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Development of a data driven FDD approach for building water networks: 15 

Water Distribution System Performance Assessment Rules   16 

ABSTRACT 17 

While fault detection and diagnosis is a popular tool in the process industry, its application in building 18 

water distribution systems is however still largely absent. In this study, a new set of Water Distribution 19 

System Performance Assessment Rules (WDSPARs) were developed to identify common faults in a 20 

building water distribution system. The WDSPARs comprise a three-phase process which can be 21 

applied using flow and pressure sensor signals obtained in real-time and/or via analysis of historic data 22 

in conjunction with knowledge of water distribution system layouts. The performance assessment rules 23 

originated from analysis of behaviour in water consumption at two non-residential pilot sites over a 6 24 

month trial. Implementation of WDSPAR at the two pilot studies revealed a number of faults and cases 25 

of non-optimal performance which were diagnosed and costed accordingly. The WDSPAR approach is 26 

intuitive and can be easily integrated into existing building management systems using sensor data. This 27 

study serves as the first practical guide for the implementation of the WDSPAR approach for adoption 28 

by large non-residential building end-users. Using the WDSPARs, the case studies outlined in this paper 29 

demonstrate 62% savings in water consumption which resulted in energy and carbon emission savings 30 

of the order of 50 kW.hr and 29.9 kg.CO2 per day respectively.   31 

Keywords: Rule Based; Fault detection and diagnostics; Flow signature; non-residential building 32 

water distribution systems; smart meters; Waternomics. 33 
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1. Introduction 35 

1.1. Overview 36 

Building services such as water distribution systems (WDSs), Heating Ventilation Air Conditioning 37 

(HVAC) systems and other electrical services are subject to failure. These can often go unnoticed for 38 

extended periods of time until deterioration results in noticeable increases in operational costs, 39 

significant resource wastage, loss of comfort and a disruption in day-to-day activity (Schein et al, 2006). 40 

The failures are termed system “faults”, generally defined as a departure from an acceptable range of 41 

an observed variable or a calculated parameter (known as a redundancy) associated with a process 42 

(Himmelblau, 1978). Fault detection and diagnosis (FDD) is the approach whereby system faults or 43 

failures are detected, isolated, and guidance on measures to remediate the problem is provided. The 44 

application of FDD methodologies is common in the control and automation community and has been 45 

successfully applied in industrial disciplines including; chemical and petrochemical processes 46 

(Himmelblau, 1978), the automotive industry (Ahmed et al, 2015), the aerospace industry (Zolghadri 47 

et al, 2010), heating ventilation and air conditioning (HVAC) systems (House et al. 2001; Schein et al, 48 

2006; Bruton et al., 2013), wind farms (Yang et al., 2010; Yu et al, 2018) and water and wastewater 49 

treatment processes (Baggiani  et al., 2009; Corominas, 2011). 50 

In recent years, with increasing energy and water costs coupled with the advent of smart metering 51 

technologies (Clifford et al, 2017), and advanced metering infrastructures (Dai and Gao, 2013), there 52 

has been a growing need for FDD in water distribution systems (WDSs) (Ragot and Maquin, 2006; 53 

Izquierdo et al, 2007; Gertler, 2010; Lee et al, 2012; Curry et al., 2014). Faults in WDSs can include 54 

mechanical failures such as malfunctioning pumps, actuators or heating elements, control sensor issues 55 

including data drift, loss of data or loss of communication and sensor uncertainty, water quality issues 56 

(e.g. stagnation), non-optimal performance, water leakage and other forms of unanticipated continuous 57 

flows. The latter two faults are the most common types of issue in municipal WDSs where it has been 58 

reported that 25 – 35 % of water is lost in the WDS due to leaks (BIO Intelligence Service, 2012; 59 

Kingdom et al., 2006; Choi et al, 2017). Non-optimal performance of a system can result from a fault 60 

which has gone unnoticed for extended periods of time or from inefficient use of water. Over an 61 

extended period of time, despite non-optimal performance, this may be regarded by an FDD system as 62 

‘normal operation’. For example, in the context of HVAC systems it has been long accepted that key 63 

savings in the future will be obtained mainly through optimal control (Bruton et al., 2013; Hyvarinen 64 

and Karki, 1996). Thus, it is essential that an FDD methodology adopts relevant approaches to update 65 

the rule set and thresholds after the system has been optimised. 66 

In general, leaks and wastage are said to account for a significant portion of water demand. For example, 67 

20 to 40% of Europe’s water is said to be wasted (BIO Intelligence Service, 2012; Choi et al, 2017) due 68 

to poor infrastructure, consumer negligence and lack of proper resource management while 270 billion 69 



litres of water losses per day occur in the United States alone (Hendrickson and Horvath, 2014). Because 70 

a municipal WDS captures and aggregates building level water usage activity (which in Europe 71 

accounts for 21% of the total water usage (BIO Intelligence Service, 2012), it can be assumed that a 72 

sizeable portion of the leaks or wastage may manifest within building (both non-residential and 73 

residential) WDSs. Thus, there is a scope for significant leak reduction by ensuring FDD practices are 74 

encouraged at the end-user level. Furthermore, due to the strong nexus between water and energy use, 75 

it is said that up to 7% of global energy use is associated with the treatment, delivery and disposal of 76 

water (James et al. 2002; Hendrickson and Horvath, 2014). Thus, it is apparent that there is also 77 

significant scope to reduce energy demand and associated greenhouse gas emissions associated with 78 

the water sector. Apart from leak detection and mitigation, FDD could also facilitate further 79 

performance improvements through identification of areas of poor system performance and other 80 

consumption ‘hot spots’ where optimisation measures can induce significant water and energy savings 81 

in buildings. Prognosis of minor problems before they become major problems is also a strong 82 

component of FDD (Schein et al, 2006).  83 

However, to date it appears that no, systematic FDD approaches are available for WDSs in buildings 84 

that cover a wide range of fault conditions simultaneously. To address this, an FDD approach must be 85 

practical and intuitive such that the approach can be easily implemented to impact building resource 86 

efficiency. In this article, a set of Water Distribution System Performance Assessment Rules 87 

(WDSPARs) which can be coupled to general WDS optimisation practices, were developed to deliver 88 

the primary constituent of a fault detection, diagnostics and optimisation tool for application in the 89 

domain of residential and non-residential buildings. The study discusses how a rule based approach can 90 

be developed and integrated in the context of WDSs where two case studies were analysed for six 91 

months using the proposed WDSPAR methodology. The WDSPARs were applied manually to 92 

demonstrate FDD over the initial six-month period where the detection algorithm was compared to 93 

known reported faults in the network. Example faults are also presented in this paper together with 94 

potential water and energy savings that may be acquired through WDSPAR FDD implementation. 95 

2. A Review of Fault Detection and Diagnostics Approaches  96 

As building services systems develop, service infrastructure is becoming so complex that the average 97 

operator/end-user faces difficulty in interpreting operational behaviour and identifying underlying 98 

problems (Clifford et al. 2017). For example, if a problem exists in a WDS, existing building 99 

management systems (BMSs) currently available to monitor water usage do not support FDD 100 

(Hyvarinen and Karki, 1996; Clifford et al. 2017). Moreover, despite comprehensive water monitoring 101 

methods (Clifford et al. 2017), existing faults may go undetected for extended periods of time resulting 102 

ultimately in non-optimal performance as discussed previously. These ‘unknown’ faults would not be 103 

detectable without an external monitoring system. To avoid this, the operator should continuously 104 



monitor the process and identify defective systems, sub processes or components (Hyvarinen and Karki, 105 

1996; Clifford et al. 2017) as well as seek expert advice on system optimisation. This section will focus 106 

on the available methods, tools and application of FDD in (i) the general process industry and (ii) WDSs.  107 

2.1. Classification of FDD methods 108 

Various FDD methods have been widely classified by Venkatasubramanian et al, (2003a, 2003b and 109 

2003c) into three distinct categories: (i) quantitative model-based methods, (ii) qualitative model-based 110 

methods and (iii) process history, data driven methods as outlined in Figure 1 where the latter is also 111 

referred to as model-free approach (Nozari et al, 2018). Venkatasubramanian et al.’s (2003a, 2003b and 112 

2003c) review is a comprehensive and generalised appraisal of FDD state-of-the-art in the process 113 

control industry. The aforementioned categories have also been considered through (i) model based 114 

FDD, (ii) signal based FDD and (iii) knowledge based (history-data-driven) FDD by Dai and Gao 115 

(2013). Each category will be discussed briefly in this section.  116 

 117 

Figure 1.  Fault Detection and Diagnostics Methods; Adopted from Venkatasubramanian et al (2003) 118 
 119 

Quantitative model-based FDD has become the mainstream of research since the 1980s (Dai and Gao, 120 

2013). In the quantitative model based approach, use is made of a mathematical model (𝑀) together 121 

with a model parameter (𝜃) that classifies the generated residual (𝑅). The residual is the difference 122 

between a parameter defining the normal mode of operation and analyses of real-time (or quasi real-123 

time) values of the parameter that designate the ‘current’ status. In other words, the residual is the 124 

difference between a certain water usage metric (e.g. flow, pressure, temperature) and its average value 125 

during normal operation. WDS system output (i.e. flow sensors) is fed into the FDD process engine 126 

which generates a residual based on comparing the measured data to the models predictions 127 

(Venkatasubramanian et al, 2003a; Dai and Gao, 2013). Once this residual exceeds a critical threshold, 128 



an alarm is triggered to indicate a fault.  Quantitative model-based approaches can be further sub-129 

divided into parameter estimation (Young, P., 1981; Issermann, 1984), Parity relations (Gertler and 130 

Singer, 1990) and observer/filter based approaches (Frank and Ding, 1997). 131 

In contrast to quantitative approaches, qualitative models are based around qualitative functions 132 

(Venkatasubramanian et al, 2003b). There are fundamentally two methods: topographic search and 133 

symptomatic search (Venkatasubramanian et al, 2003b). Topographic search approaches perform FDD 134 

using a template or signature for normal operation and are therefore quite similar to signal-based 135 

methods outlined by Dai and Gao (2013). Thus, in a WDS, qualitative FDD could be adopted based on 136 

known water usage flow signatures (Clifford et al., 2017). Symptomatic searches look for symptoms to 137 

direct the FDD search to the origin of the fault. These are often termed a ‘shallow’ search given that the 138 

FDD system does not have a deep physical understanding of the systems behaviour.  139 

Process history (model-free) based FDD employs a ‘learn-by-example’ mechanism based on process 140 

history data. This type of approach is mostly applicable in systems which are too complicated to have 141 

an implicit/explicit system model or qualitative search approach. The process history based approach is 142 

often enabled by artificial intelligence and machine learning (Ntalampiras, S., 2014) which acquires 143 

knowledge from empirical data to determine normal, fault-free operating conditions and subsequently 144 

to monitor system redundancies for faults during the faulty system state.  145 

2.2. Industrial Applications of FDD  146 

A common application of FDD is in mechanical services of commercial buildings, namely HVAC 147 

systems. These relate closely to WDSs given the dependence on fluid flow and heating. Determination 148 

of building key performance indicators often depend on HVAC metrics such as energy efficiency, 149 

indoor air quality, comfort and reliability is becoming an increasingly difficult process calling on the 150 

need for higher more advanced FDD techniques and practices. For example, Haberl and Claridge (1987) 151 

developed an expert system for building energy consumption analysis. Anderson et al, (1989) utilised 152 

a statistical analysis pre-processor to screen incoming data and estimated system operating parameters 153 

coupled with a rule-based expert system which analysed system redundancies on an hourly basis. House 154 

et al., (1999) classified a range of approaches for FDD in air handling units and observed that the Bayes 155 

classifier is most suitable for fault-detection while a rule-based approach is most suitable for diagnosis. 156 

Schein and Bushby (2006) developed a rule-based, system-level FDD approach which provided an 157 

interface between equipment specific FDD and a human operator.   158 

 159 

In the chemical industry, data driven methods include principal component analysis (Russell et al., 160 

2000; Jiang, 2013), fisher discriminant (Chiang, 2000), canonical variate analysis (Russell et al., 2000), 161 

partial least squares (Leo, 2000). A comprehensive summary of techniques and practices in the context 162 

of chemical engineering is provided by Russell et al (2012). FDD has also seen extensive application 163 



in the aerospace industry (Kiyak et al, 2010), metal production (Hongm, 2009), wind farms (Yang et 164 

al., 2010) and water and wastewater treatment processes (Baggiani et al., 2009; Corominas, 2011; 165 

Fuente et al, 2012) using quantitative, qualititiave and process history based approaches. Hybrid 166 

approaches have also been studied (Venkatasubramanian et al, 2003a) as frequently no single method 167 

has all the desirable features required (Parvanov, 2016). 168 

2.3. FDD in Water Distribution Systems – State-of-the-Art 169 

Isermann (1984) provided an early review of FDD methods in fluid flows using two examples of a 170 

centrifugal pump parameter and leak detection in a pipeline. It was observed that physical methods for 171 

locating leaks such as ground penetrating radar, infrared spectroscopy, hydrostatic testing and acoustic 172 

devices could be outperformed by simpler methods for leak detection in the WDS. For example, a 173 

simple balance between day and night water demands may reveal data anomalies directly indicative of 174 

a leak (Pudar and Liggett, 1992). In recent years there have been advances in developing FDD for WDS. 175 

Advanced sensor technologies and modelling techniques evolved over time, which helped to identify 176 

and rectify WDS faults (Perfido et al., 2016). Also, model-free approaches using machine learning is 177 

becoming topical in the area of WDSs at the municipal scale. For example, Ntalampiras, S., (2014) 178 

developed a holistic modelling scheme for fault identification in distributed sensor (pressure and flow) 179 

networks of the Barcelona WDS. Their approach was able to understand whether the data anomalies 180 

belong to the fault dictionary, are fault-free, or represent a new fault type. Key studies in this field and 181 

their key findings and knowledge gaps are summarized in Table 1 in chronological order. However, as 182 

can be seen in this Table, there are little to no studies carried out on a non-residential building water 183 

network. Moreover, the studies tend to focus their FDD approach on a specific fault category (for 184 

example leaks). In a non-residential building water network however, wide variations of faults of can 185 

occur simultaneously which would be difficult to address using the techniques outlined in these studies. 186 

Therefore, the authors identified that there is a gap for a practical, fault catalogue and performance 187 

assessment rule set for intuitive application in building WDS as is proposed in this study. 188 

 189 
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Table 1. Review of literature pertaining to FDD in water distribution system 199 

Reference Objective Method Key findings Knowledge gaps 

Colombo & Karney, 

2002 

Characterizing energy and 

water loss of a leaky pipe 

Derivation of analytical 

parameters relating to leak size 

and location using EPANET 

Percentage increase in energy 

cost was found to be a 

function of leakage  

Focused on tying energy costs to 

head loss in pipes than on the leakage 

impacts on pumps.  

Colombo & Karney, 

2003 

Pipe breaks and the role of 

leaks from an economic 

perspective 

Analytical expression for 

sizing and locating leaks in a 

pipe defined by energy 

consumption and hydraulic 

transients  

Pressure management and life 

cycle analysis can be used to 

improve the leaks and water 

system performance and 

efficiency  

Focused on relating energy cost to 

leakage in pipes than the faults in 

entire WDS. There is a need to take 

into account life cycle analysis   

Colombo & Karney, 

2005 

Impact of leakage in 

systems with storage on 

energy use 

Analysis of leakage impacts on 

pumps and energy costs of 

three WDS configurations: two 

with storage tanks at different 

points and one without storage  

Storage does not guarantee 

lower energy consumption 

and in some cases higher if 

tank water levels and 

pressures are high.  

Results derived from hypothetical 

systems and very much system 

specific. Non-optimal performances 

are not considered  

Eliades & 

Polycarpou, 2010 

Development of 

mathematical framework 

for control, fault diagnosis 

and security of WDS 

Mathematical problem 

formulations, which included 

state-space representation of 

contaminant propagation and 

reaction dynamics along with 

impact dynamics. Single and 

multi - objective evolutionary 

algorithm optimization for 

optimum sensor placement in 

networks 

It was found that a suitable 

number of sensors can be 

estimated for sensing the 

impacts caused by water 

contamination, thus avoiding 

impacts  

This approach mainly dealt with 

water contamination faults and 

lacked focus on leaks and other 

pipeline faults.  

Gertler et al., 2010 Methodology to detect and 

localize leaks in a regional 

water distribution network   

Application of principal 

component analysis (PCA) and 

structured residuals to diagnose 

faults  

The developed methodology 

was successfully applied to a 

case study water network  

Dimensionality problem due to PCA 

was limited by disturbances in nodes. 

Also could not overcome the 

problem of spatial separation of 

faults from normal data  

Isermann, 1984 Review of FDD methods 

in fluid flows 

Review and example 

illustration of FDD of CF pump 

by parameter monitoring and 

Process fault detection and 

diagnosis methods improve 

the overall reliability and 

Methods developed for one fault type 

may not be suitable for another and 

vice versa, therefore several methods 

to be used in parallel 



leak detection for pipelines by 

special correlation method  

safety of processes to a high 

degree 

Izquierdo et al., 2007 Suitable state estimation 

for diagnosis of leaks and 

faults in a large water 

supply system  

Deterministic and neuro fuzzy 

based mathematical model for 

clustering and pattern 

classification 

The ability of the model to 

correctly detect water losses 

depended not only on the 

magnitude, but also on the 

importance of the pipeline.  

Small continuous water losses were 

not correctly identified and affected 

by noise in the data 

Perfido et al., 2016 FDD in an airport WDS Hydraulic modelling of the 

WDS using EPANET to train 

an Anomaly Detection with fast 

Incremental ClustEring 

(ADWICE) algorithm 

The developed approach was 

useful when multiple 

parameters are considered 

simultaneously to determine 

faults.  False positive rate, 

detection rate and accuracy 

results indicate good 

functioning of the model 

The results described were for 

simulated training scenarios with 

synthetic faults and would be 

different for a real case scenario  

Perez et al., 2009 Detecting and locating 

leaks in WDS using an 

efficient mathematical 

model 

Pressure sensitivity analysis 

using integrated DMA, 

flow/pressure sensor data and 

hydraulic models 

Non-optimal distribution of 

sensors caused poor results in 

real test.  

Pressure drops due to leaks in a 

highly looped network are not 

identified and uncertainties in 

demands cause errors 

Pudar & Liggett, 

1992 

Leak detection in WDS Solving inverse problem using 

measurements of pressure 

and/or flow 

Continuous measurements of 

pipe flow/pressure increases 

effectiveness of leak 

detection 

Method not suitable for leak 

detection by static methods and is 

data intensive 

Quevedo et al., 2014 Diagnosis/isolation of 

leaks in critical 

infrastructure systems like 

water, gas & electricity 

networks with centralized 

control systems 

Two stage system integrating 

data validation and 

reconstruction techniques with 

‘Learning in the Model Space’ 

for effective fault diagnosis. 

SVMs are used in model space 

for fault detection/isolation 

Combined spatial and time 

series models successfully 

detected communication 

faults in tele-control system 

and learning in the model 

space successfully 

implemented by fitting 

generative models 

Requires more in-depth studies of 

different generative (fitted) models 

and learning algorithms which best 

suit the proposed framework 

Ragot & Maquin, 

2006 

Faults and abnormal 

system operation detection 

and isolation on urban 

water network 

Fuzzy residual analysis, which 

used the analytical redundancy 

to detect and isolate faults on 

sensors and based on this 

Found that there existed a 

high proportion of 

simultaneous faults in real 

processes. Fuzzy reasoning 

Difficult to handle simultaneous 

faults in a real process, which 

requires further research. Also, non-



approach a supervision 

software was developed  

could be well adapted to 

uncertain data and model 

cases and alleviated 

difficulties in implementation 

of supervision procedure  

optimal performances were not 

studied 

Soldevila et al., 2016 Optimal placement of 

pressure sensors for leak 

detection in water 

networks 

Simulations using different 

sensor configurations and using 

that data train k-Nearest 

Neighbours (k-NN) and neuro-

fuzzy classifiers. Use of 

Genetic Algorithms (GA) to 

obtain the optimal 

configuration 

Obtained sensor 

configuration using the 

methodology maximized leak 

isolation ability. For a 

moderate population size, GA 

provides better performance 

than Exhaustive Search 

Algorithm  

Suitable for moderate population 

sizes only. The effectiveness of the 

method needs to be examined in a 

real WDS 

Ntalampiras, S., 

2014 

Develop a holistic 

modelling scheme for 

fault identification in 

distributed sensor 

(pressure and flow) 

networks 

Hidden Markov model (HMM) 

trained 

on the parameters of linear 

time-invariant dynamic 

systems 

The approach was able to 

understand whether the data 

anomalies belong to 

the fault dictionary, are fault-

free, or represent a new fault 

type. 

Relatively difficult to implement by 

practitioners or end-users without in 

depth knowledge into the Hidden 

Markov model approach  

200 



To date the majority of FDD research studies regarding WDS were applied to large scale urban water 201 

supplies (Pudar and Liggett, 1992; Perez et al, 2009; Vento and Puig, 2009; Ragot and Maquin, 2006, 202 

Ntalampiras, S., 2014) as opposed to building water networks (Perfido et al., 2016). The majority of 203 

these studies exclusively focused on leak detection and there has been limited work on the adoption of 204 

FDD as a method for system optimisation. Furthermore, there is a distinct lack of application of FDD 205 

in residential and non-residential (commercial and domestic) buildings. Thus, this study presents a 206 

simple set of water distribution system performance assessment rules (WDSPAR) for the purpose of 207 

fault detection, diagnosis and building water network optimisation. The study presents these rules in 208 

the context of two non-residential case study buildings and evaluates the water and energy saving 209 

outcomes of these rules within the case-studies. 210 

3. Methodology 211 

3.1. WDS Description: Two Pilot Sites 212 

Two pilot sites were used as part of this study; Pilot Site 1 – a large school facility and Pilot Site 2 – a 213 

university building facility. Both pilot sites underwent a preliminary evaluation over the course of 6 214 

months to determine normal operational conditions (Clifford et al., 2017). The Pilot Site 1 water system 215 

(see Supplemental Figure 1) was fed primarily from a single mains water supply (MWS) which supplied 216 

(i) potable water, (ii) a 6 m3 cold water storage tank and (iii) the domestic hot water (DHW) circuit in 217 

the building. The cold water storage tank supplied the cold water supply (CWS) to all cold water end-218 

uses (taps, showers etc.). The water infrastructure also housed a rainwater harvesting system which 219 

collected rain water run-off from surfaces in a 37 m3 underground storage tank and pumped it to a 9 m3 220 

grey water storage tank in the attic which in turn fed the grey water supply (GWS). This system supplied 221 

toilets and urinals. The MWS provided a back up to the grey water storage tank during dry-periods. The 222 

water infrastructure was monitored by 14 in-line water meters (B-Meters, Italy: meter model type 223 

varied) equipped with a magnetic pulse output. The in-line displacement meters recorded data at a 224 

frequency of 1 pulse/litre. The measurement error for the inline meters was dependent on the level of 225 

flow with a maximum reported error value of ± 5 %. A programmable logic controller (PLC) logged 226 

data at 7.5 minute intervals which was stored on a cloud database.  227 

The Pilot Site #2 WDS comprised a system of pressurised copper pipes supplied principally by the 228 

MWS (see Supplemental Figure 2). The rainwater harvesting system comprised a 75 m3 tank which 229 

collected rainwater and subsequently pumped it to two header tanks (8 m3 each) located on the east and 230 

west side of the building’s roof. The GWS conveyed grey water to the toilets and urinals in the building 231 

by gravity. The MWS fed both cold water supply and DHW and provided a top-up to the RWH system 232 

when required. The water network was fitted with 11 in-line positive displacement meters (B Meters, 233 

Italy) fitted with a magnetic pulsed output and 8 ultrasound flow (USF) meters (VTec, Netherlands). 234 



The in-line displacement meters recorded data at a frequency of 1 pulse/litre. The building management 235 

system (BMS) logged data from 8 of the in-line meters at 7.5 minute intervals and the remaining 3 in-236 

line meters at 15 minute intervals. During this study, the velocity and flow were reported at a high-237 

resolution of one second intervals. More details on the pilot sites are provided in Clifford et al. (2017) 238 

and www.waternomics.eu.  239 

3.2. Water Distribution System Performance Assessment Rules (WDSPAR) Methodology 240 

There are mainly three types of approaches in FDD as used by various studies, which are quantitative, 241 

qualitative and process history as discussed in Section 2.1 and outlined in Figure 1. For relatively 242 

complex building services such as HVACs, which have a broad range of operating conditions (Schien 243 

and Bushby, 2005), rule-based approaches can offer a number of advantages including transparency 244 

and adaptability (Tzafestas, 1989; Viser, 1999; Schien and Bushby, 2005). Essentially, Rule Based 245 

approaches fall under the category of process history FDD and adopt a mixture of qualitative and 246 

quantitative techniques.  House et al. (2001) and Schien and Bushby, (2005) demonstrated how rule 247 

based approaches can be effective for HVAC systems; given the complexity of WDS in large buildings 248 

this approach may offer greater capabilities for FDD.  249 

The rule set and methodology developed in this study was named “Water Distribution System 250 

Performance Assessment Rules” (WDSPAR) - analogous with the HVAC Air handling unit 251 

Performance Assessment Rules (APAR). The WDSPAR (outlined in Figure 2) is not just a rule set but 252 

is also a methodology comprising three phases: Phase 1 – Assessment and Threshold Selection, Phase 253 

2 – Performance Monitoring and Phase 3 – Diagnosis as described in detail in the following sections. 254 

 255 

Figure 2. Flow chart of WDPSAR methodology outlining (a) 3 Phases and (b) the fault detection rule checking 256 

algorithm 257 



3.2.1 Phase 1: Assessment and Threshold Selection 258 

As outlined in Figure 2, Phase 1 of the WDSPAR process involves a comprehensive review of the 259 

existing WDS status through the analysis of WDS physical layout, historical data, water meter readings 260 

and the implementation of a water audits where appropriate. The current WDS monitoring infrastructure 261 

should be assessed to determine if additional sensors or meters should be installed. Then, using installed 262 

water usage sensors, Phase 1 is used to establish the normal water usage baseline activity prior to FDD 263 

intervention. Such baseline activity can be characterised by daily water usage data, diurnal flow patterns 264 

and high-resolution flow signatures which are described extensively by Clifford et al. (2017). Based on 265 

the established normal operating conditions, the residual during new operating conditions and a relevant 266 

threshold for the residual is used to notify the system of a fault and its severity. The threshold for the 267 

residual can be specified using one of two approaches: 268 

1. Heuristic Methods: Expert knowledge from initial assessment is employed whereby the fault 269 

alarm level is adjusted/tuned by trial and error (Dexter and Pakanen, 2001) 270 

2. Statistical Methods: Determined from confidence intervals and hypothesis testing using 271 

estimates of means and standard deviations (Dexter and Pakanen, 2001).  272 

A statistical approach is formulated and adopted in the current study to determine  residuals (for 273 

example, quantifiable variations in flowrate) between new and normal fault-free operating conditions 274 

as it provides the greatest opportunity to leverage detailed and robust data from water meters within 275 

buildings. The residual threshold, if exceeded, can then indicate abnormal flow conditions ultimately 276 

leading to the detection of faults. The WDSPAR also utilised high level occupancy information, which 277 

informs when water usage activity should be expected in a building. In this study occupied status is 278 

defined using Boolean logic, where 1 indicates that the building is occupied and 0 indicates that it is 279 

unoccupied. This analysis was performed manually in this study. Indeed, a next step would be to 280 

integrate automated data querying and analytics into a programmable logic controller to compile the 281 

multiplier, average, standard deviation in a similar approach to manual analytics.  Some human 282 

intervention through a domain expert may always be necessary, however.  283 

3.2.2 Phase 2: Performance Monitoring 284 

In Phase 2 water usage information is queried either on a historic or real-time basis to determine any 285 

deviations from the WDS normal behavioural state to determine non-optimal flow conditions, system 286 

faults or component faults. In this study the algorithm outlined in Figure 2 was developed to achieve 287 

this. As the rule checking algorithm initiates at the required time interval, it first queries new data and 288 

performs the required spatial or temporal data aggregation (Clifford et al., 2017). The status of the 289 

building (e.g. occupancy) and environment (e.g. rainfall) is then confirmed and comparisons with the 290 

relevant rulesets (Section 3.4) are used to determine if faults or non-optimal performance may be 291 

occurring.  292 



3.2.3 Phase 3: Diagnosis and Repair 293 

Phase 3 required fault diagnosis through fault definition and isolation, ultimately leading to repair. In 294 

this study the building water networks were represented using Dendrograms to aid the fault diagnosis 295 

and isolation process (detailed in Section 5.1). The signature of the abnormal usage activity was then 296 

linked to the relevant water meter at the lowest point of the Dendrogram hierarchal structure to help 297 

isolate the approximate location of the fault without the requirement for a manual search within the 298 

WDS. Once the fault had been isolated and repaired, the building reverted to the Phase 2 state. Whereas, 299 

if non-optimal performance has been detected, the WDS is optimised accordingly and the WDSPAR 300 

process returns to a Phase 1 state due to the fact that new water usage baselines may need to be obtained 301 

(see Figure 2 flow chart).   302 

3.3. WDSPAR Data Requirements 303 

In general, WDSPAR requires one or more of the following data: 304 

• Water consumption volumes via metering (aggregated over the required duration – e.g. hourly 305 

or daily water consumed); 306 

• Water consumption rates 𝑄𝑡 via metering (at suitable time intervals); 307 

• Real time pressure sensor signals 𝑃𝑡; 308 

• Occupancy information (1 for occupied, 0 for unoccupied); 309 

• Tank storage water level sensors; 310 

• Tank water storage information (sizes, volumes); 311 

• Water network layout. 312 

3.4. WDSPAR Preliminary Rule Set 313 

The rule set introduced in this study was developed on the basis of hydraulic logic and simple mass 314 

flow balance considerations across meters and sensors located at various locations in the WDS. These 315 

are based on the performance variables defined in Table 3 and the current study mostly leveraged data 316 

from flow meter sensor readings.  Regarding cases where the sensor is of the ‘mass flow meter’ type 317 

(i.e. an inline or ultrasonic flow meter) the meter readings can either be an instantaneous flow reading 318 

𝑄 at time stamp 𝑡 or a volume aggregation over a time interval ∆𝑡. In the latter situation, the flowrate 319 

for time stamp 𝑡 is assumed to be averaged over ∆𝑡 such that 𝑄𝑡
𝑚 =  𝑉𝑡

𝑚/∆𝑡.  320 

 321 

 322 

 323 

 324 



Table 2. Performance variables for WDSPAR methodology 325 

Parameter Description Unit 

𝑃𝑡
𝑚 = pressure at time stamp 𝑡 at meter 𝑚 kNm−2 

𝑄𝑡
𝑚 = flowrate at time stamp 𝑡 at meter 𝑚 m3s−1 

𝑉∆𝑡
𝑚 = volume accumulated over an interval ∆𝑡 at time stamp 𝑡 at meter 𝑚 m3 

𝑉𝑡
𝑚

𝑛𝑜𝑟𝑚
 = baseline water usage volume aggregated over time ∆𝑡 at time stamp 𝑡 m3 

𝑄𝑡
𝑚

𝑛𝑜𝑟𝑚
 = baseline water usage flowrate at time stamp 𝑡 m3s−1 

𝑇 = duration of observation  s 

∆𝑉 = volume change  m3 

∆𝑡 = aggregation interval or sampling rate of the meter s 

𝑉𝑡+∆𝑡 = volume accumulated at time stamp 𝑡 + ∆𝑡 m3 

𝜀𝑡 = critical volume usage residual threshold - 

𝑞𝑡 = critical flowrate residual threshold - 

𝜀𝑂𝑠𝑡 = threshold unoccupied to occupied water usage ratio - 

𝑘 = threshold factor  - 

𝑄𝑡 𝑖𝑛
𝑚𝑖 , 𝑄𝑡 𝑜𝑢𝑡

𝑚𝑗
 = flow in, out of meter 𝑖, 𝑗 m3s−1 

𝑄𝑅𝑊𝑆, 𝑄𝑀𝑊𝑆 
= flow in rainwater harvesting system (RWS) or mains water system 

(MWS) 
m3s−1 

𝑉𝑡 𝑎𝑐𝑐
𝑚 , 𝑉𝑝𝑖𝑝𝑒

𝑚  
= volume accumulated at meter over time 𝑡 and volume of pipe section 

leading to water fountain 
m3 

𝑂𝑠𝑡  =  0, 1 = occupancy status where 0 is unoccupied and 1 is occupied - 

𝑇𝑑 , 𝑇𝑛 = day time and night time durations s 

𝑅 = residual (e.g. 𝑅 = 𝑉𝑡
𝑚 − 𝑉𝑛𝑜𝑟𝑚

𝑚 ) Varies 

 326 

The preliminary rule set for the WDSPAR is outlined in Table 4 together with a brief description of 327 

each rule.  328 

  329 



Table 3. Preliminary rule set for the WDSPAR 330 

Fault 

Description 

Rule 

No. 
Detection Rule Description 

Manual 

Observation 

Low pressure 

(Prognosis) 

1 𝑃𝑡
𝑚 < 𝑃𝐿𝐶𝑟𝑖𝑡 

Pressure readings are monitored in 

real time to detect a drop below 

critical threshold 

N/A 

Visual, auditory 

sign of escaped 

water or evidence 

of structural 

damage 

2 𝑄𝑡
𝑚 < 𝑄𝐿𝐶𝑟𝑖𝑡 

Flowrate readings are monitored in 

real time to detect drop below critical 

threshold 

High pressure 

(Prognosis) 
3 𝑃𝑡

𝑚 > 𝑃𝐻𝐶𝑟𝑖𝑡 

Pressure readings are monitored in 

real time to detect exceedance of 

critical threshold 

N/A 

Continuous 

flow (Leak) 

4 |𝑉𝑡
𝑚 − 𝑉𝑛𝑜𝑟𝑚

𝑚 |  > 𝜀𝑡 

Difference/residual (between volume 

used during time ∆𝑡 at time stamp 𝑡 

and the baseline volume) exceeds the 

critical volume usage redundancy 𝜀𝑡 

N/A 

N/A 

N/A 

N/A 

5 |𝑄𝑡
𝑚 − 𝑄𝑛𝑜𝑟𝑚

𝑚 |  > 𝑞𝑡 

Difference/residual (between flowrate 

at time stamp 𝑡 and the baseline 

flowrate) exceeds the critical flowrate 

residual𝑞𝑡 

6 
∑ 𝑄𝑡

𝑚
. 𝑇𝑛 𝑓𝑜𝑟 𝑂𝑠𝑡  =  0 

∑ 𝑄𝑡
𝑚

. 𝑇𝑑 𝑓𝑜𝑟 𝑂𝑠𝑡  = 1
 ≥ 𝜖𝑂𝑠𝑡 

Ratio of night time 𝑇𝑛 (𝑂𝑠𝑡  =  0 ) to 

day time 𝑇𝑑 (𝑂𝑠𝑡  =  1 ) volume usage 

exceeds the critical occupied status ratio 

7 (
𝑉𝑡+1 − 𝑉𝑡

𝑇𝑡+1 − 𝑇𝑡
) > 𝑘

∆𝑉

𝑇 𝑛𝑜𝑟𝑚
 

Volume consumption accumulated 

over a time period 𝑇𝑡+∆𝑡 − 𝑇𝑡 exceeds 

the normal volume accumulation by a 

factor 𝑘 

Tank 

overflow 
8 𝑄𝑡 𝑖𝑛

𝑚𝑖 ≥ 𝑄𝑡 𝑜𝑢𝑡

𝑚𝑗
 

Flow into tank exceeds flow leaving 

the tank 

Reports from 

shower and 

kitchen users 

Potable water 

retention time 
9 𝑉𝑡 𝑎𝑐𝑐

𝑚 ≤ 𝑉𝑡 𝑝𝑖𝑝𝑒
𝑚  for ∆𝑡 =  𝑡𝐶𝑟𝑖𝑡 Real-time N/A 

 331 

Similar to Schien et al., (2006), a fault is detected when a rule is resolved to ‘Yes’. Rules 1, 2 and 3 rely 332 

on the a ‘critical’ or a hard ultimate threshold which if exceeded (or undershot) will immediately 333 

indicate a fault as is a requirement for flow shortage or high/low pressures in a network. The critical 334 

threshold should generally be established using the heuristic methods as outlined in Section 3.2.1. Rules 335 

4 to 7 use thresholds (𝜀𝑡, 𝑞𝑡, 𝜖𝑂𝑠𝑡, 𝑘) which are determined from datasets obtained within Phase 1. This 336 

study proposes a robust threshold selection process to limit Type I errors (where a type I error is the 337 

rejection of a true null hypothesis also known as a "false positive" finding). In order to reduce sensitivity 338 

to false positives, a dual alarm process is established by using two thresholds. For example, in Rule 4 339 

the threshold redundancy 𝜀𝑡 is defined by |𝑉𝑡
𝑚 − 𝑉𝑛𝑜𝑟𝑚

𝑚 | (i.e. the difference between the current water 340 

volume consumption and the normal ‘baseline’ usage conditions). For a population size 𝑛 of water 341 

usage within a dataset (i.e. statistically similar datasets can be clustered  - see Clifford et al., 2017; 342 

Cardel-Oliver, 2013), the threshold levels were set by defining a multiplier 𝛾𝑙 to the standard deviation 343 

𝜎 of the dataset as follows: 344 



 𝜀𝑡1
= 𝛾1 × 𝜎 (for a level 1 alarm) (1) 

 𝜀𝑡2
= 𝛾2 × 𝜎 (for a level 2 alarm) (2) 

where 𝛾1 and 𝛾2 are then derived from exceedance probabilities of 0.002 and 0.01 respectively 345 

representing 1/500 and 1/100 water usage events. These values were adopted as deemed suitable for 346 

municipal building studies, however the values are site specific and may change for other end-users 347 

such as industrial water use where water usage thresholds may be tighter.  A Level 1 alarm occurs when 348 

a single flow event has been exceeded significantly (i.e. when 𝜀𝑡1
 is exceeded indicating an abnormal 349 

peak flow event) whereas a Level 2 alarm takes advantage of the time series nature of the flow data, 350 

with an alarm being triggered when two consecutive days have daily flow exceedance probabilities of 351 

0.01 i.e. two consecutive 1 in 100 daily flow events which is archetypal of a continuous flow 352 

phenomenon developing. An example of threshold selection is provided in Section 4 and examples of 353 

fault anomalies, detectable using this dual alarm approach, for a daily water usage time series is outlined 354 

in Figure 3.  355 

 356 

Figure 3 Example of the dual alarm approach to (a) exceptional usage detection and (b) continuous 357 

flow detection 358 

(a) 

(b) 



4. Phase 1 Case Study Application: Assessment of Normal Usage Conditions and 359 

Threshold Selection  360 

A 6-month evaluation period was used to evaluate normal operational conditions at each pilot. As 361 

displayed in Figures 4(a) and 4(b), daily water consumption time-series were established for each meter 362 

in order to determine the typical daily water usage baselines and diurnal flow signature patterns. During 363 

this initial phase, anomalies experienced in the flow trace were tied with evidence of known faults and 364 

non-optimal usages occurring within the pilot and were subsequently removed from the data set to 365 

ensure the data represented normal operating conditions.  366 

 367 

 368 

Figure 4. Medium resolution flow traces for the main water supply line of (a) pilot site # 1 and (b) pilot site #2 369 

highlighting each sub-cluster: Grey = Normal weekday, Pattern filled = Friday and Black = weekend usage.  370 

Through statistical analysis, it was found that the data was normally distributed within three clusters: 371 

(1) weekdays (Monday to Thursdays) (2) Fridays and (3) weekends; a summary of the baseline usage 372 

data is presented in Table 4 for both pilots. The normality of each individual data cluster was confirmed 373 

using the Anderson-Darling test, with a p-value of 0.05 and via histograms and Q-Q plots. The mean 374 

(baseline) daily water usage 𝑉𝑑 and standard deviation 𝜎𝑑 for each daily flow cluster was then 375 

calculated. Further application of ANOVA to weekday groups (Monday, Tuesday, Wednesday and 376 

Thursday) indicated that there was no difference between each of the group means (Clifford et al., 377 

2017). 378 

Critical daily flow volume thresholds were then derived based on the statistical method proposed in 379 

Section 3.4. The alarm threshold redundancies 𝜀𝑡1
 and 𝜀𝑡2

 for Alarm Levels 1 and 2 respectively are 380 

outlined in Table 4 and were determined from a single tail test. It is important to note that a two-tailed 381 

approach could be implemented for cases where water usage may fall below a minimum threshold, this 382 
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would then result in threshold multipliers of 3.10 and 2.58 for alarm level 1 and 2 respectively. Such a 383 

scenario could be suitable for applications such as programmed water usage in the process water 384 

industry and machinery water usage. For the current study, a fault in both pilot studies would be 385 

characterised by an excessive flow as opposed to a minimum flow.  386 

Table 4: Summary of baseline statistics and threshold values for the dual alarm approach for both pilot 387 

sites 388 

Detail Notation 

Pilot Site #1 Pilot Site # 2 

Cluster 

1 2 3 1 2 3 

Average daily flow volume (m3day-1) 𝑉𝑑  4.42 2.73 0.00 43.29 36.76 25.50 

Daily standard deviation usage ( ± m3) 𝜎𝑑 0.40 0.27 0.00 4.74 2.40 1.99 

Level 1 Redundancy Threshold* 𝜀𝑡1
= 2.9𝜎 1.16 0.78 0.00 13.75 6.96 5.77 

Level 2 Redundancy Threshold ** 𝜀𝑡2
= 2.3𝜎 0.92 0.62 0.00 10.90 5.52 4.58 

Cluster 1 = Monday to Thursday, Cluster 2 = Friday, Cluster 3 = Weekend 

* 𝛾2 = 2.9 representing a 1 in 500 day flow event determined from a one tailed test. Upper usage threshold is 

𝑉𝑑 + 𝜀𝑡1
. One-day exceedance can indicate an exceptional usage event which may be due to a fault or non-

optimal water usage 

* 𝛾2 = 2.3 representing a 1 in 100 day flow event determined from a one tailed test. Upper usage threshold is                

𝑉𝑑 + 𝜀𝑡2
. Exceedance over one day indicates a peak usage event (possibly exceptional usage) and two 

consecutive days (or more) can indicate a continuous flow or leak. It may also indicate short periods of 

abnormally high occupancy in some buildings. 

 389 

5. Results and Discussion: Case Study FDD and Optimisation (Phase 2 and 3) 390 

As this study provides the first comprehensive catalogue and rule set for characterizing faults in a non-391 

residential building, the results and discussion of the paper will be by way of practical examples from 392 

each pilot study as outlined below to demonstrate how the rule set can be applied accordingly.  393 

5.1. Example 1: Rain Water Harvesting System Fault (Rule 1, 2, 3 and 8) 394 

Rainwater harvesting systems have been shown to provide significant savings in building water supplies 395 

by offsetting mains water usage with harvested rainwater (Grant et al, 2012). The rainwater harvesting 396 

system at Pilot Site #2 was in a non-operational status for a number of months as a result of a faulty 397 

pressure sensor which was used to control pumping from the collection tank to the distribution tanks at 398 

roof level. This was established primarily through Rule 8 where a flow was present despite the fact that 399 

a full status was recorded in the storage tanks. Analyses of the meter readings on the line conveying 400 

flow to the grey water tank top-up also showed no activity for a number of months despite ongoing 401 

rainfall conditions (see rainfall distribution in Figure 5). Notification of the pressure sensor fault 402 

resulted in the replacement of the unit on the 26th November 2016. Figure 5 highlights the impact of the 403 

repaired rainwater harvesting system on the global building water usage averaged on a weekly basis. 404 



Following periods of sufficient rainfall (as displayed by the dotted line in Figure 5), up to 33 % of total 405 

mains water usage was saved.   406 

 407 

 408 

Figure 5. Variation of mains water usage as a before and after the repair of the rain water harvesting system. 409 

Mains water usage is presented on a daily and weekly basis alongside the local rain fall intensity. 410 

What was particularly useful about the failure of the rainwater system was also its effect on non-optimal 411 

performance of the grey water end-users. For example, in this case it was found that urinals in the 412 

building consumed 0.8 m3/hour of grey water. During dry periods, or during times when the rain water 413 

harvesting system was not operational as described previously, this quantity of mains water was 414 

equivalent to an annual cost of €12,045 to the building. From a manual investigation of the urinal flush 415 

rate, it was determined that each of the 16 urinals in the building flushed 25 times per hour 416 

(approximately 2 litres utilised per flush). Furthermore, it was observed that the quantities of mains 417 

water used to top-up the grey water tanks in Pilot Site #2 were significantly in excess of rain water 418 

supply from rain water tank – despite there being ongoing rainfall in this period (see Figure 5 and Figure 419 

6).  Subsequent to this analysis grey water usage conditions in the pilot site were subsequently reduced 420 

using more efficient urinal operation conditions.  Although this particular example was not exemplar of 421 

any of the aforementioned rule sets, it demonstrates WDS optimisation and significant savings that can 422 

be gained through end-use insight.  423 
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 424 

Figure 6. Comparison of water meter readings at Pilot Site #2 indicating the consumption stresses imposed on 425 

the existing rainwater harvesting system. 426 

5.2. Example 1: Continuous Flow 1 – Resolved Historically (Rules 4, 5, 6 and 7) 427 

A continuous flow is defined by a large and relatively constant use of water maintained for 24 hours or 428 

more and are typically attributed to a leak(s) but can also be attributed to non-optimal water usage 429 

(Cardell-Oliver, 2013; Clifford et al., 2017). As a result, they are generally straighforwarward to detect 430 

from a mains water meter when the data is either aggregated on an hourly or daily basis. Figure 7(a) 431 

provides typical mains water flow trace obtained for the MWS of Pilot Site #1 wherby a continuous 432 

flow event was observable for 21 days in March 2016. By imposing the dual alarm approach threshold 433 

for Rule 4 (Table 3), it was possible to identify from historic data the day on which the fault occurred. 434 

In the current example a value of 𝑉𝑐𝑟𝑖𝑡= 𝑉𝑑 + 𝜀𝑡2
= 5.34 m3 was imposed. One alarm may simply 435 

indicate that the fault was a peak usage whereby a consecutive alarm on the following day (and 436 

subsequent days) indicated the likelihood of a continuous flow occurring. To compliment this threshold 437 

checking method, Figure 7(b) presents a time series of the residual (𝑅 = 𝑉𝑡
𝑚 − 𝑉𝑛𝑜𝑟𝑚

𝑚 ). The anomaly was 438 

also identifiable by a sharp departure of the redundancy away from the optimal value of 𝑅 = 0. The 439 

value of  𝑅 also marks the severity of the peak or continuous flow. Finally, a third approach to 440 

identification of the anomaly which can complement the latter two identification methods is outlined in 441 

Figure 7(c) using a volume usage accumulation chart. Here, the slope of the volume accumulation 𝑉𝑎𝑐𝑐 442 

over a certain time interval provides an indication of the normality of water usage conditions (Rule 7). 443 

A significant deviation of this slope was also observed with the change of slope being indicative of the 444 

severity of the anomaly (e.g. for 𝑘 = (
𝑉𝑡+1−𝑉𝑡

𝑇𝑡+1−𝑇𝑡

) 
𝑇

∆𝑉𝑛𝑜𝑟𝑚
where 𝑘 ≈1 normal conditions apply and 𝑘 > 1 445 

outlines excessive usage conditions). The consumption accumulation method is also helpful for 446 

determining the cost of a fault as it occurs or when it lapses. For example, as shown in Figure 7(c), the 447 

identified fault resulted in a loss of approximately 210 m3 of mains water.  448 
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 451 

Figure 7. Fault detection of a continuous flow anomaly within the WDS using (a) threshold checking (Rule 4), 452 

(b) Redundancy monitoring (Rule 4) and (c) volume accumulation method through the dimensionless slope (Rule 453 

7) 454 

It was possible to diagnose the above fault by tracking and isolating its approximate location using a 455 

Dendrogram-like hierarchal description of the water network complimented by the available data for 456 

each water meter as depicted in Figures 8(a) – (e). In this approach, the signature of the continuous flow 457 

was identified in the mains water meter. These meters are highlighted in the Dendrogram (Figure 8(a)) 458 

and thus indicated that the water consumption was isolated to within the GWS sub-system. The 459 

signature did not appear on any further meter data sets in the GWS indicating that the fault was located 460 

on an unmetered connection in this region. The fault was attributed to a defective toilet cistern 461 

responsible for conveying a continuous flow of approximately 0.6 m3/hour.  462 
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Figure 8. (a) Representing the WDS using a Dendrogram combined with meter time series (b) MWS (c) MWS 463 

(d) GWS and signature matching to isolate and diagnose faults.  464 

5.3. Example 2: Continuous Flow 2 – Day Time to Night Time Usage Ratio (Rules 4, 5, 6 and 465 

7) 466 

Similar to Example 1, a second continuous flow fault was observed in Pilot Site #1 using the dual alarm 467 

approach. This was found to increase the mains water usage to approximately 10 m3 per day. An 468 

alternative method to detect such a fault would be to consider the balance between occupied and 469 

unoccupied water consumption which was proposed by Pudar and Liggett (1992) as a simple and robust 470 

leak detection method. This is outlined in Table 4 by Rule 6. 471 

To implement this Rule, use is made of occupancy information obtained in Phase 1. A flow trace of the 472 

fault occurring in Pilot Site #1 is outlined in Figure 9 where flow readings at 7.5 minutes intervals were 473 

recorded. The Boolean status of the pilot site across the time series by a 1 or 0 on the secondary vertical 474 

axis. As can be seen, normal operation is observed between 10/05 and 14/05 where 𝜖𝑂𝑠𝑡  varied 475 

between 0.14 and 0.2. However, from the 16/05, the ratio between nighttime and day time flows 476 

increased to  𝜖𝑂𝑠𝑡 ≈ 1 to 2 (i.e. night time equated to more than half the total usage). Similar dual alarm 477 

conditions can be applied to 𝜖𝑂𝑠𝑡 in order to desensitise the fault detection scheme to Type I and Type 478 

II errors. 479 
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 481 

Figure 9. Detection of a fault by considering the occupied and unoccupied water usage activity using the Boolean 482 

status outlined in Table 1.  483 

5.4. Example 3: Continuous Flow 3 - Tank Overflow (Rule 7) 484 

This example demonstrates a fault that may normally go undetected due to the low levels of water loss, 485 

however such a fault may result in a significant water loss due to its persistence in the long-term. The 486 

fault was found to result in a relatively small continuous flow which was identified due to continuous 487 

top-up of the grey water storage tanks. Figure 11 (a) shows the flow trace for Pilot site #2 between 488 

January and December 2016 (which comprises the initial monitoring period where baselines were 489 

established – Table 3). It was determined that the fault originated between the 2nd and 3rd of September; 490 

however, due to the small increase of flow amounting to an additional 3.5 m3 consumed each day (7 % 491 

of total usage), it was relatively difficult to discern the activity in the aggregated, daily flow trace as is 492 

evident by Figure 11(a). Thus, the statistical thresholds of the dual alarm approach may be sufficiently 493 

large such that the fault activity would be masked. However, combining the volume accumulation 494 

method (Rule 7 together with the dimensionless slope of the curve, it was possible to observe the 495 

anomaly occurring on the September 2nd as 𝑘 values exceeded unity for a sustained period. The analysis 496 

found that a fault existed in a solenoid valve leading to the inlet of a rainwater supply tank. 497 
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 499 

Figure 11. (a) Medium resolution flow traces for the main water supply in Pilot site #2 highlighting the variation 500 
of the average normal day water usage from the 6 month assessment stage (𝑉𝑎𝑣𝑔 ≈ 43.3 m3day-1, SD = 4.74 m3day-501 
1), 4 months summer period (𝑉𝑎𝑣𝑔 ≈ 38 m3day-1) and return of students in the first semester (𝑉𝑎𝑣𝑔 ≈ 47 m3day-1) 502 
where the increase of water usage was found to be as a result of a tank over flow fault. Figure 11(b) outlines fault 503 
detection using the dimensionless slope method (Rule 7). Example 6: Potable Water Retention Time (Rule 9) 504 

It is advised that a potable water system should be designed such that water does not stagnate at any 505 

position of the WDS (BS EN806).  Within large building water networks it has been found that drinking 506 

water fountains can be sporadically used and this can lead to water being stagnant in pipe feeding these 507 

systems. As a result, a simple algorithm was developed which can be integrated into water meters used 508 

to monitor potable water fountain usage. The decision tree of the algorithm (Rule 9) is outlined in Figure 509 

12 (a) and simply requires knowledge of the pipe volume (length and diameter) connecting the mains 510 

supply to the fountain. If the consumption in the fountain is small such that water is resident in the pipe 511 

for relatively long periods, an alarm will indicate that preventative action is required (e.g. flushing of 512 

the network by opening the required fountain for the required period). An example of the algorithm 513 

applied in Pilot Site #2 building water network is outlined in Figure (12(b)). In this case, the meter in 514 

question required two separate checks to ensure that the water was safe for drinking due to its position 515 

in the water network - Figure 12(b). A conservative approach identified that a critical time of 48 hours 516 

be imposed in that rule set (i.e. potable water remaining static in the pipe system for over 48 hours be 517 

discharged).  518 
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 519 

Figure 12. (a) General water retention time algorithm and (b) water retention time check algorithm applied to two 520 

fountains on the same water supply line of Pilot Site #2 521 

5.5. Example 8: Non-Optimal Performance 1 – Showers Water Usage 522 

By using distinct flow signature patterns of shower activity observed on the high-resolution flow traces 523 

(as per Clifford et al., 2017), it was possible to evaluate the shower activity occurring in a typical day 524 

in Pilot Site #2. A total of 145 shower events were isolated in the WDS and it was found that there are 525 

approximately 12 – 18 showers events per day (between 7.00 am and 10.30 am). From this dataset, the 526 

average shower time was found to be 5.8 minutes (minimum and maximum of 1.5 and 15 minutes 527 

respectively) with an average of 200 litres consumed per shower (minimum and maximum volumes 528 

consumed 50 and 660 litres respectively). The average usage of 200 litres is approximately 4 times 529 

larger than that used in a domestic shower. This significant usage was reinforced with anecdotal reports 530 

of high pressure and excessive flows experienced in the showers facilities. In order to optimise and 531 

reduce the flow conditions in the shower facilities, it was proposed that the existing showers be fitted 532 

with water saving heads which could reduce water flows from 87.5 litres/min to 20 litres/min. When 533 

implemented, it was estimated that the overall shower usage in the engineering building (consisting of 534 

both pumped and heated water) was reduced from 9.45 m3/day to 2.16 m3/day rendering a saving of 77 535 

% in heated water. 536 

6. Discussion of the WDSPAR Approach: Water-Energy Nexus 537 

From a comprehensive assessment of the WDS for the two case studies, it was found that the WDSPAR 538 

introduced a methodical, easy to understand and implement rule set that could be used to diagnose faults 539 

and non-optimal performance in the WDSs. The use of smart meters positioned throughout the network, 540 

together with the initial assessment phase, resulted in increased transparency of the networks normal 541 

and seasonal operational behaviour. The rule set developed exposed numerous faults throughout both 542 

pilot sites during the monitoring period; eight of which were discussed in this study. The rules also 543 

(b) (a) 



helped to suggest instructions on corrective action to be taken in a simple and understandable way. A 544 

summary of resources lost due to faults are outlined in Table 4 (Note: Fault # refers to examples 1 to 8 545 

outlined in section 4).   546 

Table 5: Summary of resources lost due to faults and non-optimal performance within the WDS 547 

Fault Description 
Rate 

(per) 

Volume 

Consume

d (m3) 

Water 

Cost1  

(€) 

Energy 

(see references) 

(kWh) 

Energy 

Cost2  

(€) 

Carbon 

emissions 

(kg.CO2) 

Comment 

Reference 

Continuous Flow 1 

Faulty Cistern 

Daily 11.0 20.5 18.8 3.4 11.2 3 

Event 210.0 389.6 359.1 64.6 214.2 

Continuous Flow 2  

Leak 
Daily 9.4 17.5 16.1 2.9 9.6 3 
Event 340.0 630.7 581.4 104.7 346.8 

Continuous Flow 3  

Tank Overflow 
Daily 3.7 6.9 6.8 1.2 4.0 3 & 4 
Event 334.0 619.6 607.6 109.4 359.4 

RHW System Fault  
Daily 4.3 7.9 7.8 1.4 4.6 3 & 4 
Event 1566.0 2904.9 2848.6 512.7 1685.0 

MWS Peak Usage 
Daily 11.5 21.4 19.7 3.6 11.8 3 & 4 
Event 13.5 25.0 23.1 4.2 13.8 

Shower Peak Usage 
Daily 5.8 10.7 9.9 1.8 5.9 3 & 4 
Event 4.2 7.79 7.2 1.3 4.3 

Urinal Flushing 
Daily 11.5 21.4 22.2 4.0 13.0 3 & 4 
Event 4205.0 7800.3 8107.2 1459.3 4760.1 

Showers 
Daily 7.3 13.5 14.1 2.5 8.3 3 & 4 & 5 
Event 2661.0 4936.2 5130.4 923.5 3012.3 

1 Cost based on the Irish price of water equating to €1.85/m3 of water supplied (http://www.citizensinformation.ie) 

2 Cost based on an average of four Irish electrical energy retailers equating to approximately 18 cent per kW.hr. 

3 Energy due to treatment and conveyance to the building where energy per unit is 1.71 kWh/m3 (Clarke et al. 2009)  

4 Calculated specifically based on historic pumping energy requirements of Pilot Site #2 

5 Calculated specifically based on historic calorifier heating energy requirements of Pilot Site #2 

What is of notable interest is the significant daily volumes that can be consumed within a WDS fault 548 

(for example, Fault # 1 & 2). In the event of non-detection through the absence of a WDS FDD system, 549 

it is clear that significant additional costs can be imposed on a building in terms of water and energy as 550 

a result of the water energy nexus. For example, excessive and non-optimal water usage in showers at 551 

Pilot Site #2 can result in a cost to the building of approximately €4,936 per annum if not mitigated. 552 

Due to additional heating costs required for hot water usage in the showers, the additional energy 553 

required to treat, transport and heat the water totals to approximately 5130 kW.hr per annum which 554 

equates to the annual energy usage of a typical Irish home. The carbon emissions associated with this 555 

translates to 3,012 kgCO2 (or 1,745 kg of coal burnt). By introducing measures to eliminate existing 556 

faults and optimising the WDS performance of Pilot Site #2 it can be shown that 26.81 m3/day of treated 557 

water can be saved at the pilot site (approximately 9786 m3/annum) amounting to approximately 62 % 558 

of a pre WDSPAR intervention normal days mains water usage. The energy savings associated with 559 

treatment, transport and heating this water equates to 266.5 kW.hr per day (7.6 % of the buildings total 560 

energy usage) with an accompanying carbon emissions equivalence of 29.9 kg.CO2 per day. Although 561 

such savings of energy may not seem significant on an individual building basis, extrapolation and 562 



integration of such effects on a national or global scale would suggest that substantial conservational 563 

impacts are achievable, both in terms of water and energy usage, through WDSPAR implementation.  564 

A logical progression in the development and implementation of this research would be to integrate the 565 

WDSPAR set into an automatic controller (integrated into a BMS) within a pilot site where faults can 566 

be detected in a real-time or historical basis as preferred by the end-user. Some aspects of the WDSPAR 567 

were trialled in an ICT platform developed by the Waternomics project team (waternomics.eu). The 568 

‘Building Managers Dashboard’, which permitted online observation of water usage characteristics in 569 

each trial site was used to check various thresholds. In the instance of threshold exceedance, a 570 

notification was sent to the building manager. The Building Managers Dashboard also allowed the end-571 

user to view the balance of water usage between occupied and unoccupied times and also included the 572 

water retention time observer. Automatic detection of faults through this real-world application verified 573 

the potential for WDSPAR application in the ICT-water domain. “Furthermore, testing of the rule set 574 

was based on a relatively small number of faults, presented as examples in this paper. A fruitful future 575 

study would be to develop an experimental campaign to rigorously test the ruleset under known fault-576 

free and faulty conditions in order to fully understand the advantages and limitations of the approach.  577 

7. Conclusions 578 

According to past literature, there has so far been little attempt to formulate a robust FDD approach for 579 

building WDS. In this study, a comprehensive set of performance assessment rules for a building water 580 

distribution system were developed which form the basis of a fault detection, diagnostics and 581 

optimisation tool. This Water Distribution System Performance Assessment Rules (WDSPARs) set are 582 

applied in 3 Phases: Phase 1: Assessment and Threshold Selection, Phase 2: Performance Monitoring 583 

and Phase 3: Diagnosis and Repair. A novel dual alarm approach was used to establish robust thresholds 584 

for fault alarms determined statistically using Phase 1 water usage data. Historic and real-time data from 585 

two real world trial sites made available after an initial assessment phase of 6 months was used as the 586 

input data. The available data from the trial sites was in the form of water flow meter data of varying 587 

temporal resolutions and positioned spatially at various locations across both networks. When 588 

implemented, the WDSPAR highlighted numerous faults in the WDS. Examples of non-optimal 589 

performance were also defined from the case study and resolved. Faults detected, which otherwise 590 

would have gone undetected in the absence of the FDD system, were shown to result in significant 591 

wastage in the building. The faults and non-optimal performance extrapolated on an annual basis 592 

demonstrates the importance of FDD and optimisation in water distribution systems to help reinforce 593 

conservation efforts. It was shown that elimination of problems that are most easily resolved can 594 

immediately result in significant water usage savings. It is worth noting that proactive building 595 

maintenance, as presented for the pilot studies herein, would be required to ensure such FDD systems 596 

are optimally used. It was shown in Pilot Site #2 that implementation of the WDSPAR process yielded 597 



savings in water accounting to approximately 62 % of the pre-intervention normal day’s mains water 598 

usage. For this specific case, this suggested savings of energy and carbon emissions of the order of 50 599 

kW.hr per day (1.3 % of the buildings total energy usage) and 29.9 kg.CO2 per day respectively.  600 
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