<table>
<thead>
<tr>
<th>Title</th>
<th>A computational and experimental investigation of the dissection of arterial tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>FitzGibbon, Brian</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2020-11-19</td>
</tr>
<tr>
<td>Publisher</td>
<td>NUI Galway</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/16309</td>
</tr>
</tbody>
</table>
A COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION OF THE DISSECTION OF ARTERIAL TISSUE

Brian FitzGibbon, B.E.

A thesis submitted to the National University of Ireland as fulfilment of the requirements for the Degree of Doctor of Philosophy

July 2020

Discipline of Biomedical Engineering,
College of Engineering and Informatics,
National University of Ireland Galway

Supervisors of Research:
Dr. J. Patrick McGarry
ABSTRACT

The overall objective of this thesis is to provide a new understanding of the mechanisms underlying arterial fracture, and to extend this understanding to the initiation and propagation of aortic dissection using a combination of experimental testing and computational modelling.

Aortic dissection is a lethal disease that involves the separation of the arterial layers and carries mortality rates as high as 1-2% per hour untreated. However, to date the exact pathophysiological processes and related biomechanisms underlying aortic dissection have not been uncovered. We present the development and implementation of a novel experimental technique to generate and characterise mode II crack initiation and propagation in arterial tissue. We begin with a demonstration that lap-shear testing of arterial tissue results in mixed mode fracture, rather than mode II. A detailed computational design of a novel experimental method (shear fracture ring test (SFRT)) to robustly and repeatably generate mode II crack initiation and propagation in arteries is presented. This method is based on generating a localised region of high shear adjacent to a cylindrical loading bar. Placement of a radial notch in this region of high shear stress is predicted to result in a kinking of the crack during a mode II initiation and propagation of the crack over a long distance in the circumferential (c)-direction along the circumferential-axial (c-a) plane. Fabrication and experimental implementation of the SFRT on excised ovine aorta specimens confirms that the novel test method results in pure mode II initiation and propagation. We demonstrate that the mode II fracture strength along the c-a plane is eight times higher than the corresponding mode I strength determined from a standard peel test. We also calibrate the mode II fracture energy based on our measurement of crack propagation rates. The mechanisms of fracture uncovered, along with the quantification of mode II fracture properties have significant implications for current understanding of the biomechanical conditions underlying aortic dissection.

We observe that a standard exponential-CZM (E-CZM) is unable to capture the key trends associated with a collagenous interface undergoing fibrillation, namely, the non-linear crack growth observed during SFRT experiments. We propose an elastic fibrillation CZM (EF-CZM) and explore its conformability to the experimental data. An incremental improvement is obtained relative to the E-CZM; however, crack growth slows prematurely. It is found that the final regime of crack growth is insensitive to the model parameters. The EF-CZM fails to capture the key mechanisms underlying the fibrillation fracture process. It is hypothesised that the dissipative process of fibre pull-out may be an important consideration in phenomenologically capturing the experimental trends. Furthermore, we theorize that crack growth velocity and fibrillation may be related, and thus, a rate dependence may be necessary to phenomenologically capture the physics of the fibrillation process. Therefore, a viscoplastic CZM is developed, where the rate of strain hardening is dependent on the applied strain rate. We present a full exploration of the viscoplastic CZM and demonstrate a thermodynamic consideration of the CZM which demonstrates positive
instantaneous incremental dissipation of the elastic and plastic components of the CZM throughout all loading scenarios considered in the present study. Finally we explore the conformability of viscoplastic CZM to the fracture experiments of FitzGibbon and McGarry (2020) and demonstrate that the introduction of a rate-dependent plasticity captures the key trends observed experimentally, namely, the slow crack growth regime proceeded by fast crack growth and again by slow crack growth.

A realistic subject-specific aorta finite element model derived from a dual-venc MRI scan is developed. We investigate if spontaneous dissection will occur under extreme hypertensive lumen blood pressure loading, or if significant reduction in interface strength must occur in order for dissection to initiate. Importantly, it is also demonstrated that dissection initiation is a pure mode II fracture process, rather than a mixed mode or mode I process. We construct a parameterised idealised aorta model in order to assess the relative contribution for several anatomical and physiological factors to dissection risk. Such parametric analyses provide fundamental insight into the mechanics of stress localisation and delamination in the aorta. Overall, the detailed series of simulations suggest that variations in anatomical features and hypertensive loading will not result in a sufficient elevation of the stress state in the aorta wall to initiate dissection. Our results suggest that initiation of aortic dissection requires a significant reduction in the mode II fracture strength of the aortic wall, suggesting that dissection is preceded by structural and biomechanical remodelling.

Finally, we examine the risk of dissection in an artery with a range of pre-existing injuries. The risk of dissection is examined in an artery with an intimal tear (radial notch). Finite element cohesive zone analyses suggest propagation of an intimal tear is not predicted for pressures less than P=275 mmHg in a healthy aorta. The risk of dissection is then examined in an artery with a pre-existing intraluminal septum and a patent false lumen. Computational fluid dynamics (CFD) analyses are performed, and pressure data is extracted and applied to a solid fracture model. The results of the combined fluid dynamics and finite element cohesive zone analyses suggest extensive propagation of a false lumen is not predicted at a slightly hypertensive systolic pressure of 140 mmHg in a healthy aorta. Even in extreme hypertensive loading conditions AD propagation is arrested due to blunting of the crack tip and an increase in the mode angle towards mode II. The results of this study suggest an intimal tear will not develop into a false lumen in a healthy normotensive aorta.
Acknowledgements

First and foremost, I would like to express my sincerest thanks and gratitude to my supervisor Dr. Patrick McGarry, for his unrelenting scientific curiosity, support, and direction throughout my studies. Without his encouragement, guidance, and generously given time, I could not have completed this PhD.

I would also like to thank Prof. Peter McHugh for his guidance, and time as I began and progressed in my research. His enthusiasm for computational methods is infectious and will remain with me.

To my clinical supervisors Prof. Sherif Sultan and Ms. Niamh Hynes, thank you for your endless enthusiasm for engineering research and your focus on clinical relevance and patient care, which has shaped the way I think about research.

Thank you to the rest of the members of the McGarry group, to whom I owe my sanity. To Jamie and Sarah, thanks for many unforgettable memories and always being up for a bitte craic. To Lizanne, high council of the third floor, thank you for answering a million questions and always being up for a chat. To Eoin, Brian, honorary row-member Ciara, Ryan, Catherine, Juan, and Behrooz thanks for all the craic and memories of playing dice, cheating in fake blackjack, and partaking of Ryan’s homemade mead. I am honoured to have worked alongside each one of you. Thank you to Donnacha for showing me the ropes of python and being so generous with your time. To all the rest of the PhD’s on the third floor, thanks for all the conference memories, baked goods, and lunchtime talks, getting to work alongside all of you has been a pleasure. Thank you to Kevin for many masterclasses in Matlab wizardry. Thank you to Behrooz for many discussions about local orientations and UMATs and more proof-reads than I can count. Thanks to Dave and all of the technical staff, and a big thanks to William, whose good humour and enthusiasm for a good quiz or a piece of cake was always refreshing.

I would like to thank my funding sources; the Irish Research Council and the Western Vascular Institute along with the Irish Centre for High-End Computing (ICHEC) for the provision of essential computational facilities and technical support.

To my family, Mum and Dad, thank you for encouraging me throughout this entire process. You have been in my corner since day one with ceaseless support, encouragement, and prayer, for which I am beyond grateful. To my sister Caoimhe, thank you for always believing in me and supplying me with curated memes. To my sisters Aisling and Fiona, thank you for always being a supportive and loving force throughout my studies. To Villy, thanks for many games of poker and age of empires. To my “in-laws”, Jim, Debbie, Christian, Kaitlin, Chelsea, and RJ, thank you so much for all the support, encouragement, and much-needed sunshine breaks.

To my dear wife Jordyn, your amazing support, patience, and love through the PhD has kept me going through the hardest times and inspired me during the best times. None of this would be possible without your unconditional love and support. Coming home to you and Polly was the highlight of every day, I love you. Finally, I am grateful to God, for His unconditional love, His grace for a distracted mind, and for His son Jesus, who has walked beside me all this way.
List of Publications

Chapter 5: Under review in “Acta Biomaterialia”

Chapter 6: Submitted to “Engineering Fracture Mechanics”

Chapter 7: Submitted to “International Journal for Numerical Methods in Biomedical Engineering”

Chapter 8: Under preparation for publication

Other Journal Publications

International Conference Proceedings

“Biomechanics of an aortic dissection in a residually stressed aorta.”, 8th World Congress of Biomechanics (WCB2018), Dublin, July 8-12, 2018 Podium presentation.

“Biomechanical factors influencing aortic intra-mural dissection.”, 10th European Solid Mechanics Conference (ESMC2018), Bologna, July 2-6, 2018 Podium presentation.

Aortic Masterclass, Galway Clinic. 06th September 2018 Podium Presentation (x2)

“Modelling the dissection of arterial tissue”, Summer Biomechanics, Bioengineering, and Biotransport Conference 2017 (SB3C), Tucson, AZ, USA, June 21 – 24, 2017 Podium presentation
DECLARATION OF ORIGINALITY

I declare that the work presented in this thesis is my own.

Brian FitzGibbon
TABLE OF CONTENTS

1 INTRODUCTION ...1
 1.1 A brief history of aortic dissection ...1
 1.2 Thesis Objectives ..2
 1.3 Thesis Structure ...3
 Bibliography ...6

2 BACKGROUND AND LITERATURE ..8
 2.1 Anatomy of the Aorta ...8
 2.1.1 Arterial Tissue ...8
 2.1.2 Elastin in the Aorta ...11
 2.1.3 Collagen in the Aorta ...12
 2.2 Clinical Overview ...14
 2.2.1 What is Aortic Dissection? ...14
 2.3 Mechanical Behaviour of Aortic Tissue ...19
 2.3.1 Anisotropic material behaviour ...19
 2.3.2 Radial Failure properties ...21
 2.3.3 Shear Failure Properties and mechanisms ...24
 2.3.4 Residual Stress ...28
 2.4 Computational Modelling ...29
 2.5 Cohesive Zone Models ..36
 2.5.1 Potential Based ...37
 2.5.2 Non-potential based ...38
 Bibliography ...40

3 ESTABLISHED THEORY ...53
 3.1 Continuum Mechanics ..53
 3.1.1 Deformation and Motion ...53
 3.1.2 Strain tensors and strain rate measures ..56
 3.1.3 Strain invariants ..57
 3.1.4 Stress measures ...58
 3.1.5 Hyperelastic Materials ..60
 3.2 Finite Element Method (FEM) ..62
 3.2.1 Implicit solution scheme ...62
 3.2.2 Implementation of user-defined material subroutines ...66
 3.2.3 Implementation of user-defined surface interaction subroutines66
 Bibliography ...68
Chapter 1

1 INTRODUCTION

1.1 A brief history of aortic dissection

The aorta is the largest vessel in the vascular system which supplies blood to all parts of the body and originates in the left ventricle. The aorta consists of three layers: the intima, which is the innermost layer; the media, which is the middle layer; and the adventitia, which is the outermost layer (Fuster et al., 2007; Fox, 2011). Aortic dissection (AD) is a pathological process involving the separation or tearing of these layers (Rajagopal, Bridges and Rajagopal, 2007; Criado, 2011). The first clear description of AD is historically attributed to Frank Nicholls, who was the personal physician of George II, King of Britain, who died suddenly and unexpectedly. Having been instructed to open and embalm the royal body, Nicholls’ account represents the first clear medical account of the disease now referred to as AD: “... the pericardium was found distended with a quantity of coagulated blood, nearly a pint ...; the whole heart was so compressed as to prevent any blood contained in the veins from being forced into the auricles; therefore the ventricles were found absolutely void of blood. ...; and in the trunk of the aorta we found a transverse fissure on its inner side, about an inch and a half long, through which some blood had recently passed under its external coat and formed an elevated ecchymosis.”. King George II died at Kensington palace “while straining on the toilet” (Nicholls and Parker, 1761), unbeknownst to the monarch, he was performing a closed glottis Valsalva manoeuvre resulting in
increased intrathoracic pressure, which was likely the cause of his aortic dissection, that propagated into his pericardial sac leading to a fatal cardiac tamponade (Miller et al., 1984; MacDougall et al., 1985; Narloch and Brandstater, 1995). The first major breakthrough in the treatment of AD came nearly 200 years later when Michael DeBakey pioneered the first successful surgical resection of an AD (Cooley and DeBakey, 1955; DeBakey et al., 1964). Interestingly, DeBakey underwent the procedure that he pioneered after suffering from an AD and became the oldest human to have survived the surgery at 97 years old at the hands of the surgeons he trained.

The fracture mechanisms of arterial tissue in AD are poorly understood at present. It is unknown how or why a patient may present with an intimal tear. A major challenge to researchers is the lack of available dissected arterial tissue (taken from open surgical repair) for experimental testing. Open surgical repair of AD is rare due to the advent of endovascular repair using stent grafts (Fattori et al., 2008; Nienaber et al., 2009; FitzGibbon et al., 2018). The majority of experimental characterisations of fracture properties of arterial tissue focus on peel tests, a mechanism which has little relevance for the initiation of dissection (Gasser and Holzapfel, 2006; Sommer et al., 2008). To date, there has been no complete characterisation of the fracture properties of the aorta relevant to the initiation of aortic dissection. In order to understand the mechanisms that lead to AD, a complete characterisation of the fracture properties of the aorta is required.

1.2 Thesis Objectives
The overall objective of this thesis is to advance on the current understanding of the biomechanics of aortic dissection. Novel experimental and computational methodologies are developed that allow for the simulation of aortic dissection and its fracture mechanisms. This section provides motivation for each of the objectives of
this thesis. A comprehensive background and motivation for each objective is provided in the corresponding technical chapter. The specific aims are as follows:

- Develop a novel cohesive zone formulation to address shortcomings of the inbuilt Abaqus cohesive zone behaviour and develop novel methods of handling overclosure.
- Design and build a novel experimental-computational methodology to characterise the shear fracture properties of the aorta.
- Develop and implement physically motivated cohesive zone models to predict fibrillation observed in arterial tissue during fracture.
- Investigate the role of anatomical features, material conditions, and physiologically motivated boundary conditions on initiation of aortic dissection.
- Investigate the conditions necessary to propagate an intimal tear and to propagate a false lumen.

1.3 Thesis Structure

The following is a brief outline of each chapter in this thesis.

Chapter 2: A general review of the literature surrounding the aorta and aortic dissection is presented. With a focus on the aortic anatomy, the relevant clinical literature surrounding aortic dissection, mechanical testing and characterisation of aortic tissue and arteries in general, computational modelling of fracture in arteries and aortic dissection, and a general background on cohesive zone modelling. A critical review of the literature directly relevant to each individual study is presented in each technical chapter (Chapters 4-8), while Chapter 2 represents a more general review of the literature.
Chapter 3: A background on the theoretical and numerical methods implemented in the computational work of this thesis is provided. First presented is a general background in continuum mechanics with a discussion of hyperelastic materials. A background in the finite element method is then provided with discussion of user-defined material subroutines (UMATs) and user-defined interaction subroutines (UINTERs).

Chapter 4: Two novel non-potential based cohesive zone models are proposed, including a novel optional overclosure hardening behaviour. Full parametric investigation of mode-mixity behaviour is presented, as well as a demonstration of irreversible damage. A potential-based form of the model is also explored and compared to similar existing potential-based models. Finally, anomalous behaviours of the inbuilt Abaqus exponential damage evolution are discussed.

Chapter 5: Computational fracture analysis and anisotropic J-integral calculations are performed to design a new experimental test methodology to determine the mode II fracture properties of arterial tissue. This new experimental design is constructed and validated, and the pure mode II fracture properties of an artery are measured for the first time. As part of the study, it is shown that lap-shear testing of arteries does not result in mode II delamination due to high tissue deformability and toughness. It is argued that pure mode II fracture is the only possible mechanism by which arterial dissection can initiate in-vivo.

Chapter 6: Experimental evidence of interfacial fibrillation in arterial tissue is presented. The inability of a standard cohesive zone modelling approach to predict experimental fibrillation crack growth trends is demonstrated. A novel fibrillation CZM is proposed and presented with full parametric examination of the mixed mode
behaviour. The model shows an improvement over a standard CZM approach, but ultimately fails to capture the trends of the experiment. A novel viscoplastic cohesive zone model is proposed and presented with full parametric examination of the mixed mode behaviour. The proposed model captures the key experimental fibrillation crack growth trends.

Chapter 7: A subject specific aorta finite element cohesive zone analysis is presented. The risk of dissection is explored through reducing the aortic shear interface strength. It is found that a 100-fold reduction in mode II strength is required to initiate a dissection under physiological conditions. It is also shown that dissection must initiate in a mode II. The influence of other material, anatomical, and loading factors on dissection risk is also quantified using a parameterised idealised aorta model. It is shown that none of the factors considered pose a risk of dissection in a healthy aorta.

Chapter 8: The risk of dissection in an artery with a pre-existing intimal tear is examined computationally. Finite element cohesive zone analyses reveal a safe range of pressures at which an intimal tear will not propagate. The risk of dissection in an artery with a pre-existing intraluminal septum and a patent false lumen is investigated using a combined computational fluid dynamics and finite element cohesive zone modelling framework. The results indicate the range of pressures at which a false lumen will propagate.

Chapter 9: The key findings and implications of this thesis are outlined and summarised. Suggestions for future experimental work and computational work are also presented.
Bibliography

2 BACKGROUND AND LITERATURE

2.1 Anatomy of the Aorta

2.1.1 Arterial Tissue
Healthy elastic arteries are a complex anisotropic material consisting of three layers, each exhibiting unique material properties and microstructure. Each layer serves a mechanical and physiological function and are fundamental in the maintenance of a healthy artery.

Figure 2.1: This idealised image of a healthy elastic artery shows the intima, media, adventitia, and the components of which they consist (Holzapfel, Gasser and Ogden, 2000).

2.1.1.1 Intima

The intima is the inner layer of the artery which interfaces with the flowing blood in the lumen. It consists of a single layer of endothelial cells on top of a thin basal
membrane. In healthy young arteries, the composition of the intima is not said to have any significant biomechanical influence in the arterial wall. There is, however, an additional layer of the intima below the endothelium which thickens with age, and disease. This thickening is thought to influence the biomechanical importance of the intima in the arterial wall (Weisbecker et al., 2012).

2.1.1.2 Media

The media is the middle layer of the artery and provides the most significant mechanical support to the artery wall. It is composed primarily of smooth muscle cells, collagen, and elastin. Elastin is arranged in fenestrated sheets known as the elastic lamellae (López-Guimet et al., 2017). These divide the media into separate layers (~60 in the thoracic aorta and ~28 in the abdominal aorta) which are fibre-reinforced and well-defined in a concentric pattern (Tsamis, Krawiec and Vorp, 2013). The organisation of these layers in their concentric manner allow for the deformation and high strength of the media. Aortic smooth muscle cells are primarily organised in a helical manner (Fuster et al., 2007). Collagen fibres in the aortic media are aligned primarily in the circumferential direction which provides additional mechanical stiffness at high circumferential strains (Clark and Glagov, no date; Greenberg, 1986).

2.1.1.3 Adventitia

The adventitia is the third and outermost layer of the artery and is made up of fibroblasts and fibrocytes, ground matrix, and thick bundles of collagen fibrils. The adventitia is the most significant layer of the artery from a biochemical standpoint (Majesky, Dong, Hoglund, et al., 2011). There have been studies to suggest that the adventitia has the properties of a progenitor cell niche in the arterial wall, allowing it to respond to arterial injury (Majesky, Dong, Regan, et al., 2011). The adventitia is the primary arterial layer in regulation of the health and disease of vessels (Witter,
Collagen fibres in the adventitia are generally less aligned than in the media, creating mechanical behaviour that is less anisotropic in nature (Schriefl et al., 2012; Pierce et al., 2015).

2.1.1.4 The Vasa Vasorum

The vasa vasorum (VV) is a network of small blood vessels which supply large elastic arteries (aorta) and veins (vena cava) with blood (Figure 2.2). The VV have been observed supplying porcine arteries and bovine aortae through the use of two families of vessels; the vasa vasorum interna (VVI) and the vasa vasorum externa (VVE) (Heistad and Marcus, 1979; Gössl et al., 2003). The VVI originate in the lumen and extend into the arterial wall from the inside-out providing its blood supply. The VVE originate from major vessels in close proximity to the vessel in question (intercostal arteries for the aorta, major branches of the epicardial coronary arteries for the coronary arteries) and extend into the artery wall from the outside-in providing its blood supply (Wolinsky and Glagov, 1967). The number of VV present in a given section may be described as the spatial density of the VV. The VVI and VVE have been observed to exhibit a complementary relationship whereby a low density of VVE will often mean there will exist a high density of VVI in order to compensate for the reduced oxygen/nutrition to the artery wall. There is a spatially varying distribution of VV throughout the aorta, which may influence the prevalence of aortic diseases (Kampschulte et al., 2010; Sano et al., 2016).
2.1.2 Elastin in the Aorta

Elastin is a fundamental protein in the healthy aorta. It is the primary structural protein in the aorta at low strains (Schriefl et al., 2015). It is highly elastic and fundamentally important in fluid-structure energetics in a physiological cardiac cycle (Mithieux and Weiss, 2005). Age and disease may negatively impact the physiological function of elastin in vivo through an assortment of different processes.

2.1.2.1 The effects of age:

As the aorta ages, there is a significant decrease in the concentration of elastin throughout the aorta (Hass, 1943). This decrease occurs through an increase in the other matrix components, such as collagen (Schlatmann and Becker, 1977; Greenberg, 1986; Sans and Moragas, 1993), and a maintenance of the current elastin content (Lansing, Alex and Rosenthal, 1950). There is also evidence to suggest that the elastin cross-linking is affected negatively by the ageing process. This is seen in one study where the amount of elastin cross-linking acids were decreased in older patients versus the control group (John and Thomas, 1972). Another study showed in the ascending
Thoracic aorta the elastin concentration was found to decrease by 33% in patients in their 90’s compared to patients in their 20’s (Hosoda et al., 1984). Despite the change in concentration, the content of elastin remained the same (Andreotti et al., 1985). Elastin fibre fragmentation has also been linked with the natural ageing process of the human aorta (Toda et al., 1980). The mechanism by which this occurs is unknown but it has been suggested that mechanical fatigue failure may play a primary role (Sans and Moragas, 1993; Greenwald, 2007). As well as mechanical failure, chemical degradation has also been suggested as an important mechanism due to an upregulation of matrix metalloproteinases (MMPs) due to decreased levels of their inhibitors (Wang and Lakatta, 2002).

2.1.2.2 The effects of disease:

Naturally, disease may alter the content, concentration, and morphology of elastin in vivo. In fact, the changes to these fundamental proteins are what underly many symptoms in various connective tissue diseases. In one study, the elastin content was decreased by almost 50% in patients with Marfan Syndrome (Abraham et al., 1982). Patients with Marfan Syndrome suffer from larger interlaminar spaces and loss of interlaminar fibres. This may explain the prevalence of aneurysms and dissection in patients with Marfan Syndrome (Perejda et al., 1985). In the ascending thoracic aorta, a significant decrease in elastin concentration was seen in dissected aortas when compared to healthy aortas. Furthermore, there was slightly less elastin cross-linking seen in these samples when compared with the control group (Cattell, Hasleton and Anderson, 1993).

2.1.3 Collagen in the Aorta

Collagen is the main structural protein in the arterial wall at high strains (Di Lullo et al., 2002). It consists of amino acids bound together in a triple helix structure which
makes up a collagen fibril. Large fibrillar bundles are formed using various classes of proteins, glycoproteins, and proteoglycans (Perumal, Antipova and Orgel, 2008). Collagen fibres consist of many collagen fibrils. Similarly to elastin, collagen may pathologically degrade with age and disease.

2.1.3.1 The effects of age:

The increased content of collagen within the aortic wall due to increased age has been well documented (Schlatmann and Becker, 1977; Greenberg, 1986; Sans and Moragas, 1993). Importantly, this is a non-intimal collagenous increase (Smith, 1965). This means the intimal thickening associated with ageing is not responsible for the increased collagen content (Holzapfel et al., 2007). Another study observed an increase in irregularly arranged collagen fibres in the media of the human thoracic aorta with age (Toda et al., 1980). The increase of irregularly arranged collagen fibres leads to more isotropic behaviour with age, decreasing the aortas resistance to circumferential stretch, potentially resulting in increased incidences of aneurysms which are associated with old age (Kent, 2014). There is also an observed increase in collagen cross-linking with age. This is primarily due to the increase in content of cross-linking amino acids such as histidinoalanine (Fujimoto, 1982).

2.1.3.2 The effects of disease:

In one study, the content of collagen was found to be increased at the site of dissecting ascending thoracic aneurysms and collagen concentration was decreased (Whittle et al., 1990). It has also been shown that the morphology of the collagen fibre bundle is dramatically altered in aortic dissection and ascending thoracic aortic aneurysms. In the disease cases, the fibres are thin and scattered as opposed to the thick well-arranged parallel fibres in the control (de Figueiredo Borges et al., 2008).
2.2 Clinical Overview

2.2.1 What is Aortic Dissection?
The current understanding of Aortic Dissection (AD) in the clinical literature is varied and somewhat scarce when compared to other vascular disease, with several authors referring to it as a conundrum (Vilacosta et al., 2010). However, it is clinically accepted that AD occurs upon some intimal injury (commonly known as the tear/entry tear) which causes an initial separation of the arterial layers (Figure 2.3). The separation is thought to occur most commonly between the intima and media (Criado, 2011).

![Intimal Tears](image_url)

Figure 2.3: Pathology images of intimal tears in the ascending aorta. Images courtesy of (Aortic aneurysm, 2008; Cardiac Pathology: Congenital: Coarctation of the aorta: aortic dissection, 2011) (Creative Commons Attribution/Share-Alike License)

This intimo-medial tear is the pre-cursor for the progression of a further tearing which is thought to occur be between the lamellar elastic layers of the media (Tam, Sapp and Roach, 1998; Gasser and Holzapfel, 2006; Sommer et al., 2008) (see Figure 2.5). The propagation of this crack or tear allows a pathological blood flow between the medial layers. This blood flow exerts an internal pressure from within the media and leads to
expansion of this pathological conduit known as the “False lumen”. The expansion of this false lumen invariably leads to the compression of the original aortic lumen, commonly referred to as the “True lumen” (Figure 2.4).

Figure 2.4: Computed Tomography (CT) scan showing an Axial (left) and Coronal (right) view of a type-B chronic aortic dissection. As can be seen in both views the true lumen is compressed by the false lumen. The lower attenuation in the true lumen also indicates reduction in blood flow from the true lumen and increased flow in the false lumen.

The compression of the true lumen is often problematic as it causes a reduction in blood flow to the major arteries which stem from the true lumen of the aorta; the celiac artery, the superior mesenteric artery (SMA), the renal arteries, the inferior mesenteric artery (IMA), the intercostal arteries, and the spinal arteries. If these arteries are occluded or malperfused, the results for the patient can be catastrophic (paraplegia, renal failure, bowel necrosis, etc.) (Eggebrecht et al., 2006; Fattori et al., 2008, 2013; Svensson et al., 2008; Chou et al., 2015; Chen et al., 2017; Evangelista et al., 2018).
2.2.1.1 Anatomical Classification of Aortic Dissection.

There are two types of anatomical classification system with regards to aortic dissection: the Stanford classification and the DeBakey classification. These classifications describe the anatomical extent of the pathology and are frequently used to determine treatment pathways and patient outcomes. Between the two, the Stanford Classification is more commonly used in clinical practice and is sub-divided into Type-A and Type-B. A Type-A AD involves the ascending aorta, and the aortic arch, while a Type-B AD involves the remainder of the aorta beyond the supra-aortic vessels (the brachiocephalic artery, the left common carotid artery, and the left subclavian artery). The DeBakey classification divides AD into Type I, Type II, and Type III. Type I involves the ascending and descending aorta (Stanford Type A and B) infrequently referred to as a “pan-aortic dissection”, Type II involves the ascending aorta only (Stanford Type A), and type III involves the descending aorta only, beginning distal to the left subclavian artery (Stanford Type B). According to the International Registry of Acute Aortic Dissection approximately 62.3% of patients present with type-A dissection (Hagan et al., 2000).
Figure 2.6: Illustration of the clinical classifications of aortic dissection based on the anatomical extent of the disease. Any dissection which involves the ascending aorta/aortic arch proximal to the left subclavian artery may be referred to as a Stanford Type-A. Stanford Type-B exclusively involves the descending aorta distal to the left subclavian artery (MacKnight et al., 2016).

2.2.1.2 Temporal Classification of Aortic Dissection

AD is also classified based on the age of the dissection, typically beginning from the onset of symptoms or from first evidence of the disease with imaging (Evangelista et al., 2018). Clinically, this is due to the variation in mortality rates as the dissection ages. Traditionally two classifications have been used: acute and chronic. These referred to less than 14 days old and older than 14 days. There are four classifications that are now used in clinical practice. These are (from the onset of symptoms); <24 hours (Hyper-acute); <2 weeks (Acute); 2-6 weeks (Sub-acute); >6 weeks (Chronic).

As the dissection progresses in chronicity, the separated arterial layers which divides the true and false lumen (the intraluminal septum) increase in rigidity and reduce in elasticity and mobility. This process occurs through the accumulation of granulation
tissue from the blood stream and fibrosis of the fractured surface (septum) (Hasleton and Leonard, 1979). There has been a recent shift in thought in the clinical literature away from arbitrary acute/chronic definitions and towards a more sophisticated method of dating the dissection based on septal mobility using 4D-MRI (Karmonik et al., 2009, 2011; Clough et al., 2012). These methods are still considered cutting-edge and have not been widely accepted by the medical community as of yet.

2.2.1.3 Complicated versus Uncomplicated

A Type-B AD is also classified based on the requirement for intervention and is referred to as uncomplicated or complicated. Complicated refers to AD which presents with: malperfusion or end organ ischaemia (ischaemia affecting the spinal cord, kidneys, viscera, or lower extremities), and uncontrolled severe hypertension. Uncomplicated refers to a patient without the aforementioned symptoms, these are generally treated with best medical therapy (Nienaber et al., 2005; Tang and Dake, 2009; Ulug et al., 2012; FitzGibbon et al., 2018). This involves antihypertensive therapy through the use of beta blockers in attempt to reduce the haemodynamic load acting upon the initial entry tear and in order to avoid further propagation of the dissection.

2.2.1.4 Aortic Dissection and Hypertension

Hypertension is the most common comorbidity of aortic dissection, affecting approximately 77% of patients with aortic dissection (Evangelista et al., 2018). Chronic hypertension is known to increase the stiffness of the arterial wall (Rorive and Carlier, 1983; Laurent, Boutouyrie and Lacolley, 2005; Arribas, Hinek and González, 2006; Greenwald, 2007). A study carried out on pigs with induced hypertension showed that the outer layer of the media becomes hypoxic due to restriction of blood flow to the vasa vasorum (Angouras, 2000). This leads to the formation of micro-
cracking at the region where the hypoxic tissue interfaces with the healthy tissue. Hypertension has also been shown to induce hypertrophy of the inner layer of the media (Henrichs et al., 1980; Olivetti et al., 1982; Owens, Rabinovitch and Schwartz, 2006). This is likely due to the increased smooth muscle cell activity required to compensate for the underactive outer hypoxic layer of media. Hypertension, therefore, can lead to thickening of the inner layer of the media, and arteriosclerosis of the outer layer of the media or of the entire vessel. The morphology of elastin and collagen has also been shown to vary in hypertension (Angouras, 2000; Laurent and Boutouyrie, 2015).

2.3 Mechanical Behaviour of Aortic Tissue

2.3.1 Anisotropic material behaviour
Extensive research has been conducted on the characterisation of the mechanical behaviour of the healthy aorta and various disease states of the aorta. The anisotropic nature of the aorta has been well established in innumerable experimental studies (Labrosse et al., 2009; García-Herrera et al., 2012; Weisbecker et al., 2012; Nolan et al., 2014; Pierce et al., 2015). The mechanical behaviour of the individual layers has also been examined in great detail in healthy and diseased arteries (Holzapfel et al., 2005; Schriefl et al., 2012; Weisbecker et al., 2012; Sassani, Tsangaris and Sokolis, 2015).
Figure 2.7: Layer-specific mechanical behaviour of thoracic (left) and abdominal (right) aorta undergoing uniaxial extension. Image with permission from Weisbecker et al. (Weisbecker et al., 2012). Behaviour of each layer in circumferential and axial extension is shown.

There are a few contributing factors that lead to the anisotropy of arterial tissue including tissue microstructure, smooth muscle cell orientation, axial, radial, and circumferential heterogeneity in the wall properties. However, the primary determinant of anisotropy is the aligned nature of collagen fibres within the arterial wall. The degree and direction of alignment of these fibres varies radially throughout the aortic layers. These layer-specific orientations within the aorta have been well documented experimentally in the thoracic aorta, abdominal aorta and the iliac arteries (Schriefl et al., 2012). This is achieved through analysis of polarised light micrographs (Figure 2.8). Generally, two fibre families are identified in the intima, media, and adventitia with a third and fourth sometimes appearing in the intima (Schriefl et al., 2012).

Figure 2.8: Polarized light micrographs of picrosirius red stained sections of the (a)
intima, (b) media, and (c) adventitia. Two distinct fibre families are evident from the images. Images with permission courtesy of (Schriefl et al., 2012).

2.3.2 Radial Failure properties

The radial failure properties of the aorta have been documented in a number of studies, the majority of these are peel tests. The resistance of the aorta to normal (mode I) opening is an important quantity which can be readily measured with peel tests. This resistance is typically quantified as a force per unit width (F/w) or a dissection energy (W_{diss}). Sommer et al. carried out peel tests on medial specimens of the human abdominal aorta and found a mean force per width of $22.9 \pm 2.9 \, mN/mm$ in the circumferential direction which was lower than the axial counterpart of $34.8 \pm 15.5 \, mN/mm$ (Sommer et al., 2008). These levels of anisotropy are also observed in other peeling studies (presented in Table 2.1). Histology reveals damage to several lamellar layers in the medial peel tests (Figure 2.9c-d). Another interesting finding is the smooth fracture surface left in the circumferential peel when compared to the rough surface of the axial peel (Figure 2.9a-b), indicating microstructural causation of the observed anisotropy. The surface roughness of the histological samples is reflected in the standard deviations of the circumferential and axial specimens, respectively. Pasta et al. carried out peel tests on aneurysmal aortas with tricuspid aortic valves (TAVs) and bicuspid aortic valves (BAVs) (Pasta et al., 2012). The motivation behind testing aneurysmal BAVs and TAVs is clear, BAVs carry significantly increased risk of AD, aneurysm, and dissecting aneurysm (Edwards, Leaf and Edwards, 1978; Michelena et al., 2011; Girdauskas et al., 2014). The results of the peel test help to explain the underlying mechanics behind the clinical observation. TAVs had a significantly higher resistance to peeling than BAVs. Both test groups were significantly lower than the non-aneurysmal TAV control group. A study by Kozuń et al. found contrasting results for dissected descending thoracic aorta, and dissected aneurysmal descending thoracic
aorta (Kozuñ et al., 2019). No significant decrease in mean peeling resistance (F/w) was observed in the aneurysmal group compared to the non-aneurysmal group. Another study from the same group demonstrated that anisotropy in force/width exists in atherosclerotic thoracic aortas (Kozuñ et al., 2018). In particular, a significantly higher resistance to peeling was reported in the axial direction than the circumferential direction.

Figure 2.9: Peel tests carried out by Sommer et al. (Sommer et al., 2008). Fracture surface of the smooth circumferential (a) and rough axial (b) peel tests. (c) Circumferential and (d) Axial crack tips showing damage to several lamellar layers. Noble et al. carried out peel tests on porcine thoracic aorta to investigate the influence of elastin, and collagen on the resistance to peeling (Noble et al., 2016). Specifically, individual groups of specimens are treated using collagenase, elastase, and glutaraldehyde. Significant loss of peeling resistance is observed in the collagenase treated group; implying collagen fibres play a significant role in resistance to peeling. Conversely, no statistically significant difference is observed with elastin knockout,
implying elastin plays little to no role in resisting peeling. The collagenase results are consistent with the clinical observation that Vascular Ehlers-Danlos Syndrome (EDS) patients are at a significantly higher risk to dissection (Goldfinger et al., 2014). Vascular EDS involves a mutation of the COL3A1 gene, which is responsible for type III procollagen (Brandt et al., 2001; Ulbricht et al., 2004). It is shown that relatively low levels of anisotropy in the mean force per width exist in the circumferential and axial directions across all subgroups.

Leng et al. most recently carried out peel tests on porcine abdominal aortic media (Leng et al., 2018). The authors carried out two types of peel tests: T-shape peel tests (traditional peel tests) in axial and circumferential directions and mixed mode peel tests at loading angles in axial and circumferential directions. Testing reveals a similar mean force per width in both orientations and in both loading configurations ($F/w = 60 \text{ mN/mm}$) indicating isotropic behaviour in a mixed mode peel.

Table 2.1: Overview of peel tests conducted on arterial tissue. H: Healthy, AN: Aneurysmal, AT: Atherosclerotic, AA: Abdominal Aorta, ATA: Ascending Thoracic Aorta, TA: Thoracic Aorta, F/w: Force per width, W_{diss}: Dissection energy.

<table>
<thead>
<tr>
<th>Study</th>
<th>Species</th>
<th>Tissue State</th>
<th>Location</th>
<th>Layer</th>
<th>Direction</th>
<th>mean F/w (mN/mm)</th>
<th>W_{diss} (mJ/cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommer et al. (Sommer et al., 2008)</td>
<td>Human</td>
<td>H</td>
<td>AA</td>
<td>Media</td>
<td>Circ</td>
<td>22.9 ± 2.9</td>
<td>5.1 ± 0.6</td>
</tr>
<tr>
<td>pasta et al. (Pasta et al., 2012)</td>
<td>Human</td>
<td>H</td>
<td>ATA</td>
<td>Media</td>
<td>Circ</td>
<td>126 ± 6.6</td>
<td>-</td>
</tr>
<tr>
<td>Tong et al.</td>
<td>Human</td>
<td>AN</td>
<td>AA</td>
<td>Media-Intima</td>
<td>Circ</td>
<td>-</td>
<td>10.1 ± 1.7</td>
</tr>
</tbody>
</table>
Another type of radial experiment was proposed by Sommer et al., the direct tension test (Sommer et al., 2008). This test involves punching a coin-shaped specimen out of the aortic wall and gluing the top and bottom to the grips. A small notch is introduced around the circumference of the sample midway through the height. The sample is then tested to failure. The authors assume a homogenous stress state in the material to estimate an average radial failure stress of $140.1 \pm 15.9 \, kPa$.

2.3.3 Shear Failure Properties and mechanisms

There have been fewer studies characterising the shear failure properties of the aorta when compared to the many peel tests characterising normal failure of the aorta. In

<table>
<thead>
<tr>
<th>Study</th>
<th>Tissue</th>
<th>Material</th>
<th>Area</th>
<th>Circumference</th>
<th>Longitudinal</th>
<th>Failure Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tong et al., 2011a)</td>
<td>Human</td>
<td>AT TA Adventitia-Media</td>
<td>Circ</td>
<td>24.5 ± 7.5</td>
<td>9.3 ± 0.9</td>
<td></td>
</tr>
<tr>
<td>Kozuń et al. (Kozuń et al., 2018)</td>
<td>Human</td>
<td>AT TA Adventitia-Media</td>
<td>Circ</td>
<td>32.4 ± 6.5</td>
<td>7.6 ± 1.7</td>
<td></td>
</tr>
<tr>
<td>Noble et al. (Noble et al., 2016)</td>
<td>Porcine</td>
<td>H TA Media</td>
<td>Circ</td>
<td>67.4 ± 11.7</td>
<td>15.18 ± 2.70</td>
<td></td>
</tr>
<tr>
<td>Witzenburg et al. (Witzenburg et al., 2017)</td>
<td>Porcine</td>
<td>H ATA Media</td>
<td>Circ</td>
<td>68.8 ± 14.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Leng et al. (Leng et al., 2018)</td>
<td>Porcine</td>
<td>H AA Media</td>
<td>Circ</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
recent years Sommer et al. carried out in-plane and out-of-plane shear tests on human aneurysmatic and dissected thoracic aorta. Small rectangular cuboid samples are prepared (4mm × 4mm × 5mm), a notch is cut into the sample midway through the sample height such that it lies on the face in the direction of applied shear. Samples are then glued top and bottom and sheared to failure. The authors find nearly an order of magnitude difference in the ultimate shear stresses for the in-plane shear when compared to the out of plane shear tests in aneurysmatic specimens (115 ± 41 kPa, 918 ± 313 kPa). The findings across axial and circumferential for in plane shear tests from the study do not reveal statistically significant anisotropy in failure properties. The mean shear at ultimate shear stress was $\gamma_u = 1.53 \pm 0.28$ in the circumferential direction and $\gamma_u = 1.24 \pm 0.22$ in the axial direction for aneurysmatic specimens, indicating these specimens undergo extremely high levels of deformation before reaching an ultimate shear stress.

Another study characterising the shear failure properties of the ascending porcine aorta was carried out by Witzenburg et al. (Witzenburg et al., 2017). Lap-shear tests were carried out in the axial and circumferential directions. Contrary to previous shear experiments, the authors found a statistically significant difference in the peak shear stress in the circumferential direction when compared to the axial direction (185.4 ± 28.4 kPa versus 143.7 ± 16.0 kPa respectively). It is difficult to compare the two experiments, as they consist of different experimental methods and specimen geometries, however, the failure properties of the tissue should be insensitive to experimental methodology. This may indicate that lap-shear is a more appropriate experiment than in-plane shear in determining failure characteristics of aortic tissue.
Haslach et al. carried out shear testing of aneurysmal and non-pathological human ascending aortic tissue and found relatively isotropic material behaviour in shear (Haslach, Gipple, et al., 2018). The authors predict significantly lower shear stresses than the previous two studies, however they may not be directly compared as the experimental apparatus is quite dissimilar.

More recently, Haslach et al. examined the shear mechanisms that underly aortic fracture mechanics and discovered some interesting phenomena (Haslach, Siddiqui, et al., 2018). Pressure inflation tests are carried out on aortic ring specimens containing notches of varying orientations. Notches are cut such that they initiate at the intima.
and travel perfectly radially (perpendicular to the circumferential plane) or they travel at varying angles towards the adventitia. Crack growth is observed propagating radially over a very small distance followed by a discrete change in direction to propagate circumferentially. This phenomenon is observed regardless of notch orientation. This indicates that it is energetically favourable for the notch to propagate circumferentially in a mode II crack and not a mode I. This study represents the best evidence that aortic dissection and all other rupture processes in the aorta are the results of a mode II crack growth, not a mode I. Previously, ultimate tensile strength was used as an indicator for rupture in the aorta (Vorp, Raghavan and Webster, 1998; Vande Geest, 2005; Vande Geest et al., 2006). Following ultimate tensile strength, many considered to the normal strength of the aortic layers to be the gold standard and as such carried out peel tests to characterise this strength. The best evidence currently suggests aortic dissection occurs in a mode II propagation (Haslach et al., 2015; Haslach, Siddiqui, et al., 2018).

Figure 2.11: Results of pressure inflation tests on bovine aorta. Extensive circumferential crack growth is observed. (Left) with permission from (Haslach,
Siddiqui, et al., 2018): The initial radial notch shown by the white arrow. The crack turns 90 degrees and propagates circumferentially in a mode II. (Right): Histological sample stained with safranin-O. The X marks the boundary position of the initial radial notch. Small radial growth is observed, after which the crack turns 90 degrees and propagates bi-directionally in shear in the circumferential plane (Haslach et al., 2015).

2.3.4 Residual Stress

An interesting feature of aortic tissue is the lack of a zero-stress state when it remains circumferentially intact. Circumferentially intact aortic rings are in a state of equilibrium and zero-pressure; however, they are not in a “zero-stress” state. There exist stresses in the aorta which cause a ring specimen to spring open if radially cut (Liu and Fung, 1988). These exist due to a compressive circumferential stress at the intima and a tensile circumferential stress at the adventitia. Experimentally this phenomenon is measured by cutting aortic rings and measuring the angle they spring open to, known as the opening angle. This opening angle varies spatially throughout the aorta indicating a spatial variation in residual stress throughout the aorta. Experiments carried out on rat aortae observed that the maximum change in opening angle occurs in the ascending aorta (Fung and Liu, 1989). Another study carried out on rat aortae showed that hypertension significantly increases the residual stress in the aorta (Matsumoto and Hayashi, 1996a). In a study carried out on human aortas a very strong correlation between vessel radius and opening angle was observed (Saini, Berry and Greenwald, 1995). The same study also revealed a strong correlation between the opening angle and the wall thickness. It is also shown that residual stress increases with the presence of atherosclerosis. A more recent study provides the most complete and comprehensive dataset regarding residual stress in the human aorta (Sokolis et al., 2017).
Figure 2.12: Opening angle data for human aorta (left) and rat aorta (right). Images with permission from (Liu and Fung, 1988; Sokolis et al., 2017).

2.4 Computational Modelling

There have been significant improvements over the past decade in computational modelling of aortic dissection and the fracture processes involved. These computational models are frequently used to gain further insight to experiments and to predict disease progression. Just as there have been a number of experimental peel tests carried out on aortic tissue, there have also been a number of computational studies carried out on peel tests and related experiments. The first of these was performed by Gasser and Holzapfel (Gasser and Holzapfel, 2006). The authors use the partition of unity finite element method (PUFEM) in order to model the delamination occurring between arterial layers. A normal cohesive strength of 140 kPa is calculated to propagate a tear at a quasi-steady state force/width of 23.0 mN/mm. The authors assume a plastic like behaviour of the exponential cohesive interface which avoids a fast decay of the traction after reaching the peak. A second numerical study of peel tests was carried out by Ferrara et al. (Ferrara and Pandolfi, 2010). In said study, the authors use a cohesive zone modelling approach to model the peeling process. A linear damage model is used with varying interface strengths and fracture energies. No dependence of the mean force/width on the fracture energy is found and it is shown...
that the mean force/width is primarily sensitive to the interface strength. An interface strength of 140kPa predicts a steady-state force/width of 28.8 mN/mm. These results show good agreement with the previous study. More recently, simulation of peel tests were carried out by Witzenburg et al. (Witzenburg et al., 2017). The authors approach the problem differently by using multiscale modelling. The scales consist of the FE domain (mm scale), representative volume elements (RVEs) (μm scale), and individual fibres (the nm scale). The authors demonstrate good agreement between their own experimental and computational data but do not report a normal interface strength due to the nature of the modelling framework. The mean circumferential peel tension is found to be 68.8 ± 14.2 mN/mm for porcine ascending aorta. The most recent study on peeling of aortic tissue was carried out by Leng et al. (Leng et al., 2018). The study focuses on the numerical modelling of two types of peel tests, T-shaped (traditional peel test) and mixed mode. The arterial tissue is modelled as a HGO material and the CZM is an exponential type traction separation law taken from (Ortiz and Pandolfi, 1999). The mode mixity at the crack tip as a function of loading angle for the mixed mode peeling experiments is also presented.
Figure 2.13: Mixed mode peel test experiment (a) and simulation (c) and traditional T-shape peel test experiment (b) and simulation (d) from Leng et al. with permission (Leng et al., 2018)

There have been a number of studies that use the results of experimental and numerical simulations of peel tests in order to calibrate their cohesive strengths. Noble et al. carried out an investigation into iatrogenic dissection of arterial tissue (Noble et al., 2017). Iatrogenic dissection occurs typically in the catheterisation process or during balloon angioplasty (Núñez-Gil et al., 2015; Ramasamy et al., 2017; Hiraide et al., 2018). It predominantly occurs in the coronary arteries and is initiated by a mode I opening induced by the catheter (Leontyev et al., 2012; Fiddler, Avadhani and Marmur, 2015; Hiraide et al., 2018). The authors use a cohesive zone modelling approach using the large displacement formulation as described by Van Den Bosch et al. (van den Bosch, Schreurs and Geers, 2007). They report numerical dissection energies approximately four times larger than the experimentally calculated values.
Many studies assume the primary mechanism of the propagation of tears in arterial tissue is a mode I opening. One such study by Wang et al presents evidence that tear propagation and arrest is dictated by surrounding connective tissues that are sufficiently stiff (Wang et al., 2015). Another study from the same group examines the role of residual stress in crack propagation in an artery model (Wang et al., 2017). Extended finite element method (XFEM) is used with the same linear damage evolution law as Ferrara et al. It is assumed that dissection must propagate due to some internal pressure acting within the aortic wall and report critical pressures which lead to crack propagation. The authors model an initial crack of various lengths and report the propagation paths (Figure 2.14). Their findings suggest a balance between the residual stress present in the artery and the initial tear length.

![Figure 2.14: Simulations from Wang et al. showing a residually stressed artery with several configurations of initial crack length. Radial propagation is predicted in each case (Wang et al., 2017). Images presented under a creative commons license.](image)

A similar study from the same group presents findings regarding initial tear depth and length (Wang et al., 2018). The same method as the previous study is used and it is shown that deeper shorter tears are more difficult to propagate than long shallow tears (Figure 2.15). It is also hypothesised that the buckling of the true lumen may work to slow down crack propagation as it redistributes the energy and stresses within the wall. Their claim is supported by the prediction that deep tears without buckling tend to propagate radially at lower pressures.
Figure 2.15: Simulations from Wang et al. show the influence of initial tear depth on propagation and morphology of the true lumen. Deep tears tend to propagate radially whilst shallow tears cause compression and distortion of the true lumen. Image courtesy of (Wang et al., 2018) Images presented under a creative commons license.

A recent study carried out by Gültekin et al. simulates the experiments of Sommer et al. using a phase field approach (Gültekin, Dal and Holzapfel, 2016). The authors do not model the exact specimen geometries seen in the experiments, instead representative specimens are modelled, and the data is fit using said geometries. The approach is similar to previous studies in its phenomenological nature, it involves a failure criterion based on the components of the material model i.e. critical fracture energy of the ground matrix and a critical fracture energy of the collagen fibre. A more recent study by Gültekin et al. may be thought of as an extension of the previous study. The same phase field approach is taken, and the authors come to similar conclusions to Haslach et al. that aortic dissection is dominated by a mode II fracture process.
Figure 2.16: Simulations from Gültekin et al. (Gültekin et al., 2019) Initial tear is seen in the image on the left. Crack evolution during pressurisation (centre) and twist (right) is observed. In this framework the crack propagates in a mode II with a compressive mode I component due to the lumen pressure. Images presented under a creative commons license.

There are very few computational studies investigating the mechanics of the aortic arch as they pertain to Type A AD. In fact, to the authors knowledge, only one such study exists. Beller et al. presented a preliminary finite element analysis of a semi-idealised aortic arch (Beller et al., 2004). The material behaviour was assumed to be linear elastic and isotropic with a Young’s Modulus of $E = 3$ MPa and a Poisson’s ratio of $\nu = 0.49$. The supra-aortic vasculature (the left common carotid artery, brachiocephalic artery, and left subclavian artery) were assumed to be four times stiffer than the aorta ($E = 12$ MPa) and the branch ends were modelled as rigid. The authors report significant stress concentrations by the ostia of the supra-aortic vessels for given displacements of the aortic root. It is difficult to ascertain the validity of these findings given the profound disparity in material properties between the branches and the aorta and the rigid nature of the boundary conditions. The authors conclude that displacement of the aortic root may be an initiating factor in aortic
dissection. This study is somewhat limited however, given that peak wall stress was the metric used to determine risk of dissection.

Figure 2.17: CT showing displacement of the aortic root from Beller et al. (Images with permission from Beller et al., 2004) (left). Finite element analysis of aortic arch undergoing axial displacement and resultant stress concentrations at the ostia of the branching vessels (right).

Due to the simplicity of constructing patient specific geometries from contrast CT scans and contrast MRI’s, there are innumerable studies regarding computational fluid dynamics on patient specific geometries of aortic dissection. Many of these investigate the effect of stent graft repair on the false lumen flow and pressure. Although these studies are vitally important for clinicians they are beyond the scope of this chapter, for an overview of this topic the reader is referred to the comprehensive review paper by Doyle et al. and other similar studies (Cheng et al., 2010, 2013, 2014; Doyle and Norman, 2016).
There have been a relatively high number of fluid-structure-interaction (FSI) studies in the literature surrounding aortic dissection also (Qiao, Yin and Chu, 2015; Bonfanti et al., 2018; Bäumler et al., 2020). The majority of these studies focus on the late stages of the disease progression (fully developed false lumen, treatment, etc.). However, one FSI study investigates the role of pressure and flow acting on an initial intimal flap (Chen et al., 2016). In this study, the geometry has been partially dissected and the pressures acting on the flap are explored. The solid domain is assumed to be linear elastic and isotropic with a Young’s Modulus of $E = 2$ MPa and a Poisson’s ratio of $\nu = 0.45$. Fluid density is set to be $\rho = 1050$ kg/m3, and the dynamic viscosity $\mu = 0.004$ Pa-s. The fluid was modelled using Newtonian flow. Pressures at the crack tip are only reported as a pressure difference either side of the flap. The authors hypothesise that the stress concentrations at the flap tip are evidence that crack propagation is likely in these areas.

2.5 Cohesive Zone Models

Cohesive zone models (CZMs) are used to describe the cohesive forces which exist at an interface that is undergoing delamination, cracking, or some other mechanism of separation (Barenblatt, 1959). Cohesive zone models are particularly useful in scenarios where linear elastic fracture mechanics (LEFM) laws cannot be applied (Elices et al., 2002). There have been a plethora of cohesive zone models proposed in the literature for applications varying from concrete cracking to soft tissue fracture mechanics (Gasser and Holzapfel, 2006; Song, Paulino and Buttlar, 2006; Aure and Ioannides, 2010; Noble et al., 2017). Cohesive zone models involve a mathematical description of the damage behaviour that occurs at the interface, this is sometimes referred to as the traction-separation law. CZMs can be coupled or uncoupled, this refers to how the traction behaves as a function of the individual components of the
separation vector. For example, in an uncoupled CZM, the normal traction would be independent of the tangential separation, and likewise for the tangential traction and normal separation. These formulations are typically only useful in problems that are exclusively a mode I or mode II opening. As such, for the vast majority of engineering applications, coupled CZMs are favourable. A coupled CZM means that all components of the traction vector (normal and tangential) are a function of all components of the separation vector (normal and tangential). This aids in providing a physically realistic response, for example if an interface undergoes complete tangential separation there should be no further resistance to a normal separation.

There have been two main types of cohesive zone models presented in the literature, potential-based and non-potential based.

2.5.1 Potential Based
A potential based CZM is path-independent and the traction separation law is derived from an interface potential function which describes the work of separation of the interface at any given point on the interface. Many in the literature have favoured these models for their path independence and ease of implementation. A very well-known potential based model is the Xu-Needleman model (Xu et al., 1993), although many others have been used in a variety of mixed mode applications (Needleman, 1987; Rice and Beltz, 1994; van den Bosch, Schreurs and Geers, 2006). The traction-separation law is obtained through the partial derivative of the potential function in the desired traction direction. For example:

\[T_i = \frac{\partial \phi}{\partial \Delta_i}, \quad i = \{n, t\} \]

(2.1)

Where \(\phi \) is some potential function that describes the work of separation throughout the interface, \(T_i \) is the traction in the \(i \) direction, and \(\Delta_i \) is the separation in the \(i \)
direction. Potential-based cohesive zone formulations do however have some limitations (Máirtín et al., 2014). Due to the traction separation law being derived from an interface potential function, it is possible to compute un-physical repulsive normal tractions at any given point where the partial derivative of the potential surface becomes negative. Furthermore, by the same reasoning, unphysical residual non-zero tractions may also be computed even upon extreme separation of an interface. In this scenario complete separation of an interface may be considered path-dependant, given that the interface may never completely separate.

2.5.2 Non-potential based
A non-potential based CZM refers to a traction separation law that is not derived from an interface potential function (Máirtín et al., 2014). These formulations are path-dependant, and the work of separation depends then on the traction separation law, and path taken. There have been a number of these models proposed in the literature. These include rigid-linear fracture models (Camacho and Ortiz, 1996), piece-wise trapezoidal models (Tvergaard and Hutchinson, 1992), bilinear models (Geubelle and Baylor, 1998; Camanho, Dávila and De Moura, 2003) and exponential type models (McGarry et al., 2014). Of course, non-potential-based cohesive zone models have their own shortcomings. It is possible that certain laws may calculate unusual fracture energies for given paths. This can result in non-monotonic behaviour of the total work of separation, which is considered by most to be unphysical behaviour in the vast majority of cases. A non-potential based formulation is used in Abaqus (Providence, RI: Dassault Systèmes Simulia Corp) unless a UINTER is being used. Using the model proposed by Camanho et al. (Camanho, Dávila and De Moura, 2003), the developers add functionality for an exponential type softening as well as the original linear softening.
Figure 2.18: (a): Example of a bilinear model such as the one used in Abaqus as presented by Camanho et al. (Camanho, Dávila and De Moura, 2003) (b): Rigid linear model (Camacho and Ortiz, 1996). (c): Exponential type model (McGarry et al., 2014). (d): piecewise trapezoidal model (Tvergaard and Hutchinson, 1992).
Bibliography

Chapter 2

Chapter 3

3 ESTABLISHED THEORY

3.1 Continuum Mechanics

Continuum mechanics involves the analysis of the kinematics and mechanical behaviour of materials (Malvern, 1969). This section outlines the essential elements of continuum mechanics required for the interpretation of the subsequent chapters. Vectors, tensors, and matrices are denoted by bold type face. Index notation is also frequently used in order to simplify the representation of vector equations. For example, the dot product of two 3D vectors \(\mathbf{u}, \mathbf{v} \) may be written using summation convention:

\[
\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3 = \sum_{i=1}^{3} u_i v_i = u_i v_i
\]

(3.1)

Where \(i = 1,2,3 \). In the case of a 3x3 tensor, the location of each component may be defined by subscripts \(i, j = 1,2,3 \).

3.1.1 Deformation and Motion

A classic representation of the configuration of a continuum body undergoing motion and deformation is illustrated in Figure 3.1. Where the reference configuration of a body (undeformed/Lagrangian configuration) is defined by the domain \(\Omega_0 \), at time \(t = 0 \). If such a body is considered to undergo motion \(\chi \), such that the current configuration, (which is the deformed/Eulerian configuration) can be described as the region encompassed by \(\Omega \). The position of a material point \(P \) in the reference configuration, with respect to the origin \(O \), is denoted by the vector \(\mathbf{X} \). A vector such
as X can be described for all points within Ω_0. Points within Ω_0 are known as material (Lagrangian) coordinates. In the current configuration the position of P is given by

$$x = \chi(X, t)$$

(3.2)

Figure 3.1: Classical schematic of a continuum body undergoing motion and deformation.

Similar to the reference configuration, the coordinates of x are referred to as the spatial (Eulerian) coordinates. The displacement u that the material point P undergoes
between the reference and current configuration is defined as \(u = x - \mathbf{X} \). Rearranging in terms of \(\mathbf{X} \) and \(t \) gives:

\[
\mathbf{u} = \mathbf{\chi}(\mathbf{X}, t) - \mathbf{X}
\]

(3.3)

The quantification of deformation and strain in a body is of primary importance here, rather than the rigid body displacement. A second material point \(Q \) is considered on \(\Omega_0 \) and an infinitesimal line \(d\mathbf{X} \), which is bound by the points \(P \) and \(Q \). This infinitesimal line \(d\mathbf{X} \) is transformed to \(d\mathbf{x} \) in the current configuration. In order to calculate the strain, this transformation must be described through a second order tensor known as the deformation gradient, \(\mathbf{F} \), and it is defined as:

\[
\mathbf{F} = \frac{\partial \mathbf{\chi}}{\partial \mathbf{\mathbf{X}}} = \frac{\partial \mathbf{x}}{\partial \mathbf{\mathbf{X}}}
\]

(3.4)

The determinant of \(\mathbf{F} \) is known as the Jacobian of the deformation gradient. The Jacobian of the deformation gradient describes the ratio of volume change between the current configuration and the reference configuration at the material point \(P \) with the expression:

\[
J = \text{det}(\mathbf{F})
\]

(3.5)

The velocity, \(\mathbf{v} \), of the material point \(P \) may be defined as:

\[
\mathbf{v} = \frac{\partial \mathbf{x}}{\partial t}
\]

(3.6)

Where the partial derivative with respect to time is equal to the rate of change of \(\mathbf{x} \) for a fixed \(\mathbf{X} \). The gradient of the spatial velocity, \(\mathbf{L} \), then is defined as:

\[
\mathbf{L} = \frac{\partial \mathbf{v}}{\partial \mathbf{x}}
\]

(3.7)

Which can also be expressed as:
\[L = \dot{\mathbf{F}} \mathbf{F}^{-1} \text{ or } \dot{\mathbf{F}} = \mathbf{LF} \] \hfill (3.8)

Where \(\dot{\mathbf{F}} \) is the derivative of the deformation gradient with respect to time. This spatial velocity gradient \(L \) is commonly decomposed into the symmetric rate of deformation tensor \(\mathbf{D} \) and the antisymmetric spin tensor \(\mathbf{W} \) with the following expressions:

\[\mathbf{L} = \mathbf{D} + \mathbf{W} \] \hfill (3.9)

\[\mathbf{D} = \frac{1}{2} (\mathbf{L} + \mathbf{L}^T) = \text{sym}(\mathbf{L}) \text{, and} \] \hfill (3.10)

\[\mathbf{W} = \frac{1}{2} (\mathbf{L} - \mathbf{L}^T) = \text{asym}(\mathbf{L}) \] \hfill (3.11)

3.1.2 Strain tensors and strain rate measures

There are a number of different measures we can construct from the deformation gradient in order to describe various strain states. One such measure is the Green-Lagrange strain, \(\mathbf{E} \), defined as:

\[\mathbf{E} = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I}) \] \hfill (3.12)

Where \(\mathbf{F}^T \) is the transpose of \(\mathbf{F} \), and \(\mathbf{I} \) is the identity tensor. We may also describe the Green-Lagrange strain using index notation: \(E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j} \right) \). This means the infinitesimal strain is found through assuming the product of the infinitesimal terms is zero, giving the expression:

\[\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial X_j} + \frac{\partial u_j}{\partial X_i} \right) \] \hfill (3.13)

The right Cauchy-Green deformation tensor, \(\mathbf{C} \), defined in material (Lagrangian) coordinates, is often used as a fundamental measure of deformation in hyperelastic constitutive laws. It is defined as:
\(\mathbf{C} = \mathbf{F}^T \mathbf{F} \)

(3.14)

Its counterpart in spatial (Eulerian) coordinates is the left Cauchy-Green deformation tensor, \(\mathbf{B} \), which is written as:

\[\mathbf{B} = \mathbf{F} \mathbf{F}^T \]

(3.15)

The deformation gradient \(\mathbf{F} \) may be decomposed into an orthogonal rotation tensor \(\mathbf{R} \), and right (material), and left (spatial) symmetric stretch tensors, \(\mathbf{U} \) and \(\mathbf{V} \) respectively

\[\mathbf{F} = \mathbf{R} \mathbf{U} = \mathbf{V} \mathbf{R} \]

(3.16)

We may then consider deformation to be a rotation followed by a stretch (\(\mathbf{F} = \mathbf{RU} \)) or a stretch followed by a rotation (\(\mathbf{F} = \mathbf{VR} \)). These stretch tensors can be easily related to the right and left Cauchy-Green deformation tensors through the following expressions:

\[\mathbf{V}^2 = \mathbf{B}; \quad \mathbf{U}^2 = \mathbf{C} \]

(3.17)

The eigenvalues of \(\mathbf{U} \) are known as the principal stretches \(\lambda_i \), and the logarithmic strain tensor can be calculated from \(\mathbf{V} \):

\[\varepsilon_{\text{log}} = \ln (\mathbf{V}) \]

(3.18)

Recall from \(\mathbf{L} \), that \(\mathbf{D} \) is the symmetric rate of deformation tensor (3.10). The logarithmic strain rate then is:

\[\dot{\varepsilon}_{\text{log}} = \mathbf{D} \]

(3.19)

3.1.3 Strain invariants
Let \(\mathbf{S} \) be a real symmetric second-order tensor: \(\mathbf{S} = \mathbf{S} = \mathbf{S}^T \). The eigenvalues of \(\mathbf{S} \) are the roots \(\lambda_1, \lambda_2, \lambda_3 \) of the cubic polynomial equation:
\[\det(S - \lambda I) = 0 \] \hspace{1cm} (3.20)

This can be expanded as:

\[-\lambda^3 + I_1 \lambda^2 - I_2 \lambda + I_3 = 0 \] \hspace{1cm} (3.21)

Where the quantities \(I_1, I_2, I_3 \) are the first three principal invariants of \(S \), these are defined as:

\[I_1 = \text{tr}(S) \] \hspace{1cm} (3.22)

\[I_2 = \frac{1}{2} \left[(\text{tr}(S))^2 - \text{tr}(S^2) \right] \] \hspace{1cm} (3.23)

\[I_3 = \det(S) \] \hspace{1cm} (3.24)

The first three principal invariants of the right Cauchy-Green tensor \(C \) are commonly used in hyperelastic constitutive laws and are given as follows:

\[I_1 = \text{tr}(C) = \lambda_1^2 + \lambda_2^2 + \lambda_3^2 \] \hspace{1cm} (3.25)

\[I_2 = \frac{1}{2} \left[(\text{tr}(C))^2 - \text{tr}(C^2) \right] = \lambda_1^2 \lambda_2^2 + \lambda_1^2 \lambda_3^2 + \lambda_2^2 \lambda_3^2 \] \hspace{1cm} (3.26)

\[I_3 = \det(C) = J^2 = \lambda_1^2 \lambda_2^2 \lambda_3^2 \] \hspace{1cm} (3.27)

3.1.4 Stress measures

Let the deformed body \(\Omega \) now be cut by a planar surface which separates the body into two portions (Figure 3.2). The body has a traction vector \(t \) derived from the surface forces, and a vector \(n \), which is normal to the section surface. Cauchy stress \(\sigma \) is the second order symmetric tensor as the force per unit deformed surface area \(ds \) given by:

\[t = \sigma n \] \hspace{1cm} (3.28)

The Kirchhoff stress is given as:
\[\tau = J \sigma \]

(3.29)

Figure 3.2: Traction vectors \(t \) acting on infinitesimal surface elements \(ds \) with outward unit normals \(n \).

Where \(J \) has its usual meaning of the determinant of the deformation gradient \(F \), which is a measure of the volume change between the reference configuration and the current configuration. The First Piola-Kirchhoff stress (PK1), \(P \), is defined as the force per unit surface area in the reference (undeformed) configuration. The transpose of the unsymmetric tensor \(P \) is frequently called the nominal stress tensor \(N \), such that \(N = \)
Using Nanson’s formula, we may relate the First Piola-Kirchhoff stress to the Cauchy stress σ in the current configuration as:

$$ P = J \sigma F^{-T} $$

(C30)

Closely related to P is the symmetric Second Piola-Kirchhoff (PK2) stress tensor, S. The PK2 may be expressed in terms of the PK1 or the Cauchy stress as follows:

$$ S = PF^T; \quad S = J^{-1} \sigma F^{-T} $$

(C31)

3.1.5 Hyperelastic Materials

A so-called Hyperelastic material (often referred to as a Green-elastic material) postulates the existence of an elastic free-energy function Ψ, from which a constitutive material response may be derived (Holzapfel, 2000). It is particularly useful for large deformation applications. For this reason, it is widely used in the description of the mechanical behaviour of soft tissues (Holzapfel, Gasser and Ogden, 2000; Nolan et al., 2014). We may express the second Piola-Kirchhoff stress as the derivative of Ψ with respect to the right Cauchy-Green tensor:

$$ S = 2 \frac{\partial \Psi(C)}{\partial C} $$

(C32)

We may then also transform the second Piola-Kirchhoff stress into the current configuration to yield the Cauchy stress. Which can also be expressed this in terms of the left Cauchy-Green tensor:

$$ \sigma = 2J^{-1} F \frac{\partial \Psi(C)}{\partial C} F^T = 2J^{-1} B \frac{\partial \Psi(B)}{\partial B} $$

(C33)

The strain energy potential can then be expressed as a function of the strain invariants shown in (3.25),(3.26),(3.27). For an isotropic material, the strain energy potential
becomes a function of the first three invariants such that $\Psi(\mathbf{B}) = \Psi(I_1, I_2, I_3)$. In such a case the strain energy potential may be expressed as the derivative of Ψ with respect to \mathbf{B}, giving:

$$\frac{\partial \Psi(\mathbf{B})}{\partial \mathbf{B}} = \frac{\partial \Psi}{\partial I_1} \frac{\partial I_1}{\partial \mathbf{B}} + \frac{\partial \Psi}{\partial I_2} \frac{\partial I_2}{\partial \mathbf{B}} + \frac{\partial \Psi}{\partial I_3} \frac{\partial I_3}{\partial \mathbf{B}} \tag{3.34}$$

The derivatives of the invariants with respect to the left Cauchy-Green tensor are then:

$$\frac{\partial I_1}{\partial \mathbf{B}} = \mathbf{I}, \quad \frac{\partial I_2}{\partial \mathbf{B}} = I_1 \mathbf{I} - \mathbf{B}, \quad \frac{\partial I_3}{\partial \mathbf{B}} = I_3 \mathbf{B}^{-1} \tag{3.35}$$

Using the relation of (3.34) and (3.33) we may express the Cauchy stress as a function of \mathbf{B}, giving:

$$\mathbf{\sigma} = 2J^{-1} \left[I_3 \frac{\partial \Psi}{\partial I_3} \mathbf{I} + \left(\frac{\partial \Psi}{\partial I_1} + I_1 \frac{\partial \Psi}{\partial I_2} \right) \mathbf{B} - \frac{\partial \Psi}{\partial I_2} \mathbf{B}^2 \right] \tag{3.36}$$

Assuming incompressibility gives $I_3 = J = 1$. This results in the strain energy potential becoming a function of the first two strain invariants, I_1, I_2, for an incompressible, isotropic strain energy potential such that:

$$\Psi(\mathbf{B}) = \Psi(I_1, I_2) \tag{3.37}$$

We can then express the Cauchy stress for any given incompressible isotropic hyperelastic material as follows:

$$\mathbf{\sigma} = -p \mathbf{I} + 2W_1 \mathbf{B} - 2W_2 \mathbf{B}^{-1} \tag{3.38}$$

Where $W_1 = \left(\frac{\partial \Psi}{\partial I_1} \right)$ and $W_2 = \left(\frac{\partial \Psi}{\partial I_2} \right)$, and p is the hydrostatic pressure which functions as a Lagrangian multiplier to enforce the incompressibility.

The Lagrangian multiplier must be determined through imposing equilibrium and boundary conditions.
Chapter 3

3.2 Finite Element Method (FEM)

The finite element method is employed throughout this thesis to solve each of the continuum mechanics problems presented. These problems are predominantly solved using the commercial FE code, Abaques (DS SIMULIA, R.I., USA). The advantages of using Abaques (as opposed to a custom code) include in-built meshing techniques, and the ease of implementing novel surface interaction laws (UINTERs) and novel user-defined material laws (UMATs). Here, a brief background on the implicit solution scheme is provided, as well as the implementation of user-defined surface interactions and material laws.

3.2.1 Implicit solution scheme

In the implicit FE method, the stress state in a mesh is incrementally updated. The stress state at time $t + \Delta t$ is solved iteratively via convergence of a residual force vector within a specified tolerance. The Abaques solver implements a form of the Newton-Raphson method to get convergence at each increment. The principal of virtual work (PVW) provides the fundamental equation of the finite element method (Hughes, 2012):

$$\int_{\Omega} \delta \varepsilon^T \sigma d\Omega = \int_{S} \delta u^T t dS$$ \hspace{1cm} (3.39)

Where σ and t are the stress and surface traction and $\delta \varepsilon$ and δu are the virtual strain and virtual displacement vectors. Ω is a reference volume on which equilibrium is enforced, and Ω is bounded by the surface S. The FE approximation can now be introduced over each element (e) of volume (Ω_e) and surface (S_e), allowing us to express the stresses and strains as follows:

$$\delta \varepsilon = \tilde{B}_e \delta u_e$$ \hspace{1cm} (3.40)
\[\delta u = \tilde{N}_e \delta u_e \]

(3.41)

Where \(\delta u_e \) are the nodal displacements, \(\tilde{B}_e \) is the elemental shape function gradient matrix, and where \(\tilde{N}_e \) is the global shape function matrix. The principal of virtual work then becomes:

\[
\sum_{e} \int_{\Omega_e} \delta u_e^T \tilde{B}_e^T \sigma(u_e) d\Omega = \sum_{e} \int_{S_e} \delta u_e^T \tilde{N}_e^T t dS
\]

(3.42)

\[
\delta u^T \int_{\Omega} \tilde{B}^T \sigma(u) d\Omega - \delta u_e^T \int_{S} \tilde{N}_e^T t dS = 0
\]

(3.43)

\[
\delta u^T \left(\int_{\Omega} \tilde{B}^T \sigma(u) d\Omega - \int_{S} \tilde{N}_e^T t dS \right) = 0
\]

(3.44)

Given that the virtual displacement, \(\delta u \), is arbitrary, it then follows that:

\[
\int_{\Omega} \tilde{B} \sigma(u) d\Omega - \int_{S} \tilde{N}_e^T t dS = 0
\]

(3.45)

Introducing linear elasticity gives:

\[\sigma = D\varepsilon = D\tilde{B}u_e \]

(3.46)

Where \(D \) is a fourth order elasticity tensor. We then define the external force vector, \(F_{ext} \), as follows:

\[F_{ext} = \int_{S} \tilde{N} t dS \]

(3.47)

We may then express the PVW with consideration of linear elasticity in the following equations:

\[
\int_{\Omega} \tilde{B}^T D\tilde{B}u_e d\Omega - F_{ext} = 0
\]

(3.48)
Chapter 3

\[
\left(\int_{\Omega} \bar{B}^T D \bar{B} d\Omega \right) u_e - F_{\text{ext}} = 0
\]

(3.49)

\[
K u_e - F_{\text{ext}} = 0
\]

(3.50)

Where \(K \) is the familiar form of the global FE stiffness matrix. Returning to the PVW given in equation (3.45 we can develop a set of global equations for the out of balance residual force \(G \):

\[
G(u) = \int_{\Omega} \bar{B}^T \sigma(u) d\Omega - \int_{S} \bar{N}^T t dS
\]

(3.51)

This non-linear set of equations must be solved for convergence to attain an equilibrium stress state in the body, such that

\[
G(u) = 0
\]

(3.52)

Generally, for boundary value problems requiring a non-linear analysis and complex geometries, such a minimisation for convergence must be solved iteratively. As previously stated, the implicit solver used in Abaqus/Standard uses a Newton-Raphson scheme to step from time \(t \) to time \(t + \Delta t \) by making an initial guess and iterating until the solution converges. In the Newton-Raphson scheme, a tangent taken to the function \(f(x) \) is used to approximate to a converged solution:

\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\]

(3.53)

The approximation is deemed to be accurate when a tolerance is achieved.

\[
|x_{i+1} - x_i| < tol
\]

(3.54)
Following an initial guess for all nodal displacements $\mathbf{u}_i^{t+\Delta t}$ within an increment of an implicit analysis, the numerical scheme iterates until a stable equilibrium is achieved. The Newton-Raphson minimisation process is applied to the residual force vector:

$$\mathbf{G}(\mathbf{u}^{t+\Delta t}) = 0$$ \hspace{1cm} (3.55)

For the i^{th} iteration:

$$\mathbf{u}_{i+1}^{t+\Delta t} = \mathbf{u}_i^{t+\Delta t} - \left[\frac{\partial \mathbf{G}(\mathbf{u}_i^{t+\Delta t})}{\partial \mathbf{u}} \right]^{-1} \mathbf{G}(\mathbf{u}_i^{t+\Delta t})$$ \hspace{1cm} (3.56)

Therefore, a change in nodal displacements yields:

$$\partial \mathbf{u}_{i+1} = \mathbf{u}_{i+1}^{t+\Delta t} - \mathbf{u}_i^{t+\Delta t} = - \left[\frac{\partial \mathbf{G}(\mathbf{u}_i^{t+\Delta t})}{\partial \mathbf{u}} \right]^{-1} \mathbf{G}(\mathbf{u}_i^{t+\Delta t})$$ \hspace{1cm} (3.57)

This can be written in terms of the tangent stiffness matrix, \mathbf{K}, to form the linear equation for the problem:

$$\bar{\mathbf{K}}(\mathbf{u}_{i+1}^{t+\Delta t}) = \frac{\partial \mathbf{G}(\mathbf{u}_i^{t+\Delta t})}{\partial \mathbf{u}}$$ \hspace{1cm} (3.58)

$$\bar{\mathbf{K}}(\mathbf{u}_{i+1}^{t+\Delta t}) \partial \mathbf{u}_{i+1} = \mathbf{G}(\mathbf{u}_i^{t+\Delta t})$$ \hspace{1cm} (3.59)

Finally, \mathbf{K} may be expressed as:

$$\mathbf{K}(\mathbf{u}) = \frac{\partial \mathbf{G}(\mathbf{u})}{\partial \mathbf{u}} = \frac{\partial}{\partial \mathbf{u}} \left(\int_{V} \mathbf{B}^T \mathbf{\sigma}(\mathbf{u}) \, dV - \mathbf{F}_{\text{ext}} \right)$$ \hspace{1cm} (3.60)

$$= \frac{\partial}{\partial \mathbf{u}} \left(\int_{V} \mathbf{B}^T \mathbf{\sigma}(\mathbf{u}) \, dV \right)$$ \hspace{1cm} (3.61)
\[\int_{V} B^T \frac{\partial \sigma(u)}{\partial u} \, dV = \int_{V} B^T \frac{\partial \sigma(u)}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial u} \, dV \]

\[= \int_{V} B^T \frac{\partial \sigma(u)}{\partial \varepsilon} B \, dV \]

\[K(u) = \int_{V} B^T \Delta \varepsilon B \, dV \]

Where \(D \) is the consistent tangent matrix, which is equal to the Jacobian of the constitutive law \(\frac{\partial \sigma}{\partial \varepsilon} \). In each iteration of the Newton-Raphson method, \(K \) must be calculated and inverted. Though computationally expensive, this ensures an accurate solution. For more details on the finite element method, the reader is referred to Bathe (2006) and Fagan (1992).

3.2.2 Implementation of user-defined material subroutines

In addition to the in-built library of constitutive laws, Abaqus caters for the use of novel material formulations through user defined material subroutines (UMATs). At each iteration of each time increment, the UMAT is called and the material deformation is passed into the subroutine. The UMAT calculates the stress and passes it out to the main program. To calculate the stress, the material Jacobian, defined as the change in stress at the end of a given time increment caused by an infinitesimal perturbation of the strain \(\frac{\partial \Delta \sigma}{\partial \Delta \varepsilon} \), needs to be calculated.

3.2.3 Implementation of user-defined surface interaction subroutines

In addition to the built-in library of surface interaction properties, Abaqus allows for the description of user-defined surface interaction subroutines (UINTERs). At each iteration of each time increment the UINTER is called at points (nodes) on the slave surface of a contact pair. The surface (nodal) deformation \(\text{RDISP} \) is passed into the UINTER and the stress in calculated in the form of a normal and tangential traction. Similarly to the UMAT, in order to calculate the stress in the UINTER, the interface
stiffness matrix (interface Jacobian) is required. This is defined as the change in the i^{th} stress component at the end of the time increment caused by an infinitesimal perturbation of the j^{th} component of the relative displacement increment array. In simple applications it can be computationally favourable to treat the Jacobian as symmetric and negate the additional non-symmetric terms. However, given the nonlinear, complex nature of the problems considered in this thesis, the majority of Abaqus computations involving UINTERs require the full unsymmetric interface stiffness matrix in the calculation of the stress components.
Bibliography

Chapter 4

4 PRELIMINARY COHESIVE ZONE MODEL DEVELOPMENT AND ANALYSIS

4.1 Introduction

Cohesive zone models (CZMs) have been extensively used to describe an interface undergoing separation (Barenblatt, 1959; Xu et al., 1993; van den Bosch, Schreurs and Geers, 2006; Máirtín et al., 2014). CZMs have been used to model crack propagation in ductile metals (Nielsen and Hutchinson, 2012), polyethylene (Ivankovic, Pandya and Williams, 2004), porous materials (Nakamura and Wang, 2001) and concrete beams (Aure and Ioannides, 2010). They have also been used to model the delamination of cells from substrates (McGarry and McHugh, 2008), polymer coatings from stents (Hopkins, McHugh and McGarry, 2010; Máirtín et al., 2014), inter-laminar failure in carbon-fibre laminates (Gallagher, Lamorinière and McGarry, 2018, 2019), and failure of coatings of diamond-coated cutting tools (Hu, Chou and Thompson, 2008).

The calibration of CZM parameters requires experimental testing data (Ivankovic, Pandya and Williams, 2004; Di Leo et al., 2014; Wu et al., 2016). The primary outputs of these tests are interface strength and fracture energy. It is extremely difficult to measure the stiffness of interfaces in highly elastic materials. The characteristic length (δ) or the modulus (K) of the initial elastic region of some CZMs often dictates the fracture energy (G) and vice-versa. This is common in exponential CZM formulations as seen in (Xu et al., 1993; van den Bosch, Schreurs and Geers, 2006; Dimitri et al., 2015). Therefore, the choice of fracture energy may anomalously influence the
stiffness and characteristic length of the interface. Piecewise CZMs allow for the specification of K (and by extension δ) and G independently (Camanho, Dávila and De Moura, 2003; Park, Paulino and Roesler, 2009). Choice of CZM should be motivated by experimental data and boundary conditions.

CZMs may be coupled or uncoupled. In a coupled CZM the traction depends on the separation vector which will include both normal and tangential opening (Δ_n, Δ_t) whereas in an uncoupled CZM the normal traction (T_n) depends only on the normal opening (Δ_n). Most engineering applications involve mixed separation and therefore should implement mixed mode (coupled) CZMs. Achieving a physically realistic mixed mode response is important in such applications.

Many constitutive relationships of traction-separation laws have been proposed, these include but are not limited to, linear softening (Camacho and Ortiz, 1996), bilinear softening, cubic polynomial, exponential (Xu et al., 1993; van den Bosch, Schreurs and Geers, 2006; McGarry et al., 2014), exponential softening, and trapezoidal (Tvergaard and Hutchinson, 1992). Here we present two forms of an exponential softening model and introduce a feature whereby tangential interface strength can be augmented as a function of compressive normal traction. We also explore the model in a potential-based form and demonstrate undesirable behaviour common to potential based models. We then compare to the exponential softening model available in the commercial FEA software ABAQUS when damage evolution is specified according to energy and demonstrate anomalous behaviour of the traction in certain scenarios. We propose an alternative formulation of exponential softening than what is currently available in Abaqus.
4.2 Development of non-potential based mixed-mode CZMs with exponential damage and overclosure penalisation (CZM1 and CZM2)

For a given interface displacement vector Δ with normal and tangential (shear) components Δ_n and Δ_t, respectively, the corresponding displacement magnitude is given as $\Delta_m = \left(\Delta_n^2 + \Delta_t^2\right)^{1/2}$ and the mode angle is given as $\varphi = \tan^{-1}(\Delta_t/\Delta_n)$.

The magnitude of the interface traction is expressed as a function of Δ_m and φ by the following formulation:

$$T_m(\Delta_m, \varphi) = \begin{cases} K_m \Delta_m, & \Delta_m < \frac{\tau_{max}(\varphi)}{K_m} \\ \frac{\tau_{max}(\varphi)}{\Psi(\varphi)} \Delta_m, & \Delta_m \geq \frac{\tau_{max}(\varphi)}{K_m} \end{cases}$$

(4.1)

We refer to Ψ as the integrity of the interface (i.e. $\Psi = 1 - D$, where D is referred to as the interface damage). Ψ monotonically decreases from 1 to 0 with increasing interface separation, such that

$$\Psi(\varphi) = \exp\left(-\frac{\Delta_{max} - \tau_{max}(\varphi)}{\delta_m^*(\varphi)}\right) \frac{\Delta_m}{\Delta_{max}}$$

(4.2)

where K_m is the intrinsic elastic stiffness of the interface. K_m is assumed to be mode-independent. $\tau_{max}(\varphi)$ is the specified mode-dependent interface strength; the corresponding displacement ($\delta_m^{el}(\varphi) = \frac{\tau_{max}(\varphi)}{K_m}$) represents the elastic limit of interface separation at the point of damage initiation. The mode-dependent parameter $\delta_m^*(\varphi)$ governs the rate of softening in the damage region ($\Delta_m \geq \frac{\tau_{max}(\varphi)}{K_m}$). The interface strength is defined as a function of the mode as follows:

$$\tau_{max}(\varphi) = \tau_{max} - \left(\frac{\tau_{max} - \sigma_{max}}{\pi \frac{2}{\Omega}}\right) \left(1 - \exp\left(-\frac{\varphi}{\Omega}\right)\right)$$

(4.3)
where τ_{max} is the mode II interface strength, Ω^T sets the non-linearity of the transition from mode II to mode I, and σ_{max} is the mode I interface strength. The mode mixity of the initial interface damage parameter $\delta_m^*(\varphi)$ is obtained from

$$\delta_m^*(\varphi) = \frac{G_m(\varphi)}{T_m^{\text{max}}(\varphi)} - \frac{T_m^{\text{max}}(\varphi)}{2K_m}$$

(4.4)

where $G_m(\varphi)$ is the mode-dependent fracture energy

$$G_m(\varphi) = \frac{1}{2}K_m\delta_m^2(\varphi)$$

(4.5)

$$+ \int_{T_m^{\text{max}}(\varphi)/K_m}^{\infty} T_m^{\text{max}}(\varphi) \exp \left(-\frac{\Delta_m^{\text{max}} - T_m^{\text{max}}(\varphi)/K_m}{\delta_m^*} \right) d\Delta_m$$

We may specify the mode-dependence of $G_m(\varphi)$ using the following function:

$$G_m(\varphi) = G_t^0 - \left(\frac{G_t^0 - G_n^0}{1 - \exp \left(-\frac{\pi}{\Omega^G} \right)} \right) \left(1 - \exp \left(-\frac{\varphi}{\Omega^G} \right) \right)$$

(4.6)

where G_t^0 is the mode II fracture energy and G_n^0 is the mode I fracture energy, Ω^G sets the non-linearity of the transition from mode II to mode I. Finally, we complete the description of the cohesive zone formulation by decomposing T_m into the normal and tangential components, T_n and T_t, respectively, such that

$$T_n = \begin{cases} K_{\text{oc}} \Delta_n, & \Delta_n < 0 \\ T_m \sin(\varphi), & \Delta_n \geq 0 \end{cases}$$

(4.7)

$$T_t = T_m \cos(\varphi)$$

(4.8)

where K_{oc} is the overclosure penalty stiffness.

We include a dependence of the mode II interface strength, τ_{max}, on normal compression at the interface, such that
\[\tau_{\text{max}}(T_n) = \begin{cases} \tau_{\text{max}}^{nc}(T_n), & \Delta_n < 0 \\ \tau^0_{\text{max}}, & \Delta_n \geq 0 \end{cases} \]

as described in equation (4.9). The mode II interface strength increases within increasing (negative) normal traction, such that

\[
\tau_{\text{max}}^{nc}(T_n) = \tau^0_{\text{max}} + \tau^0_{\text{max}}(F_{oc} - 1.0) \ast \left(1 - \exp \left(\frac{T_n}{\sigma_{\text{max}}^* K_m} \right) \right) \tag{4.9}
\]

where \(\tau_{\text{max}}^{nc}(\Delta_n) \) is the increased value of tangential strength due to a normal compression at the interface. \(\tau^0_{\text{max}} \) is the maximum tangential strength, as encountered during a pure mode II separation when \(\Delta_n = 0 \) and \(T_n = 0 \). The parameter \(F_{oc} \) prescribes the maximum (plateau) value of increased shear strength due to compressive normal tractions at the interface. The parameter \(K_{n,oc}^* \) governs the sensitivity of maximum (plateau) shear stress to compressive normal tractions. Unless otherwise stated in this thesis, we assume that \(\tau_{\text{max}} = \tau^0_{\text{max}} \), i.e. maximum tangential strength is not increased due to normal compression at the interface.

Alternative form of damage and softening (CZM2)

To demonstrate that alternative forms of damage softening laws can be readily incorporated into our CZM framework, we next present a small modification of (4.2) whereby in which exponential damage is assumed to depend on the square of the interface separation. Again, starting with equation ((4.1), and the integrity of the interface (\(\Psi \)) is now defined as

\[
\Psi(\varphi) = \exp \left(- \left(\frac{\Delta_{\text{max}} - T_{\text{max}}(\varphi)}{\delta^*_m(\varphi)} \right)^2 \right) \frac{\Delta_m}{\Delta_{\text{max}}} \tag{4.10}
\]

73
We make use of the same relation of $G(\varphi) = \int_0^\infty T_m(\Delta_m, \varphi)d\Delta_m$ in order to obtain an expression for δ_m^*. The description of $G_m(\varphi)$ is given as follows

$$G_m(\varphi) = \frac{1}{2}K_m\delta_m^el(\varphi)^2$$

$$+ \int_0^\infty T_m^{max}(\varphi) \exp\left(-\left(\frac{\Delta_m^{max} - \frac{T_m^{max}(\varphi)}{K_m}}{\delta_m^*(\varphi)}\right)^2\right)d\Delta_m$$

(4.11)

Integrating we get the following expression which includes the error function

$$G_m = \frac{1}{2}K_m\delta_m^el(\varphi)^2$$

$$+ T_m^{max}(\varphi)\left(\lim_{\Delta_m \to \infty}\left(\frac{1}{2}\sqrt{\pi}\delta_m^*(\varphi)\text{erf}\left(\frac{\Delta_m - \frac{T_m^{max}(\varphi)}{K_m}}{\delta_m^*(\varphi)}\right)\right)\right)$$

(4.12)

As $\Delta_m \to \infty$ we arrive at the final expression for $\delta_m^*(\varphi)$

$$\delta_m^*(\varphi) = -\frac{T_m^{max}(\varphi)}{K_m\sqrt{\pi}} + \frac{2G_m(\varphi)}{\sqrt{\pi}T_m^{max}(\varphi)}$$

(4.13)

4.3 Exploration of CZM1 and CZM2 behaviour

We firstly present the response of CZM1 and CZM2 to pure mode II loading, as shown in Figure 4.1(A). Normalised tangential traction (T_t/τ_{max}) is presented as a function of normalised tangential separation (Δ_t/δ_t). Traction increases according to the interfacial stiffness K_m until the prescribed mode II strength τ_{max} is reached. Further deformation results in damage and softening. Due to the form of the respective exponential damage laws, CZM1 initially softens at a faster rate than CZM2. An expression for the instantaneous incremental energy dissipation (Cazes et al., 2009) is
given as $d\phi = 0.5(Td\Delta - \Delta dT)$. As shown in Figure 4.1(B), positive instantaneous incremental energy dissipation is observed throughout the mode II separation for both CZM1 and CZM2.

![Figure 4.1](image)

Figure 4.1. (A) Normalised traction separation curves for a mode II separation for both formulations of the proposed model. $K_m = 10$ MPa, $\tau_{max} = 5$ MPa, $G_t^0 = 10$ N/mm; (B) Instantaneous incremental energy dissipation ($d\phi_i/\phi_t$) as a function of normalised tangential separation for CZM1 and CZM2 during a mode II displacement.

In Figure 4.2(A) we explore the influence of normal compressive tractions on tangential fracture. An increase in magnitude of a compressive normal traction T_n (with $T_n < 0$) results in an increase in $\tau_{nc, max}(T_n)$, up to a plateau value of $\tau_{max}^0 F_{oc}$ as $T_n \to -\infty$. In Figure 4.2(B) further explores influence of a fixed applied normal separation on the maximum tangential traction, T_{max}, encountered during a subsequent tangential separation. As expected, normal interface separation ($\Delta_n > 0$) results in a reduction in T_{max}. In contrast, if $\Delta_n < 0$ a negative normal traction ($T_n < 0$) is obtained through the overclosure penalty term (equation (4.9)). This results in an increase in $\tau_{nc, max}^0(T_n)$ up to a plateau value with increasingly negative normal traction.
Figure 4.2. (A) Influence of compressive normal tractions on tangential fracture. (B) Maximum tangential traction shown as a function of the F_{oc} parameter.

4.3.1 Proportional loading

Proportional loading paths: CZM1 and CZM2 are examined under mixed-mode proportional loading conditions whereby Δ_m increases at a constant mode angle φ. Computed traction-separation responses are presented in Figure 4.3 for the case of $K_m = 10$ MPa, $\tau_{max} = 5(\sigma_{max})$, $G_t = 5(G_n)$, $\Omega^T = \pi/16$, $\Omega^G = \Omega^T$ for both models. CZM1 is shown in Figure 4.3(A,B), CZM2 in Figure 4.3(C, D). Consistent mixed-mode behaviour is observed for both formulations, with a gradual transition from mode II behaviour to mode I behaviour. In accordance with equations (4.3) and (4.6), identical fracture energy is obtained for both formulations for such proportional loading paths, as shown in Figure 4.4. The computed total fracture energy G_{total} monotonically increases from G_n^0 to G_t^0.

76
Figure 4.3: Mixed mode response of each CZM undergoing proportional loading ranging from mode II to mode I. Normalised traction vs. separation in the normal direction (B,D) and tangential direction (A,C) for CZM1 (A&B), CZM2 (C&D) undergoing proportional loading. $K_m = 10\, \text{MPa}, \tau_{max} = 5(\sigma_{max}), G_t = 5(G_n)$.

Figure 4.4. Computed fracture energy as a function of mode angle φ for CZM1 and
CZM2 under proportional loading in the case of $K_m = 10 \text{ MPa}$, $\tau_{\text{max}} = 5(\sigma_{\text{max}})$, $G_t = 5(G_n)$, $\Omega^T = \pi/16$, $\Omega^G = \Omega^T$.

4.3.2 Non-proportional loading

Non-proportional loading paths: We next consider non-proportional loading path whereby the interface undergoes an initial mode II separation to a prescribed value of $\Delta_t = \Delta_t^{\text{max}}$, followed by a subsequent normal separation to complete failure. Figure 4.5 shows the traction-separation response, again for the case of $K_m = 10 \text{ MPa}$, $\tau_{\text{max}} = 5(\sigma_{\text{max}})$, $G_t = 5(G_n)$, $\Omega^T = \pi/16$, $\Omega^G = \Omega^T$ for both models. CZM1 is shown in Figure 4.5(A,B), CZM2 in (C,D). Consistent behaviour is again observed for both models. If significant damage is computed during the initial mode II separation, the maximum normal traction computed during subsequent normal separation is reduced. This demonstrates that sensible mixed mode coupling is provided by both CZM1 and CZM2. Computed fracture energy during such non-proportional loading paths is presented in Figure 4.6. for the non-proportional loading paths presented Figure 4.5. While identical fracture energy is not obtained for both formulations, a monotonic increase as a function of increasing Δ_t^{max} is computed both formulations. Additionally, monotonically increasing/decreasing tangential/normal fracture energy contributions are also computed.
Figure 4.5: Normalised traction vs. separation in the normal direction (B,D) and tangential direction (A,C) for CZM1 (A&B), CZM2 (C&D) undergoing non-proportional loading. Each simulation involves incrementally increasing tangential displacements beginning at $\Delta_t/\delta_t = 0$ and increasing until the interface is fully debonded in the tangential direction followed by a complete normal separation ($\Delta_n/\delta_n = 50$). $K_m = 10$ MPa, $\tau_{\text{max}} = 5(\sigma_{\text{max}})$, $G_t = 5(G_n)$.

Figure 4.6: Fracture energy (G) for CZM1 (A), CZM2 (B) undergoing non-proportional loading paths of varying initial tangential separation (Δ_t) followed by...
normal separation (Δ_n) until complete failure. Parameters are the same as those seen in Figure 4.5.

The dissipation of CZM1 is presented in Figure 4.7(A,C) and CZM2 is presented in Figure 4.7(C,D) for the proportional loading (A, B) and non-proportional loading (C, D). Positive instantaneous incremental dissipation is computed throughout each of the analyses presented.

![Figure 4.7: instantaneous incremental energy dissipation of CZM1 (A, C) and CZM2 (B, D) under proportional loading (A, B) and non-proportional loading (C, D).](image)

The response of CZM1 and CZM2 to load-unload boundary conditions is demonstrated in Figure 4.8. Specifically, as shown in Figure 4.8(A), a mixed-mode proportionate loading path is followed so that partial damage is computed. The interface is then unloaded along the same mode angle, until it returns to its original
configuration \((\Delta_n = \Delta_t = 0)\). The interface is then subjected to the same mode angle in the reverse direction \((\Delta_t < 0)\) to failure. As shown in Figure 4.8(B-D), consistent behaviour is obtained for all mode angles. In all cases the prescribed strength for the given mode angle is exceeded and softening/damage is computed. Reversal of loading results in elastic unloading at a reduced/damaged interface stiffness. Reversal of the direction of tangential loading direction for the final mixed mode component of the loading path results in a continuation of elastic deformation at the reduced damaged interface stiffness (note that the damaged interface stiffness is not dependent on the current loading mode; rather, it is merely a function of the loading/damage history). Eventually, the tangential traction reaches the reduced/damaged tangential strength and further interface softening proceeds during ultimate mode II separation and failure. Similar consistent trends are computed for both CZM1 and CZM2. Figure 4.8(F,G) demonstrate that instantaneous incremental dissipation is positive throughout the entire mixed mode loading histories shown in Figure 4.8(B-E).
Figure 4.8. Loading-unloading path shown (A); Demonstration of the interface integrity variable in CZM1 (B,D) and CZM2 (C, E) for a series of proportional loading modes ranging from mode II to mode I. $K_m = 10$ MPa, $\tau_{\text{max}} = 5\sigma_{\text{max}}$, $G_t = 5(G_n)$. Instantaneous incremental dissipation is shown in (F, G) for CZM1 and CZM2, respectively.

4.4 Comparison of CZM1 and CZM2 with Abaqus exponential softening formulation (CZM3)
The commercial finite element software Abaqus provides a cohesive zone functionality in which damage evolution may be specified in terms of mixed mode
fracture energy. In this section we describe this formulation, which we refer to as CZM3, and we provide critical comparisons with CZM1 and CZM2. The constitutive law for the traction is specified as follows

\[T = \frac{T_n}{T_t} = \begin{bmatrix} K_{nn} & 0 \\ 0 & K_{tt} \end{bmatrix} \begin{bmatrix} \Delta_n \\ \Delta_t \end{bmatrix} = K \Delta \] (4.14)

where \(K_{nn} \) is a prescribed mode I stiffness and \(K_{tt} \) is a prescribed mode II stiffness. The traction increases elastically in accordance with (4.14) until the chosen damage initiation criterion is met. As an example, the quadratic failure criterion (Tsai and Wu, 1971) can readily be chosen, such that damage initiates when

\[\left\{ \frac{\langle T_n \rangle}{\sigma_{max}} \right\}^2 + \left\{ \frac{T_t}{\tau_{t\,max}} \right\}^2 = 1 \] (4.15)

where the Macauley brackets describe the ramp function

\[\langle T_n \rangle = \begin{cases} 0, & T_n < 0 \\ T_n, & T_n \geq 0 \end{cases} \] (4.16)

Once the damage initiation criterion is satisfied, the scalar damage variable \((D)\) increases monotonically from 0 to 1 with increasing separation until complete failure of the interface occurs. The traction during damage evolution is given as

\[T = (1 - D) \bar{T} \] (4.17)

where \(\bar{T} \) is the peak elastic traction calculated in the absence of damage according to (4.14). This applies in both tangential directions, however, in normal displacement the traction is given as follows

\[T_n = \begin{cases} (1 - D) \bar{T}_n, & \bar{T}_n \geq 0 \\ \bar{T}_n, & \bar{T}_n < 0 \end{cases} \] (4.18)

This ensures the stiffness of the interface in overclosure cannot be affected by the damage variable \((D)\) whilst allowing stiffness of the interface in normal opening...
(\(K_{mn}\)) to be affected in the same manner as (4.17). For exponential damage evolution specified according to energy the damage variable (\(D\)) reduces to

\[
D = \int_{\gamma_m^{el}}^{\gamma_m} \frac{T_m d\Delta_m}{G_m - G_0}
\]
(4.19)

Where \(T_m\) is the effective traction and \(\Delta_m\) is the effective separation. \(G_0\) is the stored elastic energy at damage initiation. \(G_m\) is the mixed mode fracture energy.

In Figure 4.9(A) we show the response of CZM3 to a simple mode II separation. The computed tangential traction exceeds the prescribed mode II fracture strength of the interface, providing a non-physical prediction. In contrast, CZM1 and CZM2 correctly reproduce the prescribed mode II fracture strength, in addition to the prescribed mode II fracture energy.

Figure 4.9(B) shows the computed tangential traction for CZM3 as a function of the damage (\(D = (1 - \Psi)\), where \(\Psi\) is the interface integrity) during a mode II separation. The relationship is non-monotonic, whereby the mode II interface strength incorrectly increases with increasing interface damage. Peak tangential traction occurs when the scalar damage variable \(D \approx 0.3\). Furthermore, the tangential traction does not decrease to the specified mode II fracture strength until \(D \approx 0.7\), i.e. when the interface is 70% damaged. In contrast, tangential tractions are correctly computed to decrease monotonically with increasing interface damage for CZM1 and CZM2.
Figure 4.9: (A): Normalised traction-separation response of CZM3 (Abaqus exponential softening) formulation presented with CZM1 and CZM2 for a pure mode II separation. Note $T_t > \tau_{\text{max}}$ for the Abaqus exponential softening. $K_m = 10 \text{ MPa}$, $\tau_{\text{max}} = 5 \text{ MPa}$, $G = 10 \text{ N/mm}$. (B): Normalised tangential traction as a function of damage D (where $D = (1 - \Psi)$). Monotonic reduction is mode II interface strength with increasing damage for CZM1 and CZM2, but not for CZM3.

Such anomalous behaviour in CZM3 is further exposed in Figure 4.10. Figure 4.10(a) shows the computed maximum normal traction as a function of mode angle during proportional mixed mode separation. In the case of CZM1 and CZM2 the prescribed mode I strength is reached only for a pure mode I, as expected. However, for CZM3 the prescribed mode I strength is incorrectly exceeded for a wide range of applied mode angles. Similar results are presented in Figure 4.10(B) for non-proportionate mixed-mode loading paths.
Figure 4.10: (A): Normalised normal traction \(\left(\frac{T_{n,\text{max}}}{\sigma_{\text{max}}} \right) \) as a function of mode angle \((\varphi) \) for the three models in proportional loading scenarios (as seen in Figure 4.3). Note the dotted grey line indicates \(\sigma_{\text{max}} \) in both A and B. (B): Normalised traction as a function of maximum normalised tangential displacement prior to complete normal separation (as seen in Figure 4.5). Note the non-monotonic behaviour of the Abaqus exponential softening model.

4.5 Construction of a potential-based CZM

Several previous studies have used traction-separation laws derived from a potential function (Xu et al., 1993; Park, Paulino and Roesler, 2009), based on the philosophy that the work of separation associated with a given interface separation vector should be path independent. A study by McGarry et al. uncovered problematic behaviour associated with potential-based cohesive zone models, such as repulsive tractions during mixed mode loading paths (McGarry et al., 2014). We next propose a potential-based extension of CZM1, and we investigate if this formulation provides improvements upon existing potential-based models in terms of limiting unphysical repulsive tractions during mixed mode loading paths.

We construct a potential surface by integrating the traction magnitude-separation magnitude relationships specified for CZM1 along proportional loading paths for \(0 \leq \varphi_{MA} \leq \pi/2 \), giving the following piece-wise expression potential function \(\phi(\Delta_m, \varphi_{MA}) \):
Chapter 4

\[\phi(\Delta_m, \varphi) = \begin{cases}
\frac{1}{2} K_m \delta_m(\varphi), & \Delta_m < \frac{T_m^{\text{max}}(\varphi)}{K_m} \\
\int_{\frac{T_m^{\text{max}}(\varphi)}{K_m}}^{\infty} T_m^{\text{max}}(\varphi) \exp\left(-\frac{\Delta_m^{\text{max}} - \frac{T_m^{\text{max}}(\varphi)}{K_m}}{\delta_m}\right) d\Delta_m, & \Delta_m \geq \frac{T_m^{\text{max}}(\varphi)}{K_m}
\end{cases} \] (4.20)

We refer to this formulation as PF-CZM1 (potential function extension of CZM1).

Figure 4.11(A) shows \(\phi \) for PF-CZM1 for the case where the specified mode II fracture energy is two times higher than the mode I fracture energy. For comparison we also show the potential function (\(\phi \)) of the PPR model (Park, Paulino and Roesler, 2009) and the XU-Needleman model (Xu et al., 1993).

We next derive the traction separation relationships for the PF-CZM1 model using the standard approach as follows:
\[
T_n = \frac{\partial \phi}{\partial \Delta_n}
\]

\[
= \frac{\partial}{\partial \Delta_n} \left(\frac{1}{2} K_m \delta_m^{el} (\varphi_{MA})^2 \right)
+ \int_{T_m^{\max}(\varphi_{MA})/K_m}^{\infty} T_m^{\max}(\varphi_{MA}) \exp \left(-\frac{\Delta_m^{max} - T_m^{max}(\varphi_{MA})/K_m}{\delta_m^{*}} \right) d\Delta_m
\]

\[
T_t = \frac{\partial \phi}{\partial \Delta_t}
\]

\[
= \frac{\partial}{\partial \Delta_t} \left(\frac{1}{2} K_m \delta_m^{el} (\varphi_{MA})^2 \right)
+ \int_{T_m^{\max}(\varphi_{MA})/K_m}^{\infty} T_m^{\max}(\varphi_{MA}) \exp \left(-\frac{\Delta_m^{max} - T_m^{max}(\varphi_{MA})/K_m}{\delta_m^{*}} \right) d\Delta_m
\]

Figure 4.12(A) shows the normal traction (\(\partial \phi/\partial \Delta_n\)) derived from the PF-CZM potential function \(\phi\) as a function of normal separation (\(\Delta_n\)) and tangential separation (\(\Delta_t\)). As clearly shown in Figure 4.12(B) repulsive tractions are computed for increasing tangential separation, even when no normal separation exists (\(\Delta_n = 0\)). The transparent surface indicates \(\partial \phi/\partial \Delta_n = 0\). Residual tractions can also be computed on the potential surface.

Figure 4.12. (A): Normal traction derived from the potential function (\(\phi(\Delta_n, \Delta_t)\)) seen
in Figure 4.12. Note repulsive normal tractions exist for increasing tangential opening even for $\Delta_n = 0$. (B): Repulsive normal tractions are further demonstrated for a proportional loading of $\Delta_t = 2(\Delta_n)$. The transparent surface indicates $\partial \phi / \partial \Delta_n = 0$.

This limitation of potential-based models has been expounded previously (McGarry et al., 2014) and as such we do not present an exhaustive analysis in the current study however we do show that repulsive tractions are present in other popular potential-based models. For a balanced comparison we look to potential-based models with independent control of the initial elastic stiffness of the interface (K_m) and the fracture energy (G_m) similar to the model presented in the present study. One such model that meets these requirements is the PPR model (Park, Paulino and Roesler, 2009) presented here in Figure 4.13.

Figure 4.13 shows the mixed-mode response of the PPR model is shown as it undergoes a proportional separation ($\Delta_n = \Delta_t$). Figure 4.13(A) clearly demonstrates that repulsive tractions can arise for a simple mixed-mode loading path. Normalised normal traction (T_n/σ_{max}) is shown as a function of normal separation (Δ_n). During the damage evolution the traction decreases until negative, followed by a gradual increase to zero traction. Figure 4.13(B) shows the normalised tangential traction (T_t/τ_{max}) as a function of tangential separation (Δ_t). Figure 4.13(C) shows the instantaneous incremental energy dissipation ($d\phi_i/\phi_n$) as a function of normal separation (Δ_n). Negative instantaneous incremental energy dissipation is observed in this loading path.
Figure 4.13: PPR model subject to a proportional loading path where $\varphi = 45^\circ$. Model parameters are the same as those seen in Figure 4.5. $\tau_{\text{max}} = 5(\sigma_{\text{max}})$, $\phi_t = 5(\phi_n)$, $\delta_t = 0.5$, $\delta_n = \delta_t/5$ (A): normalised normal traction (T_n/σ_{max}) as a function of normal separation (Δ_n). Repulsive (negative) tractions are computed. (B): Normalised tangential traction (T_t/τ_{max}) as a function of tangential separation (Δ_t). Traction remain positive throughout. (C): Instantaneous incremental energy dissipation ($d\phi_i/\phi_n$) as a function of normal separation (Δ_n). Negative instantaneous incremental energy dissipation is observed during the loading history.

Summary of key contributions of CZM1 and CZM2

- The proposed path-dependent non-potential based cohesive zone models CZM1 and CZM2 are shown to provide consistent behaviour during mixed-mode loading paths, exhibiting a robust implementation of prescribed mode-dependent interface fracture strength and mode-dependent fracture energy and consistent coupling between normal and tangential separations and tractions.
- CZM1 and CZM2 provide robust penalisation of unphysical overclosure due to compressive normal tractions. Furthermore, CZM1 and CZM2 implement a
formulation to generate increased tangential strength as a result of compressive normal tractions.

- The cohesive zone model formulation CZM3, as implemented in Abaqus, does not provide robust implementation of prescribed interface strength during interface separations in which the fracture energy is specified.

- A potential based CZM formulation (PF-CZM1) is constructed based on the proportionate loading path behaviour of CZM1. We demonstrate the computation of unphysical normal tractions, inherent in all potential based models, remains problematic, despite the robust mixed-mode basis for the PF-CZM.
Bibliography

Chapter 5

DEVELOPMENT OF A NOVEL TEST METHOD TO INVESTIGATE MODE II FRACTURE AND DISSECTION OF ARTERIES

5.1 Introduction

Aortic dissection is a lethal disease which can lead to stroke, spinal cord infarction, renal failure, cardiac tamponade, aortic rupture, and death (Criado, 2011; Fattori et al., 2013; Evangelista et al., 2018). Mortality rates can be as high as 1% per hour (Chikwe et al., 2013; Evangelista et al., 2018). However, to date the exact pathophysiological processes and related biomechanisms underlying aortic dissection have not been uncovered. Previous investigations of the damage and fracture properties of arterial tissue have primarily relied on peel tests (Gasser and Holzapfel, 2006; Sommer et al., 2008; Ferrara and Pandolfi, 2010; Tong et al., 2011a; Noble et al., 2016). Such a test methodology results in a mode I fracture and allows for the calibration of a mode I fracture strength (reported to be in the region of 140 kPa (Ferrara and Pandolfi, 2010)). However, given the anisotropic mechanical behaviour of arterial due to its complex microstructure, which consists of families of aligned collagen and elastin fibres, the mode and mechanism of crack propagation induced by a standard peel test is of limited relevance to the physiological process of artery dissection and rupture. Given that the high blood pressure in the lumen is the primary source of loading of arterial tissue in vivo, we argue that aortic dissection results from mode II fracture initiation, rather than mode I. Lumen pressure loading induces a high compressive radial component of stress throughout the artery wall, such that a mode I initiation of a dissection in the
orthogonal circumferential-axial plane is highly improbable. Iatrogenic dissections may follow from mixed mode fracture initiation (Noble et al., 2017), but such dissections primarily result from catheterisation, percutaneous transluminal coronary angioplasty, or cardiac surgery (Hagan et al., 2000). In any event, iatrogenic dissections are reported to occur in the radial-axial plane (Eshtehardi et al., 2010), which, given the highly anisotropic arterial microstructure, is not at all reflective of the mode I fracture in the circumferential-axial plane induced by a standard peel test. Every aortic dissection involves circumferential and axial crack propagation, whereas not all are associated with a radial crack propagation (Hagan et al., 2000; Trimarchi et al., 2007; Evangelista et al., 2018). A recent experimental study qualitatively observed a similar trend of dissection in the circumferential-axial plane of excised aortas subjected to hypertensive levels of lumen fluid pressure (Haslach, Siddiqui, et al., 2018). Such dissection propagation in the circumferential-axial plane is also reported for canine thoracic aortas, where it is qualitatively suggested that bond strength between lamellae are weaker than the lamellae material strength (van Baardwijk and Roach, 1987).

To gain further insight into the clinical observation of arterial dissection in the circumferential-axial plane it is essential to accurately characterise the fracture properties of arterial tissue under such mode II loading conditions. Classical mode II lap-shear fracture mechanics experiments have been carried out by Witzenburg et al. (Witzenburg et al., 2017) on porcine ascending aorta and by Sommer et al. (Sommer et al., 2016) on excised human aneurysmatic and dissected aorta. However, we present a preliminary finite element analysis of lap-shear testing of arterial tissue in Section 5.1.1 (below) in which we demonstrate that the high levels of material deformation at the point of fracture initiation consequently results in a mixed mode initiation and
propagation, rather than the intended mode II fracture. The generation of a mode II crack in highly deformable, high toughness fibrous soft tissue under controlled experimental conditions remains a significant challenge. This challenge cannot be addressed by standard test methodologies developed for traditional engineering materials, such as lap shear tests. A further challenge is that fracture testing of naturally occurring biological materials such as arteries does not facilitate the engineering of standardised fracture specimen geometries. Therefore, implementation and interpretation of fracture testing subject to the limitation of non-standard geometries, such as arteries, requires in-depth mechanistic analysis.

In the current study we design, develop, and validate a novel test methodology for the initiation and propagation of mode II dissection in arterial tissue in the circumferential-axial plane. We demonstrate that this pattern of mode II dissection is highly repeatable. Such mode II fracture always preferentially occurs in our experiments, in contrast to mode I fracture in the radial-axial plane, which never occurs due to the significant toughening mechanism of collagen alignment at the crack-tip. Using our novel experimental methodology, in parallel with cohesive zone modelling of our experiments, we determine the pure mode II fracture strength and fracture energy of ovine aortas. We demonstrate that the mode II fracture strength is approximately eight times higher than the mode I fracture strength measured using a traditional peel test. Finally, we discuss the implications of our results in terms of advancing the current understanding of the biomechanics of artery dissection.
5.1.1 Lap-shear testing of arterial tissue results in a mixed mode crack propagation

Due to the high strength and toughness of arterial tissue, significant material deformation occurs in lap-shear tests prior to damage initiation and crack propagation. This is clearly illustrated by the experiments of Sommer et al. (Sommer et al., 2016) (referred to hereafter as constrained lap-shear testing) and Witzenburg et al. (Witzenburg et al., 2017) (referred to hereafter as unconstrained lap-shear testing). In the constrained lap-shear tests the top and bottom surfaces of the artery sample are bonded to rigid horizontal plates. In the unconstrained lap-shear tests the top and bottom surfaces of the artery sample are unconstrained. In Figure 5.1 we present finite element cohesive zone analysis of the constrained experiments of Sommer et al. (Sommer et al., 2016) and the unconstrained experiments of Witzenburg et al. (Witzenburg et al., 2017) in which crack initiation and propagation is simulated using a cohesive zone formulation. The fracture strength is calibrated so that predicted crack initiation occurs at an identical level of applied shear deformation as reported experimentally. Mode mixity is defined as \(\varphi_{MM} = \tan^{-1}(T_t/T_n) \) and is presented as a function of normalised crack tip position, where \(T_t \) and \(T_n \) are the tangential (shear) and normal tractions, respectively, at the crack-tip. Full details of the artery anisotropic hyperelastic material law are presented in Appendix A, and the calibration of the material law to arterial tissue is presented in Section 5.3.1. The cohesive zone fracture model utilised in this study is presented in Chapter 4 and provides an advance on previous coupled mixed mode formulations by facilitating independent specification of mode-dependent fracture strength and fracture energy independent of intrinsic interface stiffness, while ensuring positive instantaneous incremental positive dissipation (McGarry et al., 2014).
As shown in Figure 5.1(a), simulation of a *constrained lap-shear test*, predicts a mode mixity of \(\sim 0.2107 \) at fracture initiation, with a mean mode mixity of \(\phi_{MM} = \sim 0.1157 \text{ rad (\sim 6.63°)} \) during subsequent crack propagation. RemARKably, this represents a mode mixity that is closer to mode I, rather than the intended mode II fracture. Figure 5.1(b) illustrates the high level of material deformation at the crack-tip throughout, resulting in a localised mode of loading that resembles a peel test rather than a mode II fracture test. Also shown in Figure 5.1, simulation of an *unconstrained lap-shear test* predicts a mode mixity of \(\sim 1.229 \) at fracture initiation, with a mean mode mixity of \(\phi_{MM} = \sim 1.236 \text{ rad (\sim 70.85°)} \) during subsequent crack propagation. Again, this is quite different from the intended mode II fracture (\(\phi_{MM} = \pi/2 \text{ rad} \)). Figure 5.1(c) demonstrates the high levels of material deformation at initiation and during propagation, resulting in normal tractions at the crack-tip that are comparable in magnitude to corresponding tangential tractions.

![Figure 5.1](image)

Figure 5.1. (I) Mode mixity (\(\phi_{MM} \)) as a function of normalised crack tip position for a constrained in-plane lap shear test and an unconstrained lap-shear test; (II) Simulation of an unconstrained lap-shear test where normal and tangential traction is shown.
Cohesive zone parameters used were ($\sigma_{\text{max}} = 200 \text{ kPa}, G_n^0 = 0.003 \text{ N/mm}, \tau_{\text{max}} = 400 \text{ kPa}, G_t^0 = 0.003 \text{ N/mm}$); (III) Simulation of a constrained lap-shear test. The traction at the crack tip is predominantly a mode I traction. Cohesive zone parameters used were ($\sigma_{\text{max}} = 200 \text{ kPa}, G_n^0 = 0.003 \text{ N/mm}, \tau_{\text{max}} = 400 \text{ kPa}, G_t^0 = 0.003 \text{ N/mm}$). Full details of the artery anisotropic hyperelastic material law and the cohesive zone fracture model are presented in Appendix A and Chapter 4, respectively.

As neither unconstrained nor constrained lap-shear test protocols result in mode II fracture, in the current study we aim to develop a novel test methodology to induce pure mode II fracture initiation and crack propagation in arterial tissue. We argue that the quantitative analysis of pure mode II fracture resistance of arterial tissue is of critical importance. Lumen blood pressure is the primary source of mechanical loading on an artery wall in vivo, resulting in a compressive radial component of stress. The presence of an intramural haematoma could potentially result in a mixed mode or mode I fracture initiation in the c-a plane. However, the high compressive radial component of stress in the vessel wall due to lumen pressure will promote mode II initiation, particularly in the absence of an intramural hematoma.

Therefore, we suggest that (in the absence of other conditions such as intramural haematoma) mode I initiation of fracture is not possible under in vivo loading and that arterial dissection results from mode II fracture of arterial tissue. Therefore, we suggest that mode I initiation of fracture is not possible under in vivo loading and that arterial dissection results from mode II fracture of arterial tissue.

5.2 Design and computational validation of a novel experimental mode II fracture test (shear fracture ring test (SFRT))

In this section we outline the analysis and design of a novel experimental methodology that results in pure mode II crack propagation in aortic tissue. Motivated by an analytical solution developed by Parry and McGarry (Parry and McGarry, 2012) for the stress state of a bi-layered composite arch, we note that interface tractions vary from mode I at the top of the arch to mode II at the side of the arch. Attachment of a
straight bi-layered composite strut to the bi-layered arch (representing a typical stent design) further increases the shear stress at the base of the arch (Parry and McGarry, 2012). Extending this analysis of the transition of interface from normal stress at the top of an arch to a shear stress at the side of the arch, we propose a test method in which a section (“ring”) of excised artery is mounted on two cylindrical loading bars. The loading bars are then moved apart, imposing a deformation on the artery ring such that that two curved “arch-type” sections (top and bottom) are developed, connected by straight “strut-type” sections, as shown in Figure 5.2(a). This generates a localised region of high shear stress at the sides of the cylindrical loading bars (analogous to the maximum shear stress at the base of the stent arch uncovered in the study by McGarry and Parry (Parry and McGarry, 2012)).

Computational design of experiment

A schematic of the computational design of experiment modelling procedure is outlined in Figure 5.2(a). A ring of excised aortic tissue with radius R_s is placed onto two steel bars of radius r_b. The bottom bar is fixed throughout the analysis while the top bar is displaced at a constant strain rate such that at any time point the distance travelled by the top bar is equal to u. We define a deformed interface coordinate S (shown in Figure 5.2(a)) which describes the position along a quarter circumference of the deformed configuration. S begins at the top of the bar and describes the position that is distance d through the thickness t and ends at $S = L$. We also define a radial coordinate r_{ct} which describes the radial position of the crack tip through the wall. The original circumference of the ring is described as $C_0 = 2(L_0) + 2\pi(r_b + t/2)$ where L_0 is the distance from the midpoint of one loading bar to the other. The change in circumference is described as follows: $\Delta C = \Delta L$ where ΔL is the displacement applied to the upper loading bar. Also shown in Figure 5.2(a) is a local/material
coordinate system for the artery ring; \(r, c, a \) indicating axes corresponding to the physiological radial, circumferential, axial axes, respectively. Collagen fibres are assumed to lie in the \(c-a \) plane (Gasser, Ogden and Holzapfel, 2006; Nolan et al., 2014). A measure of nominal strain in the \(c \)-direction (the physiological circumferential direction) is then given as the \(E_{cc} = \Delta C / C_0 \) where \(C_0 \) is the undeformed circumference of the ring. Hereafter, for brevity, \(E_{cc} \) is referred to as the nominal *circumferential strain* imposed on the artery ring. The novel test methodology is referred to as the SFRT hereafter.

A finite element analysis of the SFRT is presented in Figure 5.2(b). Figure 5.2(b) shows a contour plot of circumferential stress \(\sigma_{cc} \) (normalised by the initial shear modulus \(\mu \)) for the case of a loading bar of radius \(r_b/R_s = 0.18 \). The circumferential stress is the dominant stress component in the artery ring; it is five times higher than the corresponding peak maximum shear stress \(\tau \) (when \(r_b/R_s = 0.18 \)) which occurs at the side of the arch region, as shown in Figure 5.2(c). The magnitude of \(\tau \) at the side of the bar is strongly influenced by the loading bar radius. Three bar radii are shown in Figure 5.2(b) \((r_b/R_s = 0.18, 0.36, 1.0) \). The peak value of \(\tau \) is increased when the radius of the bar is decreased. In Figure 5.2(e) the distribution shear traction \(T_t \) along the \(c-a \) plane mid-way through the arterial section \((r=t/2) \) is examined. Similar to the distribution of \(\tau \) in the arterial material, \(T_t \) along a \(c-a \) plane is highest at the side of the loading bar \((S = \pi (r_b + d)/2) \) and increases with decreasing value of \(r_b \).

The effect of the radial coordinate of a \(c-a \) plane through the thickness was also examined, placing the plane a quarter-way through the thickness, such that the plane lies on \(S \) when \(d = t/4 \), results in a 7.3% decrease in \(T_t \) compared to \(d = t/2 \). However, placing the plane three quarters through the thickness, such that the plane
lies on S when $d = 3t/4$, results in a 44% decrease in T_t. The plane lies on S when $d = t/2$ in Figure 5.2(d-f).

Figure 5.2(f) shows the normal tractions (i.e. in the r-direction acting on a $c-a$ plane) are negative (i.e. compressive) throughout the arch region and are negligible in the straight section of the specimen.

In terms of experimental design of a mode II fracture test, the analyses presented in Figure 5.2 provide the following insights:

- Maximum shear stress and shear traction on a $c-a$ plane occur at the side of the loading bars ($S = \pi(r_b + d)/2$).
- A smaller loading bar generates highest magnitude of shear stress and shear traction on a $c-a$ plane.
- Crack propagation along a $c-a$ plane (as reported clinically) is expected to be pure mode II, based on computed compressive normal tractions throughout the arterial specimen.

We therefore select a small loading bar radius of 1.5 mm (corresponding to $r_b/R_s = 0.18$ for an aorta specimen radius of 8.33 mm).
Figure 5.2. (a) Schematic of the SFRT. An excised aortic ring specimen is shown mounted on two bars in the reference configuration. R_s is the radius of the specimen and r_b is the radius of the bar. The bottom bar is fixed and u is the displacement of the top bar. S is the deformed interface coordinate which is a distance d offset from the bar. A schematic of the local material coordinate system is shown with local circumferential, axial, and radial directions (c-a-r); (b) Local circumferential stress is presented for a $r_b/R_s = 0.18$ configuration; (c) Maximum local shear stress (τ/μ) contour is plot for three bar radiiues ($r_b/R_s = 0.18, 0.36, 1.0$); (d) Normalised interface shear traction (T_t/μ) contour for the same radiiues as shown in (c); Tangential traction (e) and normal traction (f) as a function function of the normalised interface coordinate (S/L) for each of the bar radiiues analysed. Full details of the artery anisotropic hyperelastic material law used are presented in Appendix A.
In Figure 5.3, using a cohesive zone, we examine the mode mixity during crack initiation and propagation in our SFRT test. We next hypothesise that the insertion of a notch in the radial direction at the location of maximum shear stress \(S = \pi (r_b + d)/2 \), as illustrated in the schematic in Figure 5.3(a), will result in a kinking of the notch such that mode II initiation and propagation will occur along the c-a plane through the notch-tip, as shown in the illustrations of Figure 5.3(a) (we define kinking as the growth of the radial notch directly in the circumferential direction with no prior radial crack growth). A cohesive surface is placed along the c-a plane through the notch-tip. Simulated crack initiation and propagation is presented in Figure 5.3. The evolution of \(T_e \) along the c-a plane through the notch tip \((r=t/2)\) is shown in Figure 5.3(b), in addition to the computed specimen deformation. Following initiation at the side of the loading bar \(S = \pi (r_b + d)/2 \), at an applied circumferential strain of \(\Delta C/C_0 = 0.64 \), the crack front propagates a long distance along the c-a plane. The delaminated portion of artery (i.e. the evolving crack flank) remains flat on the c-a plane, suggesting that the crack growth is pure mode II throughout. This is confirmed by plotting the mode mixity \(\varphi_{MM} \) at the crack-tip as a function of crack-tip position during propagation, as shown in Figure 5.3(c). Corresponding plots for lap-shear test simulations are shown once-again for comparison, highlighting the significant improvement of the SFRT in generating mode II initiation and propagation in arterial tissue. The normal interface calibrated from standard peel tests is \(\sigma_{max} = 202 \, kPa \).
Figure 5.3. (a) Schematic of the proposed radial notch and the evolution throughout testing; (b) Section views of the finite element simulation of the SFRT carried out in the present study. Sections are taken in the middle of the aortic ring as the crack propagates. Crack tip is shown by the black arrow; (c) Mode mixity (ϕ_{MM}) as a function of normalised crack tip position for each of the shear experiments analysed in this study. Cohesive zone parameters are as follows: the normal interface strength is calibrated from peel tests, $\sigma_{\text{max}} = 202 \text{ kPa}$ (see supplementary material I); the shear interface strength is assumed to be approximately twice the normal interface strength, $\tau_{\text{max}} = 400 \text{ kPa}$; the mode I and mode II fracture energies are assumed to be $G_n^0 = 0.003 \text{ N/mm}$ and $G_t^0 = 0.003 \text{ N/mm}$. Full details of the cohesive zone model are presented in Chapter 4.

Following from the key computational design and analysis presented in Figures 5.1-5.3, a proposed experimental test rig is shown in Figure 5.4(a). Cantilevered stainless steel loading bars are attached to the base-plate and the cross-head fixture of a mechanical test machine. Selection of loading bar radius is a key design consideration. While, as shown above, a smaller radius enhances the level of shear stress, bars must be large enough to support the forces imposed by the deforming arterial specimen without exceeding the elastic limit of stainless steel. The force imposed by the deforming specimen is, of course, dependent on the chosen specimen width, w.
Specimens are prepared such that $w/t \approx 4.14$, so that specimens are sufficiently wide to approximate generalised plane strain conditions, but not so wide that significant anatomical variations are introduced in the a-direction (i.e. specimens are approximately cylindrical). For a typical specimen thickness of $t=2.35$ mm, a width $w=9.73$ mm is chosen. Specimens are placed as close as possible to the cantilevered ends of the loading bars (while contacting only the loading bars). Preliminary testing suggests that a specimen exerts a uniformly distributed load of ~ 0.97 N/mm on the loading bars at $\sim \Delta C/C_0 \approx 0.6$ prior to rupture. Figure 5.4(a) shows the stress in stainless steel loading bars, normalised by the yield stress of stainless steel (200 MPa). Clearly, a bar radius in the range $r_b/R_s \leq 0.135$ (corresponding to $r_b \leq 1.125$ mm based on a mean artery radius of 8.33 mm) does not provide an adequate factor of safety for the structural integrity of the loading bar. On the other hand, large bar radii $r_b/R_s \geq 0.25$ result in lower magnitudes of shear stress and, consequently, a reduced probability of mode II fracture. Therefore a bar of radius $r_b/R_s = 0.18$ (i.e. $r_b = 1.5$ mm) is chosen to provide a high level of shear stress while ensuring that the yield stress of the loading bar is not exceeded. This bar size also facilitates straight-forward positioning of the radial notch at the position of maximum shear to the side of the bar ($S = \pi(r_b + d)/2$). A high-resolution camera (60 fps, 1080p) and digital microscope (10 fps, 1080p) are positioned in front of the sample to record specimen deformation and crack propagation throughout each test. A photograph of the final test set-up is shown in Figure 5.4(c).
Figure 5.4. (a) Schematic of structural bending of loading bar during stretching of artery SFRT specimen; (b) Identification of optimal experimental design based on required loading bar flexural strength and generation of high shear stress in arterial tissue. The blue shaded region indicates a high loading-bar factor of safety (FOS) and low shear traction. The red region indicates a low loading-bar FOS and a high shear traction. The green region indicates the optimal experimental design whereby high shear tractions are generated in the artery while a sufficiently high loading-bar FOS is achieved; (c) Schematic of the computationally designed experimental test rig. The section view (Section A-A) shows the front view of the specimen; (d) Finalised test-rig design with mounted arterial SFRT specimen.

5.2.1 Sample Preparation
The ascending aorta and aortic arch were excised from 6 sheep sourced from a local abattoir (Brady’s Athenry, Galway, Ireland). Excess connective tissue was carefully removed from the external (adventitial) surface of the vessel. Notched and un-notched specimens were prepared through cutting cylindrical sections out of the aorta to form circumferentially intact rings. Sample dimensions were taken using a digital Vernier
callipers and a digital thickness gauge. Tissue samples were stored at 0-4°C in phosphate buffer solution prior to testing to ensure adequate tissue hydration and preservation. Unnotched intact ring extension tests (n=6) and notched ring extension tests (n=11) were carried out. Samples were mounted on a rigid bar to allow for constrained, precise notching. Two notches were introduced using a No. 10 scalpel blade at opposite ends of the sample. Notches were approximately a half of the tissue thickness in depth ($r_{ct} \approx t/2$). The boundary of the notch was marked with blue waterproof all-surface ink. Samples were mounted on the extension bars and tested to failure at a strain rate of 10 mm/minute. The samples were rotated such that the notches were aligned with $S = \pi (r_b + d) / 2$.

To determine the anisotropic hyperelastic properties and anisotropy of the material, three experiments were carried out: axial extension, circumferential extension, and unnotched intact ring extension. Uniaxial testing in two directions was carried out rather than biaxial testing due to the non-uniform strain states in biaxial samples (Nolan and McGarry, 2016b). Strips were excised from the ascending aorta and cut to uniform rectangular shapes in the axial and circumferential directions maintaining a mean aspect ratio of $L:w = 3.8:1$ (all mean specimen dimensions are presented in Table 5.1). The samples were gripped using Zwick pneumatic specimen jaws. Axial (n=10) and circumferential (n=6) extension tests were carried out individually with a crosshead speed of 10 mm/min. Each of the samples were tested to failure.
Table 5.1. Mean specimen dimensions ± SD for each of the experiments. Reported values for SFRT length and unnotched intact ring extension length refer to the diameter of the specimen pre-test. Circumferential extension length is the initial grip to grip separation. *Peel test experiment is presented in supplementary material I.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Length or Radius (mm)</th>
<th>Width (mm)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peel Tests* (n=7)</td>
<td>37.96 ± 6.59</td>
<td>12.77 ± 1.07</td>
<td>1.95 ± 0.5</td>
</tr>
<tr>
<td>Circumferential Extension (n=6)</td>
<td>19.06 ± 2.28</td>
<td>4.60 ± 1.17</td>
<td>1.39 ± 0.16</td>
</tr>
<tr>
<td>Axial Extension (n=10)</td>
<td>27.68 ± 4.35</td>
<td>7.89 ± 0.92</td>
<td>2.06 ± 0.33</td>
</tr>
<tr>
<td>Unnotched Intact Ring Extension (n=7)</td>
<td>8.85 ± 0.23 (R_g)</td>
<td>5.15 ± 0.49</td>
<td>2.05 ± 0.14</td>
</tr>
<tr>
<td>SFRT (n=11)</td>
<td>9.09 ± 0.60 (R_g)</td>
<td>9.73 ± 2.32</td>
<td>2.35 ± 0.16</td>
</tr>
</tbody>
</table>

5.3 Results

5.3.1 Determination of Hyperelastic Properties

Prior to simulation of fracture experiments, the anisotropic hyperelastic behaviour of the arterial tissue must first be calibrated using uniaxial tension testing of the tissue in the circumferential and axial directions, as described in Section 5.2.1. Additional validation of the calibrated material model is performed by experimental and computational analysis of the response of unnotched artery sections to our SFRT. Experimental tensile testing reveals significant anisotropy and material non-linearity, as shown in Figure 5.5a. The material exhibits a higher initial stiffness in the circumferential direction. Furthermore, in the circumferential direction the material transitions to a high stiffness regime at a strain of ~0.4. Strain stiffening is less pronounced in the axial direction. The model provides an accurate representation of the material anisotropy and strain stiffening both in the circumferential direction ($RMSE_{circ} = 0.0059$) and in the axial direction ($RMSE_{axial} = 0.0144$) for the unique material parameter set presented in Table 5.2. Simulation of the stretching of an unnotched intact ring using the calibrated material model parameters, is shown in
Figure 5.5(b). Results are in strong agreement with corresponding experimental measurements for the entire range of applied deformation ($RMSE_{ring} = 0.0081$).

Table 5.2. Table of best fit material parameters for the arterial material model.

<table>
<thead>
<tr>
<th>D_1^m</th>
<th>D_2^m</th>
<th>E_1^m (MPa)</th>
<th>E_2^m (MPa)</th>
<th>K (MPa)</th>
<th>D_1^f</th>
<th>D_2^f</th>
<th>E_1^f (MPa)</th>
<th>E_2^f (MPa)</th>
<th>α (°)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.9</td>
<td>0.075</td>
<td>0.5</td>
<td>1.52</td>
<td>0.4</td>
<td>0.5</td>
<td>0.16</td>
<td>4.5</td>
<td>28.5</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Figure 5.5. (a) Nominal stress (MPa) as a function of nominal strain for the uniaxial extension of the axial and circumferential datasets. Experimental data and numerical data are shown. The root mean squared error (RMSE) of the axial and circumferential data sets are 0.0144 and 0.0059 respectively; (b) Nominal stress (MPa) as a function of the circumferential strain for the unnotched intact ring extension tests. RMSE for the unnotched intact ring extension test is 0.0081. Final material parameters are presented in Table 5.2. Full details of the artery anisotropic hyperelastic material law are presented in Appendix A.

5.3.2 Fracture Mechanics results

Firstly, we introduce the results of our SFRT fracture mechanics investigation by presenting the details of a representative aorta test sample, Figure 5.6 shows the measured force (F/wt) versus applied nominal circumferential strain ($\Delta C/C_0$). The measured force continues to increase beyond the point of crack initiation at $\Delta C/C_0 = 0.72$. This is due to the continued load bearing capacity of the outer section of the ring ($r > r_{cr}$) up to the point of ultimate rupture.

Fracture initiation (shown in Figure 5.6(a)) appears to be a pure mode II initiation with no evidence of normal separation of the fracture surfaces at the crack-tip; i.e. fracture
initiation entails an immediate kinking of the radial notch so that a mode II initiation along the $c-a$ plane occurs. This experimental result demonstrates that toughening mechanisms due to fibre alignment behind the crack-tip will result in crack kinking and mode II fracture along the $c-a$ plane, rather than mode I fracture along the $r-a$ plane. Following initiation, significant crack propagation is observed in the c-direction through the $c-a$ plane over a long distance (Figure 5.6(a-d)). This crack propagation appears to be close to pure mode II with no visible normal separation at the crack-tip. A relatively smooth fracture surface is observed along the $c-a$ plane and the crack flank (delaminated material) is observed to remain flat to the $c-a$ plane throughout the test. As shown in Figure 5.6(b), at $\Delta C/C_0 = 0.86$, propagation appears to be a pure mode II in nature. This pattern of mode II propagation continues through $\Delta C/C_0 = 0.93$ (Figure 5.6(c)) up to, and including, the point of ultimate rupture ($\Delta C/C_0 = 0.97$; Figure 5.6(d)). This observed pattern of mode II initiation and propagation in the c-direction along the $c-a$ plane is remarkably similar to that predicted by experimental design calculations (Figure 5.2). This exact pattern of mode II initiation and propagation was observed in all samples ($n=11$) subjected to our novel SFRT test. In no case was mode II cracking in the r-direction observed, despite the high levels of circumferential nominal strain applied to the specimen during our SFRT tests. This highlights the benefit of detailed computational analysis to uncover competing mechanism of material damage when designing biomechanical tests for biological materials.
Figure 5.6. The graph shows force normalised by the cross-sectional area, F/wt (MPa) as a function of the circumferential strain ($\Delta C/C_0$). The point of crack initiation is marked with an X. Experimental results of the SFRT for a representative sample. (a-d) Progression of the crack tip from the point of initiation to ultimate rupture of specimen (S3). The original notch is seen in blue.

Figure 5.7(a) shows the measured force (F/wt) versus applied nominal circumferential strain ($\Delta C/C_0$) for all SFRT samples (n=11). Points of crack initiation are indicated for all cases. As stated above, mode II crack propagation in the c direction through the c-α plane is observed in all cases. Generally, fracture initiation is observed to occur in the transition between the initial low stiffness regime and the
high stiffness regime. The range of nominal strain at initiation is observed as $0.53 \leq \Delta C_i/C_0 \leq 0.82$; mean±SD=0.64±0.23. This illustrates the quantitative repeatability of the SFRT methodology, despite high levels of inter-sample variability typically reported for mechanical behaviour of aortic tissue. Finally, in all samples (n=11), crack initiation does not eliminate the load bearing capacity of the specimen due to the intact outer layer of each specimen ($r > r_{cr}$). However, superposition of the corresponding mean curve for an intact unnotched specimen subjected to the same loading regime (Figure 5.7(a)) confirms that the presence of the notch, and consequent mode II crack propagation, leads to a reduction in measured force throughout each test. Figure 5.7(b) shows measurements of the cracked plane as a function of the interface length (S). \tilde{t} is the measurement of deviation from the original crack plane, it is defined as $t(S)/t(S_i)$ where $t(S)$ is the thickness of the remaining intact wall at the position S, and $t(S_i)$ is the thickness of the remaining wall at the position where the crack initiated. Mean measured values and standard deviation is shown by the boxes and error bars, respectively. The dashed line indicates no deviation from the original crack plane ($\tilde{t} = 1$). A t-test reveals no statistically significant difference between any of the measured values (p=2.39e-9).

Figure 5.7. (a) Force normalised by the cross-sectional area, F/wt (MPa) as a function
of the circumferential strain \((\Delta C/C_0)\) for each of the radial notch test specimens. The points of crack initiation are marked with the symbol shown in the legend and are denoted by \(S_n\) where \(n\) is the specimen number. The mean stress strain data of all the samples for the unnotched intact ring extension test is shown as the thick dotted black line. The notched samples exhibit a lower stiffness in the high strain regime compared to the unnotched intact ring. (b) Measurements of the crack plane as a function of the interface length \(S\). \(\tilde{\epsilon}\) is the deviation of the crack plane from the original crack plane. Figure 5.8 shows the deformed crack length as a function of applied deformation beyond the point of initiation \((\Delta C - C_i)/C_i\). The mean final deformed crack length was 22.65\(\pm\)9.68 mm. The typical fracture pattern is characterised by a regime of slow crack growth post-initiation followed by a regime of rapid growth. One likely cause for the initial slow growth followed by the rapid growth is the experimentally observed fibrillation during early stages of crack growth. Extension and pull-out of fibres between fracture surfaces will provide partial resistance to crack propagation. In 4 samples, a third regime of further slow crack growth subsequent to the fast growth regime is observed.

Figure 5.8. Crack length as a function of circumferential stretch past initiation. \((C - C_i)/C_i = 1\) indicates the point of crack initiation and the final point on each curve is the point at which the specimen underwent final rupture.
Images of the fracture surfaces are shown for eight samples in Figure 5.9. The original notch is marked with blue ink in each of the images. Images confirm that crack propagation is restricted to the same \(c-a \) plane (through the original notch-tip) for the entirety of the test, up to the point of final rupture, again confirming the mechanism of mode II fracture predicted in our design of experiment calculations (Figure 5.2). Fibrillation is observed at the crack-tip at the end of SFRTs, as shown Figure 5.9(h), in addition to the early stages of fracture propagation and initiation.

![Figure 5.9. Fracture surfaces of the specimens. Original notches are shown with blue ink. Fibrils formed during fibrillation are shown in (h).](image)

5.3.2.1 **Computational analysis of SFRT experiments to determine mode II fracture properties**

Deformed finite element meshes during crack initiation and propagation are shown in Figure 5.10(a). In all simulations the mixed-mode CZM described in Appendix A is
implemented. The value of the parameter σ_{max} of 202 kPa (the mode I fracture strength along the $c-a$ plane) is determined from the implementation of standard peel test experiments, described in Appendix C. The sensitivity of SFRT crack initiation to the mode II fracture strength, τ_{max}, is presented in Figure 5.10(b). τ_{max} values of 1.4 MPa and 1.8 MPa predict fracture initiation within the experimentally observed standard deviations (in terms of circumferential strain and measured force), and a value of $\tau_{max} = 1.6$ MPa leads to the prediction at $\Delta C/C_0 = 0.63$ and $F/wt = 0.84$ MPa, which is within 0.86% of the experimentally measured mean values of $\Delta C/C_0 = 0.63$ and $F/wt = 0.84$ MPa, respectively. This suggests that the mode II fracture strength for initiation along the $c-a$ plane is eight times higher than the corresponding mode I strength along the $c-a$ plane. It should be emphasised that this is not reflective of the mode I strength for fracture along the $r-a$ plane, which we expect to be considerably higher than τ_{max} or σ_{max} along the $c-a$ plane. Similar to experimental measurements, the computed force (F/wt) increases following fracture initiation. Additionally, similar to experiments, computed forces for notched SFRTs
are lower than corresponding curves without the presence of a notch/crack propagation.

![Figure 5.10](image)

Figure 5.10. (a) Contour plot of max principal stress showing the progression of a mode II crack propagation, black arrows indicate the area of the crack tip; (b) Sensitivity of the crack initiation to the mode II interface strength. Mean force normalised by the cross-sectional area as a function of circumferential strain ($\Delta C/C_0$) for the SFRT. Points of crack initiation are shown with an ‘X’. In each simulation the mode I interface strength was $\sigma = 202 \, kPa$, the mode II fracture energy was $G_t^0 = 0.001 \, N/mm$, and the mode I fracture energy was $G_n^0 = 0.001 \, N/mm$. The mean circumferential strain ($\Delta C/C_0$) at initiation is shown by the vertical dotted black line and the standard error is shown by the horizontal error bar. Full details of the artery anisotropic hyperelastic material law and cohesive zone model are presented in Appendix A and Chapter 4, respectively.

Figure 5.11 shows the evolution of the J1 and J2 components of the J integral at the crack tip in addition to the fibre alignment evolution during the simulation. The mean circumferential strain at fracture is shown by the dotted line and the standard deviation is shown in the highlighted region. As seen in Figure 5.11, J1 is 8 times higher than J2 at the mean point of initiation. Fracture initiation occurs in the circumferential direction only when fibres are almost fully aligned in the $c-a$ plane. This suggests that the J_{crit} is at least 8 times higher for crack propagation in the radial direction than the circumferential direction. The experiment generates a sufficiently high J2 component
of the J-integral at the crack tip to result in circumferential propagation, while fibre alignment results in a significant toughening mechanism against radial crack initiation so that $J_1 < J_{1\text{crit}}$ and propagation does not occur in the radial direction. In arterial tissue, collagen fibres lie along c-a planes, as structural investigations indicate this depends on age, pathology, and type of artery (Whittle et al., 1990; Tsamis, Krawiec and Vorp, 2013; Pierce et al., 2015). Therefore, collagen alignment due to increased circumferential strain acts as a toughening mechanism only for fracture in the radial direction (through the aligned fibres). Crack propagation in the circumferential direction does not benefit from the toughening mechanism of fibre alignment (essentially cracks propagate between the collagen).

![Figure 5.11](image_url)

Figure 5.11. (left y-axis): J-Integral calculations for fracture paths in the radial and circumferential directions as a function of circumferential strain in a SFRT. (right y-axis): Fibre angle as a function of circumferential strain. Fibres are almost fully...
aligned in the c-direction at a circumferential strain of 0.6. A non-dimensional fracture resistance is presented as \(J/\bar{\Phi}_{avg}R_c \) where \(\bar{\Phi}_{avg} \) is the volume averaged strain energy density in the arterial tissue within a radius \(R_c \) from the notch-tip. Note that \(\bar{\Phi}_{avg}R_c \) is identical for both crack paths so the figure presents a direct comparison of the J-integrals.

While the point of fracture initiation is highly sensitive to the parameter \(\tau_{max} \), it is not found to be sensitive to the mode II fracture energy \((G^0_t) \). However, as shown in Figure 5.12, simulations reveal that the rate of crack propagation exhibits sensitivity to \(G^0_t \). Simulations reveal that a value of \(G^0_t = 0.25 \) N/mm results in a rate of crack propagation that is slower than that observed experimentally. On the other end of the spectrum, values of \(G^0_t \geq 0.0005 \) N/mm result in excessively high rates of propagation compared to experimental measurements. A value of \(G^0_t = 0.005 \) N/mm is predicted to provide a reasonable approximation of experimental measurement, both during early and later stages of crack initiation.

![Simulated crack length as a function of circumferential stretch past initiation presented alongside the experimental data (shown in light grey). The crack length and velocity are shown to depend on the mode II fracture energy. Cohesive zone parameters are \(\sigma_{max} = 202 \) kPa, \(\tau_{max} = 1.6 \) MPa, the mode I fracture energy is scaled with the mode II fracture energy according to \(G^0_n = (\sigma_{max}/\tau_{max})G^0_t \). Full](image-url)
details of the artery anisotropic hyperelastic material law and cohesive zone model are presented in Appendix A and Chapter 4, respectively.

5.4 Discussion

The current study presents the development and implementation of a novel experimental technique (SFRT) to generate and characterise mode II crack initiation and propagation in arterial tissue. A mechanistic consideration of a large body of clinical studies suggest that artery dissection results from mode II initiation and crack propagation along a c-a plane in the artery wall, rather than mode I propagation. However, the majority of artery fracture experiments rely on mode I peel test. Recently the studies of Sommer et al. (Sommer et al., 2016) and Witzenburg et al. (Witzenburg et al., 2017) adopt standard lap-shear test techniques to measure mode II fracture properties. The current study begins with a demonstration that lap-shear testing of arterial tissue results in mixed mode fracture, rather than mode II due to the high levels of tissue deformation at the crack-tip at the point of initiation. The combination of high toughness and high deformability of arterial tissue presents a considerable challenge in generating mode II fracture. A further challenge, albeit an obvious one, is that fracture testing of naturally occurring biological materials such as arteries does not facilitate the engineering of standardised fracture specimen geometries. Therefore, implementation and interpretation of fracture testing subject to the limitation of non-standard geometries such as arteries requires in-depth mechanistic analysis. In the current study we perform a detailed computational design of a novel experimental method (which we refer to as a shear fracture ring test (SFRT)) to robustly and repeatably generate mode II crack initiation and propagation in the c-a plane of arteries. This method is based on generating a localised region of high shear adjacent to a cylindrical loading bar. Placement of a radial notch in this region of high shear
stress is predicted to result in a kinking of the crack during a mode II initiation and propagation of the crack over a long distance in the c-direction along the c-a plane. A J-integral analysis suggests radial mode I crack propagation will not occur due to significant fracture toughening as a result of collagen alignment in the c-direction behind the crack-tip. Fabrication and experimental implementation of the SFRT on excised ovine aorta specimens confirms that the novel test method results in pure mode II initiation and propagation, as predicted by our computational design of experiment. Using a cohesive zone formulation, we simulate our mode II experimental tests, and we demonstrate that the mode II fracture strength along the c-a plane is eight times higher than the corresponding mode I strength determined from a standard peel test. We also calibrate the mode II fracture energy based on our measurement of crack propagation rates. The mechanisms of fracture uncovered in the current study, along with our quantification of mode II fracture properties have significant implications current understanding of the biomechanical conditions underlying in vivo aortic dissection.

The present study provides an explanation why every dissection is associated with circumferential and axial crack propagation, but not always radial (i.e. the majority of aortic dissections do not rupture (Hagan et al., 2000; Trimarchi et al., 2007)). Aortic rupture requires radial crack propagation, and collagen fibre alignment provides high levels of toughening against radial fracture. The results of this study suggest radial crack propagation is only likely to occur between collagen fibres or in areas where there is less fibre toughening. The majority of aortic dissection-induced ruptures occur in the ascending aorta leading to cardiac tamponade and death (Miller et al., 1984; Hagan et al., 2000). This may be due to the discontinuous and irregular collagen structure observed in the wall of ascending aortic dissections (Sariola, Viljanen and
Luosto, 1986; Tsamis, Krawiec and Vorp, 2013). Such irregular and discontinuous structure reduces the radial toughening mechanism in the aortic wall. This is also a possible mechanistic explanation for the high incidence of aortic dissection amongst patients with connective tissue diseases such as Marfan syndrome and Ehler-Danlos syndrome (Abraham et al., 1982; Nakashima, Shiokawa and Sueishi, 1990; Lemaire and Russell, 2011; Yuan and Jing, 2011). Connective tissue disorders significantly alter the intramural and inter-lamellar aortic microstructure and strength through abnormal fibrillin (Marfan), and collagen deterioration (Ehler-Danlos). This puts patients with connective tissue disorders at higher risk of aortic dissection (Brandt et al., 2001; Ulbricht et al., 2004).

The propagation of a pure mode II crack following insertion of a notch is suggestive that the intimal tear or initiation tear acts in a similar fashion in vivo to the notch (Criado, 2011). The notch acts as a concentrator of stress at the notch tip and causes shear stress localisations (Anderson, 2005). The notch also significantly reduces the strain in the inner layer of the artery relative to the outer layer which results in a shear concentration. The results of the present experiment serve as supporting evidence to the theory that aortic dissection is far more likely to occur in the presence of an intimal tear (Larson and Edwards, 1984; Dake et al., 2013). This is highlighted further by the additional testing carried out using circumferential notches (see appendix B). Only 3 of the 8 samples tested with circumferential notches resulted in mode II crack propagation, indicating crack growth in the aorta is much more likely to occur in the presence of a radial tear or notch.

The use of the bilinear material model in the present study allows for the elimination of unphysical auxetic behaviour commonly associated with other anisotropic fibre material models in which the fibre is described using an exponential or power law
term. Furthermore, it circumvents other known issues associated with these models, such as unphysically high stress states in regions of localised high strain. Accurate calculation of material stress is fundamental to accurately calibrating the cohesive zone model fracture properties.

The cohesive zone model used in the present study allows for the accurate calibration of a mode II interface strength and mode II fracture energy. However, it is not capable of capturing the complex rate-dependant plastic nature of the fracture, this is reflected in the predicted crack lengths which are linear and do not sufficiently capture the two crack growth regimes (fibrillation and rapid crack growth). Future work should focus on the development of a rate-dependant cohesive zone model capable of capturing the complex nature of viscoplastic fibrillation in soft tissues. The cohesive zone parameters calculated in the present study should be applied to patient-specific geometries to assess the risk of dissection. They should also be used to examine a range of biomechanical factors which may influence arterial dissection. A companion study to the present study is currently underway examining the application of these CZM parameters to an MRI derived subject-specific aortic geometry to analyse the risk of aortic dissection.

The residual stress state in the aorta has been well documented previously (Sokolis et al. 2017). The aortic residual stress state is heterogenous through the thickness of the wall varying in each arterial layer (Holzapfel et al. 2007). Under a zero pressure state an aortic ring is under a constant circumferential stress due to the presence of elastin. Selective enzymatic digestion of elastin in an aortic ring results in dilation of the zero pressure state artery (Schriefl et al. 2015) suggesting elastin is a significant contributor to residual strain in the aorta. Inclusion of residual stress in the form of an elastin pre-
stretch in the material model may lead to a more accurate calibration of the cohesive zone fracture model parameters.

The test methodology \((SFRT)\) developed in the present study could readily be applied to large veins such as the pulmonary veins or other large arteries (left subclavian artery, left common carotid artery, brachiocephalic artery, iliac arteries, renal arteries). The apparatus could be scaled to work on coronary arteries, femoral arteries, carotid arteries, and other arteries of a similar size. Furthermore, it could potentially be used with any other tubular soft tissue of interest such as the urethra, bronchial tubes, trachea, and skin to name but a few.

5.5 Appendix A: Artery Material Model

In order to simulate the anisotropic non-linear hyperelastic behaviour of arterial tissue we use a recently proposed formulation by Fereidoonnezhad and McGarry (Fereidoonnezhad, O’Connor and McGarry, 2020). Full details are presented in Fereidoonnezhad et al. (Fereidoonnezhad, O’Connor and McGarry, 2020), including extensive demonstration that this new formulation robustly avoids the computation of non-physiological auxetic behaviour during large deformation of anisotropic soft tissue, in contrast to established formulations. Here we briefly present the key features of the model and we demonstrate that it accurately captures the mechanical behaviour of the ovine arterial specimens used in this study. The anisotropic strain energy density function due to the presence of two fibre families is given as \(\Psi_{aniso} = \sum_{i=1,2} \Psi_{fi} \), where
\[\Psi_{fi} = \begin{cases}
\frac{2}{3} \lambda^3_{fi} - \frac{2}{3} \lambda^2_{fi} + \frac{1}{3}, & \lambda_{fi} - 1 \leq D_{1f} \\
\frac{2}{3} \lambda^3_{fi} (q - 2p) + \frac{p}{2} \lambda^2_{fi} + \lambda^2_{fi} (p - q + r) + \psi_{01}, & D_{1f} < \lambda_{fi} - 1 < D_{2f} \\
\frac{2E_{2f}}{3} \lambda^3_{fi} + \lambda^2_{fi} (pD^2_{2f} + qD_{2f} + r - E_{2f} - E_{2f}D_{2f}) + \psi_{02}, & \lambda_{fi} - 1 \geq D_{2f}
\end{cases} \tag{A1} \]

\(\lambda_{fi} \) is the fibre stretch of the \(i \)th fibre family, \(D_{1f} \) and \(D_{2f} \) are material parameters, and

\(p, q \) and \(r \) are given as:

\[p = \frac{E_{1f} - E_{2f}}{2(D_{1f} - D_{2f})}, \quad q = E_{1f} - 2D_{1f}p, \quad r = (E_{1f} - q)D_{1f} - pD^2_{1f}, \tag{A2} \]

in which \(E_{1f} \) and \(E_{2f} \) are material parameters. The isochoric strain energy density function is given as

\[\psi_{iso}(\overline{\lambda}_1, \overline{\lambda}_2, \overline{\lambda}_3) = \sum_{i=1}^{3} \overline{\psi}(\overline{\lambda}_i), \]

\(\overline{\psi}(\overline{\lambda}_i) = \begin{cases}
E_i (\overline{\lambda}_i - \ln \overline{\lambda}_i - 1), & |\overline{\lambda}_i - 1| \leq D_i \\
p \left(\frac{\overline{\lambda}_i^2}{2} - 2\overline{\lambda}_i + \ln \overline{\lambda}_i \right) + q (\overline{\lambda}_i - \ln \overline{\lambda}_i) + r \ln \overline{\lambda}_i + \psi_{01}, & D_1 < |\overline{\lambda}_i - 1| < D_2 \\
E_2 (\overline{\lambda}_i - (1 + D_2) \ln \overline{\lambda}_i) + (pD^2_2 + qD_2 + r) \ln \overline{\lambda}_i + \psi_{02}, & |\overline{\lambda}_i - 1| \geq D_2
\end{cases} \tag{A3} \]

where \(D_1, D_2, E_1, \) and \(E_2 \) are material parameters, \(\overline{\lambda}_i (i = 1,2,3) \) are the isochoric principal stretches, \(J = \lambda_1 \lambda_2 \lambda_3 \) is the jacobian, and \(\psi_{01} \) and \(\psi_{02} \) are two constants which ensure the continuity of strain energy. Moreover \(p, q, \) and \(r \) are not independent parameters; in order to maintain \(C^0 \) and \(C^1 \) continuity the following relations must be enforced:

\[p = \frac{E_1 - E_2}{2(D_1 - D_2)}, \quad q = E_1 - 2D_1p, \quad r = (E_1 - q)D_1 - pD^2_1 \tag{A4} \]

The volumetric strain energy density function is given as
\[\Psi_{vol} = \frac{K}{2} \{J - 1\}^2 \]

(A5)

A value of \(\kappa = 1.52 \) MPa is used resulting in slight material compressibility is based on the experiments of Nolan and McGarry (Nolan and McGarry, 2016a).

For further information regarding the material model the reader is directed to Fereidoonnezhad et al. (Fereidoonnezhad, O’Connor and McGarry, 2020). A user defined material subroutine (UMAT) has been developed for this formulation so that it can be implemented in the Abaqus finite element solver.

5.6 Appendix B: Circumferential Notch Tests

Circumferential notch tests (n=8) were also performed. Notches (\(\approx 2.1\) mm) were introduced through puncturing the aortic media through the entire specimen width. Notches were then grown manually to ensure a sharp crack tip was present. Notched samples were mounted onto the loading bars as described previously in Figure 5.3. The extent of the notch was marked with ink prior to testing to allow for accurate measurement of crack growth. Crack growth was also measured after the experiment.

![Figure 5.B1](image)

Figure 5.B1 (a) Image of the circumferential notch pre-testing. Circumferential notch
is shown measuring approximately ~2 mm; (b) Image of the specimen after testing and prior to ultimate failure. Significant crack growth is observed; (c) Image showing the extent of the circumferential crack growth. Dissected flap is peeled back to reveal the extent of fracture; (d) Finite element simulation of SFRT with a circumferential notch. Extensive crack growth is observed in the c-direction in the c-a plane. The black arrow indicates the position of the crack tip.

Crack growth was observed in 3 specimens out of the 8 tested. Average crack length was 11.79mm\pm 4.1mm. Aortic dissection is most commonly associated with an intimal tear or notch (Larson and Edwards, 1984; Karthikesalingam et al., 2010; Aun, 2013; Clough and Nienaber, 2015), however it can and does occur (although less commonly) without a visible entry tear in certain cases (Hirst, Johns and Kime, 1958; Wilson and Hutchins, 1982; Lui, Menkis and McKenzie, 1992; Colli et al., 2018). This is reflected in the results of our study, all samples tested with a radial notch exhibited extensive mode II crack growth whereas only 3 out of 8 samples with a circumferential notch exhibited mode II crack growth. The mode mixity for the circumferential notch test is also explored in Figure . It shows the same as Figure 5.3(c) with the addition of the circumferential notch test. The mean mode mixity for the circumferential notch test is 89.18°.
Figure 5.2.1 Mode mixity φ_{MM} as a function of normalised crack tip position for the SFRT, circumferential notch test, unconstrained lap-shear, and constrained lap-shear. The mean mode mixity in the circumferential notch test is 89.18°.

5.7 Appendix C: Peel Tests

5.7.1 Methods
To characterise the mode I strength of the tissue, peel tests (n=7) were performed. Tubular sections of aorta were cut along the axial length of the artery resulting in planar sheet specimens. Using a scalpel with a No.10 blade, a notch was introduced at one of the boundary faces (Sommer et al., 2008; Noble et al., 2016) such that the notch was in the circumferential plane. The notch was then manually grown approximately 2mm to ensure a sharp crack tip. This created two layers (~8-10mm) to be gripped in sandpaper and inserted into the grips of the test machine. Due to the well documented nature of the relatively low levels of anisotropy associated with peel tests and large standard deviation (Sommer et al., 2008; Tong et al., 2011b; Noble et al., 2016) peel tests (n=7) were conducted in the circumferential direction. The tongues of prepared
samples were gripped on either side with sandpaper and placed into the grips of the test machine. A controlled displacement rate of 10.0 mm/min was applied to the sample and the resultant reaction force was recorded. The zero level of the force was defined as the force after total separation had occurred.

5.7.2 Results

Experimental curve

Figure shows force/width (mN/mm) as a function of the applied displacement (mm). The mean curve is the thick black curve and each of the individual samples are shown in light grey. The mean force/width is 51.4945 mN/mm, it is shown in dashed red in the figure.

![Force/Width vs Displacement](image)

Figure 5.C1 Force/Width (mN/mm) as a function of the displacement (mm) for the peel test specimens. The mean Force/Width is 51.4945 mN/mm and is denoted by the red dotted line.

Computational fit
All the processes of the experiment are simulated to calibrate our mode I critical interface strength to the peel test data. The sensitivity of the system to variations in the critical interface strength (σ_{max}) and variations in the mode I fracture energy (G_{I0}) is investigated in Figure 5. No sensitivity of the Force/width to the mode II fracture energy (G_{II0}) is found. This finding is in agreement with Ferrara and Pandolfi (2010), who found no sensitivity to mode I fracture energy in a numerical study of mode I peel tests of arterial tissue. The sensitivity of the force/width to the critical interface strength is explored in Figure where peel tests of various interface strengths are computed. A median filter is applied to the computed curves to eliminate noise caused by mesh.

The mode I critical interface strength of ovine ascending aorta is calculated as $\sigma_{max} = 202 kPa$.

![Figure 5.C2 Computed Force/width curves for several Mode I critical interface strengths. The mean force/width of the ascending ovine aorta undergoing a mode I peel is 51.49 mN/mm](image)

The results of the peel test agree well with published literature. For example, the model presented in the current study with an interface strength of 140kPa calculates a nearly
identical mean force/width as seen in previous numerical studies of peel tests (29.03 mN/mm (present study) vs. 28.8 mN/mm (Sommer et al., 2008; Ferrara and Pandolfi, 2010)). The differences in the mean experimental force/width may be partly explained by the difference in species, and anatomical location of the specimens. The mean force/width is in the region of other peel tests carried out on animals (51.49 mN/mm (present study) vs. 67.4 mN/mm (Noble et al., 2016; Witzenburg et al., 2017). Similarly to Ferrara et al. (Ferrara and Pandolfi, 2010), the mode I interface strength is found to be the primary determinant of the mean force/width and no significant influence of the fracture energy is found. Similar behaviour was also observed in the mesh convergence analysis (not here presented) where higher force/width and oscillations were observed with the coarser mesh and a reduction in force/width and oscillations was observed in the intermediate and finer meshes.

5.8 Appendix D: Mesh convergence

In this appendix we present the mesh convergence study carried out on the mesh used to calibrate the mode II interface strength and mode II fracture energy. The circumferential strain at initiation is shown as a function of the number of elements in the mesh. The only model parameter changed in each simulation was the mesh density. Mesh 3 is considered sufficiently accurate and was used for the calibration of the mode II interface strength and the mode II fracture energy. Mesh 3 contains an average of 8-9 nodes in the process zone throughout the simulation history.
Figure 5.D1 Circumferential strain at initiation as a function of the number of elements in the mesh. Mesh 3 is the converged mesh.
5.9 Appendix E: Experimental Images

Figure 5.E1: Images of mode II crack propagation in 4 samples undergoing the SFRT. Red arrows approximately indicate the position of the crack tip. Fibrils formed during fibrillation are observed in the top left pane of images.

5.10 Appendix F: Viscoelasticity

In this appendix, viscoelastic material behaviour is considered, and the influence of including viscoelasticity on the calibration of the experimental results is also explored.

A two term Prony series is calculated according to previously published stress-relaxation data from Craiem et al. (Craiem et al., 2008). Figure 5.F1(a) shows the Prony series fit to the stress-relaxation data for human arterial tissue. Figure 5.F1(b) shows the force over area curves as a function of the applied circumferential strain for three different strain rates, the mean experimental data of the SFRT is also presented. A <2% decrease in final stress is computed between the physiological strain rate $\frac{\Delta C}{C_0} =$
800e − 3/s) and the experimental strain rate \(\frac{\Delta C}{C_0} = 6e − 3/s \). The experimental circumferential strain rate was chosen in order to allow for adequate frame rate capture during recording of the experiment.

Figure 5.F1. (a) Stress relaxation data and computational model prediction of a two term prony series to data. (b) influence of physiological circumferential strain rate, experimental circumferential strain rate, and slow circumferential strain rate on the force/area. The mean experimental curve is also shown. Prony series parameters are as follows: \(g_1 = 0.0256106, \tau_1 = 0.27891, \tau_2 = 318.35 \).

5.11 Appendix G: The influence of friction on shear traction

In this appendix the influence of the coefficient of friction between the loading bar and the artery is explored. Figure 5.G1 shows the influence of the friction coefficient on the tangential traction at the crack tip. The influence of the friction coefficient on the tangential traction is shown to be minimal with only a ~5% increase in traction for a large friction coefficient of \(\mu = 0.25 \) compared to frictionless contact.
Figure 5.G1. Tangential traction at the crack tip as a function of the applied circumferential strain. 5 friction coefficients are shown.
Bibliography

Chapter 6

6 VISCOPLASTIC COHESIVE ZONE MODELLING OF INTERFACIAL FIBRILLATION IN SOFT TISSUE

6.1 Introduction

6.1.1 General Background
Cohesive zone models are commonly used to model the delamination of an interface (Xu et al., 1993; Camanho and Davila, 2002; Máirtín et al., 2014; Dimitri et al., 2015; Gallagher, Lamorinière and McGarry, 2018). CZMs can be formulated as continuous functions (Park, Paulino and Roesler, 2009; McGarry et al., 2014; Dimitri et al., 2015), or they may be expressed as piecewise functions (Camanho, Dávila and De Moura, 2003; Hanson, Bittencourt and Ingraffea, 2004). Interfacial fibrillation is a mechanism whereby delamination takes place by initiation, growth, extension, and ultimately fracture of fibrils between fracture surfaces (van den Bosch, Schreurs and Geers, 2007). Previously, standard cohesive zone models (CZMs) have been applied to model interfacial fibrillation in a variety of engineered materials including polymers, elastomers, paper, and plastics (Vossen et al., 2014, 2016; Paggi and Reinoso, 2015). Van den Bosch et al., adapting earlier work, proposed the use of a single relation between the opening displacement and the traction to account for large displacement problems, such as fibrillation (van den Bosch, Schreurs and Geers, 2006, 2007). This model was implemented by Vossen et al. as part of a multiscale modelling approach to describe the fibrillation micromechanics in a delaminating copper-rubber interface (Vossen et al., 2014). In this approach idealised hyperelastic fibrils are explicitly
modelled as part of the multiscale modelling approach. The intrinsic adhesion between
the fibrils and the copper is described by the previously developed standard cohesive
zone model (van den Bosch, Schreurs and Geers, 2007). Another study examining
fibrillar metal-elastomer interfaces explored the role of discrete fibrils within the
fracture process zone (Vossen et al., 2016). Several discrete hyperelastic elastomer
fibrils were explicitly modelled without the use of a cohesive zone model. An
anisotropic CZM for modelling fibrillar and crazing interfaces was proposed by Paggi
& Reinoso (Paggi and Reinoso, 2015). The CZM was developed to describe the
fracture of interfaces with a microstructure made of fibrils with statistically distributed
in-plane and out-of-plane peeling orientations. The underlying CZM is based on the
adhesion theory of an elastic tape (Kendall, 1975). In addition to fibrillation in
gineered polymers, elastomers and composites, interfacial fibrillation has also been
reported during fracture of biological materials such as hair (Kamath and Weigmann,
1982), skin (Arumugam, Naresh and Sanjeevi, 1994) and other collagenous tissues
such as arterial tissue (Arumugam et al., 1992; FitzGibbon and McGarry 2020).
Cohesive zone modelling has been used previously to model fracture in biological
tissues such as arteries (Gasser and Holzapfel, 2006; Noble et al., 2017; Wang et al.,
2018), and cells (McGarry and McHugh, 2008), but toughening mechanism due to
fibrillation have not been previously considered.

6.1.2 Examination of fibrillation during mode II delamination of arteries
uncovered in recent experimental study (McGarry and FitzGibbon (2020)
The series of mode II fracture tests on arterial tissue presented in Chapter 5
(FitzGibbon and McGarry, 2020) demonstrates the rate of crack propagation is non
uniform and that significant fibrillation occurs, both during initiation and propagation
(see Figure 6.1). While a detailed description of the novel mode II soft tissue fracture
methodology is beyond the scope of the current paper, the key evidence of fibrillation
and nonuniform crack propagation rate is outlined in Figure 6.1. A schematic of the experiment is shown in Figure 6.1(a). Briefly, an excised ring of aorta is placed on two circular loading bars. A radial notch is inserted to the side of the loading bars where high shear stress occurs. Displacement of loading bars (characterised by an effective circumferential strain $\Delta C/C_0$) to a critical level results in kinking of the crack with mode II initiation and propagation in the circumferential direction along a circumferential-axial plane. A J-integral analysis demonstrates that crack-kinking and mode II fracture occurs because collagen fibre alignment in front of the crack tip provides a significant toughening mechanism against mode I crack growth in the radial direction, through the thickness of the sample. Measured mode II crack propagation rates are shown as a function of the applied circumferential strain in Figure 6.1(b).

Three characteristic regimes are observed; (i) initial slow crack growth with fibrillation (blue); (ii) fast crack growth over a long distance (red) without significant fibrillation; (iii) slow crack growth with significant fibrillation (green). Significant fibre formation is observed during the test (Figure 6.1(c)) and observed in the region of the crack tip following specimen removal from the test rig (Figure 6.1(c)). Fibrils are not simply elastically stretched between opposing crack surfaces; rather, they appeared to have undergone partial pull-out, such that removal of elastic strain energy does not result in significant fibril shortening and closure of crack surfaces. Finally, a standard cohesive zone model (CZM) that implements critical traction damage initiation, and exponential softening/damage evolution was used to simulate these mode II fracture tests (Figure 6.1(d-e)). The mode II fracture strength (τ_{max}) primarily governs crack initiation, whereas the mode II fracture energy (G_{II}) primarily governs the crack propagation rate. However, the use of a standard CZM is shown to compute an approximately uniform crack growth rate, providing only approximate predictions.
of experimental measurements without capturing the three regimes of crack growth rate described above ($G_{II}=0.05$ N/mm captures only the slow growth rate at the start of the experiment, whereas $G_{II}=0.0005$ N/mm captures the fast crack growth rate in regime (ii), but not the slow crack growth in regimes (i) and (iii) (Figure 6.1(f)).

6.1.3 Structure and aims of the study

In the current study we aim to develop new CZM approaches to explore the relationship between fibrillation and the experimentally observed non-uniform crack propagation rates in arteries. In Section 6.2 we propose a new elastic fibrillation cohesive zone model (EF-CZM). Following initial damage evolution, this formulation incorporates elastic stretching and fracture of fibrils. This approach results in improved predictions compared to a standard exponential damage CZM, but it does not accurately capture experimentally measured non-uniform propagation rates in arteries. Furthermore, analysis of our experimental fracture surfaces suggests that fibrils undergo pull-out, in addition to elastic stretching, during propagation. Based on this observation we propose a novel visco-plastic CZM (VP-CZM) formulation to represent rate dependent fibril pull-out and associated dissipation during crack propagation. We demonstrate that the VP-CZM provides an improved prediction of non-uniform crack propagation during mode II dissection of arterial tissue.
Figure 6.1. (a) J-Integral analysis of the novel mode II fracture experiment illustrating significant mode I toughening and fibre alignment behind the crack tip. (b) Measured crack length is shown as a function of the applied circumferential strain. Three characteristic regimes observed and are approximately indicated on the curves; (blue) initial crack growth is slow due to fibrillation; (red) crack growth velocity increases due to the rupture of fibres concentrating stresses at the crack tip; (green) crack growth slows due to fibrillation. (c) Experimental image showing fibrillation occurring, a large fibril is highlighted (red box). Images show detailed views of interfacial fibrillation. Experimental image of the ruptured aorta specimen showing significant permanent pull-out of fibrils; (d) Traction-separation response of the exponential CZM used previously; (e) image of the model in its undeformed configuration and two example contour plots showing crack propagation; (f) Crack growth predictions of the exponential CZM for two different mode II fracture energy (G_{II}).
6.2 Elastic fibrillation cohesive zone model (EF-CZM)

In an effort to phenomenologically capture the fibril stretching between opposing crack flanks, we propose a new elastic fibrillation CZM (EF-CZM). As illustrated in Figure 6.2, this framework entails an initial intrinsic elastic region (shown in blue), followed by a standard exponential softening/damage region (yellow). Fibril formation is assumed to occur as part of the damage process, with fibrillation initiating when traction softens to a critical value ($T_{f\text{init}}$). Fibrils are assumed to extend elastically (green) until they reach an ultimate fibril stress ($T_{f\text{ult}}$), beyond which, fibril damage and softening initiates, ultimately leading to complete fibril rupture (red). Critical tractions associated with fibrillation initiation and ultimate rupture can be specified as a function of the mode mixity. As an example, Figure 6.2(b) illustrates a case of mode dependent fibrillation whereby fibrils extend to a higher traction under mode II loading than under Mode I loading. A full calibration of the model requires the specification of the following parameters for both mode I and mode II: interface strength ($T_{m\text{max}}$), interface stiffness (K_m), fibril stiffness (K_f), fibril strength ($T_{m\text{ult}}$), interface fracture energy prior to fibrillation (\tilde{G}_m), and fibrillation fracture energy (G_m^d). The model also requires the specification of the mode dependence of the aforementioned parameters. In Section 6.1 we present full details of the EF-CZM formulation. In Section 6.2 we present rigorous parametric investigation of the model behaviour under mixed mode conditions. In Section 6.3 we explore the capability of the EF-CZM to predict the non-uniform crack propagation rates observed experimentally in our artery fracture experiments.
Figure 6.2. (a) Schematic of the EF-CZM undergoing a separation. K_f is the fibrillation stiffness, T_m is the fibrillation strength, and $\delta_{f,el}$ is the elastic limit of separation of the fibrillation regime. (b) 3D traction-separation schematic of the EF-CZM showing a mode II response (red), mixed mode response (black), and a mode I response (blue). (c) CZM parameters are shown as a function of mode angle. Interface strength, elastic limit, separation at fibrillation initiation, maximum fibril extension, and fracture energy are all shown.

6.2.1 EF-CZM formulation

For a given interface displacement vector Δ with normal and tangential (shear) components Δ_n and Δ_t, respectively, the corresponding displacement magnitude is
given as $\Delta_m = (\Delta_n^2 + \Delta_t^2)^{1/2}$ and the mode angle is given as $\varphi = \tan^{-1}(\Delta_t/\Delta_n)$. The magnitude of the interface traction is expressed as a function of Δ_m and φ by the following formulation:

$$T_m(\Delta_m, \varphi) = \begin{cases} T_{m}^{\text{max}}(\varphi) \left(\exp \left(-\frac{\Delta_m - T_{m}^{\text{max}}(\varphi)/K_m}{\delta_m^d(\varphi)} \right) \frac{\Delta_m}{\Delta_m^{\text{max}}} \right), & \text{if } \Delta_m < \frac{T_{m}^{\text{max}}(\varphi)}{K_m} \\
K_f \Delta_m, & \text{if } \frac{T_{m}^{\text{init}}(\varphi)}{K_f} < \Delta_m \leq \frac{T_{m}^{\text{init}}(\varphi)}{K_f} \delta_m^f \end{cases}$$

(6.1)

K_m is the intrinsic stiffness of an intact interface. In the current study we assume that K_m is mode-independent. $T_{m}^{\text{max}}(\varphi)$ is the specified mode-dependent interface strength; the corresponding displacement ($\delta_m^d(\varphi) = T_{m}^{\text{max}}(\varphi)/K_m$) represents the elastic limit of interface separation at the point of damage initiation. The mode-dependent parameter $\delta_m^d(\varphi)$ governs the rate of softening in the initial $G_m^b(\varphi)$ damage region (yellow). Note that damage depends on the maximum separation throughout the displacement history, Δ_m^{max}, such that a reduction in interface separation during the damage region will directly result in elastic unloading. $T_{m}^{\text{init}}(\varphi)$ is the specified mode-dependent traction at which fibrillation initiates following initial damage and softening. K_f is the stiffness of a fibril, which is assumed to be mode-independent in the current implementation. $T_{m}^{\text{ult}}(\varphi)$ is the mode-dependent ultimate strength of a fibril, at which fibril damage initiates. By extension, the elastic limit of fibril extension is also mode-dependent ($\delta_m^{\text{ult}}(\varphi) = T_{m}^{\text{ult}}(\varphi)/K_f$). Finally, the mode-dependent parameter $\delta_m^f(\varphi)$ governs the rate of softening in the G_m^d fibril damage/rupture region (red). The interface strength is defined as a function of the mode as follows:
\[
T_m^{\text{max}}(\varphi) = \tau_{\text{max}} \left(\frac{\tau_{\text{max}} - \sigma_{\text{max}}}{1 - \exp\left(-\frac{\pi}{\Omega^T}\right)} \right) \left(1 - \exp\left(-\frac{\varphi}{\Omega^T}\right) \right)
\]

(6.2)

where \(\tau_{\text{max}}\) is the mode II interface strength, \(\Omega^T\) sets the non-linearity of the transition from mode II to mode I, and \(\sigma_{\text{max}}\) is the mode I interface strength. The mode mixity of the initial interface damage parameter \(\delta_m^*(\varphi)\) is obtained from

\[
\delta_m^*(\varphi) = \frac{\hat{G}_m(\varphi)}{\tau_m^{\text{max}}(\varphi)} - \frac{T_m^{\text{max}}(\varphi)}{2K_m}
\]

(6.3)

where \(\hat{G}_m(\varphi) = G_m^a(\varphi) + G_m^b(\varphi)\) is the mode-dependent fracture energy prior to fibrillation, given as:

\[
\hat{G}_m(\varphi) = \frac{1}{2}K_m \delta_m^{el}(\varphi)^2 + \int_{\tau_m^{\text{max}}(\varphi)/K_m}^{\tau_m^{\text{init}}(\varphi)/K_f} T_m^{\text{max}}(\varphi) \exp\left(-\frac{\Delta_m^{\text{max}} - \delta_m^{el}}{\delta_m^{d*}}\right) d\Delta_m
\]

(6.4)

We may specify the mode-dependence of \(\hat{G}_m(\varphi)\) using the following function:

\[
\hat{G}_m(\varphi) = G_t^0 - \left(\frac{G_t^0 - G_n^0}{1 - \exp\left(-\frac{\pi}{\Omega^C}\right)} \right) \left(1 - \exp\left(-\frac{\varphi}{\Omega^C}\right) \right)
\]

(6.5)

where \(G_t^0\) is the mode II fracture energy prior to fibril formation and \(G_n^0\) is the mode I fracture energy prior to fibril formation, and the parameter \(\Omega^C\) sets the non-linearity of the transition from mode II to mode I. We specify the mode-dependence of \(T_m^{\text{ult}}(\varphi)\) using the following function:
\[\tau_{m}^{f\text{ult}}(\varphi) = \tau^{f\text{ult}} - \left(\frac{\tau^{f\text{ult}} - \sigma^{f\text{ult}}}{1 - \exp\left(-\frac{\varphi}{\Omega^{\tau^{f}}} \right)} \right) \left(1 - \exp\left(-\frac{\varphi}{\Omega^{\sigma^{f}}} \right) \right) \]

(6.6)

where \(\tau^{f\text{ult}} \) is the mode II fibril strength, \(\sigma^{f\text{ult}} \) is the mode I fibril strength, and the parameter \(\Omega^{\tau^{f}} \) sets the non-linearity of the transition from mode II to mode I. We may consider the mode dependence of the fibril fracture energy \(\hat{G}_{m}^{f}(\varphi) \) where we define the fracture energy as the stored elastic energy of the fibril and the fibril damage energy:

\[\hat{G}_{m}^{f}(\varphi) = \int_{r_{m}^{\text{init}(\varphi)/K_{f}}}^{r_{m}^{\text{ult}(\varphi)/K_{f}}} K_{f} \Delta_{m} d \Delta_{m} \]

\[+ \int_{r_{m}^{\text{ult}(\varphi)/K_{f}}}^{\infty} K_{f} \delta_{f}^{\text{el}} \left(\exp\left(-\frac{\Delta_{m}^{\text{max}} - r_{m}^{\text{ult}(\varphi)/K_{f}}}{\delta_{f}^{*}} \right) \right) d \Delta_{m} \]

(6.7)

or we may consider the mode dependence of the fibril fracture energy including only the fibril damage energy

\[\hat{G}_{m}^{f}(\varphi) = \int_{r_{m}^{\text{ult}(\varphi)/K_{f}}}^{\infty} K_{f} \delta_{f}^{\text{el}} \left(\exp\left(-\frac{\Delta_{m}^{\text{max}} - r_{m}^{\text{ult}(\varphi)/K_{f}}}{\delta_{f}^{*}} \right) \right) d \Delta_{m} \]

(6.8)

We specify the mode dependence of the fibril fracture energy \(\hat{G}_{m}^{f}(\varphi) \) using the following function:

\[\hat{G}_{m}^{f}(\varphi) = G_{t}^{d} - \left(\frac{G_{t}^{d} - G_{n}^{d}}{1 - \exp\left(-\frac{\varphi}{\Omega^{G_{f}}} \right)} \right) \left(1 - \exp\left(-\frac{\varphi}{\Omega^{G_{f}}} \right) \right) \]

(6.9)

where \(G_{t}^{d} \) is the mode II fibril fracture energy, \(G_{n}^{d} \) is the mode I fibril fracture energy, and the parameter \(\Omega^{G_{f}} \) sets the non-linearity of the transition from mode II to mode I.
Finally, we complete the description of the cohesive zone formulation by decomposing T_m into the normal and tangential components, T_n and T_t, respectively, such that

$$T_n = \begin{cases}
K_{\text{noc}} \Delta_n, & \Delta_n < 0 \\
T_m \sin(\varphi), & \Delta_n \geq 0
\end{cases} \quad (6.10)$$

$$T_t = T_m \cos(\varphi) \quad (6.11)$$

where K_{noc} is the overclosure penalty stiffness.

The EF-CZM is implemented in the finite element solver Abaqus through a *User Defined Interface Subroutine (UINTER)*. The consistent tangent matrix is derived analytically from (6.1).

6.2.2 EF-CZM parametric investigation of mixed mode behaviour

Proportional loading path response:

Figure 6.3 we explore the mixed mode coupling of the CZM under proportional loading paths. Figure 6.3(A) shows the traction-separation response of the EF-CZM for the case of $\sigma_{\text{max}} = \tau_{\text{max}}$ and $G_n^0 = G_t^0$, such that a mode-independent traction-separation relationship is obtained. Figure 6.3(B) shows the fracture energy as a function of φ. In addition to the total energy, the individual energy contribution of each region (previously outlined in Figure 6.2) are also shown. Monotonic increases/decreases as a function of mode angle are obtained for all energy contributions. In Figure 6.3(C-F) we consider cases in which the degree of fibrillation is mode dependant. Figure 6.3(C) we consider the case in which mode dependence is chosen so that self-similar scaling of the traction-separation relationship is obtained as a function of mode-angle (i.e. the shape of each curve is similar, with highest tractions and fibrillation for pure mode II separations). Such self-similar scaling is achieved by prescribing mode-dependence of fibril
damage energy through equation (6.8). Fibrillation occurs at all mode-angles, which higher fibril tractions and stretching with increasing φ. The resultant mode-dependence of total fracture energy, including normal and tangential contributions, is shown in Figure 6.3(D). For the case shown in Figure 6.3(E-F) a different form of fibrillation mode dependence is shown. In this case, the mode-dependence of the total fibril energy is specified through equation (6.7). In this case, significant fibrillation is obtained only for mode angles close to mode II. For lower values of φ, close to mode I, from the point of fibril initiation the fibrils immediately enter the damage regime, with the result that stretching of fibrils at a constant stiffness is not computed. Again, the resultant mode-dependence of total fracture energy, including normal and tangential contributions, is shown in Figure 6.3(F). The three cases presented in Figure 6.3 merely serve to demonstrate the flexibility of the EF-CZM to represent a range of possible mode-dependent fibrillation regimes, while providing physically appropriate mode dependent traction-separation relationships and fracture energies.
Figure 6.3. Response of EF-CZM to proportional loading paths with a constant mode angle φ. (A) Traction-separation relationship for the case of $\sigma_{\text{max}} = \tau_{\text{max}}$ and $G_n = G_t$. (B) Computed fracture energies corresponding to (A). Individual energy contributions of each region of the traction-separation curve (as illustrated in Figure 6.2) are also shown; (C) Traction-separation relationship for the case of $5\sigma_{\text{max}} = \tau_{\text{max}}$ and $G_n^0 = G_t^0 \left(\frac{\sigma_{\text{max}}}{\tau_{\text{max}}} \right)^2$ with mode dependence of fibril damage energy prescribed through equation (8); (D) Computed fracture energies corresponding to (C); (E) Traction-separation relationship for the case of $5\sigma_{\text{max}} = \tau_{\text{max}}$ and $G_n^0 = G_t^0 \left(\frac{\sigma_{\text{max}}}{\tau_{\text{max}}} \right)^2$ with mode dependence of fibril total energy prescribed through equation (7); (F) Computed fracture energies corresponding to (E).
Non-proportional loading path response: In this section the EF-CZM traction-separation response is examined in the case of a mode II separation to a specified finite value of Δ_t/δ_t, followed subsequently by complete normal separation, $\Delta_n = 0 \to \infty$. Computed traction-separation relationships for a range of such non-proportional mixed-mode paths are shown in Figure 6.4 for the following cases: (A-B) $\sigma_{max} = \tau_{max}, G_n = G_t$; (D-E) $5\sigma_{max} = \tau_{max}, G_n = G_t^0 \left(\frac{\sigma_{max}}{\tau_{max}} \right)^2$. As shown in Figure 6.4(A), the occurrence of damage or fibrillation during the initial mode II separation depends on the prescribed value of Δ_t/δ_t. Traction-separation during the subsequent normal separation is shown in Figure 6.4(B). If a fibril is formed during initial mode II separation, elastic fibril stretching continues immediately during subsequent normal separation. On the other hand, if damage and fibril initiation does not occur during the initial mode II separation, then damage is computed during the initial phase of the subsequent normal separation, followed by fibril initiation and fibril stretching. The computed fracture energy as a function of the applied value of Δ_t^{max}/δ_t is shown in Figure 6.4(C). While the non-linear influence of fibril formation and fibril stretching is computed, the total energy is mode independent, as prescribed, and monotonic increases/decreases in the normal and tangential contributions are observed. Corresponding non-proportional loading path responses are shown in Figure 6.4(D-F) for the case of $5\sigma_{max} = \tau_{max}$ and $G_n = G_t^0 \left(\frac{\sigma_{max}}{\tau_{max}} \right)^2$. Mode mixity of the total fracture energy is specified using equation (6.7). As shown in Figure 6.4(D,E), the occurrence of fibrillation during the initial mode II separation results in reduced elastic fibril deformation in the subsequent normal separation, with early onset of fibril damage and rupture. The total energy of separation is dominated by the mode II contribution during the initial phase of the loading path, as shown in Figure 6.4(F).
Figure 6.4: Traction-separation response of the EF-CZM to non-proportional loading paths in which an initial mode II separation up to a specified finite value of Δ_t / δ_t^l is followed by a subsequent normal separation to ultimate rupture. (A-C) shows results for the case of $\sigma_{max} = \tau_{max}$ and $G_{n0} = G_{t0}$ in terms of, (A) tangential tractions, (B) normal tractions and (C) fracture energies. (D-F) shows results for the case of $5\sigma_{max} = \tau_{max}$ and $G_{n0} = G_{t0}^0 \left(\frac{\sigma_{max}}{\tau_{max}} \right)^2$ in terms of, (D) tangential tractions, (E) normal tractions and (F) fracture energies.

Compliance of the EF-CZM with the requirement that instantaneous incremental dissipation is positive throughout a loading path is investigated in Figure 6.5. Instantaneous incremental dissipation is computed as $d\phi_i = 0.5(Td\Delta - \Delta dT)$, in accordance with Cazes et al. (2009). Analyses are presented for all proportional and non-proportional loading paths considered in Figure 6.3 and Figure 6.4, respectively. For all parameter sets, analyses reveal that $d\phi_i \geq 0$ throughout all loading paths.
Figure 6.5. Instantaneous incremental dissipation \((d\phi_i = 0.5(Td\Delta - \Delta dT))\) during mixed mode loading paths. (A) Proportional loading paths for \(\sigma_{\text{max}} = \tau_{\text{max}}\) and \(G_{n0} = G_{t0}\); (B) Proportional loading paths for \(5\sigma_{\text{max}} = \tau_{\text{max}}\) and \(G_{n0} = G_{t0}\); (C) Non-proportional loading paths for \(\sigma_{\text{max}} = \tau_{\text{max}}\) and \(G_{n0} = G_{t0}\); (D) Non-proportional loading paths for \(5\sigma_{\text{max}} = \tau_{\text{max}}\) and \(G_{n0} = G_{t0}\).

Irreversible damage: The response of the EF-CZM to load-unload paths is explored in Figure 6.6. The response of the EF-CZM to mode I loading-unloading is shown in Figure 6.6(A). Two unloading paths are considered: one during the initial damage phase, and one during the final damage phase when the fibrils ultimate strength has been exceeded. In both cases the model imposes linear elastic unloading with the reduced modulus determined by the degree of damage. Negative values of \(\Delta_n\) are prevented by an overclosure penalty. As shown in Figure 6.6(B), positive instantaneous incremental dissipation is computed throughout all loading-unloading
paths. The slightly more complex response of the model to mode II loading-unloading paths is shown in Figure 6.6(C). Tangential separation is increased such that the mode II strength is exceeded and initial damage occurs. The direction of interface separation is then reversed and elastic unloading occurs at a reduced damage modulus, passing through the undeformed position ($\Delta t = 0$), and continuing to deform elastically ($\Delta t < 0$) until the previously computed damage stress magnitude is again reached. At this point, damage and softening resumes until the point of fibril initiation. Elastic fibril stretching then occurs until the maximum value of tangential traction is reached and fibril damage initiates. The direction of separation is again reversed, and elastic fibril unloading-reloading occurs at a further reduced modulus, again until the reduced ultimate strength is reached and damage, and eventual fibril rupture, is computed. Positive instantaneous incremental dissipation is computed throughout this mode II loading-unloading path (Figure 6.6(D)).
6.2.3 Simulation of artery crack propagation experiment using EF-CZM

We next explore the ability of the EF-CZM to provide improved predictions (compared to a standard exponential damage CZM (recently implemented by FitzGibbon and McGarry (2020) and shown in Figure 6.1(D-F))). We focus specifically on the capability of the EF-CZM to predict the pattern of non-uniform crack propagation rate shown in Figure 6.1(F), i.e. initial slow crack propagation followed by fast crack propagation over a long distance, followed ultimately by slow crack propagation. A parametric investigation is performed to explore the influence of the fibril strength, the fibril fracture energy, and the maximum fibril extension on
computed crack propagation rates. In all simulations presented in Figure 6.7(A-C) it can be noted that the EF-CZM introduces a strong non-uniformity of crack propagation rate, with an initial slow crack rate followed by rapid crack growth, followed ultimately by slow crack growth. However, one significant limitation observed is that the formulation does not predict fast crack growth over a sufficiently long distance, and an alteration of model parameters does not facilitate an extension of this region. As shown in Figure 6.7(A), an increase in the ultimate fibrillation strength merely delays the initiation of the fast crack growth phase but does not extend it over a longer distance. Figure 6.7(B) shows that the predicted crack-propagation rates are not sensitive to the fibril fracture energy. Figure 6.7(C) shows that computed propagation rates are insensitive to the prescribed value of maximum fibril extension for values of $\delta_f^{el}/\delta_m^{el} \leq 75$. Increasing the value of maximum fibril extension merely delays the onset of fast crack growth and shortens the distance over which it occurs.

In summary, while the EF-CZM introduces highly non-uniform crack propagation, with slow crack growth predicted both before and after a phase of fast crack growth, the formulation is not capable of predicting a sufficiently long period of fast crack growth, compared to experimental observations. We suggest that this may be related to non-uniform fibrillation observed experimentally, with significantly lower fibrillation observed during fast crack growth. Therefore, in the following section we propose a visco-plastic cohesive zone formulation in which fibrillation is dependent on the rate of interface separation.
Figure 6.7. Elastic fibrillation EF-CZM predicted crack length vs strain curves. (A) Effect of ultimate fibril strength (τ_{ult}) on the predicted crack lengths. (B) Effect of fibril fracture energy (G_f^d) on predicted crack lengths. (C) Effect of maximum fibril extension (δ_f^{el}) on predicted crack lengths.

6.3 Visco-plastic cohesive zone model (VP-CZM)

As demonstrated in the previous section, the EF-CZM does not accurately capture the non-uniform crack propagation rates reported for mode II artery dissection in the experimental study presented in Chapter 5 (FitzGibbon and McGarry, 2020). Specifically, while the EF-CZM correctly predicts initial and ultimate slow crack growth, it does not predict fast crack growth over a sufficiently long distance. We next propose a visco-plastic mode for fibrillation during crack growth in arteries based on the following experimental observations from Chapter 5:
(i) fibrils do not merely deform elastically; unloading of the visible fibrils does not lead to fibril contraction and removal of the mode II separation between the fracture surfaces. Instead fibrils are observed to have undergone pull-out. Even fibrils near the crack-tip that have not ruptured and are attached to opposing fracture surfaces, are observed to have permanently “pulled-out” of the bulk material and do not exhibit any stored elastic strain energy (Figure 6.1(h)). We hypothesise that a plasticity mechanism should be used to capture the dissipative process of fibril pull-out and associated permanent fibril deformation.

(ii) Higher levels of fibrillation are observed during the initial and final phases of slow crack growth. This suggests a link between the rate of interface separation and fibrillation initiation. We hypothesise that a visco-plasticity mechanism can capture this phenomenon, whereby high rates of interface separation will delay the onset of plastic yielding (fibril pull-out) and result in higher fibril tractions so that the fibril ultimate strength is reached without significant plasticity (pull-out). Contrastingly, this hypothesis suggests that at slow interface separation rates fibrils will undergo early yield and significant plasticity (pull-out) before the ultimate fibril strength is reached. Essentially, a higher level of fibril plasticity (pull-out) is hypothesised to provide a significant dissipative mechanism, providing a link between non-uniform crack growth rates and non-uniform levels of fibrillation.

In Figure 6.8 we present a schematic of the proposed visco-plastic cohesive zone model (VP-CZM). A high interface separation-rate is shown in grey and a low interface separation-rate is shown in black. The initial regime of elastic deformation entails a linear increase in traction with increasing separation, characterised by the interface intrinsic elastic stiffness k_m. Plastic yielding and hardening are governed by
both the interface separation and separation-rate. When the ultimate stress (σ_{uts}) is reached an exponential damage phase initiates, resulting in ultimate interface rupture.

Figure 6.8. Schematic of the visco-plastic cohesive zone (VP-CZM) formulation

6.3.1 VP-CZM formulation

We propose a simple 1D elasto-visco-plastic formulation to describe elasto-plastic axial deformation of a fibril. For a given interface displacement vector Δ, the fibril axial deformation is given as the separation magnitude, Δ_m. To describe permanent fibril extension due to pull-out we perform an additive decomposition of Δ_m into an elastic recoverable separation, Δ_{m}^{el}, and an irrecoverable plastic (pull-out) separation, Δ_{m}^{p} (based on the approach of Cazes et al. (2010):
\[
\frac{\Delta_m}{\delta_m} = \frac{\Delta_m^{el}}{\delta_m^{el}} + \frac{\Delta_m^p}{\delta_m^{el}} \tag{6.12}
\]

where \(\delta_m^{el}\) is a characteristic length. For convenience, and in keeping with standard plasticity notation, in the remainder of this section we refer to these non-dimensional fibril separations as effective fibril strains (elastic and plastic):

\[
\frac{\Delta_m}{\delta_m^{el}} = \varepsilon = \varepsilon^{el} + \varepsilon^p \tag{6.13}
\]

The axial fibril stress is obtained from the elastic effective fibril strain, such that

\[
\sigma_f = k_m(\varepsilon - \varepsilon^p) \tag{6.14}
\]

Strain-rate dependent visco-plasticity is implemented through the following relationship:

\[
\dot{\varepsilon}^p = \dot{\varepsilon}_0 \left(\frac{\sigma_f}{\sigma_f^h(\varepsilon^p)} \right)^m \tag{6.15}
\]

where \(\dot{\varepsilon}^p\) is the effective fibril axial plastic strain rate and \(\sigma_f\) is the axial fibril stress. The parameter \(\dot{\varepsilon}_0\) is a reference strain rate, \(m\) is the strain-rate hardening exponent, and \(\sigma_f^h(\varepsilon^p)\) is the corresponding fibril yield stress (as a function of effective fibril axial plastic strain) at the reference strain-rate \(\dot{\varepsilon}_0\). The form of \(\sigma_f^h(\varepsilon^p)\) is specified through the following strain hardening law:

\[
\sigma_f^h(\varepsilon^p) = \sigma_f^{\varepsilon_0^o} + \left(\sigma_f^{\varepsilon_\infty} - \sigma_f^{\varepsilon_0^o} \right) \left(1 - \exp \left(-\frac{-\varepsilon^p}{\varepsilon_n} \right) \right) \tag{6.16}
\]

where \(\sigma_f^{\varepsilon_\infty}\) is the saturation yield stress, \(\sigma_f^{\varepsilon_0^o}\) is the initial yield stress, and \(\varepsilon_n\) is a hardening parameter. We assume a critical-stress failure initiation criterion, whereby
fibril rupture initiates when the fibril stress reaches a critical value; \(\sigma_f = \sigma_{f \text{\scriptsize ut}}^* \). Fibril rupture is described using a standard exponential damage formulation:

\[
\sigma_f = \sigma_{f \text{\scriptsize ut}}^* \exp \left(\frac{-\varepsilon^{\text{\scriptsize max}} - \varepsilon_{f \text{\scriptsize ut}}^*}{\varepsilon_f^*} \right)
\]

(6.17)

where \(\varepsilon_{f \text{\scriptsize ut}}^* \) is the effective fibril axial strain at which \(\sigma_{f \text{\scriptsize ut}}^* \) is reached, \(\varepsilon^{\text{\scriptsize max}} \) is the maximum strain reached, and the parameter \(\varepsilon_f^* \) governs the rate of damage/softening.

Numerical implementation:

Here we outline the numerical implementation of the visco-plastic fibrillation model. The total stress \((\sigma_{f_i}) \) is expressed as the sum of the incremental increase in stress \((\Delta \sigma_f) \) and the stress at the previous increment \((\sigma_{f_{i-1}}) \):

\[
\sigma_{f_i} = \sigma_{f_{i-1}} + \Delta \sigma_f
\]

(6.18)

The incremental increase in stress is given as:

\[
\Delta \sigma_f = k_m (\Delta \varepsilon - \Delta \varepsilon^P)
\]

(6.19)

where \(\Delta \varepsilon \) is the incremental total strain and \(\Delta \varepsilon^P \) is the incremental change in plastic strain. The change in plastic strain \((\Delta \varepsilon^P) \) is calculated through a Newton-Raphson scheme. The initial value/guess for \(\Delta \varepsilon^P \) in the scheme is estimated using a rate tangent method. Briefly, the plastic strain increment is given as:

\[
d \varepsilon^P = \frac{\frac{\partial \dot{\varepsilon}^P}{\partial \sigma_f} \Delta \varepsilon k_m \theta \Delta_{time} + \dot{\varepsilon}^P \Delta_{time}}{\frac{\partial \dot{\varepsilon}^P}{\partial \sigma_f} k_m \theta \Delta_{time} - \frac{\partial \dot{\varepsilon}^P}{\partial \sigma_f^h(\varepsilon^P)} \frac{d \sigma_f^h(\varepsilon^P)}{\partial \varepsilon^P} \theta \Delta_{time} + 1}
\]

(6.20)

Where \(\Delta_{time} \) is the current time increment, and \(\theta \) determines the rate tangent solution method (a value of \(\theta = 0.5 \) is used (Crank–Nicolson method)).
The following expressions can be derived from equations (16)-(18)

\[
\frac{\partial \dot{\varepsilon}^p}{\partial \sigma_f} = \dot{\varepsilon}_0 \ m \ \sigma_f^{(m-1)} \ \sigma_f^h (\varepsilon^p)^{-m}
\]
(6.21)

\[
\frac{\partial \dot{\varepsilon}^p}{\partial \sigma_f^h} = -\dot{\varepsilon}_0 \ m \ \sigma_f^h (\varepsilon^p)^{-1} \ m \ \sigma_f^h (\varepsilon^p)^{-1}
\]
(6.22)

\[
d\sigma_f^h (\varepsilon^p) = \left(\frac{\sigma_f^\infty - \sigma_f^y}{\varepsilon_n}\right) \exp \left(-\frac{-\varepsilon^p}{\varepsilon_n}\right)
\]
(6.23)

Using the rate tangent solution as an initial guess, we can then iterate using a Newton-Raphson scheme using the following function:

\[
f(x) = \Delta \varepsilon^p - (1 - \theta) \Delta_{\text{time}} \dot{\varepsilon} - \theta \Delta_{\text{time}} \dot{\varepsilon}_0 \left(\frac{\sigma_{f_{i-1}} + \Delta \sigma_f}{\sigma_f^h (\varepsilon^p)_{i-1} + \Delta \sigma_f}\right)^m
\]
(6.24)

where \(i\) denotes the iteration number, and \(i - 1\) is the previous iteration. \(f'(x)\) is given as:

\[
f'(x) = 1 - m \theta \Delta_{\text{time}} \dot{\varepsilon}_0 \left(\frac{\sigma_{f_{i-1}} + \Delta \sigma_f_{i-1}}{\sigma_f^h (\varepsilon^p)_{i-1}}\right)^{m-1}
\]
(6.25)
\[
\sigma_f^h(\varepsilon^p)_{i-1}(-k_m)
\]

\[
\begin{align*}
&\quad \frac{(\sigma_f^i + \Delta\sigma_f)(\sigma_f^\infty - \sigma_f^\gamma)}{(-\varepsilon_n)} \exp \left(-\frac{\varepsilon^p_{i-1} + \Delta_{time}\Delta\varepsilon}{\varepsilon^n} \right) \\
&- \frac{\sigma_f^h(\varepsilon^p)^2}{\varepsilon^p_{i-1}}
\end{align*}
\]

and the updated increment of plastic strain is then given as:

\[
\Delta\varepsilon^{pi+1} = \Delta\varepsilon^p - \frac{f(x)}{f'(x)}
\]

(6.26)

This formulation for axial elasto-visco-plastic fibril deformation is generalised within the framework of a CZM such that:

\[
T_n = (\sigma_f) \sin(\varphi) \quad T_t = (\sigma_f) \cos(\varphi)
\]

(6.27)

Mode-dependence of fibril visco-plasticity is specified through the following expressions for \(\sigma_f^\gamma, \sigma_f^{\mu_\text{ts}},\) and \(\varepsilon_f^*\) as a function of mode angle, \(\varphi:\)

\[
\sigma_f^\gamma(\varphi) = \tau^\gamma - \left(\frac{\tau^\gamma - \sigma_f^\gamma}{1 - \exp\left(-\frac{\pi}{\Omega^\gamma}\right)} \right) \left(1 - \exp\left(-\frac{\varphi}{\Omega^\gamma}\right) \right)
\]

(6.28)

where \(\tau^\gamma\) and \(\sigma_f^\gamma\) are the values of initial yield stress under mode II and mode I loading, respectively, and the parameter \(\Omega^\gamma\) sets the non-linearity of the transition from mode II to mode I. Similarly, the mode-dependence of the ultimate strength of fibrils is given as:

\[\text{Mode dependence of fibril visco-plasticity is specified through the following expressions for }\sigma_f^\gamma, \sigma_f^{\mu_\text{ts}},\text{ and }\varepsilon_f^*\text{ as a function of mode angle, }\varphi:\]

\[
\sigma_f^\gamma(\varphi) = \tau^\gamma - \left(\frac{\tau^\gamma - \sigma_f^\gamma}{1 - \exp\left(-\frac{\pi}{\Omega^\gamma}\right)} \right) \left(1 - \exp\left(-\frac{\varphi}{\Omega^\gamma}\right) \right)
\]

(6.28)
\[\sigma_f^{uts}(\varphi) = \tau^{uts} - \left(\frac{\tau^{uts} - \sigma^{uts}}{1 - \exp\left(-\frac{\varphi}{\Omega^{uts}}\right)}\right)\left(1 - \exp\left(-\frac{\varphi}{\Omega^{uts}}\right)\right)\]

(6.29)

where \(\tau^{uts}\) and \(\sigma^{uts}\) are the values of initial yield stress under mode II and mode I loading, respectively, and the parameter \(\Omega^{uts}\) sets the non-linearity of the transition from mode II to mode I. The description of the mode mixity of \(\varepsilon_f^*(\varphi)\) is obtained from

\[\varepsilon_f^*(\varphi) = \frac{\hat{G}_m(\varphi)}{\sigma_f^{uts}(\varphi)} - \frac{\sigma_f^{uts}(\varphi)}{2K_m}\]

(6.30)

where \(\hat{G}_m(\varphi)\) is the mode-dependent fibril fracture energy

\[\hat{G}_m(\varphi) = \int_{\varepsilon^{uts}}^{\infty} \sigma_f^{uts} \exp\left(-\frac{\varepsilon^{max} - \varepsilon^{uts}}{\varepsilon_f^*}\right) d\varepsilon\]

(6.31)

The mode dependence of the fibril fracture energy \(\hat{G}_m(\varphi)\) is described using the following expression:

\[\hat{G}_m(\varphi) = G_t^d - \left(\frac{G_t^d - G_n^d}{1 - \exp\left(-\frac{\varphi}{\Omega^{G_t^d}}\right)}\right)\left(1 - \exp\left(-\frac{\varphi}{\Omega^{G_t^d}}\right)\right)\]

(6.32)

where \(G_t^d\) is the fibril fracture energy in the tangential direction, \(G_n^d\) is the fibril fracture energy in the normal direction, and the parameter \(\Omega^{G_t^d}\) sets the non-linearity of the transition from mode II to mode I. The VP-CZM is implemented in the finite element solver Abaqus through a User Defined Interface Subroutine (UINTER). The consistent tangent matrix is derived estimated from (6.20).
6.3.2 Thermodynamic consideration in relation to a VP-CZM

From Gurtin (1979), the first and second principles of thermodynamics are expressed as:

\[
\frac{de_s}{dt} = T^s \frac{d[\Delta]}{dt} - [q]n \quad (6.33)
\]

\[
\frac{ds_s}{dt} = - \frac{[q]n}{H} + \frac{d(s_i)_s}{dt} \quad (6.34)
\]

where \(e_s, s_s\) and \((s_i)_s\) are the surface densities of internal energy, entropy, and internal entropy, respectively. \([\Delta]\) represents the interface separation vector at the interface, \(T^s\) is the stress vector defined over the discontinuity surface, \([q]\) is the heat flow jump, \(t\) is the time and \(H\) is the absolute temperature. The surface energy dissipated by the cohesive zone is then:

\[
d\phi_s = Hd(s_i)_s \quad (6.35)
\]

Using equations (6.33) and (6.34) one can obtain the following expression for the free surface energy:

\[
\psi_s = e_s - Hs_s \quad (6.36)
\]

This leads to the expression (originally derived by Cazes et al. (2010)) for an increment of dissipated energy, given as:

\[
d\phi_s = T^s d[\Delta] - d\psi_s - s_s dH \quad (6.37)
\]

The total interface separation vector \([\Delta]\) is divided into elastic and plastic components.

\[
[\Delta] = [\Delta]^e + [\Delta]^p \quad (6.38)
\]

The free surface energy can trivially be defined as:
\[\psi_s = \frac{1}{2} T^s d[\Delta]^{el} \]

(6.39)

Introducing equation (6.39) into equation (6.37), an expanded expression for an increment of dissipated energy is obtained, such that:

\[d\phi_s = T^s d[\Delta]^{p} + \frac{1}{2} \left(T^s d[\Delta]^{el} - [\Delta]^{el} dT^s \right) \]

(6.40)

This can be rewritten in terms of the contribution of the evolution of the plastic interface separation \([\Delta]^{p}\) and of the elastic interface separation \([\Delta]^{e}\) as follows:

\[d\phi_s = d\phi_s^{p} + d\phi_s^{el} \]

(6.41)

Where the dissipated energy due to the plastic interface separation \([\Delta]^{p}\) is given as:

\[d\phi_s^{p} = T^s d[\Delta]^{p} \]

(6.42)

and the dissipated energy due to the elastic interface separation \([\Delta]^{el}\) is given as:

\[d\phi_s^{el} = \frac{1}{2} \left(T^s d[\Delta]^{el} - [\Delta]^{el} dT^s \right) \]

(6.43)

The Clausius-Duhem inequality states that, in a thermodynamically allowable material, the dissipation is always positive. This requires the VP-CZM to exhibit instantaneous positive incremental dissipation over the entirety of a loading path. This leads to the following expression to estimate the thermodynamic legitimacy of the proposed model:

\[d\phi_s = T^s d[\Delta]^{p} + \frac{1}{2} \left(T^s d[\Delta]^{el} - [\Delta]^{el} dT^s \right) \geq 0 \]

(6.44)
6.3.3 VP-CZM parametric investigation of mixed-mode behaviour

The VP-CZM is shown for a range of axial fibril strain rates ($\dot{\varepsilon}$) in Figure 6.9. For high strain rates the VP-CZM behaviour is similar to a typical exponential-type model with negligible amounts of plasticity prior to reaching the ultimate strength. In contrast, for low strain rates the model predicts lower initial yielding, low hardening rates, and, consequently, high levels of plastic deformation prior to reaching the ultimate strength. This predicts that significantly higher levels of plastic deformation (fibril pull-out) and dissipation occur during low rates of interface separation.

![Figure 6.9](image_url)

Figure 6.9. Traction as a function of separation for a range of strain rates. $\dot{\varepsilon}_0$ is a VP-CZM parameter which controls the strain rate threshold. Fast strain rates exhibit negligible amounts of fibril pull-out, slow strain rates result in significant levels of fibril pull-out as indicated by the black curve.

Non-proportional loading path response: The mixed-mode behaviour of the VP-CZM is next explored by considering non-proportional loading paths subject to a range of strain rates for each path. The non-proportional loading paths consist of an initial mode II displacement to a prescribed value ($\Delta t / \delta^{el}_{m} = 0 \rightarrow 10$) followed by complete
normal separation ($\Delta_n \to \infty$). We consider three cases in terms of imposed non-uniform strain rates: $\dot{\varepsilon}_n = \dot{\varepsilon}_t$; $\dot{\varepsilon}_n > \dot{\varepsilon}_t$; $\dot{\varepsilon}_t > \dot{\varepsilon}_n$. In Figure 6.10 we consider the case of mode-independent material parameters and we present computed traction separation relationships for the three aforementioned non-uniform strain rates ((A, D, G) Tangential components; (B, E, H) normal components; (C, F, I) magnitudes (effective fibril axial traction-separation relationship)). In all cases if significant plastic deformation occurs during the initial mode II separation, the computed level of plasticity (fibril pull-out) during subsequent normal separation is less pronounced. In terms of the effective axial fibril behaviour (traction-separation magnitude curves), transition from the mode II phase to the subsequent normal separation phase entails a temporary reduction in the strain-rate magnitude. This results in a reduction in the effective yield stress (in accordance with equation (6.15)) as normal separation increases, $\dot{\varepsilon} \to \dot{\varepsilon}_n$, and the final hardening curve prior to rupture depend on the value of $\dot{\varepsilon}_n$. For example, in Figure 6.10(C) the hardening curve for the normal separation is lower than that for the initial mode II separation because $\dot{\varepsilon}_t > \dot{\varepsilon}_n$. In the case of the two highest prescribed values of initial mode II separation, fibril rupture initiates prior to the transition to normal separation.
Figure 6.10. Normalised traction separation curves for the VP-CZM undergoing non-proportional loading paths in the case of $\dot{\varepsilon}_n = \dot{\varepsilon}_t = \dot{\varepsilon}_0$ (A-C), $3\dot{\varepsilon}_n = \dot{\varepsilon}_t = \dot{\varepsilon}_0$ (D-F), $\dot{\varepsilon}_n = 3\dot{\varepsilon}_t = \dot{\varepsilon}_0$ (G-I). Other VP-CZM parameters are as follows: $k_m = 10MPa, \sigma_y = \tau_y, G_{n0} = G_{t0}, \sigma_{uts} = \tau_{uts}, \sigma_{uts} = 1.25\sigma_y$.

Proportional loading path response: The VP-CZM is now explored under proportional loading paths subject to a constant separation rate ($\dot{\varepsilon}_m / \dot{\varepsilon}_0 = 2.5$) for each path. Figure 6.11(A) confirms that the effective fibril axial traction-separation relationship is mode-independent when $\sigma_y = \tau_y, G_{n0} = G_{t0}$. Figure 6.11(B) shows the computed fracture energy is also mode-independent. The stored elastic energy is also shown in Figure 6.11(B). Tangential and normal components of the traction-separation relationships are shown in Figure 6.11(C,D). Corresponding relationships are shown in Figure 6.11(E-H) for the cases where the values of mode II yield stress and ultimate
strength are higher than the respective mode I values. The VP-CZM formulation produces consistent yield, hardening, and rupture behaviour for all mode angles. Furthermore, monotonic increases/decreases in the tangential/normal components of fracture energy are computed as a function of mode angle (Figure 6.11(F)). Normal and tangential traction components also exhibit consistent behaviour (Figure 6.11(G, H)).
Figure 6.11. Traction separation response for the proportional loading paths subject to a constant separation rate ($\dot{\varepsilon}_m/\varepsilon_{\tau 0} = 2.5$) for the VP-CZM with: (A-D): $\sigma_y =$
\[\tau_y, G_{n0} = G_{t0}, \quad \text{(E-H)}: \quad 5\sigma_y = \tau_y, 5G_{n0} = G_{t0}. \quad \text{In all cases} \quad T_{m}^{\text{nts}} = 1.2(T_{m}^{\gamma_0}). \]

The calculated fracture energy is shown in the case of: (B) \(\sigma_y = \tau_y, G_{n0} = G_{t0} \) and (F) \(5\sigma_y = \tau_y, 5G_{n0} = G_{t0} \). The total fracture energy is shown as well as the individual energy contributions of the elastic recoverable energy \((G^e) \) and the plastic irrecoverable (dissipated) energy \((G^p) \).

The instantaneous incremental dissipation for the visco-plastic CZM is explored below in Figure 6.12 in the case of proportional loading (A, C, E) and non-proportional loading (D, D, F) in the case of \(\sigma_y = \tau_y, G_n = G_t \) (A, B), \(5\sigma_y = \tau_y, 5G_{n0} = G_{t0} \) (C, D), and \(\sigma_y = 5\tau_y, G_{n0} = 5G_{t0} \) (E, F). Instantaneous incremental dissipation is positive throughout all loading scenarios explored; this satisfies the Clausius-Duhem inequality (equation (6.44)).
Irreversible damage and plastic deformation: The response of the VP-CZM to load-unload paths is explored in Figure 6.13. Figure 6.13(A) shows a mode I load-unload path (the path follows the red arrows, blue arrows, then green arrows). An illustration
of the fibrillation process is shown for a mode I load-unload scenario (i-viii). Collagen fibrils are initially embedded in the tissue matrix (i), upon stretching the fibrils stiffen and yield (ii-iii) with increasing interface separation. Fibrils then begin to plastically pull out of the tissue matrix (iv). Upon unloading, fibrils recover elastically (v) with significant permanent plastic pull-out (vi). Upon reloading, fibrils stretch elastically until yield is reached and begin to pull-out plastically until the point of rupture initiation (vii). Upon rupture, fibrils undergo total fibril pull-out or fibril damage (viii).

The tangential traction-separation response to the same loading regime in mode II is shown in Figure 6.13(B) with positive instantaneous incremental dissipation demonstrated throughout (Figure 6.13 (C)). Figure 6.13(D) shows traction-separation curves for a range of mixed mode proportional loading for the load-unload regime outlined in (A). Figure 6.13(E) shows the tangential traction-separation response of mixed-mode proportional loading for the load-unload regime outlined in (B). Figure 6.13(D-E) demonstrate consistent behaviour with (A-B) in mixed mode scenarios.
Figure 6.13. (A) Demonstration of permanent plastic deformation and fibril pull-out for a mode I loading-unloading scenario; (B) Demonstration of permanent plastic deformation and fibril pull-out for a mode II loading-unloading scenario following the arrows in order of (red, blue, green); (C) demonstration of positive instantaneous incremental energy dissipation; (D) Normal traction-separation curves in mixed mode loading unloading scenarios following the path outlined in (A); (E) Tangential traction-separation curves in mixed mode loading unloading scenarios following the path outlined in (B).
6.3.4 Simulation of artery crack propagation experiment using VP-CZM

In Figure 6.14 we assess the ability of the VP-CZM to predict non-uniform crack propagation rates in arteries. The model predictions are superimposed upon experimental results for Chapter 5 (presented in terms of measured crack length as a function of applied circumferential strain in the artery). Three values of $\dot{\varepsilon}_0$ are presented ($\dot{\varepsilon}_0 = 0.1, \dot{\varepsilon}_0 = 0.01, \dot{\varepsilon}_0 = 0.001$). Similar predictions are obtained in all cases. An initial phase of slow crack growth is computed, followed by a phase of fast crack growth over a long distance, followed by a phase of slower crack growth. Figure 6.13 (I) shows that significant plastic deformation (fibril pull-out) results in initially slow crack growth. During the fast crack growth phase, as the ultimate fibril strength being reached without significant plasticity (Figure 6.13(II)) the effective VP-CZM behaviour in this region resembles a standard elastic-exponential damage formulation. Finally, after significant crack growth, plastic deformation re-emerges (Figure 6.13 (III), resulting in a slowing of the rate of crack growth.
Figure 6.14: Predicted crack lengths superimposed over the experimentally measured crack lengths as a function of the circumferential strain for three values of $\dot{\varepsilon}_0$ ($\dot{\varepsilon}_0 = 0.1, \dot{\varepsilon}_0 = 0.01, \dot{\varepsilon}_0 = 0.001$).

Figure 6.15 shows the results of a finite element cohesive zone analysis of the experiments previously outlined in Chapter 5 of this thesis. Traction as a function of separation is shown for three phases along the cohesive interface throughout the simulation. Extensive plastic deformation is observed at phase I where the strain rate is lowest. Node A undergoes significant plastic deformation due to the slow strain rate, it is followed by Node B which undergoes the most plastic deformation, followed by nodes C and D which undergo little plastic deformation and no plastic deformation, respectively due to the increasing strain rate. Phase II shows three nodes (E-G), all of which undergo no plastic deformation as the strain rate results in rapid fracture. The final phase (III) shows three nodes (H-J) which increase from no plastic deformation to a moderate amount of plastic deformation as the strain rate begins to slow. These three phases mirror the trends observed in the experiment: a prolonged region of slow growth due to fibrillation (I), followed by a prolonged region of rapid crack growth (II), followed by a region of slow crack growth (III). This demonstrates the capability of the VP-CZM approach to generate a wide range of effective interface behaviours, resulting in non-uniform crack growth and a non-uniform prediction of plasticity (fibril pull-out).
Figure 6.15. Normalised traction as a function of separation for three crack growth regimes selected along the cohesive zone interface. (I) Initial phase of crack growth: significant plasticity followed by rapid crack growth; (II) Rapid crack growth phase; (III) Final phase of increasing plasticity.

6.4 Concluding remarks

In the present study we propose two phenomenological CZM formulations to represent fibrillation during dissection of soft tissue. We first consider pure elastic fibrillation (EF-CZM). In this formulation fibrillation initiates during an initial phase of interface damage/softening. Fibrils then deform elastically until an ultimate strength is reached, followed by fibril rupture. Simulations reveal that such elastic fibrillation does not accurately predict the highly non-uniform crack propagation rates measured experimentally for arterial tissue. We then propose a phenomenological visco-plastic cohesive zone formulation for fibrillation (VP-CZM). This approach is motivated by
the experimental observation that fibrils undergo partial pull-out (in addition to elastic stretching) during dissection of arteries. Simulations reveal that this visco-plastic cohesive zone formulation provides a reasonable prediction of non-uniform crack propagation rates in arteries. Significant plasticity (representing fibril pull-out) during fracture initiation results in an initial slow phase of crack growth. The transition to fast crack growth is facilitated by the prediction of fibril rupture prior to extensive plasticity. The current implementation of fibril visco-plastic behaviour in a cohesive zone framework is limited to a phenomenological representation of axial fibril deformation and axial fibril pull-out. However, we provide extensive parametric exploration of the model behaviour under a range of mixed-mode loading paths, representing fibril reorientation in addition to fibril extension. We demonstrate that the formulation produces consistent behaviour for all loading paths and that positive incremental instantaneous dissipation is computed in all cases. The VP-CZM represents an advance on standard elastic-damage cohesive zone formulations. While the VP-CZM effectively produces such standard CZM behaviour at high interface separation rates, it predicts plastic deformation and energy dissipation (representing fibril pull-out) at low interface separation rates. The authors are not aware of a previous implementation of fibril visco-plastic behaviour in a CZM framework. In addition to the demonstrated application of artery dissection, the VP-CZM framework could be used to simulate the rate dependent fracture of collagen constructs (Arumugam et al., 1992; Watton, Hill and Heil, 2004) and rate dependent fracture of skin. Furthermore, the consistent load-unload behaviour of the proposed framework facilitates the analysis of fatigue crack propagation under dynamic loading conditions (McCarthy, McGarry and Leen, 2014a, 2014b).
Bibliography

Chapter 7

7 A NUMERICAL INVESTIGATION OF THE INITIATION OF TYPE A AORTIC DISSECTION

7.1 Introduction:
Aortic dissection (AD) is a relatively rare but highly lethal disease. Population-based studies indicate incidences of 3.5 aortic dissections per 100,000-person years (Wang and Dake, 2006). One such study reports that 21% of patients died before admission, and, of those hospitalised, 22.7% died within the first 6 hours, 33.3% within the first 12 hours, 50% in the first 24 hours, and 68.2% within 48 hours (Mészáros et al., 2000). Approximately two thirds (62.3%) of cases of AD initiate in the aortic arch, referred to as Stanford type A dissection (Hagan et al., 2000). Stanford type B dissection refers to dissection initiating distal to the left subclavian artery. AD has been observed spreading to branching vessels in 41% of cases, most frequently to the brachiocephalic and carotid arteries (Mészáros et al., 2000).

The underlying mechanics of AD are not well understood. It has been speculated that dissection occurs due to some intimal injury which causes an initial separation of the mural layers of the aorta (Criado, 2011). Delamination between the elastic lamellae of the media is observed (Gasser and Holzapfel, 2006). Propagation of the crack-front is not limited to the circumferential direction; rather, crack spiral-like crack propagation occurs in the circumferential-axial plane, referred to clinically as “spiral barber pole”
dissection (Fuster et al., 2007). Cases in which the crack propagates in the radial direction through the artery wall are nearly always associated with pericardial effusion, leading to cardiac tamponade and death (Hagan et al., 2000; Murai et al., 2001).

Hypertension is the most common comorbidity associated with AD (Hagan et al., 2000; Clough and Nienaber, 2015). Chronic hypertension is reported to increase the stiffness of the arterial wall through a pathological process of remodelling (Rorive and Carlier, 1983; Laurent, Boutouyrie and Lacolley, 2005; Arribas, Hinek and González, 2006; Greenwald, 2007). A study carried out on pigs with induced hypertension showed that it can lead to the creation of an intra-mural interface where the outer layer of the media becomes hypoxic due to restriction of blood flow to the vasa vasorum (Angouras, 2000). Hypertension also induces hypertrophy of the inner layer of the media (Henrichs et al., 1980; Olivetti et al., 1982; Owens, Rabinovitch and Schwartz, 2006). Hypertension, therefore, can lead to thickening of the inner layer of the media, arteriosclerosis of the outer layer of the media or of the entire vessel. The effect of such changes on the intramural mechanical stress state has not been previously examined.

During the cardiac cycle the aortic root undergoes significant deformation and displacement (Kozerke, Markus B. Scheidegger, et al., 1999). A previous study suggests that forces acting on the aortic root throughout the cardiac cycle may play a role in initiation of AD (Emmott et al., 2016). The effect of aortic root displacement on wall stress has been preliminarily examined through finite element modelling (Beller et al., 2004, 2009). Such studies consider the circumferential and longitudinal stress in the wall as an indicator of AD potential. However, in the current study we argue that the interface traction along a circumferential-axial plane is a more
appropriate metric for examining AD as it pertains to inter-lamellar delamination. The effect anatomical deformation of the aortic root has on interfacial tractions has not yet been examined.

In the first part of this study (Section 7.2) we develop a realistic subject-specific aorta finite element model derived from a dual-venc MRI scan. We investigate if spontaneous dissection will occur under extreme hypertensive lumen blood pressure loading, or if significant reduction in interface strength must occur in order for dissection to initiate. Importantly, we also demonstrate that dissection initiation is a pure mode II fracture process, rather than a mixed mode or mode I process. In the second part of this study (section 7.3) we construct a parameterised idealised aorta model in order to assess the relative contribution for several anatomical and physiological factors to dissection risk. Such parametric analyses provide fundamental insight into the mechanics of stress localisation and delamination in the aorta. Overall, our detailed series of simulations suggest that variations in anatomical features and hypertensive loading will not result in a sufficient elevation of the stress state in the aorta wall to initiate dissection. Our results suggest that initiation of AD requires a significant reduction in the mode II fracture strength of the aortic wall, suggesting that dissection is preceded by structural and biomechanical remodelling.

7.2 Development of a realistic subject-specific model of aortic dissection

7.2.1.1 Construction of subject-specific mesh

In the current study we present construction of a subject-specific geometry of the aorta with spatially varying wall thickness. The model includes all major supra-aortic vasculature and major visceral branches. Lumen boundary points and the aortic centreline are extracted directly from MRI data using a bespoke MATLAB framework
using the GIBBON toolbox (Concannon et al., no date; M Moerman, 2018a) (Figure 7.1(a)). A surface mesh of the main trunk of the aorta is created by sweeping the lumen boundary along the centreline (Figure 7.1(b)). The major branch vessels of the aorta are added to the surface mesh through a cut and extrusion process (Figure 7.1(c)). As shown in Figure 7.1(d), spatially varying wall thickness is accounted for by assigning all vertices with a wall thickness offset, based on reported values in human cadaveric experiments (Concannon et al., 2020). A structured hexahedral mesh is created by offsetting the surface mesh through the wall thickness (e-f). Each element is assigned a local material orientation (g) and the aorta is modelled as a hyperelastic anisotropic fibre-reinforced material. Unless otherwise stated, the aorta is subject to a hypertensive lumen pressure of 300 mmHg. A cohesive zone model is applied to the medial interface of the aorta model (shown in Figure 7.1(f)), the normal interface strength calibrated from peel tests is $\sigma_{max} = 202 \text{ kPa}$ and the shear interface strength calibrated from shear fracture ring tests is $\tau_{max} = 1.6 \text{ MPa}$. A recently developed anisotropic bi-linear fibre-matrix hyperelastic formulation (Fereidoonnezhad, O’Connor and McGarry, 2020) is used to simulate the aorta material behaviour. The ability of the calibrated constitutive law to predict the non-linear anisotropic behaviour of aortic tissue has been previously demonstrated by FitzGibbon and McGarry (2020) with best fit parameters reproduced in Figure 7.1(j-k).
Figure 7.1. (a-g) Subject-specific aorta mesh creation process (a) Centreline and lumen boundary data extracted from dual-venc MRI; (b) swept surface mesh along the
centreline of the main aortic trunk; (c) all major visceral and supra-aortic branch vessels are added to the surface mesh; (d) spatially varying wall thickness assigned to each vertex (e) surface mesh is offset by a spatially varying wall thickness resulting in a structured hexahedral mesh (f); Local material orientations assigned to each element (local circumferential direction shown in (g)). (h) CZM is applied to the medial interface of the aorta model; (i) overclosure hardening is an optional feature of the CZM; (j-k) material model calibrated to arterial tissue test data.

7.2.2 Key results for subject-specific aorta model dissection analysis

Figure 7.2 presents key results computed for the realistic subject-specific aorta model subjected to extreme hypertensive blood pressure loading of 300 mmHg. Figure 7.2(a) shows that the lumen blood pressure results in a compressive component of local radial stress throughout the aortic wall. This results in negative (compressive) normal tractions along the medial interface (Figure 7.2(b)). The cohesive zone formulation enforces a strong penalisation of overclosure, such that high negative pressure across the interface results in normal overclosure lower than 5 nanometres (Figure 7.2(c)).

This result indicates that initiation of aortic delamination will be pure mode II, rather than mixed mode or mode I. Informed by this result, we examine the maximum local material shear stress in Figure 7.2(d). Shear stress concentrations are predicted near the ostia of the supra-aortic branch vessels and along the inner curve of the aortic arch (as shown by the rotated detail view in Figure 7.2(d)). In order to assess the risk of intramural delamination we examine the shear tractions at the medial interface in Figure 7.2(e). The predicted shear tractions produce similar trends to the max local material shear stress; high concentrations of shear traction are computed near the ostia of the supra-aortic branch vessels and the inner curve of the aortic arch (Figure 7.2(e)). Additionally, shear traction concentrations are computed near the ostia of the major visceral branch vessels (contour limits have been adjusted for detailed inset views to highlight regions of interest). Significant areas of localisation of shear traction are evident at the aortic root, along the arch, and in the descending thoracic aorta.
However, all computed maximum shear tractions are approximately two orders of magnitude lower than the experimentally measured mode II fracture strength \(\tau_{exp}=1.6 \, \text{MPa}; \) FitzGibbon and McGarry, (2020), suggesting that even extreme hypertensive loading will not initiate a dissection in healthy aortic tissue. In Figure 7.2(f) we present results for a series of simulations in which we investigate the influence of a reduced mode II fracture strength on dissection initiation. In the case of hypertensive blood pressure of \(P=300 \, \text{mmHg}, \) delamination initiation is not predicted even if the cohesive zone shear strength is reduced to a value of \(\tau_{max}=0.08 \, \text{Mpa} \) (i.e. 20 times lower than \(\tau_{exp} \)). If \(\tau_{max} \) is reduced to a value 100 times lower than \(\tau_{exp} \) dissection is predicted to initiate at a lumen blood pressure of \(P=72 \, \text{mmHg} \) (i.e. approximately at a healthy diastolic blood pressure).

The results presented in Figure 7.2 indicate that extreme hypertensive lumen blood pressure loading will not result in dissection initiation in healthy aortic tissue (i.e. tissue with a mode II fracture strength of \(\sim 1.6 \, \text{MPa}, \) as measured experimentally), however, chronic hypertension is often associated with an inhibition of the vasa vasorum’s vasodilator capacity resulting in intralamellar regions becoming hypoxic leading to the development of micro cracks, a credible antecedent of dissection (Heistad et al., 1978; Marcus, 1985; Stefanadis et al., 1995; Angouras, 2000). Therefore, chronic hypertension may lead to a gradual reduction in the fracture resistance of arterial tissue. Cystic medial degeneration may also lead to localised reduction in the fracture strength of the aortic wall, resulting in initiation of delamination (Carlson, Lillehei and Edwards, 1970). It is likely that some pathologies influence the fracture strength on a global scale, for example, connective tissue disorders significantly alter the inter-lamellar aortic microstructure through elastin deficiency (Marfan syndrome) and collagen deterioration (Ehler-Danlos syndrome).
(Brandt et al., 2001; Ulbricht et al., 2004). The incidence of arterial dissection is much higher in patients with connective tissue disorders such as Marfan syndrome and Ehler-Danlos syndrome (Abraham et al., 1982; Nakashima, Shiokawa and Sueishi, 1990; Lemaire and Russell, 2011; Yuan and Jing, 2011). Further mode II testing of excised pathological tissue is required to establish the effect, if any, of such pathologies on mode II fracture strength.
Figure 7.2. (a) contour plot of local radial compressive stress throughout the aorta under an applied pressure of 300 mmHg; (b) negative normal (compressive) tractions computed throughout the aorta under a pressure of 300 mmHg; (c) (left y-axis) normal traction along the inner and outer curve of the aorta as a function of normalised length (\bar{x}); (right y-axis) normal separation Δ_n as a function of normalised length (\bar{x}), heavy penalisation of overclosure is observed. (d) Maximum local material shear stress ($\hat{\tau}$) in the aorta subject to a lumen pressure of 300 mmHg; (e) Shear tractions in the medial interface in the aorta subject to a lumen pressure of 300 mmHg. Detail windows show limit-adjusted contours highlighting regions of elevated shear traction; (f) Contour plots of shear traction (T_t) for four values of mode II interface strength (τ_{max}). τ_{exp} is the experimentally measured mode II fracture strength (1.6 MPa). Delamination is
predicted to initiate if $T_t = \tau_{max}$. Applied lumen blood pressure (P) is indicated for all simulations.

7.3 Parametric investigation of the key factors that contribute to risk of vessel dissection

The results presented for the realistic subject-specific aorta model in Section 7.2 indicate that a significant reduction (100-fold) is required for spontaneous dissection initiation. In cases in which patients exhibit such reduced fracture strength of the aortic wall, additional anatomical features and physiological loading conditions may play an increased role in dissection risk. In the remainder of this study we perform a parametric assessment of the influence of a range of anatomical and physiological parameters on dissection risk, characterised by the computed shear traction distributions. Specifically, based on clinical evidence we investigate the following factors:

Material factors:

(i) Stiffness mismatch in the aortic wall in the radial direction. Chronic hypertension has been shown to induce hypoxic stiffening of the outer medial layer relative to the inner layer (Laurent, Boutouyrie and Lacolley, 2005; Laurent and Boutouyrie, 2015).

(ii) residual stress in the aorta wall. The opening angle of the aorta varies significantly as a function of aortic length, the influence of such heterogeneity of the residual stress field of the aorta on risk of dissection has not been previously quantified (Sokolis et al., 2017).

Physiological factors:

(i) cranial (axial) displacement has been previously documented as the primary displacement direction of the aortic root (Kozerke, Markus B Scheidegger, et al.,
The role this displacement plays on shear tractions in the aorta has not been identified.

(ii) cardiac cycle displacement. The influence of the multiple simultaneous aortic root loading modes on AD risk has not been quantified previously.

Anatomical factors:

(i) Aortic wall thickness is known to increase as a result of hypertrophic remodelling due to chronic hypertension (Laurent and Boutouyrie, 2015). Aortic wall thickness may also increase in the presence of diseases such as giant cell temporal arteritis (Corbett and Melms, 2003; Koster, Matteson and Warrington, 2018).

(ii) Aortic arch radius increases as does aortic length as the aorta ages (Redheuil et al., 2011).

(iii) Branching vessels are frequently involved in aortic dissection (Lentini et al., 2008) and may spontaneously dissect even without the presence of aortic dissection (Komiyama et al., 2001; Yoshida and Tobe, 2005).

The influence of all of the above factors on AD risk has not previously been quantified, either experimentally or computationally. Systematic analysis and insightful comparison of the above factors requires the construction of a regularised aorta model in which independent perturbation of a single parameter can be implemented. Additionally, parametric assessment of the influence of stiffness ratios through the aortic wall requires the implementation of linear material behaviour, rather than the complex anisotropic non-linear material behaviour used in our subject-specific model (Figure 7.2). In Section 7.3 we present the construction of a parameterised idealised

1 A range of displacement modes were analysed (Figure 7.3 (e)), however, for brevity cranial and cardiac cycle displacements are presented as the two most dominant displacement modes.
aorta model and in Section 7.3.2 we present the key results of our extensive parametric investigations. Once again, it should be emphasised that the purpose of this component of our investigation is not to create a realistic representation of the aorta (this has already been attempted in Section 7.2 above). Rather, the purpose of this systematic analysis is to gain fundamental insight into the relative influence of key parameters on the vessel stress state and dissection risk.

7.3.1 Development of an idealised and parameterised model of the aorta
In order to systematically quantify the contribution of aortic anatomical features on dissection risk, we construct an idealised series of parameterised geometries of the ascending aorta, aortic arch, and descending aorta. Given the evidence that AD primarily occurs between the elastic lamellar layers of the media (Tam, Sapp and Roach, 1998; Gasser and Holzapfel, 2006), we assume the wall is a bi-layered composite; a cohesive zone model is applied at the interface between the two layers. Different material properties are assigned to each layer (Matsumoto and Hayashi, 1996b; Angouras, 2000) in order to explore the influence of stiffness mismatch on interface tractions and dissection. Although the parameterised geometry is highly idealised and neglects branching vessels, such a parameterisation is necessary to quantitatively parse the contribution of each material/anatomical factor to AD risk.
Figure 7.3. (a) Schematic representing the parameters in the model. The dimension \(\chi(\phi, \theta, \xi) \) represents path length. \(\bar{x} \) is the normalised path length \(\forall(\theta, \xi) \); (b) contour plot illustration of the inner curve and outer curve on a representative geometry with interface traction shown; (c) illustration of traction plot along the inner and outer curves. Three colour coded regions are shown in (d); (e) illustrations of loading modes explored in the present study.

Anatomical parameterisation of idealised aorta: Figure 7.3 shows a schematic of the parameterised model. An interface path coordinate is defined \(\chi \) which is a function
of the angle ϕ, the local radial coordinate ξ, and the local circumferential angle θ, where the local system for $\chi \leq \pi R$ is distance R from the global origin. The interface path coordinate is then normalised to give the normalised path coordinate \bar{x} (referred to as *normalised aortic length*). This allows for the description of an interface path in terms of the aortic arch $\chi \leq \pi R, \forall (\theta, \xi)$ and the descending thoracic aorta $\chi \geq \pi R, \forall (\theta, \xi)$.

Path lines are chosen such that the ‘Inner’ path runs along the section of highest curvature of the arch and continues in that plane through the descending thoracic aorta ($\theta = \pi, \xi = r + t/2$) (see Figure 7.3(b)). Path data is normalized according to each model geometry. Traction is computed at the path lines and plot as a function of the normalised path length (\bar{x}), as seen in the example traction plot in Figure 7.3(c). For convenience, we approximately describe the normalised length in terms of it anatomical location: aortic root (AR) $\approx 0 \leq \bar{x} \leq 0.1$, aortic arch (AA) $\approx 0.1 \leq \bar{x} \leq 0.6$, descending thoracic aorta (DTA) $\approx 0.6 \leq \bar{x} < 1$, see Figure 7.3(c-d).

Parameters varied in the models are as follows: arch radius (aortic curvature) (R), wall thickness (t), wall stiffness (E), stiffness discrepancy in the layers (E_i, E_o), and inner and outer layer thickness (t_i, t_o). The inner lumen radius (r) does not change and the outer lumen radius (r_o) changes with the thickness. The value range of geometric parameters for arch geometries are selected based on CT scan data. Values of arch radii and wall thickness are chosen in physiological (Erbel and Eggebrecht, 2006), pathophysiological (Corbett and Melms, 2003; Koster, Matteson and Warrington, 2018), and non-physiological ranges. In order to parse the influence of material stiffness mismatch between the two layers of the vessel we assume quasi-linear elastic neo-hookean material behaviour (non-linear hyperelastic material behaviour does not
allow for the prescription of a constant stiffness ratio for a range of lumen pressures). Physiologically accurate non-linear anisotropic hyperelastic material behaviour is explored above in Section 7.2. Details of the cohesive zone formulation applied at the medial interface are presented in Section 7.2 above. Results of parametric studies are presented in terms of the following key non-dimensional groupings: $t/r, R/r_o, E_i/E_o$.

Physiological loading conditions and boundary conditions: Each model is created using a structured mesh of 8-noded quadrilateral first-order elements. To uncover the role of anatomical loading a variety of loading modes are investigated: caudal, cranial, anterior, posterior, mediolateral, and torsion (shown in Figure 7.3(e)). In order to accurately describe the physiological loading regime, displacement boundary conditions are based on ImageJ analysis of cine-MRI cardiac-cycle data (Schindelin et al., 2015). Figure 7.4 shows an illustration of image analysis process in image J. Caudal-cranial motion and anterior-posterior motion is measured throughout the cardiac cycle at evenly spaced intervals. Extracted displacement data is normalised as a function of sinotubular junction (STJ) diameter and applied to the dimensions of the parameterised model as has been reported previously (Kozerke, Markus B. Scheidegger, et al., 1999).
Figure 7.4. Cine MRI image analysis. Yellow lines are in the same position in both images, illustrating the displacement of the aortic root. Red lines and circles show an example of the path travelled by the aortic root.

Displacement boundary conditions are applied to the aortic root, while radial expansion due to applied lumen pressure is unconstrained. The aorta is constrained at the level of the mid-descending thoracic aorta, such that it remains planar with no axial displacement at this section (for $\overline{x} = 1.0, u_{zz} = 0 \forall \{\theta, \xi\}$), with only radial expansion and axial rotation being unconstrained at this section. In the case of applied loading due to cardiac movement, all transient displacements, rotations, and lumen pressures are applied at physiologically accurate magnitudes and time-scales.

Development of a new approach to implement residual stress in aorta wall: A novel methodology is developed to include spatially varying residual stress in the aorta. Aortic ring geometries are created to match the desired geometries of the aorta. An overview of the process is described in Figure 7.5. Opening angle (γ) of the human aorta has been described previously as a function of normalised aortic length (\overline{x}) (Sokolis *et al.*, 2017). Residual stress can be estimated in artery through reversing the stress-free open-angle configuration to a closed residually stressed position (shown in Figure 7.5(a)). We perform closing angle simulations for the range of measured...
opening angles in the human aorta. The residual stress tensor is extracted as a function of radial coordinate (ξ) for each opening angle (local circumferential stress shown in Figure 7.5(a)). In order to apply the residual stress to the global aortic geometry, normalised aortic length (\bar{x}) and radial coordinate (ξ) are determined (Figure 7.5(b)). These dimensionless coordinates act as inputs to the residual stress tensor function (shown as the red lines in Figure 7.5(c)). The residual stress tensor is built using said inputs and transformed to the global coordinate system using the standard transformation shown in (d).

Figure 7.5. Overview of the residual stress methodology developed. (a) A series of opening-angle aortic ring geometries are closed and the local stress tensors are recorded as a function of radial coordinate (ξ); (b) For each integration point, the normalised aortic length (\bar{x}) is determined as well as the radial coordinate (ξ); γ (which corresponds to \bar{x}) and ξ are inputs to the residual stress function shown in (c); The local material residual stress tensor is then transformed into global coordinate (d).
Here we give a technical overview of the optimisation scheme: A MATLAB master function is developed which calls an objective function which calls and passes arguments to a python script. The python script opens the aortic ring model in Abaqus/CAE and updates the geometry, and any other model variables desired, based on the arguments from the objective function. The coordinates of the closed ring are imported using Matlab and the GIBBON toolbox to calculate the closed diameter and compare to the target diameter. Opening angle data of human aorta is evenly sampled at 10 points throughout the mean data-set for aortas aged over 60 years old (Sokolis et al., 2017).

Finite element models of the open equilibrated configuration of the aortic rings are created using the opening angle and an initial guess at the curvature of the open configuration. The artery is modelled as a bilinear hyperelastic anisotropic fibre-reinforced material. Symmetry is assumed, as such, half the circumference is modelled. A methodology that allows for the closing of a ring from any specified initial opening angle is developed and implemented. The opened equilibrated state of the aortic specimen is closed, and the closed diameter is compared to the target diameter in an optimisation scheme. The initial guess at the curvature of the opened segment is updated iteratively until the solution converges. When convergence is achieved for the first opening angle, the process is repeated for the next opening angle in the loop. When the loop of opening angles is complete the master MATLAB function calls a Python post-processing script which loops through each output database of the converged closing simulations. A user-defined material behaviour subroutine (UMAT) is developed to construct a residual stress tensor for each element based on its normalised aortic length, and radial coordinate. The full process is
outlined in detail in the flowchart presented in Figure 7.6(a). The results of the closing angle simulations (Figure 7.6(b-c)) serve as input data to the user-defined subroutine.

Figure 7.6. (a) Flowchart of the residual stress methodology; (b) circumferential stress as a function of opening angle γ and radial coordinate X_r/t; (c) axial stress as a function of opening angle γ and radial coordinate X_r/t.
7.3.2 Results of parametric analysis of key factors in aorta shear tractions and dissection

Results of our parameteric investigation are presented in three sections: Material factors; Physiological loading factors; Anatomical factors. Despite the parameterised and idealised vessel geometry, it will be noted that the traction state in the vessel wall is quite complex, with significantly different patterns of traction being computed in the root region, the arch region and the descending thoracic aorta. We present a series of contour plots, in addition to traction distributions along several anatomical paths, in order to illustrate the key features of each parameteric investigation. Unless otherwise stated, the following idealised model parameters are implemented: \(\frac{r_t}{r_0} = 0.25, \frac{R}{r_0} = 3.0, \frac{E_i}{E_o} = 1.0 \).

7.3.2.1 The influence of aortic material parameters on interface traction distribution

Bi-layer stiffness mismatch: In cases of severe hypertension unequal stiffening of the layers of the media occurs through hypoxia of the outer media due to restriction of blood flow from the vasa vasorum (Angouras, 2000). Figure 7.7 shows that for an applied cranial displacement, calculated tractions are highest when the stiffness mismatch in the bi-layer interface is highest. For layers of equal stiffness the peak tractions occur at the start of the DTA, however, increase in stiffness mismatch results in peak tractions at the AR. This may bear clinical relevance as arteriosclerosis is associated with chronic hypertension, aging, diabetes, obesity, high cholesterol, and smoking (Mészáros et al., 2000; Greenwald, 2007; Criado, 2011; Tsamis, Krawiec and Vorp, 2013). These findings suggest each of these risk factors (and any progenitor of arteriosclerosis) increase intramural tractions in the AR. While elevated intramural shear tractions contribute to the risk of dissection, in this case they are not sufficient to cause dissection.
Residual stress: We next explore the influence of residual stress on AD risk. The opening angle of the human aorta has previously been measured and it has been shown that opening angle varies significantly as a function of aortic position (Sokolis et al., 2017). The impact of such a heterogeneous residual stress state on AD risk has not been quantified previously. In Figure 7.8 we present the traction state of a residually stressed aorta and compare to a non-residually stressed aorta, both before and after the application of physiological loading conditions (systolic lumen pressure of 120 mmHg and cranial displacement of $V/R \approx 0.2$). In the absence of physiological loading a highly heterogeneous distribution of residual circumferential stress is computed. However, the final stress state of the residually stressed aorta following the application of physiological loading is quite similar to that computed without the inclusion of residual stress. Essentially, heterogeneous residual stresses are approximately an order of magnitude lower than stresses generated by lumen pressure loading. The influence...
of residual stress on AD risk is illustrated in Figure 7.8(b), showing computed shear traction along a path through the medial interface, both with and without inclusion of residual stress. While residual stress results in slight increases in peak tractions, computed values remain two orders of magnitude lower than the experimentally measured mode II interface strength (1.6 MPa).

Figure 7.8. (a) Comparison of local circumferential stress distribution, both with and without inclusion of residual stress. Both zero applied loading and physiological applied loading (120 mmHg lumen pressure and $V/R \approx 0.2$) are considered. (b) Computed shear traction along a path through the medial interface, both with and without inclusion of residual stress.

7.3.2.2 Influence of physiological and super-physiological loading on interface tractions

Here we examine the influence of a range of physiological boundary conditions on the AD risk. Although all of the loading modes listed in Figure 7.3(e) are examined, for brevity we focus on two predominant loading modes: cranial displacement and anterior displacement.

Anterior aortic root displacement: Figure 7.9(a) shows a series of contour plots demonstrating increasing traction with increasing applied anterior displacement at the
aortic root \((\overline{V}/R)\). High traction concentrations are computed in the AR. Figure 7.9(b) shows shear traction as a function of \(\bar{x}\) for each recorded anterior displacement of the aortic root.

Figure 7.9. (a) \(T_t/\tau_{Max}\) evolution with increasing anterior displacement \((\overline{V}/R)\) and (b) \(T_t/\tau_{Max}\) as a function of \(\bar{x}\) for an arch of \(R/r_0 = 3.0, t/r = 0.25\) for increasing anterior displacement.

Cranial aortic root displacement: As shown in Figure 7.10, simulations predict maximum tractions for highest values of cranial displacement. Average axial displacement of the aortic root has been observed to be \(8.9 \pm 1.8\)mm (Kozerke, Markus B. Scheidegger, et al., 1999), corresponding to \(\overline{V}/R = 0.297 \pm 0.06\). Traction concentrations are computed in the AR, with similar concentrations computed at the start of the DTA. Increasing displacement has a near linear effect on the peak traction at \(\bar{x} = 0.6\), whereas the effect in the AR is highly non-linear. The traction state in the DTA is insensitive to changes in displacement. This is not surprising as only 1.3% of AD are reported to initiate in the infrarenal aorta (Trimarchi et al., 2007). These findings suggest that a possible reason for lower incidences of abdominal dissection may be the significantly lower intramural tractions present in the infrarenal aorta relative to the aortic arch.
Figure 7.10: T_{c}/T_{Max} on the inner curve vs. \bar{x} for the simulated range of values of cranial displacement $(\bar{V}_{CRANIAL}/R)$ of an arch with parameters $R/r_o = 3.0, t/r = 0.25$.

Combined Caudal/Cranial, Anterior/Posterior displacement: Here we examine the influence of the full cardiac cycle on the risk of dissection. Figure 7.11(a) shows the contour plots of shear traction near the aortic root during key timepoints in the cardiac cycle where the tangential tractions are highest. As shown in Figure 7.11(a) at timepoint (a) (ventricular ejection) there is a small traction concentration near the aortic root on the inner curve and two larger concentrations in the centre of the arch ($\bar{x} = 0.3$) either side of the inner curve. Figure 7.11(b) reveals that, for timepoint (b) (maximum aortic systole), the peak shear stress tractions are increased in magnitude and area compared to the timepoint at which the aortic valve opens. This is the point in the cardiac cycle with the maximum calculated tractions.
Figure 7.11. (a) T_t/τ_{max} contour of the aortic arch during ventricular ejection with parameters $R/r_o = 3.0, t/r = 0.25, P_{lumen} = 80\text{mmHg}$; (b) T_t/τ_{max} contour of the aortic arch during max aortic systole ($P_{lumen} = 120\text{mmHg}$); (c) T_t/τ_{max} as a function of \bar{x} for simulation presented in (a) along the Inner, Outer and Mid-Inner curves ($\theta = \pi, \theta = 0, \theta = \pi/4$ respectively); (d) T_t/τ_{max} as a function of \bar{x} for simulation presented in (b) along the Inner, Outer and Mid-Inner curves.

In Figure 7.12 we present a summary and comparison of the effect of each loading mode on AD risk in terms of computed shear traction (T_t/τ_{max}). A luminal pressure of 200 mmHg causes a peak in shear traction greater than any loading mode other than cranial displacement. Pressure loading does not result in traction concentrations in the AR but does in the DTA. Cranial causes the highest tractions, mainly in the AR. It can be seen from this figure that the stress state in the aorta is highly complex and that all physiological loading modes do not result in tractions that approach τ_{max}. The effects of disease on aortic root displacement has not been investigated in great detail in the literature, however one study has noted decreased axial displacement (caudal/cranial)
as a result of aortic valve regurgitation which in theory should reduce intramural traction (Kozerke, Markus B Scheidegger, et al., 1999). The findings of this study, however, suggest that aortic root motion, both physiological and pathophysiological, does not produce sufficient traction to result in initiation of dissection.

![Figure 7.12: T_t/T_{Max} as a function of \bar{x} along the inner path for an arch of $R/r = 0.3, t/r = 0.25$ for a displacement equal to $\bar{V}/R = 0.5$ for each loading mode, also included is a lumen pressure of 200mHg with no aortic root displacement.](image)

7.3.2.3 Influence of geometric anatomical factors on interface tractions

Wall thickness: Increased wall thickness is a known result of chronic hypertension (Olivetti et al., 1982; Owens, Rabinovitch and Schwartz, 2006) and also a known symptom of giant cell temporal arteritis (Corbett and Melms, 2003). Both, chronic
hypertension and giant cell arteritis are known risk factors of AD (Evans, O’Fallon and Hunder, 1995; Hagan et al., 2000). These risk factors may be linked through some underlying mechanical basis, which we explore in Figure 7.13. The influence of aortic wall thickness on the shear traction in the inner and outer curve of the vessel is investigated by applying cranial displacement at the root of the arch. As shown in Figure 7.13, a higher value of wall thickness results in higher shear traction. The traction along the inner curve of the arch varies significantly, depending on the wall thickness. Peak tractions occurs along the inner curve at the centre of the arch ($\bar{x} \approx 0.3$) reaching a value of $T_c/\tau_{Max} = 7.5e-4$ when $t/r = 1$. The location of peak tractions aligns with the clinical observation that approximately two thirds of ADs occur in the ascending aorta and aortic arch (when $0.0 \leq \bar{x} \leq 0.6$) (Hagan et al., 2000; Criado, 2011; Evangelista et al., 2018). Additional traction localizations are computed at $\bar{x} = 0.6$ at the start of the DTA. Traction is near-zero in the DTA ($\bar{x} > 0.7$) regardless of wall thickness. Contour plots of shear traction distributions throughout the medial interface are shown in Figure 7.13(b) and Figure 7.13(c). Only half-wall thickness shown in order to expose the medial interface.
Figure 7.13. (a) Normalised shear traction \((T_t/\tau_{max})\) as a function of normalised aortic length \((\bar{x})\) for an applied cranial displacement at the aortic root \((V_{Cranial}/R = 0.05)\) for \(t/r = 1\) and \(t/r = 0.125\). Path data is taken from the Inner and outer curves. The contour plots (b) and (c) show the distribution of \((T_t/\tau_{Max})\) on the interface for \(t/r = 0.125\) and \(t/r = 1\), respectively.

These findings suggest that wall thickness significantly influences the traction state in the aorta. However, even for extremely thick vessel walls computed tractions are significantly lower than the mode II strength of the aorta. As an example, even if the wall thickness is the same as the wall thickness in a severe case of giant cell temporal arteritis (Koster, Matteson and Warrington, 2018) \((t/r = 1)\) and an applied physiological displacement results in tractions 1000 times smaller than the mode II strength of a healthy artery. Therefore, an increase in wall thickness alone, without a corresponding reduction in fracture strength will not result in spontaneous AD.

Arch radius: An increase in aortic arch radius occurs naturally with age. Similarly, an increase in aortic length occurs with age (Redheuil et al., 2011). The influence of these anatomical changes on the AD risk has previously been investigated. As shown in Figure 7.14, a lower arch radius results in a higher traction at the medial interface.
Maximum tractions are computed in the configuration with the lowest arch radius \((R/r_o = 1.25) \) with significant peaks predicted in the centre of the arch and at the DTA. Figure 7.14(b) shows the magnitude of the shear traction for each configuration of arch radius along the inner path of the aorta for an anterior displacement \(\bar{V} = 0.15r_o \). Peak tractions are predicted in the centre of the arch along the inner curve.

Figure 7.14. (a) Contour plot of normalised shear traction \((T_t/\tau_{max})\) for arch radius configurations \(R/r_o = 1.25, R/r_o = 1.75, \) and \(R/r_o = 2.75 \) for an applied anterior displacement \(\bar{V} = 0.15r_o \); (b) \(T_t/\tau_{Max} \) along the inner curve as a function of \(\bar{x} \) for each configuration of \(R/r_o \) where \(t/r = 0.25 \).

A known implication of the increase in radius of the aortic arch with age is a reduced risk of aortic transection following rapid deceleration (as typically experienced in road traffic accidents) (Azizzadeh et al., 2009). The primary cause of transection in younger patients is generally purported to be due to the restraint (and consequent stress concentration) of the ligamentum arteriosum at the aortic isthmus (Benjamin and Roberts, 2012). The analyses presented in the current study suggest a secondary cause: the younger aorta, with a lower arch radius, is more prone to intramural delamination in blunt trauma due to higher interface tractions. Specifically, as shown in Figure 7.14, for the case of a low arch radius \((R/r_o = 1.25) \) peak tractions of \(T_t/\tau_{max} = 1.6e-3 \) occur in the aortic arch at \(\bar{x} = 0.1 \) and \(\bar{x} = 0.4 \). The current analysis suggests that the
increase of the radius of the aortic arch as part vessel remodelling with increasing age leads to a reduction in shear tractions along the medial interface, with a consequent reduction in AD risk. However, it should be noted age related pathophysiological remodelling of the vessel also entails an increase in vessel stiffness [9] and thickness [48], and both effects have been shown (Figure 7.7 and Figure 7.13, respectively) to increase shear tractions and AD risk.

Finally, and most importantly, it should be noted that even for the smallest arch radius simulated in Figure 7.14, the computed shear tractions along the medial interface are 3 orders of magnitude lower than the mode II strength of healthy tissue.

Branch vessels: In order to investigate the role of ostia and branching vessels, idealised geometries containing supra-aortic vessels are also created using the GIBBON toolbox in MATLAB (M Moerman, 2018b). The supra-aortic vessels represent the brachiocephalic, the left common carotid, and the left subclavian arteries (seen in Figure 7.15(a)). Figure 7.15 shows the effect of branching vessels on the shear traction distribution in the aortic arch under a luminal pressure load of 120mmHg. Significant traction concentrations are computed at the ostia of the brachiocephalic, the left common carotid, and the left subclavian arteries. The presence of supra-aortic vessels significantly increases the tractions in the arch. However, these tractions are approximately two orders of magnitude lower than the mode II fracture strength of healthy tissue and as such are insufficient to cause dissection.
7.3.2.4 Will a dissection propagate a long distance if interface strength is reduced?

In order to further examine the conditions for spontaneous AD initiation and crack propagation, a series of simulations are performed using reduced values of mode II fracture strength along the medial interface, shown in Figure 7.16. Specifically, interface strengths that are 100, 1000, and 10000 times lower than the healthy value of $\tau_{exp}=1.6$ MPa are implemented. In all cases a physiological lumen pressure of 120 mmHg is applied and physiological ($\bar{V}/R = 0.5$) and super-physiological ($\bar{V}/R = 0.75$) cranial displacement are applied. Predicted regions of interface delamination are shown in Figure 7.16(a). In the case of a 100-fold reduction in fracture strength localised dissection is predicted at the AR only for the case of super-physiological cranial displacement. A 10000-fold reduction in interface strength must be implemented in order to computed extensive delamination throughout the entire region of the aortic arch. Simulations performed using the VP-CZM from Chapter 6 require a similar level of reduction in interface strength to predict corresponding patterns of dissection.
Figure 7.16. Computed regions of delamination (red + black contours) computed for three interface strengths, all of which are significantly (100, 1000, 10000 times) lower than the experimentally measured interface strength of a healthy intact aorta (τ_{exp}). A computed interface separation of $\Delta_t/\delta^el \geq 3$ indicates full damaged delamination. A physiological lumen pressure of 120 mmHg and a cranial displacement of the arch ($R/r = 3.0, t/r = 0.25$) are applied. (a) Interface delamination for a cranial displacement of $\bar{V}/R = 0.5$; (b) interface delamination for a cranial displacement of $\bar{V}/R = 0.75$.

7.4 Concluding remarks

Parametric investigations reveal that shear tractions along the medial interface are increased by the following factors: Increased stiffness mismatch in the vessel wall due to hypoxic stiffening of the outer media; increased wall thickness; decreased arch radius. Simulations also suggest that residual stress (as characterised by the vessel opening angle) does not significantly increase shear tractions along the medial interface. Significant concentrations of shear traction are computed near to branching vessels. Cranial movement of the AR during the cardiac cycle leads to higher values of tangential traction in comparison to anterior and caudal movements. However,
while all of the aforementioned parameters will result in increased interface tractions, it should be noted that even extreme pathophysiological loading, or pathological anatomical remodelling is shown to result in elevated shear tractions that are at least two orders of magnitude lower than the experimentally measured mode II shear strength of healthy aortic tissue. Simulations suggest that a 100-fold decrease in shear fracture strength is required to result in spontaneous dissection initiation at the AR, without extensive propagation. In order to simulate extensive propagation of a dissection throughout the arch (as reported clinically (Hagan et al., 2000)) our simulations suggest that the mode II strength of the aorta must be reduced by a factor of 10^{-4}. This suggests that a significant phase change of the aortic tissue occurs prior to AD.

Pre-existing luminal injury or damage in the form of an intraluminal tear is not considered in the present study, nor is a pre-existing dissection with a patent false lumen. These are the subject of ongoing investigation and will be presented in a follow-on study.

7.5 Appendix A: Mesh Convergence

Here we present the mesh convergence study for the parameter study model. Convergence is achieved for the mesh with $\approx 93,000$ elements. All simulations are performed for these number of elements.
Figure 7.17: Variation of the normalised shear traction at $\bar{x} = 0.6$ verses the number of elements in the mesh.
Bibliography

Concannon, J. et al. (no date) ‘Development of an MRI/FEA framework for Analysis of Subject-Specific Aortic Compliance: Part I - Development of a dual-VENC 4D

Chapter 7

Chapter 8

8 A NUMERICAL INVESTIGATION OF THE PROPAGATION OF DISSECTION

8.1 Introduction

The progression and pathogenesis of aortic dissection (AD) is relatively poorly understood compared to other cardiovascular diseases (Vilacosta et al., 2010; Criado, 2011). For example, several clinical studies suggest that AD occurs as a result of initial damage to the intima, with such damage referred to in clinical literature as an “intimal tear” or “entry tear” (Larson and Edwards, 1984; Criado, 2011; Lemaire and Russell, 2011; Kim et al., 2014). However, a number of clinical studies report AD without an intimal tear (Lui, Menkis and McKenzie, 1992; Eichelberger, 1994; Utoh et al., 1997; Colli et al., 2018). Conversely, an intimal tear may present without extensive AD, indicating early arrest of tear propagation (Svensson et al., 1999). AD is typically characterised in the clinical literature as the occurrence of a true and false lumen separated by an intraluminal septum (Hasleton and Leonard, 1979; Sayer et al., 2008; Nienaber et al., 2010; Huang et al., 2015). The end point of the false lumen is typically used to indicate the extent of the AD, which may be as short as 1 cm from the original entry tear (Svensson et al., 1999) or as long as the entire aorta and iliac vessels (>1 m) (Dotter, Roberts and Steinberg, no date; Hagan et al., 2000; Dake et al., 2013; Qiao, Yin and Chu, 2015; Gambardella et al., 2017). In recent years there have been a myriad of numerical studies examining the fluid dynamics of AD, and more recently, studies examining AD from a fluid-structure interaction standpoint (Cheng et al., 2013, 2014; Alimohammadi et al., 2015; Doyle and Norman, 2016; Ryzhakov, Soudah and
Dialami, 2019; Bäumler et al., 2020; Xiong et al., 2020; Zorrilla, Soudah and Rossi, 2020). Many of these studies explore subject matter such as the effect of bypassing the false lumen on fluid flow using a bypass graft (Qiao, Yin and Chu, 2015); development of patient-specific models (Alimohammadi et al., 2015; Xiong et al., 2020); and analysis of intraluminal septum rigidity (Bonfanti et al., 2018). However, to the authors knowledge, no study to date has examined the risk of false lumen propagation from a fracture mechanics standpoint.

In the present study we investigate AD risk due to a range of pre-existing injuries. In the first section of the study we investigate if an intraluminal tear (radial notch) will result in extensive AD under physiological and super-physiological lumen blood pressure. Cohesive zone analysis (CZM) is used to assess AD propagation. Finite element cohesive zone analyses suggest propagation of an intimal tear is not predicted for pressures less than \(P=275 \text{ mmHg} \) in a healthy aorta. In the second section of the study we investigate if extensive AD will occur due to the presence of a pre-existing intraluminal septum and a patent false lumen. Computational fluid dynamics (CFD) analyses are performed to compute pressure loading on the intraluminal septum, and AD risk is again assessed using a CZM analysis. The results of the combined fluid dynamics and finite element cohesive zone analyses suggest extensive propagation of a false lumen is not predicted at a slightly hypertensive systolic pressure of 140 mmHg in a healthy aorta. Even in extreme hypertensive loading conditions AD propagation is arrested due to blunting of the crack tip and an increase in the mode angle towards mode II. The results of this study suggest an intimal tear will not develop into a false lumen in a healthy normotensive aorta.
8.2 Examination of an artery with an intraluminal tear

Methods and model construction: In this section we examine the risk of dissection propagation in an artery with a pre-existing intraluminal tear in the form of a radial notch Figure 8.1(a) shows an illustration of the intraluminal tear highlighted in red on the arterial geometry. In order to assess the risk of the intraluminal tear propagating under a luminal pressure load a cohesive zone is defined in the circumferential plane around the intraluminal tear, as shown by the red surface in Figure 8.1(b).

![Diagram](image)

Intimal tear

Figure 8.1. (a) illustration of the intraluminal tear in the artery is shown in (a). (b) shows the surface of the cohesive zone model.

The cohesive zone model (CZM) is comprised of an initial intrinsic elastic modulus followed by damage initiation and exponential reduction in the strength of the interface until total rupture occurs. A full description of the CZM is presented in Chapter 4. The cohesive zone model parameters are those previously calibrated from peel tests ($\sigma^{\text{max}} = 0.2$ MPa) and shear fracture ring tests ($\tau^{\text{max}} = 1.6$ MPa) (Chapter 5).

Hyperelastic anisotropic fibre-reinforced material behaviour is prescribed to the artery model according to the bilinear fibre model proposed by Fereidoonnezhad et al.
Material parameters are as described in Chapter 5 (Table 5.2).

In order to determine an upper limit of allowable lumen pressure a super-physiological blood pressure of 500 mmHg is applied in the lumen. A 10% axial stretch is applied to the artery prior to lumen pressurisation.

Results: Figure 8.2(a) shows the max principal stress in the aorta at a lumen pressure of 500 mmHg. Crack growth is shown as a function of the lumen pressure in Figure 8.2(b). The crack initiates at a pressure of 275 mmHg and continues to propagate with increasing applied pressure. The final crack growth is \(\approx 5.75 \text{ mm} \) at a pressure of 500 mmHg. No crack propagation is recorded at lumen pressures below 275 mmHg. The crack initiates and propagates in a pure mode II due to compressive tractions at the medial interface caused by the hypertensive blood pressure. The super-physiological pressures cause the aorta to enter a buckling mode prior to any crack propagation, as seen in Figure 8.2(c).

![Figure 8.2](image)

Figure 8.2. (a) Max principal stress in the aorta subject to 500 mmHg of lumen pressure; (b) Computed crack length as a function of pressure in the aorta with an intraluminal tear; (c) Side view of the aorta in a buckling mode subject to 500 mmHg
of lumen pressure. Here we examine the influence of interface strength on pressure required to propagate the intraluminal tear. A 500 mmHg lumen pressure load is applied to aortas with decreasing interface strengths. Figure 8.3 shows the interface strength as a function of the lumen pressure at the point of intraluminal tear propagation. $\tau_{\text{max}}/\tau_{\text{exp}} = 1$ indicates the interface strength is the experimentally recorded value of $\tau_{\text{max}} = 1.6$ MPa. As shown, a 50% reduction in interface strength will lead to an intimal tear propagation under a typical hypertensive blood pressure load of $P \approx 190$ mmHg. A further reduction in interface strength ($\tau_{\text{max}}/\tau_{\text{exp}} = 0.25$) results in tear propagation in the normotensive blood pressure range. The highest recorded blood pressure in humans is 480/350 mmHg during heavy-resistance exercise (MacDougall et al., 1985), these are referred to here as super-physiological. Our results seem to suggest under such blood pressure conditions an intimal tear is likely to propagate in a mode II in a healthy artery.
Figure 8.3. Interface strength (τ_{max}) as a function of pressure at crack propagation (P^{init}). Four regions of blood pressure are shown: hypotensive, normotensive, hypertensive, and super-physiological.

8.3 Examination of a dissected artery with a patent false lumen

Methods and model construction: In this section we explore the risk of a false lumen propagating further in an artery with a pre-existing patent false lumen, as shown in Figure 8.4(c). We begin our investigation by exploring the fluid flow and pressure in the dissected artery. The flow profile prescribed at the inlet is described by the analytical field

$$\frac{V(x,y)}{V_0} = 1 - \left(\frac{x^2}{r^2}\right) - \left(\frac{y^2}{r^2}\right) \quad (8.1)$$

which forms the elliptic paraboloid shown in Figure 8.4(a,c), V_0 is the max prescribed velocity. A zero-velocity (no-slip) condition is imposed at the wall for the fluid. Flow amplitudes are prescribed at physiologically accurate timepoints (shown in Figure 8.4(b)). The velocity amplitude is cycled for ten seconds in order to develop converged flow conditions. A fluid pressure condition is prescribed at the outlet such that pressure
ramps to a normotensive systolic blood pressure of P=120 mmHg prior to fluid velocity cycling.

![Figure 8.4](image)

Figure 8.4. (a) paraboloid flow profile defined at the inlet; (b) Flow velocity amplitude; (c) Illustration of the dissected geometry with the paraboloid flow profile. The intraluminal septum is shown.

The fluid flow is assumed to be incompressible with a constant viscosity coefficient.

The fluid flow can be described using with the Navier-Stokes equations:

Conservation of mass:

\[
\frac{DP}{Dt} + \rho(\nabla \cdot V) = 0
\]

(8.2)

Where \(\rho \) is the density of the fluid and \(V \) is velocity. The gradient operator gives:

\[
\nabla = i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}
\]

(8.3)
Assuming constant density and incompressible flow yields the following:

\[
\frac{D\rho}{Dt} = 0 \rightarrow \nabla \cdot \mathbf{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0
\]
(8.4)

Conservation of momentum:

\[
\rho \left(\frac{DV}{Dt} \right) = \rho \cdot g - \nabla p + \frac{\partial}{\partial x_i} \left[\mu \left(\frac{\partial v_i}{\partial x_j} \right) + \delta_{ij} \lambda \nabla \cdot \mathbf{V} \right]
\]
(8.5)

Assuming fluid incompressibility and a constant viscosity coefficient \(\mu \) leads to the Navier-Stokes equations for an incompressible fluid in three-dimensional flow:

\[
\rho \left(\frac{DV}{Dt} \right) = \rho g - \nabla p + \mu \nabla^2 \mathbf{V}
\]
(8.6)

The density of blood is \(\rho=1060 \) (kg/m\(^3\)), the blood is assumed to be a non-Newtonian fluid in the present study with a dynamic viscosity of \(\mu=2.78 \times 10^{-3} \) (Pa.s).

Pressure data is extracted from the CFD simulation and applied to a solid finite element cohesive zone model to assess the risk of a false lumen propagating (Figure 8.5).

![Figure 8.5](image)

Figure 8.5. Image of the finite element cohesive zone model with the CZM highlighted in red. Detailed view of the crack tip, mesh, and CZM are shown in the detail view.

Results: In Figure 8.6 we examine the flow-field in the dissected aorta with an intraluminal septum and patent false lumen with peak inlet velocities at systole. Flow
velocity streamlines are shown in the lumen in Figure 8.6. Velocity is shown in the axial direction of the aorta. Maximum velocity occurs above the intraluminal septum and minimum velocities occur in the false lumen.

![Figure 8.6: Velocity magnitude (mm.s⁻¹) streamline plot of the dissected geometry.](image)

In Figure 8.7 we examine the pressure (P) and velocity (V) profiles through a plane in the middle of the aorta at peak systole. As expected, there is zero fluid velocity at the wall and the flow is parabolic. As shown in the fluid velocity contour plot in Figure 8.7(a), stagnant blood (V~0 mmHg) is computed in the false lumen. Such stagnation is likely to result in false lumen thrombosis (Lip and Gibbs, 1999; Lowe, 2003; del Zoppo, 2008; Watson, Shantsila and Lip, 2009). Complete thrombosis of the false lumen is commonly reported clinically (Akutsu et al., 2004; Sayer et al., 2008; Dake et al., 2013). Maximum flow velocity is computed above the intraluminal septum. As shown in the fluid pressure contour plot in Figure 8.7, at peak systole a pressure gradient of ~2 mmHg is computed across the intraluminal septum with peak pressures in the aorta occurring in the false lumen. This occurs due to the false lumen creating a stagnation point for the accumulation of low velocity blood flow, resulting in a pressure increase relative to the true lumen.
Figure 8.7. (a) Velocity magnitude (mm.s\(^{-1}\)) contour plot; (b) Pressure (kPa) contour plot taken at a section midway through the artery.

Previous studies have suggested that increased pulse pressure may result in the propagation of a false lumen (Rajagopal, Bridges and Rajagopal, 2007). In order to assess the effects of elevated false lumen pressure on the risk of false lumen propagation, pressure data is extracted from the fluid domain and applied to the solid domain. Figure 8.8(a) shows a cut-view of the aorta at a lumen pressure of 140 mmHg immediately prior to false lumen propagation. (b) shows the aorta at ~160 mmHg. As shown in Figure 8.8(c) crack length is computed as a function of applied mean pressure. The false lumen is not predicted to propagate extensively at a pressure of ~140 mmHg with the crack growing approximately 0.15 mm after a pressurisation to 300 mmHg.
Figure 8.8. Crack length as a function of pressure. Crack growth is calculated to occur at 140 mmHg.

Figure 8.9 explores crack arrest due to blunting of the crack tip. Figure 8.9(a-c) show the progression of the simulation as the pressure is increased. Figure 8.9(d) shows the mode mixity at the crack tip as a function of the mean lumen pressure. The crack tip is clearly shown to be in a mixed mode, rather than pure mode I or mode II. While earlier chapters demonstrate that initiation of AD is a pure mode II process, the simulations presented in Figure 8.9 suggests that the eventual formation of a false lumen, following mode II initiation, will result in mixed mode conditions at the crack-tip. A form of toughening of the crack tip is also evident in (d) as the mode angle at the crack tip increases (tending towards mode II propagation) with increasing pressure.

As the mode II strength has been shown to be eight times higher than mode I strength (Chapter 5), such an increase in the mode angle with increasing pressure will be accompanied by a significant increase fracture resistance. Such a toughening mechanism is incorporated into our model through our calibrated mixed-mode CZM formulation (Chapter 4 & 6). Both the VP-CZM (Chapter 6) and E-CZM (Chapter 4) predict crack propagation arrest due to this toughening mechanism.
Figure 8.9. Images show blunting of the crack tip. Mode at the crack tip is shown as a function of the lumen pressure.

8.4 Conclusions

In the present study we examine the risk of dissection in an artery with a range of pre-existing injuries. In the first section of the study we examine the risk of dissection in an artery with an intraluminal tear (radial notch). Finite element cohesive zone analyses suggest propagation of an intimal tear is not predicted for pressures less than $P=275$ mmHg in a healthy aorta. In Chapter 7 we demonstrate that, in the absence of damage or significant artery wall remodelling and reduction of fracture strength, physiological super-physiological loading will not result in AD initiation. The results of the current chapter show that even in the presence of significant damage to the artery well (i.e. a radially aligned notch) super-physiological loading is required to initiate AD in healthy tissue. Furthermore, simulations suggest that even if AD is initiated at the notch, extensive propagation will not occur.

In the second section of the study, we examine the risk of dissection in an artery with a pre-existing intraluminal septum and a patent false lumen. Computational fluid
dynamics (CFD) analyses are performed, and pressure data is extracted and applied to a solid fracture model. The results of the combined fluid dynamics and finite element cohesive zone analyses suggest extensive propagation of a false lumen is not predicted at a slightly hypertensive systolic pressure of 140 mmHg in a healthy aorta. Even in extreme hypertensive loading conditions AD propagation is arrested due to blunting of the crack tip and an increase in the mode angle towards mode II. The results of this study suggest an intimal tear will not develop into a false lumen in a healthy normotensive aorta. Moreover, we show that false lumen propagation under such conditions is a mixed mode process. Earlier chapters of this thesis demonstrate that AD initiation is a mode II process. However, simulations presented in the current chapter suggest that if a false lumen subsequently develops, mixed mode loading occurs at the crack tip. This highlights the importance of a full calibration of a CZM formulation, using both mode II experiments (i.e. the SRFT developed in Chapter 5) and peel tests (also presented in Appendix C, Chapter 5). The results of this study suggest an intimal tear will not develop into a false lumen in a healthy normotensive aorta. Simulations also suggest that hypertensive conditions will result in an increase in mode angle (towards mode II) at the false lumen crack tip. This provides a significant toughening mechanism against AD, given that our earlier experiments reveal that the mode II fracture strength of an artery is eight times higher than the mode I strength.
Bibliography

Chapter 9

9 CONCLUDING REMARKS & FUTURE PERSPECTIVES

9.1 Summary of Key Contributions

This section outlines the key contributions of this thesis to the field of biomechanics.

Chapter 4:

- Two mixed mode cohesive zone models are proposed, in which interfacial stiffness (K_m) and the fracture energy (G_m) are uncoupled.
- A novel form of “overclosure hardening” is presented, whereby the shear interface strength is augmented as a function of negative normal traction.
- Anomalous behaviour of the Abaqus exponential damage model is highlighted where damage evolution is specified according to energy.

Chapter 5:

- A novel experimental method to robustly and repeatably generate mode II crack initiation and propagation in arteries is proposed and validated.
- A fracture toughening mechanism resisting radial crack growth due to collagen fibre alignment in the circumferential-axial plane behind the crack tip is uncovered.
- The mode II fracture strength of the aorta along the circumferential-axial plane is shown to be eight times higher than the corresponding mode I strength determined from a standard peel test.
• Mode II crack propagation rates recorded from shear fracture ring test experiments are presented.

• The mode II fracture energy is calibrated based on the measurements of crack propagation rates.

• It is shown that lap-shear testing of arterial tissue results in mixed mode fracture, rather than pure mode II.

Chapter 6:

• Evidence of interfacial fibrillation in arterial tissue undergoing mode II fracture is presented.

• A novel elastic fibrillation cohesive zone model is developed where fibrils form during the damage process and cause a secondary damage region in the traction-separation response. The model is implemented in Abaqus though a user-defined surface interaction subroutine (UINTER).

• A novel physically motivated viscoplastic cohesive zone model is developed where the rate of strain hardening is dependent on the strain rate. The model is implemented in a user-defined surface interaction subroutine (UINTER).

• It is shown that non-linear crack growth trends observed in interfacial fibrillation can be predicted using the novel viscoplastic cohesive zone model.

Chapter 7:

• A framework for the generation of a realistic dual-vene MRI-derived subject-specific aorta finite element model to assess the risk of dissection using cohesive zone analysis is developed.

• It is demonstrated that initiation of aortic dissection is a mode II fracture process, rather than a mixed mode or mode I.
• The results of the subject-specific finite element cohesive zone analysis suggest aortic dissection will not occur unless there is a 100-fold decrease in interface strength.

• It is shown that anatomical features, material factors, and displacement of the aortic root do not play a significant role in the initiation of aortic dissection.

• A novel method for the inclusion of residual stress in the aorta is developed and implemented in Abaqus through a user-defined material behaviour subroutine (UMAT).

Chapter 8:

• Finite element cohesive zone analyses suggest propagation of an intimal tear is only predicted for extremely hypertensive pressures (≥ 275 mmHg) in a healthy aorta.

• Extensive Propagation of a false lumen is not predicted at a slightly hypertensive blood pressure of (140 mmHg). Even in extreme hypertensive loading conditions AD propagation is arrested due to blunting of the crack tip and an increase in the mode angle towards mode II.

• The results of this study suggest an intimal tear will not develop into a false lumen in a healthy normotensive aorta.
9.2 Future Perspectives

The work presented in this thesis has addressed several key topics in relation to aortic dissection and the fracture mechanics of arterial tissue. These contributions have implications for related areas in biomechanics, design of medical devices, and clinicians. This section provides a discussion of future perspectives.

In chapter 4 we propose two novel cohesive zone formulations including a novel overclosure hardening method. Future studies could examine the effects of a variable compressive displacement coupled with a shear displacement applied to an interface implementing overclosure hardening. The effects of a variable shear interface strength due to variable overclosure hardening should be analogous to a separation of varying mode angle. However, this would need to be confirmed with parametric investigations examining the fracture energy, interface strength, and traction-separation response. The impact of a proportional traction load and non-proportional traction load could also be examined, as is seen in McGarry et al. (2014).

In Chapter 5 it is demonstrated that lap shear tests performed by Sommer et al. and Witzenburg et al. do not result in a mode II fracture (Sommer et al., 2016; Witzenburg et al., 2017). Therefore, studies using mode II values calibrated from mixed mode experiments should be revisited using correct shear interface strength properties (Witzenburg et al., 2017; Gültekin et al., 2019). The use of in-depth computational analysis of soft tissue anisotropic fracture mechanics to guide experimental design sets a new paradigm for development of insightful experimental analysis of soft tissue. In fact, we argue that this approach to soft tissue fracture mechanics is of fundamental importance, given that fracture mechanics testing of soft tissue must be developed within the constraints inherent in anatomical specimen geometries and local fibre arrangements. Future studies should design experiments using computational analysis.
The fibre alignment observed at the crack tip in soft collagenous tissues, such as arterial tissue, has been shown to resist crack propagation in the direction of the crack tip (Bircher et al., 2019). Future studies may examine the role of collagen fibre alignment through collagen knockout experiments on arterial tissue similar to those seen in Schriefl et al. (2015) and Noble et al. (2016). Future studies may apply the shear fracture ring test methodology to other tubular/cylindrical tissues. Rupture patterns observed bear resemblance to experiments by Haslach et al. (2011,2015,2018). Future studies should carry out further imaging of the rupture surface. Accurate calibration of the shear interface strength was due, in part, to the accuracy of the material constitutive behaviour implemented (Fereidoonnezhad, O’Connor and McGarry, 2020). The use of an anisotropic material law (Holzapfel, Gasser and Ogden, 2000; Gasser, Ogden and Holzapfel, 2006; Nolan et al., 2014) leads to unphysical auxetic behaviour and significantly over-predicts stresses in regions of localised large strains, such as those seen in arterial fracture mechanics. Future studies dealing with large strain problems should implement constitutive laws: (i) without exponentially stiffening behaviour and, (ii) that allow for the control of unphysical auxetic behaviour.

Chapter 6 demonstrates that the proposed viscoplastic cohesive zone model is capable of predicting crack growth trends observed in interfacial fibrillation. Future studies may implement a more complex form of hardening based on more experimental data. Future experimental studies and data may also inform the development of a less phenomenological fibrillation initiation criteria.

Chapter 7 clearly demonstrates that initiation of dissection must be a mode II fracture process, this is in agreement with the recently published study from Gültekin et al. (2019). Future studies examining the mode II initiation of aortic dissection should use
mode II properties calibrated from pure mode II experiments. Dissection is not predicted to propagate unless the interface strength is reduced 100-fold, this is also in agreement with Gültekin et al. (2019) who assume a ~100 fold reduction in fracture energy to propagate a dissection. Wang et al. assumes an interface strength of 3 kPa (2017), and 0.3 kPa (2018) which is approximately 500 and 5000 times weaker (respectively) than that of healthy aorta. Future studies should aim to determine the effects of disease on interface strength in the aorta.

Finally, in Chapter 8 analyses of a pre-existing intimal tear, and false lumen are presented. Future studies should attempt to propagate a false lumen experimentally, similar to the experiments of Chen et al. (2016). Future studies may also attempt to propagate an intimal tear experimentally.
Bibliography

APPENDIX A

10 DEVELOPED CODE: SUBROUTINES, AND OPTIMISATION SCHEMES

The following is a presentation and brief description of select code written in MATLAB, Python, and FORTRAN used for each technical chapter.

Chapters (4 & 6): The following MATLAB code is used in the development and analysis of new cohesive zone models. It contains a master script and a function that acts analogous to a UINTER subroutine. This coding framework also facilitates the analysis of the Abaqus inbuilt cohesive zone behaviours. This framework facilitated the extensive cohesive zone development in Chapter 4 and Chapter 6. “Plot” states have been omitted for brevity.
% PARAMETER STUDY FOR NEW CZM
% MIXED MODE SCENARIOS - Proportional loading
theta=linspace(0,0,4);
% theta=[0, pi/8, pi/2];
shear=cos(theta)*1.0;
normal=sin(theta)*1.0;

% Control Parameters
% --
elasticBias=0; % elasticBias--> switch to 1 if initial elastic slope is very high
unload=0; % unload --> 1 = load halfway - unload - load all the way //
0=monotonic loading
rev1=-1; rev2=-1; % change shear direction after unloading set to -1.
pctLoad=[0.45 0.525]; % pctLoad --> if unload =1 // amount to load before unloading.
1=full loading
pctLoad=[0.25 0.5];
formSet=2; % form --> 1 = linear // 2 = exponential // 3 = squared exponential
formSet=2;

% Fibrillation --> 1 = Add Fibrillation // 0 - No Fibrillation
fibrillation=0; % fibrillation --> 1 = Add Plasticity // 0 - No Plasticity
plasticity=0; % If using plasticity set areaFraction to 1 to add curves
areaFraction=0; % Add viscoplasticity? --> 1 = yes // 0 = no viscoplasticity
viscoplasticity=1;

% Add old viscoplasticity? --> 1 = yes // 0 = no viscoplasticity
viscoplasticity_old=0;
plotOn=1;
plotAbaqus=0;
dInit=0; % 0 for same as G // 1 for abaqus
resolution=1000;
% --
% CZM parameters
tno=1.;
tto=1.;
km=10.0;
% gno=20e-3;
gto=100e-3;
gno=gto*(tno/tto);
% gno=gto*(tno/tto).^2;
delt=tto/km;
deln=tno/km;
xi0=pi/16;

% Elastic Fibrillation parameters
ff1a=5;
ff2=10;
dft=0.75;

% Plastic Fibrillation Parameters
ff1a=1.0;
ff1b=1.2;
ff2=0.25;
dft=0.5;

eta=[0.0,0.25,0.5,0.75,1.0];

% Viscoplasticity parameters ----------------------------
% epsilon p zero (affects spread of rates)
% smaller=less sensitive to change in rate (sensitivity parameter)
epr0= 4.0e-3;
% strain rate hardening exponent 'm'
m=20;
% epsilon ^n (similar to initial hardening slope) smaller=stiffer
% how quickly you reach the plateau
en=0.25;
% theta - to set backward euler or forward
xtheta=1.0;

% yield stress
sy0=tto;
% saturation stress at infinity
tinf=sy0*ff1b;
% Strain rate
strainRate=(4.005e-3 5.005e-3 6.e-3 8.e-3 10.e-3 14.e-3 20.e-3 0.04 0.4);
% strainRate=linspace(4.e-3,0.5,10);
strainRateN=0.01;
strainRateT=[epr0.*1.25 epr0.*2.5 epr0.*12.50 epr0.*250];
strainRateM=0.01;

% Abaqus linear parameters
lno=9;
lto=3;
% Abaqus exponential parameter alpha
a=10;

% prevent plasticity being active with fibrillation
if plasticity==1
 % Parameters 'fibrillation' and 'plasticity' are mutually exclusive
 fibrillation=0;
end

% begin loop through different proportional separations
for k=1:length(theta)
 if k<=length(co)
 ck=k;
 else
 ck=k-length(co);
 end

 propStruct.form=formSet;
 propStruct.km=km;
 propStruct.a=a;
 propStruct.fibrillation=fibrillation;
 propStruct.plasticity=plasticity;
 propStruct.areaFraction=areaFraction;
 propStruct.viscoplasticity=viscoplasticity;
 propStruct.viscoplasticity_old=viscoplasticity_old;
 propStruct.ffla=ffla;
propStruct.ff1b=ff1b;
propStruct.ff2=ff2;
propStruct.dft=dft;
propStruct.eta=eta(1);
propStruct.tno=tno;
propStruct.tto=tto;
propStruct.gno=gno;
propStruct.gto=gto;
propStruct.lno=lno;
propStruct.lto=lto;
propStruct.xi0=xi0;
propStruct.epr0=epr0;
propStruct.m=m;
propStruct.sy0=sy0;
propStruct.tinf=tinf;
propStruct.en=en;
propStruct.xtheta=xtheta;
propStruct.strainRate=strainRate(1);
propStruct.strainRateN=strainRateN;
propStruct.strainRateT=strainRateT(k);
propStruct.strainRateM=strainRateM;

switch elasticBias
 case 1
 UN=[linspace(0,(normal(k)/10),resolution/2)
 linspace((normal(k)/10),normal(k),resolution/2)];
 UT=[linspace(0,(shear(k)/10),resolution/2)
 linspace((shear(k)/10),shear(k),resolution/2)];
 UT=UT+(linspace(0,1,length(UT))'*1e-9).*max(UT);
 UN=UN+(linspace(0,1,length(UN))'*1e-9).*max(UN);
 case 0
 UN=linspace(0,normal(k),resolution)';
 UT=linspace(0,shear(k),resolution)';
end
if theta(k)<0
 UT=UT.*1;
end
mixmode(k).mode=round(rad2deg(theta(k)));

switch unload
 case 2
 unSep=[UN*(pctLoad(1));flipud(pctLoad(1)*UN); ...
 UN*(pctLoad(2));flipud(pctLoad(2)*UN);UN];
 utSep=[UT*(pctLoad(1));flipud(pctLoad(1)*UT); ...
 UT*(pctLoad(2));*rev1;flipud(pctLoad(2)*UT).*rev2;
 UT.*rev2];
 mixmode(k).sep=[unSep utSep];
 case 1
 unSep=[UN*(pctLoad(1));flipud(pctLoad(1)*UN);UN];
 utSep=[UT*(pctLoad(1));flipud(pctLoad(1)*UT);UT.*rev1];
 mixmode(k).sep=[unSep utSep];
 case 0
 mixmode(k).sep=[UN UT];
end
clear newCZM_mag
for h=1:length(mixmode(k).sep(:,1))
 mixmode(k).Un(h)=(mixmode(k).sep(h,1));
 mixmode(k).Ut(h)=(mixmode(k).sep(h,2));
end
outputStruct(:,h)=newCZM_mag(mixmode(k).sep(h,:),h,dInit,propStruct);
mixmode(k).Tn=extractfield(outputStruct,'tn');
mixmode(k).Tno=extractfield(outputStruct,'tno');
mixmode(k).Tt=extractfield(outputStruct,'tt');
mixmode(k).Tto=extractfield(outputStruct,'tto');
mixmode(k).Tm=extractfield(outputStruct,'tm');
mixmode(k).Tme=extractfield(outputStruct,'tme');
mixmode(k).Un=extractfield(outputStruct,'un');
mixmode(k).Ut=extractfield(outputStruct,'ut');
mixmode(k).Um=extractfield(outputStruct,'um');
mixmode(k).Umo=extractfield(outputStruct,'umo');
mixmode(k).mode=mean(extractfield(outputStruct,'mode'));
mixmode(k).gmcheck=mean(extractfield(outputStruct,'gmcheck'));
if propStruct.form==2 || propStruct.form==3
 mixmode(k).psi=extractfield(outputStruct,'psi');
end
if areaFraction==true
 mixmode(k).Tm1=extractfield(outputStruct,'tm1');
mixmode(k).Tm2=extractfield(outputStruct,'tm2');
mixmode(k).dsfm=extractfield(outputStruct,'dsfm');
mixmode(k).tmefi=extractfield(outputStruct,'tmefi');
mixmode(k).tmefm=extractfield(outputStruct,'tmefm');
mixmode(k).umef=extractfield(outputStruct,'umef');
mixmode(k).kfp=extractfield(outputStruct,'kfp');
end
if viscoplasticity==true
mixmode(k).ept=extractfield(outputStruct,'ept');
end
if (fibrillation==true)
mixmode(k).fi=extractfield(outputStruct,'fi');
 [fi(k),fi_ind(k)]=max(mixmode(k).fi);
end
TnMax(k)=mixmode(k).TnMax;
TtMax(k)=mixmode(k).TtMax;
TmMax(k)=mixmode(k).TmMax;
UnMax(k)=mixmode(k).UnMax;
UtMax(k)=mixmode(k).UtMax;
UmMax(k)=mixmode(k).UmMax;
tol=(mixmode(k).Um(end)/resolution);

% current energy calculations
if unload==1 || unload==2
 % index to find where the reload curve joins back up with

% original traction curve
if unload==1
 restOfCurve=find(abs(mixmode(k).Um-(mixmode(k).Um(end)*pctLoad(1)))<tol,1,'last');
elseif unload==2
 restOfCurve=find(abs(mixmode(k).Um-(mixmode(k).Um(end)*pctLoad(2)))<tol,1,'last');
end
figure();plot(mixmode(k).Un(restOfCurve:end),mixmode(k).Tn(restOfCurve:end))
mixmode(k).Tn_Gcalc=[mixmode(k).Tn(1:resolution-1)
mixmode(k).Un_Gcalc=[mixmode(k).Un(1:resolution-1)
mixmode(k).Tt_Gcalc=[mixmode(k).Tt(1:resolution-1)
mixmode(k).Ut_Gcalc=[mixmode(k).Ut(1:resolution-1)
mixmode(k).Tm_Gcalc=[mixmode(k).Tm(1:resolution-1)
mixmode(k).Um_Gcalc=[mixmode(k).Um(1:resolution-1)]

elseif unload==0
 for ggg=2:length(mixmode(k).sep(:,1))
 mixmode(k).Gn(ggg)=trapz(mixmode(k).Un(1:ggg),mixmode(k).Tn(1:ggg));
 mixmode(k).Gt(ggg)=trapz(mixmode(k).Ut(1:ggg),mixmode(k).Tt(1:ggg));
 mixmode(k).Gm(ggg)=trapz(mixmode(k).Um(1:ggg),mixmode(k).Tm(1:ggg));
 end
end
for gg=2:length(mixmode(k).sep(:,1))
 mixmode(k).Gn_el(gg)=0.5*(mixmode(k).Un(gg))*(mixmode(k).Tn(gg));
 mixmode(k).Gt_el(gg)=0.5*(mixmode(k).Ut(gg))*(mixmode(k).Tt(gg));
 mixmode(k).Gm_el(gg)=0.5*(mixmode(k).Um(gg))*(mixmode(k).Tm(gg));
end
Gn(k)=mixmode(k).Gn(end);
Gt(k)=mixmode(k).Gt(end);
Gm(k)=mixmode(k).Gm(end);
if(viscoplasticity==true)
 % Decompose the Normal and Tangential total plastic strain
 mixmode(k).eptN=mixmode(k).ept.*sin(atan2(mixmode(k).Un,mixmode(k).Ut));
 mixmode(k).eptT=mixmode(k).ept.*cos(atan2(mixmode(k).Un,mixmode(k).Ut));
 % Calculate the Elastic Strain
 mixmode(k).UmEl=mixmode(k).Um-mixmode(k).ept;
 mixmode(k).UnEl=mixmode(k).Un-mixmode(k).eptN;
 mixmode(k).UtEl=mixmode(k).Ut-mixmode(k).eptT;
 % Find the intrinsic elastic energy
 mixmode(k).GmEl=(mixmode(k).UmEl.*mixmode(k).Tm).*0.5;
 mixmode(k).GnEl=(mixmode(k).UnEl.*mixmode(k).Tn).*0.5;
 mixmode(k).GtEl=(mixmode(k).UtEl.*mixmode(k).Tt).*0.5;
 GnEl(k)=max(mixmode(k).GnEl);
 GtEl(k)=max(mixmode(k).GtEl);
 GmEl(k)=max(mixmode(k).GmEl);
 GnP(k)=Gn(k)-GnEl(k);
 GtP(k)=Gt(k)-GtEl(k);
 GmP(k)=Gm(k)-GmEl(k);
end

if(fibrillation==true)
 [aa,bb]=uniquetol(mixmode(k).Umo);
 % ind_g0_end=find(abs(mixmode(k).Um-(min(aa)))<tol,i,'last');
 [minValue,ind_g0_end] = min(abs(mixmode(k).Um-min(aa)));
 ume_true(k)= mixmode(k).Um(ind_g0_end);
 % ume_true(k)=mixmode(k).Um(ind_g0_end);
 ind_g1_end=fi_ind(k);
 % ind_g2_end=find(abs(mixmode(k).Um-(max(aa)))<tol,i,'last');
 [minValue,ind_g2_end] = min(abs(mixmode(k).Um-max(aa)));
 ume_fibril(k)=mixmode(k).Um(ind_g2_end);
 gn_0(k)=trapz(mixmode(k).Un(1:ind_g0_end),mixmode(k).Tn(1:ind_g0_end));
 gt_0(k)=trapz(mixmode(k).Ut(1:ind_g0_end),mixmode(k).Tt(1:ind_g0_end));
 gm_0(k)=trapz(mixmode(k).Um(1:ind_g0_end),mixmode(k).Tm(1:ind_g0_end));
 gn_1(k)=trapz(mixmode(k).Un(1:ind_g1_end),mixmode(k).Tn(1:ind_g1_end))-gn_0(k);
 gt_1(k)=trapz(mixmode(k).Ut(1:ind_g1_end),mixmode(k).Tt(1:ind_g1_end))-gt_0(k);
\text{gm}_1(k) = \text{trapz} (\text{mixmode}(k).\text{Um}(1:\text{ind}_g_1\text{end}), \text{mixmode}(k).\text{Tm}(1:\text{ind}_g_1\text{end})) - \text{gm}_0(k);

\text{gn}_2(k) = \text{trapz} (\text{mixmode}(k).\text{Un}(1:\text{ind}_g_2\text{end}), \text{mixmode}(k).\text{Tn}(1:\text{ind}_g_2\text{end})) - \text{gn}_1(k);

\text{gt}_2(k) = \text{trapz} (\text{mixmode}(k).\text{Ut}(1:\text{ind}_g_2\text{end}), \text{mixmode}(k).\text{Tt}(1:\text{ind}_g_2\text{end})) - \text{gt}_1(k);

\text{gm}_2(k) = \text{trapz} (\text{mixmode}(k).\text{Um}(1:\text{ind}_g_2\text{end}), \text{mixmode}(k).\text{Tm}(1:\text{ind}_g_2\text{end})) - \text{gm}_1(k);

\text{gn}_3(k) = \text{trapz} (\text{mixmode}(k).\text{Un} (\text{ind}_g_2\text{end}:\text{end}), \text{mixmode}(k).\text{Tn}(\text{ind}_g_2\text{end}:\text{end}));

\text{gt}_3(k) = \text{trapz} (\text{mixmode}(k).\text{Ut}(\text{ind}_g_2\text{end}:\text{end}), \text{mixmode}(k).\text{Tt}(\text{ind}_g_2\text{end}:\text{end}));

\text{gm}_3(k) = \text{trapz} (\text{mixmode}(k).\text{Um}(\text{ind}_g_2\text{end}:\text{end}), \text{mixmode}(k).\text{Tm}(\text{ind}_g_2\text{end}:\text{end}));

\text{gmcheck}(k) = \text{mixmode}(k).\text{gmcheck}\text{(end)};
\text{Gsum}(k) = \text{mixmode}(k).\text{Gt}\text{(end)} + \text{mixmode}(k).\text{Gn}\text{(end)};
\text{Umo}(k) = \text{mean} (\text{mixmode}(k).\text{Umo});
\text{TmMax}(k) = \text{mixmode}(k).\text{TmMax};
\text{lmstar}(k) = \text{mean} (\text{mixmode}(k).\text{lmstar});
\text{tto_sim}(k) = \text{mean} (\text{mixmode}(k).\text{Tto});

\% Instantaneous incremental dissipation (d\text{Phi}) (Cazes et al. 2009)
\text{diffUt} = \text{diff} (\text{mixmode}(k).\text{Ut});
\text{diffTt} = \text{diff} (\text{mixmode}(k).\text{Tt});
\text{diffUn} = \text{diff} (\text{mixmode}(k).\text{Un});
\text{diffTn} = \text{diff} (\text{mixmode}(k).\text{Tn});
\text{if} (\text{viscoplasticity} == \text{true})
\quad \text{diffUnEl} = \text{diff} (\text{mixmode}(k).\text{UnEl});
\quad \text{diffUtEl} = \text{diff} (\text{mixmode}(k).\text{UtEl});
\quad \text{diffUmEl} = \text{diff} (\text{mixmode}(k).\text{UmEl});
\quad \text{diffeptN} = \text{diff} (\text{mixmode}(k).\text{eptN});
\quad \text{diffeptT} = \text{diff} (\text{mixmode}(k).\text{eptT});
\text{diffPhise} = (((\text{mixmode}(k).\text{Tn}(2:\text{end}).*\text{diffUnEl} + (\text{mixmode}(k).\text{Tt}(2:\text{end}).*\text{diffUtEl}))...$
\quad (\text{diffTn}.*\text{mixmode}(k).\text{UnEl}(2:\text{end})) + (\text{diffTt}.*\text{mixmode}(k).\text{UtEl}(2:\text{end})))\text{.*0.5};
\text{diffPhisp} = ((\text{mixmode}(k).\text{Tn}(2:\text{end}).*\text{diffeptN} + (\text{mixmode}(k).\text{Tt}(2:\text{end})).*\text{diffeptT}));

254
diffPhi=diffPhise+diffPhisp;
else

diffPhi=((mixmode(k).Tn(2:end).*diffUn)+(mixmode(k).Tt(2:end).*diffUt)) -
{(diffTn.*mixmode(k).Un(2:end))+(diffTt.*mixmode(k).Ut(2:end))}).*0.5;
end

%% Non-proportional loading paths
resolution=1000;
plotOn=1; % 0 - linear // 1 - exponential // 2 - squared exponential // 3 abaqus disp exp. softening
dInit=0; % 0 for same as G // 1 for modified abaqus
plotAbaqus=0;

% Fibrillation --> 1 = Add Fibrillation // 0 - No Fibrillation
fibrillation=0;

% Pseudoplasticity?
plasticity=0;

% Area fraction eta?
areaFraction=0;

% Viscoplasticity_old?
viscoplasticity_old=0;

% Viscoplasticity
viscoplasticity=1;

% CZM parameters
tno=0.2;
tto=1.0;
km=10.0;
% gno=20e-3;
gto=100e-3;
% gno=gto.*(tno/tto).^2;
gno=gto.*(tno/tto);
% gno=gto;

% Abaqus linear parameters
lno=9;
lto=3;
% Abaqus exponential parameter alpha
a=10;
delt=tto/km;
deln=tno/km;
xi0=pi/16;
lmstar=5;
deltaT=linspace(0,1.0,11);
deltaN=linspace(1.0,1.0,length(deltaT));

M2M1switch=1; %1=m2 the m1 // 0=m1 then m2
% Fibrillation parameters
ff1a=1.0;
ff1b=1.2;
ff2=0.25;
dft=0.35;
% Elastic Fibrillation parameters
% ff1a=5;
% ff2=0.5;
% dft=0.75;
eta=[0.0, 0.25, 0.5, 0.75, 1.0];

% Viscoplasticity parameters
% epsilon p zero (affects spread of rates)
% smaller=less sensitive to change in rate (sensitivity parameter)
epr0=0.004;
% strain rate hardening exponent 'm'
m=30.0;
% epsilon ^n (similar to initial hardening slope) smaller=stiffer
% how quickly you reach the plateau
en=0.75;
% theta - to set backward euler or forward
xtheta=1.0;
% yield stress
sy0=tto;
% saturation stress at infinity
tinf=sy0*ff1b;
% Strain rate
strainRate=([4.005e-3 8.0e-3 0.04 0.4]);
strainRateN=epr0/0.1;
strainRateT=epr0/0.1;
strainRateM=epr0/0.1;

for g=1:length(deltaT)
 propStruct.form=formSet;
 propStruct.km=km;
 propStruct.a=a;
 propStruct.fibrillation=fibrillation;
 propStruct.plasticity=plasticity;
 propStruct.areaFraction=areaFraction;
 propStruct.viscoplasticity=viscoplasticity;
 propStruct.viscoplasticity_old=viscoplasticity_old;
 propStruct.ff1a=ff1a;
 propStruct.ff1b=ff1b;
 propStruct.ff2=ff2;
 propStruct.dft=dft;
 propStruct.eta=eta(1);
 propStruct.tno=tno;
 propStruct.tto=tto;
 propStruct.qno=qno;
 propStruct.qto=qto;
 propStruct.lno=lno;
 propStruct.lto=lto;
 propStruct.xi0=xi0;
 propStruct.epr0=epr0;
 propStruct.m=m;
 propStruct.sy0=sy0;
 propStruct.tinf=tinf;
 propStruct.en=en;
 propStruct.xtheta=xtheta;
 propStruct.strainRate=strainRate(1);
 propStruct.strainRateN=strainRateN(1);
 propStruct.strainRateT=strainRateT(1);
 propStruct.strainRateM=strainRateM(1);
loopLength=1;
% begin loop through different constant mixed mode separations
for k=1:loopLength
 if M2M1switch==1 % m2 then m1
 UN=[linspace(0,0,resolution)
 linspace(0,deltaN(g),resolution)]';
 UT=[linspace(0,deltaT(g),resolution)
 linspace(deltaT(g),deltaT(g),resolution)]';
 elseif M2M1switch==0 % m1 then m2
 UT=[linspace(0,0,resolution)
 linspace(0,deltaT(g),resolution)]';
 UN=[linspace(0,deltaN(g),resolution)
 linspace(deltaN(g),deltaN(g),resolution)]';
 end
 M2M1(g).sep=[UN UT];
 clear newCZM_mag;
 for h=1:length(UN)
 M2M1(g).Un(h)=UN(h);
 M2M1(g).Ut(h)=UT(h);
 outputStruct(:,h)=newCZM_mag(M2M1(g).sep(h,:),h,dInit,propStruct);
 end

 % extract data from the output struct
 M2M1(g).Tn=extractfield(outputStruct,'tn');
 M2M1(g).Tt=extractfield(outputStruct,'tt');
 M2M1(g).Tm=extractfield(outputStruct,'tm');
 M2M1(g).tme=extractfield(outputStruct,'tme');
 M2M1(g).Un=extractfield(outputStruct,'un');
 M2M1(g).Ut=extractfield(outputStruct,'ut');
 M2M1(g).Um=extractfield(outputStruct,'um');
 M2M1(g).UmMax=extractfield(outputStruct,'umMax');
 %
 M2M1(g).mode=(extractfield(outputStruct,'mode'));
 M2M1(g).meanmode=mean(extractfield(outputStruct,'mode'));
 M2M1(g).gmcheck=mean(extractfield(outputStruct,'gmcheck'));
 M2M1(g).lmstar=mean(extractfield(outputStruct,'lmstar'));
 if (viscoplasticity==true)
 M2M1(g).dtime=(extractfield(outputStruct,'dtime'));
 M2M1(g).dun=(extractfield(outputStruct,'dun'));
 M2M1(g).dut=(extractfield(outputStruct,'dut'));
 M2M1(g).dum=(extractfield(outputStruct,'dum'));
 M2M1(g).ept=extractfield(outputStruct,'ept');
 end
 lmstar1(g)=M2M1(g).lmstar;

 % find maximum values for T and U
 [M2M1(g).TnMax,I]=max(M2M1(g).Tn);
 [M2M1(g).TtMax,J]=max(M2M1(g).Tt);
 [M2M1(g).TmMax,Kk]=max(M2M1(g).Tm);
 M2M1(g).UnBar=M2M1(g).Un(I);
 M2M1(g).UtBar=M2M1(g).Ut(J);
 M2M1(g).UmBar=M2M1(g).Um(Kk);
 M2M1(g).Gn=trapz(M2M1(g).Un,M2M1(g).Tn);
 M2M1(g).Gt=trapz(M2M1(g).Ut,M2M1(g).Tt);
 M2M1(g).Gm=trapz(M2M1(g).Um,M2M1(g).Tm);
Gn\((g) = M_2M_1(g) \cdot Gn; \\
Gt\((g) = M_2M_1(g) \cdot Gt; \\
Gm\((g) = M_2M_1(g) \cdot Gm; \\
Gsum\((g) = M_2M_1(g) \cdot Gt + M_2M_1(g) \cdot Gn; \\
UtBar\((g) = M_2M_1(g) \cdot UtBar; \\
UtMax\((g) = \max(Ut); \\
UnMax\((g) = \max(UN); \\
UnMin\((g) = \min(UN); \\
UnEnd\((g) = UN(\text{end}); \\
UnBar\((g) = M_2M_1(g) \cdot UnBar; \\
TtMax\((g) = M_2M_1(g) \cdot TtMax; \\
TnMax\((g) = M_2M_1(g) \cdot TnMax; \\
TmMax\((g) = M_2M_1(g) \cdot TmMax; \\
mode\(= M_2M_1(g) \cdot mode; \\
tme\(= M_2M_1(g) \cdot tme; \\
\%
Instantaneous incremental dissipation (dPhi) (Cazes et al. 2009) \\
diffUt\(= \text{diff}(M_2M_1(g) \cdot Ut); \\
diffTt\(= \text{diff}(M_2M_1(g) \cdot Tt); \\
diffUn\(= \text{diff}(M_2M_1(g) \cdot Un); \\
diffTn\(= \text{diff}(M_2M_1(g) \cdot Tn); \\
if(viscoplasticity==true) \\
 \%
Decompose the Normal and Tangential total plastic strain \\
M2M1(g)\cdot eptN\(= M_2M_1(g) \cdot ept \cdot \sin(\text{atan2}(M_2M_1(g) \cdot Un, M_2M_1(g) \cdot Ut)); \\
M2M1(g)\cdot eptT\(= M_2M_1(g) \cdot ept \cdot \cos(\text{atan2}(M_2M_1(g) \cdot Un, M_2M_1(g) \cdot Ut)); \\
\%
Calculate the Elastic Strain \\
M2M1(g)\cdot UmEl\(= M_2M_1(g) \cdot Um - M_2M_1(g) \cdot ept; \\
M2M1(g)\cdot UnEl\(= M_2M_1(g) \cdot Un - M_2M_1(g) \cdot eptN; \\
M2M1(g)\cdot UtEl\(= M_2M_1(g) \cdot Ut - M_2M_1(g) \cdot eptT; \\
diffUnEl\(= \text{diff}(M_2M_1(g) \cdot UnEl); \\
diffUtEl\(= \text{diff}(M_2M_1(g) \cdot UtEl); \\
diffUmEl\(= \text{diff}(M_2M_1(g) \cdot UmEl); \\
diffeptN\(= \text{diff}(M_2M_1(g) \cdot eptN); \\
diffeptT\(= \text{diff}(M_2M_1(g) \cdot eptT); \\
\%
Find the intrinsic elastic energy \\
M2M1(g)\cdot GnEl\(= (M_2M_1(g) \cdot UnEl \cdot *M2M1(g) \cdot Tn) \cdot *0.5; \\
M2M1(g)\cdot GnEl\(= (M_2M_1(g) \cdot UnEl \cdot *M2M1(g) \cdot Tn) \cdot *0.5; \\
M2M1(g)\cdot GnEl\(= (M_2M_1(g) \cdot UtEl \cdot *M2M1(g) \cdot Tt) \cdot *0.5; \\
GnEl\((g) = \max(M2M1(g) \cdot GnEl); \\
GtEl\((g) = \max(M2M1(g) \cdot GtEl); \\
GmEl\((g) = \max(M2M1(g) \cdot GmEl); \\
GnP\((g) = Gn\((g) - GnEl\((g); \\
GtP\((g) = Gt\((g) - GtEl\((g); \\
GnP\((g) = Gm\((g) - GmEl\((g); \\
diffPhise=(((M2M1(g) \cdot Tn(2:end) \cdot *diffUnEl) + (M2M1(g) \cdot Tt(2:end) \cdot *diffUtEl))... \\
 - ((diffTn \cdot M2M1(g) \cdot UnEl(2:end)) + (diffTt \cdot M2M1(g) \cdot UtEl(2:end)))) \cdot *0.5;
diffPhisp = ((M2M1(g).Tn(2:end).*diffeptN) + (M2M1(g).Tt(2:end).*diffeptT));

diffPhi = diffPhise + diffPhisp;
else

diffPhi = (((M2M1(g).Tn(2:end).*diffUn) + (M2M1(g).Tt(2:end).*diffUt)) -
((diffTn.*M2M1(g).Un(2:end)) + (diffTt.*M2M1(g).Ut(2:end))).*0.5);
end

function [outputStruct] = newCZM_mag(separationVector, inc, dInit, propStruct)
persistent umMax fibril plastic eps_p stresso sn
delta_plastic_strain sdv1 umCrit eps epsCrit epto...
sighto epdotto xum xun xut sdvUnload umCrit2 flag1
if inc == 1
 umMax = 0;
 fibril = 0;
 plastic = 0;
 try
 % clear stresso eps epsCrit sn delta_plastic_strain sdv1
 eps eps_p
 % end
 eps_p = 0;
 eps = 0;
 sdv1 = 0;
 stresso = [];
 eps = 0;
 epsCrit = 0;
 sn = 0;
 delta_plastic_strain = 0;
 sdvUnload = 0;
 umCrit2 = 100;
 flag1 = 0;
 end
 format long
tno = propStruct.tno;
tto = propStruct.tto;
gno = propStruct.gno;
gto = propStruct.gto;
% delta m star for linear formulation
lno = propStruct.lno;
lto = propStruct.lto;
form = propStruct.form;
fibrillation = propStruct.fibrillation;
plasticity = propStruct.plasticity;
areaFraction = propStruct.areaFraction;
viscoplasticity_old = propStruct.viscoplasticity_old;
viscoplasticity = propStruct.viscoplasticity;
if (areaFraction == true)
 eta = propStruct.eta;
else
 eta = 0;
end

259
ff1a=propStruct.ff1a;
ff1b=propStruct.ff1b;
ff2=propStruct.ff2;
dft=propStruct.dft;

% exponential parameter for abaqus exponential softening
a=propStruct.a;
xis0=propStruct.xi0;
km=propStruct.km;
knoc=km*10.0;

% viscoplastic parameters
epr0=propStruct.epr0;
m=propStruct.m;
tinf=propStruct.tinf;
en=propStruct.en;
xtheta=propStruct.xtheta;
strainRate=propStruct.strainRate;
strainRateN=propStruct.strainRateN;
strainRateT=propStruct.strainRateT;
strainRateM=propStruct.strainRateM;

tft=tto/ff1a;
tfn=tno/ff1a;
kf=tft/dft;
dfn=tfn/kf;
deln=tno/km;
delt=tto/km;

if (fibril==1)
 tto=tft;
 tno=tfn;
 delt=dft;
 deln=dfn;
 km=kf;
 gno=tfn*dfn/2+gno/ff1a/ff2;
 gto=tft*dft/2+gto/ff1a/ff2;
end

if (plasticity==true)
 kfpCur=0;
 dsfm=0;
 tmefi=0;
 tmefm=0;
 umef=0;
end

un=separationVector(:,1);
ut=separationVector(:,2);

% calculate the magnitude of the separation Vector
if un>0
 um=sqrt(un^2+ut^2);
 %calculate mode mixity based on input separation vector
 xi=atan2(un,abs(ut));
else
 um=sqrt(ut^2);
 %if in overclosure treat as a pure mode II
 xi=atan2(0,abs(ut));
end
% Overclosure hardening
if un<0.0
 tn=un*k noc;
 tto=tto + tto*(ff1b-1.0)*(1-exp(((tn.*1.0e+6/tno)/km)));
end

% define the initiation criteria // yield surface
kap1=((tto-tno)/km)/(1-exp(-(pi/2)/ xi0));
switch dInit
case 0
 ume=(tto/km)-kap1*(1-exp(-xi/xi0));
case 1
 ume=deln*sqrt(1/(sin(xi)^2+(deln/delt)^2*cos(xi)^2));
end
% check if um>umMax
if sqrt(um^2)>umMax
 umMax=sqrt(um^2);
end
tme=ume*km;
% description of how G changes as a fn of xi
gtohat=gto-(0.5*tto*delt);
gnohat=gno-(0.5*tno*deln);
kap=(gtohat-gnohat)/(1-exp(-(pi/2)/xi0));
gmhat=gtohat-kap*(1-exp(-xi/xi0));
gm=gmhat+(1/2)*tme*ume;

% Fibrillation traction at start
tfit=max([tto tno])*ff1a;
% Fibrillation traction at end
tfft=max([tto tno])*ff1b;
% plastic fibrillation stiffness
kfp=(tfft-tfit)/dft;
tmefi=km*ume*ff1a;
% mixed mode fibrillation max traction
tmefm=km*ume*ff1b;
% Max fibrillation displacement
umef=(tmefm-tmefi)/kfp;
sy0=km*ume;
sinf=sy0*ff1b;
fi=0;
%%% calculate magnitude of the traction based on
% tme=km*ume*(1-eta);
tme=km*ume;
% tme2=km*ume*eta;
switch form
 case 1 % linear form
 lmstar=(2*gm/tme);
 case 2 % exponential softening
 lmstar=gm/tme-ume/2;
 case 3 % squared exponential softening
 lmstar=(2*gm/(tme*sqrt(pi)))-(ume/sqrt(pi));
 case 4
 kap=(lto-lno)/(1-exp(-(pi/2)/xi0));
 lmstar=lto-kap*(1-exp(-xi/xi0));
end

% mixed mode Fibrillation energy reduction factor
dsfm=lmstar*ff1b*ff2;

if(umMax<ume)
 tml=km*um*(1-eta);
 tm2=km*um*eta;
 psi=0;
 if form==4
 tn=km*un;
 tt=km*ut;
 end
else
 switch form
 case 1 % linear form
 if umMax<lmstar
 tm=(-tme/(lmstar-ume))*umMax+(tme*lmstar)/(lmstar-ume)*um/umMax;
 else
 tm=0;
 end
 case 2 % exponential softening
 psi=exp(-(((umMax-ume)/lmstar))*um/umMax);
 tml=tme*(psi)*(1-eta);
 tm2=0;
 case 3 % squared exponential softening
 psi=exp(-(((umMax-ume)/lmstar)^2)*(um/umMax);
 tml=tme*psi;
 tm2=0;
 case 4 % abaqus exponential softening (displacement based)
 D=1-(ume/umMax)*(1-((1-exp(-a*((umMax-ume)/(lmstar-ume))))/(1-exp(-a))));
 if um<lmstar
 tm=km*um*(1-D);
 tn=km*um*(1-D);
 tt=km*ut*(1-D);
 else
 tm=0;
 tn=0;
 tt=0;
 end
 end

 if(fibrillation==true)
 if(fibril==0)
 if (tm1<=(kf*um) && um/umMax==1)
 tm1=kf*um;
 fibril=1;
 fi=um; % fibril initiation
 end
 end

 if(plasticity==true)
 if (areaFrac==true)
 if plastic==0
 Fibrillation regime
 tm2=(kfp*umMax+tmefi)*eta;
 plastic=1; % set new traction calculations to
 end
 if plastic==1
 if umMax<=umef %if disp is below the final plastic fibrillation displacement
tm2=(kfp*umMax+tmefi)*eta; % continued plastic fibrillation

elseif umMax>umef
 tm2=(tmefm)*exp(-(umMax-umef)/dsfm)*eta;
end
end
end

% end of plasticity section

%% Viscoplasticity section
if (viscoplasticity_old==true)
 xum(inc)=um;
 cl=1;
 % set eps y as the yield strain
 eps_y=ume/cl;
 % convert current um into current strain increment eps_i
 eps_i=um/cl;
 eps(inc)=eps_i;

 % Assumed constant strain rate so dstrani is constant
 if (inc==1)
 % Initialise stress
 stress=0.0;
 delta_strain=eps(inc);
 delta_plastic_strain=0;
 sn=0;
 stresso=0.0;
 else
 stress=stresso(inc-1);
 dstrani=eps(inc)-eps(inc-1);
 delta_strain = dstrani;
 end
 dtime=delta_strain./strainRate;
 % trial stress
 trstress=stress+km*delta_strain;

 if (eps_i<eps_y)
 format long
 end
 dsn=1/en*(tinf-tto);
 iter=0;
 % Yield function fy
 fy=trstress-sn-sy0;
 % disp(['fy=' num2str(fy)])
 if(isnan(fy))
 asdf
 end
 if sdv1~=1
 % Check if beyond the yield surface
 if(fy>=0.)
 sn0=sn;
 % Set Error high initially
 deltadep=999;
 end
% Begin newton-raphson iterations and loop until

```matlab
deltadep
  tol=1.e-12;
  while (deltadep>=tol)
    % keep track of the current iteration
    iter=iter+1;
    dsn=((sinf-sy0)-sn)*1/en;
    % Yield term
    xterm=(trstress-(km*delta_plastic_strain)-sn-sy0);
    phi=((epr0/sy0^m)*xterm^m);
    dphidp=(-km*(epr0/sy0^m)*m*xterm^(m-1));
    dphidr=(-1.*(epr0/sy0^m)*m*xterm^(m-1));
    deltap=( (phi-(delta_plastic_strain/dtime))/((1/dtime)-dphidp-dsn*dphidr));
    delta_plastic_strain=delta_plastic_strain+deltadep;

  end
  end
  end
if (inc==1)
  delta_elastic_strain=delta_strain-delta_plastic_strain ;
  dstress=km*delta_elastic_strain;
  stress=dstress;
else
  delta_elastic_strain=delta_strain-delta_plastic_strain ;
  dstress=km*delta_elastic_strain;
  stress=stress+dstress;
end
stresso(inc)=stress;
delta_elastic_strain_out=delta_elastic_strain;
depo=delta_plastic_strain;
shout=sn;
dsho=dsn;
dstresso=dstress;

tm1=stresso(inc);
% If threshold stress is exceeded enter softening regime
if tm1>=tmefm
  if sdv1==0
    umCrit=um;
    epsCrit=eps(inc);
    sdv1=1;
  end
  tm1=tmefm*exp(-((eps_i-epsCrit)/(dsfm/cl))));
end
  tm2=0;
end
%% New viscoplasticity law
if (viscoplasticity==true)
  q1=1.00000000000000000;
```
q2=2.00000000000000000;
xum(inc)=um;
xun(inc)=un;
xut(inc)=ut;

% convert current um into current strain increment eps_i
cl=1;
eps_i=um/cl;
eps(inc)=eps_i;

% Assumed constant strain rate so dstrani is constant

if (inc==1)
 % Initialise stress
 delta_strain=eps(inc);
 epto=0;
 ept=epto;
 stresso(inc)=0.0;
 dum=xum(inc);
 dun=xun(inc);
 dut=xut(inc);

 if (dun==0)
 dtime=dut./strainRateT;
 elseif (dut==0)
 dtime=dun./strainRateN;
 elseif (dun~=0 && dut~=0)
 dtime=dum./strainRateM;
 else
 dtime=dun./strainRateN;
 if (dtime==0)
 dtime=dut./strainRateT;
 end
 end

 sigt=km*um;
 sight=0;
 sighto=sight;
 epdott=0;
 epdotto(inc)=epdott;
else
 sigt=stresso(inc-1);
 ept=epto;
 sight=sighto;
 epdott=epdotto(inc-1);
 dstrani=eps(inc)-eps(inc-1);
 delta_strain = dstrani;
 dum=xum(inc)-xum(inc-1);
 dun=xun(inc)-xun(inc-1);
 dut=xut(inc)-xut(inc-1);

 if (dun==0)
 dtime=abs(dut./strainRateT);
 elseif (dut==0)
 dtime=abs(dun./strainRateN);
 elseif (dun~=0 && dut~=0)
 dtime=abs(dum./strainRateM);
 else
 dtime=abs(dun./strainRateN);
 if (dtime==0)
 dtime=abs(dut./strainRateT);
 end
 end
end
strainRate=dum./dtime;
td=xtheta*dtime;
% Calculate rate tangent solution as initial guess for newton raphson
% scheme
if(sight==0)
deprda=0;
deprds=0;
else
deprds=epr0*m*sigt^((m-1.0)*sight^(-m));
deprdshepr0*m*(sigt*sight^-1.0)^m*sight^-1.0;
end
dshr=(sinf-sy0)/en*exp(-ept/en);
desp=(deprds*dum*km*td+dtime*epdott)*...
(deprds*km*td-deprdsh*dshr*td+1.0)^-1.0;

% Newton raphson control parameters
tol=1.0e-7;
minIter=5;
maxIter=1.0e+4;
res=999;
deps=debsp;
deps1=0;
iter=0;

if(sdv1<=1)
 if(dum>0)
 while ((res>=tol) || (iter<=minIter))
 deps=deps1;
 iter=iter+1;
 if(iter=maxIter)
 break
 end
 dsighnr=sy0+(sinf-sy0)*
 (1.0-exp(-
 (ept+dtime*deps)/en)-sight;
 sighnr=sy0+(sinf-sy0)*(1.0-exp(-
 (ept+dtime*deps)/en));
 ff=deps-((sigt+dsignr)/(sight+dsighnr))^m;
 term1=(sighnr*(-q1*km)-(sigt+dsignr)*(sinf-sy0)/(-q1*en)...*
 exp(-(ept+dtime*deps)/en))/(sighnr^q2);
 term2=m*xtheta*dtime*epr0*((sigt+dsignr)/sighnr)^m-q1);
 gradff=q1-term2*term1;
 deps1=deps-ff/gradff;
 if(iter==1)
 res=999;
 else
 res=abs((deps1-deps)/deps);
 end
 end
 else
 deps1=0;
 end
endif

debsp=deps1;
if(um>0)
 epdott=debsp/dtime;
 if(isnan(epdott))
epdott=0;
end
else
epdott=0;
end
ept=ept+depsp;
sight=sy0+(sinf-sy0)*(q1-exp(-ept/en));
dsig=km*(dum-depwp);

if (sdvUnload~=1)
sigt=sigt+dsig;
elseif (sdvUnload==1)
if (um<(ept))
sigt=0;
else
sigt=sigt+dsig;
end
end
if(sigt<0)
sigt=0;
sdvUnload=1;
end
epdotto(inc)=epdott;
epto=ept;
stresso(inc)=sigt;
tm1=sigt;
sighto=sight;
end
tol=0.001;
if (tm1>=tmefm-tol)
if sdv1==0
umCrit=um;
epsCrit=eps(inc);
sdv1=1;
end
end
if(sdv1==1)
if(xum(inc)<xum(inc-1))
tm1=(tmefm*exp(-(((umMax-umCrit)/(dsfm))))/(umMax-ept))*(um-ept);
if(tm1<=0)
tm1=0;
sdvUnload=2;
if(flag1==0)
umCrit2=um;
flag1=1;
end
end
else
if(sdvUnload==2)
tm1=tmefm*exp(-(((umMax-umCrit)/(dsfm))));
else
if (um < ept)
 tm1 = 0;
elseif (um < umMax)
 tm1 = (tmefm * exp(-(((umMax - umCrit)/(dsfm)))) / (umMax - ept)) * (um - ept);
else
 tm1 = tmefm * exp(-(((umMax - umCrit)/(dsfm))));
end
end
end

tm2 = 0;
stresso(inc) = tm1;
end
tm = tm1 + tm2;
if (form ~= 4)
 if (un >= 0.0)
 tn = tm * sin(xi);
 else
 tn = un * knoc;
 end
 tt = tm * cos(xi);
end
if (ut < 0)
 tt = tt * -1;
end

%% output section
outputStruct.tn = tn;
outputStruct.tt = tt;
outputStruct.tm = tm;
outputStruct.tm1 = tm1;
outputStruct.tm2 = tm2;
if (fibrillation == true)
 outputStruct.fi = fi;
end
if (areaFraction == true)
 outputStruct.kfp = kfp;
 outputStruct.umef = umef;
 outputStruct.tmefi = tmefi;
 outputStruct.tmef = tmefm;
 outputStruct.dsfm = dsfm;
end
if (viscoplasticity == true)
 outputStruct.dtime = dtime;
 outputStruct.dun = dun;
 outputStruct.dut = dut;
 outputStruct.dum = dum;
 outputStruct.ept = ept;
 outputStruct.strainRate = strainRate;
 outputStruct.strainRateN = strainRateN;
 outputStruct.strainRateT = strainRateT;
end
if (viscoplasticity_old == true)
outputStruct.delta_strain=delta_strain;
outputStruct.delta_elastic_strain=delta_elastic_strain;
outputStruct.delta_plastic_strain=delta_plastic_strain;
outputStruct.eps=eps(inc);
outputStruct.eps_y=eps_y;
outputStruct.cl=cl;
end
outputStruct.tno=tno;
outputStruct.tto=tto;
outputStruct.tme=tme;
outputStruct.un=un;
outputStruct.ut=ut;
outputStruct.um=um;
outputStruct.umMax=umMax;
outputStruct.umo=ume;
outputStruct.gmcheck=gm;
outputStruct.mode=xm;
outputStruct.lmstar=lmstar;
if form==2 || form==3
 outputStruct.psi=psi;
else
 outputStruct.psi=0;
end
end

The following UINTER files were developed in Chapter 4 and used throughout the thesis. 2D & 3D UINTERs are presented for the exponential softening model presented in Chapter 4.

2D Exponential Cohesive Zone Model UINTER:

```c
subroutine uinter(stress,ddsddr,amki,amski,flux,ddfddt,ddsddt,
                  dffdr,statev,sed,sfd,spd,svd,pnewdt,rdisp,drdisp,
                  temp,dtemp,predef,dpred,time,dtme,freqr,ciname,slname,
                  msname,props,coors,alocaldir,drot,area,chrlngth,node,ndir,
                  nstatv,npred,nprops,mcrd,kstep,kinc,kit,linper,lopenclose,
                  lstate,lsdi,lprint)

include 'aba_param.inc'

dimension stress(ndir),ddsddr(ndir,ndir),flux(2),ddfddt(2,2),
           dffdr(ndir,2),ddfdr(2,ndir),statev(nstatv),rdisp(ndir),
           drdisp(ndir),temp(2),dtemp(2),predef(2,npred),dpred(2,npred),
           time(2),props(nprops),coors(mcrd),alocaldir(3,3),
           drot(2,2),amki(ndir,ndir),amski(ndir,ndir)
character*80 ciname,slname,msname

real*8 q2,q1,tno,tto,gno,gto
real*8 km,zeta,knoc,un,ut,dun,dut
real*8 um,xi,xio,deln,delt,ue
real*8 ephi,expi,kap,gm,kap1,ume
real*8 ummax,tme,lm,s,tm
```
real*8 j11,j12,j21,j22,tt,tn
real*8 q0,viscN,viscT, uta
real*8 pi,dviscN,dviscT
logical writeOn

! Set writeOn to true or false if debugging for printed statements to .dat file
writeOn=.false.
q2=2.d0
q1=1.d0
q0=0.d0
pi=4.d0*atan(1.d0)

-

Uinter developed by Brian FitzGibbon - National University of Ireland, Galway
c email: brian.fitzgibbon@nuigalway.ie
c Development of a novel test method to investigate
mode II fracture and dissection of arteries.
c https://doi.org/10.31224/osf.io/d3jbr
-
-
c! interface strengths in mode I and mode II
tno=props(1)
tto=props(2)
c! fracture energy in mode I and mode II
gno=props(3)
gto=props(4)
c! initial elastic stiffness
km=props(5)
c! overclosure penalty stiffness (a good starting point is km*10 or 100)
knoc=props(6)
c! optional viscosity term (This model works best without viscosity i.e
zeta=0.0)
zeta=props(7)
c! ocf - overclosure hardening factor (eg ocf=1.5 means tto will scale to
tto*1.5)
ocf=props(8)
c! kocs - overclosure hardening sensitivity factor (how quickly ocf scales)
kocs=props(9)
c un=rdisp(1)*-1.
ut=rdisp(2)
dun=drdisp(1)*-1.
dut=drdisp(2)

! Optional "overclosure hardening"
if(un.lt.q0)then
 tn=un*knoc
end if

c deln=tno/km
c delt=tto/km

c viscN=(zeta*tno*dun/(dtime*deln))
c viscT=(zeta*tto*dut/(dtime*delt))

c dviscN=zeta*tno/delndtime
c dviscT=zeta*tto/delt/dtime

c! xio is the shaping parameter that describes gm as a function of xi
xio=pi/16.0

c if(un.gt.q0) then
 um=sqrt((un*un)+(ut*ut))
else
 um=abs(ut)
end if

c if (kinc.eq.1) then
 statev(7)=um
end if

c ! calculate mode mixity
if(um.eq.q0) then
 xi=0.0
 ephi=1.0
else if(un.le.q0) then
 xi=0.0
 ephi=1.0
else if(ut.eq.q0) then
 xi=pi/2.0
 ephi=exp(-xi/xio)
else
 xi=abs(atan(un/abs(ut)))
 ephi=exp(-xi/xio)
end if

c expi=q1-exp(- (pi/2.0)/xio)
c ! describe how gm changes as a fn of mode (xi)
 kap=(gto-gno)/(expi)
 gm=gto-kap*(q1-ephi)
c ! define the initiation criteria
 kap1=((tto-tno)/km)/(1.0-exp(- (pi/2.0)/xio))
c ! ume is the separation magnitude at the elastic limit
if(un.gt.q0) then
 ume=(tto/km)-kap1*(1.0-ephi)
else
 ume=delt
end if

c ! update ummax if necessary
if (um.gt.statev(7)) then
 statev(7)=um
end if

c ! magnitude of the traction at the elastic limit
 tme=km*ume
c ! parameter lms shapes the damage curve
 lms=(gm/(km*ume))+(ume/2.0)
c
!--- ELASTIC REGION

c if (statev(7).lt.ume) then
 statev(9)=-1
 statev(10)=tme
 tm=km*ume
 dtmddelm=km
c
!-- DAMAGE REGION

else if (statev(7).ge.ume) then
 tm=ume*km*exp(-(statev(7)-ume)/lms)*um/statev(7)
 dtmddelm=-km*ume/lms*exp((-statev(7)-ume)/lms)
c

statev(9)=1

if (abs((tm-statev(10))).gt.(tme*0.2)) then
 Prevent Abaqus from skipping the damage curve
 pnewdt=0.1
 if (writeOn) then
 write(6,*)'*** PnewDT=0.1 ***'
 end if
end if

statev(10)=tm

if((((UM/STATEV(7)).LT.Q1) then
 Handle "unloading during damage" scenarios
 dtmdelkm=km*(exp(-(statev(7)-ume)/lms)*um/statev(7))
end if

DTNDUN1=(((UN/UM)*(UN/UM))*DTMDDEL)
DTNDUN2=(((UM*UM)-(UN*UN))/(UM*UM*UM))*tm
DTNDUN=DTNDUN1+DTNDUN2

J11=DTNDUN

DTTDUT1=(((UT/UM)*(UT/UM))*DTMDDEL)
DTTDUT2=(((UM*UM)-(UT*UT))/(UM*UM*UM))*TM
DTTDUT=DTTDUT1+DTTDUT2

J22=DTTDUT

DTNDUT1=(((UT/UM)*(UN/UM))*DTMDDEL)
DTNDUT2=((-UT*UN)/(UM*UM*UM))*TM
DTNDUT=DTNDUT1+DTNDUT2

J12=DTNDUT

DTTDUN1=(((UN/UM)*(UT/UM))*DTMDDEL)
DTTDUN2=((-UN*UT)/(UM*UM*UM))*TM
DTTDUN=DTTDUN1+DTTDUN2

J21=DTTDUN

tn=tm*sin(xi)+viscN
 tt=tm*cos(xi)+viscT

if (un .lt. q0) then ! penalise overclosure through the knoc penalty
 stiffness
 tn=un*knoc
 j11=knoc
end if

if (ut .le. q0) then
 tt=tt * -q1
end if

if(kinc.eq.0)then
 tn=q0
 tt=q0
 j11=q0
 j12=q0
 j21=q0
j22=q0
end if

c
ddssdr(1,1)=j11+dviscN
ddssdr(1,2)=j12
ddssdr(2,1)=j21
ddssdr(2,2)=j22+dviscT
c
stress(1)=tn*-q1
stress(2)=tt
c
statev(1)=tn
statev(2)=tt
statev(3)=tm
statev(4)=un
statev(5)=ut
statev(6)=sqrt((un*un)+(ut*ut))
c! statev(7) is the max separation achieved (defined in the code above)
c! statev(8)=xi ! The separation based mode
c! statev(9) is a damage flag.
c
if(writeOn)then
write(6,*),'lms=',lms
write(6,*),'tno=',tno
write(6,*),'ddssdr(1,1)=',ddssdr(1,1)
write(6,*),'ddssdr(1,2)=',ddssdr(1,2)
write(6,*),'ddssdr(2,1)=',ddssdr(2,1)
write(6,*),'ddssdr(2,2)=',ddssdr(2,2)
end if

c
return
c
end
3D Exponential Cohesive Zone Model UINTER:

```fortran
subroutine uinter(stress, ddsddr, amki, amski, flux, ddfddt, dssddt, 
  dddfdr, statev, sed, sfd, spd, scd, pnewdt, rdisp, drdisp, 
  temp, dtemp, predef, dpred, time, dtime, freqr, ciname, slname, 
  mname, props, coords, alocaldir, drot, area, chrlngth, node, ndir, 
  nstatv, npred, nprops, mcrd, kstep, kinc, kit, linner, lopenclose, 
  lstate, lsdi, lprint)

  include 'aba_param.inc'

  dimension stress(ndir), ddsddr(ndir, ndir), flux(2), ddfddt(2, 2), 
  dssddt(ndir, 2), dddfdr(2, ndir), statev(nstatv), rdisp(ndir), 
  drdisp(ndir), temp(2), dtemp(2), predef(2, npred), dpred(2, npred), 
  time(2), props(nprops), coords(mcrd), alocaldir(3, 3), 
  drot(2, 2), amki(ndir, ndir), amski(ndir, ndir)

  character*80 ciname, slname, mname

  real*8 q2, q1, tno, tto, gno, gto
  real*8 us, uv, ts, tv, su, sqs
  real*8 st, usq, uvq, uml, cx, dus, duv
  real*8 km, xio, in, lt, ue, dnt
  real*8 ephi, expi, kap, gm, kap1, uma
  real*8 ummax, tme, lms, tm
  real*8 j11, j12, j21, j22, tt, tn
  real*8 q0, viscN, viscT, uta
  real*8 pi, dviscN, dviscT

  logical writeOn, delamOn

  ! LOGICAL, SAVE :: doOnce
  writeOn=.false.
  delamOn=.false.
  q2=2.d0
  q1=1.d0
  q0=0.d0
  pi=4.d0*atan(1.d0)

  !-------------------------------------------------------------------------
  ! Uinter developed by Brian FitzGibbon - National University of Ireland, Galway
  ! email: brian.fitzgibbon@nuigalway.ie
  ! Citation:
  ! mode II fracture and dissection of arteries. https://doi.org/10.31224/osf.io/d3jbr
  !-------------------------------------------------------------------------

  ! Interface strengths in mode i and mode ii
  tno=props(1)
  tto=props(2)

  ! Work of separation in mode i and mode ii
  gno=props(3)
  gto=props(4)

  ! Initial elastic stiffness
  km=props(5)

  ! Overclosure penalty stiffness
  knoc=props(6)
  zeta=props(7)

  ! ocf - overclosure hardening factor
```

274
ocf=props(8)
c! kocs - overclosure hardening sensitivity factor
kocs=props(9)
c
un=rdisp(1)*-1.
us=rdisp(2)
uv=rdisp(3)
ut=sqrt(us*us+uv*uv)
dun=drdisp(1)*-1.
dus=drdisp(2)
duv=drdisp(3)
dut=sqrt(dus*dus+duv*duv)
c
! Optional "overclosure hardening"
if(un.lt.q0)then
 tn=un*knc
c! ocf is the overclosure factor (eg ocf=1.5 means tto will scale to
tto*1.5)
c! kocs is the sensitivity
 tto=tto+tto*(ocf-q1)*(q1-exp(((tn*kocs/tno)/km)))
end if
ln=tno/km
lt=tto/km
ue=lt-ln
viscN=zeta*tno*dun/dtime /ln
viscT=zeta*tto*dut/dtime /lt
d viscN=zeta*tno/dtime/ln
d viscT=zeta*tto/dtime/lt
c
xio is the shaping parameter that describes gm as a function of xi
xi=pi/2.0
c
if(un.gt.q0)then
 um=sqrt(((un*un)+(ut*ut))
else
 um=abs(ut)
end if

if (kinc.eq.1)then
 statev(7)=um
end if

c' !calculate mode mixity
if(um.eq.q0)then
 xi=0.0
 ephi=1.0
else if(un.le.q0)then
 xi=0.0
 ephi=1.0
else if(ut.eq.q0)then
 xi=pi/2.0
 ephi=exp(-xi/xio)
else
 xi=abs(atan(un/abs(ut)))
 ephi=exp(-xi/xio)
end if

c exp1=q1-exp(-(pi/2.0)/xio)
c' !describe how gm changes as a fn of xi
kap=(gto-gno)/(exp1)
gm=gto-kap*(q1-ephi)
c' !define the initiation criteria
kap1=((tto-tno)/km)/(1.0-exp(-(pi/2.0)/xio))
c' !ume is the separation magnitude at the elastic limit
if(un.gt.q0)then
ume=(tto/km)-kap1*(1.0-ePhi)

else
 ume=lt
end if

c
dnt=(un**2/ut**2)+1.0
c
c' !update ummax if necessary
if (um.gt.statev(7)) then
 statev(7)=um
end if
c' !magnitude of the traction at the elastic limit
tme=km*ume
c' !parameter lms is based on the integral of tm from ume to um
lms=(gm/(km*ume))+(ume/2.0)
c

c
if (statev(7).lt.ume) then
 tm=km*um
 statev(13)=tme
c' ! dtndun note:: if un is positive then knoc=km

! new jacobian for 3d - elastic region

if(un.le.q0)
 j11=knoc
else
 j11=km+dviscN
end if
j12=q0
j13=q0
j21=q0
j22=km+dviscT
j23=q0
j31=q0
j32=q0
j33=km+dviscT

c else if (statev(7).ge.ume) then ! softening regime
c
tm=ume * km * exp(-(statev(7) - ume) / lms) * um / statev(7)
c
if (abs((tm-statev(13))).gt.(tme*0.2))then
 pnewdt=0.1
 if (writeOn) then
 write(6,*)'NODE=',NODE
 write(6,*)'*** PnewDT=0.1 ***'
 write(6,*)'tmNew-tmOld=',abs((tm-statev(13)))
 write(6,*)'Dtime=',dtime
 end if
end if
c
 statev(13)=tm
c
else if (statev(7).ge.ume) then ! softening regime

c
usq=sqrt(un ** 2 + us ** 2 + uv ** 2)
uvq=sqrt(un ** 2 + us ** 2 + ut ** 2)
sqs=sqrt(us ** 2 + ut ** 2)
su=1 + un ** 2 / (us ** 2 + uv ** 2)
uml=(lt - ln) * (0.1D1 - exp(-atan2(un, sqrt(us ** 2 + ut ** 2)) / xio))
st=1 + un ** 2 / (us ** 2 + ut ** 2)
cx=lt - (lt - ln) / expI * (0.1D1 - exp(-atan2(un, sqs) / xio))

 cdx=uvq - lt + (lt - ln) / expI * (0.1D1 - exp(-atan2(un, sqs) / xio))

276
\[j_{21} = \frac{(u^2 + v^2)}{xio} \]

\[j_{22} = \frac{(u^2 + v^2)}{xio} \]

\[j_{11} = \frac{(u^2 + v^2)}{xio} \]

\[j_{12} = \frac{(u^2 + v^2)}{xio} \]

\[j_{13} = \frac{(u^2 + v^2)}{xio} \]

\[j_{21} = \frac{(u^2 + v^2)}{xio} \]

\[j_{22} = \frac{(u^2 + v^2)}{xio} \]

\[j_{23} = \frac{(u^2 + v^2)}{xio} \]

\[j_{31} = \frac{(u^2 + v^2)}{xio} \]

\[j_{32} = \frac{(u^2 + v^2)}{xio} \]

\[j_{33} = \frac{(u^2 + v^2)}{xio} \]
\texttt{j23 = if (lt.le.q0) then \\
\hspace{1em} j11 = knoc+dviscT \\
\hspace{1em} else if (ut.le.q0) then}
\begin{verbatim}
j32=q0
ej33=q0
end if
end if

tn=tm*\sin(x_i)+viscN

tt=tm*\cos(x_i)+viscT

if(un.le.q0) then
 tn=un*knoc+viscN
 j11=knoc+dviscN
end if

if(ut.eq.q0) then
 ts=q0
tv=q0
else
 ts=tt*(us/ut)
tv=tt*(uv/ut)
end if

ddsdr(1,1)=j11
ddsdr(1,2)=j12
ddsdr(1,3)=j12
ddsdr(2,1)=j21
ddsdr(2,2)=j22
ddsdr(2,3)=j23
ddsdr(3,1)=j31
ddsdr(3,2)=j32
ddsdr(3,3)=j33

stress(1)=tn*-q1
stress(2)=ts
stress(3)=tv

statev(1)=tn
statev(2)=tt
statev(3)=ts
statev(4)=tv
statev(5)=tm
statev(6)=un

statev(7) is the max displacement achieved
statev(8)=ut
statev(9)=us
statev(10)=uv
statev(11)=um
statev(12)=xi

return
end
\end{verbatim}
The following UINTER contains the elastic fibrillation CZM formulation presented in Chapter 6. A 2D form is presented here.

Chapter 6: Elastic Fibrillation Cohesive Zone Model (EF-CZM) UINTER:

```fortran
subroutine uinter(stress, ddsddr, amki, amski, flux, ddfddt, ddsddt, ddfddr, statev, sed, sdf, spd, scd, pnewdt, rdisp, drdisp, temp, dtemp, predef, dpred, time, dtime, freqr, ciname, slname, mname, props, coords, alocaldir, drot, area, chrlength, node, ndir, nstatv, npreds, mcrd, kstep, kinc, kit, limper, lopenclose, lstate, lsd, lprint)

include 'aba_param.inc'

dimension stress(ndir), ddsddr(ndir, ndir), flux(2), ddfddt(2, 2), ddsddt(ndir, 2), ddfddr(2, ndir), statev(nstatv), rdisp(ndir), drdisp(ndir), temp(2), dtemp(2), predef(2, npred), dpred(2, npred), time(2), props(nprops), coords(mcrd), alocaldir(3, 3), drot(2, 2), amki(ndir, ndir), amski(ndir, ndir)

ccharacter*80 ciname, slname, mname

creal*8 q2, q1, tno, tto, gno, gto

creal*8 km, zeta, knoc, un, dun, dut

creal*8 um, xi, xio, ln, lt, ue, dnt

creal*8 ephi, expi, kap, gm, kap1, uma

creal*8 umax, tme, lms, tm

creal*8 j11, j12, j21, j22, tt, tn

creal*8 q0, viscN, viscT, uta

creal*8 pl, dviscN, dviscT

creal*8 ff1, ff2, dft, tfn, kf, dfn

logical writeOn, delamOn

writeOn=.true.
delamOn=.true.

if (writeOn) then
  write(6,*)'
  end if

q2=2.d0
q1=1.d0
q0=0.d0
pl=4.d0*atan(1.d0)

!interface strengths in mode i and mode ii

tno=props(1)
tto=props(2)

gno=props(3)
gto=props(4)

!initial elastic stiffness

km=props(5)

overclosure penalty stiffness

knoc=props(6)
zeta=props(7)
ff1=props(8)
ff2=props(9)
dft=props(10)

tft=tto/ff1
tfn=tno/ff1

kf=tft/dft
dfn=tfn/kf

un=rdisp(1)*-1.
```

280
ut=rdisp(2)

dun=rdrisp(1)*-1.

dut=rdrisp(2)

ln=tno/km

lt=tto/km

ue=lt-ln

viscN=(zeta*tno*dun/(dtime*ln))

viscT=(zeta*tto*dut/(dtime*lt))

c
dviscN=zeta*tno/ln/dtime
dviscT=zeta*tto/lt/dtime

c
reset parameters if fibrillation started in previous increment

if(int(statev(11)).eq.int(1))then

tto=tft

tno=tfn

dl=dft

km=kf

gno=tfn*dfn/2+gno/ff1/ff2

gto=tft*dft/2+gto/ff1/ff2

end if

c
xio is the shaping parameter that describes gm as a function of xi

xio=pi/2.0

c
if(un.gt.q0)then

um=sqrt((un*un)+(ut*ut))

else

um=abs(ut)

end if

c
if (kinc.eq.1)then

statev(7)=um

statev(11)=-1

end if

c
!calculate mode mixity

if(um.eq.q0)then

xi=0.0

ephi=1.0

else if(un.le.q0)then

xi=0.0

ephi=1.0

else if(ut.eq.q0)then

xi=pi/2.0

ephi=exp(-xi/xio)

else

xi=abs(atan(un/abs(ut)))

ephi=exp(-xi/xio)

end if

c
expi=q1-exp(-(pi/2.0)/xio)

c
!describe how gm changes as a fn of xi

kap=(gto-gno)/(expi)

gm=gto-kap*(q1-ephi)

c
!define the initiation criteria

kap1=((tto-tno)/km)/(1.0-exp(-(pi/2.0)/xi0))

c
! ume is the separation magnitude at the elastic limit

if(un.gt.q0)then

ume=(tto/km)-kap1*(1.0-ePhi)

else

ume=lt

end if

c
dnt=(un**2/ut**2)+1.0

c
!update ummax if necessary
if (um.gt.statev(7)) then
 statev(7)=um
end if

c' !magnitude of the traction at the elastic limit
tm=km*ume
c' !parameter lms is based on the integral of tm from ume to um
lms=(gm/(km*ume))-(ume/2.0)

c
---------------------------- ELASTIC REGION

c
if (statev(7).lt.ume) then
 statev(9)=-1
 statev(10)=tme
tm=km*um
c' ! dtndun note:: if un is positive then knoc=km
 if(un.le.q0)then
 j11=knoc
 j12=q0
 j21=q0
 j22=km
 else
 c' dtndun
 j11 =km
 j12 =q0
 j21 = q0
 j22 =km
 end if
end if

DAMAGE REGION

c else if (statev(7).ge.ume) then ! softening regime

tm=ume * km * exp((-statev(7) - ume) / lms) * um / statev(7)

c statev(9)=1
 if (abs((tm-statev(10))).gt.(tme*0.2))then
 pnewdt=0.1
 if (writeOn) then
 write(6,*),'NODE=',NODE
 write(6,*),'*** PnewDT=0.1 ***'
 write(6,*),'tmNew-tmOld=',abs((tm-statev(10)))
 write(6,*),'Dtime=',dtime
 end if
 end if
 end if

c first fibrillation increment (non extra cutback implemented for now)

c IF(int(statev(11)).eq.int(-1)) THEN
 IF (tm.lt.kf*um) THEN
 tm=kf*um
 j11 =kf
 j12 =q0
 j21 = q0
 j22 =kf
 statev(10)=tme
 END IF
 statev(11)=1
END IF

statev(10)=tm

delamOn=.true.
c
IF((UM/STATEV(7)).LT.Q1)THEN
 J11= km * (exp(-(statev(7) - ume) / lms) * um / statev(7))
 J12=q0
 J21=q0
 J22= km * (exp(-(statev(7) - ume) / lms) * um / statev(7))

282
! penalise overclosure through the knoc penalty

ELSE IF((UM/STATEV(7)).GE.Q1)THEN

C' ! dtndun
if (ut.eq.q0) then
 j11=q0
 j12=q0
 j21=q0
 j22=q0
else if (un.le.q0) then
 j11= knoc
 j12=q0
 j21=q0
 j22=q0
j22=-km * ume * exp((-ume + um) / lms) * ut ** 2 / um ** 2 / lms
a + km * ume * exp((-ume + um) / lms) / um - km * ume * exp((-ume + um) / lms) * ut ** 2 * (ut ** 2) ** (-0.3D1 / 0.2D1)
else

C' ! dtndun
 j11= -km * (lt - ln) / exPI / ut / dnt / xio * ePhi * exp((-ume + um) / lms) * (un / um + km) * ume * (-un / um + (lt - ln) / exPI / ut / dnt / xio * ePhi / lms + (-ume + um) / lms ** 2 * (-kap / ut / dnt / xio * ePhi / km / u / - km * ume * exp((-ume + um)) / lms) / um - km * ume * exp((-ume + um)) / lms) / um ** 2 * (un ** 2 + ut ** 2) ** (-0.3D1 / 0.2D1)
end if
end if
END IF

C ! dtndun
 j21= -km * (lt - ln) / exPI / dnt / xio * ePhi / exp((-ume + um) / lms) / um + km * ume * (-un / um + (lt - ln) / exPI / ut / dnt / xio * ePhi / lms + (-ume + um) / lms ** 2 * (-kap / ut / dnt / xio * ePhi / km / u / - km * ume * exp((-ume + um)) / lms) / um - km * ume * exp((-ume + um)) / lms) / um ** 2 * (un ** 2 + ut ** 2) ** (-0.3D1 / 0.2D1)
end if
end if
END IF

C ! dtndun
 j22= -km * (lt - ln) / exPI / ut / dnt / xio * ePhi / exp((-ume + um) / lms) / um + km * ume * (-un / um - (lt - ln) / exPI / ut / dnt / xio * ePhi / lms + (-ume + um) / lms ** 2 * (-kap / ut / dnt / xio * ePhi / km / u / - km * ume * exp((-ume + um)) / lms) / um - km * ume * exp((-ume + um)) / lms) / um ** 2 * (un ** 2 + ut ** 2) ** (-0.3D1 / 0.2D1)
c
end if
end if
END IF

tn=tm*sin(xi)+viscN

tt=tm*cos(xi)+viscT

c
if (un .lt. q0) then
 ! penalise overclosure through the knoc penalty
 stiffness
 tn=un*knoc
 j11=knoc
if (ut .le. q0) then
 tt = tt * -q1
end if

if (kinc.eq.0) then
 tn = q0
 tt = q0
 j11 = q0
 j12 = q0
 j21 = q0
 j22 = q0
end if

if (un.lt.q0) then
 ddsddr(1,1) = j11
else
 ddsddr(1,1) = j11 + dviscN
end if

ddsdrr(1,2) = j12
ddsdrr(2,1) = j21
ddsdrr(2,2) = j22 + dviscT

stress(1) = tn * -q1
stress(2) = tt

statev(1) = tn
statev(2) = tt
statev(3) = tm
statev(4) = un
statev(5) = ut
statev(6) = sqrt((un*un)+(ut*ut))
statev(8) = xi

return
end
The following UINTER contains the viscoplastic cohesive zone formulation presented in Chapter 6. A 2D form is presented here.

Chapter 6: Viscoplastic Cohesive Zone Model (VP-CZM) UINTER:

```fortran
subroutine uinter(stress, ddsddr, amki, amski, flux, ddfddt, ddsddt, ddfdr, statev, sed, sdf, spd, svd, pnewdt, rdisp, drdisp, temp, dtemp, predef, dpred, time, dttime, freqr, ciname, slname, msname, props, coords, alocaldir, drot, area, crlength, node, ndir, nstatv, npred, nprops, mcrd, kstep, kinc, kit, linper, lopenclose, lstate, lsd, lprint)

!interface strengths in mode i and mode ii
ctno=props(1)
tto=props(2)

!work of separation in mode i and mode ii
gno=props(3)
gto=props(4)

!initial elastic stiffness
km=props(5)

!overclosure penalty stiffness
knoc=props(6)
zeta=props(7)

!Plasticity parameters
ff1a=props(8) ! strength reduction parameter a
ff1b=props(9) ! strength reduction parameter b
ff2=props(10) ! fibrillation energy reduction parameter
```

```fortran
! if(node.eq.1060)then
! writeOn=.true.
! end if
delamOn=.true.
if (writeOn) then
write(6,*), '_________________________________'
end if

c
q2=2.d0
q1=1.d0
q0=0.d0
pi=4.d0*atan(1.d0)
```

The following text describes the functions and variables used in the UINTER subroutine. It includes the strengths in mode i and mode ii, the work of separation in mode i and mode ii, the initial elastic stiffness, overclosure penalty stiffness, and plasticity parameters. The subroutine is part of the ABAQUS code for cohesive zone modeling, as outlined in Chapter 6 of the reference material.
c' Rate related parameters
epr0 = props(11) ! epsilon p zero
m = props(12) ! strain rate hardening exponent
en = props(13) ! epsilon^n similar to initial hardening slope
(smaller = stiffer)

\[\text{tfit} = \text{tto}^{\text{ff1a}} \]
\[\text{tfft} = \text{tto}^{\text{ff1b}} \]
\[\text{sy0} = \text{tto} \]
\[\text{sinf} = \text{sy0}^{\text{ff1b}} \]
\[\text{theta} = 1.0 \quad \text{// forward euler} \]
\[\text{un} = \text{rdisp}(1)^*\text{-}1. \]
\[\text{ut} = \text{rdisp}(2) \]
\[\text{dun} = \text{drdisp}(1)^*\text{-}1. \]
\[\text{dut} = \text{drdisp}(2) \]
\[\text{dum} = \sqrt{((\text{dun}^2+\text{dut}^2))} \]
\[\text{statev}(16) = \text{dum/dtime} \]
\[\text{ln} = \text{tno/km} \]
\[\text{lt} = \text{tto/km} \]
\[\text{ue} = \text{lt} - \text{ln} \]
\[\text{viscN} = (\text{zeta*tno*}\text{dun}/(\text{dtim*ln})) \]
\[\text{viscT} = (\text{zeta*ttot/dut/(dtim*lt)}) \]

d\[\text{dviscN} = \text{zeta*tno/ln/dtime} \]
\[\text{dviscT} = \text{zeta*ttot/lt/dtime} \]

c' xio is the shaping parameter that describes gm as a function of xi
\[\text{xio} = \pi/2.0 \]

c if (\text{un.gt.q0}) then
\[\text{um} = \sqrt{((\text{un}^2+\text{ut}^2))} \]
else
\[\text{um} = \text{abs}(\text{ut}) \]
end if

c if (kinc.eq.1) then
\[\text{statev}(25) = \text{um} \]
\[\text{statev}(7) = \text{um} \]
\[\text{statev}(28) = \text{um} \]
\[\text{statev}(29) = \text{q0} \]
\[\text{statev}(9) = \text{-}1 \]
\[\text{statev}(12) = \text{q0} \]
\[\text{statev}(14) = \text{q0} \]
\[\text{statev}(27) = \text{q0} \]
\[\text{statev}(18) = \text{q0} \]
\[\text{statev}(11) = \text{q0} \]
\[\text{tm} = \text{q0} \]
end if

c' !calculate mode mixity
if (\text{um.eq.q0}) then
\[\text{xi} = 0.0 \]
\[\text{ephi} = 1.0 \]
else if (\text{un.le.q0}) then
\[\text{xi} = 0.0 \]
\[\text{ephi} = 1.0 \]
else if (\text{ut.eq.q0}) then
\[\text{xi} = \pi/2.0 \]
\[\text{ephi} = \exp(-\text{xi}/\text{xio}) \]
else
\[\text{xi} = \text{abs}(\text{atan}(\text{un}/\text{abs}(\text{ut}))) \]
\[\text{ephi} = \exp(-\text{xi}/\text{xio}) \]
end if

c expi = q1*exp(-(\pi/2.0)/\text{xio})
c' ! describe how gm changes as a fn of xi
kap=(gto-gno)/(expi)
gm=gto-kap*(q1-ephi)
c'
!define the initiation criteria
kap1=((tto-tno)/km)/(1.0-exp(-(pi/2.0)/xi0))
c'
! uma is the separation magnitude at the elastic limit
if(un.gt.q0) then
 uma=(tto/km)-kap1*(1.0-ephi)
else
 uma=lt
end if
c
dnt=(un**2/ut**2)+1.0
c'
! update uma if necessary
if(uma.gt.statev(28)) then
 statev(28)=uma
end if
c'
!magnitude of the traction at the elastic limit
tme=km*uma
c'
More plasticity parameters
dft=0.5d0
tfit=tto*ff1a
tfft=tto*ff1b
kfp=(tfft-tfit)/dft
tmefi=km*ume*ff1a ! initial plastic traction
tmefm=km*ume*ff1b ! final plastic traction
uma=(tmefm-tmefi)/kfp
c'
!parameter lms is based on the integral of tm from uma to um
lms=(gm/(km*ume))-(uma/2.0)
dsfm=lms*ff1b*ff2
c
dsn=q1/en*(sinf-sy0)
c
c
statev(22)=dum
umCrit=100.d0
if(un.lt.q0) then
 if(writeOn) then
 write(6,*)'overclosing'
 end if
end if
if((statev(7)-um).gt.q0) then
 statev(22)=statev(22)*-q1
end if
statev(26)=statev(22)+statev(26)
if(kinc.eq.1) then
 statev(7)=um
 statev(9)=-1
 statev(10)=tmefm
 statev(17)=q0
 statev(19)=dum
 statev(20)=dut
 statev(21)=dun
 statev(26)=q0
 statev(27)=dum
 sigt=km*statev(27)
 if(dum.eq.q0) then
 sigt=q0
 end if
 statev(12)=sigt
tm=statev(12)
Assign variables from state variables
sigt=statev(12)
ept=statev(13)
epdo=statev(14)
sight=statev(15)

td=theta*dtim
if(sight.eq.q0)
 deprds=q0
deprdsh=q0
else
 deprds=epr0*m*sigt**(m-q1)*sight**(-q1)
deprdsh=-epr0*m*(sigt*sight**(-q1))**m*sight**(-q1)
end if

dshr=(sinf-sy0)/en*exp(-ept/en)
debsp=(deprds*statev(22)*km*td+dtime*epdott)*(deprds*km*td-

depdsh*dshr*td+q1)**(-q1)

tol=1.0e-7
minIter=5
maxIter=1.0e+4
res=999
deps=debsp
iter=0

if(um.ge.statev(7))then
 if(statev(9).ne.3)then
 do while (((res.ge.tol).or.(iter.le.minIter))
 deps=deps1
 iter=iter+1
 if(iter.ge.maxIter)then
 exit
 end if
 dsighnr=sy0+(sinf-sy0)*(q1-exp(-(ept+dtime*deps)/en))
sighnr=sy0+(sinf-sy0)*(q1-exp(-(ept+dtime*deps)/en))
 ff=deps-(q1-theta)*dtime*epdott*theta*dtime*epdott*theta*
 ((sigt+dsignr)/(sighnr)**m)
 term1=(sighnr*(-q1*km)-(sigt+dsignr)*(sinf-sy0)/(-q1*en))
 term2=m*theta*dtime*exp(-ept+dtime*deps)*(-ept+dtime*deps)*en)
 gradff=q1-term2*term1
deps1=deps-ff/gradff
 if(iter.eq.1)then
 res=999
 else
 res=abs((deps1-deps)/deps)
 end if
 end do
if(iter.ge.maxIter) then
 pnewdt=0.1
end if
end if
end if
depsp=deps1

if(depsp.gt.dum) then
 if(writeOn) then
 write(6,'*') 'depsp = dum'
 end if
end if

if (um.ge.statev(7)) then
 xdepsp=depsp* um/statev(26)
else
 xdepsp=q0
desp=q0
end if

if(statev(22).lt.q0) then
desp=q0
end if
epdott=depsp/dtime

**
ept=ept+xdeps

if(ept.gt.statev(28)) then
 ept=statev(28)
 ! pnewdt=0.1
 if(writeOn) then
 write(6,'*') 'ept>umMax!'
 end if
end if

sight=sy0+(sinf-sy0)*(q1-exp(-ept/en))
sigt=km*(um-ept)
statev(12)=sigt
tm=sigt
statev(13)=ept
statev(29)=depsp
statev(14)=epdott
statev(15)=sight
statev(17)=statev(7)-ept
statev(20)=statev(20)+dut
statev(21)=statev(21)+dun
end if

if((statev(13).ge.1.e-20).and.(statev(9).eq.-1)) then
 statev(9)=1
end if

if (statev(22).ne.q0) then
 DTMDDELM=km*(q1-(ept/um))
else
 DTMDDELM=km
end if
if (um.lt.statev(7)) then
dtmddelm=km
end if

if(statev(12).ge.tmefm) then
 if(kinc.gt.1) then
 if(statev(9).ne.3) then
 statev(9)=3
 statev(11)=um
 statev(18)=tm
 end if
 end if
end if

if(statev(9).eq.3) then
 umCrit=statev(11)
 tm=tmefm*exp(-(statev(28)-umCrit)/dsfm)
 dtmddelm=-tmefm/dsfm*exp(-(statev(28)-umCrit)/dsfm)
end if

if(um.lt.statev(7)) then
 dtmddelm=km
end if

' If threshold stress is exceeded enter softening regime

Assign the critical um

DTNDUN1=((UN/UM)*(UN/UM))*DTMDDELM
DTNDUN2=(((UM*UM)-(UN*UN))/(UM*UM*UM))*tm
DTNDUN=DTNDUN1+DTNDUN2
J11=DTNDUN
| J11=km

DTTDUT1=((UT/UM)*(UT/UM))*DTMDDELM
DTTDUT2=(((UM*UM)-(UT*UT))/(UM*UM*UM))*tm
DTTDUT=DTTDUT1+DTTDUT2
J22=DTTDUT
| J22=km

DTNDUT1=((UT/UM)*(UN/UM))*DTMDDELM
DTNDUT2=((-UT*UN)/(UM*UM*UM))*tm
DTNDUT=(DTNDUT1+DTNDUT2)
| J12=q0
J12=DTNDUT

DTTDUN1=((UN/UM)*(UT/UM))*DTMDDELM
DTTDUN2=((-UN*UT)/(UM*UM*UM))*tm
DTTDUN=(DTTDUN1+DTTDUN2)
| J21=q0
J21=DTTDUN
| J21=DTNDUT

statev(7)=um
statev(19)=statev(19)+statev(27)
statev(12)=tm
tn=tm*sin(xi)+viscN
tt=tm*cos(xi)+viscT
if (statev(9).eq.3) then
 if (abs((tm-statev(10))).gt.(tme*0.05)) then
 pnewdt=0.1
 end if
 statev(10)=tm
end if

if (un .lt. q0) then ! penalise overclosure through the knoc penalty
stiffness
 tn=un*knoc
 j11=knoc
end if

if (ut .le. q0) then
 tt=tt * -q1
end if

if(isnan(J11)) then
 J11=q0
end if
if(isnan(J12)) then
 J12=q0
end if
if(isnan(J21)) then
 J21=q0
end if
if(isnan(J22)) then
 J22=q0
end if

if(un.lt.q0) then
 ddsddr(1,1)=J11
else
 ddsddr(1,1)=J11 + dviscN
end if
ddsdrr(1,2)=J12
ddsdrr(2,1)=J21
dsdrrd(2,2)=J22 + dviscT

stress(1)=tn*-q1
stress(2)=tt

statev(1)=tn
statev(2)=tt
statev(3)=tm
statev(4)=un
statev(5)=ut
statev(6)=sqrt((un*un)+(ut*ut))
statev(8)=x1

return
end
Chapter 7: The following Python script is used to generate the parameterised idealised aorta presented in Chapter 7. The script receives user input to direct the parameter being perturbed. Optionality to automatically upload files to a server (HPC for example) using SFTP protocol is included.

```
1. from abaqus import *
2. from abaqusConstants import *
3. from numpy import linspace
4. from textRepr import prettyPrint
5. from random import *
6. import part
7. import material
8. import section
9. imp import assembly
10. import step
11. i mport interaction
12. i mport load
13. i mport mesh
14. i mport optimization
15. i mport job
16. i mport sketch
17. i mport visualization
18. i mport connectorBehavior
19. i mport os
20. i mport sys
21. i mport fileinput
22. sys.path.append('C:\Python27\Lib\site-packages')
23. # import paramiko
24. ##
25. fields=(("Arch_Radius","0"),("Wall_Thickness","0"),("Stiffness","0"),("stiffness mismatch","0"),("Layer_Thickness","0"))
26. ArchRadius,WallThickness,Stiffness,LayerStiffness,LayerThickness= (getInputs(fields=fields,label='Enter 1 in ONE of the boxes below',
27.     dialogTitle='What Parameter are you varying?'))
28.
29. SIGMA=[1E-02,5E-03,1E-03,1E-04,1E-05]
30. signname=["1E-2","5E-3","1E-3","1E-4","1E-5"]
31. o=0
32. elementsize=0.6
33. SIGM,DELN,DELT,SIGT,ZETA = SIGMA[0],0.3,0.3,SIGMA[0],SIGMA[0]*1E-02
34.
35. if float(ArchRadius)==1.0 and (float(WallThickness)+float(Stiffness)+float(LayerStiffness)+float(LayerThickness)==0.0):
36.     print('Varying Arch Radius')
37.     partname='ArchR_SIG'+str(signname[o])+'_'
38.     arcl = [12.5,17.5,27.5,42.5,62.5]
39.     tube = [2*arcl[0],2*arcl[1],2*arcl[2],2*arcl[3],2*arcl[4]]
40.     rout= [10.0,10.0,10.0,10.0,10.0]
41.     rin = [8.0,8.0,8.0,8.0,8.0]
42.     LE=[10.5,0.5,0.5,0.5,0.5]
43.     elif float(WallThickness)==1.0 and (float(ArchRadius)+float(Stiffness)+float(LayerStiffness)+float(LayerThickness)==0.0):
44.         print('Varying Wall Thickness')
45.         partname='WallThick_SIG'+str(signname[o])+'_'
46.         arcl = [30.0,30.0,30.0,30.0,30.0]
47.         tube = [2*arcl[0],2*arcl[1],2*arcl[2],2*arcl[3],2*arcl[4]]
```
elif float(LayerStiffness)==1.0 and (float(ArchRadius)+float(WallThickness)+float(LayerStiffness)+float(LayerThickness)==0.0):
 print('Varying Layer Stiffness')
 partname='stiffness_mismatch_SIG'+str(signame[o])+'_'
 arcl = [30.0,30.0,30.0,30.0,30.0]
 tube = [2*arcl[0],2*arcl[1],2*arcl[2],2*arcl[3],2*arcl[4]]
 rout = [10.0,10.0,10.0,10.0,10.0]
 rin = [8.0,8.0,8.0,8.0,8.0]
 LE=[0.5,0.5,0.5,1.25,2.5]
elif float(LayerThickness)==1.0 and (float(ArchRadius)+float(WallThickness)+float(LayerStiffness)+float(LayerThickness)==0.0):
 print('Varying Layer Thickness')
 partname='Layer_thickness_SIG'+str(signame[o])+'_'
 arcl = [30.0,30.0,30.0,30.0,30.0]
 tube = [2*arcl[0],2*arcl[1],2*arcl[2],2*arcl[3],2*arcl[4]]
 rout = [10.0,10.0,10.0,10.0,10.0]
 rin = [8.0,8.0,8.0,8.0,8.0]
 LE=[0.5,0.5,0.5,0.5,0.5]
 thick=[0.25,0.375,0.5,0.625,0.75]
else:
 raise ValueError('More than one parameter selected')
 # print('More than one parameter selected')

##
81. diastolic=0.0186657912
82. systolic=0.0159986868
83. fields1=(('Torsion','0'),('Caudal','0'),('Cranial','0'),('Anterior','0'),('Posterior','0'))
84. Torsion, Caudal, Cranial, Anterior, Posterior= (getInputs(fields=fields1,label ='Enter 1 in ONE of the boxes below',dialogTitle='What Mode of Loading?'))
85. torque=0.785398
86. caudal=-30.0
87. cranial=30.0
88. anterior=-30.0
89. posterior=30.0
90. modelname='Model-1'
91.
92. jobname=partname
93. cutbacks=10.0
94. ##
95. #### Create Step 1 - Pressure
96. mdb.models[modelname].StaticStep(name='Step-1', previous='Initial',
97. maxNumInc=100000, initialInc=0.25, minInc=1e-11, maxInc=0.5, nlgeom=ON)
98. mdb.models[modelname].steps['Step-1'].control.setValues(allowPropagation=OFF,
99. resetDefaultValues=OFF, timeIncrementation=(4.0, 8.0, 9.0, 16.0, 10.0, 4.0,
100. 12.0, cutbacks, 6.0, 3.0, 50.0))
101. #### Create Step 2 - Torque
102. mdb.models[modelname].StaticStep(name='Step-2', previous='Step-1',
103. maxNumInc=100000, initialInc=0.05, minInc=1e-11, maxInc=0.1, nlgeom=ON)
104. mdb.models[modelname].steps['Step-2'].control.setValues(allowPropagation=OFF,
resetDefaultValues=OFF, timeIncrementation=(4.0, 8.0, 9.0, 16.0, 10.0, 4.0
,
12.0, cutbacks, 6.0, 3.0, 50.0))

Create Field Output and History Output

try:

mdb.models[modelname].fieldOutputRequests['F-Output-1'].setValues(variables=(
'S', 'LE', 'U', 'RF', 'COORD'))

mdb.models[modelname].historyOutputRequests['H-Output-1'].setValues(variables=(
'ALLIE', 'ALLKE', 'ALLSE', 'ETOTAL'))

except:

print('')

print('')

for i in xrange(len(arcl)):

for i in range(0,2):

Create Material

material='LE'+str(i)

mdb.models[modelname].materials[material].Elastic(table=((LE[i], 0.45,))

Create Section

mdb.models[modelname].HomogeneousSolidSection(name=material, material=material)

tol=arcl[i]/(20.0*arcl[i])

s = mdb.models[modelname].ConstrainedSketch(name='__sweep__', sheetSize=20
0.0)

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints

Arc length (R) goes here

s.ArcByCenterEnds(center=(0.0, 0.0), point1=(arcl[i], 0.0), point2=(-
arcl[i], 0.0), direction=COUNTERCLOCKWISE)

Line (tube) goes here

s.Line(point1=(arcl[i], 0.0), point2=(arcl[i], -tube[i]))

si = mdb.models[modelname].ConstrainedSketch(name='__profile__', sheetSize =200.0, transform=(1.0, -1.2246467914735e-16, 0.0, -0.0, 0.0, 1.0, -1.2246467914735e-16, -1.0, -0.0, -25.0, 3.061169786838e-15, 0.0))

g1, v1, d1, c1 = s1.geometry, s1.vertices, s1.dimensions, s1.constraints

Define the circular profile of the arch, inner diameter and outer diame
ter

s1.CircleByCenterPerimeter(center=(0.0, 0.0), point1=(rin[i], 0.0))

s1.CoincidentConstraint(entity1=v1[0], entity2=g1[2], addUndoState=False)

if float(LayerThickness)==1.0 and (float(ArchRadius)+float(WallThickness)+
float(Stiffness))float(LayerStiffness)==0.0):

s1.CircleByCenterPerimeter(center=(0.0, 0.0), point1=(rin[i]+(rout[i]-
rin[i])*thick[i], 0.0))

else:

s1.CircleByCenterPerimeter(center=(0.0, 0.0), point1=(rin[i]+(rout[i]-
rin[i])/2, 0.0))

Define the part name

partname=partname+str(i)

p = mdb.models[modelname].Part(name=partname, dimensionality=THREE_D, typ
e=DEFORMABLE_BODY)

p.BaseSolidSweep(sweep=s, path=s)

Define the job name

jobname=partname

####
Create Datum Planes

```python
p.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=0.0)
p.DatumPlaneByPrincipalPlane(principalPlane=YZPLANE, offset=0.0)
p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset=0.0)
d1 = p.datums
```

Create Principal Axes

```python
p = mdb.models[modelname].parts[partnamei]
p.DatumAxisByPrincipalAxis(principalAxis=ZAXIS)
p = mdb.models[modelname].parts[partnamei]
p.DatumAxisByPrincipalAxis(principalAxis=YAXIS)
p = mdb.models[modelname].parts[partnamei]
p.DatumAxisByPrincipalAxis(principalAxis=XAXIS)
```

Assign Section

```python
p = mdb.models[modelname].parts[partnamei]
p.SectionAssignment(region=region, sectionName=material, offset=0.0, offsetField='', thicknessAssignment=FROM_SECTION)
```

Place Instance in The assembly

```python
a = mdb.models[modelname].rootAssembly
p = mdb.models[modelname].parts[partnamei]
a.Instance(name=partnamei, part=p, dependent=ON)
```

Partition the Geometry

```python
c = p.cells
p.PartitionCellByPlaneThreePoints(cells=c, point1=(arcl[i],0.0,0.0), point2=(-arcl[i],0.0,0.0), point3=(-arcl[i],-arcl[i],0.0))
```

Create cylindrical coordinate systems

```python
# dia
a.DatumCsysByThreePoints(name='dia'+str(i), coordSysType=CYLINDRICAL, origin=(-arcl[i], 0.0, 0.0), point1=(-arcl[i],0.0,0.0), point2=(-arcl[i]+rin[i],0.0,0.0))
```

Assign Element Type

```python
p = mdb.models[modelname].parts[partnamei]
elemType1 = mesh.ElemType(elemCode=C3D8R, elemLibrary=STANDARD, kinematicSplit=AVERAGE_STRAIN, secondOrderAccuracy=OFF, hourglassControl=ENHANCED, distortionControl=DEFAULT)
elemType2 = mesh.ElemType(elemCode=C3D8R, elemLibrary=STANDARD, kinematicSplit=AVERAGE_STRAIN, secondOrderAccuracy=OFF, hourglassControl=ENHANCED, distortionControl=DEFAULT)
```

Seed the edges

```python
seedege=p.edges.getClosest(coordinates=((arcl[i]-rin[i])/2+rin[i],0.0,(0.0)),((arcl[i]-rin[i])/2+rin[i],0.0,(0.0)))
p.seedPart(size=(elementsizesize+(2.5*i)/arcl[i]), deviationFactor=0.1, minSizeFactor=0.1)
```

```python
edges= []
```
for key in seededge:
 edges.append(seededge[key][0])

p.seedEdgeByNumber(edges=edges,number=2)
Less seed for the lower tube
topsed=p.edges.getClos[stest]e(coordinates=((arcl[1],0.0,rin[i]+0.25*(rout[i]-rin[i])+tol),(arcl[1],0.0,-rin[i]-0.25*(rout[i]-rin[i]))))

topsed = []

for key in topsed:
topsed.append(topsed[key][0])
p.seedEdgeByNumber(edges=topsed,number=25)
tubeedges = p.edges.getByBoundingBox(xMin=0.0,yMin=-2*tube[1],zMin=-2*arcl[1],xMax=2*arcl[1],yMax=-tol,zMax=2*arcl[1])

p.seedEdgeBySize(edges=tubeedges,size=elementSize)
p.generateMesh()
#
Find all lumen faces and include the outer ones

a = mdb.models[modelname].rootAssembly
s1 = a.instances[partname].faces
oneface = s1.getClosest(coordinates=((arcl[1]-sqrt((rout[i]**2)/2+(tol))),),)

r = oneface[0][0]
t = r.getFacesByFaceAngle(20.0)

a.Surface(side1Faces=t, name='Inner'+str(i))

###
Create Second part
Create Section
mdb.models[modelname].HomogeneousSolidSection(name=material, material=material, thickness=None)

else: print('Layers will have equal stiffness')

s = mdb.models[modelname].ConstrainedSketch(name='__sweep__1', sheetSize=200.0)

g, v, d = s.geometry, s.vertices, s.dimensions, s.constraints

Arc length (R) goes here
s.ArcByCenterEnds(center=(0.0, 0.0), point1=(arcl[1], 0.0), point2=(-arcl[1], 0.0), direction=COUNTERCLOCKWISE)

Line length (tube) goes here
s.Line(point1=(arcl[1], 0.0), point2=(arcl[1], -tube[1]))

e = 200.0, transform=(1.0, -1.22464679914735e-16, -0.0, 0.0, 0.0, 1.0, 0.0, -25.0, 3.0616169786838e-15, 0.0))
g1, v1, d1, c1 = s1.geometry, s1.vertices, s1.dimensions, s1.constraints

Define the circular profile of the arch, inner diameter and outer diameter

if float(LayerThickness)==1.0 and (float(ArchRadius)+float(WallThickness)+float(Stiffness)==0.0):
 material = 'OuterMedia'+str(i)

mdb.models[modelname].Material(name=material)

mdb.models[modelname].materials[material].Elastic(table=((LE[-1-1], 0.45),))

Create Section
mdb.models[modelname].HomogeneousSolidSection(name=material, material=material, thickness=None)
else: print('Layers will have equal stiffness')

s = mdb.models[modelname].ConstrainedSketch(name='__sweep__1', sheetSize=200.0)

g, v, d = s.geometry, s.vertices, s.dimensions, s.constraints

Arc length (R) goes here
s.ArcByCenterEnds(center=(0.0, 0.0), point1=(arcl[1], 0.0), point2=(-arcl[1], 0.0), direction=COUNTERCLOCKWISE)

Line length (tube) goes here
s.Line(point1=(arcl[1], 0.0), point2=(arcl[1], -tube[1]))

e = 200.0, transform=(1.0, -1.22464679914735e-16, -0.0, 0.0, 0.0, 1.0, 0.0, -25.0, 3.0616169786838e-15, 0.0))
g1, v1, d1, c1 = s1.geometry, s1.vertices, s1.dimensions, s1.constraints

Define the circular profile of the arch, inner diameter and outer diameter

if float(LayerThickness)==1.0 and (float(ArchRadius)+float(WallThickness)+float(Stiffness)==0.0):
 s1.CircleByCenterPerimeter(center=(0.0, 0.0), point1=(rin[i]+((rout[i]-rin[i])*thick[i]), 0.0))
else:
 print('Layers will have equal thickness')

s1.CircleByCenterPerimeter(center=(0.0, 0.0), point1=(rin[i]+((rout[i]-rin[i])/2), 0.0))
s1.CoincidentConstraint(entity1=v1[0], entity2=g1[2], addUndoState=False)

s1.CircleByCenterPerimeter(center=(0.0, 0.0), point1=(rout[i], 0.0))
Define the part name
253. pouter=partnamei+' _outer'
254. p = mdb.models[modelname].Part(name=pouter, dimensionality=THREE_D, type=EFORMABLE_BODY)
255. p.BaseSolidSweep(sketch=s1, path=s)

Define the job name
257. jobnamei=pouter
258. # Define Datum Planes
259. p.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset=0.0)
260. p.DatumPlaneByPrincipalPlane(principalPlane=YZPLANE, offset=0.0)
261. p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset=0.0)
262. d1 = p.datums

Create Principal Axes
263. p = mdb.models[modelname].parts[pouter]
264. p.DatumAxisByPrincipalAxis(principalAxis=ZAXIS)
265. p = mdb.models[modelname].parts[pouter]
266. p.DatumAxisByPrincipalAxis(principalAxis=XAXIS)
267. p = mdb.models[modelname].parts[pouter]
268. p.DatumAxisByPrincipalAxis(principalAxis=YAXIS)

Create Set for Part
269. p = mdb.models[modelname].parts[pouter]
270. c = p.cells
271. region = p.Set(cells=c, name='Set-1')

Assign Section
272. c = p.cells
273. p = mdb.models[modelname].parts[pouter]
274. p.SectionAssignment(region=region, sectionName=material, offset=0.0, offsetType=MIDDLE_SURFACE, offsetField='=', thicknessAssignment=FROM_SECTION)

Place Instance in The Assembly
275. a = mdb.models[modelname].rootAssembly
276. p = mdb.models[modelname].parts[pouter]
277. a.Instance(name=pouter, part=p, dependent=ON)

Partition the Geometry
278. p = mdb.models[modelname].parts[pouter]
279. c = p.cells
280. p = mdb.models[modelname].parts[pouter]
281. c = p.cells
282. p = mdb.models[modelname].parts[pouter]
283. c = p.cells
284. p.PartitionCellByPlaneThreePoints(cells=c, point1=(arcl[i],0.0,0.0), point2 =(-arcl[i],0.0,0.0), point3=(-arcl[i],-arcl[i],0.0))
285. p = mdb.models[modelname].parts[pouter]
286. c = p.cells
287. p = mdb.models[modelname].parts[pouter]
288. p.PartitionCellByPlaneThreePoints(cells=c, point1=(0.0,0.0,arcl[i]), point2 =(-0.0,0.0,-arcl[i]), point3=(arcl[i],0.0,-arcl[i]))
289. p = mdb.models[modelname].parts[pouter]
290. p = mdb.models[modelname].parts[pouter]
291. p = mdb.models[modelname].parts[pouter]
292. a = mdb.models[modelname].rootAssembly
293. s1 = a.instances[pouter].faces
294. oneface=s1.getClosest(coordinates=((arcl[i]-
295. sqrt((rin[i]**2)/2)+tol),((sqrt((rin[i]**2)/2)+tol))),)
296. r=oneface[0][0]
297. t=r.getFacesByFaceAngle(20.0)
298. a.Surface(side1Faces=t, name='Outer'+str(i))

Assign Element Type
299. elemType1 = mesh.ElemType(elemCode=C3D8R, elemLibrary=STANDARD, kinematicS
300. plt=AVGEARge_STRain, secondOrderAccuracy=OFF, hourglassControl=ENHANCED, disto
301. rtionControl=DEFAULT)
302. elemType2 = mesh.ElemType(elemCode=C3D8R, elemLibrary=STANDARD, kinematicS
303. plt=AVGEARge_STRain, secondOrderAccuracy=OFF, hourglassControl=ENHANCED, disto
304. rtionControl=DEFAULT)
305. p = mdb.models[modelname].parts[pouter]
306. c = p.sets['Set-1']
307. p.setElementType(regions=c, elemTypes=(elemType1,elemType2))
308. ## Assign Mesh controls and Mesh The Part
309. ## Seed the edges
310. p = mdb.models[modelname].parts[pouter]
p.seedPart(size=(elementsize+((2.5*i)/arcl[i])), deviationFactor=0.1, minSizeFactor=0.1)
seededge=p.edges.getCLOSEST(coordinates=(((-arcl[i]-rout[i]+0.25*(rout[i]-rin[i]),0.0,0.0),(-arcl[i]+rout[i]-0.25*(rout[i]-rin[i]),0.0,0.0))))
edges = []
for key in seededge:
 edges.append(seededge[key][0])
p.seedEdgeBySize(edges=edges,size=elementsize*0.5)
Less seed for the lower tube
topseed=p.edges.getCLOSEST(coordinates=(((-arcl[i],0.0,rout[i]),(-arcl[i],0.0,-rout[i]))))
topseeds = []
for key in topseed:
 toseeds.append(topseed[key][0])
p.seedEdgeByNumber(edges=edges,number=2)
p.seedEdgeByNumber(edges=topseeds,number=25)
tubeedges=p.edges.getByBoundingBox(xMin=0.0,yMin=-2*tube[i],zMin=-2*arcl[i],xMax=2*arcl[i],yMax=-tol,zMax=2*arcl[i])
p.seedEdgeByNumber(edges=tubeedges,number=25)
p.seedEdgeBySize(edges=tubeedges,size=elementsize)
p.generateMesh()

Find all nodes in the upper left quadrant
for eachnode in allnodes:
 coords=allnodes[k].coordinates
 if not (coords[1]<=0.0 or coords[0]>=0.0):
 arch.append(allnodes[k])
 archlabel.append(allnodes[k].label)
 k=k+1
 else:
 k=k+1

Split those nodes into positive and negative
for everynode in arch:
 coords=arch[j].coordinates
 if (coords[2]>=0.0):
 posZ.append(arch[j].label)
 elif (coords[2]<=0.0):
 negZ.append(arch[j].label)
 j=j+1
p = mdb.models[modelname].parts[pouter]
p.SetFromNodeLabels(name='Arch'+str(i), nodeLabels=archlabel)
p.SetFromNodeLabels(name='posZ'+str(i), nodeLabels=posZ)
p.SetFromNodeLabels(name='negZ'+str(i), nodeLabels=negZ)

ARCH NODE SETS INNER -------
allnodes=mdb.models['Model-1'].parts[partnamei].nodes
archinner= []
archlabelinner= []
posZinner= []
posZsetinner= []
negZinner= []
k=0
j=0
Find all nodes in the upper left quadrant

for each node in all nodes:
 coords=allnodes[k].coordinates
 if not (coords[1]<0.0 or coords[0]<0.0):
 archinner.append(allnodes[k])
 archlabelinner.append(allnodes[k].label)
 k=k+1
 else:
 k=k+1

Split those nodes into positive and negative
for every node in archinner:
 coords=archinner[j].coordinates
 if (coords[2]>=0.0):
 posZinner.append(archinner[j].label)
 elif (coords[2]<=0.0):
 negZinner.append(archinner[j].label)
 j=j+1

p = mdb.models[modelname].parts[partnamei]
p.SetFromNodeLabels(name='Arch'+str(i), nodeLabels=archlabelinner)
p.SetFromNodeLabels(name='posZ'+str(i), nodeLabels=posZinner)
p.SetFromNodeLabels(name='negZ'+str(i), nodeLabels=negZinner)

Create the Lumen Surface
a = mdb.models[modelname].rootAssembly
s1 = a.instances[partnamei].faces
oneface=s1.getClosest(coordinates=((arc[i]-
 sqrt((rin[i]**2)/2+(tol))),(tol),(sqrt((rin[i]**2)/2+(tol)))),),)
r=oneface[0][0]
t=r.getFacesByFaceAngle(20.0)
a.Surface(side1Faces=t, name='Lumen'+str(i))

Assign Surface for the pressure to act on
a = mdb.models[modelname].rootAssembly
region = a.surfaces['Lumen'+str(i)]
mdb.models[modelname].Pressure(name='Blood Pressure', createStepName='Step - 1', region=region, distributionType=UNIFORM, field='', magnitude=diastolic, amplitude=UNSET)

mdb.models[modelname].loads['Blood Pressure'].setValuesInStep(magnitude=systolic, stepName='Step - 2')

Find the Aortic Root & Create Geometry Set
Inner
s1 = a.instances[partnamei].faces
if float(LayerThickness)==1.0 and (float(ArchRadius)+float(WallThickness)+
 float(Stiffness)+float(LayerStiffness)==0.0):
 rootfaceinner=s1.getClosest(coordinates=((arc[i]-rin[i]-((rout[i]-
 rin[i])*thick[i])+tol,0.0,tol)),)
else:
 rootfaceinner=s1.getClosest(coordinates=((arc[i]-rin[i]-((rout[i]-
 rin[i])/2)+tol,0.0,tol)),)

rr=rootfaceinner[0][0]
tt=rr.getFacesByFaceAngle(20.0)
a.Surface(side1Faces=tt, name='Root'+str(i))

Outer
s1 = a.instances[pouter].faces
rootfaceouter=s1.getClosest(coordinates=((arc[i]-
 rout[i]+tol,0.0,tol)),)
rr=rootfaceouter[0][0]
ttt=rr.getFacesByFaceAngle(20.0)
aa=tt+ttt

a.Surface(side1Faces=aaa, name='Root'+str(i))

Find the Root Control Node & slave nodes
p = mdb.models[modelname].parts[pouter].sets['Arch'+str(i)].nodes
tl=0.0001

Control Node
for each node in p:
if (eachnode.coordinates[0]>=(-arcl[i]-rout[i]-tol) and eachnode.coordinates[0]<=(-arcl[i]-rout[i]+tol)):
if (eachnode.coordinates[1]==0.0- tl and eachnode.coordinates[1]<=0.0+tl):
 controlnode=eachnode.label
p = mdb.models[modelname].parts[pouter]
p.SetFromNodeLabels(name='ROOT_CONTROL'+str(i),nodeLabels=(((controlnode,controlnode))))
else:
 slavenode=[]
outer
p = mdb.models[modelname].parts[pouter].sets['Arch'+str(i)].nodes
for eachnode in p:
 if (eachnode.coordinates[0]<=0.0 and eachnode.coordinates[0]!=(arcl[i]-rout[i])):
 if (eachnode.coordinates[1]>=0.0 and eachnode.coordinates[1]<=0.0+tl):
 slavenode.append(eachnode.label)
p = mdb.models[modelname].parts[pouter]
p.SetFromNodeLabels(name='ROOT_SLAVE'+str(i),nodeLabels=(((slavenode))))
for Root:
 Create Reference Point and put it in a set
 mdb.models[modelname].rootAssembly.ReferencePoint(point=(-arcl[i], 0.0, 0.0))
 RP=mdb.models[modelname].rootAssembly.referencePoints.findAt((-arcl[i], 0.0, 0.0),)
 mdb.models[modelname].rootAssembly.Set(name='RP'+str(i), referencePoints=(RP,))
 if (float(Torsion)==1.0 and (float(Caudal)+float(Cranial)+float(Anterior)+float(Posterior)==0.0)):
 mdb.models[modelname].VelocityBC(amplitude=UNSET, createStepName='Step-1', distributionType=UNIFORM, fieldName='', localCsys=datumroot, name='Root_Hold', region=region, v1=0.0, v2=0.0, v3=0.0, vr1=0.0, vr2=0.0, vr3=0.0)
 mdb.models[modelname].boundaryConditions['Root_Hold'].setValuesInStep(stepName='Step-2', vr3=torque)
 elif float(Caudal)==1.0 and (float(Torsion)+float(Cranial)+float(Anterior)+float(Posterior)==0.0):
 localCsys=datumroot, name='Root_Hold', region=region, v1=0.0, v2=0.0, v3=0.0, vr1=0.0, vr2=0.0, vr3=0.0)
 mdb.models[modelname].boundaryConditions['Root_Hold'].setValuesInStep(stepName='Step-2', vr3=torque)
 elif float(Caudal)==1.0 and (float(Torsion)+float(Cranial)+float(Anterior)+float(Posterior)==0.0):
 localCsys=datumroot, name='Root_Hold', region=region, v1=0.0, v2=0.0, v3=0.0, vr1=0.0, vr2=0.0, vr3=0.0)
 mdb.models[modelname].boundaryConditions['Root_Hold'].setValuesInStep(stepName='Step-2', vr3=torque)
 else:
 localCsys=datumroot, name='Root_Hold', region=region, v1=0.0, v2=0.0, v3=0.0, vr1=0.0, vr2=0.0, vr3=0.0)
 mdb.models[modelname].boundaryConditions['Root_Hold'].setValuesInStep(stepName='Step-2', vr3=torque)
 else:
 localCsys=datumroot, name='Root_Hold', region=region, v1=0.0, v2=0.0, v3=0.0, vr1=0.0, vr2=0.0, vr3=0.0)
 mdb.models[modelname].boundaryConditions['Root_Hold'].setValuesInStep(stepName='Step-2', vr3=torque)
mdb.models[modelname].VelocityBC(amplitude=UNSET, createStepName='Step-1', distributionType=UNIFORM, fieldName='', localCys=datumroot, name='Root_Hold', region=region, v1=0.0, v2=0.0, v3=0.0, vr1=0.0, vr2=0.0, vr3=0.0)

mdb.models[modelname].boundaryConditions['Root_Hold'].setValuesInStep(stepName='Step-2', v3=caudal)

 elif float(Cranial)==1.0 and (float(Torsion)+float(Caudal)+float(Anterior)+float(Posterior))==0.0:
 mdb.models[modelname].VelocityBC(amplitude=UNSET, createStepName='Step-1', distributionType=UNIFORM, fieldName='', localCys=None, name='Root_Hold', region=region, v1=0.0, v2=0.0, v3=0.0, vr1=0.0, vr2=0.0, vr3=0.0)
 mdb.models[modelname].boundaryConditions['Root_Hold'].setValuesInStep(stepName='Step-2', v1=anterior)

 elif float(Posterior)==1.0 and (float(Torsion)+float(Caudal)+float(Cranial)+float(Anterior))==0.0:
 mdb.models[modelname].VelocityBC(amplitude=UNSET, createStepName='Step-1', distributionType=UNIFORM, fieldName='', localCys=None, name='Root_Hold', region=region, v1=0.0, v2=0.0, v3=0.0, vr1=0.0, vr2=0.0, vr3=0.0)
 mdb.models[modelname].boundaryConditions['Root_Hold'].setValuesInStep(stepName='Step-2', v1=posterior)

 # Set up KINEMATIC COUPLING CONSTRAINT between Root and Reference Point
 mdb.models[modelname].rootAssembly.sets['RP'+str(i)], couplingType=KINEMATIC,
 influenceRadius=WHOLE_SURFACE, localCys=

 mdb.models[modelname].rootAssembly.datums[datumID], name=
 'KinematicCouplingConstraint'+str(i), surface=
 mdb.models[modelname].rootAssembly.surfaces['Root'+str(i)], u1=OFF, u2=ON, u3=ON, ur1=ON, ur2=ON, ur3=ON)

 ## Define Self Contact
 a = mdb.models[modelname].rootAssembly
 s1 = a.instances['Partname1_outer'].faces
 oneface=s1.getClosest(coordinates=((+arcl[i]-2*sqrt((route[i]**2)/2-(tol)),(arcl[i]+route[i]+tol),(sqrt((route[i]**2)/2+(tol)))),),)
 r=oneface[0][0]
 t=r.getFacesByFaceAngle(20.0)
 a.Surface(sideFaces=t, name='Outside'+str(i))

 ## Define self-contact
 mdb.models[modelname].ContactProperty('IntProp-'+str(i))
 mdb.models[modelname].interactionProperties['IntProp-'+str(i)].NormalBehavior(allowSeparation=ON, constraintEnforcementMethod=DEFAULT, pressureOverclosure=HARD)

 mdb.models[modelname].interactionProperties['IntProp-'+str(i)].TangentialBehavior(formulation=FRICIONLESS)

 mdb.models[modelname].SelfContactStd(createStepName='Step-1',
 interactionProperty='IntProp-'+str(i), name='Int-'+str(i), surface=)
 mdb.models[modelname].rootAssembly.surfaces['Outside'+str(i)], thickness=ON)

 ###

 # Find the Diaphram & create Geometry Set & Surface
 a = mdb.models[modelname].rootAssembly
s1 = a.instances[partname+i].faces
diaface = s1.getClosest(coordinates=((arcl[i]+rin[i]) - ((rout[i]-rin[i])/2), -tube[i] - (tol), 2*(tol)),)
rr = diaface[0][0]

Outer
s1 = a.instances[outer].faces
diafaceouter = s1.getClosest(coordinates=((arcl[i]+rout[i]) - ((rout[i]-rin[i])/0.25), -tube[i] - (tol), 2*(tol)),)
rr = diafaceouter[0][0]

ttt = rr.getFacesByFaceAngle(20.0)

aa = ttt

a.Set(faces=aa, name='Dia'+str(i))
a.Surface(side1Faces=aa, name='Dia'+str(i))

Create Reference Point and put it in a set
rp = mdb.models[modelname].rootAssembly.referencePoints.findAt((arcl[i] - tube[i], 0.0))

mdb.models[modelname].rootAssembly.Set(name='RP_dia'+str(i), referencePoint=(rp,))

Hold the Dia
Find the correct Datum

datum = mdb.models[modelname].rootAssembly.datums

for datums in datum.keys():
xorigin = datum[datum.keys()[k]].origin.pointOn[0]
yorigin = datum[datum.keys()[k]].origin.pointOn[1]

if abs(xorigin) == abs(arcl[i]) and abs(yorigin) == abs(tube[i]):
datudia = datum[datum.keys()[k]]
datudiaID = datums

k = k + 1

a = mdb.models[modelname].rootAssembly

region = a.sets['RP_dia'+str(i)]

mdb.models[modelname].VelocityBC(amplitude=UNSET, createStepName='Step-1', distributionType=UNIFORM, fieldName='', localCsys=datudia, name='Dia_Hold', region=region, v1=0.0, v2=0.0, v3=0.0, vr1=0.0, vr2=0.0, vr3=UNSET)

Set up KINEMATIC COUPLING CONSTRAINT between Dia and Reference Point

mdb.models[modelname].Coupling(controlPoint=region)

mdb.models[modelname].rootAssembly.sets['RP_dia'+str(i)], couplingType=KINEMATIC,
influenceRadius=WHOLE_SURFACE, localCsys=''

mdb.models[modelname].rootAssembly.datums[datudiaID], name='KinematicCouplingConstraint_dia'+str(i), surface=

mdb.models[modelname].rootAssembly.surfaces['Dia'+str(i)], u1=OFF, u2=ON, u3=ON, ur1=ON, ur2=ON, ur3=ON)

Supress Previous Instance and Features

if i>0:

 mdb.models[modelname].rootAssembly.features['root'+str(i-1)].suppress()

 mdb.models[modelname].rootAssembly.features['dia'+str(i-1)].suppress()

 mdb.models[modelname].rootAssembly.features['partname'+str(i-1)].suppress()

 mdb.models[modelname].rootAssembly.features['partname'+str(i-1)+'_outer'].suppress()

 mdb.models['Model-1'].constraints['KinematicCouplingConstraint_1'+str(i-1)].suppress()

 mdb.models['Model-1'].interactions['Int_1'+str(i-1)].supress()

Create & write Inp File

myJob = mdb.Job(name=jobname, model=modelname, description='', type=ANALYSIS,
atTime=Non, waitMinutes=0, waitHours=0, queue=None, memory=80,

memoryUnits=PERCENTAGE, getMemoryFromAnalysis=False,
explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,
modelPrint=OFF, contactPrint=OFF, historyPrint=OFF,
scratch=' ', multiprocessingMode=MPI, numCpus=4,
numDomains=4, numGPUs=0)

mdb.jobs[jobnamei].writeInput(consistencyChecking=OFF)

###################### Define the Cohesive Behaviour between surfaces #####
slave='Inner'+str(i)
master='Outer'+str(i)
InputExpression = ('''*CONTACT PAIR, INTERACTION=user'''+str(slave)+',
' +str(master)+''')
*surface interaction, name=user, user, properties=5, unsymm, DEPVAR=11
'''+str(SIGM)+', '+str(DELN)+', '+str(DELT)+', '+str(SIGT)+', '+str(ZETA))

InputExpression1 = ('''*Contact Output SDV''')
check = False
check1 = False
for line in fileinput.input(jobnamei+'.inp', inplace=1):
 if line.startswith('**STEP: Step-1'): check = True
 else:
 if check: print InputExpression
 check = False
 if line.startswith('** HISTORY OUTPUT:'): check1 = True
 else:
 if check1: print InputExpression1
 check1 = False
 print line,
Submit Job and wait for completion
myJob.submit()
print('job submitted')
myJob.waitForCompletion()
print('job completed')
os.system('abaqus j='+jobname+' inp='+jobname+' cpus=4 int')
print('All Models Created Successfully')

##-------------------------------
Upload inp files to ICHEC
##-------------------------------

Prompt user to choose to upload inp files to server or not
if input = (getWarningReply('Upload inp files to ICHEC?:', (YES,NO,CANCEL))):
 # Submit Job and wait for completion
 # myJob.submit()
 # print('job submitted')
 # myJob.waitForCompletion()
 # print('job completed')
 # os.system('abaqus j='+jobname+' inp='+jobname+' cpus=4 int')
 print('All Models Created Successfully')

Upload inp files to ICHEC
##-------------------------------
Prompt user to choose to upload inp files to server or not
if input == YES:
 print('Now Uploading inp files to ICHEC')
 myhost='Fionn.ichec.ie'
 myusername='BrianFitz'
 mypassword='purplemonkeydishwasher'
 myport=22
 # open ssh Transport
 ssh = paramiko.SSHClient()
localpath='C:\Users\11424912\Documents\Abaqus\AortaGeom\sb3c\'+pouter+str(i)+'_outer.inp'

hostpath='/ichec/work/ngeng069b/BrianFitz/aorta_geom/parastudy/'+partname+str(i)+'_outer.inp'

Allow the client to auto accept any host
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

ssh.connect(myhost, myport, myusername, mypassword)
transport = paramiko.Transport((myhost, myport))
transport.connect(username=myusername, password=mypassword)

Open secure file transfer protocol
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.chdir('/ichec/work/ngeng069b/BrianFitz/aorta_geom/parastudy/')

Loop through inp files and upload to ICHEC
for i in xrange(5):
 sftp.put(localpath, hostpath)
 print(hostpath,localpath)
 try:
 hostpath='/ichec/work/ngeng069b/BrianFitz/aorta_geom/parastudy/>'+jobname+'.PBS'
 localpath='C:\Users\11424912\Documents\Abaqus\AortaGeom\ParaStudy\'+jobname+'.PBS'
 sftp.put(localpath, hostpath)
 print('PBS File Uploaded')
 except:
 print('no PBS file not uploaded')

def import delete
 print('Parts being deleted...')

##---------------------------------------
The following MATLAB and Python scripts form the basis of the residual stress optimisation scheme outlined in Chapter 7.

MATLAB Master Residual stress script.

```matlab
%% Residual Stress Optimisation Scheme
% Optimise residual stress simulations by calling python script to interact % with abaqus
cd('F:\Abaqus\ResidualStress\2019\BilinearModel\')
format long

%% Set path and file names
openingAngles = [140 155 170 185 200 215 230 245 260 275];
initialGuesses = [63.842559533998440 93.387194337455900 1.96628878763876e+02 750 1.42203248493601e+02 ... 83.783682990592440 56.594397435287455 43.827333426426080 34.848090624497370 29.636465932971113];
for i=1:length(openingAngles)
% i=1;
openingAngle=openingAngles(i);
%Define working directory
defaultFolder='F:\Abaqus\ResidualStress\2019\BilinearModel\';
savePath=fullfile(defaultFolder);
% Defining file names
abaqusInpFileNamePart=['OpeningAngle_ifea_',num2str(openingAngle)];
abaqusInpFileName=fullfile(savePath,[abaqusInpFileNamePart,'.inp']); %INP file name
abaqusDATFileName=fullfile(savePath,[abaqusInpFileNamePart,'.dat']); %DAT file name
umatScriptName='umat_BL_BL_Dispersion_AxialGeom_January2020';

%% write initial guess to text file for python to read in
xInitial=initialGuesses(i);
P(i)=xInitial;
pythonInputInitial=fopen('data_in.txt','w');
fprintf(pythonInputInitial,'%f',xInitial);
close(pythonInputInitial);

%% Define parameter bounds for optimisation
parameterBounds=[P(i)/5 P(i)*5];

%% runMode=2;
optimizationMethod=2;
addMaterial=1; % 1 = user-defined material // 0 = no UMAT
% What should be known to the objective function:
objectiveStruct.parNormFactors=P(i); %This will normalize the parameters to ones(size(P))
objectiveStruct.Pb_struct.xx_c=P(i); %Parameter constraining centre
objectiveStruct.Pb_struct.xx_l=parameterBounds; %Parameter bounds
objectiveStruct.method=optimizationMethod;
objectiveStruct.plotOn=1;
objectiveStruct.abaqusInpFileName=abaqusInpFileName;
objectiveStruct.abaqusDATFileName=abaqusDATFileName;
objectiveStruct.umatScriptName=umatScriptName;
objectiveStruct.abaqusInpFileNamePart=abaqusInpFileNamePart;
objectiveStruct.i=i;
objectiveStruct.addMaterial=addMaterial;
Pn=P(i)./objectiveStruct.parNormFactors; %Normalize parameters

%Optimisation settings
maxNumberOfIterations=100; %Maximum number of optimization iterations
```
maxNumberFunctionEvaluations=maxNumberIterations*100; %Maximum number of function evaluations, N.B. multiple evaluations are used per iteration
functionTolerance=1; %Tolerance on objective function value
parameterTolerance=1; %Tolerance on parameter variation
displayTypeIterations='iter'; % optimizationPlotOn=1;

%% Do the optimization
switch runMode
 case 1 %Test, run once and view output
 [F_opt,outputStruct]=objectiveFunction_Cube(Pn,objectiveStruct);
Pn_opt=Pn;
 case 2 % STARTING OPTIMISATION
 switch objectiveStruct.method
 case 1 %fminsearch and Nelder-Mead direct search'
 OPT_options=optimset('fminsearch'); % 'Nelder-Mead simplex direct search'
 OPT_options = optimset(OPT_options,'MaxFunEvals',maxNumberFunctionEvaluations,...
 'MaxIter',maxNumberIterations,...
 'TolFun',functionTolerance,...
 'TolX',parameterTolerance,...
 'Display',displayTypeIterations,...
 'FinDiffRelStep',1e-3,...
 'DiffMaxChange',0.5);
 [Pn_opt,OPT_out.fval,OPT_out.exitflag,OPT_out.output]=
 fminsearch(@(Pn)
 objectiveFunctionResidualStressRun(Pn,objectiveStruct),Pn,OPT_options);
 case 2 %lsqnonlin and Levenberg-Marquard
 OPT_options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt');
 OPT_options = optimoptions(OPT_options,'MaxFunEvals',maxNumberFunctionEvaluations,...
 'MaxIter',maxNumberIterations,...
 'TolFun',functionTolerance,...
 'TolX',parameterTolerance,...
 'Display',displayTypeIterations,...
 'FinDiffRelStep',1e-3,...
 'DiffMaxChange',0.5);
 [Pn_opt(i),OPT_out(i).resnorm,OPT_out(i).residual,OPT_out(i).iterations]=
 lsqnonlin(@(Pn)
 objectiveFunctionResidualStressRun(Pn,objectiveStruct),Pn,[],[],OPT_options);
 end

 [F_opt(i),outputStruct(i)]=objectiveFunctionResidualStressRun(Pn_opt(i),objectiveStruct);
end

%% Unnormalize and constrain parameters
P_opt(i)=Pn_opt(i).*objectiveStruct.parNormFactors; %Scale back, undo normalization

disp_text=sprintf(’%6.16e,’ P_opt(i)); disp_text=disp_text(1:end-1);
disp([’P_opt=’,disp_text]);
close all
end
Objective Function:

```matlab
function [P_opt, outputStruct] = objectiveFunctionResidualStressRun(Pn, objectiveStruct)

% Unnormalize and constrain parameters
P = Pn .* objectiveStruct.parNormFactors; % Scale back, undo normalization
P_in = P; % Proposed P

% Constraining parameters
for q = 1:1:numel(P)
    [P(q)] = boxconstraint(P(q), objectiveStruct.Pb_struct.xxlim(q, 1), objectiveStruct.Pb_struct.xxlim(q, 2), objectiveStruct.Pb_struct.xx_c(q));
end

disp('-----------------------------------------------------------------');
disp('SETTING MATERIAL PARAMETERS...');
disp(['Proposed (norm.): ', sprintf(repmat('%.16e ', [1, numel(Pn)]), Pn)]);
disp(['Proposed: ', sprintf(repmat('%.16e ', [1, numel(P_in)]), P_in)]);
disp(['Set (constr.) : ', sprintf(repmat('%.16e ', [1, numel(P)]), P)]);
disp('-----------------------------------------------');

% Get data from structure
abaqusInpFileName = objectiveStruct.abaqusInpFileName;
[savePath, abaqusInpFileNamePart, ~] = fileparts(abaqusInpFileName);
abaqusMSGFileName = fullfile(savePath, [abaqusInpFileNamePart, '.msg']); % DAT file name
umatScriptName = objectiveStruct.umatScriptName;
[savePath, abaqusInpFileNamePart, ~] = fileparts(abaqusInpFileName);
abaqusDATFileName = fullfile(savePath, [abaqusInpFileNamePart, '.dat']); % DAT file name
i = objectiveStruct.i;
addMaterial = objectiveStruct.addMaterial;

% lockFileName = fullfile(savePath, [abaqusInpFileNamePart, '.lck']);
if exist(lockFileName, 'file')
    warning('Lockfile found and deleted');
    delete(lockFileName);
end

pythonInput = fopen('data_in.txt', 'w');
fprintf(pythonInput, '%f', P);
fclose(pythonInput);

% Python script to generate base inp file and modify with user material and
% node print
runString0 = ['abaqus cae script=ResidualStress_opt_inputFileOnly.py -- ' num2str(i-1)... ' ', num2str(addMaterial)];
system(runString0);

% Run the job
compilerPath = '"C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2016.0.110\windows\bin\ifortvars.bat"';
runDirectory = '"F:/Abaqus/ResidualStress/2019/BilinearModel"';

runString = ['"C:\Windows\system32\cmd.exe /K "', compilerPath, ' intel64 vs2013 & cd="', runDirectory,... ' & abaqus j=', abaqusInpFileNamePart,' inp=', abaqusInpFileNamePart,... ' user=,umatScriptName,' cpus=4 int & exit"'];
```

307
system(runString);

%% Import and visualize abaqus results
% Importing the abaqus .dat file
optionStruct.getElementData=1;
[abaqusData]=importAbaqusDat(abaqusDATFileName,optionStruct);

%% Check if ABAQUS terminated with an error
%Load DAT file into cell array
T=txtfile2cell(abaqusMSGFileName);
errorDetectTarget='***ERROR: THE ANALYSIS HAS BEEN TERMINATED';
logicErrorLines = ~cellfun(@isempty,regexp(T,errorDetectTarget));

%% Compute objective function
if ~any(logicErrorLines) %If the job runs successfully...

% Define Difference vector for objective function

D=importdata('data_out.dat');
diameter=importdata('diameter.dat');
diameter=abs(abaqusData.STEP.INCREMENT(end).nodeOutput(1).data.COOR2-...
abaqusData.STEP.INCREMENT(end).nodeOutput(2).data.COOR2);
targetD=30.0;
area=pi*(diameter/2)^2;
targetArea=pi*(targetD/2)^2;
pct_error=(abs(diameter-targetD)/targetD)*100;
difference=targetArea-area;
D=(abs(difference)/targetArea);
F_opt=D;
outputStruct.D=D;
outputStruct.pct_error=pct_error;
outputStruct.P=P;
figure(1)
hold all
plot(P,pct_error,'o','LineWidth',2.5)
xlabel('Radius (mm)')
ylabel('% Error')
% ylim([0 0.5]); xlim([targetD*0.8 targetD*1.2]);
disp('---');
disp(['Percentage Error: ',sprintf('%.16f ',pct_error)]);
disp('---');
if objectiveStruct.plotOn==1

r=diameter/2;
currentArea=pi*(r^2);
rTarget=targetD/2;
hold on
ang=0:pi/30:2*pi;
xCurrent=r*cos(ang);
yCurrent=r*sin(ang);
xTarget=rTarget*cos(ang);
yTarget=rTarget*sin(ang);

close(figure(2))
figure(2)
hold on
plot(xCurrent,yCurrent, '-^k','MarkerFaceColor','k');
plot(xTarget,yTarget, '-or');
legend('Calculated','Target')
figure(3)
categories=categorical({'Target Area','Current Area'});
bar(categories,[targetArea currentArea])
ylabel('Area (mm^2)')
end
else
 F_opt=[1000];
 outputStruct=0;
end
The following python script is called by the objective function with updated input parameters from the optimisation scheme.

Python Model Builder Script:

```python
# This Objective function for optimisation of residual stress calculations
# Author:: Brian FitzGibbon 02/05/2019
from abaqus import *
from abaqusConstants import *
import sys

###
def ResidualStress_opt_inputFileOnly(argv):
    import os, sys, inspect
    import __main__
    import section
    import regionToolset
    import displayGroupMdbToolset as dgm
    import part
    import material
    import assembly
    import step
    import interaction
    import load
    import mesh
    import optimization
    import job
    import sketch
    import visualization
    import xyPlot
    import displayGroupOdbToolset as dgo
    import connectorBehavior
    sys.argv[-2]=int(sys.argv[-2])
    sys.argv[-1]=int(sys.argv[-1])
    i=sys.argv[2]
    addMaterial=sys.argv[-1]
    #receive command from matlab to add material or not. 0=not. 1=add
    print("i=",i)
    print("addMaterial=",addMaterial)
    openingAngle=[140,155,170,185,200,215,230,245,260,275]
    meshSize=0.3
    mdb=openMdb(pathName='F:/Abaqus/ResidualStress/2019/BilinearModel/openingAngles_'
        +str(openingAngle[1])+'.cae')
    os.chdir('F:/Abaqus/ResidualStress/2019/BilinearModel/')
    input_file=open('data_in.txt','r')
    input_data=float(input_file.read())
    input_file.close()
    Pn=input_data
    targetD=30.0
    targetArea=pi*(targetD/2)**2
    tol=targetArea*0.01
    ## EDITING THE SKETCHES
    ## MAIN GEOMETRY SKETCH
    ## OPENING ANGLES
    p = mdb.models['Model-2'].parts['Part-1']
    s = p.features['Solid extrude-1'].sketch
    mdb.models['Model-2'].ConstrainedSketch(name='__edit__', objectToCopy=s)
```
s1 = mdb.models['Model-2'].sketches['__edit__']
g, V, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints
s1.setPrimaryObject(option=SUPERIMPOSE)
p.projectReferencesOntoSketch(sketch=s1, upToFeature=p.features['Solid extrude-1'], filter=COPLANAR_EDGES)
s=p mdb.models['Model-2'].sketches['__edit__']
s.parameters['OpeningAngle'].setValues(expression=str(openingAngle[i]/2))

s1.unsetPrimaryObject()
p = mdb.models['Model-2'].parts['Part-1']
p = p.features['Solid extrude-1'].setValues(sketch=s1)
p = mdb.models['Model-2'].parts['Part-1']

INITIAL GUESS
p = mdb.models['Model-2'].parts['Part-1']
s = p.features['Solid extrude-1'].sketch
mdb.models['Model-2'].ConstrainedSketch(name='__edit__', objectToCopy=s)
s1 = mdb.models['Model-2'].sketches['__edit__']
g, V, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints
s1.setPrimaryObject(option=SUPERIMPOSE)
p.projectReferencesOntoSketch(sketch=s1, upToFeature=p.features['Solid extrude-1'], filter=COPLANAR_EDGES)
s=p mdb.models['Model-2'].sketches['__edit__']
s.parameters['InitialGuess'].setValues(expression=str(Pn))
s1.unsetPrimaryObject()
p = p.features['Solid extrude-1'].setValues(sketch=s1)
p = mdb.models['Model-2'].sketches['__edit__']
p = mdb.models['Model-2'].parts['Part-1']

PARTITION FACE SKETCH
p = mdb.models['Model-2'].parts['Part-1']
s = p.features['loose_face'].sketch
mdb.models['Model-2'].ConstrainedSketch(name='__edit__', objectToCopy=s)
s2 = mdb.models['Model-2'].sketches['__edit__']
g, V, d, c = s2.geometry, s2.vertices, s2.dimensions, s2.constraints
s2.setPrimaryObject(option=SUPERIMPOSE)
p.projectReferencesOntoSketch(sketch=s2, upToFeature=p.features['loose_face'], filter=COPLANAR_EDGES)
s = mdb.models['Model-2'].sketches['__edit__']

if openingAngle[i] > 180:
 s.parameters['PartitionFace'].setValues(expression=str(Pn))
else:
 s.parameters['PartitionFace'].setValues(expression=str(Pn))
s2.unsetPrimaryObject()
p = mdb.models['Model-2'].parts['Part-1']
p = p.features['loose_face'].setValues(sketch=s2)
p = mdb.models['Model-2'].sketches['__edit__']
p = mdb.models['Model-2'].parts['Part-1']
p.regenerate()

BOUNDARY CONDITIONS
for j in range(len(setnames)):
 region = a.sets[setnames[j]]
mdb.models['Model-2'].boundaryConditions[setnames[j]].setValues(region=region,
 u1=a.sets[setnames[j]].edges[0].pointOn[0][0])

elemType1 = meshElemType(elemCode=C3D8R, elemLibrary=STANDARD,
 secondOrderAccuracy=OFF, distortionControl=DEFAULT)
elemType2 = meshElemType(elemCode=C3D6, elemLibrary=STANDARD)
elemType3 = meshElemType(elemCode=C3D4, elemLibrary=STANDARD)
p = mdb.models['Model-2'].parts['Part-1']
c = p.cells
ncells = c.getSequenceFromMask(mask=('[3]',),)
pickedRegions = (ncells,)
p.setElementType(regions=pickedRegions, elemTypes=(elemType1, elemType2, elemType3))
p = mdb.models['Model-2'].parts['Part-1']
p.deleteMesh()
p = mdb.models['Model-2'].parts['Part-1']
p.seedPart(size=meshSize, deviationFactor=0.1, minSizeFactor=0.1)
p = mdb.models['Model-2'].parts['Part-1']
p.generateMesh()

ADDITIONAL BOUNDARY CONDITIONS FOR SMALLER OPENING ANGLES
mdb.models['Model-2'].boundaryConditions['Mid_Inner'].setValues(u2=-a.sets['Mid_Inner'].edges[0].pointOn[0][1])
mdb.models['Model-2'].boundaryConditions['Mid_Outer'].setValues(u2=-a.sets['Mid_Outer'].edges[0].pointOn[0][1])
if addMaterial==1:
mdb.models['Model-2'].boundaryConditions['Mid HOLD Inner'].setValuesInStep(stepName='Step-6', u1=(-15-a.sets['Mid Inner'].edges[0].pointOn[0][0]))
mdb.models['Model-2'].boundaryConditions['Mid HOLD Outer'].setValuesInStep(stepName='Step-6', u1=(-17-a.sets['Mid Outer'].edges[0].pointOn[0][0]))

RUN THE JOB
jobname = 'openingAngle_ifea_' + str(openingAngle[i])
mdJob(name=jobname, model='Model-2', description='', type=ANALYSIS, atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90, memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True, explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF, modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='', scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCPUs=1, numGPUs=0)
mdJobs[jobname].writeInput(consistencyChecking=OFF)

print('Inp File Written')

ADD USER MATERIAL AND NODE PRINT SECTIONS TO THE INP
if addMaterial==1:
p=[0.15, 0.9, 0.075, 0.5, 28.5, 15.0]
InputExpression1 = ("***Solid Section, elset=Set-1, orientation=0r1, controls=EC-1, material=BilinearModel \""")
InputExpression = ("***Section Controls, name=EC-1, hourglass=ENHANCED"
 InputExpression1 = ("***Element output")

312
*Node print, nset=Top_Node, frequency=1
COORD
*Node print, nset=Bottom_Node, frequency=1
COORD
*El print, elset=Mid_Nodes, frequency=1

```python
eif addMaterial==0:
    InputExpression0 = ("***Solid Section, elset=Set-1, orientation=Ori-1, material=Material-1")
    InputExpression = ("***Material, name=Material-1"
    *Elastic
    0.5, 0.45")
    InputExpression1 = ("***Element output"
    SDV
*Output, history
*Node print, nset=Top_Node, frequency=1
COORD
*Node print, nset=Bottom_Node, frequency=1
COORD
*El print, elset=Mid_Nodes, frequency=1
S"

check0 = False
check = False
check1 = False
for line in fileinput.input(jobname+'.inp', inplace=1):
  if line.startswith("*Solid Section"):
    line=InputExpression0
    check0 = True
  else:
    if check0:
      check0 = False
  if line.startswith("*Material, name="):
    check = True
  else:
    if check:
      print InputExpression
    check = False
  if line.startswith("*Static"):
    # line="*Static, stabilize, factor=0.0002, allsdtol=0, continue=NO \\
    # line="*Static, stabilize, factor=0.0002, allsdtol=0, continue=NO"
    check1 = True
  else:
    if check1:
      print InputExpression1
      check1 = False
    print line,
  print('Inp File Modified')

mdb.save()
mdb.saveAs(jobname+'.cae')
sys.exit()
ResidualStress_opt_inputFileOnly(sys.argv[-1])
```
The following UMAT contains the methodology for implementing residual stress in the idealised aorta model. It is implemented with the BLFM model.

Residual Stress & Bilinear Fibre Model (BLFM) UMAT:

```plaintext
SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
RPL,DDSDDT,DRPLDE,DRPLDT,
STRAN,DSTRAN,TIME,DTIME,TEMP,DPREDEF,DPRED,CMNAME,
NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

C
INCLUDE 'ABA_PARAM.INC'
C
CHARACTER*80 CMNAME
DIMENSION STRESS(NTENS),STATEV(NSTATV),
D_DSDD(E(NTENS,NTENS),DDSDDT(NTENS),
DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),
PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3),
DFGRD1_m(3,3)
C
C LOCAL ARRAYS
C
C XKIRCH1 - KIRCHHOFF STRESS
C DFP - INCREMENT OF THE PERTURBED DEF. GRAD.
C DFGRD_PERT - PERTURBED DEF. GRAD.
C XKIRCH_PERT - PERTURBED KIRCHHOFF STRESS
C CMJ - (::,I,J) COMPONENTS OF MATERIAL JACOBIAN
C CMJVEC - ABOVE IN VECTOR FORM
C ILIST, JLIST - SET OF THE COMPONENTS TO BE PERTURBED UPON
C DUMSTRSS - DUMMY STRESS TENSOR
C
C-----------------------------------------------------------------
C DIMENSION XKIRCH1(3,3), DFP(3,3), DFGRD_PERT(3,3),XKIRCH_PERT(3,3)
C ,CMJ(3,3), CMJVEC(NTENS), ILIST(6), JLIST(6), DUMSTRSS(3,3),
C XMUDUM(3,1), XMUDUM1(3,1), XI4(2),XBETAR(2),XALPHAR(2)
C DIMENSION HOOPQ(101,101), AXIALQ(101,101), OAQ(101,101), OA(101)
C DIMENSION TQ(101,101),RADIALQ(101,101)
C LOGICAL, SAVE :: doOnce
C COMMON / DATA_ARRAYS / AXIALQ, HOOPQ, OAQ, OA, TQ, RADIALQ
C
C ARRAYS FOR THE POLAR DECOMPOSITION
C
C DIMENSION spolF(3,3), spolC(3,3), spolCS(3,3), spolINV(3,3),
C U(3,3), R(3,3), RT(3,3), VAR(1)
C
C PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0,
C SIX=6.D0)
C
C-----------------------------------------------------------------
C READ IN THE RESIDUAL STRESS RESULTS FILES
C-----------------------------------------------------------------
C
C doOnce = .FALSE.
C call MutexLock( 1 )
C IF (.not. doOnce) THEN
C OPEN(101, file="F:\Abaqus\ResidualStress\2019\BilinearModel\Data\Axialq.txt")
C READ(101,*) AXIALQ
C CLOSE(101)
```
C
OPEN(102, file="F:\Abaqus\ResidualStress\2019\BilinearModel\Data\Hoopq.txt")
READ(102,*) HOOPQ
CLOSE(102)
C
OPEN(106, file="F:\Abaqus\ResidualStress\2019\BilinearModel\Data\Radialq.txt")
READ(106,*) RADIALQ
CLOSE(106)
C
OPEN(103, file="F:\Abaqus\ResidualStress\2019\BilinearModel\Data\Oaq.txt")
READ(103,*) OAQ
CLOSE(103)
C
OPEN(104, file="F:\Abaqus\ResidualStress\2019\BilinearModel\Data\OAq.txt")
READ(104,*) OA
CLOSE(104)
C
OPEN(105, file="F:\Abaqus\ResidualStress\2019\BilinearModel\Data\Tq.txt")
READ(105,*) TQ
CLOSE(105)
c
doOnce = .TRUE.
END IF
call MutexUnlock(1)
c
C -------------------
C 3D CONTINUUM ELEMENTS
C -------------------
C NUMBER OF FIBRE FAMILIES
C -------------------
C NANISO = 2
C -------------------
C MATERIAL PROPERTIES
C -------------------
C
! Isotropic parameters
xD1t = PROPS(1)
xD2t = PROPS(2)
xE1 = PROPS(3)
xE2t = PROPS(4)
xE2c = xE2t
scale = PROPS(5)
BulkM = PROPS(6)

! Anisotropic parameters
xE1f = PROPS(7)
xE2f = PROPS(8)
xD1f = PROPS(9)
xD2f = PROPS(10)
NANISO = PROPS(11)
iswitch=int(props(12)) !=2 for global, =1 for local
ALPHAD1 = PROPS(13) ! mean fiber angle with respect to
circumferential direction
xbb = PROPS(14)
C
xP = (xE1f - xE2f)/(2.d0*(xD1f-xD2f))
xQ = xE1F - (xD1f*(xE1f-xE2f))/(xD1f-xD2f)
xR = xE1F*xD1f - xP*(xD1f**2.d0) - xQ*xD1f
C
XPI = 3.14159265359d0
XALPHAR(1) = ALPHAD1*XPI/180.d0
XALPHAR(2) = -XALPHAR(1)
C
teta=90.0
C! IF ((KINC.eq.1) .AND. (KSTEP.eq.1)) THEN
C! xp = COORDS(1)
C! yp = COORDS(2)
C! teta = ATAN(-xp/yp)
C! !a0(1,1) = cos(XALPHAR)*cos(teta)
C! !a0(1,2) = cos(XALPHAR)*sin(teta)
C! !a0(1,3) = sin(XALPHAR)
C! !a0(2,1) = cos(-XALPHAR)*cos(teta)
C! !a0(2,2) = cos(-XALPHAR)*sin(teta)
C! !a0(2,3) = sin(-XALPHAR)
C! ELSE
C! teta = STATEV(8)
C! !a0(1,1)=STATEV(9)
C! !a0(1,2)=STATEV(10)
C! !a0(1,3)=STATEV(11)
C! !a0(2,1)=STATEV(12)
C! !a0(2,2)=STATEV(13)
C! !a0(2,3)=STATEV(14)
C! END IF
C
iter=0
C-------
C POLAR DECOMPOSITION
C------------------------
spolF=dfgrd1
DO J=1,3
 DO I = 1,3
 spolC(I,J) = 0.0D0
 DO K=1,3
 spolC(I,J) = spolC(I,J) + spolF(K,I)*spolF(K,J)
 ENDDO
 ENDDO
ENDDO
DO J=1,3
 DO I=1,3
 spolCS(I,J) = 0.0D0
 DO K=1,3
 spolCS(I,J) = spolCS(I,J) + spolC(I,K)*spolC(K,J)
 ENDDO
 ENDDO
ENDDO
spolC1= spolC(1,1) + spolC(2,2) + spolC(3,3)
spolC2= 0.5D0 * (spolC1**2.0D0 - (spolCS(1,1)+spolCS(2,2)+
 spolCS(3,3)))
spolC3= spolC(1,1) * (spolC(2,2)+spolC(3,3)-spolC(2,3)*spolC(3,2))
 +spolC(1,2) * (spolC(2,3)+spolC(3,1)-spolC(2,1)*spolC(3,3))
 +spolC(1,3) * (spolC(2,1)-spolC(3,2)-spolC(2,2)+spolC(3,1))
spolU3= SQRT(spolC3)
spolX1=2.0**5.0 /27.0*(2.0*spolC1**3.0-9.0*spolC1*spolC2+
 27.0*spolC3)
spolX2= 2.0**10.0 /27.0*(4.0*spolC2**3.0-sopolC1**2.0*spolC2**2.0 +
 3.0*spolC1**3.0*spolC3-18.0*spolC1*spolC2*spolC3+27.0*spolC3**2.0)
IF (spolX2.LT.0.) spolX2= 0.0
F1= spolX1 + SQRT(spolX2)
IFLAG2= 0
IFLAG1= 0
IF (F1.LT.0.0) IFLAG1= 1
F2= spolX1 - SQRT(spolX2)
IF (F2.LT.0.0) IFLAG2= 1
IF (IFLAG2.EQ.1) F2= -F2
IFLAG2= 0
IFLAG1= 0
spolX3= -2.0/3.0*spolC1 + F1**(1.0/3.0) + F2**(1.0/3.0)
IF (IFLAG1.EQ.1) spolX3= -2.0/3.0*spolC1 + F2**(1.0/3.0)
 F1**(1.0/3.0)
IF (IFLAG2.EQ.1) spolX3= -2.0/3.0*spolC1 + F1**(1.0/3.0)
 F2**(1.0/3.0)
B= -2.0*spolC1
IF (spolX3.EQ.B) THEN
U1= SQRT(spolC1+2.0*SQRT(spolC2))
ELSE
U1= 0.5 * (SQRT(2.0*spolC1+spolX3) + SQRT(2.0*spolC1-
 spolX3+16.0*SQRT(spolC3)/SQRT(2.0*spolC1+spolX3)))
ENDIF
U2= SQRT(spolC2+2.0*spolU3*U1)
B1= spolU3**2.0 * (spolU3+U1*spolC1) +
 U1**2.0 * (U1*spolC3+spolU3*spolC2)
B2= U1 * (U1+U2-spolU3) / B1
B3=-(U1*U2-spolU3) * (spolU3+U1*spolC1) / B1
B4= (U2*spolU3*(spolU3+U1*spolC1) +
 U1**2.0 * (U2*spolC2+spolC3))/B1
DO J=1,3
 DO I=1,3
 spolUINV(I,J)= B2*spolCS(I,J) + B3*spolC(I,J)
 IF (I.EQ.J) spolUINV(I,J)= spolUINV(I,J) + B4
 ENDDO
ENDDO
DO J=1,3
 DO I=1,3
 R(I,J)=0.0
 DO K=1,3
 R(I,J)= R(I,J) + spolF(I,K)*spolUINV(K,J)
 ENDDO
 ENDDO
ENDDO
DO I=1,3
 DO J=1,3
 RT(I,J) = R(J,I)
 ENDDO
ENDDO
U=0.0
DO I=1,3
 DO J=1,3
 DO M=1,3
 U(I,J)=U(I,J)+RT(I,M)*spolF(M,J) ! old version
 U(I,J)=U(I,J)+spolF(I,M)*RT(M,J) ! modified
 ENDDO
 ENDDO
ENDDO
C--
C CALCULATE THE ROTATED, a_0' VECTORS
C--
C
IF (iswitch.EQ.1) then
 DO IAN = 1,2
 !XMDUM(:,1) = XMMAT(:,IAN)
 DO (M, N, L, A, KA, B, KB, C, KC)
!call KMTMS(3, 3, 1, RT, 3, XMDUM, 3, XMDUM1, 3)
!call KMTMS(3, 3, 1, RT, XMDUM, XMDUM1)
!XMMAT(:,IAN) = XMDUM1(:,1)
END DO
C WRITE(6,*), 'Orientation is defined!
C
DFGRD1_m=0.0
DO I=1,3
 DO J=1,3
 DO M=1,3
 DFGRD1_m(I,J)=DFGRD1_m(I,J)+R(I,M)*U(M,J) ! modified
 ENDDO
 ENDDO
ENDDO
!DFGRD1_m = U
C ELSE IF (iswitch.EQ.2) then
 !XMMAT(:,IAN)=XMMAT(:,IAN)
 DFGRD1_m = DFGRD1
ELSE
 WRITE (6,*), '*** ERROR: Global or local coordinate system must be'
 WRITE (6,*), 'specified in PROPS(15), =1 for local, =2 for global'
 STOP
ENDIF
C--
C ZERO THE TANGENT MATRIX
C--
C DO I=1,NTENS
 DO J=1,NTENS
 DDSDDE(I,J) = ZERO
 ENDDO
END DO
C--
C CALCULATE THE STRESS
C--
C
!call kstress_calc(DFGRD1, C10, D1, xA, xB, xP, xQ, xR,
! xD1, xD2, xbb, XKIRCH1, XJ1, XALPHAR, XBETAR, NANISO,
! XI1, XI2, XI3, XI4)
!call kstress_calc(DFGRD1_m, PROPS, NPROPS, NANISO,
! XKIRCH1, XJ1, XI1, XI2, XI3, XI4, nphase, RT, teta,
! COORDS, HOOPQ, AXIALQ, OAQ, OA, TQ, RADIALQ)
C
STATEV(1) = XI1
STATEV(2) = XI2
STATEV(3) = XI3
STATEV(4) = XI4(1)
STATEV(5) = XI4(2)
STATEV(6) = XJ1
STATEV(7) = nphase
C
C CONVERNT KIRCHHOFF STRESS TO CAUCHY STRESS
C
DUMSTRSS = XKIRCH1 / XJ1

call kmatrix2vector(DUMSTRSS, STRESS, nshr)
C
C**
C CALCULATE THE PERTURBATION OF THE KIRCHHOFF STRESS
C---
eps = 1.0e-08
ilist(1) = 1; ilist(2) = 2; ilist(3) = 3
ilist(4) = 1; ilist(5) = 1; ilist(6) = 2
jlist(1) = 1; jlist(2) = 2; jlist(3) = 3
jlist(4) = 2; jlist(5) = 3; jlist(6) = 3

Perturbation: DO iter = 1,NTENS
 ii = ilist(iter)
 jj = jlist(iter)
 call kdeltF(ii, jj, DFGRD1_m, eps, DFP)

C CREATE THE PERTURBATION OF THE DEFORMATION GRADIENT
C---
DFGRD_PERT = DFGRD1_m + DFP

C CALCULATE THE STRESS BASED ON THIS NEW DEFORMATION GRADIENT
C---
! call kstress_calc(DFGRD_PERT, C10, D1, xA, xB, xP, xQ, xR, xD1,
! x2, xD2, xbb, XKIRCH_PERT, XJP, XALPHAR, XBETAR,
! 1 NANISO, XI1, XI2, XI3, XI4)
call kstress_calc(DFGRD_PERT, PROPS, NPROPS, NANISO,
1 XKIRCH_PERT, XJP, XI1, XI2, XI3, XI4, nphase, RT, teta,
2 COORDS, HOOPQ, AXIALQ, OAQ, OA, TQ, RADIALQ)

C DIFFERENCE BETWEEN THE PERTURBED(i,j) AND UNPERT. STRESS
C--
do i = 1,3
do j = 1,3
 CMJ(i,j) = XKIRCH_PERT(i,j) - XKIRCH1(i,j)
end do
CMJ = CMJ/XJ1/eps

C VECTORISE AND INSERT INTO THE DDSDE MATRIX
C--
call kmatrix2vector(CMJ, CMJVEC, NSHR)
do insert = 1,NTENS
 DDSDE(insert, iter) = CMJVEC(insert)
end do
end do Perturbation
RETURN contains
C---
C SUBROUTINES
C---
C * KSTRESS_CALC - Calculate the Kirchhoff stress based on the deformation
C gradient and the elastic constants C10 and D1.
C * KDELFT - Calculate the increment of the deformation gradient for
C a given perturbation in (i,j), with epsilon
C * KPRINTER - Print out a matrix of any size
C * KMTMS - Multiply two 2nd order tensors
C * KMATRIX2VECTOR - Convert a 3x3 matrix to a 6x1 vector
C * KDOTPROD - Dot product of two vectors
C--
C subroutine kstress_calc(DGRAD,PROPS,NPROPS,NANISO,XKirch, DET,XI1,XI2,XI3,XI4,nphase,RT,teta, COORDS, HOOPQ, AXIALQ, OAQ,OA,TQ,RADIALQ)
C INCLUDE 'ABA_PARAM.INC'
C intent(in) :: DGRAD, PROPS, NPROPS, NANISO, RT ,teta
C intent(out):: XKIRCH, DET, XI1, XI2, XI3, XI4, nphase
C dimension DGRAD(3,3), BMAT(3,3), XKIRCH(3,3), B2MAT(3,3),aoa(3,3),RT(3,3), XANISOK(3,3),XANISOTOT(3,3),XI4(NANISO), PROPS(NPROPS)
C parameter(n_phi=20, n_omega=10, nseg = (n_omega-1)*n_phi+1)
C dimension phi_vec(n_phi), omega_vec(n_omega), xmi(3,1),
C xni_mat(nseg,3), xni(3,1), rho_vec(nseg), area_vec(nseg),
C rot_mat_E2(3,3),rot_mat_E3(3,3),rot_mat(3,3),xni_rot(3,1),
C xni_pre_rot(3,1),xni_rot(3,1),xni_rot_mat(nseg,3),xni1(3,1),
C rho_mat(n_omega,n_phi), rot_mat1(3,3)
C DOUBLE PRECISION XMM(3),DUMMY1(3),BBAR(NTENS),BBARP(3),
C BBARN(3,3),BBARMAT(3,3),XKIRCHI(3,3),STRAIN(3),
C SBAR(3),Cauchy(3,3), BBARNT(3,3),SISOP(3,3), XALPHAR(2)
C real(8) ::kiso(6),lambda2(3),na(3,3),B_a(3),
C n11(6),n22(6),n33(6),lambda_bar(3),lambda(3)
C INTEGER:: ROW_IND,COL_IND, i, ii, CNT
C REAL(8) :: pct_y, pct_t, OA_input, T_input, archCircum,tol
C REAL(8) :: phi, arcl, pct.arc, xcentreline, ycentreline, zcentreline
C PARAMETER (propThorax=27.D0,propAbdomen=39.D0)
C PARAMETER (SIX=6.D0, archR=30.D0, rin=8.D0, rout=10.D0, pi=3.1415926536)
C PARAMETER (vert=(2*archR),tol=0.5, CNT=1000, pi2=1.570796326794897)
C DIMENSION RESID(3),COOORDS(3)
C DIMENSION HOOPQ(101,101),AXIALQ(101,101),OAQ(101,101)
C DIMENSION OA(101),TQ(101,101),RADIALQ(101,101)
C---
C CALCULATE THE RESIDUAL STRESS
C---

IF ((KINC==1).AND.(KSTEP(1)==1)) THEN
IF (COORDS(2)<0.0) THEN
IF (COORDS(1)>0.0) THEN !-

---------THORACIC AORTA--------
pct_y=NINT(((abs(COORDS(2))/vert)*propThorax)+propAbdomen ! 27 and 39
are the proportions of the total arch length of thoracic and
r=sqrt(COORDS(3)**2+(COORDS(1)-archR)**2)
pct_t=NINT(abs((r-rin)/(rout-rin))*100)
OA_input=OA(pct_y)
T_input=pct_t

 ! WRITE(7,*) 'THORACIC AORTA'
END IF
ELSE

-------- ASCENDING AORTA AND AORTIC ARCH
archCircum=archR*pi
phi=atan2(COORDS(2),COORDS(1)) ! CALCULATE SEGMENT

ANGLE
arcl=abs(((phi*(180/pi))/180)*pi*archR) ! CALCULATE ARC LENGTH
pct_arc=NINT((1-(arcl/archCircum))*propAbdomen) ! CALCULATE THE
PERCENTAGE OF THE AORTIC ARCH
IF (pct_arc==0) THEN
 pct_arc=1
END IF
OA_input=OA(pct_arc)
xcentreline=sin(pi2-phi)*archR ! LOCATE THE COORDINATES OF THE
yczcentreline=ZERO
CENTRELINE OF THE ARCH

 ! DISTANCE BETWEEN CENTRELINE AND INPUT COORDS
dfrcentreline=sqrt((xcentreline-COORDS(1))**2+(yczcentreline-
COORDS(2))**2+(yczcentreline-COORDS(1))**2)
pct_t=((dfrcentreline-rin)/(rout-rin))*100
T_input=NINT(pct_t)

 ! WRITE(7,*) 'ASCENDING AORTA AND AORTIC ARCH'
END IF

--
COL_IND=0
ROW_IND=0
i=0

DO WHILE (COL_IND==0)
 ! i=1,SIZE(Tq,1)
i=i+1 ! INDEX THE THICKNESS DATA TABLE BASED OFF OF THE CALCULATED INPUT
IF ((T_input)>(Tq(i,1))-(tol)) THEN
 IF ((T_input)<(Tq(i,1))+(tol)) THEN
 COL_IND=i
 END IF
END IF
END DO

DO WHILE (ROW_IND==0)
 ! ii=1,SIZE(OAq,1) ! INDEX THE OPENING ANGLE DATA TABLE BASED OFF OF THE CALCULATED INPUT
 ii=ii+1
IF ((OA_input)>(OAq(1,ii))-(7.5*tol)) THEN ! 7.5*tol is a lighter tolerance
 7.5*tol is a lighter tolerance (should be replaced)
 IF((OA_input)>(OAq(1,ii))+(7.5*tol)) THEN
 ROW_IND=ii
 END IF
END IF
END DO

RESID(1)=RADIALQ(COL_IND,ROW_IND) ! ENTER ROW AND COLUMN IN REVERSED ORDER
(COL,ROW) TO TRANSPOSE THE MATRIX
RESID(2)=HOOPQ(COL_IND,ROW_IND) ! ENTER ROW AND COLUMN IN REVERSED ORDER
(COL,ROW) TO TRANSPOSE THE MATRIX
RESID(3)=AXIALQ(COL_IND,ROW_IND)
STATEV(9)=1.0*RESID(1)
STATEV(10)=1.0*RESID(2)
STATEV(11)=1.0*RESID(3)
END IF

! Isotropic parameters
xD1t = PROPS(1)
xD2t = PROPS(2)
xE1 = PROPS(3)
xE2t = PROPS(4)
xE2c = xE2t
scale = PROPS(5)
BulkM = PROPS(6)

! Anisotropic parameters
xE1f = PROPS(7)
xE2f = PROPS(8)
xD1f = PROPS(9)
xD2f = PROPS(10)
!NANISO = PROPS(11)
!iswitch=int(props(12))
ALPHAD1 = PROPS(13)
xbb = PROPS(14)

xP = (xE1f - xE2f)/(2.d0*(xD1f-xD2f))
xQ = xE1f - (xD1f*(xE1f-xE2f))/(xD1f-xD2f)
xR = xE1f*xD1f - xP*(xD1f**2.d0) - xQ*xD1f

XPI = 3.14159265359d0
XALPHAR(1)= ALPHAD1*XPI/180.d0
XALPHAR(2)= -XALPHAR(1)

DO I=1,3
DO J=1,3
BMAT(I,J) = ZERO
END DO
END DO

DO I=1,3
DO J=1,3
DO K = 1,3
BMAT(I,J) = BMAT(I,J) + DGRAD(I,K)*DGRAD(J,K)
END DO
END DO

C CALCULATE THE INVARIANTS

XI1 = BMAT(1,1)+BMAT(2,2)+BMAT(3,3)

CALL KMTMS(3, 3, 3, BMAT, BMAT,B2MAT)

TRB2 = B2MAT(1,1)+B2MAT(2,2)+B2MAT(3,3)

XI2 = 0.5d0*((XI1**2.d0) - TRB2)

XI3=BMAT(1, 1)*BMAT(2, 2)*BMAT(3, 3)
1 - BMAT(1, 2)*BMAT(2, 1)*BMAT(3, 3)
2 + BMAT(1, 2)*BMAT(2, 3)*BMAT(3, 1)
3 + BMAT(1, 3)*BMAT(3, 2)*BMAT(2, 1)
4 - BMAT(1, 3)*BMAT(3, 1)*BMAT(2, 2)
5 - BMAT(2, 3)*BMAT(3, 2)*BMAT(1, 1)

C CALCULATE THE ISOTROPIC PORTION OF THE KIRCH STRESS

par1 = ONE/(DET**(TWO/THREE))
BBARMAT = par1*BMAT
BBAR(1) = BBARMAT(1,1)
BBAR(2) = BBARMAT(2,2)
BBAR(3) = BBARMAT(3,3)
BBAR(4) = BBARMAT(1,2)
BBAR(5) = BBARMAT(1,3)
BBAR(6) = BBARMAT(2,3)

C Calculate eigenvalues la2(a) and eigenvectors n_a(3,3) of b
(Note: Jacobian algorithm destroys upper triangular components 12,13,23)
call kDSYEVJ3(BMAT,na,lambda2)

lambda(1) = lambda2(1)**0.5d0
lambda(2) = lambda2(2)**0.5d0
lambda(3) = lambda2(3)**0.5d0

lambda_bar(1) = DET**(-ONE/THREE)*lambda(1)
lambda_bar(2) = DET**(-ONE/THREE)*lambda(2)
lambda_bar(3) = DET**(-ONE/THREE)*lambda(3)

DO K=1,3
strain(K) = lambda_bar(K) - 1.d0
END Do

C Calculate principal 2nd Piola-kirchoff stress

Do I=1,3
if (strain(I) .le. 0.d0) then
x01c = -props(1)
x02c = -props(2)
else
x01c = props(1)
x02c = props(2)
endif

323
xmuc = xD1c + 0.5d0*(xD2c-xD1c)
xac = xE2c-xE1
xbc = (xD2c-xD1c)/scale
xfD1c = erf((xD1c-xmuc)/(xbc*sqrt(2.d0)))*
(xmuc-strain(I))+(sqrt(2.d0)*xbc*
exp(-2.d0/(2.d0*xbc**2.d0)))/sqrt(XPI)
xfD2c = erf((xD2c-xmuc)/(xbc*sqrt(2.d0)))*
(xmuc-strain(I))+(sqrt(2.d0)*xbc*
exp(-2.d0/(2.d0*xbc**2.d0)))/sqrt(XPI)
xintfx0c = erf(((sqrt(2.d0)*(xmuc-0.d0))/(2.d0*xbc)*
exp(-2.d0/(2.d0*xbc**2.d0)))/sqrt(XPI)*
(xmuc-0.d0)/(2.d0*xbc**2.d0))/sqrt(XPI)*
(xmuc-0.d0)/(2.d0*xbc**2.d0))/sqrt(XPI)*
(xmuc-0.d0)/(2.d0*xbc**2.d0))/sqrt(XPI)*
xintconstc=xac/(xfD2c-xfD1c)*xintfx0c ! constant of integration to force

S=0 at epsilon=0

Sbar(I)=xE1*strain(I)
+ xac/(xfD2c-xfD1c)*(xintfxc-xfD1c*strain(I))-xintconstc

END DO

Calculate the stress coefficients B_a
DO J=1,3
B_a(J) = (Sbar(J) - ONE/THREE*(Sba(1) + Sbar(2) + Sbar(3)))
END DO

Calculate the eigenvector dyadic products (eigenvalue bases)

n11
n11(1) = na(1,1)*na(1,1)
n11(2) = na(2,1)*na(2,1)
n11(3) = na(3,1)*na(3,1)
n11(4) = na(1,1)*na(2,1)
n11(5) = na(1,1)*na(3,1)
n11(6) = na(2,1)*na(3,1)

n22
n22(1) = na(1,2)*na(1,2)
n22(2) = na(2,2)*na(2,2)
n22(3) = na(3,2)*na(3,2)
n22(4) = na(1,2)*na(3,2)
n22(5) = na(1,2)*na(3,2)
n22(6) = na(2,2)*na(3,2)

n33
n33(1) = na(1,3)*na(1,3)
n33(2) = na(2,3)*na(2,3)
n33(3) = na(3,3)*na(3,3)
n33(4) = na(1,3)*na(2,3)
n33(5) = na(1,3)*na(3,3)
n33(6) = na(2,3)*na(3,3)

Do k1=1,6
kiso(k1) = (B_a(1)*n11(k1))+(B_a(2)*n22(k1))+(B_a(3)*n33(k1))
ENDDO

COEFF3 = BulkM*(DET-ONE)*DET

Do J=1,3
kiso(J) = kiso(J)+COEFF3
ENDDO

XKIRCH(1,1)=kiso(1)
XKIRCH(2,2)=kiso(2)
XKIRCH(3,3)=kiso(3)
XKIRCH(1,2)=kiso(4)
XKIRCH(1,3)=kiso(5)
XKIRCH(2,3)=kiso(6)
XKIRCH(2,1)=XKIRCH(1,2)
XXIRCH(3,1)=XXIRCH(1,3)
XXIRCH(3,2)=XXIRCH(2,3)

Set up the fiber dispersion in the local coordinate system

\[
\phi_{\text{vec}}(i) = 0
\]

DO i=2,n_phi
 \[
 \phi_{\text{vec}}(i) = \phi_{\text{vec}}(i-1) + 2\pi/n_phi
 \]
END DO

\[
\omega_{\text{vec}} = 0
\]

DO i=2,n_omega
 \[
 \omega_{\text{vec}}(i) = \omega_{\text{vec}}(i-1) + ((\pi/TWO)/(n_omega-1))
 \]
END DO

\[
x_{m0i}(1,1) = 0
\]
\[
x_{m0i}(2,1) = 0
\]
\[
x_{m0i}(3,1) = 1
\]

\[
\delta\phi = \phi_{\text{vec}}(2) - \phi_{\text{vec}}(1)
\]
\[
\delta\omega = ((\pi/\text{TWO})/(\text{ONE}/(n_omega-1)))
\]

\[
x_{n0i_mat}(1,1) = \sin(\omega_{\text{vec}}(1))\cos(\phi_{\text{vec}}(1))
\]
\[
x_{n0i_mat}(1,2) = \sin(\omega_{\text{vec}}(1))\sin(\phi_{\text{vec}}(1))
\]
\[
x_{n0i_mat}(1,3) = \cos(\omega_{\text{vec}}(1))
\]

\[
\text{area}_1 = ((0.5d0*\delta\omega)^2)*\pi
\]

CALL kPDF3D1(xbb,xm0i,xm0i,xrho_1)

\[
rho_{\text{vec}}(1) = x\rho_1
\]
\[
\text{area}_{\text{vec}}(1) = \text{area}_1
\]
\[
rho_{\text{mat}}(1,1:n_\phi) = x\rho_1
\]
\[
\text{count} = 1
\]
\[
\text{area}_{\text{tot}} = 0.d0
\]

DO i = 2, n_omega
 DO j = 1, n_phi
 \[
 \text{count} = \text{count} + 1
 \]
 \[
 x_{n0i}(1,1) = \sin(\omega_{\text{vec}}(i))\cos(\phi_{\text{vec}}(j))
 \]
 \[
 x_{n0i}(2,1) = \sin(\omega_{\text{vec}}(i))\sin(\phi_{\text{vec}}(j))
 \]
 \[
 x_{n0i}(3,1) = \cos(\omega_{\text{vec}}(i))
 \]
 \[
 x_{n0i_mat}(\text{count},1) = x_{n0i}(1,1)
 \]
 \[
 x_{n0i_mat}(\text{count},2) = x_{n0i}(2,1)
 \]
 \[
 x_{n0i_mat}(\text{count},3) = x_{n0i}(3,1)
 \]
 if (i<n_omega) then
 \[
 \text{area}_{\text{seg}} = \delta\omega*\sin(\omega_{\text{vec}}(i))*\delta\phi
 \]
 else
 \[
 \text{area}_{\text{seg}} = \delta\omega*\sin(\omega_{\text{vec}}(i))*\delta\phi*0.5d0
 \]
 endif
 \[
 \text{area}_{\text{vec}}(\text{count}) = \text{area}_{\text{seg}}
 \]
 \[
 \text{area}_{\text{tot}} = \text{area}_{\text{tot}} + \text{area}_{\text{seg}}
 \]
 CALL kPDF3D1(xbb,xn0i,xm0i,xrhol)
 \[
 \rho_{\text{vec}}(\text{count}) = x\rho_1
 \]
 \[
 \rho_{\text{mat}}(1,j) = x\rho_1
 \]

325
\[\text{xrho_tot = xrho_tot + xrho_area_seg} \]

\[\text{END DO} \]
\[\text{END DO} \]
\[\text{area_tot = area_tot + area_1} \]
\[\text{xrho_tot = xrho_tot + xrho_1_area_1} \]
\[\text{xrho_tot_norm = xrho_tot/area_tot} \]

C
C--
C Rotate the fiber dispersion in the local coordinate system to the global
coordinate system
C--
C
C ! Need to rotate M (the local mean fiber direction the distribution is distributed
! so that it maps to A (the global mean fiber direction of the fiber family)
C
! \begin{align*}
! xA0(1,1) &= \cos(XALPHAR)\cos(teta) \\
! xA0(1,2) &= \cos(XALPHAR)\sin(teta) \\
! xA0(1,3) &= \sin(XALPHAR) \\
! \end{align*}
C
\text{DO I=1,3} \\
\text{DO J=1,3} \\
\text{XANISOTOT(I,J) = ZERO} \\
\text{END DO} \\
\text{END DO}
C
C LOOP OVER THE NO OF FIBRE FAMILIES
C
\text{DO IANISO = 1,NANISO} \\
\text{rot_mat_E2(1,1) = sin(xalphar(IANISO))} \\
\text{rot_mat_E2(1,2) = 0.d0} \\
\text{rot_mat_E2(1,3) = cos(xalphar(IANISO))} \\
\text{rot_mat_E2(2,1) = 0.d0} \\
\text{rot_mat_E2(2,2) = 1.d0} \\
\text{rot_mat_E2(2,3) = 0.d0} \\
\text{rot_mat_E2(3,1) = -cos(xalphar(IANISO))} \\
\text{rot_mat_E2(3,2) = 0.d0} \\
\text{rot_mat_E2(3,3) = sin(xalphar(IANISO))} \\
C
\text{rot_mat_E3(1,1) = cos(teta)} \\
\text{rot_mat_E3(1,2) = -sin(teta)} \\
\text{rot_mat_E3(1,3) = 0.d0} \\
\text{rot_mat_E3(2,1) = sin(teta)} \\
\text{rot_mat_E3(2,2) = cos(teta)} \\
\text{rot_mat_E3(2,3) = 0.d0} \\
\text{rot_mat_E3(3,1) = 0.d0} \\
\text{rot_mat_E3(3,2) = 0.d0} \\
\text{rot_mat_E3(3,3) = 1.d0} \\
C
\text{call KMTMS (3, 3, 3, rot_mat_E3, rot_mat_E2, rot_mat)}
C
\text{DO i=1,3} \\
\text{xm0i_rot(i,1) = 0.d0} \\
\text{DO m=1,3} \\
\text{xm0i_rot(i,1) = xm0i_rot(i,1)+rot_mat(i,m)*xm0i(m,1)} \\
\text{END DO} \\
\text{END DO}
C
\text{DO kk=1,nseg} \\
\text{xn0i_pre_rot(1,1) = xn0i_mat(kk,1)} \\
\text{xn0i_pre_rot(2,1) = xn0i_mat(kk,2)}
C
C Calculate the Anisotropic Stress
C
DO i=1,3
xn0i_rot(i,1) = 0.d0
DO m=1,3
xn0i_rot(i,1) = xn0i_rot(i,1)+rot_mat(i,m)*xn0i_pre_rot(m,1)
END DO
END DO

C
 Calculate the Anisotropic Stress
C
 DO i=1,3
 xn1i(i,1) = 0.d0
 DO m=1,3
 xn1i(i,1) = xn1i(i,1) + DGRAD(i,m)*xn0i_rot(m,1)
 END DO
 END DO
C
 XI_F = aoa(1,1) + aoa(2,2) + aoa(3,3)
 if (kk==1) then
 XI4(IANISO) = XI_F
 endif
C
C--
C INSTATE THE TENSION CONDITION
C--
C
 IF(XI_F>ONE) THEN
C ZERO MATRICES
 DO I=1,3
 DO J=1,3
 xanisok(i,j) = zero
 END DO
 END DO
C CALCULATE THE VARIOUS PARTS OF THE EQUATION FOR KIRCHSTRESS
C
 fibeps = sqrt(XI_F)-1.d0
 if(fibeps=xD1f)then
 XANISOK = xElf*fibeps*aoa
 nphase = 1
 elseif (fibeps=xD2f)then
 XANISOK = (xP*(fibeps**2.d0) + xQ*fibeps + xR)*aoa
 nphase = 2
 else
 XANISOK = (xE2f*(fibeps-xD2f) + (xP*xD2f**2.d0 + xQ*xD2f + xR))*aoa
 nphase = 3
 endif
C
 XANISOTOT = XANISOTOT +
(1.d0/xr_tot)*XANISOK*rho_vec(kk)*area_vec(kk)
END IF
C END DO
C END DO
C XKIRCH = XKIRCH + XANISOTOT
! write(6,*),'rot_mat=',rot_mat
! Add the residual stress tensor to the diagonal components of the Kirchoff
stress
IF (KSTEP(1)==1) THEN
XKIRCH(1,1)=XKIRCH(1,1)+(TIME(1)*STATEV(9))
XKIRCH(2,2)=XKIRCH(2,2)+(TIME(1)*STATEV(10))
XKIRCH(3,3)=XKIRCH(3,3)+(TIME(1)*STATEV(11))
ELSE
XKIRCH(1,1)=XKIRCH(1,1)+STATEV(9)
XKIRCH(2,2)=XKIRCH(2,2)+STATEV(10)
XKIRCH(3,3)=XKIRCH(3,3)+STATEV(11)
END IF
return
end subroutine kstress_calc
C---
subroutine kdelF(m, n, DGRAD, eps, DF)
INCLUDE 'ABA_PARAM.INC'

intent (in) :: DGRAD, eps, m, n
intent (out) :: DF

C Input: the index's i & j; The current deformation gradient (DGRAD). The
perturbation
C
C Output: The perturbed increment DF
C
dimension dyad1(3,3), dyad2(3,3), DGRAD(3,3), DF(3,3), DFp1(3,3)

c Zero the dyad matrices
c
do i = 1,3
do j = 1,3
dyad1(i,j) = zero
dyad2(i,j) = zero
end do
end do

C Place the 1's in the correct location
dyad1(m,n) = 1.0

dyad2(n,m) = 1.0

call KMTMS (3, 3, 3,dyad1, DGRAD, DFp1)
DF = DFp1

call KMTMS (3, 3, 3, dyad2,DGRAD, DFp1)
DF = DF + DFp1

df = 0.5*DF*eps

end subroutine kdelF
C---
subroutine kprinter(tens, m, n)
INCLUDE 'ABA_PARAM.INC'

intent(in):: tens, m, n
dimension tens(m,n)

write(6,*)
do i = 1,m
 do j = 1,n
 write(6,'(e19.9)',advance='no'),tens(i,j)
 end do
write(6,*)
end do
tens(I,m,n)
write(6,*)
return
end subroutine kprinter

--

SUBROUTINE KMTMS (M, N, L, A, B, C)
INCLUDE 'ABA_PARAM.INC'

intent(in):: M, N, L, A, B
intent(out): C

PRODUCT OF REAL MATRICES

DIMENSION A(M,N), B(N,L), C(M,L)
DOUBLE PRECISION W

DO 30 I = 1,M
 DO 20 J = 1,L
 W = 0.D0
 DO 10 K = 1,N
 W = W + A(I,K) * B(K,J)
 CONTINUE
 C(I,J) = W
20 CONTINUE
30 CONTINUE
RETURN
END SUBROUTINE

--

subroutine kmatrix2vector(XMAT, VEC, NSHR)
INCLUDE 'ABA_PARAM.INC'

intent(in):: XMAT, NSHR
intent(out):: VEC
dimension xmat(3,3), vec(6)

do i=1,3
 vec(i) = xmat(i,i)
end do

vec(4) = xmat(1,2)
IF (NSHR==3) then
 vec(5) = xmat(1,3)
 vec(6) = xmat(2,3)
END IF
end subroutine kmatrix2vector

subroutine kdotprod(A, B, dotp, n)

INCLUDE 'ABA_PARAM.INC'

intent(in) :: A, B, n
intent(out):: dotp
dimension A(n), B(n)
dotp = 0.0
do i = 1,n
 dotp = dotp + A(i)*B(i)
end do
end subroutine kdotprod

subroutine kPDF3D1(xbb, xn, xm, xrho)

INCLUDE 'ABA_PARAM.INC'

intent(in) :: xbb, xn, xm
intent(out): xrho
dimension xn(3,1), xm(3,1)
REAL xpar
XPI = 3.14159265359d0
xpar = sqrt(2.d0*xbb)
CALL kerfi1(xpar, xerr)
xNdotM = xn(1,1)*xn(1,1)+xn(2,1)*xn(2,1)+xn(3,1)*xn(3,1)
xq1 = 4.d0*(sqrt(xbb/(2.d0*xpi)))
xq2 = (2.d0*xbb*(xNdotM**2.d0))
xq3 = exp(xq2)
xrho = xq1*xq3/xerr
return
end subroutine kPDF3D1

subroutine kerfi1(x, xerr1)

INCLUDE 'ABA_PARAM.INC'
INTEGER NMAX
PARAMETER (NMAX=6,H=0.4d0,A1=2.d0/3.d0,A2=0.4d0,A3=2.d0/7.d0)
INTEGER i,init,n0
REAL d1,d2,e1,e2,sum,x2,xx,c(NMAX),x
SAVE init,c
DATA init/0/
if(init.eq.0)then
 init=1
 do i=1,NMAX
 c(i)=exp(-(2.d0*float(i)-1.d0)**2.d0)
 endo
dendif
if (abs(x).lt.0.2) then
 x2=x**2.d0
dawson=x*(1.d0-A1*x2*(1.d0-A2*x2*(1.d0-A3*x2)))
else
 xx=abs(x)
 n0=2*int(0.5*xx/H)
 xp=xx-float(n0)*H
 e1=exp(2.d0*xp*H)
 e2=e1**2.d0
 d1=float(n0+1)
 d2=d1-2.d0
 sum=0.d0
 do i=1,NMAX
 sum=sum+c(i)*(e1/d1+1.d0/(d2*e1))
 d1=d1+2.d0
 d2=d2-2.d0
 e1=e2*e1
 enddo
 dawson=0.5641895835*sign(exp(-xp**2.d0),x)*sum
endif
xerr1 = (2.d0/sqrt(XPI))*exp(x**2.d0)*dawson
return
END subroutine kerfi1

* Numerical diagonalization of 3x3 matrices
* Copyright (C) 2006 Joachim Kopp

* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*-----------------------------------
SUBROUTINE kDSYEVJ3(A, Q, W)
* Calculates the eigenvalues and normalized eigenvectors of a symmetric 3x3
* matrix A using the Jacobi algorithm.
* The upper triangular part of A is destroyed during the calculation,
* the diagonal elements are read but not destroyed, and the lower
* triangular elements are not referenced at all.
* Parameters:
* A: The symmetric input matrix
* Q: Storage buffer for eigenvectors
* W: Storage buffer for eigenvalues
*-----------------------------------
* .. Arguments ..
DOUBLE PRECISION A(3,3)
DOUBLE PRECISION Q(3,3)
DOUBLE PRECISION W(3)
* .. Parameters ..
INTEGER N
PARAMETER (N = 3)
* .. Local Variables ..
DOUBLE PRECISION SD, SO
DOUBLE PRECISION S, C, T
DOUBLE PRECISION G, H, Z, THETA
DOUBLE PRECISION THRESH
INTEGER I, X, Y, R

* Initialize Q to the identity matrix
* --- This loop can be omitted if only the eigenvalues are desired ---
DO 10 X = 1, N
 Q(X,X) = 1.0D0
DO 11 Y = 1, X-1
 Q(X, Y) = 0.0D0
 Q(Y, X) = 0.0D0
11 CONTINUE
10 CONTINUE

* Initialize W to diag(A)
DO 20 X = 1, N
 W(X) = A(X, X)
20 CONTINUE

* Calculate SQR(tr(A))
SD = 0.0D0
DO 30 X = 1, N
 SD = SD + ABS(W(X))
30 CONTINUE
SD = SD**2

* Main iteration loop
DO 40 I = 1, 50
* Test for convergence
SO = 0.0D0
DO 50 X = 1, N
 DO 51 Y = X+1, N
 SO = SO + ABS(A(X, Y))
 51 CONTINUE
50 CONTINUE
IF (SO .EQ. 0.0D0) THEN
 RETURN
END IF

IF (I .LT. 4) THEN
 THRESH = 0.2D0 * SO / N**2
ELSE
 THRESH = 0.0D0
END IF

* Do sweep
DO 60 X = 1, N
 DO 61 Y = X+1, N
 G = 100.0D0 * (ABS(A(X, Y)))
 IF (I .LT. 4 .AND. ABS(W(X)) + G .EQ. ABS(W(X))
 .AND. ABS(W(Y)) + G .EQ. ABS(W(Y))) THEN
 A(X, Y) = 0.0D0
 ELSE IF (ABS(A(X, Y)) .GT. THRESH) THEN
 Calculate Jacobi transformation
 H = W(Y) - W(X)
 IF (ABS(H) + G .EQ. ABS(H)) THEN
 T = A(X, Y) / H
 ELSE
 THETA = 0.5D0 * H / A(X, Y)
 IF (THETA .LT. 0.0D0) THEN
 T = -1.0D0 / (SQRT(1.0D0 + THETA**2) - THETA)
 ELSE
 T = 1.0D0 / (SQRT(1.0D0 + THETA**2) + THETA)
 END IF
 61 CONTINUE
60 CONTINUE
END IF

C = 1.0D0 / SQRT(1.0D0 + T**2)
S = T * C
Z = T * A(X, Y)

* Apply Jacobi transformation
A(X, Y) = 0.0D0
W(X) = W(X) - Z
W(Y) = W(Y) + Z
DO 70 R = 1, X-1
 T = A(R, X)
 A(R, X) = C * T - S * A(R, Y)
 A(R, Y) = S * T + C * A(R, Y)
70 CONTINUE
DO 80, R = X+1, Y-1
 T = A(X, R)
 A(X, R) = C * T - S * A(R, Y)
 A(R, Y) = S * T + C * A(R, Y)
80 CONTINUE
DO 90, R = Y+1, N
 T = A(X, R)
 A(X, R) = C * T - S * A(Y, R)
 A(Y, R) = S * T + C * A(Y, R)
90 CONTINUE

* Update eigenvectors
* --- This loop can be omitted if only the eigenvalues are desired ---
DO 100, R = 1, N
 T = Q(R, X)
 Q(R, X) = C * T - S * Q(R, Y)
 Q(R, Y) = S * T + C * Q(R, Y)
100 CONTINUE
END IF
61 CONTINUE
60 CONTINUE
40 CONTINUE
PRINT *, "kDSYEVJ3: No convergence."
END SUBROUTINE
* End of subroutine kDSYEVJ3
* --
END