

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-14T18:53:28Z

Some rights reserved. For more information, please see the item record link above.

Title Generating and ranking candidate data models from
background knowledge

Author(s) Oliveira, Daniela

Publication
Date 2021-01-04

Publisher NUI Galway

Item record http://hdl.handle.net/10379/16394

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Doctoral Thesis

Generating and Ranking Candidate Data
Models from Background Knowledge

Daniela Oliveira

December 16, 2020

Supervisor
Dr. Mathieu d’Aquin

Co-supervisor
Dr. Ratnesh Sahay

External Examiner
Dr. Heiko Paulheim

Internal Examiner
Dr. John McCrae

Insight SFI Research Centre for Data Analytics
College of Science and Engineering, National University of Ireland, Galway

A B S T R A C T

Knowledge graphs have emerged as a core technology to publish, share, and integrate
data on the Web. Contrary to traditional data storage solutions, such as relational data-
bases, one of the core functionalities of Knowledge graphs is that data is not required to
adhere to strict pre-defined data models.

Nonetheless, ontologies are commonly used as a key technology to integrate informa-
tion in knowledge graphs at the semantic level. Creating an ontology to model a domain
is not a trivial task and requires significant investment of time and effort. Therefore, data
publishers are encouraged to reuse existing ontologies by extending or modifying con-
cepts already described in the domain. However, finding the right ontologies to model
a dataset is a challenge since several valid, relevant data models are likely exist without
clear agreement between them.

In this thesis, we developed a framework to ease the task of selecting the best data
model for a dataset. The framework produces a ranked list of candidate data models
that fit the data and are interoperable with a knowledge graph of published RDF data
sources. This knowledge graph is obtained by aggregating freely available RDF datasets,
extracting their underlying ontology graph, and then enriching its edges to produce a
tightly connected graph. We exploit the content and graph structure of this knowledge
graph to compute a score that considers the accuracy, interoperability, and consistency
of the candidates. The output of the framework is the correspondence between a list
of input triple patterns (i.e., 〈domain – property _ range〉) and a ranked list of can-
didate triple patterns from the knowledge graph per input triple. These rankings are
obtained by combining the three scores into a single triple score. This score combination
is weighted and the user has the choice to decide the best weight for each score to best
fit their use case or application.

Our experiments show that the framework produces a meaningful set of candidates
for different use cases. In these experiments, we test the knowledge graph creation
methodology and we present two domain use cases that demonstrate the usefulness of
our approach. The experiments show that the framework is able to produce a set of
reasonable candidate data models to be presented to the user, and the final choice of
data model is controlled by a set of parameters that can be adjusted by a user to fit
their use case and preferences. Therefore, our framework assists users in finding a data
model that will make the task of annotating data less strenuous to support and sustain
the (re)usability of ontologies when creating knowledge graphs on the Web.

i

C O N T E N T S

Acronyms . vii

Namespaces . ix

1 introduction . 1

1.1 Research Questions . 4

1.1.1 RQ1: Building Background Knowledge 5

1.1.2 RQ2: Generating and Ranking Data Model Candidates 6

1.1.3 RQ3: Benchmarking Ontology Resource Retrieval Methods . 6

1.2 Methodology . 6

1.3 Contributions . 9

1.3.1 Building Background Knowledge 9

1.3.2 Generating and Ranking Data Model Candidates 9

1.3.3 Benchmarking Ontology Resource Retrieval Methods 10

1.4 Thesis Overview . 10

2 background . 11

2.1 Data Modelling . 12

2.1.1 Data Model . 13

2.1.2 Data Structuring . 17

2.2 Knowledge Representation . 19

2.2.1 Linked Data . 19

2.2.2 Ontologies . 22

2.2.3 Representing Heterogeneous Data in RDF 25

2.3 Knowledge Discovery . 27

2.3.1 Information Integration . 27

2.3.2 Information Retrieval . 28

2.3.3 Evaluating Knowledge Discovery Techniques 29

2.4 Knowledge Graphs . 31

2.4.1 Open Knowledge Graphs . 33

2.4.2 Enterprise Knowledge Graphs 33

2.5 Chapter Summary . 34

3 building background knowledge . 35

3.1 Introduction . 35

3.2 Related Work . 37

3.3 Experimental Use-case Datasets . 39

3.3.1 Library Use Case . 39

3.3.2 Life Sciences Use Case . 41

iii

iv CONTENTS

3.4 Overview . 43

3.5 Metadata Extraction . 43

3.5.1 Library Use-case . 44

3.5.2 Life Sciences Use-case . 44

3.6 Building the Knowledge Graph . 46

3.7 Creating the Ontology Graph . 49

3.8 Ontology Graph Enrichment Experiments 50

3.8.1 Matching Evaluation . 51

3.8.2 Ontology Graph Enrichment Analysis 53

3.8.3 Library Use-case Descriptive Statistics 59

3.8.4 Life Sciences Use-case Descriptive Statistics 59

3.9 Datatype Property Classification Model 59

3.9.1 Feature Selection . 60

3.9.2 Hyperparameter Optimisation 62

3.9.3 Model Fitting . 64

3.10 Conclusions . 68

4 generating and ranking data model candidates 71

4.1 Introduction . 72

4.2 Related Work . 74

4.3 Generating Candidates . 77

4.3.1 Entity Types . 78

4.3.2 Datatype Properties . 80

4.3.3 Object Properties . 81

4.4 Ranking Candidates . 82

4.4.1 Content Score . 82

4.4.2 Interoperability Score . 89

4.4.3 Consistency Score . 91

4.5 Experiments . 95

4.5.1 Ground Truths . 96

4.5.2 Candidate Generation . 98

4.5.3 Content Score Ranking . 103

4.5.4 Interoperability . 114

4.5.5 Consistency . 124

4.5.6 Evaluating Distance to Source 125

4.6 Demonstration . 126

4.7 Conclusions . 128

5 benchmarking ontology resource retrieval methods 135

5.1 Introduction . 136

5.2 Background and Related Work . 138

5.3 Ontology Search: Applications & Algorithms 139

CONTENTS v

5.3.1 BioPortal . 140
5.3.2 Solr . 140
5.3.3 Ontology Lookup Service . 140
5.3.4 Zooma . 140
5.3.5 IR Algorithms . 141

5.4 Evaluation: Ontology Search Applications & Algorithms 146
5.4.1 Ontology Loading . 147
5.4.2 Building the Expert-Based Ground Truth 147
5.4.3 Building the Probabilistic Ground Truth 151
5.4.4 Comparison between GT and PGT 152

5.5 Results . 153
5.5.1 Ground Truth Results . 153
5.5.2 Comparison between GT and PGT 154
5.5.3 Evaluation with performance metrics 156

5.6 Discussion . 160
5.7 Recommendations . 162
5.8 Conclusions . 164

6 conclusions . 167
6.1 Lessons Learned . 168
6.2 Future Work . 171

Appendices . 173

a ontologies . 175
a.1 Library Use-case . 175
a.2 Life Sciences Use-case . 176

b mathematical notation . 177
b.1 Data Structures . 177
b.2 Symbols, Operators, and Functions . 177

c algorithm workflows . 181
c.1 Entity Type Generation . 181
c.2 Entity Type Content Scoring . 181
c.3 Datatype Property Generation . 181
c.4 Datatype Property Content Scoring 182
c.5 Object Property Generation . 182
c.6 Object Property Content Scoring . 183
c.7 Interoperability Scoring . 184
c.8 Consistency Scoring - Aggregation . 184
c.9 Consistency Scoring - Refinement . 185

A C R O N Y M S

AD Average Node Degree
AGraph Axiom Graph
AKT AKT Reference Ontology
AML AgreementMakerLight
AOR Ad-hoc Object Retrieval
AP@k Average Precision@k
BFO Basic Formal Ontology
BGraph Base Graph
BIBO Bibliographic Ontology
BOG Biomedical Ontology Graph
CC Connected Components
CCF Clustering Coefficient
CEA Column Entity Annotation
CMM Class Match Measure
CPA Column Property Annotation
CSV Comma-Separated Values
CTA Column Type Annotation
CV Cohesiveness
DBO DBPedia Ontology
E-R Entity-Relationship
ETF Entity Type Frequency
GO Gene Ontology
GOG General Ontology Graph
GT Ground Truth
IR Information Retrieval
JSON JavaScript Object Notation
KGP Knowledge Graph Patterns
LCC Largest Connected Component
LOD Linked Open Data
LOV Linked Open Vocabularies
MA Memory Alpha
MAP Mean Average Precision
MB Memory Beta

vii

viii Acronyms

MGraph Mappings Graph
MRR Mean Reciprocal Rank
NDCG Normalised Discounted Cumulative Gain
NER Named-entity recognition
NP Neighbourhood Proportion
OAEI Ontology Alignment Evaluation Initiative
OLS Ontology Lookup Service
OWL Web Ontology Language
P@k Precision@k
PGT Probabilistic Ground Truth
RDB Relational Databases
RDF Resource Description Framework
RDFS RDF Schema
SPARQL SPARQL Protocol and RDF Query Language
STE Star Trek Expanded
SW Star Wars
SWG Star Wars: Galaxies
SWTOR Star Wars: The Old Republic
TF-IDF Term Frequency-Inverse Document Frequency
URI Uniform Resource Identifier
VSM Vector Space Model
XML Extensible Markup Language
YAML YAML Ain’t Markup Language

N A M E S PA C E S

bibframe http://id.loc.gov/ontologies/bibframe/
bibo http://purl.org/ontology/bibo/
blterms http://www.bl.uk/schemas/bibliographic/blterms/
bnb http://bnb.data.bl.uk/id/
bne http://datos.bne.es/resource/
bnf http://data.bnf.fr/ark:/
busco http://busco.ezlab.org/schema#
dcterms http://purl.org/dc/terms/
ea http://rdf.ebi.ac.uk/terms/expressionatlas/
edm http://www.europeana.eu/schemas/edm/
efo http://www.ebi.ac.uk/efo/EFO_
faldo http://biohackathon.org/resource/faldo#
foaf http://xmlns.com/foaf/0.1/
frbr http://rdvocab.info/uri/schema/FRBRentitiesRDA/
gnd https://d-nb.info/standards/elementset/gnd#
gwas http://rdf.ebi.ac.uk/terms/gwas/
isbd http://iflastandards.info/ns/isbd/elements/
ncit http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#
oban http://purl.org/oban/
obo http://purl.obolibrary.org/obo/
owl http://www.w3.org/2002/07/owl#
pgterms http://www.gutenberg.org/2009/pgterms/
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
ro http://www.obofoundry.org/ro/ro.owl#
schema http://schema.org/
skos http://www.w3.org/2004/02/skos/core#
ss http://semanticscience.org/resource/
uniprot http://purl.uniprot.org/core/

ix

D E C L A R AT I O N

I declare that this thesis, titled “Generating and Ranking Candidate Data Models from Back-
ground Knowledge”, is composed by myself, that the work contained herein is my own
except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification.

Galway, December 16, 2020

Daniela Oliveira

xi

A C K N O W L E D G E M E N T S

I would like to give a special thanks to my parents and my sister for their continuous
encouragement in all my endeavours, specially in this one that brought me so far away
from them. A special thanks also to Hugo for his companionship and support through
these years. You were the answer to the question I didn’t know I had. I would also like
to extend a thanks to all the friends that accompanied me on my journey and made it a
fun and interesting one.

Finally, I wish to thank Mathieu for his contributions that were essential to make this
thesis happen. I would also like to thank Ratnesh and Dietrich for their guidance in the
earlier stages of this work. This research was supported by Science Foundation Ireland
(SFI) under Grant Number SFI/12/RC/2289 and SFI/12/RC/2289_P2, co-funded by the
European Regional Development Fund.

xiii

1 I N T R O D U C T I O N

Since its inception, the World Wide Web (the Web) has evolved to create a thriving global
information space, where content can be published, stored, and accessed. Information
is published in textual documents, using natural language, with hyperlinks providing
connections to related pages. This information is discovered on the Web with search en-
gines that index documents and retrieve them in response to user queries. Traditionally,
search engines analyse the textual content of documents to find candidate web pages
that match a query and rank them according to the quality of the links coming and
going from each candidate page [1].

More recently, Google has proposed the use of a knowledge graph1 to search for
things, not strings. The concept of knowledge graph changed the search engine paradigm
by expanding search results beyond textual matches with a connected graph that allows
the identification of entities and their relationships. The task of retrieving an entity
from a semantic context has been called entity search [2], semantic search [3], and Ad-
hoc Object Retrieval (AOR) [4], i.e., the retrieval of a ranked list of entities from an
unstructured keyword query in a knowledge graph. Since Google’s announcement,
companies have adopted the technology to enhance their services by connecting users
and their interests, e.g. Facebook’s Entity Graph2 and LinkedIn’s knowledge graph3.
Efforts in non-profit organisations and research institutes have also been focused on the
development of knowledge graphs such as DBpedia [5], YAGO [6], and Wikidata [7].
These open-source projects emphasise free access to data to enable sharing, reusing, and
application in different scenarios, including academic research.

The modern concept of knowledge graph has been heavily influenced by the Se-
mantic Web [8], which is an extension of the Web that provides approaches to repres-
enting the semantics of data and its metadata simultaneously. The Semantic Web is
enabled by a set of best practices known as linked data [9] principles, which ensure that
the data is available on the Web in a machine-readable format (e.g. Resource Description
Framework (RDF)), following W3C best practices4.

1 https://www.blog.google/products/search/introducing-knowledge-graph-things-not (Accessed in
September 2020)

2 https://www.technologyreview.com/2013/02/27/84077/facebook-nudges-users-to-catalog-the-real-
world (Accessed in September 2020)

3 https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph (Accessed
in September 2020)

4 https://www.w3.org/TR/ld-bp (Accessed in September 2020)

1

https://www.blog.google/products/search/introducing-knowledge-graph-things-not
https://www.technologyreview.com/2013/02/27/84077/facebook-nudges-users-to-catalog-the-real-world
https://www.technologyreview.com/2013/02/27/84077/facebook-nudges-users-to-catalog-the-real-world
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
https://www.w3.org/TR/ld-bp

2 introduction

Contrary to traditional data storage solutions, such as Relational Databases (RDB),
one of the core functionalities of linked data, and specifically of knowledge graphs,
is that data is not required to adhere to strictly defined data models. Nonetheless, the
RDF model provides specifications for publishing data on the Web that not only describe
entities and relationships but also focus on enabling interoperability between datasets.
Conceptually, RDF data distinguishes between entities, entity types, and properties. En-
tities are distinct things that physically or conceptually exist in the real world and that
can be uniquely identified. Entity types represent categories of entities. An entity can
be an instance of one or multiple entity types. Properties define types of associations
or interactions between entities (object properties) or between entities and literal values
(datatype properties). Properties have a domain and a range. The domain defines the
source entity type that is related to the range via the property. The range is another
entity type in object properties and it is a literal in the case of datatype properties.

Ontologies, defined as an explicit specification of a conceptualization [10], are typically
used to model RDF data. Various data publishing platforms and infrastructures advoc-
ate that if a database entity is described using a precise ontological resource, it eventually
leads to efficient linking and querying over published datasets [11, 12]. When used to
model data, ontologies ensure consistency between data sources by providing a schema
that formally represents and precisely defines entities and their relationships [13]. These
schemas use ontology classes and properties in the data model by assigning classes to
entity types and ontology properties to relationships between entity types.

Key barriers to publish linked data, however, include a steep learning curve, diffi-
culty with selecting appropriate ontologies to represent data, inadequate linked data
tools, and difficulty establishing links [14–16]. Datasets published using the RDF data
model and following the linked data principles require domain and knowledge engin-
eering experts to model and link data sources. Most tools to model data following the
RDF data model require a high level of understanding of underlying concepts or a broad
knowledge of linked data datasets in a specific domain to fully exploit the potential of
linked data. Especially in domains such as the library data domain with long histor-
ies of using standards to categorise data, adopting a new standard is not a trivial task,
much less adopting a standard that requires a high technical and domain knowledge.
Therefore, converting data between formats becomes a time consuming task if the data
publishers are required to learn how to work with a new complex set of tools.

Another key barrier for a data publisher, however, is to find the ontologies that best
fit their data, but also enable the integration with existing datasets in the domain. A
survey conducted over several years with linked data providers found that the third
most common barrier to publishing linked data was selecting appropriate ontologies to
represent our data [14, 15]. If data publishers cannot find appropriate ontologies to model
their use-cases, they tend to create new ontologies or extend upper-level ontologies to
meet their requirements. Therefore, knowledge from similar domains ends up following

introduction 3

different data models that not always focus on interoperability with other datasets in the
same domain, making it challenging to integrate data from multiple, existing knowledge
graphs, as well as to model new data consistently. This issue has been described in
several domains such as life sciences [12], education [17], and library data [18].

We categorise approaches that address this issue as internal, where only the input
data is considered to find a data model, and external, which also considers data models
of existing datasets when choosing the data model for an input dataset. Figure 1.1 il-
lustrates the high-level distinction between these categories. Internal approaches create
a data model by finding direct correspondences between concepts in a dataset and on-
tologies considering only the needs of the dataset itself. Data models found with this
approach can feature one or more ontologies, extended when necessary, and it is up to
the publisher to design the schema that these ontologies will follow. Examples of this
approach are found in [19, 20]. Internal approaches rely on the assumption that the onto-
logical resources already exist in the domain and are properly indexed or easily findable
to be reused or extended. However, in reality, the availability of ontology repositories
with search functionalities is limited [21]. Often the search results over the ontology
repositories are ambiguous, with dozens of synonyms matching in different ontologies,
as well as a disagreements between search engines when ranking ontological resources
in their search results [22]. Due to different naming conventions, textual descriptions,
synonyms, and granularity of the ontologies, it is challenging to precisely identify an
ontological resource that best describes a given concept.

Input Dataset

Existing Datasets

Internal External

Data Model

Data Layer

Ontologies
Schema Layer

Existing DatasetsExisting Datasets

Figure 1.1: Data modelling approaches

External approaches, on the other hand, create a data model based on existing or
influential data sources that overlap in domain with an input dataset, extending it to
meet specific data requirements. This type of approach is based on the assumption

4 introduction

that the data publisher has a clear view of existing domain knowledge and has a well-
defined application of the data to match to a specific data model. Examples of this
approach are found in [23, 24]. However, the data publisher is still faced with a wide
variety of well-known resources, each applying their own data model [18, 25, 26] in
the same domain with no clear agreement on which representation is more accepted
or used. The limitations of this approach are two-fold: (1) specific data must have
been modelled before using high quality resources and the data publisher needs to be
aware of these resources, which might require an exhaustive search in the domain to
find the most compatible datasets; (2) after selecting a subset of data models to use or
extend, it is likely that the final data model will integrate very well with those datasets
but might not be easily interoperable with new datasets or datasets unknown to the
publisher. Therefore, the challenge for a data publisher is not only finding relevant
modelled datasets but also finding the data model that will be most interoperable with
existing and future resources to reduce the maintenance effort of the data.

Both approaches present numerous challenges of data and ontology integration.
Nonetheless, surveys have found that data publishers want to publish linked data to
expose the data to a larger audience, give better access to data, improve metadata shar-
ing and interoperability, and harmonise multiple data sources [15, 16]. Therefore, in this
thesis, we aim to investigate how to facilitate the process of finding well-fitted data mod-
els that enable interoperability in the domain and we develop a framework that enables
this process. Ultimately, the goal of this framework is to reduce the entry level barrier to
publish data following the RDF data model and to facilitate the process of creating inter-
operable data models between datasets in the same or related domains. We show that it
is possible to extract consistent and interoperable data models from existing knowledge
graphs by exploiting features of the data and the ontologies used to model it. We pro-
pose an approach that facilitates the task of finding a suitable data model in domains
where disparate data models exist and there is no consensus over modelling standards.
We focus on an external approach that gathers existing datasets in the domain to extract
their data models. We match these datasets and their data models with the input data
and rank candidate data models according to different measures. However, in the cases
of missing concepts, we also consider the application of an internal approach to support
the external approach in providing a complete integrated data model.

1.1 research questions

The overall research question of this thesis can be summarised by:

What measures and processes can be used to support the creation of a well-fitted and
interoperable data model for a given data source, using a background knowledge

graph in the relevant domain?

1.1 research questions 5

To answer this question, we propose a set of subquestions: that divide the problem
in several smaller challenges:

(RQ1) What knowledge structures can support the extraction of ontology-based data
models? (Chapter 3)

(RQ1.1) Can increasing the connectedness of the ontology graph support the com-
putation of interoperability measures for candidate data models?

(RQ1.2) Is it possible to train a classification model to accurately predict datatype
properties from literal values using multiple knowledge graphs?

(RQ2) What measures can be used based on the built knowledge structures to select and
rank possible data models? (Chapter 4)

(RQ2.1) Can the connections within the ontology graph be used to measure the ac-
curacy and interoperability of possible data models, having a significant
effect on the ranking of their components?

(RQ2.2) Can the connections between components of the proposed data models
be used to measure their consistency, with a significant effect on their
ranking?

(RQ3) Can existing methods for ontology resource retrieval support the process of creat-
ing a data model using an internal approach? (Chapter 5)

(RQ3.1) Are Information Retrieval (IR) algorithms effective for retrieving and rank-
ing top-k ontology classes that match a given keyword?

(RQ3.2) Are ontology resource search engines effective for retrieving and ranking
top-k ontology classes that match a given keyword?

(RQ3.3) What requirements should be considered when choosing the best tech-
nique to retrieve ontology resources when using internal approaches to
create a data model?

1.1.1 RQ1: Building Background Knowledge

To extract data models from existing datasets, the knowledge contained in these datasets
needs to be structured to facilitate discovery and scoring according to appropriate meas-
ures. Two types of knowledge are extracted from RDF data sources: (1) entities and their
relationships, and (2) the underlying ontologies that model the data. This knowledge is
parsed and structured to be used in the processes of selecting and ranking data models.

This research question is distilled into smaller subquestions that handle specific
problems. RQ1.1 investigates the effect of improving the connections between ontology
classes and properties to the overall cohesiveness of the graph. The improved connectiv-
ity is later exploited for the computation of interoperability in data model candidates.

6 introduction

Finally, RQ1.2 focuses on finding strategies to further enable the generation of data
model component candidates, namely datatype properties. These strategies include
training classifiers on the knowledge graphs and testing them against the multiple back-
ground knowledge graphs for the purpose of enabling the generation of datatype prop-
erty candidates for input datasets.

1.1.2 RQ2: Generating and Ranking Data Model Candidates

Finding the best ontology resource to describe an entity type or property is a subjective
task since concepts can be ambiguously described in an ontology or the same concept
might be described differently in individual ontologies. These disparate definitions
arise from cases where data publishers create new partial or complete data models,
which have term overlap with existing ontologies instead of reusing the existing onto-
logy classes and properties. The focus of this question is in designing methods to obtain
and sort the top-k candidates from the knowledge graph to match the concepts in an
input dataset. The subquestions focus on measuring the interoperability of the candid-
ates in the knowledge and ontology graph (RQ2.1) and explore how to produce a data
model that is consistent with the triple patterns observed in the knowledge graph and
is also consistent in its entity type and property recommendations (RQ2.2).

1.1.3 RQ3: Benchmarking Ontology Resource Retrieval Methods

In this thesis, we focus on an external approach to find a data model for an input dataset.
However, external approaches not always find data models that are complete, if entity
types and properties in the input data are not represented in the background knowledge
graph. Therefore, this last research question focuses on exploring the effectiveness of
methods for ontology resource retrieval that can bridge the gap between an incomplete
external method and internal methods for data model completion.

With this goal in mind, we benchmark different algorithms and tools that can be
used for retrieving a ranked set of ontology resources that match a specific keyword. We
provide a set of recommendations for the application of these algorithms and tools for
different use-cases or as a complement to external approaches, such as the one presented
in this thesis.

1.2 methodology

We answer the research questions by developing a framework that, for an input data-
set, proposes a set of candidate data models extracted from a background knowledge
graph built from existing RDF data sources. The candidate data models are construc-

1.2 methodology 7

ted by generating and ranking entity types, object properties, and datatypes properties.
These elements are combined in consistent 〈domain – property _ range〉 triples that are
interoperable with the data sources included in the knowledge graph.

We experiment with ranking measures to provide an overview of the performance of
the framework, with discussions about its potential applications when evaluating is not
possible. The final product of the framework is a ranked set of data model candidates
that can be used by a data publisher to aid in the task of finding the best data model
to fit their specific use-case by providing recommendations of entity type and property
annotations. The recommendation is further customisable by having parameters that
are easily adjustable so that the data publisher can boost or penalise the ranking scores
that are more or less suitable for their use-case.

Data
Documents

Knowledge
Graph

Knowledge Building

Unranked Entity
Type Candidates

Object and
Datatype
Properties

Entity Types Properties

Input Dataset
(CSV, JSON, RDF)

Candidate Generation

Content
Score

Interoperability
Score

Consistency
Score

Ranked Entity Type
Candidates

Ranked Property
Candidates

Ranked Data Model
Candidates

Candidate Ranking

RDF Sources

Ontology Layer

Data Layer

Properties

Ontology Layer

Data Layer

Properties

Data Layer

Properties

Ontology Layer

Unranked Object
Property

 Candidates

Unranked Datatype
Property

 Candidates

Datatype
Properties

Random Forest

Object
Properties

Pre-computed
metadataDocument Store

Content
Score

Interoperability
Score

Entity Types

Figure 1.2: Framework diagram

The proposed framework, illustrated in Figure 1.2, has three stages: (1) knowledge
building, (2) entity type and property candidate generation and (3) ranking. The know-
ledge building stage focuses on extracting and structuring the necessary knowledge

8 introduction

from the RDF data sources to allow the recommendation of data models. From the data
layer of the RDF data sources, we extract the entities and their relationships, storing
and indexing them in a structured document store. The datatype properties are fed to
Random Forest classifiers, creating feature vectors from the values of their properties,
and training the models to allow the generation of datatype property candidates. From
the underlying ontologies in the RDF data sources we extract the full ontology graph
and, through edge enrichment methods, we increase the relevant connections between
ontology classes and properties to create a more tightly connected graph that enables the
generation and ranking of candidates considering structural properties of the ontologies.
The candidate generation stage is concerned with extracting data model components (or
approximations of these in the case of semi-structured formats) from an input dataset.
For entity types this process involves extracting representative entity labels that can be
matched against the knowledge graph to extract entity type candidates. For object prop-
erties, we identify if any exist in the dataset and match them against object properties in
the ontology graph from the edges between ontology classes. Datatype properties are
obtained by using the trained model to predict obtained a list of all datatype properties
ranked according to the probability of matching an input literal value extracted from
the input dataset. The candidate ranking stage ranks the generated candidates in terms
of their appropriateness to match the input using metrics based on frequency, ontology
graph distances, and string similarity. Then, it ranks the candidates according to their
interoperability with the background knowledge graph, boosting candidates that are
more frequent in the knowledge graph and are better connected in the ontology graph.
Finally, the consistency score provides full data model recommendations by aggregat-
ing the individual scores of each data model component, together with the frequency
of the proposed triple in the knowledge graph. The aggregated score is further refined
to ensure that the same candidates are being suggested for the same input across the
dataset. This final step allows for a full ranked data model recommendation, where each
extracted triple of the input is matched with a ranked list of the most appropriate and
interoperable candidates considering the RDF data sources provided as background.

The methodology is supported by experiments that evaluate and analyse the stages
of the framework to provide an overview of the strengths and weaknesses and potential
applications of the framework. The experiments were supported by test cases with
library and biomedical data that could benefit from our framework.

Nonetheless, we also consider the case where the framework is not able to provide a
complete data model recommendation based on the background knowledge provided.
Therefore, to bridge this gap, Chapter 5 explores how internal approaches can be used
instead or as a complement to our proposed framework. We also discuss how the frame-
work developed can aid existing ontology repositories in producing ontology resources
that are more targeted towards a specific domain or set of data sources.

1.3 contributions 9

1.3 contributions

During our research work, we produced several outcomes while answering the proposed
research questions. The next sections detail the contributions produced in each phase of
the process, including peer-reviewed publications describing our work.

1.3.1 Building Background Knowledge

The main contribution of Chapter 3 includes a methodology to create a knowledge graph
from multiple sources supported by a tightly connected background ontology graph.
The methods are separated into data indexing and schema extraction and enrichment.
First, available RDF datasets are transformed into a common structure, then stored in
a document store, and an inverted index is built to allow full-text search queries. We
then extract the namespaces of the ontologies used in these documents and construct the
underlying ontology graph. This graph is enriched with edges from data and ontology
correspondences. The detailed methodologies of the chapter will be described in a paper
to be submitted to the Knowledge-Based Systems journal.

We also propose a methodology to characterise the impact of ontology matching
enrichment methods in an ontology graph. The results of this analysis were presented
at the 1st International Workshop on Knowledge Graph Building co-located with the
16th Extended Semantic Web Conference (ESWC 2019) [27].

1.3.2 Generating and Ranking Data Model Candidates

The task proposed in RQ2 has two major challenges: finding entities in the knowledge
graph that match an input entity and ranking their entity types according to set cri-
teria. Therefore, the two main contributions of this task are a methodology to generate
candidates and rank them in terms of their content, interoperability with a background
knowledge graph, and consistency with the knowledge graph data. The detailed meth-
odologies of the chapter will be described in a paper to be submitted to the Knowledge-
Based Systems journal.

We participated in the Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching co-located with the 18th International Semantic Web Conference (ISWC
2019)5 which benchmarked systems matching tabular data to DBpedia. We obtained
3rd place in the entity annotation task, with overall high results in all tasks. We presen-
ted a system that shared similar principles to our final framework with a strong AOR
component and high graph reliance [28]. The system benchmarked in this competition
exemplified a basic application of the framework proposed in this thesis since it only
considered one data source (DBpedia). Overall, the participation in this competition

5 http://www.cs.ox.ac.uk/isg/challenges/sem-tab (Accessed in September 2020)

http://www.cs.ox.ac.uk/isg/challenges/sem-tab

10 introduction

contributed to a wider understanding of the pitfalls and challenges of dealing with in-
complete or ambiguous knowledge graph data.

A demo paper entitled RICDaM: Recommending Interoperable and Consistent Data Mod-
els [29] was presented at the 19th International Semantic Web Conference (ISWC 2020).
The demo is described in this thesis in Section 4.6 and is framed as the output of the
framework to show the potential of a user interface.

1.3.3 Benchmarking Ontology Resource Retrieval Methods

In answering RQ3, we identify key search factors for biomedical ontologies together
with search requirements. We also provide a set of recommendations to help biomed-
ical experts and ontology engineers in selecting the best-suited retrieval method in their
search scenarios. This evaluation allows researchers and practitioners to apply the cur-
rent search techniques more reliably and can help them to select the right solution for
their daily work. More generally, we were able to extrapolate how the performance of
ontology resource retrieval methods can be applied to internal approaches or to comple-
ment external approaches.

The methods and contributions related to this task are explained and detailed in
Chapter 5 and were published in the journal Briefings in Bioinformatics [22].

1.4 thesis overview

This thesis is organised as follows: Chapter 2 provides an overview of the context and
foundation for this thesis. Chapter 3 details the approach to build the background
knowledge graph from multiple data sources, to extract its underlying ontology graph,
and to construct the knowledge structures necessary for the framework. In Chapter 4,
we present the methodology and experiments to generate and rank candidate entity
types and properties, including an evaluation and analysis of the results. Chapter 5
includes the methodology, experiments, and recommendations reached as an outcome
of the analysis of the studied AOR methods. Finally, we present the overall conclusions
and future directions in Chapter 6.

2 B A C KG R O U N D

This chapter provides the conceptual foundation for this thesis by defining and explain-
ing fundamental concepts. The topics explored directly relate to the research questions
proposed in Chapter 1, which focus on the two overarching topics of representation and
retrieval of data, information, and knowledge.

Data, information, and knowledge are not always well distinguished and sometimes
are used interchangeably. However, their meanings are distinct and their differences are
commonly associated with the Data-Information-Knowledge-Wisdom (DIKW) hierarchy.
Ackoff [30] is usually cited as the modern source of the hierarchy, but the definitions
and relations between the DIKW concepts have remained contentious among peers. In
this thesis, we will adopt the following definitions:

• Data is defined as a product of observations represented by symbols. Examples of
data are: The Eye of the World; Robert Jordan; Fantasy; 1990.

• Information is processed and inferred from data, i.e., it is data with a meaning
and context. Information answers questions such as who, what, and when. For
example, The Eye of the World is a book title, Robert Jordan is a person, Fantasy is
a genre, 1990 is a year.

• Knowledge is extracted from the combination of experience and insight with in-
formation, e.g., The Eye of the World is a book of the Fantasy genre written by the
author Robert Jordan and released in 1990.

• Finally, Wisdom adds value to Knowledge by including higher-level judgement
and not necessarily being applied in intuitive ways. For example, Since a new TV
show on the series is being produced, we should release a new edition of the book The Eye
of World. Wisdom can also include personal judgements such as I like Fantasy books,
The Eye of the World is a Fantasy book, therefore, I want to read The Eye of the World.

These concepts have been represented in the form of the pyramid [31] shown in
Figure 2.1. This hierarchy has been criticised for being basic and not accurately rep-
resenting reality [32]. It has been proposed that the pyramid should be inverted since
wisdom and knowledge drives the collection of information and data [33]. It has also
been proposed that it should be bidirectional [34]. However, in practice, the difference
between these concepts is not clearly defined which leads to the same term being used

11

12 background

Data

Information

Knowledge

Wisdom

Figure 2.1: Data-Information-Knowledge-Wisdom pyramid

differently by different people. Raw data is rarely available on the Web because without
any resemblance of context, the data is hard to find, use, and reuse. Information is
more commonly available and shared on the Web. In the last few years, knowledge has
become a main topic of discussion in terms of its creation, sharing, and application.

In this thesis, we use published knowledge to enable the structuring of existing
information into knowledge that is interoperable with the initial published knowledge.
In the next sections, we describe data modelling at different levels and how it influences
the structure of data on the Web. Then, we detail ways to retrieve information using
IR techniques. Finally, we describe the current state of knowledge representation in the
context of linked data and knowledge graphs.

2.1 data modelling

The advent of the Web has created a thriving environment for publicly sharing data,
information, and knowledge. The advances in science and technology, combined with
the ease of use of the Web, brought about a data deluge that is consumed by third parties
in academia, industry, and public sector alike. Organisations seek this data to extract
knowledge that can further their specific endeavours. However, data on the Web is not
always published in ways that enable access and reuse to infer information or gather
new knowledge. For example, data can be published using proprietary file formats, or
be shared in a format that does not lend itself well to the retrieval of data (e.g., PDF).
These circumstances hinder the potential for data re-usability and interoperability with
other sources on the Web. A challenge when publishing data on the Web is, therefore,
to model data following practices that facilitate the use of the data by third parties.
Accordingly, data is commonly distinguished between unstructured, semi-structured,
and structured depending on its level of adherence to a model specified for a task at
hand. The next sections will focus on understanding data models and distinguishing
types of data from their level of adherence to a data model.

2.1 data modelling 13

2.1.1 Data Model

‘[A data model] is a model about data by which a reasonable interpretation
of the data can be obtained.’ (D. C. Tsichritzis and Lochovsky, 1982)

The term data model was first formulated in the context of a RDB [36]. However,
there is no standard or widely accepted definition of data model and the term has been
used in the literature with slight variations but similar meanings. For example:

• architecture for data [35]

• set of data requirements [37]

• formal representation of information and means to manipulate said representa-
tion [38]

A three-perspective approach was proposed to distinguish between data model in-
stances [39, 40] in conceptual, logical, and physical data models.

Conceptual Data Model

The conceptual data model focuses on providing high-level descriptions of the data and
its semantics in the scope of the domain. These descriptions focus on what is described
by the data. This model is independent of the application of the data and can be re-
used in different settings covering the same domain. The Entity-Relationship (E-R) data
model [41] is commonly used to represent conceptual data models. This model distin-
guishes entities, entity types, relationships, and attributes. Figure 2.2 shows an example
of a simplified view of these components.

Book
id: 1
Title: The Eye of the World
Genre: Fantasy
Released: 1990

Person
id: 1
Name: Robert Jordan
Born: 1948
Death: 2007

Event
id: 1
Name: JordanCon
Latest: 2020
Location: Online

has author

subject is

Figure 2.2: Simplified illustration of a conceptual model representing three entities and their
relationships

Entities are defined as distinct things that physically or conceptually exist in the
real world and that can be uniquely identified. A specific person, book, or event are

14 background

examples of entities. Entities have instance categories called entity types. In Figure 2.2,
three entities are represented. The top left entity is an instance of the type Book, while
the right entity is of type Person. Contrary to the two previous entities, the bottom
entity represents an event, which is not a physical entity but represents a real-world
instance of an abstract object of type Event.

Relationships define associations or interactions between entities or entity types.
These connections give further meaning to information. Figure 2.2 shows a relationship
between entity types Book and Person and another between Event and Person. It is im-
portant to note that, depending on the application, a relationship might be considered
an entity, e.g., parent can represent a Person entity with at least one other entity con-
nected to it via a is_parent relationship, or it can be the relation between two Person

entities, i.e. 〈Child – parent _ Father〉. The strictness of relationships also varies with
the application, e.g., the relationship subject in Figure 2.2 is applied between an Event

and a Person. This might not always be the case since the subject of an Event can be
something of a completely different type depending on the dataset.

Finally, attributes characterise the properties of an entity or relationship. Values
assigned to attributes are used to distinguish one entity from another. Attributes can
also act as primary identifiers to distinguish between instances of an entity type. For
example, the instance of the entity type Book represented in Figure 2.2 has four attributes
and the id attribute can act as the primary identifier of this entity.

Logical Data Model

The logical data model describes the data in terms of data-specific structures, i.e., how
the data is structured regardless of the storage system. This data model considers the
application intended for the data to specify the optimal structure of the data. The clas-
sical relational database model [36] is an example of a logical data model by structuring
data in tables and relating tables via key constraints. The logical data models that will
be prominently featured in this thesis include:

• key-value model with the data model being an associative array of key-value pairs.
The key serves as a unique identifier for the value. This data model is designed
for high performance and horizontal scalability. Table 2.1 shows the example of
the Book entity from Figure 2.2 modelled with a key-value logical data model.

Table 2.1: Example of a key-value logical data model

key Value

Book1:type Book
Book1:title The Eye of the World, Fantasy, 1990
Book1:genre Fantasy
Book1:released 1990

2.1 data modelling 15

• document store model is a specification of the key-value store that follows a stand-
ard format to encapsulate data into a document that is stored in the database with
a unique key. Common formats are Extensible Markup Language (XML), YAML
Ain’t Markup Language (YAML), and JavaScript Object Notation (JSON). This
data model extends the data storage capabilities to include additional data and
metadata to be associated to the same document. Therefore, this model is desir-
able when features such as organisation or full-text search are fundamental for an
application. Similarly to the Table 2.1, Listing 2.1 shows an example of an entity
modelled following the document store model.

{"book1": {

"type": "Book",

"title": "The Eye of the World",

"genre": "Fantasy",

"released": "1990"

}

}

Listing 2.1: Example of a document store logical data model

• graph model prioritises relationships between entities by using graph structures
to store data. The representation of this model tends to approximate the repres-
entation in a E-R diagram since graph models are direct representations of entities
and their relationships. Graph data models are particularly useful when data is
heavily focused on connections [42] because it allows for fast querying of relation-
ships and intuitive visualisations of the data. Figure 2.3 shows an example of data
modelled into a graph structure, where the grey boxes represent nodes with labels
and attributes, and the arrows represent edges also with attributes.

• RDF model1 is a specialised graph model, where data is structured as a labelled,
directed multigraph. The RDF data model closely approximates the RDB model [43]
with some key differences. For example, schemas are created with the intention of
being shared to enable interoperability between datasets. RDB schemas are com-
monly created independently for different databases, which hinders data integra-
tion. Additionally, relationships are first-class objects in the RDF model, described
by a unique Uniform Resource Identifier (URI). Figure 2.4 shows the running ex-
ample following the RDF data model. Entities, relationships, and entity types
are represented by dereferenceable URIs (in this example URIs are fictional) and
structured statements of 〈subject – predicate _ object〉, known as a triple (see Sec-
tion 2.2.1 for an extended description of this model). Attributes of subjects are
represented as objects of the appropriate datatypes, e.g., string or integer.

1 https://www.w3.org/TR/PR-rdf-syntax (Accessed in September 2020)

https://www.w3.org/TR/PR-rdf-syntax

16 background

Figure 2.3: Example of a graph logical data model

Title: The Eye of the World
Genre: Fantasy
Released: 1990

Book

Name: Robert Jordan
Born: 1948
Death: 2007

Person

Name: JordanCon
Latest: 2020
Location: Online

Event

has author

su
bj

ec
t

is

Figure 2.4: Example of RDF data model. The URI namespaces are replaced by prefixes indicated
in the top of the figure.

ex: http://example.org/

ont: http://ontology.org/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

ex:Book1

"The Eye of the World" ont:Book

ex:Person1

"Robert Jordan" ont:Person

1948

ont:has_title rdf:type

ont:has_author

ont:has_name rdf:type

ont:born_in

Physical Data Model

The physical data model describes data in regard to the requirements of a specific plat-
form chosen to store it, including all artefacts required to create relationships between
entity type instances. For example, when a relational data model is chosen, the physical
data model will include a specific implementation of keys, constraints, columns names,
data types that might differ between database systems.

For example, relational data models are used in Relational Database Management
Systems such as Oracle Database2, MySQL3, and PostgreSQL4. Some notable key-value

2 https://www.oracle.com/database
3 https://www.mysql.com
4 https://www.postgresql.org

https://www.oracle.com/database
https://www.mysql.com
https://www.postgresql.org

2.1 data modelling 17

stores include ArangoDB5, Couchbase6, and Redis7. Document store examples include
ArangoDB5, CouchDB8, and Elasticsearch9. ArangoDB5, Neo4j10, and Virtuoso11 imple-
ment physical graph data models. Finally, the RDF data model can be implemented in
specialised triplestores such as Virtuoso11, AllegroGraph12, and Blazegraph13.

The physical data model is the precursor of the schema, i.e., the translation of the
physical model to a formal language supported by an implementation of a storage plat-
form of the chosen logical data model. For example, in RDB systems, the common
language is Structured Query Language (SQL), while systems implementing the RDF
model usually use SPARQL Protocol and RDF Query Language (SPARQL).

Thesis Context

In the context of this thesis, we will be focusing on proposing logical data models, more
specifically RDF data models. For the remainder of this thesis, we simplify the term
and refer to the RDF data model just as data model. While referring to the logical data
model, however, we will use the concepts defined in the E-R data model, which was
given as an example of the Conceptual Data Model. The terms entity, relationship, and
entity type are easily translatable to the RDF data model, i.e., entity refers to subjects,
relationships are predicates, and entity types are the classes usually found as the object
of the rdf:type14 predicate.

While the output of our framework is ranked candidate RDF data models, the know-
ledge graph building process (Chapter 3) and the candidate generation and ranking
(Chapter 4 use a document and graph models to structure and store the data.

2.1.2 Data Structuring

Data can be distinguished by its level of adherence to a data model as being unstruc-
tured, structured, and semi-structured. In structured data, the structure is clearly
provided by a schema, while the opposite happens in unstructured data, i.e., there is
no apparent schema to the data. Semi-structured data lies between the two opposites
since it does not have an obvious schema, but one can be inferred from the structure of
the data. However, these terms are not strictly defined. The next sections will provide
more details to each distinction, including possible caveats.

5 https://www.arangodb.com
6 https://www.couchbase.com
7 https://redis.io
8 https://couchdb.apache.org
9 https://www.elastic.co

10 https://neo4j.com
11 https://virtuoso.openlinksw.com
12 https://franz.com/agraph/allegrograph
13 https://blazegraph.com
14 Namespace prefixes used throughout the thesis are expanded in prefix list in page ix

https://www.arangodb.com
https://www.couchbase.com
https://redis.io
https://couchdb.apache.org
https://www.elastic.co
https://neo4j.com
https://virtuoso.openlinksw.com
https://franz.com/agraph/allegrograph
https://blazegraph.com

18 background

Unstructured Data

When taken literally, the adjective unstructured means without structure or organization15.
Truly unstructured data would be useless since no one would be able to make any sense
of it. Therefore, the term commonly refers to: (1) information that does not follow any
perceivable data model, (2) information that cannot easily be stored or translated into
any rigid data structure, or (3) structured data, but the data model is not helpful for a
specific processing task. These definitions are broad, however, the most relevant point
is that distinguishing between structured or unstructured data relies on the use-case.

DBpedia language text in books or emails, for example, follows a grammatical struc-
ture that can be inferred and exploited using natural language processing methods (e.g.
Klein and C. D. Manning [44]). However, this is not always the optimal format for spe-
cific tasks such as applications that require direct access to the entities contained in the
text. Extracting entities from natural language text is an active field of research, usually
called Named-entity recognition (NER). NER techniques are used to extract meaningful
information from text, however, this is not a trivial task. Therefore, it is common to refer
to natural language text as unstructured.

Structured Data

Structured data follows a clear data model, which all current and future data must
follow. The most common example of structured data is found in RDBs. Designing
an RDB requires a database administrator to create a conceptual, logical, <and physical
data model that culminates in a strict schema for the data in the database to follow. Struc-
tured data systems trade flexibility for reliability. The process of extending a data model
beyond its initial design can be strenuous and can compromise the system. Therefore,
designing a structured database is an elaborate process since the data model is almost
final before the database is populated. This design process means that the flexibility of
the system is restricted, making it difficult for the data model to evolve.

Semi-structured Data

Semi-structured data does not follow a strict schema rule, but a structure can be inferred
from the data format. The presence of a schema is optional and can even be defined a
posteriori or adapted as the data evolves. Any physical data model that does not adhere
to strict schema rules can be considered semi-structured. Popular semi-structured data
formats are Comma-Separated Values (CSV), JSON, and RDF.

One of the most common semi-structured formats on the Web is tabular data, with
CSV being one of the most popular formats, especially among governmental open data
portals16. CSV owes its popularity to the ease of manipulation and the variety of soft-

15 https://www.merriam-webster.com/dictionary/unstructured
16 As of November 2020, CSV is the most popular data format in the European Data Portal (https://www.

europeandataportal.eu/)

https://www.merriam-webster.com/dictionary/unstructured
https://www.europeandataportal.eu/
https://www.europeandataportal.eu/

2.2 knowledge representation 19

ware available that can consume and export data in this format. A data file usually in-
cludes a record per line (or row) that represents an entity with attributes in subsequent
columns, each column separated by a comma.

Due to its ubiquity, CSV is a fast and easy solution to publish data. However, it
is a semantically poor format since complex relationships between columns can be lost
without higher levels of expressivity.

JSON is a data format that stores data in an associative array of attribute and value
pairs. This format facilitates human and machine readability, with a standard structure
being exploited to provide higher expressivity to the data. It is programming language
independent and can be easily converted to other formats. JSON data can also be con-
sidered structured if it follows a specific data model, however, even when it does not,
some level of structure can be inferred from the data.

RDF data usually lies closer to structured data than the two previous examples since
specifications are provided to publish data in this format. However, these specifications
are not always followed, which can make the structure less obvious. In most cases, a
structure can still be inferred even if the data model is not provided.

Thesis Context

In this thesis, we handle semi-structured and structured data. The knowledge graph
building process handles RDF data that ranges from semi-structured to structured.
The framework presented focuses on providing data model candidates for input semi-
structured or structured data. The output is always data with a stronger structure,
following an RDF data model.

2.2 knowledge representation

When data is structured, it provides information from which knowledge can be extrac-
ted. Structuring data in ways that are machine readable enables knowledge to be more
easily accessible and reused. More specifically, linked data uses RDF data models to
structure data in ways that promote the connection of data sources to enable semantic
queries from which knowledge is extracted. Ontologies play a major role in supporting
information exchange, but standardising and integrating data models using ontologies
is not a trivial task. In the next sections, we will provide descriptions of concepts that
enable knowledge representation using the RDF data model.

2.2.1 Linked Data

Linked data refers to principles and standards to publish and connect data on the
Web [45]. The four main principles of linked data are [9]:

20 background

1. Use URIs to identify things such as real-world and abstract objects and concepts,
extending the scope of the Web to support the identification of more than docu-
ments and digital content.

2. Use HTTP URIs so that people can dereference objects and concepts online to
obtain a description of the object or concept identified by the HTTP URI.

3. The description provided by the dereferenced HTTP URI should follow a stand-
ard data model, RDF being one of the most widely used when following these
principles.

4. Add links to other URIs to enable data interconnection and interchange. These
links can be between entity types or entities, forming relationships between differ-
ent datasets and powering the acquisition of integrated knowledge.

Over the years, data publishers have released several datasets following these prin-
ciples. In 2010, Tim Berners-Lee updated the linked data document to expand it with
the description of Linked Open Data (LOD). This initiative encourages data publishers
to not only follow linked data principles but also to release their data with an open
licence to enable the reuse of the data. LOD should [9]:

1. be published with an open licence

2. be structured with a machine-readable format

3. use a non-proprietary format

4. follow open standards to identify things

5. link their data to existing data

The most notable effort to bring together open datasets is the LOD cloud17, which
displays open datasets published following LOD principles. As of September 2020, the
LOD cloud includes 1260 datasets with 16 187 links between them. Data publishers
from several domains have contributed with datasets, forming domain sub-clouds, for
example, in the geography, government, life sciences, and linguistic domains.

Data analyses of the cloud have shown that well-known vocabularies are more
widely used, with proprietary vocabularies becoming less popular with time [46]. How-
ever, data publishers do not always conform to linked data publishing guidelines, and
only a few provide human-readable metadata for their resources or licensing informa-
tion [47]. In terms of analysing the links in the cloud, data publishers tend to reuse on-
tologies. However, ontologies not always follow best practices and often include broken
classes and property links [48].

17 https://lod-cloud.net (visited September 2020)

https://lod-cloud.net

2.2 knowledge representation 21

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ex: <http://example.org/> .

@prefix ont: <http://ontology.org/> .

ex:Book1

rdf:type ont:Book ;

ont:has_title "The Eye of the World" ;

ont:has_author ex:Person1 .

Listing 2.2: Example of RDF data serialised in Turtle format.

Resource Description Framework

Linked data relies on datasets published using the RDF18 data model. This model allows
a rich description of relationships between entities in the dataset and external concepts.
These descriptions are provided in the form of statements with a 〈subject – predic-
ate _ object〉 structure, known as a triple. The subject identifies the resource that is
related to the object via the relationship indicated by the predicate.

Elements in triples can be of three types: URIs, literals, or blank nodes. URIs are
found in any element of a triple and contain a string of characters that uniquely identifies
a resource in the data. Literals are values such as strings, numbers, and dates. A literal
can have up to three parts: value, datatype, and language. The datatype should follow
the specification to declare the type of the literal in question, and the language in which
the literal is expressed can also be declared. Literals can only be represented in objects.
Blank nodes indicate the existence of a resource without using a URI, allowing the
representation of n-ary relationships between subjects and objects. Concrete syntaxes
for the serialisation of the RDF data model have been proposed, such as RDF/XML19,
Turtle20, N-Triples21, or N-Quads22. Listing 2.2 shows the running example in RDF
serialised in Turtle format.

The RDF model directly translates to a graph structure, where subjects are nodes
connected to object nodes via predicate edges. An RDF dataset is, therefore, a collection
of one or more associated graphs, controlled by the same data publisher body as a single
or multiple files [48].

When well-structured, RDF data goes beyond information extraction and facilitates
the easier extraction of new knowledge. The less strict schema structure supports the
evolution of data since adding new concepts to the schema can be easily achieved. The
RDF model focuses on enabling data interoperability and interchange on the Web by
providing a set of standards that should be used when modelling data.

18 https://www.w3.org/RDF
19 https://www.w3.org/TR/rdf-syntax-grammar
20 http://www.w3.org/TR/turtle
21 http://www.w3.org/TR/n-triples
22 http://www.w3.org/TR/n-quads

https://www.w3.org/RDF
https://www.w3.org/TR/rdf-syntax-grammar
http://www.w3.org/TR/turtle
http://www.w3.org/TR/n-triples
http://www.w3.org/TR/n-quads

22 background

2.2.2 Ontologies

RDF focuses on enabling not only links to follow between data sources but should also
provide ways to integrate these sources. Integrating data relies on the interoperability of
the data models chosen for the data. When data models are not consistent, they increase
the domain entropy by creating semantic heterogeneity [49], i.e., the same data in separ-
ate contexts is interpreted differently. Ontologies have been proposed as a key solution
to semantic heterogeneity in the Web of Data [50, 51]. Ontologies (or vocabularies23) are
usually defined as an explicit specification of a conceptualization [10], i.e., ontologies provide
conceptualisations of domains of knowledge and the specification is the concrete repres-
entation of that conceptualisation. In information science, the word ontology is applied
to a set of logical axioms that model a portion of reality [53].

Ontologies offer a unique combination of features that can benefit enterprise [54]
and academia alike [55]. The biomedical domain has been especially keen to adopt
ontologies to integrate their data and several applications have been developed based
on core ontologies [56] ranging from clinical records [57] to gene nomenclatures [58].

Ontologies can be created with different levels of abstraction [59, 60]:

1. upper-level ontologies (or top-level) describe abstract concepts independent of do-
main or application, e.g., Basic Formal Ontology (BFO) [61];

2. mid-level ontologies were proposed [60] as the bridge between upper-level and
domain ontologies to provide descriptions of more concrete concepts while still
maintaining domain independence, e.g., FOAF [62];

3. domain ontologies (or task ontologies) define terms of a specialised domain (e.g.,
medicine, finance, or publications), e.g., Gene Ontology (GO) [58];

4. use-case ontologies (or application ontologies) define concepts in a specific domain
for an individual use-case. Ideally, these ontologies extend domain ontologies with
precise concepts needed for the task.

Ontologies can be expressed with different formal syntaxes such as RDF Schema
(RDFS)24 and Web Ontology Language (OWL)25.

RDFS

RDFS includes upper-level classes and properties to describe categories and
their relationships. rdfs:Class, rdfs:Literal, and rdf:Property are used

23 The distinction between vocabulary and ontology is not clear [52]. The term ontology is usually reserved for
a complex and formally defined set of terms, while vocabulary is used more loosely to refer to collection
of terms that might not follow strict formalisms. In this thesis, we will generally prefer the term ontology.

24 https://www.w3.org/TR/rdf-schema
25 https://www.w3.org/TR/2004/REC-owl-features-20040210

https://www.w3.org/TR/rdf-schema
https://www.w3.org/TR/2004/REC-owl-features-20040210

2.2 knowledge representation 23

when defining types of resources in an ontology. RDFS also defines prop-
erties that can be assigned a domain and range with rdfs:domain and
rdfs:range, respectively. These properties allow the attribution of specific en-
tity types and values relations, e.g., 〈ont:has_title – rdfs:domain _ ont:Book〉,
〈ont:has_title – rdfs:range _ rdfs:Literal〉. These properties ensure logical consist-
ency and allow inferences to be extracted from the data even if not explicitly declared
in the data model. In the running example, if ex:Book1 did not have a declared entity
type, it is possible to infer its type from the domain of the property ont:has_title.

Furthermore, RDFS defines the hierarchical properties rdfs:subClassOf and
rdfs:subPropertyOf that define subsumption of classes or properties. For example,
〈ont:Book – rdfs:subClassOf _ ont:Work〉 defines that ont:Book is subsumed by
ont:Work. rdf:type is the property most commonly used to assign an entity type to
an entity. An entity that is a member of a category indicated by rdf:type is called an
instance. In the case of the running example, 〈ex:Book1 – rdf:type _ ont:Book〉, mean-
ing that ex:Book1 is an instance of the entity type ont:Book. The property rdfs:label

is commonly used to provide a human-readable name to a resource. For example,
〈ex:Book1 – rdfs:label _ “The Eye of the World”〉.

OWL

OWL is built upon RDFS by expanding the ways to express the semantics of concepts.
OWL provides a vocabulary to represent richer relationships, which enable higher levels
of logical inference. On top of the relations defined in RDFS, OWL provides constructs
to describe disjointedness, cardinality, or equality between classes, and provides richer
descriptions for properties, such as symmetry and inverse.

Similarly to RDFS, OWL defines a top-level resource called owl:Class. This defini-
tion should be used instead of rdfs:Class when the ontology uses the OWL extended
syntax, since RDFS class syntax will limit the inference potential of the ontology.

The OWL specification distinguishes between owl:ObjectProperty and
owl:DatatypeProperty properties. owl:ObjectProperty define relations between
instances of classes, e.g., 〈ont:has_author – rdf:type _ owl:ObjectProperty〉 since
ont:has_author has an ontology class in both the domain and the range, while
〈ont:has_title – rdf:type _ owl:DatatypeProperty〉 forms a relation between an
instance of a class and a literal. OWL provides several other constructors to generate
complex axioms such as intersection, union, and complement logical relationships.

One of the cornerstones of ontologies is reuse. Therefore, OWL provides
owl:equivalentClass to denote that two classes have the same instances, being es-
sentially the same class defined in different contexts or ontologies. For example,
〈ont:Book – owl:equivalentClass _ ont2:Textbook〉 denotes that ont:Book and
ont2:Textbook have the same meaning even if used in different settings. Similarly,
OWL has the same relation for instances where owl:sameAs declares two instances to

24 background

be identical, e.g., 〈ex:Book1 – owl:sameAs _ ex2:Textbook35〉 declares that these two
instances with different URIs are referring to the same entity.

Ontology Matching

A common challenge when using ontologies is finding correspondences between re-
sources that have been developed in different contexts and were not specifically de-
veloped for interoperability with new or existing resources. For example, an ontology
that describes books will have different concepts defined if it was developed by a library
or by a service that sells books. While the core entities (e.g., book, author, publisher)
should be represented in both, if the data models are designed in parallel, they do not
always follow the best practices of reusing or integrating existing ontologies. This issue
is found in different domains where several ontologies exist with significant overlap in
concepts, but only a small percentage of classes are widely reused from a small group
of ontologies [48, 63–65].

Ontology heterogeneity is also relevant when designing a data model that uses sev-
eral ontologies. An ontology engineer creating a use-case ontology most likely will find
the need to integrate different ontologies that have a degree of overlap between them.
To create a single data model from different ontologies to extend with their use-case,
they need to find correspondences between these ontologies.

Therefore, the process of finding correspondences between semantically overlapping
entities in ontologies is called ontology matching. The correspondences can have different
meanings with equivalence being the most obvious, but others such as subsumption
or disjointness being equally relevant. A correspondence is called a mapping and can
be found between classes, properties, or instances. Mappings have different levels of
precision, usually associated with a mapping score that denotes the confidence on the
correctness of the correspondence. The result of an ontology matching task is a set of
mappings, which is often called an alignment.

Formally, the pairwise ontology matching process is defined as a function f that
computes an alignment A ′ from a pair of ontologies o and o ′, considering an input
alignment A, parameters p, and resources r as follows [66]:

A ′ = f(o,o ′,A,p, r) (2.1)

The parameters A, p, r are used to extend the definition of the matching process
by providing an input alignment to complete the alignment A, by providing a set of
parameters p that affect the matching process (e.g., weights, or thresholds), or external
resources r that support the matching process such as specific thesauri.

Several ontology matching tools have been developed over the years. The Ontology
Alignment Evaluation Initiative (OAEI)26 is an initiative that aims to help improve onto-

26 http://oaei.ontologymatching.org

http://oaei.ontologymatching.org

2.2 knowledge representation 25

logy matching techniques by assessing the characteristics of existing ontology matching
systems and performing comparative evaluations between different solutions. The sys-
tems are measured on different tasks that evaluate different facets of ontology matching,
such as equivalence class matching, large ontology matching, and instance matching.

Over the years, many systems participated in this initiative, and different tasks have
been added and excluded has the research field evolved, e.g., in 2018 a task called
knowledge graph [67] was added to match instances and schemas between knowledge
graphs. In 2019, overall, the OAEI had 20 participant systems [68], each participating in
a different number of tasks.

In this thesis, we use methods from the AgreementMakerLight (AML) ontology
matching system [69] which has participated in OAEI for several years, while being
consistently one of the best performing systems in several tasks.

2.2.3 Representing Heterogeneous Data in RDF

Data transformation from heterogeneous data sources to RDF is a complex task and
different solutions have been proposed to deal with it that focus on specific file formats
or provide the flexibility to be adapted to several data publishing formats. Lefrançois,
Zimmermann and Bakerally [70] shares a list of requirements for generating RDF from
heterogeneous data sources, gathered from experience and their use-cases. These re-
quirements include: (1) transform different file formats, including binary, and easily
extend with new formats, (2) exploit existing RDF data sources for context, (3) be easy
to use by Semantic Web experts, (4) integrate well in a data engineering workflow, and
(5) be flexible and maintainable. Our framework aligns well with the use-cases pro-
posed in Lefrançois, Zimmermann and Bakerally [70], and it fulfils the requirements or
is easily extendable to fulfil them.

In the same article, Lefrançois, Zimmermann and Bakerally [70] propose SPARQL-
Generate, an extension of SPARQL 1.127 to transform data into RDF, while fulfilling the
requirements they have delineated. SPARQL-Generate works by creating an adapted
SPARQL query that, from specific inputs and a RDF data source, maps the data source
to RDF while answering the query to produce a data model. The data model is extracted
by querying the data model of a RDF dataset that, together with a set of specific data
inputs to convert, generates a query that creates a data model to fit the input data.

Similarly, mapping languages are a popular solution that have long been used to map
data sources to RDF by creating a set of logical rules that express the relations between
entities in a data source. These rules are formalised with a vocabulary that facilitates
the translation to RDF. R2RML [71] was proposed as a language to express mappings
between RDB and RDF datasets. The RML mapping language [72] expanded R2RML
by making the language input format agnostic, while YARRRML [73] was proposed as

27 https://www.w3.org/TR/sparql11-query

https://www.w3.org/TR/sparql11-query

26 background

a human-readable format to write these mappings. Tools and mappings for different
formats have been developed (e.g., [74–76]), and mapping languages have been applied
to convert data sources in different domains (e.g. [77, 78]). In general, the aim of
mapping languages is to create RDF data models that fit heterogeneous data sources.

However, the mappings created are either directly extracted from the data source
without following a specific existing ontology or when creating the rules, an ontology
or a set of ontologies needs to be chosen to map the concepts in the data sources. Our
framework extracts these concepts from the existing RDF data sources, facilitating the
processing of choosing the most appropriate ontology or set of ontologies for a given use-
case. Furthermore, our solution could be integrated with mapping languages since our
framework extracts specific vocabularies from existing data. Therefore, our framework
could facilitate the creation of mapping rules by suggesting a data model or candidate
entity types and proprieties to jump-start the creation of the mapping rules.

Complex systems have been developed on top of mapping languages. For example,
LDIF [79] is a system that uses a mapping language to translate different data sources
into the same data model. Sadeghi et al. [20] presents a system that builds a knowledge
graph from heterogeneous data sources using processes that include a mapper (using a
mapping language) and ontology matching to connect the ontologies used. However, the
aim of this system is to generate a knowledge graph without apriori knowledge of other
datasets already modelled in the same domain. Therefore, the system expects the user
to provide a set of ontologies to be mapped to the data via a mapping language. These
approaches differ from our proposed framework since they are closer to an internal
approach where the desired ontologies are supplied and no background knowledge is
provided to support the modelling process. Therefore, similarly to all approaches based
on mapping languages, these approaches are based on finding a specific data model
determined by an automatic mapping of ontology concepts to the data. Contrary to
them, however, our approach focuses on providing a broad view of the possibilities to
model specific data in a domain where similar data has already been modelled.

Several methods have also been focused on the internal approach that builds the
data model from the ground up by starting with one or more specific ontologies that can
model the problem, modelling the data in RDF, and providing post-processing methods
to improve the interlinking of concepts. Datalift [80] is an example of such an approach,
where several input datasets are converted to RDF, keywords are matched to Linked
Open Vocabularies (LOV) [81] vocabularies that are used to model the data. Similarly,
Datavore [82] is a framework that, from an input dataset, finds a schema by searching
keywords in the LOV repository and uses a set of measures to improve the connections
between concepts. KARMA [19] is a system that models a variety of data sources in
different formats, with ontologies provided by the users. The system uses a learning-
to-rank approach to provide a semi-automatic data modelling technique that improves
suggestions as the user selects more concepts for their data model. This system speeds

2.3 knowledge discovery 27

up the process of creating a data model using an internal approach. FuhSeh [23] takes
several keywords, searches through RDF data sources, and produces a knowledge graph
that matches those keywords and integrates with the data sources.

The biggest challenge with internal approaches to data modelling is finding onto-
logy repositories that gather all relevant ontologies in a specific domain. While general-
purpose repositories exist, such as the LOV portal, and some domains have specific
ontology repositories, e.g., BioPortal [83] and Ontology Lookup Service (OLS) [84] for
the life sciences domain, there is no guarantee that the optimal ontology or ontologies
are indexed by these repositories. When following an external approach that starts from
available datasets modelled in RDF, the nature of the method guarantees that the rel-
evant ontologies are found since this approach is concerned with finding a data model
based on existing ones. However, not all concepts have been modelled in a domain and
some domains have greater RDF dataset coverage than others. In these cases, internal
approaches are one of the solutions to find or complete a data model. Therefore, in this
thesis, our final analysis includes evaluating the performance of internal approaches. In
this evaluation, we start from a set of keywords and use different search methods to
extract a set of entity type candidates from local or online ontology repositories.

2.3 knowledge discovery

Until now, we have presented and discussed ways to store and structure data, informa-
tion, and knowledge on the Web. This section focuses on discussing the approaches and
problems related with the retrieval of relevant information and knowledge.

2.3.1 Information Integration

The main goal of the efforts to integrate information is to facilitate the extraction of
knowledge, e.g., if information exists in isolation, no knowledge can be extracted from
it. Therefore, this is an open research field with several challenges [85]:

1. datasets are produced and managed by different authorities and each publisher
decides the needs of the data model for their dataset;

2. the same real-world concepts are referenced by different URIs, creating the need
to perform disambiguation tasks;

3. complementary datasets in the same domain but modelling different aspects are
not easily linked if not properly integrated;

4. datasets can contain errors or out-of-date information that makes the integration
task more laborious;

28 background

5. datasets in the same domain follow different data models that can include different
concept granularities or different names for entity types and properties;

6. integration has to be a continuous process that accounts for the evolution of data
and ontologies.

In this thesis, we mostly focus on Challenge 5 with some tasks related to Challenges 1
and 3. In the knowledge graph research domain, these challenges are usually handled
by refinement tasks, which are distinguished into completion and error detection [86].
While the latter focuses on adding missing knowledge to the graph, the last handles
graph knowledge that is incorrect. These approaches are directed towards specific tar-
gets in the graph, e.g., entities, entity types, properties, or literals, and make use of
internal and/or external methods, i.e., use only information contained in the graph or
also rely on external sources, respectively. See [86] for a detailed survey of proposed
approaches for knowledge graph refinement. In this thesis, we do not directly refine the
knowledge in the graph, but indirectly, we integrate new data with knowledge graphs,
therefore completing the knowledge in the domain. We use a combination of internal
and external methods in our proposed framework by using a background knowledge
graph to propose candidate models for input data, an ontology graph to facilitate the
ranking of candidates, and supervised learning methods to extract information from the
knowledge graph that can be used to complete the generation of data model candidates.

2.3.2 Information Retrieval

Information Retrieval (IR) is a broad concept that has been defined as finding material
(usually documents) of an unstructured nature (usually text) that satisfies an information need
from within large collections (usually stored on computers). [87]

Traditionally, this definition could refer to a librarian searching for a reference within
a library collection. With the advent of the Web, however, IR is more commonly under-
stood as a computer process to provide access to unstructured or structured documents,
usually within large collections of documents. The retrieval process has, in general,
three main stages: (1) indexing, (2) searching, and (3) scoring/ranking. The main pur-
pose of indexing is to improve the efficiency of the search process. An indexer collects,
parses, and stores documents to make them easily accessible and matched. The search
task starts when a query is received by the system and is matched against the index. The
results from this querying process are scored using a variety of algorithms and allow
the ranking of the search results to present in response to the query.

Three types of IR systems can be distinguished by their scale [87]:

• Web search includes search tasks that can encompass millions of documents avail-
able in assorted formats from unstructured to structured. This type of search has

2.3 knowledge discovery 29

specific requirements in terms of indexing and efficiently retrieving relevant docu-
ments. Google28 is one of the most used web search engines available.

• Personal information retrieval includes small-scale searches, for example, in a per-
sonal computer or email inbox. Here, the challenges include indexing and search-
ing on a wide variety of document types without consuming too many resources
to avoid interfering with the user experience in their personal computer.

• Enterprise or domain-specific search is usually developed with specific use-cases in
mind. Therefore, the indexing and search processes are optimised for expected
documents or data. The scale of this type of search is variable and resources are
allocated depending on specific needs. This type of search tends to benefit the
most from integration between indexes, which, in an enterprise setting, means
storing data in databases optimised for that task.

However, arguably another possible type of search is called semantic search, i.e., an
IR system that performs queries based on information beyond data symbols. This type
of search is usually found in knowledge graph queries, where a search engine has access
to semantic characteristics and graphical structure of entities. The task of Ad-hoc Object
Retrieval (AOR) [4] has been defined has the task of retrieving a ranked list of resources
from a knowledge graph in response to an unstructured keyword query. The intention
of these queries is to retrieve different aspects in the knowledge graph, e.g., finding
entities, entity types, attributes, or relations.

Early AOR approaches focused on entities present in Wikipedia [88], but more sys-
tems have been developed and evaluated [89]. AOR engines use well-established IR tech-
niques to retrieve resources. For instance, Swoogle [90], Sindice.com [91], Watson [92],
or Yars2 [93] allow searching of ontology resources through user queries. The ranking
in these search engines follows traditional link-based ranking methods, in particular,
adapted versions of the PageRank algorithm [1], where links from one source of in-
formation to another are regarded as a “positive vote” from the former to the latter.
Falcons [94] uses a popularity-based scheme to rank concepts and ontologies. Facebook
also developed a search system to retrieve entities from their social graph [95].

In this thesis, we use concepts from traditional IR and apply them to the AOR task.
Chapter 4 takes advantage of the inverted index built from the knowledge graph to gen-
erate data model candidates. In Chapter 5, we apply IR algorithms directly to retrieve
entity types from a collection of entity types candidates.

2.3.3 Evaluating Knowledge Discovery Techniques

There are several measures to evaluate knowledge discovery techniques. These are usu-
ally obtained by comparing the retrieved information against a ground truth and vary

28 https://www.google.com

https://www.google.com

30 background

in their strictness. In IR, it is common to have measures that evaluate the performance
based on the top-k results retrieved, while specific classification approaches usually rely
on traditional accuracy measurements, commonly using precision and recall. In this sec-
tion, we will present the the evaluation techniques that we use throughout this thesis.

Precision and recall are common evaluation measures used in different domains.
Precision measures the number of correct results retrieved from all the results obtained,
while recall returns the number of correct results retrieved from all possible correct
results. These metrics are usually calculated in terms of True Positives (TP) and False
Positives (FP), which together form the pool of retrieved results. The TP are the correct
results and the FP are the results retrieved that are incorrect. Additionally, False Neg-
atives (FN) represent correct results that were not retrieved. Following this intuition,
precision (P) and recall (R) are defined as:

P =
TP

TP+ FP
(2.2)

R =
TP

TP+ FN
(2.3)

In IR, it is common to use variants of these measures that consider evaluation only
from the top-k results retrieved. For example, Precision@k (P@k) defines a precision
measure that evaluates the top-k results in terms of correctness. In this case, the denom-
inator of the precision P is always equal to k, defining P@k as:

P@k =
number of relevant resources in top-k results

k
(2.4)

Other precision-based measures include Mean Average Precision (MAP), which is
the mean of the average precision for each query q in the set of queries Q. It also has a
top-k variant, which considers a cut-off point at result k and is defined as:

AP@k(q) =
∑

i=1 rel(ri) · P@i
k

∀q ∈ Q (2.5)

MAP@k(Q) =

∑
q∈QAP@k(Q)

|Q|
(2.6)

Where rel(ri) = 1 if ri is a relevant resource for the query Q and 0 otherwise, P@i is
the precision at top result i.

Finally, Normalised Discounted Cumulative Gain (NDCG) is a standard evaluation
measure of ranking quality that allows graded relevance instead of the traditional binary
relevance. NDCG involves a discount function to weight the rank for penalising relevant
resources that appear in a low position in the search result. The Discounted Cumulative
Gain (DCG) is calculated by:

2.4 knowledge graphs 31

DCG(q) =

k∑

i=1

reli
log2(1+ i)

(2.7)

The NDCG is the quotient between the obtained DCG value and the ideal DCG value
(iDCG). The iDCG is calculated by sorting the results from most to least relevant.

NDCG =
DCG

iDCG
(2.8)

Mean Reciprocal Rank (MRR) is another statistical measure to evaluate the ranking
obtained by a process for a set of queries. The MRR is the mean of the multiplicative
inverse of the rank of the first correct answer, i.e., 1 for the first result, 1/2 for the second,
until k for all queries q ∈ Q as:

MRR@k(Q) =
1

|Q|

k∑

i=1

1

ranki
(2.9)

2.4 knowledge graphs

The concept of knowledge graph emerged in 2012 when Google announced that its
search engine would be supported by a background graph with semantic connections
between entities [96]. The concept was introduced as a way to search things, not strings,
meaning that keyword searches could now provide deeper results not only about the
searched entities but also about the context of the queried entity.

The Google knowledge graph was initially powered by Freebase [97], a collaborative
structured knowledge base, but quickly grew from 50 million entities [86] to ≈ 1 billion
entities [98]. One of the most well-known applications of the Google knowledge graph is
the knowledge panels. Knowledge panels (see Figure 2.5) display relevant information
to the search query that can be found in the Google knowledge graph. They provide
a quick overview of the context of the query by automatically extracting information
from different sources on the Web related to the queried entity. This information can be
enriched or verified by relevant authorities via user feedback.

Currently, there is no clear and agreed definition of what constitutes a knowledge
graph. Several definitions have been proposed for knowledge graphs and the definitions
are centred around different aspects of a knowledge graph. We indicate the following
references for a more in-depth analysis of the proposed definitions [99–101], with Hogan
et al. [102] proposing a 4-category distinction between the existing definitions: (1) graph
where nodes are entities and edges are relationships, (2) knowledge base structured like
a graph, (3) compliance with technical characteristics such as having instances, covering
multiple domains, and providing reasoning capabilities, and (4) by example.

32 background

Figure 2.5: Google knowledge panel

Several of the definitions proposed are not compatible between each other and there
does not seem to be any direction for consensus. In [98], several leaders of knowledge
graph projects came together to publish an article about the direction of knowledge
graphs in their settings comparing lessons learned and common challenges. In this
article, they refer to a knowledge graph as a structure that describes objects of interest and
connections between them, in line with the original blog post by Google [96]. They expand
their description by saying that it is common to impose constraints on the knowledge
graph via schema ontology in a way that can be shared within an organisation and with
others and allows inference of new facts.

In this thesis, we adopt a broad definition of knowledge graph fitting in different
categories of definitions, where a knowledge graph stores data about real-world abstract
or physical entities and their relations structured in ways that enable the extraction of
knowledge, e.g., graphs. Our knowledge graph follows the RDF data model and adheres
to the Linked Data Principles. We use the same terminology as the E-R conceptual data
model to refer to resources expressed by a knowledge graph, i.e., entities represent real-
world physical things or abstract concepts, while entity types categorise these entities.
The entity types are represented by ontology classes, associated to entities via rdf:type

predicates. Relationships are indicated by properties directly connecting two entities or,
indirectly, by edges connecting two entity types associated with entities.

In the past few years, several knowledge graphs have been openly published on the
Web, but also several companies have privately made an effort to use the technology to
boost their business. These knowledge graphs are being applied in different contexts

2.4 knowledge graphs 33

with objectives ranging from obtaining a greater understanding of the data to providing
a better experience for users and costumers.

2.4.1 Open Knowledge Graphs

Open knowledge graphs refers to knowledge graphs that are published following the
Linked Open Data Principles. Some notable cross-domain open knowledge graphs in-
clude DBpedia [5], YAGO [6], Wikidata [7], and Freebase [97]. Both DBpedia and YAGO
aim to automatically extract and structure information from Wikipedia. The knowledge
contained in these knowledge graphs is further enriched with links to external resources
and to each other.

Wikidata is operated by the same institution as Wikipedia, the Wikimedia Founda-
tion, and provides a structured way of introducing data in Wikipedia articles. Contrary
to DBpedia and YAGO, Wikidata does not automatically extract information from Wiki-
pedia but, instead, provides means for users to use and extend its content, following
restrictions that are in place to guarantee consistency across records. Wikidata supports
the addition of references to the claims made in the edited data. Wikidata has received
broad acceptance and is used by Google in their knowledge graph [103], and has been
used in different domains of applications, including Apple’s Siri [104].

Similarly to Wikidata, Freebase was a collaborative effort with users editing and
expanding the knowledge about the entities and relations in the data. Freebase was
acquired by Google in 2010 and propelled the initial launch of the Google knowledge
graph, eventually having its content migrated to Wikidata [103].

Domain-specific knowledge graphs have also been released over the years. These
knowledge graphs answer specific use-cases that broad domain knowledge graphs do
not cover. Notable efforts include Bio2RDF [105] in the life sciences, OpenCitations in
the publication domain [106], cultural heritage [107], and in the library data domain [26].

2.4.2 Enterprise Knowledge Graphs

Google popularised the use of the term knowledge graph with their announcement to
the migration of their web search to search for things, not strings. Since then, several
other business have adopted the model for their web search (e.g., Microsoft Bing [108]).

Several other companies are also taking advantage of the technology for their own
uses such as pharmaceuticals [109], financial [110], or automatic driving [111]. More
specifically, Amazon [112] and eBay [113] have both developed their knowledge graph
in the domain of commerce to accommodate for their need of describing products in
ways that facilitate their discovery. In the domain of social networks, two prominent
actors, Facebook [114] and LinkedIn [115], also announced their knowledge graph to
better connect users and their interests and provide useful recommendations of content.

34 background

2.5 chapter summary

In this chapter, we presented the defining concepts of this thesis, providing the found-
ation for understanding the motivation, contributions, and overall framework that is
being proposed. We started by defining the high-level concepts of data, information,
and knowledge, and how they can be modelled and structured within their data model.
Next, we presented more specific concepts in the area of knowledge representation,
including linked data principles, ontologies, and concepts associated with their repres-
entation and application. The last high-level conceptualisation was related to knowledge
discovery, where we presented the facets of this broad research field that are relevant
for this thesis, which include IR concepts and knowledge graph completion approaches.
More specifically, we presented the concept of knowledge graphs, including examples
of real-world applications of the concept in open and enterprise environments. Finally,
we presented state-of-the-art work related to the overall problem being addressed by
this thesis. We discussed how our methods and contributions fit in this state-of-the-art
and the ways in which they are distinct and provide new contributions.

3 B U I L D I N G B A C KG R O U N D K N O W L E D G E

This chapter details the process of building the background knowledge that facilitates
the generation and ranking of the data model candidates. Generating entity type and
property candidates that not only accurately match a knowledge graph but also focus on
maximising interoperability is not a trivial task. Therefore, in this chapter we describe
the structures that enable and optimise the process and we assess their suitability for
the task and evaluate the performance of specific key methods. This chapter addresses
the following main research question:

RQ1 → What knowledge structures can support the extraction of ontology-based data mod-
els?

This question is answered by dividing it into the following sub-questions:

RQ1.1 → Can increasing the connectedness of the ontology graph support the computation
of interoperability measures for candidate data models?

RQ1.2→ Is it possible to train a classification model to accurately predict datatype properties
from literal values using multiple knowledge graphs?

The answers to these questions are explored by creating several knowledge struc-
tures that are extracted from the knowledge graph and hold the necessary knowledge
to generate and rank entity type and property candidates. This stage of the frame-
work has four main tasks: (1) extracting metadata to speed-up the lookup of essential
information to generate and rank candidates (Section 3.5), (2) building the knowledge
graph from heterogeneous RDF data sources (Section 3.6), (3) extracting the ontology
graph (Section 3.7) and evaluating the edge enrichment methods (answers RQ1.1), and
(4) training, validating, and testing a random forest classification model to generate
datatype properties (Section 3.9, which answers RQ1.2).

Therefore, the contributions of this chapter include (1) methods to automatically cre-
ate a knowledge graph from multiple RDF datasets, (2) supported by a tightly connected
background ontology graph, and (3) methods and evaluation of random forest models
to classify datatype properties.

3.1 introduction

Background knowledge is a generic term to describe a priori information that helps to
understand or contextualise a problem to facilitate the execution of a task. It helps to

35

36 building background knowledge

make sense of new information by comparing it to prior information and figuring out
how the new information fits with the old. The term is applied to different fields from
social sciences (e.g., pedagogy [116]) to machine learning and knowledge engineering.
In the context of Pedagogy, for example, it may refer to the knowledge students acquire
through life experiences and how it affects the execution of tasks such as reading and
comprehension. On the other hand, in the field of machine learning, it may refer to a
resource that is used in a supervised approach to train a model. In knowledge engineer-
ing, background knowledge usually refers to the use of external resources to improve a
task. These resources can be, for example, existing datasets or ontologies.

Data
Documents

Knowledge
Graph RDF Sources

Ontology Layer

Data Layer

Properties

Ontology Layer

Data Layer

Properties

Data Layer

Properties

Ontology Layer Datatype
Properties

Random Forest

Object
Properties

Pre-computed
metadataDocument Store

Section 3.6 Section 3.5 Section 3.9Section 3.7

Figure 3.1: Overview of the framework components in this chapter with their respective sec-
tions.

In this chapter, we describe the knowledge structures we extract to support our
framework, illustrated in Figure 3.1. These structures are built to facilitate the gen-
eration and ranking of entity type candidates and properties. The framework has the
following requirements: (1) efficiently produce ranked data model candidates, (2) enable
AOR search over the literals of the RDF data sources to generate entity type candidates,
(3) easily traverse the ontology graph to understand the relations of each entity type
and property to rank them based on their interoperability, and (4) generate datatype
property candidates from literal objects.

We consider two main sources of knowledge that can be extracted from RDF data
sources: the data layer and the ontology layer. The data layer contains the entities
and their relationships, and the ontology layer contains not only the entity types and
properties used in the dataset but also further logical relationships between entity types
that might not be featured in the dataset. Therefore, to answer the requirements of the
framework, from the RDF data sources, we extract maps of pre-computed metadata that
contain essential information to generate and rank candidates more efficiently. From

3.2 related work 37

the data layer of the RDF sources, we build a document store with an inverted index of
the literal field values of the RDF data sources that enables full-text search over these
resources. This document store is the entry point to the knowledge graph since it fa-
cilitates the querying process to obtain valuable information to generate and rank can-
didates. The ontology layer is combined into a single ontology graph, further enriched
with new edges that produce a tightly connected graph to be traversed, enabling the
assessment of the distances between vertices and vertex neighbourhoods. The ontology
graph contains information about the ontology layer only, with the knowledge graph
functioning as the bridge between the data layer and the ontology layer. Therefore, the
ontology graph has more extensive knowledge about the entity types and properties in
the data models of the RDF data sources since it not only includes the entity types and
properties represented in the data layer but also contains the extended relationships of
these resources to other entity types and properties in the same domain.

Finally, the values of datatype properties can describe any type of literal data. As-
suming that datasets in the same domain have similar datatype property requirements,
we train a random forest model with the goal of identifying which properties fulfil each
requirement in the source RDF data sources. In this chapter, we describe the methods
used to build each one of these structures. We also present experiments that explore
their impact and evaluation, and test the effectiveness of the proposed structures.

In the following sections, we will first discuss the state-of-the-work related to these
methods. Then we will present the different parts of the methodology, i.e., extracting
metadata, building the knowledge graph, creating the ontology graph, and training the
datatype property model, followed by experiments and evaluations of the methodology.
Finally, we present the conclusions, including limitations and future work.

3.2 related work

Several solutions have been developed to create knowledge graphs from a single or
multiple data sources and to enrich the links between the entities or entity types in
the graph. However, the right approach to create a knowledge graph depends on
numerous factors, including the domain of the data, the application, and the actors.
For example, DBpedia [5] is a knowledge graph built from information in Wikipedia,
with an underlying ontology semi-automatically extracted from the most commonly
used Wikipedia information boxes. YAGO [6] is another knowledge graph that ex-
tracts knowledge from Wikipedia, but its ontology combines the Wikipedia category
system with the WordNet [117] taxonomy. The relations in YAGO are manually eval-
uated and some also provide links to DBpedia concepts. Both of these knowledge
graphs contain a broad domain of knowledge but miss specific definitions of domain
concepts necessary in some applications, especially when these concepts are not very

38 building background knowledge

well covered by Wikipedia. For example, the DBpedia entity for the book The Eye of
the World (http://dbpedia.org/page/The_Eye_of_the_World) is well-covered, including
entity types from popular ontologies used to model bibliographic data, such as the Bib-
liographic Ontology (BIBO). However, several other data models have been proposed in
the bibliographic domain and, when modelling specifically this type of data, the data
publisher might prefer to have their data well integrated with other bibliographically
data, which would not always be the case if using the DBpedia data model. In this
thesis, we propose an approach that not only extracts a schema from an RDF data but
also facilitates the integration of the data with published knowledge graphs.

RDF data sources have a long history of being exploited as background knowledge
to perform and enhance other tasks. More specifically, it is common to find onto-
logy matching strategies that use background knowledge to improve the mappings
discovered between ontologies [118–120]. These ontologies can be later exploited to
provide schema mappings that improve linking in knowledge graphs [27, 121]. In this
thesis, we use RDF data sources as background knowledge that allows the extraction
and ranking of candidate matches for entity types and properties.

Background knowledge extracted from knowledge graphs has also been applied
to perform semantic labelling of numerical values. Approaches have been proposed
to identify them [122, 123] using classification and clustering methods. Commonly,
tabular data does not follow any strict data model. Therefore, data publishers provide
table headers that, even though might refer to the same concepts, are provided with
different names. For example, in Z. Chen et al. [124] the authors provide the example
of a latitute column versus the abbreviated lat header. The authors of this work use a
supervised learning method to predict alternative or missing schema labels to integrate
tabular data. They extract different features from the values of each column and train
a random forest model to predict future values. The authors conclude that the method
performs better on float values and worse on string values. In our proposed datatype
property prediction approach, we also apply a random forest model. In addition to
similar features proposed by Z. Chen et al. [124], we also extract some features that focus
on distinguishing string values, such as number of letters, letter casing, and number
of non-alphanumeric characters. However, due to the variety of string datatypes, we
do not expect the datatype model to obtain a high precision@1, but we aim for high
precision@5 since the models are used to generate an extensive list of datatype property
candidates that are further ranked by content- and interoperability-based scores. In this
thesis, we propose a method to generate datatype property candidates closely related
by the methods developed by Z. Chen et al. [124] since we use a random forest classifier
to identify the datatype properties. However, differently from Z. Chen et al. [124], the
aim of our work is not to find missing schema labels but instead to produce a list of
datatype properties that match a background knowledge graph and can support a data
publisher to create a full data model. Therefore, besides considering the results from

http://dbpedia.org/page/The_Eye_of_the_World

3.3 experimental use-case datasets 39

the random forest prediction, we apply additional content- and graph-based scores that
re-rank the candidates to facilitate the task at hand.

3.3 experimental use-case datasets

In the experiments with the framework, we use two running examples as potential
use-cases: a library use-case and a life sciences use-case. The library use-case focuses
on integrating data across libraries, while the life sciences use-case looks at data from
biology repositories and aims to find potential data models for this data. The next
sections present both of these use-cases in more detail and include descriptive statistics
of the data and metadata of the RDF data sources and input data in each use-case.

3.3.1 Library Use Case

Traditionally, libraries expose their catalogue using Machine-readable cataloguing
(MARC)1 standards, which have been criticised for their restrictions in the description
of relationships between entities [125, 126]. Libraries have, therefore, been shifting to-
wards more open, reusable, and interoperable formats by exposing their catalogues in
RDF, following LOD principles [45]. However, several schemas have been proposed to
structure bibliographic data, but none are widely adopted [18], with different libraries
modelling data in distinct ways [25, 26], hindering data interchange between published
datasets. Considering all different options, it is also challenging for the library data
publisher to select the most appropriate data model when transitioning from traditional
standards to LOD models.

Datasets

In our experiments, we distinguish between RDF and non-RDF (CSV and JSON) datasets.
The RDF datasets are used to build the knowledge graph but also illustrate the use-case
of a data publisher that intends to update a data model. The non-RDF datasets represent
the use-case of finding an interoperable data model for data not currently following the
RDF data model. Table 3.1 presents the datasets chosen for our experiments.

The RDF group has datasets from 5 European libraries, the Project Gutenberg di-
gital library, and data from the Hardiman Library at NUI Galway. All data is publicly
available, except for the University data which was provided in RDF/XML format, auto-
matically converted from MARC 21 to BIBFRAME2. The Gutenberg and University data
were chosen as the experimental use-cases since they follow data model practices not
completely or easily linked to the models of the other libraries. The non-RDF datasets

1 http://www.loc.gov/marc (Accessed in September 2020)
2 https://www.loc.gov/bibframe/mtbf (Accessed in September 2020)

http://www.loc.gov/marc
https://www.loc.gov/bibframe/mtbf

40 building background knowledge

Table 3.1: Summary of the source RDF libraries chosen. The dashed line separates RDF (top)
from non-RDF (bottom) datasets

Library name Handle URL Downloaded

British Library British https://www.bl.uk Nov 2019
Bibliothèque Nationale de France French https://www.bnf.fr Dec 2019
Deutsche Nationalbibliothek German https://www.dnb.de Feb 2020
Project Gutenberg Gutenberg https://www.gutenberg.org Nov 2019
James Hardiman Library University http://www.library.nuigalway.ie N/A
Biblioteca Nacional de Portugal Portuguese http://www.bnportugal.gov.pt Feb 2020
Biblioteca Nacional de España Spanish http://www.bne.es Feb 2020
Open Library (JSON) OpenL https://openlibrary.org Mar 2020
DSI Library (CSV) Institute https://dsi.nuigalway.ie N/A

include a JSON dataset from the Open Library and a local small-scale CSV example with
books and magazines from the library of the Computing and Communications Museum
of Ireland located in the Data Science Institute (DSI).

Overall, the datasets contain a variety of records such as books, audio records, and
periodicals. Table 3.2 illustrates the problem addressed in this work by showing the
entity type chosen in each library to describe book entities. The table shows that each
library developed different data models and a book entity has multiple potential entity
types. The table also includes the definition of a book in the JSON dataset and the
column name with books in the CSV dataset.

Table 3.2: Entity types that describe books in the chosen libraries

Library Book source types

British dcterms:BibliographicResource / bibo:Book / schema:Book

French skos:Concept / frbr:Work

German bibo:Document

Gutenberg pgterms:ebook

University bibframe:Work / bibfram:Text

Portuguese edm:ProvidedCHO

Spanish bne:C1003

OpenL /type/work

Institute Title

Metadata

Table 3.3 presents descriptive statistics of the RDF data sources and target datasets. The
columns include the number of entities, entity types, datatype properties, object prop-
erties, and data model triple patterns (i.e., 〈domain – property _ range〉). Overall, the
largest dataset comes from the Open Library, followed by the German Library, and
French Library. Our smallest dataset is the DSI library with only 34 unique documents.
Despite being a outlier in terms of size, this dataset is useful to showcase that the frame-
work can be applied to small scale cases, even when compared to a large knowledge

https://www.bl.uk
https://www.bnf.fr
https://www.dnb.de
https://www.gutenberg.org
http://www.library.nuigalway.ie
http://www.bnportugal.gov.pt
http://www.bne.es
https://openlibrary.org
https://dsi.nuigalway.ie

3.3 experimental use-case datasets 41

graph. Furthermore, it shows how the framework can be directly applied to CSV input
files. Most libraries use between 15 and 20 entity types, except for the University library
which has 43 unique entity types. Both French and German libraries include relators
in their properties, i.e., specific properties that relate to a name and a bibliographic re-
source [127], which is why they show such a large number of object properties. The last
column of the table reports the number of unique triple patterns from the Knowledge
Graph Patterns (KGP) list.

Table 3.3: Descriptive statistics of the datasets in the library use-case. # Dt Properties refers
to the number of datatype properties and # Obj Properties to the number of object
properties

Library # Entities # Entity Types # Dt Properties # Obj Properties # Triples

British 17 289 195 15 34 17 51

French 38 100 563 15 93 602 695

German 50 340 156 20 236 187 423

Gutenberg 856 476 7 40 30 70

University 5 236 482 43 293 74 367

Portuguese 2 437 096 2 28 0 28

Spanish 20 752 087 16 163 38 201

OpenL 54 678 367 15 324 5 329

Institute 34 N/A N/A 0 32

3.3.2 Life Sciences Use Case

Life sciences research is increasingly focused on integration with research areas such
as Systems Biology and Translational Medicine, bridging distinct domains to provide
novel insights. The need for data integration across domains coupled with the massive
amounts of data being produced both by biological and clinical domains poses new
challenges. A common strategy to deal with this data deluge involves linking the in-
formation to ontologies, making it easier to search through databases and to develop
algorithms to process information. Ontologies have been remarkably successful in the
life sciences, especially in the biomedical domain, where the Gene Ontology [58] is the
most notable success case. The NBDC RDF Portal [128] includes a collection of datasets
in the life sciences domain in RDF format. These datasets are characterised by their
large size with the NBDC Portal, as of August 2020, reporting 99 billion triples in their
portal. The significant computational resources necessary to handle this data is one of
the biggest challenges of the domain. Similarly, life sciences ontologies follow the same
trend by describing thousands of concepts with complex relationships between them.

42 building background knowledge

Datasets

Due to the challenges of the domain, we selected a small use-case to exemplify the po-
tential of the framework in the domain. However, by being small, and not including all
available resources, this use-case has a higher potential of underperforming. Nonethe-
less, Table 3.4 shows the resources selected for the use-case.

Table 3.4: Summary of the source life sciences resources used. The dashed line separates RDF
(top) from non-RDF (bottom) datasets

Library name Handle URL Downloaded

DisGeNET DisGeNET https://www.disgenet.org/ June 2020
Expression Atlas EA https://www.ebi.ac.uk/gxa/home July 2020
GenAge Database GenAge https://genomics.senescence.info/genes/ August 2020
GWAS Catalog GWAS https://www.ebi.ac.uk/gwas/ June 2020
Monarch Initiative Monarch https://monarchinitiative.org/ June 2020
Uniprot Uniprot https://www.uniprot.org/ August 2020
GDC Data Portal (JSON) GDC https://portal.gdc.cancer.gov/ August 2020
PharmGKB (JSON) PharmGKB https://www.pharmgkb.org/ August 2020

The RDF data sources include 6 datasets publicly available. The datasets cover differ-
ent sub-domains within the life sciences with some overlap between datasets. Overall,
the datasets contain genomic, proteomic, and disease data. DisGeNET, Expression At-
las, GWAS, and Uniprot are directly provided by the data publisher in RDF format.
The Monarch Initiative gathers data from different data sources to create an integrated
data platform and makes this data available in RDF format. The GenAge dataset was
obtained via the Bio2RDF project [129], which is an open source project that applies
simple conversions to transform data in heterogeneous formats to RDF. Despite being
available in RDF already, GenAge does not follow data modelling practices adopted by
manually curated datasets in the same domain. Therefore, we apply our framework to
propose a data model to bring it in line with the datasets in the knowledge graph.

The non-RDF datasets include case data from projects publicly available in the
Genomics Data Commons (GDC) Portal of the National Cancer Institute, USA. The
PharmGKB dataset includes drug, pathway, and clinical annotations to study the rela-
tionship between genetic variations and how the human body responds to medications.
We use the publicly available dumps of this data as input of our framework.

Metadata

Table 3.5 includes descriptive statistics of the data sources of this use-case. Overall, the
largest dataset in terms of entities is the Expression Atlas (EA). The largest in terms of
data model is the Monarch dataset, which is explained by their integration of multiple
datasets in their platform.

https://www.disgenet.org/
https://www.ebi.ac.uk/gxa/home
https://genomics.senescence.info/genes/
https://www.ebi.ac.uk/gwas/
https://monarchinitiative.org/
https://www.uniprot.org/
https://portal.gdc.cancer.gov/
https://www.pharmgkb.org/

3.4 overview 43

Table 3.5: Descriptive statistics of the datasets in the life sciences use-case

Dataset # Entities # Entity Types # Dt Properties # Obj Properties # Triples

DisGeNET 4 842 024 22 16 12 28

EA 35 309 936 15 10 11 21

GenAge 3301 8 18 5 23

GWAS 320 224 3 11 6 17

Monarch 24 007 559 66 56 57 113

Uniprot 2 824 754 26 30 18 48

GDC 84 139 12 12 0 12

PharmGKB 26 836 33 33 0 33

3.4 overview

The knowledge building methodology of this chapter has four main tasks:

1. extracting metadata: pre-computes the metadata maps that facilitate candidate
generation and ranking;

2. building the knowledge graph: extracts the RDF data layer and stores it in a docu-
ment store to be indexed;

3. creating the ontology graph: extracts the ontology layer and connects it via hier-
archical and logical relationships and enriches the graph with edges inferred from
the data layer;

4. fitting the datatype property classification model: training and testing the random
forest model to predict datatype properties.

The next sections describe each task, including the methods to obtain the background
knowledge structures and their analysis or evaluation.

3.5 metadata extraction

This task focuses on extracting metadata from the RDF data sources that is not easily
retrieved either from the document store or the ontology graph. Therefore, we extract
and store useful information in intermediary structures that will later be used to more
efficiently generate and rank entity types and property candidates.

First, we create Entity Type Frequency (ETF), a map of the number of times t each
resource r (e.g., entity type or property) appears in each of the RDF data sources ds, in
the form of ETF[ds][r] ← t. Considering that some RDF data sources assign more than
one type per entity, the sum of frequencies for each data source is greater than the total
number of documents stored.

44 building background knowledge

We extend this frequency map to create the Neighbourhood Proportion (NP) map.
This map takes each entity type and its frequency and adds the frequency of its direct
ancestors and descendants. For example, the frequency of bibo:Book will include the
frequency of its superclass bibo:Document and its subclass bibo:Proceedings. Then,
we normalise this frequency by the total number of entities in the dataset to obtain the
proportion of entities that belong to each neighbourhood cluster.

Finally, we extract the KGP list of tuples, where each tuple contains the
triple patterns of the data model of a RDF data source, in the form of
〈domain – property _ range〉. Each tuple also includes the frequency of each triple
pattern in the data sources.

3.5.1 Library Use-case

Table 3.6 shows the top-3 most common entity types and properties per RDF data in the
knowledge graph. Table 3.7 shows how the top-3 frequencies change when applying the
methodology to obtain the NP map. Overall, the best connected entity types increased
their frequency with related concepts contributing to each other’s frequencies and boost-
ing themselves to the top-3. For example, in the German Library, both new entity types
in the top-3 are connected with bibo:Document and, therefore, share its raw frequency.

Table 3.6: Top-3 frequencies per library

Classes Properties
Library Entity Type Frequency Property Frequency

British
dcterms:BibliographicResource 4 305 814 rdfs:label 13 208 476

schema:Book 4 061 670 owl:sameAs 9 620 153

blterms:PublicationEvent 4 054 537 schema:name 5 757 535

French
skos:Concept 13 719 911 owl:sameAs 14 120 540

frbr:Manifestation 10 026 284 dcterms:created 13 963 339

frbr:Expression 10 026 284 dcterms:modified 13 619 055

German
bibo:Document 13 229 893 owl:sameAs 25 426 926

gnd:DifferentiatedPerson 5 138 194 dcterms:license 25 029 667

bibo:edition 4 352 339 dcterms:modified 24 895 254

Portuguese
edm:aggregatedCHO 1 218 548 edm:dataProvider 1 218 548

ore:Aggregation 1 218 548 edm:provider 1 218 548

edm:ProvidedCHO 1 218 548 edm:type 1 218 548

Spanish
bne:C1004 10 425 921 bne:OP4001 10 425 921

bne:C1003 4 598 298 bne:P4001 10 425 921

bne:C1001 2 014 818 bne:P4016 10 425 921

3.5.2 Life Sciences Use-case

Table 3.8 shows the top-3 most common entity types and properties per RDF data
sources in the knowledge graph, while Table 3.9 shows the changes in the entity type

3.5 metadata extraction 45

Table 3.7: Top-3 neighbour frequencies per library

Classes
Library Entity Type Frequency

British
dcterms:BibliographicResource 25 055 055

blterms:PersonConcept 24 351 957

blterms:OrganizationConcept 21 481 046

French
foaf:Person 16 123 825

skos:Concept 16 005 727

foaf:Organization 16 005 727

German
bibo:Document 20 970 398

lib:BrailleBook 18 451 383

bibo:AudioVisualDocument 18 451 383

Portuguese
edm:aggregatedCHO 1 218 548

ore:Aggregation 1 218 548

edm:ProvidedCHO 1 218 548

Spanish
bne:C1006 12 063 212

bne:C1005 12 063 212

bne:C1004 12 063 212

frequencies after applying the methods to obtain the NP map. These tables show an over-
view of the types of entities featured in life sciences use-case datasets, which describe
particular concepts within the same or related domains. Similarly to the library use-case,
there is some overlap between the concepts described in the datasets, but they use dif-
ferent data models to describe the same concepts (e.g., Gene in DisGeNET is annotated
with ncit:C16612, while Monarch uses obo:SO_000704). However, Table 3.8 shows the
broader variety of concepts that are encompassed in the chosen datasets. For example,
the EA dataset includes entity types that describe gene expression entities, while Uni-
prot focuses on annotating concepts relevant in the domain of proteins. The goal of
constructing a broader knowledge graph is to allow for less specific input datasets to be
supplied to the framework and increase the potential of obtaining a data model.

Table 3.9 shows that, for the most part, the frequencies of the entity types do not
change as much as in the library use-case. This is a consequence of these datasets
focusing their entities on a smaller number of relevant entity types, leading to the
most frequent entity types not having a rich neighbourhood in terms of frequent en-
tity types. For example, the EA dataset has ≈ 35M entities and ≈ 25M of those are of
type ea:BaselineExpressionValue. Another factor influencing the neighbourhoods is
the difference in domains. Since more domains are being covered, frequent entity types
are more likely to be separated in the knowledge graph.

46 building background knowledge

Table 3.8: Top-3 frequencies per life sciences datasets

Classes Properties
Dataset Entity Type Frequency Property Frequency

DisGeNET
ncit:C25338 (Score) 839 183 rdfs:label 4 758 076

ss:SIO_001121 (gene-disease biomarker

association)

737 781 rdfs:comment 4 758 076

ss:SIO_001122 (gene-disease

association linked with genetic

variation)

469 471 dcterms:title 4 755 657

EA
ea:BaselineExpressionValue 25 363 764 rdfs:label 35 305 428

ea:IncreasedDifferentialExpressionRatio 3 885 675 ea:pValue 7 585 072

ea:DecreasedDifferentialExpressionRatio 3 699 397 ea:tStatistic 5 530 508

GWAS
owl:NamedIndividual 320 223 rdfs:label 320 223

gwas:TraitAssociation 179 364 ro:part_of 180 176

gwas:SingleNucleotidePolymorphism 131 639 oban:has_object 179 364

Monarch
oban:association 10 199 705 oban:association_has_subject 10 199 705

owl:NamedIndividual 2 526 713 oban:association_has_object 10 199 705

faldo:Region 1 413 810 oban:association_has_predicate 10 199 703

Uniprot
uniprot:Proteome_Component 316 971 rdfs:comment 1 731 585

uniprot:Proteome 292 464 rdfs:seeAlso 615 111

busco:Score 190 503 foaf:page 448 465

Table 3.9: Top-3 neighbour frequencies per life sciences datasets

Classes
Dataset Entity Type Frequency

DisGeNET
ncit:C25338 (Score) 839 183

ss:SIO_001121 (gene-disease biomarker association) 737 781

obo:GENO_0000476 (variant) 492 664

EA
ea:BaselineExpressionValue 25 363 764

ea:IncreasedDifferentialExpressionRatio 3 885 675

ea:DecreasedDifferentialExpressionRatio 3 699 397

GWAS
gwas:Chromosome 640 690

gwas:TraitAssociation 640 690

gwas:SingleNucleotidePolymorphism 640 690

Monarch
owl:NamedIndividual 12 136 294

obo:GENO_0000002 12 135 702

obo:SO_0001583 11 682 197

Uniprot
uniprot:Proteome_Component 316 971

uniprot:Proteome 312 064

uniprot:Reference_Proteome 312 064

3.6 building the knowledge graph

The knowledge graph is built from several RDF data sources that are assumed to (1) be
previously published, (2) follow the RDF data model, (3) cover a similar or related
domain to the data that needs to be modelled and (4) include equivalences for entities
and properties to be modelled.

However, finding a dataset that fits all these parameters is not a trivial task. Non-
etheless, a data publisher is usually an expert on the data being published and should
be aware of similar datasets already published. In cases where this condition is not veri-

3.6 building the knowledge graph 47

fied, significant research has been published over the years covering the topic of finding
similar or related datasets on the Web. Different approaches have been proposed using
content and metadata to extract similarities between datasets, for example, using prob-
abilistic classifiers [130] or dataset profiles [131]. These works usually follow a dataset
recommendation task that, for a given input dataset, rank candidate datasets in order
of similarity to that dataset by extracting characteristics of the data and metadata. For a
review on this subject, please refer to Mountantonakis and Tzitzikas [85].

The research developed for dataset recommendation can be used in conjunction with
our approach since the first task is to find relevant RDF datasets to match some input
data. Dataset recommendation tasks facilitate this search by enabling the data publisher
to obtain several relevant datasets that will maximise the similarity, integration, and
consistency of a data model to existing published datasets modelled in RDF.

In the next task, the set of chosen reference datasets are used to build the docu-
ment store. Our implementation uses Elasticsearch3 to store, index, and save the doc-
uments. This implementation was chosen due to the effective search engine integrated
with Elasticsearch, which enables AOR of entities in the knowledge graph. Therefore,
due to the requirements of this platform, we converted the RDF data sources to a JSON
format, where the attributes are the properties and the values are the objects of those
properties. In our implementation, we used the Raptor RDF Syntax Library4 which
converts several RDF file formats into a common JSON structure. Each document is
further pre-processed to facilitate the extraction of relevant information about each en-
tity. The main task in this pre-processing step is adding each blank node to its source
entity and storing both in the same document. Blank nodes are anonymous entities, i.e.,
an entity without URI, that can be considered independently of other entities. How-
ever, in the context of our framework, gathering the entities with their blank nodes
facilitates the aggregation of information that needs to be matched with entities dur-
ing the candidate generation stage. Listing 3.1 shows an example of a fictional extract
of RDF data, serialised in Turtle format, with a triple with an anonymous blank node
〈blank_node – ont:has_name _ Robert Jordan〉. The pre-processing step guarantees
that when creating a data model, we consider entities as a whole, i.e., include all proper-
ties and values. Therefore, each document is directly independent of other documents
but maintains the relationships to other documents through object properties. Addi-
tional pre-processing includes, excluding documents that do not have a rdf:type prop-
erty and creating an inverted index from the literal objects in the triples. Listing 3.2
shows the same example in the document store after parsing and pre-processing.

3 https://www.elastic.co/elasticsearch (Accessed in September 2020)
4 http://librdf.org/raptor (Accessed in September 2020)

https://www.elastic.co/elasticsearch
http://librdf.org/raptor

48 building background knowledge

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ex: <http://example.org/> .

@prefix ont: <http://ontology.org/> .

ex:Book1 rdf:type ont:Book , ont:Work ;

ont:has_title "The Eye of the World" ;

ont:has_author [

ont:has_name "Robert Jordan"

] .

Listing 3.1: Example of source RDF data serialised in Turtle format with one blank node.

{

"uri": "http://example.org/Book1",

"http://www.w3.org/1999/02/22-rdf-syntax-ns#type":

[{"value": "http://ontology.org/Book", "type": "uri"},

{"value": "http://ontology.org/Work", "type": "uri"}],

"http://ontology.org/has_title":

[{"value": "The Eye of the World", "type": "literal"}],

"http://ontology.org/has_author": [

{"http://ontology.org/has_name":

[{"value": "Robert Jordan", "type": "literal"}]

}

]

}

Listing 3.2: Example of document store data model.

3.7 creating the ontology graph 49

3.7 creating the ontology graph

The knowledge graph is supported by a background ontology graph that provides a
wider data model but also includes relationships and entity types that might not be rep-
resented in the data. This ontology graph, contrary to the knowledge graph, is independ-
ent of the data layer and references only the ontologies and relationships between onto-
logies and their resources. This ontology graph, therefore, allows for broader searches
that consider not only the entity type of a certain entity but also the neighbours and
relationships of that entity type. The graph can then be exploited to compute paths
between nodes and find more relationships between concepts.

We obtain this graph by automatically extracting and retrieving from the Web the
ontologies used by each source RDF dataset. If the input datasets to be modelled are
provided in RDF format, then its ontologies are also retrieved to be added to the on-
tology graph. First, we extract all namespaces referenced in the data by adapting the
computeq_name function from the Python rdflib package5. This function takes a URI and
decomposes it into its parts. Using the fragment of the name that points to the name
space, we automatically download the ontologies by crawling the dereferenced URI to
find the download URL in an acceptable RDF format. Similarly to the knowledge graph
building step, we convert these ontologies to JSON using the Raptor RDF Syntax Library
and store and index them in the document store.

Then, we construct the first layer of the ontology graph by considering the rela-
tionships in and between the ontology classes and properties. A weighted directed
ontology multigraph G is defined as G = (V ,E,W), where V is the set of vertices, E
is the multiset of edges that connect the vertices, and W is the weighting function for
the edges. The vertices represent ontology classes or properties that are connected to
at least one edge. Edges represent relationships between ontology classes or proper-
ties. Edges created from owl:equivalentClass or owl:equivalentProperty predicates
are added in both directions between the pair of vertices. Similarly, for the predicates
rdfs:subClassOf and rdfs:subPropertyOf, we create the inverse edges superClassOf

and superPropertyOf, respectively, to allow graph traversal through the children ver-
tices. These edges are assigned a weight of 1.

The second layer of edges is obtained with an enrichment step that creates new rela-
tionships between ontology classes using: (1) co-occurring entity types, (2) owl:sameAs
links, (3) ontology matching, and (4) extended string matching. The co-occurring entity
type edges are obtained by extracting entities that have more than one type assigned in
the knowledge graph. The relationship between the two entity types is usually equival-
ence or subsumption and, therefore, an edge is added between the two ontology classes
with an assigned weight of 1. Next, we extract new relationships from owl:sameAs links.

5 https://github.com/RDFLib/rdflib

https://github.com/RDFLib/rdflib

50 building background knowledge

Therefore, we extract the types of both entities connected via owl:sameAs and create a
new equivalence edge between them with a weight of 1.

The final enrichment step adds edges from string matching techniques. First, for
RDF datasets, we use ontology matching techniques to discover new relationships between
ontology classes. In this work, we use the AML [69] ontology matching system since
it is consistently one of the best-performing systems in the OAEI [132]. We adapted
AML’s workflow to efficiently process bulk matching requests from the pairwise com-
binations of ontologies. We use the AML WordNet Matcher to extend the lexicon of
the labels in the ontologies and use the Word Matcher to obtain the mappings. This
matcher uses a bag-of-words strategy to find word overlaps between two ontology
class labels and scores these mappings with a modified Jaccard similarity. The map-
ping score scorem ranges between 0 and 1, where 1 represents the highest similarity
between two mapped classes. A threshold can be set to exclude mappings below a cer-
tain score. The weight of a new edge e is calculated with the weighting function W(e)

as W(e) = 1 + (10 − (10 · scorem)). We apply a linear transformation to the score so
that the edge weight ranges from 1 to 11 and lower mapping scores have significantly
heavier edge weights than higher scores, making them harder to traverse during graph
searches. For example, an edge of weight 1.0 (perfect match) has an edge weight of
1, while a mapping which achieves only a score of 0.5, will have an edge weight of
6. Due to the bag-of-words strategy, a mapping with a similarity of 0.5 is still likely
to be between related concepts with overlapping words, however, it is less likely to be
between equivalent concepts. Therefore, when transversing the ontology graph to find
the most interoperable candidates, the algorithm should prefer closer concepts, which
the edge weighting scheme takes into account when traversing algorithms are used.

In addition to ontology matching, we perform extended string matching between data
sources and ontologies. In this step, we match ontologies extracted from the RDF data
sources with the data model inferred from the semi-structured input datasets. From
RDF input data, we extract entity type and property labels. For datasets that do not have
these resources explicitly described, we use attributes or table headers as input for this
matching task. Using the labels previously obtained, we search them in this ontology
index and retrieve the top-10 matches. We score the matches using the string similarity
score described in Chapter 4, Section 4.4.1. We add these matches as new edges and
weigh them using the same linear transformation used for ontology matching edges.

3.8 ontology graph enrichment experiments

This section presents the results of the evaluation of the ontology matching strategy and
an experimental analysis of the impact of the string matching (ontology matching and

3.8 ontology graph enrichment experiments 51

extended) enrichment edges on the ontology graph. We also present the descriptive
statistics of the ontology graphs of the use-cases.

3.8.1 Matching Evaluation

We perform two edge enrichment matching tasks: ontology matching and extended
string matching. We evaluate the ontology matching strategy with common state-of-the-
art methods and evaluate string matching using OAEI reference ontologies as described
below.

Ontology Matching Evaluation

The ontology mappings are evaluated in terms of accuracy using precision and recall
metrics. We evaluate the mappings against varying confidence thresholds to understand
how this parameter affects the results. We performed a baseline evaluation of the chosen
ontology matching strategy by selecting a subset of two (cmt and conference datasets)
of the manually curated reference alignments of the OAEI Conference track [133]. How-
ever, since this reference alignment evaluates only equivalent mappings, we added the
COMPOSE reference [134], where the author extended some of the conference reference
mappings to also include subsumption correspondences.

Figure 3.2 shows the precision and recall results of this evaluation. We verify that, as
expected, the total number of mappings decreases with the increase of the confidence
threshold, and the precision increases. Contrary to the expected result, recall is also rel-
atively low, even when the threshold is 0. This is an unexpected result since AML is one
of the best performing systems in the OAEI in the conference track of the competition.
This performance can be explained by considering that our edge enrichment strategy
used only a single matcher, the Word Matcher, as opposed to the combination of match-
ers that AML uses for the OAEI competition. The main methodology of the chosen
matcher is a bag-of-words match, which in the case of this dataset does not obtain a
good performance since there is a high variance between equivalent terms in the map-
pings. For example, http://cmt#SubjectArea is equivalent to http://confOf#Topic.
The Word Matcher is not designed to pick up on these matches, therefore, the recall for
this dataset is slow. Nonetheless, we decided that, for the case of our framework, this
is a simple matcher that will efficiently obtain relevant edges since matches will need to
have at least one overlapping word, increasing the chance that the concepts are related.
The additional matchers of AML add to the complexity of the matching algorithm and,
in our case, we had approximately 40 ontologies in each use-case, with the biomedical
use-case having large ontologies that make the matching a complex task. Therefore, we
opted for a less complex solution which ended up resulting in a lower performance
for the AML matching system. Furthermore, since naturally recall decreases with the
increase of the threshold and our goal is to support the generation of extensive lists of

52 building background knowledge

candidates, in our case, it is preferable to maximise recall instead of precision. Since
we use the confidence value of mappings to put a higher weight to weaker matches in
the ontology graph, making them harder to traverse during path computations between
vertices, the impact of incorrect mappings should be reduced.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0

25

50

M

ap
pi

ng
s

0.0

0.5

1.0

Ra
tio

Precision Recall

Figure 3.2: Ontology matching evaluation

This evaluation considers only equivalence and subsumption relationships. How-
ever, other correspondences exist between ontology classes, such as between
bibframe:Status and bibo:DocumentStatus, which are not equivalent or subsumed but
are conceptually related. Therefore, in our experiments, we kept every mapping by set-
ting the confidence threshold to 0 and relied on the edge weights to reduce the influence
of incorrect mappings without discarding possible relatedness correspondences.

Extended String Matching Evaluation

The extended string matching was evaluated using the full OAEI Conference track data
from the 2019 edition6. Considering the consistent format of URIs in this dataset, for
this evaluation, we used the last fragment of each URI (i.e., the remaining of the URI
after the # symbol) as label and searched for each label in all other conference ontologies.
We then applied the extended similarity methods over this set of labels and ontologies.

Following these methods, we obtained 1336 class mappings with 129 missing from
the reference produced in the previous section, and 144 property mappings with 77

missing from the reference. Figure 3.3a shows the number of mappings, the precision,
and the recall for class mappings and Figure 3.3b shows the same for property map-
pings. This extended string matching technique performs well when compared with the
adapted AML ontology matching strategy but performs better with class names than
property names in this dataset. In the case of the property matching, precision and recall
are affected by the high percentage of rdfs:label values which are in dromedary case
and are not matched against equivalent properties in other ontologies that are stylised
with spaces in the label. Furthermore, through manual inspection, we found several
cases of false negatives, e.g., in the reference, http://confOf#hasTopic is equivalent
to http://conference#has_a_track-workshop-tutorial_topic but the extended string

6 http://oaei.ontologymatching.org/2019/conference (Accessed in September 2020)

http://oaei.ontologymatching.org/2019/conference

3.8 ontology graph enrichment experiments 53

matching only finds the match to http://edas#hasTopic, which is arguebly correct. Fi-
nally, the last contributor to the low performance with properties are cases similar to the
ones that degraded the performance of the ontology matching system, i.e., words that
are synonym but have no overlapping terms. Therefore, for both classes and properties,
we keep the threshold at 0 and weight the edges added with a linear transformation to
increase the weight of mappings that are less likely to be correct.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0

192

384

576

768

960

1152

1344

1536

1728

1920

M

ap
pi

ng
s

(a) Class mappings

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0

11

21

32

43

54

64

75

86

96

107

M

ap
pi

ng
s

(b) Property mappings

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

/R
ec

al
l R

at
io

Precision
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

/R
ec

al
l R

at
io

Precision
Recall

Figure 3.3: Extended matching evaluation

3.8.2 Ontology Graph Enrichment Analysis

We present an extended analysis of the impact of the selected ontology matching tech-
nique. We focus on this particular step because ontology matching is a complex process
that can be expensive to compute and, therefore, it is important to understand its value
in the process of creating a tightly connected ontology graph.

In this section, we present experiments that assess the impact of the ontology map-
pings on the overall connectivity of the graph by performing an in-depth analysis of the
characteristics of the ontology graph following the ontology mapping enrichment. We
excluded properties from this analysis to simplify the process.

Our evaluation approach was divided in three stages, illustrated in Figure 3.4, which
are:

1. Hierarchy Parsing, where the hierarchical relationships, i.e., owl:subClassOf, are
extracted. The graph resulting from this step is named Base Graph (BGraph).

2. Relationship Extraction, where equivalence relationships are extracted. Not only
owl:equivalentClass but also logical definitions were considered. Logical defin-
itions [135] are complex axioms that refer to the relationship between a defin-

54 building background knowledge

ing class x and a general class g that is discriminated from other classes of x
with a class d. For example, the Cell Ontology (CL) [136] contains a logical
definition for the class cardiac neuron (obo:CL_0010022), where g is a neuron
(obo:CL_0000540) that is part of d, the heart (obo:UBERON_0000948). Logical defin-
itions are translated into two edges: E1 = (x,g) and E2 = (x,d). Figure 3.4 illus-
trates owl:equivalentClass axioms, in red, connecting DBPedia Ontology (DBO)
Organization with AKT Reference Ontology (AKT) equivalent class. Similarly, the
axioms connect University between the two ontologies. The diagram also shows
an hypothetical logical definition (green line) to connect the intersection between
DBO’s Organization and University with AKT’s Higher Education Organization. This
graph is an increment over the Base Graph and was called Axiom Graph (AGraph).

3. Ontology Matching, where mappings from ontology matching techniques are ad-
ded. For these experiments, we empirically chose a threshold of 0.4. Contrary
to the ontology mappings added to the ontology graph of the main framework,
for efficiency reasons, here we do not use edge weights instead with simplify the
methodology by cutting off mappings with a score lower than 0.4. If conflicting
mappings were found, only the highest scoring ones were selected for the final
alignment. Figure 3.4 illustrates a possible mapping (red line) between DBO’s Edu-
cational Institution with AKT’s Educational Organization. This graph is an increment
over the Axiom Graph and was named Mappings Graph (MGraph).

Hierarchical Parsing Relationship Extraction Ontology Matching

Classes
1. Organization
2. Company
3. Educational

Institution

4. School
5. University
6. Organization
7. Educational

Organization

8. Higher Education
Organization

9. University
10. Abstract Information
11. Course

Figure 3.4: Ontology graph enriching stages

Characterisation and Evaluation

To the best of our knowledge, no benchmark or comparable approach exists to evaluate
the edge enrichment of a multi-source ontology graph. However, the graphs obtained
from the hierarchy parsing, axiom extraction, and ontology matching phases (BGraph,
AGraph, and MGraph, respectively) are increments of each other, i.e., the AGraph is
built from the BGraph and the MGraph is enriched from the AGraph. This incremental

3.8 ontology graph enrichment experiments 55

building process allows us to assess how the more complex ontology axioms and the
ontology matching process affect the base structure of the ontology graph.

We adopt the BGraph as the baseline for the evaluation since it represents the
minimum set of existing edges between the considered ontologies. We then evaluate
each step as an increment over the previous graph with characterisation measures that
provide an overview of the structure. This evaluation strategy assesses the impact of
each step, giving a better understanding of the graph’s evolution. Ideally, the results of
this evaluation present graphs that are increasingly more cohesive and connected, trans-
lating into graphs that can relate concepts more efficiently and effectively. The metrics
used are defined as follows:

• Connected Components (CC) refers to sub-graphs where every node has a path
to all other nodes in the same sub-graph.

• Clustering Coefficient (CCF) [137] measures the degree at which the nodes in the
graph cluster together, based on triads.

• Average Node Degree (AD) is the average number of edges that are connected to
a node.

• Cohesiveness (CV) [138] measures how difficult it is to split the graph.

• Distribution of Shortest paths measures the frequency of the lengths of the paths
between two nodes in the graph such that the number of edges in these paths is
minimised.

The number of CC and the AD are directly affected by the addition/removal of
edges. In the ontology graph, these metrics evaluate the overall connectedness of the
graph. Unchanging values between stages of building the ontology graph mean that the
number of edges added had a low impact on the graph structure. CCF and CV have a
range of [0, 1] and measure how closely connected the nodes are in the graph and how
robust those connections are. Ideally, each step of the building process should increase
the value of these measures, therefore producing an increasingly connected graph where
related concepts are more clustered and harder to separate into isolated structures.

The distribution of shortest paths evaluates the impact of the edges added in each
step in terms of efficiency when querying for similar or related concepts. An increase
in the number of shortest paths demonstrates that new edges are creating new paths
between the concepts in the graph.

Results

We performed experiments over ontologies of diverse domains found in the LOV [81]
portal. Ontologies featured in this portal are assigned subject tags. The three most
common tags are “Methods”, “Metadata”, and “Geography”. From the 659 ontologies

56 building background knowledge

available in the LOV in February 2019, we were able to download and parse 340. We
refer to the graphs obtained from this set as the General Ontology Graph (GOG).

We also used a domain-specific ontology set extracted from the OLS [84], a repository
of biomedical ontologies. Out of 220 ontologies available through the OLS REST API
in February 2019, we were able to download and parse 206. The most common reason
for discarding an ontology was the presence of outdated information, e.g., owl:import
statements referring to ontologies that do not exist anymore. We refer to the graphs
obtained from this set of ontologies as the Biomedical Ontology Graph (BOG).

These two test sets provide a rich environment for testing with ontologies with differ-
ent characteristics. Biomedical ontologies are domain-specific ontologies and, therefore,
are more likely to have equivalent or related terms between them. These ontologies are
also characterised by their well-defined standards [139], large size, and complex axioms.
Ontologies found in the LOV have diverse domains and, therefore, the alignment of the
topics is not guaranteed. These ontologies have different levels of formalism and mostly
follow LOD guidelines.

Table 3.10: Results of the ontology matching process. O is the set of ontologies, A is an align-
ment resulting from ontology matching, med(M) is the median number of map-
pings in an alignment, and avg(score) is the average of the confidence scores of the
mappings

Ontology Dataset |O| |A| med(|M|) avg(score)

General ontologies 314 33 619 2 0.66
Biomedical ontologies 181 14 292 15 0.53

Table 3.10 shows the results of the pairwise ontology matching over the general
and the biomedical sets of ontologies. The general set of ontologies obtained more
alignments than the biomedical set. However, this difference is due to the difference
in the number of ontologies in each set since the median number of mappings in the
general set was significantly lower than the biomedical set. These results show that, as
expected, ontologies in a more restricted domain will find a more significant number
of overlapping or related concepts. The average mapping score in the general set of
ontologies was 66%, while the biomedical set obtained 53%.

Table 3.11 compares the ontology graphs in different stages of construction. In GOG
and BOG, the number of nodes shows a small increase from the BGraph to the AGraph
due to axioms that reference ontology classes outside of the scope of the ontology set.
In these cases, the new ontology classes are added as new nodes to the AGraph.

The GOG shows an increase of ≈21% in the number of edges between the BGraph
and the AGraph and ≈56% more edges in the MGraph than in the AGraph. In the
BGraph, ≈48% of the nodes are in the Largest Connected Component (LCC), but this
number increases to ≈62% in the AGraph and ≈88% in the MGraph. Most of the ele-
ments not connected to the LCC are isolated, forming a new connected component with
a single node and no incoming or outgoing edges. The most common reason for discon-

3.8 ontology graph enrichment experiments 57

Table 3.11: Characterisation of the GOG and BOG. V is the set of nodes and E is the set of
edges. LCC - Largest Connected Component; CC - Connected Components; 1-CC
- single node CC; CCF - Clustering Coefficient; AD - Average Node Degree; CV -
Cohesiveness

Graph Stage |V| |E| |LCC| |CC| |1-CC| CCF AD CV

GOG
BGraph 16 510 16 755 7889 3210 2867 0.022 2.450 0.433
AGraph 16 580 21 141 10 307 2252 2071 0.065 2.757 0.576
MGraph 16 580 47 727 14 634 1571 1553 0.177 5.639 0.886

BOG
BGraph 4 502 980 6 967 165 4 223 817 66 270 65 392 0.049 3.089 0.562
AGraph 4 502 981 7 456 127 4 227 375 63 522 62 693 0.050 3.160 0.575
MGraph 4 502 981 14 595 189 4 458 547 41 317 40 581 0.129 5.978 0.833

nected nodes in the GOG is inconsistencies in the definition of classes, properties, and
their relations. For example, the class http://purl.obolibrary.org/obo/HAO_0002311

is a root class with no descendants and, therefore, is isolated in the graph.

Overall, in the BOG, the BGraph and the AGraph are structurally similar since only
a small number of edges were added (≈7% more edges). However, between the AGraph
and the MGraph, the differences are more prominent due to an ≈48.9% increase in the
number of edges. The BGraph and AGraph have ≈94% of the nodes in the LCC. In
the MGraph, ≈99% of the nodes are connected in the LCC. Most of the single elements
connected components are due to ontologies that do not follow common standards and
formalisms to build an ontology or reuse classes. For example, the ontology Flora Pheno-
type Ontology7 was created only with classes and contains no intra- or inter-links between
classes.

Figure 3.5a and Figure 3.5b show the distribution of shortest paths for the ontology
graphs. Due to the large size of the BOG, the distance histogram was computed for a
sample of 60% of the total number of nodes of this graph.

0 5 1015202530
Shortest path length

0.000

0.002

0.004

0.006

0.008

0.010

N
um

be
r
of
 s
ho

rt
es

t p
at
hs

×107 (i)

0 5 10152025
0.0

0.1

0.2

0.3

0.4

0.5

×107 (ii)

BGraph AGraph MGraph

(a) GOG

0 10 20 30 40
Shortest path length

0.000

0.050

0.100

0.150

0.200

0.250

0.300

N
um

be
r
of
 s
ho
rt
es
t p

at
hs

×108 (i)

0 10 20 30 40
0

500

1000

1500

2000

2500

3000
×108 (ii)

BGraph AGraph MGraph

(b) BOG

Figure 3.5: Distribution of shortest paths

7 http://purl.obolibrary.org/obo/flopo.owl

http://purl.obolibrary.org/obo/HAO_0002311
http://purl.obolibrary.org/obo/flopo.owl

58 building background knowledge

In both figures, Plot (i) corresponds to the overlap of the distance histogram of the
BGraph with the AGraph, and Plot (ii) corresponds to the overlap of the AGraph and
the MGraph. Overall, both axiom and mapping edges have a significant impact in the
number of shortest paths that connect the nodes, which is directly related with the in-
crease of the number of elements connected in the LCC, i.e., more nodes connected, new
shortest paths created. Despite the lower impact of the edges added to the AGraph in
terms of structural properties in comparison to the MGraph, the distribution of shortest
paths shows a comparable increase.

These new paths facilitate the discovery of relationships between concepts in the
graph, but also help shorten the distances between them. More concretely, the changes
in the distribution of shortest paths can be illustrated, for example, by the changes in
the shortest path between the node with the label cancer (DOID:162) and malignant cell
(CL:0001064). In the BGraph, the shortest path between the two nodes is 10, in the
AGraph it is 4, and in the MGraph the concepts nodes are directly connected, i.e., a
shortest path length of 1.

In summary, the characterisation of the proposed ontology graph demonstrates the
contribution of each of the building steps to the structure of the graph. The addition of
axioms and mappings improves the connectedness of the graph and creates new paths
between nodes. The ontology matching step proved to be significant, which shows that,
in the context of building a foundation for a knowledge graph, ontology matching is
an approach that can connect previously disconnected parts of the graph facilitating
the process of finding related concepts. Furthermore, the significance of this step is
reinforced in Chapter 4, where ontology matching was used to enrich the ontology
graph of the use-cases and facilitate the process of obtaining candidates based on their
interoperability. The measure of interoperability would be hindered if it considered only
axioms originally in the ontologies. For example, most of the ontologies in the library
use-case provide no direct equivalence links between concepts. Having edges provided
by the ontology matching facilitates content scoring measures based on graph distances,
such as distance to the input entity type or property (see Section 4.4.1: Distance to
Source Resource). In terms of interoperability, the ontology matching edges provide
a more accurate view of potential interoperability of the concepts, given that without
these edges, interoperability would be more limited to the relationships contained in
each individual ontology and, therefore, the most interoperable concepts would only be
more severely weighted by frequent concepts within the same library. These concepts
and consequences will be furthered discussed in Chapter 4. Overall, the new edges
obtained through ontology matching allow concepts in the graph to be more easily
reachable from each other, facilitating the discovery of new relationships that would
otherwise be missing in the ontologies.

3.9 datatype property classification model 59

3.8.3 Library Use-case Descriptive Statistics

The library ontology graph includes 36 ontologies, described in Table A.1. More details
on these ontologies are found in Appendix A. Table 3.12 shows descriptive statistics for
the library use-case ontology graph before and after enrichment steps. The same conclu-
sions as in the previous edge enrichment analysis can be observed in this table, where,
after enrichment, the graph becomes more tightly connected and it is more difficult to
separate its components.

Table 3.12: Characterisation of library ontology graph before and after enrichment

Graph |V| |E| |LCC| |CC| |1-CC| CCF AD CV

Before 6621 22 058 1779 3071 2745 0.052 6.663 0.968
After 7972 53 381 5191 2080 1947 0.164 13.392 0.988

3.8.4 Life Sciences Use-case Descriptive Statistics

The life sciences ontology graph includes 33 ontologies, described in Table A.2.
Table 3.13 shows descriptive statistics for the life sciences use-case ontology graph be-
fore and after enrichment steps. Due to the size of the ontologies, we did not add the
ontology matching enrichment in this use-case. Once again, the same observations are
verified in the ontology graph of this use-case.

Table 3.13: Characterisation of life sciences ontology graph before and after enrichment

Graph |V| |E| |LCC| |CC| |1-CC| CCF AD CV

Before 2 554 233 8 077 856 2 483 566 42 674 42 400 0.000 6.325 0.996
After 2 554 310 8 106 591 2 511 306 40 501 40 254 0.000 6.347 0.997

3.9 datatype property classification model

Datatype properties are found in ontologies and refer to properties that have literal val-
ues in their range, e.g., is common for dates in datasets to be associated to an entity via
a datatype property. In the machine learning field, classification is a supervised learning
task, where a model is trained to identify the categories for input data. Similarly to Z.
Chen et al. [124], we treat the datatype property generation as a multiclass classification
task, where each datatype property in the knowledge graph is a class and its value is
processed into a feature vector to use as training data. We use a random forest classifier,
which is an ensemble learning method for classification that works by training several
decision trees and averaging the predictions to produce a final model. This method

60 building background knowledge

helps in correcting the tendency of decision trees to overfit their training set. We use the
scikit-learn implementation8 of the random forest classifier.

Table 3.14: Datatype property examples in the British Library dataset

URI Property Value

bnb:resource/011326467

schema:datePublished 1990
bibo:isbn10 0356190684
schema:name The Eye of the world
isbd:P1053 xiv,670p.

bnb:person/JordanRobert1948-2007

foaf:name Robert Jordan
schema:deathDate 2007
foaf:givenName Robert
foaf:familyName Jordan

We train models for each individual RDF source in the knowledge graph and for
the knowledge graph as a whole. The single RDF data source model will have the
tendency to overfit since their data model is more homogeneous and, therefore, might
have difficulties with data that is similar but not the same. However, if a dataset is
provided that uses the same format for the datatype property values, these individual
models excel over the complete knowledge graph model. In slightly different datatype
property values, the complete knowledge graph model will likely perform better since
it provides a broader view of values for datatype properties that are used by multiple
RDF data sources. Table 3.14 shows an example of the variety of datatype properties
found in the British Library dataset.

The model training and test methodology used in our approach (1) defines fea-
tures to extract from the datatype property values, (2) performs hyperparameter tuning
with randomised and exhaustive parameter optimisation, (3) finds an optimal document
sample size from the knowledge graph to train the model, (4) fits the models for each
RDF source in the knowledge graph and the whole knowledge graph.

3.9.1 Feature Selection

Our approach to datatype property prediction assumes that the values of datatype prop-
erties are good predictors of the datatype property of a new instance. We performed an
empirical analysis of the data in the library and biomedical use-cases to better under-
stand the kind of features that had the potential to more accurately distinguish between
datatypes properties. We concluded that the classification model should be able to
clearly distinguish between textual and numerical datatype properties. For example, in
the library dataset it is common to have numerical codes to uniquely identify books and,

8 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

3.9 datatype property classification model 61

at the same time, textual properties describe attributes such as title and author. How-
ever, the classification model not only has to distinguish between generic datatypes of
properties but, among the same datatype, has to be able to discern more subtle differ-
ences between property subtypes. For example, the model has to be able to distinguish
between an author’s name and a title. In this example, the distinction is not trivial,
since it is not uncommon for book titles to overlap with people’s names. Nonetheless,
in our scoring methodology, frequency of a candidate datatype property is taken into
account to minimise overlapping cases, such as the title and author name. To capture
these characteristics, we defined the following features:

1. Total number of characters in the literal

2. Number of digits

3. Number of letters

4. Number of white spaces

5. Number of other characters

6. Number of uppercase letters

7. Is date? (yes or no)

Features 1 through 6 are baseline distinctions between literals since they differentiate
by the size and type of characters featured in the literal. These follow the intuition that
different types of datatype property values exhibit different patterns in terms of their
alphanumerical arrangement. Features 1 captures the intuition that the values of the
same property will have similar lengths, e.g., date vs. International Standard Book
Number (ISBN). Features 2 and 3 help distinguish between numerical and string values.
Features 4 through 6 are more focused on string-based values and help distinguish
between string literals that form sentences, e.g., a book title vs. an author name, which
will usually have only 1-2 white spaces. Furthermore, a person’s name is likely to have
no non-alphanumeric characters, while a book title might include some punctuation
such as a colon.

Several NER systems provide functionalities to identify dates in a corpus. However,
these models are designed to provide optimal results when a context is provided. There-
fore, we created Feature 7, which is a naive approach to discern if a literal is a date or not.
First, we use the dateutil9 Python package to parse the literal. If the literal is recognised
as a date, the following rules are checked:

1. Is Feature 3 > 0?

2. Is the value decimal?

9 https://dateutil.readthedocs.io

https://dateutil.readthedocs.io

62 building background knowledge

3. Is it a negative number? (i.e., starts with a minus sign)

4. If there are not letters or spaces, does it have more than 3 numbers?

If any of the answers is positive, then the value is not considered a date, otherwise it is
a date.

Is date Feature

We evaluated the Is date feature by manually creating a ground truth with all the data-
type properties in the knowledge graph that have date datatypes. Then we obtained
a random sample of 100 documents from each dataset in the library knowledge graph,
and extracted all the pairs of datatype property values in each document. The value was
parsed by the Is date feature methodology described earlier in this chapter and compared
with the ground truth to evaluate the precision and recall.

Table 3.15 compares our approach (dateutil + rules) with the NER modules of
SpaCy10 and Facebook’s Duckling11. Our approach achieves significantly higher per-
formance when identifying dates in our use-case. The NER modules tested falter in this
case because they are trained in full-text corpora where dates are used in the context of
a sentence. RDF property ranges do not include any context for the date, which leads
to several false positives and negatives.

Table 3.15: Evaluation of date extraction approach

Approach Precision Recall

SpaCy 0.52 0.85
Duckling 0.44 0.16
dateutil + rules 0.96 0.92

In our approach, false positives are mostly caused by the bibo:issue property. Some
documents mistakenly have a date as the issue number, despite the property not being
considered a date property. When this property is added to the date properties, the
precision increases to 0.99.

3.9.2 Hyperparameter Optimisation

The scikit-learn implementation of the random forest model provides several tuning
parameters. We perform two hyperparameter optimisations: randomised and exhaust-
ive. Through empirical observation of the data we found that some datatype properties
were poorly represented in the data, having significantly less overall representation than
the average property. Through experimentation, we also found that, due to the size of

10 https://spacy.io
11 https://github.com/facebook/duckling

https://spacy.io
https://github.com/facebook/duckling

3.9 datatype property classification model 63

the data, the hyperparameter optimisation was a slow task, therefore, together with the
empirical observation of the data we used a 3-fold cross-validation approach to maxim-
ise P@5. For each of the optimisations, we extract 100 random value samples of each
datatype property in the knowledge graph.

We tune the following hyperparameters:

• n_estimators: number of trees in the forest

• criterion: measures the quality of each split using either Gini impurity [140]
(gini) or information gain [141] (entropy)

• min_samples_split: number of samples in node necessary to split it, given as a
fraction of the total number of samples in the training set.

• min_samples_leaf: number of samples required to be a leaf node, given as a frac-
tion of the total number of samples in the training set.

• max_features: number of features to consider for the best split

• min_impurity_decrease: a split node has to decrease the impurity of the parent
node by this amount, given as a fraction of the total number of samples in the
training set.

• bootstrap: whether to use a sample or the whole dataset when building trees.

• max_samples: provides the fraction of samples to draw from the training data for
each Decision Tree estimator, if bootstrap is True.

We run the randomised grid search with a wide selection of values to discern which
hyperparameters affect the model performance the most. In this grid search, we provide
the number of iterations n and, instead of exhausting the possible combinations of hyper-
parameter values, the search is limited to n number of combinations randomly selected.
We repeat the random grid search three times and empirically choose a reduced set of
hyperparameters to pass to the exhaustive grid search. In our experiments, we perform
3-fold cross-validation with n = 100.

The exhaustive grid search obtains the final hyperparameters by fitting the model
with all combinations of values for the supplied parameters and choosing the ones that
maximise P@5.

Results

Table 3.16 presents the three hyperparameter tuning steps. We start with a broad range
of hyperparameters in the randomised grid search. The results reported in the “Exhaust-
ive” column represent the empirically chosen agreement between the 3 repetitions of the
random search. The Final column includes the hyperparameters that maximised P@5 in
the exhaustive grid search and were used to fit the random forest models.

64 building background knowledge

Table 3.16: Hyperparameter search

Hyperparameter Randomised Exhaustive Final

n_estimators [100, 1000] [100, 500] 300

criterion {gini, entropy} {entropy} entropy

min_samples_split [0.01, 0.40] step = 0.01 [0.01, 0.21] step = 0.05 0.01

min_samples_leaf [0.01, 0.40] step = 0.01 [0.01, 0.10] step = 0.02 0.01

max_features [2, 7] [2, 4, 5, 7] 4

min_impurity_decrease [0.0, 0.2] step = 0.01 [0.0, 0.1] 0.0

bootstrap [True, False] [False] False

max_samples [0.7, 0.9] step = 0.1 N/A N/A

In all runs, the entropy criterion was chosen over Gini and lower samples split and
leaf were preferred over higher values. The max_features parameter was the one that
oscillated the most, but, after the exhaustive search, 4 was the value that maximised P@5.
The bootstrap parameter was always preferred to be false, therefore, for the Exhaustive
and Final fittings, since max_samples depends on bootstrap being true, this parameter
was removed.

3.9.3 Model Fitting

Finally, we fit the random forest model to each RDF data source in the knowledge graph
and to the knowledge graph as a whole. We fit each model using parameters extracted
from the hyperparameter optimisation step, using a sample of size swith 40% of the data
being separated in the test set. We evaluate the model with Precision@1, Precision@3,
and Precision@5. Since the goal is to obtain an exhaustive list of candidates, Precision@5
is favoured over the other measures.

Due to the large size of the datasets in the knowledge graph, we selected a sample
of size s of values of each datatype property in the knowledge graph. We evaluated the
impact of the sample size on the P@5 metric. For that, we generated random document
samples of sizes 250 to 5000 in increments of 250.

Figure 3.6 shows that the sample size does not have a significant impact on the P@5
performance, which indicates that the features extracted from the datatype property
values are relatively stable and even small sample sizes achieve good performance. On
the other hand, the time it takes to fit a model increases linearly with the sample size.
Therefore, since sample size does not have a significant impact on performance, we kept
the sample size value low and chose s = 2000.

3.9 datatype property classification model 65

1000 2000 3000 4000 5000
Sample Size

0.40

0.48

0.55

0.62

0.70

0.78

0.85

0.92

1.00

M
ea

n
Pr

ec
isi

on
@

5

Knowledge Graph
Library British

Library French
Library German

Library Portuguese
Library Spanish

9

19

29

41

53

63

73

85

M
ea

n
Ti

m
e

(s
ec

on
ds

)

Figure 3.6: Impact of sample size on model fitting. The dotted lines indicate the time it takes
for the model to be trained with each sample size

Library Use-case

Figure 3.7 shows the feature importance determined by each of the trained models in
the library use-case. Feature importance is a measure used with decision trees which
gives an indication of the contribution of each feature to reduce the entropy of each
branch of the tree. Overall, the “Is date” feature is given less importance by every
model with different features ranging in importance in different models. This outcome
is most likely because the remaining features are already distinguishing between dates
and other strings and, therefore, this feature is not strictly necessary. The most important
features seem to be focused on the alphanumeric composition of the datatype property
values, i.e., string length, number of digits, and number of letters. The uppercase feature
is given high importance by most libraries, except for the French one.

Despite the different levels of significance given by the different datasets, we used all
features for every dataset. Even though the added feature Is date did not performing well
in this particular use-case, it performs well overall when identifying dates. Therefore,
we consider important to report its usage and keep it for possible future use-cases.

Table 3.17 shows the precision results over the test set for each RDF source and the
whole knowledge graph in the library use-case. Overall, the models obtained a high
P@5 with low P@1, with the more diverse knowledge graph obtaining lower results
than any model individually. The Spanish library obtained a considerably lower per-
formance than the remaining individual libraries because, besides a higher than average

66 building background knowledge

Length Numbers Letters Spaces Others Uppercase Is date
Features

0.05

0.10

0.15

0.20

0.25

Fe
at

ur
e

Im
po

rta
nc

e

British
Portuguese

German
Knowledge Graph

French
Spanish

Figure 3.7: Distribution of feature importance in the library datasets

total number of properties, it also includes several properties with similar values, mak-
ing it harder for a random forest model to predict the properties correctly. For example,
for dates there are at least 9 datatype properties in the BNE ontology and it includes
others from external ontologies such as http://rdaregistry.info/Elements/a/P50038.
The same situation is verified in other properties, where values between properties are
similar, making it hard for the model to distinguish between datatype properties. Non-
etheless, since the aim of the random forest model is to produce an exhaustive list of
datatype property candidates, we give preference to P@5. The high performance of
the individual models is likely connected to overfitting. However, considering that the
datatype properties to be extracted from these models are expected to be in the same
domain, following the same structure and semantics, we do not necessarily consider
overfitting an issue. The overfitted models are desired in the case of a dataset with data
very similar to any of the RDF sources individually. Nonetheless, the whole knowledge
graph model is expected to suffer less from overfitting, providing a broader view of the
domain to match cases that might not exactly follow any particular data model included
in the knowledge graph.

Overall, we consider that the performance is adequate for the task at hand since
exact matches are not the goal. The trained model will allow the framework to retrieve
the datatype properties in each model in ranked order as scored by the random forest
model.

3.9 datatype property classification model 67

Table 3.17: Random forest model evaluation for the library use-case

RDF Source P@1 P@3 P@5

Library British 0.57 0.87 0.97
Library French 0.47 0.77 0.86
Library German 0.43 0.70 0.80
Library Portuguese 0.71 0.9 0.95
Library Spanish 0.28 0.52 0.63
Knowledge Graph 0.21 0.41 0.52

Life Sciences Use-case

In the life sciences RDF data sources, most of the datatype properties are URLs linking to
external resources or identifier codes. For example, in the Monarch dataset, the property
obo:RO_0002200 (has phenotype) has the value http://omim.org/entry/612083, which
is an external resource not found in the knowledge graph. Therefore, since this value
is not an entity in the knowledge graph, the property obo:RO_0002200 is considered a
datatype property. Nonetheless, we tested using the same hyperparameter values as
before and obtained good results, as seen in Figure 3.8 and Table 3.18.

Length Numbers Letters Spaces Others Uppercase Is date
Features

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fe
at

ur
e

Im
po

rta
nc

e

Monarch
Knowledge Graph

DisGeNET
Expression Atlas

Uniprot
GWAS

Figure 3.8: Distribution of feature importance in life sciences datasets

In Figure 3.8, we can see that yet again the Is date feature is not relevant for this date
because dates in the data are rare. The remaining features help distinguish between text
labels, identifiers, and URLs. Except for text labels, identifiers and URLs usually do not
contain spaces, which can explain the lower importance of the Spaces feature.

http://omim.org/entry/612083

68 building background knowledge

Table 3.18 shows the precision results for the evaluation of life sciences models. Sim-
ilar conclusions to the library use-case can be drawn, where the individual models per-
form well due to overfitting, while the broader models have the lowest performance. In
this case, due to the nature of the Monarch dataset, this model also performs worse due
to the wider domain it covers and, therefore, with the proposed features, it is not easy
to distinguish some of the datatype property values.

Table 3.18: Random forest model evaluation for the life sciences use-case

RDF Source P@1 P@3 P@5

DisGeNET 0.89 0.99 1.0
EA 0.74 0.98 1.0
GWAS 0.78 1.0 1.0
Monarch 0.49 0.79 0.89
Uniprot 0.66 0.93 0.98
Knowledge Graph 0.48 0.78 0.88

3.10 conclusions

In this chapter, we focused on building knowledge structures to support the generation
and ranking of data model candidates. This task was motivated by the question:

RQ1 → What knowledge structures can support the extraction of ontology-based data mod-
els?

We used a search engine that allows full-text search over the literals indexed from the
RDF data sources. Therefore, we devised a series of pre-processing tasks to ensure that
the triples in the RDF data sources had a format easily exploitable by the framework.
These tasks converted the RDF data into JSON and resolved blank nodes to include
them in the document to which they belonged. We also chose a document store with a
strong search functionality as the storage facility.

RQ1.1 → Can increasing the connectedness of the ontology graph support the computation
of interoperability measures for candidate data models?

The ontology graph was extracted from the ontologies in the ontology layer of the
RDF data sources. This graph was enriched with data inferred from the RDF sources and
with ontology matching techniques. Through an extensive analysis of the enrichment
approaches, we concluded that the ontology matching enrichment has a high impact
in the connectivity of the graph. The ontology graph, after enrichment, becomes more
tightly connected (increased LCC and CCF) with vertex neighbourhoods more difficult
to separate (increased CV). These conditions are ideal to support the ranking of can-
didates based on interoperability since this score relies on a tightly connected graph.

3.10 conclusions 69

Chapter 4 details interoperability in the context of our framework and how the ontology
graph connectivity is an integral part is ranking candidates based on this property.

RQ1.2→ Is it possible to train a classification model to accurately predict datatype properties
from literal values using multiple knowledge graphs?

We extract relevant metadata from the RDF data sources to facilitate the generation
and ranking of candidates. The purpose of these structures is to provide metadata
support that speeds up the access to essential properties of the data based on frequency.
We also compute the patterns that make up the data and that need to be modelled for
easy access throughout the framework generation and ranking process.

Finally, we also produce a classification model with training data extracted from the
knowledge graph to predict datatype properties when generating this type of resource
candidates.

Therefore, returning to the overall question: What knowledge structures can support
the extraction of ontology-based data models?

In this chapter, we described knowledge structures that will specifically optimise
the generation and ranking of candidates using the framework proposed in this thesis.
We took a modular approach to producing the background knowledge and, therefore,
each solution can be used independently and applied to other tasks that require sim-
ilar background knowledge. For our specific question of supporting the extraction of
ontology-based data models, the background knowledge is composed of a knowledge
graph, a tightly connected ontology graph, metadata maps, and a trained random forest
model.

Future implementations of the background knowledge building process described
in this chapter could be further optimised by selecting a store for the documents that
provides both robust full-text indexing and search, but also maintains an optimised
graph structure. However, due to the size and characteristics of the knowledge graph,
finding a solution that complies with both requirements is not trivial. For the implement-
ation presented in this thesis, we selected ElasticSearch for its full-text search capabilities,
but since this system does not implement logical joins, retrieving necessary information,
such as the entity type of the value of an object type property, is inefficient. SPARQL
engines are optimised to do this type of join operation, so in the future, introducing a
SPARQL engine could optimise the building process.

In relation to the ontology graph enrichment step, further edges between entity types
could be discovered by exploiting more relationships between ontologies. For example,
as mentioned in Section 3.8.2, ontologies can have complex relations such as logical
definitions, or even union and disjoints. These relationships are not currently taken
into account when creating the ontology graph and defining the relationships between
entity types. Further steps can also be taken to make the matching strategies more
robust, such as investigating which ontology matching techniques perform better under
different use-cases (e.g., matching entity types vs. matching properties). Improving the

70 building background knowledge

edge enrichment step can improve the confidence in the relationships in the ontology
graph, leading to better ranking in the later steps of the framework.

Finally, the classification model to predict datatype properties can also be optimised
by introducing a pre-processing step that identifies the datatype of the property and
extracts different features based on that information. Numerical values have different
characteristics when compared with string values. These characteristics can be exploited
to create independent models for different datatypes. Another limitation of this method
is that it considers the datatype property independently of the entity it is describing.
Introducing this information in the feature vector could improve prediction because, for
example, person entities will inherently have different attributes than book entities. Fur-
thermore, in the future, other classification techniques can be explored and compared
against the baseline created using the proposed features and the random forest classific-
ation models.

4 G E N E R AT I N G A N D R A N K I N G DATA M O D E L
C A N D I DAT E S

This chapter details the tasks involved in generating and ranking entity type and prop-
erty candidates to recommend and facilitate the creation of an RDF data model that fits
a given input dataset. Using the background knowledge constructed in Chapter 3, we
develop methods that generate entity type, datatype property, and object property can-
didates. The generated candidates are then ranked according to the computed scores
that are proposed in this chapter. We propose two scores that focus on optimising differ-
ent aspects of the individual candidates, and a third one that re-ranks considering the
whole candidate data model.

This chapter addresses the following main research question:

RQ2 → What measures can be used based on the built knowledge structures to select and
rank possible data models?

This question is answered by dividing it into the following sub-questions:

RQ2.1 → Can the connections within the ontology graph be used to measure the accuracy
and interoperability of possible data models, having a significant effect on the ranking of their
components?

RQ2.2 → Can the connections between components of the proposed data models be used to
measure their consistency, with a significant effect on their ranking?

These questions are answered by first presenting the methods for each one of the
generation and ranking steps, and then providing experiments to validate the design
and performance of the framework. This stage of the framework has the following tasks:
(1) generating entity type, datatype, and object properties (Section 4.3), (2) ranking en-
tity type, datatype, and object properties (Sections 4.4.1 and 4.4.2 and answers RQ2.1),
(3) ranking data models (Section 4.4.3 and answers RQ2.2), and, finally, (4) experiment-
ing and discussing the results of the framework.

Therefore, the contributions of this chapter include methodologies to (1) generate
entity type, datatype, and object property candidates from a background knowledge
graph, (2) rank these candidates using the background knowledge in the knowledge
graph and ontology graph, (3) gather the individual candidates into a single ranked and
consistent data model.

In the following sections, we will first contextualise and introduce the particular chal-
lenges related to the tasks described in this chapter. Then we will present work related
to the process of generating and ranking entity types and properties for a data model.

71

72 generating and ranking data model candidates

The methods are presented in two sections, separated by generation and ranking. In
Section 4.5, we present extensive experiments and evaluations that allow us to assess
and discuss the methods proposed. We also present the demonstrator created to illus-
trate the output of the framework and, finally, we present the conclusions of the chapter,
including answers to the research questions.

4.1 introduction

The advent of linked data has given data publishers new tools to expose their data on the
Web using standards that ensure support for resource linking and knowledge discovery.
A survey [14, 15] found that key motivations for publishing linked data are: (1) exposing
data to larger audiences on the Web, (2) demonstrate the potential of linked data applica-
tions, (3) require data published as linked data to enable its consumption, (4) improving
Search Engine Optimisation (SEO) for local resources, and (5) requirement from admin-
istrative bodies. The authors also added other reasons, including increased interoper-
ability and linking information across different institutions. However, respondents also
noted that the primary barrier when consuming linked data was matching, disambiguat-
ing, and aligning source data and the linked data resources. Moreover, it is important to note
that among the remaining barriers for consuming linked data, respondents mentioned
mapping of vocabulary and automation processes to link the data are undeveloped. Therefore,
it appears that, even though publishers are actively trying to improve their integration
efforts, users find that when consuming the data, it is hard to integrate different sources
to efficiently consume them.

The disconnect between publishers and consumers stems from two main challenges
when publishing linked data:

1. Finding ontologies: it is difficult to find ontologies on the Web [21], but when they
are chosen, it is still not a trivial task to manually map real-world entities with
concepts defined in ontologies [142].

2. Integrating data models: when existing data models have been published that
model the same concepts, the problem shifts to choosing the data model that best
suits the data and use-case.

Due to these challenges, data publishers tend to create their own data model or select a
single existing data model, potentially hindering the interoperability of the dataset with
other data models. Therefore, it is common to find several valid, existing data models
to represent the same domain and no clear agreement exists between publishers over
a best approach. For example, in the library data domain, several data models have
been implemented over the years [26]: different libraries use the Dublin Core standards,
BIBO [143], FOAF [62], or SKOS [144]. These are all well-established standards that are

4.1 introduction 73

valid and fit well in the library data domain. Therefore, this practice leads to several
data models existing to model the same domain and it is not always obvious which one
fits a specific use-case. In the case of a data publisher trying to expose their data in RDF,
while still integrating it with existing datasets in the domain, it is not an easy decision
to choose a data model for their data.

In this chapter, we describe methods for generating data model candidates from a
knowledge graph of published RDF data sources. Figure 4.1 shows the steps of the
framework described in this chapter, which include candidate generation and ranking.
The candidate generation stage parses the input dataset provided in a structured or
semi-structured format and extracts unranked entity type and property candidates. The
entity type, datatype property, and object property candidates are independently pro-
cessed, and we propose methods to rank the extensive list of candidates obtained in the
candidate generation stage. These independent scores are based on content- and graph-
based measures obtained from the document store and ontology graph built based on
the methods described in Chapter 3. These scores favour candidates that follow the
vocabulary practice consensus extracted from the background knowledge graph and
emphasise interoperability between datasets. These individual scores are aggregated
into a single score per triple pattern in the input dataset that considers the consistency
with the models in the knowledge graph and the proposed data model. It should be
noted that when we mention consistency with the data model, we are not referring to
logical consistency within the ontologies, e.g., verifying if disjoint axioms are not being
ignored. The data model consistency is verified in terms of the frequency of a triple in
the background knowledge graph and consistently suggesting the same candidate for
the same input. Therefore, this consistency score takes into account the co-occurrence of
the triple and pairwise combinations of 〈domain – property _ range〉 in the knowledge
graph to score the consistency of the candidate triples. Then it maximises consistency
across triples to make sure that the same resource has the same or similar candidates
proposed throughout the data model. We propose experiments to test these methods
and show the usefulness of their application. These experiments evaluate methods for
which a ground truth is available and show an overview of the results when one is not
available. Therefore, we discuss the strengths and limitations of the framework to delin-
eate the context of useful applications for the methods. We also present a demonstration
of a prototype for a potential interface for the application of the methods.

In the following sections, we will first discuss the related work and then describe
in detail the generation and ranking stages of the framework, i.e., entity type, datatype
property, and object property generation and ranking. For these descriptions, we will
make use of the notations described in Appendix B. We present and discuss the exper-
iments with the proposed methodology and describe a demonstration of the output of
the framework. Finally, we present the conclusions, including limitations and future
work.

74 generating and ranking data model candidates

Unranked Entity
Type Candidates

Object and
Datatype
Properties

Entity Types Properties

Input Dataset
(CSV, JSON, RDF)

Candidate Generation

Content
Score

Interoperability
Score

Consistency
Score

Ranked Entity Type
Candidates

Ranked Property
Candidates

Ranked Data Model
Candidates

Candidate Ranking

Unranked Object
Property

 Candidates

Unranked Datatype
Property

 Candidates

Content
Score

Interoperability
Score

Section 4.4

Section 4.3

Entity Types

Figure 4.1: Overview of the framework components described in this chapter.

4.2 related work

The problem of generating and ranking entity type and property candidates is part of
the schema matching research topic. Schema matching finds correspondences between
schemas by relating their relationships and concepts and enabling the exchange of data
between aligned sources. Approaches have been proposed that use metadata, data in-
stances, or a combination of both to generate mappings between schemas. In RDB,
it is common to find approaches that use metadata (e.g., schema constraints or query
logs), but there are also hybrid metadata/data solutions proposed [145–148]. The sur-
veys Rahm and Bernstein [149] and a_survey_2017 include more background informa-
tion and solutions for schema matching in RDB. Schema matching solutions have also
been proposed for structured to semi-structured data not included in databases [150,
151]. Aligning CSV tables is also commonly associated with the schema matching prob-
lem [152–155].

When matching datasets that follow the RDF data model, schema matching becomes
an ontology matching problem (more details in Section 2.2.2). RDF data is usually mod-
elled by ontologies that facilitate the integration of data. Therefore, aligning different
RDF datasets fits the ontology matching field. Approaches have been proposed that ex-
ploit instance-level links to find matches between RDF datasets using entity overlap [121]
or string semantic similarity [156].

It is also common to find works on schema matching between heterogeneous sources
and RDF data. The goal of these tasks is usually to integrate or find overlaps between un-

4.2 related work 75

structured or semi-structured data sources with RDF data to produce an interoperable
knowledge graph. In Bikakis et al. [157], the authors describe a survey of approaches
to integrate an XML Schema and an RDF Schema, and, in Hertling and Paulheim [158],
authors match a shallow schema of classes and properties extracted from wiki infoboxes
to the DBpedia ontology using string similarity matching approaches. For more inform-
ation, a survey has been conducted over the data integration problem, including schema
matching, covering various perspectives and data models [85].

Similarly to these schema matching approaches, in this chapter, we match the schema
between a source and a target, where the source can follow an RDF, JSON, or CSV
data model and we match it against a knowledge graph that features multiple schemas.
Contrary to the schema matching approaches discussed, we do not aim to find the
best schema mappings, but, instead, we produce a set of candidate correspondences to
facilitate the task of selecting the mapping that makes more sense in the context of the
input dataset and the use-case. Our methods also propose a novel approach to candidate
ranking by considering not only accuracy, also interoperability and consistency with
several data sources.

When looking specifically at entity types matching, early approaches focused on
finding and ranking entity types in search queries [159, 160] used a single ontology and
exploited its hierarchy to produce results. A more recent approach [161] uses a fixed
group of ontologies (DBpedia, YAGO, and schema.org), chosen due to pre-existing map-
pings between them, as background knowledge to choose the best entity type to match
an input. This approach also uses a search-based approach to generate candidates and
applies a ranking methodology to an input unstructured text. The authors of this paper
specifically use the frequency of an entity type in the knowledge graph, the frequency
of neighbouring entities sharing the same entity type, and owl:sameAs links. Then they
use Term Frequency-Inverse Document Frequency (TF-IDF) in combination with these
frequencies to find and rank the best matching labels and extract their entity types. The
authors also use the ontology hierarchy to further rank the entity types, using the depth
of the entity type, the number of ancestors, and the depth of the ancestors. Finally,
the authors consider the context of the entity, using frequency-, graph-, and text-based
methods to rank the entity types based on contexts extracted from the source docu-
ment. This approach has several similarities to the approach proposed in this thesis
since we also use search-based methodology to generate candidates and apply content-
and graph-scores to rank the candidates. However, our approach does not take into
account context since currently our framework does not accept unstructured text as an
input and, therefore, there is no context to be extracted. Furthermore, while Tonon et al.
[161] focus on entity types only, we propose a methodology to match the whole data
model of an input dataset that not only ranks candidates based on content but also
focuses on maximising interoperability with existing RDF datasets.

76 generating and ranking data model candidates

Other approaches to entity type matching focus on exploiting relationships between
entities to match entity types [162, 163]. Both of these approaches again focus only on
predicting entity type candidates, while our proposed framework matches entity types
and considers the whole data model. Similarly to these works, our proposed framework
also uses the co-occurrence of a predicate with a subject/object when ranking candidates.
However, this score, called “consistency score”, is applied in the context of scoring the
whole data model and not only the entity type.

When focusing on the schema matching problem in the alignment of properties,
several advances have been made using ontology matching techniques. ILLIADS [164]
aligns ontologies, including their properties, by using a combination of lexical and struc-
tural similarities, and a clustering algorithm. In PARIS [165], the authors propose a
framework to perform ontology matching of classes, instances, and properties using
a probabilistic framework. In the case of object properties, it is common to find ap-
proaches that refocus the problem as a task to find relationships between individuals.
RelFinder [166] is an example of this approach since they perform a search over entities
in an RDF dataset to find their relationships, while other approaches use schema paths
to find relationships between entity individuals through their entity types [167, 168].
Pereira Nunes et al. [169] also finds relationships between entities, but, besides consid-
ering the path between entities, also takes into account external resources by measuring
the co-occurrence of entities in Web documents. ROSA [170] focuses on finding rela-
tionship matches by mining rules in the alignment of instances, while Koutraki, Preda
and Vodislav [171] uses a supervised learning approach to align relationships. Similarly,
Gunaratna et al. [172] uses a statistical approach to generate object property matches
from aligned entity instances. Contrary to these last approaches, our proposed frame-
work does not depend on prior mappings between the entities of the datasets it is trying
to match. Due to the holistic nature of our framework, we extract the object properties
from the entity type candidates generated and ranked. Therefore, we do not need the
datasets to be aligned a priori. Overall, in the work proposed in this thesis, we consider
a broader view of relationships by taking into account schemas from different data-
sets and providing candidates that match them. Moreover, our relationship matching
strategy works not only for RDF ontologies but also for semi-structured datasets.

Looking at matching datatype properties, the focus is usually in analysing the values
of the datatype properties to find matches. Pereira Nunes et al. [173] proposed a method
to match datatype property candidates using mutual information at the instance level
to generate candidates and applying a genetic algorithm to create mappings between
datatype properties. The authors of this work focus on finding the best matches for
simple and complex datatype properties. In our work, we aim to find a broad list
of candidates from several existing data models and rank them according to different
measures. Therefore, again our approach differs from existing approaches to datatype
property matching since our goal is fundamentally different since we are not trying

4.3 generating candidates 77

to find 1-to-1 matches between two properties but instead focus on finding the best
candidates from a wide pool of possibilities.

The problem of generating datatype property candidates is akin to the task of tabular
data interpretation, where table headers represent entity types or properties for each
row, which represents an entity. The first task in tabular data annotation is identifying
the type of data in each column and the relations between columns. Syed et al. [174] uses
Wikipedia as background knowledge, while other approaches use HTML (Hypertext
Markup Language) tables obtained from the Web [152, 175, 176] to interpret tabular
data.

4.3 generating candidates

In this stage of the framework, we generate an exhaustive list of candidates to match
entity types, datatype, and object properties between the input data and the knowledge
graph. As a preliminary pre-processing step, each input dataset is parsed and converted
to the same JSON structure of the knowledge graph and is stored and indexed in the
document store. For ease of understanding, we assume that the input data D takes
the shape of a set of 〈s – p _ o〉 triples, which directly translates to RDF data. For
JSON and CSV, we loosely adapt the data to fit this model. For JSON data, we consider
the identifier of the document as the subject s (if no identifier is given, one is created),
the attributes as predicates p, and values as objects o. For CSV data, we assign a row
identifier if none is given and use it as subject s, the header or column number as the
predicate p, and the value of each row/column as object o.

Figure 4.2 shows the framework components with added red arrows indicating the
structures involved in generating each one of the candidates. Therefore, the entity type
candidates are extracted by searching matching entities in the document store. Datatype
properties are obtained by using a classification model to predict candidates from the
values of the properties in the input data. Finally, object properties are obtained after
generating and ranking the entity type candidates. We obtain these properties by extract-
ing the domain and range of the object properties in the input data and then extracting
the object property candidates through the pairwise combination of all entity type can-
didates of the domain and range. Then we extract the object property candidates from
the relationships between all pairwise comparisons of the entity type candidates in the
domain and range. The following sections describe each one of these processes in more
detail.

78 generating and ranking data model candidates

Data
Documents

Knowledge
Graph

Knowledge Building

Unranked Entity
Type Candidates

Object and
Datatype
Properties

Entity Types Properties

Input Dataset
(CSV, JSON, RDF)

Candidate Generation

Content
Score

Interoperability
Score

Consistency
Score

Ranked Entity Type
Candidates

Ranked Property
Candidates

Ranked Data Model
Candidates

Candidate Ranking

RDF Sources

Ontology Layer

Data Layer

Properties

Ontology Layer

Data Layer

Properties

Data Layer

Properties

Ontology Layer

Unranked Object
Property

 Candidates

Unranked Datatype
Property

 Candidates

Datatype
Properties

Random Forest

Object
Properties

Pre-computed
metadataDocument Store

Content
Score

Interoperability
Score

Entity Types

Figure 4.2: Overview of the framework with red arrows indicating the actors involved in the
generation of each type of candidate.

4.3.1 Entity Types

This stage generates an exhaustive list of entity type candidates for entities in the input
dataset D. As a first optional step, the user can provide descriptors dsc, i.e, column
names, attributes, or predicates that describe entities. These descriptors should contain
values that identify the entities, even if with some ambiguity, to facilitate the search in
other datasets that might not follow the same standards. For example, considering a
dataset with book entities, the user might provide the columns, attributes, or predicates
that include the titles of books. If not provided, the search is performed over every
column, attribute, or predicate related to an entity in the dataset. Optionally, entity
descriptors can also be provided for the datasets in the document store. We found
empirically that when entity descriptors for both input dataset and document store are
provided, they improve the accuracy and efficiency of the candidate generation and
ranking.

4.3 generating candidates 79

Algorithm 4.1: Entity Type Generation
Input: S: document store
Input: D: input dataset with triples 〈s – p _ o〉
Input: n: size of random sample
Input: w: size of the search result window
Input: dsc: list entity descriptors (optional)
Output: Cet: mapping of key type t and entity e to value, which is a list of tuples

with entity type candidates o, entity labels Le, and candidate labels Le
// extracts unique types or type equivalent elements for entities in D

1 T ← unique_types(D)
2 Cet ← { }

3 for t in T do
// returns a random sample of n documents in D of type t

4 Et ← random_sample(D, t,n)
5 for e in Et do
6 Cet[〈t, e〉]← [] if key t /∈ Cet

// input label extraction

7 Le ← {o | s,p,o ∈ e∧ literal(o)}
8 for l in Le do

// searches S for label l and returns a maximum of w search results

9 M← search(S, l,w)
10 for m in M do

// candidate label extraction

11 Lc ← {o | s,p,o ∈ m∧ literal(o)}
// entity type extraction

12 for s,p,o in m do
13 if p = rdf:type then
14 Cet[〈t, e〉].append(〈o,Le,Lc〉)
15 end
16 end
17 end
18 end
19 end
20 end

Algorithm 4.1 shows the process of obtaining entity type candidates for the entity
types found in input dataset D. See Appendix C.1 for an illustrative example of the
algorithm workflow.

For RDF input data, we assume the entity type is the object of the rdf:type predicate.
In JSON data, we ask the user to supply the attribute which denotes the type of the
document. If no type is supplied, then the JSON data is treated like CSV data, where
each column is assumed to be a potential entity to have an entity type assigned. For both
of these cases, if descriptors are supplied, we find only entity type candidates for the
columns or attributes indicated. The first step of the algorithm is, therefore, to extract
the set of potential unique types from the input dataset. Following the logic described,

80 generating and ranking data model candidates

the function unique_types(D) extracts the unique types or type equivalent elements T
for entities in D.

Then, the function random_sample(D, t,n) returns a random sample of n docu-
ments in D of type t. These documents represent all triples associated with a subject of
type t in RDF input data, an individual JSON document of type t, or a row in a CSV
file that contains a value for column t. In our implementation, we use ElasticSearch’s
random score function1 to randomly sample the documents.

Next, for each input triple, we extract all objects that are literals (i.e., literal(s) =

True) from all properties in entity document e or for all properties in the descriptors
dsc if these were provided. The function search(S, l,w) searches the document store
S for label l and returns a maximum of w search results. In our implementation, we
use ElasticSearch’s multi-match query2 to search for full-text matches of label l in the
datatype property values indexed in the document store. These fields are replaced
by entity descriptors if these are provided for the knowledge graph data by the user.
This algorithm then returns a mapping between entity type t for each entity e and
an extensive list of randomly sampled entity type candidates, including the labels that
matched between input and document store entities.

4.3.2 Datatype Properties

The datatype property candidates are generated from the Random Forest models (RF)
trained using the method described in Chapter 3. We train a model for each RDF data
source individually and for the knowledge graph as a whole. Algorithm 4.2 shows the
process of obtaining datatype property candidates for datatype properties in input data
D. See Appendix C.3 for an illustrative example of the algorithm workflow.

First, we generate the set DP from the data in input D with unique datatype proper-
ties in the input dataD. Then we obtain a random sample of entities Et in the input data
that contain each of the datatype properties in DP. After extracting the literal values L
of the properties, we use the trained random forest models RF to classify the value with
a datatype property from the knowledge graph. The predict(rf, l) function returns a list
ordered by the probability estimates of each datatype property in the classification mod-
els matching the literal value. Therefore, we obtain the datatype property candidates
Cdp by saving the sorted prediction results for each value in each model.

1 https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-
query.html#function-random (Accessed in September 2020)

2 https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-multi-match-
query.html (Accessed in September 2020)

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html#function-random
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html#function-random
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-multi-match-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-multi-match-query.html

4.3 generating candidates 81

Algorithm 4.2: Datatype Property Generation
Input: S: document store
Input: RF: random forest models
Input: D: input dataset with triples 〈s – p _ o〉
Input: n: size of random sample
Output: Cdp: mapping of key datatype property dp, model rf, and entity e to

value, which is a list of ordered lists p of predicted datatype property
candidates c.

// extracts datatype properties p and their domain type dt

1 DP ← {p | s,p,o ∈ D∧ literal(o)}
2 Cdp ← { }

3 for dp in DP do
// returns a random sample of n documents in DP where property dp exists

4 Et ← random_sample(DP,dp,n)
5 for e in Et do

// property value extraction

6 L← {o | s,p,o ∈ e∧ p = dp}
7 for l in L do
8 for rf in RF do
9 p← predict(rf, l)
10 Cdp[〈dp, rf, e〉]← [] if key 〈dp, rf〉 /∈ Cdp

11 Cdp[〈dp, rf, e〉].append(p)
12 end
13 end
14 end
15 end

4.3.3 Object Properties

The object property candidate generation step depends on the generation and ranking
of entity type candidates (see Section 4.4 for more details on the ranking of entity types).
Algorithm 4.3 shows the process of obtaining object property candidates for object prop-
erties in input data D. See Appendix C.5 for an illustrative example of the algorithm
workflow.

First, we obtain all triples which do not have literals as their object. For each prop-
erty in these triples, we extract their domain and range entity types with the function
type(e). The object property candidate map Cop is obtained by retrieving the edges in
the ontology graph that exist between the pair of subject and object candidates. The
function get_edges(G, s, t) returns a tuple with the object property edges op in graph
G between source vertex s and target vertex t and their data provenance prov, e.g.,
get_edges(G, s, t) = [〈op1,prov1〉, 〈op2,prov2〉]. The ontology provenance represents
the RDF data sources use the edge suggested as an object property. This information is
stored as a property of the edge when the edge is introduced in the ontology graph.

82 generating and ranking data model candidates

Algorithm 4.3: Object Property Generation
Input: G: ontology graph
Input: D: input dataset with triples 〈s – p _ o〉
Input: CSet: output of Algorithm 4.4
Output: Cop: mapping of key domain entity type dt, object property p, and

range entity type rt to value, which is a list of tuples with object
property op and its provenance o.

1 OP ← {(type(s),p, type(o)) | s,p,o ∈ D∧¬literal(o)}
2 for d,p, r in OP do
3 for cd, cr in CSet[dt]×CSet[rt] do

// Returns the edges between cd and cr and their ontology provenance

4 op← get_edges(G, cd, cr)
5 Cop[p].append(op)
6 end
7 end

4.4 ranking candidates

To rank the entity type, datatype, and object property candidates generated, we use three
scores: content, interoperability, and consistency score. This step ranks individually the
lists Cet, Cdp, and Cop with the content score, returning CSet, CSdp, and CSop, and
the interoperability score, returning ISet, ISdp, and ISop. The content score focuses on
measuring individual characteristics of the entity type or property candidates, such as
frequency in the search results and distance in the ontology graph. The interoperability
score focuses on boosting the score of candidates with higher connectivity in the onto-
logy graph. Finally, the consistency score transforms the individual lists of ranked can-
didates into cohesive data model candidates DM, and combines the individual scores
with a score of the frequency of triple patterns in the input data.

The next sections detail all the metrics used in each type of score. We then describe
the specific scoring methodology used for each type of candidate in the data model.

4.4.1 Content Score

The content score combines metrics based on string similarity, different types of frequen-
cies, and graph distances into a single score CSc ∀ c ∈ {Ct,Cdp,Cop}. The final candidate
ranking produces a set of candidates that are sorted according to their appropriateness
in matching entity types of the input data, considering the metrics used. We obtain this
result by using different combinations of the measures described in the next sections.

4.4 ranking candidates 83

Content Score Metrics

Here we present a set of generic metrics that are used to measure the appropriateness
of a candidate to fit an input entity type or property. These metrics were empirically
added to framework by studying the needs and characteristics of the use-case datasets.
The intuition behind each measure is discussed individually in their respective sections.

In each measure, we refer to a generic list of candidates C that can represent any of
the resources (i.e., entity types or properties) in the data model of the input data.

string similarity When comparing labels of entities we consider that a label is
more likely to be correct if it is closer to the input label. Therefore, we applied string
similarity measures to find the degree of similarity between input and candidate labels.

Nowadays, complex methodologies exist that allow the computation of string simil-
arity. Such approaches, for example, make use of word embeddings using techniques
such as word2vec [177] or GloVe [178], to train machine learning models to predict
the similarity between words. For our framework, however, we were looking for com-
putational inexpensive methods that would give a fast and easily explainable result.
Therefore, we tested classical string similarity methods (see Section 4.5.3) and devised
a modified string similarity score sim based on the concept of n-grams. This metric
was created through observation of the use-case datasets, which have labels with high
variability in terms of string size.

An n-gram is a sequence of n items belonging to a given string. In this work, we use
a bi-gram (n = 2) function n-gram(s) to decompose a string s into a set of pairs at the
letter and word level, e.g. Harry Potter is decomposed into {(“_h”), (“ha”), (“ar”), (“rr”),
(“ry”), (“y ”), (“ p”), (“po”), (“ot”), (“tt”), (“te”), (“er”)} at the letter level and {(“_”,
“harry”), (“harry”, “potter”)} at the word level. Left padding (_) is added to emphasise
prefixes. The intuition behind this method is that shorter strings should be weighed
more heavily in terms of their letter bi-gram overlap, while longer strings should favour
word bi-gram overlap.

We first pre-process the strings by removing punctuation and stop words, then we
define the n-gram similarity with a Jaccard index g-sim between sets A and B as follows:

union(A,B,n) = |n-gram(A)∪n-gram(B)|

g-sim(A,B,n) =
|n-gram(A)∩n-gram(B)|

union(A,B,n)

(4.1)

We then define the letter and word level n-gram similarities l-sim and w-sim using
the letter and word n-grams Al,Bl and Aw,Bw as follows:

l-sim(Al,Bl,n) = g-sim(Al,Bl,n)

w-sim(Aw,Bw,n) = g-sim(Aw,Bw,n)
(4.2)

Lastly, we compute the string similarity metric s-sim as follows:

84 generating and ranking data model candidates

inv(A,B,n) =

union(A,B,n), if union(A,B,n) 6 1

1
union(A,B,n)−1 , if union(A,B,n) > 1

s-sim(A,B,n) =w-sim(Aw,Bw,n) · (1− inv(Aw,Bw,n))+

l-sim(Al,Bl,n) · inv(Aw,Bw,n)

(4.3)

The word-level similarity w-sim gives a better understanding of the equivalence of
two entities based on their labels. However, when the labels have few words, this met-
ric loses its meaning. Therefore, the inv(A,B,n) function balances the weight given to
w-sim versus l-sim. For example, when comparing Harry Potter with Harry’s Pottery,
l-sim = 0.73, w-sim = 0.0, and s-sim = 0.24, therefore, representing the level of sim-
ilarity between the strings but emphasising that, at the word level, the strings do not
overlap.

Finally, considering two sets of strings Le and Lc, we obtain the string similarity
score sim by computing the maximum pairwise string similarity between the two sets
as:

sim(Le,t,Lc,t) = max
le∈Le,t
lc∈Lc,t

s-sim(le, lc,n) (4.4)

We select candidates that have sim >= t, where t is a user-provided threshold.

search results frequency The search results frequency score freqs(c) follows
the intuition that the most common candidate in the list of search results has a higher
likelihood of being a good candidate. Considering that count(c) is a function that
represents the raw count of the candidate c in a list of candidates C, we apply the
following transformation to obtain a final freqs(c):

freq_norm(c) = log(1+ count(c))

freqs(c) =
freq_norm(c)

max
c∈C

freq_norm(c)

(4.5)

knowledge graph frequency This metric measures how frequent a resource is in
the knowledge graph. We extract the count of a candidate c from the ETF map (see
Section 3.5) and compute the normalised frequency per RDF data source ds as:

freqkg(ds, c) =
EFT [ds][c]

max
c∈EFT [ds]

freqkg(ds, c)
(4.6)

borda score This score is based on the Borda count election method [179], where
voters rank candidates in order of preference. In opposition to majority election, the
Borda count elects the candidate that is more broadly accepted by the voters. It is
therefore a consensus-based voting system where the voters, in this case, correspond

4.4 ranking candidates 85

to the independent candidate results per sampled entity type or property, i.e., the doc-
uments returned in the search results per sampled entity in the input data sorted by
ElasticSearch score or the ranking of predictions obtained by the classification model
per sampled datatype property.

The intuition behind this score is that when the initial candidate generation already
has a preliminary ranking, as is the case with the entity type and datatype property
candidates, instead of just applying flat frequency we consider the ranking in the list of
candidates.

Borda count works by distributing a number of points determined by the number of
candidates n. Each candidate c receives n− rv points, where rv represents the ranking
of the candidate in a ballot of voter v, starting from rank 0 for the candidate ranked
first. For example, with n = 3 candidates per ballot, the candidate ranked first will get
3 points, the 2nd will get 2, and the 3rd will get one point.

With N = |C| and a pool of voters V = {v1, v2, . . . , vk}, we compute the Borda Score
borda_score(c) for candidate c with:

borda_count(c,V) =
|V |∑

k=1

n− rvk

borda_score(c,V) =
borda_count(c,V)

max
c∈C

borda_count(c,V)

(4.7)

resource frequency proportion We use the NP map (see Section 3.5) to extract
the neighbourhood proportion of each candidate and the input resource they are match-
ing. This score captures the intuition that the same types of resources should represent
a similar proportion of entities in the datasets of the same domain. For example, entity
types that define a book in a library should exist in a similar proportion in different
libraries.

The resource proportion score freq_p(c, r) for candidate c is obtained from the pro-
portion pr of the resource r extracted from NP and the proportion of the candidate pc
as:

freq_p(c, r) = 1− |pr − pc| (4.8)

distance to source resource Using the edge-enriched ontology graph, we com-
pute the distance between the source resource r and each candidate c in the candidate
list C. This score follows the intuition that candidates closer to the source resource in the
ontology graph are more likely to be good candidates. We calculate the score distr(r, c)
between a source resource r and a candidate c as:

distr(r, c,G) = 1−
log(shortestDistance(r, c) + 1)
log(max

c∈C
distr(r, c,G) + 1)

(4.9)

86 generating and ranking data model candidates

candidate distance This metric measures the pairwise distance in the ontology
graph between candidates and is based on the assumption that candidates that are dis-
tant from the other candidates are less likely to be desirable. For example, if Ct includes
bibo:Book, bibo:Document, schema:Book, frbr:Work, and dcterms:Agent, by calculating
the pairwise distances between those five candidates we would find that the first four
are closer in the ontology graph than the last and, therefore, this last candidate is con-
sidered less likely to be appropriate.

We calculate the Candidate Distance Score distc by averaging the inverse of the
distance between c and all other candidates as follows:

∀c, cn ∈ C×C \ {c} : distance(c, cn) =
1

shortestDistance(c, cn)

distc(C) =
distance(C)

max distance(C)

(4.10)

Content Scoring Methodologies

We consider three types of elements of the data models in the knowledge graph and
input datasets: entity types, datatype properties, and object properties. Through exper-
imentation, we tested different combinations of metrics for each element and chose the
ones that not only obtained good results in the evaluation but also yield better fined-
tuned results for the expected outcomes. Therefore, the content scoring methodologies
differ between these elements to accommodate their different characteristics. In the next
sections, we present the individual content scoring methodologies for each element type
in the data model.

entity type content scoring Considering a list of candidates Cet with all the gen-
erated unranked entity type candidates with source entity labels Le and target candidate
labels Lc, Algorithm 4.4 shows the processes involved in computing the content score for
entity type candidates, obtaining the ranked candidates CSet. See Appendix C.2 for a
hypothetical example of the application of the algorithm over the candidates generated
in example Figure C.1.

Algorithm 4.4 starts by calculating the string similarity of each candidate and filter-
ing out the candidates with similarities below threshold α. In the last step of the string
similarity calculation, the algorithm selects the maximum similarity found per type and
per entity for each candidate to represent the similarity sim of the candidate stored in
the mapping S.

Then the algorithm creates a mapping C of each source entity type to all the unique
candidates in mapping S, which is used to compute distc during the next step.

Finally, we compute the content score metrics by iterating over mapping S. First, we
obtain the frequency of each candidate c, considering the raw count equivalent to the
size of the scores list. Additionally, for this content score methodology, we consider the

4.4 ranking candidates 87

resource frequency proportion freqp, the distance to source distr, and the candidate
distance distc. We combine these scores into a final cs score per candidate per type and
select the k elements with the highest values of cs per type t.

Algorithm 4.4: Entity type content scoring algorithm
Input: G: ontology graph
Input: Cet: output of Algorithm 4.1
Input: α: filtering threshold for string similarity score
Input: k: cut-off value for the selection of highest ranked candidates in a list
Output: CSet: mapping of key types t to value, which is a list of tuples with

entity type candidates c and content score cs
1 S← { }

// Calculate candidate string similarity per type and candidate

2 for key-value pairs (〈t, e〉,C) in Cet do
3 G← { }

4 for 〈c,Le,t,Lc,t〉 in C do
5 G[c]← [] if key c /∈ G
6 s← sim(Le,t,Lc,t)
7 if s >= α then
8 G[c].append(s)
9 end

10 end
11 for key-value pairs (c, sims) in G do
12 S[〈t, c〉]← [] if key 〈t, c〉 /∈ S
13 S[〈t, c〉].append(max(sims))
14 end
15 end

// Compute set of unique candidates

16 C← { }

17 for key (t, c) in S do
18 C[t]← C[t]∪ {c}
19 end

// Compute content score

20 CSet ← []
21 for key-value pairs (〈t, c〉), scores) in S do
22 freq← freqs(c) where count(c) = |scores|

23 cs← freq ·mean(mean(scores), freq_p(c, t),distr(t, c,G),distc(C[t]))
24 CSet[t].append(〈c, cs〉)
25 end
26 CSet ← topk(CSet, sort_key← cs)

datatype property content scoring Considering the datatype property can-
didate mapping Cdp generated through the processes described in Algorithm 4.2, Al-
gorithm 4.5 describes the process of ordering these candidates according to the com-

88 generating and ranking data model candidates

bination of content score metrics. See Appendix C.4 for a hypothetical example of the
application of the algorithm over the candidates generated in example Figure C.3.

First, the algorithm computes the Borda score per datatype property dp, per entity
e, and per model rf for each datatype property candidate in the ranked prediction p. In
step 2, we aggregate the Borda score results per input datatype property and candidate.
In step 3, we average the Borda scores that each candidate got in the different entities and
models and average this score with the distance to source distt. Finally, the mapping
CSdp returns the topk candidates per datatype property dp considering the highest
content score cs computed.

Algorithm 4.5: Datatype property content scoring algorithm
Input: G: ontology graph
Input: Cdp: output of Algorithm 4.2
Input: CSet: output of Algorithm 4.4
Input: k: cut-off value for the selection of highest ranked candidates in a list
Output: CSdp: mapping of key datatype property dp to value, which is a ranked

set of tuples of datatype property candidate c and its content score cs
// Computes borda score of each candidate per property dp and per model rf

1 S1 ← { }

2 for key-value pairs (〈dp, rf, e〉,p) in Cdp do
3 S1[〈dp, rf〉]← [] if key 〈dp, rf〉 /∈ S1
4 for c in p do
5 S1[〈dp, rf〉].append(〈c,borda_score(c,p)〉)
6 end
7 end
// Aggregates Borda results per property dp per candidate c

8 S2 ← { }

9 for key-value pairs (〈dp, rf〉, 〈c,borda_score〉) in S1 do
10 S2[〈dp, c〉]← [] if key 〈dp, c〉 /∈ S2
11 S2[〈dp, c〉].append(borda_score)
12 end

// Computes cs score per property and candidate

13 S3 ← { }

14 for key-value pairs (〈dp, c〉,borda_scores) in S2 do
15 cs← mean(mean(borda_scores),distr(dp, c,G))
16 if cs > S3[〈dp, c〉] then
17 S4[(dp, c)]← cs

18 end
19 end
20 CSdp ← []
21 for key-value pairs (〈dp, c〉, cs) in S3 do
22 CSdp[dp].append(〈c, cs〉)
23 end
24 CSdp ← topk(CSdp, sort_key← cs)

4.4 ranking candidates 89

object property content scoring Considering the object property candid-
ates mapping Cop generated through the processes described in Algorithm 4.3, Al-
gorithm 4.6 describes the process of ordering the object property candidates according
to a combination of content score metrics. See Appendix C.6 for a hypothetical example
of the application of the algorithm over the candidates generated in example Figure C.5.

Algorithm 4.6 first iterates over each candidate c and its provenance ontology o to
extract freqs(c) where the raw count is represented by the number of times a tuple in
edges contains candidate c. The frequency freqkg represents the number of documents
in the knowledge graph that use object property candidate c. Finally, the algorithm
computes distr and combines all scores into the final content score cs of candidate c.
The algorithm returns the topk object property candidates sorted by content score cs.

Algorithm 4.6: Object property content scoring algorithm
Input: G: ontology graph
Input: Cop: output of Algorithm 4.3
Input: k: cut-off value for the selection of highest ranked candidates in a list
Input: β: weight given to compute the final score
Output: CSop: mapping of key datatype property op to value, which is a ranked

set of tuples of object property candidate c and its content score cs
1 CSop ← { }

2 for key-value pairs (op, edges) in Cop do
3 for c,prov in edges do
4 freqkg ← freqkg(prov, c)
5 distr ← distr(op, c,G)
6 cs← (distr ·β) + (freqkg · 1−β)
7 CSop[op].append(〈c, cs〉)
8 end
9 end
10 CSop ← topk(CSop, sort_key← cs)

4.4.2 Interoperability Score

The interoperability score follows the intuition that candidates that are more interoper-
able within the background knowledge graph will not only be well-connected in the on-
tology graph but will also be closer to frequently used classes and properties within the
knowledge graph. Therefore, the interoperability score focuses on re-ranking the candid-
ate list obtained via the content score by boosting candidates that are well-connected in
the ontology graph and are connected to frequent entity types in the knowledge graph.
This score ensures that the candidates ranked first are not only good matches but also
maximises the integration with frequently used entity types in the knowledge graph.
Considering that the knowledge graph is composed of several potential candidates for
each resource, this score improves the integration with related resources by ranking

90 generating and ranking data model candidates

less specific resources higher since they are more likely to contain a broad network of
equivalences and subsumptions.

Therefore, the interoperability score (IS) contains information from the Know-
ledge Graph (KG) and from a sub-graph of the ontology graph Ge = (V ,Es) with
Es ⊆ E representing ontology mappings, extended mappings, owl:equivalentClass,
and superClassOf edges only. This subset of edges restricts the graph to the set of
vertices that are equivalent, subsumed, or directly related.

This score is based on two metrics: neighbourhood size and interoperability. Both scores
use the concept of ith neighbourhood NG(v, i) of vertex v, which is the set of all vertices
that lie at the distance i from v in graph G. Neighbourhood size represents the total
number of vertices inNGe

(v, i), while the interoperability metric considers the frequency
of these vertices in the knowledge graph. Higher scores in these metrics translate into a
more connected and relevant neighbourhood. In a fully connected graph, the values of
these metrics keep increasing until all vertices are included in this score. In contrast to
the interoperability metric, the neighbourhood size rewards candidates with neighbours
that do not appear in the knowledge graph but are still in the path of the candidate
vertex in Ge. Entity types with high neighbourhood size scores but low interoperability
metric scores are valuable for integration with datasets not included in the background
knowledge graph.

Neighbourhood Size Metric

Considering V as the set of vertices in Ge corresponding to the candidates in CS ob-
tained from the content score ranking of any data model resource, we calculate the
neighbourhood size metric NS(v,dmax) as the sum of the number of vertices in the ith

neighbourhood of vertex v ∈ V up to a maximum weighted distance dmax, i.e., the
maximum distance to consider ith neighbourhoods. Therefore, the neighbourhood size
NS(v,dmax) is computed with:

NS(v,dmax) =

dmax∑

i=0

|NGe
(v, i)| (4.11)

Interoperability Metric

The interoperability metric is defined as the sum of the frequencies freq(n) that each
neighbourhood vertex n has in the knowledge graph KG over the ith neighbourhood
∀v ∈ V : NGe

(v, i), where i is the weighted distance from v to a maximum of dmax:

interop(v,dmax) =
∑

n∈NGe(v,dmax)

freq(n) (4.12)

4.4 ranking candidates 91

Interoperability Score Methodology

Considering r as a data model resource in {et,dp,op}, Algorithm 4.7 takes as input the
CSr mapping resulting from the content score algorithms respective to each resource
and computes the interoperability score, ISr. See Appendix C.7 for a hypothetical ex-
ample of the application of the algorithm over the candidates generated in example
Figure C.1.

Algorithm 4.7 first finds the vertex in graph Ge that corresponds to each candidate
and then computes the neighbourhoods size and interoperability metrics. The mean of
these two values is the final interoperability score is.

Algorithm 4.7: Interoperability score algorithm
Input: Ge: subset of the ontology graph with relevant edges only
Input: CSr: mapping of key resource r to value, which is a ranked set of tuples of

resources candidate c and its content score cs
Input: dmax: maximum neighbourhood distance to consider
Output: ISr: mapping of key resource r to value ranked set of tuples of resources

candidate c and its interoperability score is
1 ISr ← { }

2 for key-value pairs (r, 〈c, cs〉) in CSr do
3 vc ← get_vertex(Ge, c)
4 is← mean(NS(vc,dmax), interop(vc,dmax))
5 ISr[r].append(〈c, is〉)
6 end

4.4.3 Consistency Score

The consistency score follows the intuition that a candidate data model is more desirable
if the suggested triples frequently appear together in the knowledge graph and, at the
same time, the same candidate is consistently suggested at the same rank for each input.
Therefore, the consistency score takes as input the results from the individual scoring
methodologies of entity types and properties and re-ranks them considering their com-
bined frequency in the knowledge graph but also the homogeneity of the candidate data
models being proposed. Therefore, the consistency score has two main phases: (1) score
aggregation, which combines the individual scores and knowledge graph frequencies
into a single triple candidate score, and (2) score refinement, which iterates over the
candidate triples and boosts triples that improve the consistency of the entity types and
properties being suggested in relation to the whole candidate data model.

Score Aggregation

In the score aggregation phase, for each triple pattern in the input data, we obtain the
individual content and interoperability scores of each element and combine them with

92 generating and ranking data model candidates

their co-occurrence scores extracted from the KGP map constructed (see Section 3.5).
The co-occurrence score corresponds to the frequency in which elements of the triple co-
occur in a triple pattern of the KGP. We compute the co-occurrence frequencies of the
candidate triples 〈domain – property _ range〉 dpr and the pairs domain-property dr,
domain-range dr, and property-range pr. Therefore, the score aggregation is computed
for each input triple pattern 〈d – p _ r〉 in the input dataset by considering the indi-
vidual scores CSe and ISe of the element e, where e is an element of the triple pattern
candidate {cd, cp, cr}⇔ c ∈ C. The individual scores CSe and ISe are obtained with the
specific methodologies per resource described in sections 4.4.1 and 4.4.2.

Overall, we normalise all scores using the following:

s̃(e) =
s(e)

max
e∈E

s(e)
(4.13)

Where E is the set of all elements for which s(e) can be computed. Whenever the tilde
character (˜) is used, it represents a value normalised by the maximum of the set.

We then compute the mean of the co-occurrences of the triple patterns cor with:

co_mean(d,p, r) = mean(c̃odpr, c̃odp, c̃opr, c̃odr) (4.14)

Algorithm 4.8 shows the complete methodology to compute the score aggregation
phase of the consistency score. See Appendix C.8 for a hypothetical example of the
application of the algorithm over the candidates generated and ranked with the previous
algorithms.

In Algorithm 4.8, first we define the general scoring function that is used to initialise
the aggregated score and is also used in the score refinement phase to recompute the
aggregated score after refinement.

From line 8 starts the description of the aggregation phase computation, which be-
gins with extracting the individual scores of each of the candidates that match the triple
pattern. The algorithm then computes the Cartesian product between the three sets of
candidates (line 19), and obtains the co-occurrence score co, which is used, in addition
to the individual score, to compute the final aggregated score agg. The final step uses
the function sortby(C,agg) to sort the candidates in descending order of agg score per
d,p, r key in the map.

Score Refinement

In the score refinement phase, we iterate over all candidate triples that share elements,
i.e., the same input subject, predicate, or object, and adjust the individual score of the
overlapping resource by boosting or penalising it depending on its ranking in the differ-
ent overlapping triples. We use the Borda score (Section 4.4.1) to consider the rankings of
the candidates when refining the score. For example, considering two triple patterns in

4.4 ranking candidates 93

Algorithm 4.8: Consistency Score - Aggregation algorithm
Input: KGP: mapping of triple patterns 〈d,p, r〉 to its frequency in the

knowledge graph
Input: S: 〈CSet,CSdp,CSop, ISet, ISdp, ISop〉, where CSr are outputs of

Algorithm 4.4, 4.5, and 4.6, respectively, and ISr are outputs of 4.7
Input: W: scoring weights 〈wcs, wis, wcns〉
Output: DM: mapping of triple pattern 〈d,p, r〉 to a tuple that includes d,p, r

candidates, their individual scores csr and isr, the triple co-occurrence
score co, and the final aggregated score agg

1 Function scoring(csd, isd, csp, isp, csr, isr, co,W):
2 ds← pow(csd,wcs) · pow(isd,wis)
3 ps← pow(csp,wcs) · pow(isp,wis)
4 rs← pow(csr,wcs) · pow(isr,wis)

5 return co ·wcns +mean(d̃s, p̃s, r̃s) · (1−wcns)

6 end
7

8 DM← { }

9 for key (d,p, r) in KGP do
// extract individual scores

10 Cd ← {〈cd, csd, isd〉 | cd, csd ∈ S.CSet[d]∧ cd, isd ∈ S.ISet[d]}
11 if literal(o) then
12 Cp ← {〈cp, csp, isp〉 | cp, csp ∈ S.CSdp[p]∧ cp, isp ∈ S.ISdp[p]}
13 Cr ← ∅
14 else
15 Cp ← {〈cp, csp, isp〉 | cp, csp ∈ S.CSop[p]∧ cp, isp ∈ S.ISop[p]}
16 Cr ← {〈cr, csr, isr〉 | cr, csr ∈ S.CSet[r]∧ cr, isr ∈ S.ISet[r]}
17 end

// compute aggregated score for the Cartesian product of the sets of candidates

18 DM[〈d,p, r〉]← [] if key 〈d,p, r〉 /∈ DM
19 for (〈cd, csd, isd〉, 〈cp, csp, isp〉, 〈cr, csr, isr〉) in Cd ×Cp ×Cr do
20 co← co_mean(cd, cp, cr)

// normalise each score by its maximum in Cd ×Cp ×Cr

21 agg← scoring(csd, isd, csp, isp, csr, isr, co,W)
22 DM[〈d,p, r〉].append(〈cd, csd, isd, cp, csp, isp, cr, csr, isr, co,agg〉)
23 end
24 end

// sort DM in descending order of agg score

25 for key-value pairs (〈d,p, r〉,C) in DM do
26 DM[〈d,p, r〉]← sortby(C,agg)
27 end

the input data: [pgterms:ebook, dcterms:creator, pgterms:agent] and [pgterms:ebook,
dcterms:publisher, literal], the refinement phase would look at the rankings of the
candidates for pgterms:ebook in both triples and adjust the score according to the rank-
ings of the entity types in both triples. This is an iterative process that runs until the
data model converges or up to a maximum of n iterations.

94 generating and ranking data model candidates

Algorithm 4.9: Consistency Score - Refinement algorithm
Input: DM: output of Algorithm 4.8
Input: W: scoring weights 〈wcs, wis, wcns〉
Input: m: maximum number of iterations
Output: DM: re-ordered input mapping DM

1 n = 0
2 DM ′ ← { }

3 while n < m or DM ′ 6= DM do
4 DM ′ ← DM

5 for key-value pairs (〈d,p, r〉,C) in DM do
// compute the Borda score for each candidate of each triple element

6 B← {}

7 for e in {d,p, r} do
8 Ce ← groupby(DM, e)
9 Ce ← [c.ce | c ∈ Ce]
10 for ce in Ce do
11 B[〈e, ce〉]← borda_score(ce,Ce)
12 end
13 end

// refine the individual scores by multiplying them by their Borda score

14 DM[〈d,p, r〉]← []
15 for c in C do
16 for e in {d,p, r} do
17 c.cse ← c.cse ·B[〈e, ce〉]
18 c.ise ← c.ise ·B[〈e, ce〉]
19 end

// normalise each score by its maximum in C

20 c.agg← scoring(c.csd, c.isd, c.csp, c.isp, c.csr, c.isr, c.co,W)
21 DM[〈d,p, r〉].append(c)
22 end
23 end

// sort DM in descending order of agg score

24 for key-value pairs (〈d,p, r〉,C) in DM do
25 DM[〈d,p, r〉]← sortby(C,agg)
26 end
27 n← n+ 1

28 end

Algorithm 4.9 shows the complete methodology to compute the score refinement
phase of the consistency score. See Appendix C.9 for a hypothetical example of the
application of the refinement algorithm over the candidate data models DM ranked in
Algorithm 4.8.

First, the algorithm computes the Borda score for each candidate of each ele-
ment. For that, it uses the function groupby(DM, e) to group key-value pairs in
DM, where the element e is a specific component of the 〈d,p, r〉 key. For example,
groupby(DM, pgterms:ebook) gets all the triple patterns and their candidate lists that

4.5 experiments 95

have the subject pgterms:ebook. The Borda score is then used to refine the individual
scores of each candidate and the function scoring() computes an updated aggregated
score agg. Finally, we re-order the candidates in descending order of the new agg

score. This process is repeated until the refinement does not change the order of the
DM mapping anymore or until m iterations are reached.

4.5 experiments

The purpose of the following experiments is not only to evaluate the components that
can be evaluated but also to demonstrate the potential and applicability of the frame-
work. Even though knowledge graph annotation and matching is not an uncommon
challenge in the Semantic Web field, to the best of our knowledge, no ground truth
exists that would allow us to fully evaluate the potential of our proposed scoring meth-
odologies. As previously mentioned in the Related Work sections, our framework dif-
fers from common approaches that aim to find the most precise matches for entities
and schema of the knowledge graph. These approaches are evaluated with manually
constructed ground truths (e.g., [67, 161, 180]) using precision, recall, and F-measure
of the proposed entity and schema mappings against a manually curated set of map-
pings. However, our framework does not aim to find the most accurate candidate, as it
instead focuses on finding a suitable data model to fit a whole dataset while maximising
integration with multiple data sources.

Following a closed-world assumption for the knowledge graph, i.e., the data models
in the knowledge graph as correct and no other data model is known, our framework
aims to rank full candidate data models according to a set of parameters that modify
the weights of the different framework components for the ranking of the data model
recommendations. Nonetheless, the first components of the framework (generation and
content scoring) include generation and ranking of candidates based on their accuracy.
Therefore, we evaluate these components using available ground truths with methods
that mimic the application of the components in the context of the framework. The
interoperability and consistency scores, however, re-rank these candidates according to
parameters that are currently not easy to evaluate. Therefore, for these components we
present experiments that showcase their overall impact in the recommendations of the
framework.

In the next sections, we first present the ground truths used to evaluate the genera-
tion and content ranking components. Then we describe the evaluations performed and
their results. Finally, we define and discuss the different experiments implemented to
test the interoperability and consistency components.

96 generating and ranking data model candidates

4.5.1 Ground Truths

For the generation and content score components, we use the following ground truths:

1. DBpedia as knowledge graph using the ground truths from the 2019 SemTab Chal-
lenge [180]

2. DBkWik [158] datasets as knowledge graph using the ground truth from the Know-
ledge Graph track of OAEI [67]

3. Library linked data as knowledge graph and ground truth extracted from
owl:sameAs links

SemTab

Recently, the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
(SemTab) was started to benchmark systems dealing with the problem of annotating
entities, entity types, and object properties3. The 2019 and 2020 editions of this chal-
lenge included three tasks: (1) assigning an entity type to a column, named Column
Type Annotation (CTA), (2) matching an entity in the tabular data with an entity in the
knowledge graph, called Column Entity Annotation (CEA), and (3) assigning a know-
ledge graph property to the relationship between two columns, which is equivalent to
the object property generation and ranking task, called Column Property Annotation
(CPA).

In our experiments, we use the datasets of the Round 4 of the challenge and the
ground truths made available after the 2019 edition of SemTab [181]. These ground
truths include mappings of tabular data to entities of the English DBpedia, and DBpedia
ontology classes and properties. Therefore, we retrieved the labels, instance types, literal,
and object mappings from the DBpedia Databus version of 2020.07.014 and loaded the
data using the processes described in Section 3.6.

DBkWik

For this dataset, we use the data extracted for the DBkWik knowledge graph [158] and
made available for the OAEI 2019 Knowledge Graph track5. The data was extracted from
pages in the Fandom Wikifarm6 for three Star Wars-related wikis and three Star Trek
wikis. The Knowledge Graph track also includes a Marvel-related dataset. However,
we are looking for cases similar to ours which include a knowledge graph with several
data sources. Since the Marvel ground truth only includes 1-to-1 mappings, we exclude
it from these experiments. Therefore, we use the Star Wars (SW), Star Wars: The Old

3 http://www.cs.ox.ac.uk/isg/challenges/sem-tab/ (Accessed in September 2020)
4 https://databus.dbpedia.org/dbpedia/
5 http://oaei.ontologymatching.org/2019/knowledgegraph
6 https://www.fandom.com

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
https://databus.dbpedia.org/dbpedia/
http://oaei.ontologymatching.org/2019/knowledgegraph
https://www.fandom.com

4.5 experiments 97

Republic (SWTOR), and Star Wars: Galaxies (SWG) Wikis, and the Memory Alpha (MA),
Memory Beta (MB), and Star Trek Expanded (STE) Universe Wikis.

We use the SWTOR and SWG as the Star Wars knowledge graph, and the MB and
STE as the Star Trek knowledge graph. Both SW and MA are used as the input data
since they are the most likely to overlap with the resources in the knowledge graph data
sources and, therefore, better emulate the application of our framework.

owl:sameAs Dataset

As an alternative to a curated ground truth, we created an evaluation dataset extrac-
ted from owl:sameAs links between the RDF library datasets. Four of the chosen lib-
raries (British, French, German, and Spanish) include owl:sameAs links to external re-
sources. Therefore, we created an automatic ground truth by selecting documents
that linked to the same third party resource in all four libraries and extracted the
types of each document. In this case, these four libraries overlap when creating an
external link to VIAF (Virtual International Authority File), which is a service that com-
bines authority names from multiple libraries under a single domain. For example,
bnb:person/CaroDugoCarmen1963-, bnf:12148/cb150440479#about, gnd:173023355, and
bne:XX1379294 all contain a owl:sameAs link to http://viaf.org/viaf/47047050. There-
fore, we store in the owl:sameAs ground truth the entities and their entity types as equi-
valent to each other.

Using this methodology, we obtain a ground truth with 26 009 overlapping person
entities between the four libraries.

Descriptive Statistics

Table 4.1 contains descriptive statistics of the knowledge graphs used to evaluate the
initial components of the framework, including number of entities and distinct entity
types, datatype, and object properties. The number of triples represents the number of
triple patterns in the form of 〈domain – property _ range〉.

Table 4.1: Ground truth knowledge graphs statistics

Knowledge Graph # Entities # Entity Types # Dt Properties # Obj Properties # Triples

DBpedia 17 721 495 397 482 412 94

DBkWik: Star Wars
(SWTOR+SWG)

37 590 172 393 154 547

DBkWik: Star Trek
(MB+STE)

127 149 527 268 388 656

Library data
(British/French/German)

105 729 880 72 363 806 1169

Table 4.2 shows descriptive statistics for the input data used to match each of the
knowledge graphs of Table 4.1. The SemTab DBpedia-based dataset is in CSV format,
with no schema, therefore, no a priori extraction of entity types and properties is possible.

http://viaf.org/viaf/47047050

98 generating and ranking data model candidates

The dataset has 817 CSV tables with an aggregated total of 52 066 rows. The remaining
input datasets are in RDF format and, therefore, the complete statistics are presented in
the table.

Table 4.2: Ground truth input data statistics

Knowledge Graph # Entities # Entity Types # Dt Properties # Obj Properties # Triples

DBpedia: SemTab
(rows)

52 066 - - - -

DBkWik: Star Wars
(SW)

335 666 273 231 483 714

DBkWik: Star Trek
(MA)

143 838 185 181 160 341

Library data
(Spanish)

20 752 087 7 163 38 201

Finally, Table 4.3 presents descriptive statistics of the ground truth provided for each
dataset. The SemTab ground truths are separated into their tasks. The CEA task con-
tains correspondences for 107 352 entities. The CTA ground truth contains mappings for
823 columns over 817 CSV files. These mappings contain 158 unique entity types repres-
ented. The CPA ground contains 216 unique object properties represented between 825
columns over the same 817 CSV files. The DBkWik ground truths include 1-to-1 equival-
ence mappings of entities, entity types, and properties for each pair of files. Finally, the
owl:sameAs ground truth includes a 1-to-many mapping between entities in the Spanish
library and the three libraries in the owl:sameAs knowledge graph.

Table 4.3: Ground truth statistics

Ground Truth # Entities # Entity Types # Properties

DBpedia: SemTab CEA 107 352 - -
DBpedia: SemTab CTA - 158 -
DBpedia: SemTab CPA - - 216

DBkWik: Star Wars
(SW-SWG and SW-SWTOR)

2454 19 76

DBkWik: Star Trek
(MA-MB and MA-STE)

11 021 27 55

Library data
(Spanish - British/French/German)

26 009 7 201

4.5.2 Candidate Generation

As previously mentioned, the goal of the candidate generation component of the frame-
work is to generate an exhaustive list of candidates to match entity types, datatype, and
object properties between the input data and the knowledge graph. Therefore, we eval-
uate this component in terms of recall of relevant entities, entity types, and properties.

4.5 experiments 99

Entity Types

Entity type candidate generation is evaluated in terms of entity and entity type recall.
For entity recall, we use the SemTab (CEA ground truth), DBkWik, and owl:sameAs

ground truths and compute the recall for entities in the ground truth. Simultaneously,
we examine how the number of results per search query, i.e., the search window size,
affects the recall to analyse its effect on the candidate generation results.

In terms of entity type recall, we use the same datasets as for entity recall (using
the CTA ground truth for SemTab). Here we analyse the recall of entity types, which
can be different from the entity recall since even when the wrong entity is retrieved,
due to similarities in the name, its entity type can still be correct. Since the goal of
the candidate generation is to obtain an exhaustive list of candidates, entity retrieval
accuracy is not essential to obtain reasonable results. Simultaneously, we analyse the
impact of the input data sample size in the recall of entity type candidates.

0 10 20 30 40 50
Search Window Size

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

SemTab
owl:sameAs
DBkWik

Figure 4.3: Entity Recall

Figure 4.3 shows the result of the recall and search window evaluation for the three
datasets under consideration. For each dataset, the maximum number of mappings
per entity is three for the owl:sameAs dataset, two for the DBkWik dataset, and for the
SemTab dataset it varies between 1 and 209. However, these mappings include several
variations or deprecations of the same entity URI. Therefore, the lower performance
results are negatively influenced by the extensive list of results that is present for some
entity candidates, and is not a trivial to distinguish true low recall from deflated results

100 generating and ranking data model candidates

due to the ground truth. The remaining datasets obtain high recall, maximising between
80-90% for the largest search window tested.

The x-axis of Figure 4.3 shows how the size of the search window affects the gen-
eration process. For the SemTab dataset, around window size w = 10, there are no
significant changes. Considering that the mean number of mappings per entity is 4.93
with a median of 2, on average, doubling the size of mapping obtains close to maximal
recall. For the DBkWik, there is a mean of 1.1 mappings per entity. Therefore, the recall
is close to the maximum with a search window of 2-3, which also represents a close
double of the number of mappings per entity.

The owl:sameAs dataset contains the most heterogeneous data since it has data in
different languages, therefore, it is the one that benefits the most from a larger search
window. In this dataset, all entities contain three correct mappings (one for each library).
Despite the different languages, the generation algorithm manages to obtain a high
recall, with a search window of 15, already obtaining around 70% recall. Since this is
the dataset that more closely resembles the data we are using in the chosen use-cases,
for the remainder of the experiments, we set the search window to 15.

0 200 400 600 800 1000
Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

SemTab
owl:sameAs
DBkWik

Figure 4.4: Entity type recall

Figure 4.4 shows the result of the entity type recall and the sample size for the three
ground truths considered. For the owl:sameAs and DbkWik ground truths, the entity
type recall was high even with a small sample. For the owl:sameAs ground truth, this
result is explained by the reduced number of entity types featured in the dataset (see
Table 4.3). Therefore, even a small sample of entities is sufficient to obtain all the correct
entity types. For the DbkWik ground truth, the entity type results are in line with the

4.5 experiments 101

entity recall since the correct entities are being retrieved. The small impact of the sample
size in this dataset is explained by the small number of entities in the ground truth for
each type. On average, each entity type in the ground truth has 55.2 entities, with a
median of 6. Only 2 entity types have more than 1000 entities, and 27 have more than
100. Therefore, sampling above hundred is mostly meaningless for this dataset.

The SemTab evaluation against the CTA ground truth obtained a lower performance,
which can be explained by the way the ground truth is constructed: It includes the most
precise entity type for each entity but also includes the full hierarchy of that entity type.
Since this ground truth was not designed to evaluate recall, the results are not optimal.
Nonetheless, the ground truth has a mean of 3.46 entity types per entity, with a median
of 3.

0 200 400 600 800 1000
Sample Size

0

10

20

30

40

50

Nu
m

be
r E

nt
ity

 T
yp

e
Ca

nd
id

at
es

(a) Gutenberg

Unique Types
Time

0 200 400 600 800 1000
Sample Size

0

10

20

30

40

50
Nu

m
be

r E
nt

ity
 T

yp
e

Ca
nd

id
at

es

(b) University

Unique Types
Time

0 200 400 600 800 1000
Sample Size

0

10

20

30

40

50

Nu
m

be
r E

nt
ity

 T
yp

e
Ca

nd
id

at
es

(c) OpenL

Unique Types
Time

0 200 400 600 800 1000
Sample Size

0

5

10

15

20

25

30

35

Nu
m

be
r E

nt
ity

 T
yp

e
Ca

nd
id

at
es

(d) Institute

Unique Types
Time

0

50

100

150

200

Ti
m

e
(s

)

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e
(s

)

0

50

100

150

200

250

300

Ti
m

e
(s

)

0

1

2

3

4

5

6

7

Ti
m

e
(s

)

Figure 4.5: Unique types generated

Overall, due to their specific characteristics, none of the ground truths used was able
to fully evaluate the impact of the sample size in the entity type generation methods.
Therefore, Figure 4.5 shows how the sample size affects the entity type candidate gen-
eration methodology over the library use-case. In this experiment, we run the entity
type generation for each of the input library datasets and use different sample sizes to
generate candidates. The Unique Types line represents the total number of unique entity

102 generating and ranking data model candidates

type candidates that are retrieved with sample size s. The Time dashed line shows the
time the algorithm takes to retrieve these candidates with sample size s7. The results
seen in the figure show that the computation time increases linearly with the sample
size, which is consistent with the for-loop described in line 5 of Algorithm 4.1. After
sample size 300, approximately 10 new unique types are discovered. However, there
is a difference of ≈ 150 seconds between sample size 200 and 1000 for Gutenberg and
≈ 40 minutes for the University dataset, with a difference of less than 10 new unique
candidates. The Institute dataset only has 34 entities, therefore, the sample size does not
affect the number of new candidates found after this value.

Therefore, by analysing the recall results presented in conjunction with the results
shown in Figure 4.5, we select a sample size of 300 for the remaining of the experiments.

Datatype Properties

The results of the datatype property generation include all properties of the knowledge
graph ordered by their probability of matching according to the classification models.
Therefore, if the correct property can be found in the knowledge graph, it should appear
in the datatype property candidate generation results.

To confirm, we compute the recall of the generation method by using the DBkWik
datasets, which are the only ones that include datatype properties in their ground truths.
Therefore, to analyse the datatype property candidate generation, we train classification
models for these datasets as explained in Section 3.9. To accelerate the training process,
we run a random grid search but skip the exhaustive grid search. We train the models
with the parameters presented in Table 4.4.

Table 4.4: Hyperparameter search

Hyperparameter Randomised Final

n_estimators [100, 1000] 500

criterion entropy entropy

min_samples_split [0.01, 0.40] step = 0.01 0.03

min_samples_leaf [0.01, 0.40] step = 0.01 0.02

max_features [2, 7] 4

min_impurity_decrease [0.0, 0.2] step = 0.01 0.03

bootstrap False False

We obtained a recall of ≈ 95% using this evaluation method. The re-
call is below 100% due to the fact that the ground truth features mappings
between object properties and datatype properties. Our framework strictly
distinguishes datatype and object properties, therefore, a property cannot be

7 Executed in an 8-core Intel Xeon CPU @ 2.40GHz with 48GB of RAM running Ubuntu 16.04.2 LTS

4.5 experiments 103

both. When the framework finds a property which is both a datatype and a
object property, it assigns it to the object properties. For example, the prop-
erty http://dbkwik.webdatacommons.org/starwars.wikia.com/property/title

in the SW dataset is mapped as equivalent to
http://dbkwik.webdatacommons.org/swg.wikia.com/property/title in SWG and
to http://dbkwik.webdatacommons.org/swtor.wikia.com/property/title in SWTOR.
However, in SWTOR this property is both a datatype property and an object property,
while in SWG it is only a datatype property. This pattern is found for 345 properties
over all the DBkWik datasets. Since our framework strictly distinguishes datatype and
object properties, the property in the ground truth mapped to SWG is not discovered
since it is considered as an object property.

Object Properties

The generation of candidates for object properties depends on the generation of candid-
ates for entity types and ranking using content score (see Algorithm 4.3). Therefore, the
performance of this generation step is directly correlated with the performance of the
entity type generation and content score ranking. This generation step extracts an ex-
haustive list of all edges between two vertices in the ontology graph. Since currently, the
framework is not able to identify object properties unless they are explicit in the input
dataset (e.g., a CSV featuring a column of unique identifiers mentioned in another CSV
file), we are not able to use the SemTab ground truth to evaluate this step.

Therefore, to evaluate this generation step, we instead use the algorithm to generate
candidates for the object properties in the DBkWik ground truth. We compare the res-
ults of the ground truth with the candidates returned in terms of recall. For the object
property generation step, we obtain a recall of ≈ 50% using the DBkWik: Star Wars
ground truth and ≈ 80% using the DBkWik: Star Trek ground truth. Similarly to the
datatype property generation, the object property generation is degraded by overlap-
ping mappings between datatype and object properties in the ground truth, which the
framework does not allow.

4.5.3 Content Score Ranking

Content score ranking consists in ordering the list of candidates generated to fit various
measures that focus on finding the most suitable candidates to match an input resource.

We start by comparing the results of our content scoring ranking to the results ob-
tained by the tools that participated in the OAEI 2019 Knowledge Graph track. For
this, we used the datasets mentioned in Tables 4.1-4.3. Additionally, to make the results
comparable, we used the third dataset (Marvel dataset) excluded from the previous and
following experiments.

104 generating and ranking data model candidates

Table 4.5 presents a summarised version of the results from the OAEI track, including
the maximum score obtained with the average (in brackets) of all participating tools that
obtained a result greater than 0.0 and excluding the baselines.

System Resource Precision Recall

OAEI Systems
Instance 0.91 (0.70) 0.86 (0.64)
Properties 1.0 (0.83) 0.98 (0.68)

Ours
Instance 0.67 0.61
Properties 0.19 0.35

Table 4.5: Summarised results of the OAEI Knowledge Graph track in comparison to our frame-
work

Overall, our framework obtains lower precision and recall when compared with the
systems that participated in the OAEI 2019 Knowledge Graph track. Despite this result,
in terms of instance mappings precision, our framework is able to obtain results similar
to the average system that participated in the Knowledge Graph track. In relation to
property mapping, our framework obtains significantly lower performance. However,
in contrast to OAEI tools, we propose a framework that considers all parts of a data
model to propose a consistent data model that potentially integrates with several other
data models. Therefore, our focus when developing the generation and content score
methodologies is to enable the recommendation of complete data model candidates,
instead of focusing on specific performance measures.

The main focus of the systems that participate in the OAEI is to improve the perform-
ance of their task-specific matchers, therefore, excelling at individual matching tasks of
instance and schema of a single knowledge graph. These systems use combinations
of string similarity measures, background knowledge exploitation, structural matching
between instances in knowledge graphs, or reasoning over ontologies to obtain their
results. In contrast, our system focuses on integrating several RDF knowledge graphs,
instead of knowing a priori which target is more suitable to each input resource. The
number of knowledge graphs being integrated increases the complexity of the matching
task and, therefore, the complex combination of algorithms these systems use is not dir-
ectly applicable to the task handled by this thesis. In addition, as previously mentioned,
our system strictly differentiates between datatype and object properties, which further
hinders performance when using the DBkWik dataset.

Therefore, in the next sections, we experiment and evaluate different aspects of the
scoring algorithms to evaluate the impact of the different methods in the ranking of can-
didates. Since we are looking for the best ranking of candidates, we evaluate candidates
with precision at k (P@k).

4.5 experiments 105

Entity Types

To evaluate and analyse the methodology of content scoring of entity types, we test
different string similarity measures and simultaneously analyse the impact of adding
a threshold to exclude search results. Then we evaluate each one of the metrics in the
content score methodology and discuss their influence in the overall final content score
of an entity type candidate.

string similarity and threshold We tested different string similarity measures
and the ones with the best performances for our use-cases and evaluation test datasets
were n-grams, Jaccard similarity coefficient, and Levenshtein similarity. n-grams were
explained previously in Section 4.4.1. The Jaccard similarity coefficient measures the
similarity between two sets by calculating the quotient between their intersection and
their union. The Levenshtein similarity is calculated from the Levenshtein distance
which calculates the number of edits required to transform a word into another. The
Levenshtein similarity between strings a and b is then computed as:

sim(a,b) = 1−
levenshtein(a,b)

max(length(a), length(b))
(4.15)

To evaluate these measures, we computed the precision@ {1, 3, 5} using the
owl:sameAs and DBkWik ground truths. Simultaneously, we analyse the impact of
adding a cut-off to the candidate generation results by selecting a threshold for the string
similarity between input and candidate entities. Finally, we also analyse the impact of
the threshold in the average number of search results returned per query. From these
results and through observation of the weaknesses of the similarity measures for the lib-
rary use-case, we developed the combined n-grams approach described in Section 4.4.1.
We compare these similarity measures against the list of search results ordered by a
baseline computed from the ElasticSearch min-max normalised score per search query.

Figures 4.6 and 4.7 show the results of these experiments for the owl:sameAs and
DBkWik ground truths, respectively. In both figures, the performance is comparable
between similarity measures tested. Through empirical analysis, we found that for the
library use-case, which features long literals, the combined n-grams strategy managed
to positively rank some of the cases and due to the weighted combination of word and
letter n-grams, non-corner cases were not negatively affected. Since both ground truths
include 2 and 3 correct results, for the remaining of the ground truth evaluations we
will use only precision@3. Plot (d) in both figures shows the number of search results
left after the threshold is applied. Using a search window of size 15, between threshold
0.5 and 0.6, most similarity measures have reduced the number of results to a half.

We also evaluate precision in terms of the entity types that are correctly ranked
higher, even when the entity is incorrect. Figure 4.8 shows the results of this evalu-
ation for the owl:sameAs and DBkWik datasets. Again string similarity measures per-

106 generating and ranking data model candidates

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
(a) Precision@1

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

(b) Precision@3

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

(c) Precision@5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Nu
m

be
r o

f S
ea

rc
h

Re
su

lts
(d) Number of Search Results vs. Threshold

Baseline
n-grams

Jaccard
Levenshtein

Combined n-grams

Figure 4.6: Similarity strategy and threshold evaluation for entities in the owl:sameAs dataset

form similarly, but it is also clear that they behave differently depending on the dataset
chosen. For example, Jaccard similarity is the measure with the worst performance for
the owl:sameAs dataset but has a comparable performance to the other algorithms in the
DBkWik dataset. Therefore, the performance of the string similarity measures highly
depends on the characteristics of the literals of the input and knowledge graph datasets.

From this evaluation, and through observation of the results in the use-case datasets,
we chose the combined similarity measure for the use-cases of our framework. Due
to the similar performance between measures, the best strategy is to analyse the input
datasets and knowledge graph, and ponder the strengths and weakness of different
string similarity measures. For example, Levenshtein compensates similarities between

4.5 experiments 107

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
(a) Precision@1

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

(b) Precision@3

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

(c) Precision@5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Nu
m

be
r o

f S
ea

rc
h

Re
su

lts
(d) Number of Search Results vs. Threshold

Baseline
n-grams

Jaccard
Levenshtein

Combined n-grams

Figure 4.7: Similarity strategy and threshold evaluation for entities in the DBkWik dataset

strings when typos occur because a small edit between two words which leads to high
similarity. The chosen combined similarity uses a mixture of different types of n-gram
pre-processing with a Jaccard coefficient since the intersection of the n-grams is divided
by their union. This approach gives us the similarity between two strings while taking
into account the letter or word order in the strings being compared.

From the analyses with entities and entity type precision discussed, we choose a
threshold of 0.6 for the remaining experiments since it provides a good balance between
high precision and a reasonable number of search results for both entity and entity type
candidate rankings.

108 generating and ranking data model candidates

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on

Baseline
n-grams

Jaccard
Levenshtein

Combined n-grams

(a) owl:sameAs dataset

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Baseline
n-grams

Jaccard
Levenshtein

Combined n-grams

(b) DBkWik dataset

Figure 4.8: Similarity strategy and threshold evaluation for entity types

content score methodology The combination of metrics to compute the con-
tent score was developed by observing where the re-ordering of candidates was clearly
failing and what distinguished an acceptable match from a clearly wrong match (e.g.,
search for an author and obtaining the type Book). Nonetheless, we evaluated the meth-
odology by calculating the running average of each incremental measure of the content
score and computing the precision@3 for the owl:sameAs and DBkWik ground truths
over the entity types. We also include the final CS score, which considers the average of
all measures and multiplies it by the frequency freqs (see Section 4.4.1).

Figure 4.9 shows the results of this evaluation for the owl:sameAs and DBkWik data-
sets. For these datasets, the measures show no significant improvement to the rankings,
with most measures affecting the precision negatively. However, these negative impacts
are less than 0.1, which, in large datasets, translate into a small impact in the results.

Base sim borda freqp distr distc CS
Metrics

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

@
3

(a) owl:sameAs dataset

Base sim borda freqp distr distc CS
Metrics

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ec

isi
on

@
3

(b) DBkWik dataset

Figure 4.9: Content score methodology evaluation

4.5 experiments 109

Due to the characteristics of the ground truths used, which do not perfectly align
with the use-cases, we further analyse the measures in the library and biomedical use-
case datasets. For that, we apply the same experiment, but instead of traditional preci-
sion, we apply lenient precision. In this evaluation, instead of binary correct/incorrect-
ness against a ground truth, we measure the shortest distance between input type and
candidate entity type as a measure of correctness. We also apply a discount metric DM
based on the distance dist(s, t) between a source vertex s and a target vertex t as follows:

dist(s, t) = shortest_distance(s, t)

DM(s, t) =
1

log2(dist(s, t) + 1)

(4.16)

The results of the lenient precision for the library use-case8 are shown in Figure 4.10.
Similarly to the previous results, the lenient precision shows only small changes with
the addition of subsequent measures to the average score. Overall, the string similarity
sim and the search result frequency freqs are the only ones that have a positive impact
in some of the datasets, but, in average, the measures show little impact in top-3 ranked
candidates.

However, the aim of the scoring methodologies is not only to allow ranking of the
candidates according to appropriateness but also to adjust the difference between the
scores obtained by the candidates. Larger differences between the potentially desirable
and undesirable candidates are beneficial for the score aggregation phase since it will
reduce the likelihood of less desirable candidates being ranked high due to high interop-
erability or consistency. On the other hand, it is also preferable that desirable candidates
obtain similar scores so that they can be better re-ranked later according to their interop-
erability and consistency. Therefore, in the next experiment, we tested how the content
score metrics affect the difference in score between the first and last candidate.

Figures 4.11 and 4.12 show the results of this experiment. The first observation is that
the baseline presents the largest difference between top and bottom ranked candidates.
This result is due to the min-max normalisation of the ElasticSearch score, which by
definition maximises the difference between top and bottom candidates. As expected,
the Borda score, the resource frequency proportion freqp, and the final CS score increase
the difference between ranked candidate scores. However, the distance metrics, distr
and distc, tend to further homogenise the score.

Overall, we conclude that string similarity and frequency-based metrics have the
largest impact on increasing the separation of the values of the content score. While
distance measures tend to approximate the results more. Through empirical analysis,
we verified that the distance metrics had a positive impact in the ranked results. In these
cases, the top ranked candidates were found by obtaining a content score significantly
higher than the other potentially desirable candidates due to their frequency in the

8 Similar conclusions are reached in the biomedical use-case

110 generating and ranking data model candidates

Base sim borda freqp distr distc CS
Metrics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
3

(a) Gutenberg

Base sim borda freqp distr distc CS
Metrics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
3

(b) University

Base sim borda freqp distr distc CS
Metrics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
3

(c) OpenL

Base sim borda freqp distr distc CS
Metrics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
3

(d) Institute

Figure 4.10: Lenient precision results for entity type candidates in the library use-case

Base Sim borda freqp distr distc CS
Metrics

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sc
or

e
Di

ffe
re

nc
e

(a) owl:sameAs dataset

Base Sim borda freqp distr distc CS
Metrics

0.0

0.2

0.4

0.6

0.8

Sc
or

e
Di

ffe
re

nc
e

SW
MA

(b) DBkWik dataset

Figure 4.11: Score difference between first and last candidates

search results. Consequently, candidates that were less frequent but still potentially
desirable, were boosted by the distance metrics due to their proximity to the input
resource in the knowledge graph. Despite not changing the final rankings, these metrics

4.5 experiments 111

Base Sim borda freqp distr distc CS
Metrics

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sc
or

e
Di

ffe
re

nc
e

(a) Gutenberg

Base Sim borda freqp distr distc CS
Metrics

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sc
or

e
Di

ffe
re

nc
e

(b) University

Base Sim borda freqp distr distc CS
Metrics

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sc
or

e
Di

ffe
re

nc
e

(c) OpenL

Base Sim borda freqp distr distc CS
Metrics

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sc
or

e
Di

ffe
re

nc
e

(d) Institute

Figure 4.12: Score difference between first and last candidates for the library datasets

are useful to approximate the rankings of candidates that are close to the input and
among each other, while further differentiating potentially more distant candidates.

Datatype Properties

We evaluate datatype property content-based ranking with precision@k and recall@k,
where k ∈ [1− 10]. Since precision is a ratio of the total number of retrieved results,
the true positive numbers are diluted in the case of datasets like DBkWik which have
at maximum two correct answers per query. This recall metric evaluatesif the correct
result is in the top-k results presented.

Figure 4.13 shows the precision@k for the content scoring re-ranking of the datatype
properties. The figure shows that, using the DBkWik ground truth, the precision remains
relatively low (less than 0.4), however, for approximately 40% of the properties in the
input, the correct property candidate is in the first 10 candidates after ranking.

Therefore, considering the heterogeneity of the properties found in the DBkWik data-
set, with several string-based properties not easily distinguishable, the combination of
the random forest classifier generation with the re-order based on the graph metric man-
ages to generate candidates for a reasonable number of input properties. Furthermore,

112 generating and ranking data model candidates

2 4 6 8 10
k

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ec

isi
on

/R
ec

al
l

Precision
Recall

Figure 4.13: Precision and recall for content scoring ranking of datatype properties using the
DBkWik ground truth

the DBkWik dataset contains only 41 properties with overlap between the three datasets.
Therefore, most properties have only one correct candidate property.

To further analyse the datatype ranking methodology, we again computed the leni-
ent precision for the datatype property ranking. Figure 4.14 shows the results of this
evaluation. In these figures, we observe that the impact of the measures on the precision
is more noticeable since there is no strong initial measure to compute that is equivalent
to the string similarity. Therefore, for datatype properties, the distance distr has the
largest positive impact of the precision@3 results.

Nonetheless, even considering lenient precision, the datatype ranking still achieves
relatively low results, with all datasets in the library use-case achieving less than 0.4
precision@3.

Object Properties

Similarly to the datatype properties evaluation, we compute precision and recall at dif-
ferent cut-offs.

Figure 4.15 shows similar results to the datatype properties, where approximately
40% of all input properties have a correct match in the top-10 ranked candidates. How-
ever, contrary to the datatype properties, the major limitation to performance in object
property generation is correct entity type generation and ranking. Increasing the per-
formance of the entity type related methodologies will impact recall of the object type
generation, and, consequently, lead to improved precision results.

Therefore, overall, the object property ranking methodology can be strengthened by
not only developing the object property ranking methodology but also by improving

4.5 experiments 113

RF borda_score distr

Metrics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
3

(a) Gutenberg

RF borda_score distr

Metrics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
3

(b) University

RF borda_score distr

Metrics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
3

(c) OpenL

RF borda_score distr

Metrics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

@
3

(d) Institute

Figure 4.14: Lenient precision results for datatype properties candidates in the library use-case

2 4 6 8 10
k

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ec

isi
on

/R
ec

al
l

Precision
Recall

Figure 4.15: Precision and recall for content scoring ranking of object properties using the DB-
kWik ground truth

114 generating and ranking data model candidates

the entity type generation and ranking. Nonetheless, for a diverse set of input object
properties, with a straightforward methodology, the generation and ranking manages to
generate a reasonable set of candidates for the DBkWik ground truth.

4.5.4 Interoperability

Interoperability focuses on maximising the integration between ontology resources se-
lected for the data model and the different schemas in the knowledge graph. To the
best of our knowledge, there is currently no ground truth that can reliably evaluate this
component of the framework. Since different data publishers have different interpreta-
tions of what the best entity type is for their use-case, manually creating and curating
a ground truth is also not a viable option. For example, in the case of the library data
domain, some datasets define the concept of a book as Work, Manifestation, or Biblio-
graphic Resource, while others adopt more specific terms such as Book or Document.
One of the selected datasets (British) even uses both general and specific terms to define
the concept of a book. Therefore, even though, theoretically, we could compare the top-
ranked candidate with approaches that match entity types, similarly to the content score
evaluation, to the best of our knowledge, there is no ground truth that contains a rank-
ing of entity type candidates that evaluates their interoperability and it is unlikely to
exist since, as mentioned, the best candidate is often use-case dependent. Furthermore,
interoperability is not focused on improving the ranking based on precision and most
ground truths contain evaluations that are focused on that metric. Instead, interoperab-
ility is focused on maximising connectivity with the knowledge graph.

Therefore, in this section we present an analysis and discussion of the effects the
interoperability score has on the rankings produced by the framework. We perform this
analysis for the library and biomedical use-cases.

Interoperability Changes with Weighted Distance

For our first experiment, we analyse the evolution of neighbourhood size NS(v,dmax)

and interoperability metric interop(v,dmax) with the distance from candidates.

Figure 4.16 has an example representative of the result patterns found for entity type
candidates in the two use-cases, with dmax = 15. The figures show that both interoper-
ability metrics follow similar trends. At distance 0, the measures consider the candidate
by itself only. Therefore, interop(v, 0) is equivalent to the frequency of the entity type in
the document store, and consequentlyNS(v,dmax) is 1. As the neighbourhood expands,
for the library use-case, these values increase rapidly until distance 10 where the neigh-
bourhood size tends not to increase significantly more. For the biomedical use-case, a
similar pattern is verified where by dmax = 10, both the interoperability metric and the
neighbourhood size have converged to a maximum value.

4.5 experiments 115

0 2 4 6 8 10 12 14
dmax

0

10

20

30

40

50

60

70

80
N

S(
v,

d m
ax

)
bibo:Document

NS(v, dmax)
interop(v, dmax)

0.2

0.4

0.6

0.8

1.0

1.2

in
te

ro
p(

v,
d m

ax
)

×108

(a) Library use-case

0 2 4 6 8 10 12 14
dmax

0

500

1000

1500

2000

2500

3000

N
S(

v,
d m

ax
)

obo:GENO_0000512 (allele)

Degrees
Frequency 0

1

2

3

4

5

in
te

ro
p(

v,
d m

ax
)

×107

(b) Biomedical use-case

Figure 4.16: Neighbourhood size and interoperability metric changes with Weighted Distance
for one example of entity types of the (a) library and (b) biomedical use-case

0 2 4 6 8 10 12 14
dmax

0

100

200

300

400

500

600

700

N
S(

v,
d m

ax
)

dcterms:title

Degrees
Frequency

0

1

2

3

4

in
te

ro
p(

v,
d m

ax
)

×108

(a) Library use-case

0 2 4 6 8 10 12 14
dmax

0

1000

2000

3000

4000

N
S(

v,
d m

ax
)

obo:GENO_0000512 (allele)

NS(v, dmax)
interop(v, dmax) 0

1

2

3

4

5

6

7

in
te

ro
p(

v,
d m

ax
)

×107

(b) Biomedical use-case

Figure 4.17: Neighbourhood size and interoperability metric changes with Weighted Distance
for one example of properties of the (a) library and (b) biomedical use-case

In figure 4.17, the same experiment is performed over two representative examples
of properties. The pattern seen in Figure 4.17b is common among the properties in the
biomedical use-case properties. This pattern shows that the property is connected with 3
neighbours that are at a distance of 2 from the input property. The biomedical use-case
features ontologies with rich entity type hierarchies but shallow property hierarchies.
From all the ontologies in the biomedical ontology graph, the total number of the hier-
archical relationships for classes is 2 630 492, while for properties it is 713. Therefore, the
properties in the ontology graph and not well-connected which leads to interoperability
patterns as seen in Figure 4.17b. For the library use-case, in Figure 4.17a, we verify
that properties in the library use-case still follow a pattern similar to entity type candid-
ates, where around dmax = 10 the values of the metrics do not significantly increase
anymore.

116 generating and ranking data model candidates

From the observation of the patterns with entity types and properties with the inter-
operability measures, we generalise for the remaining experiments and set dmax = 10.

Interoperability Ranking Analysis

The next experiment compares the data model element candidates scores at different
stages to analyse the impact of the content score (CS) and the interoperability score
(IS) in the overall ranking of candidates. We include a final score Fc which is the
combination of the content score with the interoperability score, following the function
Fc = pow(cs,wcs) · pow(is,wis), similarly to the function scoring from Algorithm 4.8,
with weights of 1.0 for both scores. For the purposes of this experiment, we show the
rankings up to dmax = 10 but calculate Fc with the median, M, of the interoperability
scores, IS, which is equivalent to dmax = 5. For each experiment, we present examples
representative9 of the diverse results we obtained that illustrate the points requiring
discussion.

entity types Figures 4.18 through 4.22 show the rankings for representative input
entity type examples in the library use-case datasets according to different measures
and parameters. The figures show on the Y-axis the top-10 candidates according to Fc.
On the X-axis we find CS which is the ranking of the candidate according only to the
content score, then neighbourhood distances d from 0 (only the candidate) to 10, then
the ranking according to the median M of the scores and, finally, the ranking according
to Fc. Figures 4.23 through 4.25 capture the same results for the biomedical use-case.

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

skos:Concept

dcterms:Agent

foaf:Person

foaf:Agent

bibo:Document

schema:Person

gnd:DifferentiatedPerson

blterms:PersonConcept

frbr:Manifestation

blterms:TopicLCSH

1 1 2 2 2 2 3 3 7 7 10 8 2 1

4 6 3 7 4 7 2 2 1 1 1 1 4 2

2 5 8 3 3 3 8 6 4 3 3 3 6 3

3 6 3 7 4 7 7 7 6 4 4 4 5 4

8 2 1 1 1 1 1 1 2 5 6 6 1 5

5 8 8 6 8 3 8 5 3 2 1 1 8 6

7 4 5 9 9 10 10 10 10 8 5 5 7 7

6 10 7 4 6 5 5 8 8 9 8 9 10 8

10 3 10 10 10 9 4 4 5 6 7 7 3 9

9 9 6 4 6 5 5 8 8 9 8 9 9 10

Input: bibframe:Person

Figure 4.18: Heatmap of rankings for example entity type in the University dataset

Figures 4.18 and 4.19 include entity type candidates for author entities in the Univer-
sity and Gutenberg datasets, respectively. In the University heatmap, we observe that

9 The extended results are available at https://github.com/danielapoliveira/phd-thesis-additional-
materials/tree/master/interop-results

https://github.com/danielapoliveira/phd-thesis-additional-materials/tree/master/interop-results
https://github.com/danielapoliveira/phd-thesis-additional-materials/tree/master/interop-results

4.5 experiments 117

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

dcterms:Agent

bibo:Document

foaf:Person

foaf:Agent

gnd:DifferentiatedPerson

skos:Concept

schema:Person

bne:C1005

frbr:Manifestation

bne:C1003

3 7 3 5 4 6 2 2 1 1 1 1 4 1

8 2 1 1 1 1 1 1 2 5 6 6 1 2

1 6 6 3 3 3 7 6 4 3 3 3 6 3

4 7 3 5 4 6 6 7 6 4 4 4 5 4

2 4 5 8 8 10 9 8 8 8 5 5 7 5

7 1 2 2 2 2 3 3 7 7 8 9 2 6

5 9 6 4 6 3 7 5 3 2 1 1 8 7

6 10 10 7 7 5 5 9 10 10 10 10 9 8

9 3 8 9 9 8 4 4 5 6 7 7 3 9

10 5 9 9 9 8 10 10 9 9 9 8 10 10

Input: pgterms:agent

Figure 4.19: Heatmap of rankings for example entity type in the Gutenberg dataset

skos:Concept was the highest ranked candidate according to CS, while foaf:Person

was the highest for the Gutenberg input. However, for the Gutenberg dataset, when the
content score is combined with the interoperability score, the highest ranked candidate
is dcterms:Agent, which is also boosted in the University candidates to the second po-
sition instead of fourth. dcterms:Agent is more generic than foaf:Person, therefore, in
terms of interoperability, it is more desirable since it is more likely to link to more entity
types in the ontology graph. In the University dataset, however, it obtained a lower
raw content score, CS, which leads to its lower ranking. In this dataset, skos:Concept
combined a strong content score with a high interoperability and, therefore, maintained
the top-ranked position.

When looking at the ranking of bibo:Document in both datasets, we verify that the in-
teroperability boosted an undesirable candidate since this entity type is well-connected
and one of the most frequent in the knowledge graph (used by all books in the German
Library). Therefore, this is a case where interoperability is enabling the introduction of
noise in the ranking. These cases can be counteracted by balancing the weights given to
the content and interoperability scores.

Therefore, the next experiment analyses how the scores changed by balancing the
weight given to the content score and interoperability score. Figure 4.20 shows the res-
ults of this experiment. In both datasets, we observe that bibo:Document is the best
ranked in terms of interoperability by a significant margin, however in terms of con-
tent score it is ranked much lower. For the Gutenberg dataset, except bibo:Document,
frbr:Manifestation, and bne:C1003 (Manifestation), the remaining candidates can ar-
guably be considered acceptable candidates to represent an author in a library dataset.
On the University side, both bibo:Document and blterms:TopicLCSH are arguably incor-
rect. Therefore, a balance between content and interoperability score should be decided
by the user, considering that increasing the weight of interoperability might bring more

118 generating and ranking data model candidates

0.0 0.2 0.4 0.6 0.8 1.0
wcs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F c

University

dcterms:Agent
bibo:Document
frbr:Manifestation
schema:Person
blterms:PersonConcept

blterms:TopicLCSH
skos:Concept
foaf:Agent
foaf:Person
gnd:DifferentiatedPerson

0.0 0.2 0.4 0.6 0.8 1.0
wcs

0.2

0.4

0.6

0.8

1.0

F c

Gutenberg

bne:C1003
bne:C1005
dcterms:Agent
bibo:Document
frbr:Manifestation

schema:Person
skos:Concept
foaf:Agent
foaf:Person
gnd:DifferentiatedPerson

Figure 4.20: Balance between weights giving to the final score combination between content and
interoperability score

noise to the candidate ranking, while reducing the interoperability score will give pref-
erence to highly specific candidates that might be more challenging to integrate with
existing and future resources.

Figures 4.21 and 4.22 show the same weighted distance analysis for the non-RDF
input datasets of the library use-case, using magazines entities for the Institute library
and books for the Open Library. Similar conclusions to the RDF inputs are drawn from
the non-RDF datasets.

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

skos:Concept

bibo:Periodical

bibo:Document

frbr:Work

frbr:Manifestation

bibo:Series

dcterms:BibliographicResource

gnd:DifferentiatedPerson

bne:C1005

bne:C1003

1 1 3 4 5 6 6 6 7 7 8 6 6 1

2 9 7 5 4 2 2 2 5 6 7 9 4 2

4 2 2 3 1 1 1 1 1 1 2 2 1 3

5 8 8 8 6 4 3 4 2 3 4 5 5 4

3 3 6 9 9 8 7 7 6 2 3 3 7 5

8 10 5 1 2 3 4 3 4 4 6 8 3 6

9 6 1 2 3 5 5 5 3 5 5 7 2 7

6 4 4 7 8 10 9 8 8 8 1 1 8 8

7 7 10 6 7 7 8 9 10 10 10 10 9 9

10 5 9 9 9 8 10 10 9 9 9 4 10 10

Input: Title

Figure 4.21: Heatmap of rankings for example entity type in the Institute dataset

A notable mention includes the candidate bibo:Periodical in Figure 4.21. Consider-
ing that the column Title in the CSV file included magazine titles, this candidate is argu-
ably the most specific to describe the input. From the analysis of the interoperability, we
observe that by itself (i.e, distance 0), this candidate has a low interoperability (ranked

4.5 experiments 119

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

bibo:Document

dcterms:BibliographicResource

bibo:Book

schema:Book

frbr:Manifestation

skos:Concept

bne:C1001

schema:MusicRelease

frbr:Work

bne:C1003

1 2 2 2 1 1 1 1 1 1 1 1 1 1

2 5 1 1 2 4 4 4 3 7 7 9 2 2

3 7 6 4 4 5 5 5 6 4 4 4 6 3

4 6 5 4 4 5 7 6 8 8 8 10 8 4

5 3 7 8 9 9 9 9 7 3 3 3 7 5

7 1 3 6 6 7 6 8 9 9 9 8 5 6

8 8 10 10 8 8 8 7 4 5 5 5 9 7

9 10 4 3 3 2 3 3 5 1 1 1 4 8

10 9 8 7 7 3 2 2 2 6 6 7 3 9

6 4 9 8 9 9 10 10 10 10 10 6 10 10

Input: /type/work

Figure 4.22: Heatmap of rankings for example entity type in the OpenL dataset

9th). However, at distance one, it has frbr:Work as an owl:equivalentClass and, at
distance 2, its neighbourhood includes bibo:Document. Therefore, bibo:Periodical has
not only high content score but also high interoperability when accounting for its neigh-
bourhood and ends up being one of the most accurate and interoperable candidates.

Figures 4.23 through 4.25 show the same analysis for the three biomedical use-case
datasets.

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

ncit:C43359

ncit:C7057

1 2 2 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 2

Input: disease_type

Figure 4.23: Heatmap of rankings for example entity type in the GDC dataset

For the results of the GDC dataset, shown in Figure 4.23, only two candidates were
found: ncit:C7057 (Disease, Disorder or Finding) and ncit:C43359 (Group). Since not
a lot of diverse and overlapping data sources were loaded in the knowledge graph, the
framework was not able to find a wide variety of candidates. Nonetheless, it managed to
find at least two candidates among the possibilities, with one of them (ncit:C7057) more
clearly related to the input than the other. The match with ncit:C43359 comes from the
DisGeNET dataset, which identifies groups of diseases (e.g., Abdominal Neoplasms) with
this entity type. The GDC dataset includes also groups of diseases (e.g., Adenomas and
Adenocarcinomas) and, therefore, this input was matched with the candidate ncit:C43359

(Group).

In Figures 4.24 and 4.25, both inputs are gene entities described by their name and
symbol, respectively. The data sources loaded into the knowledge graph covered this
domain more and, therefore, a wider variety of candidates was found for these datasets.

120 generating and ranking data model candidates

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

ncit:C16612

obo:GENO_0000512

ncit:C7057

obo:GENO_0000030

obo:GENO_0000009

obo:SO_0000704

owl:NamedIndividual

obo:GENO_0000036

obo:GENO_0000002

obo:GENO_0000504

1 8 10 9 9 2 6 9 9 9 5 6 9 1

2 4 3 4 4 5 9 8 8 8 10 10 8 2

3 9 7 10 10 1 6 9 9 9 9 9 9 3

4 5 9 7 6 8 1 2 1 1 1 2 4 4

5 6 6 6 6 8 1 2 1 1 1 2 4 5

6 3 4 3 3 7 9 5 5 5 6 1 3 6

7 1 1 1 1 3 8 1 4 4 4 5 1 7

8 10 5 5 5 5 4 5 5 5 6 7 7 8

9 2 2 2 1 4 4 5 5 5 6 7 2 9

10 7 8 8 8 10 1 2 1 1 1 2 4 10

Input: http://bio2rdf.org/genage_vocabulary:Human-Aging-Related-Gene

Figure 4.24: Heatmap of rankings for example entity type in the GenAge dataset

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

owl:NamedIndividual

obo:GENO_0000002

obo:GENO_0000036

obo:GENO_0000030

ncit:C16612

obo:GENO_0000000

obo:GENO_0000512

obo:SO_0000110

ncit:C7057

obo:GENO_0000009

1 1 1 1 2 3 8 1 4 4 4 4 4 1

2 2 2 2 2 4 4 5 5 5 6 6 5 2

3 10 5 5 5 5 4 5 5 5 6 6 5 3

4 5 8 7 6 8 1 2 1 1 1 1 1 4

5 8 10 9 9 2 6 9 9 9 5 5 9 5

6 6 9 8 6 8 1 2 1 1 1 1 1 6

7 4 4 4 4 5 9 8 8 8 10 10 8 7

8 3 3 3 1 7 9 5 5 5 6 6 5 8

9 9 7 10 10 1 6 9 9 9 9 9 9 9

10 7 6 6 6 8 1 2 1 1 1 1 1 10

Input: genes

Figure 4.25: Heatmap of rankings for example entity type in the PharmGKB dataset

Both datasets feature, for example, obo:GENO_0000512 (allele) and ncit:C16612 (Gene)
with the remaining candidates being closely or loosely related to genes or genetic termin-
ology. Since this use-case is related to less general domain knowledge than the library
use-case, a domain expert is required to determine the adequacy of the candidates gen-
erated.

Nonetheless, for both use-cases, the final result of the entity type ranking should be
analysed by a domain expert, which has the final say in which data model is chosen.
Since the goal of the framework is to provide candidates ranked in a specific ordering
focused on different characteristics of the data, it is up to a data publisher to determine
the best parameters for their data.

4.5 experiments 121

properties We performed the same analysis over the object and datatype property
candidates of the four input datasets of the library use-case. Figures 4.26 and 4.29 show
an example of the result of these experiments for each of the datasets in the library
use-case and Figure 4.30 shows an example for a dataset in the biomedical use-case.

Figures 4.26 and 4.27 show the results of this experiment for two object properties in
the University and Gutenberg datasets, respectively. For the bibframe:subject property
in Figure 4.26, the top-3 properties are arguably considered correct (bne:OP3008 - has
subject). In this instance, the top-3 candidates have similar interoperability scores and,
therefore, there were not any changes in relation to the content score ranking. It is also
likely that no more correct matches exist since both the German and British libraries
use dcterms:subject, and the remaining two properties are used by the Spanish and
French libraries. The Portuguese library does not use this property, and therefore, the
top-3 cover the best candidates in each library.

In Figure 4.27, the top ranked candidates are not so fitting since dcterms:subject

was ranked second, with the same candidate as the input (dcterms:creator) ranked
sixth due to its lower interoperability. This situation is another issue of attributing
equal weight to the content and interoperability scores since the most accurate candidate
according to the content score ends up being ranked low due to its low connectivity.
However, in cases where interoperability with multiple data sources is desirable, the
data publisher might prefer to select a highly connected candidate over a lower one by
sacrificing some data model specificity.

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

dcterms:subject

bne:OP3008

bnf-onto:subject

bne:OP7001

rlt:clb

rdau:P60261

rdau:P60278

rdau:P60287

rdau:P60200

bne:OP1008

1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 3 1 2 2 2 2 2 2 2 2 2 2

3 9 2 1 2 2 2 2 2 3 3 3 2 3

5 3 4 4 4 4 4 5 5 5 5 5 4 4

8 6 7 7 7 7 7 8 8 8 8 6 5 5

6 4 5 5 5 5 5 6 6 6 6 7 6 6

7 5 6 6 6 6 6 7 7 7 7 8 7 7

9 7 8 8 8 8 8 9 9 9 9 9 8 8

10 8 9 9 9 9 9 10 10 10 10 10 9 9

3 9 10 10 10 10 10 4 4 4 4 4 10 10

Input: bibframe:subject

Figure 4.26: Heatmap of rankings for example object property in the University dataset

Figures 4.28 and 4.29 show the results of the same experiment for two datatype prop-
erties in the Institute and OpenL datasets, respectively. In Figure 4.28, the input property
has book titles as values. Despite having similar features as the previous datasets, due

122 generating and ranking data model candidates

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

dcterms:contributor

dcterms:subject

schema:contributor

bne:OP3006

dcterms:creator

dcterms:relation

skos:related

dcterms:isFormatOf

bne:OP1001

bne:OP3003

2 2 1 1 4 2 2 4 2 3 2 3 3 1

4 1 2 4 2 4 1 1 1 1 1 1 1 2

5 5 3 2 1 1 6 2 3 2 3 2 2 3

6 4 3 2 3 2 8 3 4 3 4 4 4 4

1 3 6 7 7 7 5 5 7 6 7 6 6 5

8 8 5 5 5 6 3 6 6 5 5 5 5 6

10 10 7 6 6 5 7 8 5 7 6 7 7 7

9 9 10 10 10 10 4 7 8 8 8 8 8 8

3 7 9 9 9 9 10 9 9 10 9 9 9 9

7 6 8 8 8 8 9 10 10 9 10 10 10 10

Input: dcterms:creator

Figure 4.27: Heatmap of rankings for example object property in the Gutenberg dataset

to the low amount of samples extracted from this dataset, we observe that none of the
candidates ranked in the top-10 are obvious matches. The low sample size leads to a
poor performance of the classification model, which predicts properties incorrectly and
translates to Borda scores that are not in line with the best candidates for the input
property. On the other hand, Figure 4.29 shows that the classification model and the
content score are able to produce good results in the top-10 that are further re-ordered
according to the interoperability score. This produces candidate dates that are more
interoperable even if less specific. For example, dcterms:date is arguably correct, even
if gnd:dateOfBirth is more specific to the date in question. Nonetheless, once again, it
is up to the data publisher to decide between the more specific or more interoperable
candidates.

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

dc:publisher

rda:P50100

rdvocab:publishersName

bne:P3001

bne:P3016

bne:P6002

rdau:P60438

rlt:pbl.gnd:preferredName

rlt:prf.gnd:preferredName

schema:recordLabel.gnd:preferredName

5 1 1 1 1 1 1 1 1 1 1 1 1 1

6 6 6 6 2 2 2 2 2 2 2 2 2 2

10 2 2 2 3 3 3 3 3 3 4 3 3 3

1 3 3 3 4 4 4 4 4 4 3 4 4 4

8 4 4 4 5 5 5 5 5 5 5 5 5 5

3 5 5 5 6 6 6 6 6 6 6 6 6 6

4 7 7 7 7 7 7 7 7 7 7 7 7 7

2 8 8 8 8 8 8 8 8 8 8 8 8 8

9 8 8 8 8 8 8 8 8 8 8 8 8 8

7 8 8 8 8 8 8 8 8 8 8 8 8 8

Input: title

Figure 4.28: Heatmap of rankings for example datatype property in the Institute dataset

4.5 experiments 123

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

dcterms:date

gnd:associatedDate

gnd:dateOfBirth

gnd:dateOfDeath

bnf-onto:firstYear

gnd:dateOfBirthAndDeath

gnd:placeOfBirthAsLiteral

bnf-onto:lastYear

bne:P1004

bne:P5010

10 2 1 1 1 4 1 1 1 1 1 1 1 1

4 10 2 2 2 1 2 2 2 2 2 2 2 2

2 3 4 3 3 2 3 4 4 4 3 5 4 3

3 5 6 4 4 3 4 3 3 3 4 6 3 4

7 1 3 5 5 5 7 7 7 7 7 3 5 5

5 8 9 9 7 7 5 5 6 6 6 7 6 6

6 7 8 8 6 6 5 5 5 5 5 8 6 7

9 4 5 6 8 8 7 7 7 7 7 3 8 8

8 9 10 10 10 10 10 10 10 10 9 9 9 9

1 6 7 7 9 9 9 9 9 9 10 10 10 10

Input: birth_date

Figure 4.29: Heatmap of rankings for example datatype property in the OpenL dataset

As previously mentioned, the ontology graph of the biomedical use-case does not
include many properties or relationships between them. Furthermore, overall the input
data contains only 5 object properties. Figure 4.30 shows an example of a datatype
property in the PharmGKB dataset. In this case, the property name includes names of
chemicals, drugs, genes, phenotypes, and variants. Due to its variety, the classification
model and scores are unable to find and rank matches appropriately. However, in other
cases where matches should be easily findable in the knowledge graph, the classification
models and the ranking still underperforms because the datatype property values are
not well represented in the training data. Therefore, the model is not able to make ac-
curate predictions. Similarly, situations are found in the remaining datatype properties
of the biomedical use-case and, therefore, the property ranking mostly underperforms
for this use-case.

CS 0 1 2 3 4 5 6 7 8 9 10 M Fc

dc:comment

dc:description

http://purl.uniprot.org/core/alias

dc:title

gwas:has_gwas_trait_name

oboInOwl:hasExactSynonym

oboInOwl:hasRelatedSynonym

skos:prefLabel

skos:altLabel

ea:propertyValue

10 3 1 2 2 1 1 1 1 1 1 2 1 1

5 1 2 3 3 6 3 3 4 4 3 2 2 2

8 9 9 9 9 9 2 2 2 3 5 4 3 3

9 5 3 1 1 4 3 3 2 2 2 1 4 4

4 4 5 4 4 5 5 5 5 5 4 5 5 5

7 2 4 5 5 7 8 8 6 6 6 6 6 6

3 7 7 7 6 8 8 8 6 6 6 6 7 7

2 6 6 6 7 2 6 6 8 8 8 8 8 8

6 8 8 8 8 2 6 6 8 8 8 8 8 9

1 10 10 10 10 10 10 10 10 10 10 10 10 10

Input: Name

Figure 4.30: Heatmap of rankings for example datatype property in the PharmGKB dataset

124 generating and ranking data model candidates

4.5.5 Consistency

The last step of the framework aims to uniformise the results suggested when compar-
ing with the knowledge graph and within the proposed data model. Until this step,
candidates are ranked independently of each other. The consistency score increases the
likelihood of the same candidate being suggested for the same input entity type or prop-
erty and, at the same time, boosts triples that are more commonly encountered in the
knowledge graph. Similarly to interoperability, to the best of our knowledge, no ground
truth exists that can reliably evaluate the performance of these methods, therefore, we
also proceed with an exploratory analysis based on observation and comparison with
the previous framework components.

Figure 4.31 shows a representative example10 for the Gutenberg library of the
effects of the consistency score in the candidate rankings for the input triple
〈pgterms:ebook – dcterms:creator _ pgterms:agent〉.

The Fc rankings represent the content score CS times the interoperability score IS
with weights of 1.0. Agg represents the score obtained after the aggregation step of the
consistency score algorithm, which combines the score Fc with the co-occurrences of the
triple elements in the knowledge graph. Finally, Ref represents the rankings after the
refinement step of the consistency score, which aims to provide an homogeneous data
model where the same inputs are represented by the same candidates.

In this example, the top ranked candidate triple is not changed in any of the steps,
however, the remaining triples are significantly changed by the consistency steps. Gen-
erally triples with bibo:Document as domain and dcterms:Agent as range are ranked
higher since these were the triples that obtained higher scores and, therefore, are more
frequently ranked first. The predicate dcterms:subject ranked above other more desir-
able candidates due to its high interoperability. This is another case where a different
balance between the weights given to interoperability and content score could positively
affect the final results. The remaining candidates as boosted by co-occurrence frequency
and the score refinement to appear in the top-20 recommended triples for the input
triple pattern. The remaining candidates follow similar patterns, where despite obtain-
ing lower scores when combining content and interoperability metrics, the triple score
is boosted by co-occurrence in the Agg step, and further refined in the last step. This
pattern is also verified for all remaining triple patterns of the datasets of both use-cases.
Previous issues are not resolved in this step, but when the rankings follow the expected
outcomes, the resulting rankings follow a similar pattern to the example in Figure 4.31.

10 The extended results are available at https://github.com/danielapoliveira/phd-thesis-additional-
materials/tree/master/consistency-results

https://github.com/danielapoliveira/phd-thesis-additional-materials/tree/master/consistency-results
https://github.com/danielapoliveira/phd-thesis-additional-materials/tree/master/consistency-results

4.5 experiments 125

Fc Agg Ref

(bibo:Document dcterms:contributor dcterms:Agent)

(bibo:Document dcterms:subject dcterms:Agent)

(bibo:Document schema:contributor dcterms:Agent)

(bibo:Document dcterms:creator dcterms:Agent)

(bibo:Document dcterms:subject gnd:DifferentiatedPerson)

(bibo:Document dcterms:relation dcterms:Agent)

(bibo:Document dcterms:isFormatOf dcterms:Agent)

(dcterms:BibliographicResource dcterms:contributor dcterms:Agent)

(schema:Book dcterms:contributor dcterms:Agent)

(bibo:Book dcterms:contributor dcterms:Agent)

1 2 1

7 10 2

8 12 3

14 16 4

16 1 5

24 25 6

27 34 7

41 27 8

47 32 9

45 31 10

(pgterms:ebook dcterms:creator pgterms:agent)

Figure 4.31: Ranking of triple candidates according to final score Fc, score aggregation Agg,
and score refinement Ref

4.5.6 Evaluating Distance to Source

The final experiment focuses on comparing the ranking obtained by our framework with
the original entity types from RDF datasets. This evaluation was obtained by taking
each RDF dataset, excluding their entities from the document store, and running the
framework to produce a set of entity type candidates. The Gutenberg Library was
excluded due to pgterms not being publicly available.

Again, we use the term lenient to refer to a metric that does not take into account
a binary classification but considers the distance in the graph to make an assessment.
Therefore, we distinguish two types of evaluation: (1) strict where the correctness of the
rank is binary, and (2) lenient which considers the distance from the source type t ∈ T to
the candidate type c ∈ C.

The strict evaluation uses MRR and Precision@k (P@k), where k ∈ [1, 3, 5] and the
results are shown in Table 4.6. The lenient evaluation instead of binary correctness,
considers the distance in the ontology graph Ge. We compute lenient precision by
considering correct candidates at three distances d ∈ [1, 2, 3], i.e., any candidate at a
distance less or equal to d is considered correct. Then we compute P@k with k ∈ [1, 3, 5].
We calculate these metrics for every input entity type in each library, average the results,
and present the aggregated result per library in Table 4.7.

Table 4.6 shows the results of the strict evaluation, which obtained a poor perform-
ance in all datasets. This result was expected since the removal of data from the docu-

126 generating and ranking data model candidates

ment store has a high impact on both CS and IS due to frequency counts being lowered
in the search results and document store for the original entity types. Therefore, the
likelihood of our framework suggesting the same entity type as the original is low. Non-
etheless, the strict evaluation shows that, for the French library, a reasonable MRR and
P@1 are achieved after the content score re-ranking. This higher performance when
compared with the remaining libraries is due to the schema overlap between the French
library with elements with other libraries in the knowledge graph. This evaluation,
therefore, leads us to conclude that when libraries use the same or similar schemas, they
become easier to integrate since even after removing every instance of the French library,
the framework managed to rank some entity types accurately.

Table 4.6: Results of the strict evaluation of the distance from source

Strict
Library Method MRR P@1 P@3 P@5

British
CS 0.16 0.14 0.06 0.04
IS 0.10 0.07 0.04 0.03

Spanish
CS 0.17 0.17 0.06 0.03
IS 0.17 0.17 0.06 0.03

University
CS 0.00 0.00 0.00 0.00
IS 0.00 0.00 0.00 0.00

German
CS 0.05 0.06 0.02 0.01
IS 0.01 0.00 0.00 0.00

French
CS 0.33 0.30 0.17 0.10
IS 0.18 0.10 0.10 0.08

Portuguese
CS 0.00 0.00 0.00 0.00
IS 0.00 0.00 0.00 0.00

Table 4.7 shows the results for the lenient evaluation, in which we verify that the
entity type candidates suggested are close to the original types. The German and Por-
tuguese libraries have the lowest performances because they adopted data models that
are structurally distant from the ones used in the other libraries.

This evaluation, together with the previous experiments, demonstrates that our
framework proposes candidates that are potentially more interoperable with existing
domain datasets while maintaining the original meaning intended in the library data-
sets by proposing similar entity types.

4.6 demonstration

To showcase a potential final product of the framework, we created the RICDaM (Recom-
mending Interoperable and Consistent Data Models) demonstrator. The demonstrator
is available at http://afel.insight-centre.org/ricdam/. This demonstrator presents

http://afel.insight-centre.org/ricdam/

4.6 demonstration 127

Table 4.7: Results of the lenient evaluation of the distance from source

Lenient
Library Method P@1 P@3 P@5

d1 d2 d3 d1 d2 d3 d1 d2 d3

British
CS 0.50 0.64 0.89 0.44 0.56 0.86 0.35 0.52 0.85
IS 0.43 0.64 0.86 0.25 0.48 0.85 0.21 0.43 0.84

Spanish
CS 0.83 0.83 1.00 0.72 0.78 0.94 0.53 0.70 0.97
IS 0.67 0.67 1.00 0.39 0.67 0.94 0.37 0.63 0.97

University
CS 0.14 0.41 0.67 0.11 0.44 0.65 0.11 0.41 0.65
IS 0.16 0.53 0.65 0.08 0.43 0.64 0.07 0.41 0.64

German
CS 0.17 0.28 0.75 0.11 0.28 0.73 0.1 0.33 0.74
IS 0.03 0.33 0.78 0.06 0.34 0.76 0.06 0.29 0.72

French
CS 0.70 1.00 1.00 0.53 0.87 0.93 0.46 0.88 0.96
Fc 0.50 0.90 0.90 0.04 0.80 0.93 0.34 0.82 0.94

Portuguese
CS 0.00 0.00 1.00 0.00 0.33 1.00 0.00 0.40 1.00
IS 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.40 1.00

the top candidate data model after the refinement step of the consistency score for an
input dataset. The interface gives an overview of the best ranked candidates for each
triple but also allows the user to adapt the data model to their preference and use-case.

Figure 4.32: Screenshot of the RICDaM demonstrator

Figure 4.32 shows a screen shot of the RICDaM webpage and includes the illustration
of the main functionalities, which are:

1. tuning of the parameters to produce different candidate rankings,

128 generating and ranking data model candidates

2. an overview of the output of the framework,

3. customisation of the data model, and

4. exporting the data model as a set of mappings between the input and the produced
data model.

When the user makes a manual change to the data model, they can choose to propag-
ate that change to maintain consistency across the dataset or keep the change locally to
the modified cell. The tuning parameters allow the user to customise the ranking of the
candidates, obtaining different top data models that can speed up the modelling pro-
cess by suggesting the candidates the user is looking for more easily. Finally, the user
can export the data model produced and apply the mappings to translate their original
input data to an RDF dataset that is potentially more interoperable with the datasets in
the knowledge graph.

The demo uses the library use-case knowledge graph and includes the Gutenberg
and Open Library input datasets. For example, for pgterms:ebook in Project Gutenberg,
the suggestion is to use bibo:Document as the most interoperable, relevant, and consist-
ent entity type, together with properties such as dcterms:contributor. Through the
interface, it can be changed, for example, to schema:Book, which is often used as well in
the knowledge graph.

In general, designing a data model is not a trivial task. When considering integration
with existing datasets, the task becomes more complex. This demo facilitates the task of
finding the best possible data model according to certain criteria by producing a ranked
list of candidates to match entity types and properties in a dataset. In the future, a
complete tool using this framework would allow the user to provide input datasets to
match loaded knowledge graphs, but also should allow the user to load their own data
sources for the knowledge graph. The tool should also allow to manually search the
indexed ontologies or add new ontologies to the graph to complete the model when the
data model fails to find the desired class or property. For JSON or CSV input datasets,
it would also be possible to generate a RML mapping file to facilitate the process of
translating the data to RDF.

4.7 conclusions

In this chapter, we focused on describing and experimenting with the methods for gen-
erating and ranking data model candidates. This task was motivated by the question:

RQ2 → What measures can be used based on the built knowledge structures to select and
rank possible data models?

We used methods based on AOR to generate entity type candidates, classification
models to generate datatype properties, and extracted object property candidates from

pgterms:ebook
bibo:Document
dcterms:contributor
schema:Book

4.7 conclusions 129

the ontology graph by obtaining the vertices equivalent to the entity type candidates for
two linked entity types in the input dataset.

Each one of the approaches posed different challenges. For entity type candidate
generation, the task involves first mapping input entities to knowledge graph entities,
and then extracting entity type mappings from these matches. Therefore, one of the
first challenges of this approach, which was observed in the library use-case, is the
integration of datasets in different languages. In the case of the library domain, enough
overlap exists between the entities since, for example, book titles or author names are
not always translated. By randomly selecting entities, we were able to find matches
in different libraries. However, considering that our input datasets were all in English,
knowledge graph data sources which feature more entities in this language are favoured
over other languages. Therefore, in the future, investigating how to align and extend
textual labels to provide multi-language support could improve the effectiveness and
applications of the framework.

In terms of entity type generation, currently, the framework only uses owl:sameAs

links as a means to enhance the ontology graph to improve scoring metrics that rely
on traversing the graph. However, in the future, these links can be directly explored
during the entity generation step to produce a more reliable candidate list. For example,
similarly to the methods to create the owl:sameAs ground truth, when using an RDF
dataset as input, if it features owl:sameAs, these can be extracted to generate candidates.
If the input dataset does not use these links, but they exist in the knowledge graph, they
can be explored to provide a more complete list of entity type candidates by extracting
the entities that are indicated as values of the owl:sameAs property.

When generating property candidates, the first challenge is recognising if a predicate,
attribute, or column is supposed to be a datatype or object property. This issue is less
critical in RDF input datasets since distinguishing is a matter of finding if the dataset
features the URI in the object of the predicate. This is the approach we use in general
in this framework. However, for semi-structured CSV and JSON datasets, entities are
rarely referenced via a unique identifier. Therefore, distinguishing datatype from object
properties is not trivial. For example, in a CSV file, a column might contain book titles,
while another contains author names. Looking at the existing data models in the library
data domain, it is common that both these columns represent entities with a relationship
between them. Although this seems like a trivial example, in the context of an automatic
approach, there are several considerations. First, if the input dataset labels overlap
with the knowledge graph labels, most columns will find some entity to match, even
if incorrectly. For example, a column with page numbers can include a row for a book
with 451 pages that can be matched incorrectly to the book title Fahrenheit 451. Therefore,
robust measures need to be put in place to guarantee that only entities are obtaining
entity type candidates. Currently, our generation methodology does not take this into
account and the filtering of bad candidates is left to the content scoring. In the future,

130 generating and ranking data model candidates

the framework should integrate more robust methods to distinguish between datatype
and object properties, consider all the factors, and improve the candidate generation
methodology.

Finally, the last challenge of entity type and property candidate generation is miss-
ing concepts, i.e., the input dataset includes data that is not found in the knowledge
graph. For example, the University dataset was automatically converted to the BIB-
FRAME schema. Due to the scope of this schema, it includes several concepts that are
not found in other library schemas, such as the entity type bibframe:ColorContent or
the property bibframe:baseMaterial. These concepts do not have a direct overlap in
any of the data models adopted by the European libraries in study. Therefore, find-
ing suitable candidates for these concepts in the knowledge graph is not possible. In
this case, investigation would need to be carried out to assess how to best handle the
situation, considering that the immediate approach would most likely be to extend the
ontologies in the graph and manually produce the annotations to complete the proposed
data model. In a future implementation of this framework, ideally the user would have
an integrated feature that would allow this extension without leaving the interface that
implements the framework.

In the biomedical use-case, the candidate generation results for both entity types
and properties were lacking due to the low conceptual overlap between the chosen
inputs and the knowledge graph. As mentioned in Section 3.6, it is not trivial to find
suitable datasets that overlap with the input and are adequate to build a knowledge
graph. Research is progressing in this domain and including a step in the framework
that facilitates this process would broaden the possible applications and increase the
pool of possible users of this framework.

We developed two scoring methodologies: one focused on improving the score of
potentially good candidates and another to increase the score of candidates that are well
connected in the ontology graph and frequently used in the knowledge graph.

For the content scoring methodology, we present an evaluation and analysis of the
effect of the different metrics integrated in the framework. In general, the methodolo-
gies obtain a reasonable performance, with the entity type methodology achieving better
results than the property scoring methodologies. Nonetheless, for the primary library
use-case, the methodology is successful in re-ordering the candidates that were gener-
ated. However, issues with the generation methodology are propagated for the ranking
stage. Therefore, if poor results were achieved at that stage, the scoring methodologies
are not going to achieve optimal performance.

Furthermore, due to the modular nature of the framework, for a particular dataset,
a new measure might perform exceedingly well and, in that case, the framework can be
extended to include the results of that metric.

In terms of the evaluation performed on the content score rankings, we were only
able to use the ground truths to evaluate precision and recall since, to the best of our

4.7 conclusions 131

knowledge, no ground truth to evaluate ranked entities, entity types, or property can-
didates for data modelling. Therefore, we were not able to evaluate the results using
the standard measures to validate the rankings produced, e.g., NDCG. Considering the
nature of the data, a reliable ranking ground truth is not easy to obtain, since the correct-
ness of a term over another is, in most cases, a matter of opinion and context. Therefore,
choosing a candidate over another is not obvious and, in our evaluation, we consider
each resource in the ground truth at an equal ranking and evaluate using precision only.

In regards to the first subquestion:

RQ2.1 → Can the connections within the ontology graph be used to measure the accuracy
and interoperability of possible data models, having a significant effect on the ranking of their
components?

Different datasets have different characteristics and the metrics used in each method-
ology can be adapted to improve them. For example, a use-case with a loosely connected
ontology graph is going to achieve better results if the metrics not focused on the on-
tology graph are weighted more heavily than the ones that are focused on traversing
the graph. On the other hand, small knowledge graphs with tightly connected ontology
graphs benefit from the opposite situation. Therefore, further experiments and analyses
can be carried out to assess the strengths and features of the contexts in which the
proposed metrics should be boosted or penalised.

For the interoperability score, the choice of dmax is the parameter to take into ac-
count, which is also use-case dependent. At dmax = 1, the interoperability considers
only direct neighbours which include only subclasses, equivalences, and perfect map-
pings. As dmax increases, the neighbourhood of the candidate is expanded to include
more related entity types, potentially introducing more noise into the neighbourhood.
Therefore, the user’s choice is a balance between specificity and maximimisation of in-
teroperability. In our experiments, we used a dmax = 10 to present a broader view of
the impact of interoperability but empirically chose to use the median of all IS scores
(i.e., maximum weighted distance of 5) to combine with the CS score. This median dis-
tance represents a middle point between using the generic values found at distance 10,
when the interoperability score stabilises, and considering a significant distance from
the source to boost candidates that are well-connected in the graph.

RQ2.2 → Can the connections between components of the proposed data models be used to
measure their consistency, with a significant effect on their ranking?

The final scoring methodology presented focuses on producing a single data model
candidate with candidates proposed per triple pattern in the input data, i.e., for each do-
main, property and range that exist in the input data model, a corresponding ranking of
triple candidates with domain, property, and range candidates is produced. This score
considers two sides: consistency with the knowledge graph and consistency within the
proposed candidate data model. The first is concerned with modifying the score of a
triple based on the frequency of co-occurrence of its parts in the knowledge graph, and

132 generating and ranking data model candidates

the second is focuses on boosting the candidates that are being suggested more com-
monly for the same entity types in the input. We performed experiments that demon-
strate how consistency works and discussed its impact on the results. For the chosen
use-cases, we observed that the consistency methodology fulfilled its purpose and led
to more consistent data models in terms of frequency in the knowledge graph and the
candidates being suggested within the data model.

In the future, this score can include a third type of consistency, which considers the
consistency in terms of independent data sources in the knowledge graph. Currently,
the knowledge graph is treated by the framework as a single source. However, if it
distinguishes between data sources, it is possible to boost the patterns that exist within
the same source data model, ensuring that logical coherence is maintained from the
original source. In this sense, depending on which data source is being mostly ranked
first, the framework would boost the triple candidates that belong to that source. For
example, if candidate triples from the British library are frequently ranked first, the
framework would boost candidates from that library to improve the consistency of the
model at the data source level.

A feature of this score is that it combines the previous scores with the co-occurrence
scores to obtain a final triple score. This combination is achieved by balancing paramet-
ers that should align with the preferences of the user. In our experiments, we choose
neutral weights (1.0 for wcs and wis and 0.5 for wcns), however, these might not be
optimal for different use-cases. In the case of the library data, we obtained reasonable
results for the final rankings, but it is not guaranteed that it will be similar for other
datasets. Besides, these parameters are meant to be adjusted to the preferences of the
users. Therefore, the user can focus the framework by boosting the content, interoperab-
ility, or consistency scores. However, the user should also consider that the strength of
this framework lies not on achieving the highest precision possible for each individual
candidate but, instead is focused on producing a ranking of candidate triples that will be
accurate, consistent, and interoperable. Maximising one of these scores, while ignoring
the others will produce results that might be less optimal.

Another consideration in terms of weighting scheme for the scores, is that, in the
future, these should not be taken globally for each entity in the triple candidate. Data
publishers can have different requirements for the data model elements, considering,
for example, that entity types should focus more on interoperability, while properties
should be as accurate as possible. Therefore, in the future, these weights should be
expanded to provided a more fine-grained control over the weights given to the scoring
methodologies.

Overall, in this chapter, we proposed and described methodologies that are able
to produce candidates and rank them according to different parameters to produce a
ranked list of candidate triples to integrate a data model. We evaluated and described
different experiments that show the effectiveness and potential of the methodologies

4.7 conclusions 133

described. Therefore, returning to the main question: What measures can be used based on
the built knowledge structures to select and rank possible data models?

The answer is a combined methodology that focuses not only on the entities and on
obtaining the most precise data model according to a background knowledge graph but
also looks at the underlying ontology graph to produce a set of candidates that are in-
teroperable with existing published datasets. Therefore, as an output of our framework,
the user is presented with a ranked set of candidates and, depending on the use-case,
it may be desirable to prioritise one parameter over another. For example, for the lib-
rary use-case, if the goal is to maximise interoperability with other datasets, foaf:Agent
is the best choice. On the other hand, foaf:Person provides higher specificity in the
description of an entity, at the cost of potential interoperability. An application of the
output of the framework is demonstrated with RICDaM, which shows the potential for
a user interface that integrates the full framework.

5 B E N C H M A R K I N G O N TO LO GY R E S O U R C E
R E T R I E VA L M E T H O D S

In this chapter, we explore the application of ontology resource retrieval tools and tech-
niques for modelling data with ontologies. As described in Chapter 1, in the context
of the Semantic Web, data modelling approaches can be categorised into internal or
external, depending on the background knowledge considered when defining a data
model. The framework proposed in Chapters 3 and 4 focuses on providing an external
approach to data modelling by considering existing RDF datasets as the base for the data
model. However, when the framework is unable to produce a complete data model, the
data publisher needs to complement the approach by introducing concepts from internal
approaches to data modelling. Internal approaches deal with finding ontology resources
that produce a data model for an input dataset without directly considering background
knowledge from external datasets. These approaches often rely on the data publisher
knowing or finding the appropriate ontologies, which is not always a trivial task.

This chapter is guided by the following overall research question:

RQ3→ Can existing methods for ontology resource retrieval support the process of creating
a data model using an internal approach?

This question is answered by dividing it into the following subquestions:

RQ3.1 → Are IR algorithms effective for retrieving and ranking top-k ontology classes that
match a given keyword?

RQ3.2 → Are ontology resource search engines effective for retrieving and ranking top-k
ontology classes that match a given keyword?

RQ3.3 → What requirements should be considered when choosing the best technique to
retrieve ontology resources when using internal approaches to create a data model?

The contributions of this chapter include (1) a detailed comparison of ontology re-
source retrieval techniques and tools, evaluated with an expert-based ground truth and
an automatically generated ground truth, (2) a set of recommendations geared specific-
ally towards data modelling with ontologies in the biomedical domain, (3) a set of re-
commendations on using the techniques and tools evaluated to support or complement
the creation of a data model with an external approach.

135

136 benchmarking ontology resource retrieval methods

5.1 introduction

Ontologies are a key technology to integrate knowledge on the Web since they tackle
data organisation challenges by unequivocally representing concepts and, therefore, op-
timising the structural and semantic integrity in and between datasets. When used to
model a Knowledge Graph, ontologies enable more accurate and effective information
retrieval, data integration, decision support, and reasoning [182]. However, creating an
ontology to model a domain is not a trivial task and requires significant investment
of time and effort, and an expert with specific domain knowledge and ontology en-
gineering experience. Instead of creating new ontology models from scratch, however,
ontology engineers are encouraged to reuse existing ontologies [183, 184] by modifying,
extending, or pruning them to adapt to a specific use-case. Ontology reuse is defined
as the process in which existing ontological knowledge is used as input to generate new on-
tologies [185]. Ontology reuse provides a machine- and human-understanding of the
agreement on the description of concepts in a domain, enabling the design of interop-
erable applications, while reducing the cost of data modelling with ontologies. The
ontology reuse approach is faced with different challenges [186], and several independ-
ent studies have found its application to be lacking to fulfil its interoperability goals [48,
63–65, 187], leading to high overlap between the concepts described by ontologies in the
same domain. Nonetheless, data publishers using internal approaches rely on ontology
reuse to guarantee a conceptual agreement with other datasets even if the extent of this
agreement is not directly known.

A key barrier for a data publisher, therefore, is to find the right set of ontologies to
model datasets. When looking for appropriate ontologies to model data, the three main
challenges are [21]: (1) finding ontologies in the right subject domain, (2) from these do-
main ontologies, assessing which ones provide sufficient coverage of the concepts of the
intended application and are of good quality, and (3) assessing if the ontology is in the
format required by the application (e.g., OWL format or SPARQL endpoint). Ontology
repositories aim to facilitate these challenging tasks by providing an environment where
ontologies can be deposited, accessed, discovered, and potentially reused.

An ontology repository is a Web-based system that provides access to an extensible col-
lection of ontologies with the primary purpose of enabling users to find and use one or several
ontologies from this collection [21]. A detailed overview of the proposed ontology reposit-
ory solutions is found in d’Aquin and N. F. Noy [21]. Following this definition, by itself,
an ontology repository provides the means to find ontologies, possibly in a relevant do-
main, but it does not facilitate the process of selecting the most appropriate ontologies
or specific ontology resources (i.e. classes or properties) to model a dataset. A consid-
erable portion of ontology repositories, however, also provide AOR services, i.e., search
and ranking of ontologies and/or ontology resources. However, often the search results
over the ontology repositories are overwhelming, with dozens of synonyms matching

5.1 introduction 137

in different ontologies, as well as a common disagreement between search engines in
the ranking of ontological resources in their search results. Due to different naming con-
ventions, textual descriptions, synonyms, and granularity of the entities, it is an open
research problem to precisely identify an ontological resource which best describes a
given concept.

Among the different domains that adopted ontologies, the biomedical domain has a
long history of using formal codes and ontologies to describe datasets [188, 189]. This
domain has been one of the early adopters of Semantic Web technologies, resulting in the
development of several biomedical repositories and ontologies. Biomedical ontologies
are distinguished from other domain ontologies because they are typically large [182],
covering thousands of concepts represented by the same number of classes (e.g., the
Gene Ontology [58] has almost 50K classes). Most ontologies in this domain use a
rich vocabulary in labels, synonyms, and textual definitions associated with classes and
properties [55]. For example, the class http://purl.obolibrary.org/obo/GO_1905294

has (1) a preferred label: positive regulation of neural crest cell differentiation; (2) a textual
definition: any process that activates or increases the frequency, rate, or extent of neural crest
cell differentiation; and (3) synonyms: up regulation of neural crest cell differentiation; up-
-regulation of neural crest cell differentiation; upregulation of neural crest cell differentiation;
activation of neural crest cell differentiation.

Therefore, this domain posed an interesting use-case to assess the search and ranking
capabilities of different approaches when finding the best ontology resource candidates
that match a set of keywords. In this chapter, therefore, we test state-of-the-art IR al-
gorithms, ontology ranking approaches, and established search engines for searching
and ranking resources in biomedical ontologies. The algorithms and search applica-
tions/engines are tested by searching a defined set of queries obtained from a cancer
genomics scenario. Using these queries, we established a Ground Truth (GT) by asking
ten biomedical and ontology engineering experts to manually rank the search results
for each query. Since building a manual ground truth is an expensive process, we also
created an automated Probabilistic Ground Truth (PGT). The PGT led to a better under-
standing of the GT and allowed the expansion of the ontology collection and the number
of queries tested. We then evaluated the results of the algorithms and applications using
the ground truths with P@k, Average Precision@k (AP@k), MAP, and NDCG. This eval-
uation provided the necessary knowledge to explore the advantages and disadvantages
of using each technique studied, which resulted in a set of recommendations that can be
followed when searching for ontology resources to model a dataset. Furthermore, these
recommendations can be extrapolated and applied to the case of supporting an external
data modelling approach, such as the one proposed in this thesis.

http://purl.obolibrary.org/obo/GO_1905294

138 benchmarking ontology resource retrieval methods

5.2 background and related work

Ranking ontological resources can be based on different criteria, for example, how well
an ontology meets the requirements of certain evaluation tests [190] or on methods to
evaluate general properties of an ontology based on some requirements [191]. How-
ever, only limited work has been proposed to rank resources based on user-posed quer-
ies. AKTiveRank [192] is a system that uses structural metrics (i.e., Semantic Similarity,
Betweenness, Density, and Class Match Measure [192]) to evaluate different represent-
ational aspects of an ontology and calculates its ranking in relation to a set of search
queries specified by a user.

IR approaches have been quite successful in finding and ranking relevant documents.
IR algorithms have been successfully applied in a few open-source indexing and search
engines, such as Lucene1, Solr2, and ElasticSearch3. These applications include API’s
to provide an easy implementation and fast search. The user has control over most
aspects of the inner workings of these applications and can adapt them to serve specific
needs, e.g., ontology search. In the Web environment, IR search engines are primarily
keyword-based and analyse the relevance of a document using content-based or graph-
based methods. AOR engines focus on retrieving entities based on semantic information.
For instance, Swoogle [90], Sindice.com [91], Watson [92], or Yars2 [93] allow searching
for ontology resources through user queries.

General search services and algorithms have been developed for Linked Data ap-
plications, for instance, LOV4, OntoKhoj [193], OntoSearch [194], or OntoSelect [195].
However, OntoSelect, OntoSearch, and OntoKhoj are not longer supported or available.
OntoSelect provided an evaluation methodology [196] by creating a benchmark that as-
sociated topics from Wikipedia pages with ontologies and then compared the retrieval
results of OntoSelect with Swoogle. However, the authors concluded that, on average,
OntoSelect did not perform better than Swoogle.

LOVER [197] is an iterative search that supports the user in the process of finding the
best classes and properties to model their dataset. Each choice made by a user provides
context for the next iteration and LOVER supports the data publisher by following
ontology data modelling recommendations when providing data model, entity type,
and property candidates.

OntoCAT [198] provides uniform access for search across different public online
repositories (BioPortal and OLS) but also allows the inclusion of local ontology files in
standard OWL or OBO formats. This software is available as an R package [199] and
is an easy method to programmatically search and integrate ontologies from different
origins in the R environment.

1 http://lucene.apache.org/
2 http://lucene.apache.org/Solr
3 https://www.elastic.co/
4 http://lov.okfn.org/dataset/lov/

http://lucene.apache.org/
http://lucene.apache.org/Solr
https://www.elastic.co/
http://lov.okfn.org/dataset/lov/

5.3 ontology search: applications & algorithms 139

The biomedical community has made a significant effort to develop services such as
BioPortal [83] and the Ontology Lookup Service (OLS) [84] for searching and applying
ontological resources. However, they often suggest large, vague, or loose search results
for a given query. Searching for the right concept in the most appropriate ontology is,
therefore, a strenuous task since a significant number of available ontologies exist, in the
same or in closely related domains that describe overlapping, closely related or the same
concepts. BioPortal also developed a tool (Ontology Recommender5) that, from a set of
keywords or a text, returns a set of ontologies that best cover the input considering a
series of metrics, such as popularity and granularity of the ontology.

The CBRBench [200] is benchmark that was developed to evaluate the ranking of IR
algorithms in an AOR setting. The evaluations are made with an expert-based ground
truth where a series of queries were manually ranked and then compared with the rank-
ing output of eight different search algorithms. We expand on this work by not only
evaluating state-of-the-art IR algorithms but also include a standalone search engine
(Solr), two ontology repositories, and one ontology recommendation tool. We also ex-
pand on the ground truth by going beyond the expert-based ground truth with an auto-
matic ground truth that allows further conclusions to be drawn. Contrary to CBRBench,
we limited our evaluation to the biomedical domain since it is an activate domain in
the Semantic Web environment where a vast number of resources is available and keeps
being developed.

Recently, another evaluation was performed on the ontologies included in the LOV
repository [201]. This work proposes an evaluation based on user clicks to infer relev-
ance labels. They provide a set of practical recommendations for ranking ontology in
repositories. Similarly to this work, in this chapter, we provide a set of recommend-
ations. However, they are focused on presenting guidelines to facilitate the choice of
methodology to use when following an internal approach to data modelling, instead of
focusing on improving the ranking of the ontologies in a repository.

5.3 ontology search: applications & algorithms

For this benchmark, we compare seven IR algorithms (boolean, tf-idf, BM25, Vector
Space Model (VSM), PageRank, Class Match Measure (CMM), and SMM), two search en-
gines of ontology repositories (Bioportal and OLS), one standalone search engine (Solr),
and a recommendation tool (Zooma). The online applications have APIs publicly avail-
able that were searched in the version available in December 2017.

5 https://bioportal.bioontology.org/recommender

https://bioportal.bioontology.org/recommender

140 benchmarking ontology resource retrieval methods

5.3.1 BioPortal

BioPortal is a repository containing both open-access and licensed biomedical ontolo-
gies and terminologies. Since its inception, the BioPortal library has grown substantially,
from 72 ontologies in 2008 to over 200 in 2011 and, in 2017, to more than 500 ontologies.
Besides being a repository for biomedical ontologies, BioPortal includes other resources
and services. One of them is providing a search mechanism to find ontologies or on-
tology resources through keyword search. This search usually returns several matches
and the results are ranked by the popularity (i.e., number of visits), in BioPortal of their
source ontology.

5.3.2 Solr

Solr is a platform that extends the Apache Lucene search library for full-text indexing
and search. One of Solr’s major features is a REST-like API for easy integration with
any programming language. The Lucene engine used by Solr scores documents using
a combination of the Boolean model and a Vector Space Model algorithm. First, it uses
the Boolean model to narrow down the number of documents it needs to score and then
uses the VSM to attribute a final score to a document in relation to a user’s query.

5.3.3 Ontology Lookup Service

The OLS is a repository for biomedical ontologies. As of January 2018, OLS had 206
ontologies and provided a search mechanism to match query words with ontological
concepts. This search uses Apache Solr to index ontologies, but it applies specific boosts
to some of the results, such as labels or ID exact matches.

5.3.4 Zooma

Zooma6 provides mappings between a free-text input and a curated repository of an-
notation knowledge. This repository contains the annotations that were manually asso-
ciated with data from sources such as the Expression Atlas [202] and the Genome-Wide
Association Studies catalogue [203]. When no mappings are found in the curated data
repository, OLS search is used instead to increase coverage. Due to its reliance on back-
ground knowledge, Zooma can considered an external data modelling approach that
facilitates internal approaches. However, Zooma finds matches through keyword search
and, therefore, does not take into consideration the relationships in the original data-

6 http://www.ebi.ac.uk/spot/zooma/

http://www.ebi.ac.uk/spot/zooma/

5.3 ontology search: applications & algorithms 141

set, finding correspondences for entity types with an internal/external hybrid approach
limited to the data sources loaded in the tool.

5.3.5 IR Algorithms

Similarly to [200], we implemented seven commonly used ranking algorithms for doc-
uments and adapted them to give a free-text query, to rank resources in a collection of
ontologies. For content-based algorithms (i.e., tf-idf, BM25, VSM, and CMM), instead
of using words as the base unit, we considered a resource r (class or property) in the
ontology as the measuring unit. A resource is matched to a query if any of the query
words exist in the values for the label, synonyms, or description. When we wish to
retrieve only exact matches, the query words have to be strictly the same as the value
matched from the label, synonym, or description of a resource. The graph-based models
(PageRank and Semantic Similarity) do not consider properties, only classes. However,
less than 1% of all resources in the collection are properties.

Table 5.1: Notation used

Variable Description

O Ontology collection
N Number of ontologies in O

O An ontology: O ∈ O

R Collection of all resources (i.e., classes and properties) with R ∈ O
r A resource : r ∈ O & r ∈ R
Q Query String
qi Query word i of Q
σO Set of matched resources r for Q in O

σO(qi) Set of matched resources r for qi in O : ∀ ri ∈ σO , ri ∈ O & ri matches qi

Table 5.1 lists the formal notations applied in the description of the algorithms. The
following sections describe the algorithms with their adaptation for ranking ontologies.

Boolean Model

The Standard Boolean model is based on boolean algebra, where a query is viewed as a
Boolean expression. Therefore, for a set of ontologies and queries, the retrieval is binary
and based on whether or not the retrieved results contain the query words.

tf-idf

Term frequency-inverse term frequency (tf-idf) [204] quantifies how important a term is
in an ontology by analysing the frequency of the term in the resources of that ontology
and in the overall collection of ontologies.

142 benchmarking ontology resource retrieval methods

tf(r,O) = 0.5+
0.5 · f(r,O)

max{f(rj,O) : rj ∈ O}

idf(r, O) = log
N

|{O ∈ O : r ∈ O}|
tf-idf(r,O, O) = tf(r,O) · idf(r, O) (5.1)

Here tf(r,O) is the term frequency of r in O obtained by dividing the frequency of
r by the maximum frequency of any resource rj ∈ O. The inverse document frequency
idf(r, O) is a measure of commonality of a resource across the collection. It is obtained
by dividing the total number of ontologies in the collection, N, by the number of ontolo-
gies containing the resource r and then computing the logarithm of that quotient. The
final tf-idf of r is the product of the tf and the idf.

BM25

BM25 [205] is a weighting scheme that takes into account not only term frequency, but
also ontology size without introducing too many additional parameters in relation to
tf-idf. Usually the BM25 score is computed for ∀qi ∈ Q, but, to tailor this statistic for
ontology ranking, we compute the sum of the score of each rj ∈ σO(qi) for each query
term qi. Therefore, given a resource r ∈ σO(qi), with a value (e.g., label) containing the
words r1, ..., rn, the BM25 score of the ontology O is computed by:

score(O,Q) =

n∑

j=1

idf(rj, O)
tf(rj,O) · k+ 1

tf(rj,O) + k ·
(
1− b+ b · |O|

avgol

) (5.2)

where tf(rj,O) is the term frequency for the matched resource rj in the ontology O
and idf(rj, O) is the inverse document frequency of the resource rj ∈ σO(qi). |O| is the
total number of resources (i.e., 3 × |axioms|) in the ontology, and avgol is the average
ontology size in the ontology collection. k and b are free parameters, usually chosen in
the absence of an advanced optimisation, as k ∈ [1.2,2.0] and b = 0.75. For the current
implementation, we used k = 2.0, b = 0.75.

Vector Space Model (VSM)

A Vector Space Model [206] assumes that ontology resources and queries can be repres-
ented by the same type of vector. Non-binary weights are assigned to indexed terms,
usually using weighting schemes such as tf-idf. The degree of similarity between query
and ontology resources is calculated by comparing the vectors that represent the query
and each ontology resource. The VSM score was calculated as follows:

sim(O,Q) =

∑n
i=1w(qi,O) ·w(qi,Q)

|O| · |Q|
(5.3)

5.3 ontology search: applications & algorithms 143

Here w(qi,O) and w(qi,Q) are the weights of qi in the ontology O and query Q,
respectively. |O| is the ontology vector norm and |Q| is the query vector norm. For this
implementation, we consider tf-idf as the vector weight. Therefore, the similarity of an
ontology to query Q is computed as:

sim(O,Q) =

∑n
i=1 tf-idf(qi,O) · tf-idf(qi,Q)

|O| · |Q|

tf-idf(qi,O) =
z∑

j=1

tf-idf(rj,O) : rj ∈ σO(qi)

tf-idf(qi,Q) =

n∑

j=1

tf-idf(qi,Q) : qi ∈ Q

|O| =

√√√√ z∑

j=1

(tf-idf(rj,O))2

|Q| =

√√√√ n∑

i=1

(tf-idf(qi,Q))2 (5.4)

PageRank

PageRank [207] is an iterative method to analyse links and it was adapted to assign a
numerical score to each ontology in a set of ontologies. This implementation considers
ontologies as nodes and owl:imports (imports of other ontologies into the current on-
tology, i.e., outlinks) as edges. In each successful iteration, the score of the ontology
O is determined as the sum of the PageRank score of the previous iterations of all the
ontologies that import ontology O divided by their number of outlinks. For the kth
iteration, the PageRank score of ontology O is given by:

scorek(O) =

∑
j∈deadlinks(O) PRk−1(j)

N
+

+
∑

i∈inlinks(O)

PRk−1(i)

|outdegree(i)|

scorek(O) = d · scorek(O) +
1− d

N
(5.5)

Here, deadlinks(O) are ontologies in the collection that have no outlinks. All nodes
are initialised with an equal score (i.e., 1

N , where N is the total number of ontologies in
O before the first iteration). In the experimental evaluation, we set the damping factor
d equal to 0.85 (common practice).

Ontologies with no owl:imports statement can still reuse classes from other ontolo-
gies following the MIREOT [208] guidelines for referring external terms from a target

144 benchmarking ontology resource retrieval methods

ontology. In our experiment, whenever these references existed within the ontology
classes, an owl:imports statement was introduced to identify the link between the two
ontologies.

Class Match Measure (CMM)

Class Match Measure [192] calculates the coverage score of an ontology in relation to
a set of given queries. Despite not ranking each query individually, this algorithm
represents the type of search one could expect from a user that requires the lowest
number of ontologies to cover all the queries in their search.

The CMM algorithm looks for exact and partial matches and scores an ontology
depending on the number of matches. A higher number of matches means a higher
CMM score. The score for an ontology is computed as:

score
CMM

(O, Q) = αscore
EMM

(O, Q) +βscore
PMM

(O, Q) (5.6)

where score
CMM

(O, Q) is the final score for class match measure, score
EMM

(O, Q)

is the exact match measure, and score
PMM

(O, Q) is the partial match measure for the
ontology O with respect to the set of queries Q. α and β are the exact matching and
partial matching weight factors respectively. Exact matching is favoured over partial
matching, therefore α > β. Here α = 0.6 and β = 0.4.

score
EMM(O,Q) =

∑

r∈O

∑

Q∈Q

ϕ(r,Q)

ϕ(r,Q) =

{
1 if label(r) = Q
0 if label(r) 6= Q

score
PMM

(O, Q) =
∑

r∈O

∑
Q∈Qψ(r,Q)

ψ(r,Q) =

{
1 if label(r) contains ∀qi : qi ∈ Q
0 if label(r) does not contain qi ∈ Q

(5.7)

ϕ(r,Q) counts the number of exacts matches and ψ(r.Q) counts the number of par-
tial matches. score

EMM(O,Q) and score
PMM

(O, Q) sums the number of matches (exact
and partial, respectively) that exist in every ontology for a set of queries.

Semantic Similarity Measure (SSM)

The Semantic Similarity Measure [192] applied here takes advantage of the ontological
graph structure to calculate how close resources are in the ontology structure. It is a
collective measure of the shortest path lengths for all classes that match the query string.

5.3 ontology search: applications & algorithms 145

The semantic similarity measure score score
SSM

(O,Q) of ontology O for a given query
Q is given by:

score
SSM

(O,Q) =
1

z

z−1∑

i=1

z∑

j=i+1

Ψ(ri, rj) : ∀q∈Q((ri, rj) ∈ σO))

Ψ(ri, rj) =

1

length(minp∈P{ri
p−→rj})

if i 6= j

1 if i = j

z = |(ri, rj)| (5.8)

Summary

Table 5.2 presents a summary of the characteristics of the algorithms. The table shows:
(1) the main scoring mechanism of each algorithm, (2) if the algorithm attributes a global
score to the ontology or scores each resource in the ontology individually, (3) if there is
any distinction between partial matches and exact matches (yes) or if they are treated
equally (no) and finally, and (4) a summary of the conclusions presented in Butt, Haller
and Xie [200].

Table 5.2: Summary of IR algorithms. Scoring summarises the main scoring method of the
algorithm. Global indicates if the score attributed by the algorithm is per resource
or per ontology. WPM (Weights Partial Matches) shows if the ontology distinguishes
between partial and exact matches

Algorithm Scoring Global WPM Remarks

tf-idf Term frequency No No

Frequent resources in the collection have a low score.
In ontologies, a common term does not necessarily
mean less relevant. Frequent terms can be a product
of reuse by other ontologies.

BM25 Term frequency Yes No
Suffers from the same issue has tf-idf but the cumu-
lative score ranks domain ontologies higher.

VSM Vector similarity No No
Uses tf-idf to weight vectors and considers the tf-idf
of the query, aggravating the tf-idf drawback.

PageRank
Links between
ontologies

Yes No
Ranks based on popularity which may lead to popu-
lar but less relevant resources being ranked higher.

CMM
Coverage of the
set of queries

Yes Yes
Ontologies with a large number of partial matches
will be scored higher than ontologies with few exact
matches.

SMM
Closeness
between onto-
logical resources

Yes No

Although this algorithm can be useful when consid-
ering similarity among the matched resources of two
or more query terms of a multi-keyword query, it
performs poorly on single word queries.

146 benchmarking ontology resource retrieval methods

5.4 evaluation: ontology search applications & al-
gorithms

The workflow of the benchmark was divided into two separate but comparable ana-
lyses that give a complete overview of the performance of the chosen applications and
algorithms. The first approach evaluated the results against a GT obtained from a ques-
tionnaire answered by experts. The second analysis was based on an automated PGT
obtained from the consensus between the algorithms and four search applications. Fig-
ure 5.1 illustrates workflow from the queries to the different algorithms/applications
and presents an example of the search results. The figure shows the evaluation process
starting from the creation of the GT and the PGT and their comparison with the search
results, and finally obtaining the evaluation results.

We evaluate the algorithms and tools with P@k, AP@k, MAP, and NDCG (see Sec-
tion 2.3.3 for more details) using the GT and PGT. Both ground truths have a number
of defined relevant search results that vary for each query. For example, in the GT, the
query MYH7 only had one relevant result while the query Ovary had five. In terms of
metrics, this difference means that, with a fixed k = 3, if a search of the query MYH7
returned more than one result, the precision would be lower than expected, even if the
first result was the correct one. Therefore, instead of choosing a fixed cut-off, the para-
meter k is chosen independently for each query and each ground truth depending on
the number of search results present in the respective ground truth. Therefore, the query
MYH7 was evaluated with k = 1 while the query Ovary had k = 5. This adaptation eval-
uates if the algorithms and search applications return all the relevant results in the first
k positions.

Outputs

Queries

Input Search approach

Probabilistic

Ground Truth

Algorithms

Search Applications

Virtuoso

Boolean

Tf-idf

BM25

VSM

PageRank

CMM

SSM

Solr

Bioportal

OLS

Zooma

APIs

Example:

Ovary

tf-idf
http://purl.obolibrary.org/obo/MA_0000384 - ovary

http://purl.obolibrary.org/obo/ZFA_0000403 - ovary

http://purl.obolibrary.org/obo/XAO_0000258 - ovary

Bioportal
http://purl.obolibrary.org/obo/NCIT_C12404 - Ovary

http://purl.obolibrary.org/obo/FMA_7209 - Ovary

http://purl.obolibrary.org/obo/UBERON_0000992 - ovary

...

...

Search results

Ground Truth

NDCG

P@k

AP@k

MAP

Evaluation

Expert survey

Used to

create

Used to

create

List of pre-selected

ontology resources

+

Figure 5.1: Evaluation workflow: from input search queries to evaluation results

5.4 evaluation: ontology search applications & algorithms 147

5.4.1 Ontology Loading

The ontology resources were stored using the Virtuoso triplestore and, in total, defined
around 20M triples and 645K distinct classes (subjects of rdf:type owl:Class). In Solr,
ontologies were loaded using the method provided by the OLS development team,7

which uses the owlapi Java API [209] to manipulate the provided ontologies formatted
with the Web Ontology Language (OWL)8.

5.4.2 Building the Expert-Based Ground Truth

The ground truth was established with a study9 involving ten experts that were asked
to rank the ontology resources matched with the ten query terms.

Ontology Collection & Search Queries

A collection of 23 ontologies (see Table 5.3) representative of different domains in the
biomedical field was used. The domains chosen range from chemical compounds to
diseases or phenotypes, among others. The collection also includes different species
such as mouse and zebrafish. The set of ontologies has some of the most popular and
freely accessible biomedical ontologies, with more than half of them included in the
top-50 of BioPortal’s most visited ontologies (as of December 2017).

The searches tried to match each query with all ontological resources available in
each platform, i.e., online applications used their services and local tests used the Vir-
tuoso database or local Solr server. When using the search applications, results that
included ontologies outside this list were excluded. The search applications and the
ranking algorithms were tested using a set of queries in the domain of ovarian cancer.
Table 5.4 presents the ten search terms chosen and the abbreviations used for the re-
mainder of this chapter. Although the ten selected search terms are from the ovarian
cancer domain, they represent several sub-domains not only related to ovarian cancer.
For instance, these search terms are classified into five different types of sub-domains
(disease, drug, tumour, organ, and gene) covering a broad set of terminologies.

Their general frequency was assessed with a Google search, which showed that Car-
cinoma and Ovary were the queries with most results in the set, disease names were less
common, and the gene name MYH7 was the query with the least search results, due
to its specificity. Finally, all the queries were used as input in BioPortal and OLS’ Web
search, with the default parameters (search through all the ontologies and show exact
and partial matches).

7 https://github.com/EBISPOT/OLS/tree/master/ols-apps/ols-solr-app
8 https://www.w3.org/OWL
9 The questionnaire is available at https://goo.gl/pQUvte

https://github.com/EBISPOT/OLS/tree/master/ols-apps/ols-solr-app
https://www.w3.org/OWL
https://goo.gl/pQUvte

148 benchmarking ontology resource retrieval methods

Table 5.3: Ontologies used in the GT with name, acronym, number of triples, and reference

Name Acronym # Triples

Chemical Entities of Biological Interest Ontology [210] ChEBI 8 187 078

Cell Ontology [136] CL 69 796

Human Disease Ontology [211] DOID 203 125

The Drug Ontology [212] DRON 138 898

EMBRACE Data And Methods [213] EDAM 33 300

Experimental Factor Ontology [214] EFO 469 954

Foundational Model of Anatomy [215] FMA 612 982

Gene Ontology [58] GO 1 575 776

Human Phenotype Ontology [216] HP 350 017

Mouse Adult Gross Anatomy Ontology [217] MA 25 523

Mammalian Phenotype Ontology [218] MP 335 821

Mouse Pathology Ontology [219] MPATH 11 992

Neuro Behavior Ontology [220] NBO 10 376

National Cancer Institute Thesaurus [221] NCIT 5 784 846

Ontology of Adverse Events [222] OAE 54 334

Ontology of Genes and Genomes [223] OGG 1 211 539

Phenotypic Quality Ontology [224] PATO 31 644

Plant Ontology [225] PO 59 932

Uber Anatomy Ontology [226] UBERON 690 529

Vertebrate Trait Ontology [227] VT 44 183

C. elegans Phenotype Vocabulary [228] WPhenotype 31 991

Xenopus Anatomy and Development Ontology [229] XAO 40 611

Zebrafish Anatomy and Development Ontology [230] ZFA 82 964

Table 5.4: Cancer-related queries and their number of search results on Google, BioPortal and
OLS in April 2017

Query Terms Abbreviation Type Google BioPortal OLS

Ovary Ovary Organ 25 400 000 29 1054

MYH7 MYH7 Gene 86 500 8 22

Paclitaxel Paclitaxel Drug 4 640 000 18 149

Carcinoma Carcinoma Disease 32 800 000 25 4025

Carboplatin Carboplatin Drug 2 710 000 19 212

Ovarian teratoma OT Tumour 434 000 18 1164

Ovarian cystadenoma OCys Tumour 148 000 18 1100

Ovarian Choriocarcinoma OChor Tumour 317 000 20 1129

Ovarian embryonal carcinoma OEC Tumour 164 000 19 5069

Ovarian mucinous adenocarcinoma OMA Tumour 117 000 15 2235

Experts

The experts were sourced from IBM Research, USA; King Abdullah University of Science
and Technology, Kingdom of Saudi Arabia; Maastricht University, Netherlands; Medical
University of Graz, Austria; Indian Institute of Technology (IIT) Bombay, India; Saarland
University, Germany; Universite de Rennes 1, France; and the U.S. National Library of

5.4 evaluation: ontology search applications & algorithms 149

Medicine, USA. The areas of expertise of these judges included knowledge engineering
and the biomedical domain, with all of them having at least some experience in both
domains.

Table 5.5: Level of self-assessed knowledge of the experts in the biomedical field. BD refers to
Biomedical Data

Expert Biomedical Knowledge Works with BD Produces BD Applies BD

1 5 Yes Yes Yes
2 3 Yes Yes Yes
3 5 Yes No Yes
4 4 Yes No Yes
5 5 Yes Yes No
6 4 Yes No Yes
7 5 No No Yes
8 4 Yes Yes No
9 5 Yes Yes Yes
10 5 No No Yes

To assess the level of experience in the biomedical and knowledge engineering fields,
each expert was asked to rate his knowledge in a Likert scale of five levels, from “No
Knowledge” to “Expert Knowledge”. Table 5.5 and Table 5.6 show that most experts
have considered themselves to have strong to medium knowledge in both domains, and
apply or work with biomedical data. All the judges have worked with ontologies, six
worked specifically with biomedical ontologies, and some have developed ontologies.

In the biomedical domain, six of the evaluators considered themselves to have “Ex-
pert Knowledge”, three considered themselves to have “Strong Knowledge” and one
had “Some Knowledge”. Nine of the experts work with biomedical data generated
by others and seven of them apply biomedical data in their work. Five of the judges
generate biomedical data with their research. Regarding knowledge engineering experi-

Table 5.6: Level of self-assessed knowledge of the experts in the knowledge engineering field.
Ont. means Ontology and BmO is Biomedical Ontology

Expert Knowledge Engineering Worked with Ont. Developed a BmO

1 2 Yes No
2 5 Yes Yes
3 5 Yes Yes
4 5 Yes Yes
5 4 Yes No
6 5 Yes Yes
7 3 Yes Yes
8 3 Yes No
9 5 Yes Yes
10 5 Yes Yes

150 benchmarking ontology resource retrieval methods

ence, in a scale from “No Experience” to “Expert”, six of the judges consider themselves
experts, one considered himself to have above average experience, two have average ex-
perience, and one evaluator has below average experience. All the judges have worked
with ontologies and six worked specifically with biomedical ontologies. Seven of the
experts have developed biomedical ontologies.

Questionnaire

The experts were given a list of ontology classes to rank in relation to ten queries (see
Table 5.4). These classes were obtained by searching BioPortal and OLS and from the
search results of the IR algorithms. All results were merged and taken out of order. The
results presented to the judges were composed by the classes with labels that were an
exact match of the query terms. However, the judges still had access to all the retrieved
classes and could introduce classes they deemed relevant but were not shown. The
questionnaire presented definitions from medical dictionaries to establish the search
intention of each query. The definitions did not follow ontological definitions patterns.
Their main goal was to lower the ambiguity of the queries and to provide some guidance
to the judges. For each of the classes displayed in the questionnaire, we provided the
class URI, preferred label and definition. The judge could rank the classes in a Likert-
type scale with a number of options equal to the number of items to rank, with the first
option corresponding to the best rank, plus the last rank reserved to mark the search
term as “not relevant”.

Validation

The questionnaire answers of each judge were evaluated with two different approaches:

1. Rank agreement considers the observed agreement between the ranks allocated to
each search result.

2. Relevancy agreement analyses the results in terms of the observed agreement in a
binary scale of relevant/not-relevant.

For each approach, the answers of each judge were compared in pairs and the final
result was obtained by averaging the pairwise agreement.

The answers were further analysed with a Chi-Square Goodness-of-Fit test [231],
which is a non-parametric statistical test to determine if an observed value is signific-
antly different than its theorised value. Therefore, this test was applied to assess the
randomness of the expert’s answers. The null hypothesis considered was “each rank
has an even number of answers”, which leads to the alternative hypothesis “the ranks
are not equally chosen among experts”. This test was performed for each query with a
significance level of 0.05.

5.4 evaluation: ontology search applications & algorithms 151

5.4.3 Building the Probabilistic Ground Truth

To validate the ground truth as well as to include a more diverse set of queries and
ontologies, we extended the approach used in Lamiroy and Sun [232] to build a PGT
without involving human experts. In Lamiroy and Sun [232], the authors present an
approach to calculate the probability that each document in a collection belongs to a
possible ground truth by using the consensus from multiple systems as the reference.
The main idea in Lamiroy and Sun [232] is that a probabilistic ground truth is equivalent
to an unknown ground truth and contains the probabilities of each document (δi) that
appears in the search results to belong to a real ground truth. These probabilities are
calculated with the following:

P(δi) =
1

s

s∑

k=1

Sk(δi) (5.9)

where s is the set of systems being tested and Sk(δi) represents the search result of
document δi by system Sk. Lamiroy and Sun [232] consider the result to be binary, i.e.,
the document δi is either present or absent of the search results of system Sk. By using
these probabilities, the authors then calculate a probabilistic precision and recall. For
our work, however, a comparison with the GT was necessary. Therefore, we developed
an extended probabilistic ground truth which can be compared with the expert-based
ground truth using the performance measures.

Extending and building the PGT

To extend the original approach to the ontology context, instead of using ontologies as
documents, each ontology resource was considered the measuring unit. This adaptation
allows the ranking of several resources matched in the same ontology.

Using the principle of the Discounted Cumulative Gain, a ranking approach was
added to the creation of the PGT to obtain a non-binary classification of each resource.
The method employed a penalty measure – in a logarithmic scale [233] – for search
results that appear lower on the list. The penalty is proportional to their position p.
Considering all search results relevant, the Discount Metric (DM) is obtained with:

DMp =
1

log2(p+ 1)
(5.10)

The probability of each ontology resource belonging to a possible ground truth is:

P(δi) =
1

s

s∑

k=1

DMp(Sk) (5.11)

152 benchmarking ontology resource retrieval methods

Table 5.7: Expanded query set obtained from Gavankar, Y.-F. Li and Ramakrishnan [234]

Type Queries

General

concentration unit, daily living, electron microscopy, health belief,
health services, body weight, cell mass, cell proliferation, disease
staging, dose response, clinical trial, compound treatment, differen-
tial scanning calorimetry, growth protocol, high performance liquid,
high throughput, sequence alignment.

Cell or tissue
bone marrow, brown adipose, connective tissue, connective tissue
development, granulosa cell, hemoglobin e.

Anatomy
collecting duct, digestive system, embryonic structure, frontal lobe,
harderian gland, heart ventricle.

Genetic
copy number, gene expression phenotype, gene regulation, genetic
modification.

Condition
convulsive status epilepticus, fatty liver, generalized anxiety, heart
failure, heart rate, venous thrombosis.

Disease
breast cancer, eye disease, hemoglobin e thalassemia, hepatitis b,
hepatitis c, ovarian cancer.

Disorders
cystathione synthase deficiency, dowling degos syndrome, epileptic
encephalopathy, fever infection syndrome, goldstein hutt, nephrotic
syndrome.

Resources with a P(δi) 6 0.1 were removed, which closely translates to at least one
system ranking a resource as first. The remaining resources were sorted in descending
order.

Ontology Collection & Search Queries

The PGT was compared against two sets of queries and ontologies. The first set in-
cluded the same search queries and ontologies as the GT evaluation. The second was
extended to include 51 extra queries obtained by Gavankar, Y.-F. Li and Ramakrishnan
[234] from the BioPortal query log (see Table 5.7) and added 130 ontologies from the
OBO Foundry10, which, considering the previous 23 ontologies, led to a collection of
153 ontologies.

Since the method to obtain the PGT relies on the systems obtaining at least some
relevant results for constructing the PGT, the search parameters were changed to return
only exact matches.

5.4.4 Comparison between GT and PGT

The GT and the PGT were compared by calculating their relevancy agreement and Rank
agreement, i.e., the agreement over which concepts are relevant and the agreement of
the rank to attribute a resource, respectively. These comparisons were performed over
the collection of ten queries and 23 ontologies used in the GT. The evaluation results
of both ground truths were compared using the Pearson correlation coefficient and the

10 http://obofoundry.org

http://obofoundry.org

5.5 results 153

linear distance between the values obtained for each query with each algorithm/search
application. The results were then averaged for each performance metric.

5.5 results

The results are presented in relation to the GT, the comparison between the GT and the
PGT, and the extended results using only the PGT.

5.5.1 Ground Truth Results

Figure 5.2 presents a box plot for each query with the respective answers that were
included in the questionnaire and the distribution of rankings in the y-axis. The best
ranking is 1 which the lowest ranking is equivalent to the experts considering the search
result not relevant. The results for each box plot are ordered by the mean, with ties
not yet resolved, meaning that the order from left to right corresponds to the order of
search results in the GT. Overall, the queries show a high dispersion of answers. The
query MYH7 had only one search result and the opinions of the experts were divided
equally between relevant and not relevant. None of the remaining means indicate that
the judges, on average, considered a search result not relevant, i.e., the mean would
have to be equivalent to the lowest rank. The experts did not suggest more classes to be
added to the pre-selected classes.

Table 5.8 shows the rank obtained for the query Carcinoma by calculating the mean
of the scores attributed to each class by the judges. If any mean calculation resulted
in a draw, the final rank was obtained by searching the popularity of each ontology in
BioPortal and ranking the most popular higher than the least popular. For example, the
last two rankings in the Table 5.8 have a same mean value (3.2) and the EFO result was
ranked above the MPATH due to EFO’s higher popularity in BioPortal.

Table 5.8: Ranking of Carcinoma in the ground truth

Rank Mean URI

1 1.9 obo:NCIT_C2916

2 2.1 obo:HP_0030731

3 3.7 obo:DOID_305

4 3.2 efo:EFO_0000313

5 3.2 obo:MPATH_549

Validation

The observed agreement between the judges in relation to the rank was, in average, 30%
with a standard deviation of 20%. The relevancy agreement was, in average, 85%, with

154 benchmarking ontology resource retrieval methods

OGG:3000004625

1

2

MYH7

DOID:5681

NCIT:C8108

EFO:1000415

1

2

3

4

Ovarian Em bryonal Carcinom a

NCIT:C1411

CHEBI:45863

1

2

3

Paclitaxel

NCIT:C1282

CHEBI:31355

1

2

3

Carboplat in

NCIT:C8110

EFO:0006463

HP:0012226

1

2

3

4

Ovarian Teratom a

NCIT:C2916

HP:0030731
DOID:305

MPATH:549

EFO:0000313

1

2

3

4

5

6

Carcinom a

NCIT:C4060

EFO:0002511
DOID:3269

1

2

3

4

Ovarian Cystadenom a

NCIT:C4515

EFO:1000413
DOID:5550

1

2

3

4

Ovarian Choriocarcinom a

NCIT:C12404

XAO:0000258
FMA:7209

ZFA:0000403

MA:0000384

1

2

3

4

5

6

Ovary

NCIT:C5243

EFO:0006462
DOID:3606

Orphanet :398961

1

2

3

4

5

Ovarian Mucinous Adenocarcinom a

Figure 5.2: Box plot of the results of the ground truth questionnaire. The y axis displays the
possible number of ranks for each item (i.e number of answers plus the additional
not-relevant rank). The x axis shows the class id for each of the possible answers for
the queries. The dotted line represents the median and the dashed line represents
the mean by which the results were ordered

a standard deviation of 15%. These results show that the judges have a high level of
agreement when considering which classes are relevant or not relevant but have a low
agreement when ranking the ontology resources.

The expected values and the observed values of each query for the Goodness-of-Fit
Chi-Square test are shown in Figure 5.3. The line represents the expected value, i.e., the
value each rank should have if the rankings were equally chosen by the judges. The bars
represent the actual number of times each rank was chosen. Except for the MYH7 query,
the ranks in all queries differ from the expected value.

The Chi-Square Goodness-of-Fit test indicated that, with α = 0.05, half of the an-
swers reject the null hypothesis and the other half accept it, which implies that there
is some disagreement between the judges. The MYH7 query had a χ2 of zero due to
the point previously raised of a single pre-selected relevant class. Queries with more
general domains, such as carcinoma and ovary, have a lower p-value, which strongly
suggests that the judges’ responses are less likely to be random.

5.5.2 Comparison between GT and PGT

Figure 5.4 shows the relevancy and ranking agreement between the GT and the PGT.
Except for Ovarian Choriocarcinoma (OChor), the ground truths agree about which search
results are considered relevant. Ovarian Choriocarcinoma has a lower agreement due
to the presence of the class choriocarcinoma of ovary (obo:DOID_5550) which is not an

5.5 results 155

0

5

10

15

20

1 2 3 4 5 NR

Carcinoma

0

5

10

15

1 2 NR

Carboplatin

0

5

10

15

1 2 3 NR

Ovarian Choriocarcinoma

0

5

10

1 2 NR

Paclitaxel

0

5

10

15

20

1 2 3 4 5 NR

Ovary

0

5

10

15

1 2 3 NR

Ovarian Cystadenoma

0

2

4

6

1 NR

MYH7

0

5

10

15

1 2 3 NR

Ovarian Teratoma

0

5

10

15

1 2 3 Irr.

Ovarian Embryonal
Carcinoma

0

5

10

15

1 2 3 4 Irr.

Ovarian Mucinous
Adenocarcinoma

Figure 5.3: Goodness of fit Chi-Square expected and observed results, represented by a line and
bars, respectively. Each chart contains a bar for the number of rankings available for
each query and one extra one representing the ranking of “Not-Relevant” (NR). A
bold and underlined query term indicates that the test rejected the null hypothesis,
with α = 0.05

exact match. Since the PGT was built based on exact matches only, this result was not
considered and, therefore, is not featured on the final PGT. The rank agreement between
ground truths is lower than the relevancy agreement with an average of 63% agreement
between the ground truths.

0

0.2

0.4

0.6

0.8

1

1.2

Carboplatin Carcinoma MYH7 OChor OCys OEC OMA OT Ovary Paclitaxel

Precision agreement Rank agreement

Precision agreement average Rank agreement average

Figure 5.4: Relevancy and ranking agreement between the GT and the PGT

NDCG uses the ground truth ranking to compute the iDCG. However, none of the
remaining metrics takes into account the ground truth ranking to evaluate the perform-
ance of the algorithm/system. Therefore, due to the high relevancy agreement between
GT and PGT, P@k, AP@k, and MAP are considered more reliable than the NDCG when
evaluating searches with the PGT.

156 benchmarking ontology resource retrieval methods

5.5.3 Evaluation with performance metrics

The first evaluation of the algorithms and systems compares the search results in re-
sponse to queries with the GT, followed by a similar comparison against the PGT. The
next sections present the results of these evaluations and discuss their implications.

Against the GT

Tables 5.9 and 5.10 present the AP@3 and NDCG of each algorithm and application
tested for the set of ten queries. Figure 5.5 shows boxplots for each of the metrics
studied with consideration of partial and exact matches and 5.6 examines exact matches
only.

Table 5.9: AP@3. The colours code the AP@3 values and range from dark green (highest AP@3,
i.e., 1.0) to red (lowest AP@3, i.e., 0.0). The last column and last row represent the
mean of each column/row, colour coded from blue (high mean) to light yellow (low
mean)

MYH7@1 Carboplatin@2 Paclitaxel@2 OChor@3 OCys@3 OTer@3 OMA@3 OEC@3 Carcinoma@5 Ovary@5

OLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.96

Bioportal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.71 0.95

Solr 1.00 1.00 1.00 0.76 0.67 1.00 1.00 0.11 1.00 0.71 0.83

Zooma 0.00 0.50 0.50 1.00 1.00 0.33 0.33 1.00 0.20 0.00 0.49

tf-idf 1.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.22

pagerank 1.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.22

VSM 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10

boolean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SMM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BM25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CMM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.45 0.45 0.45 0.34 0.33 0.30 0.30 0.28 0.25 0.24

Table 5.10: NDCG. The colours code the NDCG values and range from dark green (highest
NDCG, i.e. 1.0) to red (lowest NDCG, i.e. 0.0). The last column and last row
represent the mean of each column/row, colour coded from blue (high mean) to
light yellow (low mean)

MYH7@1 Carboplatin@2 Paclitaxel@2 OCys@3 OChor@3 OEC@3 OMA@3 OTer@3 Carcinoma@5 Ovary@5

OLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00

Bioportal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.95 0.98

Solr 1.00 1.00 1.00 0.95 0.76 1.00 1.00 1.00 1.00 0.83 0.95

Zooma 0.00 0.61 0.61 1.00 1.00 0.62 0.47 0.47 0.34 0.00 0.51

tf-idf 1.00 0.61 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.24

pagerank 1.00 0.61 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.24

VSM 0.63 0.61 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19

SMM 0.63 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.08

boolean 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

BM25 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

CMM 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06

0.74 0.49 0.49 0.36 0.34 0.33 0.33 0.32 0.29 0.29

algorithms results analysis: Tables 5.9 and 5.10 show that for the algorithms
most of the queries had an AP@3 and a NDCG equal to zero. The main contributors
to these results were the partial matches. Since none of these algorithms (except CMM)

5.5 results 157

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.4

0.6

0.8

1.0

NDCG

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.4

0.6

0.8

1.0

P@k

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.4

0.6

0.8

1.0

AP@k

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.5

0.8

1.0

MAP

Figure 5.5: NDCG, P@k, AP@k and MAP results for the ten query collection, considering partial
matches, against the GT

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.4

0.6

0.8

1.0

NDCG

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.4

0.6

0.8

1.0

P@k

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.4

0.6

0.8

1.0

AP@k

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.5

0.8

1.0

MAP

Figure 5.6: NDCG, P@k, AP@k, and MAP results for the ten query collection, considering exact
matches only against the GT

weights partial or full matches differently, a class that contained any of the query words
was considered a match and was ranked according to the algorithm. Most of the al-
gorithms, except tf-idf and VSM, also rank matches globally, which leads to several
non-relevant results having a high score due to the global score of the ontology. CMM is
one of the algorithms that ranks ontologies globally, but since it evaluates the coverage
of the set of queries by an ontology, it goes even further by considering the query set
globally as well. MYH7, Carboplatin, and Paclitaxel achieved the best AP@3 and NDCG
results due to their low number of possible matches.

The comparison of Figure 5.5 with Figure 5.6 shows that forcing exact matches con-
siderably increases the performance of the IR algorithms. However, the consequence of
this change is that the algorithms ignore synonyms and search applications ignore small
edits between matches. By forcing exact matches, even the same label with a different or-
der will not be returned by the algorithms. However, in the small scale considered, this
was not a significant issue since only one query matched with a synonym (efo:0002511

158 benchmarking ontology resource retrieval methods

- simple cystadenoma) and only one matched with a label with a different word order
(obo:DOID_5550 - choriocarcinoma of ovary). Furthermore, when the ontology and query
set is later expanded using the PGT (see Figure 5.8), the performance does not degrade
substantially, meaning that the cases where this situation occurs are in the minority.

search applications results analysis: BioPortal focuses on precision, only
showing the best hit in the ontologies with a match, while OLS focuses on recall, with
the highest scoring terms ranked first, but also showing all possible partial matches. The
search applications show high performance with a MAP of 0.97 for OLS, 0.82 for Solr,
0.80 for Bioportal, and 0.43 for Zooma.

NDCG evaluates the results considering not only the ontology classes present but
also the position in which they appear. OLS achieved the highest NDCG performance
with an average of 0.99 over all queries, BioPortal obtained an average NDCG of 0.90,
and Solr of 0.92. Zooma obtained the lowest NDCG performance with an average of
0.58.

Figure 5.5 and Figure 5.6 show that the difference between the results with or without
forcing exact matches does not have a major effect in the search applications tested since
they were already ranking the exact and relevant matches in the first k positions. Zooma
does not allow exact match search. Therefore, the results are the same in both figures.

Against the PGT

Figure 5.7 presents the results for the collection of ten query terms and 23 ontologies
with forced exact matches against the PGT. Except for Zooma, the metrics show high
performance for all algorithms and search applications. Overall, BioPortal and OLS
slightly outperform the remaining methods with Zooma having the lowest performance
in this setting.

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.4

0.6

0.8

1.0

NDCG

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.2

0.4

0.6

0.8

1.0

P@k

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.2

0.4

0.6

0.8

1.0

AP@k

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.5

0.8

1.0

MAP

Figure 5.7: NDCG, P@k, AP@k and MAP results for the ten query collection, considering exact
matches only, against the PGT

5.5 results 159

Figure 5.7 is directly comparable with Figure 5.6 since it used the same search para-
meters but the results were compared with the PGT instead of the GT. Even though the
boxplots appear different, the medians are aligned and Table 5.11 shows a high correl-
ation between the results with the GT and the PGT with a very low average distance
between the results. This correlation indicates that the results with the PGT show lower
dispersion but are correlated to the results against the GT (which show higher disper-
sion in the boxplot). The MAP comparison between the two figures also shows a high
degree of similarity, with OLS and BioPortal slightly outperforming all other algorithms
and Zooma obtaining the lowest results.

Table 5.11: Correlation and average distance between GT and PGT results for each metric tested
(p-value < 0.01)

Metric Pearson’s R Average Distance

NDCG 0.75 0.03
P@K 0.64 0.07
AP@K 0.69 0.05
MAP 0.93 0.05

From these results, we concluded that the PGT is a reliable complement for an expert-
based ground truth in the setting described. Therefore, we extended the number of quer-
ies and ontology collection and tested the algorithms and search applications against the
respective PGT. Figure 5.8 shows that the overall conclusions of the extended search are
similar to the ones obtained with the smaller query set. The search applications achieve a
superior performance against the IR algorithms, with OLS having the best performance,
followed by BioPortal, Solr, and Zooma having the lowest results.

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.4

0.6

0.8

1.0

NDCG

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.4

0.6

0.8

1.0

P@k

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.4

0.6

0.8

1.0

AP@k

boolean t f-idf BM25 VSM pagerank CMM SMM Bioportal Solr OLS Zooma

0.0

0.2

0.5

0.8

1.0

MAP

Figure 5.8: NDCG, P@k, AP@k and MAP results for the extended query and ontology collection,
considering exact matches only, against the PGT

160 benchmarking ontology resource retrieval methods

5.6 discussion

These are some of the key search factors that influenced the process of ranking resources
in ontologies.

ground truth: some judges ranked a class as not relevant, while other judges chose
the same class as the most relevant. The principles of ontology engineering guide that
ontologies should be orthogonal, which means that the same concept should not be
independently created in each ontology, but, if it already exists, it should be reused
from existing ontologies. In reality, however, ontologies are neither complete nor or-
thogonal and labels do not have a perfect representation of the semantics of a concept.
The same concept can, therefore, be described in different ontologies, and experts do
not agree which one should be the unifying one, as some experts will have different
interpretations of the semantics of the label or the semantic categorisation of the on-
tology of a concept. This disagreement makes the task of building a gold standard
for ontology search results difficult. The same issue served as the motivation for the
design of the framework presented in Chapters 3 and 4. The framework presents a set
of candidate data models instead of presenting a single best ranked candidate for each
entity type or property. This allows for the presentation of a full ontological picture
for the data publisher or ontology engineer to choose which candidate best fits their
use-case and intended application, while also providing support to maximise interoper-
ability with existing ontologies either by direct annotation or by relational links such as
owl:equivalentClass.

probabilistic ground truth: the main goal of building a probabilistic ground
truth was to perform a deeper evaluation without involving more human experts. Find-
ing experts both in the biomedical domain and in knowledge engineering to fill an
extensive questionnaire is not a trivial task. The PGT was shown to have a significant
agreement with the GT and the extended search showed that even with a broader do-
main of queries, the search applications still outperform the IR algorithms and OLS and
BioPortal are the best performing systems.

partial matches: the performance of all the IR algorithms suffered from too many
partial matches. In biomedical ontologies, it is common to find multi-word labels since
this domain describes complex concepts such as different phenotypes or anatomical
parts.

For example, when the input for the algorithms is the query Ovarian Cystadenoma,
the results consist mostly of partial matches of the word ovarian. The large number of
partial matches led to a precision and NDCG of zero for most algorithms tested. The
CMM algorithm is the only one in this set that distinguishes between partial and ex-

5.6 discussion 161

act matches. However, it did not perform better than others since it does not evaluate
each query individually. The relevance of partial matches to the performance of the IR
algorithms was demonstrated with the limitation of the search to exact matches only.
However, ideally, algorithms should not be limited to exact matches since they may ex-
clude complex semantics (e.g., synonyms or descriptions) of ontologies from the search.

tie-breaking: In the ground truth, ties were resolved by ordering them by ontology
popularity, which was obtained from BioPortal. This method is also the main boost
factor for search results in BioPortal. In our experiments, we do not believe this method
introduced bias towards BioPortal since the number of ties was low (only two ties for
all ten query words) and the remaining search applications also had a good overall
performance, with OLS slightly outperforming BioPortal.

controlled vs. open access ontologies The search process included a set of
23 ontologies that was later expanded to 153 open-access ontologies. BioPortal contains
several restricted access ontologies (e.g., SNOMED CT) that were featured in the search
results but could not be included in the ground truth and, therefore, could not be evalu-
ated. In some cases, this means that even though the ground truth contains some of the
possible classes, BioPortal can have several more and there was no way, at this point, to
evaluate their relevance in relation to the open access ontologies.

general vs. specialised terminologies: The search applications tested did not
agree on the ranking for some queries. This issue was more noticeable when the query
was more general, such as in the search for Ovary. This query has several exact matches
in different ontologies, and all the applications ranked them differently. Some of those
matches are species specific, but their descriptions are general. Table 5.12 shows the
comparison of the results of the distinct applications tested, the ground truth and the
probabilistic ground truth. This consideration also contributed to the larger dispersion
in the precision of the expanded set of queries, since this set included less specific
queries that can have several exact matches ranked in different orders.

Table 5.12: Comparing the ranking for Ovary between the GT, BioPortal (BP), OLS, Solr and
PGT

Class URI GT BP OLS Solr PGT

http://purl.obolibrary.org/obo/NCIT_C12404 1 1 1 3 1

http://purl.obolibrary.org/obo/XAO_0000258 2 4 3 2 4

http://purl.obolibrary.org/obo/FMA_7209 3 2 5 - 5

http://purl.obolibrary.org/obo/ZFA_0000403 4 3 4 1 3

http://purl.obolibrary.org/obo/MA_0000384 5 - 2 4 2

http://purl.obolibrary.org/obo/NCIT_C12404
http://purl.obolibrary.org/obo/XAO_0000258
http://purl.obolibrary.org/obo/FMA_7209
http://purl.obolibrary.org/obo/ZFA_0000403
http://purl.obolibrary.org/obo/MA_0000384

162 benchmarking ontology resource retrieval methods

solr considerations: Solr achieved a good performance and its biggest advantage
is that any user can index and search through their own set of ontologies.

ols considerations: OLS uses Solr as its base for indexing and searching and
boosts specific ontologies. The value of the boost is unknown and the process of attrib-
uting a boost to an ontology is not explicitly explained.

zooma considerations: Zooma’s performance suffered not only from obtaining
matches from annotated data but also from its focus on high precision. For all queries
that found a match in the curated data, the search returned only one or two results. In
most cases, these results did not match what the experts considered the most relevant
ontology class. With only eight data sources to choose from, it is possible that the
annotated data focused on domains not represented by the queries used. The queries
that achieve top scores with Zooma are the queries that did not match any term in the
curated data and, therefore, Zooma used OLS to find matches for the query.

5.7 recommendations

In this chapter, we evaluated seven IR ranking algorithms and four search applications
to assess their performance and find how they can support an internal approach for
data modelling. This work established a ground truth through a user study with ten ex-
perts that ranked ten cancer-related queries and established a ground truth based on the
consensus from the algorithms and systems tested. The ground truths were compared
against the results from the ranking algorithms and the search applications. The eval-
uation experiment used 61 search queries (10 terms from the cancer genomics domain
plus 51 general biomedical terms) and 153 biomedical ontologies (23 ontologies related
to cancer genomics terms plus 130 general biomedical ontologies). Based on this ana-
lysis, we are able to conclude that (1) in their current state, the algorithms cannot handle
partial matches, but forcing exact matches boosts their performance with possible loss
of information and (2) the search applications are already robust in finding the relevant
concepts for search queries in the correct order, with high precision and recall. The per-
formance of search applications severely degrades with ambiguous search queries when
compared to specific/concise queries. After evaluating the technologies, we conclude
that, even though BioPortal and OLS outperform all other applications, one should not
be chosen over the others by performance alone, but instead each situation (i.e., search
scenario) should be analysed to choose which application to use:

searching for top-k. Both BioPortal and OLS have good precision in the top-3
hits, but both of them return a lot more results for general queries. It is possible to

5.7 recommendations 163

tune both tools to only return exact matches to reduce the number of matches, but
the applications can still obtain more classes than the user is expecting. On the other
hand, Zooma’s smaller repository returns only one or two results, but that means that
the queries have to be tuned towards the domains annotated by the curated data. This
benchmark, in conjunction with existing benchmarks of ontology repositories (e.g., [192,
200, 201]), shows the effectiveness of ranking ontologies both with IR algorithms and us-
ing existing repository search engines. In general, ontology repositories greatly facilitate
the discovery of relevant ontologies with a search engine expediting the process of find-
ing relevant ontology resources. Therefore, external approaches to data modelling can
be complemented by an ontology repository with a search function to complete a data
model. Ontology repositories, however, are not available specifically for every domain,
with the LOV providing search over wider domains and OLS and BioPortal focusing
specifically on the biomedical domain.

set of ontologies. If the set of ontologies used is a restriction for the search, Bi-
oPortal, OLS and Zooma can filter the ontologies shown in the results. Besides the
ontologies available in OLS, Zooma also includes data sources used for the annotation
process. OLS, however, does not index part of the ontologies indexed by BioPortal due
to (1) BioPortal allowing user-submitted ontologies and OLS curating the ontologies al-
lowed in the system and, (2) BioPortal having a large set of licensed ontologies (e.g.,
SNOMED CT) which are not indexed by OLS and, unless the user has access, cannot
be indexed with Solr. In the biomedical domain, both of these conditions should be
taken into account when choosing which service to use. If the user wants to use only
open-access ontologies, it can filter them in BioPortal, but more easily can just search
through all the indexed ontologies in OLS. However, if the user wants to search the
largest possible set of ontologies, BioPortal would be the suggested choice. This recom-
mendation can be extrapolated to every domain since a data publisher should carefully
consider which ontologies are currently available in the domain of their dataset. If these
ontologies are stored in a repository that can be searched, such as Bioportal, but are not
freely available, the user cannot take advantage of a more personalised search unless
necessary ontology licenses are acquired.

looking for partial matches. When the main goal of the search is not to find an
exact match but to find related terms to the one being searched, OLS is the best solu-
tion. Contrary to BioPortal, which shows only the most relevant class in each ontology,
OLS ranks and shows every possible match within the ontologies it has indexed. High
scoring matches are shown first and then every possible partial match is also displayed.
This consideration should also be taken into account in relation to the expertise of a data
publisher. If a data publisher knows the exact concepts to model their data, exact match
search will provide a speedier modelling process. However, if the data publisher is giv-

164 benchmarking ontology resource retrieval methods

ing preference to a more exploratory search to better understand the concepts available
to fit their data, then a search focusing on maximising recall is desirable.

custom set of ontologies. In a use-case that a user has pre-selected a specific set
of ontologies that wants to search and rank their concepts to match keywords from a
data model, a standalone search engine can facilitate this scenario. These search engines
provide greater liberty over the indexing and ranking processes, giving the data pub-
lisher more agency over the ontology resource recommendations that will best fit their
use-case. In the benchmark studied, Solr was the search engine chosen and it performed
comparably well with the best search engines, indicating that it is a good candidate for
a custom ontology resource search.

search with curated annotations. Despite Zooma’s lower performance in this
context, it can be applied instead as an external approach to data modelling, where the
dataset overlaps with terms from the data sources indexed by the tool. The best feature
of Zooma is providing a backup search with OLS when no match is found in the data
sources, providing a hybrid model of internal and external approaches to create a data
model.

5.8 conclusions

In this chapter, we focused on assessing the performance of ontology resource retrieval
techniques and systems when matching a given keyword. This benchmark was motiv-
ated by the question:

RQ3→ Can existing methods for ontology resource retrieval support the process of creating
a data model using an internal approach?

To answer this question, we divided it into the following subquestions:

RQ3.1 → Are IR algorithms effective for retrieving and ranking top-k ontology classes that
match a given keyword?

We concluded that IR algorithms, without any modification or optimisation for the
use-case, are not effective when ranking multi-word queries while accepting partial
matches, but their performance substantially increases when forcing exact matches only.

RQ3.2 → Are ontology resource search engines effective for retrieving and ranking top-k
ontology classes that match a given keyword?

The search engines tested performed well under the conditions tested both in the
partial match and exact match settings. The different repositories and systems have
different strengths and weaknesses that should be pondered when choosing a system to
query.

5.8 conclusions 165

RQ3.3 → What requirements should be considered when choosing the best technique to
retrieve ontology resources when using internal approaches to create a data model?

We believe that the proposed benchmark is a good indicator of the performance of
biomedical ontology search repositories tested, and we expect that, in the biomedical
domain, this evaluation will aid researchers in finding the best application to fit their
annotation needs will be easier. The characteristics of these biomedical repositories,
however, can be extrapolated to other domains where similar considerations should be
taken into account when choosing a system to find ontology resources. In general, we
hope that the set of recommendations extracted from the results of the benchmark will
allow data publishers and ontology engineers to find the best solution for their data
modelling needs, be it reusing ontologies for an internal approach or complementing an
external approach with ontology resource search.

Finally, returning to the overall question: Can existing methods for ontology resource
retrieval support the process of creating a data model using an internal approach?

Tools and algorithms that facilitate ontology resource retrieval can support the pro-
cess of creating a data model by providing effective means of retrieving relevant onto-
logy resources by keyword search over indexed ontologies. We proposed a benchmark
that compares how different tools and algorithms perform when retrieving the top-k on-
tology resources when searching with keywords. We compared the ontology resource
retrieval search results from tools and algorithms with an expert-based ground truth
and an automatically generated ground truth based on consensus between the tools and
algorithms. We discussed the results in terms of performance and extracted a set of
recommendations for choosing the best retrieval methodology for different use-cases.
Similarly to Kolbe et al. [201], building a ground truth from query logs in the ontology
repositories could further strengthen the analysis since user behaviours could be ana-
lysed in conjunction with the search results to provide recommendations that consider
user preferences when choosing the top-k ontology resources.

Overall, we concluded that, specifically in the biomedical domain, the existing re-
positories provide a strong support for ontology resource retrieval, meaning that data
publishers in the domain wishing to take an internal approach to data modelling have
several tools at their disposal that can facilitate ontology reuse and extension by effect-
ively finding the top-k best ontology resources that match a keyword. In this chapter,
we focused on the biomedical domain. However, it can be advantageous to confirm that
the same conclusions and recommendations hold true in other domains. The biomed-
ical domain is privileged, since more than one repository and tool exists and several
ontologies have been created to model a large portion of concepts in the domain. In
other domains, where ontology repositories might not be available, general-purpose
search engines, such as Solr and ElasticSearch, and IR algorithms provide the necessary
customisation for a data publisher to load relevant ontologies and retrieve the top-k
ontology resources that match keywords on their conceptual data model.

6 C O N C L U S I O N S

In this thesis, we proposed to answer the following overall research question:

How to facilitate the creation of a well-fitted and interoperable data model using a
background knowledge graph built from existing RDF data sources?

To answer this question, we have designed a framework which is composed of sev-
eral methods and algorithms to produce a ranked set of candidates to match the data
of an input dataset. The work presented in this thesis was divided into three parts:
(1) building the background knowledge graph from multiple data sources and the on-
tology graph extracted from those sources, (2) generating and ranking entity type and
property candidates by exploiting information obtained from the knowledge graph and
the ontology graph, and (3) examining the performance of ontology repositories and IR
tools and algorithms when searching and ranking top-k ontology resources.

We experimented and evaluated the framework with diverse methods to examine its
performance and analyse its impact in potential applications. Furthermore, we invest-
igated how ontology repositories can further support the framework in the process of
creating or integrating a schema with existing ontologies used in domain datasets.

Through the evaluations and experiments, we concluded that, within the set paramet-
ers, the framework achieves the goal of facilitating the process of creating a data model
for an input dataset that can be adjusted to be accurate, interoperable, and consistent.
The caveats of each methodology proposed were discussed and should be taken into
consideration when implementing the framework and associated evaluations. Overall,
one of the goals of the framework was to lower the entry level barrier to publish linked
data. In our proposed framework, most of the underlying processes of identifying the
best class or property to model the data are automatised and present the user with a
recommendation of a data model for their data. Nonetheless, the user is presented with
a ranked set of options and can customise to model to fit a certain use-case. This custom-
isation can require some level of understanding of the data model and the underlying
concepts of the RDF data model. Therefore, despite being able to streamline the process
of creating a data model, the publishing barriers are not eliminated since some level of
knowledge is still required for an optimal experience. On the other hand, the framework
is more successful in aiding in selecting and linking the ontologies used to model data
in a domain. The framework takes existing datasets and provides interoperable and con-

167

168 conclusions

sistent recommendations for data models and eliminate the need to manually analyse
the data domain and empirically decide between existing data models.

6.1 lessons learned

In terms of building a knowledge graph to extract data models (Chapter 3), we learned
that the first challenge is selecting the appropriate sources to load and create the know-
ledge graph. Even though we did not present this particular use-case in this thesis,
it would be possible to load general purpose knowledge graphs such as DBpedia,
Wikidata, or YAGO to match general domain input datasets covered in these know-
ledge graphs. However, the issue of multiple data models to model the same domain is
more prevalent in domain datasets that need to describe specific concepts, as in the use-
cases chosen in this thesis. In general, domain knowledge, such as in the library domain,
finding data sources and datasets was relatively easy since several libraries are produ-
cing and publishing RDF data (with different data models, thus creating the issue of
this thesis). However, finding appropriate source data for an expert level domain, such
as the life sciences, was more challenging since it required deeper investigation of the
topics to find relevant resources. Therefore, as discussed in Chapter 3, the research field
of dataset matching might prove to be essential for knowledge graph modelling, while
the opposite might also be verified, i.e., having consistent data models for a domain
might also prove to be fundamental for dataset matching.

In Chapter 3, in relation to the underlying ontology graph extracted from the know-
ledge graph, we also learned the importance of enrichment to improve the connectivity
of the graph. Ontologies are commonly developed independently. Even though stud-
ies have shown a reduction in the use of proprietary vocabularies and an improvement
to reuse [46, 48], in a given domain, multiple ontologies are likely to have conceptual
overlaps. Therefore, we proposed and tested three methodologies to enhance the connec-
tions between the ontologies in the data models. We learned that even a small number
of edges can have a significant impact on how tightly a graph is connected, making
it hard to separate concepts within the graph, therefore, facilitating the use of graph
traversal-based methodologies.

Finally, in this chapter, we also explored the use of classification models to predict
datatype properties. We learned that the most important step in this process is knowing
the data. This knowledge allows for the correct design of the features to extract from the
values of the properties. In the case of the library datasets, the literal data they contain
is not very varied, mostly consisting of textual strings, dates, or unique codes. However,
once again the biomedical domain proved to be more challenging. For example, iden-
tifier codes are prevalent. However, while these can be similar in their representation,
they conceptually identify different concepts (e.g., gene and protein symbols). There-

6.1 lessons learned 169

fore, to successfully use a classification model, the characteristics of the literals in the
dataset have to be well-defined beforehand.

After building the background knowledge graph, we focused on recommending a
ranked list of suitable data models to fit an input dataset (Chapter 4). First, we learned
about the challenges that each file format poses to the generation of entity type and
property candidates. RDF is the most direct match between input and knowledge graph.
However, since it was developed to be expressive, these datasets are usually the most
complex to re-model or integrate with other data models. If a dataset is published with a
structure, a data publisher has already put some thought into the representation of their
data. Therefore, adapting this established data model to other existing models can be
challenging due to the number of entity types and properties. In our case, we used RDF
input datasets that were automatically generated (University and GenAge) or manually
curated (Gutenberg). The automatically generated data models feature a set of entity
types and properties developed for broad applications and cover several use-cases, such
as the bibframe:BaseMaterial or bibframe:ColorContent entity types. These entity
types will be useful to model specific data. However, when looking only at a library
catalogue, they become less relevant. Therefore, the challenge for a data publisher here
would be to analyse the results of the framework and decide which elements of the data
model are worth keeping for their specific use-case and which are expendable for the
sake of interoperability with the domain.

When looking at CSV and JSON, we learned that the pre-processing phase is the
most relevant since the input data has to align with the requirements of the framework.
In the case of these file formats, if the user provides no extra information, the framework
is more likely to underperform or be more inefficient since it will start an exhaustive
search instead of a targeted one. Therefore, the lesson learned once again is that it
facilitates this matching problem to have some general knowledge of the input data and
what is being looked for in a data model.

We also learned in Chapter 4 how the characteristics of different elements that com-
pose an entity-relation RDF data model affect the generation and ranking process. For
entity type generation and ranking, we learned that matching entities in the input data
with the knowledge graph is a good starting point for entity type candidate genera-
tion. The methods based on AOR to match entities obtained a good performance that,
combined with the content scoring methodology, managed to order the extensive list of
candidates into a reasonable top-10 candidates to match the input entity type. Consid-
ering the motivation for this framework, we also learned that providing multi-language
support systems could expand the application of this framework since it likely that
data publishers will use different languages to design their own data model to fit their
specific language. Nonetheless, conceptually, these data models should align and the
framework might have the potential to provide this alignment of the data models.

170 conclusions

We learned that ranking properties is more challenging than ranking entity types
since entity types are supported by the entities they represent, which provides useful
information in their ranking. Looking at the state-of-the-art in both domains, we found
a larger proportion of work in matching entity types than properties. Therefore, we
propose methods to generate and rank datatype and object properties that not only in-
tegrate well with the proposed framework but also produce promising results. Since the
main goal of the framework is not optimal precision, the level of error obtained is accept-
able. Nonetheless, further investigation into matching datatype and object properties in
the context of a data model is necessary to improve the ranking of the recommendations
provided to facilitate the recommendation process further.

In terms of interoperability with existing data models, we learned that important con-
siderations include the weight to give to this parameter. We encountered several cases
where the framework produced results that were well ranked in terms of content score,
but the interoperability re-ordered the results to favour entity types or properties lower
ranked but that are very interoperable within the background knowledge graph. There-
fore, a data publisher should consider and test different weights for interoperability to
achieve a balance suitable for their use case. The demonstrator developed provides an
overview of what this testing phase could look like and shows how easily the framework
could be changed to fit the desired parameters.

Finally, we learned that to bring the whole data model together, we had to guarantee
not only correctness and interoperability but some measure of consistency to provide
meaningful recommendations. For this, we used a consistency score that looks at triple
patterns in the knowledge graph and the data model being proposed and boosts the
triples that are more consistent with both. The use of this score achieved its goal and
the aggregated data model suggestions were more consistent both with the knowledge
graph and with itself. In the future, axioms from ontologies that denote logical rela-
tionships, such as disjointness or union, can be exploited to contribute the data model
recommendations. This addition would create a score that not only provides a consist-
ent data model in terms of the suggestions from the knowledge graph but also in terms
of guaranteeing that the recommendations are logically correct when considering the
logical relationships contained in the ontology graph.

In Chapter 5, we looked at the problem addressed in this thesis from a different
perspective that fits the case where the requirements to use the proposed framework are
not met and, therefore, a data publisher has to look at alternatives, which most likely
will include an exhaustive search of ontology repositories. In this chapter, we learned
that no single ontology repository or AOR search strategy can claim superiority over the
others, which led us to propose a set of recommendations to decide which solution is
more appropriate to each use case. These recommendations were created by analysing
the results of the benchmark that compared different solutions to search for the top-k
ontology resource search results to match input keywords. This analysis, together with

6.2 future work 171

the observation of the workflow of each solution, led us to recommend cases where one
strategy might be preferable over others.

Finally, to the best of our knowledge, no other proposed work provides methodo-
logies to recommend data models, considering the characteristics of the data and the
interoperability with the domain but also focused on consistency. The proposed meth-
ods are not intended to provide a precise answer but, instead provide a holistic view of
the recommended solutions. Therefore, we learned that the methods described provide
a good starting point for further developments that can potentially be put in practice in
real-world cases.

6.2 future work

Knowledge graphs play an important role in the organisation and discovery of informa-
tion, and we believe that this role will become more relevant in the near future. Google
was instrumental in the dissemination of the concept, now being adopted by small and
large-scale enterprise initiatives. Improving and developing technologies and frame-
works to support building and maintaining knowledge graphs facilitates the understand-
ing of their benefits and users will be more keen to adopt the technology. In this thesis,
we aim to provide methods to advance the state-of-the-art in knowledge graph integra-
tion and completion but also in the transformation of heterogeneous data sources into
a knowledge graph format. However, the framework presented in this thesis still has
limitations, which were individually presented in their respective chapters.

In addition, conceptually there is also future work that can extend and improve
the framework and ideas proposed in this thesis. First, our framework builds upon
the assumption that data publishers need frameworks that (1) facilitate the process of
publishing data in RDF and (2) enable interoperability with already published datasets.
These assumptions were drawn both intuitively and by considering the principles of
ontology engineering, which strongly encourage reuse while building new ontologies
(see [65, 185]). Nonetheless, in the future, a user study could be performed among data
publishers and ontology engineers from different domains of knowledge to assess what
they are looking for in a data model. This survey could include not only their previous
experiences but also their current data needs. For example, a data publisher in the bio-
medical domain might be more concerned about the specificity of the annotations than
a data publisher in the library data domain. In the library data domain, the conceptual
complexity of the entities and properties is lower than in the biomedical domain where
complex relationships exist between entities. From this survey, we could then extract
this kind of information and use it to further improve our framework and make it more
adaptable to the needs of different domain experts. Furthermore, this survey could also
provide a subjective evaluation by the experts on the results of our framework and verify

172 conclusions

if balancing the parameters (i.e., weights of content and interoperability scores) matches
their data modelling preferences. However, as previously mentioned, the task of finding
the best data model is subjective to the data publisher and the data domain. Therefore,
no definitive conclusions would be drawn without a large-scale approach since these
would need to be drawn from consensus among the domain experts.

Overall, the most important next step would be to further optimise the process in
terms of effectiveness and efficiency. In terms of effectiveness, further investigation is ne-
cessary to assess datatype and object property generation and ranking since the presen-
ted methods are still not performing as well as the methods for entity type generation
and ranking. Examining ways to improve the classification model for datatype proper-
ties or exploring different machine learning approaches could lead to an improvement
in the results. In terms of object property generation, the generation process is strongly
dependent on the entity type candidate generation and ranking. Therefore, finding
alternative methods to be combined with the ones presented in this thesis would be
desirable so that the object property generation stage could be more independent from
the rest of the framework.

In terms of ranking datatype properties, the best measure of ranking is the distance
in the ontology graph, for which, if no ontology mappings or extended mappings were
found, even a correct candidate will not be ranked favourably. Therefore, investigating
content scoring methods geared towards properties would be beneficial to improve the
performance of the framework when ranking these data model elements.

When a robust generation and ranking framework is achieved, the next step would
involve optimising the process to facilitate the use by non-expert users. Ideally, a user
interface would be developed that guided the user from the process of building a know-
ledge graph (with the possibility of integrating dataset matching research to facilitate
this task) to an interface similar to the demonstrator presented in Section 4.6. The know-
ledge graphs produced by users, when possible, could be publicly shared, to allow other
users in the same domain to extract candidate data models for their data too.

Ultimately, the use of such a framework could lead to an improvement of reuse of
domain ontologies and allow the convergence of data models in the same domain. Both
situations are desirable since lowering the entry level complexity to data modelling with
ontologies brings more users and better adoption of the technologies being proposed by
the Semantic Web and linked data paradigms.

Appendices

173

A O N TO LO G I E S

In this appendix we can find the ontologies loaded into the use-case’s ontologies graphs.
The process of their extraction and processing is described in Chapter 3.

a.1 library use-case

For the library use-case we downloaded and parsed a total of 36 ontologies. Ontologies
were download in August 2020.

Table A.1: Descriptive statistics of the ontologies in the library use-case.

Prefix Namespace # Classes # Properties

agrelon https://d-nb.info/standards/elementset/agrelon 48 83

bflc http://id.loc.gov/ontologies/bflc 24 38

bibo http://purl.org/ontology/bibo 69 117

bio http://purl.org/vocab/bio/0.1 43 33

bne http://datos.bne.es/def 6 145

bnf-onto https://data.bnf.fr/ontology/bnf-onto 1 41

dcterms http://purl.org/dc/terms 22 55

dnb https://d-nb.info/standards/elementset/dnb 4 10

edm http://www.europeana.eu/schemas/edm 14 35

egr2 http://rdvocab.info/ElementsGr2 0 59

event http://purl.org/NET/c4dm/event.owl 6 23

foaf http://xmlns.com/foaf/0.1 15 68

frbr http://rdvocab.info/uri/schema/FRBRentitiesRDA 14 0

geo http://www.geonames.org/ontology 2 5

gnd https://d-nb.info/standards/elementset/gnd 68 234

gsp http://www.opengis.net/ont/geosparql 3 34

intervals http://reference.data.gov.uk/def/intervals 38 27

isbd http://iflastandards.info/ns/isbd/elements 27 163

mads http://www.loc.gov/mads/rdf/v1 58 92

marcrole http://id.loc.gov/vocabulary/relators 0 0

mo http://purl.org/ontology/mo 60 167

ore http://www.openarchives.org/ore/terms 4 8

org http://www.w3.org/ns/org 9 35

owl http://www.w3.org/2002/07/owl 26 49

powder-s http://www.w3.org/2007/05/powder-s 2 19

process http://www.daml.org/services/owl-s/0.9/Process.owl 43 53

prov http://www.w3.org/ns/prov 51 89

rdarw http://rdvocab.info/RDARelationshipsWEMI 0 508

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns 7 9

rdfs http://www.w3.org/2000/01/rdf-schema 6 9

rdvocabe http://rdvocab.info/Elements 10 456

schema http://schema.org 618 878

skos http://www.w3.org/2004/02/skos/core 4 28

umbel http://umbel.org/umbel 36 50

vivo http://vivoweb.org/ontology/core 385 420

wgs84_pos http://www.w3.org/2003/01/geo/wgs84_pos 2 5

175

https://d-nb.info/standards/elementset/agrelon
http://id.loc.gov/ontologies/bflc
http://purl.org/ontology/bibo
http://purl.org/vocab/bio/0.1
http://datos.bne.es/def
https://data.bnf.fr/ontology/bnf-onto
http://purl.org/dc/terms
https://d-nb.info/standards/elementset/dnb
http://www.europeana.eu/schemas/edm
http://rdvocab.info/ElementsGr2
http://purl.org/NET/c4dm/event.owl
http://xmlns.com/foaf/0.1
http://rdvocab.info/uri/schema/FRBRentitiesRDA
http://www.geonames.org/ontology
https://d-nb.info/standards/elementset/gnd
http://www.opengis.net/ont/geosparql
http://reference.data.gov.uk/def/intervals
http://iflastandards.info/ns/isbd/elements
http://www.loc.gov/mads/rdf/v1
http://id.loc.gov/vocabulary/relators
http://purl.org/ontology/mo
http://www.openarchives.org/ore/terms
http://www.w3.org/ns/org
http://www.w3.org/2002/07/owl
http://www.w3.org/2007/05/powder-s
http://www.daml.org/services/owl-s/0.9/Process.owl
http://www.w3.org/ns/prov
http://rdvocab.info/RDARelationshipsWEMI
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://rdvocab.info/Elements
http://schema.org
http://www.w3.org/2004/02/skos/core
http://umbel.org/umbel
http://vivoweb.org/ontology/core
http://www.w3.org/2003/01/geo/wgs84_pos

176 ontologies

a.2 life sciences use-case

For the life sciences use-case we downloaded and parsed a total of 33 ontologies. Onto-
logies were download in August 2020.

Table A.2: Descriptive statistics of the ontologies in the life sciences use-case.

Prefix IRI # Classes # Properties

bfo http://purl.obolibrary.org/obo/bfo.owl 35 22

bto http://purl.obolibrary.org/obo/bto.owl 6428 36

chebi http://purl.obolibrary.org/obo/chebi.owl 144 476 47

cl http://purl.obolibrary.org/obo/cl.owl 10 616 477

clo http://purl.obolibrary.org/obo/clo.owl 44 870 303

dcat http://www.w3.org/ns/dcat 8 30

dcterms http://purl.org/dc/terms 22 55

eco http://purl.obolibrary.org/obo/eco.owl 2937 93

edam http://edamontology.org 3421 77

faldo http://biohackathon.org/resource/faldo/ 16 10

foaf http://xmlns.com/foaf/0.1 15 68

geno http://purl.obolibrary.org/obo/geno.owlo 410 198

go http://purl.obolibrary.org/obo/go.owl 50 331 59

hp http://purl.obolibrary.org/obo/hp.owl 27 230 523

iao http://purl.obolibrary.org/obo/iao.owl 249 118

ncbitaxon http://purl.obolibrary.org/obo/ncbitaxon.owl 2 241 110 27

obi http://purl.obolibrary.org/obo/obi.owl 2820 167

owl http://www.w3.org/2002/07/owl 26 49

pato http://purl.obolibrary.org/obo/pato.owl 2809 203

pav http://purl.org/pav 0 42

po http://purl.obolibrary.org/obo/po.owl 1993 61

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns 7 9

rdfs http://www.w3.org/2000/01/rdf-schema 6 9

ro http://purl.obolibrary.org/obo/ro.owl 5 553

sepio http://purl.obolibrary.org/obo/sepio.owl 131 137

skos http://www.w3.org/2004/02/skos/core 4 28

so http://purl.obolibrary.org/obo/so.owl 2661 91

stato http://purl.obolibrary.org/obo/stato.owl 814 108

to http://purl.obolibrary.org/obo/to.owl 1572 46

uberon http://purl.obolibrary.org/obo/uberon.owl 15 244 352

uo http://purl.obolibrary.org/obo/uo.owl 591 2

vivo http://vivoweb.org/ontology/core 402 434

wbls http://purl.obolibrary.org/obo/wbls.owl 792 153

http://purl.obolibrary.org/obo/bfo.owl
http://purl.obolibrary.org/obo/bto.owl
http://purl.obolibrary.org/obo/chebi.owl
http://purl.obolibrary.org/obo/cl.owl
http://purl.obolibrary.org/obo/clo.owl
http://www.w3.org/ns/dcat
http://purl.org/dc/terms
http://purl.obolibrary.org/obo/eco.owl
http://edamontology.org
http://biohackathon.org/resource/faldo/
http://xmlns.com/foaf/0.1
http://purl.obolibrary.org/obo/geno.owlo
http://purl.obolibrary.org/obo/go.owl
http://purl.obolibrary.org/obo/hp.owl
http://purl.obolibrary.org/obo/iao.owl
http://purl.obolibrary.org/obo/ncbitaxon.owl
http://purl.obolibrary.org/obo/obi.owl
http://www.w3.org/2002/07/owl
http://purl.obolibrary.org/obo/pato.owl
http://purl.org/pav
http://purl.obolibrary.org/obo/po.owl
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://purl.obolibrary.org/obo/ro.owl
http://purl.obolibrary.org/obo/sepio.owl
http://www.w3.org/2004/02/skos/core
http://purl.obolibrary.org/obo/so.owl
http://purl.obolibrary.org/obo/stato.owl
http://purl.obolibrary.org/obo/to.owl
http://purl.obolibrary.org/obo/uberon.owl
http://purl.obolibrary.org/obo/uo.owl
http://vivoweb.org/ontology/core
http://purl.obolibrary.org/obo/wbls.owl

B M AT H E M AT I C A L N OTAT I O N

b.1 data structures

The following data structures are primarily used in the pseudocode through the thesis.

S← {a,b, c, . . . } a set, i.e., is an unordered and mutable collection of unique
elements. A say may be be empty, which is denoted by ∅.

L← [l1, l2, . . . , ln] a list, i.e., an ordered collection of elements. This collec-
tion is mutable and, therefore, elements can be removed
(L.remove(e)) and added to its end (L.append(e)). A list may
be empty, which is denoted by [].

T ← 〈t1, t2, . . . , tn〉 a tuple, which is an immutable ordered collection of elements.
Individual elements of the tuple may be referenced by their
original variable name, e.g., T .t1 refers to the element t1 in
the tuple.

M← {k1 : v1, . . . ,kn : vn} a mapping, i.e., a mutable associative array containing a collec-
tion of key-value pairs, where each value v is accessed by spe-
cifying its corresponding key k in square bracket, e.g., M[k1]
refers to v1. The key has to be defined by an immutable struc-
ture, while the value can be any data structure. A mapping
can be empty, which is denoted by { }.

b.2 symbols, operators, and functions

The following data structures are primarily used in the pseudocode through the thesis.

|D| cardinality or number of elements inside list, set, or tuple D.

∧ logical AND used to combine statements.

177

178 mathematical notation

d | d ∈ D∧ f(d) mutable structure-builder notation, i.e., initialises a list, set,
or tuple by including the elements that satisfy the conditions
stated.

∀a ∈ A All logical quantifier, which translates to for all a in A.

ã represents a numerical value that has been normalising by the
maximum of its data structure, e.g., ã ← a

max
a∈A

f(s) is the value

a divided by the maximum of the values in set A to which a
belongs.

× indicates a Cartesian product operation, i.e., the multiplica-
tion of n sets that forms a set of all ordered n-length tuples.
For example, A×B = {〈a,b〉 | a ∈ A∧ b ∈ B}

General Functions

pow(n, x) returns the power of a base number n with the exponent x,
e.g., pow(2, 3) = 23 = 8.

mean(a,b, . . .) returns the mean of the numerical elements provided, e.g.,
mean(1, 2, 3) = 1+2+3

3 = 2

Specific Functions

unique_types(D) extracts the unique types or type equivalent elements T for
entities in D.

random_sample(D, x,n) returns a random sample of n documents of type x or when
x is a property, documents where x has a value.

literal(s) checks if string s is literal (True) or an entity URI that exists
in the Knowledge Graph (False).

search(S, l,w) searches the document store S for label l and returns a max-
imum of w search results.

b.2 symbols, operators, and functions 179

topk(M, sort_key) takes as input a mapping with a list as value or a list. The
function selects the k elements the highest value of sort_key.

C A LG O R I T H M W O R K F LO W S

In this appendix, we can find examples of workflows for the algorithms described in
Chapter 4. These are examples of running the algorithm in a small toy dataset to illus-
trate the process of generating and ranking entity type and property candidates.

c.1 entity type generation

Figure C.1 show the process described in Algorithm 4.1 with a hypothetical example for
an input type t = /type/work. A random sampling of entities Et of type t ∈ T from
the input dataset D returns two entities e1 and e2. We extract the literals in each one of
these entities obtaining set Le1,t1 and Le2,t1 , respectively. We search each one of these
entities in the document store S and obtain two search results for e1 and one search
result for e2. We extract the entity types and labels of each match and return the tuple
of each entity type with the label set of the entity.

c.2 entity type content scoring

Figure C.2 shows the process described in Algorithm 4.4 with the results of Figure C.1.
The workflow shows the computation of each metric and their combination into a single
content score per candidate per type in the input dataset.

c.3 datatype property generation

Figure C.3 shows the process described in Algorithm 4.2 with a hypothetical example for
the input datatype property title. We obtain a random sample of two entities with this
property e1 and e2 and extract the value of the property title in each entity. For each
value, we use the Random Forest models to obtain predictions of datatype property
candidates that match the value. In this example, for the input property title, the
models would predict the datatype properties in the Knowledge Graph uk:has_title

181

182 algorithm workflows

t1 = /type/work ∈ T

e1 = ex:work_112
}
∈ Et1e2 = ex:work_113

l1,e1
= The Eye of the World ∈ Le1,t1

l1,e2
= The Book Thief }

∈ Le2,t1l2,e2
= La Ladrona de Libros

m1,e1
= uk:book45 ∈Me1,t1

m1,e2
= uk:book21

}
∈Me2,t1m2,e2

= es:libro2

c1 = 〈ont1:Book,Le1,t1 ,Lc1,t1〉
}
∈ Cet[〈t1, e1〉]c2 = 〈ont1:Book,Le1,t1 ,Lc2,t1〉

c2 = 〈ont1:Book,Le2,t1 ,Lc3,t1〉
}
∈ Cet[〈t1, e2〉]c3 = 〈ont2:Libro,Le2,t1 ,Lc4,t1〉

l1,c1
= The Eye of the World ∈ Lc1,t1

l1,c2
= The Wheel of Time:

}
∈ Lc2,t1The Eye of the World

l1,c2
= The Book Thief ∈ Lc3,t1

l1,c3
= La Ladrona de Libros ∈ Lc4,t1

Input

Line 4

random_sample(D, t, 2)

Line 7

input label extraction

Line 11

search(S, l,w)

Lines 12-15

entity type extraction
Line 11

candidate label extraction

Figure C.1: Overview of entity type candidate generation process with an example.

and es:título. The first one is predicted more than once which will be taken into
consideration when re-ranking these candidates later.

c.4 datatype property content scoring

Figure C.4 shows the process described in Algorithm 4.5 with a hypothetical example
extracted from the results of Figure C.3. The workflow shows the computation of each
metric and their combination into a single content score per candidate per type in the
input dataset.

c.5 object property generation

Figure C.5 shows the process described in Algorithm 4.3 with a hypothetical example for
an object property has_author, with the subject ex:work_112 and object ex:author_05.
This property has a domain /type/work and a range /type/author which are used to

c.6 object property content scoring 183

Cet[t1, e1] = [(ont1:Book,Le1
,Lc1

), (ont1:Book,Le1
,Lc2

)]
Cet[t1, e2] = [(ont1:Book,Le2

,Lc3
), (ont2:Libro,Le2

,Lc4
)]

G[ont1:Book] = [1.0, 0.66]
S[t1, ont1:Book] = [1.0]

G[ont1:Book] = [0.006]
G[ont2:Libro] = [1.0]
S[t1, ont1:Book] = [1.0, 0.006]
S[t1, ont2:Libro] = [1.0]

C[t1] = {ont1:Book, ont2:Libro}

freqs = 1; mean(scores) = 0.503; freq_p = 1
distr = 1.0; distc = 1
cs = 1×mean(0.503, 1, 1, 1) = 0.88
CSet[t1] = [(ont1:Book, 0.75)]

freqs = 0.63; mean(scores) = 1.0; freq_p = 0.8
distr = 0.75; distc = 1.0
cs = 0.63×mean(1.0, 0.8, 0.75, 1.0) = 0.568
CSet[t1] = [(ont1:Book, 0.75), (ont2:Libro, 0.56)]

iteration [t1, e1]

Input

iteration [t1, e2]Lines 1-13

Calculate candidate
string similarity

Lines 14-17

Compute set of
unique candidates

iteration [t1, ont1:Book]

iteration [t1, ont2:Libro]
Lines 18-28

Compute content
score

Figure C.2: Overview of entity type candidate content scoring with an example.

retrieve the entity type candidates previously ranked with Algorithm 4.4. Then the
Cartesian product of multiples domain and range candidates sets is computed, and Cop

includes all the edges between domain and range candidates. For reasons of space and
readability we do not show in the figure all possible product combinations between
domain/range and property but show the results of each step individually and present
the results of the combination.

c.6 object property content scoring

Figure C.6 shows the process described in Algorithm 4.6 with a hypothetical example
extracted from the results of Figure C.5. The workflow shows the computation of each

184 algorithm workflows

dp1 ← title ∈ DP

e1 = ex:work_112
}
∈ Et1e2 = ex:work_113

l1,e1
= The Eye of the World ∈ Le1,t1

l1,e2
= The Book Thief }

∈ Le2,t1l2,e2
= La Ladrona de Libros

Cdp[〈dp, e1, rf1〉]← [ont1:has_title, ont2:título]
Cdp[〈dp, e2, rf1〉]← [ont1:has_title, ont2:título]
Cdp[〈dp, e1, rf2〉]← [ont1:has_title, ont2:título]
Cdp[〈dp, e2, rf2〉]← [ont2:título, ont1:has_title]

Input

Line 4

random_sample(D,dp, 2)

Line 6

property value extraction

Lines 7-13

predict(rf, l)

Figure C.3: Overview of datatype property candidate generation process.

metric and their combination into a single content score per candidate per type in the
input dataset.

c.7 interoperability scoring

Figure C.7 shows the process described in Algorithm 4.7 when computing the interop-
erability score for the hypothetical example presented for the generation and ranking
of entity types. The interoperability process computes the two metrics, Neighbourhood
Size and Interoperability, and combines them into a single interoperability score is for
each candidate per source type.

c.8 consistency scoring - aggregation

Figure C.8 shows the process described in Algorithm 4.8 when computing the aggrega-
tion phase of the consistency score for the hypothetical examples previously described.
For brevity, due to the size of the results of the Cartesian product between candidates,
we display only what would be the top ranked candidate 〈domain – property _ range〉
triple patterns for each input triple pattern. In this example we use the following:
wcs = 1.0;wis = 1.0,wcns = 0.3. Again, due to the size of the tuple we use the

c.9 consistency scoring - refinement 185

Cdp[dp, e, rf1] = [(ont1:has_title, ont2:título),
(ont1:has_title, ont2:título]

Cdp[dp, e, rf2] = [(ont1:has_title, ont2:título),
(ont2:título, ont1:has_title)]

S1[〈dp, rf1〉]← [〈ont1:has_title, 1.0〉, 〈ont2:título, 0.5〉]
S1[〈dp, rf2〉]← [〈ont1:has_title, 1.0〉, 〈ont2:título, 1.0〉]

S2[〈dp, ont1:has_title〉]← [1.0, 1.0]
S2[(〈dp, ont2:título〉]← [0.5, 1.0]

S3[〈ont1:Book,dp, ont1:has_title〉]← [1.0, 1.0, 1.0, 0.75]
S3[〈ont1:Book,dp, ont2:título〉]← [0.75, 0.7, 1.0, 0.75]
S3[〈ont2:Libro,dp, ont1:has_title〉]← [1.0, 1.0, 1.0, 0.56]
S3[〈ont2:Libro,dp, ont1:título〉]← [0.75, 0.7, 1.0, 0.56]

S3[〈dp, ont1:has_title〉]← 0.91
S3[〈dp, ont2:título〉]← 0.73

CSdp[dp]← [〈ont1:has_title, 0.91〉, 〈ont2:título, 0.73〉]

Input

Lines 1-7

borda_score(c,p)

Lines 8-12

Aggregate Borda

Lines 13-19

Compute cs metrics

Lines 27-33

compute mean of cs metrics

Lines 34-38

final map

Figure C.4: Overview of datatype candidate content scoring with an example.

variable scores to represent the tuple with candidates and scores that results from the
aggregation phase of the consistency score.

c.9 consistency scoring - refinement

Figure C.9 shows the process described in Algorithm 4.9 when computing the refine-
ment phase of the consistency score for the hypothetical examples previously described.
In this figure, we represent an example of a domain and range entity type candidate
that would be adjusted with this refinement step. Considering that ont1:Book and
ont3:Person are more commonly ranked first, the scores of triples with their input do-
main d and range r are refined to boost these candidates in other triples with the same

186 algorithm workflows

s, p, o = ex:work_112, has_author, ex:author_05 ∈ OP

d, p, r = /type/work, has_author, /type/author ∈ OP

dc1
, rc1

= ont1:Book, ont3:Person
dc1

, rc2
= ont1:Book, ont4:Persona

dc2
, rc1

= ont2:Libro, ont3:Person
dc2

, rc1
= ont2:Libro, ont4:Persona

op(dc1
, rc1

) = 〈ont1:has_author,DS1〉 }
∈ Copop(dc1

, rc2
) = 〈ont3:creator,DS2〉

op(dc2
, rc1

) = 〈ont4:autor,DS3〉

Cop[has_author]← [〈ont1:has_author,DS1〉,
〈ont3:creator,DS2〉,
〈ont4:autor,DS3〉]

Input

Line 1

extract domain
and range

Line 3

CSet[d]×CSet[r]

Line 4

get_edges(G, cd, cr)

Line 5

map property
with candidates

Figure C.5: Overview of the object property candidate generation process with an example.

Cop[has_author]← [〈ont1:has_author,DS1〉,
〈ont3:creator,DS2〉,
〈ont4:autor,DS3〉]

ont1:has_author: freqkg = 0.8;distr = 1.0
ont3:creator: freqkg = 0.7;distr = 0.3
ont4:autor: freqkg = 0.6;distr = 0.4

CSop[has_author]← [〈ont1:has_author, 0.96〉
〈ont3:creator, 0.38〉,
〈ont4:autor, 0.44〉]

Input

Lines 4-5

calculate scores

Lines 6-7

compute content score

Figure C.6: Overview of the object property candidate content scoring with an example.

domain and range. At the end of this step, the data model DM proposed is more
consistent in the entity types it suggests for the overall model.

c.9 consistency scoring - refinement 187

CSet[t1] = [(ont1:Book, 0.75), (ont2:Libro, 0.56)]

ont1:Book→ vc1
= 1; is = mean(0.8, 0.6) = 0.7

ont2:Libro→ vc2
= 2; is = mean(0.75, 0.5) = 0.625

ISet[t1]← [〈ont1:Book, 0.7〉,
[〈ont2:Libro, 0.625〉]

Input

Line 3

extract vertex

Line 5

IS map for entity
type candidates

Figure C.7: Overview of the interoperability scoring with an example.

d1, p1, r1 = /type/work, has_author, /type/author ∈ KGP
d2, p2, r2 = /type/work, has_publisher, /type/agent ∈ KGP

Cd1
← {〈ont1:Book, 0.75, 0.7〉, 〈ont2:Libro, 0.56, 0.625〉}

Cp1
← {〈ont1:has_author, 0.96, 0.57〉, 〈ont3:creator, 0.38, 0.85〉,
〈ont4:autor, 0.44, 0.27〉}

Cr1 ← {〈ont3:Person, 0.90, 0.60〉, 〈ont4:Persona, 0.65, 0.70〉}
Cd2
← {〈ont1:Book, 0.55, 0.7〉, 〈ont2:Libro, 0.97, 0.625〉}

...

co← co_mean(ont1:Book, ont1:has_author, ont3:Person) = 0.85
agg← 0.63
DM[〈d1,p1, r1〉].append(scores1)
...
co← co_mean(ont2:Libro, ont1:has_publisher, ont4:Persona) = 0.67
agg← 0.54
DM[〈d2,p2, r2〉].append(scores2)
...

Input

Lines 9-17

Retrieve scores

Lines 19-24

Combine scores

Figure C.8: Overview of the aggregation phase of the consistency scoring with an example.

188 algorithm workflows

DM[〈d1,p1, r1〉]← [scores1, . . . , scoresn]
...
DM[〈d2,p2, r2〉]← [scores1, . . . , scoresn]
...

Cd ← [c1 ← ont1:Book, c2 ← ont2:Libro]
B[〈d, c1〉]← 0.75
B[〈d, c2〉]← 0.54

c1.csd ← 0.75 · 0.75 = 0.56
c1.isd ← 0.7 · 0.75 = 0.52
c1.agg← 0.57
c2.csd ← 0.56 · 0.54 = 0.30
c2.isd ← 0.7 · 0.75 = 0.34
c2.agg← 0.28

DM[〈d1,p1, r1〉]← [〈ont1:Book, ont1:has_author,
ont3:Person, scores1〉]

DM[〈d2,p2, r2〉]← [〈ont1:Book, ont1:has_publisher,
ont3:Person, scores2〉]

Input

Lines 6-13

Compute Borda score

Lines 14-23

Re-compute scores

Lines 24-28

Re-order DM with
new scores

Figure C.9: Overview of the refinement phase of the consistency scoring with an example.

B I B L I O G R A P H Y

[1] S. Brin and L. Page. ‘The anatomy of a large-scale hypertextual Web search en-
gine’. In: Computer Networks and ISDN Systems. Proceedings of the Seventh Inter-
national World Wide Web Conference 30.1 (1st Apr. 1998), pp. 107–117.

[2] R. Blanco, P. Mika and S. Vigna. ‘Effective and Efficient Entity Search in RDF
Data’. In: The Semantic Web – ISWC 2011. Ed. by L. Aroyo, C. Welty, H. Alani,
J. Taylor, A. Bernstein, L. Kagal, N. Noy and E. Blomqvist. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 83–97.

[3] R. Guha, R. McCool and E. Miller. ‘Semantic search’. In: Proceedings of the 12th
international conference on World Wide Web. WWW ’03. Budapest, Hungary: Asso-
ciation for Computing Machinery, 20th May 2003, pp. 700–709.

[4] J. Pound, P. Mika and H. Zaragoza. ‘Ad-hoc object retrieval in the web of data’.
In: Proceedings of the 19th international conference on World wide web - WWW ’10. the
19th international conference. Raleigh, North Carolina, USA: ACM Press, 2010,
p. 771.

[5] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S.
Hellmann, M. Morsey, P. van Kleef, S. Auer and C. Bizer. ‘DBpedia – A large-
scale, multilingual knowledge base extracted from Wikipedia’. In: Semantic Web
6.2 (2015), pp. 167–195.

[6] F. M. Suchanek, G. Kasneci and G. Weikum. ‘YAGO: A Core of Semantic Know-
ledge’. In: Proceedings of the 16th International Conference on World Wide Web. WWW
’07. New York, NY, USA: ACM, 2007, pp. 697–706.

[7] D. Vrandečić and M. Krötzsch. ‘Wikidata: a free collaborative knowledgebase’. In:
Communications of the ACM 57.10 (23rd Sept. 2014), pp. 78–85.

[8] T. Berners-Lee and M. Fischetti. Weaving the Web: the original design and ultimate
destiny of the World Wide Web by its inventor. 1st. San Francisco: Harper, 1999.
226 pp.

[9] T. Berners-Lee. Linked Data. 27th July 2006. url: https : / / www . w3 . org /

DesignIssues/LinkedData.html (visited on 15th May 2020).

[10] T. R. Gruber. ‘A translation approach to portable ontology specifications’. In:
Knowledge Acquisition 5.2 (1st June 1993), pp. 199–220.

189

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

190 bibliography

[11] M. S. Marshall, R. Boyce, H. F. Deus, J. Zhao, E. L. Willighagen, M. Samwald, E.
Pichler, J. Hajagos, E. Prud’hommeaux and S. Stephens. ‘Emerging practices for
mapping and linking life sciences data using RDF — A case series’. In: Journal of
Web Semantics. Special Issue on Dealing with the Messiness of the Web of Data
14 (1st July 2012), pp. 2–13.

[12] W. Hu, H. Qiu and M. Dumontier. ‘Link Analysis of Life Science Linked Data’.
In: International Semantic Web Conference. Ed. by M. Arenas, O. Corcho, E. Simperl,
M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K.
Thirunarayan and S. Staab. Vol. 9367. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2015, pp. 446–462.

[13] M. Krötzsch and V. Thost. ‘Ontologies for Knowledge Graphs: Breaking the
Rules’. In: The Semantic Web – ISWC 2016. ISWC 2016. Ed. by P. Groth, E. Sim-
perl, A. Gray, M. Sabou, M. Krötzsch, F. Lecue, F. Flöck and Y. Gil. Vol. 9981.
Lecture Notes in Computer Science. Cham: Springer, 2016, pp. 376–392.

[14] K. Smith-Yoshimura. ‘Analysis of International Linked Data Survey for Imple-
menters’. In: D-Lib Magazine 22.7 (July 2016).

[15] K. Smith-Yoshimura. ‘Analysis of 2018 International Linked Data Survey for Im-
plementers’. In: The Code4Lib Journal 42 (8th Nov. 2018).

[16] L. McKenna, C. Debruyne and D. O’Sullivan. ‘Understanding the Position of
Information Professionals with regards to Linked Data: A Survey of Libraries,
Archives and Museums’. In: Proceedings of the 18th ACM/IEEE on Joint Conference
on Digital Libraries. JCDL ’18. New York, NY, USA: Association for Computing
Machinery, 23rd May 2018, pp. 7–16.

[17] M. d’Aquin, A. Adamou and S. Dietze. ‘Assessing the educational linked data
landscape’. In: Proceedings of the 5th Annual ACM Web Science Conference. WebSci
’13. Paris, France: Association for Computing Machinery, 2nd May 2013, pp. 43–
46.

[18] I. Ullah, S. Khusro, A. Ullah and M. Naeem. ‘An Overview of the Current State
of Linked and Open Data in Cataloging’. In: Information Technology and Libraries
37.4 (17th Dec. 2018), pp. 47–80.

[19] C. A. Knoblock and P. Szekely. ‘Exploiting Semantics for Big Data Integration’.
In: AI Magazine 36.1 (25th Mar. 2015), pp. 25–38.

[20] A. Sadeghi, C. Lange, M.-E. Vidal and S. Auer. ‘Integration of Scholarly Commu-
nication Metadata Using Knowledge Graphs’. In: Research and Advanced Techno-
logy for Digital Libraries. Vol. 10450. Cham: Springer, 2017, pp. 328–341.

[21] M. d’Aquin and N. F. Noy. ‘Where to Publish and Find Ontologies? A Survey of
Ontology Libraries’. In: Web semantics (Online) 11 (1st Mar. 2012), pp. 96–111.

bibliography 191

[22] D. Oliveira, A. S. Butt, A. Haller, D. Rebholz-Schuhmann and R. Sahay. ‘Where to
search top-K biomedical ontologies?’ In: Briefings in Bioinformatics 20.4 (19th July
2019), pp. 1477–1491.

[23] D. Collarana, C. Lange and S. Auer. ‘FuhSen: A Platform for Federated, RDF-
based Hybrid Search’. In: Proceedings of the 25th International Conference Companion
on World Wide Web - WWW ’16 Companion. the 25th International Conference
Companion. Montréal, Québec, Canada: ACM Press, 2016, pp. 171–174.

[24] S. Neumaier and A. Polleres. ‘Enabling Spatio-Temporal Search in Open Data’.
In: Journal of Web Semantics 55 (1st Mar. 2019), pp. 21–36.

[25] M. Hallo, S. Luján-Mora, A. Maté and J. Trujillo. ‘Current state of Linked Data in
digital libraries’. In: Journal of Information Science 42.2 (1st Apr. 2016), pp. 117–127.

[26] H. Park and M. Kipp. ‘Library Linked Data Models: Library Data in the Semantic
Web’. In: Cataloging & Classification Quarterly 57.5 (4th July 2019), pp. 261–277.

[27] D. Oliveira, R. Sahay and M. d’Aquin. ‘Leveraging Ontologies for Knowledge
Graph Schemas’. In: Proceedings of the 1st Workshop on Knowledge Graph Build-
ing co-located with ESWC 2019. ESWC. Vol. 2489. CEUR Workshop Proceedings.
Portoroz, Slovenia: CEUR-WS.org, 2019, pp. 24–36.

[28] D. Oliveira and M. D’Aquin. ‘ADOG - Annotating Data with Ontologies and
Graphs’. In: Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching co-located with the 18th International Semantic Web Conference. ISWC.
Vol. 2553. CEUR Workshop Proceedings. CEUR-WS.org, 2019, p. 6.

[29] D. Oliveira and M. d’Aquin. ‘RICDaM: Recommending Interoperable and Con-
sistent Data Models’. In: Proceedings of the ISWC 2020 Demos and Industry Tracks:
From Novel Ideas to Industrial Practice co-located with 19th International Semantic Web
Conference (ISWC 2020). International Semantic Web Conference. Vol. 2717. CEUR
Workshop Proceedings. CEUR-WS.org, 2020, p. 5.

[30] R. Ackoff. ‘From Data to Wisdom’. In: Journal of Applied Systems Analysis 16 (1989),
pp. 3–9.

[31] J. Rowley. ‘The wisdom hierarchy: representations of the DIKW hierarchy’. In:
Journal of Information Science 33.2 (1st Apr. 2007). Publisher: SAGE Publications
Ltd, pp. 163–180.

[32] M. Frické. ‘The knowledge pyramid: a critique of the DIKW hierarchy’. In: Journal
of Information Science 35.2 (1st Apr. 2009). Publisher: SAGE Publications Ltd,
pp. 131–142.

[33] I. Tuomi. ‘Data is More Than Knowledge: Implications of the Reversed Know-
ledge Hierarchy for Knowledge Management and Organizational Memory’. In:
Journal of Management Information Systems 16 (1999), pp. 103–117.

192 bibliography

[34] M. E. Jennex and S. E. Bartczak. ‘A Revised Knowledge Pyramid’. In: International
Journal of Knowledge Management (IJKM) 9.3 (2013). Publisher: IGI Global, pp. 19–
30.

[35] D. C. Tsichritzis and F. H. Lochovsky. Data models. Prentice-Hall software series.
Englewood Cliffs, N.J: Prentice-Hall, 1982. 381 pp.

[36] E. F. Codd. ‘A relational model of data for large shared data banks’. In: Commu-
nications of the ACM 13.6 (1st June 1970), pp. 377–387.

[37] D. R. Howe. Data analysis for database design. 3rd ed. Oxford ; Boston: Butterworth
Heinemann, 2001. 323 pp.

[38] C. J. Date. An introduction to database systems. 8th ed. Boston: Pearson/Addison
Wesley, 2004. 983 pp.

[39] D. Tsichritzis and A. Klug. ‘The ANSI/X3/SPARC DBMS framework report of
the study group on database management systems’. In: Information Systems 3.3
(1st Jan. 1978), pp. 173–191.

[40] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta and D. Lin. ‘Knowledge
Base Completion via Search-Based Question Answering’. In: (2014).

[41] P. P.-S. Chen. ‘The entity-relationship model—toward a unified view of data’. In:
ACM Transactions on Database Systems 1.1 (1st Mar. 1976), pp. 9–36.

[42] B.-H. Yoon, S.-K. Kim and S.-Y. Kim. ‘Use of Graph Database for the Integration
of Heterogeneous Biological Data’. In: Genomics & Informatics 15.1 (Mar. 2017),
pp. 19–27.

[43] T. Berners-Lee. Relational Databases and the Semantic Web. Design Issues. Sept. 1998.
url: https://www.w3.org/DesignIssues/RDB-RDF.html (visited on 28th Apr.
2020).

[44] D. Klein and C. D. Manning. ‘Natural language grammar induction with a gen-
erative constituent-context model’. In: Pattern Recognition 38.9 (1st Sept. 2005),
pp. 1407–1419.

[45] C. Bizer, T. Heath and T. Berners-Lee. ‘Linked Data - The Story So Far’. In: In-
ternational Journal on Semantic Web and Information Systems 5.3 (July 2009), pp. 1–
22.

[46] M. Schmachtenberg, C. Bizer and H. Paulheim. ‘Adoption of the linked data best
practices in different topical domains’. In: International Semantic Web Conference.
Springer, 2014, pp. 245–260.

[47] A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres and S. Decker. ‘An
empirical survey of Linked Data conformance’. In: Journal of Web Semantics. Spe-
cial Issue on Dealing with the Messiness of the Web of Data 14 (1st July 2012),
pp. 14–44.

https://www.w3.org/DesignIssues/RDB-RDF.html

bibliography 193

[48] A. Haller, J. D. Fernández, M. R. Kamdar and A. Polleres. ‘What Are Links in
Linked Open Data? A Characterization and Evaluation of Links between Know-
ledge Graphs on the Web’. In: Journal of Data and Information Quality 12.2 (6th May
2020), pp. 1–34.

[49] J. Euzenat. ‘Towards a principled approach to semantic interoperability’. In: Proc.
IJCAI 2001 workshop on ontology and information sharing. IJCAI. Seattle, United
States, 2001, p. 8.

[50] N. Noy. ‘Semantic integration: a survey of ontology-based approaches’. In: ACM
SIGMOD Record 33.4 (1st Dec. 2004), pp. 65–70.

[51] H. Wache, T. J. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann
and S. Hübner. ‘Ontology-Based Integration of Information - A Survey of Exist-
ing Approaches’. In: OIS@IJCAI. 2001.

[52] W. W. W. C. (W3C). Vocabularies. World Wide Web Consortium (W3C). url: https:
//www.w3.org/standards/semanticweb/ontology (visited on 20th May 2020).

[53] N. Guarino. ‘Formal Ontology and Information Systems’. In: Proceedings of
FOIS’98. FOIS. Trento, Italy: IOS Press, 1998, p. 13.

[54] D. Oberle. ‘How ontologies benefit enterprise applications’. In: Semantic Web 5.6
(2014), pp. 473–491.

[55] R. Hoehndorf, P. N. Schofield and G. V. Gkoutos. ‘The role of ontologies in biolo-
gical and biomedical research: a functional perspective’. In: Briefings in Bioinform-
atics 16.6 (Nov. 2015), pp. 1069–1080.

[56] B. M. Konopka. ‘Biomedical ontologies—A review’. In: Biocybernetics and Biomed-
ical Engineering 35.2 (1st Jan. 2015), pp. 75–86.

[57] T. S. De Silva, D. MacDonald, G. Paterson, K. C. Sikdar and B. Cochrane. ‘Sys-
tematized nomenclature of medicine clinical terms (SNOMED CT) to represent
computed tomography procedures’. In: Computer Methods and Programs in Bio-
medicine 101.3 (1st Mar. 2011), pp. 324–329.

[58] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill et al. ‘Gene
Ontology: tool for the unification of biology’. In: Nature genetics 25.1 (May 2000),
pp. 25–29.

[59] N. Guarino. ‘Semantic matching: Formal ontological distinctions for information
organization, extraction, and integration’. In: Information Extraction A Multidiscip-
linary Approach to an Emerging Information Technology. Ed. by M. T. Pazienza.
Vol. 1299. Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pp. 139–170.

[60] A. Haller and A. Polleres. ‘Are We Better Off With Just One Ontology on the
Web?’ In: Semantic Web Journal 11.1 (2020).

https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/ontology

194 bibliography

[61] R. Arp, B. Smith and A. D. Spear. Building ontologies with Basic Formal Ontology.
Cambridge, Massachusetts: Massachusetts Institute of Technology, 2015. 220 pp.

[62] D. Brickley and L. Miller. FOAF Vocabulary Specification 0.99. 14th Jan. 2014. url:
http://xmlns.com/foaf/spec/ (visited on 17th Aug. 2020).

[63] A. Ghazvinian, N. F. Noy and M. A. Musen. ‘How orthogonal are the OBO
Foundry ontologies?’ In: Journal of Biomedical Semantics 2 (Suppl 2 17th May 2011),
S2.

[64] C. Ochs, Y. Perl, J. Geller, S. Arabandi, T. Tudorache and M. A. Musen. ‘An em-
pirical analysis of ontology reuse in BioPortal’. In: Journal of Biomedical Informatics
71 (July 2017), pp. 165–177.

[65] M. R. Kamdar, T. Tudorache and M. A. Musen. ‘A systematic analysis of term re-
use and term overlap across biomedical ontologies’. In: Semantic Web 8.6 (7th Aug.
2017). Ed. by G.-Q. Zhang, pp. 853–871.

[66] J. Euzenat. Ontology matching. OCLC: ocn124038270. Berlin ; New York: Springer,
2007. 333 pp.

[67] S. Hertling and H. Paulheim. ‘The Knowledge Graph Track at OAEI: Gold Stand-
ards, Baselines, and the Golden Hammer Bias’. In: The Semantic Web. ESWC 2020.
Ed. by A. Harth, S. Kirrane, A.-C. Ngonga Ngomo, H. Paulheim, A. Rula, A. L.
Gentile, P. Haase and M. Cochez. Vol. 12123. Series Title: Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2020, pp. 343–359.

[68] A. Algergawy, D. Faria, A. Ferrara, I. Fundulaki, I. Harrow, S. Hertling, E.
Jimenez-Ruiz, N. Karam, A. Khiat, P. Lambrix, H. Li, S. Montanelli et al. ‘Res-
ults of the Ontology Alignment Evaluation Initiative 2019’. In: Proceedings of the
14th International Workshop on Ontology Matching co-located with ISWC 2019. Inter-
national Semantic Web Conference. Vol. 2536. Auckland, New Zealand: CEUR
Workshop Proceedings, 2019, p. 40.

[69] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz and F. M. Couto. ‘The
AgreementMakerLight Ontology Matching System’. In: On the Move to Meaning-
ful Internet Systems: OTM 2013 Conferences. Springer, Berlin, Heidelberg, 9th Sept.
2013, pp. 527–541.

[70] M. Lefrançois, A. Zimmermann and N. Bakerally. ‘A SPARQL Extension for Gen-
erating RDF from Heterogeneous Formats’. In: The Semantic Web. Ed. by E. Blom-
qvist, D. Maynard, A. Gangemi, R. Hoekstra, P. Hitzler and O. Hartig. Vol. 10249.
Series Title: Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2017, pp. 35–50.

[71] S. Das, S. Sundara and R. Cyganiak. R2RML: RDB to RDF Mapping Language. W3C
Recommendation. 27th Sept. 2012. url: https://www.w3.org/TR/r2rml/ (visited
on 14th July 2020).

http://xmlns.com/foaf/spec/
https://www.w3.org/TR/r2rml/

bibliography 195

[72] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens and R. Van
de Walle. ‘RML: A Generic Language for Integrated RDF Mappings of Hetero-
geneous Data.’ In: LDOW. 2014.

[73] P. Heyvaert, B. De Meester, A. Dimou and R. Verborgh. ‘Declarative Rules for
Linked Data Generation at Your Fingertips!’ In: The Semantic Web: ESWC 2018
Satellite Events. Ed. by A. Gangemi, A. L. Gentile, A. G. Nuzzolese, S. Rudolph,
M. Maleshkova, H. Paulheim, J. Z. Pan and M. Alam. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2018, pp. 213–217.

[74] L. F. de Medeiros, F. Priyatna and O. Corcho. ‘MIRROR: Automatic R2RML Map-
ping Generation from Relational Databases’. In: Engineering the Web in the Big
Data Era. Ed. by P. Cimiano, F. Frasincar, G.-J. Houben and D. Schwabe. Vol. 9114.
Series Title: Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2015, pp. 326–343.

[75] F. Michel, L. Djimenou, C. Faron Zucker and J. Montagnat. ‘Translation of Rela-
tional and Non-Relational Databases into RDF with xR2RML’. In: 11th Interna-
tional Confenrence on Web Information Systems and Technologies (WEBIST’15). Pro-
ceedings of the WebIST’15 Conference. Lisbon, Portugal, Oct. 2015, pp. 443–454.

[76] G. Haesendonck, W. Maroy, P. Heyvaert, R. Verborgh and A. Dimou. ‘Parallel
RDF generation from heterogeneous big data’. In: Proceedings of the International
Workshop on Semantic Big Data - SBD ’19. the International Workshop. Amsterdam,
Netherlands: ACM Press, 2019, pp. 1–6.

[77] B.-L. Do, P. R. Aryan, T.-D. Trinh, P. Wetz, E. Kiesling and A. M. Tjoa. ‘Toward
a framework for statistical data integration’. In: Proceedings of the 3rd International
Workshop on Semantic Statistics. ISWC. Vol. 1551. Bethlehem, U.S.A.: CEUR Work-
shop Proceedings, 2015, p. 12.

[78] A. Iglesias-Molina, D. Chaves-Fraga, F. Priyatna and O. Corcho. ‘Enhancing the
Maintainability of the Bio2RDF Project Using Declarative Mappings’. In: Se-
mantic Web Applications and Tools for Healthcare and Life Sciences. Edinburgh,
Scotland, 2019, p. 11.

[79] A. Schultz, A. Matteini, R. Isele, P. N. Mendes, C. Bizer and C. Becker. ‘LDIF - A
Framework for Large-Scale Linked Data Integration’. In: 21st International World
Wide Web Conference (WWW2012), Developers Track. Lyon, France, Apr. 2012, p. 3.

[80] F. Scharffe, G. Atemezing, R. Troncy, F. Gandon, S. Villata, B. Bucher, F. Hamdi,
L. Bihanic, G. Kepeklian, F. Cotton, J. Euzenat, Z. Fan et al. ‘Enabling Linked
Data Publication with the Datalift Platform’. In: Workshops at the Twenty-Sixth
AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelli-
gence. Ontario, Canada, 2012, p. 6.

196 bibliography

[81] P.-Y. Vandenbussche, G. A. Atemezing, M. Poveda-Villalón and B. Vatant. ‘Linked
Open Vocabularies (LOV): A gateway to reusable semantic vocabularies on the
Web’. In: Semantic Web 8.3 (6th Dec. 2016). Ed. by M. Dumontier, pp. 437–452.

[82] M. B. Ellefi, Z. Bellahsene and K. Todorov. ‘Datavore: A Vocabulary Recom-
mender Tool Assisting Linked Data Modeling’. In: ISWC: International Semantic
Web Conference. Bethlehem, PA, United States, 2015, p. 5.

[83] P. L. Whetzel, N. F. Noy, N. H. Shah, P. R. Alexander, C. Nyulas, T. Tudorache
and M. A. Musen. ‘BioPortal: enhanced functionality via new Web services from
the National Center for Biomedical Ontology to access and use ontologies in
software applications’. In: Nucleic Acids Research 39 (Web Server issue 1st July
2011), W541–W545.

[84] S. Jupp, T. Burdett, C. Leroy and H. E. Parkinson. ‘A new Ontology Lookup
Service at EMBL-EBI.’ In: SWAT4LS. 2015, pp. 118–119.

[85] M. Mountantonakis and Y. Tzitzikas. ‘Large-scale Semantic Integration of Linked
Data: A Survey’. In: ACM Computing Surveys 52.5 (13th Sept. 2019), pp. 1–40.

[86] H. Paulheim. ‘Knowledge graph refinement: A survey of approaches and evalu-
ation methods’. In: Semantic web 8.3 (2017), pp. 489–508.

[87] C. D. Manning, P. Raghavan and H. Schutze. Introduction to Information Retrieval.
Cambridge: Cambridge University Press, 2008.

[88] H. Zaragoza, H. Rode, P. Mika, J. Atserias, M. Ciaramita and G. Attardi. ‘Ranking
very many typed entities on Wikipedia’. In: Proceedings of the sixteenth ACM con-
ference on Conference on information and knowledge management. CIKM ’07. Lisbon,
Portugal: Association for Computing Machinery, 6th Nov. 2007, pp. 1015–1018.

[89] H. Halpin, D. M. Herzig, P. Mika, R. Blanco, J. Pound, H. S. Thompson and
T. T. Duc. ‘Evaluating Ad-Hoc Object Retrieval’. In: Proceedings of the International
Workshop on Evaluation of Semantic Technologies. 2010, p. 12.

[90] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. Doshi and
J. Sachs. ‘Swoogle: a search and metadata engine for the semantic web’. In: Pro-
ceedings of the Thirteenth ACM conference on Information and knowledge management
- CIKM ’04. the Thirteenth ACM conference. Washington, D.C., USA: ACM Press,
2004, p. 652.

[91] G. Tummarello, R. Delbru and E. Oren. ‘Sindice.com: Weaving the Open Linked
Data’. In: The Semantic Web. Ed. by K. Aberer, K.-S. Choi, N. Noy, D. Allemang,
K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber
and P. Cudré-Mauroux. Red. by D. Hutchison, T. Kanade, J. Kittler, J. M. Klein-
berg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B.
Steffen, M. Sudan, D. Terzopoulos et al. Vol. 4825. Series Title: Lecture Notes in

bibliography 197

Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 552–
565.

[92] M. d’Aquin and E. Motta. ‘Watson, more than a Semantic Web search engine’. In:
Semantic Web 2.1 (2011), pp. 55–63.

[93] A. Harth, J. Umbrich, A. Hogan and S. Decker. ‘YARS2: A Federated Repository
for Querying Graph Structured Data from the Web’. In: The Semantic Web. Ed. by
K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P.
Mika, D. Maynard, R. Mizoguchi, G. Schreiber and P. Cudré-Mauroux. Red. by
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M.
Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos et al.
Vol. 4825. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 211–224.

[94] Y. Qu and G. Cheng. ‘Falcons Concept Search: A Practical Search Engine for
Web Ontologies’. In: IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans 41.4 (July 2011), pp. 810–816.

[95] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jackson, S. Kun-
natur, S. Lassen, P. Pronin, S. Sankar, G. Shen, G. Woss et al. ‘Unicorn: a sys-
tem for searching the social graph’. In: Proceedings of the VLDB Endowment 6.11
(27th Aug. 2013), pp. 1150–1161.

[96] A. Singhal. Introducing the Knowledge Graph: things, not strings. Official Google
Blog. 16th May 2012. url: https : / / googleblog . blogspot . com / 2012 / 05 /

introducing-knowledge-graph-things-not.html (visited on 19th Apr. 2018).

[97] K. Bollacker, C. Evans, P. Paritosh, T. Sturge and J. Taylor. ‘Freebase: A Collab-
oratively Created Graph Database for Structuring Human Knowledge’. In: Pro-
ceedings of the 2008 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’08. New York, NY, USA: ACM, 2008, pp. 1247–1250.

[98] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson and J. Taylor. ‘Industry-scale
Knowledge Graphs: Lessons and Challenges’. In: ACM Queue 17.2 (2019).

[99] L. Ehrlinger and W. Wöß. ‘Towards a Definition of Knowledge Graphs’. In: Joint
Proceedings of the Posters and Demos Track of the 12th International Conference on
Semantic Systems and the 1st International Workshop on Semantic Change & Evolving
Semantics. SEMANTiCS. Vol. 1695. Leipzig, Germany: CEUR, 2016.

[100] P. A. Bonatti, S. Decker, A. Polleres and V. Presutti. ‘Knowledge Graphs: New Dir-
ections for Knowledge Representation on the Semantic Web (Dagstuhl Seminar
18371)’. In: Dagstuhl Reports 8.9 (2018). In collab. with M. Wagner, pp. 29–111.

[101] M. K. Bergman. A Common Sense View of Knowledge Graphs. Adaptive Information,
Adaptive Innovation, Adaptive Infrastructure. 1st July 2019. url: https://www.
mkbergman.com/?p (visited on 27th May 2020).

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://www.mkbergman.com/?p
https://www.mkbergman.com/?p

198 bibliography

[102] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. L.
Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A.-C. N. Ngomo et al.
‘Knowledge Graphs’. In: arXiv:2003.02320 [cs] (4th Mar. 2020).

[103] T. Pellissier Tanon, D. Vrandečić, S. Schaffert, T. Steiner and L. Pintscher. ‘From
Freebase to Wikidata: The Great Migration’. In: Proceedings of the 25th Interna-
tional Conference on World Wide Web - WWW ’16. the 25th International Conference.
Montréal, Québec, Canada: ACM Press, 2016, pp. 1419–1428.

[104] S. Malyshev, M. Krötzsch, L. González, J. Gonsior and A. Bielefeldt. ‘Getting the
Most Out of Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge
Graph’. In: The Semantic Web – ISWC 2018. Ed. by D. Vrandečić, K. Bontcheva,
M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee and E. Sim-
perl. Vol. 11137. Series Title: Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 376–394.

[105] A. Callahan, J. Cruz-Toledo, P. Ansell and M. Dumontier. ‘Bio2RDF Release 2: Im-
proved Coverage, Interoperability and Provenance of Life Science Linked Data’.
In: The Semantic Web: Semantics and Big Data. Ed. by P. Cimiano, O. Corcho, V.
Presutti, L. Hollink and S. Rudolph. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2013, pp. 200–212.

[106] S. Peroni, D. Shotton and F. Vitali. ‘One Year of the OpenCitations Corpus’. In:
The Semantic Web – ISWC 2017. Ed. by C. d’Amato, M. Fernandez, V. Tamma, F.
Lecue, P. Cudré-Mauroux, J. Sequeda, C. Lange and J. Heflin. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2017, pp. 184–192.

[107] E. Hyvönen, E. Mäkelä, T. Kauppinen, O. Alm, J. Kurki, T. Ruotsalo, K. Seppälä,
J. Takala, K. Puputti, H. Kuittinen, K. Viljanen, J. Tuominen et al. ‘CultureSampo:
A National Publication System of Cultural Heritage on the Semantic Web 2.0’.
In: The Semantic Web: Research and Applications. Ed. by L. Aroyo, P. Traverso, F.
Ciravegna, P. Cimiano, T. Heath, E. Hyvönen, R. Mizoguchi, E. Oren, M. Sabou
and E. Simperl. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2009, pp. 851–856.

[108] S. Shrivastava. Bring rich knowledge of people, places, things and local businesses to
your apps. Bing Blogs. Library Catalog: blogs.bing.com. 12th July 2017. url: https:
//blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-

of-people-places-things-and-local-businesses-to-your-apps/ (visited on
5th June 2020).

[109] C. Bendtsen and S. Petrovski. How data and AI are helping unlock the secrets of
disease. AstraZeneca Blog. Library Catalog: www.astrazeneca.com. 11th Jan. 2019.
url: https://www.astrazeneca.com/what-science-can-do/labtalk-blog/
uncategorized/how- data- and- ai- are- helping- unlock- the- secrets- of-

disease.html (visited on 5th June 2020).

https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps/
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps/
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps/
https://www.astrazeneca.com/what-science-can-do/labtalk-blog/uncategorized/how-data-and-ai-are-helping-unlock-the-secrets-of-disease.html
https://www.astrazeneca.com/what-science-can-do/labtalk-blog/uncategorized/how-data-and-ai-are-helping-unlock-the-secrets-of-disease.html
https://www.astrazeneca.com/what-science-can-do/labtalk-blog/uncategorized/how-data-and-ai-are-helping-unlock-the-secrets-of-disease.html

bibliography 199

[110] E. Meij. ‘Understanding News Using the Bloomberg Knowledge Graph’. Invited
talk at the Big Data Innovators Gathering (TheWebConf). 2019.

[111] C. Henson, S. Schmid, T. Tran and A. Karatzoglou. ‘Using a Knowledge Graph
of Scenes to Enable Search of Autonomous Driving Data’. In: Proceedings of
the ISWC 2019 Satellite Tracks (Posters & Demonstrations, Industry, and Outrageous
Ideas) co-located with 18th International Semantic Web Conference (ISWC 2019). ISWC.
Vol. 2456. Auckland, New Zealand: CEUR Workshop Proceedings, 2019, p. 2.

[112] A. Krishnan. Making search easier. Day One: The Amazon Blog. Library Catalog:
blog.aboutamazon.com Section: Innovation. 17th Aug. 2018. url: https://blog.
aboutamazon.com/innovation/making-search-easier (visited on 5th June 2020).

[113] R. Pittman, A. Srivastava, S. Hewavitharana, A. Kale and S. Mansour. Cracking the
Code on Conversational Commerce. eBay Blog. Library Catalog: www.ebayinc.com.
6th Apr. 2017. url: https://www.ebayinc.com/stories/news/cracking-the-
code-on-conversational-commerce/ (visited on 5th June 2020).

[114] Eric Sun and Venky Iyer. Under the Hood: The Entities Graph | Facebook. Facebook
Engineering. 6th June 2013. url: https://www.facebook.com/notes/facebook-
engineering/under-the-hood-the-entities-graph/10151490531588920/ (vis-
ited on 17th Feb. 2020).

[115] Qi He, Bee-Chung Chen and Deepak Agarwal. Building The LinkedIn Knowledge
Graph. LinkedIn Blog. Library Catalog: engineering.linkedin.com. 10th June 2016.
url: https : / / engineering . linkedin . com / blog / 2016 / 10 / building - the -

linkedin-knowledge-graph (visited on 5th June 2020).

[116] V. Richardson. ‘Teaching: Trends in Research’. In: International Encyclopedia of the
Social & Behavioral Sciences. Ed. by N. J. Smelser and P. B. Baltes. Oxford: Perga-
mon, 1st Jan. 2001, pp. 15483–15487.

[117] G. A. Miller. ‘WordNet: a lexical database for English’. In: Communications of the
ACM 38.11 (1st Nov. 1995), pp. 39–41.

[118] Z. Aleksovski, M. Klein, W. ten Kate and F. van Harmelen. ‘Matching Unstruc-
tured Vocabularies Using a Background Ontology’. In: Managing Knowledge in a
World of Networks. Ed. by S. Staab and V. Svátek. Red. by D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C.
Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos et al. Vol. 4248. Series Title:
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 182–197.

[119] M. Sabou, M. d’Aquin and E. Motta. ‘Exploring the Semantic Web as Background
Knowledge for Ontology Matching’. In: Journal on Data Semantics XI. Ed. by S.
Spaccapietra, J. Z. Pan, P. Thiran, T. Halpin, S. Staab, V. Svatek, P. Shvaiko and

https://blog.aboutamazon.com/innovation/making-search-easier
https://blog.aboutamazon.com/innovation/making-search-easier
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-the-entities-graph/10151490531588920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-the-entities-graph/10151490531588920/
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph

200 bibliography

J. Roddick. Vol. 5383. Series Title: Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 156–190.

[120] D. Faria, C. Pesquita, E. Santos, I. F. Cruz and F. M. Couto. ‘Automatic Back-
ground Knowledge Selection for Matching Biomedical Ontologies’. In: PLOS
ONE 9.11 (7th Nov. 2014). Publisher: Public Library of Science, e111226.

[121] A. Nikolov and E. Motta. ‘Capturing Emerging Relations between Schema On-
tologies on the Web of Data’. In: Proceedings of the First International Workshop on
Consuming Linked Data. International Semantic Web Conference. Vol. 665. CEUR
Workshop Proceedings. China: CEUR-WS.org, 2010, p. 13.

[122] S. Neumaier, J. Umbrich, J. X. Parreira and A. Polleres. ‘Multi-level Semantic
Labelling of Numerical Values’. In: The Semantic Web – ISWC 2016. Ed. by P. Groth,
E. Simperl, A. Gray, M. Sabou, M. Krötzsch, F. Lecue, F. Flöck and Y. Gil. Vol. 9981.
Series Title: Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2016, pp. 428–445.

[123] Y. Yi, Z. Chen, J. Heflin and B. D. Davison. ‘Recognizing Quantity Names for
Tabular Data’. In: Joint Proceedings of the First International Workshop on Professional
Search (ProfS2018); the Second Workshop on Knowledge Graphs and Semantics for Text
Retrieval, Analysis, and Understanding (KG4IR); and the International Workshop on
Data Search (DATA:SEARCH’18). ACM SIGIR. Vol. 2127. CEUR Workshop Pro-
ceedings. Ann Arbor, Michigan, USA: CEUR-WS.org, 2018, p. 6.

[124] Z. Chen, H. Jia, J. Heflin and B. D. Davison. ‘Generating Schema Labels through
Dataset Content Analysis’. In: Companion of the The Web Conference 2018 on The
Web Conference 2018 - WWW ’18. Companion of the The Web Conference 2018.
Lyon, France: ACM Press, 2018, pp. 1515–1522.

[125] R. Tennant. ‘A bibliographic metadata infrastructure for the twenty-first century’.
In: Library Hi Tech 22.2 (June 2004), pp. 175–181.

[126] L. Andresen. ‘After MARC – what then?’ In: Library Hi Tech 22.1 (1st Jan. 2004),
pp. 40–51.

[127] T. L. o. Congress. MARC Code List for Relators Scheme. Library of Congress. url:
https://id.loc.gov/vocabulary/relators.html (visited on 14th Aug. 2020).

[128] S. Kawashima, T. Katayama, H. Hatanaka, T. Kushida and T. Takagi. ‘NBDC RDF
portal: a comprehensive repository for semantic data in life sciences’. In: Database
2018 (1st Jan. 2018). Publisher: Oxford Academic.

[129] F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault and J. Morissette. ‘Bio2RDF: to-
wards a mashup to build bioinformatics knowledge systems’. In: Journal of Bio-
medical Informatics 41.5 (Oct. 2008), pp. 706–716.

https://id.loc.gov/vocabulary/relators.html

bibliography 201

[130] L. A. P. P. Leme, G. R. Lopes, B. P. Nunes, M. A. Casanova and S. Dietze. ‘Identi-
fying Candidate Datasets for Data Interlinking’. In: Web Engineering. Ed. by F.
Daniel, P. Dolog and Q. Li. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2013, pp. 354–366.

[131] M. Ben Ellefi, Z. Bellahsene, S. Dietze and K. Todorov. ‘Dataset Recommendation
for Data Linking: An Intensional Approach’. In: The Semantic Web. Latest Advances
and New Domains. Ed. by H. Sack, E. Blomqvist, M. d’Aquin, C. Ghidini, S. P.
Ponzetto and C. Lange. Vol. 9678. Series Title: Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2016, pp. 36–51.

[132] D. Faria, C. Pesquita, T. Tervo, F. M. Couto and I. F. Cruz. ‘AML and AMLC
Results for OAEI 2019’. In: Proceedings of the 14th International Workshop on Onto-
logy Matching co-located with ISWC 2019. International Semantic Web Conference.
Vol. 2536. CEUR, 2019, p. 6.

[133] O. Zamazal and V. Svátek. ‘The Ten-Year OntoFarm and its Fertilization within
the Onto-Sphere’. In: Journal of Web Semantics 43 (1st Mar. 2017), pp. 46–53.

[134] A. Vennesland. ‘Matcher composition for identification of subsumption relations
in ontology matching’. In: Proceedings of the International Conference on Web Intelli-
gence - WI ’17. the International Conference. Leipzig, Germany: ACM Press, 2017,
pp. 154–161.

[135] C. J. Mungall, M. Bada, T. Z. Berardini, J. Deegan, A. Ireland, M. A. Harris, D. P.
Hill and J. Lomax. ‘Cross-product extensions of the Gene Ontology’. In: Journal
of Biomedical Informatics 44.1 (Feb. 2011), pp. 80–86.

[136] J. Bard, S. Y. Rhee and M. Ashburner. ‘An ontology for cell types’. In: Genome
Biology 6.2 (Jan. 2005), R21.

[137] D. J. Watts and S. H. Strogatz. ‘Collective dynamics of ‘small-world’ networks’.
In: Nature 393.6684 (June 1998), pp. 440–442.

[138] J. Yang and J. Leskovec. ‘Defining and evaluating network communities based on
ground-truth’. In: Knowledge and Information Systems 42.1 (1st Jan. 2015), pp. 181–
213.

[139] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L. J. Goldberg,
K. Eilbeck, A. Ireland, C. J. Mungall, The OBI Consortium, N. Leontis et al. ‘The
OBO Foundry: coordinated evolution of ontologies to support biomedical data
integration’. In: Nature Biotechnology 25.11 (Nov. 2007), pp. 1251–1255.

[140] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone. Classification and Regres-
sion Trees. 1st ed. Google-Books-ID: MGlQDwAAQBAJ. Chapman and Hall/CRC,
1984. 369 pp.

[141] J. R. Quinlan. C4.5: Programs for Machine Learning. Elsevier, 1993. 313 pp.

202 bibliography

[142] R. Stevens, P. Lord, J. Malone and N. Matentzoglu. ‘Measuring expert perform-
ance at manually classifying domain entities under upper ontology classes’. In:
Journal of Web Semantics 57 (1st Aug. 2019), p. 100469.

[143] B. D’Arcus and F. Giasson. Bibliographic Ontology (BIBO) in RDF. Dublin Core
Metadata Initiave. 11th May 2016. url: https : / / www . dublincore . org /

specifications/bibo/bibo/ (visited on 17th Aug. 2020).

[144] SKOS Simple Knowledge Organization System Reference. W3C Recommendation. In
collab. with A. Miles and Sean Bechhofer. 18th Aug. 2009. url: https://www.w3.
org/TR/2009/REC-skos-reference-20090818/ (visited on 17th Aug. 2020).

[145] R. J. Miller, L. M. Haas and M. A. Hernández. ‘Schema Mapping as Query Dis-
covery’. In: Proceedings of the 26th International Conference on Very Large Data Bases.
VLDB ’00. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 10th Sept.
2000, pp. 77–88.

[146] L. Popa, Y. Velegrakis, M. A. Hernández, R. J. Miller and R. Fagin. ‘Translating
web data’. In: Proceedings of the 28th international conference on Very Large Data Bases.
VLDB ’02. Hong Kong, China: VLDB Endowment, 20th Aug. 2002, pp. 598–609.

[147] H. Elmeleegy, A. Elmagarmid and J. Lee. ‘Leveraging query logs for schema map-
ping generation in U-MAP’. In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data. SIGMOD ’11. New York, NY, USA: Association
for Computing Machinery, 12th June 2011, pp. 121–132.

[148] A. Kimmig, A. Memory, R. J. Miller and L. Getoor. ‘A Collective, Probabilistic Ap-
proach to Schema Mapping’. In: 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). 2017 IEEE 33rd International Conference on Data Engineer-
ing (ICDE). Apr. 2017, pp. 921–932.

[149] E. Rahm and P. A. Bernstein. ‘A survey of approaches to automatic schema match-
ing’. In: The VLDB Journal 10.4 (Dec. 2001), pp. 334–350.

[150] J. Pei, J. Hong and D. Bell. ‘A Novel Clustering-Based Approach to Schema
Matching’. In: Advances in Information Systems. Ed. by T. Yakhno and E. J. Neuhold.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 60–
69.

[151] A. Oliveira, G. Tessarolli, G. Ghiotto, B. Pinto, F. Campello, M. Marques, C. Oli-
veira, I. Rodrigues, M. Kalinowski, U. Souza, L. Murta and V. Braganholo. ‘An
efficient similarity-based approach for comparing XML documents’. In: Informa-
tion Systems 78 (1st Nov. 2018), pp. 40–57.

[152] G. Limaye, S. Sarawagi and S. Chakrabarti. ‘Annotating and searching web tables
using entities, types and relationships’. In: Proceedings of the VLDB Endowment 3.1
(Sept. 2010), pp. 1338–1347.

https://www.dublincore.org/specifications/bibo/bibo/
https://www.dublincore.org/specifications/bibo/bibo/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/

bibliography 203

[153] V. Mulwad, T. Finin and A. Joshi. ‘Semantic Message Passing for Generating
Linked Data from Tables’. In: Advanced Information Systems Engineering. Ed. by C.
Salinesi, M. C. Norrie and O. Pastor. Red. by D. Hutchison, T. Kanade, J. Kittler,
J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu
Rangan, B. Steffen, M. Sudan, D. Terzopoulos et al. Vol. 7908. Series Title: Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 363–378.

[154] I. Ermilov and A.-C. N. Ngomo. ‘TAIPAN: Automatic Property Mapping for Tab-
ular Data’. In: Knowledge Engineering and Knowledge Management. EKAW. Ed. by
E. Blomqvist, P. Ciancarini, F. Poggi and F. Vitali. Vol. 10024. Cham: Springer
International Publishing, 2016, pp. 163–179.

[155] A. Alserafi, A. Abelló, O. Romero and T. Calders. ‘Keeping the Data Lake in Form:
Proximity Mining for Pre-Filtering Schema Matching’. In: ACM Transactions on
Information Systems 38.3 (13th May 2020), 26:1–26:30.

[156] J. P. McCrae and P. Buitelaar. ‘Linking Datasets Using Semantic Textual Similar-
ity’. In: Cybernetics and Information Technologies 18.1 (1st Mar. 2018), pp. 109–123.

[157] N. Bikakis, C. Tsinaraki, N. Gioldasis, I. Stavrakantonakis and S. Christodoulakis.
‘The XML and Semantic Web Worlds: Technologies, Interoperability and Integra-
tion: A Survey of the State of the Art’. In: Semantic Hyper/Multimedia Adaptation:
Schemes and Applications. Ed. by I. E. Anagnostopoulos, M. Bieliková, P. Mylonas
and N. Tsapatsoulis. Studies in Computational Intelligence. Berlin, Heidelberg:
Springer, 2013, pp. 319–360.

[158] S. Hertling and H. Paulheim. ‘DBkWik: extracting and integrating knowledge
from thousands of Wikis’. In: Knowledge and Information Systems 62.6 (1st June
2020), pp. 2169–2190.

[159] D. Vallet and H. Zaragoza. ‘Inferring the Most Important Types of a Query: a
Semantic Approach’. In: Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR’08. Singa-
pore, 2008.

[160] K. Balog and R. Neumayer. ‘Hierarchical target type identification for entity-
oriented queries’. In: Proceedings of the 21st ACM International Conference on In-
formation and knowledge management. CIKM ’12. Maui, Hawaii, USA: Association
for Computing Machinery, 29th Oct. 2012, pp. 2391–2394.

[161] A. Tonon, M. Catasta, R. Prokofyev, G. Demartini, K. Aberer and P. Cudré-
Mauroux. ‘Contextualized ranking of entity types based on knowledge graphs’.
In: Journal of Web Semantics 37-38 (Mar. 2016), pp. 170–183.

204 bibliography

[162] H. Paulheim and C. Bizer. ‘Type Inference on Noisy RDF Data’. In: Advanced
Information Systems Engineering. Ed. by C. Salinesi, M. C. Norrie and O. Pastor.
Red. by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D.
Terzopoulos et al. Vol. 7908. Series Title: Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 510–525.

[163] J. Sleeman, T. Finin and A. Joshi. ‘Entity Type Recognition for Heterogeneous
Semantic Graphs’. In: AI Magazine 36.1 (25th Mar. 2015). Number: 1, pp. 75–86.

[164] O. Udrea, L. Getoor and R. J. Miller. ‘Leveraging data and structure in ontology
integration’. In: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data. SIGMOD ’07. New York, NY, USA: Association for Comput-
ing Machinery, 11th June 2007, pp. 449–460.

[165] F. M. Suchanek, S. Abiteboul and P. Senellart. ‘PARIS: probabilistic alignment
of relations, instances, and schema’. In: Proceedings of the VLDB Endowment 5.3
(1st Nov. 2011), pp. 157–168.

[166] J. Lehmann, J. Schuppel and S. Auer. ‘Discovering Unknown Connections – the
DBpedia Relationship Finder’. In: Proceedings of the 1st Conference on Social Se-
mantic Web (CSSW). The Social Semantic Web. Leipzig, Germany, 2007, p. 11.

[167] M. Sabou, M. d’Aquin and E. Motta. ‘SCARLET: SemantiC RelAtion DiscoveRy
by Harvesting OnLinE OnTologies’. In: The Semantic Web: Research and Applica-
tions. Ed. by S. Bechhofer, M. Hauswirth, J. Hoffmann and M. Koubarakis. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008, pp. 854–858.

[168] D. Seo, H. K. Koo, S. Lee, P. Kim, H. Jung and W.-K. Sung. ‘Efficient Finding
Relationship between Individuals in a Mass Ontology Database’. In: U- and E-
Service, Science and Technology. Ed. by T.-h. Kim, H. Adeli, J. Ma, W.-c. Fang, B.-H.
Kang, B. Park, F. E. Sandnes and K. C. Lee. Communications in Computer and
Information Science. Berlin, Heidelberg: Springer, 2011, pp. 281–286.

[169] B. Pereira Nunes, S. Dietze, M. A. Casanova, R. Kawase, B. Fetahu and W. Nejdl.
‘Combining a Co-occurrence-Based and a Semantic Measure for Entity Linking’.
In: The Semantic Web: Semantics and Big Data. Ed. by P. Cimiano, O. Corcho, V.
Presutti, L. Hollink and S. Rudolph. Red. by D. Hutchison, T. Kanade, J. Kittler,
J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu
Rangan, B. Steffen, M. Sudan, D. Terzopoulos et al. Vol. 7882. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 548–562.

[170] L. A. Galárraga, N. Preda and F. M. Suchanek. ‘Mining rules to align knowledge
bases’. In: Proceedings of the 2013 workshop on Automated knowledge base construction.
AKBC ’13. New York, NY, USA: Association for Computing Machinery, 27th Oct.
2013, pp. 43–48.

bibliography 205

[171] M. Koutraki, N. Preda and D. Vodislav. ‘Online Relation Alignment for Linked
Datasets’. In: The Semantic Web. Ed. by E. Blomqvist, D. Maynard, A. Gangemi,
R. Hoekstra, P. Hitzler and O. Hartig. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2017, pp. 152–168.

[172] K. Gunaratna, K. Thirunarayan, P. Jain, A. Sheth and S. Wijeratne. ‘A statistical
and schema independent approach to identify equivalent properties on linked
data’. In: Proceedings of the 9th International Conference on Semantic Systems - I-
SEMANTICS ’13. the 9th International Conference. Graz, Austria: ACM Press,
2013, p. 33.

[173] B. Pereira Nunes, A. Mera, M. A. Casanova, B. Fetahu, L. A. P. Paes Leme and S.
Dietze. ‘Complex Matching of RDF Datatype Properties’. In: Database and Expert
Systems Applications. DEXA. Ed. by H. Decker, L. Lhotská, S. Link, J. Basl and
A. M. Tjoa. Red. by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos et al. Vol. 8055. Series Title: Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 195–208.

[174] Z. Syed, T. Finin, V. Mulwad and A. Joshi. ‘Exploiting a Web of Semantic Data
for Interpreting Tables’. In: Proceedings of the Second Web Science Conference. Web
Science Conference. Raleigh, NC, USA, 2010.

[175] P. Venetis, A. Halevy, J. Madhavan, M. Paşca, W. Shen, F. Wu, G. Miao and C. Wu.
‘Recovering semantics of tables on the web’. In: Proceedings of the VLDB Endow-
ment 4.9 (June 2011), pp. 528–538.

[176] M. D. Adelfio and H. Samet. ‘Schema extraction for tabular data on the web’. In:
Proceedings of the VLDB Endowment 6.6 (Apr. 2013), pp. 421–432.

[177] T. Mikolov, K. Chen, G. Corrado and J. Dean. ‘Efficient Estimation of Word Rep-
resentations in Vector Space’. In: arXiv:1301.3781 [cs] (6th Sept. 2013).

[178] J. Pennington, R. Socher and C. Manning. ‘GloVe: Global Vectors for Word Rep-
resentation’. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). EMNLP 2014. Doha, Qatar: Association for Com-
putational Linguistics, Oct. 2014, pp. 1532–1543.

[179] D. G. Saari. Geometry of Voting. OCLC: 903196450. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1994.

[180] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen and K. Srinivas. ‘SemTab
2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Sys-
tems’. In: The Semantic Web. Ed. by A. Harth, S. Kirrane, A.-C. Ngonga Ngomo,
H. Paulheim, A. Rula, A. L. Gentile, P. Haase and M. Cochez. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2020, pp. 514–530.

206 bibliography

[181] O. Hassanzadeh, V. Efthymiou, J. Chen, E. Jiménez-Ruiz and K. Srinivas.
SemTab2019: Semantic Web Challenge on Tabular Data to Knowledge Graph Matching -
2019 Data Sets. type: dataset. 25th Oct. 2019. url: https://zenodo.org/record/
3518539 (visited on 3rd Sept. 2020).

[182] O. Bodenreider. ‘Biomedical ontologies in action: role in knowledge management,
data integration and decision support.’ In: Yearbook of medical informatics (2008),
pp. 67–79.

[183] O. Corcho, M. Fernández-López and A. Gómez-Pérez. ‘Methodologies, tools and
languages for building ontologies. Where is their meeting point?’ In: Data &
Knowledge Engineering 46.1 (1st July 2003), pp. 41–64.

[184] A. C. Yu. ‘Methods in biomedical ontology’. In: Journal of Biomedical Informatics.
Biomedical Ontologies 39.3 (1st June 2006), pp. 252–266.

[185] E. Simperl. ‘Reusing ontologies on the Semantic Web: A feasibility study’. In:
Data & Knowledge Engineering 68.10 (1st Oct. 2009), pp. 905–925.

[186] M. Fernández-López, M. Poveda-Villalón, M. C. Suárez-Figueroa and A. Gómez-
Pérez. ‘Why are ontologies not reused across the same domain?’ In: Journal of
Web Semantics 57 (1st Aug. 2019), p. 100492.

[187] M. Poveda-Villalón, M. C. Suárez-Figueroa and A. Gómez-Pérez. ‘The Landscape
of Ontology Reuse in Linked Data’. In: Proceedings Ontology Engineering in a Data-
driven World. OEDW. 2012, p. 11.

[188] B. Smith, W. Ceusters, B. Klagges, J. Köhler, A. Kumar, J. Lomax, C. Mungall,
F. Neuhaus, A. L. Rector and C. Rosse. ‘Relations in biomedical ontologies’. In:
Genome Biology 6 (28th Apr. 2005), R46.

[189] P. Szolovits. Artificial Intelligence In Medicine. Google-Books-ID: 8tmiDwAAQBAJ.
Routledge, 13th Mar. 2019. 255 pp.

[190] N. Guarino and C. Welty. ‘Evaluating ontological decisions with OntoClean’. In:
Communications of the ACM 45.2 (1st Feb. 2002), pp. 61–65.

[191] A. Gangemi, C. Catenacci, M. Ciaramita and J. Lehmann. ‘A theoretical frame-
work for ontology evaluation and validation’. In: Proceedings of the 2nd Italian
Semantic Web Workshop. SWAP. Vol. 166. Trento, Italy: CEUR Workshop Proceed-
ings, 2005, p. 16.

[192] H. Alani, C. Brewster and N. Shadbolt. ‘Ranking Ontologies with AKTiveR-
ank’. In: The Semantic Web - ISWC 2006. International Semantic Web Conference.
Springer, Berlin, Heidelberg, 5th Nov. 2006, pp. 1–15.

https://zenodo.org/record/3518539
https://zenodo.org/record/3518539

bibliography 207

[193] C. Patel, K. Supekar, Y. Lee and E. K. Park. ‘OntoKhoj: a semantic web portal
for ontology searching, ranking and classification’. In: Proceedings of the 5th ACM
international workshop on Web information and data management. WIDM ’03. New
Orleans, Louisiana, USA: Association for Computing Machinery, 7th Nov. 2003,
pp. 58–61.

[194] E. Thomas, J. Z. Pan and D. H. Sleeman. ‘ONTOSEARCH2: Searching Ontologies
Semantically.’ In: OWLED. 2007.

[195] P. Buitelaar. ‘OntoSelect: Towards the Integration of an Ontology Library, Onto-
logy Selection and Knowledge Markup’. In: Proceedings of the 4th International
Workshop on Knowledge Markup and Semantic Annotation (SemAnnot 2004) loc-
ated at the 3rd International Semantic Web Conference ISWC 2004. ISWC. Vol. 184.
Hiroshima, Japan: CEUR Workshop Proceedings, 2004, p. 2.

[196] P. Buitelaar and T. Eigner. ‘Evaluating Ontology Search.’ In: EON. 2007, pp. 11–
20.

[197] J. Schaible, T. Gottron, S. Scheglmann and A. Scherp. ‘LOVER: Support for Model-
ing Data Using Linked Open Vocabularies’. In: Proceedings of the Joint EDBT/ICDT
2013 Workshops. EDBT ’13. event-place: Genoa, Italy. New York, NY, USA: ACM,
2013, pp. 89–92.

[198] T. Adamusiak, T. Burdett, N. Kurbatova, K. Joeri van der Velde, N. Abeygun-
awardena, D. Antonakaki, M. Kapushesky, H. Parkinson and M. A. Swertz. ‘On-
toCAT – simple ontology search and integration in Java, R and REST/JavaScript’.
In: BMC Bioinformatics 12.1 (29th May 2011), p. 218.

[199] N. Kurbatova, T. Adamusiak, P. Kurnosov, M. A. Swertz and M. Kapushesky.
‘ontoCAT: an R package for ontology traversal and search’. In: Bioinformatics 27.17
(1st Sept. 2011). Publisher: Oxford Academic, pp. 2468–2470.

[200] A. S. Butt, A. Haller and L. Xie. ‘Ontology Search: An Empirical Evaluation’. In:
The Semantic Web – ISWC 2014. International Semantic Web Conference. Springer,
Cham, 19th Oct. 2014, pp. 130–147.

[201] N. Kolbe, P.-Y. Vandenbussche, S. Kubler and Y. Le Traon. ‘LOVBench: Ontology
Ranking Benchmark’. In: Proceedings of The Web Conference 2020. WWW ’20. Taipei,
Taiwan: Association for Computing Machinery, 20th Apr. 2020, pp. 1750–1760.

[202] R. Petryszak, T. Burdett, B. Fiorelli, N. A. Fonseca, M. Gonzalez-Porta, E. Hast-
ings, W. Huber, S. Jupp, M. Keays, N. Kryvych, J. McMurry, J. C. Marioni et
al. ‘Expression Atlas update–a database of gene and transcript expression from
microarray- and sequencing-based functional genomics experiments’. In: Nucleic
Acids Research 42 (Database issue Jan. 2014), pp. D926–932.

208 bibliography

[203] J. MacArthur, E. Bowler, M. Cerezo, L. Gil, P. Hall, E. Hastings, H. Junkins, A.
McMahon, A. Milano, J. Morales, Z. M. Pendlington, D. Welter et al. ‘The new
NHGRI-EBI Catalog of published genome-wide association studies (GWAS Cata-
log)’. In: Nucleic Acids Research 45 (D1 4th Jan. 2017), pp. D896–D901.

[204] G. Salton and C. Buckley. ‘Term-weighting Approaches in Automatic Text Re-
trieval’. In: Inf. Process. Manage. 24.5 (Aug. 1988), pp. 513–523.

[205] S. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu and M. Gatford.
‘Okapi at TREC–3’. In: Microsoft Research (1st Jan. 1995).

[206] G. Salton, A. Wong and C. S. Yang. ‘A Vector Space Model for Automatic Index-
ing’. In: Commun. ACM 18.11 (Nov. 1975), pp. 613–620.

[207] L. Page, S. Brin, R. Motwani and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. 11th Nov. 1999. url: http://ilpubs.stanford.edu:
8090/422/ (visited on 14th Mar. 2017).

[208] M. Courtot, F. Gibson, A. L. Lister, J. Malone, D. Schober, R. R. Brinkman and
A. Ruttenberg. ‘MIREOT: the Minimum Information to Reference an External
Ontology Term’. In: Nature Precedings (7th Aug. 2009).

[209] M. Horridge and S. Bechhofer. ‘The OWL API: A Java API for OWL Ontologies’.
In: Semantic Web 2.1 (2011), pp. 11–21.

[210] J. Hastings, P. de Matos, A. Dekker, M. Ennis, B. Harsha, N. Kale, V. Muthukrish-
nan, G. Owen, S. Turner, M. Williams and C. Steinbeck. ‘The ChEBI reference
database and ontology for biologically relevant chemistry: enhancements for
2013’. In: Nucleic Acids Research 41 (D1 1st Jan. 2013), pp. D456–D463.

[211] L. M. Schriml, C. Arze, S. Nadendla, Y.-W. W. Chang, M. Mazaitis, V. Felix, G.
Feng and W. A. Kibbe. ‘Disease Ontology: a backbone for disease semantic integ-
ration’. In: Nucleic Acids Research 40 (Database issue Jan. 2012), pp. D940–946.

[212] J. Hanna, E. Joseph, M. Brochhausen and W. R. Hogan. ‘Building a drug onto-
logy based on RxNorm and other sources’. In: Journal of Biomedical Semantics 4
(18th Dec. 2013), p. 44.

[213] J. Ison, M. Kalaš, I. Jonassen, D. Bolser, M. Uludag, H. McWilliam, J. Malone,
R. Lopez, S. Pettifer and P. Rice. ‘EDAM: an ontology of bioinformatics opera-
tions, types of data and identifiers, topics and formats’. In: Bioinformatics 29.10
(15th May 2013), pp. 1325–1332.

[214] J. Malone, E. Holloway, T. Adamusiak, M. Kapushesky, J. Zheng, N. Kolesnikov,
A. Zhukova, A. Brazma and H. Parkinson. ‘Modeling sample variables with an
Experimental Factor Ontology’. In: Bioinformatics 26.8 (15th Apr. 2010), pp. 1112–
1118.

[215] C. Rosse and V. Mejino JL. ‘A Reference Ontology for Bioinformatics: The Found-
ational Model of Anatomy’. In: J Biomed Informat 36 (2003).

http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/

bibliography 209

[216] S. Köhler, S. C. Doelken, C. J. Mungall, S. Bauer, H. V. Firth, I. Bailleul-Forestier,
G. C. M. Black, D. L. Brown, M. Brudno, J. Campbell, D. R. FitzPatrick, J. T.
Eppig et al. ‘The Human Phenotype Ontology project: linking molecular biology
and disease through phenotype data’. In: Nucleic Acids Research 42 (D1 Jan. 2014),
pp. D966–D974.

[217] T. F. Hayamizu, M. Mangan, J. P. Corradi, J. A. Kadin and M. Ringwald. ‘The
Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data’.
In: Genome Biology 6.3 (15th Feb. 2005), R29.

[218] C. L. Smith, C.-A. W. Goldsmith and J. T. Eppig. ‘The Mammalian Phenotype
Ontology as a tool for annotating, analyzing and comparing phenotypic inform-
ation’. In: Genome Biology 6.1 (15th Dec. 2004), R7.

[219] P. N. Schofield, J. P. Sundberg, B. A. Sundberg, C. McKerlie and G. V. Gkoutos.
‘The mouse pathology ontology, MPATH; structure and applications’. In: Journal
of Biomedical Semantics 4 (2013), p. 18.

[220] G. V. Gkoutos, P. N. Schofield and R. Hoehndorf. ‘The Neurobehavior Ontology:
An Ontology for Annotation and Integration of Behavior and Behavioral Phen-
otypes’. In: International Review of Neurobiology. Ed. by E. J. Chesler and M. A.
Haendel. Vol. 103. Bioinformatics of Behavior: Part 1. Academic Press, 1st Jan.
2012, pp. 69–87.

[221] N. Sioutos, S. d. Coronado, M. W. Haber, F. W. Hartel, W.-L. Shaiu and L. W.
Wright. ‘NCI Thesaurus: A semantic model integrating cancer-related clinical and
molecular information’. In: Journal of Biomedical Informatics. Bio*Medical Inform-
atics 40.1 (Feb. 2007), pp. 30–43.

[222] Y. He, S. Sarntivijai, Y. Lin, Z. Xiang, A. Guo, S. Zhang, D. Jagannathan, L. Toldo,
C. Tao and B. Smith. ‘OAE: The Ontology of Adverse Events’. In: Journal of Bio-
medical Semantics 5 (2014), p. 29.

[223] Y. He, Y. Liu and B. Zhao. ‘OGG: a Biological Ontology for Representing Genes
and Genomes in Specific Organisms.’ In: ICBO. Citeseer, 2014, pp. 13–20.

[224] C. J. Mungall, G. V. Gkoutos, C. L. Smith, M. A. Haendel, S. E. Lewis and M. Ash-
burner. ‘Integrating phenotype ontologies across multiple species’. In: Genome
Biology 11.1 (2010), R2.

[225] L. Cooper, R. L. Walls, J. Elser, M. A. Gandolfo, D. W. Stevenson, B. Smith, J.
Preece, B. Athreya, C. J. Mungall, S. Rensing, M. Hiss, D. Lang et al. ‘The Plant
Ontology as a Tool for Comparative Plant Anatomy and Genomic Analyses’. In:
Plant and Cell Physiology 54.2 (1st Feb. 2013), e1–e1.

[226] M. A. Haendel, G. G. Gkoutos, S. E. Lewis and C. Mungall. ‘Uberon: towards
a comprehensive multi-species anatomy ontology’. In: Nature Precedings 713
(11th Aug. 2009).

210 bibliography

[227] C. A. Park, S. M. Bello, C. L. Smith, Z.-L. Hu, D. H. Munzenmaier, R. Nigam,
J. R. Smith, M. Shimoyama, J. T. Eppig and J. M. Reecy. ‘The Vertebrate Trait
Ontology: a controlled vocabulary for the annotation of trait data across species’.
In: Journal of Biomedical Semantics 4 (2013), p. 13.

[228] G. Schindelman, J. S. Fernandes, C. A. Bastiani, K. Yook and P. W. Sternberg.
‘Worm Phenotype Ontology: integrating phenotype data within and beyond the
C. elegans community’. In: BMC bioinformatics 12 (24th Jan. 2011), p. 32.

[229] E. Segerdell, J. B. Bowes, N. Pollet and P. D. Vize. ‘An ontology for Xenopus
anatomy and development’. In: BMC Developmental Biology 8 (25th Sept. 2008),
p. 92.

[230] C. E. Van Slyke, Y. M. Bradford, M. Westerfield and M. A. Haendel. ‘The zebrafish
anatomy and stage ontologies: representing the anatomy and development of
Danio rerio’. In: Journal of Biomedical Semantics 5 (2014), p. 12.

[231] J. H. Kim. ‘Chi-Square Goodness-of-Fit Tests for Randomly Censored Data’. In:
The Annals of Statistics 21.3 (Sept. 1993), pp. 1621–1639.

[232] B. Lamiroy and T. Sun. ‘Computing Precision and Recall with Missing or Un-
certain Ground Truth’. In: Proceedings of the 9th International Conference on Graph-
ics Recognition: New Trends and Challenges. GREC’11. Berlin, Heidelberg: Springer-
Verlag, 2013, pp. 149–162.

[233] Y. Wang, L. Wang and Y. Li. ‘A Theoretical Analysis of NDCG Ranking Measures’.
In: 2013.

[234] C. Gavankar, Y.-F. Li and G. Ramakrishnan. ‘Explicit Query Interpretation and
Diversification for Context-Driven Concept Search Across Ontologies’. In: The
Semantic Web – ISWC 2016. ISWC. Ed. by P. Groth, E. Simperl, A. Gray, M. Sabou,
M. Krötzsch, F. Lecue, F. Flöck and Y. Gil. Vol. 9981. Series Title: Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2016, pp. 271–288.

	Acronyms
	Namespaces
	1 Introduction
	1.1 Research Questions
	1.1.1 RQ1: Building Background Knowledge
	1.1.2 RQ2: Generating and Ranking Data Model Candidates
	1.1.3 RQ3: Benchmarking Ontology Resource Retrieval Methods

	1.2 Methodology
	1.3 Contributions
	1.3.1 Building Background Knowledge
	1.3.2 Generating and Ranking Data Model Candidates
	1.3.3 Benchmarking Ontology Resource Retrieval Methods

	1.4 Thesis Overview

	2 Background
	2.1 Data Modelling
	2.1.1 Data Model
	2.1.2 Data Structuring

	2.2 Knowledge Representation
	2.2.1 Linked Data
	2.2.2 Ontologies
	2.2.3 Representing Heterogeneous Data in RDF

	2.3 Knowledge Discovery
	2.3.1 Information Integration
	2.3.2 Information Retrieval
	2.3.3 Evaluating Knowledge Discovery Techniques

	2.4 Knowledge Graphs
	2.4.1 Open Knowledge Graphs
	2.4.2 Enterprise Knowledge Graphs

	2.5 Chapter Summary

	3 Building Background Knowledge
	3.1 Introduction
	3.2 Related Work
	3.3 Experimental Use-case Datasets
	3.3.1 Library Use Case
	3.3.2 Life Sciences Use Case

	3.4 Overview
	3.5 Metadata Extraction
	3.5.1 Library Use-case
	3.5.2 Life Sciences Use-case

	3.6 Building the Knowledge Graph
	3.7 Creating the Ontology Graph
	3.8 Ontology Graph Enrichment Experiments
	3.8.1 Matching Evaluation
	3.8.2 Ontology Graph Enrichment Analysis
	3.8.3 Library Use-case Descriptive Statistics
	3.8.4 Life Sciences Use-case Descriptive Statistics

	3.9 Datatype Property Classification Model
	3.9.1 Feature Selection
	3.9.2 Hyperparameter Optimisation
	3.9.3 Model Fitting

	3.10 Conclusions

	4 Generating and Ranking Data Model Candidates
	4.1 Introduction
	4.2 Related Work
	4.3 Generating Candidates
	4.3.1 Entity Types
	4.3.2 Datatype Properties
	4.3.3 Object Properties

	4.4 Ranking Candidates
	4.4.1 Content Score
	4.4.2 Interoperability Score
	4.4.3 Consistency Score

	4.5 Experiments
	4.5.1 Ground Truths
	4.5.2 Candidate Generation
	4.5.3 Content Score Ranking
	4.5.4 Interoperability
	4.5.5 Consistency
	4.5.6 Evaluating Distance to Source

	4.6 Demonstration
	4.7 Conclusions

	5 Benchmarking Ontology Resource Retrieval Methods
	5.1 Introduction
	5.2 Background and Related Work
	5.3 Ontology Search: Applications & Algorithms
	5.3.1 BioPortal
	5.3.2 Solr
	5.3.3 Ontology Lookup Service
	5.3.4 Zooma
	5.3.5 IR Algorithms

	5.4 Evaluation: Ontology Search Applications & Algorithms
	5.4.1 Ontology Loading
	5.4.2 Building the Expert-Based Ground Truth
	5.4.3 Building the Probabilistic Ground Truth
	5.4.4 Comparison between GT and PGT

	5.5 Results
	5.5.1 Ground Truth Results
	5.5.2 Comparison between GT and PGT
	5.5.3 Evaluation with performance metrics

	5.6 Discussion
	5.7 Recommendations
	5.8 Conclusions

	6 Conclusions
	6.1 Lessons Learned
	6.2 Future Work

	Appendices
	A Ontologies
	A.1 Library Use-case
	A.2 Life Sciences Use-case

	B Mathematical Notation
	B.1 Data Structures
	B.2 Symbols, Operators, and Functions

	C Algorithm Workflows
	C.1 Entity Type Generation
	C.2 Entity Type Content Scoring
	C.3 Datatype Property Generation
	C.4 Datatype Property Content Scoring
	C.5 Object Property Generation
	C.6 Object Property Content Scoring
	C.7 Interoperability Scoring
	C.8 Consistency Scoring - Aggregation
	C.9 Consistency Scoring - Refinement

