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Abstract 

Increasing interest in the sustainable management of Irish macroalgal resources requires the 

development of a cost-effective and efficient methodology for quantifying the distribution of 

key species. Remote sensing provides a mapping solution that allows for large areas to be 

covered and is increasingly being applied to a range of macroalgal mapping research 

questions. Of interest to this research were the commercially and ecologically important 

intertidal brown fucoid, Ascophyllum nodosum and subtidal kelp communities (often 

dominated by Laminaria hyperborea). 

Using a spectroradiometer, the spectral reflectance signatures of common canopy-forming 

intertidal macroalgae were sampled across four seasons during 2018. Classification and 

regression tree (CART) analysis showed that it was possible to discriminate between the 

three macroalgal groups and also between all sampled spectrally similar brown species in all 

seasons, aside from in winter. Intra-specific variation in spectral response of A. nodosum 

thalli was observed across the seasons and should potentially be accounted for in the 

creation of a spectral library. 

A pushbroom hyperspectral drone survey showed that, using a Maximum Likelihood 

Classifier (MLC), it was possible to accurately map A. nodosum distribution ((Overall 

Accuracy (OA) 94.7 %) along with other dominant canopy-forming species. The accurate 

mapping of multiple species corroborated the results found using the spectroradiometer and 

highlighted the potential of this technology for intertidal resource mapping. Further work 

was undertaken at a separate site to compare the ability of two multispectral remote sensing 

platforms (drone and plane) to accurately map A. nodosum. Using MLC, the drone was 

found to produce a more accurate (OA 92 %) and higher taxonomic resolution map than the 

plane (OA 78.9 %) which could only identify a mixed A. nodosum and fucoid class. 

Experience gained from this research contributed to the creation of a comprehensive guide 

for using drones to map intertidal macroalgae which detailed the current technology and key 

challenges associated with mapping within the intertidal zone. 

Vessel-mounted multibeam sonar was used to map a subtidal kelp bed. Three different 

acoustic frequencies (200, 300, 400 kHz), each logging water column data, were used to 

determine whether there was an optimum frequency for the accurate estimation of canopy 

height and extent. Each of the three frequencies provided slightly different estimates of 

canopy height and extent. A drop-down camera validated the presence of the kelp bed 

(dominated by L. hyperborea) but further research is required to determine the source of the 

variation between the three survey frequencies. 



xviii 
 

 



 

1 
 

Chapter 1: General introduction 
 

 

 

 

 

 

 

Drone image of waves breaking over intertidal macroalgae at Black Head (Co. Clare). 
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1.1. What are marine macroalgae? 

The term macroalgae (or seaweed) refers to large, multicellular marine algae (Hurd et al., 

2014) including the red algae (Rhodophyta), green algae (Chlorophyta) and brown algae 

(Phaeophyceae). Each of these groups can trace their origins back 1.5 billion years to a 

single endosymbiotic event where a heterotrophic eukaryotic host cell captured a 

cyanobacteria creating an ancestral primary plastid (Leliaert et al., 2012). Evolution and 

diversification of this ancestral plastid gave rise to Chlorophyta (green algae), Rhodophyta 

(red algae) and the cyanelles of glaucophytes (Le Corguillé et al., 2009), which are part of 

the monophyletic eukaryotic group Archaeplastida (Popper et al., 2011). Brown algae are 

part of the ‘super group’ known as Chromalveolates (Palmer et al., 2004) and evolved later 

than green and red algae through secondary endosymbiosis with red algae (Reyes-Prieto et 

al., 2007), and are subsequently only distantly related to the red and green algae. Secondary 

endosymbiosis now represents a significant driver of known eukaryotic diversity (Keeling, 

2010). Each of the three macroalgae groups can be characterised by variations in pigment 

content and composition which can often, but not always, lead to clear colour differences 

between the three groups, aiding in their identification. 

Both unicellular and multicellular algae can be found in terrestrial, marine or freshwater 

environments, but macroalgae are almost exclusively marine, with comparatively few 

freshwater species, and they have a wide distribution across all coastal latitudes (including 

free-floating variants). Macroalgae can range in size from the towering giant kelp 

(Macrocystis pyrifera (Linnaeus) C.Agardh) to small encrusting morphologies and each 

species’ respective microscopic stages within their life history (Tirichine & Bowler, 2011). 

Variation in the morphology of macroalgal thalli leads to a greater diversity than observed in 

vascular plants (Hurd et al., 2014) and this morphology is directly related to physiological 

functions such as photosynthetic performance (Littler, 1979). 

In temperate coastal regions, areas of hard substratum are dominated by algae of the orders 

Laminariales and Fucales (Dayton, 1985). Shallow, rocky coastal waters provide access to 

substratum and light which is required by macroalgae. These are foundation species and 

serve to create the structural elements of the system. Such species increase the heterogeneity 

of the environment providing spatial refuge from environmental or predation stress and 

enhance the settlement of species through spatial availability (Bruno & Bertness, 2002). The 

waters around Britain and Ireland are especially rich in macroalgal diversity, containing 

around 7% of the world’s seaweeds, making them of international importance (Bunker et al., 

2017).  
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1.2. Macroalgal community ecology 

Since this study focuses on mapping macroalgae, it is prudent to provide an overview of the 

ecological importance of macroalgae and those factors, both abiotic and biotic, that control 

macroalgal distribution. Benthic macroalgal assemblages provide important environmental 

and economic services. They are essential for many faunal species, including commercially 

important ones, as they provide habitats, nursery and mating grounds (Casal et al., 2011). 

They also make an important contribution to primary production (De Oliveira et al., 2006) 

along with protecting the coastline from storm surges and flooding (Madsen et al., 2001). 

Owing to the anticipated increase in commercial applications of macroalgal species, for 

cosmetic, pharmaceutical and human nutrition uses (Mac Monagail & Morrison, 2020), it is 

important that effective management decisions are underpinned by accurate ecological 

monitoring data collection methodologies. The two species studied in this thesis are both 

economically and ecologically important in Ireland, yet there is a paucity of biological 

information with which to support informed decision making for the development of 

management plans (Roberts & Upham, 2012).  

1.2.1. Zonation  

Macroalgae grow in distinct vertical bands from the intertidal down to the subtidal 

(Lubchenco, 1980) and factors influencing these distributions are listed in the next section. 

Fig. 1.1 shows the different biological zones (representative of south-west Britain) in 

intertidal and subtidal environments. Stephenson & Stephenson (1949) provide broad 

descriptions of each of these zones which are applicable, globally, to intertidal rocky shores. 

The littoral, or intertidal, zone is comprised of the supralittoral and eulittoral zones. The 

supralittoral, described by Stephenson & Stephenson (1949) as ‘an arid zone, subject to 

transitional conditions between land and sea’, is commonly referred to as the splash zone 

and supports limited floral and faunal assemblages, with the notable exception of lichen 

species such as Verrucaria maura Wahlenberg. The eulittoral zone is dominated by dense 

fucoid assemblages including Ascophyllum nodosum (Linnaeus) Le Jolis, Fucus vesiculosus 

Linnaeus and Fucus serratus Linnaeus whilst also supporting greater faunal abundances than 

the supralittoral zone. The margin between the littoral and sublittoral is known as the 

sublittoral fringe which experiences reduced emersion times compared to the rest of the 

intertidal. This zone is characterised by F. serratus, Laminaria digitata (Hudson) J.V. 

Lamouroux and dense, mixed red macroalgal communities. 

The sublittoral is divided into the infralittoral and the circalittoral (Connor et al., 2004) with 

the location of the boundary between them being defined by light availability. The 
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circalittoral is typically dominated by faunal species with the infralittoral dominated by 

macroalgae (Hurd et al., 2014). Around Britain and Ireland Laminaria hyperborea 

(Gunnerus) Foslie is the dominant subtidal macroalgal species with other opportunistic kelps 

including Sacchoriza polyschides (Lightfoot) Batters and Saccharina latissima (Linnaeus) 

C.E. Lane also being present and Laminaria ochroleuca Bachelot de la Pylaie being recently 

described in Ireland for the first time (Schoenrock et al., 2019). 

 

 

1.2.2. Intertidal macroalgal community ecology 

A hardy subset of macroalgal species choose life on the very margins of the marine realm 

where they grow in distinctive vertical or horizontal bands along strong environmental 

gradients across rocky intertidal zones (Hurd et al., 2014) where they are exposed to 

fluctuations and sometimes extreme temperatures (Helmuth & Hofmann, 2001). In Ireland 

and the UK, rocky shores are dominated by large multicellular brown macroalgal species, 

competing for space and light in dynamic and complex environments. It is important to note 

Fig. 1.1. Pictorial representation of a typical vertical zonation pattern for a rocky shoreline. Adapted 

from Connor et al. (2004). 
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that the strong zonation bands of individual species can often overlap causing mixtures of 

two or more species which, as will be discussed later in this thesis, can make accurately 

mapping them challenging. Removal of competitors allows some species, such as F. 

vesiculosus and F. serratus to extend their distribution up or down the shore, highlighting 

the importance of competition in zonation patterns (Hawkins & Harkin, 1985). Patterns of 

zonation along a rocky shore, and the species present, are strongly influenced by the 

geologic and topographic nature of the coastline. Location and orientation will determine 

site exposure levels, altering the species that may be found there, depending on their wave 

exposure tolerances. The upper intertidal zone, where emersion times are greater, the small, 

shrubby species Pelvetia canaliculata (Linnaeus) Decaisne & Thuret and F. spiralis often 

dominate. These species are able to tolerate long periods of desiccation-stress and then 

return to their normal state once rehydrated (Schonbeck & Norton, 1979). Below this zone, 

overlapping assemblages of A. nodosum and F. vesiculosus can often occur, with the latter 

being more tolerant of exposed conditions, albeit with a decrease in size and branching 

(Kalvas & Kautsky, 1993). Himanthalia elongata (Linnaeus) S.F. Gray, in the west of 

Ireland, typically occurs between F. serratus and L. digitata on semi-exposed shores 

(Stengel et al., 1999). L. digitata is able, due to its flexible stipe, to occupy a unique niche 

on the margins of the intertidal and subtidal zone (Lüning & Dring, 1979), being easily 

accessible during spring tides. 

1.2.3. Subtidal macroalgal community ecology 

Kelps are large brown alga of the order Laminariales (Phaeophyceae) and dominate the 

rocky, sublittoral coastal zone throughout global temperate environments (Yesson et al., 

2015). In Ireland, rocky subtidal communities are dominated by kelps which are habitat 

forming foundation species (Bruno & Bertness, 2001) and are a major structuring 

component through temperate and polar latitudes (Pehlke & Bartsch, 2008). Kelp provide 

important habitat for a range of species including those of commercial value such as juvenile 

cod (Cote et al., 2003). Depending on the height of their fronds, kelps can be classified into 

three categories. The fronds of canopy forming kelps (not present in Ireland) float high in 

the water column due to the presence of pneumatocysts (gas-filled bladders), stipate kelps 

are usually smaller and consist of a rigid stipe and prostrate kelps have flexible stipes and 

tend to sit closer to the seafloor (Krumhansl & Scheibling, 2012) and each of these provides 

unique habitat structures for associate flora and fauna (Steneck et al., 2002). Species present 

in Ireland and the UK include Alaria esculenta (Linnaeus) Greville, L. digitata, L. 

hyperborea, L. ochroleuca, S. latissima, S. polyschides and Undaria pinnatifida (Harvey) 

Suringar (Smale et al., 2013, Yesson et al., 2015). Major canopy-forming species tend to be 

L. hyperborea, L. digitata and L. ochroleuca (the latter in the UK) but these can be 
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outcompeted, for example in wave-exposed conditions where A. esculenta can dominate 

(Hawkins & Harkin, 1985). Most of these species are long-lived, with L. hyperborea having 

a lifespan of up to 18 years (Kain 1971) and only two (S. polyschides and U. pinnatifida) 

being short-lived, annual species. Sacchoriza polyschides is a common opportunistic species, 

tolerant of a range of exposure conditions and able to attach to both solid (bedrock) and 

loose (pebbles and cobbles) substratum (Norton, 1969). It can replace L. hyperborea in the 

wake of storm events (Hennequart et al., 2006). Worldwide, kelp communities are 

experiencing a loss of biomass through climate change and direct anthropogenic impacts 

such as harvesting (Krumhansl & Scheibling, 2012). As previously mentioned, L. digitata 

occurs at the sublittoral fringe but is quickly succeeded by L. hyperborea at depths of ~2.5 m 

LAT (Kitching, 1941) which can, under the right conditions (in the UK), reach maximum 

depths of ~20 m (Kain, 1962). 

1.3. Study species 

1.3.1. Ascophyllum nodosum 

Ascophyllum nodosum (Fig. 1.2) is an intertidal brown foundation (Olsen et al., 2010) 

species of the order Fucales which inhabits the mid-shore along sheltered coastlines in the 

North Atlantic (Stengel & Dring, 1997). Ascophyllum nodosum is widely distributed across 

the North Atlantic, from Arctic Canada, Greenland, Iceland and Norway down south through 

to Portugal (Seeley & Schlesinger, 2012). In some sheltered locations it can form almost 

monospecific coverage of the mid-shore region (Jenkins et al., 2004).  

It is a relatively long-lived species, having a short reproductive season in the spring, with 

some individuals reaching around fifty years old (Davies et al., 2007). Differences in 

maximum age can exist between different shore levels. Stengel & Dring (1997) reported the 

maximum age of unbroken fronds on the lower shore as reaching 17 years and 6 for the 

upper shore from Strangford Lough in Northern Ireland.  The plant forms long fronds, of up 

to 150cm, with bladders, and is also relatively resilient as new fronds can be generated when 

larger fronds are damaged. The fronds are branched in an irregular, forked manner and 

attached to the substrate via a holdfast (Bunker et al., 2017). The thallus grows by apical 

growth, branching dichotomously once a year with a single oval-shaped air bladder being 

formed each year of grow after the first (David, 1943). Ascophyllum nodosum exhibits 

seasonal growth patterns with the lowest rates in the winter period and highest in late spring 

and early summer (David, 1943, Stengel & Dring, 1997). Reproductive structures 

(receptacle and supporting structures) appear in June, reaching their largest size in May the 

following year when the gametes have been released, and are subsequently shed (Åberg, 
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1996). This may, however, vary between sites. In western Ireland, A. nodosum is 

morphologically distinct from co-occurring macroalgal species, particularly F. vesiculosus 

and F. serratus. Fucus vesiculosus is identifiable through its flattened fronds, with a midrib 

and pairs of air bladders either side. It can grow up to 90 cm long. Fucus serratus also has 

flattened fronds and a midrib but lacks the air bladders and is instead easily recognised by 

the serrated edges of the fronds (Bunker et al., 2017).   

The fronds of A. nodosum can create three different types of complex habitat, wrack, drifting 

mats and attached plants which, in North America, can support thirty-four species of fish 

and upwards of one hundred invertebrate species (Seeley & Schlesinger, 2012). Ascophyllum 

nodosum not only provides important habitat but also nitrogen and carbon storage services 

highlighting its ecological importance (Schmidt et al., 2011). The branching structure of A. 

nodosum provides habitat and shelter from predation for a range of different faunal species 

as documented by Colman (1940) whilst also providing shelter for larger benthic species. 

The epiphytic alga Polysiphonia lanosa (Linnaeus) Tandy is synonymous with A. nodosum 

across its geographic range, apart from Sweden where it has not been observed (Åberg, 

1996). Polysiphonia lanosa itself also provides habitat for small faunal species, such as 

ostracods and copepods (Colman, 1940). The loss of canopy cover, either through direct 

harvesting impacts or storm events negatively impacts on the sub-tidal canopy. Jenkins et al. 

(2004) reported that in a twelve-year period following the experimental removal of the A. 

nodosum canopy the sub-canopy community did not return to its original state. This 

community was previously characterised by a delicate balance between red algae and 

limpets but bleaching of the red algae post canopy removal led to an increase in grazing 

pressure, inhibiting red algal regrowth. Increases in limpet densities can cause a loss of A. 

nodosum through direct grazing pressure and Davies et al. (2007) observed that this was 

preventing A. nodosum growth in Strangford Lough. 
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Fig. 1.2. Ascophyllum nodosum (left) and Laminaria hyperborea (right). Image credit: Tom Rossiter 

(A. nodosum) & Kenan Chan (KelpRes) (L. hyperborea). 

 

1.3.2. Laminaria hyperborea 

Laminaria hyperborea is often the dominant subtidal kelp species in the UK (Kain, 1962) 

and possibly also in Ireland. It has a wide latitudinal geographic distribution from Norway to 

Portugal (Kain, 1971) where suitable substratum and environmental conditions exist. Found 

in clear water in depths of ~30 m, L. hyperborea grows attached to solid rock or boulders 

that are large enough not to be frequently disturbed by wave action and storm events (Kain, 

1971). Laminaria hyperborea is tolerant of strong water movement and currents, but in areas 

of more extreme exposure it is often replaced by A. esculenta (Kain, 1971).  

Laminaria hyperborea, reaching lengths of 1.5–2 m (Kain, 1963), is characterised by a rigid, 

rough stipe that is often colonised by a high diversity of epiphytic red algal species (Christie 

et al., 2003). This rough stipe is not found on other Irish kelp species and is the primary 

diagnostic character of L. hyperborea (Bunker et al., 2017). Both stipe and frond growth 

occur at the meristem. Stipe growth occurs year-round but is fastest in from January to June. 

Fronds grow rapidly between January and May with a period of slower growth producing a 

small amount of frond tissue, forming a narrow base at the old frond. When further fast 

growth occurs, a new frond is produced, joined to the old growth by this narrow base until 

the old frond is shed in April/May (Kain, 1963). Reproductive tissue appears on L. 

hyperborea during winter with a peak in January and the gametophytes are able to survive 

and grow in low irradiance conditions, potentially finding more bare rock surfaces to settle 

on due to increased storminess during winter (Kain, 1975). Pedersen et al. (2012) observe an 

increase in the density, individual size and biomass with increased exposure levels. 

20 cm 

1.5 m 
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Traditional morphological adaptations for increased exposure levels in kelps include a larger 

holdfast, thicker and occasionally shorter stipe and smaller, more streamlined blades. 

Laminaria hyperborea differs somewhat as individuals become much larger, increasing in 

biomass. 

Laminaria hyperborea hosts a diverse array of species owing to the distinct habitats 

provided by the holdfast, stipe and lamina. In a study on L. hyperborea populations in 

Norway Christie et al. (2003) found 238 different species of macrofauna living on 56 L. 

hyperborea individuals. The study observed differences in species composition between the 

three distinct habitats. Holdfasts were found to contain the most diverse community; stipes 

had the highest abundance (likely due to the additional habitat provided by epiphytic red 

algal species) and the lamina had both the lowest diversity and abundance. The habitat 

created by L. hyperborea can also support a diverse range of fish species. Norderhaug et al. 

(2005) recorded 21 different species of fish occurring within a Norwegian L. hyperborea 

forest and found that stomach contents were dominated by invertebrate species that live on 

kelp individuals. Associated macroalgal communities can also be diverse within L. 

hyperborea forests. Leclerc et al. (2015) identified 65 macroalgal taxa occurring both on 

kelp individuals and the surrounding substrate along with 279 macrofauna taxa within L. 

hyperborea forests along the coast of Brittany. 

1.4. Controls on macroalgal distribution 

1.4.1. Abiotic controls 

Tides are a result of the gravitational attractions of the sun and the moon, the latter exerting 

a stronger gravitational pull being much closer to the Earth (Dawes, 1998). Many coastlines, 

including Ireland, experience semidiurnal tides and when the Earth, moon and sun align their 

combined gravitational pull causes extreme tides known as spring tides. When the sun and 

the moon are at right angles to each other more moderate neap tides occur. Tides exert an 

important control on intertidal zonation, for example the coincidence of a spring tide and 

hot, dry weather can lead to mortality and bleaching events (Dawes, 1998). During summer, 

desiccation, UV and rockpool water salinity stress increase when low tides occur during the 

day (Hurd et al., 2017). Tides in Ireland occur semi-diurnally and are a result of the 

gravitational attraction between the sun and the moon and the shape of ocean basins can 

increase or reduce the gravitational effects of the sun and moon, influencing the tide type 

and amplitude (Dawes, 1998). In Ireland tidal predictions are a result of the analysis of a 

series of tide gauges located around the coastline and in some locations, predictions can be 

made from the Marine Institute Regional Ocean Modelling System (ROMS). 
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As light is essential for photosynthesis, it is thus the most important factor in affecting the 

distribution of seaweeds (Hurd et al., 2014). Factors such as water turbidity, depth and 

current velocity can affect the available light levels (Madsen et al., 2011) and light levels 

will affect the depth distribution of seaweeds (Dawes, 1998). Terrestrial inputs of sediment, 

such as river outputs, as well as anthropogenic sources, increase sedimentation in coastal 

regions, decreasing the available light for benthic macroalgae (Hurd et al., 2014). Kelp can 

survive so long as the light reaching them is greater than 1% of the surface light, below this 

level kelp is absent (Blight et al., 2011). Although Lüning & Dring (1979) reported that 0.5 -

1% was the lower light limit for kelps from their study in Helgioland (Germany). Light 

availability in the intertidal zone can influence the concentration of pigments within a 

species with shaded thallus regions having higher concentrations of photosynthetic pigments 

than thalli exposed to sunlight (Sampath-Wiley et al., 2008). 

Nitrogen is the most important nutrient for seaweed growth (Hurd et al., 2014) and water 

motion is the main provider of nutrients. There are four main elements important for algae 

growth, oxygen, carbon, nitrogen and phosphorus (Dawes, 1998). Gagne et al (1982) 

showed how the difference in availability of nitrogen led to differences in the growth 

strategy for Laminaria longicuris Bachelot de la Pylaie. In the site where nitrogen was not 

limited (due to an upwelling) kelp growth followed the seasonal pattern of light. At the other 

site, growth was greatest during the winter, when nitrogen was abundant, and continued 

through into the summer using stored nitrogen. Nitrogen is often limiting during the summer 

months, where the algae grows slower whilst using stored reserves and higher during winter, 

when the algae builds up its internal reserves (Hatcher et al., 1977). In the intertidal zone, 

nitrogen can also be a limiting factor as emersion means that the nutrients provided by the 

seawater are unavailable (Davison & Pearson, 1996).   

Temperature is a major factor in controlling seaweed distribution. Temperature may restrict 

a species’ distribution through limitations to either survival or reproductive ability (Hurd et 

al., 2014). For kelps, increasing ocean temperatures are stressful and can lead to a decrease 

in their abundance (Wernberg et al., 2010). A study conducted in Australia by Wernberg et 

al. (2011) showed, using historical records, how continued warming of the oceans is likely 

to drive many macroalgal species towards the edge of the Australian continent and beyond 

the limits of available habitat. Potential climate change scenarios (IPCC A2, A1B and B1) 

indicate a potential northwards shift of three foundational intertidal macroalgal species, 

including A. nodosum, and a contraction of their southern range (Jueterbock et al., 2013). 

Within the intertidal zone there are a plethora of microhabitats that can affect the local 

temperature, rocks can provide shading and rockpools provide a degree of protection from 

solar insolation (Hurd et al., 2014). Desiccation is a major stress factor for intertidal species 



Chapter 1: General introduction 

11 
 

whereby they start to lose water, becoming dehydrated. Often species compensate for this by 

developing morphological adaptations (i.e. F. spiralis and P. canaliculata) or by being 

protected by their micro-habitats (Hurd et al., 2014). It is also accepted that species higher 

up the shore have a greater tolerance to desiccation (Davison & Pearson, 1996). 

Water motion directly affects nutrient availability, light penetration and salinity and acts as a 

physical force, through wave action, causing the removal of species from the rock which are 

then replaced by fast growing, opportunistic species (Hurd et al., 2014). Wave action can 

determine the survival and persistence of a species (Jonsson et al., 2006) and currents can 

increase the re-suspension of sediment reducing the available light (Madsen et al., 2001). 

Upwellings can also increase the amount of nutrients available and provide a supply of 

cooler water enabling species to survive beyond their biogeographical distribution (Gagné et 

al., 1982). Variations in rocky shore wave exposure levels can alter the species composition 

of macroalgal assemblages. Ballantine (1961) observed variations in macroalgal community 

composition in relation to wave exposure, finding that species such as A. nodosum are absent 

from highly exposed coastlines (species like F. vesiculosus and F. serratus are more tolerant 

of exposed conditions), becoming progressively more abundant as wave exposure levels 

decrease. Laminaria hyperborea is found in high abundance in wave-exposed areas, with 

abundance significantly decreasing in more wave-sheltered areas. Increased wave action 

may facilitate the growth of light-limited kelps occurring in deeper water as increased 

movement of kelp fronds maximises the amount of light captured by the fronds whilst also 

preventing excessive epiphytic fouling (Bekkby et al., 2019). 

Variations in salinity levels have a major influence in the determinations of species presence 

and distribution (Scherner et al., 2013). Certain marine species are tolerant to a specific 

range of salinities and can accommodate slight variations. However, a species can 

experience stress once salinity thresholds are reached (Wilkinson et al., 2007). Inputs of 

freshwater also act to decrease salinity, for example in rockpools during low-tide (Hurd et 

al., 2014) and in coastal areas in the vicinity of estuaries. Increased rainfall in coastal 

regions, as a result of climate change, could likely lead to higher freshwater inputs through 

rivers and a decrease in coastal salinity (Scherner et al., 2013). 

1.4.2. Biotic controls 

Foundation species are those that modify their surrounding environmental conditions 

providing suitable habitat for other species to settle (Hurd et al., 2014). Both kelps (Pehlke 

& Bartsch, 2008) and fucoids (Olsen et al., 2010; Davies et al., 2007) are considered as 

foundation species. Foundation species assist the growth and development of other species 

by increasing propagule retention and resources (Bruno & Bertness, 2001). These species 
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can also provide protection from grazing, ultraviolet (UV) light and damaging wave forces 

(Wernberg, 2005). Facilitation species are those which have a positive impact on their 

surrounding community through their actions (Bruno & Bertness, 2001). Choi & Norton 

(2005) found that under desiccation, F. vesiculosus enhanced the survival of A. nodosum at 

the early germling stage, an example of facilitation. 

Competition between species is based on access to a common resource, in many temperate 

coastal environments access to rock substratum is a limiting resource (Hurd et al., 2014). 

Access to light is another major limiting factor as dense seaweed canopies restrict the 

amount of light passing through them to juvenile species, meaning that to survive these new 

recruits need to be able to grow quickly (Worm & Chapman, 1996). 

Grazing by faunal species is significant in controlling species presence and physiological 

condition. High levels of grazing can prevent the establishment of macroalgal species 

(Hawkins et al., 2008). Davies et al. (2007) found that in Strangford Lough the densities of 

limpets were preventing the growth of A. nodosum through grazing. Outbreaks of sea 

urchins can destroy kelp forests and maintain a post-kelp barren community dominated by 

crustose coralline algae, whilst reductions in grazing pressure can lead to a resurgence in 

kelp forest growth (Hagen, 1995). A study by Poore et al. (2012) observed that on a global 

scale consumer impacts on primary producers reduced, on average, abundance by 60%, 

confirming that consumers exert a strong control over primary producers. Kelp is almost 

exclusively grazed upon by sea urchins (Dayton, 1985) and whilst kelp deforestation can 

happen as a result of disease and physiological stress sea urchins are, at mid-latitudes, the 

most common driver of kelp deforestation (Steneck et al., 2002). There have been no reports 

of significant over-grazing of kelp in Ireland. 

One cannot delve further into the mapping of macroalgal communities without first knowing 

their importance to humans. Providing the necessary context to this relationship helps to 

address the core factors underpinning this research. The state of macroalgal harvesting in 

Ireland and the attitudes of various stakeholders towards macroalgal management are 

important in considering the impact this research may have in Ireland. Without knowing the 

historical context of Irish macroalgae and understanding the strong cultural and societal 

importance (Delaney et al., 2016), for many coastal communities in the west of Ireland, it 

would be difficult to develop an effective and sensitive methodology for the assessment of 

macroalgal resources within Ireland as support from local communities will be required to 

facilitate surveys. 
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1.5. Humanity’s historical relationship with macroalgae 

Humans have long had an affinity with the sea and have been exploiting the resources found 

within the coastal zone for thousands of years (Steneck et al., 2002). The earliest record of 

human exploitation of the coastal zone comes from Pinnacle Point in South Africa, where 

shellfish remains indicate the addition of a new type of food to the traditional terrestrial diet 

of early humans (Marean et al., 2007). Evidence from Monte Verde in Chile suggests that 

macroalgae was being used by humans as early as 12,500 BC (Dillehay et al., 2008). In 

Japan, remains of Sargassum have been found in middens dating back to the early-to-mid 

Jōmon Period, around 6,000 BC, and was even used to feed the armies of feudal lords during 

the Age of Civil War (Nisizawa et al., 1987). Seaweed has historically been part of the 

Hawaiian diet and is still added to taro and rice-based dishes for flavour (Abbott, 1978). 

Closer to home, Bronze-Age middens from Shetland attest to the use of fucoid species for 

crop fertilisation, highlighting the ability of the Neolithic community to fully exploit all 

available resources and the importance of macroalgae to these societies (Dockrill & Bond, 

2009). There is also evidence of the seasonal presence of macroalgae in the diet of Orkney 

sheep during the Neolithic and Iron Age periods, suggesting that it was used as fodder 

during times of resource scarcity (Balasse et al., 2009). 

Much of the evidence for early human occupation of the coastal zone, along with its 

importance to us, may well have been lost to changing sea levels (Allen et al., 1988., Garrod 

et al., 1928., Erlandson, 2002), yet enough archaeological evidence remains to show the 

importance of coastal and aquatic environments for the development of early human society. 

The presence of marine resources, including macroalgae, helped to contradict a previously 

held belief that these environments were more of a hinderance than a help to early humans 

(Erlandson, 2002). Further importance is highlighted by the ‘Kelp Highway Hypothesis’, 

which posits that the productive nearshore kelp forests stretching from Japan to Baja 

California facilitated the movement of coastal humans and allowed the settlement of the 

Americas via the Beringia land bridge approximately 18,000–13,000 years ago (Erlandson et 

al., 2007). 

There appears to be scant archaeological evidence for the collection of macroalgae during 

the Mesolithic period in Ireland (Warren, 2015). Instead, shell assemblages can be used a 

proxy for its presence, as shown by Murray (2007) who documented the presence of species 

such as periwinkles, blue-rayed limpets and whelks at sites in Ireland ranging from the 

Mesolithic through to the early Christian period. These species are directly associated with 

macroalgal communities and indicate that macroalgae was either harvested directly or 

foraged within. 
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One of the earliest recorded instances of macroalgae harvesting in Ireland comes from a 

poem, dating to the 12th Century, describing monks harvesting Palmaria palmata (Linnaeus) 

F. Weber and D. Mohr (referred to as dillisk) and distributing it to the poor (Guiry, 2010). 

By the time of the 18th Century, dillisk, or dulse, was being used as chewing tobacco and as 

medicine and, over the centuries, different types of macroalgae were used in a range of 

applications from fertiliser, aquaculture feed, glazing pottery and the production of glass 

(Guiry, 2010). Kelp was also being burned in order to produce iodine, valuable for medicine 

and also to create silver iodide for cameras, this was often a seasonal occupation for many 

(Harper, 1974). The depletion of suitable woodland, from which alkali was previously made, 

in post-medieval Ireland gave rise to the burning of kelp which, despite its low alkali content 

relative to alternatives, produced useful by-products such as salt and manure (Forsythe, 

2006). Early records of the use of kelp for industry come from the early 17th Century where 

it was involved in the manufacturing of glass (Westropp, 1920). Evidence for the growth of 

the Irish macroalgal harvesting industry can be found in J.C. Curwen’s ‘State of Ireland’ 

(1813) where the annual average export of kelp during the years 1702-1809 was recorded. In 

1702, 118 tons was exported, in 1752 it was 742 tons and by 1809 it had reached 5,410 tons 

(Harper, 1974). However, come 1880, significant declines in kelp production were recorded, 

for example in the district of Kilkieran the total price paid for kelp fell from £15,000 per 

annum in 1875 to £3,000 (Irish Pound) in 1880. This was attributed to the discovery of 

‘some other compound’ in South America, likely ‘Chile saltpeter’ (Delaney et al., 2016), 

reducing both the ‘demand and the price’ of kelp (Anon. 1880).   

Scientific research on Irish marine algae began with the work of Henry Harvey (1811-1866) 

where he was involved in describing algae for the British Flora (Webb, 1966). 

1.5.1. Irish macroalgal industry 

The modern Irish macroalgal industry is primarily associated with the Gaeltacht areas of 

Ireland (Anon, 2015a) and macroalgae are used for a range of different commercial 

applications. The main uses of Irish macroalgae are as animal feed, plant supplements and 

specialist fertilisers which are high volume, low value products (Anon, 2015a). A smaller 

proportion (approximately 1%) of macroalgae is used in higher value products, such as 

foods, cosmetics and therapies, and is responsible for 30% of the value generated by the 

Irish seaweed industry (Anon, 2015a). The value of the industry is estimated at €18 million 

per annum (Morrissey et al., 2011), €6 million of which is associated with the export 

industry (Walsh & Watson, 2011). As of 2011, the Irish macroalgal industry produced 

36,000 tonnes of wild macroalgae annually and employed 185 full time equivalents (Walsh 

& Watson, 2011). 
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Almost all the macroalgae harvested in Ireland are wild, the majority of this is collected 

manually, with over 75% of this being A. nodosum, and there is very little in the way of 

macroalgal cultivation occurring (Anon, 2015a). Whilst foreshore licenses are required to 

harvest seaweed, those individuals or families who have traditional access rights to the 

foreshore do not require any license and manage their plots individually (Mac Monagail & 

Morrison, 2020). The majority of firms operating in this industry are micro enterprises, each 

employing fewer than five people (Anon, 2015a). With increased commercial interest, the 

demand for high value species, such as L. hyperborea, is likely to increase. Whilst there is 

currently no extensive commercial harvesting of L. hyperborea in Ireland, licensing 

applications are underway for the mechanical harvesting of kelp in Bantry Bay (Baker, 

2019). The paucity of baseline ecological data on such habitats (Schoenrock et al., 2019) 

makes the ecological consequences of increased mechanical harvesting difficult to quantify. 

The increasing number of companies operating in the Irish seaweed market, alongside 

increased research and the development of novel applications, is creating new demand for 

macroalgal products, seeking higher value species for food and cosmetic applications. Such 

renewed commercial interest could, if left to develop unchecked, lead to extensive 

degradation of Irish macroalgal resources (Mac Monagail & Morrison, 2020). The study 

species for this research represent both the present (A. nodosum) and likely future (L. 

hyperborea) of the Irish seaweed industry. Developing an accurate and cost-effective 

method for assessing their populations will support the sustainable management of Ireland’s 

macroalgal resource. 

The above passage offers a mere glimpse into the historical, and more recent, relationships 

between humankind and macroalgae. It is clear, however, that macroalgae has likely been a 

valuable resource for the spread and development of human society and most probably for 

far longer than records suggest. This understanding helps one to appreciate the importance 

effectively managing this resource as it has, is and always will be of great value to humanity. 

1.6. Macroalgal mapping methods 

1.6.1. The importance of mapping macroalgae 

Intertidal macroalgal communities face an increasing range of anthropogenic (Godet et al., 

2009) and environmental pressures (Brodie et al., 2014) which underscores the importance 

of monitoring these communities and developing ecological baselines. Climate change 

effects on the ocean, including warmer waters, increased storminess and changing 

chemistry, are likely to impact macroalgal ecophysiology and distribution, affecting 

associated faunal communities (Harley et al., 2012) and, consequently, industries that rely 
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on these resources. Increasing human development along many of the world’s coastlines is a 

direct threat to marine and coastal ecosystems, especially macroalgal communities. This 

brings not only direct physical destruction but also increased pollution from run-off, 

contamination from organic matter and increased turbidity from sediment loading (Coelho et 

al., 2000; Walker & Kendrick, 1998). Invasive species can be a major contributor to the 

degradation of coastal marine ecosystems, and the spread of invasive species is often 

facilitated by greater levels of human activity in these environments (Grosholz, 2002). 

Sargassum muticum (Yendo) Fensholt is the ‘poster-child’ for invasive macroalgal species 

in Europe where it can often dominate in disturbed habitats, outcompeting native species 

(Sánchez & Fernández, 2005) but is not established in Ireland to the point where it forms 

nuisance monospecific stands (Baer & Stengel, 2010). 

The concept of ‘shifting-baselines’ in ecology (Pauly, 1995) has now expanded beyond 

fisheries science and has come to encapsulate the idea that what is viewed as ‘normal’ 

(ecologically speaking) today must be considered in a historical context. In some cases, this 

may mean that the ‘normal’ of today is the ‘degraded’ of yesterday, an important caveat for 

the establishment of baseline monitoring studies.  

Traditionally, macroalgal surveys have, and still are (Burrows et al., 2010), carried out by 

the means of detailed field surveying. This is considered the most accurate habitat mapping 

methodology (Simms, 2003; Stevens et al., 2004), particularly regarding taxonomic 

resolution, as it allows for the collection of data over the finest of spatial resolutions and 

often allows for the quantification associated floral and faunal species. This complexity can, 

however, limit the scale of field surveys, making surveying large areas time-consuming and 

costly (Oppelt et al., 2012; Casal et al., 2013; Brodie et al., 2018) and they can suffer from 

standardisation issues if multiple surveying organisations are involved (MacAlister & 

Mahaxay, 2009). Similar constraints also apply to a wide range of terrestrial and marine 

mapping applications and there has, over the past three decades, been a concerted effort to 

develop accurate remote sensing assessment methodologies (Goetz, 2009). For the effective 

implementation of management and conservation strategies such data needs to be collected 

in a cost-effective and efficient way (Nagendra, 2001). 

Remote sensing can broadly be defined as the science of monitoring the Earth from a 

distance. For this research project, and for the sake of simplicity, remote sensing can be split 

into two subdivisions, optical and acoustic. The former is the initial focus. Smith (2012) 

defines optical remote sensing as the ‘science of obtaining and interpreting information from 

a distance, usually through the means of either aerial, satellite or spacecraft observations’. 

Acoustic remote sensing can be similarly defined, where the limited penetrating of 
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electromagnetic radiation (EMR) through water requires that boats and acoustic sensors be 

used instead of aerial, satellites or spacecraft (Brown et al., 2019). This technology allows 

for some of the limitations with traditional field-surveying to be addressed, chief of which 

being the limited spatial extent covered. Depending on the platform used, remote sensing 

can cover much larger tracts of the Earth’s surface than on-foot methods, in the same 

amount of time (Gray et al., 2018). Data can be collected over a wide range of spatial 

resolutions and across the entirety of the electromagnetic spectrum providing information on 

a cornucopia of Earth system processes that would be immensely difficult to quantify on 

foot.  

1.7. Optical remote sensing 

1.7.1. History and development of optical remote sensing     

An appreciation for the historical context in which modern optical remote sensing sits is 

required to understand how the technology has developed over the past century and how 

current remote sensing capabilities differ greatly in the types of data collected and the spatial 

and spectral resolutions that can be achieved with modern technology. 

Soon after the development of practical photography techniques in the late 1830’s, interest 

grew in their use for capturing images from high-vantage points. Balloons and kites were the 

initial method of choice for attaining such images and the first document case is that of 

Gaspard Félix Tournachon (known as ‘Nadar’) who, in 1858 successfully used a balloon-

mounted camera to capture the cityscape of Paris (Amad, 2012). Unfortunately, none of 

Nadar’s photographs exist today but other notable pioneers include James Wallace Black 

who, using a balloon, took the first extant aerial image over Boston in 1860 (Fig. 1.3) 

(Skoog, 2008) and the infamous Eadweard Muybridge who, whilst famed for his work on 

photographic studies of motion, created the world’s first panoramic image, of San Francisco 

in 1877 (Amad, 2012). Soon the idea of mounting cameras on rockets was being 

championed by Alfred Nobel and in 1897, the year after his death, the first successful 

images were supposedly captured, although doubt has been cast on whether the images were 

captured from a hill instead (Skoog, 2008).                                       
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The invention and development of aircraft opened a whole new avenue of potential 

applications for aerial imagery, none better encapsulated then their pioneering use in WWI. 

From 1915 onwards, both the Allies and the Central Powers extensively used aerial 

photography to reconnoitre and observe enemy defences (Gheyle et al., 2016). So extensive 

are the archives of these images, that they are still being used today to understand and 

preserve the war’s heritage (Note et al., 2018). WWII saw the further development of aerial 

imagery acquisition, interpretation and use of the non-visible EM spectrum. The skillset 

developed by those involved was, after the war, transferred to civilian occupations and 

helped to drive the continued development of remote sensing (Campbell, 2002). Since then, 

planes have been a reliable platform from which to conduct remote sensing surveys. 

Fig. 1.3. First aerial image of Boston, taken in 1860 by James Wallace Black using the ‘Queen of the 

Air’ hot-air balloon. Credit: James Wallace Black (CC). 
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The first images taken where the Earth’s curvature was visible were in 1935 from the 

Explorer II stratospheric balloon, piloted by Captain Albert Stevens, which took images 

from around 20 km in height (Briggs, 1935). Some of the earliest images taken from space 

were from captured V2 rockets followed by Viking rockets launched from New Mexico 

from 1946 – 1955 (Bird & Morrison, 1964). Initially these images were taken from a height 

of about 100 – 200 km, but by 1959 the Atlas rocket, launched from Cape Kennedy, took 

images from 1400 km above Earth (Bird & Morrison, 1964). Soon after followed the first 

manned orbital and suborbital flights of the Project Mercury mission where photographs 

were taken by the astronauts (Bird & Morrison, 1964). This coincided with the launch of the 

first TIROS satellite, designed for climatological and meteorological observations, (TIROS-

1) in 1960, with a subsequent seven launched by 1964 (Bird & Morrison, 1964). These 

satellites were the proving ground for satellite Earth observation and their success in 

monitoring global weather patterns paved the way for future satellites (NASA, 2016). In 

1972 the first civilian Earth observation multispectral satellite, Landsat 1, was launched 

(Goetz, 2009), in part due to the development of microprocessors (Cohen & Goward, 2004). 

As of 2013, there have been eight Landsat missions, with the ninth planned for 2020 (USGS, 

2019). Each satellite improved upon the capabilities of the last, particularly with respect to 

increased spatial and spectral resolution (Markham et al., 2004). Landsat data has been used 

in a vast number of scientific studies, covering a wide range of scientific disciplines (e.g. 

South et al., 2004; Yang et al., 2003; MacAlister & Mahaxay, 2009; Petropoulos et al., 

2010). Since 1972 many Earth observation satellites have been launched and, as of 2008, 

there were more than 150 in orbit (Tatem et al., 2009). Research into hyperspectral sensor 

technology began in the 1980’s (Campbell, 2002), yet the number of hyperspectral satellites 

remains limited owing to difficulties with obtaining sufficient spatial resolution, power 

requirements, data storage limitations and cost (Transon et al., 2018). Most current and 

future Earth observation satellites are multispectral. 

Aircraft and satellites supported the development of optical remote sensing and Earth 

observation throughout the 20th, and into the 21st, century. The development of drone 

technology has a long and complicated history focused on their use in military applications 

and it is recommended, for those interested, to read Keane & Carr (2013) for a detailed 

historical account. Drones are now increasingly being used in a range of different 

environmental monitoring studies and evolution of drone technology over the past ten years 

has turned them into a cost-effective and accurate mapping platform for researchers 

(Johnston, 2019), yet their application for macroalgal mapping studies is limited but 

growing. These three platforms remain the most popular for the acquisition of remote 
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sensing data and the decision on which to use often depends on research objectives as they 

each offer unique mapping capabilities, primarily focused on their survey height (Fig. 1.4). 

 

Fig. 1.4. Representation of the three main platforms used to collect remote sensing data and their 

operational ranges. Different ground field of views (GFOV) are highlighted. Satellites cover the 

largest areas, followed by aircraft, drones and then on-foot surveys. Adapted from Johnston (2019). 

 

1.7.2. Optical remote sensing theory 

Optical remote sensors can typically either be passive or active. Passive sensors depend on 

an external energy source, such as the sun, and measure how this energy interacts with a 

feature. Active sensors produce their own energy and radiate it onto a feature, measuring the 

returning energy (Richards & Jia, 2006). Active sensors are not used in this research and 

shall not be discussed further. Good examples, however, include Radar (radio waves) and 

Light Detection and Ranging (LiDAR) which uses pulsed lasers. Thermal remote sensing 

technology will also not be discussed as it is not used in this research. This research focused 

on the use of RGB, multispectral and hyperspectral passive remote sensors and the theory 

behind them and their development are discussed in the following sections. 
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Nucleic reactions within the sun produce a full spectrum of electromagnetic radiation 

(EMR), which travels, relatively unaltered, through space until it reaches the atmosphere of 

Earth. At this point, certain wavelengths are scattered or absorbed by particles within the 

atmosphere with the remainder eventually reaching and interacting with features on the 

Earth’s surface (Milton, 2004). EMR is combined of visible, radio, thermal, ultra-violet and 

x-rays and radiates in accordance with basic wave theory, which describes the energy as 

travelling in a sinusoidal way, at the speed of light (Lillesand et al., 2004). This is 

represented by the following equation: 

c = λv 

Where c represents the velocity of light, which is constant (3 x 108m/sec), frequency (v) and 

wavelength (λ). 

The sum of all energy reaching a feature on the Earth’s surface is known as incident energy, 

at this point, five fundamental interactions take place. EMR is either absorbed, reflected, 

scattered, refracted or transmitted, and it is variations in these three interactions that create 

unique spectral signatures enabling different objects to be spectrally distinguished from one 

another (Govender et al., 2007). Incident energy can be described as follows: 

EI(λ) = ER(λ) + EA(ʎ) + ET(λ) 

Where incident energy (EI) is the sum of the interactions between reflected energy (ER), 

absorbed energy (EA) and transmitted energy (ET).  

There are three major, arbitrarily, defined regions of the EM spectrum. Regions below 400 

nm, which includes gamma rays, x-rays and ultraviolet, are typically not considered useful 

for remote sensing applications (Campbell, 2002). The visible region contains the blue (400-

500 nm), green (500-600 nm) and red (600-700 nm) light, which are the wavelengths 

recorded in three-band RGB sensors. Beyond this is the infrared region of the EM spectrum 

which covers from ~700 nm to 1500 nm and can be sub-divided into the near-infrared (NIR) 

(750-100 nm) and thermal wavelength regions (1000-1500 nm). NIR behaves in a manner 

consistent with visible light and can therefore be captured using similar sensors (Campbell, 

2002). 

Optical remote sensors are designed to record the ways in which incident light interacts with 

features of interest, usually in the form of reflectance. This is the ratio of incident-to-

reflected radiant flux measured from a feature over specific wavelengths (Peddle et al., 

2001) and is represented by the following: 

ER(λ) = EI(λ) - [EA(λ) + ET(λ)] 
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Reflected energy is equal to incident energy minus the energy that is absorbed or transmitted 

upon contact with an object leaving a surface without a change in frequency (Nicodemus et 

al., 1977). Sensors measure the radiance of an object which provides information on how 

much energy is being reflected or emitted but this needs to be displayed as a percentage of 

incident radiation. This is because spectral reflectance is an inherent property of an object 

and is independent of location, time, atmospheric or weather conditions (Peddle et al., 

2001). The nature of this reflection depends upon the size of object surface irregularities, 

essentially how rough or smooth they are, in relation to the wavelength of radiation 

(Campbell, 2002). A perfectly smooth surface, such as a mirror, will produce a specular 

reflection where the angle of incidence is equal to the angle of reflection and almost all the 

energy is reflected in a single direction (Campbell, 2002). A uniformly rough surface (at a 

scale equivalent to the wavelength), referred to as a Lambertian surface, will produce a 

diffuse reflection where energy is scattered equally in all directions providing equal 

brightness when viewed from any angle (Campbell, 2002). Many objects fall somewhere in 

between specular and diffuse reflectors and this behaviour is described by the bidirectional 

reflectance distribution function (BRDF) with respect to angles of illumination and 

observation (Nicodemus et al., 1977; Mac Arthur et al., 2012). 

Three characteristics of a remote sensor define the type of data it can collect, its spatial, 

spectral and radiometric resolution. The level of detail that can be depicted in an image is 

defined as the spatial resolution. Each detector in a remote sensor measures a finite area on 

the ground, the smaller the individual areas, the higher the spatial resolution (Govender et 

al., 2007). The spatial resolution is affected by the design of the sensor and the height that it 

is flown or orbits at. Wider field of views (FOV) can lead to decreased spatial resolution 

caused by the lower pixel densities. A sensor with the same native resolution, but narrower 

FOV, would likely have a finer spatial resolution, but would on capture a smaller area. Some 

sensor manufacturers offer different lenses to suit client needs (Headwall, 2020).  Spectral 

resolution refers to the ability of the sensor to capture bands within the EM spectrum, a 

sensor that can capture many small bands within the spectrum would have a high resolution. 

A higher spectral resolution (i.e. hyperspectral sensor) increases the chances of being able to 

differentiate between two objects which may have a similar spectral signature as these 

spectral differences are often narrow (Kutser et al., 2006b). Radiometric resolution is the 

ability of a sensor to measure the signal strength of objects, the higher the radiometric 

resolution the more sensitive the sensor is to detecting small differences in reflected energy 

(Butler, 2014). The energy recorded is represented by bits (used to code numbers in binary 

format) and the maximum number of brightness levels depends on the number of bits used. 

One bit would be a sensor that could only distinguish black and white, whereas eight-bit 
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sensors can distinguish 255 different shades making them better capable of observing more 

differences in surface feature reflection (Smith, 2012). There is a trade-off between spatial 

resolution, spectral resolution and radiometric resolution which results in spatial resolution 

being decreased when spectral resolution is enhanced (Eismann & Hardie, 2005). 

1.7.3. Optical remote sensing of macroalgae 

Multispectral remote sensors, such as Landsat and SPOT (Satellite Pour l’Observation de la 

Terre), collect images with a few relatively broad wavelength bands from the visible and 

near-infrared regions of the EM spectrum (Smith, 2012). The fine spectral resolution of 

multispectral sensors means that they may not be suitable for discriminating between 

macroalgae at a species level (Oppelt et al., 2012), but can achieve accurate results when 

looking at broader taxonomic groups (Brodie et al., 2018). Their use is mostly restricted to 

areas with low spatial heterogeneity and a few optically distinct species, which form 

monospecific stands (Knudby et al., 2011). Several studies have had success using 

multispectral imagery in such environments. Stekoll et al. (2006) found good correlations 

between remote sensing data and ground truth data for kelp biomass estimates in Alaska. 

Cavanaugh et al. (2010) combined multispectral imagery and dive-based surveys to assess 

changes in M. pyrifera canopy cover and biomass in California, finding a strong correlation 

between in-situ measurements and remote sensing data. Casal et al. (2011) used data from 

the SPOT-4 satellite to map subtidal kelp in turbid waters, noting that whilst challenges 

arising from working in turbid water affected some of the results, there was still correlation 

to be found between remote sensing and field data. The method was unable to identify 

different species, however.   

Intertidal macroalgal communities can often be spatially and spectrally heterogeneous (Tait 

et al., 2019), as spectrally similar species can often be found in mixed assemblages, 

requiring remote sensing technology with both high spatial and spectral resolutions (Vis et 

al., 2003). The use of hyperspectral sensors has grown in the past decade. Hyperspectral 

sensors collect ten to hundreds of narrow contiguous spectral bands across the EM spectrum 

whilst, depending on the type, also having high spatial resolutions (Pe’eri et al., 2008). This 

enables more accurate discrimination between spectral signatures of target features (i.e. 

macroalgal species). Hyperspectral sensors can be mounted on a range of platforms 

including satellites, planes and drones. To date, and to the best of our knowledge, there have 

been no studies which have applied drone-mounted hyperspectral remote sensing for 

intertidal macroalgal habitat mapping. Relatively few studies have used hyperspectral 

sensors, on any platform, for this type of work. Oppelt et al. (2012) successfully used a 

motorised glider and AISAeagle+ hyperspectral sensor to map the intertidal zone at 
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Heligoland (German Bight) but found discriminating to species level was difficult as for 

some brown macroalgal classes, only mixtures could be identified. This may have been a 

result of low spatial resolution not being able to observe the complexities of mixed 

macroalgal assemblages. Hennig et al. (2007) used the ROSIS airborne hyperspectral sensor 

to map intertidal macroalgae (only to group level) and zonation in Heligoland. They were 

able to identify these broad macroalgal groups along with mussel beds and observed that it 

was not possible to achieve species level discrimination. The authors do not offer an 

explanation for this, perhaps the spatial resolution of the ROSIS sensor (GSD 0.84 m/pixel) 

was not suitable for visualising complex intertidal spatial assemblages. The high spectral 

resolution of hyperspectral sensors is considered particularly important for accurately 

discriminating between spectrally similar macroalgal species (Oppelt et al., 2012). 

Combined with the fine spatial resolution that can be achieved using drones, hyperspectral 

remote sensing potentially allows for fine spatial patterns to also be observed (Lucieer et al., 

2014). 

1.7.4. Spectral library data collection 

The most important consideration prior to conducting a remote sensing survey is how to 

collect accurate training and reference data. A common and effective method of achieving 

this is through the creation of a spectral library of key species features present within a study 

site (Kutser et al., 2003). Spectroscopy is the study of light that is reflected and emitted from 

material, and its variation in energy and wavelength (Lillesand et al., 2004). A spectral 

library can be used to identify materials as seen by the hyperspectral imager (Dekker et al., 

2003) to train image analysis and classification software to verify the information extracted 

from the hyperspectral imagery (Lillesand et al., 2004). Reflectance spectroscopy requires a 

source of illumination (of sufficient intensity across wavelengths of interest), a means of 

measurement, a method to direct the illumination on to the same and a means of analysis 

(Milton, 2004). The collection of spectral library information can be collected either in the 

field, under natural illumination conditions, or under artificial conditions in a laboratory. 

Measurements collected in a laboratory may not be suitable for classifying remote sensing 

data and are useful for conducting more detailed investigations into the spectral properties of 

macroalgae under controlled conditions (Uhl et al., 2013). For some species, such as canopy 

forming ones, it may be necessary to sample a sufficiently extensive area of the surface to be 

representative (Milton, 2004), although for in the case of macroalgae, Kotta et al. (2014) 

observe how variation in canopy geometry and properties do not significantly change 

reflectance values. Spectral libraries also need to account for spatial and temporal variations 

in reflectance spectra. Seasonal changes in environmental conditions lead to variations in 

macroalgal pigment concentrations (Stengel & Dring, 1997) which, intern, affect reflectance 
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properties. It is, depending on research objectives, important to design spectral sampling 

surveys to account for this and also to determine the spatial variation in the reflectance 

spectra of macroalgal species (Kotta et al., 2014).                                   

1.7.5. Macroalgal spectral characteristics  

There are three main groups of macroalgae, each having characteristic pigments with 

different optical properties giving them their unique colouration, these are Chlorophyta 

(green), Rhodophyta (red) and Phaeophyceae (brown) (Tab. 1.1). Light harvesting pigments 

are found either within, or on, the thylakoid membrane of chloroplasts and concentrated in 

cortical cells of macroalgal species. The presence and concentration of these pigments is 

what makes it possible to spectrally discriminate between groups and, to some extent, 

species (Dekker et al., 2003). All three groups contain chlorophyll-a, but it is the presence of 

the other chlorophylls and pigments which varies (Hedley & Mumby, 2002). Other pigments 

include carotenoids and phycobilins which are also responsible for the variation in 

reflectance within the visible wavelengths, particularly for red and brown macroalgal 

species. (Pe’eri et al., 2008). The chlorophylls are all tetrapyrrole rings surrounding Mg2+ 

(Fischer, 1936) and chlorophyll a and b have a fatty acid tail which is lacking in chlorophyll 

c (Hurd et al., 2014). The carotenoids, split into carotenes and xanthophylls, provide 

additional photoprotective services under high irradiance. Both are C40
 tetraterpenes with 

carotene being a hydrocarbon and xanthophylls containing at least one oxygen molecule 

(Hurd et al., 2014). Phycobiliproteins are water-soluble accessory light-harvesting pigment 

molecules serving as the photosynthetic apparatus in some eukaryotic algae. They are 

comprised of proteins bound by chromophores called phycobilins which are usually either 

phycoerythrobilin or phycocyanobilin and these can further be divided into three classes 

depending on the wavelength absorption region and number of phycobilin molecules present 

within their polypeptide chains (Hurd et al. 2014). Absorption of EM radiation is thus, 

owing to the presence of pigments, greatest in visible wavelengths. Chlorophyll, for 

example, strongly absorbs in the blue and red spectral regions (Campbell, 2002) which, for 

green macroalgal species, contributes to a distinctive spectral profile in the visible region. 

which creates distinctive reflectance troughs. Spectral reflectance in the near infrared (NIR) 

is controlled, not by pigments, but by the internal cellular structure of macroalgae 

(Campbell, 2002). This can vary greatly owing to stresses such as water limitation (Smith, 

2012) or even subtle variations in the localised hydrodynamic and climate conditions within 

a single site and, as highlighted by Uhl et al. (2013), can be difficult to quantify, especially 

for brown macroalgal species. Temporal variation in pigment concentrations occur due to 

differing light regimes, and this can lead to intraspecific variation in thalli colour along with 

variation within a thalli of an individual. This can be seen for A. nodosum in Fig 2.4 
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(Chapter 2). The presence of water also affects the spectral signature in NIR wavelengths as 

absorption of insolation is high, which is why water appears black in NIR images. This can 

make the analysis of spectral signatures within the NIR wavelengths difficult and explains 

why many spectral studies to date have focused on the visible (400-700 nm) wavelength 

range where spectral response is controlled pigment presence and concentration. 

Tab.1.1. Main pigments associated with each of the three macroalgal groups. Adapted from Hedley & 

Mumby, (2002). 

Pigments Absorption 

Peaks (nm) 

Chlorophyta Phaeophyceae Rhodophyta 

Chlorophylls     

Chl-a1 435, 670-680 x x x 

Chl-b1 480, 650 x   

Chl-c1 645  x  

Carotenoids     
2 423, 444, 473   x 
2 427, 449, 475 x x x 

Xanthophylls     

Zeaxanthin2 428, 450, 478 x  x 

Neoxanthin2 415, 438, 467 x x  

Lutein2 422, 445, 474 x  x 

Violaxanthan2 417, 440, 469 x x  

Fucoxanthin2 426, 449, 465  x  

Diotoxanthin2 425, 449, 475  x  

Diadinoxanthin2 424, 445, 474  x  

Siphonxanthin2 540 x   

Phycobilins     

Phycocyanin1 618   x 

Phycoerythrin1 490, 546, 576   x 

Allophycocyanin1 654   x 
1in vivo, 2in-vitro 

 

1.7.6. Remote sensing of biomass 

The effective conservation and management of macroalgal resources requires the ability to 

conduct biomass, along with distribution assessments. In-situ biomass surveys are usually 

time consuming, costly and require logistical support, which is why Stekoll et al. (2006) 

observe how it is important to find a morphometric measurement that is correlated with 

biomass and that can also be easily measured in the field. The use of remote sensing 

technologies potentially allows spatial coverage and biomass estimates to be provided for 

much larger sites than were previously available when using field-based survey techniques. 

These technologies also offer the prospect of a reduced need for extensive field-based 

biomass surveys if relationships can be developed between morphometric data and biomass, 

which can then enable biomass to be determined from remote sensing data (Gevaert et al., 

2008). To the best of our knowledge, only one recent study has attempted to use remote 

sensing technology to assess the biomass of intertidal macroalgal species. Remote sensing of 
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biomass requires being able to quantify the volumetric properties of macroalgae and the 

development of linear relationships between biomass and either volume or height (Cunliffe 

et al., 2016). What research that has been done on the remote sensing of macroalgal biomass 

has been conducted on subtidal species (e.g. kelps and seagrasses) using acoustic remote 

sensing. This has proven difficult for intertidal macroalgae as, when emersed, morphometric 

properties that can be correlated with biomass, such as length, cannot be measured. In an 

attempt to address this, Webster et al. (2019) used LiDAR to measure the height of the A. 

nodosum canopy in Nova Scotia by surveying at low and high tide. By identifying the 

waveform response of A. nodosum and the seabed they calculated the height of the canopy at 

high tide and, using biomass to height relationships developed during field-sampling, they 

were able to derive biomass estimates for the site. Potential relationships between vegetation 

biomass and vegetation indices, such as normalised difference vegetation index (NDVI), 

have been developed for homogenous saltmarsh communities (Doughty & Cavanaugh, 

2019). Such relationships may also exist for macroalgae but will require the ability to first 

identify different species within a community, otherwise it would not be possible to 

determine whether variations in NDVI were related to biomass or different species. 

Blight et al. (2011) collected measurements from kelp plants and found a strong relationship 

between stipe length and biomass. This meant that acoustic data could then be used to obtain 

kelp canopy height which can then be used to estimate biomass for the wider area. The 

ability of acoustic sensors to observe the height of the kelp canopy above the seabed was 

also explored by Mac Craith & Hardy (2015) who created a kelp height map and noted the 

potential of this method for creating biomass maps. Quintino et al. (2010) found that SBES, 

with a 200 kHz frequency, was able to distinguish areas of different macroalgal biomass and 

that it would be possible to model the biomass of Caulerpa prolifera (Forsskål) J.V. 

Lammouroux. Minami et al. (2010) also had success in using SBES to measure the thickness 

of the kelp canopy, further highlighting the potential for a synergy between morphometric 

data and remote sensing. Lefebvre et al. (2009) were also able to use SBES to delineate the 

canopy height of seagrass in the Solent (UK).  

Several studies choose to use remote sensing data to assess the spatial distribution of a target 

species and then scale up field-based biomass assessments to the wider study area. Stekoll et 

al. (2006) found a good correlation between multispectral imagery and biomass data 

collected from field surveys. The study used estimated biomasses from sampling sites to 

calibrate the multispectral imagery where relationships between biomass and density 

enabled a biomass map to be produced. They also found that the best predictor of plant 

biomass was the weight of the blade. Andréfouët et al. (2004) used IKONOS satellite data to 

determine the spatial extent of two invasive brown seaweeds. They used field and laboratory 
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measurements to provide percentage cover versus biomass estimate for the sampling site and 

then scaled this value up to represent the species cover throughout the study site. Simms 

(2005) conducted a kelp biomass assessment using CASI. The study conducted a traditional 

field-based biomass survey and then used the following equation to estimate biomass for the 

study area. 

B = AW 

Where B is the total biomass for the site (kg), A is the total area of kelp classified using the 

remote sensing data and W is the median biomass from the survey (kg/m2). The study notes 

that although this is an effective method for quantifying biomass the high heterogeneity of 

the coastal environment leads to high variability in biomass estimates. Riegl et al. (2005) 

used acoustic remote sensing to define three species categories, seagrass, spare algae and 

dense algae. Biomass estimates were then calculated for each of these categories and then 

extrapolated to the wider site by counting the colour coded pixels assigned to each category. 

Biomass assessments are usually a destructive process (Gevaert et al., 2008) as they require 

the removal of macroalgal species from the substratum. Both subtidal and intertidal kelp 

biomass assessments rely on a quadrat methodology where plants are removed in order to be 

weighed (Andréfouët et al., 2004; Bajjouk et al., 2015; Gorman et al., 2013; Quintino et al., 

2010; Simms, 2003; Vadas et al., 2004). Subtidal biomass surveys are usually conducted by 

Scuba divers whereas intertidal surveys are conducted on foot or by boat if areas are 

inaccessible. As water levels in plants can vary on a daily basis obtaining the dry weight of a 

plant is more accurate than the fresh, or wet, weight. Studies appear to use of mix of both 

wet (Fyfe et al., 1999; Simms, 2003; Reigl et al., 2005; Stekoll et al., 2006) and dry weight 

(Andréfouët et al., 2004; Barillé et al., 2010; Quintino et al., 2010) biomass measurements. 

Wet weight can either be obtained in the field or in the laboratory and involves cleaning the 

samples of any sediment or epiphytes before weighing (Vadas et al., 2004). To obtain the 

dry weight samples need to be transported to the laboratory, cleaned and then dried before 

weighing (Quintino et al., 2010).  

1.7.7. Challenges of subtidal optical remote sensing 

The presence of water can severely limit the effectiveness of optical remote sensing 

technology and the attenuation of light becomes greater with increasing depth and turbidity 

(Bajjouk et al., 2015). Water is a strongly absorbing medium for solar energy (Bushing, 

2000) and the degree of absorption is mostly dependent on wavelength (Lillesand et al., 

2004). Absorption is much stronger in the near-to-mid infrared region of the EM spectrum 

and varies for the visible region depending on water body properties (Campbell, 2002). In 
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coastal waters, light is also scattered and absorbed by suspended organic/inorganic material, 

phytoplankton and dissolved organic substances contributing to a decrease in the spectral 

reflectance of submerged benthic macroalgae (Casal et al., 2012). This strong attenuation of 

light by water limits the depth at which benthic macroalgae can be identified (Kotta et al., 

2013). Often, emergent species, such as canopy forming kelps, have higher average 

reflectance values than submerged species due to the lack of interference from water (Oppelt 

et al., 2012) and these have been the subject of several remote sensing studies (Stekoll et al., 

2006; Cavanaugh et al., 2010). Within the visible wavelengths the green band is considered 

the most useful for identifying submerged macroalgae, followed by the red and red-edge 

regions (Silva et al., 2008). Blue wavelengths penetrate the water well, but are scattered and 

reflected, giving water its characteristic blue colour (Campbell, 2002). The main challenge 

in subtidal remote sensing is to isolate the feature-of-interest signal from water column 

interference (Casal et al., 2013). These challenges make it more straightforward to 

conducting remote sensing surveys during low tide, despite the time constraints this creates. 

Depth limitations of light penetration would mean that optical remote sensing surveys of 

subtidal macroalgae would not provide a complete picture and this is where acoustic remote 

sensing technology can potentially provide an effective mapping solution. 

1.8. Acoustic remote sensing 

1.8.1. History and development of acoustic remote sensing 

For almost four thousand years, up to the 1900’s, the primary method for measuring the 

depth of the seafloor was the lead line. The earliest evidence for seafloor mapping comes 

from a model boat found in tomb of Meket-re (buried in Thebes ca. 2000 BC) showing a 

lead line being used to measure depth (Mayer, 2006). Merchants in the Mediterranean used 

this method to develop some of the first known maps of the seafloor during the 13th century 

(Brown et al., 2011). With the development and eventual acceptance of the echosounder, 

post WWII, the ability to create maps of the seafloor was greatly enhanced (Mayer, 2006). 

Along with developing an understanding of the bathymetry of the seafloor came the need to 

understand its biological and geological nature. In the 19th century, such studies were 

rudimentary and involved the use of simple dredges and grab techniques (Brown et al., 

2011). The development of sidescan sonar systems in the 1940’s provided the first, low-

resolution, images of the nature of the seafloor (Kenny et al., 2003) and modern multibeam 

systems (MBES), developed in the 1970’s (Renard & Allenou, 1979), can record high 

resolution data on bathymetry and backscatter, making them invaluable for seafloor and 

benthic habitat mapping studies.  
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1.8.2. Principles of acoustic remote sensing 

Acoustic remote sensing technologies are not constrained by the same physical factors as 

optical remote sensing technology and, as such, can operate in both deep oceanic and 

shallow coastal waters. Acoustic remote sensing technologies allow for the quick and precise 

acquisition of data over large spatial scales (Kruss et al., 2006), making them the tool of 

choice for seafloor habitat mapping. Acoustic remote sensors work by transmitting, from a 

transducer attached to the hull of a vessel, a pulse of sound through the water to the seabed 

and then listening for the returning echo (Stanton, 2012). There are two types of information 

gathered from these systems, bathymetric and backscatter. By measuring the time it takes for 

the acoustic wave to be transmitted to, and reflected from, the seabed one can assess its 

depth (Blight et al., 2011). Bathymetric data, however, only provides information on the 

profile and depth of the seafloor and not any information on seafloor characteristic such as 

bottom type (de Moustier, 1985). Backscatter data enables bottom roughness and substrate 

type to be inferred as different sediments and rock types cause fluctuations in the scattering 

of the acoustic signal. Harder surfaces such as bedrock will cause a higher return of the 

sound energy, providing a stronger signal, whereas softer sediments absorb more of the 

sound energy producing a weaker return signal. The level of detail afforded by some sensors 

can create almost photo-realistic imagery of the seabed (Kenny et al., 2003). 

1.8.3. Acoustic remote sensing technologies 

1.8.3.1. Sidescan sonar (SSS) 

Sidescan devices usually consist of a towfish, transmission cable and topside processing 

unit. The SSS transducer transmits sound and analyses the return signal to build a relatively 

high-resolution image of the seafloor (Mayer, 2006). The sound is emitted perpendicular to 

the two fish, meaning that the area directly below is not isonified by the sound waves (Fig. 

1.5). Given the need to deploy the towfish below the vessel, SSS systems are difficult to use 

in shallow water environments (Komatsu et al., 2003). The inability of such a system to 

provide measurements of canopy height makes it unsuitable for use in subtidal macroalgal 

mapping surveys, although they are capable of detecting the lateral distribution of, for 

example, seagrass beds (Lefebvre et al., 2009). Being close to the seabed allows SSS to 

create ultra-high spatial resolution images of the seabed. Their application, then, may depend 

on research requirements and may be suitable if information on canopy height is not 

required. 
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1.8.3.2. Singlebeam Echosounders (SBES) 

The principle function of SBES systems is to calculate the water depth immediately below 

the vessel (Colbo et al., 2014). The backscatter signal can also be analysed. SBES emits a 

pulse of sound directed vertically below the vessel and the analysis of this echo contains 

information about the water column and seabed (Blight et al., 2011). These systems are 

popular because they are simple to use and prevalent on nearly all vessels (Kruss et al., 

2008). Having only a single beam, these systems are unable to cover large area, only 

isonifying a small area directly beneath the vessel (Fig. 1.5). Studies using SBES to map the 

spatial distribution of habitats have concluded that while SBES allows for the discrimination 

of habitats, the use of MBES would offer enhanced resolution and greater spatial coverage 

(Jordan et al., 2005; Kruss et al., 2017). These systems are also unsuitable for mapping the 

spatial extent of species with patchy distributions as their limited seabed coverage would 

make it inefficient (Komatsu et al., 2003). Most of the studies, to date, which used acoustic 

remote sensing to successfully map benthic macroalgal and macrophytic communities have 

used SBES systems (Riegl et al., 2005; Noel et al., 2008; Lefebvre et al., 2009; Minami et 

al., 2010; Blight et al., 2011; Kruss et al., 2017). The prevalence of SBES on many vessels 

and their relative simplicity make them a useful tool for subtidal habitat mapping but, owing 

to their limited ability to survey large areas would not be able to provide a complete picture 

of the feature of interest meaning that, depending on the research question, important details, 

such as variation in canopy height (e.g. seagrass or kelp) could be lost. 

1.8.3.3. Multibeam Echosounders (MBES) 

MBES systems transmit several beams (into the hundreds for some systems) in a fan shape, 

covering a wide swath either side of the vessel (Fig. 1.5) (Brown & Blondel, 2009). It is the 

ability of the MBES to gather data on bathymetry and backscatter across a wide area that 

makes it so useful. Each beam can also be analysed for simultaneous depth measurements 

across the width of the swath (Lurton, 2002). MBES systems offer a high vertical and 

horizontal resolution and there are variants which can operate at a range of water depths, 

from deep ocean to shallow coastal waters (Colbo et al., 2014). Until recently, the 

backscatter collected using SSS systems was of greater detail, but developments in data 

collection and processing has vastly improved the resolution of MBES data (Le Bas & 

Huvenne, 2009). Whilst MBES systems provide much greater spatial coverage, analysis of 

their data output is not as straightforward as it is for SBES systems (Blight et al., 2011). 
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Fig. 1.5. Pictorial representation of the data collection methods for three acoustic remote sensing 

devices, MBES (a), SBES (b) and SSS (c). 

 

 

 

 

 

 

 

 

 

 

 

1.8.4. Application of acoustic remote sensing in the marine environment 

The most common application of acoustic remote sensing technologies is for seabed 

mapping and bathymetric surveys (Renard & Allenou, 1979; Ierodiaconou et al., 2007; 

Preston, 2009). Interest is growing in the acoustic returns that can be detected from objects 

in the water column which act to scatter sound waves (Freitas et al., 2008). Given the 

commercial value of fish, it is not surprising that SBES data have been used in fisheries 

management since the last 1940s (Cushing, 1962). The use of acoustic data enables 

estimates of fish volume, morphology and allows behaviour to be studied (Weber et al., 

2009) and aids in locating target species. The majority of effort in the water column 

application of acoustic remote sensing has gone into fisheries and applications of the study 

of benthic habitats are still in their infancy (Colbo et al., 2014). Several studies succeeded in 

using acoustic data to map benthic habitats that have strong geophysical signatures, for 

example, scallops (Kostylev et al., 2003) and biogenic Rhodolith (Corallinales, Rhodophyta) 

beds (Falace et al., 2014). Technological advancements mean that the limitations 

surrounding the extraction of water column data are now being overcome (Brown & 

Blondel, 2009). 

Several studies have had success in using acoustic remote sensing to map the distribution of 

seagrass beds. Komatsu et al. (2003) used MBES to map seagrass beds in Japan, finding it 

a 
b 

c 
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possible to assess the distribution, volume and biomass of the seagrass beds, something that 

was likely facilitated by their homogenous distribution in the study site. Biomass estimations 

were calculated by extrapolating m2 biomass of seagrass to the area covered by seagrass (as 

determined during the survey). Lefebvre et al. (2009) showed that it was possible to predict 

seagrass abundance and canopy height using acoustic sensors supported by video surveys 

and Sabol et al. (2002) showed good agreement between acoustic estimates of seagrass 

canopy height and ground truth data. 

1.8.5. Acoustic remote sensing of macroalgae 

The majority of the sound energy emitted from the sensor head is reflected from the seafloor 

and this is used to determine its depth (Blight et al., 2011). The presence of fish and 

macroalgae above the seabed can interfere with the acoustic energy, through scattering and 

absorption, producing a weaker return signal, allowing for their detection. Ierodiaconou et 

al. (2007) combined MBES and video transects to accurately identify dominant substratum 

and biota classes, including seagrass and macroalgae dominated communities. Kruss et al. 

(2008), in a preliminary study, used both SBES and MBES, supported by direct sampling 

and observation, to identify the presence of macroalgal species, but did not describe the 

species present. SBES was also used by Riegl et al. (2005) to differentiate between different 

substrates and also between seagrass and macroalgae using 50 khz and 200 khz frequencies. 

The successful mapping of laminarians was demonstrated by McGonigle et al. (2011) who 

used MBES and two different techniques, one based on the software QTC-Multiview, and 

the other based on the extraction of water column data. The acoustic data correlated well 

with ground truth data collected using drop down video. Studies have noted that using higher 

frequency SBES channels created less backscatter in the water column, making them more 

suitable for delineating macroalgal canopies (Blight et al., 2011; Mac Craith & Hardy, 

2015). Wilson et al. (2013) highlights that, whilst acoustic methods have emerged as a 

useful tool for mapping subtidal macroalgal communities, they remain unable to directly 

assess biomass, density and physiological condition. However, the ability to define canopy 

height and distribution can allow for the calculation of volume (Abukawa et al., 2012) which 

may allow for estimations of biomass.  

1.8.6. Acoustic properties of macroalgae 

The presence of macrophytes is usually discernible by their backscatter signature, which is 

weaker than the seabed and stronger than the ambient noise in the water column (Lefebvre et 

al., 2009) and, under the right frequencies, can be distinguished from the seafloor 

(McGonigle et al., 2011). The acoustic impedance of macroalgae is thought to result 

primarily from the gas within them, with more buoyant species being more acoustically 
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reflective (Sabol et al., 2002). Wilson et al. (2013) found it more difficult to detect kelp 

without pneumatocysts using acoustic methods and that the acoustic signatures of kelp 

species appeared to be biomass dependent and that future work should focus on the 

relationship between kelp biomass and backscatter intensity, which will vary depending on 

the species. Kruss et al. (2017) successfully used SBES to map macroalgal communities in 

Kongsfjorden (including kelp species such as A. esculenta and S. latissima) and were able, 

after interpolation, to derive area estimations. The study noted that variations in the 

backscatter intensity of the macroalgal layer may indicate different species as macroalgal 

morphology and density may influence the signal, concluding that more work is required to 

verify this. Several studies have reported strong backscatter from dense seagrass canopies 

(Lefebvre et al. 2009; Parnum et al., 2012) and for kelp (Mac Craith & Hardy, 2015), 

suggesting that canopy size and density influences the amount of energy reflected back to 

the receiver. Bennion et al. (2017) used backscatter intensity to predict the presence of kelp 

(species not defined) off the coast of Dorset. Training data was used to verify the presence of 

kelp and bare substratum and this data was inputted into a Species Distribution Model 

(SDM) to predict the distribution of kelp based on the backscatter. 

1.8.7. Challenges of using acoustic remote sensing to map macroalgae 

The use of MBES and water column analysis for subtidal macroalgal mapping is an 

emerging field which has traditionally been focused on the detection of fish in the water 

column (McGonigle et al., 2011). The slow development of using MBES to collect water 

column data was due to the large data storage requirements and that many MBES devices 

did not permit the digital logging of water column returns (Colbo et al., 2014). These 

limitations are now being overcome through technological developments in software and 

hardware (Brown et al., 2009). A primary limitation of acoustic remote sensing 

technologies, for macroalgal mapping, is their inability to differentiate between species with 

similar morphological characteristics. Blight et al. (2011) found that they could no 

differentiate between L. hyperborea and L. digitata and were unable to identify the transition 

zone between the species without the use of dive surveys. Bajjouk et al. (2015) highlight 

how difficulties in identifying species will likely make accurate biomass assessments 

incredibly challenging until methods for acoustically discriminating between species are 

developed. Lefebvre et al. (2009) found that the correct calculation of canopy presence and 

height was reliant on the accurate computation of seabed depth, a particularly dense canopy 

could lead to the higher backscatter values being found on the canopy causing it to be 

potentially misclassified as seabed. Within shallow water environments, MBES experience a 

decrease in efficiency as the swath widths shorten, requiring more track lines to be 

undertaken and increasing the cost (Costa et al., 2009).  
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1.9. Research aims  

With increased interest in Ireland’s macroalgal resource, there is a need to develop accurate, 

efficient and cost-effective baseline resource assessment methodologies for ecologically and 

economically important macroalgal species. The use of remote sensing technologies allows 

for larger areas to be surveyed than would be possible using traditional survey methods. This 

research sought to understand how these technologies could be applied for the assessment of 

macroalgae and what challenges and limitations were associated with this novel application. 

The core of this research (Chapters 2, 3, 4, 6) focused on the use of optical remote sensing 

technologies to map A. nodosum, whilst Chapter 5 explored the application of acoustic 

remote sensing technology for the mapping of subtidal kelp species. The challenges of 

spectrally discriminating between macroalgal species has previously been highlighted (Kotta 

et al., 2014). In Chapter 2 it was first necessary to quantify the spectral reflectance 

properties of common intertidal canopy forming macroalgal species through the creation of a 

spectral library. Further to this, seasonal sampling of reflectance spectra was conducted to 

determine whether there was an optimum time of year in which to conduct optical remote 

sensing survey based upon intra and inter-specific spectral variation. Seasonal variations in 

pigment concentrations within macroalgal species may lead to variations in the spectral 

response, potentially making different species more, or less, spectrally separable from one 

another. Ultimately, a set of hierarchical classification rules were created using classification 

and regression tree (CART) models to define a suitable subset of wavelengths that would 

allow for accurate discrimination between all sampled species for each season. 

UAV-mounted hyperspectral remote sensing was then used (Chapter 3) to map the 

distribution of A. nodosum at a spatially and spectrally complex intertidal site. The high 

spectral and spatial resolution of these sensors provided the best opportunity to identify 

subtle spectral variations between species, allowing for their identification. Two supervised 

classification methods, Maximum Likelihood Classifier (MLC) and Spectral Angle Mapper 

(SAM), were used, one training using a spectral library and the other using image-derived 

spectra. The accuracy of drone-mounted hyperspectral remote sensing, and the two 

classifiers used to analyse the data, was assessed along with the effectiveness and accuracy 

of utilising high-resolution RGB imagery for the collection of training and reference data.  

The technical complexity of hyperspectral sensors, for operation, processing and analysis, 

and their high cost made it prudent to explore the mapping capabilities of more affordable 

technology. Many commercially available multispectral sensors are lightweight, affordable 

and often easily integrated with UAVs and software, making them an accessible mapping 

solution. Chapter 4 sought to compare the mapping capabilities, for A. nodosum, of 
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multispectral sensors mounted on a satellite, airplane and UAV, each offering distinct 

advantages and disadvantages. Like Chapter 3, high-resolution RGB imagery was also used 

to efficiently collect training and reference data. 

Chapter 5 evaluates the applicability of applying acoustic remote sensing technologies to 

map the distribution of subtidal kelp species, which is often dominated by L. hyperborea. 

The ability of acoustic sonar to penetrate the water column much more effectively than 

optical remote sensing allows, in theory, a more accurate distribution map to be created 

which is not depth limited. Water column data have been highlighted as a useful method for 

accurate delineation of subtidal macroalgal canopies (McGonigle et al., 2011). Multiple 

frequencies of water column data were collected over a small kelp bed and ground-truthing 

was carried out using a drop-down camera to verify the presence and species composition of 

the kelp beds. The extraction of water column data should allow for the accurate area and 

height of the kelp bed to be determined, allowing the calculation of volume and, pending the 

establishment of linear relationships, biomass. 

The application of UAV mapping techniques for intertidal macroalgal research is still in its 

infancy. The knowledge acquired in the previous chapters, combined with a detailed review 

of existing literature were integrated into Chapter 6 where we sought to develop a 

comprehensive guide, not only on the most recent UAV and sensor technology but also how 

they can be applied to intertidal mapping. Specific focus was put on the unique 

characteristics of intertidal macroalgal assemblages and how these would influence the 

choice of UAV, sensor and operational parameters. 

Publications 

Rossiter, T., Furey, T., McCarthy, T., Stengel, D. (2020). UAV-mounted hyperspectral 

mapping of intertidal macroalgae, Estuarine, Coastal and Shelf Science, 242, 1–16. 

(Chapter 3 – unmodified from article) 

Rossiter, T., Furey, T., McCarthy, T., Stengel, D. (2020). Application of multi-platform, 

multispectral remote sensors for mapping intertidal macroalgae: a comparative approach, 

Aquatic Conservation: Marine and Freshwater Ecosystems. (Chapter 4 – unmodified from 

article) 
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Chapter 2: Temporal inter and intra-

specific variation in spectral properties of 

intertidal brown macroalgal species 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Drone image of A. nodosum, H. elongata and mixed fucoids during low tide in An 

Cheathrú Rua (Co. Galway) 
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Abstract 

Monitoring intertidal macroalgal communities using optical remote sensing technologies 

will support their sustainable management over medium-to-large spatial scales. The 

effectiveness of optical remote sensors will depend, in-part, on developing a detailed 

understanding of the inter and intra-specific reflectance properties of macroalgal species, 

within and across seasons, to quantify their spectral separability from one another and 

identify temporal variation within these relationships. This study visited a single site in the 

west of Ireland and sampled the reflectance spectra of common canopy-forming intertidal 

macroalgal species across four seasons during 2018 and sought to distinguish, not only 

between macroalgal groups, but also between different brown species. A TriOS RAMSES 

spectroradiometer was used to record reflectance spectra over a wavelength range of 320 – 

950 nm. For each season, the statistical separability between each species sampled during 

each season were quantified using a Classification and Regression Tree (CART) approach to 

define an optimal subset of wavelengths which enable spectral separation. Results show that 

it is possible to distinguish between the three macroalgal groups, and that for spring, summer 

and autumn it is possible to spectrally distinguish between the majority of common intertidal 

macroalgal species. Winter showed poor spectral separability between a number of common 

species. This study showed that seasonal variation in reflectance properties affected both the 

inter and intra-specific spectral relationships, thus highlighting the importance of the 

collection of concurrent spectral profiles and remote sensing data. Overall, the most suitable 

wavelength for discrimination between species, across all four seasons, was 500 – 575 nm.    

2.1. Introduction 

Macroalgae communities are some of the most productive and important systems on Earth 

(Dawes, 1998; Harley et al., 2012) and provide habitats for a diverse range of fish and 

invertebrate species (Bruno & Bertness, 2001; Davies et al., 2007; Mineur et al., 2015). 

They modify local hydrodynamic regimes, such as through dampening of water motion 

(Bunker et al., 2017) whilst providing coastal protection services (Løvås & Tørum, 2001). 

Intertidal macroalgal communities occupy the uppermost reaches of the marine realm and, 

by virtue of their location, face a raft of ever-increasing anthropogenic pressures (Mineur et 

al., 2015), including direct harvesting impacts. The effective management of these 

ecosystems requires a detailed understanding of their distribution through the collection of 

accurate, current, baseline data (Dekker et al., 2003). Traditional field survey methods, 

whilst highly accurate, are often time-consuming, intensive and limited in the spatial extent 

that can be efficiently covered (Kerr & Ostrovsky, 2003; Hamylton, 2017). This is often 
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compounded by the occurrence of species in spatially heterogenous and fine-scale 

communities, combined with difficulties in accessing and traversing the intertidal zone. 

Macroalgal communities within the Irish intertidal zone are structured by defined bands of 

vertical zonation and dominated by large brown macroalgal species of the order Fucales. 

Remote sensing provides the ability to survey large, inaccessible areas and is more efficient, 

in terms of survey hours versus area covered, than on-foot methods (Gray et al., 2017). 

Remote sensing surveys have been used for macroalgal mapping for several decades and 

primarily used satellites (Cavanaugh et al., 2010; Casal et al., 2011; Bell et al., 2015) and 

planes (Bajjouk et al., 1996; Dekker et al., 2003; Pe’eri et al., 2008; Oppelt et al., 2012; Uhl 

et al., 2016) as the remote sensing platform. Recently, and despite several decades of use for 

military and agricultural applications (Watts et al., 2012), unoccupied aerial vehicles 

(UAVs) are now seeing increased uses as seagrass (Duffy et al., 2017) and macroalgal 

(Murfitt et al., 2017; Kellaris et al., 2019; Taddia et al., 2019) remote sensing platforms.  

The chief challenge of using remote sensing technology for mapping macroalgal 

communities is to determine the best method for identifying species, in what are often 

spatially and spectrally complex environments (Cruzan et al., 2016), with intertidal 

macroalgal communities are often found in mixed assemblages. When found in mixed 

assemblages, this complexity can be measured in centimetres, with fronds from one species 

can be overlapping another or where a mosaic of different species occur, up to metres where 

homogenous stands of one species is interspersed by small aggregations of another (Webster 

et al., 2019). RGB sensors are a popular, low-cost way to conduct surveys (Buters et al., 

2019), but their low spectral resolution makes discriminating between spectrally similar 

species difficult. Increasing the spectral resolution of sensors, and consequently the price 

(i.e. multispectral and hyperspectral), allows identification of distinctive spectral features 

(reflectance peaks and troughs), controlled principally, in visible wavelengths, by pigment 

composition and concentrations (Slaton et al., 2001). By recording the spectral reflectance 

properties of different macroalgal species, across the visible and non-visible electromagnetic 

(EM) spectrum, spectral libraries can be created, which can then be used to train supervised 

classification workflows to identify target species within a study site (O’Neill et al., 2011). It 

is important to try and mitigate potential source of variation in reflectance spectra. Structural 

variation within a sample, such as orientation of thalli and roughness, the reflectance 

properties of which are defined by bidirectional reflectance distribution function (BDRF), 

often require replicate sampling. The presence of water could also after spectral response, 

especially in the near-infrared (NIR) and there should be a process in place to ensure excess 

water is removed (Kotta et al., 2014). Diffuse illumination, a result of atmospheric (e.g. 
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solar angle) and terrain conditions (e.g. slope) should be recorded for different surveys if 

they are to be directly compared between (Schaepman-Strub et al., 2006). 

Spectral sampling should include all features (i.e. macroalgae, substratum etc.) that are 

likely to be observable from a remote sensing platform. Strong seasonal variation within the 

pigment composition of intertidal macroalgae (Schmid et al., 2017) means that it is 

important to record the inter and intra-specific spectral relationships across seasons, 

identifying any season-specific variation in reflectance spectra, to support the provision of 

representative spectral training data for the habitat classification workflow. Inter-thallus 

variation in pigment content was observed by Stengel & Dring (1998) with shading resulting 

higher pigment content in the base of Ascophyllum nodosum individuals leading to it being 

darker in appearance compared to the tips, which experience more light. This inter-thallus 

variation could influence spectral response leading to potential misclassification if not 

properly accounted for in the creation of a spectral library. 

The spectral properties of the three major macroalgal groups (Fig. 2.1), green (Chlorophyta), 

brown (Phaeophyceae) and red (Rhodophyta) have been well documented in the literature 

(Bajjouk et al., 1996; Vahtmäe et al.,2006; Uhl et al., 2013; Kotta et al., 2014) and are 

considered to be relatively simple to spectrally discriminate between (Kutser et al., 2006; 

Chao Rodríguez et al., 2017). All three groups contain chlorophyll-a, but variations in other 

chlorophylls, chlorophyll-b in green and chlorophyll-c in brown for example (Hurd et al., 

2014), and accessory pigments such as carotenoids and phycobilins (Kotta et al., 2014), 

influence their unique spectral responses. Questions over the extent to which species within 

each group are spectrally separable from one another have been highlighted by previous 

studies (Kutser et al., 2006b; Casal et al., 2013).  
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Fig. 2.1 Averaged spectral profiles for brown (A. nodosum), green (Ulva spp.) and red (C. crisp) 

macroalgal groups showing their characteristic spectral profiles. Spectra collected May 2018 from 

Carraroe.   

 

Along North-eastern Atlantic rocky coastlines, many of the dominant canopy forming 

macroalgal species are brown (Lubchenco, 1980), which is also the case for the UK and 

Ireland (Stephenson & Stephenson, 1949), and this spectral similarity presents a challenge to 

remote sensing technology. To support the accurate mapping of these resources using remote 

sensing it is imperative that, not only are the spectral profiles of species within these 

environments recorded, but that the unique temporal spectral relationships between, and 

within, macroalgal groups are understood in detail and their spectral separability from one 

another determined. Understanding temporal variability in spectral response will allow for 

conclusions to be made on the suitability of different seasons for conducting mapping 

surveys. To achieve this, the following questions were addressed: 

i. To what extent are canopy-forming brown macroalgal (shown in Tab. 2.2) species 

spectrally separable from one another across every season? 

ii. What are the temporal impacts on the spectral separability between different 

macroalgal species? 



Chapter 2: Spectral properties of intertidal macroalgae 

42 
 
 

iii. What are the implications of the spectral separability results for the planning of 

remote sensing surveys? 

2.2. Methodology 

2.2.1. Study Site 

Reflectance measurements of macroalgal species were taken at Doleen Pier, near An 

Cheathrú Rua (Carraroe) (53°15’08’’N, 009°37’51’’W) which lies within Kilkieran Bay 

(Co. Galway), western Ireland (Fig. 2.2). Kilkieran Bay and Islands is designated as a 

Special Area of Conservation (SAC) due to the presence of mudflats and sandflats not 

covered by seawater at low tide and large shallow inlets, bays and reefs (Anon, 2015b). The 

primary underlying bedrock of the bay is granite (Könnecker & Keegan, 1983) and the low 

relief shoreline is dominated by rocky substrate which yields to muddy sediment in shallow 

waters (Sides et al., 1994). Water depths are shallow in the bay, ranging from 2–10 m inland 

to around 25 m at the entrance to the bay, with salinity ranging from 30–35 ppt (O’Donohoe 

et al., 2000). The entrance to the bay is exposed to the Atlantic Ocean and the prevailing 

southwest winds cause significant turbulence during stormy periods (Tully & O’Ceidigh, 

1989).  

There is a high abundance of A. nodosum and general high diversity of other canopy forming 

intertidal macroalgal species including Pelvetia canaliculata, Fucus spiralis, F. vesiculosus, 

F. serratus and Himanthalia elongata (all Phaeophyceae). Owing to its moderately exposed 

location in the mouth of the bay, and the presence of suitable substrata, the kelp species 

Laminaria digitata (Phaeophyceae, Ochrophyta) is present in the sublittoral zone. Red 

(rhodophyte) species, including Chondrus crispus and Mastocarpus stellatus are common in 

the canopy understory but do not form dense canopies that would be visible to a remote 

sensing platform. Ulva spp. (Chlorophyta) are occasionally found in small patches atop of 

the macroalgal canopy. 
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2.2.2. Spectroradiometer sampling 

A spectroradiometer was used to record the spectral reflectance of dominant canopy forming 

intertidal macroalgal species and substratum in-situ. All reflectance measurements were 

carried out during low tide over a two-day period for each of the four sampling seasons 

(Tab. 2.1). A TriOS RAMSES Hyperspectral Radiance and Irradiance Sensor (TriOS 

Optical Sensors, Rastede, Germany) was used to collect spectral measurements from 

dominant intertidal macroalgal species (Fig. 2.3). Species were chosen if they represented a 

dominant canopy-forming species within the study site and these were all brown species. 

Representative species representing red and green macroalgal groups were also chosen to 

allow for a simple comparison between the reflectance spectra of the three macroalgal 

groups. The setup comprised of two sensors. The radiance sensor had a 7 ° field of view 

(FOV) recording 256 channels in the range of 320-950 nm, with a wavelength accuracy of 

0.3 nm. The irradiance sensor had a cosine response with a 180 ° FOV and measures across 

the same wavelength range as the radiance sensor. The sensors were mounted on a frame, 

the irradiance sensor facing vertically upwards and the radiance sensor facing nadir, supplied 

by the company and was approximately 20 cm above the ground, providing a ground field of 

view (GFOV) of 4.8 cm2. The sensors were connected to a control box (TriOS Optical 

Fig. 2.2 Location of the sampling site at Doleen Pier in the context of Galway Bay (Co. Galway).  
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Sensors, Rastede, Germany), which was powered by a 12 V battery (Enersys, Reading, 

Pennsylvania). A HP Pavilion laptop (HP, Palo Alto, USA) was used to operate the 

proprietary MSDA_XE software which controls the sensors. All measurements were 

conducted on a wooden surface painted with ultra-black paint (Culture Hustle, London, UK) 

to reduce background noise (Dekker et al., 2003) and to reduce the impact of variation 

caused by different slope angles and terrain effects (Schaepman-Strub et al., 2006). 

Tab. 2.1 Data of seasonal spectral sampling surveys. Time represents time of first measurement. 

Season Date Time 

(GMT) 

Solar angle 

zenith (deg) 

Cloud cover 

(%) 

Spring 28/05/2018 11:00 31 65 

Summer 10/08/2018 11:30 52 27 

Autumn 24/11/2018 14:00 82 71 

Winter 05/02/2019 13:00 72 61 

 

The limited portability of the radiometer meant that we could not measure samples in-situ, 

therefore target species were collected from the intertidal and brought to the pier in a bucket 

of seawater for measurement. Samples were collected at random from the easiest areas of the 

intertidal to access to ensure rapid collection. Samples were first shaken to remove excess 

water and then placed beneath the radiance sensor so that they covered the entire GFOV 

(Fyfe, 2003). Integration time was left set to automatic to account for slight variations in 

insolation. Our primary focus for spectral sampling was brown macroalgal species, as these 

represented the dominant canopy forming species present in the intertidal. Knowledge of the 

spectral separability of these dominant species is essential for supporting accurate remote 

sensing surveys. At our site green macroalgal species were not present year-round and, when 

present, often occurred in small patches. Red macroalgal species were almost exclusively 

sub-canopy, but we wanted to include spectra from both representative red and green species 

to corroborate, with existing literature, the spectral relationships between the three 

macroalgal groups. Only visually healthy specimens were collected that represented the 

general site condition for each species (Jiménez & Díaz-Delgado, 2015). For large species, 

such as A. nodosum, F. vesiculosus and F. serratus, one individual (comprised of multiple 

fronds) sufficiently covered the GFOV, but for smaller species such as C. crispus and Ulva 

spp., multiple thalli of individuals were combined during the measurements to ensure 

enough coverage. Ten replicate individuals were measured for each species and each of 

these was replicated three times, finally a single irradiance measurement was taken for each 

of the 10 replicates and this was carried out under constant light conditions. All 
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measurements were hemispherical-conical due to contributions from both direct and diffuse 

irradiance components (Schaepman-Strub et al., 2006). If there was significant intra-thallus 

colour variation, these were recorded as separate spectra, i.e. light and dark A. nodosum 

(typically the base and tips of the thalli which are exposed to different light regimes 

affecting their pigment composition). This may have importance implications for fine spatial 

resolution surveys as not properly accounting for this within-thallus colour variation could 

reduce the accuracy of the final classification as darker or light thalli sections could be 

misclassified as a different class. Tab. 2.2 shows the different species measured in each 

sampling season. Herein, species will also refer to ‘light’ and ‘dark’ variants of a species 

along with its traditional definition. Species codes are shown in Tab. 2.3. 

Prior to calculating reflectance, the raw radiance and irradiance (Tab. 2.4) spectra were 

linearly interpolated to a 2 nm step using a formula in Excel (Microsoft, Redmond, USA) 

(Fig. S2.1). This aligns the wavelengths, accounting for the slight differences in the 

wavelengths observed by each sensor, of the two sensors and addresses potential artefacts in 

the spectra associated with sharp change in signal, such as the oxygen absorption peak at 

760 nm (Kutser, Pers. Comm.). Raw radiance was then converted into reflectance by 

dividing each radiance measurement by the corresponding irradiance measurement: 

𝑝𝜆 =
𝑃(𝜆)

𝑃0(𝜆)
 

Where P (λ) is radiance of the macroalgal sample and P0 (λ) is downwelling irradiance. 

Tab. 2.2 Species sampled during each season. Dark (D) and light (L) colour variants were sampled 

when species displayed strong intra-specific colour variation.  

Spring Summer Autumn Winter 

Ascophyllum nodosum 

(D) 
Ascophyllum nodosum 

(L) 
Chondrus crispus 
Fucus serratus 
Fucus spiralis 
Fucus vesiculosus 
Himanthalia elongata 
Laminaria digitata 
Pelvetia canaliculata 
Sargassum muticum 
Ulva spp. 

Ascophyllum nodosum 

(D) 
Ascophyllum nodosum 

(L) 
Chondrus crispus 
Fucus serratus 
Fucus spiralis 
Fucus vesiculosus (D) 
Fucus vesiculosus (L) 
Himanthalia elongata 
Laminaria digitata 
Pelvetia canaliculata 

Ascophyllum nodosum 

(D) 
Ascophyllum nodosum 

(L) 
Chondrus crispus 
Fucus serratus 
Fucus spiralis 
Fucus vesiculosus 
Himanthalia elongata 
Laminaria digitata 
Pelvetia canaliculata 

Ascophyllum nodosum 

(D) 
Ascophyllum nodosum 

(L) 
Chondrus crispus 
Fucus serratus 
Fucus spiralis 
Fucus vesiculosus 
Himanthalia elongata 
Laminaria digitata 
Pelvetia canaliculata 
Ulva spp. 
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Tab. 2.3 Species codes used in Chapter 2 to refer to sampled species. 

Species Code 

Ascophyllum nodosum (light variant) ANL 

Ascophyllum nodosum (dark variant) AND 

Chondrus crispus C.crisp 

Fucus serratus Fserr 

Fucus spiralis Fspi 

Fucus vesiculosus (light variant) FVL 

Fucus vesiculosus (dark variant) FVD 

Himanthalia elongata Him 

Laminaria digitata Ldig 

Pelvetia canaliculata PelC 

Sargassum muticum Sarg 

Ulva spp. Ulva 

 

 

Tab. 2.4 SI units used to define feature surface reflectance quantities. 

 

 

 

 

 

 

 

 Units Description 

Radiant exitance (M [W m-2]) Radiant flux emitted by a surface per unit area. 

Radiance L [W m-2 sr-1] Radiant flux emitted, reflected, transmitted or 

received by a surface, per unit solid angle per 

unit projected area. 

Irradiance (E [W m-2]) Radiant flux received by a surface per unit area. 

Reflectance P(Si,Sr, 𝜆) Angular distribution of incident (Si) and 

reflected (Sr) radiance. 
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2.2.3. Spectral Discrimination Statistics 

To spectrally separate between the different common intertidal macroalgal species we 

followed the method developed by Kotta et al. (2014) to discriminate between macroalgal 

groups, which was also applied by Chao Rodríguez et al. (2017), also looking at macroalgal 

groups. Reflectance spectra were first standardised through subtracting the mean of all 

wavelengths from each individual spectrum and then dividing by the standard deviation of 

all wavelengths. Reflectance at each wavelength was treated as a distribution, meaning 

standardisation allows for the comparison of the relative differences in spectral variability 

and between different spectral profiles, as opposed to potential variation in intensity caused 

by slight changes in sun angle (which could occur during the survey) and canopy orientation 

(Dymond et al., 2001) for example, and is represented by the standard deviation of the 

original wavelength values (Kotta et al., 2014). In addition, Kotta et al. (2014) used 

standardisation to enable direct comparisons between submerged and emerged species 

reflectance data. In this case, the presence of water can dampen the reflectance spectra and it 

was important to determine that the reflectance profile of samples removed from in-situ 

submerged conditions for measurement were representative of in-situ reflectance. Through 

Fig. 2.3 The typical setup of the TriOS RAMSES Hyperspectral radiometer mounted on a frame 

supplied by the manufacturer (a). Samples are cut and placed in a bucket with water (b), brought to 

the pier immediately and measured, ensuring that the ground field of view (GFOV) of the sensor is 

fully covered (c). 
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standardisation we also hoped to account for variation in the amount of water present on the 

samples (despite shaking), which could have altered the true spectral signature of the 

sample. 

Next, the optimal discriminatory boundaries between all pairs of species were identified. A 

Mann-Whitney U test was applied to identify those wavelengths, between species, that were 

statistically different from one another (p < 0.05). For those wavelengths where differences 

were identified, an optimal separating boundary was calculated using the True Skills 

Statistic (TSS) test, calculated using Spatial Data Calculator (SDC), developed by Remm & 

Kelviste (2014). TSS, traditionally used to assess the accuracy of weather forecasts, reports 

on the sensitivity, or the proportion of observed presences correctly observed as present, and 

the specificity, the proportion of observed absences correctly predicted as absent 

(McPherson et al., 2004). In this case, sensitivity refers to the proportion of one species 

being above the threshold and specificity for the proportion of the second species lying 

below the threshold (Chao Rodríguez et al., 2017): 

TSS = Sensitivity + Specificity -1 

TSS ranges from -1 to +1 with the latter representing a perfect agreement, indicating good 

separability at the chosen wavelength (Allouche et al., 2006), and 0 or less for random 

decisions (Kotta et al., 2014). TSS also outputs the optimum discriminatory boundary 

between two sets of reflectance spectra where the mean proportion of false classification 

results for both sets of spectra is minimal (Kotta et al., 2014). 

To identify suitable wavelengths that could allow for accurate discrimination between all 

sampled species (including light and dark A. nodosum and F. vesiculosus) (p < 0.05) the 

non-parametric Kruskal-Wallis test was used (in SDC). Perfect distinction between all 

species, as observed by Kotta et al (2014), was only achieved for some wavelengths, 

meaning that suitable wavelength ranges are chosen based upon their overall ability to 

discriminate between the species (i.e. are most species spectrally separable from one another 

within a chosen range?). Classification and Regression Tree (CART) models were then used, 

in Salford Predictive Modeler (SPM) (Minitab LLC, Pennsylvania, USA), to derive an 

optimal subset of bands, creating a set of rules for discrimination between target species. 

These decision-tree learning algorithms are flowcharts where each node represents a test on 

an attribute, in this case individual wavelengths, each branch represents the outcome of the 

test and each leaf is a class prediction (Han et al., 2012), i.e. species. CART models can be 

sensitive to noise which is why the Kruskal-Wallis was first performed to reduce the number 

of input bands (Han et al., 2012; Kotta et al., 2014). Owing to a relatively small sample size, 
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cross-validation was used for testing as it does not require setting aside data, rather it grows 

multiple replicate trees which each use 90 % of the data for model training and the 

remaining 10 % for testing, these separate error percentages are combined into a single test 

statistic. For each season, both full and subset CART models were created. Full models 

utilised all wavelengths within the investigated spectral range (400–750 nm) whereas subset 

models used wavelengths identified by the Kruskal-Wallis. Subset models that still allowed 

the same levels of discrimination between species were preferred over the full models. If 

required, models (full and subset) were simplified by pruning them to help prevent 

overfitting (Krzywinski & Altman, 2017).  

2.3. Results  

2.3.1. Spectral properties 

For all four seasons, spectral measurements were recorded for brown, and a single red (C. 

crispus), macroalgal species, with green species only recorded in spring and winter (Fig. 

2.5). Sargassum muticum was only sampled during spring (the only season it was observed). 

Across all seasons, brown macroalgal species showed a series of reflectance peaks around 

580, 600 and 650 nm, with distinctive reflectance troughs present at 630 and 675 nm (Fig. 

2.5). The chlorophyll-a absorption trough for L. digitata (Ldig), across all seasons, showed 

slightly increased variability, often occurring between 660–670nm (Fig. S2.2). Chondrus 

crispus (C.crisp) was characterised by two reflectance peaks around 600 and 650 nm, along 

with a reflectance trough at 675 nm (Fig. 2.5). Another trough at 580 nm helped to 

distinguish C. crispus from brown macroalgal species. In summer, C. crispus had a shoulder 

between 520–570 nm and a minimal trough at 580 nm. In spring and winter Ulva spp. was 

easily recognisable owing to a single reflectance peak centred on 550 nm, helping to 

distinguish it from both brown and red macroalgal species (Fig. 2.5). Whilst in spring, the 

chlorophyll-a absorption trough for Ulva spp. occurred between 670–675 nm, in winter it is 

centred around 655 (Fig. S2.2). 

2.3.2. Seasonal spectral discrimination  

CART model results provided a hierarchical set of rules to determine those wavelengths 

most suitable for spectrally discriminating between commonly found intertidal macroalgal 

species. Subset CART models were used for each season and were based on the results of 

the Kruskall-Wallis tests, which determined at which wavelengths each species was 

statistically different (p < 0.05) from all other species. Summer and autumn models could 

discriminate between all species sampled, with spring and winter unable to discriminate 
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between some brown macroalgal species (Fig. 2.6). Fig. 2.4 shows the changes in colour, 

across the seasons for A. nodosum and F. vesiculosus.  
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Fig. 2.4. Images showing the variation in colour for A. nodosum (top row) and F. vesiculosus (bottom row) across a Spring (May 2018), b Summer (August 2018), c Autumn 

(November 2018) and d Winter (February 2019). 
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Fig. 2.5 Combined spectral profiles for all species (including replicates) across spring (a), summer (b), autumn (c) and winter (d). Black dots represent suitable separability 

wavelengths determined by CART models. Codes represent the following species; A. nodosum dark/light (‘AND’/’ANL’), Fucus serratus (‘Fserr’), Fucus spiralis (‘Fspi’), 

Fucus vesiculosus (‘Fves’), Fucus vesiculosus light/dark (‘FVL’/’FVD’), Himanthalia elongata (‘Him’), Laminaria digitata (‘Ldig’), Pelvetia canaliculata (‘PelC’), 

Sargassum muticum (‘Sarg’), Ulva sp. (‘Ulva’), Chondrus crispus (‘C. crisp’). 
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Fig. 2.5 (Continued) Combined spectral profiles for all species (including replicates) across spring (a), summer (b), autumn (c) and winter (d). Black dots represent suitable 

separability wavelengths determined by CART models. Codes represent the following species; A. nodosum dark/light (‘AND’/’ANL’), Fucus serratus (‘Fserr’), Fucus 

spiralis (‘Fspi’), Fucus vesiculosus (‘Fves’), Fucus vesiculosus light/dark (‘FVL’/’FVD’), Himanthalia elongata (‘Him’), Laminaria digitata (‘Ldig’), Pelvetia canaliculata 

(‘PelC’), Sargassum muticum (‘Sarg’), Ulva sp. (‘Ulva’), Chondrus crispus (‘C. crisp’). 
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Fig. 2.5 (Continued) Combined spectral profiles for all species (including replicates) across spring (a), summer (b), autumn (c) and winter (d). Black dots represent suitable 

separability wavelengths determined by CART models. Codes represent the following species; A. nodosum dark/light (‘AND’/’ANL’), Fucus serratus (‘Fserr’), Fucus 

spiralis (‘Fspi’), Fucus vesiculosus (‘Fves’), Fucus vesiculosus light/dark (‘FVL’/’FVD’), Himanthalia elongata (‘Him’), Laminaria digitata (‘Ldig’), Pelvetia canaliculata 

(‘PelC’), Sargassum muticum (‘Sarg’), Ulva sp. (‘Ulva’), Chondrus crispus (‘C. crisp’). 
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Fig. 2.5 (Continued) Combined spectral profiles for all species (including replicates) across spring (a), summer (b), autumn (c) and winter (d). Black dots represent suitable 

separability wavelengths determined by CART models. Codes represent the following species; A. nodosum dark/light (‘AND’/’ANL’), Fucus serratus (‘Fserr’), Fucus 

spiralis (‘Fspi’), Fucus vesiculosus (‘Fves’), Fucus vesiculosus light/dark (‘FVL’/’FVD’), Himanthalia elongata (‘Him’), Laminaria digitata (‘Ldig’), Pelvetia canaliculata 

(‘PelC’), Sargassum muticum (‘Sarg’), Ulva sp. (‘Ulva’), Chondrus crispus (‘C. crisp’). 
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Fig. 2.6 Classification and Regression Tree (CART) models showing an optimum subset of 

wavelengths for discrimination between sampled species during spring (a), summer (b), autumn (c) 

and winter (d). 
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Fig. 2.7 Seasonal intra-specific variation for Ascophyllum nodosum light/dark (ANL/AND), Fucus 

vesiculosus (Fves) and Fucus vesiculosus light/dark (FVL/FVD) across spring (a), summer (b), 

autumn (c) and winter (d). The black line represents the optimum discriminatory boundaries between 

two samples as determined by TSS. 
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2.3.2.1. Spectral discrimination of spring-collected thalli 

The subset spring model was used which showed good separation between most species 

sampled (Fig. 2.6a). Fucus spiralis (‘Fspi’) and F. vesiculosus (‘Fves’) were the only two 

species not distinguishable from one another. Pairwise spectral separability results support 

this by showing these two species to only be separable over a very small wavelength range. 

Dark and light A. nodosum variants (‘AND’ & ‘ANL’) were separable over most 

wavelengths with notable features, for ANL, including a deeper reflectance trough at 675 nm 

and increased reflectance in over the 550–625 nm range (Fig. 2.7a). Wavelengths suitable 

for discrimination between most species were clustered within the 520–560 nm range. 

2.3.2.2. Spectral discrimination of summer-collected thalli 

All species were spectrally separable from one another using the subset CART summer 

model (Fig. 2.6b). Dark and light A. nodosum could be differentiated over most wavelengths 

with A. nodosum (light) (‘ANL’) showing increased reflectance over the 550–650 nm 

wavelength range (Fig. 2.7b). Dark and light F. vesiculosus variants (‘FVD’ & ‘FVL’) also 

showed the same separability pattern (Fig. 2.6f). Wavelengths that could be used to 

distinguish between different species were clustered into two groups of wavelengths, 520–

550 nm and 680–730nm. 

2.3.2.3. Spectral discrimination of autumn-collected thalli 

The autumn subset CART model showed that all species were spectrally separable from one 

another (Fig. 2.6c). Ascophyllum nodosum (dark) (‘AND’) and A. nodosum (light) (‘ANL’) 

could not be differentiated in the 550–650 nm wavelength range but could in the 400–550 

nm range, whilst the characteristic deep reflectance trough at 675 nm remained for A. 

nodosum (light) (‘ANL’) (Fig. 2.7c). Chondrus crispus (‘C. crisp’) was easily separable 

from all brown macroalgal spectral signatures at 570 nm, corresponding to decreased 

reflectance in this region. Suitable spectral wavelength for separation between all species, as 

defined by CART, were clustered between 520–580 nm.  

2.3.2.4. Spectral discrimination of winter-collected thalli  

The pruned winter subset CART model was not able to discriminate between all species 

(Fig. 2.6d). There were two distinct groups, within which species could not be distinguished 

and these relationships were confirmed by the pairwise spectral separability tests. The first 

comprises F. serratus (‘Fserr’), F. spiralis (‘Fspi’) and F. vesiculosus (‘Fves’) and the 

second, A. nodosum (light) (‘ANL’) and P. canaliculata (PelC). Chondrus crispus (‘C. 
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crisp’) and Ulva spp. were both distinguishable from each other and all other species at 476 

nm. Dark A. nodosum (‘AND’) and light A. nodosum (‘ANL’) were separable from one 

another in the 475–550 nm range but not between 550–650 nm (Fig. 2.7d). Suitable 

wavelengths that allowed for separation between most species, excluding those discussed 

above, occurred between 475–550 nm. 

2.4. Discussion 

This study used a spectroradiometer to conduct temporal sampling of the spectral reflectance 

for dominant canopy-forming intertidal species (including colour variants observed in A. 

nodosum and F. vesiculosus). Understanding temporal and inter and intra-specific spectral 

variation is an important prerequisite for remote sensing surveys of intertidal macroalgal 

habitats. Knowledge of inter and intra-specific spectral relationships can help to determine 

the optimum time of year for surveying and help to inform the choice of classes (i.e. species 

or colour variants) to include within a spectral library. This study successfully applied a 

spectral separability methodology, developed by Kotta et al. (2014) who only looked at 

distinguishing between macroalgal groups, to identify, across four seasons, a suitable subset 

of wavelengths which enabled the discrimination between common intertidal macroalgal 

species, including within, and between, macroalgal groups. We demonstrate how 

distinguishing features within each species spectral profiles were characteristic of known 

pigment absorption wavelengths (Bajjouk et al., 1996; Dawes, 1998) and how these profiles 

corresponded to existing macroalgal profiles (Kutser et al., 2006; Uhl et al., 2013; Kotta et 

al., 2014). Further to this, we demonstrated that species within a macroalgal group (brown) 

could be successfully discriminated between in three out of the four sampling seasons, 

suggesting that it may be possible to do so during remote sensing surveys. However, as 

sampling was only conducted at a single site, we were unable to evaluate the impact of 

spatial variation (within a season) on our ability to spectrally discriminate between 

macroalgal species. 

2.4.1. Spectral separability of brown macroalgal species 

Our findings represent the first detailed investigation into the spectral separability of 

different brown macroalgal species and shows that it is possible to discriminate between 

them across three of the four seasons. Previous studies have highlighted the difficulties of 

spectrally discriminating between brown macroalgal species, both during reflectance spectra 

analysis (Kutser et al., 2006; Kotta et al., 2014) and during remote sensing surveys (Hennig 

et al., 2007) where species’ spectral reflectance properties were considered too similar to 
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allow for discrimination. Perhaps our results should not come as too much of a surprise 

when considering the work of Fyfe (2003), who identified clear spectral differences between 

different species of seagrasses and Ullah et al. (2000), who achieved this for aquatic 

macrophytes (stands of Typha, Phragmites and Scirpus). The optimal wavelength range, 

observable in all seasons, for discriminating between all the sampled brown macroalgal 

species was between 500–575 nm, which was where fucoxanthin causes strong absorption. 

Variations in fucoxanthin content can be caused by temperature and light availability 

(Nomura et al., 2013) and fucoxanthin concentrations can also vary significantly between 

brown macroalgal species (Schmid & Stengel, 2015). Whilst the location of pigment 

absorption features varied little between the sampled brown species, and across seasons, it is 

apparent that varying concentration of accessory pigments, particularly fucoxanthin, may 

have been responsible for our success in spectrally distinguishing between them. As to what 

causes this variation in the first place, there could be a multitude of reasons, from thallus 

morphology (Hurd et al., 2014), localised hydrodynamic, temperature and light regimes to 

variations in emersion regimes (Ramus et al., 1976). The sometimes-mixed and fine-scale 

nature of intertidal macroalgal assemblages makes being able to accurately discriminate 

between species important for the accuracy of the resulting classification map. Such 

knowledge is also important when planning surveys as a desired taxonomic resolution needs 

to first be decided upon and knowledge of spectral relationships between species will help to 

determine both sensor and platform model and the desired spatial and spectral resolution 

required to identify features of interest. 

2.4.1.1. Intra-thallus spectral variation 

Two dominant canopy forming species displayed clear intra-thallus colour differences that 

varied between the seasons, A. nodosum and F. vesiculosus. These differences were 

sometimes visually striking when observed in-situ and quantifying their spectral separability 

would better help remote sensing surveys, especially those that collect high-spatial 

resolution data, such as UAV surveys. 

Visually, there was variation in the colour of many species within, and across seasons. 

Ascophyllum nodosum showed a constant colour gradient from the tip (lighter) of the fronds 

to the base (darker) across all seasons and could always be spectrally distinguished from 

each other. The base of the thallus experiences less exposure to irradiance, owing to shading, 

than the tips, and the increased pigment concentrations increases absorption, leading to a 

darker appearance for the base (Stengel & Dring, 1998). In spring, individuals were green in 

colour and the difference between the tips and base was subdued whereas in summer, there 
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was a much stronger gradient with the tips yellow and the base a dark olive brown. The 

response to these varying light regimes was evident in the spectral profiles where light A. 

nodosum displayed significantly higher reflectance values across the 550–650 nm range in 

summer than in winter. In autumn there was still a strong colour gradient between the tips 

and base, but the tips were a much duller yellow than in summer. However, in winter the 

colour gradient was not readily apparent with the entire thallus and fronds a light olive 

brown colour. Yet, despite this the tips and base were still separable from one another in the 

500–550 nm range. Across all seasons, apart from winter, light A. nodosum (lighter thalli) 

exhibited a lower reflectance trough at 675 nm than darker A. nodosum (darker thalli) 

indicating greater levels of absorption by chlorophyll-a (Kotta et al., 2014).  

In spring, F. vesiculosus was a consistent olive brown and although there were yellower 

fronds, these were randomly located and there was no clear colour change gradient. In 

summer, as with A. nodosum, there was a strong colour gradient from lighter (upper thalli) to 

darker (lower thalli) and both colour variants were clearly separable across almost the entire 

visible wavelength range. The lighter upper thalli had consistently higher reflectance over 

the 550-650 nm wavelength range and a deeper chlorophyll-a reflectance trough at 675 nm 

compared to the darker, basal thalli. In autumn, F. vesiculosus was a consistent dark olive 

brown and was even darker in winter, and there was no obvious colour gradient in either of 

these seasons. 

Identifying these intra-thallus spectral differences, and the seasons in which they occur, 

clearly indicates the need for season specific spectral profiles and may influence the choice 

of survey season. Both of these species are, in Ireland, common along intertidal rocky 

coastlines and knowledge about their unique intra-thallus seasonal spectral variation will 

likely improve the accuracy of remote sensing surveys. One may wish to choose a season 

where intra-thallus variation is minimal or non-existent to avoid potentially classification 

errors during a remote sensing survey. High-resolution imagery, such as that collected by 

UAVs, will increase the spatial and spectral complexity of the dataset (Adão et al (2017) by 

potentially making these spectral variations visible, leading to increased classification errors 

if they are not accounted for in the spectral library (Fyfe, 2003). 

2.4.1.2. Spectral separability of macroalgal groups 

Previous studies have demonstrated the spectral separability of the three macroalgal groups 

(Bajjouk et al., 1996; Kutser et al., 2006; Kotta et al., 2014) and our findings support their 

results. Several remote sensing studies have successfully applied this knowledge when 

mapping macroalgal communities at relatively broad taxonomic levels (Casal et al., 2012; 
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Oppelt et al., 2012; Brodie et al., 2018). In the visible wavelength region, the reflectance 

properties of macroalgae are determined, principally by the presence of photosynthetic 

pigments (Slaton et al., 2001). The three macroalgal groups are visually distinct from one 

another and it is the presence of different pigments that causes differences in their spectral 

profiles. Chlorophyll-a is present in the three macroalgal groups sampled and has two strong 

absorption peaks at ~435 nm and ~675 nm (Bajjouk et al., 1996). Chlorophyll-b is only 

found in green macroalgae (Dawes, 1998) and has in vivo absorption peaks at 480 nm and 

650 nm, with the latter observable as a small dip in reflectance just before the main 

chlorophyll-a reflectance trough. With strong absorption occurring in the red and blue parts 

of the spectrum it is the broad reflectance peak, centring on 550 nm, which distinguished 

green macroalgal spectra from brown and red. The presence of the carotenoid fucoxanthin in 

brown macroalgae causes high in vivo absorption in the 500–560 nm range (Passaquet et al., 

1991) and this enabled clear distinction from green macroalgae. The three reflectance peaks 

of brown species (570, 590 and 650 nm) were interspersed with a series of troughs which 

were attributed to absorption effects of fucoxanthin and chlorophyll-c (Uhl et al., 2013). Red 

macroalgae displayed a distinctive reflectance trough at ~570 nm, caused by phycoerythrin 

(Dawes, 1998), separating it from the green and brown groups. This feature was not apparent 

in the summer spectral profile where there is a steep shoulder instead which could be 

attributed to the bleached nature of many of the samples of C. crispus during this sampling 

season. Bleached C. crispus appeared significantly paler in colour through the loss of 

photosynthetic pigments such a chlorophyll due to oxidative stress (Bischof et al., 2003). 

2.4.2. Optimal survey seasons 

The remote sensing of vegetation communities requires consideration of the phenology of 

the different constituent species and how seasonal variations in this, alongside intra-specific 

variation, may determine the times of the year when the most accurate results can be 

obtained. Butera. (1978) found, that for coastal marsh vegetation, June and September were 

the best months for remote sensing surveys. This was due to differences in growth, for 

example, flowering and fruiting in September helped to distinguish between species. Li et al. 

(2019) determined April-May and December-February to be the best months for accurately 

mapping on-year and off-year Moso bamboo in China, which are characterised by different 

leaf and stem colours. In this study, for macroalgae, summer, autumn and, to a slightly lesser 

extent spring, appear to be the most suitable survey seasons regarding being able to 

spectrally discriminate between common intertidal species. Terrestrial studies have observed 

transition seasons, such as spring and autumn, as providing the best separation between 

broad-leaf tree species, however, winter can be useful for classifying evergreen tree species 
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(van Deventer et al., 2019). Winter appears to be the least suitable season in which to 

conduct habitat mapping of intertidal macroalgal communities. In winter, Ascophyllum 

nodosum (light) could not be distinguished from P. canaliculata at any wavelength. This 

could severely impact the classification accuracy of potential remote sensing surveys by 

misclassifying between a class that often dominates in the mid-intertidal zone (A. nodosum) 

and one that often occupies a thin horizontal band in the upper intertidal (P. canaliculata). 

During summer, variation in pigment concentrations between the tips of A. nodosum and P. 

canaliculata could be explained by different light regimes owing to higher levels of 

irradiance (Stengel & Dring, 1998), by virtue of increased emersion times, for species 

occupying higher zones. However, in winter, decreased irradiance levels and increased water 

turbidity would lead to both species having similar, higher, pigment concentrations owing to 

experiencing more similar irradiance conditions due to light limitation (Stengel & Dring, 

1998). The presence of receptacles on A. nodosum may also have contributed towards the 

similarity. Pigment concentration for five intertidal macroalgal species, in Ireland, were 

shown to be at their greatest in winter, and lowest during the summer (Schmid et al., 2017). 

Spectral separation was, in winter, also not possible between F. vesiculosus, F. serratus and 

F. spiralis. Despite their different vertical distributions within the intertidal zone (Knight & 

Park, 1950), during winter these three species may experience more similar, lower irradiance 

regimes than in the other seasons, leading to more similar pigment concentrations compared 

to the rest of the year. Fucus serratus samples were collected further down the shore from F. 

vesiculosus ones and this may explain why differences are observed in spring through 

autumn, but not in winter as different light regimes may have affected pigment composition 

of the two species.  

2.4.3. Implications for remote sensing surveys 

Our results highlight the potential need for the creation of season specific spectral libraries 

and awareness of spatial influences on spectral response. Schmid et al. (2017) showed that 

the concentration and composition of pigments, in macroalgae, varied according to location 

and that there appeared to be spatial trend, suggesting that varying light and temperature 

conditions may have been responsible for the observed pigment variations. Whether separate 

spectral libraries should be created for distinct regions or a single spectral library can be 

created using multiple species replicates from different locations (Kotta et al., 2014) will 

depend on research objectives and must be the subject of further research. Future spectral 

library sampling should better account for atmospheric variation (e.g. cloud cover and solar 

angle) through standardisation of sampling conditions and should also consider the potential 

impacts of sensor inter-calibration. The mismatch of wavelengths between the radiance and 
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irradiance sensor, although partly corrected here through linear interpolation, may still create 

artefacts in the resulting reflectance profiles and intercalibration will allow for generation of 

absolute reflectance values (Anderson et al., 2006). Inter-calibration is also important if 

looking to directly compare reflectance spectra collected using different sensor models and 

can be done through comparing reflectance measurements of surfaces with known 

reflectance properties (Vabson et al., 2019). The creation of a spectral library serves a single 

objective, to support the collection of remote sensing data by under pinning supervised 

classification methodologies. The safety and effectiveness of remote sensing surveys 

requires other operational factors to be considered, chief of which being the weather 

(depending on geographic location). In temperate coastal regions unsuitable weather (wind, 

rain etc.) and storms can restrict the number of survey days, reducing survey efficiency 

(Duffy et al., 2017). Operationally, it would be more efficient to survey during those seasons 

where weather conditions are more suitable. Unpredictable, or changing weather conditions 

in the coastal zone can increase the risk of equipment damage or injury. In summary, the 

combination of poor spectral separability and inclement weather makes winter a potentially 

unsuitable season for the mapping of intertidal macroalgal communities.  

2.5. Conclusions 

Spectral libraries are a well-established source of training data for remote sensing surveys. 

The collection of spectral library data must be supported by an understanding of the 

relationship between, and within, species across seasons and how their pigment composition 

can vary owing to the seasonal variation in light conditions. In this study, spectral 

investigations concluded that it is possible, across most seasons, to discriminate not only 

between, but also within, macroalgal groups. Seasonal variations in the spectral response of 

species can affect interspecific spectral relationships which, in this study, meant that during 

winter it was not possible to distinguish between key canopy forming species.  

This study has demonstrated the need for development of season-specific spectral libraries 

for intertidal macroalgal species. Data collection was limited to a single site, meaning that it 

was not possible to draw conclusions on the effects of spatial variation on spectral response. 

For remote sensing surveys over relatively small geographic areas (i.e. using a UAV) it may 

only be necessary to account for temporal, rather than spatial, spectral variation. Future 

research should explore both the spatial and temporal spectral response of macroalgal 

species, to confidently support large-scale remote sensing surveys. 
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DJI Matrice 600 Pro carrying the BaySpec hyperspectral sensor during the December 2017 

survey at An Cheathrú Rua (Co. Galway). 
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Abstract 

Intertidal macroalgal communities mark the boundary of the marine realm and are faced 

with many direct and indirect anthropogenic pressures. The effective and sustainable 

management of these resources must be underpinned by accurate, efficient and cost-effective 

environmental data collection. Traditional field survey methods, whilst accurate, are time-

consuming and limited in the area that can be covered. Remote sensing permits large areas 

to be rapidly surveyed but the effectiveness of satellites and aircraft for mapping fine-scale 

intertidal macroalgal mapping is limited by their coarse spatial resolution and restricted 

operational flexibility. The rapid development of unoccupied aerial vehicle (UAV) and 

sensor technology can address these issues and provide a potential alternative to established 

remote sensing platforms. Here, a detailed methodology is presented for the assessment of 

the commercially and ecologically important intertidal brown macroalgae Ascophyllum 

nodosum using a multirotor UAV and pushbroom hyperspectral sensor. Two different 

classifiers, Maximum Likelihood Classifier (MLC) and Spectral Angle Mapper (SAM), 

were compared along with two different sources of spectral libraries, one collected in-situ 

with a spectroradiometer and the other derived from hyperspectral imagery. Of the 

classifiers compared, both trained using image-derived spectra, MLC more accurately 

classified A. nodosum, and other common intertidal species and substratum (Overall 

Accuracy (OA) 94.7 %) than SAM (OA 81.1 %). In addition, SAM, trained using in-situ 

spectra, was the least accurate of the three classifier workflows used (OA 71.4 %). The low 

accuracy of the spectroradiometer approach was likely due to high levels of noise present in 

the hyperspectral data, a result of the relative instability of the UAV platform causing 

vibration. The accurate mapping of non-target species also highlights the applicability of this 

methodology for a broader range of intertidal species and communities. This research clearly 

demonstrates the potential of UAV-mounted hyperspectral remote sensing for mapping the 

spatially and spectral complex macroalgal habitats found within the intertidal zone.  

https://doi.org/10.1016/j.ecss.2020.106789
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3.1. Introduction 

Remote sensing allows for the monitoring of the Earth’s surfaces and processes at a wide 

range of spatial, spectral and temporal scales, enabling patterns and relationships, once 

unobservable from the ground, to be studied (Kerr & Ostrovksy, 2003; Thenkabail, 2016). 

Monitoring environmental interactions, change and trends is increasingly important due to 

rising anthropogenic pressures (Bartholomé & Belward, 2005; Hennig et al., 2007). The 

intertidal zone occupies a unique location on the confluence of the marine and terrestrial 

realms for which a variety of monitoring techniques have been established (Chust et al., 

2010; Leon et al., 2013). The intertidal zone offers a range of challenges for mapping 

activities with tides offering a limited time window in which to survey (Hamylton, 2017).  

Intertidal macroalgal communities are important primary producers (Harley et al., 2012) 

providing habitat for a diverse range of ecologically and commercially important fish and 

invertebrate species (Bruno & Bertness, 2001; Vadas et al., 2004; Davies et al., 2007). With 

increasing anthropogenic pressures on coastal environments (Mineur et al., 2015), 

quantifying their distribution and the development of baseline data collection methods is 

important for the effective management of these ecosystems (Dekker et al., 2003). Many 

intertidal macroalgal communities, particularly along temperate rocky shores, are spatially 

and spectrally complex with species occurring in mixtures over fine spatial scales. This can 

make traditional field surveys costly, time-consuming and limited in the areal extent that can 

be efficiently covered (Kerr & Ostrovsky, 2003; Hennig et al., 2007).  

Remote sensing can cover large and inaccessible areas, and often allows for repeat, 

standardised surveys of the same site (Casal et al., 2012; Thenkabail, 2016). The type of 

remote sensing platform used in habitat mapping is pursuant to research needs. Satellites are 

considered to have too coarse a spatial resolution to be effective in the intertidal zone (Costa 

et al; 2007; Oppelt et al., 2012; Brodie et al., 2018) although success has been achieved 

when mapping broad-scale, homogeneous canopy forming species such as kelp (Cavanaugh 

et al., 2010; Casal et al., 2011). Light aircraft are a common platform for intertidal mapping 

surveys as they afford higher spatial resolutions than satellites (Anderson & Gaston, 2013). 

Still, the relatively low spatial resolutions (~ ≥ 1 m2) of these surveys (Tab. S3.1) means 

species discrimination has been difficult. Successful spectral separation between macroalgal 

groups has been achieved (Hennig et al., 2007) and homogeneous cover species have been 

accurately mapped (Pe’eri et al., 2008), yet identification to species level, particularly within 

groups, has not been achieved (Oppelt et al., 2012). 
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The rapid development of unoccupied aerial vehicle (UAV) technology, bringing decreasing 

costs, longer battery life and higher spatial resolutions (Colefax et al., 2017), could 

potentially make them a more cost-effective alternative to aircraft for habitat mapping 

(Johnston, 2019). Inexpensive UAVs have demonstrated their ability to assess the 

distribution of homogeneous cover species like intertidal seagrass (Duffy et al., 2018) and 

macroalgae (Murfitt et al., 2017). RGB-based classification techniques, such as object-based 

image analysis (OBIA), have also been used for mapping distinctive coastal habitats 

(Ventura et al., 2018), something made possible by the high spatial resolution of UAVs. The 

spatial and spectral complexity of intertidal macroalgal communities will require higher 

spectral resolutions than available with RGB sensors (Adão et al., 2017). This is an ideal 

environment to deploy hyperspectral remote sensors which, with their ability to record a 

narrow, contiguous spectrum for each pixel (Goetz, 2009), can greatly improve the spectral 

discrimination of different species. 

To date, there are no published studies assessing intertidal macroalgal communities with 

UAV-mounted hyperspectral sensors. As of 2014, there were relatively few research groups 

actively deploying this technology in any capacity (Lucieer et al., 2014; Adão et al., 2017). 

The high-power consumption of hyperspectral sensors and their weight makes integration 

with UAVs difficult (Jakob et al., 2017) perhaps explaining the limited amount of research 

to date. Hyperspectral sensors also create huge volumes of data (Adão et al., 2017) requiring 

higher capacity compression (Herrero et al., 2015) or hardware solutions. The high spatial 

and spectral resolutions created with UAV-mounted hyperspectral remote sensing have been 

used to assess the health and vigour of Antarctic mosses which occur over highly 

fragmented, fine scales (Lucieer et al., 2014), like those found in the north-east Atlantic 

intertidal zone. Full-frame hyperspectral sensors have been used for geological surveys 

(Jakob et al., 2017), for feature classifications within mango orchards (Ishida et al., 2018) 

and to monitor acid mine drainage minerals (Jackisch et al., 2018).  

Here, a UAV-mounted pushbroom hyperspectral remote sensor was deployed, supported by 

high-resolution RGB imagery, to assess the distribution of Ascophyllum nodosum, an 

ecologically and economically important intertidal brown macroalgal species found on 

moderately exposed to sheltered rocky coastlines (Åberg, 1992; Stengel & Dring, 1997). To 

support future, large-scale UAV surveys and resource management decision making, the 

following questions were addressed: 

i. How effective is high-resolution, UAV-mounted RGB imagery for the collection of 

training and ground-truth data?  

ii. Is there a supervised classification method that provides the most accurate result? 
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iii. Are supervised classifiers that utilise image-derived spectra more accurate than 

those using spectral library datasets? 

iv. Can a UAV-mounted hyperspectral sensor distinguish A. nodosum from other 

common canopy forming intertidal macroalgal species? 

This case study was undertaken at a site in western Ireland, considered both spatially and 

spectrally complex, with a high diversity of intertidal macroalgal species. Two different 

sources of spectral endmember data were applied to train supervised classifiers aiming to 

classify intertidal canopy-forming macroalgae. Two comparative investigations were 

conducted. The first, using a single source of spectral endmember data, sought to compare 

the ability of two common supervised classification methods to most accurately classify 

intertidal canopy-forming macroalgae. The second aimed to compare, using the same 

supervised classification method, two different source of spectral endmember data. 

3.2. Methods 

3.2.1. Study site 

The study was carried out at Doleen Pier, near An Cheathrú Rua, (53°15’08’’N, 

009°37’51’’W) which lies within Kilkieran Bay (Co. Galway), western Ireland (Fig. 3.1). 

Kilkieran Bay and Islands is designated as a Special Area of Conservation (SAC) due to the 

presence of mudflats and sand flats not covered by seawater at low tide and large shallow 

inlets, bays and reefs (Anon, 2015b). The Habitats Directive, under which SACs are 

designated, aims ‘to maintain or restore the favourable conservation status of habitats and 

species of community interest’ (NPWS, 2014). The primary underlying bedrock is granite 

(Könnecker & Keegan, 1983) and the low relief shoreline is dominated by rocky substrate 

yielding to muddy sediment in shallow waters (Sides et al, 1994). Water depths are 

generally quite shallow, ranging from 2-10 m inland to around 25 m at the entrance to the 

bay, with salinity ranging from 30-35 ppt (O’Donohoe et al., 2000). The entrance to the bay 

is exposed to the Atlantic Ocean and the prevailing southwest winds cause significant 

turbulence during stormy periods (Tully & O’Ceidigh, 1989).  
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Fig. 3.1. Location of the study site at Doleen Pier in the context of Kilkieran Bay and Ireland (a). The 

yellow line marks the flight path of the RGB drone survey which covered a similar area as the 

hyperspectral survey (b). The total intertidal area shown in b is ~38,000 m2. Coordinates are in Irish 

Transverse Mercator (ITM). 

 

The study site was chosen because of the high abundance of A. nodosum and the general 

high diversity of other intertidal macroalgal species. Owing to its moderately exposed 

location in the mouth of the bay, and the presence of suitable substrata, the kelp species L. 

digitata (Phaeophyceae, Ochrophyta) is present in the sublittoral zone. The site is 

topographically complex, being dominated by granite bedrock with areas of mixed, sandy 

substrate. Common canopy forming species occurring at the site include; Pelvetia 

canaliculata, Fucus spiralis, F. vesiculosus, F. serratus and Himanthalia elongata (all 

Phaeophyceae) with red (Rhodophyta) species, including Chondrus crispus and 

Mastocarpus stellatus, being common in the understory. Ulva spp. (Chlorophyta) are 

occasionally found in small patches atop of the macroalgal canopy.  

3.2.2. Remote sensing data 

The UAV-mounted hyperspectral remote sensing survey was conducted on December 6th, 

2017. Weather conditions were calm and dry with low wind (~13.5 km/h) and moderate 

cloud cover (67 %). A lightweight, pushbroom BaySpec OCITM-F Ultra Compact 

Hyperspectral Imager (BaySpec Inc. San Jose, USA) was used which collects data within a 

spectral range of 400-1000 nm, containing 124 bands and having a spectral bandwidth of ~4 

nm. The sensor has a 21° field of view (FOV) and weighs ~570 g. There was no built-in 

irradiance sensor to correct for variations in insolation during the flight and calibration was 
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performed prior to each flight, first using a white standard to adjust for exposure and then 

dark reference by covering the lens. Integration time was set to ~2 milliseconds as there was 

moderate cloud cover. The sensor was mounted, using a custom three-axis gimbal mount, on 

a DJI Matrice 600 Pro (DJI, Shenzhen, China), which has a maximum unladen flight time of 

~30 min when using the TB47S Intelligent Flight Batteries (DJI, Shenzhen, China). The 

sensor was connected to an Intel NUC (Intel Corporation, Santa Clara, USA), mounted atop 

of the UAV. Whilst on the ground this was connected to a laptop containing the proprietary 

SpecGrabber software allowing data recording parameters to be modified. DJI Go software 

(v.3.1.23) was used to plan and control the flight plan which was designed to cover a 

subsection of the site (~30,000 m2) in order to balance out limitations of data storage and 

variation in cloud cover and insolation. Flight height was set to 60 m with a velocity of ~15 

km/h (to ensure high overlap between scanlines), resulting in a ground sampling distance 

(GSD) of ~1.8 cm/pixel. Image overlap was set at 90 % for the side (each parallel flight 

line). Despite moderate passing cloud cover, surveys were conducted only during windows 

of constant light conditions.  To maximise the spatial resolution of the resulting data, 60 m 

was the minimum flight height that still allowed for the desired survey area to be covered. 

As there were passing clouds, the survey only took place during periods of clear sky to avoid 

shading. Approximately 21,500 m2 was covered in 10 flight lines. 

A DJI Inspire 1 (DJI, Shenzhen, China), flown within 30 min of the hyperspectral survey, 

was used to collect high-resolution RGB imagery with a built-in 12-megapixel Zenmuse X3 

camera which has a 94° FOV. This UAV has a maximum flight time of 18 min and was 

controlled using MapPilot (v.2.7.0) (Drones Made Easy, San Diego, USA). The survey was 

also conducted at 60 m, using a 70 % side and front overlap, resulting in a GSD of 2.6 

cm/pixel and a total of 95 images taken. At 60 m flight altitude, an area 72,000 m2 was 

surveyed.  

Nine ground control points (GCPs) were deployed to accurately geo-reference the data. Each 

GCP consisted of a 50 x 50 cm black board with a white cross and a centre point easily 

visible from the air, the coordinates of the centre point were recorded using a Trimble R8 

post processing kinematic (PPK) global navigation satellite system (GNSS) unit (Trimble, 

Sunnyvale, USA). GCPs were spaced evenly throughout the site with one in each corner of 

the survey area and the others spaced to reflect topographical (i.e. vertical) variation. GCPs 

were post-processed using Trimble Business Centre (v. 5.00, Trimble, Sunnyvale, USA).   
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3.2.3. Data processing 

RGB imagery was processed using Pix4D Mapper (Pix4D, Lausanne, Switzerland) and 

GCPs were imported in to enhance georeferencing accuracy and avoid layer co-registration 

errors (Bentoutou et al., 2005) which was important for operating in a fine scale spatially 

heterogenous environment. An average root mean square (RMS) error of 0.017 m was 

achieved.  

BaySpec’s CubeCreator (BaySpec Inc. San Jose, USA) software was used to process the raw 

hyperspectral imagery into hyperspectral cubes. To aid with the processing workflow data 

were processed in sections, with each section containing the data from individual survey 

flight lines. Light and dark calibration standards were used to convert at sensor radiance 

values to reflectance using the empirical line approach (Smith & Milton, 1999). The 

relationship between digital numbers (DN), which is the format that the sensor records data 

in, and at-sensor radiance is assumed to be linear. This allows for the accurate conversion to 

reflectance values, the accuracy of which can, however, be influenced by the quality of 

calibration targets (Barreto et al., 2019). The hyperspectral cubes created by CubeCreator 

(BaySpec Inc. San Jose, USA) had no geographic information as the sensor contained no 

GPS, thus they required georectification, which was achieved through image-to-image 

georectification using the orthorectified RGB imagery as, owing to noise present in the data, 

it was not possible to clearly observe any of the nine GCPs deployed on site. 

Georectification was conducted manually using the Georeferencer tool available in QGIS 

(v.3.4.1). Preliminary examination of the data revealed that there was a significant degree of 

noise present in the hyperspectral dataset. This noise is a function of the pushbroom 

hyperspectral such as scanline errors (Hruska et al., 2012), slight variations in irradiance 

levels and the instability of the UAV platform (Rasti et al., 2018). The impact of this noise 

was most pronounced near the edge of each hyperspectral strip. For this reason, the edges of 

each strip were first removed using a 0.5 m buffer and strips were then resampled, using 

bilinear interpolation, to a coarser resolution (6.5 cm2/pixel) to compensate for noise within 

the remaining image. This resolution was chosen as it appeared to best alleviate the impact 

of the noise present whilst providing a spatial resolution that would capture the fine spatial 

scales present within the intertidal zone. Coarser spatial resolutions may have increased to 

risk of the spectral mixing of signatures within individual pixels, without providing further 

noise alleviation. Resampling to coarser resolutions will also reduce file size, addressing 

issues arising from limited computer processing power (Grohmann, 2015). Finally, data 

strips were then mosaicked together into a single raster layer using Image Composite Editor 

(ICE) (Microsoft, Redmond, USA). A miscalculation of the hyperspectral sensor FOV, or 
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the incorrect FOV value being entered, led to gaps occurring between the data strips, as the 

desired overlap was not achieved, meaning full site coverage was not obtained. 

3.2.4. Hyperspectral classification 

3.2.4.1. In-situ spectral profiles 

The classification workflow is highlighted in Fig. 3.2. Reflectance measurements of 

intertidal macroalgae and substratum were carried out using a TriOS RAMSES 

Hyperspectral Radiance and Irradiance Sensor (TriOS Optical Sensors, Rastede, Germany). 

The radiance sensor has a 7° FOV, recording 256 channels between 320-950 nm with a 

wavelength accuracy of 0.3 nm. The irradiance sensor had a cosine response with a 180° 

FOV and measures across the same wavelength range as the radiance sensor. Both sensors 

were mounted on a frame supplied by the company, and the radiance sensor was 

approximately 20 cm above the ground giving a ground field of view (GFOV) of 4.7 cm2. 

The irradiance sensor was mounted facing upwards and so that the tip was just above the 

frame, minimising the risk of shading. The sensors were connected to a control box (TriOS 

Optical Sensors, Rastede, Germany), which was powered by a 20 kg, 12V battery (Enersys, 

Reading, Pennsylvania). A HP Pavillion laptop (HP, Palo Alto, USA) was used to operate 

the proprietary MSDA_XE software controlling the sensor. All measurements were 

conducted on a wooden surface painted with ultra-black paint, which has extremely low 

reflectance in the visible wavelength range, to reduce background noise (Dekker et al., 

2003).  Seven common intertidal macroalgal species and one substratum type were sampled 

(Tab. 3.1). Fig. S3.1 shows the setup of the spectroradiometers. 

For each monospecific collection, ten individual seaweed samples were measured, and each 

measurement was replicated three times to mitigate slight variations in insolation and 

morphological variations within samples (Dekker et al., 2003). A single irradiance 

measurement was taken for each of the ten samples. Each replicate was placed below the 

radiance sensor ensuring that it covered an area larger than the GFOV (Fyfe, 2003). 

Integration time was set to automatic to account for slight variations in insolation. Raw 

radiance was converted into reflectance by dividing each radiance measurement by the 

corresponding irradiance measurement (Kotta et al., 2014). The ten spectral profiles (each 

consisting of three replicates) for each species were then averaged to create a single species 

spectrum. Individual spectra were then formatted in a .csv file to be imported into the 

spectral library builder and each averaged spectrum was resampled to the wavelength range 

and scale of the hyperspectral imagery using ENVI 5.4 (Harris Geospatial Solutions, 

Boulder, USA). 
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Fig. 3.2. Diagram showing hyperspectral classification workflow once the UAV data has been 

collected and processed. 

 

Tab. 3.1. Spectral endmember classes collected using the hyperspectral image data and spectral 

library approaches. Habitat classes are listed under Class Code. Fucus vesiculosus, Fucus spiralis and 

Fucus serratus were combined into a single category ‘Fucus spp.’. 

Image-Derived Spectral Library Class Code 
Ascophyllum nodosum Ascophyllum nodosum Asco 
Fucus vesiculosus Fucus vesiculosus - 
Fucus spiralis Fucus spiralis Fucus spp. 
Fucus serratus Fucus serratus - 
Pelvetia canaliculata Pelvetia canaliculata PelC 
Himanthalia elongata Himanthalia elongata Him 
Laminaria digitata Laminaria digitata Kelp 
Substratum Substratum Substratum 
Submerged - Submerged 
Ulva spp. - Green 
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The weight of the sensor and associated components (the battery weighed 20 kg) made it 

impractical to measure reflectance spectra in-situ, so samples were cut and then immediately 

brought to the radiometer measurement area. They were carried in a container filled with 

seawater and were then shaken, prior to measurement, to remove excess water yet ensure 

that samples remained hydrated. The removal of samples (i.e. not in-situ) for spectral 

reflectance sampling is a common method that has been used to derive representative 

macroalgal spectral profiles for spectral library comparison studies (Kutser et al., 2006b; 

Uhl et al., 2013; Kotta et al., 2014; Chao Rodríquez et al., 2017) and for the training of 

hyperspectral remote sensing classifiers (Dekker et al., 2003; Barillé et al., 2010; Casal et 

al., 2013; Dierssen et al., 2015). To better understand the effects of sample removal on 

changes (or lack thereof) in spectral response a small pilot study was conducted to compare 

the spectral properties of A. nodosum that was first measured in-situ before being cut and 

then taken to the measurement area, following an analytical method developed by Kotta et 

al. (2014). In-situ sampling was conducted first. The radiometer was setup in close 

proximity to dense assemblages of A. nodosum and a 25 m radius was established around the 

radiometer (determined by cable length from sensor to control unit). Within this 25 m zone, 

five one m2 quadrats were randomly placed and ten spectral measurements (each replicated 

three times) were taken of the A. nodosum canopy in each quadrat. After in-situ sampling 

was completed, A. nodosum individuals, corresponding to the locations of the first, fifth and 

tenth in-situ measurement for each quadrat, were removed from the five sampled quadrats 

and brought to the measurement area where three replicates of each were sampled using the 

same steps highlighted in section 2.4.1. The statistical workflow, described in detail by Kotta 

et al (2014), showed there to be only minor variation in the spectral response of A. nodosum 

for the measurement methods (Fig. S3.2.). Where small differences were observed, True 

Skills Statistic (TSS) indicated a far from perfect separation between the two classes. This 

demonstrated that the removal of individuals did not significantly affect their spectral 

response and that their spectral signatures could be considered representative of those found 

in-situ.  

3.2.4.2. Image-derived spectral profiles 

Image-derived endmember spectra were obtained by using the RGB as a reference dataset, 

with ENVI 5.4 (Harris Geospatial Solutions, Boulder, USA), allowing for the identification 

of different species before extracting spectral information from the aligned hyperspectral 

layer. The usefulness of this approach was noted by van Iersel et al. (2018), especially when 

accounting for species not easily observable in the field. This method is also advantageous 

over utilising field mapping techniques to create training areas when considering scaling up 
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of data collection to larger areas. It is less time consuming and costly, allowing much larger 

areas to be covered than possible on-foot during the same period of time (Gray et al., 2018). 

Training area polygons were created for areas where individual classes were easily 

identifiable such as dense stands of A. nodosum (Class code = ‘Asco’) which were clearly 

recognisable through their yellow/pale green colour and the distinctive pattern created by the 

fronds, resembling a field of long grass blown flat by the wind (Fig.  3.3). The number of 

training polygons per class was dependent on the observable area of that class and the area 

of each training polygon depended on the extent of homogeneous class cover Larger and 

more homogeneous cover classes had more numerous, larger training areas than smaller or 

less frequently occurring classes (Fig. S3.3). Areas that provided a ‘pure’ spectral signature 

were preferred over mixed assemblage areas. F. vesiculosus, F. serratus and F. spiralis were 

combined into a single class, ‘Fucus spp’. These species were also combined in the spectral 

in-situ spectral library dataset. The similar, ‘shrubby’ nature of these species leads to a 

mottled appearance in the RGB (Fig. 3.3) and it was hard to confidently discern between 

them. Laminaria digitata and H. elongata were visually distinct from all other intertidal 

features and thus, were also included as separate classes (‘Kelp’ & ‘Him’). The spectral 

properties of the varying site substrates (rock, sand & mixed sediments) are relatively 

similar to one another and sufficiently distinct from macroalgae that they are combined into 

the ‘Substratum’ class (Fig. S3.5). Water was not present in the hyperspectral data aside 

from a few large rockpools which contained submerged macroalgae. Since visual 

identification of the macroalgae was difficult and the presence of water would likely distort 

the signal (Zoffoli et al., 2014) it was decided to include a ‘Submerged’ macroalgal class 

(this class was not present in the spectral library and no attempt was made to identify 

species) in order to separate it from identifiable intertidal macroalgal classes. In total, eight 

classes were identified (Tab. 3.1). 

The spectral separability of endmember classes was determined prior to running a 

supervised classification algorithm. An assessment of the mathematical separability of the 

classes was performed to assess whether sufficient and representative training data have 

been selected (Richards & Jia, 2006). Training data were checked for class separability using 

the Jeffries-Matusita Distance (Carrasco-Escobar et al., 2019). The values of the resulting 

output between each pair of classes range from 0 to 2 with values greater than 1.9 indicating 

almost perfect separability between them (Richards & Jia, 2006). Good class separability 

would indicate that sufficient training areas have been selected, whereas values approaching 

zero would indicate either the need for more training areas or that two classes were 

inherently similar in their spectral properties. This could then indicate that the two classes 

could potentially be combined (Thomas et al., 2003). 
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Fig. 3.3. Sections of high-resolution RGB drone imagery showing Ascophyllum nodosum (a), Fucus 

spp (b), Himanthalia elongata (c), Submerged macroalgae (d), Pelvetia canaliculata (e), Laminaria 

digitata (f). The distinctive morphological properties of each species were used to identify each of 

them from the RGB drone imagery. 

 

3.2.4.3. Supervised classification workflows 

Two supervised classification methods were used in ENVI 5.4 (Harris Geospatial Solutions, 

Boulder, USA), Maximum Likelihood Classification (MLC) and Spectral Angle Mapper 

(SAM). MLC is a popular classifier (Paola & Schowengerdt, 1995) which calculates the 

probability that an individual pixel belongs to a specific class and is based on an estimated 
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probability density function derived from the defined reference classes (Foody et al., 1992). 

The MLC classifier assumes a Gaussian distribution for each of the inputted training classes 

(Jia & Richards, 1994) and can be expressed by the following equation: 

gi (x) = ln p(ωi ) − 
1

2
 ln |∑i|−  

1

2
 (x −mi )t ∑

−1
𝑖

 (x −mi )  

Where i is class, x equals n-dimensional data, p(ωi) is the probability that class ωi occurs in 

the image and is assumed the same for all classes, |∑i| is the determinant of the covariance 

matrix of the data in class ωi, ∑
−1

𝑖
 is the inverse matrix and mi is the mean vector. 

SAM identifies the spectral similarity of a pixel’s spectrum to that of a reference spectrum 

which can either be collected using a radiometer or taken from an image (Kruse et al., 1993). 

This technique seeks to reduce the dimensionality of the hyperspectral data by ignoring the 

magnitude of pixel vectors in hyperspectral space and instead classify using their angular 

orientations (Yang et al., 2008). Each pair (reference and classification) of spectra is treated 

as a vector in n-dimensional space meaning that their similarities can be compared 

regardless of differences in brightness (Yuhas et al., 1992). SAM is expressed by the 

following equation, taken from Kruse et al. (1993): 

α = cos−1 [
∑ 𝑡𝑖𝑟𝑖
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1
2 

]       

Where t is the spectra for a pixel, r is for the reference spectrum pixel, α is the spectral angle 

between t and r (measured in radians or degrees) and n is the number of bands. 

The classification accuracy of the two classifiers was first compared using the image-derived 

spectra (Tab. 3.1) as inputs for both MLC and SAM. Average spectral reflectance curves 

first had to be extracted from the image-derived training data as SAM requires endmember 

spectra, unlike MLC, which calculates covariance and probabilities from training polygons. 

No thresholds were selected so that all pixels would be classified, and spectral separability 

results were used to determine whether sufficient training areas had been selected to be 

representative of features present at the site (Richards & Jia, 2006). 

After the accuracy of two different classifiers, both using the same training spectra, were 

compared, the two different sources of training data, image-derived and in-situ spectral 

library (Tab. 3.1), were compared using SAM. The image-derived spectra were processed in 

the same manner as in the previous comparison. Spectra for green and submerged 

macroalgae were not collected for the in-situ spectral library and were not used in the 
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classification workflow. No thresholds were applied so that every pixel was classified, and 

direct comparisons could be made between the two classification outputs. 

3.2.4.4. Accuracy assessment 

Ground-truth, or reference, data were derived from the high-resolution RGB imagery 

utilising the same rationale as for the training data collected for the MLC (Fig. S3.4). The 

accuracy of this approach was noted by Lechner et al. (2012) and was also found to be more 

reliable and accurate than GPS-based validation methods, primarily owing to GPS error 

(Laliberte & Rango, 2011). Reference data collected from in-situ field observations are 

considered the most accurate, however this can be time consuming meaning that data 

derived from imagery are more common (McDermid et al., 2005; McRoberts et al., 2018). 

Polygons were created for each of the eight (MLC) and six (SAM) classes and this was 

carried out independently of those used to create the training areas using ENVI 5.4 (Harris 

Geospatial Solutions, Boulder, USA). Polygons were created so that they covered as much 

of each class as possible and only in areas where homogeneous class coverage could be 

confidently identified. The accuracy assessment tool was used to create the confusion matrix 

and derive quantitative measures of accuracy (i.e. kappa, user/producer accuracy, errors of 

commission/omission).  

3.3. Results 

3.3.1. Spectral properties of macroalgal species 

For both image derived spectral and spectral library reflectance spectra there were similar 

key characteristics present (Fig. 3.4). Image derived spectra appear to be heavily affected by 

noise when compared to spectral library profiles. All brown macroalgal species contain three 

characteristic peaks (580, 600, 650 nm) as well as a trough at 675 nm. The ‘Green’ spectral 

profile (image-derived only) had a single peak at 550 nm which was visible despite the noise 

present in the profile. ‘PelC’ had a very distinctive profile in both sets of reflectance spectra 

where its reflectance was higher than that of other brown macroalgae. ‘Kelp’ was also 

distinct as the chlorophyll-a absorption trough occurred around 665/670 nm in contrast to 

675 nm for the other species. ‘Submerged’ and ‘Kelp’ had very similar profiles in the 

imaged-derived spectra with ‘Submerged’ having higher reflectance across the entire 

spectrum. The relationship between ‘Asco’ ‘Fucus spp’ and ‘Him’ varied between both sets 

of spectra. The spectral library revealed ‘Asco’ and ‘Fucus spp’ to be more similar and 

‘Him’ relatively distinct, whereas the image derived data shows ‘Asco’ to be more distinct 

and ‘Fucus spp’ and ‘Him’ to be more similar. 



Chapter 3: Hyperspectral mapping of Ascophyllum nodosum 

80 
 
 

 

 

Fig. 3.4. Spectral profiles of species derived from the Spectral Library (a) and Image-derived Spectra 

(b). The wavelength range was chosen to highlight key spectral properties present within the visible 

portion of the electromagnetic spectrum. Class codes represent the following species. Ascophllum 

nodosum (Asco), mixed fucoids (Fucus spp.), Himanthalia elongata (Him), Laminaria digitata 

(Kelp), Pelvetia canaliculata (PelC), submerged macroalgae (Submerged) and unidentified green 

macroalgal species (Green). 
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3.3.2. Supervised classification results 

3.3.2.1. MLC image-derived results 

The results of the class separability test, for image-derived spectra, showed that all class 

pairs, apart from ‘Kelp’ and ‘Submerged’, had values greater than 1.9 indicating good class 

separation (Marҫal et al., 2005). ‘Kelp’ and ‘Submerged’ had a value of 1.78 (Tab. S3.2) but 

were retained as their poor spectral separability reflects their inherent spectral similarities, 

significantly, it could not be guaranteed that the ‘Submerged’ class was comprised of L. 

digitata. 

The MLC classifier, trained using image-derived spectra, revealed a dense covering of 

intertidal brown macroalgal species. The upper intertidal was dominated by a thin ribbon of 

P. canaliculata with the mid-intertidal dominated by either dense beds of A. nodosum or 

mixed assemblages of F. vesiculosus and F. serratus. The lower intertidal was characterised 

by the presence of H. elongata and partially emersed stands of L. digitata (Fig. 3.5). The 

‘Substratum’ class, whilst classified alongside macroalgal cover classes, has been excluded 

from the figures to improve the clarity and interpretability of the maps. As no thresholds 

were set, all pixels were classified, and all ‘blank’ pixels thus represent the ‘Substratum’ 

class. MLC resulted in an overall classification accuracy of 94.7 % and a Kappa Coefficient 

of 0.9290. The ‘Asco’ and ‘Fucus spp’ classes showed the highest producer/user accuracies 

but there was some misclassification between these two classes and also between the ‘Asco’ 

and ‘PelC’ classes, highlighting their similar spectral properties (Tab. 3.2 & 3.3). Aside 

from ‘Green’, which was not classified at all, ‘Kelp’ was the least accurately classified class, 

having the lowest producer/user accuracy, with significant misclassification occurring with 

‘Him’ and ‘Submerged’. The total area classified as A. nodosum by MLC was 4,447 m2 out 

of a total classified macroalgal area of ~13,114 m2 (Fig. 3.5).  
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Fig. 3.5. Maximum Likelihood Classification (MLC) result from the hyperspectral drone survey in 

Carraroe. Seven macroalgal cover classes are displayed over the drone RGB imagery, ‘Substratum’ 

was not included. Black lines mark the footprint of the hyperspectral data strips. The pier, used for 

deployment, is marked by a red line. Coordinates are in Irish Transverse Mercator (ITM). Class codes 

represent the following species. Ascophyllum nodosum (Asco), mixed fucoids (Fucus spp.), 

Himanthalia elongata (Him), Laminaria digitata (Kelp), Pelvetia canaliculata (PelC), submerged 

macroalgae (Submerged) and unidentified green macroalgal species (Green). 

Fucus 
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Tab. 3.2. Maximum Likelihood Classification (MLC) confusion matrix, calculated, using ENVI 5.4, 

by comparing pixels of known class locations to those predicted by the classification workflow, for 

each of the eight cover classes, results are recorded as percentage of pixels assigned, correctly or 

incorrectly, to each class. 

 

 

Tab. 3.3. Maximum Likelihood Classifier (MLC) User (probability of correct class assignment, 

calculated by dividing the number of correctly classified pixels by the total number of pixels in a 

class) and Producer (correctly classified reference pixels, calculated by dividing the number of 

correctly classified pixels by the total number of pixels that should be in a class) accuracies for each 

of the eight cover classes computed using ENVI 5.4. 

 

 

 

 

 

 

 

 

 

Class Fucus spp. Asco Him Kelp PelC Submerged Substratum Green Total 
Unclassified 0 0 0 0.01 0 0 0 0 0 
Fucus spp. 94.66 3.35 1.71 2.09 2.47 3.45 0.16 17.43 21.61 
Asco 2.33 94.54 0 0.13 5.1 0.38 0.01 0 20.21 
Him 0.98 0.01 87.62 10.16 0 1.26 0 11.53 7.19 
Kelp 0.29 0.02 6.72 61.53 0 4.17 0.04 21.72 2.32 
PelC 0.46 1.88 0.02 0 87.4 0.07 0.07 27.35 2.05 
Submerged 0.27 0.11 3.89 25.75 0 89.82 0.32 0.27 7.08 
Substratum 1 0.09 0.03 0.33 5.03 0.85 99.4 21.72 39.54 
Green 0 0 0 0 0 0 0 0 0 
Total 100 100 100 100 100 100 100 100 100 

 Class User Acc Prod Acc User Acc Prod Acc 
  (Percent) (Percent) (Pixels) (Pixels) 
Fucus spp. 94.38 94.66 247445/262179 247445/261392 
Asco 96.92 94.54 237681/245234 237681/251405 
Him 92.51 87.62 80697/87228 80697/92100 
Kelp 62.29 61.53 17542/28162 17542/28508 
PelC 74.02 87.4 18446/24919 18446/21106 
Submerged 84.35 89.82 72516/85968 72516/80737 
Substratum 99 99.4 475024/479807 475024/477888 
Green 0 0 0/0 0/373 
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3.3.2.2. SAM image-derived results 

The SAM classifier, trained using image-derived spectra, showed a similarly dense covering 

of intertidal brown macroalgal species as the MLC, dominated, in the mid-intertidal, by A. 

nodosum (‘Asco’) and mixed fucoids ‘(Fucus spp’). In contrast to MLC, both upper and 

lower intertidal macroalgal communities were poorly classified (Fig. 3.6). SAM produced a 

lower overall classification accuracy of 81.1 % and a Kappa Coefficient of 0.7552. The 

confusion matrix and user/producer accuracies are shown in Tab. 3.4 & 3.5. Both ‘Asco’ 

and ‘Fucus spp’ show the highest producer/user accuracies and, as with the MLC, there was 

some misclassification between them with 6.2 % of ‘Fucus spp’ pixels misclassified as 

‘Asco’ and only 2.76 % of ‘Asco’ pixels misclassified as ‘Fucus spp’. Aside from 

‘Substratum’ the remaining cover classes had low classification accuracies. A significant 

number of pixels were misclassified as ‘Green’, most notably along the margins of the data 

strips and in the immediate vicinity of the pier. A lot of this misclassification came from 17 

% of reference ‘Him’ pixels being incorrectly assigned as ‘Green’ and, as ‘Him’ was a much 

larger class; this significantly inflated the area estimations for ‘Green’ leading to a UA of 

almost zero. ‘PelC’ was relatively accurately defined using MLC, yet was poorly classified 

using SAM, with ~69 % of pixels classified as ‘PelC’ belonging to other classes and 49 % of 

pixels that should have been classified as ‘PelC’ being classified as other classes. A 

significant amount of this misclassification was from ‘Substratum’ pixels being incorrectly 

classified as ‘PelC’. As expected, there was significant misclassification between the ‘Kelp’ 

and ‘Submerged’ classes. The total area classified as A. nodosum by MLC was 4,120 m2 out 

of a total classified macroalgal area of ~15,213 m2 (Fig. 3.6). 
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Fig. 3.6. Spectral Angle Mapper (SAM) classification result, trained using image-derived spectra, 

from the hyperspectral drone survey in Carraroe. Seven macroalgal cover classes are displayed over 

the drone RGB imagery. The ‘Substratum’ class is represented by unclassified pixels. Black lines 

mark the footprint of the hyperspectral data strips. The pier, used for deployment, is marked by a red 

line. Coordinates are in Irish Transverse Mercator (ITM). Class codes represent the following species. 

Ascophyllum nodosum (Asco), mixed fucoids (Fucus spp), Himanthalia elongata (Him), Laminaria 

digitata (Kelp), Pelvetia canaliculata (PelC), submerged macroalgae (Submerged) and unidentified 

green macroalgal species (Green). 

 

 

Fucus 
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Class Fucus spp Asco Him Kelp Submerged Substratum PelC Green Total 

Unclassified 0 0 0 0.01 0 0 0 0 0 

Fucus spp 82.86 2.76 1.47 1.17 2 0.05 3.06 2.14 18.77 

Asco 6.2 86.98 0.45 0.52 0.56 0.01 5.6 0 19.54 

Him 3.51 5.6 70.83 28.71 1.89 0 22.43 1.61 8.48 

Kelp 0.25 0.05 6.57 22.68 19.32 3.61 1.14 0 3.82 

Submerged 0.13 0.02 2.01 41.51 72.41 7.99 2.65 0.54 9.17 

Substratum 0.47 0.03 0 0 0.69 85.36 4.23 0 33.84 

PelC 1.3 1.82 1.65 0.72 1.56 2.81 50.4 31.9 2.9 

Green 5.27 2.74 17.03 4.68 1.57 0.17 10.49 63.81 3.48 

Total 100 100 100 100 100 100 100 100 100 

 

Class User Acc Prod Acc User Acc Prod Acc 

  (Percent) (Percent) (Pixels) (Pixels) 

Fucus spp 95.12 82.86 216600/227715 216600/261392 

Asco 92.23 86.98 218673/237107 218673/251405 

Him 63.36 70.83 65230/102949 65230/92100 

Kelp 13.94 22.68 6466/46393 6466/28508 

Submerged 52.53 72.41 58460/111286 58460/80737 

Substratum 99.33 85.36 407909/410660 407909/477888 

PelC 30.27 50.4 10638/35148 10638/21106 

Green 0.56 63.81 238/42236 238/373 

Tab. 3.4. Spectral Angle Mapper (SAM) (image-derived) confusion matrix calculated, using ENVI 

5.4, by comparing pixels of known class locations to those predicted by the classification workflow, 

for each of the eight cover classes, results are recorded as percentage of pixels assigned, correctly or 

incorrectly, to each class. 

 

Tab. 3.5. Spectral Angle Mapper (SAM) (image-derived) User (probability of correct class 

assignment, calculated by dividing the number of correctly classified pixels by the total number of 

pixels in a class) and Producer (correctly classified reference pixels, calculated by dividing the 

number of correctly classified pixels by the total number of pixels that should be in a class) accuracies 

for each of the eight cover classes computed using ENVI 5.4. 
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3.3.2.2. SAM image-derived results 

SAM, trained using the in-situ spectral profiles, identified a similar mid-intertidal 

distribution of A. nodosum (Asco) and mixed fucoids (Fucus spp) as the previous two 

classification workflows. The upper and lower intertidal regions were very poorly classified 

using this method (Fig. 3.7). With an overall classification accuracy of 71.4 % and a kappa 

coefficient of 0.62, the lowest classification accuracies of the three methods were recorded. 

The confusion matrix and user/producer accuracies are shown in Tab. 3.6 & 3.7. The two 

dominant macroalgal cover classes, ‘Asco’ and ‘Fucus spp’ remained the two most 

accurately classified classes with approximately 13 % of reference ‘Asco’ pixels being 

misclassified as ‘Fucus spp’, but only 1.6 % of ‘Fucus spp’ pixels were misclassified as 

‘Asco’. Laminaria digitata (Kelp) would usually occupy the upper-subtidal zone but were 

classified across the entire intertidal, up to its upper limits. The ‘Kelp’ class had the lowest 

UA (6.5 %) and there are a significant number of pixels classified as being ‘Kelp’ that 

actually belonged to other classes, most notably of which being 27 % of reference 

‘Substratum’ pixels, vastly increasing the area covered by ‘Kelp’. A further source of 

classification error were from ~60 % of ‘Him’ reference pixels being misclassified as ‘PelC’. 

As with the previous classification workflows, this misclassification led to a significant 

inflation of the area occupied by ‘PelC’ which normally occupies a thin band in the upper 

intertidal zone. Instead, in this classification, ‘PelC’ was classified in the lower intertidal 

zone where it should not occur. The total area classified as A. nodosum by MLC was 2,114 

m2 out of a total classified macroalgal area of ~13,170 m2 (Fig. 3.7). 
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Fig. 3.7. Spectral Angle Mapper (SAM) classification result, trained using in-situ spectral library 

spectra, from the hyperspectral drone survey in Carraroe. Five macroalgal cover classes are displayed 

over the drone RGB imagery. The ‘Substratum’ class is represented by unclassified pixels. Black lines 

mark the footprint of the hyperspectral data strips. The pier, used for deployment, is marked by a red 

line. Coordinates are in Irish Transverse Mercator (ITM). Class codes represent the following species. 

Ascophyllum nodosum (Asco), mixed fucoids (Fucus spp), Himanthalia elongata (Him), Laminaria 

digitata (Kelp) and Pelvetia canaliculata (PelC). 

Fucus 
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Tab. 3.6. Spectral Angle Mapper (SAM) (in-situ) confusion matrix calculated, using ENVI 5.4, by 

comparing pixels of known class locations to those predicted by the classification workflow, for each 

of the six cover classes, results are recorded as percentage of pixels assigned, correctly or incorrectly, 

to each class. 

Class Fucus spp Asco Him Kelp PelC Substratum Total 

Unclassified 0 0 0 0.01 0 0 0 

Fucus spp 90.01 13.53 10.57 2.85 7.41 0.09 24.89 

Asco 1.63 76.37 0.02 0.15 1.3 0 17.36 

Him 0.31 1.35 15.85 7.06 0.1 0 1.84 

Kelp 1.47 1.34 12.87 38.33 30.45 27.6 14.86 

PelC 6.4 7.39 59.26 16.77 56.67 0.31 9.55 

Substratum 0.18 0.02 1.44 34.83 4.07 72 31.5 

Total 100 100 100 100 100 100 100 

 

Tab. 3.7. Spectral Angle Mapper (SAM) (in-situ) User (probability of correct class assignment, 

calculated by dividing the number of correctly classified pixels by the total number of pixels in a 

class) and Producer (correctly classified reference pixels, calculated by dividing the number of 

correctly classified pixels by the total number of pixels that should be in a class) accuracies for each 

of the eight cover classes computed using ENVI 5.4. 

Class User Acc Prod Acc User Acc Prod Acc 

  (Percent) (Percent) (Pixels) (Pixels) 

Fucus spp 83.48 90.01 235266/281811 235266/261392 

Asco 97.66 76.37 192001/196611 192001/251405 

Him 70.07 15.85 14595/20829 14595/92100 

Kelp 6.49 38.33 10928/168327 10928/28508 

PelC 11.06 56.67 11960/108110 11960/21106 

Substratum 96.46 72 344066/356706 344066/477888 
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3.4. Discussion 

Whilst there is a need for the development of faster and more efficient intertidal macroalgal 

monitoring methods, the spatial and spectral complexity of coastal environments can impede 

the application of remote sensing technologies for accurate baseline resource assessments. 

Species level identification is essential for the quantification of A. nodosum distribution and 

this can only be achieved using high spatial and spectral resolutions (Oppelt et al., 2012). 

This case study, using a UAV-mounted hyperspectral pushbroom sensor, represents the 

successful first attempt towards developing a methodology for the assessment of A. nodosum 

populations in Ireland and demonstrates its potential application for assessing a broader 

range of intertidal macroalgal species. 

The methods employed allowed the accurate spectral distinction of A. nodosum from other 

surrounding macroalgal species and non-vegetated surfaces. Of the three combinations of 

classification method and training data used, MLC (image-derived) was found to be the most 

accurate, followed by SAM (image-derived) and SAM (in-situ). The latter of the three 

seemingly heavily affected by the presence of noise in the hyperspectral imagery (Fig. 3.3b) 

and both SAM classification workflows are potentially unsuitable for distinguishing between 

numerous spectrally similar species (Shafri et al., 2007). MLC was also able to more 

accurately map other selected classes, making it well suited towards a wider range of 

intertidal mapping applications. The classification accuracy for SAM (in-situ) could be 

improved by using a full-frame hyperspectral sensor. This may provide better quality data 

than the current pushbroom sensor which was affected by the movement of the UAV 

(Ringaby et al., 2010). High-resolution RGB imagery has previously been used for cover 

class identification (Lechner et al., 2012; Duffy et al., 2018) and emerged as an effective 

tool for the collection of both training and ground-truth data. Species could be confidently 

identified owing to their distinctive morphologies and colouration, and this was further 

improved by having prior site knowledge and appropriate macroalgal identification skills.  

3.4.1. Discrimination of Ascophyllum nodosum 

MLC (image-derived) produced the highest classification accuracies for ‘Asco’ (UA = 96 %, 

PA = 94 %), SAM (image-derived) achieved reasonable levels of accuracy (UA = 92 %, PA 

= 86.9 %) whilst SAM (in-situ) achieved the lowest accuracies (UA = 97.6 %, PA = 76.4 

%). These levels of accuracy were somewhat surprising owing to the similar spectral 

properties between brown macroalgal species (Kutser et al., 2006b; Uhl et al., 2013). 

Visually, A. nodosum at Carraroe was easily distinguishable from all other classes and its 

propensity for forming homogenous stands has likely helped in distinguishing it. Both of the 
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classifiers trained using image-derived spectra produced similar area estimations for A. 

nodosum of ~ 4,300 m2 whilst SAM, trained using in-situ spectra, estimated a significantly 

lower area, suffering from high percentages of omission, in particular with mixed fucoids, 

subsequently lowering confidence in its accurate representation of A. nodosum area. Gaps 

between the hyperspectral data strips meant that the total area covered by A. nodosum at the 

site could not be established. 

The high classification accuracies observed for ‘Asco’ do not necessarily account for the 

spatial bias of error (Pontius & Millones, 2011). MLC showed a small amount of 

misclassification occurring between ‘Asco’ and ‘PelC’ which primarily occured towards the 

pier and along the margins of data strips. This spatial aspect to classification error is 

important to recognise when interpreting a finished map (Foody, 2002). In this case the 

misclassification of ‘Asco’ pixels as ‘PelC’ did not significantly affect the total area 

estimations for ‘Asco’, it did, however, inflate the classified ‘PelC’ extent, owing to the 

small area of this class to begin with. It is important to note that although a very small 

percentage of ‘Asco’ pixels were incorrectly misclassified as ‘PelC’, the fact that this was 

concentrated in one small area of the site highlights the importance of not solely relying on a 

single value, like kappa, when assessing accuracy. Ascophyllum nodosum close to the pier 

area appeared much yellower than in the rest of the site and visual analysis of endmember 

spectral profiles indicated that it was closer to P. canaliculata than lower-shore A. nodosum 

(Fig. S3.6). This could be as a result of increased emersion times or stressors associated with 

localised inputs of fresh water (Hurd et al., 2014) and may help to explain the observed 

misclassification. Factoring in intraspecific variation to survey design was noted by Clark et 

al. (2005) and could be accounted for by the creation of ‘subclasses’ representing observed 

spectral variations. Towards the pier, both SAM classifiers poorly predicted the distribution 

of A. nodosum. SAM (image-derived) misclassified A. nodosum as either P. canaliculata, 

green macroalgae or H. elongata, a species that isn’t found in the upper intertidal (Stengel et 

al., 1999). SAM (in-situ) misclassified much of the A. nodosum in the pier region as either L. 

digitata or P. canaliculata, the former of which, again would not be present in the upper 

intertidal. 

Field surveys confirmed the presence of mixed fucoid assemblages and these were 

responsible for the misclassification between ‘Asco’ and ‘Fucus spp’ seen in the three 

classification workflows. It is evident that this misclassification was spread across the site, 

rather than concentrated in one area, likely reflecting the heterogenous nature of these 

assemblages. Mixed fucoid assemblages were spatially and spectrally complex, challenging 

the discriminatory ability of both classifiers. These assemblages have previously proven 
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difficult to assess (Hennig et al., 2007) and whilst some authors have defined the species 

present within those assemblages, creating specific mixed classes (Oppelt et al., 2012), it 

was felt that this approach would be difficult to collect data for through visual analysis of the 

RGB imagery as species identification was difficult in mixed areas. There was little 

misclassification between ‘Asco’ and the remaining classes for MLC indicating that, whilst 

spectrally similar to ‘PelC’ (upper shore) and ‘Fucus spp’, ‘Asco’ was sufficiently distinct 

from other brown macroalgal species. Both SAM workflows followed this trend, with the 

exception of some notable misclassification of ‘Asco’ as ‘Him’ for the image-derived SAM. 

Laminaria digitata and F. serratus dominated communities were spectrally separable in 

Heligoland (Oppelt et al., 2012), supporting our findings and demonstrating that whilst 

difficult, spectral separation within (brown) macroalgal groups is possible. It is important to 

be critical of the final classification and avoid the temptation to rely solely on the Kappa 

coefficient as a measure for accuracy. Understanding the spatial aspect of error has allowed 

us to place a few caveats upon the Kappa score, helping to paint a better picture of overall 

classification accuracy and to understand areas within the site where estimates of A. 

nodosum distribution may be inaccurate. 

3.4.2. High resolution reference imagery 

The ability to use high-resolution RGB imagery to collect both training and ground-truth 

data is currently only possible because of the high spatial resolution afforded by UAVs. The 

time saved by utilising UAVs in surveys would otherwise be lost if detailed supporting field 

surveys were required and this would also be an obstacle to the scaling up of surveys. Gray 

et al. (2018) demonstrated that UAVs were able to collect data covering an entire site 

(4,325,000 m2) in the same time it took them to conduct transect surveys throughout a 

subsection (186,000 m2). Having a trained observer with strong macroalgal identification 

skills is vital for the accurate identification of cover classes in remote sensing (Lechner et 

al., 2012; Vahtmäe & Kutser, 2013) and, when combined with high spatial resolution, can be 

a reliable assessment method (Ventura et al., 2018). Central to the accurate analysis of RGB 

imagery is to heed the advice of Foody (2002) who cautioned against simply assuming the 

reference datasets are accurate. To this end, we sought to mitigate potential sources of error 

where possible. Confidence in the assignment of classes is required to prevent incorrect class 

assignment (Olofsson et al., 2014) and the slight misalignment between the hyperspectral 

and RGB layers meant that the collection of data using GPS would have been potentially 

problematic, with GPS error and fine spatial scales compounding this (Laliberte & Rango, 

2011). This further justifies our decision not to create a mixed species class (of A. nodosum 

and other fucoids) as we could not confidently identify whether a mixed assemblage was 
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indeed so and why we endeavoured not to create polygons at class boundaries where 

classification errors are common (Radoux & Bogaert, 2017). The visual analysis also 

permitted the acquisition of more data than could possibly have been achieved through the 

collection of GPS point data and helped to account for classes that were not observed or 

recorded during in-situ data collection. 

3.4.3. Spectral profile sampling 

Spectral libraries have been successfully used in many remote sensing studies (Kutser et al., 

2006a; Casal et al., 2013; Bareth et al., 2015; Dierssen et al., 2015) and have been identified 

as an efficient and accurate methodology for training supervised classification 

methodologies. The spectral profiles obtained in-situ corresponded to other macroalgal 

spectral measurements reported in the literature, with brown macroalgae displaying 

characteristic reflectance peaks around 580, 600 and 650 nm (Kutser et al., 2006b; Uhl et 

al., 2013; Kotta et al., 2014; Chao Rodríguez et al., 2017). Arroyo-Mora et al (2019) found 

good agreement between spectral library and image-derived spectra, of calibration panels, 

using a pushbroom sensor, showing that this technology can achieve accurate results. In our 

case, the noise present in the hyperspectral dataset, an effect of UAV platform instability on 

the pushbroom sensor (Saari et al., 2011; Jaud et al., 2018), limited the effectiveness of the 

in-situ spectral sampling approach. One approach to mitigate this noise may have been to 

better determine an optimal flight speed prior to surveying. We flew at ~15 km/h, yet 

Arroyo-Mora et al (2019), using a µCASI pushbroom device, determined 9.7 km/h to be the 

optimal speed for their system. This speed ensured minimal roll and pitch whilst still 

allowing the chosen study are to be surveyed. Optimum flight parameters may vary 

depending on the sensor make and model along with prevailing wind conditions and should 

be factored into survey design. Integrating an inertial measurement unit (IMU) and GPS 

with the hyperspectral sensor has also been shown to minimise noise present in the imagery 

and improve its spatial accuracy (Arroyo-Mora et al., 2019), avoiding the need for manual 

georectification. However, these can be expensive, and many integrated devices do not log 

high accuracy GPS/IMU data (Aasen et al., 2018). 

3.4.4. Implications for resource management and conservation 

The ability to accurately assess a resource is crucial for establishing an environmental 

baseline with which to inform future management decisions (Connell et al., 2008). Maps of 

coastal environments are essential for management planning (Mumby et al., 1999) and need 

to balance the needs of humanity whilst preventing the degradation of ecosystem function, 

goods and services (Crain et al., 2009). We have demonstrated that accurate area estimations 
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of A. nodosum can be achieved which could lead to the development of more efficient and 

cost-effective resource assessment methodologies. Our results further highlight that other 

canopy-forming species can be accurately mapped (i.e. H. elongata and P. canaliculata), 

outlining the potential application of this technology for mapping a wider range of species 

than present in this study. Such data can potentially be used by various interested 

stakeholders, allowing for informed decision making on how best to sustainably manage 

intertidal resources.  

The development of full-frame hyperspectral sensors will improve the efficiency and 

accuracy of UAV-based data collection (i.e. Senop HSC-2 https://senop.fi/en/optronics-

hyperspectral). Georeferencing is simpler as standard photogrammetry methods can be used 

(Honkavaara et al., 2016; Aasen et al., 2018) and noise is easier to correct for than with 

pushbroom sensors (Hagen & Kudenov, 2013). With fixed-wing UAVs now achieving flight 

times up to 180 min (i.e. C-Astral Bramor http://www.c-astral.com/en/unmanned-systems) 

they provide the opportunity to conduct large-scale, low-cost surveys of intertidal 

communities but data storage limitations may still constrain flight times (Arroyo-Mora et al., 

2019). Also, in many countries, regulations restrict the height and range of UAVs (Baena et 

al., 2017), limiting their potential. The development and granting of beyond visual line of 

site (BVLOS) permissions to companies and individuals who meet specified national 

aviation authority guidelines will allow the scaling up of UAV surveys to the point where 

they may offer a more cost-effective mapping alternative to aircraft. 

3.5. Conclusions 

With the likely increase in anthropogenic pressures upon intertidal communities there is a 

need for an assessment methodology to complement field-based surveys, one that can cover 

large areas accurately. Despite a growing trend towards using UAVs in nearshore/intertidal 

environments (Valle et al., 2015; Murfitt et al., 2017; Duffy et al., 2018; Ventura et al., 

2018) there is a conspicuous absence of recent studies using hyperspectral remote sensors. 

This study has demonstrated how these two technologies can be utilised for intertidal 

macroalgal resource assessment through the accurate quantification of A. nodosum 

distribution and extent. High resolution RGB imagery has facilitated the rapid and accurate 

collection of both training and reference data and this method is likely to prove valuable if 

remote sensing surveys were to be scaled up. The three classification workflows used in this 

study each achieved good mapping accuracies for A. nodosum. Yet, MLC, trained using 

image-derived spectra, was the most accurate at classifying A. nodosum, but also other 

canopy-forming intertidal species, potentially making it more suitable for a broader range of 

https://senop.fi/en/optronics-hyperspectral
https://senop.fi/en/optronics-hyperspectral
http://www.c-astral.com/en/unmanned-systems
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intertidal mapping objectives. Although we caution that these results should be considered 

with respect to the season (late autumn) and distinct region in which they occurred, the 

technology used has produced accurate classification results in a spectrally complex 

environment. Further work is still needed to explore the effects of variations in location and 

season on macroalgal spectral properties and on the ability of UAV-mounted hyperspectral 

remote sensors to accurately discriminate between canopy-forming intertidal macroalgae.  
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Abstract 

Intertidal macroalgal communities are economically and ecologically important and, with a 

likely increase in anthropogenic pressures, there is growing need to evaluate and monitor 

these diverse and complex environments. Efforts to conserve and sustainably manage need 

to be underpinned by accurate, cost-effective and efficient data collection methods. The high 

spatial and temporal resolution of unoccupied aerial vehicles (UAVs), compared to satellites 

and aircraft, combined with the development of lightweight sensors, provides researchers 

with a valuable set of tools to conduct research on intertidal macroalgal communities. We 

compared the ability of multispectral sensors, mounted on a satellite, aircraft and UAV, to 

identify and accurately map the intertidal brown fucoid Ascophyllum nodosum (Fucales, 

Ochrophyta) at a single site with a relatively low species diversity of canopy-forming 

macroalgae. Visual analysis confirmed that the spatial resolution of satellite imagery 

(Sentinel-2) was too coarse to map intertidal macroalgae as the resolution could not capture 

the fine spatial patterns of the macroalgal community. Concurrent high-resolution RGB 

imagery was taken during the aircraft and UAV surveys and this was used to collect training 

and reference data through the visual identification and digital delineation of species and 

classes. Classes were determined based on the level of taxonomic detail that could be 

observed, with higher levels of taxonomic detail observed in the UAV over the aircraft 

imagery and the data from both was used to train a Maximum Likelihood Classifier (MLC). 

UAV imagery was able to more accurately classify a distinct A. nodosum class, along with 

other macroalgal and substratum classes (Overall Accuracy (OA) 92 %), than aerial imagery, 

which could only identify a lower taxonomic resolution mixed A. nodosum and fucoid class, 

achieving a lower OA (78.9 %). This study has demonstrated that in a coastal site with 

relatively low macroalgal species diversity, and despite the spectral similarity of the brown 

species present, UAV-mounted multispectral sensors provided the most accurate tool for 

focused assessments of individual canopy-forming species. 



Chapter 4: Multispectral mapping of Ascophyllum nodosum 

98 
 
 

4.1. Introduction 

Temperate rocky shorelines are typically dominated by dense communities of macroalgal 

(seaweed) primary producers, providing habitat for a diverse range of other biota (Bruno & 

Bertness, 2000; Vadas et al., 2004; Davies et al., 2007). With increasing anthropogenic 

pressures on intertidal communities (Mineur et al., 2015), an understanding of their 

distribution and the development of baseline data collection methods is important for their 

effective conservation and management (Dekker et al., 2003). Traditional field surveys, 

whilst collecting highly detailed and accurate information, are time consuming and restricted 

in scale (Kerr & Ostrovsky, 2003; Hennig et al., 2007; Oppelt et al., 2012). On the other 

hand, remote sensing can capture larger areas, often allowing for standardised, repeat 

surveys of the same site (Casal et al., 2012; Thenkabail, 2015), and potentially offering 

alternative survey methodologies for intertidal data collection. 

Traditionally, aircraft have been the dominant remote sensing platform for macroalgal 

mapping studies (Bajjouk et al., 1996; Dekker et al., 2003; Garono et al., 2004; Stekoll et 

al., 2006; Casal et al., 2012; Oppelt et al., 2012), primarily owing to their greater operational 

flexibility and spatial resolution when compared to satellites (Brodie et al., 2018). Satellite-

based technologies have also been useful for assessing the extent of broad-scale canopy-

forming species (Cavanaugh et al., 2010; Casal et al., 2011), but for intertidal mapping, the 

acquisition of satellite images that coincide with suitable tidal and atmospheric conditions is 

challenging (Bell et al., 2015). The relatively coarse spatial resolution of aircraft has made 

identification to species level difficult (Oppelt et al., 2012; Cruzan et al., 2016), although 

success has been had when discriminating between spectrally distinct macroalgal groups 

(Hennig et al., 2007; Casal et al., 2012) and when mapping homogenous cover species 

(Pe’eri et al., 2008; Dierssen et al., 2015). 

The recent and rapid proliferation of affordable unmanned aerial vehicles (UAVs) (Colefax 

et al., 2018) has created a promising remote sensing alternative to aircraft and satellites. 

UAVs can capture the highest spatial resolution imagery and have the greatest levels of 

operational flexibility, making them well-suited to operating in dynamic environments 

(Jensen et al., 2011), including the intertidal zone.  They are currently the most cost-

effective solution over small areas (Matese et al., 2015), with continued technological 

development and improvements in battery life and payload capacity (Colefax et al., 2018) 

likely to increase their application for larger areas, for example, some fixed-wing models 

(Quantum Tron F90+ https://www.quantum-systems.com/project/tron-f90/) can cover up to 

7500 ha (at 1000 m flight altitude). UAVs have been successfully used in a wide range of 

environments including riparian wetlands (Jensen et al., 2011), intertidal seagrass meadows 

https://www.quantum-systems.com/project/tron-f90/
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(Duffy et al., 2017), intertidal reefs (Murfitt et al., 2017), coastal habitats (Ventura et al., 

2018) and wetlands (Doughty and Cavanaugh, 2019). There are now a range of lightweight 

sensors that can be UAV-mounted (Colomina and Molina, 2014), further increasing their 

potential applications.  

Intertidal macroalgal communities can be spatially and spectrally complex, with species 

occurring in mixtures over fine scales, requiring high spatial and spectral resolutions to 

accurately identify species present. Whilst hyperspectral sensors have both high spatial and 

spectral resolutions, they are currently prohibitively expensive (Manfreda et al., 2018), 

which can act as a barrier to research groups and organizations. It is therefore important to 

develop remote sensing methodologies that cover different technologies and budgets. 

Multispectral sensors typically contain three-or-more spectral bands (Burns and Berns, 

1996) with many current models ranging from five to 12 (Adão et al., 2017). This lower 

spectral resolution makes them less suited to spectrally complex environments, but they are 

significantly cheaper and less complex to operate, process and analyse than hyperspectral 

sensors (Marshall and Thenkabail, 2015). To date, for UAVs, multispectral sensors have 

primarily been used for precision agriculture, where different band combinations allow for 

the identification of weeds (Barrero et al., 2018), measuring grass crop quality (Askari et al., 

2019) and the monitoring of vegetation health  is improving yields and harvest efficiency 

(Candiago et al., 2015; Kazantsev et al., 2018). Decreasing costs are now seeing them 

applied to broader environmental questions, with recent uses including the mapping of 

malaria vector larval habitat (Carrasco-Escobar et al., 2019) and for use in forestry 

management (Dash et al., 2018). Two very recent studies successfully applied UAV-

mounted multispectral remote sensing to macroalgal habitats. Taddia et al. (2019) 

characterised the presence of submerged green macroalgae but did not identify the species 

and Tait et al. (2019) managed to discriminate between spectrally distinct intertidal species.    

Here, the spectral discriminatory ability of multispectral sensors, mounted on a satellite, 

airplane and UAV, to accurately map the intertidal fucoid Ascophyllum nodosum 

(Ochropyta, Phaeophyceae), a commercially and ecologically important brown macroalgal 

species common on moderately exposed to sheltered rocky coasts (Stengel and Dring, 1997) 

was evaluated. An accurate, affordable methodology was developed to support resource 

management decision making, addressing the following specific challenges: 

i. How accurately can multispectral sensors map the distribution of A. nodosum within 

a spatially and spectrally complex intertidal environment? 

ii. Which platform(s) achieve the most accurate mapping of A. nodosum? 
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iii. Can high-resolution RGB imagery be used for the collection of training and 

validation spectral information? 

We provide a novel methodology, presenting details of data collection, processing and 

analysis workflows used, and compare the ability of the three remote sensing platforms to 

accurately quantify A. nodosum distribution. 

4.2. Methods 

4.2.1. Study site 

This study was carried out near Béal an Daingin (53°19'19.7"N, 9°37'16.8"W) which lies 

within the inner reaches of Kilkieran Bay in Co. Galway, Ireland (Fig. 4.1). The bay itself is 

characterised by a range of habitats including, mudflats, coastal lagoons, shallow inlets and 

bays, reefs, saltmarshes and machair (NPWS, 2014). The primary underlying bedrock is 

granite (Könnecker & Keegan, 1983) and the shoreline is dominated by rocky substrate 

giving way to muddy sediment in shallow waters (Sides et al., 1994). The site was 

characterised by a relatively narrow intertidal zone which drops abruptly into muddy 

sediments and abuts onto steep granite cliffs and was chosen due to the high abundance of A. 

nodosum and the relatively low species diversity of canopy-forming macroalgae. Vertical 

zonation is, in-part, controlled by the gentle sloping nature of the intertidal zone, Pelvetia 

canaliculata and Fucus spiralis dominate the upper littoral, followed by pure or mixed beds 

of A. nodosum and F. vesiculosus and finally, F. serratus and patchy Himanthalia elongata 

(all Phaeophyceae). There are areas dominated by boulders in the south of the site that 

support dense, homogeneous patches of A. nodosum. Access to the site was provided by a 

narrow track.  
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Fig. 4.1. Location of the study site at Béal an Daingin in relation to Kilkieran Bay and Ireland. The 

dotted blue line marks the flight path of the aerial survey. Coordinates are in Irish Transverse 

Mercator (ITM). 

 

4.2.2. Multispectral acquisition  

We sought to collect remote sensing data from the same time of year (June/July), 

endeavouring to ensure that the three datasets covered the same site (Fig. 4.2). The datasets 

were collected over a three-year period, from 2016 to 2018. 

4.2.2.1. Satellite imagery  

The Sentinel-2 satellite mission comprises two polar-orbiting satellites, each mounted with a 

high-resolution Multispectral Instrument (MSI). Each MSI can capture 13 bands over a 

wavelength range of 440 to 2200 nm. Four bands had a spatial resolution of 10 m, six of 20 

m and three of 60 m (Clevers and Gitelson, 2013). Bandwidths range from 15 – 180 nm and 

are listed in Tab. S4.1. A cloud-free Sentinel-2 multispectral image taken on June 16th, 2018 

at 11:43 GMT was acquired over the Kilkieran Bay area (Fig. 4.2). The timestamp shows 

that the image was taken ~1 ½ hours before low tide (0.7 m) which was at 13:49 GMT, 

indicating a tide height of approximately 1 m. 
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4.2.2.2. Aerial imagery 

An aerial survey was conducted by AirSurvey in July 2016 during clear weather conditions 

to coincide with low tide at 12:00 GMT (0.8 m) and the survey was planned so that the plane 

was over Kilkieran Bay approximately 30 min before this time. 

A Cessna-172 (Cessna, Wichita, USA) mounted with an AIRINOV AgroSensor (Parrot SA, 

Paris, France) was used to collect multispectral data for the intertidal zone in Kilkieran Bay. 

The sensor, operating as a global shutter, contained four bands; green (550 nm), red (660 

nm), red-edge (735 nm) and near-infrared (NIR (790 nm)). The green, red and NIR bands 

have a bandwidth of 20 nm and the red-edge is narrower at 10 nm. There was no integrated 

light sensor (ILS) so calibration targets were recorded before take-off. However, 

atmospheric conditions were likely different over the study area than at the airfield (~135 km 

away) meaning radiometric calibration may not be accurate for localized atmospheric 

conditions. The flight lasted approximately 90 min (not including transit) and, at an average 

altitude of 600 m, providing a ground sampling distance (GSD) of 60 cm/pixel, was tasked 

with covering as much of the intertidal zone in Kilkieran Bay as possible. A Nikon D800E 

(Nikon, Tokyo, Japan) camera was mounted on the plane to collect high resolution RGB 

imagery (6 cm/pixel). No GPS data were collected for the multispectral imagery and only 

photo centre coordinates were available for the RGB (which were not stored in the image tile 

metadata). The scale of the aircraft survey meant that it was not practical to deploy ground 

control points (GCPs).  

4.2.2.3. UAV imagery 

A UAV survey was conducted in July 2017 by GeoAeroSpace. Weather conditions were 

moderately calm and there was significant passing cloud cover. The survey was planned to 

coincide with the low tide at 12:45 GMT (1 m). 

A DJI Inspire V1 (DJI, Shenzhen, China) was used to conduct a multispectral and RGB 

survey and had a maximum flight time of ~18 min depending on wind speed. RGB imagery 

was captured using the inbuilt 12 MP X3 camera and a Parrot Sequoia (Parrot SA, Paris, 

France) sensor was used to collect multispectral data. This four-band sensor records in the 

green (530 nm), red (660 nm), red-edge (735 nm) and near-infrared (NIR) (790 nm) with a 

20 nm band width. The Parrot Sequoia operated a global shutter for the multispectral bands 

allowing the entire scene to be captured simultaneously. There was a separate four-band 

integrated light sensor (ILS) with an inbuilt GPS sensor. AIRINOV calibration targets were 

used to calibrate the sensor pre-flight. Map Pilot (v.2.7.0) (Drones Made Easy, San Diego, 

USA) was used to plan the flight. The sensor was not connected to the controller and was set 



Chapter 4: Multispectral mapping of Ascophyllum nodosum 

103 
 
 

to take an image every 2 s based on an average flight speed of 3 m/s. The UAV flew at an 

altitude of 50 m, for ~12 min, achieving a GSD of 2.2 cm/pixel (RGB) and ~5 cm/pixel 

(Multispectral) (Fig. 4.2) and covered a total area of 2.09 ha. Image overlap was set at 70 % 

for the RGB and 65 % for the multispectral (side and frontal). 

Nine ground control points (GCPs) were deployed to accurately geo-reference the data. Each 

GCP consisted of a 50 cm x 50 cm black board with a white cross and a centre point easily 

visible from the air, the coordinates of the centre point were recorded using a Trimble R8 

post processing kinematic (PPK) global navigation satellite system (GNSS) unit (Trimble, 

Sunnyvale, USA). GCPs were spaced evenly throughout the site with one in each corner of 

the survey area and the others spaced to reflect topographical (i.e. vertical) variation. GCPs 

were post-processed using Trimble Business Centre (v. 5.00, Trimble, Sunnyvale, USA). 
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Fig. 4.2. Comparison of the multispectral ground sampling distance (GSD) from each of the 

three platforms. UAV = 5 cm/pixel (a), aircraft = 60 cm/pixel (b) and Satellite = 10 m/pixel 

(c). Layers were clipped to the extent of the UAV imagery. 
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4.2.3. Image processing 

4.2.3.1. Aerial image processing 

Aerial RGB imagery were processed using Microsoft Image Composite Editor (ICE) 

(Microsoft, Redmond, USA) and ArcGIS (v.10.3.1) (ESRI, Redlands, USA). The lack of 

associated GPS data required a more ‘manual’ approach to data processing. Suitable RGB 

tiles were mosaicked together in ICE and then manually georeferenced to an ESRI World 

Imagery base map in ArcGIS (ESRI, Redlands, USA) before being re-projected into the Irish 

Transverse Mercator (ITM) projection. Key identifying features, of fixed position, such as 

wall corners and distinctive rocks were used to improve accuracy. A single multispectral tile 

provided sufficient coverage of Béal an Daingin. After initially being cropped to remove 

noise, bands were aligned using the Auto-Georeference tool (ArcGIS Pro) and then stacked 

using the Composite Bands tool. The final composite image was then manually 

georeferenced to the RGB extent and projection. 

4.2.3.2. UAV image processing 

UAV RGB and multispectral data were processed using Pix4D Mapper (Pix4D, Lausanne, 

Switzerland), GCPs were imported in primarily to avoid layer co-registration errors 

(Bentoutou et al., 2005) and the calibration targets were imported to calculate reflectance 

through the empirical line approach (Smith and Milton, 1999). To focus solely on intertidal 

spectral signatures, the land and water were masked out. The land mask was manually 

created to remove any terrestrial features and the water mask using the Normalized 

Difference Water Index (NDWI), which enhances water features (Xu, 2006) and, using the 

appropriate threshold (> - 0.2), removed most of the water. These were then used to crop the 

aerial multispectral to the same extent. NDWI is expressed as follows (McFeeters, 1996): 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 

The satellite imagery was already georeferenced and owing to the coarse pixel size no 

additional processing steps were undertaken for the satellite imagery aside from cropping it 

to the extent of the aerial and UAV layers. 

4.2.4. Multispectral classification 

4.2.4.1. Image-derived training spectra 

For the aerial and UAV data, image-derived endmember training spectra were identified 

using the RGB imagery, as a guiding dataset, with ENVI 5.4 (Harris Geospatial Solutions, 
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Boulder, USA). The usefulness of this approach has been noted by van Iersel et al. (2018) 

and involves the visual identification of target features (i.e. macroalgal species), using RGB 

imagery, and then the creation of training polygons around them prior to their spectral 

information being extracted from the aligned multispectral imagery. Training polygons were 

created, using the Region of Interest (ROI) tool, for areas where individual classes were 

easily observable, and this was easier in the UAV compared to the aerial imagery. The 

number of training areas per class was dependent on the observable area of that class and the 

area of each polygon depended on the extent of homogenous class cover. Larger, more 

homogenous cover classes required larger, more numerous training polygons. Species 

present at site and the class codes used to represent them are highlighted in Tab. 4.1. 

Ascophyllum nodosum was easily identifiable in the UAV imagery owing to its distinctive 

bright coloration and morphology (Fig. 4.3). Where A. nodosum was a distinct class for the 

UAV data, for the aerial data it was not possible to distinguish homogenous A. nodosum 

stands from those mixed with other fucoids so a combined class was created (Fig. 4.4). For 

both UAV-derived and aerial datasets, F. vesiculosus, F. serratus and F. spiralis were 

combined into a single category (‘Fucus spp’). The shrubby nature of the three species leads 

to a mottled, darker appearance and it was difficult to confidently discern between them (Fig 

4.3 and 4.4). Pelvetia canaliculata was also incorporated into this class as it occurred 

infrequently in small patches making it very difficult to observe in the RGB imagery and its 

inclusion as a separate class could have increased classification error owing to the spectral 

similarity between brown macroalgal species (Kotta et al., 2014). Macroalgae wrack 

(decaying seaweed) was observable in both sets of imagery, but the coarse resolution of the 

aerial imagery made it difficult to create accurate training area and, when its inclusion was 

tested, wrack was extensively over classified (Fig. S4.1). Small patches of unidentified 

green macroalgal (‘Green’) species were present in both datasets yet, again the coarse 

resolution of the aerial imagery made it difficult to accurately create training polygons. 

‘Green’ was over-classified when included in the initial UAV imagery classification 

workflow (Fig. S4.2), and it was decided to exclude it from the final output. Red 

macroalgae, although present, were also not included as they were almost exclusively sub-

canopy and remote sensing would not have been able to accurately determine their true 

extent. The spectral properties of rock, mixed sediment and sand are relatively similar to one 

another, and sufficiently distinct from macroalgae, that they are combined into their own 

class.  

The spectral separability of endmember classes was determined prior to running a 

supervised classification algorithm. The mathematical separability of the classes is 

performed to assess whether sufficient and representative training data have been selected 
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(Richards and Jia., 2006). Training data were checked for class separability using the 

Jeffries-Matusita Distance (Jacobsen et al., 1999). The values of the resulting output 

between each pair of classes range from 0 to 2 with the latter indicating perfect separability 

between them (Richards and Jia, 2006). Good class separability would indicate that 

sufficient training areas had been selected, whereas lower values would indicate either the 

need for more training areas or that two classes were inherently similar in their spectral 

properties. This could then indicate that the two classes could potentially be combined 

(Petropoulos et al., 2010). Despite excluding ‘Green’ from the final classification, it was 

included in the spectral separability workflow (UAV imagery) to better understand its poor 

classification performance. 
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Tab. 4.1. Species and features present at site and the class codes used to represent each for the UAV and aerial imagery. Ascophyllum nodosum was identified as its own class 

in the UAV imagery (Asco) but only an A. nodosum dominated class (Asco_Fucus spp.) was identified in the aerial imagery along with a mixed fucoid class (Fucus spp) in 

which A. nodosum was not present. Himanthalia elongata was present but not assigned a class owing to small coverage and Ulva spp (Green) were not classified in the aerial 

imagery. 

 

 

Species UAV Imagery Code Aerial Imagery Code Description 

Ascophyllum nodosum Asco Asco_Fucus spp. The Asco class is a pure A. nodosum class and Asco_Fucus spp. represents a mixed 

fucoid class dominated by A. nodosum. 

Fucus vesiculosus Fucus spp. Fucus spp. / Asco_Fucus 

spp. 

Fucus spp is a mixed fucoid class and Asco_Fucus spp. represents a mixed fucoid 

class dominated by A. nodosum.  

Fucus spiralis Fucus spp. Fucus spp. / Asco_Fucus 

spp. 

Fucus spp is a mixed fucoid class and Asco_Fucus spp. represents a mixed fucoid 

class dominated by A. nodosum. 

Fucus serratus Fucus spp. Fucus spp. / Asco_Fucus 

spp. 

Fucus spp is a mixed fucoid class and Asco_Fucus spp. represents a mixed fucoid 

class dominated by A. nodosum. 

Pelvetia canaliculata Fucus spp. Fucus spp. / Asco_Fucus 

spp. 

Fucus spp is a mixed fucoid class and Asco_Fucus spp. represents a mixed fucoid 

class dominated by A. nodosum. 

Ulva spp. Green - Green is a class comprised of unidentified green macroalgal species 

Himanthalia elongata - - - 

Decaying macroalgae Wrack Wrack Wrack is a mixture of unidentified decaying macroalgal species in varying stages of 

decomposition 

Substratum Substratum Substratum Substratum represents a mixture of non-vegetated surfaces such as rock and sediment 
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Fig. 4.3. Classification classes identifiable using high-resolution UAV RGB imagery (highlighted in 

red). Ascophyllum nodosum (a), Fucus spp. (b), decaying macroalgae (c), substratum (d) and 

unidentified green species (e). The distinctive morphological properties of each species were used to 

identify each of them. 
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4.2.4.2. Supervised classification workflow 

For both drone and aerial multispectral datasets, the supervised classification method 

Maximum Likelihood Classification (MLC) was used in ENVI 5.4. MLC is a popular 

classifier (Paola & Schowengerdt, 1995) calculating the probability that an individual pixel 

belongs to a specific class and is based on an estimated probability density function derived 

from the defined reference classes (Foody et al., 1992). The MLC classifier assumes a 

Gaussian distribution for each of the inputted training classes (Jia & Richards, 1994) and can 

be expressed by the following equation: 

gi (x) = ln p(ωi ) − 
1

2
 ln |∑i|−  

1

2
 (x −mi )t ∑

−1
𝑖

 (x −mi )  

Fig. 4.4. Classification classes identifiable using aerial RGB imagery (highlighted in red). Mixed 

Ascophyllum nodosum and Fucus spp. (a), Fucus spp. (b), wrack (c) and substratum (d). Variations in 

canopy pattern and colour were used to identify each of them. 
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Where i is class, x equals n-dimensional data, p(ωi) is the probability that class ωi occurs in 

the image and is assumed the same for all classes, |∑i| is the determinant of the covariance 

matrix of the data in class ωi, ∑
−𝟏

𝒊
 is the inverse matrix and mi is the mean vector. 

MLC was used to classify the training area spectra. No thresholds were selected so that all 

pixels would be classified, and we used the spectral separability results to determine whether 

sufficient training areas had been selected as to be representative of features present at the 

site (Richards & Jia, 2006).  

4.2.4.3. Accuracy assessment 

Ground-truth, or reference, data was derived from the high-resolution RGB imagery utilising 

the same rationale as for the training data collection. The accuracy of this approach was 

highlighted by Lechner et al. (2012) and it was also found to be more reliable and accurate 

than GPS-based validation methods (Laliberte & Rango, 2011). Reference data collected 

from in-situ field observations are considered the most accurate, however this can be time 

consuming meaning that data derived from imagery are more common (McDermid et al., 

2005; McRoberts et al., 2018). Polygons were selected for each of the four (UAV) and three 

(aerial) classes and this was carried out independently of those used to create the training 

areas using ENVI 5.4 (Harris Geospatial Solutions, Boulder, USA). Polygons were created 

so that they covered as much of each class as possible and only in areas where homogeneous 

class coverage could be confidently identified. The accuracy assessment tool was used to 

create the confusion matrix and derive quantitative measures of accuracy (kappa, 

user/producer accuracy (UA/PA), errors of commission/omission). 

4.3. Results  

4.3.1. UAV classification results 

Classification results for the UAV imagery showed the mid-intertidal zone to be dominated 

by dense beds of A. nodosum with narrow bands of mixed fucoid assemblages dominating in 

the upper (F. vesiculosus, F. spiralis and P. canaliculata) and lower (F. vesiculosus and F. 

serratus) zones. Decaying seaweed was present in patches in the extreme upper intertidal 

zone and this was most notable in the northeast corner of the site (Fig. 4.5). 

Spectral separability results showed good separation between all classes with all pairs, apart 

from ‘Asco’ and ‘Fucus spp.’ (1.7) and ‘Green’ and Fucus spp.’ (1.86), having values 

greater than 1.9, indicating an almost perfect class separation (Richards & Jia, 2006). The 

slightly lower value for ‘Asco’ and ‘Fucus spp.’ separability highlighted their spectral 
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similarities. MLC resulted in an overall classification accuracy of 92 % and a Kappa 

Coefficient of 0.8733. All four classes showed high user/producer accuracies although, 

predictably, there is a small amount of misclassification between ‘Fucus spp.’ and ‘Asco’, 

and also of ‘Wrack’ as ‘Fucus spp.’ (Tabs 4.2 & 4.3). The misclassification of ‘Asco’ as 

‘Fucus spp.’ was spread throughout the site in small patches whilst the opposite occurs 

almost entirely in one area (Fig. 4.6). A small area of grass not removed by the land mask 

was classified as ‘Fucus spp.’ in the northern section of the site. ‘Asco’ covered a total area 

of ~4,127 m2, out of a total classified area of ~12,400 m2. 
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Fig. 4.5. Maximum Likelihood Classification (MLC) result from the multispectral UAV survey. Three 

macroalgal cover classes are displayed over Bing satellite imagery. ‘Substratum’ was not included. 

Class codes represent the following species: 'Asco', Ascophyllum nodosum; 'Fucus spp.', mixed 

fucoids; 'Wrack', decaying macroalgae. Coordinates are in Irish Transverse Mercator (ITM). 
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Tab. 4.2. UAV multispectral Maximum Likelihood Classification (MLC) confusion matrix, 

calculated, using ENVI 5.4, by comparing pixels of known class locations to those predicted by the 

classification workflow, for each of the four cover classes, results are recorded as percentage of pixels 

assigned, correctly or incorrectly, to each class. 

Class ‘Substratum’ ‘Wrack’ ‘Fucus spp’ ‘Asco’ Total 

‘Unclassified’ 6.54 0.65 0.03 0.00 1.16 

‘Substratum’ 91.96 2.25 0.82 0.01 16.22 

‘Wrack’ 0.08 91.48 0.05 0.00 2.48 

‘Fucus spp.’ 1.33 5.34 93.63 8.83 31.52 

‘Asco’ 0.08 0.00 5.47 91.16 48.63 

Total 100 100 100 100 100 

 

Tab. 4.3. UAV multispectral Maximum Likelihood Classifier (MLC) User (probability of correct 

class assignment, calculated by dividing the number of correctly classified pixels by the total number 

of pixels in a class) and Producer (correctly classified reference pixels, calculated by dividing the 

number of correctly classified pixels by the total number of pixels that should be in a class) accuracies 

for each of the four cover classes computed using ENVI 5.4.  

Class Prod Acc 

(Percent) 

User Acc 

(Percent) 

Prod Acc 

(Pixels) 

User Acc 

(Pixels) 

‘Substratum’ 91.96 98.12 202760/220482 202760/206655   

‘Wrack’ 91.48 98.86 31193/34100 31193/31552 

‘Fucus spp.’ 93.63 84.35 338811/361862 338811/401660 

‘Asco’ 91.16 96.78 599732/657877 599732/619692 
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Fig. 4.6. Instances of misclassification between ‘Asco’ and ‘Fucus spp’ displayed above each classes 

respective ground-truth (GT) polygons (a). Inset are notable misclassified areas, where, in green, 

‘Asco’ has been misclassified as ‘Fucus spp.’ (b) and where, in red, the opposite occurs (c). 

Coordinates are in Irish Transverse Mercator (ITM). 



Chapter 4: Multispectral mapping of Ascophyllum nodosum 

116 
 
 

4.3.2. Aerial classification results 

Aerial multispectral classification results revealed a dense covering of an A. nodosum 

dominated mixed fucoid assemblage (A. nodosum, F. vesiculosus and F. serratus) in the 

mid-intertidal zone. Mixed fucoids dominate the upper (F. vesiculosus, F. spiralis and P. 

canaliculata) and mid-to-lower (F. serratus and F. vesiculosus, respectively) intertidal zones 

(Fig. 4.7). 

There was poor spectral separability between ‘Asco_Fucus spp.’ and ‘Fucus spp.’ (1.11) but 

both classes achieved good separation from ‘Substratum’ (>1.9). These two classes were 

retained and not combined as their poor spectral separability reflected their inherent spectral 

similarity. For the aerial imagery there was an overall classification accuracy of 78.9 % and 

a Kappa Coefficient of 0.6373. ‘Substratum’ had a high user/producer accuracy but there 

was significant misclassification of ‘Fucus spp.’ as ‘Asco_Fucus spp.’ resulting in a low 

producer/user accuracy for the former and a low user accuracy for the latter (Tabs 4.4 & 

4.5). This misclassification was spread throughout the entire ‘Fucus spp.’ dominated zone 

(Fig. 4.8). ‘Asco_Fucus spp.’ covered a total area of ~5,342 m2 out of a total classified area 

of ~12,000 m2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Multispectral mapping of Ascophyllum nodosum 

117 
 
 

 

Fig. 4.7. Maximum‐likelihood classification (MLC) result from the multispectral aerial survey. Two 

macroalgal cover classes are displayed over Bing satellite imagery. ‘Substratum’ was not included. 

Class codes represent the following species: fucoid mix dominated by Ascophyllum nodosum 

(abbreviated here to AN_FS and referred to in the text as ‘Asco_Fucus spp.’) and mixed fucoids 

('Fucus spp.'). Coordinates are in Irish Transverse Mercator (ITM) 
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Tab. 4.4. Aerial multispectral Maximum Likelihood Classification (MLC) confusion matrix, 

calculated, using ENVI 5.4, by comparing pixels of known class locations to those predicted by the 

classification workflow, for each of the three cover classes, results are recorded as percentage of 

pixels assigned, correctly or incorrectly, to each class. 

Class ‘Substratum’ ‘Fucus 

spp’ 

‘Asco_Fucus 

spp’ 

Total  

‘Unclassified’ 6.13 0.00 0.00 1.10 

‘Substratum’ 89.10 5.79 0.97 18.20 

‘Fucus spp.’ 4.02 46.53 5.82 17.31 

‘Asco_Fucus spp’ 0.74 47.68 93.22 63.38 

Total 100 100 100 100 

 

Tab. 4.5. Aerial multispectral Maximum Likelihood Classifier (MLC) User (probability of correct 

class assignment, calculated by dividing the number of correctly classified pixels by the total number 

of pixels in a class) and Producer (correctly classified reference pixels, calculated by dividing the 

number of correctly classified pixels by the total number of pixels that should be in a class) accuracies 

for each of the three cover classes computed using ENVI 5.4. 

Class Prod Acc 

(Percent) 

User Acc 

(Percent) 

Prod Acc 

(Pixels) 

User Acc 

(Pixels) 

‘Substratum’ 89.10 87.96 1439/1615 1439/1636 

‘Fucus spp.’ 46.53 78.02 1214/2609 1214/1556 

‘Asco_Fucus spp’ 93.22 77.95 4440/4763 4440/5696 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Multispectral mapping of Ascophyllum nodosum 

119 
 
 

 

Fig. 4.8. Instances of misclassification between ‘Asco_Fucus spp.’ (labelled here as AN_FS) and 

‘Fucus spp.’ displayed above each classes respective ground-truth (GT) polygons (a). Inset are 

notable misclassified areas, where, in green, ‘Asco_Fucus spp.’ has been misclassified as ‘Fucus 

spp.’ (c) and where, in red, the opposite occurs (b). Coordinates are in Irish Transverse Mercator 

(ITM). 
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4.3.3. Satellite imagery 

The coarse spatial resolution of the Sentinel-2 satellite imagery meant that it was not 

possible to identify any intertidal macroalgal species to use as training data for a supervised 

classification workflow. It was, however, possible to visually identify and separate the 

macroalgae-dominated intertidal zone, covering ~ 8000 m2, from terrestrial vegetation and 

rock/manmade features. 

4.4. Discussion 

The increasing affordability of remote sensing technologies (Colefax et al., 2018) will 

support their application for a diverse range of ecological monitoring initiatives. The high 

spatial and spectral resolutions required for the accurate classification of intertidal 

macroalgal communities (Dekker et al., 2003) can often be expensive (i.e. hyperspectral), 

acting as a barrier to organizations and research groups. Here, the effectiveness of relatively 

low-cost multispectral sensors and their platform-dependent spatial resolutions for mapping 

the distribution of A. nodosum was explored. Of the three platforms used, UAV-mounted 

multispectral remote sensing provided the most accurate results. 

UAV imagery accurately identified and classified a homogenous A. nodosum class (‘Asco’), 

distinguishing it from surrounding mixed fucoid assemblages and from base substratum. The 

high spatial resolution of concurrently collected RGB data allowed for the visual 

identification of A. nodosum which was characterized by its distinctive morphology and 

colouration. Despite their inherent spectral similarities (Kotta et al., 2014) and the low 

spectral resolution of the sensor, clear separation between the macroalgal classes could be 

achieved. Coarser resolution aerial imagery was able to classify a lower taxonomic 

resolution mixed A. nodosum and Fucus spp. class (‘Asco_Fucus spp.’). By contrast, freely 

available Sentinel-2 imagery was found to be too coarse for mapping intertidal macroalgal 

communities as it was not possible to observe the fine-scale assemblages, but it was possible 

to identify the macroalgal-dominated intertidal zone. Higher spatial resolutions (UAV RGB 

= 2.2 cm/pixel, Aerial RGB = 6 cm/pixel) enhanced not only our ability to visually identify 

species for training and reference data (Meddens et al., 2011), but also the ability of MLC to 

assign pixels to classes as, owing to their smaller size, there was less within-pixel spectral 

mixing (Doughty and Cavanaugh, 2019). In areas with a relatively low intertidal macroalgal 

species diversity but dense, homogenous stands, our results demonstrate that multispectral 

sensors provided an effective tool for species mapping and a lower cost alternative to 

hyperspectral sensors. 
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4.4.1. UAV multispectral imagery 

Ascophyllum nodosum (‘Asco’) was accurately identified using the UAV platform (PA = 91 

%, UA = 96.8 %) and we believe that the spectral differences between A. nodosum and the 

other classes became more apparent at the canopy (Meddens et al., 2011) over individual 

frond scales (Kotta et al., 2014). The spectral similarity between ‘Asco’ and ‘Fucus spp.’ 

likely explains the small amount of misclassification between them. This was most evident 

towards the southern section of the site where a large area of ‘Fucus spp.’ has been 

misclassified as ‘Asco’. Visually this patch appeared significantly yellower and brighter than 

other ‘Fucus spp.’ areas which may have led to confusion with the bright ‘Asco’ class. The 

remainder of the misclassification was spread throughout the site, highlighting some of the 

challenges when collecting training and reference data in spatially heterogeneous 

environments whereby polygons cannot necessarily account for small patches of different 

classes within their boundaries (Foody, 2002). Spatial complexity could not be fully 

accounted for in the collection of training and reference data and this includes intraspecific 

variation, for example many of the ‘Asco’ pixels misclassified as ‘Fucus spp.’ appeared to 

be in shaded areas behind, or between, boulders which may have darkened their spectral 

response leading to misclassification (Wigmore et al., 2019). The creation of specific shaded 

classes may help to resolve this in the future (Ishida et al., 2018) but given the present low 

classification error, it was deemed not necessary here. 

Owing to the bands used by the Parrot Sequoia, the spectral similarity observed between 

‘Green’ and ‘Fucus spp.’ was to be expected. Previous research has, using 

spectroradiometers, highlighted the strong spectral separability between macroalgal groups 

(Casal et al., 2013; Kotta et al., 2014). Fig. S4.3 shows that the spectrum of ‘Green’ was 

similar to that of both brown macroalgal classes, and with this sensor not having any bands 

below 550 nm, or between 550–660 nm, key distinguishing features of green macroalgae 

(single peak at 550 nm) and brown macroalgae (three peaks and troughs between 550–660 

nm) (Kutser et al., 2006b) were not recorded, potentially explaining the poor spectral 

separation. Ultimately, because of the small area covered by green macroalgal species, in 

comparison to other classes, its exclusion might not significantly alter the accuracy of the 

final classification. 

4.4.2. Aerial multispectral imagery 

Whilst the classification results from the aerial multispectral imagery broadly agreed with 

the UAV imagery, managing to identify an A. nodosum dominated (‘Asco_Fucus spp.’) belt, 

it was not able to identify a pure A. nodosum class. The resulting lower taxonomic resolution 
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class meant that it was not possible to determine an accurate area estimation for A. nodosum 

at the site. Coarser pixel sizes led to increased sub-pixel mixing of spectra, with one or more 

classes potentially being present within a single pixel (Su et al., 2006; Lyons et al., 2011). 

The coarser resolution meant that it was difficult to accurately select enough training data 

for classes that cover a small area, such as ‘Wrack’, leading to its exclusion from the final 

classification. Such exclusions highlight the need for finer levels of spatial resolution, but 

also show that the decision whether or not to include a class also depends on research 

objectives and it was determined to prioritise the classification accuracy of dominant cover 

classes over minor ones. Coarse pixel size was also responsible for the low spectral 

separability between ‘Asco_Fucus spp.’ and ‘Fucus spp.’ where many pixels were spectrally 

heterogeneous (Belluco et al., 2006), containing mixtures of fucoid species that were not 

necessarily observable through visual analysis of the RGB imagery. The significant 

misclassification of ‘Fucus spp’ pixels as ‘Asco_Fucus spp.’ appears most prevalent across 

the boundary between the mid-and-lower intertidal zone where there was a transition from 

an A. nodosum dominated assemblage to a Fucus spp. dominated one (Fig. 4.8). This 

highlights the difficulties in trying to distinguish between two spectrally similar classes.   

4.4.3. Satellite multispectral imagery 

The spatial resolution of Sentinel-2 data was too coarse to allow for macroalgal species 

identification as the highest band resolutions (10 m) were still larger than the footprint 

covered by species present within the intertidal. The relatively coarse spatial resolution of 

some satellite imagery does not preclude it’s application for macroalgal monitoring, 

however. For species which form homogenous, monospecific stands, such as Macrocystis 

pyrifera off the coast of Santa Barbara, 10 m resolution satellite imagery was able to provide 

accurate canopy cover estimations (Cavanaugh et al., 2010). If well supported by in-situ 

sampling (i.e. abundance and percentage cover), the ability of the satellite to identify the 

intertidal zone could allow for the broad extrapolation of localized in-situ biological data to 

regional-scale estimates of macroalgal extent. Yet, the time involved in conducting such 

detailed in-situ surveys would negate the efficiency provided by satellite remote sensing and 

the resulting extent estimates will be significantly less accurate than those achieved through 

direct quantification of species extent using UAVs and aircraft. 

4.4.4. Effectiveness of high-resolution RGB data for training and reference data 

collection 

The collection of accurate reference and training data directly impacts upon classification 

accuracy. When considering the future potential for large-scale intertidal macroalgal surveys 
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it would be impractical (time and cost) to conduct extensive field campaigns. The potential 

for GPS (Laliberte and Rango, 2011) and image georeferencing errors (Jaud et al., 2018) 

would still create bias towards selecting training and reference data from large homogenous 

stands of macroalgae (Foody, 2002) which were observed when collecting data through 

visual assessment of the RGB imagery. UAVs can be used to efficiently collect training data 

over much larger areas than using field-based methods (Gray et al., 2018) and the accuracy 

of this method relies on achieving a high enough spatial resolution to enable complex 

patterns to be observed. The resolutions achieved by UAVs allow for the accurate and 

efficient collection of training and reference data through being able to accurately identify 

intertidal macroalgal species. Applicability, however, may depend on the target species, but 

the distinctive morphological and colour properties of A. nodosum at the study site enhanced 

the accuracy of its identification. 

4.4.5. Operational considerations 

From a spatial resolution perspective, this study has demonstrated how UAVs allow for the 

accurate classification and quantification of A. nodosum distribution. At present, such results 

are likely only achievable over small geographic areas owing to current national UAV 

regulatory policies (Baena et al., 2018), despite battery technology allowing many UAVs to 

fly between 60-180 min. Whilst aircraft can cover much larger areas, they tend to have 

coarser spatial resolutions (Anderson and Gaston, 2013) which, depending on research 

objectives, could reduce classification accuracy, limiting their usefulness for intertidal 

macroalgal resource assessment. The development and granting of beyond visual line of site 

(BVLOS) permission to companies and individuals who meet specified national aviation 

authority guidelines will allow the scaling up of UAV surveys to the point where they may 

offer a true mapping alternative to aircraft. 

The cost-effectiveness of using remote sensing to map intertidal macroalgae will vary 

depending on project requirements, with factors such as geographic scale potentially 

informing on the most suitable platform to use. Both the UAV and aerial surveys required 

similar workhours for the data collection and processing, with the aerial survey able to 

collect data over a far larger geographic area. Hiring a company to conduct remote sensing 

surveys is the only feasible option for aerial surveys, yet, for UAV surveys it may end up 

more cost-effective, in the long-term, to bring data collection and processing capabilities ‘in-

house’, especially if temporal studies are planned. The only caveat of this approach is the 

initial setup cost (i.e. UAV, GPS, sensor, software and pilot training), the requirement for 

specialised technical knowledge, computing capabilities and compliance with local 

regulations. Furthermore, the use of satellites may still prove a useful option depending on 
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the research question. Higher spatial resolution satellites, such as RapidEye (5 m/pixel) may 

be applicable for studies looking at identifying and mapping broader taxonomic 

classification classes, such as macroalgal groups, over large areas (Brodie et al., 2018). 

4.4.6. Management implications of UAVs 

At present, UAV technologies are well suited to the rapid, flexible and cost-effective 

mapping of relatively small geographical areas and is well-suited for the unique challenges 

of mapping in the intertidal zone. Their capability to conduct multiple, repeat measurements 

(Manfreda et al., 2018) will also enhance their application in monitoring dynamic 

ecosystems, short-term events (algal blooms etc.), mobile fauna and invasive species. 

Straightforward integration of multispectral sensors (e.g. DJI SkyPort) will further enhance 

applications for UAV technology and technological and regulatory developments will only 

improve the ability of UAVs to contribute towards the establishment of accurate 

environmental baseline monitoring and will, in turn, inform resource conservation and 

management decisions (Connell et al., 2008). The world is changing and developments in 

drone regulatory policy, such as common EU regulations (https://www.easa.europa.eu/easa-

and-you/civil-drones-rpas), together with a global move towards BVLOS operations will 

present the possibility of long range coastal macroalgal surveys in the not too distant future. 

This will improve the ability of interested stakeholders to efficiently manage and conserve 

intertidal macroalgal communities over large geographic areas.  In addition to this, 

decreasing costs of UAVs and sensors will make such technology accessible to a broader 

range of interested stakeholders, enabling a wide range of novel applications (Johnston, 

2019).  

Whilst the use of UAVs for monitoring macroalgal habitats is growing (Taddia et al., 2019; 

Tait et al., 2019), a range of different studies have incorporated UAVs into management and 

conservation research objectives. Monitoring of orangutans has been conducted using both 

RGB (Wich et al., 2016) and thermal sensors (Burke et al., 2019), the small size of UAVs 

making them ideal for operating in remote environments. UAVs have also proven capable of 

operating in challenging conditions, helping researchers to monitor the health (Pirotta et al., 

2017) and physiology (Christiansen et al., 2016) of whales. Yet, there remains a need for 

standardization in UAV monitoring protocols to account for variations caused by solar 

conditions, survey accuracy and flight planning, to allow for direct comparisons of data 

between study sites and time (Assmann et al., 2019). 

https://www.easa.europa.eu/easa-and-you/civil-drones-rpas
https://www.easa.europa.eu/easa-and-you/civil-drones-rpas
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4.5. Conclusions 

The likely increase of anthropogenic pressures upon intertidal macroalgal communities 

requires the development of accurate and efficient mapping methodologies to complement 

traditional field survey techniques and must also consider a range of different budgets. 

Different remote sensing platforms each offer unique advantages and disadvantage and their 

suitability for the mapping of intertidal macroalgal communities was compared. This study 

has demonstrated how UAV-mounted multispectral remote sensing was the most accurate of 

the three methods for assessing the distribution of A. nodosum, where having a high spatial 

resolution allowed complex spatial patterns to be observed. High-resolution RGB imagery 

facilitated the accurate collection of training and reference data and this method will likely 

complement the scaling up of UAV-based surveys in the future (Gray et al., 2018). The 

creation of sustainable resource management plans can now be underpinned by highly 

accurate, relatively low-cost, and spatially comprehensive remote sensing data collection 

methodologies. The development of machine learning techniques is likely to yield improved 

classification results and has already proven useful for automated identification of weeds 

within crop fields (de Castro et al., 2018; Gao et al., 2018).  

Relatively inexpensive multispectral sensors, when mounted on a UAV, provide an effective 

macroalgal resource assessment tool when used in environments with low species diversity 

and homogenous cover of canopy forming species. For repeat surveys, the most cost-

effective solution is to bring data collection, processing and analysis ‘in-house’ where 

decreasing technology costs, such as the 3dr Solo UAV (Johansen et al., 2018), are reducing 

financial barriers for those wishing to employ remote sensing technology to their research, 

for example, enabling those in remote but biodiverse regions of the globe to better monitor 

and conserve their ecological resources (Vargas-Ramírez  and Paneque-Gálvez, 2019). 

Lower costs and an increase in turnkey multispectral sensors may also facilitate the use of 

UAVs and multispectral sensors by local conservation charities and citizen science groups 

which, with the development of standardized mapping methodologies, could facilitate the 

accurate, high-resolution, monitoring of macroalgal resources over much wider spatial and 

temporal scales than currently possible. Future work should explore potential seasonal and 

spatial trends in the accuracy of image capture and the implications for data processing. 

Likely variation in the intra and inter-specific spectral responses and relationships of 

intertidal macroalgae, often due to seasonal variation in localised light regimes (Stengel and 

Dring, 1998), may influence the ability of multispectral sensors to accurately discriminate 

between them.  
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View off the stern of the RV Lir during the collection of subtidal acoustic data in Roaringwater Bay 

(Co. Cork). 
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Abstract 

Large brown macroalgal kelp species (Laminariales, Ochrophyta) dominate subtidal rocky 

coastlines across temperate and sub-polar latitudes. Increasing awareness of their ecological 

importance is leading to the need for the implementation of sustainable management plans. 

To achieve this, accurate baseline ecological data collections methodologies must first be 

collected. Traditional field sampling is restricted in spatial scale and optical remote sensing 

techniques are often depth-limited by the attenuation of light in water. Acoustic remote 

sensing does not face the same constraints. A comparison of the ability of different 

Multibeam (MBES) sonar frequencies for the detection of kelp distribution and canopy 

height is presented here. For each of the three frequencies (200, 300, 400 kHz), water 

column data were logged to record the weak, scattered acoustic returns that would indicate 

the presence of a potential kelp bed. A ~5 ha site was surveyed, and acoustic data were 

validated by using a dropdown camera to identify the presence and absence of kelp species, 

along with identifying floral and faunal species. Baseline bathymetric maps were first 

created before analysing the water column by filtering out acoustic returns from the seabed 

and from the water column, through bottom and sidelobe suppression, to isolate a potential 

kelp signal. Once these soundings were identified they were then extracted and used to 

create canopy height and distribution maps. Results for each frequency show that similar 

kelp bed area values were mapped and that a similar range of kelp canopy height values 

were recorded (0–2 m). Kelp was confined to a rocky reef, occurring over depths of 4–15 m 

and video analysis confirmed the presence of a dense kelp, dominated by Laminaria 

hyperborea. In addition, trials of a mini-ROV showed that it was capable of identify 

different kelp and associated faunal species; this may be a useful tool for validating acoustic 

datasets. 

5.1. Introduction 

Kelps of the order Laminariales (Phaeophyceae) often dominate subtidal rocky coastlines 

across both temperate and subpolar latitudes (Smale et al., 2019). Through their status as a 

foundation species (Miller et al., 2011), kelps modify their surrounding environment by 

reducing water flow (Jackson, 1997, Gaylord et al., 2007), increasing sedimentation rates 

(Madsen et al., 2001) and the provision of habitat through the creation of complex three-

dimensional structures (Dayton, 1985). The morphology of kelp individuals supports diverse 

floral and faunal communities as the holdfast, stipe and blade each provide distinct habitats 

(Teagle et al., 2017). In dampening waves, kelp forests provide coastal protection services 

(Steneck et al., 2008) and they can play an important role in carbon sequestration (Hill et al., 



Chapter 5: Multibeam mapping of subtidal kelp species 

129 
 
 

2015) through carbon cycling, characterised by the rapid turnover of biomass (Reed & 

Brezinski, 2009).  

Kelp habitats can often become denuded by a range of natural and anthropogenic pressures. 

Disease, grazing (most commonly by urchins, but not in Ireland) and physiological stress are 

common natural pressures (Steneck et al., 2008) and it is likely that changing climates could 

push some macroalgal species beyond the range of suitable habitats (Wernberg et al., 2011). 

Direct human impacts, such as harvesting, and indirect, such as increased turbidity through 

run-off (Desmond et al., 2015), and trophic cascades leading to urchin barrens, predicated by 

overfishing, also contribute to kelp deforestation, and variations in the frequency and 

intensity of these activities will affect recovery rates (Teagle et al., 2017). 

Kelps are one of the most productive habitats found within the coastal zone (Steneck et al., 

2002) and the importance, for food security (i.e. global fisheries), of effectively managing 

this zone cannot be overstated (Pauly et al., 2002). With a general lack of information on the 

impacts of anthropogenic pressures (Ierodiaconcou et al., 2007), detailed baseline ecological 

data must be collected to allow for informed, sustainable decision making on how to manage 

these resources and the anthropogenic activities associated with them (Jordan et al., 2005). 

Survey methods for kelp and other subtidal species, including seagrass and freshwater 

macrophytes, can be broadly assigned to three different categories. Field survey 

methodologies will typically involve the direct sampling and measurement of subtidal 

species (Abukawa et al., 2013) such as through SCUBA or video transects. Whilst allowing 

the collection of detailed biological data, such methods are costly, time-consuming (Hasan et 

al., 2011) depth limited (Spalding et al., 2003) and may not accurately capture the 

complexity of spatially heterogenous habitats (Brown & Collier, 2008). Regardless, detailed 

field surveys are the only way to collect important ecological information with which to 

characterise the habitat, such as predicting kelp bed biomass based on the relationship 

between stipe length and weight (Blight et al., 2011). Optical remote sensing technologies 

are typically considered as being unsuitable for assessing subtidal habitats as they can often 

be limited by depth owing to limited light penetration (Brown & Blondel, 2009; Bajjouk et 

al., 2015), particularly in turbid waters. Although several studies have successfully used 

satellites to accurately map the distribution of subtidal kelp beds, they have still been limited 

to relatively shallow depths of < 10 m (Casal et al., 2011; St-Pierre & Gagnon, 2020). This 

means that a full distribution map cannot be achieved for deeper occurring kelps, such as 

Agarum cribrosum, or kelps which occur over broad depth ranges, and occurrence depth and 

canopy height values cannot be determined (McGonigle et al., 2011).  
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Acoustic remote sensing technologies are not constrained by the optical properties of water 

(Kruss et al., 2017) as water is an effective medium for sound waves (Lurton, 2002). 

Acoustic remote sensing works by transmitting an acoustic signal from the transducer head 

and then recording the returning echoes. The time taken for the echo to return can be used to 

calculate depth (bathymetry) and the intensity of the return signal can be used to infer the 

physical nature of the seafloor (backscatter) (Masetti & Calder, 2012). Singlebeam 

Echosounders (SBES) were developed in the early 20th century to esonify an area directly 

beneath the survey vessel, primarily to calculate seabed depth (Colbo et al., 2014). The 

development of Multibeam Echosounders (MBES) in the 1970’s (Renard & Allenou, 1979; 

Mayer, 2006) greatly improved mapping capabilities, allowing larger areas of the seafloor to 

be mapped because of the high number of beams and wide swath width of beams 

transmitting athwartship (Brown & Blondel, 2009), making them the preferred method for 

seabed mapping, albeit with reduced efficiency in shallow water (Costa et al., 2009).  The 

ability to record acoustic returns, not just from the seabed, but also from the water column, 

enables the detection of fish (Cushing, 1952; Weber et al., 2009) and submerged aquatic 

vegetation (SAV). The use of MBES for water column applications has lagged behind 

SBES, primarily due to the immense data storage requirements (Colbo et al., 2014) which is 

why, despite the widespread application of MBES for seafloor mapping, many studies 

looking at mapping SAV still utilise SBES. 

A typical rocky seabed would produce a strong acoustic return signal and analysis of the 

return ping would show a defined signal peak (Kruss et al., 2011). SAV will be visible as a 

weaker acoustic signal above the seabed, which is caused by the density contrast between 

SAV and the surrounding water (Warren & Peterson, 2007; Lefebvre et al., 2009) and also 

the diffuse reflection of acoustic energy (Lurton, 2002). This unique acoustic signature 

(weaker than the seabed, but stronger than the water column) can be isolated and 

theoretically used to determine the presence and height of SAV (Minami et al., 2010). Water 

column data was historically used for locating fish (McGonigle et al., 2011) and affords the 

opportunity to record and analyse acoustic signals in the water column (such as macroalgae) 

that may have been filtered out by sonar systems not recording water column. Height and 

distribution maps have been successfully created for Laminaria spp., in Japan (Minami et 

al., 2010) and Kongsfjorden (Kruss et al., 2017) using SBES, and in the USA, using MBES 

(McGonigle et al., 2011). Seagrass canopy height and abundance has also been successfully 

mapped in the UK with SBES (Lefebvre et al., 2009) as well as with MBES in Japan 

(Komatsu et al., 2003). In some cases, acoustic signatures have been used to discriminate 

between broad taxonomic groups, such as macroalgae and seagrass (Riegl et al., 2005) and 

laboratory tests have identified unique acoustic signatures of some kelp species (Kruss et al., 
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2017; Shao et al., 2019). The choice of acoustic frequency will influence the sensors ability 

to detect SAV. For seabed detection lower frequencies are preferred as higher frequencies (> 

100 kHz) suffer from greater attenuation in the water column, meaning less energy is 

transmitted to the seabed (Freitas et al., 2008). Previous studies mapping SAV used 

frequencies in the range of 200 kHz (Minami et al., 2010; Kruss et al., 2017) to 500 kHz 

(Komatsu et al., 2003; McGonigle et al., 2011) as they are better at detection features within 

the water column. Validation data are often collected using video transects (Ierodiaconou et 

al., 2007; Hasan et al., 2011; Mielck et al., 2014). Recent developments in ROV technology, 

including component miniaturisation, have created small and affordable mini-ROVs (Raoult 

et al., 2020) which may offer an alternative validation data collection solution. 

Biological recording data indicates that kelps are present around the entire coastline of 

Ireland (Smale et al., 2013) where suitable substratum and conditions exist. Aside from 

preliminary studies conducted by Blight et al. (2011) and MacCraith & Hardy (2015) there 

has been no quantitative assessment of Irish kelp populations nor the development of a 

suitable methodology for achieving this. This study sought to investigate the ability of 

MBES, using water column and different acoustic frequencies, for mapping subtidal kelp. In 

Ireland, subtidal kelp beds are dominated by Laminaria spp., particularly Laminaria 

hyperborea, and these communities are of both economic, providing habitat for 

commercially important fish and invertebrate species, and ecological importance (Blight et 

al., 2011). A small experiment, using a mini-ROV, was also conducted to assess their 

potential application for the collection of validation data. To assess the potential of using 

MBES for the development of wider-scale kelp resource assessment methodologies, the 

following research questions were addressed: 

i. Which acoustic sonar frequency is most suitable for identifying the presence of 

subtidal kelp beds? 

ii. Is it possible to derive accurate distribution and canopy height values using MBES 

data? 

iii. What recommendations can be made about the suitability of MBES and water 

column data in the development of a larger-scale resource assessment methodology? 

5.2. Methods 

5.2.1. Study Site 

The survey site was located by Copper Point, off Long Island (51°30’06.8” N, 9°32’05.2” 

W), within Roaringwater Bay in Co. Cork (Fig. 5.1). The site was chosen owing to suitable 
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substratum and depths observed using existing INFOMAR bathymetric datasets. The bay is 

classified as a Special Area of Conservation (SAC) under the EU habitats directive and 

stretches from Long Island to Baltimore, encompassing the bay and most of the islands 

(NPWS, 2014). The bay is designated for submerged or partly submerged sea caves, reefs 

and large shallow inlets and bay and for the presence of Halichoerus grypus (grey seal) and 

Phocoena phocoena (harbour porpoise) (NPWS, 2011). The primary underlying bedrock is 

comprised of Devonian red sandstone reefs which run parallel to troughs of Devonian 

Carboniferous marine clastics (NPWS, 2014). Laminaria dominated subtidal reef 

communities occur on moderately exposed reefs and are dominated by L. hyperborea, with 

L. digitata and S. latissima present in shallower waters (< 15 m) (NPWS, 2011).  
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Fig. 5.1. Map showing the location of the acoustic survey site within Roaringwater Bay (Co. Cork) 

(b) in relation to Ireland (a). Footprint of the survey area is taken from the 200 kHz acoustic dataset 

(c). Coordinates are in UTM_29. 

 

 

5.2.2. Multibeam survey 

Acoustic surveys were carried out in July 2019 over a period of a couple of hours during 

high tide. The Geological Survey of Ireland’s (GSI) survey vessel, the RV Lir (Tab. 5.1), 

mounted with a T20-P multibeam system (Teledyne Technologies International Corp, 

Thousand Oaks, USA), which was lowered into position through the hull, was used to 
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conduct the survey. The initial location of the kelp bed (herein referred to as kelp, indicating 

a subtidal assemblage of Laminaria spp., most likely dominated by L. hyperborea) was 

determined by consulting existing INFOMAR bathymetric data for the area, looking for 

suitable depths (<15 m) and rocky substrate. Once in place a drop-down GoPro Hero 4+ 

(GoPro, San Mateo, USA), mounted on a custom weighted frame, was used to confirm the 

presence of kelp. The survey began at 15:30 GMT and was conducted parallel, and as close 

as possible, to the shoreline. A rocky feature, of suitable depth(s) was identified on the 

vessels acoustic display and data were collected over this and in deeper water to the north 

and the south of the suspected kelp so that its distribution could be defined. Three passes 

were completed, each logging water column data at different frequencies (200, 300 and 400 

khz), using the “Water column recording” (logs water column data — not enabled by 

default) and “Multidetect” (provides multiple detections in the water column and is useful 

when surveying complex underwater features such as wrecks, helping to detect otherwise 

overlooked features such as masts) features in the hydrographic survey planning, acquisition 

and data processing software QINSY (QPS, Zeist, Netherlands), all other settings remained 

constant (Tab. 5.2) and a single sound velocity profile (SVP) was taken to correct for 

localised variations in water column transmission properties. As water column data were 

being collected, the resulting files were large and each survey line was split into multiple 

lines, each capped at 1.5 GB. 

Tab. 5.1. Technical specifications of the survey vessel, the RV Lir. 

Model Stormforce Jango (Rib) 

Builder Redbay 

Length (m) 11 

Beam (m) 3.31 

Draft (m) 0.5 (equipment not deployed) 

Top speed (knots) 30 

Slow speed (knots) 4 

 

Tab. 5.2. T20-P Multibeam shallow water survey settings. 

Beam mode Equi-Distant 

Beams 512 

Coverage 70° 

Range (m) 90 

Power (dB) 214 

Pulse length (µs) 430 

Gain (dB) 20 

Max rate (p/s) 16 

 



Chapter 5: Multibeam mapping of subtidal kelp species 

135 
 
 

5.2.3. Ground-truth data collection 

Once the acoustic surveys had been completed, the drop-down GoPro Hero 4+ was used to 

collect ground-truth data to validate the acoustic data. The GoPro was mounted on a PVC 

frame, weighted on each corner using 8 oz fishing weights (Fig. S5.1). 17 sampling 

locations were chosen to be representative of the different benthic habitats covered by the 

acoustic survey, chief of which being, the shallow rocky reef (where one or more kelp 

species were expected to be found), deeper benthic habitats and the transition zone between 

the two (Fig. 5.5). Owing to vessel drift, GPS coordinates were taken with a Garmin 

Montana 600 (Garmin, Olathe, USA) when the camera was deployed and again when it was 

recovered to help increase our confidence in location of the camera when it reached the 

seabed. The simple setup of the camera rig did not include any methods for the detection of 

scale (i.e. lasers) so it was not possible to determine kelp canopy density or height. 

5.2.3.1. Video analysis 

Videos were analysed to determine the dominant habitat and to identify the presence of kelp 

species. Laminaria hyperborea was expected to be the dominant kelp species present, as it 

has previously been recorded by NPWS (2011) throughout Roaringwater Bay and is easily 

identified by its rough stipe which is often colonised by epiphytic algae. This meant that it 

was important for the camera to pass through the kelp canopy to observe the stipe. The 

presence of other floral and faunal species was also recorded and, where possible, identified 

to species level. On occasion, the drop-down camera was unable to capture a clear video of 

the seafloor and these were recorded as potentially deep sites where kelp was unlikely to 

occur, based upon the depth limit observations by NPWS (2011). 

5.2.3.2. Mini-ROV survey 

A Trident ROV (Fig. 5.2) (Sofar, San Francisco, USA) was deployed from the shore in a 

different location to the acoustic survey, near Carraroe (53°14’37.9” N, 9°34’53.7” W), to 

tests its marine operational capabilities and its ability to identify different kelp species and 

associated fauna. The Trident ROV collects high-resolution video, has a battery life of ~3 h 

and a top speed of 2 ms-1 but was limited by the tether to a range of 25 m (a 100 m tether can 

be purchased separately). The ROV was deployed from the shore and controlled via a 

controller and mobile phone. Sea conditions were not ideal (moderate swell) and there was a 

significant amount of debris in the water column. Multiple test dives (n = 18) were 

conducted with the aim of locating and identify different kelp species. Dive length varied but 
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was usually between 1–5 min in duration. Sea conditions eventually became too rough and 

the ROV was safely recovered. Species were later analysed from the video recordings. 

 

 

Fig. 5.2. Trident ROV undergoing freshwater trials using the 25 m tether. 

 

5.2.4. Acoustic data processing 

5.2.4.1. Bathymetric processing 

The first processing step was to create accurate bathymetric maps for each of the three 

survey frequencies (200, 300, 400 kHz). Raw data files were imported into Qimera (QPS, 

Zeist, Netherlands) and were spatially correct and tidally referenced to concurrent Lowest 

Astronomical Tide (LAT) using the Malin Head Ordnance Datum. Navigation files were 

imported to correct vessel position and correct for variations in motion (pitch, roll and 

heave). The data were then manually cleaned to remove all non-seabed acoustic returns, 

including kelp. The software automatically detects the seabed, but incorrect detections can 

occur, for example with dense macrophyte canopies (Lefebvre et al., 2009), which can either 

be removed using additional filters or, in this case, manually as the study site was small. The 

final bathymetric maps were exported at a 0.5 m spatial resolution with a colour-blind 

friendly colour scheme created using ColorBrewer 2.0. 
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5.2.4.2. Kelp canopy extraction 

For each of the three different acoustic frequency datasets, decibel (dB) thresholds, sidelobe 

suppression and bottom suppression were applied under the “water column settings” tab. 

The acoustic plot first had to be downsampled (from “none” to “8:1”) as the high resolution 

of the acoustic data was slowing down the software. The sliding filter bar (Fig. 5.3) was 

used to set the minimum and maximum thresholds for the water column data which were 

then clipped to eliminate unnecessary data. Thresholds were constantly adjusted to enhance 

the signal of the potential kelp above the seabed. Removing the strong acoustic signal of the 

seabed is useful when analysing the weaker acoustic signal of the water column and this was 

achieved using bottom suppression, which was set to the default 95 %. Sidelobe suppression 

removes sidelobe artefacts in the water column data and this was again adjusted to better 

enhance the acoustic signal from the kelp. The kelp bed was most easily visible ~15 m either 

side of the vessel track line, similar to what was observed by McGonigle et al. (2011) and 

Kruss et al. (2017), and beyond that became difficult to identify (Fig. 5.4). Once the kelp 

signal had been isolated from the surrounding water column and seabed, soundings were 

manually selected and identified by Qimera as ‘user additional soundings’. Using the 3D 

editor tool, all soundings not representing kelp were rejected and a new layer was created 

representing the potential distribution of the kelp and the depth of the top of the canopy. 

Both the bathymetry and kelp layers were exported into ArcView Grid format so that they 

could be opened using QGIS 3.4. “Raster calculator” was used to create a kelp canopy 

height map by subtracting the bathymetry layer from the aligned kelp layer. Kelp canopy 

heights were provided in metres and the approximate area covered by different height 

classes was calculated by using the Polygonise tool, in QGIS, and then calculating the area 

(m2) for each of the height classes. When vectorising, QGIS rounds values up or down into 

discrete classes whereas the original raster layer displayed height classes along a gradient. 
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Fig. 5.3. Example of the water column processing dock showing the different water column 

thresholding settings that can be configured. The top graph shows a histogram of the water column 

data and different thresholds can be selected to filter out certain decibel (dB) ranges. Beam subsets 

and ranges can be modified along with sidelobe and bottom suppression. Downsample has been 

changed from “None” to “8:1” because of the large amount of data. 
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Fig. 5.4. Water column cross sections taken from the top off the rocky reef (300 kHz dataset). The 

three images show a single ping fan (a), a multi (stacked) ping fan (b) and the multi ping fan when 

thresholds to isolate the kelp signal have been applied (c). Blue arrows represent a potential, kelp 

signal which is contrasted against the filtered water column signal. Green arrows also indicate the 

presence of kelp which could be subject to sidelobe interference, reducing the quality of the acoustic 

signal.  

5.3. Results 

5.3.1. Site geology 

Site depths ranged from -5 m for the rocky reef in the north of the site to -25 m in the south. 

Bathymetric data shows a series of ridges and troughs running, as expected, southwest to 

northeast and the backscatter indicated that that the ridges were rocky (Devonian red 

sandstone) and that the troughs were comprised of finer sediments (Devonian Carboniferous 

marine clastics). Slope data also supported this by showing the topographical complexity of 

the rocky ridges and the relative homogeneity of the sediment troughs (Fig. S5.2). 
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5.3.2. Biological sampling 

A total of 17 drop-down video recordings were made throughout the study site (Fig. 5.5). 

Fig. 5.6 shows some video stills of some sampling points and Tab. 5.3 shows the depths 

from each recording and the species observed. No kelp was observed at the southern region 

of the site, where depths approach -25 m (survey points 2560 & 2561). The area fringing the 

shallow rocky knoll was free of kelp and characterised by a mixture of small cobbles and 

mixed sediments. For some of the sampling points (2551, 2559 & 2558) the camera was not 

close enough to the bottom to capture detailed information on the flora and fauna present. 

Sea urchins were visible along with sponges and patchy, low-lying unidentified macroalgae. 

A single kelp individual was observed in 2558, at approximately 15 m deep. 

The shallowest part of the rocky reef was dominated by a dense canopy of L. hyperborea 

and no other kelp species were observed. The stipes of L. hyperborea individuals were easily 

visible in the video footage and their identity was confirmed by the presence of epiphytic 

macroalgal species. In the canopy understory there were small kelp individuals, different 

species of red macroalgae and encrusting coralline algae. Common faunal species included 

Echinus esculentus Linnaeus and Cliona celata Grant. Fish were occasionally observed by 

species identification was not possible. Towards the tip of the rocky knoll (12306) the 

canopy of L. hyperborea began to thin out and Alcyonium digitatum Linnaeus was present. 

The lower limits of the kelp forest boundary (2556) were marked by a low density of L. 

hyperborea and an increase in the abundance of A. digitatum. This boundary was also 

captured by sampling point 12307 which identified sparse L. hyperborea and S. latissima on 

a mixed cobble substratum. 
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Fig. 5.5. Map showing the location, and number, of drop-down camera sampling stations overlain 

onto of the bathymetry layer created from the 200 kHz survey. Each sampling station consists of two 

GPS points, one for camera deployment and the other for retrieval (owing to currents and vessel drift). 

Sampling station numbers have unique identifying numbers. The location of the imagery taken for 

each video will fall somewhere between the two points, along the transect lines. Kelp = kelp observed, 

Maybe kelp = unable to clearly determine kelp presence, No bottom = seabed was too deep to be 

observed, No kelp = no kelp observable. Coordinates are in UTM_29. 

 

 



Chapter 5: Multibeam mapping of subtidal kelp species 

142 
 
 

Fig. 5.6. Video stills from the drop-down GoPro sampling. Fig. 5.2 shows the locations for each of 

these images. 
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Tab. 5.3. Table showing the depth (m), length (min), observation code and species observed in each 

of the video sampling points. Depths are recorded as the value midway between when the camera was 

deployed and when it was recovered. 

Code Depth 

(m) 

Length 

(min) 

Observation Species present 

2548 8 01:48 Kelp Laminaria hyperborea 

Echinus esculentus 

Epiphitic red algae 

Coralline crusts 

Cliona celata 

2549 8 02:09 Kelp Laminaria hyperborea 

Echinus esculentus 

Epiphitic red algae 

Coralline crusts 

Cliona celata 

Asterias rubens 

2551 15 01:57 No Kelp  Echinus esculentus 

2552 14 02:00 Kelp Laminaria hyperborea 

Epiphitic red algae 

Coralline crusts 

Cliona celata 

2553 14 01:57 No Kelp No identifiable species 

2554 7 02:08 Kelp Laminaria hyperborea 

Echinus esculentus 

Epiphitic red algae 

Coralline crusts 

Delesseria sanguinea 

2556 12 01:39 Kelp Laminaria hyperborea 

Echinus esculentus 

Alcyonium digitatum 

Cliona celata 

Holothuria forskali 

2557 6.5 01:07 Kelp Laminaria hyperborea 

Marthasterias glacialis 

Echinus esculentus 

Coralline crusts 

2558 15.5 02:06 No Kelp  Echinus esculentus 

Cliona celata 

2559 16.5 02:10 Maybe Kelp No identifiable species 

2560 18.5 05:16 No Bottom No identifiable species 

2561 23 03:34 No Bottom No identifiable species 

12304 18 01:55 No Bottom No identifiable species 

12305 17 01:35 No Kelp No identifiable species 

12306 12 01:37 Kelp Laminaria hyperborea 

Echinus esculentus 

Epiphitic red algae 

Coralline crusts 

Alcyonium digitatum 

Cliona celata 

12307 - 01:37 Kelp Laminaria hyperborea 

Saccharina latissima 
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5.3.3. Kelp distribution and height maps 

5.3.3.1. 200 kHz  

Based on the 200 kHz data, the area identified as probably being kelp covered ~3,800 m2 

and kelp presence was recorded from a depth range of 4–15 m (Fig. 5.7). The kelp 

distribution was concentrated on the main rocky knoll of the site with a small patch present 

north of this, indicating the start of another rocky environment. Acoustic data indicated that 

the kelp was dominated by thalli between 0.4–1.6 m in height and there are anomalous 

values which likely do not represent the kelp (i.e. minus and extreme height values) (Fig. 5.8 

& Fig. 5.9). The line of missing data observable within the distribution map marks the 

boundary point between two survey lines and it was not possible to extract data from this 

area. 

5.3.3.2. 300 kHz 

Using 300 kHz, kelp was shown to cover an area of ~2,740 m2 and appeared to have a much 

patchier distribution than what was observed using the 200 kHz frequency. Kelp was 

recorded as present across similar depth ranges as observed in the 200 kHz data (Fig. 5.7). 

Kelp distribution was concentrated on the rocky knoll and also at the lower margins of a 

rocky reef to the north. Kelp distribution did not appear to stretch as far to the south-west 

(on the boundary of the acoustic dataset) as it did when derived from the 200 kHz dataset. 

The strongest and clearest signal was observed within ~10 m either side of the vessel track 

line, which ran rough along the ridgeline of the rocky reef. The dominant height range of the 

kelp canopy was between 0–2 m and there was less variation in the range of values 

compared to the 200 kHz dataset (Fig. 5.8 & Fig. 5.9). Along the ridgeline canopy heights 

of 1–2 m was more prevalent with 0–1 m occurring more frequently along the slopes of the 

reef. 

5.3.3.3. 400 kHz 

The 400 kHz frequency identified a potential kelp area of ~2,714 m2, as with the other two 

frequencies the distribution was restricted to the main rocky reef and occurred over the same 

depth range (5–15 m) (Fig. 5.7). The small kelp patch to the north was not identified, which 

was likely due to the vessel taking a slightly different course. As with the 300 kHz dataset, 

the strongest kelp signal was observed ~10 m either side of the vessel track line and this was 

dominated by the kelp in the range of 1–2 m. Height values of 0–1 m were more commonly 

observed along the sides of the reef (8–15 m depth range) and there was less variation in the 

overall spread of canopy height values (Fig. 5.8 & Fig. 5.9). 
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Fig. 5.7. Map showing the depths (m) that the observed kelp canopy occurred as detected by the three different survey frequencies (a = 200, b = 300, 

c = 400 kHz). The vessel track line is shown in black and 10 m either side is marked by the blue polygon buffer. 
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Fig. 5.8. Map showing the estimated range of height values recorded for the kelp bed as detected by each of the three frequencies (a = 200, 

b = 300, c = 400 kHz). The vessel track line is shown in black and 10 m either side is marked by the blue polygon buffer. 
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Fig. 5.9. Area (m2) covered by each of the recorded height classes as detected by each of the three 

acoustic survey frequencies (a 200 kHz, b = 300 kHz, c = 400 kHz). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.4. Mini-ROV species identification 

The test ROV dives, at a different site, showed that it was possible to identify different kelp 

species using the Trident ROV video footage (Fig. 5.10). Distinctive morphology allowed 

for the identification of S. latissima, L. hyperborea (the rough stipe was easily recorded) and 

Saccorhiza polyschides with its characteristic bulbous holdfast. Faunal species were 

occasionally visible including Crenilabrus melops Linnaeus, Gobiusculus flavescens 

Fabricius and Henricia oculata Pennant. Drift algae were also present and included many 

fucoid species. 
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Fig. 5.10. Video stills taken from the Trident ROV showing (a) Saccharina latissima, (b) Laminaria 

hyperborea (with a curious male Crenilabrus melops), (c) Saccorhiza polyschides and (d) 

Gobiusculus flavescens with drift algae. Arrows indicate species described. 

 

5.4. Discussion 

Subtidal macroalgal communities are challenging to map, regardless of the methodology 

used. The use of acoustic remote sensing allows relatively large areas to be surveyed, whilst 

not facing the same constraints on depth as optical remote sensing (Abukawa et al., 2013). 

Here, the optimal acoustic survey frequency for quantifying the distribution and height of 

subtidal kelp was sought, with the aim of supporting the development of baseline ecological 

data collection methodologies with which to inform sustainable management decisions.  

This study has demonstrated that the analysis of water column data, collected using MBES, 

can identify the presence of macroalgae, deriving both estimates of canopy height and bed 

distribution data. Each of the frequencies used identified subtle variations in the extent and 

height of the kelp bed, although it was difficult to know if this was due to differences in the 

ability of each frequency to identify water column features, or user error when processing 

the three independent datasets. Drop down camera surveys validated that the rocky reef was 

dominated by kelp forests (mostly L. hyperborea) and that the areas to the north and south of 

this reef, where either depth or substratum (or both) were unsuitable and therefore devoid of 

kelp. The lower reef margins, when observed, showed a thinning of the kelp canopy and an 

increase in faunal species such as A. digitatum. A small test conducted with a mini-ROV 
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demonstrated its ability to identify different floral and faunal species and offered an exciting 

glimpse into the future potential of mini-ROV technology for supplementing traditional 

field-survey methods for the collection of biological validation data. 

5.4.1. Ability to identify kelp presence 

Each of the three frequencies used was able to identify the presence of potential kelp and 

produce distribution and canopy height maps that were similar to one another. All three 

identified a dense kelp canopy on the ridgeline, which also happened to follow the vessel 

track line, and corresponded to the ground-truth information showing a dense canopy of L. 

hyperborea. In the 300 and 400 kHz datasets the effect of sidelobe interference was clearly 

visible in the presence of a dense ribbon of kelp occurring within ~10 m either side of the 

track line. The same effect was observed by McGonigle et al. (2011) and Kruss et al. (2017) 

who both described how sidelobe interference made it difficult to confidently identify kelp 

beyond the central beams of the MBES device as the interference was sometimes greater 

than the acoustic response of macroalgae. The same occurred here where it became more 

difficult to confidently identify kelp signals further away from the central beams, even when 

looking in areas of suitable depth and substratum, and with thresholding applied to minimise 

the signal from the seabed and water column.  

Acoustic interference may have been further compounded by the topographical nature of the 

study site and the path of the vessel along the ridge of the rocky reef. Dense, shallow kelp 

could have reduced the energy of the acoustic signal reaching the kelp deeper down the sides 

of the reef, leading to gaps where no acoustic return signal was recorded. The lower 

frequency of the 200 kHz survey may explain why more continuous coverage was observed 

on the sides of the reef as lower frequencies would be less susceptible to water column 

interference (Freitas et al., 2008) and more acoustic energy would reach the deeper kelps, 

where higher frequencies would be scattered, absorbed and reflected more by kelp. 

Laminaria hyperborea, in the UK, typically reaches maximum lengths of 1-2 m (Kain & 

Jones, 1963; Christie et al., 2003; Rinde & Sjøtun, 2005). Canopy height estimates from 

each of the three acoustic frequencies agree with the length values reported in the literature, 

having ranges between 0-2 m, with kelp ~1 m in height being the most common. Where 

extreme canopy height values have been observed most likely represents the incorrect 

selection of soundings, for example the selection of sidelobe interference (Kruss et al., 

2017). Fortunately, these height values represent only a small fraction of the total kelp bed. 

The north-eastern region of the identified kelp bed shows, across all frequencies, relatively 

high coverage of kelp averaging ~0 m in height in a region of about 12-14 m deep. Video 

footage from that region (2556) showed a relatively sparse kelp canopy which may indicate 



Chapter 5: Multibeam mapping of subtidal kelp species 

150 
 

that the low canopy height values observed actually represent bare patches of rock in 

between kelp individuals which could have been accidentally selected during the 

identification and processing of the kelp acoustic signal.  

5.4.2. Validation of acoustic data 

The video footage collected using the dropdown GoPro only confirmed three things, that L. 

hyperborea was the dominant kelp species present (S. latissima was recorded at video 

sampling station 12307), that there were clear differences in kelp canopy density (potentially 

linked with depth) and that no kelp was observed at depths greater than ~15 m (regardless of 

substratum). A key limitation was that insufficient video data existed to characterise the 

different canopy density gradients within the kelp bed which made it difficult to determine 

what was causing the differences in kelp distribution observed between the three 

frequencies. This meant that it was not possible to determine which acoustic frequency 

would yield to most accurate kelp mapping results. 

As this was a pilot study, it was important to comprehensively validate the acoustic datasets 

using detailed biological data collection surveys to identify species presence or absence. The 

sampling methodology used was inefficient as, without a live video feed from the camera, it 

was difficult to know if the feature that was being observed (i.e. kelp boundary zone) was 

the intended one until the camera was recovered. Currents and vessel drift also made the 

accurate deployment of the camera difficult. Video analysis can be subjective and prone to 

user error (Lefebvre et al., 2009) and this was compounded by not being able to control 

where the camera was pointing. Mini-ROVs, such as the Trident ROV (Sofar, San 

Francisco, USA) and BlueROV2 (BlueRobotics, Torrance, USA), come with a range of 

different tether lengths, capture high-definition live video and are fully controllable from the 

surface. Raoult et al. (2020) found that a mini-ROV was equally as accurate as a snorkeler 

(with a camera) at identifying fish species richness and abundance, and this could offer a 

potential validation solution for kelp forest mapping. The small test conducted, at a separate 

site, in this study showed the potential of the Trident ROV for kelp validation surveys. 

Species were easily identified and the ROV was easy to deploy, retrieve and control 

meaning that different features of interest could be fully observed during a dive. However, 

turbidity and debris made accurate navigation difficult and poor visibility meant that species 

identification could only be confidently achieved from close. The ROV motors were also 

repeatedly clogged by algal debris, requiring it to be retrieved and the algae cleared. 

Navigation was also challenging as the sea conditions worsened, making it difficult to keep a 

heading. The ROV was only operating in shallow water (< 2m) and this may have affected 

buoyancy (despite extra weight) and made it more susceptible to swell. In deeper waters, 
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during calmer seas, and with more operator training, mini-ROVs could potentially to offer 

an alternative solution to both dropdown, and towed cameras, and SCUBA. 

5.4.3. Biomass estimations 

The use of SCUBA for the collection of detailed biological data cannot be wholly replaced 

by technological solutions. The accurate estimation of biomass (including density estimates) 

data is important for the effective management of kelp forests (Gorman et al., 2013) and 

sampling methods, such as SCUBA, allow for kelp length to weight relationships to be 

developed (Blight et al., 2011). This research has shown that it is possible to use acoustic 

remote sensing to define kelp canopy height and distribution and use video to identify the 

species present. The development of a site-specific stipe length to weight relationship would 

have, in theory, allowed the estimation of the total biomass of the kelp bed. However, Shao 

et al. (2019) recently showed that it is possible to derive a relationship between the echo 

intensity per unit of kelp, or target strength (TS) and weight meaning that it may be possible 

to remote sense biomass once these relationships have been established. Ground-truth kelp 

canopy density will be important for validation of the cover estimations made by each 

acoustic frequency and to derive more accurate biomass estimates (Pederson et al., 2012). At 

present, the use of SCUBA remains the only way to collect detailed biological information 

(Schroeder et al., 2019). Allometric relationships can also be developed for kelp carbon 

content, for example, basal tree area was found to be a good predictor of tree biomass carbon 

stock in Bangladesh (Alamgir & Al-Amin, 2008). Previous work has assumed a certain 

density of kelp individuals per m2 (Hatcher et al., 1977) and to achieve carbon stock 

estimates for Irish kelp beds would require in-situ collection of stipe density data, which 

could not be resolved using the acoustic sonar used in this survey. A more spatially coherent 

dataset on Irish kelp distribution could facilitate better estimations of kelp standing stock and 

their contribution to the global carbon budget (Abdullah et al., 2017). Fluctuations in canopy 

biomass, for example increased nutrients leading to elongated fronds (Bell et al., 2018) can 

also affect carbon stock estimates. Such defined features as kelp fronds, as with stipe 

density, could also not be resolved using the resolution of the current acoustic sensor. Finer 

resolution sensors may yield better results but will also produce much larger volumes of data 

and will be required to be supported by extensive ground-truthing surveys. 

5.4.4. Operational considerations 

For all three acoustic surveys (each covering ~5 ha), approximately 20 GB of data were 

collected. The scaling up of this method would produce immense quantities of data and will 

require compression and storage solutions. There does not appear to be a lot of published 

research looking at the compression of MBES water column data. Portell et al. (2019) 



Chapter 5: Multibeam mapping of subtidal kelp species 

152 
 

compared their adapted compression algorithm to industry-standard ones, finding that it was 

able to compress data more efficiently whilst better preserving quality. Such advances, 

whilst they may be MBES sensor specific, may facilitate the wider application of water 

column data acquisition. 

The presence of sidelobe interference, restricting the accurate identification of kelp to central 

beams (McGonigle et al., 2011; Kruss et al., 2017) reduced survey efficiency. Combined 

with the potential limitations imposed by data compression, storage and processing, large-

scale surveys may be impractical. Instead, developing a multi-layer mapping approach, 

similar to that used by Bajjouk et al. (2015) is recommnded. The creation of regional models 

predicting kelp species distribution can be validated by using vessel-mounted acoustic 

remote sensing which will allow for a stratified sampling approach rather than the targeting 

mapping of known kelp beds. Additional datasets, such as optical remote sensing of shallow-

water kelps (St-Pierre & Gagnon, 2020) can also be integrated which can allow for large 

areas to be covered (especially if suing satellite) but which may still face challenges 

associated with the limited penetration of light in turbid waters (Casal et al., 2011). This 

may be advantageous when conditions make it difficult and dangerous too survey so close to 

shore with a boat. SCUBA, or mini-ROVs, can be used to ground truth the acoustic datasets 

and this can also be conducted in a stratified way, with a predetermined set of sampling 

stations (Bajjouk et al., 2015) based on the acoustic data results. 

5.5. Conclusions 

The collection of baseline ecological data on habitats of ecological and economic importance 

is vital for their sustainable management in the face of a raft of increasing anthropogenic 

pressures. The potential application of acoustic remote sensing for mapping subtidal kelp 

populations has previously been highlighted (McGonigle et al., 2011; Kruss et al., 2017). 

This study sought to expand on this work in comparing different acoustic frequencies, 

showing that there is a difference in the ability of each to detect a macroalgal acoustic signal, 

but that sufficient validation data was not collected to identify the cause of this variation. A 

drop-down camera was a quick and low-cost method for the collection of validation data and 

was successful in identifying the presence or absence of kelp. A potential alternative, in the 

form of a mini-ROV, was trialled and shown to be easily capable of identifying different 

kelp and faunal species. Future work should include the collection of comprehensive 

ground-truth data to identify the optimum acoustic frequency for the identification of kelp. It 

should also consider the integration of MBES data into a regional, integrated, mapping 

survey.  
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 Collection ground control point (GCP) data using a RTK-GPS prior to the 

December 2017 drone survey at An Cheathrú Rua (Co. Galway). 
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Abstract 

Remote sensing allows large areas to be mapped, revealing ecological processes not 

previously observable. The limited spatial scale of using field survey methods for mapping 

intertidal macroalgal communities can be overcome with the use of remote sensing. The 

spatial and temporal resolution of satellites and aircraft are often considered too coarse for 

species-level mapping within spatially heterogeneous intertidal environments. The use of 

drones is increasingly widespread in terrestrial and marine research, yet their application for 

intertidal habitat mapping is still in its infancy. The high spatial, spectral and temporal 

resolution of drones makes them an ideal remote sensing platform choice for mapping such 

spatially complex communities. This review sets out to provide the prospective researcher, 

interested in utilising drones for intertidal macroalgal research, with a detailed baseline of 

theoretical, methodological and technical knowledge to support the application of drones for 

their particular research question. With a focus on optical remote sensing solutions, up-to-

date information is provided on the latest drone, sensor and software technology. In 

identifying the unique challenges associated with using drones for intertidal mapping we 

identified three key characteristics of intertidal macroalgae that will influence survey design, 

1) the size of individuals within a species 2) homogeneity of coverage and 3) spectral 

similarity to surrounding species and substratum. Based on these considerations, we explore 

the methodologies developed by other studies, and highlight how they can be applied to 

address the three characteristics of intertidal macroalgal assemblages identified here. 

6.1. Introduction 

Geographic scale is an increasingly important consideration in the planning for intertidal 

macroalgal resource assessments and has arisen out of the need to better understand the 

anthropogenic impacts of increasing levels of human activity and development throughout 

the coastal zone (Gillanders et al., 2008). This is driving the push to supplement traditional 

field survey techniques with those that allow large areas to be surveyed efficiently, cost-

effectively and accurately (Anderson & Gaston, 2013). Whilst traditional field-based survey 

methods are still the ‘gold-standard’ of habitat assessment, allowing for species level 

identification (Konar & Iken, 2018), they are often time consuming, costly and restricted in 

scale (Bajjouk et al., 1996; Vis et al., 2003; Oppelt et al., 2012). 

Remote sensing approaches allow for the monitoring of large-scale areas at a range of 

spatial, spectral and temporal resolutions (Govender et al., 2007), offering new insights into 

intertidal ecological processes. Many earlier studies applying remote sensing to intertidal 

habitat mapping used airborne (Bajjouk et al., 1996; Thomson et al., 1998), satellite 

(Guillaumont et al., 1993; Donoghue et al., 1994; Casal et al., 2011) and even a blimp 
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(Guichard et al., 2000). The relatively coarse spatial resolution of these platforms (Vis et al., 

2003; Brodie et al., 2018) appears to have limited the further application of remote sensing 

within the intertidal zone. Often, these platforms will suffer from restricted operational 

flexibility (Colefax et al., 2018) and atmospheric interference, such as cloud cover (Dekker 

et al., 2003), which, with the tidal constraints of the intertidal zone, can reduce the amount 

of good survey days. Since 2000, relatively few remote sensing studies using airplanes and 

satellites have been published (Dekker et al., 2003; Garono et al., 2004; Theimann et al., 

2005; Hennig et al., 2007; Oppelt et al., 2012). Recently however, there is a renewed interest 

in the remote sensing of intertidal macrophyte communities using drones (Murfitt et al., 

2017; Duffy et al., 2018b; Kellaris et al., 2019; Taddia et al., 2019; Tait et al., 2019).  

Drones, very much the mainstay of agricultural monitoring (Horton et al., 2017), are, owing 

to rapid technological development and component miniaturisation, being integrated into a 

wide range of ecological monitoring studies, from faunal monitoring (Christiansen et al., 

2016; Wich et al., 2016) and forestry (Adão et al., 2017; Sankey et al., 2017) to coastal 

environments (Ventura et al., 2016; Casella et al., 2017). The operational flexibility (Baena 

et al., 2018) and high spatial resolution (Weil et al., 2017) of drones makes them well suited 

to the unique challenges of mapping intertidal macroalgal species and responding to short-

term events such as algal blooms (Kislik et al., 2018). Many intertidal communities can be 

characterised as being spatially and spectrally complex (Oppelt et al., 2012) and this 

complexity can be difficult to identify using aircraft and satellites (Doughty & Cavanaugh, 

2019). Many modern drones allow for multiple types of sensors to be mounted (e.g. RGB, 

thermal, multispectral, hyperspectral) and these can provide unique insights into intertidal 

patterns and relationships potentially not observable using on-foot survey methods. 

Initially having been developed for military applications (Lechner et al., 2012), advances in 

drone technology, such as component miniaturisation and improved battery life (Colefax et 

al., 2018) lead to an increase in the choice of drones available across a wide price range 

(Tab. 6.1). This is concurrent with the rapid development of new lightweight sensors 

(Colomina & Molina, 2014) which, along with drone technology, provides any prospective 

researcher with a multitude of technological options to suit their research objectives. This 

review aims to provide an overview of available drone platform and sensor technology to 

use, along with specific operational factors that must be considered when surveying 

intertidal macroalgal communities. 
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6.2. Terminology 

There exists a range of different terms that can be applied to drones, including unoccupied 

aerial vehicles (UAVs), unoccupied aerial systems (UAS) and remotely piloted aircraft 

systems (RPAS). The use of the term unoccupied, rather than unmanned, was highlighted by 

Johnston (2018) as a more inclusive term. There appears to be no clear consensus on the 

most appropriate term, with aviation agencies appearing to differ, for example, the 

International Civil Aviation Organisation (ICAO), US Federal Aviation Administration 

(FAA) and UK Civil Aviation Authority (CAA) use UAS, whereas the European Union 

Aviation Safety Agency (EASA) uses drones. For the sake of brevity and simplicity we shall 

only use the term drones. 

Two key terms, spatial and spectral, must be defined as they are important considerations 

when choosing a suitable drone and sensor. Spatial resolution refers to the pixel size of the 

data collected by the sensor (Kerr & Ostrovsky, 2003) and is a function of the sensor design 

and flight height of the survey platform. The optimal spatial resolution should be determined 

by considering the spatial properties of the target feature to ensure that key information is 

observable (Treitz & Howarth, 2000; Smith, 2012). Spectral resolution is defined by the 

number and width of bands present within a sensor. A sensor can still cover a large portion 

of the EM yet have a low spectral resolution if only a small number of wide bands are used 

(Govender et al., 2007; Barillé et al., 2010). Conversely, many higher spectral resolution 

sensors (i.e. hyperspectral) can have dozens, or hundreds, of narrow bands covering the 

same potion of the EM spectrum. Higher spectral resolutions allow for spectral features to be 

observed (such as subtle variations in reflectance spectra between macroalgal species) which 

may be missed by coarser spectral resolution sensors (Adão et al., 2017), and are thus, 

theoretically more useful when trying to map spectrally similar features. 

6.3. Drone technology 

Drones can be broadly separated into two categories based, primarily, on their flight 

capabilities, and these are multirotor and fixed wing. Both types (and their sub-categories) 

have similar characteristics such as the capability to fly pre-planned flights, the presence of 

inertial measurement units (IMU) and internal GPS/GNSS, of varying levels of accuracy, 

whilst typically weighing less than 20 kg (Anderson & Gaston, 2013). All survey-grade 

drones come equipped with internal GPS/GNSS which allow for relatively precise positional 

accuracies of approximately 2–5 m (Johnston, 2018).   IMUs are an essential part of the 

drone flight controller system, using accelerometers and gyroscopes to measure the pitch, 

roll and yaw of the drone. Integrated gyroscopes act to improve the flight stability of the 
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drone allowing it, for example, to hover in the wind. Combined with stabilised gimbals and 

high-resolution cameras this allows for the collection of high-quality images and video 

(Cruzan et al., 2016). Across the two broad categories, the battery life of drones has been 

constantly improving (Fig. 6.1), increasing their usefulness for mapping larger areas. 

 

Fig. 6.1. Improvement in battery life for (a) fixed wing and (b) multirotor drones. Dates refer to the 

drone release date and, where possible, maximum payload flight times were used. Information was 

obtained through an internet search for all the drone models listed in this review. 
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6.3.1. Drone Types 

6.3.1.1 Multirotor drones 

Multirotor drones use multiple propellers to provide lift and propulsion whilst also 

controlling pitch, roll and yaw. They are available in a wide range of designs (Tab. 6.1) and 

are usually either quadcopters, hexacopters or octocopters (Cruzan et al., 2016). The 

advantage of having more propellers being that if one was to fail then the drone would 

continue to operate (Johnston, 2018). Multirotor drones have no minimum speed allowing 

them to conduct complex flight plans (Aasen et al. 2014) and to operate within spatially 

constrained areas. Combined with their ability to hover (Anderson & Gaston, 2013), this 

makes them well suited to detailed surveys and for monitoring features that occur over fine 

spatial scales (Lucieer et al., 2014). Their vertical take-off and landing (VTOL) capability 

means they require very little space for deployment, making them well suited for 

topographically complex environments such as can be found in the intertidal zone. Battery 

life for many multirotor drones’ ranges from 20–30 min (on average) and this can limit their 

range, potentially rendering them unsuitable for largescale surveys, although this will also 

depend on the flight height, payload and local regulations. 

6.3.1.2. Fixed wing drones 

Once the preserve of the military, fixed-wing drones have evolved into commercially viable, 

user-friendly remote sensing platforms (Anderson & Gaston, 2013). This has coincided with 

a reduction in size and weight, to the point where they are often lighter than some of the 

‘heavy-lift’ multirotor drones. Propulsion is provided by multiple engines and propellers 

(Johnston, 2018) and, whilst most are battery powered, some are powered by internal 

combustion engines (greatly increasing their range) and some by hydrogen fuel cells (Tab. 

6.1). Fixed-wing drones often require more space (i.e. soft, flat terrain) for take-off and 

landing than multirotor drones. Some can be launched by hand or via a bungee propulsion 

systems and most perform glider landings although some, such as the Bramor range (C-

Astral, Ajdovscina, Slovenia) deploy parachutes instead. Flight times range from 40–180 

min for battery powered models and up to 18 hr for fuel powered, making them ideal for 

surveying large areas. Whilst not limited by battery life to the same extent as multirotor 

drones, fixed-wing drones are still subject to local regulations which may restrict the area 

that can be surveyed unless permissions are granted to fly further.  
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6.3.1.3. VTOL fixed-wing drones 

The space required by fixed-wing drones for take-off and landing can be limiting in some 

circumstances and can put high value payloads at risk. VTOL-enabled fixed wing drones 

combine the efficiency and range of a fixed-wing drone with the vertical take-off and 

landing capability of a multirotor. This can allow for operations in topographically complex 

environments where safe take-off and landing areas are not present (Ventura et al., 2018). 

The number of commercially available VTOL fixed-wing drones is increasing across a 

broad price spectrum (Tab. 6.1). 
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Tab. 6.1. Commercially available drone models including information on drone type (M = multirotor, F = fixed-wing, V = VTOL fixed-wing, F/L = fixed-wing with 

launcher), flight time (in minutes), compatibility with real-time/post-processing kinematic (RTK/PPK) correctional GPS technology, weight and maximum take-off weight 

(in grams), price (in euros) and sensor integration options (Integrated RGB/multispectral = drone supplied with RGB/multispectral sensor, Quickmount = allows seamless 

integration with DJI drones, Custom = custom mounts can be developed for a wide range of sensors, Various = A range of sensors are available for integration, contact 

manufacturer for details, Skyport = integration of industry standard sensors with certain DJI drones). All information is correct as of time of submission (02/2020). 

Company Model Type Flight 

(min) 

RTK/

PPK 

Weight (g) Max. 

Weight (g) 

Price (€) Sensor 

3DR Soloq M 20e No 1,500 1,920 - Variousc, Customc 

Aerialtronics Altura Zenith M 40 - 6,650 9,650 POA Variousc, Customc 

Aeromao 
Aeromapper Talonr 

Aeromapper 300 

F 

F 

120 

90 

Yesc 

Yesc 

3,500 

4,650 

- 

5,350 

~11,000l 

12,756 

Variousc, Customc 

Variousc, RGBo 

Altavian F7200 NOVA F 90 - 5,300 6,500 POA Variousc, Customc 

Atmos UAV Marlyn V 50 Yesc 5,700 6,700 POA Variousc 

Autel  Evo M 30 - 863 - 915 Integrated RGB 

Baam.Tech 
Futura 

Elipse 

F 

V 

90 

80 

Yes 

Yes 

4,000 

- 

5,400 

- 

12,500m 

4,000m 

Variousc, RGBo 

Variousc, RGBo 

BFD Systems 
SE-8 

H2-6 

M 

M 

50 

90t 

- 

- 

8,000 

12,000 

20,250 

14,000 

POA 

POA 

Variousc, Customc 

Variousc, Customc 

C-Astral 

Atlas C4EYE 

Atlas ppX 

Bramor C4EYE 

Bramor mSX 

Bramor ppX 

F 

F 

F 

F 

F 

60 

60 

90 

~180 

~180 

- 

Yes 

Yesi 

- 

Yes 

2,000 

2,000 

- 

4,300 

4,200 

2,300 

2,300 

4,500 

4,900 

4,700 

POA 

POA 

POA 

POA 

POA 

Variousc, Customc 

Variousc, Customc 

Variousc, Integratedc 

Variousc, Customc 

Variousc, Customc 

Delair UX11 F 59 Yes - 1,500e POA Integrated RGB 
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DT26 Open Payload F/L 135 - 15,500 18,500 POA Variousc, Customc 

DJI 

Phantom 4 Pro V2 

Phantom 4 Pro V2 RTK 

P4 Multispectral 

Inspire 2 

Mavic 2 Pro/Zoom 

Matrice 600 Pro 

Matrice 100 

Matrice 200 V2 

Matrice 210 V2 

Matrice 210 RTK V2 

Wind-4 

Wind-8 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

30 

30 

27 

23-27a 

31 

16-18e 

Varies 

24-38 

24-34 

24-33 

Variesa 

Variesa 

No 

Yes 

Yes 

No 

No 

Yesc 

No 

No 

No 

Yes 

- 

- 

1,375 

1,391 

1,487 

3,440b 

907/905 

9,500-10,000f 

2,355-2,431f 

4,690 

4,800 

4,910 

11,000 

15,700 

- 

- 

- 

- 

- 

15,000 

3,600 

6,140 

6,140 

6,140 

21,000 

26,000 

~1,600 

~7,800k 

- 

3,399-14,250l 

1,499-1,249 

5,699 

3,599 

POA 

POA 

POA 

POA 

POA 

Integrated RGBd 

Integrated RGBd 

Integrated Multispectral/RGB 

Quickmount, Variousc 

Integrated RGB 

Quickmount, Custom, Variousc 

Quickmount, Custom, Variousc 

Quickmount, Skyport, Custom, Variousc 

Quickmount, Skyport, Custom, Variousc 

Quickmount, Skyport, Custom, Variousc 

Customc 

Customc 

Draganfly Tango2 F/L 120 - 5,900 6,900 POA Variousc 

Foxtech Nimbus VTOL V2 V ~80 Yesc 2,850n 4,800 1,850-4,310l Variousc, Customc 

Freefly 
Alta8 

AltaX 

M 

M 

15e 

10-50a 

- 

- 

6,200 

10,400 

18,000 

34,860 

16,000 

14,600m 

Variousc 

Variousc,p 

Hitec Xeno-FX F 60 - ~1,100e - 6,200-7,100a Variousc 

Insitu 

ScanEagle 

ScanEagle2 

ScanEagle3 

F/L 

F/L 

F 

1,440s 

1,080s 

1,080s 

- 

- 

- 

16,000 

21,500 

27,200 

- 

26,500 

36,300 

POA 

POA 

POA 

Variousc, Customc 

Variousc, Customc 

Variousc, Customc 

Parrot 
Anafi 

Bluegrass Fields 

M 

M 

25 

25 

No 

No 

320 

1,800 

- 

- 

699 

POA 

Integrated RGB 

Integrated RGB 
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Quantum Systems 
Trinity F90+ 

Tron F90+ 

V 

V 

90+ 

90+ 

Yes 

Yes 

4,300b 

11,500 

5,000 

13,500 

14,900m 

44,900m 

Variousc, Customc 

Variousc,p, Customc 

QuestUAV 
Q-200 Surveyor 

DATAhawk PPK 

F 

F 

60 

45 

Yesi 

Yes 

4,000 

- 

4,600 

2,150 

POA 

POA 

Variousc, Customc 

Integrated RGBd 

senseFly 

eBee X 

eBee Classic 

eBee SQ 

F 

F 

F 

90 

50 

55 

Yes 

No 

No 

1,100-1,400a,e 

690 

1,100 

- 

- 

- 

POA 

POA 

POA 

Variousc 

Variousc 

Variousc 

Sentera PHX RTK F 59 Yes 1,800 - 7,510-10,400a Sentera only 

SUI Endurance F ~40a - 3,200 - 12,000-16,325a Variousc, Customc 

SwellPro SplashDrone 3+ Mu 23 - 1,447n 3,000 1,234m Integrated RGB 

Trimble 
UX5 

UX5 Multispectral 

F 

F 

50 

45 

- 

- 

2,500 

2,500 

- 

- 

POA 

POA 

Integrated RGBd, Variousc 

MicaSense RedEdged, Variousc 

Tuffwing UAV Mapper F ~40 - 1,600 2,000 2,200-6,985l Variousc, Customc 

Wingtra WingtraOne V 55 Yesc 3,700 4,500 POA Variousc 

Yuneec H520 M 28a,f Yes 1,633 2,500 POA Variousc 

A = depends on payload, B = without sensor or gimbal, C = purchase separately , D = can be removed, E = with full payload, F = depends on battery used, G = Zenmuse XT 

adaptor required, H = supplied with Parrot Sequoia, I = RTK/PPK optional, J = depends on version , K = includes D-RTK 2 Mobile Station, L = depends on selected package, 

M = starting price, N = without battery, O = supplied with, P = LIDAR suitable, Q = not supplied by company, use reseller, R = water landing option available, S = powered 

using internal combustion engine, T = hydrogen fuel cell powered, U = waterproof.
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6.3.1.4. Drone flight basics 

Flight, or mission, planning is an important first step in ensuring the collection of accurate 

data (Colomina & Molina, 2014). All the drones highlighted in this review can be controlled, 

via a controller and smartphone/tablet or laptop, either manually, or automatically, and all 

come supplied with proprietary flight planning software. There are also stand-alone flight 

planning software options available, such as DroneDeploy and Pix4D Capture which are 

compatible with a range of different drones (Tab. 6.2). Automated surveys require the 

creation of a flight plan, the design of which is influenced by the survey area, drone speed, 

height, sensor FOV and image overlap. The larger the overlap between the images, the more 

tie-points there are available to mosaic them together (Cruzan et al., 2016), increasing detail 

and accuracy, as each tie-point must be visible in at least three separate images (Westoby et 

al., 2012). Software, such as DroneDeploy, recommend an overlap of at least 75 % and it is 

important to note that higher overlap equals more images, increasing the amount of data 

produced. Drone speed will influence frontal overlap, and this must also consider the rate at 

which the chosen sensor is able to take images to avoid poor image overlap or potential gaps 

between images. Image overlap and coverage is lower at the margins of the study area (Fig. 

6.2) (Cruzan et al., 2016) and flight plans should always be created to cover more area than 

needed to avoid distortion over areas of interest (D’Oleire-Oltmanns et al., 2012). 

 
Fig. 6.2. RGB mosaic overlapping images map taken from a 2017 survey in Carraroe, Ireland. Lower 

numbers of overlapping images can be observed at the mosaic margins in red. Created using Pix4D. 



Chapter 6: A guide to mapping intertidal macroalgae with drones 

 

164 
 

6.3.2. Sensor types 

There are a range of different sensors that are small and light-enough to be mounted on a 

drone. Each has certain attributes that may or may not make it suitable for a particular 

research objective. Differences in spatial and spectral resolution along with the range of 

wavelengths that can be detected are important considerations when choosing the correct 

sensor. 

6.3.2.1. RGB sensors 

RGB (red, green blue) sensors collect data from three broad bands within the visible 

spectrum. These sensors often have the lowest spectral resolution and the highest spatial 

resolution (Aasen et al., 2018). Many lower cost survey grade drones come with integrated, 

high-resolution (~20 MP) complementary metal-oxide semiconductor (CMOS) RGB 

sensors, this includes the DJI Phantom and Inspire series (DJI, Shenzhen, China) and the 

Parrot Anafi (Parrot SA, Paris, France). The relatively low cost of these devices makes them 

accessible to a wide range of researchers and non-researchers (Tait et al., 2019), 

significantly advancing their application within environmental monitoring.  Integrated RGB 

sensors allow the user to view video feed in real-time on a mobile tablet device connected to 

the operating controller. Images and video can be captured, and the screen interface can be 

used to alter camera parameters such as ISO, aperture, shutter speed and exposure settings. 

6.3.2.2. Multispectral sensors 

Multispectral sensors typically contain between 4–12 bands (Adão et al., 2017) and can 

record data in the visible and non-visible regions of the EM spectrum. Increased 

technological development has led to a large range of multispectral sensors that can be drone 

mounted (Tab. 6.3). Some, such as the Parrot Sequoia+ (Parrot SA, Paris, France) and the 

MicaSense (MicaSense, Seattle, USA) range are easily mounted on different drones whereas 

others, such as the Tetracam range (Tetracam inc., Chatsworth, Canada), require a more 

specialised, custom approach to mounting. Certain models can be integrated with a drone, 

allowing them to be operated from the flight planner, for example, the DJI SkyPort (DJI, 

Shenzhen, China) allows integration of the SlantRange 4p (Slantrange, San Diego, USA), 

MicaSense RedEdge-MX and Altum (MicaSense, Seattle, USA) with the DJI Matrice 

200/210/RTK (DJI, Shenzhen, China). Many commercially available multispectral sensors 

have been designed with agricultural monitoring in mind (Lum et al., 2016) and often focus 

on bands which pertain most to plant health, such as the red and near infrared (NIR), 

allowing for the calculation of a range of vegetation indices (Dash et al., 2018), but can 

often lack the blue band as a result of this focus. Blue light can be useful in shallow subtidal 
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environments too as it strongly penetrates the water column (Peichl et al., 2001) and its 

inclusion can improve submerged feature detection. Some sensors, such as the MicaSense 

Altum, do record a blue band.  

6.3.2.3. Hyperspectral sensors 

Hyperspectral sensors can contain hundreds of narrow contiguous bands across the EM 

spectrum (Govender et al., 2007), providing much greater spectral resolutions than available 

with RGB or multispectral sensors. This gives them greater spectral discriminatory 

capabilities and makes them well suited for use in spectrally complex environments like the 

intertidal zone where there may be several species that are spectrally similar to one another. 

There are two main types of hyperspectral sensor that are suitable for drone operations and 

they are defined, primarily, by how the collect data (Tab. 6.4). Pushbroom devices scan a 

single line at a time across the horizontal field of view (HFOV) of the sensor. A narrow 

optical slit limits the amount of light entering the sensor to that of a narrow strip which 

focuses light through a prism and onto a detector, usually a charged couple device (CDD) 

(Gómez-Chova et al., 2008). These scan lines should theoretically be parallel and 

equidistant (Ringaby et al., 2010) but platform instability can lead to scan-line to scan-line 

errors (Hruska et al., 2012) and issues with exposure (Adão et al., 2017). Their relatively 

simple design means that pushbroom sensors do not require trade-offs between spatial and 

spectral resolutions (Jaud et al., 2018).  

These trade-offs have been responsible for the limited development of the second sensor 

type, full-frame, or snapshot devices which have high spectral but coarser spatial resolutions. 

Instead of capturing a single spatial and spectral dimension, full-frame sensors capture two 

spatial (x, y) and one spectral dimension (Aasen et al., 2014), meaning they capture the 

entire scene visible within the sensor field-of-view (FOV) simultaneously. This makes 

image mosaicking and georeferencing simpler than for pushbroom devices (Aasen et al., 

2014) as standard photogrammetry practices can be applied (Aasen et al., 2018). Coarser 

spatial resolutions can, in some cases, be mitigated by sharpening to a finer resolution 

panchromatic band (Behmann et al., 2018). Whilst full-frame sensors can also experience 

noise, manifesting as image blur, this is much simpler to account for during processing than 

scan-line errors (Hagen & Kudenov, 2013). Despite their potential advantages there are 

relatively few commercially available full-frame sensors (Tab. 6.4). Bareth et al. (2015) 

demonstrate the technical capabilities of two early models from Cubert (Cubert GmbH, Ulm, 

Germany) and Senop (formely Rikola) (Senop, Finland) for drone mapping operations and a 

more recent paper by Jackisch et al. (2018) successfully applied a Senop sensor for acid 

mine drainage monitoring.  
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A detailed review of drone sensor technology can be found in Adão et al. (2017) and Aasen 

et al. (2018). 

 

Tab. 6.2. Different mission planning and flight control software, compatible drones and operating 

systems (OS). Proprietary software is marked with an *. 

Software Compatible drones OS  

DJI GS Pro* DJI Phantom 4 Pro V2 

DJI Inspire 2 

DJI Mavic 2 Zoom/Pro 

DJI Matrice 600/600 Pro 

DJI Matrice 100 

DJI Matrice 200/210 V2 

DJI Wind 

iOSa 

DJI GS RTK* RTK-enabled DJI Models iOSa 

Pix4D Capture DJI Phantom 4 Pro V2 

DJI Inspire 2 

DJI Mavic 2 Zoom/Pro 

DJI Matrice 600/600 Pro 

DJI Matrice 100 

DJI Matrice 200/210 V2 

Parrot Anafi 

Parrot Bluegrass 

Yuneec H520 

iOS, Androida 

DroneDeploy DJI Phantom 4 Pro V2 

DJI Inspire 2 

DJI Mavic 2 Zoom/Pro 

DJI Matrice 600/600 Pro 

DJI Matrice 100 

DJI Matrice 200/210 V2 

DJI Wind 

iOS, Androida 

Freeflight 6* Parrot Anafi iOS, Androida 

ParrotFields* Parrot Bluegrass iOSa 

senseFly eMotion3* senseFly eBee X 

senseFly eBee Classic 

Windowsa 

senseFly eMotion Ag* senseFly eBee SQ Windowsa  

Sentera FieldAgentTM* Sentera PHX/RTK  

QBase3D* Tron F90+ 

Trinity F90+ 

Windowsa 

Mission Control* Xeno-FX Androidb 

Mission Planner Tuffwing UAV Mapper 

Hitec Xeno-FX 

SUI Endurance 

3dr Solo 

Windowsa 

QuestUAV* Q-200 Surveyor 

DATAhawk PPK 

Windowsa 

Yuneec DataPilotTM* Yuneec H520 Android, Windows, 

iOSa 

Map Pilot DJI Phantom 4 Pro V2 

DJI Inspire 2 

iOSa,c 
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DJI Mavic 2 Zoom/Pro 

DJI Matrice 600/600 Pro 

DJI Matrice 100 

DJI Matrice 200/210 V2 

DJI Wind 

C-Astral C3P* C-Astral Atlas C4EYE 

C-Astral Atlas ppX 

C-Astral Bramor C4EYE 

C-Astral Bramor mSX 

C-Astral Bramor ppX 

Windowsb 

Delair Flight Deck* Delair UX11 Androida 

Atmos UAV MarLynk* Atmos UAV Marlyn Windowsb 

WingtraPilot* WingtraOne Androidb 

Freefly Alta* Alta8 

AltaX 

iOSa, Androida 

Insitu ICOMC2* 

Insitu INEXA Control* 

ScanEagle 

ScanEagle2 

ScanEagle3 

Windows 

A = software version and device vary, B = hardware supplied by manufacturer, C = supports older 

models as well 
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Tab. 6.3. Commercially available multispectral sensors. Information is included on sensor weight (grams), integrated RGB sensors, bands and wavelength range, spatial 

resolution (pixels) (MP = megapixel), key lens information (HFOV = horizontal field of view), presence of an integrated light sensor (ILS) and method of integration with 

drones (Gimbal Mount = can integrate with drone gimbal and enable live feed, Various = various mounting options for drones available, Quickmount/Skyport = Integration 

with DJI drones, Custom = may require designing of custom mount). Information is accurate at time of submission (02/2020). 

Company Model 
Weight 

(g) 
RGB 

Bands / WL 

Range (nm) 
Spatial Resolution (px) Lens ILS Integration 

FluxData 

FD-1665-MS3 

FD-1665-MS5 

FD-1665-MS7 

1250a 

1250a 

1250a 

No 

No 

No 

3 (400-1000) 

5 (400-1000) 

7 (400-1000) 

659x494 – 1628x1236b 

659x494 – 1628x1236b 

659x494 – 1628x1236b 

Nikon F/T-Mount 

Nikon F/T-Mount 

Nikon F/T-Mount 

No 

No 

No 

-c 

-c 

-c 

Hiphen Airphen 200 No 6 (450-800) 1280x960 8 / 4.2 mm No Varioush 

MAIA 

MAIA WVe 

MAIA S2f 

MAIA M2g 

420 

420 

- 

Yes 

Yes 

Optional 

9 (395-950) 

9 (433-899.5) 

2 (395-950) 

1280x960 

1280x960 

- 

7.5 mm (35° HFOV)  

7.5 mm (35° HFOV) 

- 

Yes 

Yes 

Yes 

Gimbal Mountc,d 

Gimbal Mountc,d 

-c 

MAPIR Kernal 45+i Optional 1-6 (350-1100) -b 
3.5 (87° HFOV) – 35 mm (9° 

HFOV)  
No Varioush,m 

MicaSense 

Altum 

 

RedEdge-MX 

406.5j 

 

231.9j 

Yes 

 

Yes 

5 (450-900) / 

(8000-14,000k) 

5 (400-900) 

2064x1544 / 160x120k 

 

1280x960 

8 mm (48°x37°) / 1.77 mm 

(57°x44°)k 

5.4 mm(47.2° HFOV) 

Yes 

 

Yes 

Quickmount/SkyPorth 

 

Quickmount/SkyPorth 

Parrot Sequoia + 107j Yes 4 (550-800) 
1280x960 

4608x3456l 

4 mm (61.9° HFOV) / 4.9 

mm (63.9° HFOV)l 
Yes Varioush 

Sentera 
Quad Sensor 

Double 4K 

170 

80 

Yes 

Yes 

3 (600-900) 

5 (440-840) 

1248x950 

12.3 MP 

(50° HFOV) 

(60° HFOV) 

Yes 

Yes 

Varioush 

Varioush 

SILIOS CMS-C 75a No 8 (430-700) 1280x1024 16 mm (30.7 °) / 12-36 mm No Customo 
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CMS-S 

 

CMS-V 

 

75a 

 

75a 

 

No 

 

No 

 

8 (650-930) 

 

8 (550-830) 

 

1280x1024 

 

1280x1024 

(41°-13.6°) 

16 mm (30.7 °) / 12-36 mm 

(41°-13.6°) 

16 mm (30.7 °) / 12-36 mm 

(41°-13.6°) 

 

No 

 

No 

 

Customo 

 

Customo 

SlantRange 

3PX 

3p 

4p 

400 

350 

350 

Non 

Non 

Yes 

4 (410-950) 

4 (410-950) 

6 (410-950) 

1280x1024 

1280x1024 

1280x1024 

- 

- 

- 

Yes 

Yes 

Yes 

SkyPorth 

Varioush 

Varioush, Skyporth 

Tetracam 

ADC Micro 

ADC Snap 

Micro-MCAp,g 

Micro-MCA Snapp,g 

MCAW 

90 

90 

497-1000 

497-1000 

600 

No 

No 

Optional 

Optional 

Optional 

3 (520-920) 

3 (520-920) 

6-12 (450-1000) 

6-12 (450-1000) 

6 (450-1000) 

2048x1536 

1280x1024 

1280x1024 

1280x1024 

1280x1024 

8.43 mm (42.48° HFOV) 

8.43 mm (37.67° HFOV) 

9.6mm (38.26° HFOV) 

9.6 mm (38.26° HFOV) 

9.6 mm (38.26° HFOV) 

Yes 

Yes 

Yes 

Yes 

Yes 

Customc 

Customc 

Customc 

Customc 

Customc 

A = without lens, B = varies with lens, C = Contact manufacturer, D = Capable of reading internal IMU, E = Same wavelength intervals of WorldView-2, F = Same 

wavelength intervals of Sentinel-2, G = Modular (multiple filter options), H = Mounts available for multiple drone models – contact manufacturer , I = Depends on 

sensor/lens chosen, J = With ILS, K = Thermal camera, L = RGB Sensor, M = May not be compatible with all DJI drones – contact manufacturer , N = Band positions 

selectable at order, RGB can be attained, O = Company does not provide, needs to be custom designed, P = Available with 4, 6 or 12 cameras. 
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Tab. 6.4. Commercially available hyperspectral sensors. Information is included on the weight (grams), wavelength range (nm), number of spectral bands, spectral resolution 

(nm), spatial resolution (pixels), key lens properties (e.g. focal length and field of view) and acquisition method (Full-frame or push-broom). All information was correct at 

time of initial submission (02/2020). 

Company Model Weight (g) 
WL Range 

(nm) 
Bands 

Spectral Res 

(nm) 

Spatial Res 

(px) 
Lens Acquisition 

BaySpec 

OCI-F 

OCI-U-1000 

OCI-U-2000 

GoldenEyeTM 

GoldenEyeTM 

570 

180 

190 

- 

- 

400-1000 

600-1000 

600-1000 

400-1000 

900-1700 

120 

100b 

25b 

40-52 

40-52 

5-7 

~5 

12-15 

7-12c 

7-12c 

800 

2048 

200 x 400 

648x488 

648x488 

16 mm (21°) 

35 mm (18°) 

35 mm (18°) 

50 mm (13°) 

50 mm (13°) 

Push-broom 

Push-broom 

Full-frame 

Full-frame 

Full-frame 

Corning 

microHSITM 410 VIS-

NIR 

 

microHSITM alpha-VIS 

450 

 

 

2100 

400-800a 

400-1000a 

380-880a 

400-800a 

350-1000a 

120 

180 

150 

40 

60 

3.3 

3.3 

3.3 

10 

10 

680 

680 

680 

1280 

1280 

16 mm (30°) – 33 mm (15°) 

16 mm (30°) – 33 mm (15°) 

16 mm (30°) – 33 mm (15°) 

195 mm (4.9°) 

195 mm (4.9°) 

Push-broom 

Push-broom 

Push-broom 

Push-broom 

Push-broom 

Cubert 
Firefleye S185 SE 

ULTRIS 20 

470 

350 

450-950 

450-850 

125 

100 

8 

4 

2x1d 

400x400 

10 mm (33°) – 50 mm (7°) 

(40°) 

Full-frame 

Full-frame 

Headwall 

Nano-Hyperspec® 

Micro-Hyperspec® 

500 

700 (A-Series) / 

1100 (E-Series) 

400-1000 

400-1000 

400-1000 

270 

324  

369  

6c 

2.9c 

- 

640 

1004 

1600 

4.8 mm – 70 mm 

4.8 mm – 70 mm 

4.8 mm – 70 mm 

Push-broom 

Push-broom 

Push-broom 

HySpex 

VNIR-1024 

VNIR-1800 

Mjolnir V-1240 

Mjolnir VS-620 

4200 

5000 

4000 

6000 

400-1000 

400-1000 

400-1000 

400-2500 

108 

182 

200 

490 

5.4 

3.26 

3 

3-5.1 

1024 

1800 

1240 

620 

16° 

17° 

20° 

20° 

Push-broom 

Push-broom 

Push-broom 

Push-broom 
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Itres MicroCASI 1920 2500 400-1000 288 2.1 1920 36.6° Push-broom 

Resonon 

Pika L 

Pika XC2 

Pika NUV 

600 

2220 

2100 

400-1000 

400-1000 

350-800 

281 

447 

196 

2.1 

1.3 

2.3 

900 

1600 

1600 

6 mm (47.5°) – 70 mm (4.3°) 

6 mm (76°) – 70 mm (7.7°) 

17 mm (30.8°) 

Push-broom 

Push-broom 

Push-broom 

Senop HSC-2 986 400-1000 1000b 5-10 1024x1024 ~10 mm (36.8°) Full-frame 

Specim FX10 1260 400-1000 224 5.5c 1024 (38°) Push-broom 

Ximea 
MQ022HG-IM-LS150-

VISNIR 
32 470-900 150 3 2048x5 - Push-broom 

A = multiple wavelength range options, B = bands are selectable, C = full width half maximum (FWHM), D = Megapixel 
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6.3.2.4. Sensor calibration 

Multispectral and hyperspectral sensors require calibration to local insolation conditions to 

produce accurate reflectance values (Markelin et al., 2013). To obtain absolute reflectance 

for local insolation conditions, white reference calibration targets should be measured. 

Ideally, a Lambertian surface (Jablonski et al., 2016), being a diffuse reflector, should be 

used as the white reference, and many sensors are supplied with their own targets and 

instructions on calibration routines. If insolation levels change significantly during a flight 

(i.e. from sunny to cloudy) then the drone should be safely landed and recalibrated before 

continuing (or restarting) the survey. Many multispectral sensors (Tab. 6.3) are supplied 

with incident light sensors (ILS) which can compensate for changes in light conditions 

during a survey (i.e. passing cloud cover) ensuring the accuracy of the empirical line linear 

relationship (established during pre-flight calibration) for the resulting multispectral imagery 

(Assmann et al., 2019). Obtaining absolute reflectance values (reflectance being an inherent 

property), through calibration, allows data from several flights, different locations and 

different times to be directly compared.   

6.4. Operational parameters  

6.4.1. Survey accuracy 

A primary consideration when planning any form of drone-based remote sensing survey is 

the required level of accuracy which will determine whether time and money needs to be 

invested in correctional GPS technology. If centimetre level accuracy is not required, then 

spatial positioning based on the drone’s internal GPS will suffice (Joyce et al., 2018) 

provided GPS data from field surveys is not being integrated into analysis workflows. 

Correctional GPS technology is typically either real-time kinematic (RTK) or post-

processing kinematic (PPK) and can be applied through GCPs or through compatible drone 

models. RTK and PPK work by triangulating, not only with satellites, but also with base 

stations to achieve highly accurate horizontal and vertical positional data. These base 

stations, of known coordinates, calculate the positional error of satellites and this 

correctional information is used to enhance the geolocation of survey images, allowing for 

centimetre level accuracy (Yoo et al., 2018). The difference between the two technologies is 

how they apply this correction, as their names imply; RTK applies them during the survey, 

using a dedicated base station, whilst PPK applies them afterwards.  

Deploying GCPs is a well-established method for georeferencing drone imagery (Chen et 

al., 2016). GCPs are usually a distinctive pattern where the centre point is clearly visible to a 

drone, the size of which should depend on the drone sensor spatial resolution (Dash et al., 
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2018). The location of the centre point of these markers is then recorded using an RTK/PPK 

enabled GPS device, such as a Trimble GPS (Trimble, Sunnyvale, USA). Whilst accurate, 

this is a very time-consuming method (d’Oleire-Oltmanns et al., 2012; Forlani et al., 2018) 

as GCPs are required to be spread out across the entire survey area. The number of GCPs 

required for a site will depend on the survey area. Assmann et al. (2019) recommend, for a 

topographically simple site of < 1 ha, that five GCPs should be enough and that any more 

does not provide a substantial improvement in geolocation accuracy. The required number of 

GCPs may also depend on the desired precision of the survey. James et al. (2017) found that 

in order to reach a survey precision of 50 mm, only 15 out of the 30 GCPs deployed were 

required to achieve the desired precision. A study by the Nevada Department of Transport 

found that placing more than 5–10 GCPs did not yield increased levels of survey accuracy 

(Pix4D, 2020). The lack of clarity from the literature reinforces the need for thorough pre-

flight planning and this should include evaluating the required number of GCPs for a chosen 

study site. The development of RTK/PPK enabled drones (Tab. 6.1) eliminates the need for 

GCPs, vastly improving the efficiency of drone surveys (Hill, 2019). Some drones can also 

be outfitted with a separate RTK/PPK system, such as the DJI D-RTK GNSS, which is 

compatible with all DJI drones using the A3 controller system. PPK may be the more useful 

option for drone surveys as, unlike RTK, it does not require a dedicated base station, 

reducing costs, and can use national GPS stations such as the OSI’s GNSS network in 

Ireland, OS Net in the UK or the CORS network in the USA. PPK does not require a direct 

connection between the base station and the drone, as it post-processes the time stamped 

images and is much less susceptible to signal loss. Not requiring a dedicated base station 

means that PPK provides much greater range and operational flexibility than RTK, 

potentially allowing much larger areas to be surveyed, taking full advantage of the increased 

range of fixed-wing drones (Hill, 2019). 

6.4.2. Regulations 

Prior to any drone survey it is necessary to check local drone licensing requirements and 

regulations which should, if necessary, be factored into the flight plan. This is important as 

restrictions can limit where, how high and how far a drone can fly, and these can vary by 

country (Duffy et al., 2018a). Regulations can also vary within countries, for example 

around restricted airspace, such as near airports and special permissions and effective 

communication with local air traffic controllers are most likely required (Duffy et al., 

2018a). Baena et al. (2017) highlights some of the variation in international drone 

regulations that they experienced, from those which have no regulations to those that do and 

also highlight the need to consider local communities by, for example, gaining landowner 

permission before surveying. Typically, national drone regulations are managed by 
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respected national aviation authorities (such as the IAA in Ireland) and these should be 

consulted when planning drone surveys. 

It is also important to consider the social implications of drone flying. In rural coastal areas 

there can be a degree of sensitivity over activities occurring within the intertidal zone. With 

drones hardly being inconspicuous, we have found that engaging with local people and 

explaining the purpose of the research, has elicited a positive response and has facilitated the 

parking of extra vehicles on private property near one of our study sites. Awareness of local 

and regional societal issues that may affect people’s perceptions of a drone survey should be 

considered. When necessary, efforts should be made to provide information to relevant 

communities and individuals to facilitate positive, rather than negative responses, thus 

improving the perception of drones as effective and safe conservation tools (Sandbrook, 

2015).  

6.4.3. Weather 

Weather is one of the most important factors influencing the success of any drone survey, 

especially in often exposed coastal environments. Moderate wind speeds will reduce flight 

time, whilst higher winds will pose a significant risk to the drone, particularly during take-

off and landing. Most drones are not waterproof (Johnston, 2018), although the SwellPro 

SplashDrone 3+ (SwellPro, Shenzhen, China) is entirely waterproof and can land in and take 

off again from water. For most commercially available drones however, the general advice 

would be to avoid rain and if it starts to rain during a survey, land as quickly and safely as 

possible. Bright sunlight can create problems in the intertidal zone from sun glint off wet 

macroalgae and shallow submerged areas. This can be mitigated in two ways, planning flight 

lines as close to perpendicular to the sun as possible (O’Neill et al., 2011) and flying when 

the sun is at a lower angle, in relation to solar noon, to reduce glint (Flynn & Chapra, 2014). 

Flying earlier or later in the day may increase shadows, which, depending on site topography 

and vegetation height (Gray et al., 2018), can negatively impact the data quality (Ishida et 

al., 2018). Flying closer to solar noon will help to reduce the presence of shadows (Dash et 

al., 2018; Duffy et al., 2018a; Otsu et al., 2019). A two-hour window either side of solar 

noon has been recommended as suitable for shadow reduction (MicaSense, 2019) which 

may help mitigate tidal constraint limitations on flying time. Surveying under constant light 

conditions is the optimal scenario as variation in illumination can cause shading, bright spots 

and over/under-exposure which can negatively affect reflectance values (Doughty & 

Cavanaugh, 2019). 
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6.4.4. Local/regional knowledge 

Local and regional knowledge are vital for an efficient drone survey (Garono et al., 2004) 

and sites of interest should be visited at least once prior to surveying. This is important for 

intertidal macroalgal mapping for two reasons, first, to verify the presence of target species 

or communities and second, to define site limits. This may vary depending on research 

objectives, for example if one is looking to survey a large area (pursuant to appropriate 

permissions) then a different approach may need to be taken, such as visits to multiple sites 

within the study area. With regulations often limiting how far a drone can be flown, for the 

operator it is important to determine whether the feature of interest is sufficiently covered by 

the proposed flight plan (this may not be necessary if conducting a holistic mapping survey). 

Other factors may also determine the size of the study area including research objectives, 

such as mapping long term monitoring sites (Díaz-Delgado et al., 2018) and restricted 

airspace. Regional knowledge is important for helping to identify potential study sites and 

can be used in combination with satellite imagery to help identify points of entry to a site, 

such as the presence of a pier or entry road. Depending on the equipment used in the survey, 

identifying a point of entry close to the study site is useful to avoid carrying heavy, and often 

expensive, equipment across the hazardous intertidal zone. Owing to the nature of the 

intertidal zone, at least one member of the survey team should be familiar with working 

there and be responsible for site risk assessments (Burrows et al., 2010). 

6.4.5. Processing and analysis 

Data outputs will depend on the sensor used, with RGB data being less complex to process 

and analyse compared to multispectral and hyperspectral but limited in terms of the types of 

quantitative analysis that can be performed.  

There are a range of available open source and subscription-based image processing and 

analysis software. Software including Maps Made Easy (San Diego, USA) and 

DroneMapper (Cedaredge, USA) offer free image processing (with resolution limitations) 

for small papers with the option of paying for larger maps and extra features. Agisoft 

(Agisoft LLC, St. Petersburg, Russia), Pix4D (Lausanne, Switzerland) and ENVI One 

Button (Harris Geospatial, Boulder, USA) are established subscription-based software for 

image processing that provide a simple set of tools allowing for the easy processing and 

mosaicking of drone imagery through the process of structure-from-motion (SfM) which 

produces detailed orthomosaics and digital surface models (DSM) (Windle et al., 2019). A 

key advantage of these software packages is their radiometric calibration toolset which allow 

for the easy calculation of absolute reflectance values. Whilst fill-frame hyperspectral 

datasets can theoretically be processing using the aforementioned software, many sensors 
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(including pushbroom) come with proprietary software allowing for accurate image 

processing. 

The open source software, QGIS, has a range of image analysis and classification tools 

which can be supplemented by plugins and toolboxes such as Orfeo Toolbox (OTB), SAGA 

and GRASS, each adding extra functionality. R packages have also been used in by several 

studies (Brodie et al., 2018; Duffy et al., 2018b) to analyse RGB and multispectral datasets. 

ENVI (subscription-based) is an established, powerful image analysis software with a raft of 

different options and processing algorithms (Wu & Sun, 2013), making it a suitable choice 

for the processing of all types of remote sensing data. Functionality can be increased through 

the purchase of different modules. Other software packages such as eCognition (Trimble, 

Sunnyvale, USA) and ArcGIS (ESRI, Redlands, USA) also provide different image analysis 

packages based on traditional classification techniques and object-based image analysis 

(OBIA). 

6.4.5.1. Object-based image analysis (OBIA) 

Object-based image analysis (OBIA), also known as image segmentation in software such as 

ArcGIS, differs from traditional pixel-based classification approaches. Instead of assigning 

each pixel to a class based on its spectral properties, OBIA groups neighbouring pixels of 

similar spectral properties together (Ventura et al., 2018) forming ‘super-pixels’ and, as 

such, is less susceptible to increased spectral variability caused by higher resolution imagery 

(Lechner et al., 2012). OBIA also allows for the inclusion of additional information such as 

object shape and texture in addition to spectral information (Dronova, 2015). After grouping 

pixels together, the next step is to classify each segment into recognisable classes (e.g. 

seaweed species, groups, assemblages etc.) (Blaschke, 2010) with training areas being 

selected from the polygons created during the initial segmentation step and this data is then 

used to train a classifier to create a final classification map. OBIA functionality is available 

in both open source and subscription-based software and can be a useful tool for relatively 

low-cost mapping studies where target features are relatively distinct from one another, such 

as classifying shallow aquatic vegetation using multispectral imagery (Chabot et al., 2018), 

mapping coastal marine habitats using RGB data (Ventura et al., 2018) and mapping of 

swamp vegetation extent, again using high resolution RGB imagery (Lechner et al., 2012). 

6.4.5.2. Pixel-based classification methods 

Pixel-based classifiers seek to assign each individual pixel in an image to a pre-determined 

class (supervised) or a class based on groupings of pixels with common characteristics 

(unsupervised). Supervised classification methods, such as Maximum Likelihood Classifier 



Chapter 6: A guide to mapping intertidal macroalgae with drones 

 

177 
 

(MLC) (Paola & Schowengerdt, 1995) and Spectral Angle Mapper (SAM) (Kruse et al., 

1993) require the input of spectral training data to create classes (e.g. seaweed species) into 

which individual pixels are classified based on the similarity of the spectral signatures 

(Vahtmäe & Kutser, 2013). Unsupervised classification, such as K-means and ISODATA 

(Tou & Gonzalez, 1974), classifies pixels using statistics alone, without the need for 

inputted training classes. The need to collect training data can make using the supervised 

classification more time-consuming, but it allows for the creation of more detailed classes 

(Thomson et al., 1999), providing better representation of the habitat of interest. In 

environments of relatively optically distinct cover classes, the simplicity of unsupervised 

classification methods may be a useful first step in image classification (Duffy et al., 2018b) 

and may also be an effective method for creating water masks (Pe’eri et al., 2008). 

6.4.5.3. Structure from motion (SfM) 

Structure from motion (SfM) techniques allow the creation of three-dimensional structures 

from a series of two-dimensional images (Johnston, 2019). Algorithms use the relative 

positions of pixels from overlapping imagery, obtained at different angles to create both 

orthorectified imagery and three-dimensional scenes, also known as digital surface models 

(DSM) (Assmann et al., 2019). Software, such as Agisoft (Agisoft LLC, St. Petersburg, 

Russia) and Pix4D (Lausanne, Switzerland) can create digital surface models (Yoo et al., 

2018) which, in the intertidal zone, could provide information on site topography and 

elevation. SfM techniques have been use in monitoring terrestrial vegetation, such as 

grassland sward height, where, unlike intertidal macroalgae, the structure can be measured 

providing data on height and area (Forsmoo et al., 2018) and relationships between volume 

and biomass can be derived (Cunliffe et al., 2016). This particular approach is difficult to 

apply in the intertidal zone as emersed macroalgal species loose their structure and 

submerged species are difficult to map owing to the limited penetration of light through the 

water column. Conversely, the unique zonation patterns present within the intertidal zone, 

particularly the defined vertical zonation of some species (Lubchenco, 1980), may improve 

classification workflows through the addition of elevation data. Regarding the target species 

for this research, Ascophyllum nodosum, information gained through the additional of DSM 

data may not enhance classification accuracy as it is often found in mixtures with Fucus 

vesiculosus along similar vertical elevations. 

6.5. Application for intertidal macroalgal mapping 

The intertidal macroalgal species, group, or community of interest will determine the sensor 

and drone choice along with key operational parameters such as flying height and speed. 
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This study defines three key characteristic of intertidal macroalgae that will influence these 

decisions, 1) the size of individuals within a species, 2) homogeneity of coverage and 3) 

spectral similarity to surrounding species and substratum. If conducting a community-level 

mapping survey one should apply these criteria for each species present and determine 

which species can or cannot be mapped using a certain method (Nagendra, 2001). The 

choice of drone is also influenced by the area that needs to be surveyed, for large areas, 

where regulations permit, fixed-wing (or VTOL) models are the most appropriate, covering 

larger areas than multirotor drones and offering flexible mounting solutions for a range of 

sensors (heavy-lift models can carry multiple sensors).  

6.5.1. Unique operational challenges of intertidal macroalgal mapping 

Site access is an important consideration when selecting a study site as, particularly in 

remote areas, it will influence survey planning logistics. Depending on the type of drone and 

associated survey equipment, vehicles and people, it may not be possible to traverse difficult 

terrain, such as the rocky intertidal or muddy flats. It is important to consider the size of the 

study site(s) and if multiple locations are to be surveyed within a region, how best to travel 

between them (e.g. on-foot, by boat, car etc.). Easy access points such as roads and piers are 

suitable options allowing vehicles to be brought close to the study site and allowing sensitive 

equipment to be protected in case of rain.  

The intertidal zone can often pose challenges for the deployment and recovery of drones. 

Some fixed-wing drones perform glider landings, requiring a large, open space free of 

obstacles. Some also require launching systems (Hodgson et al., 2013) which can be of 

varying size and portability depending on the drone model. The choice of study site must 

consider the availability of take-off and landing spaces (Diaz-Delgado et al., 2018), the 

availability of which will vary depending local topography and cover type. Multirotor and 

VTOL-enabled fixed-wing drones do not have to contend with this and can be safely 

deployed and recovered in much smaller spaces (Ventura et al., 2018), such as from open 

patches of substratum interspersing macroalgal beds. Depending on the size of drone one 

should consider bringing a landing pad to avoid contact between the drone and sand and 

sediment which can cause damage. 

Tidal constraints are, in higher latitudes, the most unique and restrictive challenge associated 

with conducting drone research in the intertidal zone. The low tide window limits all aspects 

of survey operations, from flight time, GCP measurements and concurrent field work 

surveys. Flying within 30 min either side of maximum low tide (Tait et al., 2019) should 

provide a sufficient window in which to collect representative data on intertidal macroalgal 

communities, with many current drone models having flight times of between 20-90 min 
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(Tab. 6.1). This time window may vary when mapping species and communities occurring 

in the upper intertidal, such as P. canaliculata, which experiences greater periods of 

emersion. Depending on the geographic region and season, bad weather and unsuitable 

atmospheric conditions can combine with tidal constraints to reduce the time available to 

survey. This requires the need for redundancy to be included in survey planning whereby 

extra time (i.e. a week) should be allocated to surveys, especially in areas where the weather 

is more unpredictable (this includes issues discussed in section 4.3). Satellite imagery can be 

a useful tool for planning flights over study areas (Tay et al., 2018) but the state of the tide 

during image acquisition may make it difficult to determine the true extent of the intertidal, 

necessitating a pre-survey site visit to accurately determine the flight area. 

If using GCPs, it is important that the amount of time needed to deploy, measure and then 

collect them is considered in the survey plan. The intertidal zone can be a difficult 

environment to traverse but this process must be completed quickly and safely so as not to 

delay the drone survey or to be a risk from the incoming tide. The amount of GCPs used by 

other mapping studies using drones varies greatly depending on the size of the study area. 

On topographically flat sites of < 1 ha, Assmann et al. (2019) recommend that 5 GCPs are 

suitable, but also noting that for more topographically complex sites, more GCPs may be 

required. Dash et al. (2018) used nine GCPs in their drone survey of a 2.7 ha forested site, 

Tait et al. (2019) used 12 GCPs for their ~2 ha rocky intertidal mapping work, and six GCPs 

were used by Flynn & Chapra (2013) for each 1 km stretch of river surveyed. Larger sites 

will require more GCPs which will increase the amount of time required to deploy them, for 

example d’Oleire-Oltmanns et al. (2012) noted that it took 2–4 h to deploy and measure 20–

25 GCPs and for eighty GCPs, it took 7–8 h.  

Any water present within a scene can usually be masked out during processing, either 

through thresholding using the NIR band, or through vegetation indices (VI) such as the 

normalised difference water index (NDWI) (McFeeters, 1996). Along with masking out 

terrestrial features this is a useful first step in analysis intertidal imagery as it reduces 

external noise and improves classification accuracy (Casal et al., 2011). The presence of 

water can affect the reflectance spectra of submerged macroalgae, particularly towards the 

non-visible region of the EM spectrum (Fyfe, 2003), and turbid conditions can reduce light 

penetration (Kutser et al., 2006b), potentially altering the final classification accuracy. Land 

masks can either be done manually (Roelfsema & Phinn, 2010) or using VI’s (Noiraksar et 

al., 2014).  

Understanding variations in the spectral response of different macroalgal species and how 

this affects their spectral separability from one another is an important consideration. 
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Seasonal variations in pigment composition and concentrations (Stengel & Dring, 1998) 

may influence the choice of survey season, for example reproductive A. nodosum forms 

receptacles which appear yellow and may elicit a different spectral response to the thallus 

sections. Survey planning should consider this, particularly if collecting in-situ spectral 

library data, which, depending on the species or community of interest should be collected 

concurrently with the drone survey. 

Duffy et al. (2018a) reviewed their experiences of operating drones in challenging 

environments, including deserts and the arctic, and highlight some of the issues raised here 

along with additional ones.     

6.5.2. Challenging macroalgae to map 

The exact same survey planning rationale can be applied to mapping both individual species 

and mixed communities (i.e. multiple species occurring within one study site). The only 

difference is that when mapping a single species (even if it occurs within a mixed 

community of macroalgal species) it is only necessary to determine whether the species of 

interest is spectrally distinct from all other species and substratum. The successful spectral 

separation of non-target species is not necessary. For mixed communities, however, it is 

important to determine that the species of interest are all distinct from one another and also 

from any other species and substratum present within the site. 

The following examples represent intertidal species/communities that may not be well suited 

for quantification using drone-mounted remote sensing methodologies. The primary focus 

here is on the size of species’ individuals and how easily they can be observed from a drone. 

Species that are relatively small in size and that do not form homogenous stands, such as 

Codium spp., would, even if spectrally distinct from surrounding species, be very difficult to 

map, regardless of the method used. Mapping over extremely fine spatial scales is possible 

but would require flying at extremely low altitudes to attain the necessary spatial resolution 

(Lucieer et al., 2014). Flying so low would reduce the area that can be covered and thus the 

survey efficiency and would only be feasible if using a multirotor drone, which can fly at 

very slow speeds. Such high spatial resolutions will also increase spectral complexity, 

potentially making spectral discrimination more difficult (Ventura et al., 2018). Some small 

species, such as Pelvetia canaliculata, are often found in relatively homogenous 

assemblages (also found mixed with Fucus spiralis) in the upper intertidal zone making 

them easier to observe from higher flying drones. Relatively large macroalgal species, such 

as Halidrys siliquosa, often confined to rockpools (Bunker et al., 2017), and S. muticum, 

tend to have more fragmented distributions which would likely present a challenge for 

mapping if they are mixed with other brown macroalgal communities. Sub-canopy species, 
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such as many red macroalgal species, cannot be mapped using current remote sensing 

technology. Whilst some, for example Chondrus crispus and Palmaria palmata are not 

exclusively sub-canopy (Kübler & Davison, 1995; Lubchenco, 1980), it would still not be 

possible to get an accurate assessment of their true extent. 

6.5.3. Mapping homogeneous cover species 

Species, including macroalgae and seagrass, which form large monospecific assemblages 

can potentially be mapped using relatively low-cost approaches. Intertidal and subtidal 

seagrass can grow in dense monospecific beds and have recently been mapped using a low-

cost drones and RGB sensors (Duffy et al., 2018b; Nahirnick et al., 2018; Ventura et al., 

2018). The monospecific nature of these beds means that their spectral complexity is low as, 

for example, seagrass and substratum are visually distinct from one another. OBIA 

techniques are a useful classification method for RGB imagery and have been successfully 

used to map optically distinct terrestrial habitats (Laliberte & Rango, 2011; Lechner et al., 

2012) and can be applied for the accurate classification of intertidal ecosystems. 

Concurrently, pixel-based classification methods have also successfully been applied to 

dominant, monospecific intertidal macroalgal communities (Murfitt et al., 2017). The 

desired level of taxonomic resolution will also influence the choice of remote sensing 

hardware (Dekker et al., 2003). Taddia et al. (2019) sought only to identify the presence of 

submerged green seaweed using a multispectral sensor and were able to accurately monitor 

seasonal variation in coverage. 

The relative homogeneity of these environments may mean that fine spatial resolution is not 

always required, and surveys can be conducted at higher heights, covering larger areas. The 

optimum survey ground sampling distance (GSD) should consider the spatial scales at which 

spectral variation occurs (Assmann et al., 2019). This should also consider whether 

additional data needs to be collected, for example, Duffy et al. (2018b) were able, flying at 

15 m altitude, to observe faunal species, such as cockles, within a seagrass bed. Depending 

on the scale of distribution, where regulations and distance may limit drone applications, 

satellites can also be a suitable mapping choice (Barillé et al., 2010). Where homogenous, 

monospecific coverage is present, VI’s can be used to explore intraspecific variations in the 

physiology of the target species. One popular VI is normalised difference vegetation index 

(NDVI), which is correlated with plant condition, physiological stress and photosynthetic 

activity (Dash et al., 2018). For intertidal seagrass meadows, relationships have been 

developed between NDVI and biomass (Barillé et al., 2010) and NDVI and percentage cover 

(Valle et al., 2015). Similar relationships do not appear to exist for intertidal macroalgal 

species, and this may prove an interesting future research topic. 
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6.5.4. Mapping mixed macroalgal communities 

Mapping constituent species within mixed communities of intertidal macroalgae can offer 

additional mapping challenges than more homogenous ones. The spatial scale over which 

the mixture of species occurs will determine the optimal GSD and thus, factoring in sensor 

choice, the survey height. For mixtures that occur over fine spatial scales, flying low will 

improve the ability of the sensor to observe individual species and/or key biological 

processes (Lucieer et al., 2014). Very low flying heights will also necessitate the use of a 

multirotor drone which is also able to fly at extremely low speeds (Aasen et al., 2014), 

which cannot be achieved using fixed-wing drones (Anderson & Gaston, 2013). Mixed 

assemblages comprised of large macroalgal species, forming relatively homogenous stands, 

can likely be observed from higher survey heights so long as spectral homogeneity remains 

larger than the survey GSD.  

Mixtures of spectrally distinct species can likely be discriminated between using either RGB 

or multispectral sensors, which have been used successfully for distinguishing between 

macroalgal groups (Brodie et al., 2018) and between different macroalgal species (Tait et 

al., 2019). Mixtures of spectrally similar species (i.e. intertidal fucoid assemblages) will 

require both a high spatial and spectral resolution to achieve species-level discrimination 

(Fyfe, 2003). The difficulties of distinguishing between one or more spectrally similar 

macroalgal species has previously been highlighted (Kutser et al., 2006b; Kotta et al., 2014; 

Uhl et al., 2013), demonstrating the challenges of surveying in these complex environments. 

However, Fyfe (2003) did demonstrate that it was possible to discriminate between three 

spectrally similar seagrass species. In these situations, the high spectral and, when drone-

mounted, spatial resolution of hyperspectral sensors are necessary to identify subtle spectral 

differences between species (Adam et al., 2010; Casal et al., 2013). High spatial resolutions 

will also help to reduce within-pixel spectral mixing, improving classification accuracy 

(Costa et al., 2007). Oppelt et al. (2012) utilised a pushbroom hyperspectral sensor, flown at 

693 m using a motorised glider, to survey the intertidal zone at Heligoland. Using existing 

habitat maps and several supervised, pixel-based, classification techniques they were able to 

successfully identify multiple seaweed classes across a range of different taxonomic 

resolutions. This remains the only study to apply both high spatial and high spectral 

resolution technology to map intertidal macroalgal communities. Several studies, including 

Oppelt et al. (2012), Brodie et al. (2018) and Tait et al. (2019), identified classes of mixed 

taxonomic resolution, some to species level and others only to the group level, and the 

achievable taxonomic resolution will ultimately depend on research objectives as to whether 

a targeted or holistic mapping approach is desired. 



Chapter 6: A guide to mapping intertidal macroalgae with drones 

 

183 
 

In spectrally complex environments it is important to first understand the spectral properties 

of dominant canopy-forming species. The creation of a spectral library for dominant canopy-

forming species can be used to train supervised classification methods, saving time by 

avoiding the need to collect training data through extensive GPS-based field surveys (Kotta 

et al., 2014). An alternative method for the collection of training and reference data is to 

manually extract the data from high resolution RGB imagery (Husson et al., 2016; Otsu et 

al., 2019). The success, or failure, of this method will, again, depend on the spatial and 

spectral properties of the macroalgal assemblages within a scene. Homogenous stands of 

spectrally distinct species will be easy to identify in the imagery whereas more spectrally 

similar, mixed stands may prove a challenge. The collection of in-situ spectral library data 

must account for spatial and temporal variations in the spectral properties of macroalgal 

species and how this may, or may not, influence the ability to spectrally distinguish between 

them. 

6.6. Concluding remarks 

The potential applications of drone-based remote sensing technology for intertidal 

macroalgal mapping are broad and diverse and it is difficult to provide clear technological 

recommendations for all potential research scenarios. However, regardless of what is to be 

mapped, the decision-making process regarding the choice of hardware, software and 

methodologies remains the same. Mapping intertidal macroalgal communities provides a set 

of unique challenges not found in other environments. The advice provided herein aims to 

ensure that a prospective researcher has sufficient tools and knowledge required to make 

informed decisions when planning drone surveys. This is not meant to be a one stop shop 

encyclopaedia of knowledge on drone technology and, with the pace of development and 

applications of drone-based technology, the prospective researcher should use the 

information here as a broad introduction to further relevant and insightful research. 
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Chapter 7: Conclusions 

Somewhere beyond the sea… 
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7.1. Overview 

This thesis sought to develop an integrated resource assessment methodology, utilising 

remote sensing technologies, to address the significant current biological knowledge data 

gap for key Irish macroalgal species. In doing so, the current research aimed to develop a 

methodology that was standardised, repeatable, reliable and cost-effective. The mapping 

capabilities of both optical and acoustic remote sensing technologies along with the ancillary 

validation work that accompanies them were investigated. The growing interest in the 

commercial and ecological value of many macroalgal species, both in Ireland (Anon, 2019) 

and globally (FAO, 2014) demands the development of accurate ecological data with which 

to support informed, sustainable decision-making practices. The two target organisms 

investigated, Ascophyllum nodosum and Laminaria hyperborea, represent species that, in 

Ireland, are of commercial interest and also of significant ecological importance, and for 

which little data exists. To support decision making, there is a need to develop survey 

methodologies that can cover large areas.  

In-situ biological observations set the ‘gold standard’ for the collection of detailed biological 

information and their importance cannot be overstated. However, as a methodology to 

conduct large-scale habitat mapping surveys for the quantification of species distribution, 

they are incredibly time-consuming and limited in the spatial extent that can be covered 

(Kerr & Ostrovsky, 2003). The use of remote sensing technology allows much larger areas 

to be covered, yet, key challenges remain in linking biological processes to observable and 

identifiable features in both the optical and acoustic datasets. This study represents a 

comprehensive investigation into the remote sensing of both intertidal and subtidal 

macroalgal distributions. This thesis has been able to draw conclusions of the suitability of 

different remote sensing methodologies for the assessment of different macroalgal 

communities and these can now be used to inform future research, within Ireland, on the 

scaling up of remote sensing surveys to support the development of regional and national 

resource management plans.  

7.2. Spectral properties of intertidal macroalgal species 

Previous studies investigating the spectral properties of macroalgae have identified strong 

spectral separability between macroalgal groups (Bajjouk et al., 1996), yet there appeared to 

be little evidence for spectral separability within these groups (Kutser et al., 2006; Casal et 

al., 2013). Developing a mapping approach that targets a single species (i.e. A. nodosum) 

required an understanding of its spectral properties and spectral separability from other 

common intertidal canopy-forming species. Determining spectral separability between 
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spectrally similar species (e.g. brown macroalgae) was, thus, a priority for this research. 

Alongside this, temporal changes in pigment concentrations (Schmid et al., 2017) likely 

cause variations in spectral response and this research aimed to understand how inter and 

intra-specific spectral relationships varied across four seasons intra-annually. Visually, A. 

nodosum often has a distinct colour gradient from the tips (lighter) to the base (darker) 

owing to different light regimes (Stengel & Dring, 1998) and the relationship between the 

two was also something we sought to understand. 

To address the above research questions, a TriOS RAMSES Hyperspectral Radiance and 

Irradiance sensor, measuring over a 320-950 nm WL range, was deployed across four 

seasons in 2018, at a single site near Carraroe (Co. Galway). The results showed that, as 

expected, there was clear separation between the macroalgal groups, across the four 

sampling seasons, which provided confidence that the applied methodology, initially 

developed by Kotta et al. (2014), would also yield accurate results for species-level spectral 

separation. It could be demonstrated that it was possible to accurately separate between 

spectrally similar brown macroalgal species, including the light and dark variants of A. 

nodosum, across all seasons, apart from winter. The addition of seasonal variability into the 

ability to accurately separate between species strongly suggests that future surveys should 

incorporate this variation into their methodology development. However, having only 

sampled a single site, there was a lack of spatial variation required to draw a comprehensive 

conclusion on whether similar variations in spectral relationships were observed over 

different spatial scales, rather than being specific to the chosen study site. Further to this, it 

was demonstrated that the removal of macroalgae for spectral sampling (i.e. not in-situ) 

sampling did not cause any significant variation in the spectral response, agreeing with Kotta 

et al. (2014) who observed that canopy geometry and thallus orientation are not coupled 

with reflectance spectra. 

The methodology used has shown that, apart from winter, the light and dark variants of A. 

nodosum were spectrally separable from all other species and one-another and will 

undoubtedly facilitate the development of a larger-scale resource assessment methodology 

for this economically and ecologically important macroalgae. Results also highlight the need 

for spectral library sampling to be concurrent with drone surveys and that a single spectral 

library from a single season should not be relied on for different seasons. 

7.3. Drone-mounted hyperspectral mapping of intertidal macroalgae 

Until recently, few studies have used drones to monitor intertidal macroalgal communities 

(Murfitt et al., 2017., Kellaris et al., 2019; Taddia et al., 2019; Tait et al., 2019) and, to our 

knowledge, this research remains the first and only study to combine drones and 
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hyperspectral sensors for intertidal macroalgal habitat mapping. The high spatial and 

spectral resolutions obtainable from the fusion of these two technologies were necessary for 

accurate mapping and species identification in the spatially and spectrally complex intertidal 

zone. The recent and rapid development in drone technology (Colefax et al., 2017) has made 

them a viable alternative to aircraft and satellites for habitat surveys. Continued 

improvements in battery life, payload capacity, along with efforts to develop BVLOS 

operations, could soon see drones being used to collect data over much larger areas than 

currently possible. To this end, the capabilities of higher resolution drone imagery were 

investigated to see if they could facilitate the accurate identification and mapping of A. 

nodosum, in turn, supporting the future scaling up of these surveys. 

Whilst the core aim of Chapter 3 remained the accurate remote identification and mapping 

of A. nodosum, an objective was to determine which other species could be identified as, 

based on the results of Chapter 2, most of the common intertidal brown seaweed species 

would be spectrally distinguishable from each other. The collection of training and 

validation data often appeared overlooked in the literature, with regards to using it to support 

larger-scale surveys. If the efficiency of these methods is not scaled up in parallel to the 

drone survey, then mapping larger areas would still remain a costly and time-consuming 

process. The collection of two different types of training and validation datasets address this 

concern. Spectral libraries are an established source of training data (Casal et al., 2013; 

Dierssen et al., 2015) and can be relatively straightforward to develop. The work was aided 

by the high spatial resolution of the drone mounted RGB sensor, which allowed individual 

species to be identified and were able to collect training data rapidly and accurately (Lechner 

et al., 2012). Of the two classifiers used, MLC was the more accurate of the two (MLC: OA 

94.7 %, SAM: OA 76.3 %) which was likely due to the noise present in the hyperspectral 

data meaning that the spectral library training data could not be directly compared with. 

Crucially, both classifiers were able to identify A. nodosum, with MLC producing the 

highest classification accuracies (UA = 96 %, PA = 94 %) and SAM achieving reasonable 

levels of accuracy (UA = 98 %, PA = 73.9%). The accurate delineation of a homogenous A. 

nodosum bed can then be used for the accurate prediction of biomass once a relationship 

between biomass and a quantifiable metric, observable using remote sensing, can be 

established. This was something that was not tested in this study and should be investigated 

in future work. 

This research demonstrated that it was possible to accurately identify, using remote sensing, 

different macroalgal species occurring in spatially and spectrally complex environments. 

The visual identification of species from high-resolution RGB imagery could facilitate the 

scaling up of drone surveys as it offers an efficient way in which to collect data. However, 
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caution must be exercised as the visual interpretation of imagery can be subjective (Olofsson 

et al., 2014), requiring trained observers. Further validation of the accuracy of this method is 

required for other locations or times of year where the macroalgae may appear different. It 

was almost impossible to visually distinguish between F. spiralis, F. vesiculosus and F. 

serratus as they all appeared to have similar colouration and morphology when viewed in 

the imagery. There were clear limitations within the current study, particularly the technical 

challenges posed by mounting a pushbroom hyperspectral sensor on a drone which were 

most apparent in the data strip gaps and image noise levels. Without significant dampening, 

the vibrations from the drone increased the noise levels in the hyperspectral imagery, 

reducing the quality of the data output. Thus, future research should consider using full-

frame hyperspectral imagers instead (such as the Senop HSC-2) which are less susceptible to 

noise and are easier to process as standard photogrammetry methods can be applied 

(Honkavaara et al., 2016).  

7.4. Multispectral mapping of intertidal macroalgae 

The cost of hyperspectral sensors is likely a prohibitive for many organisations and is likely 

to not be utilised as a widespread mapping solution. Chapter 4 sought to investigate 

whether multispectral remote sensors, which are significantly cheaper, can be as effective at 

mapping A. nodosum as hyperspectral sensors. Multispectral sensors, having a coarser 

spectral resolution, were unlikely to achieve accurate classification results in sites with a 

high diversity of spectrally similar species. Instead, a site with a lower macroalgal species 

diversity where A. nodosum was also present was surveyed. Three different multispectral 

remote sensing platforms (drone, plane and satellite) were compared to see which could 

most accurately map the distribution of A. nodosum as each of these three mapping 

platforms provides different benefits and disadvantages depending on the feature of interest 

to be mapped. The drone and plane data were collected during summer over separate years 

(plane = 2016, drone = 2017) and a cloud-free Sentinel-2 satellite image was taken from 

summer 2018.  

Visual analysis confirmed that Sentinel-2 imagery, with a GSD of 10 m/pixel, was too 

coarse to allow for the identification of macroalgal species. Its relatively coarse spatial 

resolution would be better applied to the mapping of homogenous macroalgal and 

macrophyte species (Cavanaugh et al., 2010; Casal et al., 2011). Training and reference data 

were again collected through visual analysis of high-resolution drone and aerial RGB 

imagery. There was broad agreement in the classification results for the drone and aerial 

multispectral datasets, but the drone imagery was able to identify mono-specific A. nodosum 

stands whereas the aerial imagery could only identify a mixed A. nodosum and Fucus spp., 
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class. Drone imagery was more accurate (PA = 91 %, UA = 96.9 %) than aerial imagery (PA 

= 93 %, UA = 77.9 %). 

Multispectral sensors proved an accurate mapping tool in relatively low species diversity site 

and these results encapsulated the trade-off between the high spatial resolution but limited 

spatial coverage of drones and the high spatial coverage but low resolution of aircraft. At 

present, it would be difficult to recommend one survey platform over the other as each has a 

quality necessary for the scaling up of macroalgal remote sensing surveys. However, in 

terms of cost and operational flexibility drones are a more attractive solution for intertidal 

mapping as they can respond quickly to short-term events (Jensen et al., 2011). The battery 

life of many fixed-wing and VTOL drones is increasing (Fig. 5.1) to the point where they 

can survey ~ 1 h each side of maximum low tide, making them more competitive with the 

area that can be covered by aircraft. Achieving the high spatial resolutions required for 

accurate discrimination of macroalgal species will still require low survey flight heights, 

potentially restricting the area that can be covered during a single tide cycle. Ultimately, the 

specific research objectives, particularly desired taxonomic resolution, will determine the 

choice of remote sensing platform. 

7.5. Acoustic remote sensing of subtidal kelp species 

Whilst the focus of this thesis was on the intertidal application of remote sensing technology, 

Chapter 6 was devoted to a pilot study looking at using MBES for mapping kelp species. 

Kelps, a foundation species (Miller et al., 2011), and thus vital ecological components of 

coastal ecosystems are increasingly being looked to for their commercial applications 

(Bennion et al., 2017). Under the broad remit of developing an integrated approach to 

seaweed resource assessment in Ireland, it was important to assess the suitability of MBES 

for the identification of subtidal kelp beds. Whilst optical remote sensing has been 

successfully used to map subtidal kelp, although not to species level (Casal et al., 2011; St-

Pierre & Gagnon, 2020), it is often depth limited by the attenuation of light in the water 

column and this is exacerbated in turbid coastal waters (Brown & Blondel, 2009; Bajjouk et 

al., 2015). Because water is an effective medium for sound waves, there are no depth 

limitations to the use of acoustic sonar (Lurton, 2002). 

Previous studies have successfully applied acoustic remote sensing to map seagrass 

(Komatsu et al., 2003) and kelp (McGonigle et al., 2011; Kruss et al., 2017) and this study 

aimed to compare the kelp identification abilities of three different MBES survey 

frequencies (200, 300, 400 kHz) in Roaringwater Bay (Co. Cork). Lower acoustic 

frequencies would be less attenuated in the water column than higher ones but would also 

record less information in the water column (Freitas et al., 2008). An objective was to define 
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an optimum frequency that would balance between too much noise recorded in the water 

column, thus obscuring kelp, and too little noise recorded, also obscuring kelp. A drop-down 

camera was used to collect validation data. 

Results indicated that each of the three acoustic frequencies used were able to identify the 

kelp bed, each recording similar area and canopy height values. The difference between the 

three was the lower density of kelp recorded by the 300 and 400 kHz frequencies on the 

slopes of the reef compared to the continuous dense canopy recorded in the 200 kHz dataset. 

Whilst the drop-down camera (GoPro Hero 4+) confirmed the presence of a kelp bed, 

without conducting a more comprehensive ground truth survey it was not possible to 

determine whether the difference between frequencies was due to user error, owing to the 

subjective nature of kelp sounding extraction, or the different abilities of each frequency to 

identify kelp. Canopy heights recorded by each frequency demonstrated the majority of 

kelps to be ~1 m in height and there were only a few extreme values that likely represented 

the incorrect selection of soundings. Kelp distribution did align closely with the margins of 

the rocky reef (~14 m in depth) and no kelp signals were observed in deeper areas or in areas 

of unsuitable substratum, which was also validated using the drop-down camera. 

Owing to the limited scope of this study it was difficult to conclude on the suitability of 

MBES for the mapping of subtidal kelp populations. Each acoustic frequency was able to 

identify the kelp bed correctly, but without further testing it was not possible to recommend 

a suitable mapping frequency. Further work should focus on mapping more areas, involving 

a ‘blind’ processing workflow where the processor has no knowledge of the distribution of 

kelp within the study area. This will remove some of the potential bias present here due to 

knowledge of the location of the kelp prior to the study which may have influenced 

processing and analysis workflows. The more comprehensive use of ground-truth data 

collection is recommended and previous studies have used video transects (Ierodiaconou et 

al., 2007) and SCUBA (Blight et al., 2011) to validate their datasets. The exciting possibility 

of using a new generation of mini-ROVs for data collection was tested at a separate site and 

provided a low-cost, safe and flexible solution with high enough resolution to easily identify 

different kelp species. This could serve as an alternative to existing validation methodologies 

(SCUBA, drop-down cameras etc.) for ground-truthing acoustic remote sensing data. 

7.6. Recommendations on the use of drones for intertidal macroalgal mapping 

From the results presented in Chapters 3 & 4 it was difficult to draw broad conclusions 

regarding the application of drones for intertidal habitat mapping as each chapter occupied 

its own niche within the topic. As the application of drones for intertidal macroalgal habitat 

mapping is still in its infancy, it is important to identify the key challenges of using drones 
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for intertidal habitat mapping. Chapter 5 aimed to make recommendations on the 

technology and methodologies that can be used to address these challenges in macroalgal 

mapping according to specific future research questions. 

Three key characteristics of macroalgal species and assemblages influence survey design 

and operation, 1) the size of individuals within a species, 2) homogeneity of coverage and 3) 

spectral similarity to surrounding species and substratum. Chapter 5 draws on examples 

from other studies on macroalgae, seagrass communities and terrestrial environments (using 

different platforms) to highlight important survey planning considerations. 

55 different drone models currently available to date, across 27 companies, were compared 

and whilst excluding those drones that are generally not suitable for survey-grade mapping, 

this list is not exhaustive. The variation in drone design, operational capabilities, flight time 

and payload capacity is astonishing, from drones that are able to land on water (SplashDrone 

3+), to heavy-lift VTOL-capable fixed-wings (Quantum series), drones are being developed 

to fill a multitude of operational roles. Advancements in sensor technology were also 

impressive. The application of drones for precision agriculture (Barrero et al., 2018) has led 

to a wide range of lightweight multispectral sensors, designed with band-sets for vegetation 

health monitoring (Candiago et al., 2015). Twenty-four lightweight multispectral sensor 

models were identified in this study. Many of these sensors are easily integrated with drones 

and processing software packages (i.e. Pix4D), offering a turnkey mapping solution. A 

similar number (22) of hyperspectral sensors were also identified, many of which operated 

as pushbroom devices but there are recently released models now operating as full-frame 

sensors (e.g. Senop HSC-2 & Cubert ULTRIS 20) which tend to offer a simpler, more user-

friendly, mapping solution to traditional, pushbroom sensors. 

There was a general trend towards greater integration between drones, sensors and software, 

creating a more accessible and affordable mapping solution, leading to their increased use 

for macroalgal mapping studies which will only continue as more turnkey mapping solutions 

are developed. It is hoped that this review will be well placed to support the growth of drone 

applications for macroalgal habitat monitoring.   

7.7. Concluding remarks 

This thesis has demonstrated that remote sensing technologies are capable of mapping the 

key macroalgal species occurring in Ireland that are of economic and ecological importance. 

Being able to spectrally distinguish between canopy-forming intertidal macroalgal species 

has shown the suitability of optical remote sensing for use in the targeted assessment of 

individual species, rather than the broad scale mapping approaches previously used. 
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Previous research had indicated that it was potentially not possible to spectrally distinguish 

between different species within the three macroalgal groups (Kutser et al., 2006b; Casal et 

al., 2013), whilst other studies, specifically focused on the spectral separability of 

macroalgal species (Kotta et al., 2014; Chao Rodríguez et al., 2017), chose only to explore 

separability between groups. The accurate mapping of subtidal kelp species will require 

further research, yet this research has demonstrated the potential of acoustic remote sensing 

technology and builds upon a fairly strong Irish research interest in acoustic mapping of kelp 

(Blight et al., 2011; McGonigle et al., 2011; MacCraith & Hardy, 2015). Ireland is also 

home to world leading experts in acoustic remote sensing (INFOMAR) who have the 

knowledge and equipment to potentially support the development of acoustic remote sensing 

of kelp in Ireland. 

The results of this work will support the development of large-scale macroalgal monitoring 

assessments both in Ireland and the rest of the world. The rapid advancement of remote 

sensing technology will, over time, make some of the technology used here redundant and 

some of this emerging technology has been highlighted in this thesis (e.g. full-frame 

hyperspectral sensors). With decreasing costs and an increase in turnkey remote sensing 

solutions it is likely that the use of optical remote sensing systems (i.e. drones) will increase 

rapidly amongst users as cost will no longer be a barrier. The increase in choice for both 

sensors and drones will require users to think carefully about what combination of 

technology is needed to accurately map their study species or habitat. Selecting the 

appropriate spectral and spatial resolution will, in some circumstances, be equally weighted 

against equipment cost and accessibility (Ventura et al., 2018). Yet, the scaling up of drone 

surveys will require the development and granting of special flight permissions which will, 

in turn, require significant investment in training and methodology development to ensure 

safe operation. Under current Irish drone regulations, specific operating permissions can be 

granted for those individuals and companies who wish to operate outside current operational 

limits and who have received appropriate training. Soon, standardised EU drone regulations 

will come into force, creating a clear set of drone operations classes, allowing for 

recreational and professional flights, whilst also meaning that drone users can operate 

seamlessly throughout Europe (https://www.easa.europa.eu/easa-and-you/civil-drones-

rpas/drones-regulatory-framework-background). While regulation and technology (e.g. 

battery life) will strongly influence the scale of macroalgal resource assessment, future 

national licensing and regulatory frameworks may also be important factors. Surveys could 

potentially take place in areas with pending foreshore licensing applications to develop a 

baseline assessment of available macroalgal resources with which to support their 

sustainable management.   

https://www.easa.europa.eu/easa-and-you/civil-drones-rpas/drones-regulatory-framework-background
https://www.easa.europa.eu/easa-and-you/civil-drones-rpas/drones-regulatory-framework-background
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This research has also shown that different optical remote sensing technologies (e.g. 

hyperspectral and multispectral) can be successfully applied for intertidal habitat mapping, 

further supporting their utilisation by potential users with different budgets. It is imperative 

to stress that further validation of the optical remote sensing technologies used in this thesis 

is required owing to the limited spatial area covered. Spatial variation (regional scale) in 

intertidal macroalgal assemblages and variation in the concentration and composition of 

pigments within species (Schmid et al., 2017), may necessitate regional or localised 

modifications to the survey method. Such modifications could include the addition or 

exclusion of particular macroalgae classes or the collections of new in-situ spectral 

reflectance profiles.  The social implications of flying large-scale drone surveys (Sandbrook, 

2015) were not explored in this research and these will need to be included in the planning 

of future work, especially when considering the social sensitives surrounding the 

management and conservation of seaweed resources in Ireland (Mac Monagail & Morrison, 

2020).  

Acoustic remote sensing of kelp faces significantly more challenges than optical remote 

sensing methodologies. The relatively shallow depths at which Irish kelp forests occur limits 

the efficiency of MBES systems and logging water column data produces vast quantities of 

data. Research from France (Bajjouk et al., 2015) and the UK (Bennion et al., 2017) 

highlight the power of predictive modelling, using MBES-derived environmental layers (i.e. 

slope, roughness etc.) for identifying kelp forest distribution. Whilst the accuracy of this 

invariably depends on existing high-resolution nearshore bathymetric and backscatter 

datasets, MBES and SCUBA surveys could then be used in a ground-truthing capacity, 

addressing some of the logistical issues surrounding larger-scale operations, similar to what 

was done by Bajjouk et al. (2015). 

The use of SCUBA, whilst providing the detailed biological information required to properly 

characterise Irish kelp forests, is expensive, spatially limited and logistically complicated 

(especially in remote regions). Recent Health and Safety Authority (HSA) guidelines (https: 

//www.hsa.ie/eng/your_industry/diving/diving_at_work/diving_training/) also mandate 

additional training and operational requirements, needing further investment in safe SCUBA 

practices. Exciting advances in mini-ROV technology will improve the collection of 

accurate reference data for subtidal surveys, offering not a replacement, but an 

accompaniment to SCUBA, and the potential applications of these devices for species 

identification were demonstrated in this thesis. Expanding on the acoustic research 

conducted in this study will help to identify optimum survey frequencies and inform on the 

use of acoustic sonar in supporting the sustainable management of kelp forests. 

https://www.hsa.ie/eng/your_industry/diving/diving_at_work/diving_training/
https://www.hsa.ie/eng/your_industry/diving/diving_at_work/diving_training/
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Ultimately, the collection of accurate baseline species distribution data will support 

informed sustainable management decision making. This thesis sought to develop a 

methodology with which to achieve this and we believe, that whilst future research is still 

required, that we have achieved this objective. Judgement is not passed on how future 

methodologies will be applied, nor by whom, yet it is hoped that the goal of advancing 

human betterment whilst protecting coastal ecosystems will be central to future work. The 

‘Age of Drones’, both above and below the waves, may well be nigh, and we look forward 

to seeing the growth of responsible drone use in promoting the sustainable management of 

global macroalgal resources. 
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Sailor the dog assisting with spectral reflectance sampling. 
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Chapter 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2.1. Linear interpolation formula used in Microsoft Excel. 

 

=INDEX($X$10:$X$201:Y$10:Y$201,MATCH($BD10,$X$10:$X$201,1),2)+($BD10-

INDEX($X$10:$X$201:Y$10:Y$201,MATCH($BD10,$X$10:$X$201,1),1))*(INDEX($X$10:$X$201:Y$1

0:Y$201,MATCH($BD10,$X$10:$X$201,1)+1,2)-

INDEX($X$10:$X$201:Y$10:Y$201,MATCH($BD10,$X$10:$X$201,1),2))/(INDEX($X$10:$X$201:Y$1

0:Y$201,MATCH($BD10,$X$10:$X$201,1)+1,1)-

INDEX($X$10:$X$201:Y$10:Y$201,MATCH($BD10,$X$10:$X$201,1),1))
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Fig. S2.2. Seasonal variation in sampled species reflectance spectra (10 replicates for each species) 

sampled using a spectroradiometer during spring, summer, autumn and winter 2018 in Carraroe (Co. 

Galway). Gaps for Ulva spp. represent seasons where no measurements were carried out. 
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Tab. S3.1. Previous data for intertidal hyperspectral survey spatial resolutions, or ground sampling 

distance (GSD) (m/pixel) achieved using airborne remote sensing platforms and the average survey 

flight height.   

Study Flight Height Pixel Resolution 

(GSD 
Theimann & Bartsch (2007) 1600m 1 m 

Costa et al. (2007) 1520 m 2 m 

Dekker et al. (2003) 2500 m / 550 m 4 m / 0.8 m 

Hennig et al. (2007) 1600 m 1 m 

Oppelt et al. (2012) 690 m 1 m 

Garono et al. (2004) 1140 m 1.5 m 
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Tab. S3.2. Spectral separability results of the Jeffries-Matusita Distance for image-derived spectra, 

calculated using ENVI 5.4. Class pairings are ranked in order of separability, from low to high.   

Class Pairs  

Kelp - Submerged 1.780114 

Him- Kelp 1.94819 

Asco - Fucus spp 1.967773 

Fucus spp - Him 1.969406 

Submerged - Substratum 1.987847 

Fucus spp - Him 1.990936 

Asco - PelC 1.994388 

Fucus spp - Kelp 1.996708 

Asco - Him 1.996934 

PelC- Substratum 1.997263 

Kelp - Substratum 1.997935 

Him - Submerged 1.998164 

Fucus spp - Substratum 1.999288 

Him - PelC 1.999396 

Fucus spp - Submerged 1.999423 

Kelp - PelC 1.999598 

PelC - Submerged 1.999599 

Asco - Kelp 1.999743 

Him - Substratum 1.999817 

Asco - Submerged 1.999967 

Asco - Substratum 1.999972 

Fucus spp - Green 1.999998 

Him - Green 1.999999 

Kelp - Green 1.999999 

Submerged - Green 2 

Asco - Green 2 

PelC - Green 2 

Substratum - Green 2 
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Fig. S3.1. The setup of the spectroradiometer is (a). Samples are collected from the intertidal zone 

and quickly brought to the measurement area in a bucket containing seawater (b) and are then 

arranged to cover the entire ground field of view (GFOV) of the downward facing radiance sensor (c). 
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Fig. S3.2. Spectral separability results comparing canopy spectra (‘Quadrat Spectra’) to spectra of 

individual seaweed samples removed from the canopy for measurement (‘Cut Spectra’). The black 

line (‘Dist_Line’) represents the optimum separation boundary between both classes for 

wavelengths that were statistically separable based upon the results of a Mann-Whitney U test. 

True Skill Statistic (TSS) is shown below where a value of 1 indicates perfect separation between 

two samples and 0 indicates a random decision. The averaged spectra for ‘Cut_Spectra’ and 

‘Quadrat-Spectra’ are shown respectively in the blue and green lines. Further details of the applied 

methodology can be found in Kotta et al. (2014). 
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Fig. S3.3. Training polygons for all classes. The same class polygons were used for assessing the 

accuracy of both classifiers (MLC & SAM). The black lines mark the boundary of the hyperspectral 

data strips, and the background image is from the high resolution RGB UAV survey. Coordinates are 

in Irish Transverse Mercator (ITM). Class codes represent the following species. Ascophyllum 

nodosum (Asco), mixed fucoids (Fucus spp), unidentified green species (Green), Himanthalia 

elongata (Him), Laminaria digitata (Kelp), Pelvetia canaliculata (PelC), unidentified submerged 

macroalgae (Submerged), combined substratum (Substratum). 
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Fig. S3.4. Ground truth polygons for all classes. The same class polygons were used for assessing the 

accuracy of both classifiers (MLC & SAM). The black lines mark the boundary of the hyperspectral 

data strips, and the background image is from the high resolution RGB UAV survey. Coordinates are 

in Irish Transverse Mercator (ITM). Class codes represent the following species. Ascophyllum 

nodosum (Asco_Acc), mixed fucoids (Fucoid_Acc), unidentified green species (Green_Acc), 

Himanthalia elongata (Him_Acc), Laminaria digitata (Kelp_Acc_, Pelvetia canaliculata 

(PelC_Acc), unidentified submerged macroalgae (Submerged_Acc), combined substratum 

(Substrate_Acc). 
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Fig. S3.5.  Averaged image-derived spectral profiles of three different substratum cover classes, 

sandy sediment (Sediment), dark granite (Granite_Dark) and light granite (Granite_Light) compared 

against one another and two common intertidal macroalgal cover classes, Ascophyllum nodosum 

(Asco) and mixed fucoids (Fucus spp.) 

 

 

Fig. S3.6. Averaged image-derived spectral profiles of two Ascophyllum nodosum colour variants 

(n = 10/colour variant), from near the pier (Asco_Yel) and from the lower shore (Asco), and of 

Pelvetia canaliculata (PelC). Spectra were collected through, first identifying classes using visual 

analysis of the RGB drone dataset and subsequently extracting their spectral information from the 

aligned hyperspectral drone image. 
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Chapter 4 

 

Tab. S4.1 Band information for the Sentinel-2 Multispectral Imager (MSI). Source: Clevers and 

Gitelson. (2013). 

Band Centre wavelength 

(nm) 

Band width (nm) Spatial resolution (m) 

1 443 20 60 

2 490 65 10 

3 560 35 10 

4 665 30 10 

5 705 15 20 

6 740 15 20 

7 783 20 20 

8 842 115 10 

8a 865 20 20 

9 945 20 60 

10 1380 30 60 

11 1610 90 20 

12 2190 180 20 
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Fig. S4.1. Maximum Likelihood Classification (MLC) result from the multispectral aerial survey. 

Three macroalgal cover classes are displayed over Bing satellite imagery. ‘Substratum’ was not 

included. Class codes represent the following species. Ascophyllum nodosum dominated fucoid mix 

(abbreviated here to AN_FS, referred to in text as ‘Asco_Fucus spp’), mixed fucoids (Fucus spp) and 

macroalgal wrack (’Wrack’) which was overclassified. Coordinates are in Irish Transverse Mercator 

(ITM). 
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Fig. S4.2. Maximum Likelihood Classification (MLC) result from the multispectral UAV survey. 

Four macroalgal cover classes are displayed over Bing satellite imagery. ‘Substratum’ was not 

included. Class codes represent the following species. Ascophyllum nodosum (‘Asco’), mixed 

fucoids (Fucus spp), macroalgal wrack (’Wrack’) and Ulva spp (‘Green’) which was 

overclassified. Coordinates are in Irish Transverse Mercator (ITM). 
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Fig. S4.3. Spectral profiles of species derived from image endmember data for the UAV (a) and 

aerial (b) data. Class codes represent the following species and features. Ascophyllum nodosum 

(Asco), Ascophyllum nodosum dominated fucoid mix (Asco_Fucus spp), mixed fucoids (Fucus 

spp), macroalgal wrack (Wrack), substratum (Substratum) and unidentified Ulva spp (Green). 
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Fig. S5.1. Drop down GoPro camera rig attached to ~25 m of line. 

Chapter 5 
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Fig. S5.2. Slope map created from 200 kHz Multibeam dataset collected in Roaringwater Bay 

(Co.Cork) in August 2019. Higher values indicate steep slopes which can be used to infer the presence 

of rocky reefs. Low values represent relatively flat sediment substratum. 
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A1. Developing a methodology for extracting a macroalgae only layer 

During the course of this research, additional work was conducted to develop a relatively 

simple and low-cost methodology for extracting the distribution of canopy-forming brown 

macroalgal species. Object-based image analysis (OBIA) was selected as the classification 

method as it is available on free-to-use software, such as SAGA, and thus represents a 

lower-cost analysis solution than some pixel-based classifiers available through software 

such as ENVI. The rapid isolation of macroalgae distribution from other habitats including 

substratum and terrestrial vegetation allows for the classification of features (e.g. species) 

within the macroalgal zone of distribution to be conducted without the potential for 

misclassification with non-macroalgal habitats.   

A1.1. OBIA methodology 

ArcGIS Pro was used to classify drone multispectral imagery collected from Doleen Pier, 

near An Cheathrú Rua. The following methodology outlined herein is specific to the 

workflow used in ArcGIS and may be different depending on the software used. A subset of 

the multispectral image was used to develop the methodology owing to the limited computer 

processing power available. 

A1.1.1. Segment mean shift 

Images are segment into groups of ‘super-pixels’ based upon similar spectral characteristics. 

Varying levels of spectral and spatial detail can be set depending on the desired image 

output. Having a higher level of spectral detail (values range from 1-20) can be useful for 

classifying features that similar spectral properties, and lower levels of spectral detail will 

create a more spectrally homogenous output. Spatial detail, also occurring over a range of 1-

20, will need to be finer when looking at a spatially heterogenous scene where features (i.e. 

macroalgal species) are occurring in mixed assemblages, allowing these finer details to be 

recorded. Conversely, having a coarser spatial resolution will produce a more homogenous 

result, for example, if the research objective was to identify spectrally distinct macroalgal 

groups rather than spectrally similar macroalgal species.   

Both spectral and spatial detail were set to 10 to homogenise and spectral and spatial 

variance within the macroalgal distribution zone but still ensure that it was distinguishable 

from substratum and terrestrial habitats. Smoothing the data in this way removes random 

scattered pixels (Comaniciu et al., 2002) to create a homogenous output. 

A1.1.2. Creation of training samples 
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To proceed with the segmentation process, training samples need to be collected. These 

should be representative of the desired classes. In this case five classes were chosen, 

seaweed, vegetation, rock, light sediment and dark sediment. Training samples are a 

collection of pixels (or in this case segments) that define the range of colour associated with 

a class. For some classifiers, such as Maximum Likelihood Classifier (MLC), there needs to 

be a statistically significant number of samples, equating to a minimum of 20 samples per 

class.   

The segmented multispectral image was used to collect training samples for each of the 

classes. A minimum of 20 segments were selected for each class with larger classes, such as 

seaweed, containing nearly 100 training areas and smaller one, such as vegetation, 

containing just over 20. Training sample creation is done through the Image Classification 

tool. The Select Segment function was used as the reference dataset is a segmented layer. 

Once all samples have been collected for each class the result is then exported as a .xml and 

.shp file. This training file is now used in the next step of the process to calculate the 

analytical information associated with the segmented layer. 

A1.1.3. Training Support Vector Machine classifier (SVM) 

SVM is a supervised non-parametric classification method (Mountrakis et al., 2010) that is 

suitable for classifying a segmented raster input. SVM’s are well suited to handling smaller 

training sets than other classification methods such as Maximum Likelihood (MLC) 

(Mantero et al., 2005). SVM is a linear classifier which aims to find the optimal hyperplane 

for linearly separable patterns, in this case, separating out the dataset into predefined classes 

(Mountrakis et al., 2010). Hyperplane refers to a plane in multi-dimensional space that 

separates data points from two classes (Huang et al., 2002). Rather than assigning a class 

based on the distance between class spectral means SVM identifies the hyperplane that 

separates out the two classes (Heumann, 2011).  

The segmented multispectral image along with training samples are inputted into the 

classifier which then outputs a classifier definition file (.ecd). The resulting file computes 

each segment attribute, as defined by the training samples and is subsequently using in a 

separate classification tool. The SVM classifier is suitable for the current dataset as it 

requires fewer training samples and does not require them to be normally distributed. This is 

useful for datasets where different cover categories vary greatly in size, for example the area 

covered by seaweed is much larger than that covered by terrestrial vegetation. 

A1.1.4. Compute Segment Attributes 
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This function computes the attributes for every segment that occurs in the segmented raster, 

it is an optional step that can be performed. There are a range of different attributes that can 

be computed. The default options are colour, count, compactness and rectangularity, with 

other attributes including mean, standard deviation and segment size. This tool outputs an 

attribute table which allows for further, optional, analysis of the data. 

A1.1.5. Classification 

Based upon the .ecd file the Classify Raster tool then classifies the image. The type of 

classification performed is determined by the properties of the .ecd file, in this case SVM is 

the classifier. 

A1.1.6. Accuracy Assessment 

Assessing classification accuracy involves comparing the classified image to a reference 

dataset. Random points were created from the reference data and then compared to points of 

the same location in the classified data using a confusion matrix. 

The confusion matrix calculates the user’s accuracy and producer’s accuracy for each 

category along with a final kappa index. The kappa accuracy ranges from 0 to 1 with 1 being 

100 percent classification accuracy. The Users Accuracy, or errors of commission/ type 1 

error, shows pixels that have been incorrectly classified as a known class when they should 

be something else. Producer’s accuracy, or errors of omission/type 2 error, is where pixels of 

a known class are identified as something else.  

A1.1.7. Preliminary results 

The final classified image can be seen in Fig. A1.1. The kappa coefficient (0.879947) 

indicates a good overall classification accuracy for the subset multispectral image (Tab. 

A1.1). There was some misclassification between sediment and rock and areas where 

fragmented seaweed and sediment/rock have been confused with one another. All classes 

show good errors of omission and commission (> 0.80) indicating that each class has been 

accurately classified. 
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Tab. A1.1 Confusion matrix. 

 

 

 

 

 

Class Seaweed Vegetation Rock Sed_L Sed_D Total U_Accuracy Kappa 

Seaweed 288 0 22 16 27 353 0.815864023 0 

Vegetation 0 267 0 0 0 267 1 0 

Rock 0 13 252 0 25 290 0.868965517 0 

Sediment_Light 8 0 19 282 0 309 0.912621359 0 

Sediment_Dark 4 0 6 2 248 260 0.953846154 0 

Total 300 280 299 300 300 1479 0 0 

P_Accuracy 0.96 0.954 0.843 0.94 0.827 0 0.903989182 0 

Kappa 0 0 0 0 0 0 0 0.879947 

Fig. A1.1 Image segmentation steps on a subsection of multispectral data. From left to right: original 

multispectral image, segmented multispectral image, selection of training classes and final 

classification. 
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A1.1.8. Extrapolation of method to whole site 

Based upon these encouraging results the same process was then repeated for the entire site. 

First the water was manually masked out. This was done to remove potential confusion of 

spectra caused by submerged seaweed and shallower water. Some rock was also removed 

using this process. The Segmentation and Classification workflow in ArcGIS Pro was then 

used to classify the seaweed. After initially running the segmentation workflow on strips of 

data, the multispectral mosaic was gridded into four cells. Attempts were made to process 

the entire scene at once, but this was processing intensive and no desirable output could be 

achieved. The scene was instead split into four cells which were each analysed 

independently before being stitched back together. Three broad categories were chosen for 

the classification, seaweed, substrate (rock and sediment) and terrestrial vegetation. The 

output segmented rasters were used to collect training samples from. The output of this is 

shown in Fig. A1.2 and demonstrates the feasibility of this method for larger areas. 
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Fig. A1.2 Segmentation workflow for the entire site (Carraroe) using multispectral data. 
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A2. Biomass and species diversity sampling within Kilkieran Bay 

During the summer of 2016, seven different sites within Kilkieran Bay were sampled to 

collect data on the wet weight biomass of A. nodosum and to record the species diversity and 

average percent cover of macroalgal species occurring within the A. nodosum zone of 

distribution. Morphometric data on stipe density and frond length were also collected for A. 

nodosum. High resolution in-situ biological sampling can be used to ground-truth remote 

sensing data. 

At each site four transects were set from the upper zone of A. nodosum distribution to the 

lower. Five 1m2 quadrats were then set evenly along the transect with one at the start and 

one at the end. The quadrat size was chosen because smaller sizes may miss important 

species and may not sufficiently sample the distribution of large macroalgal species such as 

A. nodosum (Gonor & Kemp, 1978).  Images of each quadrat were taken using a GoPro 

Hero 4+ camera and were later analysed for dominant canopy forming species and the area 

that each covered using the image analysis software ImageJ. Quadrats one, three and five 

were, due to tide constraints, subsequently sampled for the wet weight biomass of A. 

nodosum by removing all individuals whose were attached, via a holdfast, within the quadrat 

and immediately weighing them. Fig. A2.1 shows the location of each study site along with 

the biomass of A. nodosum at each site. The aerial survey conducted in the summer of 2016 

collected RGB imagery of the coastline. Where these images overlapped with our study 

sites, we were able to produce a series of maps showing the species diversity and percentage 

cover along each of the transects within the study sites (Figs A2.2 – A2.6). Tab. A2.1 shows 

the site averages for A. nodosum morphometric data along with wet weight biomass (kg/m2).  

 

Tab. A2.1 Average percentage cover (%), frond length (cm), stipe density (/m2) and wet weight 

biomass (kg/m2) of Ascophyllum nodosum from the seven sites sampled during summer 2016. 

Site Average % 

cover 

Average 

frond (cm) 

Average stipe 

density 

Average 

biomass (kg) 

Baile Lar 73.3 67.6 31.7 11.5 

Carraroe North 33.4 54.6 23.4 6.3 

Cuan Na Luinge 40.1 62.1 29.5 7.3 

Criminagh 41.9 77.4 38.5 6.2 

Hooker 45 84.7 17.4 3.5 

Sean Bhaile 53 76.4 40.1 7.9 

Tiernee Pier 58.1 55 31.6 2.9 

  



Appendix 

254 
 

Fig. A2.1. Map showing the spatial variation in average biomass (kg/m2) of A. nodosum within 

Kilkieran Bay using field data collected from 2016. Biomass data was averaged from 12 1 m2 

quadrats spaced along four transects within the A. nodosum zone of distribution. Values are in wet 

weight. 
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Fig. A2.2. Species diversity and percentage cover in 20 quadrats sampled across 4 transects in 

Baile Lar. A. nodosum (Asco), F. vesiculosus (Fves), F. serratus (Fserr), seagrass wrack (Sgr 

wrack), green seaweed (Ulva spp.), Rock, Rock w/alg (rock with algae), Mixed (Mixed sediment). 
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Fig. A2.3. Species diversity and percentage cover in 20 quadrats sampled across 4 transects in 

Criminagh. A. nodosum (Asco), F. vesiculosus (Fves), F. serratus (Fserr), Rock, Sand, Mixed 

(Mixed sediment). 
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Fig. A2.4. Species diversity and percentage cover in 20 quadrats sampled across 4 transects in 

Cuan Na Luinge. A. nodosum (Asco), F. vesiculosus (Fves), F. serratus (Fserr), F. spiralis (Fspi), 

green seaweed (Ulva spp.), Rock, P. canaliculata (PelC), Unidentified seaweed (Other), 

unidentified red seaweed (Red seaweed). 
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Fig. A2.5. Species diversity and percentage cover in 20 quadrats sampled across 4 transects in Sean Baile. A. 

nodosum (Asco), A. nodosum with epiphytes (Asco w/epi), F. vesiculosus (Fves), F. serratus (Fserr), green 

seaweed (Ulva spp.), Rock, Mixed (Mixed sediment), Mud, Seaweed wrack (Wrack), M. stellatus (Masto), 

Unidentified red seaweed (Red seaweed). 
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Fig. A2.6. Species diversity and percentage cover in 20 quadrats sampled across 4 transects in 

Carraroe. A. nodosum (Asco), F. vesiculosus (Fves), F. serratus (Fserr), Unidentified lichen species 

(Lichen), green seaweed (Ulva spp.), Rock, Rock w/alg (rock with algae), Mixed sediment 

(Mixed), P. canaliculata (PelC). Satellite imagery used as the background as no aerial imagery 

covered this site. 
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“Araf deg mae mynd ymhell” 

- Welsh proverb 

 


