soil (i.e., high concentra-
tion of Si0,), resulting in low TOC contents. Use of different bandwidths
can also affect the GWR spatial statistical results, while the bandwidth of
125 neighbours (based on adaptive kernel type) is apparently the most
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Fig. 5. Spatial relationships between TOC and SiO; calculated in GWR using 125 number of neighbours: a) local regression coefficient; b) local R? and c) correlation coefficient (r).

suitable, as shown by this study, because it provides a continuous and
smooth pattern across the European continent.

The main scientific contributions of this research including: (1) The
introduction and proof of ‘spatially varying relationship between TOC
and pH’ provide added value and clarification to the understanding of
the controversy of their complicated relationship in the literature;
(2) The effective method of using the local statistics GWR has provided
a solution to answer the controversy, and such a way of thinking can be
expanded to other study areas and other relationships. Based on our re-
sults, it can be concluded that the spatially varying relationship between
TOC contents and pH values can be mapped by the GWR technique, sug-
gesting that it is an efficient and powerful tool to explore the spatial var-
iations, and provides a new approach to identify potential influencing
factors. The local statistical method provides an effective approach to
explore the research problem of complex relationship between TOC
and pH value, and the novel finding of the ‘spatially varying relationship
between TOC and pH value’ in European agricultural soils enriches the
existing literature. While GWR is widely used to explore the spatially
varying relationship, it is always a challenge to link it to actual scientific
problems and to interpret the results. In this study, we have limited our
focus on the relationships between TOC and pH value, not the modelling
of TOC which could be further explored in the future by considering
more factors.
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Xu, H.F., Croot, P., Zhang, C.S., 2021. Discovering hidden spatial patterns and their
associations with controlling factors for potentially toxic elements in topsoil using hot spot

analysis and K-means clustering analysis. Environ. Int. 151, 106456.

Summary: This study investigated the spatial clustering patterns of 15 PTEs and 6,862
topsoil samples that collected from Tellus project of NI by two SML techniques of hot spot
analysis and K-means clustering analysis. The spatial clusters of hot and cold spots for the
15 PTEs were revealed, showing clear associations with different geological features,
especially peat and basalt. Peat was associated with high concentrations of Bi, Pb, Sb and
Sn, while basalt was associated with high concentrations of Co, Cr, Cu, Mn, Ni, V and Zn.
The high concentrations of As, Ba, Mo and U were associated with mixture of various
lithologies, indicating the complicated influences on them. Moreover, three hidden patterns
in soil samples were also identified by K-means clustering analysis. These hidden patterns
of soil samples were consistent with the spatial clustering patterns for PTEs, highlighting
the dominant control of peat and basalt in the topsoil of NI. Our results demonstrated that
these two SML techniques are powerful and effective in identifying hidden spatial patterns,

providing evidences to extract geochemical knowledge in environmental studies.

My contribution in this paper accounted for ~90% in reviewing literatures, exploring

data and writing manuscript.
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ARTICLE INFO ABSTRACT

Handling Editor: Frederic Coulon The understanding of sources and controlling factors of potentially toxic elements (PTEs) in soils plays an
important role in the improvement of environmental management. With the rapid growth of data volume,
effective methods are required for data analytics for the large geochemical data sets. In recent years, spatial
machine learning technologies have been proven to have the potential to reveal hidden spatial patterns in order
to extract geochemical information. In this study, two spatial clustering techniques of Getis-Ord G;* statistic and
K-means clustering analysis were performed on 15 PTEs in 6,862 topsoil samples from the Tellus datasets of
Northern Ireland to investigate the hidden spatial patterns and association with their controlling factors. The
spatial clustering patterns of hot spots (high values) and cold spots (low values) for the 15 PTEs were revealed,
showing clear association with geological features, especially peat and basalt. Peat was associated with high
concentrations of Bi, Pb, Sb and Sn, while basalt was associated with high concentrations of Co, Cr, Cu, Mn, Ni, V
and Zn. The high concentrations of As, Ba, Mo and U were associated with mixture of various lithologies,
indicating the complicated influences on them. In addition, three hidden patterns in the 6,862 soil samples were
revealed by K-means clustering analysis. The soil samples in the first and second clusters were overlaid on the
peatland and basalt formation, respectively, while the samples in the third cluster were overlaid on the mixture
of the other lithologies. These hidden patterns of soil samples were consistent with the spatial clustering patterns
for PTEs, highlighting the dominant control of peat and basalt in the topsoil of Northern Ireland. This study
demonstrates the power of spatial machine learning techniques in identifying hidden spatial patterns, providing
evidences to extract geochemical knowledge in environmental studies.

Keywords:

Potentially toxic elements
Hot spot analysis

K-means clustering analysis
Hidden spatial patterns
Geochemical association

1. Introduction et al., 2011; Dao et al., 2014). The application of pesticides and fertil-

isers can cause pollution of agricultural soils in rural areas (Faria et al.,

Understanding the controlling factors of the potentially toxic ele-
ments (PTEs) is crucial for environmental management due to their toxic
effects on organisms. Sources of PTEs in urban and rural areas include
both natural and anthropogenic factors (Rodrigues et al., 2009; Argyraki
and Kelepertzis, 2014). Natural factors are mainly associated with
geogenic occurrences, as well as soil formation and parent materials
(Tipping et al., 2006; Jordan et al., 2007; Zhang et al., 2008a; Reimann
et al., 2014; Birke et al., 2017). Anthropogenic sources are attributed to
human activities, including industrial, waste, traffic (vehicle emissions,
fuel), agricultural inputs and atmospheric deposition (e.g. Cloquet et al.,
2006; Ettler et al., 2008; Aelion et al., 2009; Davis et al., 2009; Okorie

* Corresponding author.

2012). Generally, anthropogenic pollution is characterized by points
and dispersion patterns on the spatial distribution maps of PTE con-
centrations, which can be observed around urban areas (Zhang, 2006;
Marchant et al., 2011; Delbecque and Verdoodt, 2016). On the other
hand, the elevated concentrations of PTEs caused by geogenic sources
are usually reflected in large and continuous geochemical patterns.

To assess the controlling factors of PTEs, statistical and geostatistical
methods have widely been applied, including neighbourhood analysis,
multivariate statistical analysis, spatial autocorrelation analysis and
geographically weighted regression (e.g. Zhang, 2006; Zhang et al.,
2007; Zhang et al., 2008b; Bhowmik et al., 2015; Buccianti et al., 2015;
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Petrik et al., 2018; Thiombane et al., 2018; Fei et al., 2019; Meng et al.,
2020; Yuan et al., 2020). The geochemical data are collected through
sampling at a specific location, which play an important role in envi-
ronmental management and assessment (Li and Heap, 2011). However,
with the increasing volume of geochemical data and the complexity of
soil chemical elements, an effective way is required to investigate the
controlling factors on PTEs in multivariate datasets. This paper attempts
to reveal the spatial patterns of PTEs using the spatial machine learning
(SML) technique. The SML techniques are the application of machine
learning algorithms into spatial data (Kanevskij et al., 2009; Li et al.,
2011). As an emerging concept, it has been gradually applied in various
fields, including environmental science (Meyer et al., 2018), agriculture
(Ludwig et al., 2019) and social economics (Fan et al., 2018), etc. The
typical machine learning algorithms are mainly divided into three cat-
egories: supervised learning, unsupervised learning and reinforcement
learning (Bishop, 2006). Supervised learning is training from labelled
data, and each sample contains an input object and the corresponding
expected output value. In contrast to the supervised learning, unsuper-
vised learning algorithms aim to identify hidden patterns from unla-
belled data (Jordan and Mitchell, 2015). They are able to learn by
themselves without being explicitly told whether what they have done is
correct (LeCun et al., 2015). Thus, these techniques have the potential to
reveal hidden spatial patterns which are helpful to extract useful
geochemical knowledge and association (Xie et al., 2004; Meshkani
et al., 2011; Sergeev et al., 2019; Rahmati et al., 2020). In recent years,
they have also received an increasing attention in identification of
pollution sources and environmental monitoring (e.g. Boente et al.,
2018; Kelepertzis et al., 2019; Klapstein et al., 2020). In this study, two
of the spatial machine learning approaches: hot spot analysis (Getis-Ord
G;* statistic) and K-means clustering analysis were explored to identify
spatial clustering and hidden patterns of topsoil samples based on 15
PTEs in Northern Ireland, and to reveal their association with control-
ling factors. The Getis-Ord G;* statistic is a parameter spatial statistic
which are popularly in applied for the identification of the spatial
clustering patterns of environmental variables (Bagstad et al., 2017; Xu
et al., 2019). The K-means clustering analysis is an unsupervised algo-
rithm which is used to cluster the samples in data mining (Hartigan and
Wong, 1979). As a simple and powerful algorithm, it has been widely
applied to discover the hidden information and structure of unlabelled
samples (Zuo, 2017). Both methods can be regarded as the currently
emerging concept of SML techniques. The spatial patterns of soil
geochemical features are complicated and hard to identify due to the
strong influences of both natural and human factors. Based on the
different spatial patterns revealed by these two techniques, the associ-
ation between the patterns and influencing factors can be obtained,
providing an effective way to understand the sources of PTE enrichment
in the topsoil.

Reimann et al. (2018) defined the background knowledge and
thresholds of PTEs in detail based on GEMAS data in European agri-
cultural soil. A total of 15 PTEs, including arsenic (As), barium (Ba),
bismuth (Bi), chromium (Cr), cobalt (Co), copper (Cu), nickel (Ni),
manganese (Mn), molybdenum (Mo), lead (Pb), antimony (Sb), tin (Sn),
uranium (U), vanadium (V) and zinc (Zn) in the topsoil of Northern
Ireland were selected from Tellus project database. The factors that are
related with some individual PTEs (e.g. As, Cr, Co, Cu, Ni, Pb and Zn)
have been investigated in previous researches (e.g. Kelepertsis et al.
2006; Zhang et al., 2007; Ajmone-Marsan et al. 2008; Palmer et al. 2013;
Mcllwaine et al., 2014; Meng et al., 2020). A detailed introduction to
these PTEs was reported in the guide book of Tellus data in Young and
Donald (2013). As a step forward, this study attempts to investigate the
spatial patterns for 15 PTEs, and then to associate these patterns with
their controlling factors from the spatial perspective.

The objectives of this study were: (1) to identify the spatial clustering
patterns of high and low values for 15 PTEs using hot spot analysis; (2) to
reveal the hidden spatial patterns in the 6,862 soil samples using K-
means clustering analysis; and (3) to further explore the geochemical
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association between these spatial patterns and the controlling factors on
PTEs.

2. Materials and methods
2.1. Study area

Despite that the total area is only 14,120 km? (13,480 km? of land
area and 640 km? of inland water area), Northern Ireland is a microcosm
of the earth’s geology (Zhang et al., 2007). Bedrock history includes
almost every period from Mesoproterozoic to Palaeogene, and almost
every known type of rocks can be found there. A simplified geological
map is shown in Fig. 1, with the locations of the peat overlaid. The
history of Northern Ireland involves the development of ice sheets and
meltwater from the last 100,000 years, which caused more than 80% of
the bedrock to be covered by various superficial deposits (e.g. alluvium,
peat). It is reported that the peatland accounted for over 12% of the total
land area (Davies and Walker, 2013), which is a major soil subgroup in
Northern Ireland. The northeast part is composed of a large area of
extrusive Palaeogene basalt, and the northwest is dominated by psam-
mites (schist) that are mainly Neoproterozoic in age. The southwestern
terrain is a mixture of sandstone, mudstone and limestone, mainly
Carboniferous in age. While southeast is controlled by greywacke shales,
significant granite intrusions were found in this area. The diverse types
of soil and lithology provide unique opportunities for investigating the
spatial distribution and classification of PTEs, which can be beneficial to
environmental research and assessment in Northern Ireland and
elsewhere.

Northern Ireland is rich in minerals. Historically, the major minerals
mined in Northern Ireland include iron ore, lead, coal and salt. Nowa-
days, there are more than 2,000 abandoned mines, most of which
worked between the 18th and early 20th centuries. In recent years, gold,
lignite and industrial minerals are dominated in commercial mining
exploration activities in Northern Ireland. For example, it is reported
that County Tyrone holds “one of the most promising undeveloped gold
deposits” in the world (Dalradian, 2019). A detailed description about
the extent and spatial distribution of mineralization can be found in
Mitchell (2004). There are two main urban areas in Northern Ireland:
the Belfast Metropolitan Area and Londonderry.

2.2. Soil sampling and analyses

The Tellus project was a national collaborative project designed to
collect geophysical and geochemical data across the island of Ireland. In
the part of Northern Ireland, it was managed and undertaken by
Geological Survey of Northern Ireland (GSNI). During 2004 to 2006,
nearly 30,000 samples of soils, stream sediments and stream water
samples were collected in the geochemical survey. A total of 6,862
regional topsoil samples (5-20 cm depth) were used in this study, with
sample locations displayed in Fig. 2. Samples were taken as composite
samples of five auger flights (approx. 750 g), with two composite sam-
ples at one site. The sampling density is on an average of 1 per 2 km?.
After the collection process, the soil samples were shipped to the storage
for drying in oven at 30 °C for 2 to 3 days. Then, samples were sieved
with the <2 mm pore size nylon mesh, while repetition was prepared by
shallow-splitting of each duplicate sample. Further information of soil
sampling and preparation is provided by Young and Donald (2013).

After soil preparation, X-ray fluorescence (XRF) analysis was per-
formed for total concentrations of trace elements and major oxides in the
British Geological Survey (BGS) laboratory. A series of quality control
was conducted during the analytical process. The detailed description of
methodology and quality control procedures of Tellus program can be
found in Smyth (2007) and Jordan et al. (2007). Meanwhile, the spatial
distribution maps showing the concentrations of PTEs can be found in
Young and Donald (2013).
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Fig. 1. Simplified bedrock geology maps of Northern Ireland and areas of peatland (original GIS shapefiles from GSNI, 1998).

2.3. Hot spot analysis (Getis-Ord Gi* statistic)

Hot spot analysis is a mapping technology that can reveal the hidden
spatial clusters based on the distance between samples, which can
identify locations with statistically significant high and low values in a
certain geographic area. Getis-Ord G;* statistic is a measure of spatial
autocorrelation at the local scales (Ord and Getis, 1995), indicating high
and low values that are associated with the hot spot and cold spot cluster
patterns, respectively. The local G;* statistic returns the z-scores and p-
values for all features in the datasets by calculating each feature and its
neighbours. The statistically significant hot spot is returned with high z-
scores and small p-values. In contrast, the high negative z-scores and
small p-values indicate the significant cold spots. The function of Getis-
Ord G;* statistic is showing as follows (Getis and Ord, 1992):

; ® i — X Wiy
_ Zj—l N Zj—l ] @

n-1

where i is the centre of the local neighbourhood; x; is the value of the
variable in the sample at location j; w;; is the spatial weight between
sample locations i and j; n is the total number of samples.

The following equation calculates the mean of the whole datasets:

E;— 1

n

X= (2

and the standard deviation of the whole datasets is calculated by the
following equation:
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(3)

In this study, Getis-Ord G;* statistic was applied on the 15 PTEs to
identify their spatial clustering patterns in the topsoil of Northern
Ireland based on the Tellus datasets.

2.4. K-means Clustering analysis

Cluster analysis is the method of classifying samples into different
groups or subsets, with all samples in the same group having relatively
similar properties. Various clustering methods exist, such as hierarchical
clusters, partitioning clusters, fuzzy methods and model-based methods
(Reimann et al., 2008). K-means clustering algorithm is a typical par-
titioning method, which is adopted as the most widely used cluster
methods in machine learning and data mining due to its simplicity and
efficiency (Han and Kamber, 2006). It is usually performed as the initial
step of data analysis, which has been proved to be powerful for
capturing the hidden information of geochemical patterns (e.g. Bengio,
2013; LeCun et al., 2015; Zuo, 2017). It aims to partition the space into k
non-overlapping clusters, and classify each observation to the nearest
centre in order to maximize the between-cluster variance as well as
minimize the within-cluster variance (Hartigan, 1975; Alizadeh et al.,
2017). K-means is a distance-based clustering algorithm, and thus the
variance here is calculated based on the distance. It is worth noting that
the distance in K-means clustering analysis does not refer to the actual
distance between two observations or samples. It is used to measure the
similarity between two observations or samples in the algorithm. Based
on the selection of different distance, the measurement of similarity is
also different. In this study, Euclidean distance was selected for the K-
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Fig. 2. Spatial distribution map with sample locations of Tellus topsoil data sets in the Northern Ireland.

means algorithm. The function can be represented as follow (MacQueen,
1967; Hartigan and Wong, 1979):

n

k
I=32 Iy -l @

i=1 jeC;

where J is the objective function, C; is the it cluster, ny is the number of
samples in i cluster, distance function dy = |g — ;1,.‘\2 represents the
calculation of the distance between each sample point x; and centroid y;
in the i cluster. The centroid 4; can be calculated based on the function

as below:

1

o 5)
h=1el

JEC;

The implementation of K-means clustering algorithm can be sum-
marized in the following steps (Zagouras et al., 2013):

(1) Randomly initializing the cluster centroid u,, s, ..., i

(2) Calculating the distance function dj; between each sample point x;
and centroid y; in the i cluster. The distance function d;; was
based on the Euclidean distance in this study.

(3) Moving each sample point x; to the cluster of its nearest centroid
Hnearesr» and update cluster centroids from which sample points
have been disjointed or reassigned.

(4) Computing the objective function J, as given above in formula
(1). If function J converges, the centroids do not change from the
previous iterations, and the K-means clustering algorithm derives
the final centroids of cluster. Otherwise, the step 2 and 3 are
repeated until the objective function J converges.
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Another parameter needed to be considered in partition clustering is
the optimal cluster number (Weatherill and Burton, 2008). This can be
achieved by various methods and the prior knowledge including Davies-
Bouldin Index (DBI) (Davies and Bouldin, 1979), Silhouette method
(Rousseeuw, 1987), elbow method (Ketchen and Shook, 1996), infor-
mation criterion approach (Goutte et al., 2001). In this study, Silhouette
method was applied to choose the appropriate cluster number. It can
provide succinet graphics to display the quality of classification, as well
as silhouette values to interpret and validate the consistency of clusters
within samples (Rousseeuw, 1987). The silhouette values can represent
how similar an observation belongs to its cluster compared to others,
where a high value implies the good cohesion of one object to its own
cluster and poor match with adjacent clusters. This principle corre-
sponds well to the classification criteria of cluster analysis.

2.5. Principle component analysis

Principal component analysis (PCA) is one of the most popular
methods in multivariate statistics. It combines multiple correlated var-
iables into fewer principle components based on correlation or covari-
ance matrix. These components are not correlated to each other, which
can represent the interrelationships between the multi-variables in the
original data set (Jolliffe, 2002). In geochemical studies, PCA is widely
used to extract useful geochemical information and has become a
standard approach. The advantage of adopting extract components is
that the input datasets can be replaced by fewer comprehensive in-
dicators with as little loss of information as possible (Jolliffe, 2002),
which is called dimension reduction. The appropriate number of com-
ponents can be determined by a significant inflection point on the output
scree plot (Cattell, 1966). In addition, PCA can enhance the interpret-
ability among multiple variables with appropriate rotation methods
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(Cheng et al., 2006). Varimax (Kaiser, 1958) is the most common rota-
tion option in PCA. Besides, there are some other methods such as
Promax, Oblimin and Quartimin (Carroll, 1953; Hendrickson and White,
1964; Harman, 1976). The detailed comparison of rotation methods was
discussed in Reimann et al. (2002). More detailed information on the
principles and application of PCA can be found in Davis (2002) and
Cheng et al. (2006).

The PCA was performed using Varimax rotation in this study and the
new variables were saved as component scores. Then, the K-means
clustering analysis were conducted using the derived component scores
as input variables instead of the 15 PTEs for reducing the dimension.

2.6. Data preparation and software

Due to the strong complexity of geochemical data, the results of
spatial clustering techniques are usually affected by the data preparation
and the choice of clustering analysis (Templ et al., 2008). Reviewing
past literature, the two main problems before applying spatial clustering
techniques on geochemical compositional data are (e.g. Yeung and
Ruzzo, 2001; Templ et al., 2008; Zuo, 2017; Zuo et al., 2019; Tepa-
nosyan et al., 2020): (1) data transformation; (2) whether to reduce the
high dimension of the raw datasets.

The first problem is the method of data transformation. Data without
transformation can lead to relatively unreliable results of Hot spot
analysis and cluster analysis. For hot spot analysis, transformed data can
lead to clear clustering patterns of hot spots and cold spots (Zhang et al.,
2008b; Xu et al., 2019). For K-means clustering analysis, performing
centred log-ratio (clr) transformation and isometric log-ratio (ilr)
transformation seems have better performance to capture spatial hidden
patterns in the geochemical datasets (Templ! et al., 2008). Geochemical
data is usually taken as compositional data, which is considered as being
‘closed’ (Aitchison, 1986; Buccianti et al., 2006; Filzmoser et al., 2010).
Before performing analysis on the compositional data, it is suggested to
use data transformation to open the data in order to destroy the closure
effects (Aitchison, 1986; Egozcue et al., 2003). Thus, a clr-
transformation was conducted to the raw data based on 15 variables
of PTEs. In addition, data transformation on the geochemical data is able
to reduce the influences of outliers and to obtain a relatively symmet-
rical distribution (Zhang et al., 2008b). The transformed data were used
for the following hot spot analysis, PCA and K-means analysis.

A further challenge is dimension reduction. In fact, K-means clus-
tering analysis, as an effective machine learning algorithm (Kanungo
et al., 2002), can be used to process high-dimensional datasets. The
advantage of using dimension reduction is that tools such as PCA can
project the original data from the high-dimensional space onto the low-
dimensional space and preserve the useful information from the original
datasets (Saaltink et al., 2014), which is more efficient during the al-
gorithm computation. However, for example, Yeung and Ruzzo (2001)
proposed that clustering based on high-dimensional variables cannot be
replaced by fewer number of orthogonal components or factors. In this
paper, our research only focused on the spatial overlap association be-
tween hidden patterns of samples and the controlling factors after
clustering. Therefore, the mainstream method was adopted to perform
PCA on the 15 PTEs in Tellus database for dimension reduction before K-
means clustering analysis.

The raw Tellus soil data was stored in Microsoft Excel (ver. 2016),
and data transformation was computed in R project (ver. 3.56). Hot spot
analysis (Getis-Ord G;* statistic) was performed using ArcGIS (ver.
10.4), while K-means clustering analysis was performed using ‘cluster’
package (ver. 2.10) in R project (Maechler et al., 2019; https://cran.r-pr
Principle component
analysis was conducted in SPSS (ver. 24). Data statistics were compiled
in Microsoft Excel (ver. 2016) and SPSS (ver. 24), and all the spatial
distribution maps were produced using ArcGIS (ver. 10.4).

oject.org/web/packages/cluster/cluster.pdf).
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3. Results and discussion
3.1. Basic statistics for 15 PTEs in topsoil in Northern Ireland

Table 1 summarises the basic statistics for 15 PTEs in the topsoil of
Northern Ireland. The values below the detection limits (DLs) were
replaced by half of the DL values of their corresponding elements for
further statistical analysis. The significant differences between the
maximum and minimum values indicated strong variation in all the 15
PTEs. In addition, the large coefficients of variation and differences
between 95% percentiles and maximum values in the raw datasets (e.g.
Mn, Ni, Pb, Sb, and U) suggested that potential outliers existed within
the datasets. Thus, performing appropriate data pre-processing is
necessary to reduce the impact of outliers on clustering results of
geochemical elements (Templ et al. 2018).

Histograms with the normal distribution curve for the raw data and
transformed data are shown in Fig. 3, using Ni as an example. The raw
dataset displayed a long tail towards higher values (see Fig. 3a),
implying the existence of high-value outliers. The significance (p < 0.05)
of Kolmogorov-Smirnov normality test (K-S test) also suggested the non-
normality of raw data. The ‘non-normality’ feature of soil geochemical
elements has been widely reported (e.g. Reimann and Filzmoser, 2000;
Zhang et al., 2005). Thus, data transformation was necessary for the raw
data to reduce the effects of outliers and to obtain a symmetrical dis-
tribution. Although the result still did not pass the K-S test after clr-
transformation (p < 0.05), a comparatively symmetrical distribution
of Ni concentrations was displayed in Fig. 3b.

3.2. Identification of hidden spatial patterns of soil samples based on 15
PTEs

3.2.1. Spatial clustering patterns for 15 PTEs

The Getis-Ord G;* statistic was performed to identify the spatial
clustering patterns of hot and cold spots for the 15 PTEs in the topsoil of
Northern Ireland. The hot and cold spots reflected spatial clusters of high
and low values for each PTE, showing the hidden spatial patterns.
Different clustering patterns are shown in the hot spot maps for 15 PTEs
(Fig. 4), indicating the complexity of geological processes in Northern
Ireland.

The hot spots of As were mainly concentrated in the western and
south-eastern areas which overlaid on the schist, mudstone and grey-
wacke shale, while large and continuous pattern of cold spots was
observed on the eastern areas that overlaid on the basalt formation. In
addition to As, the similar clustering patterns were also observed on Ba
and U, with the same controlling factors on their low concentrations.
However, the hot spots of Ba were mainly observed overlaid on the
schist, sandstone and greywacke shale, while most hot spots of U were
found on the schist and granite. This indicated that the spatial associa-
tion with the controlling factors of basalt on the low concentrations,
while the high values of them are controlled by a mixture of various
geological processes.

Only a few hot spots and cold spots of Bi were identified on the maps,
with hotspot patterns clustered in the western and northern areas,
showing a clear spatial association with peat on the high concentrations
of Bi. The cold spots were scattered on other lithologies, mainly
including schist, sandstone and limestone.

The large and continuous pattern for hot spots of Co were observed in
the north-eastern areas overlaid on the basalt formation, while cold
spots were mainly clustered in the western and southern areas overlaid
on the other geological features (e.g. peat, schist, sandstone). Interest-
ingly, the very similar clustering patterns were also observed on Cr, Cu,
Mn, Ni and V, suggesting the same association with controlling factors of
basalt on the high concentrations of these PTEs. In addition, the spatial
clustering pattern of Zn was also very similar, with the only difference
was that more hot spots were observed overlaid on greywacke shale.

The hot spots of Mo were mainly scattered in the southern areas
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Table 1
Statistical parameters for 15 potentially toxic elements in topsoil in Northern Ireland.
Parameter Min Q25 Median Mean Q75 Q95 Max DL CV (%)
As <0.90 6.5 8.7 10.5 11.7 20.5 271.2 0.90 95
Ba 112 250 347 341 423 550 2361 1.0 39
Bi <0.30 0.3 0.5 0.5 0.7 0.8 24.1 0.30 83
Co <1.50 6.3 10.9 15.2 18.7 44.4 205.1 1.50 88
cr 4.1 56.7 94.1 131.0 161 375.5 1228.8 3.0 92
Cu <1.30 18.6 31.6 39.7 49.5 105.2 1510.1 1.30 96
Mn <0.01 0.029 0.058 0.084 0.101 0.21 14.99 0.01 310
Mo <0.20 0.6 0.8 0.8 1 1.5 5.4 0.20 49
Ni 1.40 14 29.1 46.2 56.1 155 333.6 1.40 105
Pb 2.20 22.2 28.8 41.7 41 92.3 18756.8 1.30 562
Sb 0.70 1 1 1.1 1.2 1.5 156.9 0.50 177
Sn 1.7 23 2.4 2.6 2.7 3.6 37.5 0.50 38
U <0.50 1.7 23 2.5 2.8 4 1429 0.50 115
% 5.90 56.5 85 99.7 121.3 234 401.6 2.90 65
Zn 2.80 47 71.8 78.4 101.9 149.9 2460.5 1.20 69

*Units are reported in mg/kg except for Mn; Mn is in %; Min: minimum; Max: maximum; Q25 - Q95: quantiles; DL: detection limit; CV: coefficient of variation.

s
S

a)

Frequency
5 2 3
8 (=] (=]

(%3
(=3
(=3

300

Raw Ni concentration

s 3
=3 =3

[
(=3

Frequency
(=3

b)

Centred log-ratio Ni

Fig. 3. Histograms and normal distribution curves of Ni concentrations: a) raw data of Ni; b) centred log-ratio transformed data of Ni.

overlaid on multiple lithologies, including limestone, sandstone and
granite. The cold spots were clustered in the western and northern areas,
showing no spatial association with local lithology, but with peat. This
reflected the complicated relationships with mixture of different con-
trolling factors on its concentrations.

The spatial clustering patterns for Pb, Sb and Sn were similar, with
hot spots mainly clustered in the western, south-eastern and a small part
of north-eastern areas. The clustering patterns of the hot spots of Pb, Sb
and Sn were noisy and does not show a clear association with local li-
thology. However, these patterns were able to associate with peatland at
spatial level, suggesting the controlling effects of peat on the high values
of Pb, Sb and Sn. This can be attribute to the atmospheric decomposition
associated with human activities (Coggins et al., 2006; De Vleeschouwer
et al., 2007). In addition, the clustering pattern of Pb hot spots sur-
rounded the Belfast city also suggested the association with anthropo-
genic influences.

3.2.2. Spatial patterns of soil samples

K-means clustering analysis was performed to reveal the hidden
spatial patterns on the 6,862 soils samples based on the 15 PTEs. As
mentioned earlier, principal component analysis (PCA) was performed
first following the clr-transformation for the 15 PTEs in order to reduce
the dimension of input variables. The appropriate number of compo-
nents were chosen as three based on the scree plot of eigenvalues. The
results of PCA are presented in Table 2, showing the loading coefficients
as well as percentage of variance and cumulative proportion. First
component (PC1) accounted for approximately 42% of the variance,
with significant positive loadings of Mn, V, Cr, Co, Ni, Cu and Zn. All of
these elements are 1st row transition elements and their distribution
likely controlled by geogenic sources. These PTEs were shown similar

spatial clustering patterns. The second component (PC2) which was
characterised by high positive loadings of ore-forming elements
explained nearly 22% of variance, including Sn, Sb, Pb and Bi. Gener-
ally, these elements are associated with relict hydrothermal processes in
the study areas (Wang et al., 2017). They have low temperature vola-
tility and can be found enriched in sulphides from hydrothermal activ-
ity. The variance explained by the third component (PC3) was 7.6%,
with elements Mo and As showing noticeable positive loadings in the
structure. The cumulative percentage of these three factors was around
71%, indicating the majority of input variation were explained. After
obtaining a simplified component structure on the 15 PTEs, derived
component scores on all sample points were generated as well.

Maps of spatial distribution of the derived component scores for the
three indices are shown in Fig. 5. For PC1, high scores were mainly
clustered in the northern and eastern parts of Northern Ireland, while
low values were mainly concentrated in the northwest and southeast
areas. For PC2, the majority of high values were observed in the
northeast, central part of northwest and southwest areas, with some
scattered patterns observed in the southeast areas. The high scores for
the PC3 were mainly concentrated in the southeast and southwest areas,
with some small patterns in the northwest areas. Most of the low values
were observed in the northwest areas.

Then, K-means clustering analysis was performed on the component
scores derived from PCA. Before performing the cluster analysis, the
appropriate cluster number was determined by the average silhouette
method (Fig. 6). The silhouette map was produced in R project using
‘factoextra’ package (Kassambara and Mundt, 2017). The maximum
value appeared at cluster number three, suggesting that three clusters
were the most appropriate classification in this study. However,
considering the potential instability of a specific criterion and the
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Fig. 4. Hot spot maps showing of spatial clustering patterns for 15 PTEs in the topsoil of Northern Ireland: red dots are hot spots; blue dots are cold spots. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

relatively similar Silhouette values, three adjacent cluster numbers (i.e. revealed more details of geochemical information, whereas the results
2, 3 and 4) were selected for comparison in order to determine the were uninterpretable when the samples were divided into only two
optimal number of clusters in this study (Fig. 7). clusters (see Fig. 7a). When the number of clusters was three, the cluster
Among the three selected cluster numbers, three and four clusters patterns showed clear association with peat, basalt and other lithologies,

7
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Table 2
Results showing loading coefficients, raw and cumulative percentage for PCA on
15 PTEs.

F1 F2 F3
As -0.507 0.389 0.324
Ba —0.352 —0.677 —-0.015
Bi -0.188 0.518 —0.409
Co 0.907 -0.287 -0.008
Cr 0.838 —0.389 —0.076
Cu 0.796 ~0.092 ~0.006
Mn 0.714 —0.436 0.167
Mo —-0.101 —0.028 0.857
Ni 0.943 -0.189 ~0.050
Pb -0.226 0.818 0.119
Sb ~0.477 0.692 -0.105
Sn —0.413 0.697 —0.078
u —0.754 0.079 0.227
v 0.837 —0.432 —-0.047
Zn 0.730 0.279 0.136
Variance (%) 41.560 21.681 7.640
Cumulative (%) 41.560 63.241 70.881

respectively (see I'ig. 1). However, when the samples were grouped into
four clusters, the number of samples in the first cluster associated with
peat decreased, while the third and fourth clusters seemed to be asso-
ciated with multiple lithologies (i.e. greywacke shale, limestone and
schist), and the results became fairly unclear, making it complicated to
interpret the clustering patterns. Therefore, combining Silhouette value
and prior knowledge of lithology and PTEs in Northern Ireland (e.g.
Zhang et al., 2007; McKinley et al., 2018), three clusters were selected as
the most suitable number of clusters in this study.

The spatial patterns for K-means clustering results using three clus-
ters of soil samples overlaid on the simplified geology map are shown in
Fig. 8. A total of 6,862 samples were identified into three hidden clus-
tering patterns, with the number of samples for the three clusters of 673,
1,772 and 4,417, respectively. The samples in the first cluster overlaid
perfectly on the peatland, showing clear association with peat. For the
second cluster, the majority of the samples were overlaid on the basalt
formation (1,684, nearly 95%), while only 5% of them were observed on
other geological features. Comparing the first two clusters, the samples
in the third cluster overlaid on more complicated geological features.
The clustering results are impressive due to the clear spatial patterns
overlaid on different geological features were revealed, showing spatial
associations with peat, basalt, and other lithologies. It is worth noting
that the hidden spatial patterns for the soil samples are consistent with
the spatial clustering patterns for the 15 PTEs, highlighting the domi-
nant controlling effects of peat and basalt in the Northern Ireland.
Combination of these two spatial machine learning techniques effec-
tively revealed hidden spatial and clustering patterns, thereby extracted
clear geochemical associations with geological features.

Environment International 151 (2021) 106456

In addition, it should be noted that some sample points belonging to
the second cluster were found overlaid on the geological features other
than basalt, especially in the southern and eastern areas, respectively. It
is reported that the soils in these areas are rich in lead-zinc deposits
(Young and Donald, 2013; Mcllwaine et al., 2014). Therefore, these
samples can be regarded as outliers due to the mineralisation, which
were identified after clustering by K-means clustering algorithm. As an
effective unsupervised learning algorithm, K-means clustering analysis
can be used to identify ore-related anomalies in the datasets (Zuo, 2017;
Zhou et al., 2018; Ghezelbash et al., 2020). The anomalies of PTEs in the
topsoil of Northern Ireland deserve more in-depth investigations.

3.3. Exploring the spatial association with controlling factors for 15 PTEs

After identifying the clustering patterns of both PTEs and soil sam-
ples, in order to better explore the spatial association and extract
geochemical knowledge among the 15 PTEs based on the three clusters
(defined as ‘peat’, ‘basalt’ and ‘others’), boxplots for the concentrations
of 15 PTEs are shown in Fig. 9. For the concentrations of most PTEs,
lower median values can be clearly observed in the peat group, while the
samples in the basalt formation exhibited higher values. In the previous
studies in Northern Ireland, the peat and basalt have been proposed to
be key factors in controlling the distribution of multiple elements
(Palmer et al., 2013; Zhang et al., 2007). Furthermore, the concentra-
tions of these 15 PTEs in different bedrock and geological features are
summarised based on the existing literatures (Table 3). In general, low
PTE concentrations have been reported in peatland (e.g. Joint Nature
Conservation Committee, 2011; Young and Donald, 2013), whereas
higher PTEs concentrations were observed in basalt formation (Barrat
and Nesbitt 1996; Zhang et al., 2007; Mcllwaine et al., 2014). This is due
to the enrichment of organic matter contents in the peatland, resulting in
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Fig. 6. Results of the silhouette value for K-means cluster analysis under
different cluster number.
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Fig. 8. K-means clustering analysis results overlaid on the simplified geology map.

lower PTE contents in topsoil. However, the elevated concentrations of
Pb, Sb and Sn in the peatland reflected the association with the control of
organic matter (e.g. peat, coal; Reimann et al., 2014; Mcllwaine et al.,
2015; Palmer et al., 2015). These three elements are reported as lower
concentrations in basic rocks (e.g. basalt, limestone) in other research
areas, indicating that they are more susceptible to the influence of su-
perficial deposits as natural sources. The iron family elements Co, Ni and
other metal elements Cr, Cu, Mn, V and Zn were mainly associated with
the geogenic control of basalt, with elevated median concentrations
comparing to other two clusters. The other elements As, Ba, Mo, and U
seem to be controlled by various geological processes, with the highest
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median values in the third cluster. The similar conclusions in other study
areas were also proposed (see Table 3).

The spatial association that extracted from the hidden spatial pat-
terns in our study were consistent with the current knowledge, high-
lighting the dominant control of peat and basalt on the concentrations of
topsoil PTEs in Northern Ireland. Moreover, according to the clustering
results, a clear understanding of the classification for the 15 PTEs can be
obtained into three groups: (a) Bi, Pb, Sn and Sb associated with peat; (b)
Co, Cr, Cu, Ni, Mn, V and Zn associated with basalt; and (c) As, Ba, Mo,
and U associated with other lithologies.

The PTE concentrations in soils, as well as other geochemical
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Fig. 9. Boxplots showed comparison of 15 PTEs concentrations in the three clusters.

features, are spatially continuously distributed in soils. However, the
data have to be collected based on discrete sampling locations. To pro-
duce the spatially continuously distributed GIS maps for PTEs, spatial
interpolation is needed based on the discrete sampling data. Therefore,
the spatial distribution patterns of typical elements in each group of
PTEs including Pb, Ni and Ba are displayed in Fig. 10. The

10

concentrations of these three elements corresponded well to the boxplot
results. Higher values of Pb were found in the peatland areas of the
Sperrin Mountain and north-eastern parts, while lower values were
found in northern areas overlaid on the basalt formation. This suggested
that Pb is mainly controlled by superficial deposits rather than bedrocks.
The increase of Pb concentration in the mountainous area is worth
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Table 3
Summary of the existing literatures on concentrations for 15 PTEs in different
bedrocks and geological features.

Element  High Low concentration Reference
concentration
As Greywacke Basalt, quartzite, Smedley and Kinniburgh,
(shale), mudstone, sandstone 2002; Tarvainen et al.,
schist, 2013; Mcllwaine et al.,
2017
Ba Carbonate, granite Li mafic et al., 2007;
(basalt) Reimann et al., 2014
Bi Granite, shale Sandstone Reimann et al., 2014
Co Gi Li Farmer, 2014; Mcllwaine
basalt, sandstone et al., 2014; Albanese
et al., 2015
Cr Basalt limestone, granite Farmer, 2014; Mcllwaine
et al., 2014; Albanese
et al., 2015
Cu Basalt, shale Granite, organic Wedepohl, 1978; Reimann
matter et al., 2014; Albanese
et al., 2015
Mn Basalt Granite, quartzite, Reimann et al., 2007;
schist Reimann et al., 2
Mo Granite, Basalt Mcllwaine et al.,
greywacke (shale), Reimann et al., 2018
schist
Ni Basalt, shale Granite, limestone, Farmer, 2014; Reimann
quartzite, et al., 2014; Albanese
sandstone et al., 2015; Jordan et al.,
2018
Pb Granite, peat, Basalt, limestone Mcllwaine et al., 2014;
shale Reimann et al., 2014;
Palmer et al., 2015
Sb Coal, peat Basalt, sandstone Reimann et al., 2014;
Mcllwaine et al., 2015
Sn Granite, peat, Basalt, limestone Reimann et al., 2014;
shale Mcllwaine et al., 2015
U Granite, shale Basalt, sandstone Alloway, 2013; McKinley
et al,, 2013; Négrel et al.,
2018
v Basalt, shale Limestone Barsby et al., 2012;
Reimann et al., 2014
Zn Alluvium, basalt, Granite Reimann et al., 2014;

shale Mcllwaine et al., 2017

noting, which reflected the stronger control of peat in the highland
rather than lowland (Young and Donald, 2013, p.27). However, higher
values were also observed in eastern areas of Antrim Plateau, southern
areas and Belfast metropolitan areas. This could be attributed to the
influence of local mineralisation and urbanisation. Pb is well-known as
an ore-forming element which is susceptible to human activities. It is
also reported that petrol and vehicle emissions, as well as coal burning
are the main anthropogenic factors for resulting elevated Pb values in
urban and rural soil in Northern Ireland (Young and Donald, 2013).

Environment International 151 (2021) 106456

Moreover, lead pollution in urban areas is able to enrich on highland
peat by atmospheric deposition (e.g. De Vleeschouwer et al., 2007),
which explains the correlation between highland peat and elevated Pb
concentration in Northern Ireland.

Higher concentrations of Ni were found in the basalt formation,
whereas lower values were shown in other geological features. As
mentioned earlier, there was strong association between Ni and basalt,
reflecting the geogenic control of bedrock in Northern Ireland. Rela-
tively homogeneous contents of geochemical elements were reported in
the basalt formation (Zhang et al., 2007). The elevated concentration
areas especially on the Antrim Plateau were attributed to the influence
of iron-rich soil. In addition, comparatively higher concentrations were
also observed in greywacke shale areas. It has been reported that grey-
wacke shale is another dominant factor controlling the concentrations of
iron family elements in Northern Ireland (Zhang et al., 2007). The
concentration of Ni exhibited large and continuous patterns at the
regional scale, indicating the controlling effect of basic rocks (basaltic
rock and shale) on its distribution. Such geogenic control is also found
on the contents of elements Cr and V (Albanese et al., 2015).

The overall concentration of Ba was low in peat and basalt areas.
Elevated values were mainly observed on other geological features,
especially in the western and south-eastern areas, mainly including
granite, schist and greywacke shale. These patterns reflected that Ba was
controlled by mixture of various geological features in Northern Ireland.
The source of the anomalies in the western and southern areas was
mainly related to hydrothermal fluids (Young and Donald, 2013), due to
its strong correlation of gold deposit and other ore-forming elements
(Lusty et al. 2009; Wang et al., 2017).

Visualising the spatial distribution for the concentrations of typical
elements in the three groups can reflect the corresponding controlling
factors on its entire group of PTEs, proving that the results of hot spot
analysis and K-means clustering analysis were reasonable. The spatial
association extracted from the clustering patterns of PTEs and soil
samples strengthened existing findings in Northern Ireland (e.g. Hill
et al., 2001; Zhang et al., 2007; Mcllwaine et al., 2014; Albanese et al.,
2015; Mcllwaine et al., 2017), which provided a better understanding of
sources and classification for PTEs at regional scale. Furthermore,
combing other detailed supplementary data, the hidden spatial patterns
can be used to explore more geochemical information (e.g. geochemical
anomalies). This could be a future study direction of data analysis for the
Tellus project. Future studies may also find it worthwhile to explore the
relative performances of different clustering techniques such as K-means
clustering, fuzzy clustering and density-based clustering algorithms into
the spatial data sets, however this is outside the scope of the present
work.

Ni (mg/kg)
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224
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Fig. 10. Spatial distribution maps of typical elements of three groups: a) Pb; b) Ni and ¢) Ba.
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4. Conclusion

This study investigated the hidden spatial patterns for 15 PTEs and
topsoil samples in Northern Ireland using Hot spot analysis and K-means
clustering analysis. The hot spot analysis results revealed different
spatial clustering patterns for the 15 PTEs, showing clear association
with different geological features, especially peat and basalt. Peat is
associated with high concentrations of Bi, Pb, Sb and Sn, while basalt is
associated with high concentrations of Co, Cr, Cu, Mn, Ni, V and Zn. The
high concentrations of As, Ba, Bi, Mo and U are associated with mixture
of various lithologies (e.g. schist, greywacke shale, sandstone, limestone
and granite), indicating the complicated controlling effects on them. In
addition, K-means clustering results revealed three hidden patterns in
6,862 soil samples, showing spatial overlay relationships with control-
ling factors on the simplified geology map. The samples in the first,
second and third clusters were overlaid on peatland, basalt formation
and other lithologies, respectively. The results of two spatial clustering
techniques were consistent with each other, highlighting the major
controlling effects of peat and basalt for both PTEs and soil samples.
Furthermore, the boxplot results indicated the differences among the
three clusters were significant for all 15 PTEs, which confirmed the
accuracy and rationality of our clustering results in this study.

Our results revealed hidden spatial patterns in a study area that have
been widely studied. These spatial patterns and association enhanced
the current knowledge of the controlling factors on the selected 15 PTEs
in the topsoil of Northern Ireland. Moreover, this study provides a clear
demonstration on the efficiency of spatial machine learning techniques
in discovering hidden spatial patterns and extract geochemical associ-
ation in the multivariate datasets, which can be applied for environ-
mental study in other unexplored areas.

CRediT authorship contribution statement

Haofan Xu: Conceptualization, Formal analysis, Data curation,
Methodology, Software, Validation, Visualization, Writing - original
draft. Peter Croot: Writing - review & editing. Chaosheng Zhang: Data
curation, Methodology, Project administration, Resources, Supervision,
Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Aelion, C.M., Davis, H.T., McDermott, S., Lawson, A.B., 2009. Soil metal concentrations
and toxicity: associations with distances to industrial facilities and implications for
human health. Sci. Total Environ. 407, 2216-2223.

Aitchison, J., 1986. The Statistical Analysis of Compositional Data. Wiley, New York.

Ajmone-Marsan, F., Biasioli, M., Kralj, T., Greman, H., Davidson, C.M., Hursthouse, A.S.,
Madrid, L., Rodrigues, S., 2008. Metals in particle-size fractions of the soils of five
European cities. Environ. Pollut. 152, 73-81.

Albanese, S., Sadeghi, M., Lima, A., Cicchella, D., Dinelli, E., Valera, P., Falconi, M.,
Demetriades, A., De Vivo, B., The GEMAS Project Team, 2015. GEMAS: cobalt, Cr,
Cu and Ni distribution in agricultural and grazing land soil of Europe. J. Geochem.
Explor. 154, 81-93.

Alizadeh, M.J., Shahheydari, H., Kavianpour, M.R., Shamloo, H., Barati, R., 2017.
Prediction of longitudinal dispersion coefficient in natural rivers using a cluster-
based Bayesian network. Environ. Earth Sci. 76 (2), 86.

Alloway, B.J., 2013. Bioavailability of Elements in Soil. In: Selinus, O. (Ed.), Essentials of
Medical Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4375
5.15.

Argyraki, A., Kelepertzis, E., 2014. Urban soil geochemistry in Athens, Greece: the
importance of local geology in controlling the distribution of potentially harmful
trace elements. Sci. Total Environ. 482-483, 366-377.

Bagstad, K.J., Semmens, D.J., Ancona, Z.H., Sherrouse, B.C., 2017. Evaluating alternative
methods for biophysical and cultural ecosystem services hotspot mapping in natural
resource planning. Landse. Ecol. 32 (1), 77-97.

Barrat, J.A., Nesbitt, R.W., 1996. Geochemistry of the tertiary volcanism of Northern
Ireland. Chem. Geol. 129, 15-38.

12

122

Environment International 151 (2021) 106456

Barsby, A., McKinleya, J.M., Ofterdinger, U., Young, M., Cave, M., Wraggd, J., 2012.
Bioaccessibility of trace elements in soils in Northern Ireland. Sci. Total Environ.
433, 398-417.

Bengio, Y., 2013. Deep learning of representations: looking forward. In: International
Conference on Statistical Language and Speech Processing. Springer, Berlin,
Heidelberg, pp. 1-37.

Bhowmik, A.K., Alamdar, A., Katsoyiannis, L., Shen, H., Ali, N., Ali, S.M., Bokhari, H.,
Schifer, R.B., Eqani, S., 2015. Mapping human health risks from exposure to trace
metal contamination of drinking water sources in Pakistan. Sci. Total Environ. 538,
306-316.

Birke, M., Reimann, C., Rauch, U., Ladenberger, A., Demetriades, A., Jahne-Klingberg, F.,
Oorts, K., Gosar, M., Dinelli, E., Halamié, J., 2017. GEMAS: Cadmium distribution
and its sources in agricultural and grazing land soil of Europe — Original data versus
clr-transformed data. J. Geochem, Explor. 173, 13-30.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer. ISBN 978-0-
387-31073-2.

Boente, C., Albuquerque, M.T.D., Fernandez-Brana, A., Gerassis, S., Sierra, C., Gallego, J.
R., 2018. Combining raw and itional data to determine the spatial patterns of
Potentially Toxic Elements in soils. Sci. Total Environ. 631-632, 1117-1126.
https://doi.org/10.1016/j.scitotenv.2018.03.048.

Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., (Eds.) 2006. Compositional data
analysis in the geosciences — from theory to practice. Geological Society of London,
Special Publication 264.

Buccianti, A., Lima, A., Albanese, S., Cannatelli, C., Esposito, R., Vivo, B., 2015.
Exploring topsoil geochemistry from the CoDA (Compositional Data Analysis)
perspective: The multi-element data archive of the Campania Region (Southern
Italy). J. Geochem. Explor. 159, 302-316.

Carroll, J.B., 1953. An analytic solution for approximating simple structure in factor
analysis. Psychometrika 18, 23-38.

Cattell, R.B., 1966. The scree test for the number of factors. Multivar. Behav. Res. 1 (2),
245-276.

Cheng, Q., Jing, L., Panahi, A., 2006. Principal component analysis with optimum order
sample correlation coefficient for image enhancement. Int. J. Remote Sens 27 (16),
3387-3401.

Cloquet, C., Carignan, J., Libourel, G., 2006. Isotopic composition of Zn and Pb
atmospheric depositions in an urban/periurban area of northeastern France.
Environ. Sci. Technol. 40, 6594-6600.

Coggins, A.M., Jennings, S.G., Ebinghaus, R., 2006. Accumulation rates of the heavy
metals lead, mercury and cadmium in ombrotrophic peatlands in the west of Ireland.
Atmos. Environ. 40, 260-278.

Dalradian, 2019. Making the most of County Tyrone's gold deposits. Available at: https
i//www.newsletter.co.uk/business/making-the-most-of-county-tyrone-s-gold-depos
its-1-9081043.

Dao, L.G., Morrison, L., Zhang, H., Zhang, C., 2014. Influences of traffic on Pb, Cu and Zn
concentrations in roadside soils of an urban park in Dublin, Ireland. Environ.
Geochem. Health 36, 333-343.

Davies, D.L., Bouldin, D.W., 1979. A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. 1 (4), 224-227.

Davies, H., Walker, S., 2013. gic pl (SPPS) for Northern
Ireland: gl i 1 ping report. Leeds.

Davis, J.C., 2002. Statistics and Data Analysis in Geology, 3rd ed. John Wiley & Sons Inc.,
New York.

Davis, H.T., Marjorie Aelion, C., McDermott, S., Lawson, A.B., 2009. Identifying natural
and anthropogenic sources of metals in urban and rural soils using GIS-based data,
PCA, and spatial interpolation. Environ, Pollut. 157, 2378-2385.

Delbecque, N., Verdoodt, A., 2016. Spatial patterns of heavy metal contamination by
urbanization. J. Environ. Qual. 45, 9-17.

De Vleeschouwer, F., Gérard, L., Goormaghtigh, C., Mattielli, N., Le Roux, G., Fagel, N.,
2007. Atmospheric lead and heavy metal pollution records from a Belgian peat bog
spanning the last two Millenia: Human impact on a regional to global scale. Sci.
Total Environ. 377, 282-295.

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueraz, G., Barcelo-Vidal, C., 2003.
Isometric logratio transformations for compositional data analysis. Math. Geol. 35,
279-300.

Ettler, V., Sebek, O., Grygar, T., Klementova, M., Bezdicka, P., Slavikova, H., 2008.
Controls on metal leaching from secondary Pb smelter air-pollution-control residues.
Environ. Sci. Technol. 42, 7878-7884.

Fan, C., Cui, Z., Zhong, X., 2018. House prices prediction with machine learning
algorithms. In: Proceedings of the 2018 10th International Conference on Machine
Learning and Computing, pp. 6-10.

Faria, P.B.F., He, Z.L., Stoffella, P.J., Montes, C.R., Melfi, A.J., Baligar, V.C., 2012.
Nutrients and nonessential elements in soil after 11 years of wastewater irrigation.
J. Environ. Qual. 41, 920-927.

Farmer, G.L., 2014. Continental basaltic rocks. In: Chapter 4.3 in R.L. Rudnick, H.
Holland, K. Turekian (Eds.), The Crust, 2nd ed., Treatise on Geochemistry, no. 4, pp.
75-100.

Fei, X., Christakos, G., Xiao, R., Ren, Z., Liu, Y., Lv, X., 2019. Improved heavy metal
mapping and pollution source apportionment in Shanghai City soils using auxiliary
information. Sci. Total Environ. 661, 168-177.

Filzmoser, P., Hron, K., Reimann, C., 2010. The bivariate statistical analysis of
environmental (compositional) data. Sci. Total Environ. 408, 4230-4238.

Getis, A., Ord, J.K., 1992. The analysis of spatial association by use of distance statistics.
Geogr. Anal. 24 (3), 189-206.

Ghezelbash, R., Maghsoudi, A., Carranza, E.J.M., 2020. Optimization of geochemical
anomaly detection using a novel genetic K-means clustering (GKMC) algorithm.
Comput. Geosci. 134, 104335,




Research paper

H. Xu et al.

Goutte, C., Hansen, L.K., Liptrot, M.G., Rostrup, E., 2001. Feature-space clustering for
fMRI meta-analysis. Hum. Brain Mapp. 13 (3), 165-183.

GSNI, 1998. The solid geology of Northern Ireland: a vector map at 1:250,000 scale.
Geological Survey of Northern Ireland, Belfast.

Han, J., Kamber, M., 2006. Data Mining, Concepts and Techniques. Morgan Kaufman
Publishers, San Francisco, USA.

Harman, H.H., 1976. Modern Factor Analysis, 3rd ed. University of Chicago Press,
Chicago.

Hartigan, J.A., 1975. Clustering Algorithms. Wiley, New York.

Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: A k-means clustering algorithm.
J. Roy. Stati. Soci. Ser. C (Appl. Stat.) 28, 100-108.

Hendrickson, A.E., White, P.O., 1964. PROMAX: a quick method for rotation to oblique
simple structure. Brit. J. Stat. Psychol. 17, 65-70.

Hill, 1.G., Worden, R.H., Meighan, I.G., 2001. Formation of interbasaltic laterite horizons
in NE Ireland by early tertiary weathering processes. Proc. Geol. Assoc. 112 (4),
339-348.

Joint Nature Conservation Committee, 2011. Towards an assessment of the state of UK
Peatlands, JNCC report No. 445.

Jolliffe, I.T., 2002. Principal Component Analysis, Series: Springer Series in Statistics,
2nd ed. Springer, New York, p. 487.

Jordan, C., Zhang, C.S., Higgins, A., 2007. Using GIS and statistics to study influences of
geology on probability features of surface soil geochemistry in Northern Ireland.

J. Geochem. Explor. 93, 135-152.

Jordan, M.L., Mitchell, T.M., 2015. Machine learning: Trends, perspectives, and
prospects. Science 349 (6245), 255-260.

Jordan, G., Petrik, A., De Vivo, B., Albanese, S., Demetriades, A., Sadeghi, M., Team, T.G.
P., 2018. GEMAS: spatial analysls of the Ni distribution on a continental-scale using
digital image processing on Itural soil data. J. Geochem.
Explor. 186, 143-157. https://doi.org/10. 1016/] gexplo.2017.11.011.

Kaiser, H.F., 1958. The Varimax criterion for analytic rotation in factor analysis.
Psychometrika 23, 187-200.

Kanevskij, M., Pozdnoukhov, A., T:morun., V., 2009. Machine Learning for Spatial
Environmental Data: Theory, A and Epfl Press, L

Kanungo, T., Mount, D.M., Ne(anyahu N.S., Piatko, C.D., Silverman, R., Wu, A.Y., 2002.
An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans.
Pattern Anal. Mach. Intell. 24 (7), 881-892.

Kassambara, A., Mundt, F., 2017. Package ‘f:
of multivariate data analyses.

Kelepertsis, A., Argyraki, A., Alexakis, D., 2006. Multivariate statistics and spatial
interpretation of hemical data for soil ion by potentially
toxic elements in the mining area of Stratoni, North Greece. Geochem-Explor. Env.
A. 6, 349-355.

Kelepertzis, E., Argyraki, A., Botsou, F., Aidona, E., Szabo, A., Szabo, C., 2019. Tracking

" Extract and the results

Environment International 151 (2021) 106456

Mcllwaine, R., Doherty, R., Cox, S.F., Cave, M., 2017. The relationship between historical
development and potentially toxic element concentrations in urban soils, Environ.
Pollut. 220, 1036-1049.

McKinley, J.M., Ofterdinger, U., Young, M., Barsby, A., Gavin, A., 2013. Investigating
local relationships between trace elements in soils and cancer data. Spat. Stat. 5,
25-41.

Meng, Y., Cave, M., Zhang, C., 2020. Identifying geogenic and anthropogenic controls on
different spatial distribution patterns of aluminium, calcium and lead in urban

topsoll of Greater London Authom'v area. Chemosphere 238, 124541.

. hrabi, B., Yaghubp ., Alghalandis, Y.F., 2011. The application of

1 pattern ition to regwnal prospecting: A case study of the
S'mzmda) -Sirjan metallogenic zone, Iran. J. Geochem. Explor. 108 (3), 183-195.

Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauss, T., 2018. Improving

of spati T hine learning models using forward feature
selection and target-oriented validation. Environ. Model. Softw. 101, 1-9. https://
doi.org/10.1016/j.envsoft.2017.12.001.

Mitchell, W.I. (Ed.), 2004. The Geology of Northem Ireland: Our Natural Foundation,
2nd ed. Geological Survey of Northern Ireland, Belfast.

Négrel, P., De Vivo, B., Reimann, C., Ladenberger, A., Cicchella, D., Albanese, S.,
Birke, M., De Vos, W., Dinelli, E., Lima, A., O’Connor, P.J., Salpeteur, L,
Tarvainen, T., the GEMAS Project Team., 2018. U-Th signatures of agricultural soil
at the European continental scale (GEMAS): distribution, weathering patterns and
processes controlling their concentrations. Sci. Total Environ. 622-623, 1277-1293.

Okorie, A., Entwistle, J., Dean, J.R., 2011. The application of in vitro gastrointestinal
extraction to assess oral bioaccessibility of potentially toxic elements from an urban
recreational site. Appl. Geochem. 26, 789-796.

Ord, J.K., Getis, A., 1995. Local spatial autocorrelation statistics: distributional issues
and an application. Geogr. Anal. 27 (4), 286-306.

Palmer, S., Ofterdinger, U., McKinley, J.M., Cox, S., Barsby, A., 2013. Correlation
analysis as a tool to investigate the bioaccessibility of Nickel, Vanadium and Zinc in
Northern Ireland Soils. Environ. Geochem. Health 35, 569-584.

Palmer, S., Mcllwaine, R., Ofterdinger, U., Cox, S.F., Mckinley, J.M., Doherty, R.,
Wragg, J., Cave, M., 2015. The effects of lead sources on oral bioaccessibility in soil

and implications for d land risk Environ. Pollut. 198,
161-171.

Petrik, A., Albanese, S., Lima, A., De Vlvo, B., 2018. The spatial pattem of beryllium and
its possible origin using p 1 data is on a high-density topsoil data

set from the Campania Region (Italy). Appl. Geochem. 91, 162-173. https://doi.org/
10.1016/j.apgeochem.2018.02.008.

Rahmati, O., Falah, F., Dayal, K.S., Deo, R.C., Mohammadi, F., Biggs, T., Moghaddam, D.
D., Naghibi, S.A., Bui, D.T., 2020. Machine learning approaches for spatial modeling
of agricultural droughts in the soutl t region of Q: land Australia. Sci. Total
Environ. 699, 134230.

the occurrence of anthropogenic magnetic particles and potentially toxic el
(PTEs) in house dust using magnetic and geochemical analyses. Environ. Pollut. 245,
909-920.
Ketchen Jr., D.J., Shook, C.L., 1996. The application of cluster analysis in strategic
Iy lysis and critique. Strateg. Manag. J. 17 (6), 441-458.

an
Klapstein, S.J., Walker, A.K., Saunders, C.H., Cameron, R.P., Murimboh, J.D.,
O'Driscoll, N.J., 2020. Spatial distribution of mercury and other potentially toxic
elements using epiphytic lichens in Nova Scotia. Chemosphere 241, 125064.
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436-444.

Rei C., Fil , P., 2000. Normal and lognormal data distribution in

geochemistry: death of a myth. Consequences for the statistical treatment of
b ical and envir 1 data. Environ. Geol. 39 (9), 1001-1014.

Relmann C., Filzmoser, P., Garrett, R.G., 2002 Factor analysis applied to regional
geoch | data: p and p ities. Appl. Geochem. 17, 185-206.

Rei C., Arnold A., Engl P., Fil r, P., Finne, T.E., Garrett, R.G.,
Koller, F., Nordgulen, O., 2007. Element concentrations and varmuons a]ong a 120
km transect in southern Nolway —anth vs. ic vs. b
sources and cycles. Appl. Geochem. 22, 851—871

Li, J., Heap, A., 2011. A review of comparative studies of spatial interpolation hods:
performance and impact factors. Ecol. Inform. 3-4, 228-241.

Li, J., Heap, A.D., Potter, A., Daniell, J.J., 2011. Application of machine learning
methods to spatial interpolation of environmental variables. Environ. Model. Softw.
26 (12), 1647-1659.

Ludwig, M., Morgenthal, T., Detsch, F., Higginbottom, T.P., Lezama Valdes, M., Nau8, T.,
Meyer, H., 2019. Machine learning and multi-sensor based modelling of woody
vegetation in the Molopo Area, South Africa. Remote Sens. Environ. https://doi.org/
10.1016/j.rse.2018.12.019.

Lusty, P.A.J., McDonnell, P.M., Gunn, A.G., Chacksfield, B.C., Cooper, M., 2009. Gold
potential of the dalradian rocks of north-west Northern Ireland: Prospectivity
analysis using tellus data. British Geological Survey Internal Report OR/08/39:74

PP-

MacQueen, J., 1967. Some hods for classifi and lysis of multivariate
observations. In: Le Cam, L.M., J. (Eds.), P gs of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1, University of
California Press, Berkeley, CA, pp. 281-297.

McKinley, J.M., Grunsky, E Mueller U 2018 Environmental Monitoring and Peat

Using iate of Regional-Scale Geoch I Data. Math.
Geosci. 50, 235-246. Imps://doi.mg/10.1007/51 1004-017-9686-x.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., 2019. cluster: Cluster
Analysis Basics and Extensions. R package version 2.1.0. Available at: https://cran.
r-project.org/web/packages/cluster/cluster.pdf. [Accessed date: 08/12/2020].

Marchant, B.P., Tye, A.M., Rawlins, B.G., 2011. The assessment of point-source and
diffuse soil metal pollution using robust geostatistical methods: a case study in
Swansea (Wales, UK). Eur. J. Soil Sci. 62, 346-358.

Mecllwaine, R., Cox, S., Doherty, R., Palmer, S., Ofterdinger, U., McKinley, J., 2014.
Comparison of hods used to calculate typical threshold values for potentially
toxic elements in soil. Environ. Geochem. Health 36, 953-971.

Mcllwaine, R., Cox, S.F., Doherty R., 2015 When are total concentrations not total?
Factors affecti i for measuring element

Sm. Pollut. Res. 22, 6364-6371. https://doi.org/

8 8
in soil. E
10.1007/511356-015-4204-5.

13

123

C., Fil P., Garrett, G.R., Dutter, R., 2008. Statistical Data Analysis
Explained: Applied Envi 1 Statistics with R. John Wiley & Sons Ltd., p. 359

Reimann, C., Birke, M., Demetriades, A., Filzmoser, P., Connor, P.O’., 2014. Chemistry of
Europe's Agricultural Soils, Part A: Methodology and Interp of the GEMAS
Data Set. Geologisches Jahrbuch (Reihe B102), Schweizerbarth, Hannover.

Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., Oorts, K.,
Matschullat, J., de Caritat, P., The GEMAS Project Team, 2018. GEMAS: Establishing
geochemical background and threshold for 53 chemical elements in European
agricultural soil. Appl. Geochem. 88, 302-318.

Rodrigues, S., Urquhart, G., Hossack, 1., Pereira, M.E., Duarte, A.C., Davidson, C.,
Hursthouse, A., Tucker, P., Roberston, D., 2009. The influence of anthropogenic and
natural geochemical factors on urban soil quality variability: a comparison between
Glasgow, UK and Aveiro, Portugal. Environ. Chem. Lett. 7, 141-148.

Rousseeuw, P.J., 1987, Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53-65.

Saaltink, R., anﬂoeu J., Mnl G Birke, M., 2014. Geogenic and agricultural controls on
the P of agricultural soils. J. Soil. Sediment. 14
(1), 121-137.

Sergeev, A.P., Buevich, A.G., Baglaeva, E.M., Shichkin, A.V., 2019. Combining spatial
autocorrelation with machine learning increases prediction accuracy of soil heavy
metals. Catena 174, 425-435.

Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behaviour and
distribution of arsenic in natural waters. Appl. Geochem. 17, 517-568.

Smyth, D., 2007. Methods used in the Tellus geochemical mapping of Northern Ireland.
British geological survey open report, 89 pp.

Tarvainen, T., Albanese, 8., Birke, M., Ponavi¢, M., Reimann, C., 2013. Arsenic in
agricultural and grazing land soils of Europe. Appl. Geochem. 28, 2-10.

Templ, M., Filzmoser, P., Reimann, C., 2008. Cluster analysis applied to regional
geochemical data: Problems and possibilities. Appl. Geochem. 23 (8), 2198-2213.

Tepanosyan, G., Lilit, 8., Nairuhi, M., Armen, S., 2020. Combination of Compositional
Data Analysis and Machine Learning Approaches to Identify Sources and
Geochemical Associations of Potentially Toxic Elements in Soil and Assess the
Associated Human Health Risk in a Mining City. Environ. Pollut. 261, 114210,




Research paper

H. Xuetal

Thi M., Martin-Fernindez, J.A_, 5., Lima, A, Doharty, A, De Vivo, B.,
2018, Exploratory analyziz of mult-element geochemical patterns in soil from the
Samo River Basin (Campania region, southem Italy) through compositional data
analysiz (CODA). J. Geochem. Explor. 105, 110-120. httpe-//doi org/10.1016j.
gexplo 2013.03.010.

Tipping, E., Lawlor, A, Lofts, 5., Shotbolt, L., 2006. Simulating the long-term chemistry
of an upland UK catchment heavy metals. Environ. Pollut. 141, 139-150.

Wang, J., Zuo, R, Caers, J, 2017. Dizcovering geochemical pattemns by factor-baszed
cluster analysis. J. Geochem. Explor. 181, 106-115.

Weatherill, G., Burton, P.W._, 2008. Delineation of shallow seismic source zones using K-
means cluster analysis, with application to the Aegean region. Geophyz. J. Int. 176
(2), 565-588.

Wedepohl, K.H., 1978. Handbook of Geochemistry. Springer-Verlag, Berlin-Heidelberg.

Xie, X, Liu, D, Xiang, ¥_, Yan, G, Lian, C_, 2004. Geochemical blocks for predicting large
ore deposits — concept and methodology. J. Geochem. Explor. 84, 77-01.

Xu, HF., Demetriades, A, Reimann €., Jiménez, J.J., Filser, J., Zhang, C.5., 2019,
Identification of the co-existence of low total organic carbon contents and low pH
values in agricultural zoil in north-ceniral Europe using hot spot analyziz bazed on
GEMAS project data. Sci Total Environ. 673, 94-104.

Yeung, K., Ruzzo, W., 2001. An empirical study on principal component analysis for
clustering gene expression data. Bicinformatics 17, 763-774.

Young, M.E., Donald, A.W. (Eds.), 2013. A guide to the Tell'usdata. Geological Survey of
Morthem Ireland, Belfast

Yuan, Y.M., Cave, M., Xu, HF., Zhang, C.5., 2020. Explnmtionnfspaﬁaﬂyva.rm
rdanunshlpsbetweenpbandﬁlmu:banwdsoflmdma:dlemmalsﬁle
geogr weighted regr (GWR). J. Hazard. Mater. 393 (5), 122377.

124

Emvironment International 151 (2021) 106456

ALK idis, A, Nikitidou, B, Argiriou, A A, 2013. Determination of
measuring sites for solar irradiance, based on cluster analyziz of zatellite-derived
cloud estimations. Sol. Energy 97 (5) 1-11.

Zhang, C.5., Manheim, F.T., Hinde, J., Grossman_ JN_, 2005_ Statistical characterization
of a large geochemical database and effect of zample size. Appl Geochem 20,
1857-1874.

Zhang, C.5., 2006. Using multivariate analyses and GIS to identify pollutants and their
spatial patterns in urban soils in Galway, Ireland. Environ. Pollut. 142, 501-511.

Zhang, C.5., Jordan, C., Higgins, A, 2007. Uzing neighbourhood statizties and GIS to
quantify and visualize spatial variation in geochemical variables: An example using
Ni concentrations in the topsoils of Northern Ireland. Geoderma 137, 466-476.

Zl:lans C.5., Fay, D, MeGrath, D, Grennan, E., Carton, O.T., 2008a. Statistical analyses

g'ecx:hem.l.cal wariables in zoilz of Ireland. Geod.m Mﬁ 378-390.
Zhans C.S . Loo, L., Xu, W, Ledwith, V., 2008b. Use of local Moran's | and GIS to
p-o]luueuhcmp:ls of Phin Luba.\:lsmlsnl(‘ralmy, Ireland. Sei. Total Environ.
398 (1-3), 212-221.

Zhou, 5.G., Zhou, KLF., Wang, J.L., Wang, 5.5., 2018. Application of cluster analyzis to
geochemical compositional data for identifying ore-related geochemical anomalies.
Front. Barth 3ci. 12, 491-505.

Zuo, B.G., 2017. Machine Learning of Mineralization-Related Geochemical Anomalies: A
Review of Potential Methods. Nat. Resour. Res. 26, 457-464.

Zuo, B.G., Xiong, Y., Wang, J., Carranza, E.J.M., 2019. Deep leaning and itz application
mg‘ecu‘hem.walmappms Earth Sei. Rev. 192 1-14.




Research paper

4.4 Exploration of the spatially varying relationships between lead and
aluminium concentrations in the topsoil of northern half of Ireland

using Geographically Weighted Pearson Correlation Coefficient

Xu, H.F., Croot, P., Zhang, C.S., 2021. Exploration of the spatially varying relationships
between lead and aluminium concentrations in the topsoil of northern half of Ireland using

Geographically Weighted Pearson Correlation Coefficient. (Under review).

Summary: This paper investigated the spatial relationships between Pb and Al in the
topsoil samples that collected from currently available Tellus data set in the northern half
of Ireland using GWPCC. Both positive and negative correlation coefficients were
observed, suggesting the existence of spatially varying relationships between Pb and Al
concentrations. The ‘special’ negative correlations were observed in more than 35% of the
whole study area, mainly clustered in the northern-western and north-eastern of Ireland.
The positive correlations were observed in the central-western and midlands. Mixed
relationships of both negative and positive correlations occurred in the eastern coastal areas.
The majority of negative correlation patterns showed clear association with blanket peat,
which can be attribute to long-distance transportation of Pb from atmospheric deposition.
Moreover, the weakened the relationships in the eastern coastal areas indicated the
influences related to anthropogenic activities. Our results demonstrated the efficiency of
GWPCC in exploring the spatially varying relationships between environmental variables
and identifying association with influencing factors, which could be hardly achieved by

traditional techniques.

My contribution in this paper accounted for ~90% in reviewing literatures, exploring

data and writing manuscript.
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1. Introduction

Potentially toxic elements (PTEs) are usually found at trace levels. Although some PTEs
(e.g., Cu and Zn) are regarded as essential elements, the presence of other PTEs can be
highly toxic to plants and organisms, such as Cd, Cr and Pb (Kabata-Pendias, 2004; Hooda,
2010; Zeng et al., 2011). Under natural conditions, the concentrations of PTEs are
influenced by soil-forming parent material and processes (Alloway, 1995; Aelion et al.,
2009). However, since the industrial revolution, human activities have greatly increased
the input of PTEs (Biney et al., 1994). The sources of anthropogenic pollution include
traffic emission, fossil fuel burning, metalliferous industries, construction, medical and
electronic waste (Nriagu and Pacyna, 1988; Zhang, 2006; Wu et al., 2019; Zhao et al.,
2019), which are directly discharged into soil, water and air. Soil is regarded as the most
important sink of PTEs (Wong et al., 2006), receiving pollution from both surface disposal
and atmospheric deposition. Excessive levels of PTEs in the soil will increase the risk of
ingesting toxic metals into human body through food chain or soil dust, especially for
children (Odukoya et al., 2000). Among all the PTEs in the soil, the spatial distribution and
variation of Pb are of particular concern in environmental studies (Nriagu, 1983). This is
not only because of the adverse effects of Pb on human health, but also that its
concentration in the soil is strongly interfered by anthropogenic factors. Previous studies
have widely reported the abnormally elevated concentrations of Pb in soil caused by human
activities in urban and industrial areas (e.g., McGrath et al., 2004; Appleton et al., 2013; Li
et al., 2014; Liu et al., 2015; Marrugo-Negrete et al., 2017). In addition, the previous use
of leaded gasoline and traffic emission in urban areas (e.g., phased out in Germany and the
USA in 1996) caused significant Pb pollution in the air, which in turn polluted rural soil
through atmospheric deposition (Shotyk, 2002; Nov& et al., 2003). Therefore, it is
challenging to identify the sources of Pb to prevent the spread of soil contamination and

maintain the sustainable development at the regional level.

Conventional statistical analysis and multivariate analysis have been widely applied to

identify the potential sources of Pb contamination in the topsoil of urban and rural areas
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(e.g., Madrid et al., 2002; Zhang et al., 2007; Acosta et al., 2011; Bhowmik et al., 2015;
Meng et al., 2020). The problem, however, is that these traditional techniques (e.g.,
ordinary linear regression) assume the studied relationship between variables is linear and
spatially constant across the space, so the parameter estimation remains the same for the
whole study area (Guo et al., 2008). Due to the complexity of soil properties and
disturbances of intensive anthropogenic activities, the pollution sources on the spatial
variation of Pb are controlled by a mixture of multiple factors (Franco-Uria et al., 2009;
Martm et al., 2013). Thus, the relationships between Pb and other geochemical elements
or environmental variables may be spatially varying at different locations. The traditional
statistics, which should be regarded as global techniques, are likely to mask the spatially
varying relationships due to the neglect of spatial heterogeneity (Su et al., 2012). In recent
years, the concept of spatially varying relationships was proposed to study the concealed
patterns between geochemical elements and environmental variables (Tu and Xia, 2008;
Lietal., 2017; Yuanetal., 2020; Yang et al., 2020; Ballard and Bone, 2021; Xu and Zhang,
2021), which has been proved as an effective way to identify the association with related

influencing factors from the spatial perspective.

In light of this, the use of advanced spatial techniques that consider local statistics such as
geographically weighted regression (GWR) is more appropriate to investigate the soil Pb
pollution by capturing the spatially varying relationships (Brunsdon et al., 1996;
Fotheringham et al., 1998). This technique is an extension of traditional ordinary linear
regression, which can generate local regression coefficients at each sample point
(Fotheringham et al., 2001; Fotheringham et al., 2002). However, it has been proposed that
the local coefficients of GWR can only represent the ‘slope’ coefficients between the
dependent and independent variables rather than correlation (Gao and Li, 2011; Xu and
Zhang, 2021). Therefore, an improved method called Geographically Weighted Pearson
Correlation Coefficients (GWPCC) was performed in this study to investigate the spatial
correlations between Pb and aluminium (Al) concentration in the topsoil of Ireland. This
technique is a combination of traditional Pearson correlation coefficient and geographically
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weighted (GW) framework (Kalogirou, 2014), which can identify the strong and weak

correlations between input parameters at each sample point.

The reason to choose Al for comparison is that these two elements are generally reported
to maintain a positive correlation under most natural conditions (Schropp and Windom,
1988), which could be expected for soils derived from continental crust (Walsh and Barry,
1957). In addition, the element Al is a basic constituent of silicate clays and Pb can not
only be adsorbed to clay but it is also present in primary silicates as K-feldspar and mica
(Spark, 2010). It is a conservative lithogenic element and often used as reference element
(Shotyk et al., 2002; Sezgin et al., 2003; Le Roux et al., 2004), which is chemically stable
and its fate in the environment media is not easily affected by human activities. Relevant
references with statistical analyses were summarised as examples in Supplemental Table
S1 (Zhang et al., 2008a; Shaheen, 2009; Vasi¢ et al., 2012; Guo et al., 2019; Zhang et al.,
2019). However, in some limited cases, the contradictory result of negative correlation was
also recorded (El Bilali et al., 2002; Zhang et al., 2014), while this ‘special’ relationship
was reported to be an implication with different pollution sources in their studies.
Considering the existing literature has not deeply explored the contradictory relationships
between these two variables, not only in Ireland but also in other study areas over the world.
Therefore, the exploration of the spatially varying relationships between Pb and Al
concentration based on the current available Tellus data sets seems to be an interesting and
important topic in environmental studies. As it is a promising way to identify the potential
influencing factors on Pb in the topsoil, which can provide enhanced understanding of
spatial variation of PTEs for current literature. In this case, it needs to be acknowledged
that we do not attempt to explore all the influencing factors of Pb in this study and the
conventional exploration of multivariate relationships is out of the focus of this study.

The objectives of this study are: (1) to investigate the spatial relationships between Pb and
Al concentrations using GWPCC based on the currently available Tellus data set in the
topsoil of northern half of Ireland; (2) to identify the spatial associations with different
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influencing factors from the local correlation patterns; (3) to further explore the underlying

mechanisms between the ‘special’ negative correlation and potential pollution sources on

the Pb distribution.

2. Materials and methods

2.1 Soil sampling and analyses

The Tellus project is a collaboration of national project to collect geophysical and
geochemical data across Ireland. It is undertaken by Geological Survey Ireland (GSI) and
Geological Survey of Northern Ireland (GSNI) in the part of Republic of Ireland and
Northern Ireland, respectively. A total of 17,798 topsoil samples (surface to 20 cm depth)
were used in this study, covering the northern half of Ireland (Fig. 1). Each sample was
taken as composite sample from five sub-sites. The sampling density averaged one site per
4 km? in the Republic of Ireland and per 2 km? in Northern Ireland, respectively, and was
increased to one site per 2 km? in the urban areas of Galway and Dublin in the Republic of
Ireland. Samples were collected in paper bags and air-dried initially before further

preparation process.

Then, all samples were sieved through a 2 mm pore size nylon mesh to remove stones and
plant roots, and the repetition was prepared by shallow-splitting of duplicate samples to
create the quality control (QC) samples. After sample preparation, the geochemical
composition was analysed in the laboratory by Inductively Coupled Plasma (ICP-OES/-
MS) method following aqua regia digestion with a series of strict QCs during the analytical
process (e.g., randomisation of sample IDs; blind insertion of internal or secondary
reference materials). Detailed QC process can be found in Knights (2013) and Young and
Donald (2013). More specific details on the sampling program, including protocols, and
all data are publicly available from the Geologic Survey of Ireland

(https://www.gsi.ie/tellus).
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Figure 1. Spatial distribution maps showing: a) sampling locations (n = 17,798) and b) county hames in
the study area.

2.2. Geological background of study area

The simplified bedrock map of the study area was classified based on the bedrock unit map
from GSI (McConnell and Gately, 2006), mainly consisting of basalt, clay, granite,
greywacke shale, limestone, sandstone and schist (Fig. 2a). In addition, peat is reported to
be regarded as the major soil subgroup covering the bedrock and is related to the elevated
concentrations of Pb in the topsoil of Ireland (Davies and Walker, 2013; Xu et al., 2021),
which should be considered separately from other types of soil. There are two major types
of peat including blanket peat and basin peat in Ireland (Rosca et al., 2018). The blanket
peat is mostly concentrated in the mountains of the north-eastern and western coastal of

Ireland, while basin peat is mainly distributed in the central part of midlands of Ireland.

The other controlling factors on Pb distribution need to be noted are the existence of
mineralised areas and urban areas. It was reported that Ireland hosts the one of the world’s
major Pb-Zn deposits (Banks et al. 2002; Lusty et al., 2012), and has a long mining history
can be traced back to Bronze Age with approximately 450 mining locations recorded
(Stanley et al., 2009). There are two major urban areas, including Greater Dublin area in

the central-east and Belfast Metropolitan area in the north-east. Considering the potential
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influencing factors except bedrocks on the Pb concentration, the spatial locations for peat,

urban areas and lead deposits are displayed in Fig. 2b.

Basalt

[ ‘ Clay

- Granite

Greywacke shale

Blanket peat b) N

Basin peat

- Urban areas

* Lead deposits

Limestone

Sandstone

Schist
o T

0 25 50

]
ik .
m— Kilopneters 1, S

Figure 2. Maps showing background of study area: a) simplified bedrock map (original 1:500,000
shapefile from GSI, 2006); b) spatial distribution of locations for peatland, urban areas and recorded

lead deposits.

2.3. Geographically Weighted Pearson Correlation Coefficient (GWPCC)

Since the first proposed in 1990s, the GWR has received extensive attention from
environmental studies due to its powerful function of exploring spatial non-stationarity and
spatially varying relationships (Brunsdon et al., 1996; Fotheringham et al., 2001; P&z et
al., 2011; Oshan and Fotheringham, 2018). In addition, a variety of global statistical models
are extended or improved to explore local parameters based on the GW framework such as
Geographically Weighted Logistic Regression (GWLR); Geographically Weighted Lasso
(GWL), Geographically Weighted Principal Component Analysis (GWPCA),
Geographically Weighted Pearson Correlation Coefficients (GWPCC) and Multiscale
Geographically Weighted Regression (MGWR), etc. (Atkinson et al., 2003; Wheeler, 2009;
Harris et al., 2011; Kalogirou, 2014; Fotheringham et al., 2017).
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The GWPCC is an extension of traditional Pearson correlation coefficient (PCC) which
adopts the concept of geographical weights around observations for calculating local
statistics (Fotheringham et al., 2002; Kalogirou, 2012). The traditional statistical analysis,
including PCC, is regarded as a global statistic that assumes the correlation between two
variables are spatially constant and remain the same in the whole study area (Tu and Xia,
2008), and thus cannot explore how the relationship changes over space. The GWPCC
estimates the local correlation coefficients at each sample point by measuring the
parameters of relationship locally, allowing the estimation of parameters (i.e., correlation
coefficients) at each location simultaneously (Fotheringham et al., 2002). Therefore, it has
the potential to capture the spatially varying relationships between input variables by
including the information of spatial locations for each sample site, which are usually
ignored by the traditional PCC. Moreover, the local coefficients of GWPCC can represent
strong or weak correlation between variables, instead of the ‘slope’ coefficients in the
GWR model (Xu and Zhang, 2021). Moreover, a series of significance tests are provided
by GWPCC, which can identify the spatial variations at different significance levels
(Kalogirou, 2014). The formula of traditional PCC is:

o X, =D0i=Y)
\/Z?zl(xi - f)z\/Z?zl()’i - }7)2

where x; is the value of Al at the i location, y; is the value of Pb at the i" location, x is

(1)

mean value of Al which is calculated by 7., x;/n, ¥ is the mean value of Pb which

calculated by Y:i*; y;/n, n is the total number of samples.

The GWPCC can estimate local correlation coefficients (r;) at a location i by adding

geographical weighting w;; in the equation, which is expressed as (Kalogirou, 2014):

" Wy - D - 7)
gwpec; = Zi:l : (2)
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where x is the geographically weighted mean value of Al which calculated by

n n
Z W”xi/z w;;, y is the geographically weighted mean value of Pb which
i=1 i=1

n n
calculated by Z Wijyi/z Wij.
i=1 i=1

The weights are calculated by a bi-square function expressed as:

2
[1-— @ ]2 ifd; < h;

Wi = hi ij i (3)
0 otherwise

where d;; is the distance between location i and j, h; is the selected bandwidth (nearest

neighbours) using adaptive kernel type function of location i.

The bandwidth is an important parameter in the GWPCC and also other GW models, which
has been extensively debated in the current literature (e.g., Farber and P&z, 2007; Guo et
al., 2008; Gao and Li, 2011). However, there is no consensus on the ‘best’ bandwidth,
while it depends on different research purposes. The results may vary using different
bandwidths and spatial weights. With a larger bandwidth, the GWPCC tends to reach a
global statistic to reveal larger patterns by including more samples in local coefficient
estimation, and vice versa (Song et al., 2016). From technical perspective, the ‘optimal’
bandwidth can be determined by minimising model fit diagnostic such as Akaike
Information Criterion (AIC) (Akaike, 1974) or cross validation (CV) (Bowman, 1984). In
this study, the bandwidth is the number of nearest neighbours instead of spatial distance
due to the adaptive kernel type as weight function in the GWPCC (Fotheringham et al.,
2002). This is useful to reduce the ‘border effects’ when samples were located in the costal
and border areas (Zhang et al., 2011). Before exploring the spatially varying relationships
between Pb and Al, the initial bandwidth was chosen using the AIC, which is effective to
calculate the most suitable bandwidth by evaluating how well the model fit the data and

compared with different possible models (Akaike, 1974). Then, due to the effects of
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different bandwidths on the results, a total of 6 bandwidths including the AIC and 5 larger
ones (with number of nearest neighbours being 43; 100; 150; 200; 250; 300) were
investigated to achieve the purpose of focusing on large and smooth patterns of spatially

varying relationships between Pb and Al from the local perspective.

2.5 Data preparation and software

As a parametric spatial statistic that depends on classic statistical parameters (i.e., mean
values), it requires the normality of distribution for the dataset prior to the implementation
of GWPCC. However, it is well known that geochemical data do not follow a normal or
log-normal distribution (e.g., Reimann and Filzmoser, 2000; Zhang et al., 2005), thus
appropriate data transformation process is necessary. The normal score transformation
(NST) was performed on the Pb and Al concentrations in Tellus dataset in order to meet
the normality requirement of GW model (Fotheringham et al., 2002). The NST and
statistical analyses were conducted in SPSS (ver. 24), and the GWPCC, including its local
correlation coefficients and significance tests were calculated in the R package ‘Ictools’

(ver. 3.56, in http://cran.r-project.org/web/packages/Ictools/index.html). All the spatial

distribution maps were produced using inverse distance weighted (IDW) interpolation in
ArcGIS (ver. 10.4).

3. Results and discussion

3.1 Descriptive statistics for Pb and Al concentrations

The basic statistics for raw data of Pb and Al concentrations in the topsoil of Ireland are
presented in Table 1. The mean values of these two elements were higher than the median
values, suggesting the right skewed distribution in the raw data set. The large difference
between minimum, median, 95% and maximum values for Pb indicated the strong variation
and potential outliers (extremely high values) across the study area (Zhang et al., 2009).
Thus, it is necessary to perform data transformation to reduce the effects of potential
outliers on the spatial statistics from the raw data sets. The NST was applied to Pb and Al
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data, and the transformed data were used for further analysis in this study. In addition, the
detection limits (DLs) for two elements are also provided in Table 1, and the values below

the DLs were replaced as half of the DL values for further statistical analysis as well.

Table 1. Basic statistics of Pb and Al concentrations in the topsoil of Ireland.

Element Min. Q25 Median Mean Q75 Q95 Max. Std.Dev DL

Pb (mglkg) <02 17.5 244 365 362 936 3120 6824 02

Al (%) <0.01 065 124 143 192 37 9.27 113 0.01

Units: Pb (mg/kg); Al (%); DL: detection limit

3.2 Spatial distribution of Pb and Al in the topsoil of Ireland

The spatial distribution maps based on the IDW interpolation for Pb and Al concentrations
are shown in Fig. 3, displaying relatively similar distribution patterns with high values in
the east and low values in the west of Ireland. The high concentration of Pb in the eastern
areas are not only related to natural background source (i.e., greywacke shale), but also
affected obviously by anthropogenic influences, especially near the urban areas of Belfast
and Dublin. The eastern parts of the study area are featured extensive traffic and metals
industry comparing with other areas. In addition, the high-value patterns of Pb are also
observed in some areas in the western regions (i.e., Donegal, Galway and Mayo), showing
good spatial associations with peatland (see Fig. 2b). It has been reported that peat is a
major controlling factor on Pb concentration in the topsoil in Ireland (Palmer et al., 2013;
Mcllwaine et al., 2014), which is related to the spread of pollution from urban areas through
atmospheric deposition to rural areas. For Al, the high concentrations in the east are mainly
controlled by geogenic factors include basalt and greywacke shale, displaying large-scale
patterns from north-eastern to central midlands. The spatial patterns of Pb and Al are
consistent with the previous studies (e.g., Zhang et al., 2008a; Young and Donald, 2013).
Furthermore, the results of global PCC (r = 0.027, p < 0.01) also indicated the existence of

overall positive correlation between these two variables. However, this natural positive
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relationship may be altered on the local scale due to the spatial variability of Pb influenced
by anthropogenic factors, thus the varying relationships can be associated with the potential

sources of Pb.

Pb (mg/kg) Al (%)
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Figure 3. Spatial distribution maps of Pb and Al concentrations in the topsoil of Ireland: a) Pb (mg/kg);
b) Al (%).

3.3 Effects of bandwidths on the results of spatially varying relationships between Pb and
Al

Fig. 4 exhibited the results of local correlation coefficients of GWPCC using selected six
bandwidths, and the corresponding statistics of different bandwidths are summarised in
Table S2. The spatial variation patterns of both positive and negative correlation
coefficients between Pb and Al concentrations were observed among all the six bandwidths.
More than 35% of the sampling locations were found to have negative correlations at all
distance bands (see Table S2). When choosing the bandwidth calculated by the AIC (n =
43), complex patterns of spatial variation were observed in the whole study area (Fig. 4a).
The positive correlation was clustered across the whole study area, especially in the
midlands of Ireland. The negative correlation was mainly clustered in northern, western

and central-eastern parts of Ireland. Compared with other bandwidths, these patterns
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showed scattered distributions with more details of spatially varying relationships between
Pb and Al, while it is not conducive to identifying the smooth patterns from regional

perspective.
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Figure 4. Local correlation coefficients showing spatially varying relationships between Pb and Al at
six different bandwidths (humber of nearest neighbouring samples): a) 43 (AIC); b) 100; c) 150; d) 200;
e) 250; f) 300.
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As the distance band gradually increased (from 100 to 300 samples), the range of the
coefficients became smaller, and some scattered patterns of spatial variation between Pb
and Al disappeared. This is because the local correlation coefficients are calculated based
on the selected bandwidth using the nearest neighbouring samples. The smoother and
continuous patterns for the spatially varying relationships were revealed when using larger
bandwidths. It is worth noting that when the bandwidth increased to a certain extent (i.e.,
n =200), both of the local correlation coefficients and patterns did not change significantly,
which demonstrated that the selected bandwidths were good enough to reveal the spatially
varying relationships between Pb and Al in the study area. Considering that there is no
standard criterion for the ‘best’ bandwidth, it seems that the 200 nearest neighbouring
samples was the most suitable choice to meet our research objectives. It reveals
comparatively large and smooth patterns at the local level, while maintaining much detailed

variation simultaneously. Therefore, this bandwidth was selected for further study.

3.4 Exploration of associations between the potential influencing factors and the spatially

varying relationships

As mentioned early, the spatial association of potential influencing factors can be
investigated through the patterns of different correlations that revealed by the GWPCC.
The patterns of positive correlation suggested that the original relationship between Pb and
Al concentrations reserved, however, the ‘special’ negative and mixed correlations implied
the interferences of external factors, which can be used to explore the potential influencing
factors at the local level. In order to obtain interpretive results of the influences on the
spatial relationships between Pb and Al concentrations, the maps showing significance
levels of the local correlation coefficients in the major areas are produced in Fig. 5. The
possible explanation to the different relationships in major areas are also summarised in
Table 2. For clarity, the spatial relationships between Pb and Al concentrations were
reclassified as five classes based on the significance test, including 1% negative significant,

5% negative significant, 1% positive significant, 5% positive significant and not significant.
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1) North-western and north-eastern areas (Al, A2 and A3): The majority of significant
negative correlation were observed in these areas, extending from western to north-
eastern Ireland. These patterns showed a clear association with the locations of blanket
peat (Fig. 2b), especially in the northern and western parts (county Mayo, Donegal and
Londonderry). The comparatively higher concentration of Pb was distributed, while the
Al concentration was generally low (see Fig. 3). As well known that the rich organic
matter content in blanket peat can bind Pb in the surface soil from atmospheric
deposition (e.g., Cheng et al., 2015; Shotyk et al., 2016), which played an important
role on controlling the elevated Pb concentrations in these areas. Although Al would
be accumulated via atmospheric dust in some cases, however, its concentration in peat
bogs may be also controlled by soil pH and precipitation conditions (Takahashi and
Dahlgren, 2016). It was reported that humic substances have the biding capability of
AlI** to form multi-dentate complexes under a rainy environment (Rouff et al., 2012),
thus resulted decreased Al concentration in the topsoil and further confirmed in the
spatial interpolated maps. Therefore, the ‘special’ negative correlation was established
and then captured by GWPCC approach. In the north-eastern region (area A3; county
Londonderry and Antrim), the negative correlation patterns displayed the overlay
associations with not only blanket peat, but also the basalt formation (Fig. 2b). This
indicated more complicated influential mechanisms, as the Pb distribution was
controlled totally different in these two geological features (Jordan et al., 2007; Xu et
al., 2021). From the spatial distribution map (see Fig. 3), it can be clearly observed that
high value of Pb gathered on the eastern and western sides of this part (area A3),
overlaying on the peatland and showing a decreasing trend on the basalt formation. In
contrast, high value of Al was found overlaid on the basaltic rocks, with a decreasing
trend in the peatlands on both sides. The spatial variation and distribution between these
two elements presented a completely opposite trend, which leads to a negative
correlation between them. However, it should be noted that the north-western and
north-eastern areas belong to remote rural soils. Therefore, these negative correlation

patterns have a strong association with atmospheric pollution, and the fates of Pb may
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related to long-distance transportation from human activities in urban areas, such as

traffic emissions and mining.

Legend
* 1% Negative Significant
5% Negative Significant
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Figure 5. Spatial distribution map showing the significance levels of local correlations in the topsoil of
northern half of Ireland.

Table 2. Summarised explanation for different relationships in the major areas

Area Relationship ~ Association Possible explanation
Western (Al) Negative Blanket peat Atmospheric deposition
North-western (A2) Negative Blanket peat Atmospheric deposition
North-eastern (A3) Negative Basalt; Geogenic control;

blanket peat atmospheric deposition
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Central-western (B1) Positive Pb ore deposits Large-scale Pb-Zn

mineralisation

Midlands (B2) Positive Basin peat Natural mineral soil

Eastern (C1) Mixed Greywacke shale; Mining; traffic emission

urbanisation

Central-eastern (C2) Mixed Blanket peat; Mining; traffic emission

urbanisation

2)

3)

Central western and midlands (B1 and B2): Most samples of significant positive
correlation were maintained and found across the central midlands of Ireland,
extending from the north-central to western areas. The consistent patterns between Pb
and Al can be observed from Fig. 3, that is, the concentrations of these two elements
are both relatively low. The large-scale limestone in the central areas as well as granite
and schist in the central-western regions are not conducive to their accumulation in the
topsoil, as Pb and Al are reported with low values in the soils formed on these rocks
(Reimann et al., 2014; Mcllwaine et al., 2015). In addition, the basin peat in the central
region is formed on the natural mineral soil in low-land areas and contain less organic
matter content comparing with blanket peat bogs (Fay et al., 2007). Thus, the influence
is not as strong as that in the blanket peat, whereas the positive correlation reserved as
normal. However, it is worth noting that some significant patterns of positive
correlation even extend to the central-western (county Galway), overlaying on the
blanket peat. From the perspective of spatial analysis, the reason for the existence of
the positive correlation is not yet clear, however, it is likely to be closely associated

with Pb-Zn ore deposits (see Fig. 2) and deserves further investigation.

Eastern coastal areas (C1 and C2): Mixed and weakened relationships were observed
(Fig. 4d), with both significant positive and negative correlation scattered in these two
regions. Although both elevated values of Pb and Al clustered in these areas (see Fig.

3), the spatial pattens are not continuous, implying more complicated factors with a
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mixture of both natural (i.e., greywacke shale) and anthropogenic influences. The
spatial relationships between these two variables were interfered more by
anthropogenic inputs in the eastern urban areas (i.e., Belfast and Dublin) due to the
urbanisation level of Ireland. Extensive research has been conducted on the influence
of urban development on the elevated Pb concentrations (e.g., Zhang et al., 2008b;
Laidlaw et al., 2012; Appleton and Cave, 2018). Except for urbanisation, the
distribution of Pb in the topsoil of urban areas may also be related to traffic emission
(Johnson et al., 2017). The combustion of leaded gasoline can pollute soils and air
through vehicle emissions (Xu and Liao, 2004), and even pollute suburban soils
through long-distance transportation, which is the case of the blanket peatland in the
western areas of this study. Given that leaded petrol has been eliminated since 2000,
the enrichment of Pb may be attribute to the historical factors. Due to the large
bandwidth selected in this study, the weakened relationships by anthropogenic
interference cannot pass the significant test in the GWPCC, and thus displayed
scattered patterns. Moreover, the spatial patterns of large regional data sets are mainly
associated with the influences of natural factors, which is in line with the conclusions
of recent studies (e.g., Matschullat et al., 2018; Né&rel et al., 2018; Xu et al., 2019).

3.5 Limitations and future work

It should be acknowledged that it is hard to determine the specific pollution sources from

the spatial perspective, while the association with atmospheric deposition and

anthropogenic influence can be identified instead. For example, we have identified the

clear association between negative patterns and peat in the northern and western of Ireland,

which is the novelty point of this study by using GWPCC. However, this approach cannot

quantify the influencing factors such as atmospheric pollution in the surface peat. Most

studies used Pb isotopes to fingerprint the timeline of atmospheric pollution in the peatland
(e.g., Coggins et al., 2006; Allan et al., 2013; Rosca et al., 2018). But this deserves more

physico-chemical data and improvement of this approach in our future research.
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Additionally, some results cannot be fully interpreted and further investigation is needed.
For example, the positive patterns in the central western (county Galway) remain unclear
based on the current dataset. It should be noted that although much more spatial variation
can be revealed and be related to potential pollution sources at the smaller bandwidths (see
Fig. 4a, b), the explanation of these patterns may require a very large amount of work.
Therefore, we decided to focus on large and smooth patterns that identified using larger
bandwidth in this study. This is also one of the reasonable goals for using large-scale

regional datasets in environmental studies.

In this study, we only selected two elements for comparison, because Pb and Al have their
own representativeness. We acknowledge that investigations of all the influencing factors
and conventional multivariate relationships, in combination with the concept of spatially
varying relationships can be considered in future studies. Our results provided a
demonstration on application of spatial machine learning approach to explore the
relationships between environmental variables, and can be regarded as an effective method
to identify the spatial association between potential influencing factors and pollution. In
the big data era, it is promising and efficient to extract hidden geochemical information
from the spatial patterns, contributing to the improvement of environmental assessment

sustainable policy-making at the regional or even global scale.

4. Conclusion

This study investigated the spatially varying relationships between Pb and Al
concentrations in the soil of Ireland based on the current Tellus data sets. The results of
GWPCC technique found that the relationships between these two variables are spatially
varying, with both positive and negative correlations identified at the local level. Original
positive correlation was observed in central-western and midlands, while the ‘special’
negative correlation was clustered in the north-western and north-eastern of Ireland. The
comparatively mixed correlations were found in the eastern coastal areas. Clear association
between the significant negative correlations and blanket peat in the topsoil was identified,
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which can be attribute to atmospheric deposition of Pb from long-distance transportation.
Moreover, anthropogenic activities weakened the relationships in the eastern coastal areas.
Our findings highlighted the efficiency of spatial machine learning technique in identifying
the association between PTE distribution and potential pollution sources. Such new
findings are revealed by GWPCC technique, which is proved as a powerful approach in
investigating the spatially varying relationships and exploring the potential influencing

factors, and can be applied into environmental studies elsewhere.

145



Research paper

4.5 Exploration of spatially varying relationships between Pb and Al
in urban soils of London at the regional scale using geographically

weighted regression (GWR)

Yuan, Y.M., Cave, M., Xu, H.F., Zhang, C.S., 2020. Exploration of spatially varying
relationships between Pb and Al in urban soils of London at the regional scale using
geographically weighted regression (GWR). J. Hazard. Mater., 393, 122377.

Summary: This paper investigated the spatial relationships between Pb and Al
concentration in urban soils of London using GWR based on 6,467 samples collected by
British Geological Survey. The local regression coefficients of GWR revealed that the
relationships between Pb and Al were spatially varying, with different relationships in
different areas. The strong negative relationships were found in north-eastern and northern
areas, while weak negative relationships were clustered in central areas. The association
between positive patterns and large parklands and greenspaces were found in the south-
eastern and south-western areas, where the natural geochemical signatures were reserved
due to less influences from anthropogenic activities. On the contrary, the ‘special’ negative
relationship indicated the association with the impact of anthropogenic activities on Pb
concentration, such as road traffic, industry activities and construction. Such results
demonstrated the efficiency of GWR in revealing the spatially varying relationships
between environmental variables, which provides better understanding of the complicated

influencing factors in environmental studies.

My contribution in this paper accounted for ~20% in exploring data and writing-

reviewing manuscript.
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1. Introduction

Heavy metals are important chemical components in soils. For the
health of humans and plants, some heavy metals such as Pb, Cd and Hg
belong to the non-essential elements (De Miguel et al., 1998; Kabata-
Pendias, 2004), which are considered as contaminants because of their
toxicity and difficulty in degradation (Zhang et al., 2012). In natural
conditions, concentrations of geochemical elements in soils are affected
by parent materials (Alloway, 1995; De Temmerman et al., 2003;
Aelion et al., 2009; Ballesta et al., 2010; Cai et al., 2010), as a result of
geological and pedologic processes that rule soil formation (A.
Castrignano et al., 2000). In urban areas, additional sources of het-
erogeneity are caused by anthropogenic activities. Moreover, due to the
complex and heterogeneous nature of urban soils, the spatial distribu-
tion of geochemical elements is affected by multiple factors (Franco-
Uria et al., 2009; Qishlaqi et al., 2009; Yang et al., 2009; Martin et al.,
2013), resulting in different relationships among them in different lo-
cations (Zhang et al., 2007; Lv et al., 2013). Therefore, it is necessary to
find an efficient way to reveal such spatially varying relationships be-
tween geochemical elements in urban soils across local areas, which
would be helpful to better understand the complicated relationships in
urban geochemistry as well as to reveal their association with influ-
encing factors.

The traditional statistical methods, such as correlation analysis and
ordinary least square (OLS) regression, produce ‘average’ or ‘global’
parameters to estimate the spatial relationships (Ali et al., 2007), which
are reflected equally over the whole study area. Therefore, the impacts
of local variations could be hidden (Bacha, 2003; Batisani and Yarnal,
2009; Geri et al., 2010). In light of this, an important contribution of
geographically weighted regression (GWR) is to build regression models
to explore how one dependent variable changes in response to one or
more independent variables at the local scale (McMillen, 1996;
Fotheringham et al., 1998; Leung et al., 2000a; Yu and Wu, 2004; Deller
and Lledo, 2007; Waller et al., 2007). The GWR model takes the sam-
ples within a defined neighbourhood into calculation by giving more
weights to nearby samples than those further away (Wheeler and
Calder, 2007; Zhang et al., 2011). The GWR results depend on the
observations that are in close proximity to the subject point, so they
reveal the relationships within the neighbourhood (Fotheringham et al.,
2002; Foody, 2004; Bickford and Laffan, 2006). Thus, the GWR can be
used to explore the spatially varying relationships between variables
(Tu, 2011).

Among heavy metals, of particular interest is the spatial variation of
Pb in urban soils, not only because it contains toxicity, but also it can be
strongly influenced by human activities. For example, industrial dis-
charges (Mattuck and Nikolaidis, 1996; Aelion et al., 2009), vehicle
emissions (Sansalone and Buchberger, 1997) and construction are
considered as the major influencing factors of Pb in urban soils (De
Temmerman et al., 2003; Zhang, 2006; Delbecque and Verdoodt, 2016;
Wu et al., 2019). In addition, previous studies widely reported the
elevated concentrations of Pb in soils influenced by human activities
including traffic, especially in the urbanized and industrialized areas
(Zheng et al., 2002; Madrid et al., 2002; Qin, 2008; Zhang et al., 2011;
Sayyed and Sayadi, 2011; Raju et al., 2013; Su, 2014). Zhang et al.
(2008) indicated that the spatial distribution of Pb in the urban soil of
Galway was related to traffic pollution (Zhang, 2006) and historical
rubbish dumping (Carr et al., 2008). To date, the use of Pb gasoline for
vehicles has declined in many countries, while the concentrations of Pb
in urban soils remain a concern because the anthropogenic sources of
Pb are particularly dense in the urban environment (Clark et al., 2006;
Rawlins et al., 2012). Despite other potential toxic elements could also
be interesting for investigation, this study focuses on Pb, which could
be helpful for us to seek the links with the influencing factors.

In this study, the GWR was applied to explore the spatially varying
relationships between Pb and Al in urban soils of London. The chemical
element Al was chosen as the independent variable for the dependent

Journal of Hazardous Materials 393 (2020) 122377

variable of Pb. The reason why Al was chosen was because not only it
has been commonly used as a reference element of lithogenic origin in
multivariate statistical analyses, but also it shares similar features as Pb
under the natural environment where they are strongly bound by fine-
particles of clay minerals (Spark, 2010). However, this positive corre-
lation may be disturbed or changed by anthropogenic influences, as Pb
is strongly influenced by human activities. Another element Ti was
chosen as the dependent variable of Al for comparison. The element Ti
and Al have been frequently used as reference elements, as they are
components of minerals resistant to chemical weathering, and they are
less affected by anthropogenic factors (Sezgin et al., 2003; Tylmann,
2004). The relationship between these conservative elements is ex-
pected to be less spatially variable, providing a good comparison with
that between Pb and Al

The objectives of this study were: (1) to reveal the spatially varying
relationships between Pb and Al in London soils at the regional scale;
(2) to investigate the effects of different bandwidths on the results of
GWR for the purpose of identifying spatial patterns of the spatially
varying relationships; and (3) to explore the associations between the
spatially varying relationships and the related influencing factors.

2. Methods
2.1. Geology and soil geochemistry data

The bedrock geology of the Greater London Authority (GLA) showed
a wide range of Cretaceous and Palaeogene bedrocks in the north and
south areas (Miles and Appleton, 2005; British Geological Survey,
2011) (Fig. 1). Palaeogene bedrocks in the north area were composed of
the Bagshot Formation, Thames Group (clay), Lambeth and Thanet sand
Formation. The White chalk, Grey Chalk and Thanet Group (sand) be-
longing to Cretaceous deposits were found in the south area. Qua-
ternary superficial deposits occurred in the central area with the most
extensive alluvium, river terrace deposits and brickearth. Relatively
small patches of Clay-with-flints and Head (clay-silt) were found in the
south area.

In the GLA study area, a total of 6467 topsoil samples were collected
on a grid system by British Geology Survey at a density of 4 samples per
km? Each composite sample was obtained by collecting 5 subsamples
from the centre and corners of a 20 m square at each sampling site. Top-
soil samples were collected at a depth of 0—20cm, after removal of
surface vegetation, litter and rootlet zone (usually < 5cm). The nom-
inal sampling depth is therefore 5—20 cm (Johnson, 2005). Analyses
were performed for total concentrations of 48 elements by X-ray
fluorescence spectrometry (XRFS) and for loss on ignition (LOI at
450 °C) and pH. Detailed information for sampling and quality control
is available in Allen et al. (2011) and Johnson (2011).

2.2. Land use data

The land use data used in this study is the GLUD 2005 obtained from
the website of the London Data store (http://data.london.gov.uk/). Five
simplified land use classes: farm-land, industry, greenspace, built-up
and others were generated using ArcGIS® software (Fig. S1).

2.3. Geographically weighted regression

The GWR reveals the spatially varying relationships between the
dependent and independent variables, and a set of location specific
parameter estimates. Based on Fotheringham et al. (2002), the GWR
model with one independent variable can be expressed as:

yi = Bo (upvi) + Pr (wpvidx; +e;

Where u; and v; are the coordinates of the i location, and f, (u,,) is the
local intercept for i location, B1 (uvy) is the estimated local regression
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Fig. 1. Geology map of the London region.

coefficient for the i location and ¢; is the random error at the i’ lo-
cation. As data included in the calculation are geographically weighted,
the local intercepts and local regression coefficients are different at
different locations, which is different from OLS where these parameters
remain the same for the whole dataset. The parameters are estimated
from:

B v = X'W (u,v) X) 7' XTW (v Y,

Where B (u;v;) represents the unbiased estimate of f, W (u;vy) is the
weighting matrix which acts to ensure that observations near the spe-
cific point have larger weighting values.

Before using GWR technology, some issues need to be considered.
For example, Mei et al. (2016) pointed out that the excessive flexibility
of GWR's calibration method may lead to spurious spatially varying
relationships or even reverse the correlation between variables. In ad-
dition, multiple collinearity of independent variables may lead to strong
correlations (Pdez et al., 2011). However, in this paper, using only Pb as
the dependent variable and Al as the independent variable can effec-
tively avoid the above problems. One issue to be discussed in this paper
is the choice of bandwidth, which is the key controlling parameter for
GWR results (Guo et al., 2008; Gao and Li, 2011). In practice, the
bandwidth is the key controlling parameter for GWR results (Guo et al.,
2008; Gao and Li, 2011). The process of choosing the weighting matrix
is important to predetermine an optimum bandwidth. The optimal
bandwidth for GWR was determined by minimizing some model fit
diagnostic, such as cross-validation (CV) score (Bowman, 1984) or the
Akaike Information Criterion (AIC) (Akaike, 1973. Considering the soil

sampling sites on a generally regular grid, in order to calibrate the
spatial weighting function and determine the optimal bandwidth for the
models used in this study, both AIC and fixed distance bands ranging
from 1000 to 50,000 m were applied for comparison. Considering that
the results of local regression coefficients only represent the slop
coefficients Gao and Li, 2011), a local correlation coefficient (r;) was
calculated to reveal the correlation between the dependent variable
(Pb) and independent variable (Al). The formula can be expressed as:

no= VR x PLELWD fa i iy

Where R is one of the local deterministic coefficient R* from GWR
model, indicating how strong the two variables correlate with each
other linearly, and 1 (ui, vi) is the local regression coefficient (Yu,
2006; Clement et al, 2009). The local correlation coefficient is
equivalent to Geographically Weighted Pearson Correlation (GWPCC),
which is based on the concept of local statistics (Kalogirou, 2014).

2.4. Data transformation and computer software

A normal score transformation was applied to the data for GWR
analyses due to the non-normality and skewness problem of the raw
data (Zhang et al., 2008a). All maps were produced using ArcGIS
(ver.10.4) software. The conventional statistical analyses were carried
out using SPSS (ver. 21.0).

Table 1

Basic statistics of Pb and Al concentrations in urban soils of London (Al: in %, Pb: in mg/kg).
Element Min 10 % 25% Median 90 % 95 % Max Avg StdDev
Pb 10.8 60.9 97.3 180.1 606.2 857.1 10000 295.6 430.4
Al 0.4 2.6 32 4.0 6.3 6.9 1 4.2 1.5
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3. Results and discussions
3.1. Basic statistics for Pb and Al concentrations in London soils

The basic statistics for Pb and Al concentrations in urban soils of
GLA are listed in Table 1. The 90™ percentile of Pb 606 mg/kg had
exceeded the provisional Category 4 Screening Levels for lead (pC4SL,
130—-330 mg/kg for residential area SP1010, 2014. The large differ-
ence between the percentiles implied that there were strong variation
and heterogeneity of Pb concentrations in soils over the study area,
with the range from 10.8 mg/kg to 10,000 mg/kg. Meanwhile, the
mean value for Pb was significantly much higher than the median,

The high values of Pb in the central areas may be associated with the
high traffic volume, especially in the central area where is highly ur-
banized with an extensive road network. In order to investigate the
influences of traffic on Pb concentration, the road buffer zones
(0—50m, 50100 m, 200 —400 m, 400 — 600 m) were generated using
the buffer tool in ArcGIS, according to the major roads of London
downloaded from Geofabrik (2016) (Fig. 3). Sites closer to major roads
had higher Pb concentrations, and the reduction is up to 65 % if the
distance is 500m away from the road (Fig. 3). These results are in
agreement with previous studies showing that the concentrations of Pb
in soils increased with traffic volume while decreased with the distance
from the roads (Thorpe and Harrison, 2008; Pant and Harrison, 2013;
Wang et al., 2017). Moreover, Appleton and Cave (2018) reported that
the bombing of UK increased Pb and other heavy metals spread on the
soils and deposition of airborne particulates during the period 1940-41.
In residential areas across the UK, Pb concentrations in domestic garden
soils were consistently higher than those in soils of public parks
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g 50,000 m, respectively.

(Thornton et al., 1990), indicating that the historical construction as
well as lead-based paints were also likely to be contributory factors
(Milke et al., 2001).

Another important influencing factor is industry. Relatively high Pb
concentrations were also associated with the impact of industrial de-
velopment especially in the Thames and Lee valleys. There was a de-
creasing trend in Pb concentration with the increase of distance away
from the nearest industrial sites within 2000 m. Beyond this distance,
Pb concentration remained stable (Fig. 4). Elevated Pb concentrations
were also associated with other industrial activities such as landfill,
metal recycling and transport functions. On the other hand, relatively
low values were found over the major parks, with little impact from the
significant urban development throughout the 200-300 years history of
London (Knights and Scheib, 2011; Scheib et al., 2011; Appleton and
Cave, 2018). High concentrations of Al were observed in the topsoil of
north London where London clay was the dominant soil parent

material, while low concentration was found in the central and south
areas, which are associated with the Alluvium, River terrace deposits,
Plateau Gravels and Chalk (Fig. 1).

3.3. Effects of bandwidth

To investigate the effects of different bandwidths on the GWR re-
sults, the AIC and six bandwidths ranging from 1000 m to 50,000 m
were considered Fig. 5). The AIC was first selected because it can ef-
fectively find the “optimal” bandwidth in GWR model. A number of
scattered patterns were observed in the whole study area when the AIC
method was chosen (Fig. 5a). Compared with the results from AIC,
when the shortest bandwidth of 1000 m was used (Fig. 5b, the spatial
patterns of GWR results were discovered at local level with a large
number of small scattered patterns, showing more details of spatial
variation. When the bandwidth increased to 3000 m, some small
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Fig. 5. (continued)
scattered patterns in the north area disappeared. These small scattered increased from 5000 m to 50,000 m, showing similar and consistent

patterns were merged in several large patterns near the city centre. The spatial patterns for the 4 bandwidths Fig. 5c, d, e, f and g. With the
patterns became much simpler and clearer when the bandwidth longest bandwidth of 50,000 m used in this study, most details of local
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spatial variation disappeared. Comparisons of R? and AIC. between the
AIC and six bandwidths are displayed in Table S1. In order to further
test whether the reasonable bandwidth have better performance than
the others, the assessment was performed by comparing the R and the
AlCc values from both AIC and six bandwidths, together with con-
sideration of the spatial patterns of the GWR results. The R? values of
the GWR models with the AIC, 1000 m, 3000 m and 5000 m bandwidths
were all higher than those with longer bandwidths, with their AICc
values showing an opposite trend, demonstrating that the GWR models
with short bandwidths performed better in modelling the relationships
between Pb and Al (Huang et al., 2017). However, the short bandwidths
revealed more details of spatial variation making it hard to identify the
large-scale patterns. The moderate bandwidth of 5000 m appears to be
a compromised choice among all the bandwidth parameters tested,
with relatively high R? low AICc while clearly depicting the large-scale
patterns of the underlying spatially varying relationships in the study
area, with fewer small scattered patterns. Our interpretation to the

results will focus on this bandwidth.

N

ially varying relati ip

3.4. Sp Pb and Al revealed by GWR
3.4.1. Local regression coefficients and local R

The variation of local regression coefficients for the independent
variable Al and the spatial patterns of local R? are already shown in
Fig. 5. The local regression coefficients are the slope values showing
how strongly the changes of the explanatory variable Al impacts the
value of the dependent variable Pb locally. Both positive and negative
local regression coefficients were found, demonstrating the existence of
both positive and negative correlations between Pb and Al in London
soils at the local scale.

Negative regression coefficients were located in the north part of
London, varying from -0.05 to -0.6. A clear directional feature was
observed extending in the west-east direction. The high absolute values
of regression coefficients indicated that Pb concentrations changed
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Fig. 8. The spatial distribution of local correlation coefficients (r;) between (1) Pb and Ti; (2) Ti and Al

more rapidly with the change of the Al in the north edge area. The
decreasing trend of the absolute values of regression coefficients to-
wards central London showed the slower changes of Pb with the change
of Al. Some interesting positive local relationships with Al were iden-
tified in southeast and southwest part of the London. Relatively high
regression coefficients (0.1-0.3) were found in large greenspace areas
and low regression coefficients (0-0.1) were shown around in some
built-up areas (see Fig. S1), indicating the relatively more rapid changes
of the values Pb in large greenspace areas than those in the built-up
areas.

The relatively high values of local R? were located in the north area,
indicating that the local linear regression model performed well in this
area. In central London and the south area, the local R? were generally
low, implying the linear relationships between Pb and Al were weaker
in these areas, and thus the variation in Al values explained a smaller
percentage of the variation in Pb. These areas were more affected by
human activities. There were three areas with relatively higher R? va-
lues in the southeast, southwest and the centre, respectively. These
areas are line with the locations of large parks and greenspace, which
are relatively less interfered by anthropogenic activities which are
highly spatially variable.

3.4.2. Local correlation coefficient (r;)

For the convenience of exploration of the spatially varying re-
lationships between Pb and Al in this study, the local results from GWR
for the dependent variable Pb were used to calculate local correlation
coefficients (). The spatially varying relationships between Pb and Al
in London soils were clearly revealed by the local correlation coeffi-
cients and its significance levels (Figs. 6 and 7), showing strong nega-
tive correlations in the northeast and north area, strong positive cor-
relations in two areas in southwest and southeast, while relatively weak
correlations in central London, except for a small area in the city centre
with strong positive correlations.

1) Northeast and north area (Area A): The strong negative correlations
(p < 0.01) in the northeast area extended from northeast to the
north (Figs. 6 and 7). This is in line with the spatial distribution
patterns of Pb and Al (Fig. 2): high values of Al were located in the
north side, with a decreasing trend towards central London, while
high values of Pb were distributed in central London, with a de-
creasing trend towards the north (including northeast and north-
west). The spatial variations of the two elements were in clearly
opposite directions, resulting in their strong negative correlations in
this area. The high values of Pb in central London could be related to
human activities including industries, traffic and construction. On
the other hand, under natural conditions, Al concentrations were

controlled by geology, with high values in line with the distribution
of Thames Gp (clay) in the north area. This result was supported by
the strongly positive correlations between Ti and Al in the whole
study (see Fig. 8).

2) Two areas in southeast and southwest (Areas Bl and B2): Strong
positive correlations (p < 0.01) were found in two areas of south-
east and southwest London, respectively (Figs. 6 and 7). Clear spa-
tial patterns of both low value of Pb and Al could be identified in
these two areas from the Fig. 2, with a generally increasing trend in
their surrounding areas. The consistent spatial distribution patterns
for the two elements resulted in their positive correlations in these
two areas. This result was related to the distributions of parent
materials (PMs) and parklands. Both low value of Pb and Al was
presented in top-soil samples overlying Alluvium, River Terrace
Deposits, Thanet Sand Formation as well as White Chalk containing
a large number of quartzite clasts and gravelly-sand PMs with larger
particle sizes (Figs. 1 and 2). It is well known that the adsorption
properties of sand soils to metals are weak due to the presence of
high silicate in quartzite clasts and gravelly-sand parent materials
(Kern, 1994; Homann et al., 1998), which contribute to both low Pb
and low Al values. Moreover, the large parks and greenspace areas
may also play a role in relatively low concentrations of both Pb and
Al, especially the sandy Richmond Park in the south-west as well as
Greenwich Park and Blackheath in the southeast of London. These
areas were less influenced by anthropogenic activities which had
been historically protected for the past 200-300 years.

3) Central London (Area C): The weak correlations (p > 0.05) be-
tween Pb and Al were observed in soils of central London, with
obviously high and strongly variable Pb values and low and strongly
variable Al values (Fig. 2). As mentioned before, Al concentrations
tended to be high in clay-rich PMs while low in Alluvium, River
Terrace Deposits, which were associated with gravels and sandy
PMs. Except for the north London with high Al values, the spatial
distribution of Al in central London were generally low and variable.
On the other hand, Pb concentrations in central London were
strongly affected by the anthropogenic activities with elevated va-
lues. Compared with geology, the elevated Pb values were spatially
random, mixed and complicated. Therefore, the correlations be-
tween Pb and Al were interfered and weakened in central London by
anthropogenic activities in general.

4) A small area in City Centre (Area D): Strong positive correlations
(p < 0.01) were observed in a small area in central London (Figs. 6
and 7). The spatial pattern of both relatively low Pb and Al values
can be identified in this area, with the increasing values in their
surrounding areas. The spatial variations of the two elements were
in the same direction, resulting in their strong positive correlations
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in this area. As mentioned before, the low value of Al in central
London could be related to the Alluvium and River Terrace Deposits,
while the relatively low values of Pb could be related to small
parklands (i.e. The Vitoria park and Queen Elizabeth Olympic park)
as the soils of these parklands had retained a more natural geo-
chemical signature than the surrounding built-up areas over the
same PMs.

3.4.3. Comparison between spatial relationships of Pb-Al with those of Pb-Ti
and Ti-Al

Our hypothesis is that if Pb were not affected by human activities,
the relationships between Pb and Al should be generally similar to those
between Ti and Al. Therefore, we used the spatial patterns of correla-
tion between Ti and Al to “mimic” the natural relationships between Pb
and Al assuming Pb concentrations were not affected by human activ-
ities. This approach will be helpful for us to establish the links between
the spatially varying correlations between Pb and Al and the influen-
cing factors. In addition to the spatial distribution map of local corre-
lation coefficients between Pb and Al (Fig. 6), such a map for Ti and Al
was also produced, together with the map for Pb and Ti for further
comparison (Fig. 8). As expected, the correlations between Ti and Al
were much less spatially variable, with all the local correlation coeffi-
cients being high and positive. Such a result conforms the strong an-
thropogenic influences on Pb, making the correlations between Pb and
Al spatially variable. Furthermore, the spatially varying relationships
between Pb and Ti demonstrated the same spatial patterns as those
between Pb and Al, e.g., Pb still exhibited the negative correlation with
Ti in the northeast and north areas and weak correlations in centre of
London, and relatively strong positive correlations were still observed
in southeast and southwest areas. Such results further conformed the
strong anthropogenic influences on Pb.

In order to further explore the spatially varying relationships,
scatter plots between Pb and Al, and Ti and Al were produced (Fig. 9).
All samples and three groups of soil samples were arbitrarily selected
based on the location from positive correlation, weak correlation and
negative correlation areas between Pb and Al (Fig. S2). As expected,
strong positive correlations between Ti and Al existed in all samples and
all the three groups, implying that their relationships were generally
spatially “invariable”. In contrast, Pb exhibited the generally positive,
negative and weak correlations with Al in the positive, negative, and
weak correlation groups, respectively. Due to the complicated factors,
the positive and negative relationships between Pb and Al on the scatter
plots were still quite weak. This is in contrast to very good linear cor-
relations between Ti and Al for all the samples and groups. The overall
results confirm that anthropogenic factors had great impact on the
concentration of Pb in the highly urbanized central areas, causing
varied correlations between Pb and the conservative element Al

GWR provides a useful way to explore the spatially varying re-
lationships among environmental parameters, showing a promising
approach to investigate the complex relationships at the local level
which are useful for improved soil management. It needs to be noted
that the concept of “spatially varying relationship” is different from
scale effect and not caused by scale effect. It is the local variation re-
lated to varying influences of factors at the local level: At different lo-
cations, the relationship is different. Specifically, in this paper, the
generally positive relationship between Pb and Al under natural con-
ditions can be interfered and even changed to the negative relationship
which is related to the influences of human factors. Such relationships
remain similar with the changes of scales, e.g., the changes of distance
band tested in this study. The similar patterns of local coefficients for
different distance band were observed in Fig. 5. Therefore, the varying
relationship is indeed different from scale effect. The scale effort mainly
affects the details of the patterns, not the overall patterns of the result of
spatially varying relationship.

It is also necessary to clarify that the edge effect for such a large
number of samples in this study is minimal. The high local R? values
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with negative correlation between Pb and Al are located in the northern
border area, which are caused by the elevated values of Pb closer to the
city centre side. Such a result is obviously affected by human factors.
The higher local R? exists throughout the study area, not only in the
border areas. These results are expected to remain when the study area
is expanded further north, outside the Greater London Area. This could
be tested in our future studies when a larger study area is considered.

4. Conclusions

The relationships between Pb and Al in urban London soils were
spatially varying, which have not been revealed before. The strong
negative relationships between Pb and Al were found in the northeast
and north areas and weak relationships were located in central areas,
associated with the impact of strong anthropogenic activities on Pb
concentration. Road traffic, industry activities and construction in
centre of London may be linked to the weakened or changed direction
of relationship from positive to negative correlations. The positive re-
lationships between Pb and Al were found in two areas of southeast and
southwest and a small area in central London, which were associated
with large parklands and greenspaces areas with less influences by
anthropogenic activities and natural geochemical signature retained.
Such new findings are important for a better understanding of the
complicated relationships in urban geochemistry, especially with strong
human activities which are strongly spatially variable. The new finding
of “spatially varying relationship” between Pb and Al in urban soils of
London is important to achieve a better understanding of the compli-
cated relationships in urban geochemistry, which is useful to seek the
links with the influencing factors. The newly revealed negative corre-
lation between Pb and Al provides new insight to the existing knowl-
edge. It was achieved through the GWR technology, proving that GWR
is an effective tool. in identifying the spatially varying relationships of
the research objects, thereby revealing the hidden spatial distribution
patterns. It should be noted that the GWR method has only revealed the
spatially varying patterns of geochemistry elements in the urban area,
implying the spatial associations with influences factors. The causal
effects of heavy metals contamination still require more detailed in-
vestigations.

Acknowledgement

This study is supported by the Royal Society International Exchange
Scheme of the UK (IE141447) (2015-2017). The soil data used in this
study were provided by the British Geological Survey from the London
Earth Project.
Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.jhazmat.2020.122377.

References

Aelion, C.M., Davis, H.T., McDermott, S., Lawson, A.B., 2009. Soil metal concentrations
and toxicity: associations with distances to industrial facilities and implications for
human health. Sci. Total Environ. 407, 2216-2223.

Akaike, H., 1973. Information Theory and an Extension of the Maximum Likelihood Prin-

Selected papers of Hirotugu Akaike, pp. 199-213,

Ali, K., Partridge, M.D., Olfert, M.R., 2007. Can geographically weighted regressions
improve regional analysis and policy making? Int. Reg. Sci. Rev. 30 (3), 300-311.

Allen, M.A., Cave, M.R., Chenery, S.R.N., Gowing, C.J.B., Reeder, S., 2011. Sample
Preparation and Inorganic Analysis for Urban Geochemical Survey Soil and Sediment
Samples. Mapping the Chemical Environment of Urban Areas. Wiley, pp. 28-46.

Alloway ., 1995. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their
Bioavailability. Academic & Professional, Blackie.

Appleton, J.D., Cave, M.R., 2018. Variation in soil chemistry related to different classes
and eras of urbanisation in the London area. Appl. Geochem. 90, 13-24.

Bacha, C.J.C., 2003. The determinants of reforestation in Brazil. Appl. Econ. 35, 631-639.

Ballesta, R.J., Bueno, P.C., Rubf, J.A.M., Giménez, R.G., 2010. Pedo-geochemical baseline

156



Research paper

Y. Yuan, et al.

content levels and soil quality reference values of trace elements in soils from the
Mediterranean (Castilla La Mancha, Spain). Cent. Eur. J. Geosci. 2, 441-454.
Batisani, N., Yarnal, B., 2009. Urban expansion in Centre County, Pennsylvania: spatial
dy ics and land ions. Appl. Geogr. 29, 235-249.
Bickford, S.A., Laffan, S.W., 2006. Multi-extent analysis of the relationship between
pteridophyte species richness and climate. Glob. Ecol. Biogeogr. 15, 588-601.
Bowman, A., 1984. An alternative method of ¢ lidation for the hing of density
estimates. Biometrika 71, 353-360.
British Geological Survey, 2011. British Geological Survey Official Website. Availabl

Journal of Hazardous Materials 393 (2020) 122377

Mei, C.L., Xu, M., Wang, N., 2016. A bootstrap test for constant coefficients in geo-
graphically weighted regression models. Int. J. Geogr. Inf. Sci. 30 (8), 1622-1643.

Miles, J.C.H., Appleton, J.D., 2005. Mapping variation in radon potential both between
and within geological units. J. Radiol. Prot. 25, 257-276.

Milke, R., Wiedenbeck, M., Heinrich, W., 2001. Grain boundary diffusion of Si, Mg, and O
in enstatite reaction rims: a SIMS study using isotopically doped reactands. Contrib.
Mineral. Petrol. 142, 15-26.

Péez, A Farber, S., Wheeler, D.C., 2011. A simulation-based study of hically

online at:. http://www.bgs.ac.uk/gbase/londonearth.html/.
Cai, L., Huang, L., Zhou, Y., Xu, Z., Peng, X,, Yao, L., Peng, P., 2010. Heavy metal con-
of Itural soils and bles from Dongguan, Guangdong. J.

GEOGR. SCIL 20, 121-134.

Carr, R., Zhang, C.S., Moles, N., Harder, M., 2008. Identification and mapping of heavy
metal pollution in soils of a sports ground in Galway City, Ireland, using a portable
XRF analyser and GIS. Environ. Geochem. Health 30 (1), 45-52.

Castrignano, A., Giugliarini, L., Risaliti, R., Martinelli, N., 2000. Study of spatial re-
lationships among some soil physico-chemical properties of a field in central Italy
using multivariate geostatistics. Geoderma 97, 39-60.

Clark, H.F., Brabander, D.J., Erdil, R.M., 2006. Sources, sinks, and exposure pathways of
lead in urban garden soil. J. Environ. Qual. 35, 2066-2074.

Clement, F., Orange, D., Williams, M., Mulley, C., Epprecht, M., 2009. Drivers of affor-
estation in Northern Vietnam: assessing local variations using geographically
weighted regression. Appl. Geogr. 29, 561-576.

De Miguel, E., De Grado, M.J., Llamas, J.F., Martin-Dorado, A., Mazadiego, L.F., 1998.
‘The overlooked contribution of compost application to the trace element load in the
urban soil of Madrid (Spain). Sci. Total Environ. 215, 113-122,

De Temmerman, L., Vanongeval, L., Boon, W., Hoenig, M., Geypens, M., 2003. Heavy
metal content of arable soils in northern Belgium. Water Air Soil Pollut. 148, 61-76.

Delbecque, N., Verdoodt, A., 2016. Spatial patterns of heavy metal contamination by
urbanization. J. Environ. Qual. 45, 9-17.

Deller, S.C., Lledo, V., 2007. Amenities and rural Appalachian growth. Agric. Resour.
Econ. Rev. 36, 107-132.

Foody, G.M., 2004. Spatial ity and scal, in the
between species richness and environmental delermlnants for the sub-Saharan en-
demic avifauna. Glob. Ecol. Biogeogr. 13, 315-320.

Fotheringham, A., Brunsdon, C., Charlton, M., 1998. Geographically weigh
a natural evolution of the expansion method for spatial data ana]ysls Envimn Plan.
A 30, 1905-1927.

Fotheringham, A.S., Brunsdon, C.A., Charlton, M.E., 2002. Geographically Weighted
Regression: the Analysis of Spatially Varying Relationships. John Wiley & Sons, New
York.

Franco-Uria, A., Lopez-Mateo, C., Roca, E., Fernandez-Marcos, M.L., 2009. Source iden-
tification of heavy metals in pastureland by multivariate analysis in NW Spain. J.
Hazard. Mater. 165, 1008-1015.

Gao,J Li, S., 2011. Detecting spatially y and scale-dep

urban land and related factors using geographlcal.ly
weighted regression. Appl Geogr. 31, 292-302.

Geofabrik, 2016. Geofabrik Official Website. Available online at: (Accessed 15 May.18).
http://download.geofabrik.de/europe/great-britain/england/greaterlondon.html.

Geri, F., Amici, V., Rocchini, D., 2010. Human activity impact on the heterogeneity of a
Mediterranean landscape. Appl. Geogr. 30, 370-379.

Guo, L., Ma, Z. Zhang, L. 2008 Comparison of bandwidth selection in application of

ion: a case study. Can. J. For Res 38, 2526-2534.

Huang, Y.P., Yuan, M., Lu, Y.P.. 2017. ially varying i surface
urban heat islands and driving factors across cities in China. Urban Analytics and City
Science. 46 (2), 377-394.

Johnson, C.C., 2005. 2005 G-BASE Field Procedures Manual. British Geological Survey.
Internal Report No. IR/05/097, Keyworth, UK.

Johnson, C.C., 2011. Understanding the Quality of Chemical Data From the Urban
Environment E Part 1: Quality Control Procedures. Mapping the Chemical
Environment of Urban Areas. Wiley, pp. 61-76.

Kabata-Pendias, A., 2004. Soil-plant transfer of trace elements—an environmental issue.
Geoderma 122, 143-149.

logi S., 2014. A spatially varying relationship b the proportion of foreign
citizens and income at local authorities in Greece. Proceedings of the 10th
International Congress of the Hellenic Geographical Society 1458-1466 5.

Knights, K., Scheib, C., 2011. Examining the Soil Chemistry of London’s Parklands.
Applied Geoscience for Decision-making in London and the Thames Basin,

London, UK.

Leung, Y., Mei, C., Zhang, W., 2000a Statistical tests for spatial nonstationary based on
the geog model. Environ, Plan. A 32, 9-32.

v, J., Llu Y., Zhang, Z., Dal J., 2013. Factorial kriging and stepwise regression approach
to identify | factors i spatial multi-scale variability of heavy
metals in soils. J. Hazard. Mater. 261, 387-397.

Madrid, L., Diaz-Barrientos, E., Madrid, F., 2002, Distribution of heavy metal contents of
urban soils in parks of Seville. Chemosphere. 49, 1301-1308.

Martin, J.A.R., Ramos-Miras, J.J., Boluda, R., Gil, C., 2013. Spatial relations of heavy
metals in arable and greenhouse soils of a Mediterranean environment region
(Spain). Geoderma 200, 180-188.

Mattuck, R., Nikolaidis, N.P., 1996. Chromium mobility in freshwater wetlands. J.
Contam. Hydrol. 23, 213-232.

McMillen, D.P., 1996. One hundred fifty years of land values in Chicago: a nonparametric
approach. J. Urban Econ. 40, 100-124,

as a method for investigating spatially varying relationships.
FJ1V|ron Plann A. 43 (12), 2992-3010.

Pant, P., Harrison, R.M., 2013. Estimation of the contribution of road traffic emissions to
particulate matter concentrations from field measurements: a review. Atmos.
Environ. 77, 78-97.

Qin, Y.S., 2008. Study on the infl ibined poll of heavy metals Cu and Pb
on soil respiration. Journal of Anhul Agncu.lru.ral Sciences. 36 (3), 1117.

Qishlagi, A., Moore, F., Forghani, G., 2009. Characterization of metal pollution in soils
under two land use patterns in the Angouran region, NW Iran; a study based on
multivariate data analysis. J. Hazard. Mater. 172, 374-384.

Raju, K.V., Somashekar, R.K., Prakash, K.L., 2013. Spatio-temporal variation of heavy
metals in Cauvery River basin. Proc. Int. Acad. Ecol. Environ. Sci. 3 (1), 59-75.
Rawlins, B.G., McGrath, S.P., Scheib, A.J., Breward, N., Cave, M., Lister, T.R., Ingham, M.,
Gowing, C., Carter, S., 2012. The Advanced Soil Geochemical Atlas of England and

Wales. British Geological Survey, Keyworth, Nottingham.

Sansalone, J.J., Buchberger, S.G., 1997. Partitioning and first flush of metals in urban
roadway storm water. J. Environ. Eng. 123, 134-143.

Sayyed, M.R.G., Sayadi, M.H., 2011. Variations in the heavy metal accumulations within
the surface soils from the Chitgar industrial area of Tehran. Proc. Int. Acad. Ecol.
Environ. Sci. 1 (1), 36.

Scheib, A., Flight, D., Lister, B., Scheib, C., 2011. London earth: anthropogenic and
geologmal controls on the soil chemistry of the UK's largesl city. In: 25th
International Applied Geochemistry i Finland. pp. 22-26.

Sezgin, N., Ozcan, H.K., Demir, G., Nemlmglu. S., Bayat, C., 2003, Determination of heavy
metal concentrations in street dusts in Istanbul E-5 highway. Environ. Int. 29,
979-985.

Spark, D.L., 2010. Environmental surfaces and interfaces from the nanoscale to the global
scale. J. Environ. Qual.

Su, C., 2014, A review on heavy metal in the soil
impact and ii h | Skeptics and Critics. 3 (2), 24.

Thornton, 1., Davies, D.J.A., Watt, J M., Quinn, M.J., 1990. Lead exposure in young
children from dust and soil in the United Kingdom. Environ. Health Perspect. 89,
55-60.

Thorpe, A., Harrison, R.M., 2008. Sources and properties of non-exhaust particulate
matter from road trafﬁc a review. Sc1 Total Environ. 400, 270-282.

Tu, J., 201] iall varymg lationships b land use and water quality across an

plored by ically weig gression. Appl. Geogr.

ion

31, 376-392.

Tylmann, W., 2004. Heavy metals in recent lake sediments as an indicator of 20" century
pollution: case study on lake Jesien. Limnol. Rev. 4, 261-268.

Waller, L., Zhu, L., Gotway, C., Gorman, D., Gruenewald, P., 2007. Quantifying geo-
graphic variations in associations between alcohol distribution and violence: a
comparison of geog! h ion and sp: varying coefficient
models. Stoch. Envnron Res. Rlsk Assess. 21, 573-588.

Wang, G., Zeng, C., Zhang, F., Zhang, Y., Scott, C.A., Yan, X., 2017. Traffic-related trace
elements in soils along six highway segments on the Tibetan Plateau: influence fac-
tors and spatial variation. Sci. Total Environ. 811-821.

Wheeler, D.C., Calder, C.A., 2007. An assessment of coefficient accuracy in linear re-
gression models with spatially varying coefficients. J. Geogr. Syst. 9, 145-166.

Wu, S., Zhou, S., Bao, H., Chen, D., Wang, C,, Li, B., Tong, G., Yuan, Y., Xu, B., 2019.
Improving risk management by using the spatial interaction relationship of heavy
metals and PAHs in urban soil. J. Hazard. Mater. 364, 108-116.

Yang, P.G., Mao, R.Z., Shao, H.B., Gao, Y.F., 2009. An investigation on the distribution of
eight hazardous heavy metals in the suburban farmland of China. J. Hazard. Mater.
167, 1246-1251.

Yu, D., 2006 Spaual.ly varying developmem mechamsms in the Greater Beijing Area: a

Ann. Region. Sci. 40, 173-190.

Yu, D., Wy, C., 2004 Understandmg population segregation from Landsat ETM + ima-
gery: a g ion approach. Glsci. Remote. Sens. 41,
145-164.

Zhang, C.S., 2006. Using multivariate analyses and GIS to identify pollutants and their
spatial patterns in urban soils in Galway, Ireland. Environ. Pollut. 142, 501-511.

Zhang, C.S., Jordan, C., Higgins, A., 2007. Using nelghbourhood statistics and GIS to
quantify and visualize spatial variation in geoch :an ple using Ni
concentrations in the topsoils of Northern Ireland. Geoderma 137, 466-476.

Zhang, C.S., Fay, D., McGrath, D., Grennan, E., Carton, O.T., 2008a. Statistical analyses of
geochemical variables in soils of Ireland. Geoderma 146, 78-390.

Zhang, C.S., Tang, Y Xu, X Klely. G 2011 Towards spatial geochemical modelling: use
of geograpt for ing soil organic carbon contents in
Ireland. Appl. Geochem 26, 1239-1248.

Zhang, Z.Y., Abuduwaili, J., Jiang, F.Q., Tud, M., Wang, S.P., 2012. Contents and sources
of heavy metals in surface water in the Tianshan Mountain. China Environ. Sci. 32,
1799-1806.

Zheng, Y.M., Yu, K., Wu, H.T., Huang, Z.C., Chen, H., Wu, X., Tian, Q.Z., Fan, K.K., Chen,
T.B., 2002. Lead concentrations of soils in Beijing urban parks and their pollution
assessment. Geogr. Res. 21, 418-424 (in Chinese).

11

157



Chapter 5
Discussion

158



Discussion

5.1 Overview of the Research Process

With the development of GIS and spatial technology, an increasing number of researches
in environmental geochemistry are carried out based on spatial analysis and geostatistics
(Fotheringham and Rogerson, 2013; Hou et al., 2017). There are two major research
directions of soil geochemistry, including the assessment of soil nutrition and
contamination (e.g., Schwarzenbach et al., 1993; Macalady, 1998; Eganhouse, 1997). The
former is mainly to study the spatial distribution and variation of the soil TOC contents,
while the latter is more focused on the factors that condition the fate and transport of PTES
in different environment media. In the era of big data, it is necessary to efficiently conduct
data mining on identification of spatial patterns of these variables and to extract hidden
environmental information based on large-scale datasets. It is on the basis of these datasets
established on a regional scale that we can fully understand how the soil quality and
contamination vary geographically (Argyraki and Kelepertzis, 2014; Reimann et al., 2014a;
Matschullat et al., 2018). In this thesis, the four papers based on the SML have been applied
on soil nutrients (i.e., TOC) and PTEs for providing latest understanding between the
spatial variation and potential influencing factors at different scales (i.e., Ireland, Northern
Ireland and European continent). To achieve these objectives, on the one hand, the hot
spot analysis (Getis-Ord G;" statistic) was used to investigate the spatial distribution and
relationship between TOC contents and pH values in the European agricultural soil (section
4.1). This technique identified a ‘special’ co-existence of both positive relationship
between these two variables in the north-central Europe, which is a novel finding in Europe
that differs from the negative relationship in the previous studies. Then, the GWR model
was performed to further explore the spatial relationships between TOC and pH across the
whole European continent, and successfully revealed the spatial variation and firstly
proposed the concept of ‘spatially varying relationships’ between these two variables from
the local perspective (section 4.2). On the other hand, considering the complex geological
processes in NI, the hot spot analysis (Getis-Ord G;" statistic) and K-means clustering
analysis were applied on identification of hidden spatial patterns and the association with
different controlling factors for the 15 PTEs (section 4.3). Subsequently, the GWPCC was
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used to investigate the spatial correlations between Pb and Al concentrations in the northern
half of Ireland, and successfully revealed the spatially varying relationships that associated
with atmospheric pollution in the blanket peat (section 4.4). Additionally, a co-authorship
study on the spatial relationships between Pb and Al in urban soil of London was also
conducted, and successfully identified the anthropogenic influences on the distribution of
Pb in the topsoil. Overall, the integration of these five articles provides useful and clear
demonstrations for advanced spatial analysis in the big data era of environmental
geochemistry, and enriches the latest understanding of distribution patterns and sources for
the soil TOC and PTEs in current knowledge.

5.2 Contributions of Research

The overall contributions of these studies demonstrate the power of GIS-based advanced
spatial analysis techniques in identifying spatial patterns and the spatially varying
relationships of environmental variables, providing practical examples to efficiently extract
geochemical knowledge based on large-scale regional data sets in different study areas. In
addition, these studies highlighted the local influencing factors from both natural and
anthropogenic factors on soil nutrients and pollution, which can be also applied to
environmental studies elsewhere. In the absence of prior knowledge, these examples can
provide valuable guidance and assistance for soil management and risk assessment in the

broader international research community.

In the European agricultural soil, the spatial distribution patterns which revealed by hot
spot analysis (Getis-Ord G;i" statistic) showing a general negative relationship between
TOC and pH at the continental level, while a feature of positive relationship was also
observed in the north-central Europe. This hidden pattern indicated the existence of ‘special’
positive correlation between these two variables that do not follow the normal relationship
from the local perspective. The novel findings in the north-central Europe against the

conclusions from previous studies (e.g., McGrath and Zhang, 2003; Korkang 2014), which
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provides new insight and information of soil management and agricultural practice for

TOC and pH, such as fertilise and liming.

The GWR model successfully proved and proposed the concept of ‘spatially varying
relationships’ between TOC and pH, which provided a solution for dealing the
contradictory results of both negative and positive relationships that we found in the
previous literature (e.g., de Moraes Sa et al., 2009; Wang et al., 2010; Wang et al., 2016;
Luo et al., 2017; Gebrehiwot et al., 2018; Zhang et al., 2018). For example, these
contradictory relationships were obtained using global statistics (i.e., PCC, linear
regression model), and the divisions of spatial patterns for sub-regions were fairly arbitrary.
The application of GWR illustrated an effective way to obtain the objective division of
different relationship patterns, and also reveal the clear associations with related
influencing factors at the local scale. Based on our results, such a way of spatial thinking

can be expanded to other relationships between environmental variables elsewhere.

The combination of two spatial clustering techniques of hot spot analysis and K-means
clustering analysis are proved as a useful way for quantitatively evaluating the controlling
factors for 15 PTEs. Due to the complex geochemical processes in the soil, it is challenging
to identify the fate and sources of PTEs (Manta et al. 2002; Wong et al. 2006; Xia et al.
2011). The hidden patterns that revealed by these two techniques highlighted the spatial
overlay association with different geological features from the local perspective, especially
peat and basalt. These results not only enhanced the latest understanding of the controlling
factors on the selected 15 PTEs for current literature in the topsoil of an area that have been
extensively studied (i.e., NI), but also provides a clear demonstration on the efficiency of
SML techniques in discovering hidden spatial patterns and extract geochemical association
in the multivariate datasets, which can be applied for environmental study in other

unexplored areas.

161



Discussion

The hypothesis of the spatially varying relationships between Pb and Al was successfully
tested by the GWPCC in the topsoil of northern half of Ireland. The investigation of the
local correlations provides a novel and effective way to identify the influencing factors for
PTE pollution (Yuan et al., 2020), especially for Pb, as one of the most widely concerned
trace element (Nriagu, 1983; Nriagu, 1996). The special negative correlation showed a
clear overlay association with blanket peat, highlighting the regional influence of
atmospheric pollution on the elevated Pb concentration from anthropogenic factors, such
as mining and traffic emission. Moreover, anthropogenic activities weakened the
relationships in the eastern coastal areas. Our results provide an effective way to explore
the spatially varying relationships and influencing factors of Pb, providing new
understanding of controlling factors for PTESs by atmospheric deposition in the topsoil from

the spatial perspective, which can be also applied on studying other PTEs elsewhere.

5.3 Advancement

In the field of soil fertility and nutrition, there are three main advancements in this thesis.
First of all, the spatial distribution and relationships between TOC contents and pH values
was initially revealed in the European agricultural soil. Secondly, a special positive
relationship between TOC and pH that associated with coarse-textured glacial sediments
(quartz) was identified in central-eastern Europe, which is not usual in other study areas.
Thirdly, the topic of ‘spatially varying relationships’ was proposed and proved to provide
a new understanding between these two variables which against the contradictory
relationships in the previous literature. These findings highlighted the dominant influences
of quartz on the not only nutrients (e.g., TOC, S, P), but also the major and trace elements
(e.g., Cd, Pb, Zn) in the European agricultural soil, which provided valuable information

for soil management and agricultural practice at the continental level.

In the field of soil contamination, there are three main advancements in this thesis. Firstly,

the geological controls on the selected 15 PTEs were quantitatively analysed from the
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spatial perspective in NI, and the dominant factors including peat and basalt were
highlighted by the clustering patterns. Secondly, the hypothesis of spatially varying
relationships between Pb and Al was successfully tested, with special negative correlations
were found in western and north-eastern Ireland. Thirdly, atmospheric pollution in blanket
peat and anthropogenic factors contributed to the negative correlations in Ireland was
identified. These findings enhanced the current knowledge of soil contamination from both
geogenic sources and anthropogenic inputs against the existing literature and can be

applied into environmental studies elsewhere.

5.4Research limitations in this thesis

It needs to be acknowledged that the research in this dissertation has some unavoidable
limitations. The key point is that like correlation analysis, these advanced spatial analysis
techniques cannot be used for investigation of causal effects. Instead, the hidden
associations can be identified through those spatial patterns, supporting our new findings
in the topsoil of Europe and the island of Ireland. In addition, the abrupt geological
boundaries may cause discontinuous patterns or difficulty in choosing the scales (e.g.,
bandwidths) for these advanced spatial analysis techniques, and barriers could be
introduced if there are strong evidences of abrupt changes.

Another unavoidable point in geochemical research is the analytical uncertainty, which
includes the uncertainty caused by soil sampling and the use of interpolation methods (i.e.,
IDW). These uncertainties are not specifically measured or evaluated in this dissertation,

which may be a direction in future geochemical research.
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6.1 Overview

This Ph.D. thesis summarised the existing problems and possible solutions in environmental
geochemistry from the spatial perspective, and provided demonstration of applying four SML
techniques on identification of hidden spatial patterns and geochemical association for
environmental variables in regional large-scale datasets. Specifically, the spatial distribution of
TOC and the special pattern of positive relationship were identified by hot spot analysis in
European agricultural soil. The spatially varying relationships between TOC and pH were
investigated by GWR at the European continent level. The spatial clustering patterns of 15
PTEs and their controlling factors were quantified by the combination of hot spot analysis and
K-means clustering analysis in NI. The spatially varying relationships and special negative

correlations were explored by GWPCC in the northern half of Ireland.

6.2 Main conclusions

At present, studies on the soil nutrients and contamination are still regarded as important issues
of environmental geochemistry and health. In the era of big data, the results of this thesis have
proved that the GIS-based spatial analysis and SML technologies are effective and useful tools
to extract geochemical information from the large-scale datasets. The special or interesting
patterns of environmental variables can be associated with specific influencing factors, which
provides valuable information to stakeholders for soil management and monitoring form the

spatial perspective.

6.2.1 Identification of the co-existence of low total organic carbon
contents and low pH values in agricultural soil in north-central Europe

using hot spot analysis based on GEMAS project data

(1) Spatial distribution patterns of TOC contents and pH values were revealed by hot spot

analysis in European agricultural soil.

(2) Soil TOC contents and pH values were negatively correlated at the European scale.
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(3) A co-existence of special positive correlation was identified in the north-central Europe.
(4) Both low TOC contents and low pH values were related to coarse-textured glacial sediments.

(5) The special patterns provided important information for agricultural soil management.

6.2.2 Investigating spatially varying relationships between total
organic carbon contents and pH values in European agricultural soil

using geographically weighted regression

(1) Spatially varying relationships between TOC contents and pH values were revealed by
GWR.

(2) The positive correlations between TOC and pH clustered in central-eastern Europe.

(3) Negative and mixed correlations were observed in northern and southern Europe,

respectively.

(4) The quartz-rich soil is the main contributing factor to the positive relationship in central-

eastern Europe.

(5) Climate and anthropogenic factors weakened the general negative relationship at the

continental level.

6.2.3 Discovering hidden spatial patterns and their associations with
controlling factors for potentially toxic elements in topsoil using hot spot

analysis and K-means clustering analysis

(1) The spatial clustering patterns for PTEs in the topsoil were identified by Hot spot analysis.
(2) The hidden patterns of soil samples were revealed by K-means clustering analysis.

(3) The consistent spatial patterns were observed between PTEs and soil samples.

(4) Peat was associated with high concentrations of Bi, Pb, Sb and Sn.

(5) Basalt was associated with high concentrations of Cr, Co, Cu, Mn, Ni, V and Zn.
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(6) As, Ba, Mn and U were associated with other lithologies such as granite, schists and

greywacke shale.

6.2.4 Exploration of the spatially varying relationships between lead
and aluminium concentrations in the topsoil of northern half of Ireland

using Geographically Weighted Pearson Correlation Coefficient

(1) Spatially varying relationships between Pb and Al concentrations in soils were revealed by
GWPCC.

(2) Special negative correlations occurred in north-western and north-eastern areas.
(3) Original positive correlations clustered in central-western and midland areas.
(4) Atmospheric pollution contributed to negative correlations overlaid on blanket peat.

(5) Anthropogenic factors weakened the relationships in eastern coastal regions.

6.2.5 Exploration of spatially varying relationships between Pb and
Al in urban soils of London at the regional scale using geographically

weighted regression (GWR)

(1) The relationships between Pb and Al concentrations in urban soils of London was spatially

varying.

(2) The positive and negative relationships were found in southern and northern areas,

respectively.

(3) Anthropogenic factors weakened the original positive relationships between Pb and Al in

the central London, while large parks and greenspaces reserved the positive relationships.

(4) GWR is effective in revealing spatially varying relationships in urban soils.
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6.3 Recommendations

The results of this thesis would provide several suggestions for carrying out soil management
and environmental monitoring, as well as sampling design for future geochemical studies at

regional to continental scales.

(1) The agricultural practices such as fertilising and liming in the central-eastern Europe (i.e.,
Poland, Germany, Ukraine) should be carefully conducted, as the large particle size in these
quartz-rich soil could cause excessive human inputs and negative effects on the ecological
environment.

(2) Northern Ireland Authority should pay attention to the agricultural activities in the rural
soils which covered with basalt and peat, as the relatively high level of PTE concentrations
are observed in the topsoil of these areas, which may be accumulated through food chain
to humans.

(3) Many leading gardeners still use peat-based compost to some extent, while the blanket peat
in the western and north-eastern of Ireland maintains elevated levels of PTEs due to
atmospheric pollution (although not as high as in urban areas), and thus alternatives are
recommended. In addition, reducing the use of peat in gardening industry contributes to
carbon sequestration in order to reduce the CO2 concentration in the atmosphere.

(4) For geochemical surveys at regional and continental level, the sampling design should
consider different geological units and the prior knowledge on the interesting geological
feature (e.g., peat and basalt in Ireland). More dense sampling locations could be planned
in these soils than the other areas, which is able to discover interesting and novel findings

from local to regional or even continental level, maximizing the available budget.

6.4 Future research

Overall, based on the research results obtained in this thesis, several recommendations for

future research directions are made as the following:
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6.4.1 Predicting and mapping of soil organic carbon contents using

machine learning algorithms in the topsoil of Ireland

The research on the distribution and prediction of the concentration of SOC in the topsoil of
Ireland were based on previous data sets (McGrath and Zhang, 2003; Zhang and McGrath,
2004; Zhang et al., 2011), and thus the current knowledge of soil properties and quality cannot
be updated well. Mapping and prediction of SOC content based on the newly released Tellus
database through SML technology can capture its temporal and spatial variation at the regional
level, which is able to provide the latest understanding for soil management and agricultural

activities.

6.4.2 Investigation of spatially varying relationships between soil total
organic carbon content and climate factors in European agricultural

soil

Based on our results, climate is the secondary natural factor that affects the variation of TOC
content at the continental scale. Huang et al. (2018) used wavelet analysis to identify the
latitude-related changes in SOC on a global scale. Considering there is a strong correlation
between latitude and climate, therefore, exploring the spatial relationships between TOC and
climatic factors can provide better understanding on the changing laws and trends of TOC

under natural conditions.

6.4.3 Discovering hidden spatial patterns of selected potentially toxic
elements using hot spot analysis and K-means clustering analysis in

stream sediments in Northern Ireland

The potential of identification hidden spatial patterns by these two techniques have been proved
based on the topsoil data set (Xu et al., 2021). However, stream sediments may be favoured for
early-stage mineral exploration over soil sampling, or even done in conjunction with soils to

better develop an understanding of the geology. The investigation of the patterns and
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associations between PTEs and stream sediment samples can enhance the current knowledge

of geological processes in NI.

6.4.4 Exploring spatially varying relationships between Cd, Ni, Zn

and Al in the topsoil of Ireland

In addition to Pb, the element Cd, Ni and Zn have also been proposed to be enriched in the
blanket peat bogs (Krachler et al., 2003; Rausch et al., 2005). Exploring the patterns of the
spatially varying relationships is able to discover novel correlation between these PTEs and

reference element, and thus highlight the soil contamination from both anthropogenic and

natural sources at the local scale.
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A.llInvestigation of spatially varying relationship between TOC and
pH values in European agricultural soil

## Load package Ictools
> library(lctools)

## Read GEMAS data
» data<- read_excel("F:/NUI Galway/GEMAs Data/GEMAS.xIs")

## Set coordinates of GWR model
» Coords<-chind(data$XCOO, data$YCOO)

## Complete GWR model using n = 125 bandwidth
» GWR_125<-gwr(TOC ~ pH, data, 125, kernel = 'adaptive', Coords)

## Complete GWPCC and significance test using n=125 bandwidth
» GWPCC_125<-Icorrel(data[26:25], 0.06, Coords)

A.2Clustering 15 topsoil PTEs in Northern Ireland by K-means

clustering algorithm

# Clustering algorithms and visualisation
> library(cluster)
> library(factoextra)

## read Tellus data
> df<- read_excel("F:/NUI Galway/project3/Tellus_NI.xIs")

# Data scaling and clr-transformation
» library(compositions)

» scale_df<-scale(df)

> clr_df<clr(scllae_df)

# Find optimal cluster number using silhouette function

» cluster_number(df, kmeans, method = "silhouette™)

# Conduct K-means using number of three clusters
» k3 <- kmeans(df, centers = 3, nstart = 25)
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# Comparison of K-means results using number of two and four clusters
» k2 <- kmeans(df, centers = 2, nstart = 25)
» k4 <- kmeans(df, centers = 4, nstart = 25)

A.3Investigation of spatially varying relationship between Pb and

Al concentrations in the topsoil Ireland

## Load package Ictools
> library(lctools)

## Read Tellus data
» data<- read_excel("F:/NUI Galway/project4/Tellus.xIs™)

## Complete GWPCC between Pb and Al and significance test using n=200 bandwidth
(change % of bandwidth when using others)

GWPCC_Pb-Al_200<-Icorrel(data[5:4], 0.012, chind(data$ Easting_ING,
data$ Northing_ING))

## Complete GWPCC between Pb and Ti and significance test using n=200 bandwidth

GWPCC_Pb-Ti_200<-Icorrel(data[5:6], 0.012, cbind(data$ Easting_ING,
data$ Northing_ING))

## Complete GWPCC between Al and Ti and significance test using n=200 bandwidth

GWPCC_AI-Ti_200<-Icorrel(data[4:6], 0.012, chind(data$ Easting_ING,
data$ Northing_ING))
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