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NATIONAL UNIVERSITY OF IRELAND, GALWAY

Abstract

Insight Centre for Data Analytics

National University of Ireland Galway

Doctor of Philosophy

Detecting Seen/Unseen Objects with Reducing Response Time for

Multimedia Event Processing

by Asra Aslam

The enormous growth of multimedia content in the Internet of Things (IoT) domain

leads to the challenge of processing multimedia streams in real-time; thus, the Internet

of Multimedia Things (IoMT) is an emerging concept in the field of smart cities. In

the current scenario, we expect that real-time image processing systems are robust in

performance, but they are designed for specific domains like traffic management, security,

parking, supervision activities, etc. Existing event-based systems are designed to process

event streams according to user subscriptions and focused only on structured events

like energy consumption events, RFID tag readings, finance, packet loss events, etc.

However, multimedia content occupies a significant share in IoT compared to the scalar

data obtained from conventional IoT devices. Due to the lack of support for processing

multimedia events in existing event-based systems of IoT, there is the need for an Internet

of Multimedia Things (IoMT) based event processing system which can also process

images/videos.

Multiple applications within smart cities may require the processing of numerous seen

and unseen concepts (unbounded vocabulary) in the form of subscriptions. Deep neu-

ral network-based techniques are effective for image recognition, but the limitation of

having to train classifiers for unseen concepts may increase the overall response-time for

multimedia-based event processing models. These models require a massive amount of

annotated training data (i.e., images with bounding boxes). It is not practical to have

all trained classifiers or annotated training data available for a large number of unseen

classes of smart cities. In this thesis, I address the problem of training classifiers online

for unseen concepts to answer user queries that include processing multimedia events in

minimum response time and maximum accuracy for the IoMT based systems.
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The contributions of this thesis are manifold. First, I analyze the trends, challenges,

and opportunities in the state-of-the-art for the IoMT based systems. I propose a gen-

eralizable event processing approach to consume IoMT data as a native event type and

optimize it for different scenarios consisting of seen, unseen, and partially unseen con-

cepts. The first domain-specific classifier-based model enables the feature extraction in

event processing based on subscriptions and optimizes the testing time using an ele-

mentary classifier division and selection approach. Next, I propose the hyperparameters

based multimedia event detection model to handle completely unseen concepts and op-

timize the training time for the training from scratch. However, for the partially unseen

concepts, I propose a domain adaptation based model that enables knowledge transfer

from seen to unseen (like bus → car) concepts and reduces classifiers’ overall response

time. The final specific model handles the challenge of collecting a large number of

images with bounding box annotations for the training of object detection models on

unseen concepts. In this model, I propose a detector (named UnseenNet) to train unseen

classes using only image-level labels with no bounding boxes annotation.

I primarily include You Only Look Once (YOLO), Single Shot MultiBox Detector (SSD),

and RetinaNet for the object detection while having seen/unseen classes belongs to

Pascal VOC, Microsoft COCO, and OpenImages detection datasets. The results indi-

cate that the proposed multimedia event processing models achieve accuracy of 66.34%

within 2 hours using classifier division and selection approach, 84.28% within 1 hour

using hyperparameter-based optimization, and 95.14% using domain adaptation-based

optimization within 30 min of response-time on real-time multimedia events. Lastly,

evaluations of domain adaptation based model without bounding boxes demonstrate

that UnseenNet outperforms the baseline approaches and reduces the training time of

days or >5.5 hours to <5 minutes.
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Chapter 1

Introduction

1.1 Introduction

The Internet of Things (IoT) is designed to support intelligent systems for different do-

mains to enhance the quality of life. Research in IoT is more focused on processing scalar

data generated by various sensors within smart cities like smart energy events having

readings from temperature sensors or energy sensors. Similarly, RFID tag readings from

packet loss events are another example of scalar events, and IoT is more focused on such

structured events. However, due to the increase in the shift of Internet traffic towards

multimedia, sensors within smart cities also produce a huge amount of multimedia data

[4] and thus require handling of a large number of subscriptions belonging to multiple

domains of multimedia applications. It has been predicted internet video will represent

82% of all internet traffic, where internet video surveillance traffic will increase seven-

fold. A report is shown in Fig. 1.1 that clearly illustrates the rise in multimedia traffic

over global IP traffic. Thus there is a growing demand for efficient consumption of both

scalar as well as multimedia events (i.e., images, video, and audio), which is also shifting

the focus of research from conventional IoT to multimedia-based IoT (IoMT) [5–7]. As

the concept of integrating multimedia with IoT is very recent, it is not standardized yet

and needs to be investigated fundamentally along with the adaptation of domains.

Event processing systems [8] are introduced to serve as middleware between IoT and

applications layer [9] and applicable only for scalar data events. On the other hand,

real-time image based systems can provide high performance for multimedia events.

They are still designed only for specific domains, have limited user expressibility and

tiny (bounded) vocabulary. Advancements in Deep Neural Network (DNN) may support

IoMT data but have the limitation of availability of trained classifiers for unseen concepts

(subscriptions). The conventional trend is to train such high-performance models on

1
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Figure 1.1: Global Internet Traffic by Application Category [1]

images with bounding box annotations for weeks and detect objects only for certain

classes present in object detection datasets. Clearly, no settings are available for reducing

the training time of object detection models on unseen categories. Since it is not practical

to have all trained classifiers or training data available for a large number of classes, it is

necessary to address the problem of training of classifiers online for unseen subscriptions

with the provision of adaptation among domains, and ultimately minimizing the response

time and increasing accuracy from the perspective of the user.

This thesis focuses on foundational aspects of the problem of an adaptive classifier based

multimedia event processing which includes redefining event processing to multimedia

event processing, defining generalizability, introducing image processing operator (like

detect for object detection) for event query languages, standardization of the concept

of response-time, identification of different scenarios of handling dynamic (seen/unseen)

subscriptions, and established a fast online training detector for unseen concepts with-

out bounding box annotations. I proposed a multimedia event processing model for

the consumption of IoMT based data and optimized it at various levels moving from

domain-specific to domain adaptation techniques. I developed prototypes for each of the

identified scenarios of unseen subscriptions. The most specific work eventually builds up

a detector that can train object detection models in 5-min while providing competitive

accuracy without the need of bounding boxes for the training.

1.2 Problem Overview and Motivation

Event processing systems [8] are designed to process data streams and cannot natively

include multimedia events produced by IoMT data. Event-based multimedia approaches
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exhibit high performance in the current scenario but are designed for specific domains

(like traffic management, security, supervision activities, terrorist attacks, natural haz-

ards [10–14]) and hence can handle only familiar classes (have bounded/limited vocabu-

lary). The escalating growth of multimedia data with large numbers of user subscriptions

poses multiple challenges for the processing of IoMT based events. On the other hand,

user subscriptions are also unseen (unknown) and may belong to various domains in

smart cities’ distributed environments. It is not evident in existing approaches to deal

with such a large number of unseen concepts emerging and changing over time, typical

for images/videos in the IoMT [15]. Furthermore, the essential requirement of multi-

media applications is a real-time performance [16], which needs to be fulfilled for its

usability. This highlights the need for minimization of response time while maintaining

accuracy from the user’s perspective. Presently, there is no provision of such general-

ized multimedia event processing that can handle seen/unseen subscriptions belonging

to multiple domains to achieve high accuracy in low response-time.

If we have to support a generalizable approach to multimedia event processing with high

performance, the event engine needs to support an extensive range of concepts/objects

within subscriptions. Thus we realized the requirement of availability of trained classi-

fiers to process multimedia events using neural network-based techniques in real-time.

The online training of classifiers is an option, but the high cost of training [17, 18] limits

the ability of the event engine to respond in a timely manner to new concepts. Current

online learning-based approaches make their decisions on the fly [19–21]. Still, most of

them are solely based on concept drift in multimedia streams and inapplicable for han-

dling unseen subscriptions. Apart from the limitation of the availability of pre-trained

classifiers, another weakness of traditional approaches is that even if we have trained

classifiers available, we have to start from scratch when constructing another classifier.

This is not satisfying and could be easier by applying the notion of adaptation among

domains for optimization.

Optimization techniques in neural network models are based on the trade-off of speed

and accuracy [22], which is supposed to be done before the processing of events and

focuses only on accuracy and generalization ability of classifiers or on the computation

cost, including testing time [23–25], excluding the training time of DNN models. Thus

existing optimization techniques cannot be configured at run-time in case of adaptive

subscriptions of multiple domains and need to be further investigated for minimizing the

overall response time, including both testing and training time. Furthermore, the major

challenge in training DNN based models (specifically for object detection) is the need to

collect a large amount of images with bounding box annotations, which is not possible

for thousands, or millions, of unseen classes. All of these shortcomings of multimedia

event processing motivate us to address the problem of minimizing the response time of
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Figure 1.2: Generalizable Multimedia Event Processing

object detection models in responding to seen/unseen concepts-based queries, using an

online domain adaptation based classifier construction approach while reducing the use

of bounding boxes annotations and achieving high accuracy.

1.3 Motivational Scenario

Consider the scenario of object detection for analyzing multimedia events in smart cities

(shown in Fig. 1.2). Suppose a user subscribes for the detection of “Bus” on “Bus

Stand”. This type of query can be answered “Public Transport Management” using

a camera observing the bus stand and producing multimedia events consisting of bus

status-related information. Similarly, if a user subscribes for the detection of the empty

parking spot (i.e. absence of car at parking spot), we require another application for

processing “Car Parking Management” events. Moreover, if a user subscribes to concepts

like “taxi” or “pedestrian”, then existing public transport and car parking management

systems will not respond to any new class even if they already consist of similar classes

like “car” and “person”. Thus we need a generalizable multimedia event processing

system that can provide adaptation from seen to unseen concepts (like car to taxi) and

able to answer any completely unseen concept (like a cat, dog, key, bicycle, etc.) of any

domain.

1.4 Problem Statement

This thesis focuses on answering user queries online consisting of seen (bounded vo-

cabulary) as well as unseen concepts (unbounded vocabulary) that include processing

of multimedia events while achieving high accuracy and minimizing the response-time,

where the training of classifiers may or may not have bounding box annotations avail-

able? The concept is primarily based on the following four dimensions:
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Figure 1.3: Response Time in Multimedia Event Processing

1. Support for Unbounded Vocabulary (Generalizability): This dimension concerns

the ability to recognize a large number of seen/unseen subscriptions (presently

keywords) for the naming of objects that may not belong to the bounded (limited)

vocabulary of the system.

2. High Accuracy of Multimedia Processing Method: It deals with the high accuracy

of the feature extraction method (presently object detection) within allowable

response-time, used to support unstructured multimedia events that may contain

information in the form of images or video.

3. Low Response-Time: The first dimension is related to the objective function

“response-time” that needs to be minimized for the standardization of the problem.

Response time (as shown in Fig. 1.3) is defined as the time difference between the

time (ta) the subscription arrived and the time (tr) at which the system is ready to

notify the subscriber. We define the pre-processing stage of the multimedia event

processing system by considering mainly two cases:

• Case 1: Classifier for Subscription Available (Seen Concept)

• Case 2: Classifier for Subscription Not Available (Unseen Concept)

– Case 2(a): Subscriptions require classifiers similar to base classifiers

– Case 2(b): Subscriptions require classifiers completely different from base

classifiers

Based on the availability of the type of training data for tdc, we can further classify

the present case of unseen concepts into the following two scenarios:

• Object-Level Annotations Available: This scenario assumes we can collect im-

ages with bounding box annotations using existing object detection datasets
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[26–28]. However, all of these datasets have bounded vocabulary having a

finite number of classes. Thus it is not possible to provide bounding box

labels for thousands, or millions, of classes. Moreover, it is much easier to

offer image-level annotations.

• Image-Level Annotations Available: In this case, we assume that only image

labels are available with no bounding boxes. Such image-level annotations

can be obtained using online data collection toolkits1 or image tags on any

(i.e., Flickr, Google, and/or Bing) image web search.

4. Support for Domain Adaptation (Maintainability): It refers to the ease of transfer

to multiple domains with less manual effort. We treat the transformation of any

classifiers into detectors as a domain adaptation task, i.e., transfer from source (full

image recognition) to target (localized recognition) domain as a domain adaptation

problem. Besides the adaptation of classifiers into detectors, the system should

support adaptation between visual domains (like bus→car, dog→cat).

1.5 Proposed Approach

The problem of multimedia event processing is divided into different scenarios shown in

Fig. 1.4. When a user subscribes to any new concept, the multimedia event processing

engine should recognize whether the model is previously seen (familiar) or do we need

to construct a new classifier for it. Scenario 0 handles the seen concept using the

proposed framework of multimedia event processing and baseline classifiers trained offline

available in Model-I “Domain-Specific Classifier based Multimedia Event Detection”.

However, if subscription consists of an unseen concept, then the model tries to find any

similar concept available for the knowledge transfer. In the case of a completely unseen

concept (Scenario 1), there is a need to train classifiers from scratch with optimization

techniques discussed in the Model II “Hyper-Parameters based Adaptive Multimedia

Event Detection”.

If the unseen concept has similarities with the seen concept, then the last condition

checks the accessibility of bounding boxes because existing bounding box annotations-

based datasets consist of a limited number of concepts. It is essential to note that the

comprehensive similarity scores between seen and unseen concepts are computed using

semantic and visual similarities. Scenario 2 and 3 handle the partial unseen concepts

where difference is the presence or absence of bounding box annotations for the training

of classifiers. The proposed approach for processing unseen concepts from existing seen

1https://github.com/tzutalin/ImageNet Utils
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Figure 1.4: Scenarios for Multimedia Event Processing adhering to Seen/Unseen
Concept Problem

concepts with the transfer of knowledge is presented in Model III, “Domain Adaptation

based Multimedia Event Detection”. Along with transfer learning, the proposed Model

IV “Domain Adaptation-based Multimedia Event Detection without Bounding Boxes”

utilizes weakly supervised learning to eliminate the need for object-level labels and

classifiers could be trained without bounding boxes.

Table 1.1 summarizes the proposed work for covering the sub-problems of multimedia

event processing. I introduce multimedia as a native event type in event processing

and uses deep neural network-based models to optimize the framework (applicable for

Scenario 0 presented in Model I). Object detection is used in this thesis for analyzing

multimedia events to demonstrate the efficiency and limitations of proposed models.

Next, the proposed model can handle completely unseen concepts by training from

scratch with adaptive hyperparameter tuning-based adaptation (Scenario 1, Model II).

An enhancement in performance is presented by introducing domain adaptation for the

unseen concepts having similarities with seen concepts (Scenario 2, Model III). In the

last specific problem, I finally removed the limitation of bounding box annotations to

train unseen concepts (Scenario 3, Model IV). Multiple approaches of proposed models

with their specific contributions are given below in this section.
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Table 1.1: Summarizing proposed work with analyzed sub problems of multimedia
event processing.

Problem Coverage Scenario Approach Model

Introduce multimedia
as a native event type

in event processing
with high performance.

Seen Concept
(Scenario 0)

Event Processing +
Multimedia

Analysis + Deep
Neural Networks

Domain-Specific
Classifier based

Multimedia
Event Detection

(Model I)

Support of completely
unseen concepts online
with high performance.

Completely
Unseen Concept

(Scenario 1)

Event Processing +
Object Detection+

Adaptation
(Hyperparameter

Tuning)

Hyper-
Parameters

based Adaptive
Multimedia

Event Detection
(Model II)

Enhance the
performance for the
unseen concepts that
have similarities with

seen concepts.

Partially Unseen
Concept

(Scenario 2)

Event Processing +
Object Detection +
Domain Adaptation
(Transfer Learning)

Domain
Adaptation

based
Multimedia

Event Detection
(Model III)

Enhance the
performance for the
unseen concepts that
have similarities with
seen concepts while

eliminating the
requirement of
bounding box
annotations.

Partially Unseen
Concept and

Bounding Boxes
Inaccessible
(Scenario 3)

Event Processing+
Object Detection +
Domain Adaptation
(Transfer Learning

+ Weakly
Supervised
Learning)

Domain
Adaptation

based
Multimedia

Event Detection
without

Bounding Boxes
(Model IV)

1.5.1 Domain-Specific Classifier based Multimedia Event Detection

The first model is designed to handle problem dimensions of generalizability, high ac-

curacy, and low execution time (part of response-time). The proposed system first

incorporates the event-based system with multimedia analysis to support the process-

ing of IoMT based event streams within the publish-subscribe paradigm and allow the

inclusion of new operators using deep convolutional neural network (DNN) based tech-

niques. A new “detect” operator has been developed to provide the requisite DNN

based feature extraction to detect objects inside image events. Conventionally DNN

based methods are dependent on the trained classifiers. These classifiers are trained

on general-purpose datasets consisting of a large number of classes, which may reduce

the performance. Thus, we also proposed a subscription-based optimization technique,

“Classifier Division and Selection,” which relies on the division of classifiers based on

domain and selection of classifiers based on subscriptions. Experiments show that the
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proposed system can achieve an average throughput of 110 frames/sec with an approx-

imate accuracy of 66.34% with a permissible response-time of 2 hours of training on

real-world events. Moreover, the ability to process multiple domains signifies its gener-

alizability on various applications of smart cities. Experiments of all models (I to IV)

have been conducted on Ubuntu 16.04.3 LTS (GNU/Linux 4.13.0-26-generic x86 64),

with NVIDIA TITAN Xp GPU.

1.5.2 Hyper-Parameters based Adaptive Multimedia Event Detection

In the previous model, we realized that DNN based techniques are effective for processing

image events, and the limitation of having to train classifiers for unseen concepts may

increase the overall response time. Thus to tackle the dimension of supporting unseen

subscriptions with minimized response-time, we proposed an online classifier construc-

tion based model that can adapt among dynamic subscriptions with low response time

and provide reasonable accuracy for the multimedia event processing. We optimized

the multimedia event processing model by leveraging the hyperparameter tuning based

technique, which analyzes the accuracy-time trade-off of object detection models and

configures learning-rate, batch-size, and the number of epochs, using response-time based

strategies: Minimum Response Time needed while Minimum Accuracy allowed, Optimal

Response Time needed while Optimal Accuracy allowed, and Maximum Response Time

allowed while Maximum Accuracy needed, for the dynamic subscription constraints. Our

results indicate that the proposed online classifier training-based model can achieve an

accuracy of 79.00% with 15-min training and 84.28% with 1-hour training even from

scratch to process multimedia events.

1.5.3 Domain Adaptation based Multimedia Event Detection

Further, it can be argued that the concepts (presently classes) in real-world events are

related to each other, which necessitates the notion of adaptation among domains for

generalizability instead of training each classifier from scratch. Moreover, easy trans-

fers among domains can also enhance accuracy while maintaining or minimizing the

response-time dimensions. This model extends an adaptive multimedia event processing

model by leveraging transfer learning-based techniques to provide domain adaptation

among unseen concepts. We have also instantiated the online classifier learning model

by transferring knowledge among classifiers using fine-tuning and freezing layers of neu-

ral network-based object detection models. Our investigation shows that the online

training of object detection methods with transfer learning is helpful for accurate multi-

media event processing and can provide faster results with a reduced response time for
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the related domain-based subscriptions. The proposed domain adaptation-based online

learning model can achieve an accuracy of 95.14% within 30-min of training. This work

also confirms our model’s suitability for any number of unseen concepts in subscrip-

tions; however, this scenario assumes we can collect images for training with bounding

box annotations.

1.5.4 Domain Adaptation based Multimedia Event Detection without

Bounding Boxes

In the previous model, we assume we have object-level annotations (i.e., annotated

bounding boxes) available for training the network. Since image-level annotations (i.e.,

without bounding boxes) are comparatively easy to acquire, we intend to improve our

model further using our approach, “UnseenNet”, in which we will not require bounding

boxes for the training of classifiers and expect a decrease in response time. In this

model, first, we train two baseline detectors (Strong Baseline and Weak Baseline) offline

using existing object detection datasets (like Pascal VOC, OID, Microsoft COCO) and

image classification dataset (like ImageNet), respectively. On request of any unseen

concept, first, “UnseenNet” download images from the web (like Google/Bing Images)

using only image-level labels (like goat). Strong Baseline Detector is then fine-tuned on

collected images of unseen concepts by labeling the most semantically similar class (like

sheep) with the unseen class name (like goat). At this stage, we also compute the visual

similarity of the constructed unseen class detector (trained on classification data) with

seen classes of weak baseline detector, combine it with semantic similarities, and select

top-k classes ranked on comprehensive similarities. Here, semantic similarity refers to

the similarity between the labels of classes using WordNet [29] and visual similarity of

the Euclidean distance between weights of different classes. Finally, we transfer the

knowledge of classifier-detector differences of top classes to the constructed unseen class

detector and adapt it into the stronger detector for an unseen class without further

training. Indeed, the idea of transformation of classifiers into detectors is utilized from

knowledge transfer based LSDA methods [3, 30]. Our approach “UnseenNet” also makes

use of MobileNetv2 in place of AlexNet for classification. It also takes advantage of much

faster object detection models like YOLOv3 (compared to RCNN in the LSDA). Our

model achieves a mean average precision (mAP) of 19.82 within 5-min of training, where

existing frameworks could take >5.5 hours.

1.6 Research Hypothesis

The presented research is based on following main hypotheses:
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1. Research Hypothesis I: Domain-Specific classifier based multimedia event pro-

cessing assumes that if we construct N-Class classifiers for different domains, and

we use subscription constraints to choose closely related classifiers for the process-

ing of multimedia events; the performance will be enhanced in terms of accuracy

and response time, and will also add the ability to generalize for multiple domains.

2. Research Hypothesis II: Hyper-Parameters based Adaptive Multimedia Event

Detection model interprets the hypothesis “if tuning of hyperparameters based

technique is useful in machine learning to improve performance; then performance

will also get enhanced for low response-time even on training from scratch for

unseen subscriptions on tuning hyperparameters for the online construction of

classifiers.” Here, performance indicates speed-up in training and increment in

accuracy.

3. Research Hypothesis III: Domain adaptation based Multimedia Event Detec-

tion model relies on the fact that if transferring of knowledge from one domain to

another (say A→ B) can improve the performance as compared to fine-tuning of

pre-trained models (like CPImageNet→B) or training of classifier from scratch (CB);

then there will always be a decrease in response-time with increase in the accuracy

of constructed classifier (CA→B) compare to the classifier trained from pretrained

model (like CPImageNet→B) or training from scratch (CB).

4. Research Hypothesis IV: The approach of “Domain Adaptation based Multi-

media Event Detection without Bounding Boxes” based on the hypothesis “if an

adaptation of classifier into detector eliminates the need of bounding boxes as well

as transferring of knowledge from one domain to another speed-up the training;

and a detector gets constructed from classifier with the help of transfer of knowl-

edge from visually/semantically similar classifier; then that detector will take less

time to train for unseen classes and eliminate the requirement of bounding boxes”.

1.7 Research Methodology

The research methodology followed in this work consist of the following main steps:

1. Comprehensive literature review of four main areas: event processing, multimedia

analysis, domain adaptation, and object detection.

2. Formulation of the problem of processing multimedia events for dynamic (seen/un-

seen) concepts.
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3. Identification of core requirements for the problem of generalized multimedia event

processing.

4. Introducing the concept of response-time for standardization in event-based models

to support multimedia events consisting of seen/unseen concepts.

5. Breaking down of problem in specific research questions for the establishment of

generalized multimedia event processing.

6. State the hypothesis to answer each research question.

7. Designing of experiments while analyzing required neural-network based models

and object detection datasets.

8. Investigation of current approaches specific to particular research questions for the

purpose of comparison.

9. Implementation of proposed models.

10. Analysis of the optimized results and conclusions.

11. Repeating the same steps 6− 10 for all (presently four) hypotheses.

12. Reporting of limitations of the proposed approach with possible future directions.

1.8 Core Contributions

The contributions of this research are manifold:

• Analyzing trends, challenges, and opportunities for the generalized multimedia

event processing based applications using IoMT by considering object detection as

a case study [31].

• Formulation of the problem of processing multimedia events for dynamic subscrip-

tions using domain-specific classifiers, online training, and transfer learning based

large scale domain adaptation approaches, for covering the requirement of gener-

alizability and supporting seen/unseen subscriptions [32–34].

• A neural network based event matcher optimized using subscription constraints

for the feature extraction, with the provision of “detect” operator in event query

languages to support object detection in multimedia events, is proposed in the

domain-specific classifier based multimedia event detection model to increase the

accuracy and low response-time [32].
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• Standardization of objective function “Response-Time” for the domain adaptation

based multimedia event detection and providing response-time based strategies with

their respective prototypes by tuning hyperparameters for the real-time classifier

training [34].

• An adaptive architecture for online classifier construction with the aim of mini-

mizing the response-time and maximizing the accuracy also proposed with hyper-

parameters based multimedia event detection model [33].

• An instantiation of the online classifier learning model by transferring knowledge

among classifiers using fine-tuning and freezing layers of neural network-based

object detection models is also shown in the domain adaptation based multimedia

event detection model [34].

• Enhancement for the performance of object detection models (YOLO, SSD, and

RetinaNet [35–37]) on multimedia events and seen concepts belonging to Pascal

VOC, Microsoft COCO, and OpenImages datasets [26–28], which achieves

– accuracy of 66.34% with permissible response-time of 2-hours for unseen

subscriptions while using subscription based classifier selection approach in

domain-specific classifier based multimedia event detection [32].

– accuracy of 84.28% within 1-hour response-time for unseen subscriptions, by

using online classifier construction from scratch based approach using hyper-

parameter tuning [33].

– accuracy of 95.14% within 30-min of response-time for unseen subscriptions

while using online domain adaptation of classifiers based approach [34].

• UnseenNet, a LSDA based detector for the training of unseen classes using only

image-level labels with no bounding boxes annotations by using the fastest clas-

sification and detection models while utilizing object detection and image classifi-

cation datasets having a limited vocabulary [38].

• While devising a fast detector UnseenNet, we also derive the limits of response-time

from 5-min to 20-min (on GPU) in the area of weakly supervised learning (i.e.,

training with no bounding boxes), where existing frameworks take >5.5-hours to

attain similar mAP.

1.9 Thesis Organization

The remainder of the thesis is organized as follows:
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• Chapter 2 – Problem Formulation: This chapter first presents the background

knowledge required to formulate the problem. Second, it highlights the limitations

and challenges to motivate the problem. It also covers problem formulation for

response-time and research questions of this work. Some of this work has been

published in [31, 32].

• Chapter 3 – Background and Related Work: This chapter provides a detailed dis-

cussion of the Internet of Multimedia Things with its state of the art. Moreover, it

provides background and comparison of existing deep neural network-based object

detection models. Some of this work has been published in [31].

• Chapter 4 – Adaptive Multimedia Event Processing: This chapter states the sce-

narios of handling dynamic subscriptions of multimedia event processing and pro-

vides a brief overview of four main models designed to interpret different adaptive

multimedia event processing scenarios.

• Chapter 5 – Domain-Specific Classifier based Multimedia Event Detection: This

chapter focuses on extending event processing languages with the introduction

of operators for multimedia analysis and leverages subscription constraints in-

order to optimize the deep convolutional neural network-based event matcher for

research Hypothesis-I. It details the proposed model, implementation algorithms,

evaluations, and results. This work has been published in [32].

• Chapter 6 – Hyper-Parameters based Adaptive Multimedia Event Detection: This

chapter investigates an online classifier construction approach that can handle

unseen dynamic concepts with high performance. Also, demonstrate that the

deep neural network-based object detection models with hyperparameter tuning

can improve the accuracy within less training time. Finally, it details the proposed

model for the research Hypothesis-II, implementation algorithms, evaluations, and

results. This work has been published in [33].

• Chapter 7 – Domain Adaptation based Multimedia Event Detection: This chapter

focused on research Hypothesis-III and proposed an online training approach of

deep neural network-based object detection methods with transfer learning to re-

duce further the response time and increase accuracy for unseen concepts. Lastly,

it details the implementation algorithms with experiments and results. This work

has been published in [34].
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• Chapter 8 – Domain Adaptation based Multimedia Event Detection without Bound-

ing Boxes: This chapter continues the investigation of the third research Hypothesis-

IV and provides details of the proposed UnseenNet (LSDA based model) for pro-

cessing unseen concepts without annotated bounding boxes, implementation algo-

rithms, evaluations, and results. Some of this work has been published in [34] and

currently under submission.

• Chapter 9 – Conclusion and Future Work: Finally, this chapter highlights the con-

cluding remarks and the limitations of the proposed multimedia event processing

based adaptation models and avenues for future work.

1.10 Summary of Conclusions

An adaptive approach for multimedia event processing has been proposed in this work,

using domain knowledge transfers while online classifier construction of object detection

models to handle unseen concepts (with/without bounding boxes) in low response-time.

The proposed model has been optimized at various stages using classifier division and

selection, tuning of hyperparameters, and transfer of domains based techniques. The

performance is enhanced from 0 to95.15% in terms of accuracy for 30-min of response

time to train unseen concepts. Finally, we proposed an “UnseenNet” detector for training

object detection models without bounding boxes that achieves a mean average precision

(mAP) of 19.82 within 5-min of training, where existing frameworks take >5.5 hours.

1.11 Associated Publications

The below list represents the different aspects of the research being published/in-review

during the course of this thesis:

• Asra Aslam, Souleiman Hasan, and Edward Curry, “Challenges with image event

processing: Poster,” In Proceedings of the 11th ACM International Conference on

Distributed and Event-based Systems, pp. 347-348, ACM, 2017. (Conference

Rank: B)

• Asra Aslam and Edward Curry, “Towards a generalized approach for deep neu-

ral network based event processing for the internet of multimedia things,” IEEE

Access 6 (2018): 25573-25587. (Journal Impact Factor: 4.098)

• Asra Aslam and Edward Curry, “A Survey on Object Detection for the Internet

of Multimedia Things (IoMT) using Deep Learning and Event-based Middleware:
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• Asra Aslam and Edward Curry, “Investigating Response Time and Accuracy in

Online Classifier Learning for the Multimedia based Publish-Subscribe”, Multime-

dia Tools and Applications (MTAP), Springer (Journal Impact Factor: 2.313)

• Asra Aslam and Edward Curry, “Reducing Response Time for Multimedia Event

Processing using Domain Adaptation.” Proceedings of the 2020 International Con-

ference on Multimedia Retrieval. (Conference Rank: A2)

• Asra Aslam and Edward Curry, “Detecting Seen/Unseen Concepts while Reducing

Response Time using Domain Transfer in Multimedia Event Processing”, Submit-

ting to IEEE Access (Journal Impact Factor: 4.098)

• Asra Aslam, “Object Detection for Unseen Domains while Reducing Response

Time using Knowledge Transfer in Multimedia Event Processing.” Proceedings of

the 2020 International Conference on Multimedia Retrieval (Conference Rank:

A2)

• Asra Aslam and Edward Curry, “UnseenNet: LSDA-based Fast Training Detector

for Unseen Concepts with No Bounding Boxes”, Submitting to IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (Journal Impact Factor:
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Chapter 2

Problem Formulation

2.1 Introduction

This chapter provides an overview of the foundational aspects of the problem addressed

in the thesis. The enormous generation of multimedia data within smart cities belonging

to an increasing number of applications imposes a requirement of efficient handling of

multimedia-based events. This multimedia data could require processing millions of

seen/unseen concepts (like person, cat, dog, car, bus, kid, etc.), which states the need

for generalizable multimedia event processing specifically to detect objects in smart

cities. A brief discussion on the problem domain with technical limitations is presented

in Section–2.2.

The drawbacks of existing IoT and need of IoMT based event processing is presented

in motivation Section–2.3. I formulate requirements for the comparison of related work

in Section–2.4. Moreover, I summarize the challenges and future research directions for

the generalizable multimedia event processing (by taking object detection as an exam-

ple) in Section–2.5. Finally, I divide the problem statement “How can we answer user

queries online consisting of seen (bounded vocabulary) as well as unseen subscriptions

(unbounded vocabulary) that include processing of multimedia events while achieving

high accuracy and minimizing the response-time, where the training of classifiers may

or may not have bounding box annotations available?” in specific research questions in

Section–2.7) and define response-time formally in Section–2.6.

17
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2.2 Problem Domain and Technical Limitations

Recently, leveraging the Internet of Things (IoT) to process information related to var-

ious large-scale real-time data processing applications is becoming a popular trend in

the proliferation of smart cities [39]. IoT infrastructures are well established, consist

of adequate communication, efficient processing protocols, and optimization techniques.

IoT middleware is responsible for providing shared services to applications and eases the

development process. In the current scenario, research in IoT mainly focuses on handling

the challenges of big data, excluding multimedia, leaving a gap between the advance-

ment of IoT and multimedia-based technologies. However, the IoT cannot realize the

goal of interconnected objects unless it includes “multimedia” within the processing of

information to analyze the Internet of Multimedia Things (IoMT) based events.

Event processing systems are designed to process the subscription of a user based on stan-

dard languages in response to events. Popular event-based approaches rely on a publish-

subscribe paradigm while utilizing a mediator for providing services and works for sup-

porting application-specific structures. It is observed that existing publish-subscribe

based event processing systems only focus on structured (scalar) events for the pro-

cessing of subscriptions of a user, with no provision of handling multimedia data. The

high-speed nature of event streams with high bandwidth of multimedia data also re-

quires optimization strategies. However, optimization techniques in event processing

systems are generally based on predicate indexing and network algorithms of matching

subscriptions.

Numerous applications are designed for processing multimedia (unstructured) systems

events with high efficiency and applicable only for specific roles. For instance, traffic con-

trol, health monitoring, parking management, or any surveillance applications shown in

Fig. 2.1. Such high-performance applications process only their specific (familiar) “seen”

concepts and cannot process any new/unseen concept. Moreover, they possess variance

in performance, moving from one application to another. We assume high-performance

deep neural network-based models could be a possible solution for generalizable multime-

dia event processing. However, it is not practical to construct classifiers for unbounded

vocabulary consisting of millions of categories like person, cat, lion, horse, bike, car, taxi,

bus, etc. Thus, deep learning methods impose the constraint of training of classifiers for

“unseen” classes before the matching of multimedia events. Moreover, there is no con-

sideration for the duration of training time of classifiers to reduce the overall response

time. Response time is defined as the difference between the arrival and notification

time of subscription (detailed in Section–2.6). We aim to minimize this response-time

(Fig. 2.1) for “unseen” concepts while achieving high accuracy.
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Figure 2.1: Problem analysis of Multimedia Event Processing using Online Training
of Classifiers for Seen/Unseen Objects

Furthermore, along with classifiers’ training, we also realized the need for the availability

of training-data for unseen categories. In the present scenario, we have object detection

datasets available for training. Since the collection of bounding boxes with images is

tedious, they have a small number of classes or fewer images per class. Moreover, since

image-level labels are comparatively easy to acquire, a large number of classes can be

covered easily using image classification datasets or from the web. However, image

classification datasets have only image-level labels (i.e., images with only labels) and no

bounding box annotations. In this work, our objective is to make use of these small

number of classes based object detection datasets (having bounding boxes annotations)

and a large number of classes based image classification datasets (have no bounding boxes

annotations) and convert them into infinite (unbounded) vocabulary based classifiers

while limiting the training time.

Finally, we state our problem as “How can we answer user queries online consisting of

seen (bounded vocabulary) as well as unseen subscriptions (unbounded vocabulary) that

include processing of multimedia events while achieving high accuracy and minimizing

the response-time, where the training of classifiers may or may not have bounding box

annotations available?”
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2.3 Motivation

Multimedia communication is gradually becoming an essential source of information in

multiple scenarios, including traffic management, security, supervision activities, terror-

ist attacks, and natural hazards. This enormous generation of multimedia data within

smart environments with an increasing number of applications requires efficient handling

of multimedia-based events. Moreover, users’ subscriptions may vary from one domain

to another and require the processing of millions of such dynamic seen/unseen concepts.

Furthermore, the essential requirement of multimedia applications is real-time perfor-

mance [16], which needs to be fulfilled for its usability. This highlights the need for

minimization of response time while maintaining accuracy from the perspective of the

user. These drawbacks form the underlying motivation for the presented work, where

the proposed online classifier training-based multimedia event processing engine utilizes

the publish-subscribe paradigm and leverages neural network-based object detection

methods to meet the requirements of dynamic subscriptions.

2.3.1 Scenarios

Since image recognition is the most common challenge in the context of smart cities,

consider scenarios of object detection (shown in Fig. 2.2) for analyzing real-time multi-

media events. Users can further utilize the information associated with public transport

and parking-related events with the following subscribed query statements:

Example 1: Public Transport Management

Suppose a user subscribes for the detection of “Bus” on Bus Stand? and we have a

camera observing the bus stand. The multimedia events produced by such sensors

(like the camera) consist of bus status-related information (see Fig. 2.2(a)), as the

bus has already arrived at the bus stand in the first image, and there is no bus in the

second image. Currently, processing such bus related queries will need a domain

specific application like public transport management. Moreover, any change in

the query (say Is “Taxi” on Taxi Stand?) may require a different domain specific

application. Thus, we need a generalizable system that can automatically adapt

from one domain to another without manual effort of generating domain-specific

applications. In that case, it will be easy for users to monitor such situations

through multimedia event-based queries without learning a limited vocabulary of

specific application domains.

Example 2: Car Parking

Consider the case of car parking events; if a user subscribes for the detection of
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(a) (i) Bus present; and (ii) Bus absent in image event

(b) (i) Car present; and (ii) Car absent in image event

Figure 2.2: Multimedia Processing Events Scenario

parking spot empty i.e., absence of car at the parking spot, this type of query can

also be answered using multimedia events (shown in Fig. 2.2(b)) related to the

parking status of one parking lot with the presence and absence of the car. In

the current scenario, such queries may require a specialized “parking management

system”. However, a generalizable system can handle such new/unseen concepts

because of its unbounded vocabulary and no requirement of construction of new

domain-specific systems.

2.3.2 Generalizability

I assume introducing generalizability in IoMT based systems is crucial for the processing

of multimedia data. Generalizability is the term used to provide flexibility in processing

type of data: structured or multimedia. Generalizability also focuses on the ability

to handle all possible domains by transferring knowledge from one domain to another.

This is also referred to as domain generalization [40]. Moreover, the functionalities

of providing different types of operations on multimedia data other than only object

detection can also make the proposed system generalizable. I define generalizability

formally with examples specifically for the proposed multimedia event processing in

Section–4.2.1.
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2.4 Requirements

In order to provide the high-level guidance for the construction of real-time stream

processing based applications, eight core benchmark requirements have been suggested

in the paper [41]. These requirements are based on effective and efficient processing of

events, like Keep the Data Moving, Integrated Stored and Streaming Data, and Process

and Respond Instantaneously are highly focused on achieving low latency. Processing

of real-time streams without the need of costly storage operation is the key of “Rule:

Keep the Data Moving” which requires an active event processing model and ultimately

low inference time for the case of processing multimedia events. Similarly the “Rule:

Integrated Stored and Streaming Data” also relies on efficiently storing, accessing, and

modifying state information, which moderately directs the proposed multimedia event

processing engine towards adaptation of available classifiers, and low domain adaptation

time eventually. Finally, highly-optimized processing with minimal-overhead execution

is the crucial requirement for any event processing system, realized in “Rule: Process

and Respond Instantaneously” and should also be supported by multimedia stream

processing. Thus these demands of achieving low inference, adaptation, and overhead

time in real-time stream processing, lead us to define the following requirements to

process multimedia events.

• Low System Response-Time, defined as the time difference between subscription

arrived and time at which the system is ready to respond with the required ac-

curacy. The requirement of low response time is needed to simulate real-time

applications; thus, we aim to provide a fast response that will be independent of

user subscriptions domains.

• High Accuracy of feature extraction method (presently object detection) on mul-

timedia events within an allowable response time.

• Support for Large Vocabulary is the ability to recognize a large number of keywords

for the naming of objects that may not belong to the limited vocabulary of the

system.

• Maintainability refers to the ease of transfer to multiple domains with less manual

effort.
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2.5 Challenges and Opportunities

2.5.1 Challenges

• Standardization of the concept IoMT: We analyzed that existing IoMT based ap-

plications are domain-specific, and standardized IoMT architecture needs to be

investigated. Seng et al. [4] and Almajali et al. [6] initiated the standardization of

architecture for Multimedia Internet of Things while handling the issues of multi-

modal Big data computation, with scalability and maintainability of the model for

effective multimedia information sharing [6]. However, it is an emerging challenge

that needs more attention from different IoT and multimedia communities to agree

on and suppose to cover all of the requirements of IoMT based systems of smart

cities.

• Generalizability: As existing methods of multimedia event processing are domain-

specific, generalizability (defined in Section–2.3) is another challenge for IoMT

based systems. It is also recognized as domain generalization in literature [40, 42,

43]. For example, a system that can recognize a bus in “Public Transport Manage-

ment” cannot recognize a car for the “Parking Management System”. Similarly,

the parking system cannot recognize “taxi” or “pedestrian”. Thus, the task of

moving from one domain to another is challenging in smart cities. Each of these

systems re-implement middlewares, user interface, multimedia processing meth-

ods (like object detection models), etc. Furthermore, such systems also need to

be integrated with IoT for deployment in smart cities. Therefore, the construc-

tion of a generalizable system for all applications that do not require such re-

implementations each time with a domain change is an open question and one of

the significant challenges of IoMT based systems.

• More Training Time: Presently, all of the current object detection models are

compared only based on inference time and accuracy [44–47]. However, to deploy

them in smart cities, we need to train on new classes/ scenarios in real-time. There

is no research or comparison based on the training time of these neural network-

based models to the best of our knowledge. This will result in the first response

time of these object detection models will always be very high (maybe in days).

Therefore, we believe there is a great need for such models to reduce training time

rather than focus only on accuracy.

• Training Data Availability: We also conclude that even object detection models

are accurate and fast. They are data-hungry, and they will never be able to

perform better without sufficient data for different applications of smart cities.

We need to understand that the maximum number of classes in specifically object
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detection datasets is only 600 [28], and we see millions of applications for detecting

multimedia events in smart cities. This is somehow not-satisfiable and unintuitive

that no single dataset successfully provides sufficient classes for the detection of

objects in smart cities. Nevertheless, we consider this as the biggest challenging

problem and practically impossible from the current approach of construction of

datasets in terms of cost, memory, time, resources, etc.

2.5.2 Opportunities

• Multimedia aware Middlewares: Event-based middlewares are a well-known so-

lution for IoT that abstracts the complexities of the system/hardware from the

application developer [48, 49]. Such existing event-based middlewares consist of

rich literature for structured event processing and managed to bring an uprising

change in the communication models of distributed systems. Thus we can firmly

assume the success of multimedia events-based middlewares for the multimedia-

based IoT approaches.

• Deep Neural Network (DNN) based Models: Deep learning has made significant

progress in image recognition and opens a new path for the surveillance applica-

tions of smart cities [50–52]. The inclusion of deep convolutional networks based

techniques for multimedia analysis of events could be a possible future solution for

the standardization of IoMT methodology. A generalized approach for the IoMT

data is realized in work [32] and demonstrates the proficiency of deep neural net-

works in processing multimedia event streams of multiple applications. The ability

of DNNs to deliver high performance and continuous learning ability can effectively

improve the demands of multimedia in IoT [53–55]. Irrespective of providing high-

performance capabilities in image recognition, DNN-based techniques may include

any classifiers to facilitate different kinds of applications in smart cities.

• Online Domain Adaptation: We observed it is not evident in existing approaches

on how to handle a large number of concepts emerging from different applica-

tions of smart cities. Also, it is not possible to construct all classifiers from all

specific domains consisting of all specific classes of smart cities. However, the

field of domain adaptation is showing its benefits in detecting objects with real-

time performance using knowledge transfers [56, 57]. We expect that IoMT based

systems should incorporate these domain adaptation methods to construct clas-

sifiers for new/unseen concepts while applying transfer learning on seen concepts

[15, 58–60]. Classifiers for seen concepts could be built from existing object detec-

tion datasets and serve as base classifiers for unseen concepts. Moreover, we have

plenty of ontologies available for conceptual mapping relationships among classes.
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For instance, WordNet [29] is used for semantic relationships, or we could also use

existing visual relationship-based methods that appear in recent works [30, 61].

• Online Training: Besides online domain adaptation, we may need to train classi-

fiers for entirely unseen concepts for any application of smart cities [34, 62, 63]. We

can use online data collection1 and automatic annotation2 techniques to construct

such a classifier. We may need to use automated data collection or annotation

techniques in a worse scenario. Presently online data collection toolkits can down-

load images for training using concept names; however, these images are iconic and

consist of no bounding boxes. In such cases, we could improve accuracy for IoMT

based data using semi-supervised or unsupervised models in different applications

of smart cities [55, 64, 65].

• Training without Bounding Boxes: Suppose we can only collect training data that

does not have bounding boxes to train classifiers of new applications. In that case,

fortunately, we can apply new LSDA (Large Scale Detection through Adaptation)

based methods that do not require bounding boxes for effective training [3, 30,

38, 66]. These LSDA based methods are designed to construct classifiers on new

concepts for which we do not have sufficient data or no-annotated data. We believe

bringing such baseline methods online could improve the limitations of processing

IoMT based data using deep neural networks.

2.6 Response Time Problem Formulation

Consider an example of multimedia event processing shown in Fig. 2.3(a). Suppose a user

subscribes at the time “ta” for the detection of “person” in a stream of “Image Events

(IE)”. The available classifiers (Cbus, Ccar, Cdog, Ccat, and Cbicycle) in the multimedia

system can only detect bus, car, dog, cat, and bicycle. Thus the proposed model must

be directed towards the pre-processing step, which may include training the person

classifier (Cperson) before testing an image event. Detected events at time “tr” will be

ready to propagate to notify users according to the registered subscription. By assuming

pre-processing time as tp, and testing time as tt, we can formally define response time

(trt) as:

trt = tp + tt (2.1)

However, the pre-processing stage of multimedia event processing system may include

the following two cases:

1https://www.flickr.com/services/api/
2https://github.com/tzutalin/ImageNet Utils
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(a) Response Time in Multimedia Event Processing (b) Accuracy with Time

Figure 2.3: Definition of Response-Time

Case 1 “Classifier for subscription available”: Suppose a previously seen (familiar) con-

cept arrived (like car, dog, bicycle, bus, etc.), the cost of training will be eliminated from

the pre-processing stage, resulting in tp → 0. Thus, response time for seen concepts is:

trt = tt (2.2)

Here response-time depends on the testing (inference) time of object detection models

(excluding networking delays). To make classifiers available for seen concepts, base

classifiers are constructed using Pascal VOC and Microsoft COCO [26, 27].

Case 2 “Classifier for subscription not available”: Assuming the classifier that can

identify concepts (like person, truck, traffic light, etc.) is not available, then by using

the similarity of the new (unseen) subscriptions with existing classifiers, we can further

classify the present case into the following two scenarios:

(a) Subscriptions require classifiers similar to base classifiers: Consider an example of

concept “truck”, classifier for truck can be constructed from “bus” classifier by domain

adaptation. Thus, pre-processing time tp = tda + tdc where tda refers to the time for

domain adaptation and tdc refers to training data construction time, and consequently

response time as:

trt = tda + tdc + tt (2.3)

Other than base classifiers, we also consider pre-trained models (like ImageNet [67]).

For instance, classifiers for concepts like person, truck, traffic light, etc., can also be

generated using the transfer learning technique of “fine-tuning” pre-trained models. As

both cases involve domain adaptation, tda = tfreeze/fine−tune in the overall response

time.

(b) Subscriptions require classifiers completely different from base classifiers: In this

scenario, the pre-processing stage necessarily includes training from scratch and data
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construction time (tdc). Thus tp = tscratch + tdc and accordingly:

trt = tscratch + tdc + tt (2.4)

Please note here we are considering only supervised learning, and therefore the data con-

struction time has to be added to pre-processing time prior to the training of classifiers,

which could be removed in the future by incorporating unsupervised/semi-supervised

approaches.

In this work, we focus on minimizing the response time while having high accuracy.

Therefore we need to evaluate the training time (ttr) i.e. tda or tscratch and testing time

(tt) in terms of accuracy (a), due to their existing trade-offs [22]. Using the speed/ac-

curacy trade-off, we can obtain accuracy (a) as:

a = f(trt) = f1(ttr) + f2(tt) + c (2.5)

where c is a constant, which could be different for equations 2.2, 2.3, and 2.4. Now

our aim is to investigate the maximum value of a that can be provided, by finding

max(f1(ttr)) and max(f2(tt)), on minimizing trt using min(ttr) and min(tt). In partic-

ular, f2(tt) depends on the testing time of the multimedia processing (presently object

detection) model. However, for the determination of f1(ttr), trends of accuracy have

been analyzed using the timeliness for training time (ttr) for all of the identified cases of

domain adaptation and training from scratch (tda and tscratch) respectively, with various

parameters detailed in Fig. 2.3(b). Please note here (in Fig. 2.3(b)) α corresponds to

the initial accuracy achieved by a classifier before training, β is the highest accuracy

that a classifier can achieve after training, and θ is the higher slope.

2.7 Research Questions

RQ 1: How can we answer multimedia event based queries online consisting of seen

concepts of any domain while achieving high accuracy and minimizing the response

time?

RQ 2: How can we answer multimedia event based queries online consisting of com-

pletely unseen subscriptions (unbounded vocabulary), using an adaptive classifier

construction approach with the tuning of hyper-parameters while achieving high

accuracy and minimizing the response time?
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RQ 3: (a) How can we answer multimedia event based queries online consisting of

unseen subscriptions (unbounded vocabulary), using domain adaptive classi-

fier construction approach with knowledge transfer from seen subscriptions

(bounded vocabulary) while achieving high accuracy and minimizing the re-

sponse time?

(b) How can we answer multimedia event based queries online consisting of un-

seen subscriptions (unbounded vocabulary), using task as well as visual do-

main adaptive classifier construction approach with knowledge transfer from

seen subscriptions (bounded vocabulary) while eliminating the requirement

of bounding box annotations availability, achieving high accuracy, and mini-

mizing the response time?

It is worth noting that the research hypotheses (RH) presented in Section–1.6 are asso-

ciated with the above research questions. Explicitly, RQ 1 is related to RH-I, RQ2 is

associated with RH-II, RQ3 (a) with RH-III, and RQ3 (b) with RH-IV.

2.8 Summary

This chapter is designated to the detailed discussion of the problem domain and its

technical limitations. Debate on motivation also states the need for generalizable mul-

timedia event processing followed by the requirements for the comparative analysis of

the related work. Challenges and opportunities for the generalized multimedia event

processing-based applications using IoMT by taking object detection as a case study are

also highlighted. I also formulate the concept of “response-time” that I use throughout

the problem and its proposed approaches. Finally, the formulated problem is divided

into three research questions which I tackle in different chapters of this thesis. However,

before the proposed solutions in other chapters, I give a state of the art of IoMT and a

detailed analysis of object detection in the next Chapter–3.
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Background and Related Work

3.1 Introduction

In this chapter, first, I discuss the literature of the Internet of Things (IoT) for investi-

gating the concept of the Internet of Multimedia Things (IoMT) in Section–3.2. I define

the IoMT and presents visions of IoMT in light of IoT. A comparison of IoT and IoMT

is also provided based on the characteristics and describes requirements with existing

solutions of IoMT. Section–3.3.1 analyzes the current deep neural network-based ob-

ject detection models, which I use in this thesis work. A detailed comparison of object

detection datasets is presented in Section–3.3.2 which I use to train classifiers for pro-

posed models discussed in Chapters–5 to 8. Comparison of object detection models and

datasets demonstrate the need to bridge their large gap of performance and extensive

vocabulary.

Some of this related work, along with limitations and future directions, have been pre-

sented in the journal titled “A Survey on Object Detection for the Internet of Multimedia

Things (IoMT) using Deep Learning and Event-based Middleware: Approaches, Chal-

lenges, and Future Directions [31]” of Image and Vision Computing (IMAVIS), Elsevier.

3.2 Multimedia in Internet of Things

This section discusses the concept of the Internet of Things (IoT) and the Internet

of Multimedia Things (IoMT), along with its characteristics, challenges, and existing

solutions for the processing of multimedia.

29
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3.2.1 Concepts of IoT & IoMT

3.2.1.1 Internet of Things

The European Research Cluster of IoT (IERC) [68] definition states that IoT is “A dy-

namic global network infrastructure with self-configuring capabilities based on standard

and interoperable communication protocols where physical and virtual “things” have

identities, physical attributes, and virtual personalities and use intelligent interfaces,

and are seamlessly integrated into the information network.”. Semantically IoT stands

for “a world-wide network of interconnected objects uniquely addressable, based on stan-

dard communication protocols”, where things could be RFID) tags, sensors, everyday

objects, actuators, smart items like mobile phones etc [69]. Basically, IoT allows peo-

ple and things to be connected Anytime, Anyplace, with Anything and Anyone, ideally

using Any path/network and Any service [48, 70, 71].

The three visions of IoT i.e. “Internet oriented”, “Things oriented”, and “Semantic

oriented”, are represented in literature [2] as in Fig. 3.1(a). “Things Oriented” perspec-

tive of IoT first considers Radio-Frequency IDentification (RFID) tags in its definition.

Similarly, Unique/Universal/Ubiquitous IDentifier (uID) [72] are also part of IoT vi-

sion which is much broader than only object identification. Near Field Communications

(NFC) and Wireless Sensor and Actuators are also responsible for the build-up of the IoT

[73]. Projects like Wireless Identification and Sensing Platforms (WISP) also developed

to provide appropriate platforms for IoT. Also, it reports that traffic generated/received

by everyday objects in IoT will overcome the traffic caused by the networking of humans

[74]. Another concept, namely spime, also emerges as an object that could be tracked

through space and time throughout its lifetime, and that will be sustainable, enhance-

able, and uniquely identifiable [75]. However, spime is almost similar to Smart Items,

which also consists of wireless communication, memory, and elaboration capabilities [2].

The next technological revolution (connecting people anytime, anywhere) is to connect

inanimate objects a communication network appear in ITU Internet Report [76], and

thus we are connecting the world of people with the world of things i.e. connectivity

for anything. By considering the functionality and identity as central, IoT appeared

as “Things” having identities and virtual personalities operating in smart spaces using

intelligent interfaces to connect and communicate within social, environmental, and user

contexts [69].

Internet Protocol also got promoted for connecting Smart Objects around the world for

the IoT vision of the IPSO (IP for Smart Objects) [77]. “Internet-0” [78], a new kind

of network of everyday devices, extends the original notion of internetworking to inter-

device internetworking, and thus also agreed to make those devices to intercommunicate
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and interoperate from any location. Integrating real-world devices to the web (“Web

of Things”, another vision of IoT) is also beneficial for devices to interact in the same

language as other resources on the Internet, and thus making it relatively easy to inte-

grate physical devices with any other Web page [79]. “Semantic Oriented” visions of IoT

presented in research work [2, 80–83] directed to address the issues arising due to the

increase in heterogeneity of devices involved in the future Internet. Semantic execution

environments, semantic technologies, reasoning over data, smart semantic middleware,

and dataspaces [84, 85] consist of various solutions that can fulfill many requirements

of IoT, including representation, storing, scalability, communication, search, organized

information, etc.

3.2.1.2 Internet of Multimedia Things

There are numerous applications of IoT belonging to multiple domains such as medical,

transportation, security, business transactions, retail, agriculture, monitoring, process

automation, personal and social domains, etc. Although most of the real-time data of

these domains consist of images/videos, the challenges of processing multimedia data

are yet to handle in IoT. This requirement of enabling objects of smart cities with the

ability to observe, sense, and understand each other, compelled the research to move

from conventional IoT to multimedia-based IoT [7, 86–90]. As the concept of integrating

multimedia with IoT is very recent, it has been referred to in the literature with IoMT

and MIoT synonymously and needs standardization [5, 91]. In literature [86, 92, 93],

IoMT realized as the addition of challenges over IoT, which may include Security, Rout-

ing, Quality of Service (QoS) and Quality of Experience (QoE) concerns, Heterogeneity

of multimedia sensors, etc. I defined the IoMT in this thesis as an IoT-based paradigm

that allows objects to connect and exchange structured as well as unstructured data

with one another to facilitate multimedia-based services and applications [32].

Visions of IoMT realized in the presented work shown in Fig. 3.1(b) that are adapted

from visions of IoT (Fig. 3.1(a)). It is crucial to include “Multimedia Oriented” with

three other visions (Things, Internet, and Semantic) of IoT, due to the nature of data

which could be semantic (structured) based or multimedia-based. Also, we can see in

Fig. 3.1(a), that the overlapping of “semantic-oriented” with “things-oriented” is empty

and states the gap in the literature of IoT [2, 94, 95]. Similar to “Smart Semantic mid-

dleware”, we also have multimedia aware middlewares to provide services of handling

multimedia based events between distributed platforms and applications. Existing re-

search in this category is focused on the establishment of architecture [96] for Multimedia

Internet of Things while handling the issues of multi-modal Big data computation [4],

with scalability and maintainability of the model for effective multimedia information
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(a) IoT [2]

(b) IoMT

Figure 3.1: Visions of IoT [2] to our visions of IoMT
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sharing [6]. Also, smart items are not only part of “things” as their core origin is multi-

media (audio/images/video/text). “Multimedia Semantics” [97–99] is another popular

domain associated with content semantics, situational semantics, retrieval semantics,

and social semantics of multimedia data, where all of them become parts of IoT at some

point in the processing of events. The goal of “Reasoning over data” cannot be fully

accomplished by using only “semantics”; multimedia understanding and reasoning, have

attracted a large amount of interest from the research specifically in machine learning

[100–107]. Processing of multimedia events and their execution environments are essen-

tial in IoMT for analyzing the huge amount of unstructured data generated in smart

cities [108–113]. Online learning is also a well-received domain in the field of smart cities

in analyzing and/or processing of semantics as well as multimedia based data [114–118].

3.2.2 Characteristics, Requirements, and Solutions for IoMT

A detailed comparison of IoT and IoMT based technologies is shown in Table 3.1 us-

ing service-oriented architecture (SoA) for IoT [2, 94]. Existing technologies of IoT

can be easily distinguished from IoMT by analyzing sensing, networking, service, and

application-level services.

Sensing layer is integrated with tags/sensors, able to automatically sense data, and com-

municate information among things [94]. In-order to determine existing sensing abilities

of IoT as compared to IoMT, the sensing layer divided into characteristics of resources,

deployment, heterogeneity, communication, and scalability. It is presented in the work

[121], that low-cost handling of multimedia data while preserving the effectiveness is

the major challenge for the IoMT based systems as compared to IoT. Conventionally

Radio Frequency IDentification (RFID) tags are the basis of wireless sensor networks for

tracking of scalar data in IoT. Technological advancement in the field of Radio-Frequency

IDentification (RFID) with sensing and actuating capabilities is the key step of IoT that

enabled the communication in smart cities without the help of humans [119, 120]. The

high power consumption of multimedia (audio and video) sensors as compared to scalar

data sensors is one of the key challenges in the deployment of multimedia over IoT

[142]. Multimedia content, e.g. audio, video, etc., acquired possess distinct character-

istics as compared to the scalar data acquired by typical IoT devices. Scalar data is

relatively very less heterogeneous as compared to multimedia data. Scalar sensors are

typically designed for monitoring temperature, pressure, humidity, location of objects,

or any other measured values, while standard audio and video sensors for capturing

sound, still or moving images [5, 122, 124]. Most of the research in the field of the

wireless sensor network (WSN) is concerned with scalar sensor networks. Thus the con-

cept of Wireless Multimedia Sensor Networks (WMSNs) is receiving attention in-order
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Table 3.1: Comparison of IoT and IoMT based systems

Characteristics
Internet of Things

(IoT)

Internet of
Multimedia Things

(IoMT)

Resources
Low Cost, Size, and
Energy consumption

[119, 120]

Low Cost, Size, and High
Energy consumption [121]

Deployment
RFID tags (one-time or
application dependent)

[119, 120]

Video and Audio Sensors
[5, 122]

Heterogeneity
Limited Heterogeneity
(Scalar data) [5, 122]

Heterogeneous
(Multimedia data)

[5, 122, 123]

Communication

WSN-based Protocols
(ZigBee, WLAN,

Bluetooth, WiFi, UMTS
etc.) [94]

WMSN-based Protocols
(RMST, PSFQ, ESR,

CODA, MRTP etc.) [124]
(Non-Standardized and
Application Specific)

Sensing

Scalability
Highly Energy-Efficient
sensors and Coexistence
for WSN Protocols [94]

Highly Energy-Efficient
sensors and Coexistence

for WMSN Protocols (not
standardized [124])

Networks

Topology (multi-hop,
mesh or ad hoc) [94];
and Node Operation:

Predefined [5]

Topology (multi-hop,
mesh or ad hoc) [94]; and

Node Operation:
Adaptive [5]

Quality of
Service (QoS)

Low delay, packet loss,
jitter and Bandwidth

[94]

Low delay, packet loss,
jitter and High

Bandwidth[86, 125–127]

Storage,
Searching and

Processing

Data Mining and
Analytics [128–131]

Data-mining, Feature
Extraction, and

Cloud-based Multimedia
Storage System [132–134]

Networking

Security and
privacy

Data Confidentiality,
Privacy, and Trust

(TEA, AES, ECC etc.
[94])

Confidentiality-Preserving
[121], Security and Trust

[7, 92]

Service
Composition

SOA-based and
event-based middleware

[135]

No available specialized
middleware [7]

Service
Management

RFID-based Service
Architectures [136]

Video on Demand (VoD)
service, MVSWN, HIVE

etc. [137]Services

Service APIs

Universal API [94] and
Effective Domain

Specific Services (like
Health Thermometer

Service [94])

WiSNAP and AER
[133, 138, 139]
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Infrastructure
& Industrial

Transportation, business
transactions,

online-payment, smart
cities, environmental

monitoring, and smart
homes and building

[2, 94]

Traffic Monitoring,
Airport Surveillance,

Municipality Supervision,
Behavioral interpretation

systems [5, 137, 140]

Health-care
applications

Triage, patient
monitoring, personnel

monitoring, disease
spread modelling and

containment [120]

Medical Imaging,
Telemedicine [5, 141]

Security
Tracking, Losses,
Identification and
authentication [2]

Automated Public
Security, Building
Security, Airport

Security, Surveillance,
Crowd Monitoring [5, 11]

Applications

Personal and
social domain

Facebook, Twitter,
Google Calendar, Loss

and Stolen objects
notification [2]

Multihoming [87]

to enable technologies for multimedia content. High energy-efficient sensors with the

coexistence of communication protocols (based on WSN and WMSN) are necessary for

the scalability of IoT and IoMT. IoT support numerous protocols (like ZigBee, WLAN,

Bluetooth, WiFi, UMTS, etc.) for different communications. However WMSNs based

protocols (like RMST, PSFQ, ESR, CODA, MRTP, etc.) are only domain-specific and

not standardized yet which also associate challenges with communication and scalability

of multimedia applications [5, 94, 124].

Networking layer [94] is responsible for providing infrastructure that allows things to

connect over wireless or wired networks, which is crucial for the sharing of IoT/IoMT

based data (scalar/multimedia). Amongst the characteristics of the network layer, adap-

tive node operation is the main difference of the IoMT based networks as compared to

the networks for only IoT [5]. IoMT follows the same characteristics as of IoT in terms of

topology, low delay, packet loss, jitter, etc. However, the fixed bandwidth of IoT based

systems, which is usually low due to the expectation of small size packets, is also not suf-

ficient to provide requisite Quality of Service (QoS) [126] for IoMT. Most of the storage,

searching, and processing techniques are available only for IoT based systems, and very

few like data mining, feature extraction, cloud-based multimedia designed for IoMT

[132–134]. Similarly, loads of security and privacy based protocols (like (TEA, AES,

ECC, etc.) are available for IoT, but only a few are handling the challenges of IoMT

[7, 92, 121]. A novel security-critical multimedia service architecture proposed in the

work [92]. It also contributes towards analyzing and classifying traffic classification for
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various multimedia streaming applications to illustrate the effectiveness of the proposed

model. Another low-cost data acquisition and confidentiality preserving framework [121]

proposed for IoMT. It is based on two-layer security protection i.e. chaotic encryption

control during the sampling process and chaotic permutation-diffusion encryption after

the sampling, both of these encryption operations have low computational complexity.

In a few recent approaches, layered based protocols have been presented for handling

the challenges of QoE associated with the concept of Multimedia IoT (MIoT) and ana-

lyzed using IoT based vehicle application [86, 127, 137]. Similarly, challenges related to

compressed sensing video streaming [126] and efficient cloud-based transmissions [134]

including robust multicast routing [143] realized due to high bandwidth requirements of

multimedia applications in the Internet of Things.

The service layer designs to enable services and applications in IoT [2, 94]. This layer

relies mostly on middleware technologies in-order to support service providers and users,

which abstracts the complexities of the system/hardware. Service Oriented Architecture

(SOA) recognized as a good solution for the IoT middleware [48, 119]. SOA- and Event-

based middleware are designed specifically for handling the structured data, and no

specialized middleware available for the service composition of IoMT [7, 135]. Research

work [136] presented in highlights the benefits of Service-Oriented Computing (SOC)

to construct middleware for the Internet of Things. They proposed a Radio-frequency

identification (RFID) suite (middleware), designed on a multi-layer architecture while

leveraging SOC. Here the role of the middleware is to track RFID-tagged objects as well

as other objects that can provide relevant information. A comprehensive review of video

streaming also presented in paper [137] mainly focuses on vehicular communication per-

spective in Multimedia oriented Internet of Things (IoT) environments. By emphasizing

the growth of multimedia traffic on the overall Internet, this review discussed many of

the services particularly related to “vehicles to vehicle” or “vehicles to IoT devices”. In

terms of Service APIs, a large number of universal, as well as domain-specific APIs, can

be found in reviews of IoT [2, 94, 119, 120]. Ongoing research on prototypes of multi-

media sensors and their integration into testbed described in paper [133]. It indicates

Address event image sensing (AER) and Wireless Image Sensor Network Application

Platform (WiSNAP) as software and application programming interface for multimedia

based networks. AER is a software tool to identify the occurrence of an event without

sending back real images. All sensors in AER visualized as nodes of a neural network

and camera as a detection tool by the node. The binary decision of nodes used to detect

event patterns by the AER tool [138]. WiSNAP presents an application interface to im-

age sensors, which is a first towards ease of use for multimedia-based communications.

Its framework consists of two sub-parts i.e. the image sensor API and wireless mote

API [139].
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Multimedia streaming (especially videos) is one of the most common types of events

within the applications of smart cities [144]. Its applications may include health-care,

emergency services, crowd monitoring, traffic management, building management, smart

environment, personal and social domains. However, multimedia-based systems [5, 11,

87, 137, 140, 141] designed for the applications of smart cities are still comparable to

the systems designed for processing structured data [2, 94, 120], and need to be further

investigated using IoT.

3.3 Object Detection

3.3.1 Deep Neural Network based Object Detection Models

Deep convolutional neural networks are proven to be suitable for image recognition

in achieving high-performance results. Thus we have compared the most recent and

competitive object detection model (Faster RCNN, SSD, YOLOv3, and RetinaNet) that

could prove to be prominent for the multimedia event processing. Neural Network-based

architectures for all object detection models shown in Fig. 3.2 and explained below in

detail.

Faster R-CNN The R-CNN (Region-based Convolutional Network) [145] model was

among the first model to use convolutional neural networks for the detection of objects.

These models begin with the first region search and then perform the classification. R-

CNN uses a selective search method [146] in-order to create bounding boxes or region

proposals, and also combine deep learning to identify objects in these regions. The aim

of the Fast Region-based Convolutional Network (Fast R-CNN) [147] is to reduce the

time complexity by removing the need for feeding the high number of region proposals

to the convolutional neural network every time. In this case, the convolution operation

is done only once, by taking an entire image and a feature map is generated from it.

However, the use of the selective search method for the detection of region proposals is

still necessary for the Fast RCNN model, which is considered computationally expensive.

Faster RCNN [148] removes the need for using a selective search algorithm by proposing

a separate network to predict the region proposals, known as Region Proposal Network

(RPN). RPN accelerates the training and testing with improvement in performance. The

predicted region proposals are then reshaped, classify the image, and finally generates

an output for rectangular bounding boxes.

Mainly, the Faster R-CNN model utilizes RPN and the Fast R-CNN model, for the

detection of objects. The neural network-based architecture of Faster RCNN is shown
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in Fig. 3.2(a). First, the Faster R-CNN extract feature maps from Input Image (resized

to 1000×600) using the backbone convolutional neural network (presently VGG-16 [18]).

RPN check locations that contain an object and pass bounding boxes to the detection

network. RPN uses a sliding window to find each location on the input image by placing

a set of anchors on the output feature map of the backbone network. For instance, 9

anchor boxes are used with 3 scales (128, 256, and 512) and 3 aspect ratios (1:1, 1:2,

and 2:1) in Pascal challenges by Faster R-CNN. As proposed regions could by highly

overlapping, NMS (Non-Maximum Suppression) is used by Faster-RCNN to reduce the

number of region proposals. Other than RPN, the detection network of Faster-RCNN

is similar to Fast R-CNN. It also consists of a backbone, ROI pooling layer, two fully

connected layers followed by two fully connected branches for the object classification,

and bounding boxes regression. ROI pooling layer also uses the feature map generated

by the backbone network. ROI pooling layer considers the regions corresponding to

the bounding boxes proposals generated by RPN. It divides the regions into a fixed

number of windows and performs maximum pooling for the fixed output size. Then two

fully connected layers take the output of the ROI pooling layer, and features are passed

object classification and bounding boxes regression layers. Here, the classification layer

also makes use of the softmax layer to get the classification scores. The regression layer

helps in the improvement of the predicted bounding boxes.

Faster R-CNN was 10 times faster than the other R-CNN models and designed to achieve

high accuracies in less time. However, it ends up being the slowest than other object

detection models (like SSD, YOLO, RetinaNet, etc. discussed below) and not the most

accurate.

Single Shot Detection (SSD) The Single Shot Detector (SSD) framework [36]

realizes the requirement of real-time applications and focused on high speed while main-

taining accuracy. SSD mainly consists of two parts: a backbone network and SSD

head. Backbone is the same as the standard feature extraction network (like base net-

work VGG-16 [18] used in Faster R-CNN), which is pre-trained on image classification

dataset (like ImageNet). SSD head consists of extra layers to produce detections with

additional features, namely multi-scale feature maps for detection (to allow predictions of

detections at multiple scales), convolutional predictors for detection (where each added

feature layer produce fixed set of predictions using a set of convolutional filters), and

default boxes and aspect ratios (SSD use anchor boxes at various aspect ratio and learns

the off-set rather than learning the bounding box). Fig. 3.2(b) shows the feed-forward

convolutional network of SSD, the first few layers are the backbone, and extra feature

layers represent the SSD head.
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(a) Faster RCNN

(b) SSD

(c) YOLO

(d) RetinaNet

Figure 3.2: Neural Network based Architectures of Object Detection Models.
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SSD does not make use of Region Proposal Networks (RPN) and predict objects directly

from feature maps. It resolves the need for RPN by using small convolution filters (like

3×3) to predict bounding boxes and class scores. First, SSD extracts feature maps from

Input Image (300×300) using backbone VGG-16. Then SSD uses the rest of the convolu-

tional layers to detect objects. It utilizes SSD six more auxiliary convolution layers after

the VGG16 for predictions. SSD predicts 21 scores (in case of Pascal VOC Challenge)

where class “0” indicates no objects and 1 boundary box for each class. Another addi-

tional feature of SSD from Faster R-CNN is to use default boundary boxes. During the

initial training, models could be very unstable, thus instead of making random guesses

of boundary boxes while training, the more sensible approach is to use the ground truth

as default boxes for the guesses. However, these default boundary boxes are selected

manually by the SSD model. Finally, SSD also uses the non-maximum suppression step

to remove duplicates and produce the final detections.

In general, SSD addresses the speed-accuracy trade-off and achieves a good balance

between them, which makes it suitable for real-time processing applications.

You Only Look Once (YOLO) You Only Look Once (YOLO) [149] is a single neu-

ral network to predicts bounding boxes and class probabilities directly from an image

in a single evaluation. YOLO sees the whole image at once as opposed to the previous

region-based object detection models, which only look at generated region proposals,

which helps YOLO in avoiding false positives. YOLO views image detection as a regres-

sion problem that divides the entire image into a grid of S×S, and each grid predicts B

bounding boxes and confidence. YOLO also does not require the step of region proposals

and thus predicts bounding boxes in real-time.

Unlike conventional object detectors, YOLO uses darknet as a backbone network (pre-

trained on ImageNet Classification data), its network architecture is shown in Fig. 3.2(c).

YOLO network consists of 24 convolutional layers followed by 2 fully connected layers.

Here few convolution layers use 1×1 filters followed by 3×3 filters. Darknet, produces

the output it outputs a tensor with shape (7×7×1024) tensors, and then after 2 fully

connected layers, it outputs (7×7×30) shape tensor of predictions. Please note that if

one image contains S×S×B bounding boxes, then final prediction tensor values for one

image is S×S×(5B+K), where each box may consist of 5 outputs: 4 predicted loca-

tions, 1 confidence score, and K (=20 classes for PASCAL VOC Challenge) conditional

probabilities.

YOLO is very fast and can detect objects in real-time [149]. However, the limitation of

the YOLO object detection model is that it struggles in predicting small objects, and it

is still falling behind in terms of accuracy, from state-of-the-art detection models.
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RetinaNet It is the assumption in the RetinaNet object detection model [37] that

the foreground-background class imbalance problem is the cause of the inferior per-

formance of one-stage detectors as compared to two-stage detectors. Thus RetinaNet

model introduced a new loss function “Focal Loss” to deal with class imbalance. Here

in the first stage, the classifier applies to a sparse set of candidate object locations. The

second stage is responsible for classifying the location of each candidate as one of the

foreground classes or as background. It first reshapes the entropy loss so that it lowers

loss weights assigned to easy negative samples. Thus “Focal loss” focuses training on a

sparse set of hard examples, which improves prediction accuracy.

RetinaNet network (shown in Fig. 3.2(d)) mainly consist of: ResNet+FPN backbone,

object classification subnetwork, and bounding boxes regression subnetwork. FPN (Fea-

ture Pyramid Net) is used on top of ResNet to construct the feature map from Input

Image (800×1333). Classification subnet is a fully convolutional network consist of four

3×3 convolutional layers with 256 filters, then one 3×3 with K×A filters. The shape of

its output is (W, H, K, A), where W×H are dimensions of the feature map, K is the

number of classes, and A represents anchors. Like classification subnet, the bounding

boxes regression subnet is also connected to FPN and output similar shape with the

exception of 4A filters in the last 3×3 convolutional layers. Finally, top predictions get

merge from all levels, and RetinaNet produces predictions.

RetinaNet is efficient and accurate than the previous region-based convolutional net-

works while using ResNet-101-FPN [51] as the backbone for feature extraction.

Comparison of DNN based Object Detection Models: From the perspective

of detection of objects in processing multimedia events of smart cities, we have analyzed

deep neural network based models using the following dimensions:

• Backbone: It represents the backbone used for the step of image classification

in the object detection model. For instance Inception-v1, -v2, -v3, Resnet-101,

Mobilenet-v1, and -v2 [51, 150, 151] are some of the examples of backbones. Most

of the time each object detection model have one recommended backbone, but

they are also flexible to classify image using other backbones. However, models

itself provide a validated performance on the use of a few other backbones, while

the use of any completely different backbone is the responsibility of the designer.

• Mean Average Precision (mAP): It is the mean of average precision calculated on

the detection of each class on which the model is trained. It is among one of the

crucial matrices which need to be evaluated before proceeding towards choosing

any object detection model for accurate multimedia event processing.
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Table 3.2: Comparison of DNN based Object Detection Models

Model Backbone mAP FPS

Training
Time
(on

GPU)

Classifier
Size

YOLOv3

Darknet53 448x448 (Also
Flexible with AlexNet,
VGG-16, Extraction,

Darknet19, Darknet19
448x448, Resnet-18, -34, -50,
-101, -152, ResNeXt-50, -101

(32x4d), -152 (32x4d),
Densenet 201 and Darknet53)

33.0 45fps
13 to 30

hours
248.0MB

RetinaNet

Resnet101 (Also Flexible
with Mobilenet-128, -160,
-192, -224, Resnet-50,-152,

VGG-16, -19,
Densenet-121,-169, and -201)

37.8 5fps
10 to 35

hours
152.7MB

SSD
VGG-16 (Also Flexible with

ResNet-101)
28.8 19fps

20 - 40
hours

137.3MB

Faster
R-CNN

VGG-16 (Also Flexible with
ZF-Net-16 and Resnet-50)

27.2 2fps
16 to 84

hours
548.3MB

• FPS: Frame Per Second (FPS) denotes the time taken by model to evaluate an

image (frame) for the detection of objects.

• Training Time: Covers the time required by model to train a classifier for a single

class until it reaches to maximum accuracy. It is necessary to add the training

time to total inference (evaluation) time of one frame, for the computation of total

delay of object detection model before deploying it in real-time applications.

• Classifier Size: The space complexity of model in order to store the classifier after

training.

Table 3.2 represents a comparison of these object detection models. It represents rec-

ommended backbones of these models, with the flexibility of using others, there mean

Average Precision (mAP) on using classes of Pascal VOC, Microsoft COCO, and Open

Images dataset. YOLOv3 has the highest frames per second (i.e. number of images

processed per second) with competitive accuracy. However, classifier sizes could be a

major constraint in the deployment of such models, and SSD or RetinaNet have rela-

tively minimum classifier sizes. Unfortunately, Faster-RCNN could not be suitable for

real-time applications of smart cities. Thus we can conclude these object detection mod-

els have their trade-offs in terms of speed, accuracy, memory, and required training time,
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and need to be used optimistically for online training to achieve low response time for

multimedia based application of smart cities.

Deep Neural Network based Object Detection Models: These models cover

the most recent object detection models and famous for their high accuracy and speed

of processing image events. Though training time is not considered a comparison metric

in these models, such models are adaptable for any new domain if training data is

available. However, such models themselves don’t support any vocabulary beforehand

and need to utilize the object detection datasets or any domain-specific datasets for their

applications.

3.3.2 Seen Classes based Object Detection Datasets

Technical advancements of machine learning models could be beneficial only with the

availability of annotated datasets. Among large number of popular datasets of machine

laerning models, we have analyzed four visual datasets, namely ImageNet [152], Pascal

VOC [26], MSCOCO [153], and OID [154], which are globally considered suitable for

training of object detection models.

Image Net: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

[152] has been running annually from 2010 to present and become the standard bench-

mark for large-scale object recognition (Image Classification as well as Object Detection).

ImageNet is an image dataset organized according to the WordNet hierarchy [29, 155].

ILSVRC annotations follow one of the two categories i.e. (1) image-level annotation for

the presence or absence of an object class in the image ( by taking a binary decision) (2)

object-level annotation for the detection of bounding box of an object and its class label.

It consists of more than 1000 object classes having around 1, 461, 406 images. However,

200 basic-level categories are only available for the testing of the object detection task.

Pascal VOC: The PASCAL Visual Object Classes (VOC) [26] is another publicly

available dataset of annotated images, designed specifically for object detection. Like

ImageNet, this challenge also consists of two components, i.e. image dataset with ground

truth annotation of images and an annual competition with a workshop where images

are obtained from the Flickr website1. It mainly consists of 20 classes i.e. aeroplane,

bicycle, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike,

person, potted plant, sheep, train, and TV. It also attempts to address three principal

1Image hosting service (flickr.com)
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(a) ImageNet (b) Pascal VOC

(c) Microsoft COCO (d) Open Images Dataset

Figure 3.3: Example Images for Object Detection Datasets

challenges, namely classification (does the image contain any instances of a particular

object class?), detection (where are the instances of a particular object class in the image

(if any)?), and segmentation (to which class does each pixel belong?). The total number

of images and objects in the main datasets is 11, 540 and 31, 561, respectively. Also,

the total number of images and objects in segmentation datasets is 2, 913 and 6, 934

respectively. However, the number of objects of a particular class in this dataset varies

drastically, like class person have 10,129 objects for training and validation while class

cow has 702 objects only. At the same time class dog has 1,541 objects.

Microsoft COCO: The Microsoft Common Objects in the COntext (MSCOCO)

dataset [153] introduced a new large-scale dataset that addresses three core research

problems: detecting non-iconic views of objects, contextual reasoning between objects,

and the precise 2D localization of objects. The creation of this dataset depends on

the extensive involvement of crowd workers via different user interfaces for category

detection, instance spotting, and segmentation. MSCOCO consists of 91 common object

categories with 82 of them having more than 5, 000 labelled instances. Here a selection

of 91 categories is based on picking categories of high votes and keeping a balance among

the number of categories per super-category (person, vehicle, outdoor, animal, accessory,
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sports, kitchen, food, furniture, electronic, appliance, and indoor). In total, the dataset

has 2.5 million labelled instances in 328k images. The ratio of object instances per

image for MSCOCO is 7.7, which is considerably more as compared to other datasets

(ImageNet (1.1) and PASCAL VOC (2.4)).

Open Images Dataset Dataset Open Images V4 [154] is a collection of 9.2 million

annotated images available for image classification, object detection, and visual rela-

tionships. Specifically open images V4 is large scale in terms of images (9, 178, 275),

annotations (30, 113, 078 image-level labels, 15, 440, 132 bounding boxes, 374, 768 visual

relationship triplets) and the number of visual concepts (classes) (19, 794 for image-level

labels and 600 for bounding boxes). Particularly for object detection, this distribution

can be represented as 15.4 million bounding boxes for 600 categories on 1.9 million im-

ages. Moreover, annotations of OID images are rich enough to have an average of 8

annotated bounding boxes per image, which guarantees its suitability for the detection

of objects. Its image acquisition procedure mainly includes identification of all Flickr2

images with CC-BY(Creative Commons Attribution) license, downloading original im-

ages, extract relevant metadata, removing common/inappropriate/duplicate images, and

finally partitioning of images into training (9, 011, 219 images), validation (41, 620) and

testing (125, 436) datasets. After that, OID has shortlisted 600 object classes, classify

them with the help of image classifiers and humans, then generate bounding boxes using

reasonable guidelines (details appear in with up-to-date dataset on Open Images V4

website3).

Fig. 3.3 represents an example of images in these object detection datasets. It can be

observed that OID and Microsoft COCO dataset consist of real-world images having

more number of classes. Pascal VOC dataset also includes smart city scenes, with more

instances but having less number of classes. However, ImageNet focuses on image classi-

fication and thus having iconic images for the detection of objects also. My investigation

(Fig. 3.4) shows that existing object detection datasets designed for real-world images

of smart cities do not have enough classes [26, 28, 152, 153]. Moreover, the datasets that

claim to have more number of classes have a fewer number of images for most of the

classes. Thus resulting object detection datasets are less accurate. The datasets that

perform best and have high mean average accuracy have the least number of classes.

It can be concluded that this trade-off of performance with the number of classes is

perceived and not addressed by any object detection datasets.

2Image hosting service (flickr.com)
3https://storage.googleapis.com/openimages/web/index.html
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(a) ImageNet (b) Pascal VOC

(c) Microsoft COCO (d) Open Images Dataset

Figure 3.4: Number of Images Annotated in Object Detection Datasets with classes.

Comparison of Object Detection based Datasets From the perspective of de-

tection of objects in processing multimedia events of smart cities, we have analyzed

datasets using following dimensions:

• Number of Classes: Represents the total number of categories (like cat, dog, car,

tree, bike etc.) for which dataset have training, validation, and testing images. It

is important to note that number of images of particular class may vary from one

class to another class.

• Average Number of Objects per Image: It is designated to compute the average

number of classes present in one image, as it is a very important factor in the

training of any object detection model.

• Average Image Size: It represents the space complexity of dataset for storing

images of particular class. However high resolution images are good for training but

may take more space and training time. Thus optimal size should be recommended

before choosing any dataset for object detection in the real time event processing.

• Average Number of Training Images per Class: It computes the median by using

total number of training images available in each class. Since number of images

in particular class may vary from one class to another, it is necessary to evaluate

this dimension before considering any dataset good for training on all classes.
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Table 3.3: Comparison of Available Object Detection Datasets

Dataset Classes

Av.
#Train-

ing
Images/-

Class

Av.
#Valida-

tion
Images/-

Class

Av.
#Test-

ing
Im-

ages/-
Class

Av.
#Ob-
jects/
Image

Av.
Image
Size

ImageNet 200 823 58 201 1.1 ∼4.6MB

Pascal VOC 20 1170 (train+val) 147 2.4 ∼0.1MB

Microsoft
COCO

80 4,452 46 370 7.7 ∼0.08MB

Open Images
Dataset

600 740 26 77 8.1 ∼3MB

• Average Number of Validation Images per Class: Similarly it determine the median

by using total number of validation images available in each class.

• Average Number of Testing Images per Class: Lastly it evaluates the median by

using total number of testing images available in each class.

Table 3.3 represents a comparison of available datasets along the identified dimensions.

These dimensions are crucial to analyze before choosing any dataset for the processing

of multimedia events in smart cities. It can be seen that Open Images Dataset has the

highest ratio of 8.1 for average number of objects per image. Moreover, its number of

classes is also 600. However, among these 600 classes, OID has many classes with only

10 or 40 number of training images, which makes it not a suitable dataset for training in

those cases. On the other hand, the ImageNet dataset is very popular, but it has only

200 categories for object detection, also most of them are iconic images with only one

object per image, which is also not a very good factor in training neural network-based

models. PascalVOC consists of only 20 classes, which are negligible in-front of millions of

classes of real-world scenarios. Moreover, the number of images per class in this dataset

varies highly from class to class, which makes it perfect for some classes and average

for other classes. Similarly, Microsoft COCO is also a very accurate and highly popular

dataset due to its performance, but 80 is still a small number. Also, these datasets have

a large number of total images, but we have computed the median to find the average

number of images per class in terms of training, validation, and testing. We can observe

that some of the OID datasets have the least number of classes resulting in (740, 26,

77) average number of images per class. However, Microsoft COCO is best as compared

to Pascal VOC and ImageNet. Also, the ratio of objects per image of Microsoft COCO

is relatively high, and the image size is also the least. However, each of these datasets

could be useful in terms of having different categories and can be served as a benchmark

to construct base classifiers or for domain adaptation of classifiers.
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Despite all of these (ImageNet, Pascal VOC, MSCOCO, and OID) imperfections, these

datasets could be useful in training base classifiers. Especially performance of deep

learning models by using Pascal VOC(Cvoc = 20) or MSCOCO (Ccoco = 20) datasets

is unbeatable and can perform roles of base classifiers. On the other side ImageNet

(CImage Net OD = 200) and OID (COID = 600) helps to construct classifiers on the

need for classes which are not present in other small datasets thus they could also

give an average performance which is better than having no classifier for such rarely

occurred classes. If we need to detect any object which is completely unseen/unknown

(i.e. Cvoc + Ccoco + CImage Net OD + COID) for any of the available datasets, then we

can choose a suitable seen/known class (Cvoc + Ccoco + CImage Net OD + COID) from

available datasets, which is closest to this unseen class and construct a new classifier by

adapting seen-class classifier as a base classifier. Lastly, if no closest class is available

in popular datasets, then we can train a classifier online from scratch [156]. Although

for this we may have to apply automatic data construction techniques by using search

engines (Google Images, Bing Image Search API, etc.) for data collection and automatic

segmentation tools for annotation.

Existing work in object detection datasets focuses on widening the vocabulary by pro-

viding a large number of annotated bounding boxes for multiple categories. Such ap-

proaches do not cover increasing the performance of machine learning models or any

possible adaptation. Since datasets’ construction is an independent task from object

detection models, we need to bridge the large gap of performance and an extensive

vocabulary.

3.3.3 Small Datasets based N-Shot learning methods

N-Shot learning is a branch of machine learning which handles the challenge of training a

model with only a small amount of data. In terms of terminology, we refer to it as N-way-

K-Shot-classification, where N is the number of classes and K is the number of labeled

training samples from each class. N-shot learning is helpful for the domains where we

have only one or two samples per class available for training. Its main variations are

zero-shot learning, one-shot learning, and few-shot learning discussed below:

Zero-Shot The goal of Zero-Shot Learning is to classify a new class without any

training data. In other words, a model which needs no samples to classify an image.

To achieve this task, zero-shot learning [157–159] uses the metadata of images which

mainly includes appearance, properties, and functionality.
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One-Shot In One-Shot Learning [160, 161], we have only one sample for training.

Siamese neural networks [162, 163] and matching networks are two benchmark architec-

tures developed for one-shot learning.

Few-Shot The difference between one-shot and few-shot is that few-shot has two

to five samples for training each class. Prototypical networks [164] and Meta-Transfer

Learning [165] are baseline algorithms for the few-shot learning. Omniglot and Mini-

ImageNet are commonly used datasets for few-shot learning. However, most of the

existing methods are designed for few-shot image classification problems.

The Few-Shot Object Detection is less developed as compared to few-shot classification.

YOLOMAML 4 is one of the open-source algorithms for the task of few-shot object

detection, which utilizes two components MAML [160] algorithm and the YOLO detector

[166]. Thus, it depends on classification as well as detection to perform few-shot learning.

Some of the recent work [63, 167–170] in the area of few-shot learning is discussed in

Chapter–8. Clearly, these algorithms are designed for tasks where few labeled samples

are available for training, not for reducing the training time.

We can conclude existing N-Shot learning methods could be helpful for unseen classes,

but these methods are primarily available for image classification, and object detection

needs investigation for N-shot learning. In this thesis work, I handle the problem of

processing unseen classes in less time within IoMT of smart cities where we can generally

collect more than 2-5 samples using network sensors and require real-time processing.

3.4 Summary

This chapter analyzed the state-of-the-art of Internet of Multimedia Things (IoMT) and

its comparison with the Internet of Things (IoT). Also, I provide a background of object

detection with existing deep neural network-based models and fully annotated datasets.

It is important to note that the construction of deep neural network object detection

models and datasets are also independent tasks, so we cannot use them together to train

large vocabulary models. My work aims to propose generalizable IoMT based event

processing models presented in the following chapters of this thesis and demonstrate by

the case study of object detection. Associated publication to this chapter is a survey

[31].

4https://github.com/ebennequin/FewShotVision



Chapter 4

Seen/Unseen Objects based

Multimedia Event Processing

4.1 Introduction

This chapter describes the proposed approach of multimedia event processing driven

by existing event processing. To achieve the goal of generalizable multimedia event

processing that can support unbounded vocabulary while minimizing the response-time

and achieving high accuracy, I introduced different situations (i.e., scenarios) and their

respective proposed models of adaptive multimedia event processing in this chapter. The

scenarios are based on the category of subscription (seen or unseen), its similarity with

existing concepts, and the type of data available for the training of the new classifier. I

provide the rationale for our four proposed models with their hypotheses, where our main

contribution lies in optimizing online testing (Model I) and online training (Model II, III,

and IV) time to reduce the overall response-time for multimedia event processing. I also

discuss proposed models in brief, their hypotheses, limitations, and possible solutions.

However, more detail on each specific problem formulation, modules of each approach,

and individual evaluations are provided in Chapters 5, 6, 7, and 8.

In this chapter, first, I introduce the approach of generalizable multimedia event process-

ing. Next, I give detail associated with handling dynamic (seen/unseen) subscriptions

in Section–4.3 to process multimedia events in smart cities. An overview of the four pro-

posed models is discussed in Section–4.4. The discussion on limitations associated with

scenarios and conclusions appear in Section–4.5. A summary of the chapter is presented

in Section–4.6.

50
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Figure 4.1: Current Approaches for Multimedia Event Processing

4.2 Redefining Event Processing to Multimedia Event Pro-

cessing

Presently there is no generalizable system for multimedia event processing and existing

image based systems are domain specific. Fig. 4.1 illustrates the current implementation

of processing multimedia events within specific domains of smart cities. It consists of two

key components: image processing system and event processing system to handle IoMT

based events. Image based systems are responsible for analyzing images/video using

domain specific feature extraction methods. On the other hand, event based systems

provide the publish-subscribe paradigm to facilitate distributed interaction in large-scale

applications. Thus, these two components need to be merged using another application

to support user request across both systems.

In this work, I proposed a generalizable approach for handling IoMT-based events to

facilitate multimedia events services irrespective of their domain. Multimedia event-

processing models have been proposed within event-based services that serve as middle-

ware between multimedia heterogeneous sensor networks and their application portal

within smart cities. Fig. 4.2 demonstrates the interaction of the proposed system with

wireless sensor networks for different domain-specific applications using middleware.

The proposed multimedia event processing is based on event processing, multimedia anal-

ysis, and deep convolutional neural networks to meet the requirements of IoMT based

systems in real-time. The incorporation of event-based systems with multimedia anal-

ysis supports the processing of multimedia events streams within the publish-subscribe

paradigm. Deep convolutional networks based techniques are included with multimedia

analysis to facilitate the processing of IoMT generated data with high performance. A

new “detect” operator has been developed to provide the requisite feature extraction to
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Figure 4.2: IoMT Aware Middleware

detect objects inside image events. The detect operator extends the event query lan-

guage to support multimedia analysis. The system must design and implement an event

processing engine with multimedia analysis using deep convolutional neural network-

based techniques to process multimedia event streams in a publish-subscribe paradigm

with high performance. Further, I used different adaptation approaches for the fast

training of classifiers to answer user queries online for unseen concepts of multimedia

events. We present below the concepts that we attempt to introduce in event processing

for the design of multimedia event processing:

4.2.1 Defining Generalizability

I define the generalizability of an event processing engine as the ability to support

different kinds of operations on multiple application events. The aim is to provide a

generalizable framework that can incorporate new operations on various application

events, using existing event processing query languages and feature extraction methods,

irrespective of their domain and nature of events. The generalizability of multimedia

event processing can be analyzed along three dimensions:

1. Nature of Events:

• Scalar (Structured)

• Multimedia (Unstructured)

2. Application of Events:

• Transportation
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• Entertainment

• Security

• Energy Consumption

• Temperature readings

• Other

3. Operation on Events:

• Object Detection

• Matching of Images or Objects

• Localization of Objects

• Image Classification

• Other

In this thesis, I demonstrate my work on the multimedia event on object detection

operation while considering examples of unseen concepts of multiple applications.

4.2.2 Detect Operator

The detect operator is a general-purpose operator that has been proposed [32] to detect

objects in image events. Detect is a binary operator, which consists of two inputs: image

event and keyword. Events contain the details of an image event, while keyword denotes

the name of an object that the user intends to detect in an image. The return type of

the operator is Boolean, either true or false, depending on the detection of an object in

an image. The detect operator is:

boolean DETECT (Image Event, Keyword)

Consider the situation in which a subscriber wants to know that a particular object (like

car, bus, etc.) is present or absent in the current image event. Examples of such kind

of queries by using the proposed detect operator are shown below:

Exmple 1: Query statement “Is Bus present?” for public transport management can

be expressed as:

SELECT *

FROM Image_Event AS IE

WHERE DETECT(IE,‘bus’)
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Exmple 2: Query statement “Is Car absent in last 1 min?” related to detecting the

empty car parking spot where providing time window could be optional, can be

expressed as:

SELECT *

FROM Image_Event.win:time(1 min) AS IE

WHERE NOT DETECT(IE,‘car’)

The “DETECT” operator is implemented using You Only Look Once [35, 149], Sin-

gle Shot Detection [36], and RetinaNet [37] for the purpose of classifier based object

detection.

4.2.3 Unseen Subscriptions

This dimension concerns the ability to recognize new subscriptions with the naming of

objects that may not belong to the system’s limited vocabulary. The lack of support

for unbounded vocabularies is a bottleneck for emerging applications [171], which I am

referring to as Unseen Subscriptions.

In order to switch from one domain (D1) to another (D2) for generalization, we need

to transfer knowledge from the model trained on classes of D1 (seen classes) to classes

of D2 (unseen classes) [40]. For example, if a model is trained on “bus” class for public

transport management (i.e., D1) and we want a model to detect “car” class for parking

management (i.e., D2). Then, in this case, the bus is a seen class, and the car is an

unseen class. Processing/Detection of an unseen class is not the only problem in the

case of public transports or parking management domains; they are a bottleneck in all

domains where we want to switch from one domain to another or even switching from

generalized domain (like smart cities) to a specific domain (like smart home).

4.3 Scenarios for Unseen Subscriptions of Multimedia Event

Processing

We show the scenarios in Fig. 4.3, realized in this thesis for handling the problem of

adaptive multimedia event processing adhering to dynamic (Seen/Unseen) subscription

constraints. Suppose a user subscribes for a concept, we determine the familiarity of

that concept with the multimedia event processing model by estimating “Is the Concept

Unseen?”. We answer the nature of the concept seen or unseen by inquiring about the

availability of its classifier. If we find a classifier that can detect subscribed concept, we
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Figure 4.3: Scenarios for Adaptive Multimedia Event Processing adhering to
Seen/Unseen Concept Problem

call the concept “Seen” and recognize it with “Scenario 0”. In this case, we process the

subscriptions directly using the existing classifier, without training any other model for

the seen concept.

However, if we don’t find any classifier to process the unseen concept, then we attempt

to find “Any similar seen concept available?”. We use the labels of existing classifiers

and compute their individual similarities with the subscribed concept in this condition.

In the worse case, if the concept is completely “unseen”, we introduce “Scenario 1”

for the handling of subscriptions that are not related to any domain and resulted in

low similarity scores. Please note we use the semantic as well as visual similarities to

compute the comprehensive similarity scores detailed in Sections 8.2.1 and 8.4.2.2. On

the occurrence of an altogether “unseen” concept, we train the classifiers from scratch

and optimize the training by hyperparameter tuning to reduce the overall response time

of the multimedia event processing model.

The most likely scenario is to receive the concept which is “unseen” and have similarity

with one or more “seen” concepts. Thus, we can train classifiers for such unseen do-

mains by knowledge transfer from seen domains. Our final concern is the availability of

bounding box annotations to train classifiers for subscribed concepts.

In the current scenario, we use object detection datasets to train DNN based models.

Still, since the collection of bounding boxes with images is a tedious task, they have a
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Figure 4.4: Adaptive Multimedia Event Processing with Proposed Models I: Domain-
Specific Classifier, II: Hyper-Parameters, III: Domain Adaptation, IV: Domain Adap-

tation without Bounding Boxes based Multimedia Event Detection.

small number of classes or a small number of images per class (analyzed in Fig. 3.4). Most

popular object detection datasets: Pascal VOC [26], MCOCO [27], OpenImages (OID)

[28], and ILSVRC detection challenge [152], have only 20, 80, 600, and 200 classes,

respectively. Though these datasets show promising results on the training of object

detection models, they indeed fail to fulfill the data requirements of object detection

models that could process numerous classes.

Since image-level labels are comparatively easy to acquire, a large number of classes

can be covered easily using image classification datasets or from the web. Thus, in this

work, we divide the last condition of accessibility of bounding boxes into two scenarios:

Scenario 2: Adaptation from seen to an unseen concept with bounding boxes, and

Scenario 3: Adaptation from seen to an unseen concept without bounding boxes. In

Scenario 2, we transfer the knowledge from the seen class model to the unseen class

model using transfer learning techniques while training on images having bounding box

annotations.

In the last scenario of Fig. 4.3, we make use of the small number of classes based object

detection datasets (having bounding boxes annotations) and the large number of classes

based image classification datasets (have no bounding boxes annotations) and convert

them into infinite vocabulary datasets by utilizing knowledge transfer based classifier to

detector method (i.e., LSDA) [3, 30] while limiting the training time. We call our new

framework of detection unseen concepts “UnseenNet” detail in Chapter–8.
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4.4 Adaptive Classifier based Multimedia Event Process-

ing Models

To handle each of the scenarios associated with the problem of multimedia event pro-

cessing for the dynamic unseen concepts, I proposed different models shown in Fig. 4.4

following IBM MAPE-K architecture [172]. It consist of Monitor, Analyse, Plan, Exe-

cute phase, a shared Knowledge Base, and managed resources. The monitoring phase is

responsible for interacting with the event processing engine for receiving subscriptions

(in the form of keywords), image events, and any other specified requirements. The

analyze phase decides on training and testing while processing images. The planning

phase configures tunable parameters and generates a training plan based on the relation

of unseen concepts with seen concepts. The execution phase initiates the training of the

classifier (if necessary). The knowledge base consists of baseline classifiers, strategies,

hyperparameters, visual/semantic similarity of seen and unseen concepts. The last layer

is to place the existing online/offline training datasets and Deep Neural Network (DNN)

based models. We take “object detection” as a case study to demonstrate the efficiency

and limitations of our models for tasks in smart cities.

In Model I, I use the existing architecture of the event processing engine and introduced

the ability to process multimedia events while optimizing the testing time. The opti-

mization is based on the inclusion of “classifier division and selection approach,” which

enables the proposed feature extraction model to choose a suitable classifier based on

subscription constraints, ultimately optimizing the testing. Next, I analyze the problem

of adaptation to handle completely or partially unseen concepts. The Model II uses hy-

perparameter tuning to achieve the reduced response time for the training of completely

unseen concepts. In this work, I also detail the self-adaptation architecture and show

the optimization of training. Finally this thesis focus on problem specific to domain

adaptation for the remaining scenarios (Fig. 4.3). Here, I optimize the training further

in model III and IV by knowledge transfer for both cases of with and without bound-

ing boxes. More details of proposed models with their hypotheses are discussed in this

section.

In all research questions, I attempt to minimize the response time and maximize the

accuracy. Thus, we can observe a trade-off between response time and accuracy due

to the different characteristics of object detection models, as accurate object detection

models are slower presently. This trade-off cannot be categorized as “Pareto efficiency”

due to two significant reasons. First, from the perspective of testing time, if object

detection model has more inference time and high accuracy, then it is not necessary

that its accuracy cannot be increased without increasing inference time, as many other
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factors like network architecture, type of data, type of resources, etc. can affect the

performance. For example, RetinaNet [37] is faster and more accurate than the Faster

R-CNN [148] object detection model because of its better architecture. Secondly, from

the perspective of training time, accuracy may or may not increase with training time,

depending on the type of transfer learning techniques used for training, kind of training

data, type of source model available, etc. Moreover, if accuracy increases, it may stop

increasing after some time regardless of increasing the training time, as it is always

between 0 and 1. Thus, we cannot guarantee that accuracy cannot be increased without

hurting response time; it may or may not improve with efficient neural network-based

models.

4.4.1 Domain-Specific Classifier based Multimedia Event Detection

Model

The first model tackles the requirement of high accuracy and low response time by

having a contribution in optimizing testing (inference) time. It can be observed that

existing event processing systems focus on structured (scalar) events for processing of

subscriptions of a user and have no provision of handling multimedia data. There is also

a limited provision of multimedia query languages for events. At the same time, image

processing systems are domain-specific, thus not generalizable. I frame this problem as

the first research question “RQ1: How can we answer multimedia event based queries

online consisting of seen concepts of any domain while achieving high accuracy and

minimizing the response time?”.

I formulate the hypothesis of this model as: Domain-Specific classifier based multimedia

event processing assumes that if we construct N-Class classifiers for different domains,

and we use subscription constraints to choose closely related classifier for the processing

of multimedia events; the performance will be enhanced in terms of accuracy and response

time, and will also add the ability to generalize for multiple domains.

The first model focuses on the processing of seen concepts (Scenario 0) with high perfor-

mance. However, the proposed model requires trained classifiers to process multimedia

events. Conventionally, these classifiers are trained on general-purpose datasets consist-

ing of a large number of classes related or not related to domains. In this hypothesis, I

assume that if we use N-Class classifiers for individual domains instead of using a single

classifier consisting of classes of all domains, we could enhance performance. It will also

make our model flexible for adding more domains on need. Thus, an optimization based

on the inclusion of the “classifier division and selection approach” is proposed, enabling

the proposed multimedia event processing model to choose a suitable classifier based on



Chapter 4. Seen/Unseen Objects based Multimedia Event Processing 59

subscription constraints. The detection model extract objects using only specific classi-

fiers related to the prescribed attributes (keywords). For instance, “car” classifier (single

class classifier) will be selected by the “YOLO” model for the detection of a car. Due

to the same reason, Model-I is named as Domain-Specific Classifier based multimedia

event detection model.

This model has been presented in the journal of IEEE Access “Towards a generalized

approach for deep neural network based event processing for the internet of multimedia

things” [32] and will be discussed further in Chapter–5.

4.4.2 Hyper-Parameters based Adaptive Multimedia Event Detection

Model

In the previous model, we optimized the generalizable multimedia event processing for

seen concepts and realized the challenge of online training for unseen concepts. Model

II focuses on adaptive multimedia event processing, where we can process concepts that

are completely unseen (Scenario 1) and tune hyperparameters to optimize the train-

ing. This problem is formulated as second research question “RQ2: How can we answer

multimedia event based queries online consisting of completely unseen subscriptions (un-

bounded vocabulary), using an adaptive classifier construction approach with tuning of

hyper-parameters while achieving high accuracy and minimizing the response time?”.

To address the problem, I incorporated multimedia event processing with an adapta-

tion engine and online classifier learning based object detection methods to meet the

requirements of dynamic seen/unseen concepts. Since the choice of hyperparameter val-

ues greatly affects the performance of resulting classifiers, we leverage hyperparameter

tuning based techniques, including the configuration of learning-rate, batch-size, and

the number of epochs for minimizing the response time.

Hypothesis for Model-II can be framed as: If tuning of hyperparameters based technique

is useful in machine learning models to speed-up the training, decrease the computation

cost, and increase the accuracy; then performance will get enhanced for low response-time

also even on training from scratch for unseen subscriptions on tuning hyperparameters

for the online construction of classifiers.

This model has been presented in the journal titled “Investigating response time and

accuracy in online classifier learning for multimedia publish-subscribe systems [33]” of

Multimedia tools and applications (MTAP) Springer and will be discussed further in

Chapter–6.
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4.4.3 Domain Adaptation based Multimedia Event Detection Model

Consider an option of online training of classifiers on request of any unseen (new) sub-

scription, which will require either switching (transforming) from one classifier to another

(like bus → car) or the construction of a completely new classifier (like ball). The pre-

vious Model-II covers the latter option. In present Model-III, we analyze the former

option of transferring knowledge from one classifier to another, representing Scenario

2 in Fig. 4.3. For partial unseen concepts, there is a need to investigate the online

construction of classifiers that can allow adaptation among domains for seen/unseen

concepts considering overall response time (including training time) and accuracy.

This problem is devised in research question “RQ3(a): How can we answer multimedia

event based queries online consisting of unseen subscriptions (unbounded vocabulary),

using domain adaptive classifier construction approach with knowledge transfer from

seen subscriptions (bounded vocabulary) while achieving high accuracy and minimizing

the response time?”.

In this work, I incorporated transfer learning based techniques in the proposed adap-

tive multimedia event processing engine. We investigated the two knowledge transfer

methods: (1) fine-tuning pre-trained models and (2) freezing backbone layers of similar

classifier while training only top dense layers of object detection models.

The research hypothesis for Model-III is: Domain adaptation based Multimedia Event

Detection model relies on the fact that if transferring of knowledge from one domain

to another (say A → B) can improve the performance as compared to fine-tuning of

pre-trained models (like CPImageNet→B) or training of classifier from scratch (CB); then

there will always be a decrease in response-time with increase in accuracy of constructed

classifier (CA→B) than the classifier trained from pretrained model (like CPImageNet→B)

or training from scratch (CB).

This model has been presented as the short paper titled “Reducing response time for

multimedia event processing using domain adaptation [34]” at ACM ICMR 2020, journal

titled “Detecting Seen/Unseen Concepts while Reducing Response Time using Domain

Transfer in Multimedia Event Processing” of IEEE Access (Under Submission), and will

be discussed further in Chapter–7.

4.4.4 Domain Adaptation based Multimedia Event Detection Model

without Bounding Boxes

All previous models assume we have images with bounding box annotations available

to train neural network-based models. However, this is not a realistic scenario as most
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object detection datasets have limited (bounded vocabulary). For instance, Pascal VOC

has 20, Microsoft COCO has 80, and OpenImages have 600 classes. Thus, it is impossible

to arrange object-level annotations (i.e., annotated bounding boxes) for online training

of models for all unseen concepts. The final objective of this thesis is to train detectors

for any possible unseen concept (i.e., an infinite number of classes) without bounding

box annotations within a limited amount of time.

I formulate the final specific problem in research question as “RQ3(b): How can we

answer multimedia event-based queries online consisting of unseen subscriptions (un-

bounded vocabulary), using task as well as visual domain adaptive classifier construction

approach with knowledge transfer from seen subscriptions (bounded vocabulary) while

eliminating the requirement of bounding box annotations availability, achieving high ac-

curacy, and minimizing the response time?”.

I proposed an “UnseenNet” detector (Model-IV) to handle the problem of weakly su-

pervised learning while optimizing training without bounding boxes. Proposed model

is based on making use of existing object detection datasets of bounded vocabulary

(consists of seen concepts) to construct detectors for unseen concepts (i.e., unbounded

vocabulary) by using the differences between a weak detector (trained on image classifi-

cation dataset, i.e., image-level labels) and a strong detector (trained on object detection

datasets, i.e., object-level labels). The UnseenNet also uses the concept of Large Scale

Detection through Adaptation (LSDA) based approach to eliminate the need for bound-

ing boxes, and similarity between classes enhances the accuracy within less training time

on knowledge transfer.

These assumptions are expressed in the research hypothesis for Model-IV as: If an

adaptation of classifier into detector eliminates the need of bounding boxes as well as

transferring of knowledge from one domain to another speed-up the training; and a

detector gets constructed from classifier with the help of transfer of knowledge from

visually/semantically similar classifier; then that detector will take less time to train for

unseen classes and eliminate the requirement of bounding boxes.

This model has been presented in the paper titled “UnseenNet: LSDA-based Fast Train-

ing Detector for Unseen Concepts with No Bounding Boxes”, currently under submission

at IEEE TPAMI, and will be discussed in detail in Chapter–8.

4.4.5 Deployment of Multimedia Event Processing Models

As multimedia event processing models are designed to process IoMT based data, they

can provide event-based services while serving as middleware between sensor networks
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and their application portals within smart cities (see Fig. 4.2). The enhanced event

processing for IoMT events at the middleware enables the analysis of multimedia (un-

structured) data and scalar (structured) data. Proposed models at IoMT-aware mid-

dleware can consume events (scalar/multimedia) generated from sensors (like camera,

RFID tags, temperature sensors, etc.), process them using multimedia event process-

ing engine, and react to users accessing multiple types of applications. Model-I is ap-

plicable for seen classes only, reducing the response time to 0.009 seconds (114fps).

Moreover, it uses N-class classifiers; thus, it will use a single classifier for processing

N classes which will ultimately require low memory. Therefore, Model-I is applicable

for resource-constraints devices work at the edge of the network. Model-II will mainly

require training from scratch; thus, it will need GPU for its first response to the unseen

subscription. However, once the model gets trained, testing could be deployed to edge

devices. Model-III utilizes domain adaptation to reduce further the response time, which

requires finetuning the model for transfer learning. Such finetuning can be done on the

CPU but may take a longer training time to respond to unseen subscriptions. However,

once the classifier gets ready, I believe Model-III can also be used (like Model-II) on

resource-constraint devices. However, Model-IV (UnseenNet) is the lightest among all

models and takes only 5 min for training. Thus, I assume it will be best among all other

models (I, II, and III) to get deployed on the network’s edges and analyze the perfor-

mance. In conclusion, proposed models are designed for multimedia-aware middleware

cloud to support multimedia event services and can be further improved for edge-based

servers.

4.5 Discussion

Other than our four models that cover all scenarios we discuss here few elements that

we considered in our approaches but not from the scope of contribution. We describe

them briefly in this section with their use, assumptions, and our possible solutions.

Use of Online Toolkits: On request of an unseen class, we suggest that the system

collect images from the Web using Google Images1, Flickr2, or Bing Image3 search.

However, in experiments of downloading data from the Web to train models without

bounding boxes, we find that such search API also leads to few not-reliable images.

Though these useless images are less in number, we nevertheless recommend researchers

first consider the option of online toolkit ImageNet-Utils4 and OIDv4 ToolKit5. In

1https://github.com/hardikvasa/google-images-download
2https://www.flickr.com/services/api/
3https://pypi.org/project/bing-image-downloader/
4https://github.com/tzutalin/ImageNet Utils
5https://github.com/EscVM/OIDv4 ToolKit
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this case, the ImageNet toolkit will allow downloading images without bounding boxes

for more than 1000 categories using their WordNet Ids. Moreover, the OID toolkit

will give access to more than 600 categories with bounding boxes. It is also worth

considering ImageNet Downloader6, as it is described in a study7 that mostly Flickr

URLs of ImageNet classification dataset are useful for successful downloading of data

compared to other URLs. In our experiments of collection of 100 unseen classes, we also

found that many WordNet IDs do not allow users to download images of ImageNet, as

they are still under construction.

Amount of Training Data: It is a very common question of machine learning prob-

lems: “How much data we need to train”. However, the answer is different for everyone.

It is highly dependent on the problem and the learning algorithm. In our case of object

detection, we are highly dependent on the number of images present in object detection

datasets. These numbers of images are very different for each class (detail in Fig. 3.4),

varying from 40000 for the “person” class and 3 for the “hair drier” class. Due to this

reason, we found in our implementation that our models are getting biased towards the

“person” class and other classes that have a drastically higher number of training im-

ages. However, the number of such classes is less than 5; all other classes have less than

5000 images. Thus, in our training datasets of seen and unseen classes, we consider only

up to 5000 images for each class.

Another critical point to consider is that downloading time could also decrease/in-

crease the response time. However, fewer images could need more iterations to train

the model, whereas more images need fewer iterations. One iteration is equal to the

number of images/batch size. Thus more iterations will need more training time. In-

vestigating one-shot learning [173] is a reasonable future direction before reducing the

number of training images.

N-Class Classifiers: Our optimization on testing time is based on using n-class classi-

fiers belonging to a particular domain related to subscriptions. For instance, in the case

of n=1, the “car” classifier (single class classifier) will be selected by model for the de-

tection of a subscription car. The basic idea is to use only the available classifier, which

is closely related to the concepts within a subscription, which can vary from single to

n-class classifiers having n ranges 1 to ∞. We show that the performance will decrease

with an increase in the number of classes per classifier. Thus, it is beneficial to choose

the optimal value of “n” and consider only the related classes for constructing a classifier

for optimization. We prove that choosing lower values of “N” related to the application

domain can improve the throughput without influencing its accuracy.

6https://github.com/mf1024/ImageNet-datasets-downloader
7https://towardsdatascience.com/how-to-scrape-the-imagenet-f309e02de1f4
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Space Complexity: We construct different detectors for each class. Suppose our model

receives a new subscription, “donkey”. When we fine-tune/adapt the whole network

on image-level or object-level labels of “donkey”, the network will be biased towards

detecting class “donkey” while other seen classes will become less accurate. Next, if

our model receives another new subscription like “monkey”. After fine-tuning/adapting

the network on data of “monkey”, the network will be biased towards detecting class

“monkey”. Simultaneously, other classes (including the “donkey” class) will become

less accurate. Consequently, the resulting performance for two subscribers subscribing

“donkey” and “monkey” will start depending on each other, which is unintuitive and

should not be the case. Due to this reason, we keep detectors of different subscriptions

separated and construct every time a specialized detector for the particular subscription.

An important question emanates from this approach is “Isn’t the space complexity too

high if we keep constructing different detectors?”. The answer is probably ”no”. Assum-

ing the average size of the detector is 100MB, we get 1 million unseen concepts (which is

already highly unlikely). Then total space detectors will occupy =100MB×106=100TB,

which is not too large space in the era of having 1TB hard disk on personal laptops

when we can handle millions of classes.

Same class and different names problem: It is essential to specify that image

classification datasets (like ImageNet) and object detection datasets (like MCOCO, OID,

Pascal VOC) use different names for the same classes. So, we use the vocabulary of

WordNet to give a single name to each class and provide mappings of these datasets

and WordNet along with our proposed models. Thus, our all seen and possible unseen

classes belong to a single WordNet vocabulary.

4.6 Summary

This chapter redefined event processing to multimedia event processing and introduced

the concept of generalizability, detect operator, and unseen subscriptions. Then, I an-

alyzed the scenarios of handling unseen subscriptions for multimedia event processing.

Each of the scenarios gives the rationale of our four main models: (1) domain-specific

classifier processing, (2) hyperparameter tuning, (3) domain adaptive processing with,

and (4) without bounding boxes, proposed in this thesis. Proposed models are based on

three conditions: the occurrence of unseen concepts, the presence of similar seen con-

cepts, and accessibility of bounding box annotations for the online training of models.

Our first model is responsible for the generalizable multimedia event processing engine

(Model I) and proof of optimization on using domain-specific classifiers. The adaptation

approach (Model II) is useful for handling any completely unseen subscription where
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Figure 4.5: Summarizing Proposed Techniques for Adaptive Multimedia Event Pro-
cessing

no similar seen concept is available. I optimize the online training, in this case, using

the tuning of hyperparameters. The most crucial reason for Model III and IV is to

allow the adaptation among domains to construct detector for unseen class from the

detector of seen class, to speed up the training (i.e., decreasing the response time) while

increasing the accuracy. The availability of annotated bounding boxes with images is

not likely to happen scenario in most cases of unseen concepts. Thus we proposed two

different domain adaptation approaches to cover both cases. I also discussed their hy-

potheses, problems, limitations, and assumptions. I summarize the proposed techniques

associated with the problem of multimedia event processing for the dynamic unseen

concepts in Fig. 4.5. The proposed models with specific techniques, research questions,

and evaluations are discussed in more detail in Chapters 5, 6, 7, and 8.



Chapter 5

Domain-Specific Classifier based

Multimedia Event Detection

5.1 Introduction

I analyzed the problem of adaptive multimedia event processing in Chapter–4. Among

different presented scenarios, this chapter analyze the foremost basic scenario related to

the Research Question 1: “How can we answer multimedia event based queries online

consisting of seen concepts of any domain while achieving high accuracy and minimizing

the response time?” in Section–5.2. This chapter tests the Hypothesis-I: “Domain-

Specific classifier based multimedia event processing assumes that if we construct N-

Class classifiers for different domains, and we use subscription constraints to choose

closely related classifier for the processing of multimedia events; the performance will

get enhanced in terms of accuracy and response time, and will also add the ability to

generalize for multiple domains.” formulated in Section–1.6.

Before the proposed approach, I discuss the background (in Section–5.3) and divide the

related work into three major categories: Event-based Approaches for IoT, Application-

Specific Approaches for IoMT, and Multimedia Query Languages. I analyze event pro-

cessing approaches that are efficient for scalar events and do not consider multime-

dia events. On the other hand, accurate multimedia event processing approaches are

domain-specific with limited maintainability. To tests the hypothesis, I proposed a

generalizable multimedia event processing engine describe in Section–5.4 and 5.5. The

proposed Multimedia Event Processing Engine (MEPE) along with an optimization tech-

nique, consists of neural network based feature extraction operators, and extends event

query language to support multimedia analysis within event-based systems. Within

MEPE the user can define subscriptions using the proposed detect operator based on

66
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object detection. The subscription is used by the object detection model to choose the

relevant classifier which is needed to identify the prescribed attribute, which we de-

scribe in the “classifier division and selection” approach. I proposed an optimization

model which uses subscriptions at two different stages: (1) analyzing the query, and (2)

optimize the processing of a neural network based matcher based on subscriptions con-

straints. The resulting model (Section–5.6) is proficient in processing multimedia event

streams belongs to multiple applications while achieving high throughput and compara-

ble accuracy which also confirms its generalizability within smart cities infrastructure.

5.2 Problem Overview

5.2.1 Preliminaries

• Publish/Subscribe is a message-oriented interaction paradigm in which publish-

ers send messages to the middleware, and the consumers express their particular

interest in receiving some useful information [174].

• Middleware provides general-purpose services between distributed (multiple) plat-

forms and domain-specific applications. The main goal of middleware is to enable

the interaction and communication between distributed components, hiding from

application developers the complexity of the underlying hardware and network

platforms and freeing them from explicit manipulation of protocols and infrastruc-

ture services [48].

• Event-based middlewares consist of rich literature for structured event process-

ing and managed to bring an uprising change in the communication models of

distributed systems [175]. Event processing systems introduced to process event

streams within publish/subscribe paradigm. They are based on tracking and ana-

lyzing (processing) streams of information about things that happen (events) and

deriving a conclusion from them [8]. Multiple entities used in literature to define

the term event processing are described as follows:

– Events: An event is anything that happens and is a significant observable

occurrence. It is also called a message containing the information, which is

in the structured form conventionally. These types of events are published

by publishers, detected by sensors, processed by event-based matcher, and

finally consumed by consumers.

– Subscriptions: Subscription is a registration and association of an event

action to indicate that a particular event is of interest to the user. Usually, it
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Figure 5.1: Multimedia Event Processing in Existing Domain Specific Applications

is an expression of subscribers to match an event if all primitive constraints

are satisfied.

– Matcher : The matcher is responsible for analyzing events and communicat-

ing them according to applicable subscriptions. It is also known with similar

terms like the broker, servers, routers, etc. In an event paradigm, a matcher

will detect single events or patterns of events depending on the matcher’s

complexity.

• Internet of Multimedia Things (IoMT) can be defined as an IoT-based paradigm

which allows objects to connect and exchange structured as well as unstructured

data with one another to facilitate multimedia-based services and applications [5].

5.2.2 Motivational Scenarios

Consider event detection scenarios (shown in Fig. 5.1) of smart cities, where we have

multiple applications like traffic control, health monitoring, parking management, or any

other surveillance systems. Suppose a user subscribes for the detection of “taxi”, then

none of the applications will be able to process the query even when many of them can

recognize the “car”. Presently, these multimedia-based communication technologies are

domain-specific, and research on IoT mainly focuses on handling big data challenges,

excluding multimedia, leaving a gap between the advancement of IoT and multimedia-

based technologies. Thus we need a classifier-based approach that can answer a large

number of concepts for any domain in low response time. This represents the first

baseline scenario of detecting seen concepts for analyzing multimedia events, as shown

in Fig. 5.2. In this scenario, we assume that if the concept is seen, we can process it

directly by having trained classifiers available offline according to their domains.
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Figure 5.2: Scenarios for Multimedia Event Processing adhering to Seen/Unseen
Concept Problem

5.2.3 Problem Statement

How to design a generalized event processing system that can consume Internet of Mul-

timedia Things (IoMT) generated data as a native event type, support multimedia an-

alytics, and react to users situations of interest with high performance?

5.3 Background and Related Work

I analyze the state-of-the-art event-based middleware methods and their suitability for

the IoT as well as IoMT based events in this Section. I also review a wide range of

application-specific middlewares for multimedia-based applications that could be suit-

able for IoMT. Moreover, incorporating multimedia query languages to represent and

define multimedia events in real-time applications is useful for processing multimedia

events [176].

5.3.1 Event-based Approaches for IoT

In event-based middlewares, all components, applications, and participants communicate

through events. Message-oriented middleware (MOM) is one of the types of middleware,
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where communication relies on messages. It follows the publish/subscribe paradigm.

Event processing systems process the subscription of a user based on standard lan-

guages in response to events. Most of the existing event-based middlewares (discussed

in this Section) only focused on scalar (structured) events for the processing of sub-

scriptions of a user and with limited provision of handling multimedia (unstructured)

events. The most popular event-based approaches (SIENA [177], CEA [178]) rely on

producer-consumer paradigm while utilising mediator for providing services and works

for supporting application-specific structures.

SIENA [177, 179] is also an event notification service designed for event-based systems

with the aim of high expressiveness and scalability. It also works for application-specific

attributes with best-effort real-time performance. The Cambridge Event Architecture

(CEA) [178] also provides a middleware platform that allows producers and consumers to

interact using event-based operations. It extends the middleware by providing a flexible

and scalable approach for distributed applications. Other than supporting application-

specific structures, it also fulfills the requirement of timely response to asynchronous

events, which is crucial to smart cities-based applications. SECO [180] model is based

on building a fully distributed version of the ECO [181] event model including event

filtering capabilities. Thus its implementation is named SECO for Scalable ECO. The

ECO model simply consists of three central concepts (events, constraints, and objects),

and its application programmer interface contains only three operations (Subscribe,

Raise, and Unsubscribe). SECO provides the best-effort quality of service for supporting

different real-time application domains.

An object-oriented infrastructure called Java Event-based Distributed Infrastructure

(JEDI) [182] supports the development and operation of event-based systems. It also

follows the publish/subscribe paradigm to implement OPSS (ORCHESTRA Process

Support System) workflow management system [183–185]. Hermes [186] is also an event-

based distributed middleware that follows a type and attributes based publish/subscribe

model. It introduces the notion of an overlay routing network, where producers and

consumers connect to the broker network, and individual brokers subsequently route

events through the overlay network. It also attempts to bridge the semantic gap between

events and programming language types for the high expressibility of the model. STEAM

(Scalable Timed Events And Mobility) [187–190] is an event-based middleware service

that specially designed for wireless local area networks utilizing the ad hoc network

model. STEAM, allows us to define delivery deadlines and assign them to specific

events then dispatcher exploits these deadlines for the timely delivery of events to the

subscribers. Moreover, it also allows applications to associate specific attributes either

to an event type or to a specific event instance.
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The Toronto Publish/Subscribe System (TOPSS) [183, 184] gives an overview of the

publish/subscribe paradigm, analyzed mobile application requirements, and also imple-

ments content-based publish/subscribe paradigm with high throughput. Specifically, it

addresses two key requirements (Scalability and Ability to Support Changes) to pub-

lish/subscribe middleware raised by emerging mobile applications. Semantic Toronto

Publish/Subscribe System (S-ToPSS) [185] is designed to address the problem of se-

mantic matching. Although this work demonstrates the matching of unrelated objects

seamlessly, details about the workload and evaluation criteria are still part of future

work. An Ontology-Based Publish/Subscribe System (OPS) [191] attempts to improve

the expressiveness of the publish/subscribe system without sacrificing efficiency. It de-

scribes the data model, subscription language, matching algorithm and maintain high

matching efficiency. However, it assumes only one ontology with a relatively small num-

ber of classes and properties and provides some loose coupling in developing the rules.

A Publish/ Subscribe System Supporting Approximate Matching (A-TOPSS) [192–194]

addresses the requirement of providing a publish/subscribe data model with an approx-

imate matching scheme that allows the expression and processing of uncertainties for

both subscriptions and publications. It utilizes Fuzzy set theory and possibility the-

ory to represent uncertainties in predicates and publications. The language model of

A-TOPSS is flexible and powerful in that it allows subscriptions and publications to be

either crisp or approximate. Moreover, its effectiveness and efficiency are also relatively

high.

GREEN (Generic & Re-configurable EvEnt Notification service) [195] is a highly config-

urable and reconfigurable publish-subscribe middleware to support pervasive computing

applications. It is a highly dynamic middleware that addresses such requirements of

configurability and reconfigurability requirements of such heterogeneous and changing

environments. Although there are relative performance trade-offs for different configu-

rations, the model still provides high performance irrespective of its flexibility. EMMA

(Epidemic Messaging Middleware for Ad hoc networks) [196] is an adaptation of Java

Message Service (JMS) for mobile ad hoc environments. It has numerous practical ap-

plication domains in allowing inter-community communication in extreme scenarios of

partially connected mobile ad hoc networks. Other than the autonomous behavior of

EMMA, it also provides high performance in terms of delivery and latency. Mires [197]

incorporates characteristics of Message-Oriented Middleware (MOM) by allowing ap-

plications to communicate using the publish-subscribe paradigm. It encapsulates the

network-level protocols (routing and topology control protocols) and provides a high-

level API that facilitates the development of applications over WSNs. It does not provide

real-time services and also does not support dynamic behavior. SensorBus [198] is also

a MOM-based model for WSNs that follows the publish-subscribe paradigm and allows
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free exchange of the communication mechanism among sensor nodes. To address the

requirements of a larger number of applications, SensorBus adds the capability of using

more than one communication mechanism as each communication mechanism provided

by a determined routing protocol in WSNs is application-specific. However, it also

neither provides real-time services nor dynamic behavior support.

MiSense [199, 200] is a energy-efficient middleware architecture. It utilizes a low-power

communication model and an energy-efficient resource allocation technique to achieve

high throughput for WSN. Rebeca [201–204] event-based middleware is used to im-

plement the notion of scopes into the event-based services. Visibility control within

distributed event-based applications referred to as scoping. Although heterogeneity is

handled manually in this model, efficiency is high, and also it allows loose semantic to

support large vocabulary. PSWare [205] is a publish/subscribe based middleware devel-

oped to support both primitive and composite events in WSN. It also contributes to the

development of a runtime environment on sensor nodes. Moreover, its event detection

language can achieve high expressiveness and availability.

TinyDDS [206] is an interoperable and a pluggable publish/subscribe framework de-

signed for event-based middleware. It allows WSN applications to have control over

application-level and middleware-level non-functional properties. TinyDDS provides

two types of interoperability: programming language interoperability and protocol in-

teroperability. It is lightweight and efficient but does not address the heterogeneity

and adaptation based requirements. PRISMA [207] is a resource-oriented middleware

for Wireless Sensor Networks (WSN) that also follows the Publish-Subscribe paradigm.

Event-based model PRISMA utilizes REpresentational State Transfer (REST) [208] for

defining lightweight communication between applications. The main goals of Prisma

include: (i) programming abstraction, (ii) topology control, asynchronous communica-

tion, and resource discovery services, (iii) runtime support, and (iv) QoS mechanisms.

However, preliminary evaluations of Prisma do not validate their real-time or dynamic

behavior. Approximate semantic matching [135, 209, 210] is among one of the recent

methods which examines the requirement of event semantic decoupling and investigated

the approximate semantic event matching with its consequences. It introduced a se-

mantic event matcher while utilising thesauri-based and distributional semantics-based

similarity and relatedness measures. Although such methods are focused on heterogene-

ity of events, such event-based systems only focus on structured events for the processing

of subscriptions of a user and with no provision of handling the feature extraction re-

quirements of multimedia events.

High-speed nature of event streams with high bandwidth of multimedia data also re-

quires the incorporation of the optimisation techniques in existing event-based systems.



Chapter 5. Domain-Specific Classifier based Multimedia Event Detection 73

However, most common optimisation techniques [211–213] in these event processing sys-

tems are generally based on predicate indexing and network algorithms of matching

subscriptions. Predicate indexing algorithms [214–217] are structured in two phases.

The first phase is used to decompose subscriptions into elementary constraints and de-

termine which constraints are satisfied by the notification. In the second phase, the

results of the first phase are used to determine the filters in which all constraints match

the event. However, the indexing in these approaches are based on the schema of events,

and multimedia events are schema-less. Testing network algorithms [218–221] are based

on a pre-processing of the set of subscriptions that builds a data structure composed by

nodes representing the constraints in each filter. The structure is traversed in a second

phase of the algorithm, by matching the event against each constraint. An event matches

a filter when the data structure is entirely traversed by it. Predicate based grouping in

these algorithms is based on attribute values and thus can fail to support multimedia

event processing.

It can be observed that all of these existing publish-subscribe based event processing

systems are only focused on structured (scalar) events for the processing of subscriptions

of a user, with no provision of handling and optimising events consisting of multimedia

data.

5.3.2 Application-Specific Approaches for IoMT

Multimedia processing (mostly image/videos) is one of the most common types of events

within the applications of smart cities [144]. Since the event-based analysis of multimedia

content is among the keen research areas, numerous solutions have been proposed for

different application domains. However, multimedia processing events refer to “An event

is the representation of a change of state in a multimedia item planned and attended

[50]”. Events in multimedia content are also described as “real world happening planned

and attended by people”. In a broader perspective, event-based analysis in the case of

multimedia realized as a monitoring application. Multimedia event processing systems

generally provide high performance but have domain-specific characteristics and cannot

be adapted to multiple domains. Thus, merging of event-based middlewares using IoT

[8, 48] with image processing systems each time with the change of application domain

becomes an essential step in their deployment of smart cities. This requirement also

limits the performance and requires a high setup cost.

Multiple applications are designed for different roles like traffic management, parking,

surveillance, health monitoring, and various supervision activities in smart cities. These
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numerous applications are highly efficient in processing multimedia (unstructured) sys-

tems events and provides real-time performance with high accuracy. For instance, traf-

fic management based applications is highly efficient in detecting and analyzing traffic

events. A traffic recognition system and traffic congestion prediction system presented

in paper [10, 222], mainly constructed to automatically inform the driver about the traf-

fic sign and for reporting predicted traffic congestions. However, from the perspective

of the requirements of the problem “adaptive multimedia event processing”, no support

for large vocabulary limits their user interface and suitability for maintainability. A

real-time traffic sign recognition scheme [222] is proposed to assist driving using smart-

phones. The proposed model includes five different stages: (1) video/frames capturing

using a smart-phone, Notebook, and other computer devices, (2) then preprocessing

stage improves the image quality and perform normalisation operations, (3) traffic sign

detection step monitors frames to detect the region of traffic signs if they exist, (4)

extracts the detected sign, and (5) finally a model recognises the character/icon. Their

experiments proved that the model could achieve accuracy up to 98% while having a

recognition speed of 0.085 seconds per frame. However, this model is applicable only

for traffic-signs detection, and even those signs assumed to have either rectangular or

circular shape. Similarly, another research [223] focused on the problem of traffic light

switching according to traffic congestion on the road. This system consists of 4 video

cameras on the traffic junctions; then it takes one image of the empty lane as a baseline

to compute the density of vehicles on the road. Then it keeps monitoring the density of

vehicles present every second, for all the lanes where light is red. Then the time for the

green light signal is calculated using the number of vehicles that can pass in one second

using the records of density. Results for traffic light switching show that the model

can improve the time for passing the vehicles up to 35% approximately. Another work

[224] intends to provide the Internet of Vehicles (IoV) based traffic management solu-

tion. Proposed IoV focused on communications of four types: communication between

the vehicles and the vehicle owners, communication between vehicles, communication

between vehicles and a centralised server and communication between the server and

third parties (emergency response, pollution control, police patrol). Advantages of IoV

include traffic control, human proximity detection, theft avoidance, accident avoidance,

emergency response, and vehicles-autonomous. Its identified drawback is related to se-

curity and failure of networks.

Based on real time video analysis, a real time event detector [225] is constructed for each

action of interest by learning a cascade off filters based on volumetric features that effi-

ciently scan video sequences in space and time. The presented system follows the model

based approach for event detection, for constructing a framework to analyze videos effi-

ciently. Another technique [226] targets video stream for the analysis of moving objects
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in the scene. It also provides a configuration for event detection and behavior analysis

of video-surveillance streams. Due to lack of provision of publish-subscribe paradigm,

the merging of event based systems with image processing systems is an essential re-

quirement. However, the need of integration of event based model for the processing

of videos, limits the performance of the system and also requires high setup cost. Such

video event monitoring systems [10, 222, 223] are developed for real-time traffic man-

agement in smart cities. These systems attempt to process multimedia (unstructured)

events with high efficiency, but most are domain-specific and cannot be generalized for

multiple applications.

Similarly, an example of smart surveillance systems for airport security is considered in

[11]. This IBM S3, smart surveillance system, has two key components, namely, Smart

Surveillance Engine (SSE) and Middleware for Large Scale Surveillance (MILS). SSE

is responsible for performing event detection and supports video/image analysis. MILS

supports the indexing and retrieval of spatio-temporal event meta-data. The example

shown is the integration of many technologies like license plate recognition, behaviour

analysis, face detection, and badge reading. However, the proposed system satisfies the

requirements of openness and extensibility. However, the S3 framework has its own

airport system data model, user data model, and event data model. Boll et al. [141]

focused on the problem of analysing multimedia events for health monitoring. The pro-

posed logical device layer-based architecture maps data from one or multiple (logical)

devices into primary health features. Presently, the mapping for primary health features

is canonical, i.e. scale directly delivers the values of body weight and fat. However, it

could be extended for complex event processing like identification of “20 minutes cycling

to work” using the time of day, GPS track, step counts, and past observations. An IoT

based agricultural production system also proposed to analyse crop environments and

improve the efficiency of decision making [227]. The designed system forecast agricul-

tural production by monitoring crop growth periodically using IoT sensors. The system

architecture can be divided into parts: relation analysis, statistical prediction, and IoT

service. In statistical prediction, the production amount gets computed by estimating

cultivated area and yield functions. It utilises text mining technology for relation analy-

sis while analysing correlations of the agriculture-related text and locational conditions,

selection, and replacement of crops. IoT service serves as an invaluable component

that continuously monitors equipment and reports in real-time about the environment’s

conditions. Lastly, the design is implemented along with a GUI for visualisation.

Detection of interesting events automatically from broadcast sports video using object

detection is one of the popular areas of event recognition [12, 228], utilizing the hier-

archical structure of domain knowledge-based keywords. Similarly, surveillance-based
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systems [11] designed for security events, satisfy principles of openness and extensibil-

ity, but only limited for various applications of security like homeland security, retail,

manufacturing, mobile platform security, etc. Other domain-specific applications like

flood detection, cultural event recognition, natural disasters, etc., are also introduced as

a task in social media-based event recognition systems [13, 229, 230] with medium to

high precision and no possibility for domain adaptation. Moreover, the detection and

analysis of these natural calamities are also among major challenges of event recogni-

tion in remotely sensed data, and existing specialized methods are also more focused on

delivering emergency response with high precision [14, 231, 232]. We can conclude that

these multimedia event processing systems designed to achieve high performance, but

most of them are domain-specific and cannot adapt to multiple domains.

Some of the recent works on object detection based multimedia events used for the

comparison includes automatic vehicle detection and recognition for intelligent traffic

surveillance system [233], firearm detection for security screening [234], unattended/s-

tolen object detection by classifying objects as human or non-human [235], Car Parking

Vacancy Detection [236] etc. Although these domain specific event recognition systems

achieve high performance, they do not support a large vocabulary which limits their user

interface, they also demonstrate the need to merge event based systems with multime-

dia methods with every change of domain, and therefore do not easily support domain

adaptation.

It can be concluded existing multimedia based real-time systems possess high efficiency,

but most of them are domain-specific. Moreover, lack of provision for the publish-

subscribe paradigm [174] also limits the application of these systems in multiple scenarios

of smart cities. Thus, merging event-based systems [8] with image processing systems is

an essential requirement of current multimedia stream processing, which also limits the

performance and requires high setup cost.

5.3.3 Multimedia Query Languages

Other than structured event query languages, we have plenty of video query languages

like CVQL, SVQL, SPARQL-MM, VEQL [237–240], etc., proposed for processing image-

based events. Content-based video query language (CVQL) is an extended version of

existing structured query languages, that allows querying in video databases [238]. It

is based on the spatial and temporal relationships of the content objects. Videos are

divided into different classes, and then into their respective hierarchical categories. For

example videos can be divided into sports, politics, economics, etc., and sports can be

further classified into basketball and tennis. CVQL requires the knowledge of classes of
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fixed domain, thus cannot fulfill the requirement of processing any type of unstructured

events. Moreover, performance requirements are not addressed in this work. SVQL is

based on the structure of sequential query language SQL with videos [239] by modi-

fying the “where” clause to process them. It includes variable declaration, structure

specification, feature specification and spatial-temporal specification in addition to the

existing conditional expressions. With respect to requirements, SVQL is generalizable

for handling unstructured events, however, execution methods have not been evaluated

for efficiency and accuracy.

Similarly, SPARQL-MM [176] is also an extended version of SPARQL, by introducing

spatio-temporal filter and aggregation functions for multimedia data. Although pro-

cessing unstructured data is the primary goal of SPARQL-MM, it is not focused on

its performance requirements. The goal of the MPEG Query Format (MPQF) is to

facilitate and unify access to distributed multimedia repositories. MPQF can be used

as a standard interface for multimedia retrieval engines [240]. It has the ability to ac-

cess distributed multimedia repositories and uses an interactive feedback approach to

improve efficiency which is not a recommended solution for real-time applications. The

most recent Video Event Query language (VEQL) can express high-level user queries

for video streams [237]. VEQL follows the SQL-like declarative expression and aims to

use the standardized vocabulary of the existing event query language. It focuses on the

spatial and temporal relationship among objects and their attributes.

While having the ability to deliver high performance, there is no discussion of including

new classes or the possibility of adaptation in VEQL to include a large number of classes.

5.3.4 Gap Analysis

Table 5.1 summarizes the existing approaches with mapping of requirements (suggested

in Section–2.4). While classifying the related work, we summarize the gap analysis with

limitations as follows:

• Event based Approaches for IoT : Event-based approaches are mainly efficient in

processing structured (scalar) events of smart cities. For instance, energy consump-

tion, finance, packet loss events, etc., are more structured events as compared to

multimedia events like traffic management, supervision, smart security, etc. Cur-

rent event processing engines have no support for such unstructured event types.

Moreover, there is no provision of incorporating multimedia query languages in

event processing approaches of IoT. This shows the clear gap of lack of inves-

tigating and optimizing multimedia event processing in the current event-based

middleware IoT approaches.
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Table 5.1: Analysis of Related-Work with identified Requirements

Requirements

Category Approach
High

Accuracy for
Multimedia

Events

Low
System

Response
Time

Support for
Large

Vocabulary

Maintain-
ability

SIENA
[177, 179]

N.A Best Effort
Application

Specific
Expendable

CEA
[178]

N.A
Timely

Response
Application

Specific
Flexible

SECO
[180, 181]

N.A Best Effort
Application

Specific
N.E

JEDI
[182]

N.A N.E
Application

Specific
Flexible

Hermes
[186]

N.A Best Effort
Reduced
Semantic

Gap
N.E

STEAM
[187–190]

N.A
Timely
Delivery

Application
Specific

N.E

ToPSS
[183, 184]

N.A N.E

More
Expressive

Subscription
Language

Support
Changes

S-ToPSS
[185]

N.A N.E
Semantic
Matching
Possible

General
Approach

Event-based
OPS [191] N.A

High
Efficiency

Allow Se-
mantically
Equivalent

Terms

N.E
Approaches

A-TOPSS
[192–194]

N.A
High

Efficiency

Support
Approxi-

mate
Matching

N.E

for IoT

GREEN
[195]

N.A
Hard

Real-Time
N.E Extensible

EMMA
[196]

N.A
Hard

Real-Time
N.E Autonomous

Mires
[197]

N.A
Non

Real-Time
N.E

Not
Supported

SensorBus
[198]

N.A
Non

Real-Time
N.E

Not
Supported

MiSense
[200]

N.A
High

Through-
put

N.E N.E

Rebeca
[201–204]

N.A
High

Efficiency
Limited
Support

Manual

PSWare
[205]

N.A Real-Time
High Ex-

pressiveness
N.E

TinyDDS
[206]

N.A Efficient
No Hetero-

geneity

No
Adaptation

Possible
Prisma
[207]

N.A
Non

Real-Time
N.E

Not
Supported

N.E: Not Evaluated, N.A: Not Applicable
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Approximate
Event

Matcher
[135, 209]

N.A Efficient
Approximate

Semantic
Model

Manual

Traffic
Events

[10, 222]

High
Accuracy

Low
Response
Time for
known

Situations

N.A N.A

Application

Sports
Events

[12, 228]

Limited
Accuracy

Low
Response
Time for
known
Objects

N.A N.A

Specific
Security-

based
Events[11]

N.E

Low to
Medium for

known
Objects

N.A Extensibility
Approaches

Social
Media
based
Events

[13, 229,
230]

Medium
Accuracy

N.E N.A N.A

for IoMT

Satellite
Imagery
[14, 231,

232]

High
Accuracy

Emergency
Response
for known

Events

N.A N.A

Multimedia

CVQL
[238]

N.A N.E N.A

Adapt with
Domain
Specific

Knowledge

Query
SVQL
[239]

N.A N.E N.A N.E
Languages

MPQF
[240]

N.A Efficient N.A
Adapt on
Feedback

VEQL
[237]

High
Accuracy

High
Through-

put
N.A N.E

N.E: Not Evaluated, N.A: Not Applicable
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• Application-Specific Approaches for IoMT : Since existing real-time image process-

ing systems are applicable for specific domains, we categorized them in application-

specific approaches that possess the ability to process multimedia events for IoMT

with high performance. As the name suggests, such approaches are not generaliz-

able; developers have to build such multimedia applications every time with the

change of domain by merging event processing and image processing systems. Ul-

timately, these approaches require high setup cost, high variance in performance,

and not a unified user interface for the processing of IoMT based events. In conclu-

sion, these approaches have high accuracy and low response time but no support

for large vocabulary with limited maintenance facilities.

• Multimedia Query Languages: Most of these languages possess characteristics

of detecting multimedia objects, supporting detection attributes, predicting spa-

tial/temporal relationships, and efficient stream processing. Moreover, some of

them are accurate and efficient but lack the ability of adaptation among domains

to support large vocabulary.

5.4 Proposed Approach

Based on the approach of Information Flow Processing (IFP) systems [8], we proposed

a Multimedia Event Processing Engine (MEPE) that consists of a matcher, Multimedia

Event Processing Language (MEPL), Subscription Covering based Optimization, feature

extraction and a collection of classifiers. In order to achieve the goal of performance re-

quirements, a subscription-based optimization technique has been proposed along with

MEPE. The feature extraction model within MEPE uses a DNN based approach to

identify objects efficiently. Irrespective of providing high-performance capabilities in

image recognition, DNN based techniques are also dependent on the trained classifiers

for object detection. Conventionally, these classifiers are trained on general-purpose

datasets consisting of a large number of classes, which may reduce the performance.

The division of classifiers based on domain and selection of classifiers based on subscrip-

tions could be a possible solution resulting in improvements in classifier performance.

Thus, the proposed optimization is based on the inclusion of the “classifier division

and selection approach”, enabling the proposed feature extraction model to choose

a suitable classifier based on subscription constraints for Hypothesis-I. The approach is

presented with the implications of using only n-class classifiers belonging to a particular

domain related to subscriptions with optimal values of “n” meanwhile neglecting classes

of irrelevant domains.
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5.5 Designing and Implementation

5.5.1 Generalized Multimedia Event Processing Engine

The proposed architecture for the multimedia event processing engine, along with its

optimization for reducing the testing time, uses the following modules:

5.5.1.1 Receiver

Event Sources (“sensors” in the present case) create events, which get received by the

Receiver, that sends events to MEPE for processing. The receiver implements the trans-

port protocol to communicate information over the network [8]. It is also responsible

for receiving information in the form of events from multiple sources and acting as an

intermediator to send them one by one to the information flow processing (IFP) system,

a multimedia event processing engine in the proposed method.

5.5.1.2 Multimedia Event Processing Engine (MEPE)

Matcher: The matcher is responsible for detecting conditions that hold in image

events according to the user query (which has been evaluated using MEPL statements)

and the propagation of notifications to the forwarder according to the condition detected

in multimedia events.

Multimedia Event Processing Language (MEPL): Subscriptions are received

by MEPL Statement, with “Image Event” from matcher, which analyzes the structure of

the query and instantiates a feature extraction model while using Subscription Covering

based Optimization for filtering commonalities. MEPL will be responsible for resolving

the signatures of operators associated with the multimedia event based query languages

such as the “Detect” operator in the present scenario described in Section–4.2.2.

Subscription Covering based Optimization: Subscription Covering based Op-

timization receives subscribed keywords with identifiers of subscribers from MEPL. It

removes common keywords to consider them only once to further process multimedia

events and sends the aggregated subscriptions to the Feature Extraction model. For

instance, if multiple subscribers are looking for the same object (say “person”), then the

keyword “person” should be analyzed once associated with numerous subscribers.
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Figure 5.3: IoMT based Multimedia Event Processing model

Feature extraction: The feature extraction model performs operations on image

events according to the subscriptions using image processing operators (“detect” opera-

tor in the present case) and a collection of classifiers. The DNN based feature extraction

model is presently using “You Only Look Once” [35, 149] for object detection. Object

detection is used to extract image features as it is the most common problem in the con-

text of smart cities. Moreover, subscriptions from subscribers in the form of “keywords”

will also direct the feature extraction model to use suitable classifiers to enhance per-

formance according to classifier division and selection approach. This enables the use of

subscription constraints for choosing the closely related classifier based on Hypothesis-I

to process multimedia events.

The feature extraction model could also facilitates the proposed system to include mul-

tiple types of operators for processing different features of the multimedia events, which

also makes it easily transportable to various domains and hence generalizable.

Classifiers: DNN based feature extraction model interacts with classifiers using key-

words, which is a crucial requirement of the proposed classifier division and selection-

based optimization methodology. Classifiers are trained on classes belonging to real-

world objects to perform detection. The number of classes per classifier configuration

may vary with a change of domains and will be responsible for the robustness of the

system. Such N-Class classifiers of different domains provide us the settings for the proof

of Hypothesis-I. The input “keywords” will direct a feature extraction model to choose

the suitable classifiers for the processing of image events.



Chapter 5. Domain-Specific Classifier based Multimedia Event Detection 83

Figure 5.4: System Optimization using Subscriptions (Seen/Unseen Concepts)

5.5.1.3 Forwarder

Finally, events propagate to the forwarder, which will notify users according to their

registered subscriptions. The “forwarder” is also necessary for the implementation of

transport protocols for the purpose of communication.

Fig. 5.4 demonstrates the flow of subscriptions for the optimization of MEPE. Suppose

registered subscriptions of users are Sub1 : {detect(IE, person)∨detect(IE, tennis racket)∨
detect(IE, dog)} and Sub2 : {detect(IE, car) ∨ detect(IE, person) ∨ detect(IE, dog)}
∨ detect(IE,motorbike)}. Subscriptions will be analyzed using MEPL, disintegrated

into keywords, and communicated to the “feature extraction” model via “Subscription

Covering based Optimization”. The objective of prior subscription covering based opti-

mization is to remove common keywords resulting in the detection of the only person,

tennis racket, motorbike, car, and dog as keywords for the feature extraction in the

example. The feature extraction model will extract objects using an object detection

model (presently “YOLO” [35]) using only specific classifiers related to the prescribed

attributes (keywords). For instance “car” classifier (single class classifier) will be se-

lected by the “YOLO” model for the detection of a car. The basic idea is to use only the

available classifier, which is closely related to the attribute, which can vary from single

to n-class classifiers having n ranges 1 to ∞.

Practically, it is not possible to design a classifier consisting of all probable classes (∞).

Also, it is very unlikely that such a classifier would perform better than domain-specific

classifiers. The utilization of n-class classifiers related to the particular domain may lead

to improvements in performance compared to the use of a general-purpose classifier with

a large number of classes. For further illustration, we are also considering the traffic,

sports, animal, and home subscriptions related to classifiers having 8, 9, 10, and 17

classes, respectively derived from Pascal VOC [26] and Microsoft COCO [27] datasets.

Since the constructed n-class classifiers belong to different domains, they also comply
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with the goal of generalizability. Lastly, MEPE classifiers also include two general-

purpose classifiers with 20 and 80 classes constructed using Pascal VOC and Microsoft

COCO for the proof of optimization described in Section–5.6.3.2.

5.5.2 Multimedia Event Processing Algorithms

The utilization of DNN based systems for high performance requires a classifier selection

technique for analyzing multimedia events. Thus, we present a method that can analyze

multimedia events only once to process multiple subscriptions. Besides, an optimization

technique, “subscription-based classifier selection,” for finding classifiers is proposed in

this section. The implementation procedures for optimized IoMT based model and

handling of commonalities among subscriptions are shown in Algorithm 1 and 2, with

descriptions of symbols in Table 5.2.

5.5.2.1 Multimedia Event Processing Engine

The proposed multimedia event processing algorithm (Algorithm 1) uses the following

four steps and is based on keyword-based optimization for handling commonalities:

1. Finding commonalities among subscriptions for subscription covering based opti-

mization using keywords.

2. Identification of classifier according to the subscribed keyword.

3. Application of object detection for the processing of image events.

4. Notification of user on the matching of image event with a subscription.

Let List(L) consist of sets of subscriptions (Subi) with each set consisting of the identity

of subscribers (Si) with a set of keywords ranging from 0 to Kji . Consider a stream of

image events as SIE . The algorithm starts with the distribution of subscriptions into

a two-dimensional adjacency matrix T (K,S) with K as keywords and S as indexes of

subscribers corresponding to keywords, using the procedure of handling commonalities.

Initialize m and n with the total number of keywords and subscribers, respectively. The

algorithm keeps on receiving the image events as IE and process them for each keyword

ki belonging to T (K,S) with i ranging from 1 to m. Each iteration begins with the

identification of class name related to keyword ki and recognition of specific classifier

using the class name. Thereafter, objects are extracted from image events using the

matcher, and users are notified on the matching of class names with objects detected.



Chapter 5. Domain-Specific Classifier based Multimedia Event Detection 85

Table 5.2: Description of Symbols

Symbol Description

List(L) List (L) of sets of Subscriptions

T (K,S) Two-dimensional matrix for indexing Keywords and Subscribers

K Keywords

S Subscribers

SIE Stream of Image Events

Algorithm 1 : Multimedia Event Processing Engine

Input: List (L) of sets of Subscriptions:
(Sub1 : {S1,K11 ,K21 , ...,Kj1},
Sub2 : {S2,K12 ,K22 , ...,Kj2}, ...
Subi : {Si,K1i ,K2i , ...,Kji}) and
SIE : Stream of Image Events.

Output: Notifications
1: T(K,S)← SCBO(L)
{Subscription Covering based Optimization}

2: m← count keywords(T (K,S))
3: n← count subscribers(T (K,S))
4: while true do
5: IE ← Image Event(SIE)
6: for i = 1 to m do
7: classname ← {ki | kiεT (K ,S )}
8: classfier ← find classifier(classname)
9: objects ← matcher(IE , classifier)

10: if (classname ∈ objects) then
11: for j = 1 to n do
12: if (T (ki, sj) = 1) then
13: notify(sj)
14: end if
15: end for
16: end if
17: end for
18: end while

5.5.2.2 Subscription Covering based Optimization

Algorithm 2 shows the steps of keywords based optimization used for handling common-

alities among subscriptions. Keywords based optimization is the procedure of identifi-

cation of common keywords among all subscriptions and considering them only once for

the processing of image events. The procedure of handling commonalities consists of the

following major steps:

1. Instantiate keyword-subscriber two-dimensional matrix using input subscriptions.

2. Identification of keywords for each subscriber.
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3. Association of subscriber identities with an index of requisite keywords.

Let the List(L) be the input, and T (K,S) be the output two-dimensional adjacency

matrix, consisting of keywords and subscribers identifiers. Next, initializes the total

number of subscribers as i, counting the total number of keywords as j and assign

T (Kji , Si) as 1 with each keyword Kji belonging to a subscriber (Si) using subscription

set (Subi).

Algorithm 2 : Subscription Covering based Optimization

Input: List (L) of sets of Subscriptions S:
(Sub1 : {S1,K11 ,K21 , ...,Kj1},
Sub2 : {S2,K12 ,K22 , ...,Kj2}, ...
Subi : {Si,K1i ,K2i , ...,Kji})

Output: Decision Tree
1: T (K,S) ← 0
2: i ← Count Subscribers(S )
3: for 1 to i do
4: j ← Count Keywords(Subi)
5: for 1 to j do
6: T (Kji , Si) ← 1
7: end for
8: end for
9: return T (K,S)

5.6 Evaluation

5.6.1 Evaluation Methodology

Based on traditional evaluation metrics, I am using throughput and accuracy to evaluate

the efficiency and effectiveness of the multimedia event-based system. In addition to

these performance metrics, I also compare the single-class classifiers with existing n-class

classifiers using precision and recall for the proof of optimization. To test Hypothesis-I, I

perform experiments on different values of “N” of N-class classifiers while measuring their

throughput (for response-time) and accuracy. Moreover, I use the N-class classifiers of

multiple domains to prove the ability to generalize. Specifically, experiments have been

conducted on randomly generated subscriptions by considering multiple users (mε[1, 10])

and a large number of subscriptions (nε[1, 100]) per user with following experimental

setup:

• Event Sets: Five event sets consisting of events related to traffic, sports, home,

animal, and mixed events have been prepared manually using classes of the Mi-

crosoft Common Objects in Context (COCO) dataset [27]. Among 80 classes of
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Microsoft COCO, I found 8 classes related to traffic, 17 classes related to home, 9

classes related to sports, and 10 classes related to animal. For instance, I construct

traffic classifier (i.e., 8-Class classifier) from training data of classes like person,

bicycle, motorbike, bus, truck, traffic light etc. Then I used the testing data of

the same classes for the generation of testing events which are ≈ 25818 for traffic

events. Similarly, I construct an animal classifier (i.e., 10-Class classifier) using

training data of classes like bird, cat, dog, horse, etc. I prepare animal events

using images available in testing data with at least one or more classes related

to bird, cat, dog, horse, etc. I use the same approach to construct classifiers and

testing events for sports and home category. Then I prepare a mixed event based

classifier where I consider all classes of traffic, sports, home, and animal classifiers.

It is important to note that I prepared only categories traffic, sports, home, and

animal because Microsoft COCO consists of only 80 classes, and this was the most

suitable classification.

• Subscription Sets: Random subscriptions have been generated manually for each

of the applications by varying the number of users and number of subscriptions per

user. Subscriptions consist of attributes having the name of objects for detection

like {cat}, {dog}, {cat, dog, horse}, {car,motorbike}, etc.

• Matcher Constraints: Given a set of n subscriptions S = {s1, s2, ..., sn} with

collective attributes A = {a1, a2, ..., at} and a set of classifiers C = {c1, c2, ..., cm},
the event matcher has to match events with subscriptions S using classifiers C. The

matcher constraint is a condition specified on set of attributes A that belongs to

subscriptions S. There exists a subset C ′ of available classifiers C, which covers all

attributes of A, i.e., ∃ C ′ ∀(ai ε A)(C ′ ⊆ C∧ai ε C ′), to achieve high performance.

To derive the trend of throughput with number of classes, and for the proof of optimiza-

tions, I use the below training and testing datasets:

• Training Datasets: All 80 classifiers (classifier with 1 class, the classifier with 2

classes, the classifier with 3 classes, and so on) are trained on Microsoft Common

Objects in Context (MCOCO) training dataset to demonstrate the dependence of

throughput on the number of classes. Also, two other specialized classifiers are

trained on Pascal VOC [26] and Microsoft COCO [27], having 20 and 80 classes,

respectively, to compare precision and recall.

• Testing Datasets: I use the testing dataset of Microsoft COCO [27] to analyze

throughput with the number of classes because Microsoft COCO (80 classes) has

more classes than Pascal VOC (20 classes). However, I use both Pascal VOC
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and Microsoft COCO testing datasets to show the precision and recall for N-Class

classifiers.

All experiments have been conducted on Ubuntu 16.04.3 LTS (GNU/Linux 4.13.0-26-

generic x86 64), with NVIDIA TITAN Xp GPU.

5.6.2 Evaluation Metrics

• Throughput: Number of events matched in a unit time, measured in terms of

frames/sec (fps).

• Accuracy: Ratio of correctly predicted observation to the total observations.

Accuracy = (TP + TN)/(TP + FP + FN + TN) (5.1)

• Precision: Ratio of correctly predicted positive observations to the total predicted

positive observations.

Precision = TP/(TP + FP ) (5.2)

• Recall: Ratio of correctly predicted positive observations to the all positive obser-

vations of actual class.

Recall = TP/(TP + FN) (5.3)

5.6.3 Experiments and Results

5.6.3.1 Evaluation of Feature Extraction

Table-5.3 summarizes the average accuracy and throughput of the proposed system

and demonstrates overall performance improvement for analyzing traffic, sports, home,

animal, and mixed image event streams. The accuracy of the proposed method is mea-

sured with the help of correctly predicted observations (true positives and negatives)

with respect to the total number of observation/image events. In contrast, throughput

indicates the number of frames processed per second (fps). Performance has been eval-

uated for each type of event stream using three types of classifiers: single class, N-class,

and 80-class classifiers, to demonstrate the impact of an increased number of classes per

classifier on performance. Here the value of “N” depends on the application domain,

which is taken as 8, 9, 17, and 10 for traffic, sports, home, and animal classifiers, respec-

tively. The 80-class classifier serves the purpose of a general classifier having Microsoft

COCO classes consisting of multiple domain categories [27], and it will remain the same

throughout all experiments.
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Additionally, performance has been evaluated by replacing a single 80-class classifier with

category related single-class classifiers. Results show that the throughput of the system

is increased while having competitive accuracy. The only drawback of using single-class

classifiers is the requirement of loading all classifiers at the same time. However, the

decrement in throughput and accuracy on using 80-class classifier compared to single

class classifiers shows that the system’s performance will decrease with an increase in the

number of classes per classifier. Thus, it will be beneficial to choose the optimal value of

“n” and consider only the related classes for constructing a classifier for optimization.

Consequently, we also evaluated our system on domain-specific (N-Class) classifiers that

consistently outperform the other classifiers with an average throughput and accuracy

of 110 fps and 66.34%, respectively. This verifies our Hypothesis-I. The high average

throughput of the proposed system consisting of N-Class classifiers for different event

streams while achieving high accuracy signifies the generalizability, efficiency, and effec-

tiveness of the proposed design for real-time applications.

The performance of the detect operator on multiple types of events for handling multiple

domain-related subscriptions is shown in Fig. 5.5.
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(a) Traffic Event (b) Sports Event

(c) Home Event (d) Animal Event

Figure 5.5: Detect Operator on Traffic, Sports, Home and Animal related events

5.6.3.2 Proof of Optimization

Throughput vs Number of Classes Fig. 5.6 illustrates the relationship of through-

put with the number of classes for n-class classifiers, where n ranging from 1 to 80. Here,

n-class classifiers refer to a classifier that is trained on n classes. The performance of the

system on using single-class classifiers (classifier trained on only one class) will remain

constant, with the condition of loading of all classifiers at the same time.

Also, it can be seen from the graph that the throughput of n-class classifiers is con-

tinuously decreasing with an increase in the number of classes, which validates our

Hypothesis-I in terms of low response-time. This shows that the number of classes is

among one of the configuration parameters of classifiers, which affects their time com-

plexity with loose upper bound o(n). Thus choosing an optimal value of n according

to the required application is recommended for the optimized solution of constant time

complexity O(1).

Precision-Recall vs N-Class Classifiers Fig. 5.7 represents the comparison of

average precision and recall for three types of classifiers: Pascal VOC, Microsoft COCO,

and single-class trained classifiers. Here a Microsoft COCO trained classifier with 80
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Figure 5.6: Average Throughput of Classifiers

classes serves the purpose of testing the best case analysis as compared to a single class

classifier trained on 1 class for the worst-case analysis. However, Pascal VOC with 20

classes is considered to analyze the performance on average cases. Fig. 5.7(a) compares

the performance of all types of classifiers on the Pascal VOC testing dataset. It shows

that the Pascal VOC trained classifier is performing best on the Pascal VOC testing

dataset. Simultaneously, the precision-recall of Microsoft COCO with 80 classes is almost

equivalent to the performance of Pascal VOC having 20 classes. However, the values of

precision and recall achieved by single-class trained classifiers, which could be the worst

possible case of N-class trained classifiers, are also quite promising compared to other

classifiers. The values of precision and recall also support our Hypothesis-I for accurate

multimedia event processing. Similarly, Fig. 5.7(b) shows the performance of all three

types of classifiers on the Microsoft COCO testing dataset. The competitive precision-

recall of the approach having N-class classifiers with N=1 is practically indistinguishable

compared to N=20 and N=80 classes, which also indicates the suitability of keeping the

value of N as minimal as possible.

It implies that choosing lower values of “N” related to the application domain can im-

prove the system’s throughput and does not influence its accuracy. Hence the “classifier

division and selection” approach has proven to be useful for the purpose of optimization

of feature extraction.

Other than these experiments, I believe performance may change with the size of images

and quality. For instance, Pascal VoC and Microsoft COCO are benchmark object

detection datasets, thus consisting of more objects per image with many boxes with

good resolution for the training. However, in a real-time environment, we may get iconic
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(a) Average Precision and Recall on Pascal VOC testing dataset

(b) Average Precision and Recall on MCOCO testing dataset

Figure 5.7: Average Precision-Recall of Classifiers

images of specific objects for testing/training that may increase or decrease the accuracy.

However, the trends of decrease in throughput with the increase in the number of classes

demonstrated in experiments will remain the same. Availability of a large number of

images for training may also improve the performance of Model-I.

5.7 Conclusion and Discussion

To process multimedia events within the event-based paradigm, a generalizable IoMT

based system has been proposed in this chapter. Literature reveals that existing event

processing approaches in IoT do not support multimedia events, while image processing

approaches are application-specific. The proposed approach is based on a deep neural
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network-based feature extraction model expressed as an object detection operator. The

proposed model has been optimized by using a classifier selection approach based on

subscription constraints. Experiments show that the proposed system achieves an aver-

age throughput of 110 frames/sec with an approximate accuracy of 66.34% on real-world

events in various applications of smart cities. We show the decrease in classifiers’ perfor-

mance with an increase in the number of classes per classifier, which indicates the effect

of a number of classes on the performance of the proposed system by time complexity

o(n). Precision and recall have been evaluated to show the reasonable performance of

n-class classifiers even in a worst-case scenario. The reduction in throughput with an

increase in the number of classes and promising precision and recall even on small values

of n for n-class classifiers supports choosing the optimal number of classes per classifier

to achieve constant high performance. Thus, it is evident that the proposed approach

is capable of providing the desired optimization based on classifier configuration using

subscription constraints, which verifies Hypothesis-I.

Presently our proposed approach requires trained classifiers for the processing of un-

seen concepts. Thus, it can extend the proposed model with online training with the

introduction for the self-construction of classifiers in the future. Such a direction could

lead to the inclusion of adaptability (Chapter–6) in the sense that the system can be

generalized or specialized according to the practicality of the model in various scenarios.



Chapter 6

Hyper-Parameters based

Adaptive Multimedia Event

Detection

6.1 Introduction

The goal of generalized multimedia event processing [32] was analyzed in previous

Chapter-5, and I reached towards a key open challenge of trained classifiers availabil-

ity for the processing of multimedia events using neural network-based techniques in

real-time. Current online learning approaches make their decisions on the fly [19, 20].

Still, they are only based on concept drift in multimedia streams, and inapplicable for

the handling of new/unknown subscriptions belonging to multiple applications of smart

cities. Apart from the limitation of availability of pre-trained classifiers, the optimisation

techniques in neural network models are based on the trade-off of speed and accuracy

[22], which is supposed to be done before the processing of events and cannot be config-

ured at run-time in case of adaptive subscriptions of multiple domains. Therefore, there

is the requirement for an online classifier construction-based approach, that can answer

seen/unseen subscriptions by processing multimedia events with minimal response time

and high accuracy.

The choice of hyperparameter values [241] greatly affects the performance of resulting

classifiers and could be a possible solution for reduced response-time. In this chapter we

tests the research Hypothesis-II “If tuning of hyperparameters based technique is useful

in machine learning models to speed-up the training, decrease the computation cost, and

increase the accuracy; then performance will get enhanced for low response-time also

even on training from scratch for unseen subscriptions on tuning hyperparameters for

95
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Figure 6.1: Conceptual Architecture for the Online Adaptive Classifier based Multi-
media Event Processing

the online construction of classifiers.”. Before testing the hypothesis, we formulate this

problem into our Research Question 2 as “How can we answer multimedia event based

queries online consisting of completely unseen subscriptions (unbounded vocabulary),

using an adaptive classifier construction approach with the tuning of hyperparameters

while achieving high accuracy and minimizing the response time?” in Section–6.2.

Specific existing research related to the online training and self-adaptation of classifiers

is presented in Section–6.3. To achieve high-performance multimedia event processing,

publish-subscribe based systems are incorporated with online classifier learning-based

neural network models specifically to detect objects (detailed in Section–6.4 and 6.5).

The multimedia stream processing engine allows users to subscribe to classes belonging to

any domain, monitor multimedia events, and process them using an event-based matcher,

adaptation model, and classifier based object detection models (shown in Fig. 6.1). We

optimise the multimedia stream processing model with a self-adaptation model that anal-

yses the accuracy-processing time trade-off of object detection models at run-time and

configure it using performance-based strategies on dynamic subscriptions. We leverage

hyperparameter tuning-based techniques, including the configuration of learning-rate,

batch-size, and the number of epochs for the optimisation. We consider mainly three

strategies: Minimum Response Time needed while Minimum Accuracy allowed, Optimal

Response Time needed while Optimal Accuracy allowed, and Maximum Response Time

allowed while Maximum Accuracy needed, for the requirement of high performance in

multimedia event processing applications.

Our experiments (presented in Section–6.6) demonstrate that deep neural network-based
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object detection models, with hyperparameter tuning, can improve the performance

within less training time to answer previously unknown user subscriptions. This study

shows that the proposed online classifier training based model can achieve accuracy

of 79.00% with 15-min of training and 84.28% with 1-hour training from scratch on a

single GPU for the processing of multimedia events. Lastly, Section–6.7 concludes and

discusses the limitations with the need for inclusion of domain adaptation.

6.2 Problem Overview

6.2.1 Preliminaries

• Hyperparameters: Hyperparameters are configuration parameters of the model

that cannot be trained directly from the training data, and often specified by

practitioners after resort to experimentation’s. Examples of hyperparameters may

include learning rate, number of epochs, batch size, number of hidden layers,

architecture, activation functions, etc.

• Online Learning: Precisely, online learning is answering a sequence of questions

given knowledge of the correct answers to previous questions and possibly addi-

tional available information [242]. Online learning-based approaches are adaptable,

make their decisions on the fly, and applicable for situations in which data changes

frequently. Due to the term “online learning”, the standard approach to machine

learning got the name “offline learning”, where we use a source dataset and train

a model on the whole dataset at once. This offline learning is often called batch

learning [243], as most models get trained in a batch manner. In an offline case,

if the model needs to learn about new data, models need to be retrained on new

data. On the other hand, training happens incrementally in online learning.

• Self Adaptation: It refers to automate the procedure of configuration of models or

self-acting on them in case of reduced accuracy of real-time applications. From the

machine learning perspective, these are automatic selection methods for algorithms

or hyperparameter values for a given supervised problem [244]. The goal of these

methods is to quickly find the effective algorithm and/or combination of hyper-

parameter values that maximizes the accuracy within a pre-specified resource limit,

where resource limit mainly includes the amount of training time, number of values

to be tested, or number of scans over data. Auto-Weka [245] and Hyperopt-Sklearn

[246] are two popular examples of automatic configuration approaches.

• TPE: Like other Sequential model-based optimization (SMBO) algorithms, Tree-

structured Parzen estimators (TPE) also differs in surrogate model p(y|x), which
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Figure 6.2: Scenarios for Multimedia Event Processing adhering to Seen/Unseen
Concept Problem

is the probability of the hyperparameters. The TPE [241] defines p(x|y) using two

such densities:

p(x|y) =

l(x) if y < y∗

g(x) if y ≥ y∗

where l(x) is the density formed by using the observations such that correspond-

ing loss was less than y∗ and g(x) is the density formed by using the remaining

observations.

6.2.2 Motivational Scenarios

Consider the baseline scenarios of detecting seen/unseen concepts for analyzing multi-

media events, as shown in Fig. 6.2. As we have seen in the previous chapter, we can

process multimedia events directly from the pre-trained classifiers for any seen concept.

However, if the concept “unseen” completely, i.e., there is no similar seen concept-based

classifier available in the multimedia event processing model for the knowledge transfer.

In that case, we need to address the problem of classifier training for unseen concepts

from scratch in low response time. This specific problem associated with Scenario-1 is

described in Fig. 6.3. If a user subscribes for mirror detection and existing public traffic

control management system (having bus, car, traffic-light, bicycle), security management
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Figure 6.3: Scenario-1: Completely Unseen Concept Arrived (Application of Model-
II: Hyper-Parameters based Adaptive Multimedia Event Detection)

systems (having person, building, key), smart home systems (having sofa, television,

utensils, table) etc can recognize only their limited classes. Then such system may re-

quire manual effort for the answering of any completely unknown subscription “mirror”.

However, with the provision of online training for the handling of new subscriptions in

reduced response-time, such types of queries can be answered automatically by training a

new mirror classifier while using deep neural network-based models, thereby eliminating

the sudden breakdowns that existing systems currently exhibit in such scenarios.

6.2.3 Problem Statement

The problem can be defined more specifically as “How can we answer multimedia event

based queries online consisting of completely unseen subscriptions (unbounded vocabu-

lary), using an adaptive classifier construction approach with tuning of hyper-parameters

(~λ, ~E, ~β) while achieving high accuracy and minimizing the response time?”.

6.3 Background and Related Work

6.3.1 Online Learning of Classifiers

Online learning is the branch of machine learning useful in environments where data

behaviors change quickly, like shipping websites, product search, stock price prediction,

etc [242]. Online learning based approaches make their decisions on the fly. Thus such

machine learning-based approaches could prove to be useful for the adaptation among

classifiers. Online learning based algorithms are scalable and data-efficient that learn

to update models from data streams sequentially, and no longer require data which has

been consumed [117, 247]. Data streams frequently experience “concept drift” as a result

of changes in the underlying concepts. When data distribution drifts due to changing

behavior of customers, online learning models can adapt on-the-fly to keep pace with

trends in real-time. This procedure is similar to offline learning, where we create a
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Table 6.1: Analysis of Related-Work with identified Requirements

Requirements

Category Approach
High

Accuracy for
Multimedia

Events

Low
System

Response
Time

Support for
Large

Vocabulary

Maintain-

ability

Active
Learning
[248–250]

High
Accuracy

N.E

Scalable
Dataset

Construc-
tion

Support

High
Main-

tainabil-
ity

Online
Learning of
Classifiers

Semi-
Supervised
Learning
[251–253]

High
Accuracy

N.E N.A
Adaptive

within
Domain

Adaptive
Classifier

Learning [19–
21, 254, 255]

Average to
High

Accuracy

Low
Training

Time
N.A

High
Main-

tainabil-
ity

Self-Tuning

Hyperparameter
Tuning

[241, 244, 256–
258]

High
Accuracy

N.E N.A N.A

of Classifiers
Self-

Adaptation
[23, 24]

High
Accuracy

N.E N.A

Adaptive
for Per-

formance
Metrics

N.E: Not Evaluated, N.A: Not Applicable

sliding window of data and retrain it every time. Online learning-based approaches

are adaptable and can easily handle concept drifting of data streams, which makes this

methodology crucial for streaming analytics [19].

Most of the existing techniques of online learning are based on semi-supervised or active

learning of classifiers. Active learning is one of the techniques that allow the machine

learning methods to select a subset of the unlabeled data from the data distribution to

be labelled [248, 249]. Uncertainty sampling [259], Query-by-Committee (QBC) [260]

and Estimation of error reduction [250] are the most popular methods to perform active

learning. Although active learning is an enhancement over conventional inductive learn-

ing; the approach requires the construction of an exhaustive labelled dataset which is

laborious and challenging [261]. Semi-Supervised learning is also another step towards

online learning which requires a small amount of labelled data as compared to unlabeled

data [251]. These algorithms [252, 253] work on the hypothesis that the labels generated

by the base learner with high confidence can be added to the training dataset, and able

to improve the accuracy. Although the accuracy of such existing methods is relatively
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high with high speed of stream processing, given that these methods are semi-supervised,

they cannot handle multimedia streams online.

Existing adaptive classifier based machine learning techniques [20, 21, 254, 255] in this

category are designed with the aim of evolution of classifiers with drift in concept of

multimedia streams. Wang et al. [20] proposed a framework for concept drifting of

data streams using weighted classifier ensembles. However, the identification of concept

drift in these dynamic approaches is mainly focused on the processing of structured data

streams and cannot accommodate multimedia data streams. An ensemble of classifiers

is based on combining the results of individual classifiers and producing more accurate

results for dynamic data streams, thus suitable for online learning [262]. The approach

is based on dynamic classifier ensembles but more focused on structured event streams

for analyzing concept drift. However, it has been investigated that dynamic ensemble se-

lection scheme performs better than static ensemble selection in some cases [263]. Other

recent adaptive classifier based techniques [254, 255] are efficient but applicable only

for particular domains. The identification of concept drift in these dynamic approaches,

is mainly focused on processing of structured data streams and cannot accommodate

multimedia data streams. Online learning can be directly applied to deep neural net-

works, but also they suffers from convergence issues and forgetting previously learned

data [264].

Although online learning-based approaches remove the constraint of availability of clas-

sifiers, most of them are solely based on concept drift in multimedia streams and thus

become inapplicable for handling dynamic subscriptions. Moreover, handling the chal-

lenge of changing/inconsistent interest of the user, and adapting classifiers accordingly,

need to be investigated for the generalized framework of multiple domain-based streams

[265].

6.3.2 Self-Tuning of Classifiers

Hyperparameters are configuration parameters of the model that cannot be trained

directly from the training data, and often specified by practitioners after resort to ex-

perimentations. Examples of hyperparameters may include learning rate, number of

epochs, batch size, number of hidden layers, architecture, activation functions, etc.,

and choosing the right set of these values is typically known as Hyperparameter tuning.

Since the choice of hyperparameter values greatly affects the performance of resulting

classifiers, various automatic selection methods were proposed in the literature [244] for
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hyperparameter values. The most common algorithms for the selection of hyperparam-

eters are ranging from Grid Search, Random Search, Bayesian Optimization, Sequential

Model-Based Optimization to Tree-structured Parzen Estimators (TPE) [241].

Grid search is the simplest method of hyperparameter tuning. It is a brute force method

that trains the model for all combinations of parameters specified in a grid and selects

hyperparameters after evaluating each model. Since grid search suffers from having high

dimensional space, it is computationally very expensive. Random search is different from

a grid search as it assumes that not all hyperparameters are equally important. In this

method, we provide the statistical distribution for each hyperparameter from which

values may randomly sample. We may also define the total number of iterations, and

the hyperparameter values of the model will be set and evaluated for each iteration

from a specified probability distribution. As compared to the grid search, the random

search has much improved exploratory power [256]. Bayesian approaches keep track of

the previous iteration results to improve the sampling method for the next experiment

[257]. There are two main decisions that we need to make for Bayesian optimization:

(1) Selecting a prior over functions to express assumptions about the function being

optimized (for instance Gaussian Process prior) (2) Choosing an acquisition function

to determine the next point to evaluate. Sequential model-based optimization (SMBO)

algorithms formalize Bayesian optimization [241]. It iterates between fitting models

sequentially while trying each time better hyperparameters using Bayesian reasoning

and updating the probabilistic model.

Many variants of SMBO algorithms exist which differ only in the surrogate model,

where the surrogate is the model used for approximating the object function. TPE

builds a surrogate model by applying Bayes’s rule [258]. This method is restricted only

to tree-structured configuration spaces, i.e. leaf variables only make sense when node

variables take particular values. TPE first samples the hyperparameter search space

by random search, then it divides the output scores into two groups. The first group

consists of best scores and the second group contains the rest of the observations by

assuming y∗ as the splitting value for the two groups. Then the two densities l(x) and

g(x) are modelled using Parzen Estimators, where l(x) and g(x) are averages computed

from kernels centred on existing data points. The TPE algorithm defines likelihood

probability as p(x|y) = l(x) if y < y∗ or p(x|y) = g(x) if y ≥ y∗. The model evaluates the

sample hyperparameters according to l(x)/g(x), updates observation list, and iterates

over a fixed number of trials. The major advantage of the TPE is that it allows a vast

domain for hyperparameter search space. These baseline methods are further integrated

into open source softwares for the automatic selection of algorithms and hyperparameter

values.
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These baseline methods are further integrated into open source softwares for the auto-

matic selection of algorithms and hyperparameter values. Auto-WEKA [23] is one of

the most popular work towards analyzing machine learning algorithms automatically

and setting appropriate hyperparameters in-order to enhance performance. Similarly

hyperopt-sklearn is another available software mainly includes random search and TPE

for the automatic selection [24]. Inspite of the fact that these tools are automatic, most

of them focuses only on accuracy and generalization ability of classifiers, or on the com-

putation cost consisting of testing time [22, 25], while excluding the training time of

neural-network based models. Thus existing adaptation tools designed for tuning of hy-

perparameters need to be further investigated for minimizing the overall response time

including both testing and training time.

6.3.3 Gap Analysis

Table 6.1 summarizes the existing approaches with mapping of requirements (suggested

in Section–2.4). While classifying the related work, we summarize the gap analysis with

limitations as follows:

• Online Learning of Classifiers: We consider online training of classifiers as a solu-

tion for generalizable multimedia event processing. Existing online learning-based

approaches remove the constraints of availability of classifiers by making their

decisions on the fly. Due to this reason, these approaches mostly support high

maintainability and average to high accuracy due to the use of machine learning

models. However, support for low response time and large vocabulary remain not

inapplicable in online learning methods.

• Self-Tuning of Classifiers: These approaches include the optimization of machine

learning models using hyperparameter tuning and self-adaptation of classifiers.

Existing work in this category takes the responsibility of delivering high accu-

racy with the provision of adaptation for optimization. Nevertheless, reducing the

training time and supporting a large vocabulary is out of their scope.

6.4 Proposed Approach

The proposed online classifier learning based multimedia event processing model utilizes

the publish-subscribe paradigm and leverages neural network-based object detection

methods to meet the requirements of dynamic subscriptions. The publish/subscribe

system facilitates the smooth interactions between subscribers and publishers sending
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multimedia events. The adaptive multimedia event processing engine allows users to sub-

scribe to classes belonging to any domain, monitor multimedia events, and process them

using an event-based matching engine, adaptation model, and external resources (shown

in Fig. 6.4). The event-based matching engine is responsible for detecting conditions that

hold in image events according to the user query. Deep convolutional network-based

object detection models are included for the processing of multimedia events with high

performance. They are currently being placed in resources that can be changed/adapted

on need by the administrator only. The adaptation model has been incorporated for the

online configuration of classifiers so that the system can adapt and train new classifiers

based on suggested strategies on the arrival of unknown/new subscriptions. The pro-

posed adaptation model derives the best configuration for the considered strategy by

analyzing the response time-accuracy trade-off of image processing models (presently

object detection). It is important to note that we are using the term “adaptation” for

the tuning of hyperparameters based on strategies categorized by response-time. How-

ever, other types of adaptations could be incorporated in the future for the enhanced

efficiency of the proposed architecture.

The adaptation model has been designed using IBM MAPE-K architecture [172], hav-

ing Monitor, Analyse, Plan, Execute phase, a shared Knowledge Base, and managed

resources, shown in Fig. 6.4. The monitoring function is responsible for receiving sub-

scriptions (in the form of keywords), image events, and other specified requirements.

The analyze phase process images and take decisions of training or testing based on the

performance of available classifiers. The planning phase configures tunable parameters

(assuming Hypothesis-II) to start training based on a decision of the construction of clas-

sifiers. The execution phase initiates the training of the classifier. Meanwhile, almost

all phases interact with the knowledge base to access configurations, policies, strategies,

etc. The last layer contains managed resources (hardware or software) that assist the

adaptation engine and presently include training database and neural-network-based

models.

6.5 Designing and Implementation

6.5.1 Adaptive Hyper-Parameter based Multimedia Event Processing

Engine

The proposed approach for the adaptive multimedia event processing (shown in Fig. 6.4)

illustrates the online learning of classifiers on demand along with hyperparameter tuning
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Figure 6.4: Adaptation Model for Multimedia Event Processing

based optimisation and addresses the monitoring, analysing, planning, and execution

phase using knowledge base and resources as follows:

Monitoring: Firstly the monitor phase is responsible for receiving subscriptions (in

the form of keywords like pedestrian, bus, cat, etc.), image events, and any other spe-

cific requirement (for instance, strategies) suggested by the user. Choice of strategies

may vary with applications; presently, we consider mainly three strategies: “Minimum

Response Time needed while Minimum Accuracy allowed”, “Optimal Response Time

needed while Optimal Accuracy allowed”, and “Maximum Response Time allowed while

Maximum Accuracy needed”.

Pre-Processing: It is the responsibility of the preprocessor to update strategies if in-

structed by the user and then communicate with the analysis phase for providing sub-

scriptions (keywords) and images.

Analyse: The analyse function is designed to evaluate image events and analyse the

performance to determine if some changes (specifically training) need to be done. It

mainly includes testing and training decision phases, utilise the knowledge base for

existing classifiers, and requested strategy.

Testing: The “testing module” processes image events using classifiers belonging to

keywords and object detection models with testing configuration parameters from the

shared knowledge base and resources.



Chapter 6. Hyper-Parameters based Adaptive Multimedia Event Detection 106

Training Decision: The training decision phase utilises the results generated by the

testing phase and strategies from the knowledge base to start the training or continue

testing. It analyses the performance (response-time and accuracy) of the testing module

and requests for a training plan accordingly. If response-time (trt) and accuracy (a)

satisfy the requirements of subscribers, the analyse module communicates results to the

event matching engine.

Plan: This phase creates or selects a procedure for the training data collection and gen-

erates the training plans using classifiers and hyperparameters present in the knowledge

base.

Training Data Collection Plan: The data collection plan gets initialised from the train-

ing request of the analyse phase; then, it considers available classifiers and training

data present in resources to make the data collection plan. It may also consider col-

lecting training data from an external source like automatic data collection tools like

OIDv4 ToolKit [28] in the present case. ImageNet-Utils [67] is another typical example

of an online data collection tool, which includes more than 1000 categories for user sub-

scriptions. Other than these resources, classifiers for such unknown subscriptions could

also be constructed using search engines like Google Images, Flickr, Bing Image Search

API, etc., and automatically downloading images using class names.

Training Plan: The training plan receives the data plan with details of sources and

the number of images and fetches existing hyperparameters from the knowledge base.

It decides the training time by considering the requested strategy and data plan and

estimates hyperparameters to give the best performance in the limited response time.

Lastly, the training plan updates the hyperparameters (like Learning Rate, Number of

Epochs, Batch Size) present in the knowledge base for the proof of Hypothesis-II and

invokes the training module.

Execute: Execution function provides the environment of online training of classifiers

and performs the required changes to update the classifiers necessary for the adaptation

of the system.

Online Training : This module mainly performs the training of classifiers for unknown

subscriptions using the training plan generated in the previous phase. It may also

collect the classifier (if it exists) from the knowledge base and train further following

the training plan. Also, training can take place in parallel to testing in the distributed

systems. Finally, classifiers get updated in the knowledge base after reaching the training

time decided by the planning phase according to the requested strategies.

Training Data Collection: The training module could also instantiate the data collection

function to collect training data from an external source (presently OIDv4 ToolKit [28]).
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It may also consider details like the number of images, size, quality, etc., from previously

generated data collection plans. It provides the requested data within the specified time

directed by the online training module. Moreover, it updates resources with collected

data for the processing of the same subscription in the future.

Knowledge: It represents a shared knowledge accessible from all phases in different

situations and may consist of the following components:

• Classifiers: Testing and training module interacts with classifiers using subscrip-

tions and updates them on need. In the present scenario, classifiers get trained

online for the new/unknown subscriptions while collecting training data either

online or offline. For instance, for the classes present in Pascal VOC, Microsoft

COCO, ImageNet object detection datasets, etc., the model directly collects data

from resources offline to train classifiers. However, in the case of a completely new

subscription, the model chooses to collect training data online either from existing

online data collection toolkits or from web sources.

• Configuration Parameters (Fixed and Tunable): Classifier configuration may vary

with the adaptation of tunable hyperparameters. In the current implementation,

we fixed the architecture, image size, backbone, etc., and tuned the batch size,

learning rate, and the number of training epochs. We use the Tree-structured

Parzen Estimators (TPE) method for the tuning of hyperparameters [241], which

is the most recent and fixes the limitations of conventional optimisation techniques

(please refer to Section–6.3.2).

Hyperparameters are those parameters of the model whose values get set before

the training starts. Setting hyperparameters is critical as they directly affect the

behavior of the training and significantly improve the performance (response-time

and accuracy) of the model. On the other hand, there is very little research related

to ways of choosing hyperparameters for tuning [266]. However, hyperparameters

generally classify as optimiser hyperparameters and model-specific hyperparame-

ters. The optimiser hyperparameters are more focused on the optimisation of the

training in terms of efficiency and accuracy. The model-specific hyperparameters

are related to the design of the model. A typical set of optimisation hyperparam-

eters for neural networks based models includes learning rate, batch size, and the

number of epochs, which we also consider in our adaptation model for the tuning.

The learning rate is the most essential hyperparameter that has to be tuned [267].

If the learning rate is too low, it will increase the response time, or if it is too large,

the model will never converge. Batch size is also responsible for speed and number

of iterations in training. Moreover, larger batch size consumes more memory while

smaller batch-size induces noise. Choosing the batch size determines the number
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Table 6.2: Performance of Existing Object Detection Models

Current Performance
Object Detection

Models
Precision*

Testing Time
(in ms)

Faster R-CNN [148] 0.27 420.00

R-FCN [268] 0.32 170.00

SSD300 [36] 0.25 21.74

SSD512 [36] 0.29 52.63

DSSD321 [269] 0.28 105.26

DSSD513 [269] 0.33 181.82

YOLOv2 [149] 0.22 25.00

YOLOv3 [166] 0.28 22.00

RetinaNet [37] 0.41 198.00

*average precision on coco test-dev @IOU[0.5, 0.95] [27]

of iterations, and the length of the epoch depends on the number of iterations.

Thus the batch size and the number of epochs are directly related to the training

time of the model, and we must need to consider such hyperparameters for tuning.

On the other side, attributes that control the architecture of the neural network

like the number of layers, activation function, backbone, also fall under the cate-

gory of hyperparameters, but these parameters are model-specific. We are keeping

these elements of specific architectures of each model fixed. However, we are chang-

ing the full architectures by changing the object detection models (YOLO, SSD,

and RetinaNet) and discussed evaluations in Section–6.6.3.2. Specifically, the SSD

model uses VGG-16 as the backbone and adds 6 convolutional layers while using

Softmax as an activation function [36]. RetinaNet model comprises ResNet-FPN

backbone, a classification subnet, and a box regression subnet, where both classifi-

cation and box subnet consist of 5 convolutional layers and ReLU based activations

[37]. YOLO uses its backbone darknet with 24 convolutional followed by 2 fully

connected layers and uses linear activation function [35]. The recommended image

size for the SSD model is 300× 300, RetinaNet model is 800× 1333, and YOLO is

448 × 448. If we modify the image-size, then that would considerably change the

testing time with less change in training time. However, this would compromise

the accuracy, and we will eventually need more images during training to reach

the same accuracy. This will result in more training time and more data collec-

tion time in the worst case. Similarly, tuning individually, these parameters could

change the specific architectures of object detection models and may enhance the

speed of training but not significantly. However, there exist comprehensive re-

views [22, 47, 270] that are changing feature extractors (backbones), activation

functions, proposals, layers, image size etc. of these models in the field of object

detection, but ideal architecture with its parameters is inconclusive to date. Our
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model is also extensible for the adaptation within the object detection models by

using such existing recommendations and incorporating them in the knowledge

base and planning phase of our model. Although, the complexity of our proposed

adaptation model will increase with an increase in the number of dimensions, and

we will need to give priorities only to a few model-specific parameters or only to

optimisation parameters in the end.

• Strategies: It is important to note here strategies refer to user requirements for

performance. Suppose a user permits low accuracy results, but in minimum pos-

sible time, then this strategy can be attributed to as “Minimum Response Time

needed while Minimum Accuracy allowed”; Conversely, if a user necessitates high

accuracy results with no restriction on response time, then one can specify strategy

“Maximum Response Time allowed while Maximum Accuracy needed”. Similarly,

any other choice of response time that supports accuracy between low to high may

fall into the category “Optimal Response Time needed while Optimal Accuracy

allowed”. Please note that optimal response time refers to the average response

time, which is considered as 60 min in the present model. Its value will always

be between the minimum and maximum response time of different applications.

The average response time will highly likely provide average accuracy between

the model’s lowest and highest possible accuracy and be referred to as optimal

accuracy.

Resources: This component consists of existing image processing models and train-

ing datasets. For the demonstration of the proposed model, we are using YOLO,

SSD, and RetinaNet for object detection [35–37]; and Pascal VOC and OID [26, 28]

with its online toolkit1 for training datasets. However, resources may include toolkits

like ImageNet Utils2 or web sources like Bing Scrapper3, Google Images Downloader4,

Flickr Photos5, etc.

Moreover, we could also incorporate other recent object detection models in the future.

Presently we analyse the most recent object detection models (shown in Table 6.2):

Faster-RCNN [148], Region-based Fully Convolutional Networks (R-FCN) [268], Single

Shot MultiBox Detectors (SSD) [36], Deconvolutional Single Shot Detectors (DSSD)

[269], You only look once(YOLO) [35], and RetinaNet [37], based on their performance.

Here, we focus on the testing time of these models, as after the training of any unknown

subscription, the response-time of our model will depend only on the testing-time. Thus

1https://github.com/EscVM/OIDv4 ToolKit
2https://github.com/tzutalin/ImageNet Utils
3https://github.com/funpokes/bing-image-search
4https://github.com/hardikvasa/google-images-download
5https://www.flickr.com/services/api/
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we chose the YOLOv3 and SSD300 due to their lowest testing time. Moreover, RetinaNet

is the most recent among these models, and it is getting popular due to its highest

accuracy (to date); we consider it in our experiments. Nonetheless, we could include

other object detectors depending on the requested strategies. Please note that the

average precision and inference time of object detection models are the best results

reported by these models, which may differ in the future with an increase in resources.

6.5.2 Adaptive Hyper-Parameter based Multimedia Event Processing

Algorithms

The implementation procedures for online multimedia event processing engine with

adaptation are shown in Algorithm 3 and 4, where Ss represents sets of Subscriptions,

k: keywords, s: subscribers, SIE : stream of image events, M : object detection model,

~λ: domain for learning rate, ~E : domain for number of epochs, ~β: domain for batch size,

Ck: classifier for keyword k, and St: strategies respectively.

Algorithm 3 : Adaptive Multimedia Event Processing Engine

Input: Sets of Subscriptions(Ss) :
s1 : {{a}, {k11 , k21 , ..., kj1}}, s2 : {{a}, {k12 , k22 , ..., kj2}}, ...
si : {{a}, {k1i , k2i , ..., kji}},
St: Strategy for permissible response time, and
SIE : Stream of Image Events.

Output: Notifications
1: while true do
2: IE ← Image Event(SIE)
3: m← count subscribers(Ss)
4: for i = 1 to m do
5: ta ← {a| a ∈ si}
6: n← count keywords(si)
7: for j = 1 to n do
8: keyword← {kj | kj ∈ si}
9: objects← adaptation engine(IE, keyword, St, ta)

10: if (keyword ∈ objects) then
11: notify(si)
12: end if
13: end for
14: end for
15: end while

Algorithm 3 gets instantiated with subscriptions consisting of keywords subscribed by

multiple subscribers. It also allows subscribers to specify strategies for the permissible

response time. Moreover, it continuously monitors the stream of image events while

keeping track of the number of subscribers to detect objects according to keywords

subscribed by subscribers. Each iteration begins with the arrival time of subscription
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Algorithm 4 : Hyperparameter based Adaptation Engine

Input: Image Event (IE), Keyword (k), Strategy (St), Arrival Time (ta)
Output: Objects

1: (Ck,M,~λ, ~E , ~β) ← identify model(St , k)
2: if Ck 6= φ then
3: (objects, processing time, accuracy)← process image(IE,Ck,M)
4: if satisfy strategy(processing time, accuracy ,St) then
5: return objects
6: end if
7: else
8: if need training data(St, k) then
9: collect data(#images)

10: end if
11: end if
12: tt ← set training time(St)
13: Ck ← adaptive training(k, St, tt, ta, Ck,M,~λ, ~E , ~β)
14: goto Step 2

and identification of all keywords belonging to subscription. Then for each keyword, we

predict objects using our adaptation engine driven by image events, specified strategies,

and properties of subscriptions. Finally, subscribers get notified based on identified

objects.

The primary role of the adaptation engine (Algorithm 4) is to identify the suitable

classifier and predict objects based on specified strategy and subscribed keywords while

limiting the processing time up to the permissible response time. First, it attempts

to identify the suitable object detection model with specific classifiers suitable for the

keyword, along with domain for hyperparameters (λ, E , β). In case Ck = φ, the pro-

cedure seeks to find the availability of training data for the keyword in existing object

detection datasets present in resources of the model (please see Fig. 6.4). Then we use

the training data to train the model for the intended classifier while setting the training

time and utilising the derived parameters. Adaptive training, train classifier Ck for time

tt − ta for keyword k using model M with hyperparameter (~λ, ~E , ~β) values mentioned in

lookup Table 6.3. Please note I derived these hyperparameter values of different object

detection models in evaluation Section–6.6.

Finally, after the training of the classifier, we try to process image events and return ob-

jects if processing time (including training and testing), as well as accuracy, is according

to the strategy. However, in the worst case, if we do not find the intended keyword-based

training data in resources, we also provided the facility of collecting iconic images from

the web for such unseen keywords.

It is worth noting that the proposed model is simulated only for adaptation with hy-

perparameter tuning, but the presented architecture is flexible to incorporate any other
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Table 6.3: Hyperparameter values for Adaptive Training

Strategy (St) Model (M) Batch Size ~β Learning Rate ~λ #Epochs ~E
YOLOv3 64 0.005315 2

S1 SSD300 8 0.002612 2
RetinaNet 1 0.000195 5

YOLOv3 64 0.007935 9
S2 SSD300 4 0.003600 12

RetinaNet 2 0.000224 9

YOLOv3 64 0.001 300
S3 SSD300 32 0.001 120

RetinaNet 1 1e-5 50

Please see Section–6.6 for Hyperparameter values derivation.

types of adaptation techniques (like domain adaptation) in the future.

6.6 Evaluation

This section first describes the evaluation methodologies, including details of experiment

setup, evaluation metrics, and response-time focused strategies. We also show the trade-

off of performance with response-time before and after adaptation, along with derived

configuration parameters and the experimental results for the proposed strategies. Ex-

periments have been conducted on Ubuntu 16.04.3 LTS (GNU/Linux 4.13.0-26-generic

x86 64), with NVIDIA TITAN Xp GPU.

6.6.1 Evaluation Methodology

The evaluations present in this work divides into two categories: online classifier con-

struction with adaptation model and without adaptation model. To test the Hypothesis-

II, first we analyse the trade-off between response time and performance (mAP) using

default hyper-parameters (without adaptation) on object detection models YOLO, SSD,

and RetinaNet [35–37]. Then we change the configuration with hyperparameter tuning

to adapt the object detection models for low response time. We present three strategies:

Minimum Response Time needed while Minimum Accuracy allowed, Optimal Response

Time needed while Optimal Accuracy allowed, and Maximum Response Time allowed

while Maximum Accuracy needed, which are part of the proposed adaptation model

(shown in Fig. 6.4). Finally, using the performance-response time trade-offs on derived

hyperparameters, we identify the suitable models. Since accuracy is not only the best

measure for analysing machine learning-based models, we also show the snapshots of

confusion matrices for all strategies on multiple subscriptions.
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I utilize the images with bounding box annotations of Pascal VOC and OpenImages

(OID) datasets for the training of classifiers. Specifically, the number of training images

for the subscriptions cat, dog, laptop, car, bus, bicycle, and football classes are 1804,

2204, 5528, 2820, 847, 1108, and 4339. To construct the training events, I analyzed

annotations of all training images present in Pascal VOC and OID dataset. If bounding

box annotations of image consist of one or more objects belongs to the particular class

(say cat), then I added that image to the training event of that (say cat) class. I consider

the testing data of same classed for the testing events. To construct the testing, I again

analyzed the annotations of testing data, and if bounding box annotations of image

consist of any of the classes (cat, dog, laptop and so on), then I added it to testing

events set. The number of testing events for the same classes are 384, 538, 355, 1588,

256, 396, and 413 respectively. Lastly, I use the Hyperopt6 library with Tree-structured

Parzen Estimator (TPE) [258], to derive hyperparameters in the multidimensional space

of object detection models.

6.6.1.1 Strategies

Based on accuracy-response time trade-off characteristics, the requirements of high-

performance execution method (presently object detection methods) can be achieved

using the following three main strategies:

Minimum Response Time needed while Minimum Accuracy allowed: The

strategy “Minimum Response Time needed while Minimum Accuracy allowed” includes

the computation of accuracy that we can achieve by setting limits to response time until

it reaches a certain threshold, which is 15 min (including both training and testing time)

in the present work by considering requirements of real-time systems. In experiments, I

also show that the accuracy of existing object detection models below 15 min is very low

on current GPU resources. Thus, setting a threshold of 15 min for minimum response

time is influential in the present case. However, 15 min is still a long time for real-time

applications, but this delay will only be for the 1st response time. Once we will have

the classifier trained the response time (2nd, 3rd, 4th, or so on) will only include the

inference time i.e., 0.01 min in our system (detailed in Chapter–7)

Optimal Response Time needed while Optimal Accuracy allowed: Similarly,

this strategy “Optimal Response Time needed while Optimal Accuracy allowed” focuses

on achieving the optimal accuracy while allowing response time of few hours (1 hour in

6https://github.com/hyperopt/hyperopt
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the present case) for the training and testing of neural network-based object detection

models.

Maximum Response Time allowed while Maximum Accuracy needed: The

“Maximum Response Time allowed while Maximum Accuracy needed” would be able

to cover existing scenarios of object detection models where models are allowed to train

for the extended number of hours to achieve the maximum accuracy. Since this strategy

focuses only on maximizing accuracy, it results in high response time, and thus not

feasible for real-time scenarios.

In addition to the strategies considered here, we may also design more strategies in the

future based on a higher rate of change, approximately-zero-response time, and constant-

accuracy. We have conducted experiments using only the above three strategies, since

these are highly distinguishable among themselves in terms of response-time, in analysing

the best performance on the detection of multimedia events.

6.6.2 Evaluation Metrics

• Response Time: It represents the time difference between the arrival and notifi-

cation of subscription. Suppose a user subscribe at the time “ta” for “mirror” and

there is no available classifier for the detection of mirror in the multimedia event

processing system (as shown in Fig. 6.3). Thus the proposed model must need

to train a classifier which may require data collection (tdc) prior to the training

(ttr), and then testing (tt) of an image event. Finally multimedia event processing

system detect events and propagate notifications to user at time “tb” according to

the registered subscription. We can formally define response time (tr) as:

tr = tb − ta

= tdc + ttr + tt

It is important to note that this scenario represents Case-2(b) of Section–2.6.

• Accuracy: The accuracy is the ratio of correctly predicted observation to the

total observations. It is important to note that by optimal accuracy in this work,

we mean the best accuracy that can be provided by an object detection model in

a specified response-time.

• Mean Average Precision (mAP): The mAP is the average of the average

precision of all classes. It is computed by calculating AP separately for each class,

then average over them. So, the resulting mAP could be moderate, but the model
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might be useful for specific classes and bad for other classes. Indeed, mAP is widely

considered as a good relative metric and has more agreement for the comparison of

old and new methods of object detection. To verify the evaluations of mAP of the

proposed adaptation model, we also present individual values of precision-recall in

Section–6.6.3.2 (Response-Time Driven Precision-Recall Area Under Curve).

• Confusion Matrix: A confusion matrix contains information about actual and

predicted classifications done by a classification system [271]. A confusion matrix

of binary classification has four different categories: true positives, false positives,

true negatives, and false negatives. The actual labels (values) form columns and

predicted labels (values) form rows. The basic structure of the confusion ma-

trix is shown in Fig. 6.5(a). Here, TP represents the number of true positives

(model predicted positive and class is also present), TN represents the number of

true negatives (model predicted negative and class is also absent), FP represents

the number of false positives (model predicted positive, but class is absent), FN

represents the number of false negatives (model predicted negative, but class is

present). We show the confusion matrix for multiple subscriptions at a regular in-

terval of time in our evaluations, to show the exact number of actual and predicted

subscriptions. Fig. 6.5(b) represents its general structure.

6.6.3 Experiments and Results

6.6.3.1 Online Classifier Construction before Adaptation

Response Time vs Performance of Object Detection Models before Adap-

tation Fig. 6.6 represents the performance of the proposed model with response

time while training from scratch on the arrival of a new subscription. We observe that

all three object detection models (YOLO, SSD, RetinaNet) provide low values with the

mean average precision (mAP) in low response-time. The maximum performance for the

SSD model reaches up to 0.06, YOLO accomplishes mAP 0.09, and RetinaNet achieves

mAP 0.20. Among these different models, SSD performs average at 15 min of response-

time and worse in 1 hour of response-time. However, YOLO performs average in 1 hour

but not in 15 min. RetinaNet provides better than both YOLO and SSD models while

having mAP of 0.13 in 15 min and 0.20 in 1 hour for the training from scratch for

new subscriptions. We can also note the SSD performance is increased initially and

then decreased. This also validates the key difference presented in the SSD model [36],

that SSD does not make random guesses like other detectors at the start of the training

process, but it assigns ground truth boundary boxes to default boxes. Although 15 min
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(a) Structure of Confusion Matrix

(b) Confusion Matrix with Time for multiple Subscriptions (Classes)

Figure 6.5: General Structure Confusion Matrix for Evaluations

and 1 hour is very less time for the training of classifiers (that require up to days), hence

training can be very unstable at early stages for any detector.

Default hyperparameters suggested by object detection models that we used for analysing

the performance and time trade-off are present in Table 6.4 with their respective accuracy

achieved on new subscriptions while using different strategies. The derived accuracies

for both strategies S1 (Minimum Response Time needed while Minimum Accuracy al-

lowed) and S2 (Optimal Response Time needed while Optimal Accuracy allowed) state

that none of these models are applicable before adaptation and necessitates further

investigation after adaptation. Moreover, we can easily conclude that all models are

equally suitable only for strategy S3 (Maximum Response Time allowed while Maxi-

mum Accuracy needed) at their default configuration, due to having low accuracies on

reduced response timings. Please note all models train from scratch without the use of

any pre-trained model. Although for the maximum response time of “S3”, we are using

fully trained weight files provided by object detection models along with their respective

recommended backbones darknet, VGG16, and resnet50 [36, 37, 149].
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Figure 6.6: Performance vs Response Time without Adaptation (for 15-min and 60-
min intervals)

Other than accuracy with response time, frame-rate of the object detection models

YOLO, SSD, and RetinaNet are 114fps, 21fps, and 7fps respectively. These frame-rates

are useful to determine the best model if we have trained classifiers available, where

fps represents the number of frames processed per second. The testing time (tt) given

in response time (Section–6.6.2) formulation is the “inverse of fps”. On arrival of any

“unseen” subscription, the first response time could be 15-min or 1-hour because of

the training of the classifier. That subscription (keyword) will become “seen”, and

the next response time will depend only on the testing time, i.e. frame-rate of object

detection model. Presently the predicted response-time of the proposed model for known

subscriptions using YOLOv3, SSD300, and RetinaNet are 0.009, 0.05, and 0.08 seconds

respectively.

Results for Proposed Strategies on Selected Object Detection Model Fur-

ther, experiments have been conducted for strategy S3 using defaults hyperparameter

configurations suggested in Table 6.4 on multiple subscriptions. Confusion matrix has

been shown by taking SSD as an object detection model presently (can be changed to

RetinaNet or YOLO) in Table 6.10, where it contains information about expected and

predicted classes detected by the proposed system. Here strategy S3 could serve as an

oracle, and its prediction counts show the maximum performance that we could achieve.

We can observe that the values of true positives and true negatives are considerably

higher than the values of false positives and false negatives for most of the subscriptions
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Table 6.4: Default Hyperparameters with Accuracy for different strategies.

Default Hyperparameters Accuracy with Response Times
Object

Detection
Models

Batch
Size

Learning
Rate

#Epochs
S1: Min

Res & Min
Acc Time

S2: Opt Res
& Opt Acc

Time

S3: Max Res
& Max Acc

Time

3 0.00%
YOLOv3 64 0.001 10 79.16%

~300 98.53%

1 10.08%
SSD300 32 0.001 3 54.79%

~120 98.58%

4 64.66%
RetinaNet 1 1e-5 14 74.87%

~50 98.62%

(please see Fig. 6.5 for the details of the confusion matrix). Hence, S3 gives the upper

bound of TP and TN, as well as lower bounds of FP and FN. This also concludes that

if we allow our model to get trained for the maximum amount of time (up to days), our

model will achieve much higher accuracy (∼ 98.58%) even for any previously “unseen”

subscription.

However, if a user wants to reduce the first response time, we need to move towards

adapting object detection models. Our model achieves this by facilitating strategies S1

and S2 for users and hyperparameter tuning for the adaptation.

6.6.3.2 Online Classifier Construction after Adaptation

Hyperparameter Tuning Hyperparameter tuning is utilized for the self-optimization

of the model on the requested strategies. The goal of tuning is to find the best values

of hyperparameters in a given space using a specific function. It mainly requires the

objective function to minimise, the space to search hyperparameters, and the method of

searching, to output the point of evaluations. Fig. 6.7 represents hyperparameter tun-

ing of object detection models by considering 20 number of trials and the TPE search

method [258], which need to be minimized based on mean average precision (mAP). The

search space that we used to tune the hyperparameters batch-size (β), learning rate (λ),

and the number of epochs (E), is shown in Table 6.5. It is important to note that we

chose the domain space of hyperparameters according to the limitation of our resources,

and thus could change in the future.

Tuning for the strategy S1 “Minimum Response Time needed while Minimum Accuracy

allowed” with specific values of β, λ, and E , for each trial, are shown in Fig. 6.7(a). This

attempts to find the parameters that may give the highest performance within 15 min of
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(a) Hyperparameter Tuning for Strategy S1: Minimum Response Time needed while Minimum Accuracy allowed,
with batch-size, learning rate, and the number of epochs.

(b) Hyperparameter Tuning for Strategy S2: Optimal Response Time needed while Optimal Accuracy allowed,
with batch-size, learning rate, and the number of epochs.

Figure 6.7: Hyperparameter Tuning for 15-min and 1-hour training
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Table 6.5: Space defined for Hyperparameter Tuning for the Scratch Training of
15-min and 1-hour.

Object 15-min Training 1-hour Training
Detection
Models

Batch
Size

Learning
Rate

Epochs
Batch
Size

Learning
Rate

Epochs

YOLOv3
{1, 2, 4,

8, 16,
32, 64}

[0.001, 0.1] [1,6]
{1, 2, 4,
8, 16,

32, 64}
[0.001, 0.1] [1,24]

SSD300
{1, 2, 4,
8, 16} [0.001, 0.1] [1,2]

{1, 2, 4,
8, 16} [0.001, 0.1] [1,12]

RetinaNet {1, 2, 4} [0.00001, 0.01] [1, 6] {1, 2, 4} [0.00001, 0.01] [1, 24]

training for any “unseen” subscriptions. As the full training time of each object detection

model is up to days, it is hard to train a model within only 15 min (or even in 1 hour).

Thus, no model indicates any accuracy for most of the combinations of hyperparameters

and shows the maximum value for TPE (which is based on the inverse of the mAP).

However, we find a few combinations of hyperparameters that give average accuracy

even within the 15 minutes of training time, and that shows the sudden minimum for

those few values. In the case of YOLO, we observe the model is reaching a minimum

TPE for the largest batch-size of 64. Moreover, it also requires a higher learning rate

(0.005) close to the highest value (0.008) in the case of YOLO. Although the number of

epochs found is 2 for the minimum TPE, the highest value of the number of epochs we

could achieve in 15 min is 6.

We found that the SSD model is slowest in training and cannot train more than 2 epochs

in 15 min. In this case, we get the minima at three points: (8, 0.003, 2), (2, 0.002, 2),

and (16, 0.005, 1), which proves that even with the lower number of epochs, we can

achieve average accuracy by altering the batch-size and keeping high learning rates. We

choose β = 8, λ = 0.003, and E = 2 for SSD in our experiments, which could switch to

any other two data points. RetinaNet model achieves its minimum value at data point

(1, 0.000195,5), which represents the lowest learning rate as well as the smallest batch

size among all trials. However, the RetinaNet model reaches up to 5 epochs with such

low learning rates within 15 min of training.

Similarly, tuning for finding the best parameters for strategy S2 “Optimal Response

Time needed while Optimal Accuracy allowed”, is shown in Fig. 6.7(b). Here we found

the minimum value of TPE function for YOLO model at data point (64, 0.008, 9) which

again (same as S1) we found at the highest value of batch-size, and high learning rate,

while having a low number of epochs (9) as the highest value achieved could be 21.

The SSD model found its minima at (4, 004, 12), which indicates the highest number

of epochs in 1-hour training. RetinaNet for S2 follows the same trend as S1 and found
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its minimum point at the lowest learning rate (0.000224), low batch-size (2), and epoch

value reached till 9 where possible highest value of epoch could be 24.

We use the derived data points to investigate the maximum performance we can achieve

using different models while analysing the trade-off of performance with response time

for strategies S1 and S2.

Response Time vs Performance of Object Detection Models after Adapta-

tion Fig. 6.8 represents a trade-off of performance (mAP) with response time after

adaptation (tuning hyperparameters) of the proposed model to process new subscrip-

tions with strategies S1 and S2. The performance of the proposed multimedia event

detection model has been evaluated on the best configuration hyperparameters (learn-

ing rate, batch size, and the number of epochs) derived in previous Section 6.6.3.2, for the

training of 15 min and 1 hour. We observe that the RetinaNet model performs better

than YOLO and SSD for strategy S1 (please see Fig.6.8(a)). Moreover, its performance

is also enhanced to the precision of 0.20 (after adaptation) from 0.13 (before adapta-

tion). Similarly, Fig. 6.8(b) shows the mAP for strategy S2 with a response-time of

1-hour. Here, also RetinaNet outperforms, and its precision increased from 0.20 (before

adaptation) to 0.32 (after adaptation).

Results of achieved accuracies after adaptation, along with derived hyperparameters of

object detection models for both strategies S1 and S2, are shown in Tables 6.6 and 6.7.

We found that the accuracy of each model before adaptation (Table 6.4) increases after

adaptation (Table 6.6), for strategy S1. Specifically it increases from 0.00% to 5.66%,

10.08% to 47.32%, and 64.66% to 79.00% for YOLO, SSD, and RetinaNet respectively.

Correspondingly, we also get better accuracy for strategy S2 after adaptation (Table

6.7) than before adaptation (Table 6.6). YOLO increased from 79.16% to 82.82%, SSD

slightly changed from 54.79% to 54.81%, and RetinaNet considerably increased from

74.87% to 84.28%.

We conclude that RetinaNet is performing best among all object detection models on

such low training times. Thus, we can easily consider RetinaNet with its derived config-

uration to detect objects for both strategies S1 and S2. Moreover, the enhancement in

performance on such low training time (15 min and 60 min) of object detection models

on the tuning of hyperparameters (i.e., after adaptation) validates Hypothesis-II.

Since recall is also a popular evaluation metric but not regarded as useful for comparing

object detection models, we present an analysis of precision-recall with the change in

response-time in the next section. Other than communicating the change in values of

recall with response-time, these precision-recall curves clearly show that the Area Under
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(a) 15-min Training for Strategy: Min. Res. Time needed while Min. Acc. Allowed

(b) 60-min Training for Strategy: Opt. Res. Time needed while Opt. Acc. allowed

Figure 6.8: Performance vs Response Time after Adaptation (for 15-min and 60-min
intervals)
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Curve (AUC) is relatively bigger after adaptation than before adaptation. Higher values

for time-based AUC for RetinaNet also support its high precision and recall for 15 min

and 1-hour training.

Response-Time Driven Precision-Recall Area Under Curve (AUC) The

precision-recall curves visualise the performance of classification models while summa-

rizing the trade-off between precision and recall using a range of thresholds. A high area

under the curve represents high scores for both precision and recall, which shows that

the classifier is returning accurate results (high precision) and the majority of all positive

results (high recall). Area Under Curve (AUC) is an approximation of the area under

the precision-recall curve [272]. AUC is desirable to evaluate which model is performing

better and what should be the value of the threshold to achieve maximum precision as

well as recall. However, in our case, we already have values of threshold evaluated by

different object detection models (YOLO:0.25, SSD:0.45, RetinaNet:0.50). Moreover, we

need to assess these models before and after the proposed adaptation within the short

interval of response-time. Thus, we show the precision-recall curves by plotting all data

points of precision and recall computed within the response time of 15 min and 1 hour

in Fig. 6.9, and verify that AUC values after adaptation are relatively bigger (higher)

than before adaptation.

The performance of RetinaNet before and after adaptation is shown in Fig.6.9(a) and

6.9(b). It can be seen the precision-recall curve covers more area after adaptation in

both cases of 15 min and 1-hour response-time, thus also have relatively better values

for AUC as compared to the actual AUC of the RetinaNet model (i.e., without/before

adaptation) within such short training time. Analysis of the SSD object detection model

(Fig. 6.9(c) and 6.9(d)) shows its lower performance and verifies the improvement in

performance after adaptation than before. AUC for YOLO after adaptation is better

than before adaptation for response-time of 1 hour (Fig. 6.9(f)). Here, the performance

of YOLO for the 15 min training time gets decreased after adaptation, which could

be the reason YOLO is still struggling with accuracy and not considered very reliable

compared to other object detection models [47, 273]. However, other than the AUC of

YOLO for 15 min response-time, we can conclude that the proposed adaptation strategy

is effective in all cases using all object detection models (Fig. 6.9).

It also verifies that the RetinaNet model with adaptation performs the best for both

cases of 15 min and 1 hour response time. Thus RetinaNet with its derived configuration

is suitable for both Strategies 1 and 2 shown in Tables 6.6 and 6.7. Specifically, the peak

values found for precision and recall within a time interval of 15 min are 0.20 and
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(a) AUC for RetinaNet (within 15-min) (b) AUC for RetinaNet (within 1-hour)

(c) AUC for SSD (within 15-min) (d) AUC for SSD (within 1-hour)

(e) AUC for YOLO (within 15-min) (f) AUC for YOLO (within 1-hour)

Figure 6.9: Area Under Curve (AUC) Before and After proposed Adaptation within
Response-Time interval of 15 min and 1 hour using different Object Detection Models

0.20, respectively. Lastly, the highest values of precision and recall are 0.32 and 0.43,

respectively, for the response time of 1 hour.

Results for Proposed Strategies on Selected Object Detection Model Table

6.8 represents the results of the proposed adaptation model for Strategy-1 “Minimum

Accuracy and Minimum Response Time” using RetinaNet as an object detection model

with 15-min of training from scratch. Similarly, Table 6.9 represents the results for

Strategy-2 “Optimal Accuracy and Optimal Response Time” until one hour. Here values

of true positives (TP) and true negatives (TN) shown in light colour should increase with
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time, and values of false positives (FP) and false negatives (FN) shown in dark colour

should decrease with time.

We observe that even within 15 min of training, we get remarkable counts for TP and TN,

following high FP and FN values. Table 6.8 shows that TPs are increasing extensively in

four cases and decreasing in three cases with time. However, TNs are increasing in three

cases, and in four cases, its count is decreasing. Similarly, FP and FN are decreasing

considerably in three cases, but not in four cases. So, we conclude that the model is not

stable in 15 min of training and requires more time to train completely. Despite that, it

provides an average accuracy of 79.00% (using RetinaNet) within 15 min, and we could

consider it suitable in situations where we need a quick response and compromise in the

accuracy is allowed.

Additionally, when we apply the derived hyperparameters for the strategy S2, TP values

increase for most of the classes within 1-hour training compared to values at 15 min of

training. Here, values of TNs are increasing and decreasing with time, and values of FPs

are decreasing and increasing as well. Although FNs are decreasing in the majority of

cases for 1 hour of training. The average accuracy computed from the confusion matrix

(shown in Table 6.9) is 84.28% for S2 using RetinaNet.

It is worth noting that the total number of input images at different time intervals is the

same in each subscription, and the number of instances detected in an image could be

different for distinct models. For instance, if we give an input image consisting of two

cats, and our model after 7 min of training detects five cats, then we will have TP = 2,

FP = 3, TN = 0, and FN = 0 (i.e., the total number of instances = 5 at 7 min). On

the other hand, if our model after 15 min of training detects three cats, we will have

TP = 2, FP = 1, TN = 0, and FN = 0 (i.e., the total number of instances = 3 for 15

min). These multiple detections in an image make the resulting total number of instances

different in the confusion matrix of object detection, unlike the case of conventional image

classification, where an image could either just “belong” or “not belongs” to a particular

class. Nevertheless, there is still a gap between the values (TP, FP, TN, and FN) for

strategies (S1 and S2) and oracle strategy S3 (Table 6.10 discussed in Section–6.6.3.1),

which is explicit because of their large gap in response-time.

Apart from these experiments, the performance of the proposed model will highly depend

on the amount of resources, including its execution environment. Response-time will

get reduced further on more GPUs, and accuracy could be enhanced by lowering the

learning rates of object detection models. Moreover, the resolution of the input stream

of images and their quality will also impact the accuracy of models. However, Model-II

is independent of change in application due to constantly training from scratch. I will

discuss the limitations of domain adaptation in next Chapter–7.
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Table 6.6: Derived Hyperparameters with Accuracy for Strategy-1

Computed Hyperparameters Accuracy for S1:
Object

Detection
Models

Batch Size Learning Rate #Epochs
Min. Res. & Min.

Oct. Time

YOLOv3 64 0.005315 2 5.66%

SSD300 8 0.002612 2 47.32%

RetinaNet 1 0.000195 5 79.00%

Table 6.7: Derived Hyperparameters with Accuracy for Strategy-2

Computed Hyperparameters Accuracy for S2:
Object

Detection
Models

Batch Size Learning Rate #Epochs
Opt. Res. & Opt. Acc.

Time

YOLOv3 64 0.007935 9 82.82%

SSD300 4 0.003600 12 54.81%

RetinaNet 2 0.000224 9 84.28%

6.7 Conclusion and Discussion

In this chapter, I removed the limitation of pre-trained classifiers to process unseen

concepts in multimedia event processing. While analyzing literature, I demonstrate that

the training of classifiers online is a solution for dynamic seen/unseen concepts of smart

cities, and online learning approaches are not focused on training time. Similarly, their

optimization approaches are suitable for adaptation but not for short response time. I

proposed an adaptive approach for multimedia event processing using online classifier

construction of object detection models for the handling of unseen subscriptions with a

low response-time. The proposed model is optimised with the tuning of hyperparameters

of existing object detection models YOLOv3, SSD300, and RetinaNet. Experiments

demonstrate that the trade-off between performance and training time with adaptation

could be useful to reduce the overall response time by compromising the accuracy. The

proposed system achieves an accuracy of 79.00% with 15 min training and 84.28% with

1-hour of training on a single GPU, which is reasonable for the detection of objects for

unseen subscriptions on such low training times. The difference in the performance of

before and after adaptation of tuning of hyperparameters of proposed model validates

Hypothesis II by speeding up the training and enhanced accuracy.

However, one of the limitations of this model is that it cannot adapt among domains

having related (semantically/visually) concepts (presently classes) of real-world events.

Thus we extend the proposed model in the next Chapter–7 by introducing a domain

adaptive classifier construction approach for seen to unseen concept knowledge transfer.
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Chapter 7

Domain Adaptation based

Multimedia Event Detection

7.1 Introduction

One of the evident solution of reducing response-time from previous Chapter-6 is to al-

low adaptation among domains. I formulate this in research Hypothesis-III as “Domain

adaptation based Multimedia Event Detection model relies on the fact that if transferring

of knowledge from one domain to another (say A → B) can improve the performance

as compared to fine-tuning of pre-trained models (like CPImageNet→B) or training of clas-

sifier from scratch (CB); then there will always be a decrease in response-time with

increase in accuracy of constructed classifier (CA→B) than the classifier trained from

pretrained model (like CPImageNet→B) or training from scratch (CB)”. This Chapter-

7 mainly tackles the third Research Question 3(a) “How can we answer multimedia

event based queries online consisting of unseen subscriptions (unbounded vocabulary),

using domain adaptive classifier construction approach with knowledge transfer from

seen subscriptions (bounded vocabulary) while achieving high accuracy and minimizing

the response time?”.

In this chapter, I introduce the notion of adaptation among classifiers (either inter

or intra domain) for reducing response-time. Transfer learning is well-known for easy

knowledge transfers among domains and could help either in switching (transforming)

from one classifier to another (like bus → car) or in the construction of a completely

new classifier (like ball). Presently, adaptive approaches [274, 275] are focused on the

generalization ability of classifiers for the enhancement of accuracy. They do not analyze

the response time of the process of transfer and its impact on accuracy. Thus, there is

128
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a need to investigate the problem (detail in Section–7.2) of online construction of clas-

sifiers which can allow adaptation among domains for seen/unseen concepts considering

response time and accuracy.

After the problem formulation, I discuss the background associated with transfer learn-

ing and analyzed the gap in existing knowledge transfer approaches in Section–7.3. Next,

I propose an adaptive multimedia event processing model presented in Section–7.4 and

7.5 that leverages transfer learning-based techniques for domain adaptation to handle

unseen/new subscriptions within an acceptable time frame. The results in Section–7.6

indicate that the proposed framework can achieve accuracy between 95.14% to 98.53%

within response time of ∼ 0.01min to ∼ 30min for seen or completely unseen subscrip-

tions using YOLOv3 object detection model on real-time multimedia events. Lastly

I conclude in Section–7.7 with discussion on limitations of requirement of annotated

bounding boxes for online training.

7.2 Problem Overview

Multiple applications may require handling of numerous seen/unseen concepts which

may belong to the same/different domains with an unbounded vocabulary. Although

deep neural network-based techniques are effective for image recognition, the limitation

of having to train classifiers for unseen concepts will lead to an increase in the overall

response-time for users. Since it is not practical to have all trained classifiers available,

it is necessary to address the problem of training of classifiers on demand for unbounded

vocabulary with provision of domain adaptation.

7.2.1 Preliminaries

Domain Adaptation can utilize the knowledge of source data distribution to identify

different (but related) target data distribution [276]. The model learns from the source

domain consisting of labeled data and from the target domain using unlabeled/labeled

data, and in most use-cases, data available in the source domain is much more than the

target domain [276, 277]. Specifically, domain adaptation is getting popular in the field

of deep learning via transfer learning techniques.

Transfer learning is a machine learning technique that reuses the pre-trained model on

a new problem, thus responsible for transferring knowledge from one domain to another

[274, 278]. For example, a classifier that can detect a bus, could be useful in training car

detector by knowledge transfer. The mathematical representation of transfer learning is

given in Section–7.3.
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Figure 7.1: Scenarios for Multimedia Event Processing adhering to Seen/Unseen
Concept Problem

7.2.2 Motivational Scenarios

Consider the baseline scenarios of detecting seen/unseen concepts for analyzing multime-

dia events, as shown in Fig. 7.1. Other than the scenario of seen and completely unseen

concept (detailed in Chapter—5 and 6), the most common scenario is Scenario-2, where

we need to process unseen concept, and this new concept is also visually/semantically

similar to the seen concept. The specific problem associated with Scenario-2 is described

in Fig. 7.2, where we need to reduce the response time for cases where the intended clas-

sifier is not available but similar classifiers available. Suppose a user subscribes to the

detection of class “car”, unseen to the multimedia event processing model. If a model

already consists of related classifiers (like bus in the present case), we need to train

classifiers for such partial unseen concepts in a reduced response time. In that case, we

need a provision of domain adaptation in the multimedia event processing model, which

does not exist in conventional domain-specific approaches. For instance, with knowledge

transfer, we could train a classifier for unseen class “car” by applying transfer learning

on seen class “bus” while using annotated bounding boxes based on car class data.
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Figure 7.2: Scenario-2: Adaptation Possible from Seen to Unseen Concept with
Bounding Boxes (Application of Model-III: Domain Adaptation based Multimedia

Event Detection)

7.2.3 Problem Statement

We formulate the problem as “How can we answer multimedia event based queries online

consisting of unseen subscriptions (unbounded vocabulary), using domain adaptive clas-

sifier construction approach with knowledge transfer from seen subscriptions (bounded

vocabulary) while achieving high accuracy and minimizing the response time?”

7.3 Background and Related Work

Domain adaptation is the ability to utilize the knowledge of old domains to identify new

domains. The model learns from the source domain consisting of labeled data and the

target domain using unlabeled/labeled data, and mostly more data is available in the

source domain [276, 277]. An example of domain adaptation is shown in below Fig. 7.3.

Figure 7.3: Domain Adaptation

The term Transfer learning is basically used to reuse a pre-trained model on a new

problem, thus responsible for the transfer of knowledge from one domain to another.

Specifically, domain adaptation via transfer learning in the field of deep learning is

getting popular due to its ability to train neural networks with comparatively fewer

data [274, 278]. Formally we can define transfer learning with adaptation in the domain

as:
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Assume we have two domains a source domain Ds = Xs, P (Xs) with T s = Y s, P (Y s|Xs)

and a target domain Dt = Xt, P (Xt) with T t = Y t, P (Y t|Xt), where X and Y are

random variables, P (X) denotes the marginal probability distribution, and P (Y |X) is

the conditional probability distribution. If Dt 6= Ds or T t 6= T s, but source domain is

related to target, then the model trained on (Ds, T s) can be used to learn P (Y t|Xt),

which is known as transfer learning [276].

Since transfer learning makes machine learning algorithms more efficient, knowledge

transfer approaches are essential to include in multimedia event processing systems

to adapt domains. We analyze below existing knowledge transfer approaches for the

training to testing data domain transfer and expressly object detection domain shift

distribution.

7.3.1 Knowledge Transfer from Training to Testing Data Distribution

Domain transfer includes adapting machine learning models acquired knowledge of a

particular visual domain, and transfer to new imaging conditions. Many approaches

[275, 279–281] with supervised/unsupervised transfer learning have been proposed for

domain adaptation and are mainly focused on utilizing the generalization ability for

increasing accuracy not the overall response time. Sun et al. [275] proposed an efficient

method for unsupervised domain adaptation called CORrelation ALignment (CORAL).

Its evaluations on deep and shallow features of object recognition and sentiment analysis

confirm the suitability of CORAL for different tasks of computer vision and natural lan-

guage processing. Another representation learning-based domain adaptation approach

proposed by Ganin et al. [279] helps image classification. Like CORAL, this approach

also utilized shallow and deep feed-forward architectures and achieved new state-of-the-

art results. Long et al. [280] proposed a Deep Adaptation Network (DAN) architecture

to generalize models well for the domain adaptation scenarios. DAN attempted to

enhance the transferability of features in higher layers of the neural network. Its empir-

ical analysis of A-Distance demonstrates the efficacy over standard domain adaptation

benchmarks. Yoshua Bengio [281] also discussed the transfer learning for the different

training data distribution problems. The work exploits the utility of unsupervised pre-

training of representations. It shows the improvements in error rates for classification

and low transfer ratios for stacked denoising autoencoders (SDA) along with demonstra-

tions of the suitability of deep learning with transfer learning.
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Table 7.1: Analysis of Related-Work with identified Requirements for Knowledge
Transfer

Requirements

Category Approach
High

Accuracy for
Multimedia

Events

Low
System

Response
Time

Support for
Large

Vocabulary

Maintain-
ability

Knowledge
Transfer

CORAL
[275]

Average
Accuracy

N.A N.A
Unsupervised

Domain
Adaptation

from
Training

DAN[280]
High

Accuracy
N.A N.A

Generalize
to Domain
Adaptation

to Testing
DANN
[279]

High
Accuracy

N.A N.A
Easy

Domain
Adaptation

Data
Distribution

SDA [281]
High

Accuracy
N.A N.A Transferable

Knowledge
Transfer

Objects
and Scene

Representa-
tions

Transfer[282]

High
Accuracy

N.A N.E

Flexible for
Domain as

well as
Target

Transfer

for Object
Detection

Domain
Adaptive

Faster
R-CNN [60]

Average
Accuracy

N.A N.E

Applicable
for Image/
Instance-

Level
Domain

Shift

Domain
Shift

distribution

Regularized
Cross-

Domain
Transforms

[283]

Average
Accuracy

N.A

Full
Support
Theoreti-

cally

Adaptable
for new
Image

Conditions

N.A: Not Applicable, N.E: Not Evaluated

7.3.2 Knowledge Transfer for Object Detection Domain Shift Distri-

bution

Event recognition in still images by transferring objects and scene representations has

been proposed in work [282], where the correlations of the concepts of object, scene, and

events have been investigated. This work proposed techniques to exploit the knowledge

from other networks and develop initialization-based, knowledge-based, and data-based

transfer techniques. The evaluations of the proposed model on multiple event domains

show a reduction in over-fitting and improving generalization ability. Another domain

adaptation approach [60] based on the Faster R-CNN object detection model has been
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proposed recently to reduce the domain discrepancy and enhance the effectiveness of

cross-domain object detection. The approach tackles the image-level shift (like image

style, illumination, etc.) and instance-level shift (like object appearance, size, etc.) for

the domain shift. The results demonstrate that the proposed approach outperforms

baseline Faster R-CNN for different scenarios of the domain transfer. One of the first

studies of domain shift in the context of object recognition is presented by Saenko et al.

[283]. Here, they introduced a method to adapt object models designed for particular

visual domains to new imaging conditions. The approach minimizes the effect of domain-

induced changes by learning transformations in a supervised manner. Evaluations prove

that model is flexible from moderate to significant changes in the imaging conditions

with few or no target domain labels.

7.3.3 Gap Analysis

Table 7.1 summarizes the existing approaches with mapping of requirements (suggested

in Section–2.4). While classifying the related work, we summarize the gap analysis with

limitations as follows:

• Knowledge Transfer from Training to Testing Data Distribution: Existing knowl-

edge transfer approaches focused on differences in training and testing data distri-

bution are mostly generalizable and achieve high accuracy. However, the training

time is not the issue in these approaches and does not explicitly focus on adapting

individual object categories.

• Knowledge Transfer for Object Detection Domain Shift Distribution: In this case,

domain shift represents different changes in view-points, weather conditions, back-

grounds, image quality, style, sketches, image size, etc. Such transfer learning

approaches are popular because of their less need for training data to provide ac-

curate results. Besides these characteristics, domain transfer approaches should

also focus on their ability to train models in less training time. It is worth noting

that one of the existing techniques can also support a large vocabulary theoretically

and require more focus for their practical applications.

7.4 Proposed Approach

The proposed approach of processing multimedia events is based on the construction of

classifiers on a need-to-know basis to answer subscriptions that are previously seen/un-

seen by leveraging the transfer learning-based domain adaptation techniques and deep
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convolutional neural network-based object detection models to event processing systems.

Subscriptions are expressed using a “Detect” operator with a keyword (bus, car, ball,

person etc.) for the object, with the same user interface for publish/subscribe services

as described in the work of Chapter-4 based on multimedia event processing for IoMT.

On each new arrival of subscription, the proposed model first identifies if any similar

classifier is available or any possibility for domain adaptation. Second, it performs

the training of classifiers on the need for the intended new subscription. However,

domain adaptation from a pre-trained model or the related classifier may require different

transfer learning techniques that we analyze for Hypothesis-III. More specifically, we are

using fine-tuning and freezing classifier layer-based methods. In the present scenario,

constructed classifiers are binary classifiers; as it is validated in the paper [32], an increase

in the number of classes may decrease the throughput, so it is beneficial to construct

binary classifiers for low response time.

7.5 Designing and Implementation

7.5.1 Transfer Learning based Domain Adaptive Multimedia Event

Processing Engine

A functional model has been designed for the adaptive multimedia event processing

engine (shown in Fig. 7.4), consisting of a keyword-based event matcher, decision model,

classifier construction model for training with data construction, processing model for

testing multimedia events with modern object detection models and available training

datasets as resources. The purpose of the various models with their respective details of

implementation is briefly discussed below:

Event Matcher analyzes user subscriptions (such as bus, car, dog) and image events

and is responsible for detecting conditions in image events specified by user query and

preparation of notifications that need to be forwarded to users.

Training and Testing Decision Model is designed to analyze available classifiers and take

the testing and training decisions accordingly. It evaluates the relationship of existing

classifiers with new/unknown subscription and chooses the transfer learning technique

to train a classifier for the intended new subscription.

Classifier Construction Model phase performs the training of classifiers for subscribed

classes and updates the classifier in the shared resources after allowed response-time.

The two transfer learning options associated with Hypothesis-III used for classifier con-

struction include fine-tuning and freezing layers (detail in Section–7.5.2). The classifier



Chapter 7. Domain Adaptation based Multimedia Event Detection 136

Figure 7.4: Transfer Learning based Domain Adaptive Classifier Construction for
Multimedia Event Processing

construction module may include the training data construction phase as current object

detection datasets [26–28] consist of a limited number of classes. We believe the correct

time of adding a classifier to the system is when any subscriber subscribes to it, not

when any dataset adds a new class/category to their dataset. Thus, it is more appro-

priate from the perspective of publish/subscribe to monitor subscribers (not datasets)

for adding classifiers.

In Training Data Construction model, if a subscriber subscribes for a class which is

not present in any smaller object detection datasets (Pascal VOC [26], and Microsoft

COCO [27]), then a classifier can be constructed by fetching data from datasets (Im-

ageNet [67], and OID [28]) of more classes using online tools like ImageNet-Utils1 and

OIDv4 ToolKit2. Another common approach of online training data construction is to

use engines like “Google Images” or “Bing Image Search API” to search for class names

and download images. However, accuracy for object detection could be low with this

approach; we analyzed this training problem on only images without bounding boxes in

Chapter–8.

Feature Extraction of Multimedia Events is responsible for detecting objects in image

events using current deep neural network-based object detection models and incorporat-

ing new classifiers. Here we utilize image classification models [18, 51, 284] in the back-

bone network of object-detection models. Image classification models (like DenseNet

[149], VGG16 [36], ResNet50 [36], MobileNet [151], etc.) classify a full image with ”sin-

gle label” like “Bus Image”, “Car Image”, “Person Image” etc., thus applicable for only

iconic images. However, images in the real-world are not iconic; they may consist of

many objects like road, bus, car, sky, etc., and cannot be labeled in one-class. Therefore

utilizing only these light classification models is not enough, and object-detection models

employ them in the backbone network for real-time image-event-based applications.

1https://github.com/tzutalin/ImageNet Utils
2https://github.com/EscVM/OIDv4 ToolKit
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The Shared Resources component consists of existing image processing modules and

training datasets. We use You Only Look Once (YOLO), Single shot multibox detec-

tor (SSD), and Focal loss based Dense object detection (RetinaNet) as object detection

models [35–37, 149]. We have some base classifiers trained off-line using the established

dataset Pascal VOC [26], which are assisting us in constructing more classifiers using

domain adaptation.

7.5.2 An Approach for Domain Adaptation

The classifier construction decision of the model is based on the suitability of available

classifiers for the arrived subscriptions and domain adaptation techniques. The two

options of transfer learning used for fine-tuning [285] pre-trained models and freezing

backbone layers [286] of similar classifier while training only top dense layers are illus-

trated in Fig. 7.5. In the first approach, we perform fine-tuning on object detection

model pre-trained on ImageNet [67], which uses the technique of back-propagation with

labels for the target domain until validation loss starts to increase. Transfer of pre-

trained weights over the network and then training classifier for the new subscription

assist the proposed model to converge quickly with an increase in accuracy. In the

second approach, we use this previously trained classifier to instantiate the network of

another classifier required for a similar subscription concept. In this particular scenario

[34, 38], we freeze the backbone (convolutional and pooling layers) of the neural network

and train only top dense fully connected layers with softmax as output layer, where the

frozen backbone is not updated during back-propagation and only fine-tuned layers are

updated and retrained during the training of the classifier, this results in less training

time with reasonable accuracy.

The current implementation of the proposed model is shown using a general neural

networks architecture, which is common among the object detection models (YOLOv3,

SSD-300, and RetinaNet) we are utilizing for the purpose of training while using their

recommended backbones DenseNet, VGG16, and ResNet50 [36, 37, 149] (which could

be changed in future). The decision for the construction of a classifier for “bus” either

from pre-trained models (by fine-tuning) or from a “car” classifier (by freezing) could

be taken with the help of computation of a threshold along the dimensions of accuracy,

response time, and similarity. Presently we are using the path operator as a WordNet

relatedness measure [29] for the computation of similarity among subscriptions, which

could be replaced in the future with more accurate measures using image-feature-based

domain-specific ontologies depending on the utility of applications.
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Algorithm 5 : Domain Adaptive Classifiers based Multimedia Event Processing Engine

Input: Subscriptions (S) : {S1, S2, ... Ss}, Classifiers C : {C1, C2, ...Cc},
Pretrained Model : PImage Net, and Image Stream : SI

Output: Subscriber Notifications
1: while true do
2: IE ← Fetching Image(SI)
3: for k = 1 to s do
4: if (Ck /∈ C) then
5: if (C 6= φ or P 6= φ) then
6: Ck ← domain adaptation(Sk, C, PImage Net)
7: else
8: Ck ← train scratch(k)
9: end if

10: C ← Ck

11: end if
12: objects← object detection(IE, Ck)
13: if (Sk ∈ objects) then
14: notify(sj)
15: end if
16: end for
17: end while

Algorithm 6 : Domain Adaptation

Input: Subscription : Sk, Classifiers C : {C1, C2, ...Cc}, Pretrained Model :
PImage Net

Output: Classifier : Ck

1: sim← 0 {similarity}
2: th← 0.01 {threshold}
3: Ck ← φ
4: Csim ← φ
5: for i = 1 to c do
6: cur sim← word net sim(path, classname(Ci), Sk)
7: if (cur sim ≥ th and cur sim>sim) then
8: sim← cur sim
9: Csim ← Ci

10: end if
11: end for
12: if (Csim = φ) then
13: Ck ← train by finetuning(PImage Net)
14: else
15: Ck ← train by freezing(Csim)
16: end if
17: return Ck
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Figure 7.5: Techniques used for Transfer Learning

7.5.3 Domain Adaptation based Multimedia Event Processing Algo-

rithms

The implementation of the proposed framework with domain adaptation is detailed in

Algorithm 5 and 6. For analyzing image events, firstly, we identify that a classifier for a

particular subscription/concept is available or not. In case of unavailability, the model

chooses the option of domain adaptation if either the pre-trained model or classifier

set is non-empty. Otherwise, in the worst case, training from scratch for the particular

classifier is also an option. When the classifier becomes available, we detect objects from

image events, and results get sent for the notifications.

The procedure for domain adaptation computes the similarity of subscription with ex-

isting classifiers using their class names and WordNet relatedness measure path [29],

and identify the most similar classifier higher than the given value of threshold (0.01)

for training. Lastly, the module chooses the training technique and returns the newly

constructed classifier.
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7.6 Evaluation

7.6.1 Evaluation Methodology

To test Hypothesis-III, we first compare object detection models on applying domain

adaptation techniques using mean average precision (mAP) and response time as per-

formance metrics. Then we present an empirical analysis of the transfer of knowledge

on current object detection models and choose the most suitable model. We also show

the trade-off of performance with response-time on domain transfers using the selected

model and transfer learning technique. Lastly, we report the average accuracy and

response time of our proposed framework for seen, unseen, and combination of them;

and compare them with existing domain-specific models that recognize only specific seen

(known) objects. Since accuracy is not the only measure for analyzing machine learning-

based models, we also report the updated confusion matrix (like Chapter–6) relying on

the number of missed concepts using snapshots every 15 min in Section–7.6.3.3.

In the experiment setup, I first use Pascal VOC [26] classes for the construction of base

classifiers offline to simulate seen subscriptions. Although Pascal VOC is among the

established accurate datasets for object detection, it consists of only 20 classes. Thus, I

include OID [154] classes using its online data collection toolkit, which assists in finding

more combinations of related categories/classes for unseen subscriptions. Specifically,

I chose cat, dog, cricket ball, laptop, car, bus, mango, and football classes, because

only these were the classes for which I was getting the most distinguished semantic

similarity scores. For instance, similarity scores for mango–laptop is 0.08, dog–cat is

0.2, cricket ball–football is 0.33 and bus–car is 0.5 using path operator of WordNet. We

used the all training and validation images available for these classes from Pascal VOC

and OID datasets for the training of binary classifiers. The total number of training

images with bounding box annotations used for cat, dog, cricket ball, laptop, car, bus,

mango, and football classes are 1804, 2204, 95, 5528, 2820, 847, 126, and 4339. The

available testing images that we used to measure the performance for the same classes

are 384, 538, 15, 355, 1588, 256, 23, and 413 respectively.

7.6.2 Evaluation Metrics

We use the following evaluation metrics drawn from the literature [287, 288] for domain

adaptation:

• Response Time is the time difference between the time subscription arrived and

the time at which the system is ready to notify the subscriber.
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• Confusion Matrix contains information about actual and predicted classifications

done by a classification system [271].

• Accuracy represents the ratio of correct number of predicted observations (True

Positives and True Negatives) to the total number of observations (True Positives,

False Positives, True Negatives, and False Negatives).

• Transfer Loss is the difference between the error on target data of a model trained

on source data (transfer error) and the error on target data of a model trained on

target data (baseline in-domain error), i.e.

t(S, T ) = e(S, T )− eb(T, T ) (7.1)

• A-Distance is an approximate distance (known with Distribution Discrepancy) is

defined as

dA = 2(1− 2ε) (7.2)

where ε is the generalization error of a classifier trained on binary problem of

discriminating source and target domains.

7.6.3 Experiments and Results

7.6.3.1 Performance–Response-Time Trade-off of Object Detection Models

We evaluate transfer learning techniques on different object detection models (YOLOv3

[35], SSD-300 [36], and RetinaNet [37]) to analyze which classifiers can perform well

on applying what type of training (scratch, fine-tuning, and freezing layers) and prove

Hypothesis-III. The results of performance with response time trade-off are shown in

Fig. 7.6. We use mean average precision (mAP) for performance, which is the standard

method of evaluating neural network models [22]. Firstly, it represents the trade-off

on the arrival of a completely new subscription, when there is no possibility of domain

adaptation (please refer to Case 2b in Section–2.6), for the training time of 120 min.
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Table 7.2: Evaluations on Domain Adaptation on multiple training techniques

Object
Training from Training by Training by

Frame
Detection

Scratch Fine-Tuning Freezing
Rate

Model
tscratch tfine−tune tfreeze (in fps)

α β θ α β θ α β θ

YOLOv3 0.01 0.09 0.0007 0 0.75 0.0062 0.15 0.79 0.0053 114 fps

SSD300 0 0 0 0.05 0.31 0.0022 0.14 0.19 0.0004 21 fps

RetinaNet 0.09 0.22 0.0011 0.27 0.35 0.0007 0.17 0.16 -0.0001 7 fps

In this case, all models are trained from scratch without the use of any pre-trained

model. We can observe the performance of RetinaNet (Fig. 7.6(c)) is higher than other

object detection models and the SSD model (Fig. 7.6(b)) is very difficult to converge with

training from scratch, thus resulting in worse performance. In contrast, the performance

of YOLOv3 (Fig. 7.6(a)) is also low. However, by choosing ts = 30 min using RetinaNet,

we can reach accuracy ∼ 77.10% with precision ∼ 0.21.

The performance of RetinaNet and SSD are better than YOLOv3 in the initial (<

30 min) time of training for both cases of fine-tuning (Fig. 7.6(d), 7.6(e), and 7.6(f))

and freezing (Fig. 7.6(g), 7.6(h), and 7.6(i)) layers (Case 2a in Section–2.6). However,

there is a sudden rise in performance of YOLOv3 in the first few minutes, signifying its

higher slope in terms of short time training compared to other object detection models.

We can easily observe that all object detection models with the fine-tuning technique

perform better than the adaptation technique of freezing layers for a long training time

(i.e., > 120 min). However, for short training time (i.e., ∼ 30 min), YOLOv3 with

freezing technique is performing the best.

We can also observe all object detection models (YOLOv3, SSD, and RetinaNet) on

direct domain transfer provide mAP of 0.1, 0.12, and 0.16, respectively, within a response

time of 0 min. In contrast, other techniques (finetuning of pre-trained model and training

from scratch) possess an mAP of 0, which validates our hypothesis.

The results of various parameters (detailed in Fig. 2.3(b)) derived using trend lines of

Fig. 7.6, for different types of training (tscratch, tfine−tune, & tfreeze) are shown in Table

7.2, which also supports the fact of achieving high initial performance, high rate of

change, and high final precision achieved in given training time, on domain adaptation

of classifier. The recorded frame rates on our resources for YOLOv3, SSD300, and

RetinaNet are 114 fps, 21 fps, and 7 fps, respectively, where fps represent the number

of frames/images processed per second. We can conclude that adaptation via freezing

layers can provide admissible performance (i.e., accuracy ' 95.14% with precision ' 0.50

using YOLOv3) in initial training time (tda = 30 min) as compared to fine-tuning of a
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Table 7.3: Detection mAP on Specific Domain Transfers using different Domain Adap-
tation techniques

Classes
Semantic
Similarity

Score

Method of Domain
Adaptation

YOLO SSD300 RetinaNet

Laptop Detector tested
for Mango (baseline)

NaN 0.0047 0.0046

Mango ←
Laptop

0.08
Mango Detector from

pre-trained model
NaN 0.1439 0.1667

Mango Detector from
Laptop Detector

0.2000 0.0818 0.0973

Cat Detector tested for
Dog (baseline)

0.0000 0.2123 0.2446

Dog ←
Cat

0.20
Dog Detector from
pre-trained model

0.5254 0.2120 0.2159

Dog Detector from Cat
Detector

0.6875 0.2504 0.2307

Football Detector
tested for Cricket ball

(baseline)
0.0000 0.0000 0.0111

Cricket Ball
← Football

0.33
Cricket ball Detector

from pre-trained model
NaN 0.00 0.0375

Cricket ball Detector
from Football Detector

0.0000 0.0000 0.0120

Car Detector tested for
Bus (baseline)

0.1683 0.0371 0.0668

Bus ← Car 0.50
Bus Detector from
pre-trained model

0.7213 0.0938 0.1110

Bus Detector from Car
Detector

0.5821 0.1127 0.0808

NaN: Not a Number (could be interpreted as mAP=0 because of no detections)

pre-trained model, which is crucial to know before choosing either pre-trained model or

nearest classifier.

7.6.3.2 Empirical Analysis for Domain Shift

Table 7.3 shows four examples of classes on domain transfers with different similarity

scores. We determine similar classifiers using the path operator of WordNet [29]. Here,

we show simple baseline performance where the nearest neighbors can detect an unseen

class without training, thus resulting in low mAP but zero response-time. Besides testing

on baselines, we show performance on domain transfers from pre-trained models and

similar class detectors. We can conclude that adapting from one domain (class) to
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(a) Transfer Loss (b) Accuracy

(c) A-Distance

Figure 7.7: Analysis for Domain Shift

another mostly yields high-performance results in low response-time as compared to

fine-tuning of detectors on the pre-trained model (like ImageNet).

We also present an empirical analysis to know how well the transfer works on current

object detection models and choose the most suitable model. Fig. 7.7 analyzes Transfer

Loss, Accuracy, and Distribution Discrepancy, during the domain shift of subscriptions

on object detection models. The standard domain adaptation metric “transfer loss”

has been evaluated on four domain transfers (varies from closely related domains to not

associated domains), depicted in Fig. 7.7(a). The transfer achieved by YOLOv3 is better

than other object detection models in the case of football to cricket ball and laptop to

mango domain transfers. Here, the transfer loss only indicates how well the transfer

works on multiple domains, and its lower values are more recommended [287, 288].

However, the best transfer (i.e., least transfer loss) is achieved by the RetinaNet model

on cat to dog class transfer. Similarly, the Single Shot Detection (SSD) model achieves

its best in transferring car to bus domain transfer. Interestingly, the values of transfer

loss using models SSD and RetinaNet on other domain transfers are quite high, thus

directing us to evaluate the accuracy of same domain adaptations.

The transfer accuracy achieved by object detection models on the same classes of domain

transfers (discussed for the evaluation of transfer loss) is shown in Fig. 7.7(b). We can

clearly see that all object detection models (YOLOv3, SSD-300, and RetinaNet) are
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(a) Mango ← Laptop (b) Dog ← Cat

(c) Cricketball ← Football (d) Bus ← Car

Figure 7.8: Performance vs Response Time with Domain Adaptation

able to provide high accuracy on applying transfer learning techniques; however, the

YOLOv3 achieves the best accuracy on all domain transfers.

In order to realize the variation of approximate distance (i.e., Distribution Discrepancy)

among different domains, we have trained few binary classifiers that can classify source-

target pair of classes like cat and dog, car and bus, football and cricket ball, and mango

and laptop. We can see in the results (Fig. 7.7(c)) that distribution discrepancy (lower

is better) for YOLOv3 is relatively smaller among most of the domain transfers than

other object detection models, which suggests that the YOLOv3 neural network closes

the cross-domain gap more effectively, which also explains its better accuracy than other

object detection models on domain adaptation.

7.6.3.3 Simulation on Proposed Model

Results on Domain Adaptation As previous results of high performance and do-

main shifts are in favor of YOLOv3 with freezing layer-based transfer learning technique,

we have shown trade-off of performance with response time for domain transfers (Mango

← Laptop, Dog ← Cat, Cricket Ball ← Football, and Bus ← Car) in Fig. 7.8. We can

observe that even with a training time of only 120 min, we get performance up to 0.20,

0.69, 0.004, and 0.73 on each domain transfer. Interestingly, for short response time (15
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Figure 7.9: Response Time with Unseen Subscriptions

or 30 min), we also get reasonable performance in all transfers except Dog← Cat. Thus

we can choose response-time (∼ 30 min) to provide reasonable accuracy for such unseen

subscriptions.

Confusion Matrix Table 7.5 summarizes the snapshots of the confusion matrix at

the interval of every 15 min, as accuracy is not the complete measure for analyzing

machine learning models. Here we expect the values of true positives and true negatives

(shown in dark gray color) to increase with time while false positives and false negatives

(shown in light gray color) decrease with time. This is true for most cases with a

few misleading values (due to less training and testing data available for classes like

mango and cricket ball). Other than the problem of inadequacy of data, we are training

all classifiers less than 10 epochs in-order to reduce the response time. However, the

recommended training time of existing neural network-based models is not less than 100

epochs (i.e., > 1 day).

Seen/Unseen Domains An average response time of the proposed model for seen

subscriptions depends only on the testing time (∼0.01 min) of the object detection

model. Response time for unseen subscription also includes training via domain adap-

tation. Due to this reason, accuracy (98.53%) for seen subscriptions is even higher than

accuracy (95.14%) for unseen subscriptions. As a result, response time will increase,

and accuracy will decrease with the number of unseen subscriptions. An analysis by a

varying number of seen/unseen subscriptions is shown in Fig. 7.9. For example, when

the number of unseen subscriptions increases from 0 to 25% of the total number of seen

and unseen subscriptions, then response-time will always be between 0 to 7 min and

accuracy between 98.53% to 97.68%. Similarly, for 50% of unseen subscriptions w.r.t,
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Table 7.4: Comparison of Proposed with Existing Model(s)

Approach Example of Subscriptions
Performance

Response
Time

Accuracy

Existing Domain

Vehicle Detection [233] (Seen) 0.001 min 97.30%

Specific Models

Firearm Detection [234] (Seen) 0.0001 min 94.00%
Stolen Objects [235] (Seen) 0.0007 min 93.58%

Car Parking Vacancy [236] (Seen) 0.17 min 97.90%
Traffic Light, Key, Pedestrian, Ball,

Bag etc. (Unseen)
∞ 0.00%

Proposed Model
Car, Football, Cat, Laptop, Cake,

Flower etc. (Seen)
0.01 min 98.53%

Bus, Dog, Person, Cricket ball, Coin,
Suitcase etc. (Unseen)

29.99 min 95.14%

the total number of subscriptions will increase response-time up to 15 min and accuracy

to 96.84%.

Table 7.4 provides a comparison of average accuracy and response time of proposed with

existing models by considering their best performance. We can observe that existing

domain-specific models are designed only to detect specific objects and answer such

seen (known) subscriptions in low response time; however, they fail to process any

unseen (unknown) subscription of a different domain. The proposed model can achieve

an accuracy of 95.14% even when all concepts are unseen by taking an average response

time of ∼30min.

Other than the factors discussed in experiments, few external factors can also impact

the performance of Model-III. For instance, execution environment, available resources,

quality of image, number of images available for domain adaptation, the similarity of

unseen class with seen class, etc. The number of resources and execution environment

can increase/decrease the response time further. On the other hand, the quality of

training data can improve the accuracy of the model. Moreover, subscriptions of users

cannot be altered at the administrative level; subscribed unseen classes can be similar or

utterly dissimilar to seen classes. Thus, Model-III performance may change with change

in the application domain.

7.7 Conclusions and Discussion

In this chapter, I analyzed the problem of processing multimedia events that include

a large number of seen/unseen concepts belonging to the same or multiple domains,

using the online construction of classifiers while minimizing response time. Discussion
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on related work reveals that domain transfer approaches are useful for high accuracy

and could help support large-scale vocabulary but leaves the gap for analyzing training

time. I proposed a multimedia event processing framework with the feature of inter/intra

domain adaptation among subscriptions by utilizing transfer learning-based techniques

and object detection models. I analyzed the trade-off between performance and response-

time, which also includes training time, thus providing a holistic view of the comparison

of DNN based models. Such trade-offs validate the Hypothesis-III by providing some

accuracy even at zero response-time. Moreover, experiments have been conducted on

the various shift of domains among subscriptions to determine the minimum permissible

response-time and best detector on which transfer works well. The proposed approach

can achieve accuracy ranges from 95.14% to 98.53% within ∼ 0.01 min to ∼ 30 min of

response-time using the YOLOv3 object detection model even when all subscriptions

are unseen (unknown) for the system.

Another specific problem that originated in this chapter is the requirement of annotated

bounding boxes for online domain adaptation of models. In the next Chapter–8, we

extend our model for semi-supervised learning to reduce the need for labeled data to

process unseen concepts.
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Chapter 8

Domain Adaptation based

Multimedia Event Detection

without Bounding Boxes

8.1 Introduction

In previous Chapter-7 I proposed a domain adaptive classifier construction approach

with knowledge transfer from seen to unseen concepts, for minimizing the response time

while achieving high accuracy. However the major limitation of that approach is that

it requires annotated bounding boxes for the online training of unseen classes. Training

of object detection models using only image-level labels is an emerging challenge in

computer vision, as obtaining object bounding box annotations is an extremely time-

consuming task. In the current scenario, we have object detection datasets available

consisting of a small number of classes or a small number of images per class. Moreover,

image-level labels are comparatively easy to acquire, many classes can be covered easily

using image classification datasets (like ImageNet [67]) or the web. Recently, classifiers to

detector conversion methods [3, 30, 66] have shown promising results for the training of

unseen concepts without bounding boxes. However, these methods have not considered

the long training time and only handle finite number of classes.

In this chapter I tests the research Hypothesis IV “If an adaptation of classifier into

detector eliminates the need of bounding boxes as well as transferring of knowledge from

one domain to another speed-up the training; and a detector gets constructed from clas-

sifier with the help of transfer of knowledge from visually/semantically similar classifier;

then that detector will take less time to train for unseen classes and eliminate the require-

ment of bounding boxes”. I formulate this problem in the final specific Research Question

151
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3(b) as “How can we answer multimedia event based queries online consisting of unseen

subscriptions (unbounded vocabulary), using task as well as visual domain adaptive clas-

sifier construction approach with knowledge transfer from seen subscriptions (bounded

vocabulary) while eliminating the requirement of bounding box annotations availability,

achieving high accuracy, and minimizing the response time?” discussed in Section–8.2.

A brief background on weakly supervised learning and classifier to detector conversion

methods is given in Section–8.3, which shows gaps of lack of support for large vocabulary

and least focus on training time.

In this work, I propose an “Unseen Detector” that can be trained within a very short

time for any possible unseen class without bounding boxes with competitive accuracy.

The proposed framework is shown in Figure 8.4 with detail in Section–8.4. I build

approach on “Strong” and “Weak” baseline detectors, which I trained on existing object

detection and image classification datasets, respectively. Unseen concepts are fine-tuned

on the strong baseline detector using only image-level labels and further adapted by

transferring the classifier-detector knowledge between baselines. I use semantic as well

as visual similarities to identify the source class (i.e. Sheep) for the fine-tuning and

adaptation of unseen class (i.e. Goat).

My model is trained on the ImageNet classification dataset for unseen classes and tested

on an object detection dataset (OpenImages) consisting of the same classes. The model

achieves a mean average precision (mAP) of 19.82 within 5 minutes of training, where

existing frameworks could take >5.5 hours to attain a similar mAP (discussed in Section–

8.5). Quantitative and qualitative results demonstrate that proposed model is suitable

not only for the iconic images of ILSVRC but also for object detection datasets and

images from the web for any unseen concept. Finally we concludes and discusses the

drawbacks of our “UnseenNet” in Section–8.6.

8.2 Problem Overview

In the case of our fast training detector for unseen concepts without bounding boxes,

we assume that we have access to the object detection datasets (i.e., training images

with bounding box annotations for the small number of classes) and image classification

datasets (i.e., training images with only image-level labels for the large but finite number

of classes). Our objective is to train detectors for any possible unseen concept (i.e., an

infinite number of classes) without bounding box annotations within a limited amount

of time. This is quite different from the existing classifier to detector knowledge transfer

based methods [3, 30], where a limited number of unseen classes are trained for a more

extended period of time with a focus on improving only on accuracy. In such cases
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where we already know unseen classes and are allowed to train for longer training times,

a better solution is to train unseen classes with high accuracy by taking more time

while making bounding box annotations available. Below we discuss few preliminaries,

motivational scenarios, and this problem in detail.

8.2.1 Preliminaries

LSDA: Large Scale Detection through Adaptation (LSDA) [3, 66] converts image clas-

sifiers into object detectors by transferring knowledge between pair of classes for which

we have both classifiers and detectors, where paired relationships identify using semantic

and visual similarities between classes.

Domain Adaptation with Task Transfer:

• Adaptation of classifiers into detectors: We consider classification (full image recog-

nition) as Task-1 (our source domain) and detection (localized recognition) as

Task-2 (our target domain) and cast the transformation between the source and

target domain as a domain adaptation problem (like baseline LSDA).

• Adaptation between Visual Domains: Allows Inter/Intra domain adaptation. For

example, Bus→ Car or Person→Pedestrian, where traffic management (car, bus,

pedestrian, bike) and parking management (car, taxi, bike, person) are two differ-

ent domains.

Similarity:

For the adaptation of seen class into unseen class, we use visual and semantic similarity

measures:

• Visual Similarity: Visual similarity measurements are often computed using the

minimal Euclidean distance between feature distributions of the last layers of CNN

[30].

• Semantic Similarity: It is a well-established field in the Natural Language Process-

ing community. WordNet [29] is the popular lexical database of semantic relations

between words, and we consider path vector as the most suitable semantic similar-

ity measure (correlated with visual similarity) in this study.
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Figure 8.1: Scenarios for Multimedia Event Processing adhering to Seen/Unseen
Concept Problem

8.2.2 Motivational Scenarios

Consider the baseline scenarios of detecting seen/unseen concepts for analyzing multi-

media events, as shown in Fig. 8.1. The last scenario is also associated with the partial

unseen concept, but it removes the limitation of the previous Scenario-2, where we need

annotated bounding boxes to train models. Presently, most of the object detection

datasets have limited vocabulary; thus, we cannot provide bounding boxes for a large

number of unseen concepts. The problem analyzed in this work represents the case of

classifier not available for subscription (unseen concept), and object-level annotations

are also not available, presented in Section–1.4.

Suppose a user subscribes for an unseen class “goat” and we have a detector available

for seen class “sheep” which is visually and/or semantically similar to goat class. The

previous adaptation model can then adapt sheep detector into goat detector using do-

main adaptation techniques (used in Chapter–7). However, in the present case, we have

only images and no bounding boxes (unlike previous work), so we cannot use conven-

tional transfer learning methods. An example of an image and object-level annotations

is shown in Fig. 8.2. If we have an adaptation model that includes a classifier to detec-

tor conversion mechanism, then we could answer such “unseen” subscriptions having no

annotated bounding boxes by training classifier on image-level labels and convert them

into detector by knowledge transfer using visually/semantically related seen classes.
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(a) Image-Level Annotations (b) Object-Level Annotations

Figure 8.2: Annotations with/without Bounding Boxes

8.2.3 Problem Statement

Can we train detectors for any possible unseen concept (with only image-level labels)

within a limited amount of time while utilizing classifier to detector conversion methods

[3, 30] and existing limited vocabulary based object detection and image classification

datasets?

8.3 Background and Related Work

The fundamental challenge in training object detection models is the need to create a

large number of annotated images. Moreover, if we look towards large scale human-level

category detection systems, it is impractical to collect a large quantity of bounding box

labels for millions of categories. Considerable research [30, 61, 66, 289, 290], including

LSDA, cast the task of transformation as a domain adaptation problem by considering

images with only labels as the source domain and the images with bounding boxes as

the target domain.

8.3.1 Weakly Supervised Object Detection (WSOD) with Knowledge

Transfer

Recently, weakly supervised learning [291, 292] is emerging as a possible solution for

large-scale unseen concepts. Uijlings et al. [289] proposed a revisit knowledge trans-

fer for detectors training in the weakly supervised settings and outperformed all the

baselines. Similarly, a mixed-supervised approach [290] is also presented with the con-

dition of strong categories and weak categories have no overlap. Bilen et al. [293–295]

proposed different solutions for the weakly supervised object detections using deep de-

tection architecture, convex clustering, and posterior regularization. Alexander et al.

[296] improved localization by introducing distractor labels with objects (e.g. trains on

tracks). Similarly, Wang et al. [297] proposed a cluttered backgrounds based approach
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Figure 8.3: Conceptual Representation of LSDA: Large Scale Detection through
Adaptation [3]

and a transfer learning based model [298] uses appearance similarity with ranking. Such

approaches are designed for limited classes and cannot incorporate new classes that have

no pre-trained models.

Weakly supervised learning also formulated as a Multiple Instance Learning (MIL) prob-

lem. A novel WSOD2[299] model uses bottom-up object evidences and top-down classi-

fication output with an adaptive training mechanism. Model uses VGG16 [18] backbone,

pre-trained ImageNet [67] for initialization. However our model uses the much faster

MobileNetv3 [151] as backbone and our own trained “Strong Baseline Detector” for the

initialization. Similarly a MIL based approach appear in literature [300, 301] for the

weakly supervised object localization. Most of the existing approaches [300–303] are

evaluated on classes of Pascal VOC [26], disregard the training time, and/or use Fast

RCNN [147] as base network. However, Fast RCNN has a longer inference time, and

Pascal VOC [26] is known to the computer vision for a long time, its classes shouldn’t

be considered unseen.

8.3.2 Large Scale Detection through Adaptation (LSDA)

Another category of related work includes the Large scale Detection through Adaptation

(LSDA) based approaches [3, 30, 61, 66] that incorporate the knowledge transfer from

source to target domain. Such methods consider the difficulty of obtaining labeled images

for large numbers of categories as a major barrier of visual recognition systems; thus, we

assume it is desirable to bring their abilities to the core of multimedia event processing.

It is realized in these methods that image-level annotations are comparatively easy to

acquire, and search engines could quickly produce a set of images using corresponding

image tags. LSDA [3] method learns to transform an image classifier into an object

detector. LSDA learns the difference between the two tasks (classification and detection)

and transfers this knowledge to classifiers to turn them into detectors without the need

for bounding box annotations. The core idea is shown in Fig. 8.3. LSDA train detectors
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(weights) from labeled classification data (left) for several classes and consider some

classes (top) that also have detection labels (right), and train their detectors. Then it

addresses the problem of classes with classification data but no detection data (shown at

the bottom) using the paired relationships between classes for which both classifiers and

detectors are available, and transfer that knowledge to the classifier of the bottom to

convert it into a detector. The transformation of classifiers into detectors of LSDA follows

a transfer learning problem due to statistical distribution differences of training and test

domains. This large-scale learning of detectors exploit weak (image-level) and strong

(bounding box) labels and transfer learned perceptual representations from related tasks.

LSDA also gets extended to the multiple instance learning (MIL) framework [304] that

includes bags defined on both types of data and optimizes the perceptual representation

using strong detection labels from related categories. LSDA with MIL demonstrates the

more accurate adaptation results on new (weak) categories. However, LSDA provides a

detector for the limited number of classes without bounding box annotations with the

not straightforward provision of adding unseen classes. Also, there is no control over the

training time of LSDA based detectors. Such limitations make existing work the least

significant. Other than being trained on a finite number of classes, their significance is

hard to judge and needs to be seen from the perspective of the dynamic environment

of smart cities. Such limitations make existing work least significant for training new

classes.

Tang et al. [30, 61] improve LSDA by incorporating informed visual knowledge and

semantic similarities during the transfer process. This work is focused on the hypothesis

“visually, and semantically similar categories exhibit more transferable properties than

dissimilar categories”. For instance, a cat detector constructed from dog classifier and

dog detector will be much better than a cat detector built from violin classifier and

detector differences. Evaluations of the proposed approach on the ILSVRC2013 [152]

detection datasets demonstrate the effectiveness of using visual and semantic similarities

by improving detection accuracy over the LSDA baseline. However, following other

approaches, training time is not considered in the improved LSDA model, making the

traditional argument “object bounding-boxes computation is a time-consuming task”

weaker, especially when models are taking a considerable amount of training time.

8.3.3 Gap Analysis

As a result of the analysis of related work, Table 8.1 shows a comparison of existing

approaches with mapping of requirements (suggested in Section–2.4). While classifying

the related work, we summarize the gap analysis with limitations as follows:
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Table 8.1: Analysis of Related-Work with identified Requirements for Knowledge
Transfer without Bounding Boxes

Requirements

Category Approach
High

Accuracy for
Multimedia

Events

Low
System

Response
Time

Support for
Large

Vocabulary

Maintain-
ability

Rivist
Knowledge

Transfer [289]

Average
Accuracy

N.A N.E N.E

Mixed
Supervised

[290]

Average
Accuracy

N.A N.E
Generalizable

to New
categories

Deep
Detection
[293–295]

Average
Accuracy

N.A N.E N.E

Weakly
Supervised

Distractor
Labels [296]

Average
Accuracy

N.A N.E N.E

Object
Detection

Cluttered
Background
Approach

[297]

Average
Accuracy

N.A
Large Scale

Method
N.E

with
Knowledge

Transfer

Appearance
Similarity
Approach

[298]

Higher
Accuracy

N.A N.E

Transferable
to unrelated

object
categories

WSOD [299]
High

Accuracy
N.A N.E N.E

Other MIL
based

Approaches
[300–303]

Low to
Average
Accuracy

N.A N.E

Adaptable
to new
Object

Categories

Large Scale LSDA [3]
Low

Accuracy
N.A

Large Scale
Vocabulary

Manual
Adaptation

Detection
through

LSDA with
MIL [66]

Low
Accuracy

N.A
Large Scale
Vocabulary

Manual
Adaptation

Adaptation
(LSDA)

Semi-
supervised

LSDA
[30, 61]

Low
Accuracy

N.A N.E N.A

N.A: Not Applicable
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• Weakly Supervised Object Detection with Knowledge Transfer : Weakly supervised

learning approaches, along with multiple instance learning, are highly focused on

increasing accuracy. Some of them are also transferable to new object categories.

However, the support for large-scale vocabulary is not evaluated. Moreover, the

testing or training time of such models are not considered, which are crucial to

know for real-time multimedia event processing.

• Large Scale Detection through Adaptation (LSDA): These classifiers to detectors

knowledge transfer methods can prove an asset in training classifiers for multimedia

event processing. Image-level labels are plenty, and object-level annotations are

hard to acquire. Due to the less attention over such knowledge transfer methods,

these methods struggle to achieve high accuracy. However, the ability to provide

large-scale vocabulary and not a straightforward adaptation approach shows the

critical gap that needs investigation. Lastly, techniques for reducing the training

time for minimizing the overall response time are not known to date.

8.4 Proposed Approach

We first provide an introduction of LSDA (Section–8.4.1) that we took as a baseline

for our work on unseen classes. Then we explain our model (shown in Figure 8.4) with

details on training detectors offline for seen concepts (Section–8.4.2.1) and online for

unseen concepts (Section–8.4.2.2).

8.4.1 Baseline LSDA

LSDA [3, 66] transforms image classifiers into object detectors in three steps: (1) Train-

ing LSDA: Category Invariant Adaptation (includes initialization of detection parame-

ters and network surgery), (2) Training LSDA: Category Specific Adaptation, and (3)

Detection with LSDA. The objective of LSDA is to detect K categories while having

bounding box annotations for m categories. Consider the set of images with strong

labels as B=1,...m and weak labels as A=m,...K where m�K. First, 8-layer AlexNet

[305] is pre-trained on the ILSVRC challenge, the final weight layer (1,000 categories)

is then replaced with K classifiers, and fine-tune the whole network on classification

data C = CA ∪ CB. The next step is the net surgery on this classification network by

fine-tuning layers 1−7 on strongly labeled data (i.e., with bounding boxes) of categories

B. The fine-tuning on strong labels also learns a generic background category because of

bounding boxes. It is important to note that fc8 layer parameters are category specific,

while layers 1− 7 are referred to as category invariant.
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Category-Specific adaptation step is responsible for the final transformation of the clas-

sification network into a detection network. For the demonstration LSDA separates the

8th Layer into two components fcA and fcB. For categories in set B, the transforma-

tion is directly learned by fine-tuning the category-specific parameters fcB. Suppose

the weights of the classification network’s output layer are W c, and the weights of the

output layer after adaptation are W d. LSDA assumes the final detection weights for

category iεB could be computed as Wi
d = W c

i + δBi . There is no detection data for

categories in set A; thus, LSDA approximated the fine-tuning that could have occurred

to fcA using nearest neighbor categories of set B for each category of set A. The final

output detection weights are:

∀j ∈ A : W d
i = W c

i +
1

k

k∑
i=1

δBNB(j,i) (8.1)

where kth nearest neighbor in set B of category j∈A is denoted as NB(j, k). At the

detection time, LSDA directly outputs scores from the softmax “detector’, and reduce

the training time from 3 days to 5.5 hours.

8.4.2 UnseenNet: Designing and Implementation

We propose an “UnseenNet” detector, which allows a user to construct detectors for

unseen classes without the need for detection data (no bounding boxes) within the

short training time. Our model is based on making use of existing object detection

datasets of bounded vocabulary (consists of seen concepts) to construct detectors for

unseen concepts (i.e., unbounded vocabulary) by using the differences between a weak

detector (trained on image classification dataset) and a strong detector (trained on object

detection datasets).

An illustration of our “UnseenNet” model is shown in Figure 8.4. We train two separate

detectors, “Strong Baseline Detector (0)” and “Weak Baseline Detector (0’)” offline

using bounding box annotations and image-level labels, respectively. Then UnseenNet

follows the below steps:

1. Download images using only image-level labels on request of any unseen concept

(like a goat).

2. The strong baseline detector is then fine-tuned on collected images of unseen con-

cepts by labeling the most semantically similar class (like sheep) with the unseen

class name (like a goat). It is worth noting that the minimum value of similarity
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among classes can reach up to 0.0357 (for pair of Kite and Bull), and the maxi-

mum similarity value could be 1 (for same class names) according to our analysis

of WordNet [29] relatedness measure.

3. At this stage, I compute the visual similarity of the constructed unseen class de-

tector (trained on classification data) with seen classes of weak baseline detector,

combine it with semantic similarities, and select top-k classes ranked on com-

prehensive similarities. Visual similarity is presently the difference between the

weights of the last layers of seen and unseen classes.

4. I transfer the knowledge of classifier-detector differences of top classes to the con-

structed unseen class detector and adapt it into the stronger detector without

further training.

5. Finally, I perform the detection using our trained network of YOLO-MobileNet

and communicate results.

We describe below the construction of our strong and weak baseline detectors offline

for seen concepts and training of detectors online for unseen concepts while investigat-

ing the object detection model’s training time, which we refer to as the response-time

of our model on unseen concepts. Since LSDA established the background of conver-

sion of image classifiers into object detectors, we are using its guidelines to construct

our model while using MobileNetv3 (Small) [151, 306] with YOLOv3 [35, 166] in-place

of AlextNet [305] and R-CNN [307]. In our design, we assume classifier to detector

conversion methodology eliminates the need for bounding boxes and the use of visual-

ly/semantically similar classifiers for the knowledge transfer speeds up the training and

proves this Hypothesis-IV in the next section.

8.4.2.1 Training Baseline Detector Offline for Seen Concept (with Bounded

Vocabulary)

First, we set up an architecture of YOLO with MobileNet backbone and construct two

baseline detectors as follows:

Strong Baseline Detector (DS) is a |K| class detector trained on existing object

detection datasets. It is a detector that is trained on strong labels (i.e., bounding box

annotations). Presently we have taken 100 classes (like LSDA) by considering all classes

of Microsoft COCO (80 classes [27]) and 20 classes of OID [28]. Please note that 20

classes of Pascal VOC [26] are also present in Microsoft COCO.
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Weak Baseline Detector (DW ) is another |K| class detector trained on image classi-

fication dataset. We trained it on weak labels (i.e., images-level labels). In this detector,

we consider the same classes on which we trained the previous Strong Baseline Detector,

but we use the ILSVRC [152] classification data. The value of |K| is 100 in both cases.

8.4.2.2 Training Online Detector for Unseen Concept (for Unbounded Vo-

cabulary)

On request of an unseen class (u), say goat, first our model provides an environment to

collect images for ‘goat” from the Web using Google Images1, Flickr2, or Bing Image3

search. Second, it uses the “Strong Baseline Detector” and sets up a new detector by

labeling the most similar seen class (like sheep) with the unseen class (i.e., goat). In other

words, it renames the seen class (sheep) with the unseen class (goat). It is important

to note that a similar class (like sheep for goat) can be chosen only using semantic

similarity at this stage as visual features of an unseen class cannot be computed before

training. Next, we fine-tune the detector on images collected for “goat”. Now we have

a new detector having |K| classes that can detect goat. Since goat class is trained only

on image-level labels (weak labels), we call it a weak detector or merely a classifier “Cu”

for unseen class. At this point, our model’s response time for unseen concepts is equal

to the time for fine-tuning.

We presume that fine-tuning induces a specific category bias transformation in the de-

tection network towards class “goat” (which is complimentary from the viewpoint of

detecting a class goat). Moreover, this network already encodes a generic “background”

category having been previously trained on detection data (because of strong baseline),

which is another positive perspective, as this will automatically make the new detector

much more effective in localizing the new class without detection data. Finally, the

previous classifier Cu adapts into a corresponding detector Du using the same assump-

tion “difference between classification and detection of a target object category has a

positive correlation with similar categories” of LSDA. Suppose weights of the output

layer of DS (Strong Baseline Detector) and DW (Weak Baseline Detector) are wDS and

wDW , respectively. We know that for any seen category i ∈ K, final detection weights

should be computed as wDS
i = wDW

i + δKi , where δKi is the difference (wDS
i −wDW

i ) in

weights of output layer of the seen category (Strong and Weak Baseline) detectors.

1https://github.com/hardikvasa/google-images-download
2https://www.flickr.com/services/api/
3https://pypi.org/project/bing-image-downloader/
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By using this knowledge difference and denoting the kth nearest neighbor in set K of

category u as NK(u, k), we adapt the final output detection weights for categories u as:

wDu
u = wCu

u +
k∑

i=1

s(u, i)δKNK(u,i) (8.2)

where k ≤ |K|, and s(u, i) denotes the similarity of seen class (i) with unseen class (u).

The main difference between Eq.8.1 and 8.2 is the weighted nearest neighbor scheme

[30, 61], where weights are assigned to seen categories based on how similar they are

to the unseen category. We select top-k weighted nearest neighbor categories (s(u, i))

using Eq.8.3. Besides the semantic similarity, we also compute the visual similarity at

this stage by using the minimal Euclidean distance between the detection parameters of

the last layers of detectors DW and Cu. Suppose Kv is the set of visually similar (sv)

categories and Ks is the set of semantically similar (ss) categories, then comprehensive

similarity s(u, i) for the unseen category with seen categories is evaluated as:

s(u, i) = αsv(u, i) + (1− α)ss(u, i), i ∈ {Kv ∩Ks} (8.3)

where α ∈ [0, 1] is a parameter introduced in [30, 61] to control the influence of the

two similarity measures. However, Tang et al. [30] proposed a modified visual similarity

model and used that in LSDA with the weighted average scheme while leaving the impact

of the weighted average scheme over the simplified visual similarity measure used in

LSDA. With the improved visual similarity model, Tang et al. [30] model focuses only

on increasing accuracy, unlike UnseenNet, which focuses on reducing training time.

Since the aim of our model is to reduce the overall response time, we use the LSDA based

visual similarity [66] and naive path-based semantic similarity measure of WordNet [29]

along with a weighted average scheme to compute the comprehensive similarity (s(u, i))

scores. We verify the value α = 0.6 on simplified similarity measures by analyzing the

performance (shown in Section–8.4.2.3).

Finally, we call this adapted detector “Du”, a strong detector for unseen class. We

analyze the response-time of our model in Section–8.5 from the stage of no detector to

weak detector (Cu), and eventually to a strong detector (Du).

8.4.2.3 Implementation Details

Data Preparation I use 100 seen and 100 unseen Classes throughout the experi-

ments. I trained Strong and Weak Baseline Detectors on 100 seen Classes offline and

performed experiments on 100 unseen classes while having training time constraints.
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• Seen Classes

Strong Baseline Detector Training: In this case, I consider all 80 classes of Mi-

crosoft COCO [27] and 20 classes of OID [28] to train a strong baseline detector

with bounding box annotations. I select 20 classes from OID by sorting its 600

classes on the basis number of images per class and considering the top 20 with

the highest number of images available for training.

Weak Baseline Detector Training: Here, I take the same 100 seen classes, retrieve

images with labels from the ISLVRC [152] dataset (i.e., images have no bound-

ing boxes), and train weak baseline detector by giving full image size in place of

annotations.

• Unseen Classes

Training: Similar to LSDA [3], I take another 100 classes from the ILSVRC [152]

to train unseen classes.

Testing: I chose these 100 unseen classes in such a way that the same classes

should be present in OID (consist of 600 classes). I evaluate the model on an

object detection dataset, which gets trained on image classification dataset. That

is, I use the testing dataset of OID for 100 unseen classes to serve as groundtruth

in the evaluations.

I also show qualitative evaluations on additional 16 unseen classes that I downloaded

from the web using Google Images API 4. Such classes are not present in any dataset

to-date and prove model’s significance for unseen concepts (known or unknown).

Training In my experiments, I consider the main settings of LSDA while using the

pipeline of YOLOv3 [35, 166] and MobileNetv3 [151, 306]. Specifically, I used the three

layers (38, 117, 165) from the MobileNetv3 (Small) within YOLO to make the predic-

tion5.

I trained the baseline detectors first on learning rate of 10−3 till 100 epochs, then I

used the decay type exponential till 200 epochs; finally, I used the 10−4 till 300 epochs

as validation loss stopped decreasing near this point. However, for the training of the

unseen classes, I used the constant learning rate of 10−4, which could be increased in

future experiments for faster results. I kept the slowest possible learning rate, as my

model should serve as the base-work for handling dynamic unseen concepts in short

training time. Finally, I utilize the benchmark object detection metrics project 6 to

evaluate the detections with IOU=0.5.
4https://github.com/hardikvasa/google-images-download
5https://github.com/david8862/keras-YOLOv3-model-set
6https://github.com/Adamdad/Object-Detection-Metrics
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Figure 8.5: mAP with parameter α for degree of similarity.

I assume it is essential to specify that ImageNet and Object detection datasets use

different name for the same classes, so I am using the vocabulary of WordNet to give

a single name to each class and also provide mappings of different datasets with our

model.

I used the path vector of WordNet for the semantic similarity measure. Visual similarity

is simply computed using the minimal Euclidean distance of weights of the unseen class

detector (trained on classification data) and weights of weak baseline detector, which is

the same as described in LSDA. Here I use a degree of similarity measure to compute

the comprehensive similarity between seen and unseen classes.

Degree of Similarity Parameter (α) To complete the weighted average scheme’s

evaluations over simplified (visual and semantic) similarity measures, I analyze the value

of parameter α. Figure 8.5 shows impact of α on mAP; its peak values could be 0.5,

0.6, and 0.7.

Estimation of Number of Epochs I estimate the total number of epochs required

to train the model for the designated training time (minimum, mean, or maximum) by

considering the batch size, total number of training images available for a particular

class, and speed of our GPU for the completion of one step. The total number of epochs

computed as:

epochs =
ResponseT ime

((Num of Images/Batch Size) ∗ t)
(8.4)

where, “response time” denotes the total training time allowed, “Num of Images” is the

number of available training images, and t is time GPU takes to complete one step,

which is 0.465 sec in our case. Here, “Num of Images/Batch-Size” is the number of

steps. We used default batch-size 16. We conducted experiments on NVIDIA TITAN

Xp GPU (8 Core Processor×16), Driver 440.1 with CUDA 10.2.
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8.5 Evaluation

This section describes the evaluation methodology, evaluation metrics, and finally, ex-

periments with results.

8.5.1 Evaluation Methodology

The evaluations present in the work are divided into two broad categories: Quantitative

and Qualitative Evaluation on Unseen Categories. Quantitative evaluations are further

classified into three categories. First, we compare our model performance with existing

models to validate our Hypothesis-IV. Second, we show our model’s performance with

a timeline of response-time, and third, we present results on 100 unseen concepts with

their degree of similarities with unseen concepts. Our qualitative evaluations show visual

examples of correct and incorrect detections of “UnseenNet”. These qualitative evalua-

tions include additional 16 unseen classes that are not present in any dataset to-date to

prove our model’s significance on unseen concepts.

8.5.2 Evaluation Metrics

• Response-Time: The training time of object detection models in responding to

unseen concepts contributes towards the response-time.

• mean Average Precision (mAP): The mAP is the average of the average

precision of all classes. It is computed by calculating AP separately for each class,

then average over them.

8.5.3 Experiments and Results

8.5.3.1 Quantitative Evaluation on Unseen Categories

Comparative Analysis with Existing Models We compare the performance of

the UnseenNet in Table 8.2 against LSDA and semi-supervised LSDA. We show mean

average precision (mAP) for unseen categories along with required training time. We

evaluate our model by considering different number (5, 10, and 100) of nearest neighbors

of “unseen” categories with “seen” categories while using the weighted average nearest

neighbor scheme (Eq 8.2), same as the other LSDA based methods [30, 61].

The first 5 rows show the baseline results of LSDA. We also include the performance of

semi-supervised LSDA. The last row shows the detection results of an oracle detection
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network, which assumes that bounding boxes for all 100 “unseen” categories are available

and no constraint on training time. The first row shows the detection results by training

the network only on classification data without adaptation. Then the next rows show

class invariant and class-specific adaptation results of baseline LSDA. Also, we include

results in the 6th Row of a semi-supervised version of LSDA [30, 61]. We observe

that training time is very high (>5.5 hours) in existing scenarios. Also, LSDA settings

inference time is 2 fps, and UnseenNet is 9.2 fps because of using YOLO and MobileNet.

It is necessary to evaluate our model first by training only on classification data because

we are using YOLOv3–MobileNetv3 [166, 306] in contrast to R-CNN–AlexNet [305, 307].

We show that this amendment improves the performance from 10.31 to 12.79 with a large

decrease in response time from ∼ 5.5 hours to ≤ 10 min. Here we show the mAP for

different response times (5 min, 10 min, 20→ 50 min). We choose these response times

using the results of testing and training (shown in Figure 8.6) detail in Section–8.5.3.1.

Second, we show the mAP using Class Invariant Adapt (Strong Baseline Detector) and

fine-tuning the nearest “seen” class on target “unseen” class classification data. Finally,

we apply the specific class adaptation using the weighted average of “N” nearest neighbor

classes, where N could be 5, 10, and 100. This step does not require training. We show

the final detection performance (average on 100 classes) by indicating our model’s total

time.

Best results indicate that we can reach from stage of no detector for unseen concepts

to a weak detector (mAP 18.96) and strong detector (mAP 19.82) within 5 min of

training. These results validate our Hypothesis-IV as a conventional classifier to detector

conversion methods (LSDA and improved LSDA) reaches to mAP of 16:33 and 20:03 in

>5.5 hours of training, where visually/semantically knowledge transfer is not utilized for

initiating the training. Moreover, the oracle network, which needs reaches to the mAP

28:59 while taking >120 hours (not appliable for real-time training-based applications).

Experimental Results with Response-Time To retrieve the effective range of

response-time in our model, we train each category until the point testing accuracy

starts to decrease (to avoid overfitting). We show a few examples of unseen concepts

in Figure 8.6. Please note here we compute the total number of epochs for varying the

training time (detail in Section–8.4.2.3). We first train our model on weak level labels

(i.e., without bounding boxes) and then test on strong labels (i.e., with bounding boxes).

We observe that the maximum mAP of each class could be achieved within 10 min of

training. After that, the mAP decreases and remains constant. Thus we suggest 20 min

of training as the maximum time limit. However, we recommend 5 min of training to

attain maximum mAP 19.82 and 10 min to avoid any unexpected reduction in mAP due
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Method
Number of Nearest mAP on “Unseen”

Neighbors in 100 Categories
“Seen” categories mAP Response-Time

LSDA

(Classification
Network
with No
Adapt)

– 10.31

5.5 hours
(Baseline)

(Only class
invariant

adaptation)
– 15.85

(Class
Invariant

Weighted Avg NN - 5 16.12

& Specific Weighted Avg NN - 10 16.28
Adapt) Weighted Avg NN - 100 16.33

Semi-
Supervised
LSDA

(Incorporating
Visual and
Semantic

Knowledge)

– 20.03

> 5.5 hours
(LSDA set-
tings + In-
formed Vi-

sual Transfer)

UnseenNet

(Classification
Network

– 12.79 5 min

with No – 13.45 10 min
Adapt) – 17.81→16.46 20→ 50 min
(Class

Invariant
– 18.96 5 min

Adapt &
Specific

– 17.74 10 min

Class Fine-
Tuning)

– 17.07→16.81 20→ 50 min

19.09 5 min
(Class Weighted Avg NN - 5 17.80 10 min

Invariant 17.10→16.84 20→ 50 min
Adapt, 19.21 5 min
Specific Weighted Avg NN - 10 17.88 10 min
Class 17.13→16.86 20→ 50 min

Fine-Tuning 19.82 5 min
& Adapt) Weighted Avg NN - 100 18.14 10 min

17.28→16.94 20→ 50 min

Oracle
Full

Detection
Network

28.59 > 120 hours

Table 8.2: The mean average precision (mAP) while using ILSVRC for Weak Level
labels and Microsoft COCO & OID for Strong Level labels.
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(a) Building (b) Cake

(c) Mushroom (d) Pasta

(e) Goat (f) Candy

(g) Swimming pool (h) Poster

(i) Dress (j) Spider

Figure 8.6: Examples of mAP with Response-Time, For each “Unseen” category, we
use the top-10 weighted average nearest neighbor “Seen” categories for adaptation.
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Figure 8.7: mAP of our model on 100 “Unseen” Categories within 5 min of training.

to unstable training at the initial stages. It is worth noting that mAP at 0 min training

time is not zero due to the strong baseline detector for initialization.

Experimental Results with Unseen Concepts We present an analysis in Figure

8.7 of 100 unseen categories along with their respective degree of similarity with seen

categories (top-10 nearest neighbor). The simple average similarity score is:

sj =

∑m
i=1 s(j, i)

m
(8.5)

where m is 10 presently and s(j, i) is the comprehensive similarity (shown in Eq. 8.3)

between unseen (j) and seen (i) category computed using α=0.6. It shows if we have

unseen classes (like building, pasta, salad) more similar to seen classes, then our model

gives high performance with the exception for small size objects (like microphone, straw-

berry) or availability of less training data (cattle, jeans).

8.5.3.2 Qualitative Evaluation on Unseen Categories

We show visual examples of our model detections in Figure 8.8. Here Figure 8.8 (a) – (h)

includes classes of ILSVRC, and Figure 8.8 (i) – (p) consists of additional unseen classes

which not present in any object detection or image classification dataset to date. Correct

detections of unseen concepts verify that UnseenNet can be trained on any class within

5 min of training. It also reduces the need to create large object detection datasets.

Some examples of incorrect detections are shown in Figure 8.9. This demonstrates that

if we have “unseen” classes less similar to “seen” classes, then UnseenNet could label
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(a) Bread (b) Piano (c) Monkey (d) Sculpture

(e) Cupboard (f) Building (g) Poster (h) Pasta

(i) Mirror (j) Curtain (k) BabyHighchair (l) Covid Icon

(m) Hospital (n) Headphones (o) Steering Wheel (p) TunnelEntrance

Figure 8.8: Examples of correct detections of our model on “Unseen” categories are
shown in red color and groundtruth (taken from OID) in green. Last two row unseen

classes are downloaded online, and no groundtruth available to date.

them correctly because of the training on classification data with incorrect localization

due to the absence of detection data.

Besides the observations and results presented in this section, I assume increasing the

learning rate (taken as 10−4) could reduce the response time further but may or may

not cost accuracy. Evaluations of Model-IV for the domain where more seen classes are

available can increase the accuracy. I also believe testing of UnseenNet is feasible on

edge devices; however, response time may increase. Moreover, there will be a need to

include classifier transfer time due to the construction of more classifiers (each 100MB)

depending on unseen subscriptions.
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(a) Glasses (b) Parachute (c) Helmet (d) Bee

(e) Tie (f) Hair (g) Egg (h) Wine

(i) Ironing Board (j) Pothole (k) Satellite Dish (l) Pedestrian

(m) Key (n) Stone (o) Elevator (p) handle

Figure 8.9: Examples of Incorrect detections (Label Object Correctly but Incorrect
Localization) are shown in red and groundtruth (taken from OID) in green. Last two

row unseen classes are downloaded online, and no groundtruth available to date.

8.6 Conclusion and Discussion

In this chapter, I presented an “UnseenNet” model that has the ability to construct a

detector for any unseen concept without bounding boxes while training in a short time

and providing competitive accuracy. I found that starting from a “strong baseline de-

tector” trained on existing object detection datasets speeds up the training rather than

using only the ImageNet [152] pre-trained model to train unseen concepts. Moreover, in

conjunction with semantic and visual similarity measures, classifier-detector conversion

methods make our approach achieve comparable mAP 19.82. The evaluations demon-

strate that UnseenNet outperforms the baseline approaches and reduce the training time

of days or > 5.5 hours to < 5 min. Hypothesis IV about the speeding up of training with

no need for bounding boxes has been clearly validated due to the considerable reduction

in response-time and competitive performance using only image-level labels.
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A limitation/observation of the proposed “UnseenNet” is that it constructs a new de-

tector for each class; Is this how not wasting space? Assuming the average size of the

detector is 100MB, and we get 1 million unseen concepts (which is already highly un-

likely). Then total space detectors will occupy =100MB×106=100TB, which is not too

large space in the era of having 1TB hard disk on personal laptops when we can handle

millions of classes. In the future, UnseenNet could be improved with more effective de-

tectors and classifiers other than YOLOv3 and MobileNetv3. Strong and Weak baseline

detectors could include a large number of seen classes to obtain more similar classes. In-

vestigating few-shot learning [63, 167–170] is also a reasonable future direction. I detail

the summary of conclusions with possible future solutions in the next Chapter-9.



Chapter 9

Conclusion and Future Work

9.1 Thesis Summary

Explosive growth in the number of physical devices being connects to the Internet ob-

served in recent years. The impact of this increase also provides clear evidence of shifting

the global network towards internet traffic of multimedia. For example, events related to

traffic congestion, accidents, change in weather, parking problems, security, pedestrian

detection, etc., belong to multimedia (unstructured) events. This enormous generation

of multimedia data (i.e., images, video, and audio) within smart cities compelled us to

move from conventional IoT to IoMT (Internet of Multimedia Things). Event-based

approaches in IoT are mainly efficient in processing structured (scalar) events of smart

cities and have a limited focus on IoMT. Advancements in Deep Neural Network (DNN)

may support IoMT data but require the availability of trained classifiers for unseen

(new) concepts. The limitation of having to train classifiers for unseen concepts may

increase the overall response-time for multimedia-based event processing models. This

work focuses on the problem of multimedia event processing, which includes redefining

event processing to multimedia event processing, introducing detection operator for event

query languages, standardizing the concept of response-time, proposed multiple IoMT

based deep neural network models for object detection specifically, and established a fast

online training detector for unseen concepts without bounding box annotations.

Chapter–2 focused on problem formulation, requirements, challenges, and motivation

of multimedia event processing for IoMT. The problem domain also emphasizes the

limitations of online training of classifiers for “unseen” concepts and the availability of

the type of training data with/without bounding boxes. Suppose a user subscribes for

pedestrian class detection, and the existing public traffic control management system can

recognize only bus, taxi, traffic-light, etc. In that case, the system may require manual

175
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effort to answer any unseen subscription like “pedestrian”. However, with the provision

of online training, such types of queries can be answered automatically by training a

new pedestrian classifier in a short time. In this chapter, I also formulate the concept

of “response-time” that I used throughout our models, using the test cases of online

training based on presence or absence of classifier, type of training (scratch or domain

adaptation), and kind of training data (with or without bounding boxes). Lastly, I divide

problem “How can we answer user queries online consisting of seen (bounded vocabulary)

as well as unseen subscriptions (unbounded vocabulary) that include processing of mul-

timedia events while achieving high accuracy and minimizing the response-time, where

the training of classifiers may or may not have bounding box annotations available?” in

specific research questions addressed by proposed models.

Chapter–3 analyzed state of art for IoMT based systems and presented visions of IoMT

in light of IoT. Efficient deep neural network-based object detection models could prove

to be an asset for training unseen concepts in IOMT. Background of object detection

and fully annotated datasets with their comparative analysis is also provided in this

chapter. Due to the limited vocabulary of object detection datasets, existing deep neural

network-based models cannot be used to train large vocabulary models.

Chapter–4 first described the generalizable multimedia event processing using event pro-

cessing. Next, I detailed its scenarios adhering to seen/unseen concept problem identi-

fied using three conditions, namely “Is the concept Unseen?”, “Any similar Seen concept

available?”, and “Are Bounding Boxes inaccessible?”. Finally, the rationale for proposed

models using their associated scenarios is discussed along with their contributions that

mainly lie in optimizing online testing (for Model I) and online training (for Model II,

III, and IV) time to reduce the overall response-time for multimedia event processing.

Among different presented scenarios, the first model (Model-I, Chapter–5) analyzes the

foremost basic scenario related to the arrival of seen (i.e., familiar) subscriptions. Here,

the main contribution includes a multimedia stream processing engine with a neural

network-based event matcher using a “detect” operator and an optimization technique

focused on reducing the testing (inference) time. In the “classifier division and selection”

based optimization approach, Model-I selects only domain-specific classifiers to process

subscriptions. For instance, the “car” classifier (single class classifier) will be chosen by

the proposed model to detect a car. The associated publication to this chapter is [32].

Chapter–6 is focused on the scenario of completely unseen subscriptions. Here, the main

contribution consists of an adaptive architecture for multimedia event processing and

response-time based strategies with their respective prototypes by tuning hyperparame-

ters for the optimized training. Since the choice of hyperparameter values dramatically

affects the performance of resulting classifiers, I leverage hyperparameter tuning based
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techniques that include the configuration of learning-rate, batch-size, and the number

of epochs for minimizing the response time. The associated publication to this chapter

is [33].

Chapter–7 covers the scenarios of unseen subscriptions where domain adaptation is fea-

sible. Here, I provided the evident solution of reducing response-time by introducing the

notion of adaptation among classifiers (either inter or intradomain) for partial unseen

concepts. In this work, I mainly instantiated the online classifier learning model by

transferring knowledge among classifiers using fine-tuning and freezing layers of object

detection models. The associated publication to this chapter is [34]; a paper titled “De-

tecting Seen/Unseen Concepts while Reducing Response Time using Domain Transfer

in Multimedia Event Processing” is under submission in the IEEE Access.

Chapter–8 investigated the last scenario where bounding box annotations maybe not be

available to train object detection models on unseen concepts. In this work, I proposed

an “Unseen Detector” that can be trained within a short time for any unseen class with-

out bounding boxes with competitive accuracy. Unseen concepts are fine-tuned on the

strong baseline detector using only image-level labels and further adapted by transfer-

ring the classifier-detector knowledge between baselines. We use semantic and visual

similarities to identify the source class (i.e., Sheep) for the fine-tuning and adaptation of

unseen class (i.e., Goat). The associated publication to this chapter is [38], and a paper

titled “UnseenNet: LSDA-based Fast Training Detector for Unseen Concepts with No

Bounding Boxes” is under submission in IEEE TPAMI.

The summary of conclusions derived by extensive experiments of our proposed models

is discussed in the below section.

9.2 Conclusions

In this work, an adaptive approach for multimedia event processing has been proposed,

using domain knowledge transfers while online classifier construction of object detection

models to handle unseen subscriptions in low response-time. The proposed model has

been optimized at various stages using classifier division and selection, tuning of hyper-

parameters, and transfer of domains based techniques with and without bounding boxes.

The performance is enhanced in terms of the accuracy of processing unseen subscriptions

with the reduction in response-time in each model step. We describe below the derived

conclusions from each model along with their associated hypotheses.

Hypothesis-I: If we construct N-Class classifiers for different domains, and

we use subscription constraints to choose closely related classifier for the
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processing of multimedia events; the performance will get enhanced in terms

of accuracy and response time, and will also add the ability to generalize for

multiple domains.

The first model (Chapter–5) related to domain-specific classifier based multimedia event

processing interprets this research hypothesis. I performed experiments on three types

of classifiers: single class, N-class, and 80-class classifiers to validate this hypothesis.

The 80-class classifier serves the purpose of a general classifier having all 80 classes of

Microsoft COCO consisting of multiple domain categories. Single-class classifiers are

constructed the same way as binary classifiers, predicting whether a particular class

is present in an image. For N-class classifiers, we prepared events (using Microsoft

COCO) sets consisting of events related to four separate domains, i.e., traffic, sports,

home, animals, and one mixed domains event stream. Here the value of “N” depends on

the application domain, which is taken as 8, 9, 17, 10, and 44 for traffic, sports, home,

animal, and mixed classifier, respectively.

The evaluations found that the domain-specific (N-Class) classifiers consistently outper-

form the other classifiers (general purpose and single-class classifiers) with an average

throughput and accuracy of 110 fps and 66.34%, respectively. The high average through-

put of N-Class classifiers on event streams for the concepts presents in classifiers and

achieving high accuracy on different domains signifies the generalizability, efficiency, and

effectiveness of the proposed model for real-time applications. Further, we varied the

value of N from 1 to 80 (i.e., 1-class classifier, 2-class classifier, 3-class classifier, and so

on); and I demonstrated the system’s performance would decrease from 115fps to 107fps

with an increase in the number of classes per classifier. In addition to the accuracy, I

also verified the high precision and recall of N-class classifiers to prove optimization.

Hypothesis-II: If tuning of hyperparameters based technique is useful in ma-

chine learning models to speed-up the training, decrease the computation

cost, and increase the accuracy; then performance will get enhanced for low

response-time also even on training from scratch for unseen subscriptions

on tuning hyperparameters for the online construction of classifiers.

Model-II (Chapter–6) based on hyper-parameter based adaptive multimedia event de-

tection validate this research hypothesis. I verified the hypothesis by performing experi-

ments before and after adaptation (i.e., without and with the tuning of hyperparameters)

on completely unseen concepts. First, I analyzed the trade-off between response time

and performance (mAP) using default hyper-parameters on object detection models

YOLO, SSD, and RetinaNet [35–37]. Then I identified and changed the configuration

with hyperparameters to adapt the object detection models for low response time.
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I observed that the accuracy of each model before adaptation increases after adaptation

for two strategies S1: Minimum Response Time needed while Minimum Accuracy al-

lowed and S2: Optimal Response Time needed while Optimal Accuracy allowed. Specif-

ically, it increased from 0.00% to 5.66%, 10.08% to 47.32%, and 64.66% to 79.00% for

YOLO, SSD, and RetinaNet, respectively for S1. Correspondingly, for S2, the accu-

racy of YOLO increased from 79.16% to 82.82%, SSD slightly changed from 54.79% to

54.81%, and RetinaNet considerably increased from 74.87% to 84.28%. Please note in

strategy S1, I considered the training time of 15 min, and S2 covers the training time

of 60 min. The enhancement in performance on such low training time of object detec-

tion models on the tuning of hyperparameters proves the proposed hypothesis of online

construction of classifiers in low response-time.

Hypothesis-III: If transferring of knowledge from one domain to another

(say A → B) can improve the performance as compared to fine-tuning of

pre-trained models (like CPImageNet→B) or training of classifier from scratch

(CB); then there will always be a decrease in response-time with increase

in accuracy of constructed classifier (CA→B) than the classifier trained from

pretrained model (like CPImageNet→B) or training from scratch (CB).

Model-III (Chapter–7) designed for domain adaptation based multimedia event detection

model give proof of this research hypothesis. To prove the hypothesis, I compared object

detection models using mean average precision (mAP) and response time as performance

metrics. We trained models on three training techniques (i.e., training from scratch,

fine-tuning of pre-trained models (like CPImageNet→B), and direct domain transfer (from

A → B)) for 120 min. I observed that in all object detection models, i.e., YOLOv3,

SSD, and RetinaNet, I get the mAP of 0.1, 0.12, and 0.16, respectively, on direct domain

transfer within a response-time of 0min which strongly supports our hypothesis. Since we

aim to compute the best performance while minimizing response-time, I choose YOLOv3

as it performs better among all models at most of the short training time. I found

that for the short training time (like 30min), YOLOv3 with freezing technique (mAP

' 0.50) performs best while its fine-tuning counterpart achieves mAP ' 0.11, which also

supports our hypothesis.

Hypothesis-IV: If an adaptation of classifier into detector eliminates the

need of bounding boxes as well as transferring of knowledge from one do-

main to another speed-up the training; and a detector gets constructed from

classifier with the help of transfer of knowledge from visually/semantically

similar classifier; then that detector will take less time to train for unseen

classes and eliminate the requirement of bounding boxes.
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Model-IV (Chapter–8) focused on domain adaptation without bounding boxes testify

this research hypothesis. The hypothesis has been validated through experiments of

the proposed “UnseenNet” model. I consider 100 seen classes (present in Pascal VOC,

Microsoft COCO, and OpenImages dataset) and 100 unseen classes (present in ILSVRC)

for evaluation. I compared the performance of the UnseenNet against LSDA, semi-

supervised LSDA, and an oracle detection network. Here, the oracle detection network

assumes that bounding boxes for all “unseen” categories are available. However, the

LSDA model uses the classifier-to-detector conversion method to eliminate the need for

bounding boxes while using visual/semantic knowledge transfer after training and not

during the training. Semi-Supervised also follows the same approach as LSDA while

using improved versions of visual similarities. Contrarily, UnseenNet uses a classifier

to detector conversion method, train while transferring knowledge from one domain to

another (i.e., from seen to unseen classes), and adapt after training. Due to this reason,

LSDA reached mAP 16.33 in 5.5 hours of training, and improved LSDA achieved mAP

20.03 in > 5.5 hours. However, the UnseenNet reached the mAP 19.82 within only 5 min

of training without the need to bounding box annotations. Moreover, the oracle network,

which gets trained on bounding boxes, reached the mAP 28.59 while taking > 120 hours.

These results state the advantage of using transfer learning for the fast training of unseen

class classifiers and the use of classifier to detector methods to eliminate the need for

bounding boxes, verifying the hypothesis.

9.3 Core Contributions

The contributions of this work can be summarized as follows:

Problem Formulation for the Multimedia Event Processing using Online

Classifier Training: We formulated the problem of processing multimedia events

for dynamic subscriptions (concepts) using domain-specific classifiers, online training,

and transfer learning-based large-scale domain adaptation approaches for covering the

requirement of generalizability and supporting seen/unseen subscriptions in reduced

response-time.

Neural Network based Matcher with “DETECT” Operator: We proposed a

neural network-based event matcher for processing multimedia events and optimized it

using subscription constraints, with the provision of a “detect” operator in event query

languages to support expressly object detection.
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Standardization of objective function “Response-Time”: We standardized

the objective function “Response-Time” for the adaptive multimedia event processing

and provided response-time based strategies with their respective prototypes by tuning

hyperparameters for the real-time classifier training.

Adaptive Framework for Online Classifier Construction: We presented an

adaptive architecture for online classifier construction to minimize the response-time

and maximize the accuracy.

Instantiation of Online Classifier Learning model using Fine-tuning & Freez-

ing Neural-Network Layers: We instantiated the adaptive online classifier learning

model by transferring knowledge among classifiers using fine-tuning and freezing layers

of neural network-based object detection models.

Evaluation of Proposed Models using Object Detection methods with Response-

Time & Accuracy: We enhanced the performance of object detection models

(YOLO, SSD, and RetinaNet [35–37]) for processing multimedia events on dynamic

(seen/unseen) concepts belonging to Pascal VOC, Microsoft COCO, and OpenImages

datasets [26–28], which achieved:

• an accuracy of 66.34% with permissible response-time of 2-hours in domain-specific

classifier based multimedia event detection approach.

• an accuracy of 84.28% within 1-hour response-time by using hyperparameter tuning

based multimedia event detection approach.

• an accuracy of 95.14% within 30-min of response-time while using domain adap-

tation based multimedia event detection approach.

UnseenNet: LSDA based Detector with Online Training using only Image-

Level labels: We proposed LSDA based detector, “UnseenNet”, for the training of

unseen classes using only image-level labels, i.e., training with no bounding box annota-

tions. This model utilized the fastest classification and detection models (unlike LSDA)

while using object detection and image classification datasets consisting of limited vo-

cabulary.
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Derivation of Minimum and Maximum limits of Response-Time for Weakly

Supervised Learning: Besides devising a fast detector UnseenNet, we also derived

the limits of response-time from 5-min to 20-min in the area of weakly supervised learning

(i.e., training with no bounding boxes), where existing frameworks take >5.5-hours to

attain similar mAP.

9.4 Limitations & Open Questions

The research conducted in this thesis opens multiple dimensions and thus also recognized

the following emerging limitations with associated questions:

• Subscriptions are only Keywords: Presently, we allowed subscriptions that

consist of only keywords, and we have not explored the expressive power of event

processing languages. Thus our model would fail to support any query consisting

of any complex operation within subscriptions.

• Quality of Data: Since we used standardized object detection and image classifi-

cation datasets, our models’ performance is not known for images captured under

different conditions like weather conditions, light, low-resolution images, etc. What

will be the impact of noise in terms of the accuracy and response time for such

images is still an open question. Moreover, if we download image data from the

Web, then in-spite of using certified GoogleImageDownloader, there are chances to

get some unreliable data. Presently, we are checking whether the image is corrupt

in our models before training, but how beneficial it would be the pre-checking the

content of the image is not the scope of our work. And, consequently, what will

be the time complexity of such security measures is essential to look at before

incorporating them.

• Tuning of model-specific hyperparameters:In the hyperparameter-based model,

we are changing only optimization hyperparameters (learning rate, batch size, and

the number of epochs) recommended by experts to tune for effective training. How-

ever, we believe it would be worth analyzing model-specific hyperparameters fixed

by neural-network-based models like architecture, image size, dropout, number of

layers, etc.

• Baseline Detectors are trained offline: Strong and Weak Baseline detectors

in “UnseenNet” are trained offline on 100 classes, and there is no provision of

adding more classes in them in the future. What will be its effect on performance

if we make their training dynamic (online) also. Moreover, how unseen classes’
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performance would change with an increase in the number of classes in baseline

detectors. Since baseline detector classes are chosen from available classes of ob-

ject detection datasets which are very limited in number, there was no scope for

considering the unique classes which are very different from each other. This limi-

tation could be reduced by utilizing the detectors constructed by “UnseenNet” for

different unseen classes.

• Space Complexity: We constructed classifiers one by one on request of unseen

concepts. In our case, 1 million classifiers would take 1TB space. However, sup-

pose the proposed model would be used with other computationally expensive

object detection models; in that case, it may take more or maybe less space, de-

pending on the object detection model’s robustness. Other than analyzing the

space complexity problem, it could be useful to analyze our model’s performance

with a multi-class classifier construction option. However, we assume multi-class

classifiers would be beneficial only on receiving the request of multiple unseen

concept-based subscriptions.

9.5 Future Research Directions

Some exciting areas that are derived from our work and useful for future research are as

follows:

• Evaluation on Videos/Music: The multimedia event processing model that we

proposed is generic and could work for videos or music-based multimedia data other

than images by introducing a video/music-based multimedia based operators. It

would be interesting to see the efficiency of proposed architectures other data and

train classifier online for their unseen classes.

• Inclusion of Multi-Class classifiers: Investigation of training time of multi-

class classifiers in contrast to binary classifiers is also a reasonable future direction

to make the proposed approach more effective in terms of time and space.

• Enhancement of Resources: Presently, I used the most recent object detection

models SSD [36], YOLO [35], and RetinaNet [37] for experiments. However, I

assume it will be easy to incorporate new models with the proposed system in the

future. This may require input, and output formats of object detection models

should be the same. MMDetection 1 and Detectron 2 are open-source object de-

tection toolboxes that could also be used for the interoperability of the proposed

1https://github.com/open-mmlab/mmdetection
2https://github.com/facebookresearch/Detectron
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system. Similarly, for the online toolkits, I mainly used OpenImages 3 and Google

Images Downloader 4. However, other toolkits like ImageNet Utils 5, Bing Scrap-

per 6, Flickr Photos 7, etc., can also be used by calling their functions from the

downloading module (specified in Chapter–8).

• Effect of Size of Training/Testing Dataset: In the present scenario, we used

all available training images with bounding boxes of object detection datasets to

train seen classes. However, current object detection datasets are biased towards

few classes, and consist of a very uneven division of the number of images per class.

The same is the case for testing the dataset. We believe it would be beneficial to

use an equal number of images for each class while training and testing and derive

the performance change.

• Visual/Semantic Similarity: As we stated in the “UnseenNet” model, we con-

sidered only the naive visual and semantic similarities to keep the response time

low. We computed the Euclidean distance between the weights of the last layers

of neural networks for the visual similarities. However, Tang et al. [30] proposed a

new visual similarity measure that could also be incorporated into our UnseenNet

in the future. Moreover, for the semantic similarity, we found the path vector of

WordNet [29] more relevant in terms of unseen class differences, other than lch,

wup, res, lin, jcn, etc. Since our work lacks the quantitative proof of path vector

effectiveness, other operators or natural language processing-based methods also

deserve investigation for effective multimedia event processing.

• Scalability: The ability of the event processing model to adapt with increasing

load is referred to as scalability in literature. It is also described in event processing

systems with the increase in the number of subscribers/subscriptions. Analyzing

the scalability of the proposed multimedia event processing model and adding an

adaptation module is a simple and worthwhile future direction for the deployment.

• Devising of Neural-Network for Unseen Classes: We incorporated the Mo-

bileNet within YOLOv3 for fast detection with fast classification. Adapting this

network itself by changing (Adding/Deleting) layers may or may not reduced the

training time on the cost of accuracy.

• Infinite Vocabulary based Object Detection Dataset with no need of

Bounding Boxes: Our work also initiates an enhancement scheme for existing

3https://github.com/EscVM/OIDv4 ToolKit
4https://github.com/hardikvasa/google-images-download
5https://github.com/tzutalin/ImageNet Utils
6https://github.com/funpokes/bing-image-search
7https://www.flickr.com/services/api/
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object detection and image classification datasets having bounded (finite) vocab-

ulary to turn it into the unbounded (infinite) vocabulary. With the use of our

UnseenNet, millions of detectors can be trained for new classes, which then can

create object detection datasets on testing by producing bounding boxes for im-

ages of new classes. Our contribution to this idea will open a new paradigm in the

field of object detection datasets.

• Response-Time based Strategies: We have conducted experiments using min-

imum, maximum, and optimal response-time based strategies since those were

highly distinguishable among themselves in analysing the best performance on

the detection of multimedia events. We may also design more strategies in the

future based on a higher rate of change, approximately-zero-response time, and

constant-accuracy.

• Approximation of Subscriptions/Events: Optimization of subscriptions and

event streams is another area for future research, which requires the knowledge

modeling of IoMT generated data. We covered the optimization of subscriptions

based on commonalities, which could be replaced with approximate event process-

ing. Optimization of multimedia events could also be incorporated by dropping the

repetitive frames in the multimedia streams. Such optimizations will contribute

towards the effectiveness of our proposed approach in smart cities.

• Unsupervised Learning for Unseen Classes: Our weakly-supervised learning-

based model “UnseenNet” can also be extended in the future for unsupervised

learning to reduce the need for data for the large number of nearest-neighbor seen

classes and computation of similarities for unseen classes.
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[235] Juan Carlos San Miguel and José M Mart́ınez. Robust unattended and stolen

object detection by fusing simple algorithms. In 2008 IEEE Fifth International

Conference on Advanced Video and Signal Based Surveillance, pages 18–25. IEEE,

2008.

[236] Jermsak Jermsurawong, Mian Umair Ahsan, Abdulhamid Haidar, Haiwei Dong,

and Nikolaos Mavridis. Car parking vacancy detection and its application in 24-

hour statistical analysis. In 2012 10th International Conference on Frontiers of

Information Technology, pages 84–90. IEEE, 2012.

[237] Piyush Yadav and Edward Curry. Vidcep: Complex event processing framework

to detect spatiotemporal patterns in video streams. In 2019 IEEE International

Conference on Big Data (Big Data), pages 2513–2522. IEEE, 2019.

[238] Tony CT Kuo and Arbee LP Chen. Content-based query processing for video

databases. IEEE Transactions on Multimedia, 2(1):1–13, 2000.

[239] Chenglang Lu, Mingyong Liu, and Zongda Wu. Svql: A sql extended query lan-

guage for video databases. International Journal of Database Theory and Appli-

cation, 8(3):235–248, 2015.



Bibliography 208
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for hyper-parameter optimization. In Advances in neural information processing

systems, pages 2546–2554, 2011.

[242] Shai Shalev-Shwartz and Yoram Singer. Online learning: Theory, algorithms, and

applications. PhD thesis, Hebrew University, 2007.

[243] Ekaba Bisong. Batch vs. online learning. In Building Machine Learning and Deep

Learning Models on Google Cloud Platform, pages 199–201. Springer, 2019.

[244] Gang Luo. A review of automatic selection methods for machine learning algo-

rithms and hyper-parameter values. Network Modeling Analysis in Health Infor-

matics and Bioinformatics, 5(1):18, 2016.

[245] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-

weka: Automated selection and hyper-parameter optimization of classification al-

gorithms. CoRR, abs/1208.3719, 2012.

[246] Brent Komer, James Bergstra, and Chris Eliasmith. Hyperopt-sklearn: automatic

hyperparameter configuration for scikit-learn. In ICML workshop on AutoML,

volume 9, page 50. Citeseer, 2014.

[247] Yue Wu, Steven CH Hoi, Chenghao Liu, Jing Lu, Doyen Sahoo, and Nenghai Yu.

Sol: A library for scalable online learning algorithms. Neurocomputing, 260:9–12,

2017.

[248] Burr Settles. Active learning literature survey. Technical report, University of

California, Santa Cruz., 2009.

[249] Brendan Collins, Jia Deng, Kai Li, and Li Fei-Fei. Towards scalable dataset con-

struction: An active learning approach. In European conference on computer

vision, pages 86–98. Springer, 2008.

[250] Nicholas Roy and Andrew McCallum. Toward optimal active learning through

monte carlo estimation of error reduction. The International Machine Learning

Society (ICML), Williamstown, pages 441–448, 2001.

[251] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report,

University of WISCONSIN–Madison, 2005.



Bibliography 209

[252] Bozidara Cvetkovic, B Kaluza, M Luštrek, and Matjaz Gams. Semi-supervised
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