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elongata (Him), Laminaria digitata (Kelp), Pelvetia canaliculata (PelC),
submerged macroalgae (Submerged) and unidentified green macroalgal
species (Green).

3.7. Spectral Angle Mapper (SAM) classification result, trained using in-
situ spectral library spectra, from the hyperspectral drone survey in
Carraroe. Five macroalgal cover classes are displayed over the drone
RGB imagery. The ‘Substratum’ class is represented by unclassified
pixels. Black lines mark the footprint of the hyperspectral data strips.
The pier, used for deployment, is marked by a red line. Coordinates are
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species. Ascophyllum nodosum (Asco), mixed fucoids (Fucus spp),
Himanthalia elongata (Him), Laminaria digitata (Kelp) and Pelvetia
canaliculata (PelC).

4.1. Location of the study site at Béal an Daingin in relation to Kilkieran
Bay and Ireland. The dotted blue line marks the flight path of the aerial
survey. Coordinates are in Irish Transverse Mercator (ITM).

4.2. Comparison of the multispectral ground sampling distance (GSD)
from each of the three platforms. UAV = 5 cm/pixel (a), aircraft = 60
cm/pixel (b) and Satellite = 10 m/pixel (c). Layers were clipped to the
extent of the UAV imagery.

4.3. Classification classes identifiable using high-resolution UAV RGB
imagery (highlighted in red). Ascophyllum nodosum (a), Fucus spp (b),
wrack (c), substratum (d) and unidentified green species (e). The
distinctive morphological properties of each species were used to
identify each of them.

4.4. Classification classes identifiable using aerial RGB imagery
(highlighted in red). Mixed Ascophyllum nodosum and Fucus spp (a),
Fucus spp (b), wrack (c) and substratum (d). Variations in canopy
pattern and colour were used to identify each of them.
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Fig. 6.2. RGB mosaic overlapping images map taken from a 2017 survey in
Carraroe, Ireland. Lower numbers of overlapping images can be

observed at the mosaic margins in red. Created using Pix4D. 163
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Abstract

Increasing interest in the sustainable management of Irish macroalgal resources requires the
development of a cost-effective and efficient methodology for quantifying the distribution of
key species. Remote sensing provides a mapping solution that allows for large areas to be
covered and is increasingly being applied to a range of macroalgal mapping research
questions. Of interest to this research were the commercially and ecologically important
intertidal brown fucoid, Ascophyllum nodosum and subtidal kelp communities (often
dominated by Laminaria hyperborea).

Using a spectroradiometer, the spectral reflectance signatures of common canopy-forming
intertidal macroalgae were sampled across four seasons during 2018. Classification and
regression tree (CART) analysis showed that it was possible to discriminate between the
three macroalgal groups and also between all sampled spectrally similar brown species in all
seasons, aside from in winter. Intra-specific variation in spectral response of A. nodosum
thalli was observed across the seasons and should potentially be accounted for in the

creation of a spectral library.

A pushbroom hyperspectral drone survey showed that, using a Maximum Likelihood
Classifier (MLC), it was possible to accurately map A. nodosum distribution ((Overall
Accuracy (OA) 94.7 %) along with other dominant canopy-forming species. The accurate
mapping of multiple species corroborated the results found using the spectroradiometer and
highlighted the potential of this technology for intertidal resource mapping. Further work
was undertaken at a separate site to compare the ability of two multispectral remote sensing
platforms (drone and plane) to accurately map A. nodosum. Using MLC, the drone was
found to produce a more accurate (OA 92 %) and higher taxonomic resolution map than the
plane (OA 78.9 %) which could only identify a mixed A. nodosum and fucoid class.
Experience gained from this research contributed to the creation of a comprehensive guide
for using drones to map intertidal macroalgae which detailed the current technology and key

challenges associated with mapping within the intertidal zone.

Vessel-mounted multibeam sonar was used to map a subtidal kelp bed. Three different
acoustic frequencies (200, 300, 400 kHz), each logging water column data, were used to
determine whether there was an optimum frequency for the accurate estimation of canopy
height and extent. Each of the three frequencies provided slightly different estimates of
canopy height and extent. A drop-down camera validated the presence of the kelp bed
(dominated by L. hyperborea) but further research is required to determine the source of the

variation between the three survey frequencies.
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Drone image of waves breaking over intertidal macroalgae at Black Head (Co. Clare).



Chapter 1: General introduction

1.1. What are marine macroalgae?

The term macroalgae (or seaweed) refers to large, multicellular marine algae (Hurd et al.,
2014) including the red algae (Rhodophyta), green algae (Chlorophyta) and brown algae
(Phaeophyceae). Each of these groups can trace their origins back 1.5 billion years to a
single endosymbiotic event where a heterotrophic eukaryotic host cell captured a
cyanobacteria creating an ancestral primary plastid (Leliaert et al., 2012). Evolution and
diversification of this ancestral plastid gave rise to Chlorophyta (green algae), Rhodophyta
(red algae) and the cyanelles of glaucophytes (Le Corguillé et al., 2009), which are part of
the monophyletic eukaryotic group Archaeplastida (Popper et al., 2011). Brown algae are
part of the ‘super group’ known as Chromalveolates (Palmer et al., 2004) and evolved later
than green and red algae through secondary endosymbiosis with red algae (Reyes-Prieto et
al., 2007), and are subsequently only distantly related to the red and green algae. Secondary
endosymbiosis now represents a significant driver of known eukaryotic diversity (Keeling,
2010). Each of the three macroalgae groups can be characterised by variations in pigment
content and composition which can often, but not always, lead to clear colour differences

between the three groups, aiding in their identification.

Both unicellular and multicellular algae can be found in terrestrial, marine or freshwater
environments, but macroalgae are almost exclusively marine, with comparatively few
freshwater species, and they have a wide distribution across all coastal latitudes (including
free-floating variants). Macroalgae can range in size from the towering giant kelp
(Macrocystis pyrifera (Linnaeus) C.Agardh) to small encrusting morphologies and each
species’ respective microscopic stages within their life history (Tirichine & Bowler, 2011).
Variation in the morphology of macroalgal thalli leads to a greater diversity than observed in
vascular plants (Hurd et al., 2014) and this morphology is directly related to physiological

functions such as photosynthetic performance (Littler, 1979).

In temperate coastal regions, areas of hard substratum are dominated by algae of the orders
Laminariales and Fucales (Dayton, 1985). Shallow, rocky coastal waters provide access to
substratum and light which is required by macroalgae. These are foundation species and
serve to create the structural elements of the system. Such species increase the heterogeneity
of the environment providing spatial refuge from environmental or predation stress and
enhance the settlement of species through spatial availability (Bruno & Bertness, 2002). The
waters around Britain and Ireland are especially rich in macroalgal diversity, containing
around 7% of the world’s seaweeds, making them of international importance (Bunker et al.,

2017).
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1.2. Macroalgal community ecology

Since this study focuses on mapping macroalgae, it is prudent to provide an overview of the
ecological importance of macroalgae and those factors, both abiotic and biotic, that control
macroalgal distribution. Benthic macroalgal assemblages provide important environmental
and economic services. They are essential for many faunal species, including commercially
important ones, as they provide habitats, nursery and mating grounds (Casal et al., 2011).
They also make an important contribution to primary production (De Oliveira et al., 2006)
along with protecting the coastline from storm surges and flooding (Madsen et al., 2001).
Owing to the anticipated increase in commercial applications of macroalgal species, for
cosmetic, pharmaceutical and human nutrition uses (Mac Monagail & Morrison, 2020), it is
important that effective management decisions are underpinned by accurate ecological
monitoring data collection methodologies. The two species studied in this thesis are both
economically and ecologically important in Ireland, yet there is a paucity of biological
information with which to support informed decision making for the development of

management plans (Roberts & Upham, 2012).

1.2.1. Zonation

Macroalgae grow in distinct vertical bands from the intertidal down to the subtidal
(Lubchenco, 1980) and factors influencing these distributions are listed in the next section.
Fig. 1.1 shows the different biological zones (representative of south-west Britain) in
intertidal and subtidal environments. Stephenson & Stephenson (1949) provide broad

descriptions of each of these zones which are applicable, globally, to intertidal rocky shores.

The littoral, or intertidal, zone is comprised of the supralittoral and eulittoral zones. The
supralittoral, described by Stephenson & Stephenson (1949) as ‘an arid zone, subject to
transitional conditions between land and sea’, is commonly referred to as the splash zone
and supports limited floral and faunal assemblages, with the notable exception of lichen
species such as Verrucaria maura Wahlenberg. The eulittoral zone is dominated by dense
fucoid assemblages including Ascophyllum nodosum (Linnaeus) Le Jolis, Fucus vesiculosus
Linnaeus and Fucus serratus Linnaeus whilst also supporting greater faunal abundances than
the supralittoral zone. The margin between the littoral and sublittoral is known as the
sublittoral fringe which experiences reduced emersion times compared to the rest of the
intertidal. This zone is characterised by F. serratus, Laminaria digitata (Hudson) J.V.

Lamouroux and dense, mixed red macroalgal communities.

The sublittoral is divided into the infralittoral and the circalittoral (Connor et al., 2004) with

the location of the boundary between them being defined by light availability. The
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circalittoral is typically dominated by faunal species with the infralittoral dominated by
macroalgae (Hurd et al., 2014). Around Britain and Ireland Laminaria hyperborea
(Gunnerus) Foslie is the dominant subtidal macroalgal species with other opportunistic kelps
including Sacchoriza polyschides (Lightfoot) Batters and Saccharina latissima (Linnaeus)
C.E. Lane also being present and Laminaria ochroleuca Bachelot de la Pylaie being recently

described in Ireland for the first time (Schoenrock et al., 2019).

+8 m

Supralittoral

Littoral

+1m Eulittoral

-60/-80 m Lower circalittoral

Offshore circalittoral

Fig. 1.1. Pictorial representation of a typical vertical zonation pattern for a rocky shoreline. Adapted
from Connor et al. (2004).

1.2.2. Intertidal macroalgal community ecology

A hardy subset of macroalgal species choose life on the very margins of the marine realm
where they grow in distinctive vertical or horizontal bands along strong environmental
gradients across rocky intertidal zones (Hurd et al., 2014) where they are exposed to
fluctuations and sometimes extreme temperatures (Helmuth & Hofmann, 2001). In Ireland
and the UK, rocky shores are dominated by large multicellular brown macroalgal species,

competing for space and light in dynamic and complex environments. It is important to note
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that the strong zonation bands of individual species can often overlap causing mixtures of
two or more species which, as will be discussed later in this thesis, can make accurately
mapping them challenging. Removal of competitors allows some species, such as F.
vesiculosus and F. serratus to extend their distribution up or down the shore, highlighting
the importance of competition in zonation patterns (Hawkins & Harkin, 1985). Patterns of
zonation along a rocky shore, and the species present, are strongly influenced by the
geologic and topographic nature of the coastline. Location and orientation will determine
site exposure levels, altering the species that may be found there, depending on their wave
exposure tolerances. The upper intertidal zone, where emersion times are greater, the small,
shrubby species Pelvetia canaliculata (Linnaeus) Decaisne & Thuret and F. spiralis often
dominate. These species are able to tolerate long periods of desiccation-stress and then
return to their normal state once rehydrated (Schonbeck & Norton, 1979). Below this zone,
overlapping assemblages of A. nodosum and F. vesiculosus can often occur, with the latter
being more tolerant of exposed conditions, albeit with a decrease in size and branching
(Kalvas & Kautsky, 1993). Himanthalia elongata (Linnaeus) S.F. Gray, in the west of
Ireland, typically occurs between F. serratus and L. digitata on semi-exposed shores
(Stengel et al., 1999). L. digitata is able, due to its flexible stipe, to occupy a unique niche
on the margins of the intertidal and subtidal zone (Lining & Dring, 1979), being easily

accessible during spring tides.

1.2.3. Subtidal macroalgal community ecology

Kelps are large brown alga of the order Laminariales (Phaeophyceae) and dominate the
rocky, sublittoral coastal zone throughout global temperate environments (Yesson et al.,
2015). In Ireland, rocky subtidal communities are dominated by kelps which are habitat
forming foundation species (Bruno & Bertness, 2001) and are a major structuring
component through temperate and polar latitudes (Pehlke & Bartsch, 2008). Kelp provide
important habitat for a range of species including those of commercial value such as juvenile
cod (Cote et al., 2003). Depending on the height of their fronds, kelps can be classified into
three categories. The fronds of canopy forming kelps (not present in Ireland) float high in
the water column due to the presence of pneumatocysts (gas-filled bladders), stipate kelps
are usually smaller and consist of a rigid stipe and prostrate kelps have flexible stipes and
tend to sit closer to the seafloor (Krumhansl & Scheibling, 2012) and each of these provides
unique habitat structures for associate flora and fauna (Steneck et al., 2002). Species present
in Ireland and the UK include Alaria esculenta (Linnaeus) Greville, L. digitata, L.
hyperborea, L. ochroleuca, S. latissima, S. polyschides and Undaria pinnatifida (Harvey)
Suringar (Smale et al., 2013, Yesson et al., 2015). Major canopy-forming species tend to be

L. hyperborea, L. digitata and L. ochroleuca (the latter in the UK) but these can be

5
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outcompeted, for example in wave-exposed conditions where A. esculenta can dominate
(Hawkins & Harkin, 1985). Most of these species are long-lived, with L. hyperborea having
a lifespan of up to 18 years (Kain 1971) and only two (S. polyschides and U. pinnatifida)
being short-lived, annual species. Sacchoriza polyschides is a common opportunistic species,
tolerant of a range of exposure conditions and able to attach to both solid (bedrock) and
loose (pebbles and cobbles) substratum (Norton, 1969). It can replace L. hyperborea in the
wake of storm events (Hennequart et al., 2006). Worldwide, kelp communities are
experiencing a loss of biomass through climate change and direct anthropogenic impacts
such as harvesting (Krumhansl & Scheibling, 2012). As previously mentioned, L. digitata
occurs at the sublittoral fringe but is quickly succeeded by L. hyperborea at depths of ~2.5 m
LAT (Kitching, 1941) which can, under the right conditions (in the UK), reach maximum
depths of ~20 m (Kain, 1962).

1.3. Study species
1.3.1. Ascophyllum nodosum

Ascophyllum nodosum (Fig. 1.2) is an intertidal brown foundation (Olsen et al., 2010)
species of the order Fucales which inhabits the mid-shore along sheltered coastlines in the
North Atlantic (Stengel & Dring, 1997). Ascophyllum nodosum is widely distributed across
the North Atlantic, from Arctic Canada, Greenland, Iceland and Norway down south through
to Portugal (Seeley & Schlesinger, 2012). In some sheltered locations it can form almost
monospecific coverage of the mid-shore region (Jenkins et al., 2004).

It is a relatively long-lived species, having a short reproductive season in the spring, with
some individuals reaching around fifty years old (Davies et al., 2007). Differences in
maximum age can exist between different shore levels. Stengel & Dring (1997) reported the
maximum age of unbroken fronds on the lower shore as reaching 17 years and 6 for the
upper shore from Strangford Lough in Northern Ireland. The plant forms long fronds, of up
to 150cm, with bladders, and is also relatively resilient as new fronds can be generated when
larger fronds are damaged. The fronds are branched in an irregular, forked manner and
attached to the substrate via a holdfast (Bunker et al., 2017). The thallus grows by apical
growth, branching dichotomously once a year with a single oval-shaped air bladder being
formed each year of grow after the first (David, 1943). Ascophyllum nodosum exhibits
seasonal growth patterns with the lowest rates in the winter period and highest in late spring
and early summer (David, 1943, Stengel & Dring, 1997). Reproductive structures
(receptacle and supporting structures) appear in June, reaching their largest size in May the

following year when the gametes have been released, and are subsequently shed (Aberg,
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1996). This may, however, vary between sites. In western Ireland, A. nodosum is
morphologically distinct from co-occurring macroalgal species, particularly F. vesiculosus
and F. serratus. Fucus vesiculosus is identifiable through its flattened fronds, with a midrib
and pairs of air bladders either side. It can grow up to 90 cm long. Fucus serratus also has
flattened fronds and a midrib but lacks the air bladders and is instead easily recognised by
the serrated edges of the fronds (Bunker et al., 2017).

The fronds of A. nodosum can create three different types of complex habitat, wrack, drifting
mats and attached plants which, in North America, can support thirty-four species of fish
and upwards of one hundred invertebrate species (Seeley & Schlesinger, 2012). Ascophyllum
nodosum not only provides important habitat but also nitrogen and carbon storage services
highlighting its ecological importance (Schmidt et al., 2011). The branching structure of A.
nodosum provides habitat and shelter from predation for a range of different faunal species
as documented by Colman (1940) whilst also providing shelter for larger benthic species.
The epiphytic alga Polysiphonia lanosa (Linnaeus) Tandy is synonymous with A. nodosum
across its geographic range, apart from Sweden where it has not been observed (Aberg,
1996). Polysiphonia lanosa itself also provides habitat for small faunal species, such as
ostracods and copepods (Colman, 1940). The loss of canopy cover, either through direct
harvesting impacts or storm events negatively impacts on the sub-tidal canopy. Jenkins et al.
(2004) reported that in a twelve-year period following the experimental removal of the A.
nodosum canopy the sub-canopy community did not return to its original state. This
community was previously characterised by a delicate balance between red algae and
limpets but bleaching of the red algae post canopy removal led to an increase in grazing
pressure, inhibiting red algal regrowth. Increases in limpet densities can cause a loss of A.
nodosum through direct grazing pressure and Davies et al. (2007) observed that this was

preventing A. nodosum growth in Strangford Lough.
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Fig. 1.2. Ascophyllum nodosum (left) and Laminaria hyperborea (right). Image credit: Tom Rossiter
(A. nodosum) & Kenan Chan (KelpRes) (L. hyperborea).

1.3.2. Laminaria hyperborea

Laminaria hyperborea is often the dominant subtidal kelp species in the UK (Kain, 1962)
and possibly also in Ireland. It has a wide latitudinal geographic distribution from Norway to
Portugal (Kain, 1971) where suitable substratum and environmental conditions exist. Found
in clear water in depths of ~30 m, L. hyperborea grows attached to solid rock or boulders
that are large enough not to be frequently disturbed by wave action and storm events (Kain,
1971). Laminaria hyperborea is tolerant of strong water movement and currents, but in areas

of more extreme exposure it is often replaced by A. esculenta (Kain, 1971).

Laminaria hyperborea, reaching lengths of 1.5-2 m (Kain, 1963), is characterised by a rigid,
rough stipe that is often colonised by a high diversity of epiphytic red algal species (Christie
et al., 2003). This rough stipe is not found on other Irish kelp species and is the primary
diagnostic character of L. hyperborea (Bunker et al., 2017). Both stipe and frond growth
occur at the meristem. Stipe growth occurs year-round but is fastest in from January to June.
Fronds grow rapidly between January and May with a period of slower growth producing a
small amount of frond tissue, forming a narrow base at the old frond. When further fast
growth occurs, a new frond is produced, joined to the old growth by this narrow base until
the old frond is shed in April/May (Kain, 1963). Reproductive tissue appears on L.
hyperborea during winter with a peak in January and the gametophytes are able to survive
and grow in low irradiance conditions, potentially finding more bare rock surfaces to settle
on due to increased storminess during winter (Kain, 1975). Pedersen et al. (2012) observe an

increase in the density, individual size and biomass with increased exposure levels.
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Traditional morphological adaptations for increased exposure levels in kelps include a larger
holdfast, thicker and occasionally shorter stipe and smaller, more streamlined blades.
Laminaria hyperborea differs somewhat as individuals become much larger, increasing in

biomass.

Laminaria hyperborea hosts a diverse array of species owing to the distinct habitats
provided by the holdfast, stipe and lamina. In a study on L. hyperborea populations in
Norway Christie et al. (2003) found 238 different species of macrofauna living on 56 L.
hyperborea individuals. The study observed differences in species composition between the
three distinct habitats. Holdfasts were found to contain the most diverse community; stipes
had the highest abundance (likely due to the additional habitat provided by epiphytic red
algal species) and the lamina had both the lowest diversity and abundance. The habitat
created by L. hyperborea can also support a diverse range of fish species. Norderhaug et al.
(2005) recorded 21 different species of fish occurring within a Norwegian L. hyperborea
forest and found that stomach contents were dominated by invertebrate species that live on
kelp individuals. Associated macroalgal communities can also be diverse within L.
hyperborea forests. Leclerc et al. (2015) identified 65 macroalgal taxa occurring both on
kelp individuals and the surrounding substrate along with 279 macrofauna taxa within L.

hyperborea forests along the coast of Brittany.
1.4. Controls on macroalgal distribution
1.4.1. Abiotic controls

Tides are a result of the gravitational attractions of the sun and the moon, the latter exerting
a stronger gravitational pull being much closer to the Earth (Dawes, 1998). Many coastlines,
including Ireland, experience semidiurnal tides and when the Earth, moon and sun align their
combined gravitational pull causes extreme tides known as spring tides. When the sun and
the moon are at right angles to each other more moderate neap tides occur. Tides exert an
important control on intertidal zonation, for example the coincidence of a spring tide and
hot, dry weather can lead to mortality and bleaching events (Dawes, 1998). During summer,
desiccation, UV and rockpool water salinity stress increase when low tides occur during the
day (Hurd et al., 2017). Tides in Ireland occur semi-diurnally and are a result of the
gravitational attraction between the sun and the moon and the shape of ocean basins can
increase or reduce the gravitational effects of the sun and moon, influencing the tide type
and amplitude (Dawes, 1998). In Ireland tidal predictions are a result of the analysis of a
series of tide gauges located around the coastline and in some locations, predictions can be

made from the Marine Institute Regional Ocean Modelling System (ROMS).
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As light is essential for photosynthesis, it is thus the most important factor in affecting the
distribution of seaweeds (Hurd et al., 2014). Factors such as water turbidity, depth and
current velocity can affect the available light levels (Madsen et al., 2011) and light levels
will affect the depth distribution of seaweeds (Dawes, 1998). Terrestrial inputs of sediment,
such as river outputs, as well as anthropogenic sources, increase sedimentation in coastal
regions, decreasing the available light for benthic macroalgae (Hurd et al., 2014). Kelp can
survive so long as the light reaching them is greater than 1% of the surface light, below this
level kelp is absent (Blight et al., 2011). Although Liining & Dring (1979) reported that 0.5 -
1% was the lower light limit for kelps from their study in Helgioland (Germany). Light
availability in the intertidal zone can influence the concentration of pigments within a
species with shaded thallus regions having higher concentrations of photosynthetic pigments
than thalli exposed to sunlight (Sampath-Wiley et al., 2008).

Nitrogen is the most important nutrient for seaweed growth (Hurd et al., 2014) and water
motion is the main provider of nutrients. There are four main elements important for algae
growth, oxygen, carbon, nitrogen and phosphorus (Dawes, 1998). Gagne et al (1982)
showed how the difference in availability of nitrogen led to differences in the growth
strategy for Laminaria longicuris Bachelot de la Pylaie. In the site where nitrogen was not
limited (due to an upwelling) kelp growth followed the seasonal pattern of light. At the other
site, growth was greatest during the winter, when nitrogen was abundant, and continued
through into the summer using stored nitrogen. Nitrogen is often limiting during the summer
months, where the algae grows slower whilst using stored reserves and higher during winter,
when the algae builds up its internal reserves (Hatcher et al., 1977). In the intertidal zone,
nitrogen can also be a limiting factor as emersion means that the nutrients provided by the

seawater are unavailable (Davison & Pearson, 1996).

Temperature is a major factor in controlling seaweed distribution. Temperature may restrict
a species’ distribution through limitations to either survival or reproductive ability (Hurd et
al., 2014). For kelps, increasing ocean temperatures are stressful and can lead to a decrease
in their abundance (Wernberg et al., 2010). A study conducted in Australia by Wernberg et
al. (2011) showed, using historical records, how continued warming of the oceans is likely
to drive many macroalgal species towards the edge of the Australian continent and beyond
the limits of available habitat. Potential climate change scenarios (IPCC A2, A1B and B1)
indicate a potential northwards shift of three foundational intertidal macroalgal species,
including A. nodosum, and a contraction of their southern range (Jueterbock et al., 2013).
Within the intertidal zone there are a plethora of microhabitats that can affect the local
temperature, rocks can provide shading and rockpools provide a degree of protection from

solar insolation (Hurd et al., 2014). Desiccation is a major stress factor for intertidal species
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whereby they start to lose water, becoming dehydrated. Often species compensate for this by
developing morphological adaptations (i.e. F. spiralis and P. canaliculata) or by being
protected by their micro-habitats (Hurd et al., 2014). It is also accepted that species higher
up the shore have a greater tolerance to desiccation (Davison & Pearson, 1996).

Water motion directly affects nutrient availability, light penetration and salinity and acts as a
physical force, through wave action, causing the removal of species from the rock which are
then replaced by fast growing, opportunistic species (Hurd et al., 2014). Wave action can
determine the survival and persistence of a species (Jonsson et al., 2006) and currents can
increase the re-suspension of sediment reducing the available light (Madsen et al., 2001).
Upwellings can also increase the amount of nutrients available and provide a supply of
cooler water enabling species to survive beyond their biogeographical distribution (Gagné et
al., 1982). Variations in rocky shore wave exposure levels can alter the species composition
of macroalgal assemblages. Ballantine (1961) observed variations in macroalgal community
composition in relation to wave exposure, finding that species such as A. nodosum are absent
from highly exposed coastlines (species like F. vesiculosus and F. serratus are more tolerant
of exposed conditions), becoming progressively more abundant as wave exposure levels
decrease. Laminaria hyperborea is found in high abundance in wave-exposed areas, with
abundance significantly decreasing in more wave-sheltered areas. Increased wave action
may facilitate the growth of light-limited kelps occurring in deeper water as increased
movement of kelp fronds maximises the amount of light captured by the fronds whilst also

preventing excessive epiphytic fouling (Bekkby et al., 2019).

Variations in salinity levels have a major influence in the determinations of species presence
and distribution (Scherner et al., 2013). Certain marine species are tolerant to a specific
range of salinities and can accommodate slight variations. However, a species can
experience stress once salinity thresholds are reached (Wilkinson et al., 2007). Inputs of
freshwater also act to decrease salinity, for example in rockpools during low-tide (Hurd et
al., 2014) and in coastal areas in the vicinity of estuaries. Increased rainfall in coastal
regions, as a result of climate change, could likely lead to higher freshwater inputs through

rivers and a decrease in coastal salinity (Scherner et al., 2013).

1.4.2. Biotic controls

Foundation species are those that modify their surrounding environmental conditions
providing suitable habitat for other species to settle (Hurd et al., 2014). Both kelps (Pehlke
& Bartsch, 2008) and fucoids (Olsen et al., 2010; Davies et al., 2007) are considered as
foundation species. Foundation species assist the growth and development of other species

by increasing propagule retention and resources (Bruno & Bertness, 2001). These species
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can also provide protection from grazing, ultraviolet (UV) light and damaging wave forces
(Wernberg, 2005). Facilitation species are those which have a positive impact on their
surrounding community through their actions (Bruno & Bertness, 2001). Choi & Norton
(2005) found that under desiccation, F. vesiculosus enhanced the survival of A. nodosum at
the early germling stage, an example of facilitation.

Competition between species is based on access to a common resource, in many temperate
coastal environments access to rock substratum is a limiting resource (Hurd et al., 2014).
Access to light is another major limiting factor as dense seaweed canopies restrict the
amount of light passing through them to juvenile species, meaning that to survive these new
recruits need to be able to grow quickly (Worm & Chapman, 1996).

Grazing by faunal species is significant in controlling species presence and physiological
condition. High levels of grazing can prevent the establishment of macroalgal species
(Hawkins et al., 2008). Davies et al. (2007) found that in Strangford Lough the densities of
limpets were preventing the growth of A. nodosum through grazing. Outbreaks of sea
urchins can destroy kelp forests and maintain a post-kelp barren community dominated by
crustose coralline algae, whilst reductions in grazing pressure can lead to a resurgence in
kelp forest growth (Hagen, 1995). A study by Poore et al. (2012) observed that on a global
scale consumer impacts on primary producers reduced, on average, abundance by 60%,
confirming that consumers exert a strong control over primary producers. Kelp is almost
exclusively grazed upon by sea urchins (Dayton, 1985) and whilst kelp deforestation can
happen as a result of disease and physiological stress sea urchins are, at mid-latitudes, the
most common driver of kelp deforestation (Steneck et al., 2002). There have been no reports

of significant over-grazing of kelp in Ireland.

One cannot delve further into the mapping of macroalgal communities without first knowing
their importance to humans. Providing the necessary context to this relationship helps to
address the core factors underpinning this research. The state of macroalgal harvesting in
Ireland and the attitudes of various stakeholders towards macroalgal management are
important in considering the impact this research may have in Ireland. Without knowing the
historical context of Irish macroalgae and understanding the strong cultural and societal
importance (Delaney et al., 2016), for many coastal communities in the west of Ireland, it
would be difficult to develop an effective and sensitive methodology for the assessment of
macroalgal resources within Ireland as support from local communities will be required to

facilitate surveys.
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1.5. Humanity’s historical relationship with macroalgae

Humans have long had an affinity with the sea and have been exploiting the resources found
within the coastal zone for thousands of years (Steneck et al., 2002). The earliest record of
human exploitation of the coastal zone comes from Pinnacle Point in South Africa, where
shellfish remains indicate the addition of a new type of food to the traditional terrestrial diet
of early humans (Marean et al., 2007). Evidence from Monte Verde in Chile suggests that
macroalgae was being used by humans as early as 12,500 BC (Dillehay et al., 2008). In
Japan, remains of Sargassum have been found in middens dating back to the early-to-mid
Jomon Period, around 6,000 BC, and was even used to feed the armies of feudal lords during
the Age of Civil War (Nisizawa et al., 1987). Seaweed has historically been part of the
Hawaiian diet and is still added to taro and rice-based dishes for flavour (Abbott, 1978).
Closer to home, Bronze-Age middens from Shetland attest to the use of fucoid species for
crop fertilisation, highlighting the ability of the Neolithic community to fully exploit all
available resources and the importance of macroalgae to these societies (Dockrill & Bond,
2009). There is also evidence of the seasonal presence of macroalgae in the diet of Orkney
sheep during the Neolithic and Iron Age periods, suggesting that it was used as fodder
during times of resource scarcity (Balasse et al., 2009).

Much of the evidence for early human occupation of the coastal zone, along with its
importance to us, may well have been lost to changing sea levels (Allen et al., 1988., Garrod
et al., 1928., Erlandson, 2002), yet enough archaeological evidence remains to show the
importance of coastal and aquatic environments for the development of early human society.
The presence of marine resources, including macroalgae, helped to contradict a previously
held belief that these environments were more of a hinderance than a help to early humans
(Erlandson, 2002). Further importance is highlighted by the ‘Kelp Highway Hypothesis’,
which posits that the productive nearshore kelp forests stretching from Japan to Baja
California facilitated the movement of coastal humans and allowed the settlement of the
Americas via the Beringia land bridge approximately 18,000-13,000 years ago (Erlandson et
al., 2007).

There appears to be scant archaeological evidence for the collection of macroalgae during
the Mesolithic period in Ireland (Warren, 2015). Instead, shell assemblages can be used a
proxy for its presence, as shown by Murray (2007) who documented the presence of species
such as periwinkles, blue-rayed limpets and whelks at sites in Ireland ranging from the
Mesolithic through to the early Christian period. These species are directly associated with
macroalgal communities and indicate that macroalgae was either harvested directly or

foraged within.
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One of the earliest recorded instances of macroalgae harvesting in Ireland comes from a
poem, dating to the 12" Century, describing monks harvesting Palmaria palmata (Linnaeus)
F. Weber and D. Mohr (referred to as dillisk) and distributing it to the poor (Guiry, 2010).
By the time of the 18™ Century, dillisk, or dulse, was being used as chewing tobacco and as
medicine and, over the centuries, different types of macroalgae were used in a range of
applications from fertiliser, aquaculture feed, glazing pottery and the production of glass
(Guiry, 2010). Kelp was also being burned in order to produce iodine, valuable for medicine
and also to create silver iodide for cameras, this was often a seasonal occupation for many
(Harper, 1974). The depletion of suitable woodland, from which alkali was previously made,
in post-medieval Ireland gave rise to the burning of kelp which, despite its low alkali content
relative to alternatives, produced useful by-products such as salt and manure (Forsythe,
2006). Early records of the use of kelp for industry come from the early 17" Century where
it was involved in the manufacturing of glass (Westropp, 1920). Evidence for the growth of
the Irish macroalgal harvesting industry can be found in J.C. Curwen’s ‘State of Ireland’
(1813) where the annual average export of kelp during the years 1702-1809 was recorded. In
1702, 118 tons was exported, in 1752 it was 742 tons and by 1809 it had reached 5,410 tons
(Harper, 1974). However, come 1880, significant declines in kelp production were recorded,
for example in the district of Kilkieran the total price paid for kelp fell from £15,000 per
annum in 1875 to £3,000 (Irish Pound) in 1880. This was attributed to the discovery of
‘some other compound’ in South America, likely ‘Chile saltpeter’ (Delaney et al., 2016),
reducing both the ‘demand and the price’ of kelp (Anon. 1880).

Scientific research on Irish marine algae began with the work of Henry Harvey (1811-1866)

where he was involved in describing algae for the British Flora (Webb, 1966).

1.5.1. Irish macroalgal industry

The modern Irish macroalgal industry is primarily associated with the Gaeltacht areas of
Ireland (Anon, 2015a) and macroalgae are used for a range of different commercial
applications. The main uses of Irish macroalgae are as animal feed, plant supplements and
specialist fertilisers which are high volume, low value products (Anon, 2015a). A smaller
proportion (approximately 1%) of macroalgae is used in higher value products, such as
foods, cosmetics and therapies, and is responsible for 30% of the value generated by the
Irish seaweed industry (Anon, 2015a). The value of the industry is estimated at €18 million
per annum (Morrissey et al., 2011), €6 million of which is associated with the export
industry (Walsh & Watson, 2011). As of 2011, the Irish macroalgal industry produced
36,000 tonnes of wild macroalgae annually and employed 185 full time equivalents (Walsh
& Watson, 2011).
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Almost all the macroalgae harvested in Ireland are wild, the majority of this is collected
manually, with over 75% of this being A. nodosum, and there is very little in the way of
macroalgal cultivation occurring (Anon, 2015a). Whilst foreshore licenses are required to
harvest seaweed, those individuals or families who have traditional access rights to the
foreshore do not require any license and manage their plots individually (Mac Monagail &
Morrison, 2020). The majority of firms operating in this industry are micro enterprises, each
employing fewer than five people (Anon, 2015a). With increased commercial interest, the
demand for high value species, such as L. hyperborea, is likely to increase. Whilst there is
currently no extensive commercial harvesting of L. hyperborea in Ireland, licensing
applications are underway for the mechanical harvesting of kelp in Bantry Bay (Baker,
2019). The paucity of baseline ecological data on such habitats (Schoenrock et al., 2019)
makes the ecological consequences of increased mechanical harvesting difficult to quantify.
The increasing number of companies operating in the Irish seaweed market, alongside
increased research and the development of novel applications, is creating new demand for
macroalgal products, seeking higher value species for food and cosmetic applications. Such
renewed commercial interest could, if left to develop unchecked, lead to extensive
degradation of Irish macroalgal resources (Mac Monagail & Morrison, 2020). The study
species for this research represent both the present (A. nodosum) and likely future (L.
hyperborea) of the Irish seaweed industry. Developing an accurate and cost-effective
method for assessing their populations will support the sustainable management of Ireland’s

macroalgal resource.

The above passage offers a mere glimpse into the historical, and more recent, relationships
between humankind and macroalgae. It is clear, however, that macroalgae has likely been a
valuable resource for the spread and development of human society and most probably for
far longer than records suggest. This understanding helps one to appreciate the importance

effectively managing this resource as it has, is and always will be of great value to humanity.
1.6. Macroalgal mapping methods
1.6.1. The importance of mapping macroalgae

Intertidal macroalgal communities face an increasing range of anthropogenic (Godet et al.,
2009) and environmental pressures (Brodie et al., 2014) which underscores the importance
of monitoring these communities and developing ecological baselines. Climate change
effects on the ocean, including warmer waters, increased storminess and changing
chemistry, are likely to impact macroalgal ecophysiology and distribution, affecting

associated faunal communities (Harley et al., 2012) and, consequently, industries that rely
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on these resources. Increasing human development along many of the world’s coastlines is a
direct threat to marine and coastal ecosystems, especially macroalgal communities. This
brings not only direct physical destruction but also increased pollution from run-off,
contamination from organic matter and increased turbidity from sediment loading (Coelho et
al., 2000; Walker & Kendrick, 1998). Invasive species can be a major contributor to the
degradation of coastal marine ecosystems, and the spread of invasive species is often
facilitated by greater levels of human activity in these environments (Grosholz, 2002).
Sargassum muticum (Yendo) Fensholt is the ‘poster-child’ for invasive macroalgal species
in Europe where it can often dominate in disturbed habitats, outcompeting native species
(Sanchez & Fernandez, 2005) but is not established in Ireland to the point where it forms

nuisance monospecific stands (Baer & Stengel, 2010).

The concept of ‘shifting-baselines’ in ecology (Pauly, 1995) has now expanded beyond
fisheries science and has come to encapsulate the idea that what is viewed as ‘normal’
(ecologically speaking) today must be considered in a historical context. In some cases, this
may mean that the ‘normal’ of today is the ‘degraded’ of yesterday, an important caveat for

the establishment of baseline monitoring studies.

Traditionally, macroalgal surveys have, and still are (Burrows et al., 2010), carried out by
the means of detailed field surveying. This is considered the most accurate habitat mapping
methodology (Simms, 2003; Stevens et al., 2004), particularly regarding taxonomic
resolution, as it allows for the collection of data over the finest of spatial resolutions and
often allows for the quantification associated floral and faunal species. This complexity can,
however, limit the scale of field surveys, making surveying large areas time-consuming and
costly (Oppelt et al., 2012; Casal et al., 2013; Brodie et al., 2018) and they can suffer from
standardisation issues if multiple surveying organisations are involved (MacAlister &
Mahaxay, 2009). Similar constraints also apply to a wide range of terrestrial and marine
mapping applications and there has, over the past three decades, been a concerted effort to
develop accurate remote sensing assessment methodologies (Goetz, 2009). For the effective
implementation of management and conservation strategies such data needs to be collected

in a cost-effective and efficient way (Nagendra, 2001).

Remote sensing can broadly be defined as the science of monitoring the Earth from a
distance. For this research project, and for the sake of simplicity, remote sensing can be split
into two subdivisions, optical and acoustic. The former is the initial focus. Smith (2012)
defines optical remote sensing as the ‘science of obtaining and interpreting information from
a distance, usually through the means of either aerial, satellite or spacecraft observations’.

Acoustic remote sensing can be similarly defined, where the limited penetrating of
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electromagnetic radiation (EMR) through water requires that boats and acoustic sensors be
used instead of aerial, satellites or spacecraft (Brown et al., 2019). This technology allows
for some of the limitations with traditional field-surveying to be addressed, chief of which
being the limited spatial extent covered. Depending on the platform used, remote sensing
can cover much larger tracts of the Earth’s surface than on-foot methods, in the same
amount of time (Gray et al., 2018). Data can be collected over a wide range of spatial
resolutions and across the entirety of the electromagnetic spectrum providing information on
a cornucopia of Earth system processes that would be immensely difficult to quantify on

foot.
1.7. Optical remote sensing
1.7.1. History and development of optical remote sensing

An appreciation for the historical context in which modern optical remote sensing sits is
required to understand how the technology has developed over the past century and how
current remote sensing capabilities differ greatly in the types of data collected and the spatial

and spectral resolutions that can be achieved with modern technology.

Soon after the development of practical photography techniques in the late 1830’s, interest
grew in their use for capturing images from high-vantage points. Balloons and kites were the
initial method of choice for attaining such images and the first document case is that of
Gaspard Félix Tournachon (known as ‘Nadar’) who, in 1858 successfully used a balloon-
mounted camera to capture the cityscape of Paris (Amad, 2012). Unfortunately, none of
Nadar’s photographs exist today but other notable pioneers include James Wallace Black
who, using a balloon, took the first extant aerial image over Boston in 1860 (Fig. 1.3)
(Skoog, 2008) and the infamous Eadweard Muybridge who, whilst famed for his work on
photographic studies of motion, created the world’s first panoramic image, of San Francisco
in 1877 (Amad, 2012). Soon the idea of mounting cameras on rockets was being
championed by Alfred Nobel and in 1897, the year after his death, the first successful
images were supposedly captured, although doubt has been cast on whether the images were
captured from a hill instead (Skoog, 2008).
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Fig. 1.3. First aerial image of Boston, taken in 1860 by James Wallace Black using the ‘Queen of the
Air’ hot-air balloon. Credit: James Wallace Black (CC).

The invention and development of aircraft opened a whole new avenue of potential
applications for aerial imagery, none better encapsulated then their pioneering use in WWI.
From 1915 onwards, both the Allies and the Central Powers extensively used aerial
photography to reconnoitre and observe enemy defences (Gheyle et al., 2016). So extensive
are the archives of these images, that they are still being used today to understand and
preserve the war’s heritage (Note et al., 2018). WWII saw the further development of aerial
imagery acquisition, interpretation and use of the non-visible EM spectrum. The skillset
developed by those involved was, after the war, transferred to civilian occupations and
helped to drive the continued development of remote sensing (Campbell, 2002). Since then,

planes have been a reliable platform from which to conduct remote sensing surveys.
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The first images taken where the Earth’s curvature was visible were in 1935 from the
Explorer Il stratospheric balloon, piloted by Captain Albert Stevens, which took images
from around 20 km in height (Briggs, 1935). Some of the earliest images taken from space
were from captured V2 rockets followed by Viking rockets launched from New Mexico
from 1946 — 1955 (Bird & Morrison, 1964). Initially these images were taken from a height
of about 100 — 200 km, but by 1959 the Atlas rocket, launched from Cape Kennedy, took
images from 1400 km above Earth (Bird & Morrison, 1964). Soon after followed the first
manned orbital and suborbital flights of the Project Mercury mission where photographs
were taken by the astronauts (Bird & Morrison, 1964). This coincided with the launch of the
first TIROS satellite, designed for climatological and meteorological observations, (TIROS-
1) in 1960, with a subsequent seven launched by 1964 (Bird & Morrison, 1964). These
satellites were the proving ground for satellite Earth observation and their success in
monitoring global weather patterns paved the way for future satellites (NASA, 2016). In
1972 the first civilian Earth observation multispectral satellite, Landsat 1, was launched
(Goetz, 2009), in part due to the development of microprocessors (Cohen & Goward, 2004).
As of 2013, there have been eight Landsat missions, with the ninth planned for 2020 (USGS,
2019). Each satellite improved upon the capabilities of the last, particularly with respect to
increased spatial and spectral resolution (Markham et al., 2004). Landsat data has been used
in a vast number of scientific studies, covering a wide range of scientific disciplines (e.g.
South et al., 2004; Yang et al., 2003; MacAlister & Mahaxay, 2009; Petropoulos et al.,
2010). Since 1972 many Earth observation satellites have been launched and, as of 2008,
there were more than 150 in orbit (Tatem et al., 2009). Research into hyperspectral sensor
technology began in the 1980’s (Campbell, 2002), yet the number of hyperspectral satellites
remains limited owing to difficulties with obtaining sufficient spatial resolution, power
requirements, data storage limitations and cost (Transon et al., 2018). Most current and

future Earth observation satellites are multispectral.

Aircraft and satellites supported the development of optical remote sensing and Earth
observation throughout the 20", and into the 21, century. The development of drone
technology has a long and complicated history focused on their use in military applications
and it is recommended, for those interested, to read Keane & Carr (2013) for a detailed
historical account. Drones are now increasingly being used in a range of different
environmental monitoring studies and evolution of drone technology over the past ten years
has turned them into a cost-effective and accurate mapping platform for researchers
(Johnston, 2019), yet their application for macroalgal mapping studies is limited but

growing. These three platforms remain the most popular for the acquisition of remote
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sensing data and the decision on which to use often depends on research objectives as they
each offer unique mapping capabilities, primarily focused on their survey height (Fig. 1.4).

620 km

\ o
150- 15007

Fig. 1.4. Representation of the three main platforms used to collect remote sensing data and their
operational ranges. Different ground field of views (GFOV) are highlighted. Satellites cover the
largest areas, followed by aircraft, drones and then on-foot surveys. Adapted from Johnston (2019).

1.7.2. Optical remote sensing theory

Optical remote sensors can typically either be passive or active. Passive sensors depend on
an external energy source, such as the sun, and measure how this energy interacts with a
feature. Active sensors produce their own energy and radiate it onto a feature, measuring the
returning energy (Richards & Jia, 2006). Active sensors are not used in this research and
shall not be discussed further. Good examples, however, include Radar (radio waves) and
Light Detection and Ranging (LiDAR) which uses pulsed lasers. Thermal remote sensing
technology will also not be discussed as it is not used in this research. This research focused
on the use of RGB, multispectral and hyperspectral passive remote sensors and the theory

behind them and their development are discussed in the following sections.

20



Chapter 1: General introduction

Nucleic reactions within the sun produce a full spectrum of electromagnetic radiation
(EMR), which travels, relatively unaltered, through space until it reaches the atmosphere of
Earth. At this point, certain wavelengths are scattered or absorbed by particles within the
atmosphere with the remainder eventually reaching and interacting with features on the
Earth’s surface (Milton, 2004). EMR is combined of visible, radio, thermal, ultra-violet and
x-rays and radiates in accordance with basic wave theory, which describes the energy as
travelling in a sinusoidal way, at the speed of light (Lillesand et al., 2004). This is

represented by the following equation:
C=AV

Where c represents the velocity of light, which is constant (3 x 108m/sec), frequency (v) and

wavelength (A).

The sum of all energy reaching a feature on the Earth’s surface is known as incident energy,
at this point, five fundamental interactions take place. EMR is either absorbed, reflected,
scattered, refracted or transmitted, and it is variations in these three interactions that create
unique spectral signatures enabling different objects to be spectrally distinguished from one
another (Govender et al., 2007). Incident energy can be described as follows:

Ei(A) = Er()) + Ea(K) + Ex(A)

Where incident energy (E) is the sum of the interactions between reflected energy (Er),

absorbed energy (Ea) and transmitted energy (Ex).

There are three major, arbitrarily, defined regions of the EM spectrum. Regions below 400
nm, which includes gamma rays, x-rays and ultraviolet, are typically not considered useful
for remote sensing applications (Campbell, 2002). The visible region contains the blue (400-
500 nm), green (500-600 nm) and red (600-700 nm) light, which are the wavelengths
recorded in three-band RGB sensors. Beyond this is the infrared region of the EM spectrum
which covers from ~700 nm to 1500 nm and can be sub-divided into the near-infrared (NIR)
(750-100 nm) and thermal wavelength regions (1000-1500 nm). NIR behaves in a manner
consistent with visible light and can therefore be captured using similar sensors (Campbell,
2002).

Optical remote sensors are designed to record the ways in which incident light interacts with
features of interest, usually in the form of reflectance. This is the ratio of incident-to-
reflected radiant flux measured from a feature over specific wavelengths (Peddle et al.,

2001) and is represented by the following:

Er(M) = Ei(}) - [Ea() + Ex(M)]
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Reflected energy is equal to incident energy minus the energy that is absorbed or transmitted
upon contact with an object leaving a surface without a change in frequency (Nicodemus et
al., 1977). Sensors measure the radiance of an object which provides information on how
much energy is being reflected or emitted but this needs to be displayed as a percentage of
incident radiation. This is because spectral reflectance is an inherent property of an object
and is independent of location, time, atmospheric or weather conditions (Peddle et al.,
2001). The nature of this reflection depends upon the size of object surface irregularities,
essentially how rough or smooth they are, in relation to the wavelength of radiation
(Campbell, 2002). A perfectly smooth surface, such as a mirror, will produce a specular
reflection where the angle of incidence is equal to the angle of reflection and almost all the
energy is reflected in a single direction (Campbell, 2002). A uniformly rough surface (at a
scale equivalent to the wavelength), referred to as a Lambertian surface, will produce a
diffuse reflection where energy is scattered equally in all directions providing equal
brightness when viewed from any angle (Campbell, 2002). Many objects fall somewhere in
between specular and diffuse reflectors and this behaviour is described by the bidirectional
reflectance distribution function (BRDF) with respect to angles of illumination and
observation (Nicodemus et al., 1977; Mac Arthur et al., 2012).

Three characteristics of a remote sensor define the type of data it can collect, its spatial,
spectral and radiometric resolution. The level of detail that can be depicted in an image is
defined as the spatial resolution. Each detector in a remote sensor measures a finite area on
the ground, the smaller the individual areas, the higher the spatial resolution (Govender et
al., 2007). The spatial resolution is affected by the design of the sensor and the height that it
is flown or orbits at. Wider field of views (FOV) can lead to decreased spatial resolution
caused by the lower pixel densities. A sensor with the same native resolution, but narrower
FOV, would likely have a finer spatial resolution, but would on capture a smaller area. Some
sensor manufacturers offer different lenses to suit client needs (Headwall, 2020). Spectral
resolution refers to the ability of the sensor to capture bands within the EM spectrum, a
sensor that can capture many small bands within the spectrum would have a high resolution.
A higher spectral resolution (i.e. hyperspectral sensor) increases the chances of being able to
differentiate between two objects which may have a similar spectral signature as these
spectral differences are often narrow (Kutser et al., 2006b). Radiometric resolution is the
ability of a sensor to measure the signal strength of objects, the higher the radiometric
resolution the more sensitive the sensor is to detecting small differences in reflected energy
(Butler, 2014). The energy recorded is represented by bits (used to code numbers in binary
format) and the maximum number of brightness levels depends on the number of bits used.

One bit would be a sensor that could only distinguish black and white, whereas eight-bit
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sensors can distinguish 255 different shades making them better capable of observing more
differences in surface feature reflection (Smith, 2012). There is a trade-off between spatial
resolution, spectral resolution and radiometric resolution which results in spatial resolution

being decreased when spectral resolution is enhanced (Eismann & Hardie, 2005).

1.7.3. Optical remote sensing of macroalgae

Multispectral remote sensors, such as Landsat and SPOT (Satellite Pour 1’Observation de la
Terre), collect images with a few relatively broad wavelength bands from the visible and
near-infrared regions of the EM spectrum (Smith, 2012). The fine spectral resolution of
multispectral sensors means that they may not be suitable for discriminating between
macroalgae at a species level (Oppelt et al., 2012), but can achieve accurate results when
looking at broader taxonomic groups (Brodie et al., 2018). Their use is mostly restricted to
areas with low spatial heterogeneity and a few optically distinct species, which form
monospecific stands (Knudby et al.,, 2011). Several studies have had success using
multispectral imagery in such environments. Stekoll et al. (2006) found good correlations
between remote sensing data and ground truth data for kelp biomass estimates in Alaska.
Cavanaugh et al. (2010) combined multispectral imagery and dive-based surveys to assess
changes in M. pyrifera canopy cover and biomass in California, finding a strong correlation
between in-situ measurements and remote sensing data. Casal et al. (2011) used data from
the SPOT-4 satellite to map subtidal kelp in turbid waters, noting that whilst challenges
arising from working in turbid water affected some of the results, there was still correlation
to be found between remote sensing and field data. The method was unable to identify

different species, however.

Intertidal macroalgal communities can often be spatially and spectrally heterogeneous (Tait
et al., 2019), as spectrally similar species can often be found in mixed assemblages,
requiring remote sensing technology with both high spatial and spectral resolutions (Vis et
al., 2003). The use of hyperspectral sensors has grown in the past decade. Hyperspectral
sensors collect ten to hundreds of narrow contiguous spectral bands across the EM spectrum
whilst, depending on the type, also having high spatial resolutions (Pe’eri et al., 2008). This
enables more accurate discrimination between spectral signatures of target features (i.e.
macroalgal species). Hyperspectral sensors can be mounted on a range of platforms
including satellites, planes and drones. To date, and to the best of our knowledge, there have
been no studies which have applied drone-mounted hyperspectral remote sensing for
intertidal macroalgal habitat mapping. Relatively few studies have used hyperspectral
sensors, on any platform, for this type of work. Oppelt et al. (2012) successfully used a

motorised glider and AlSAeagle+ hyperspectral sensor to map the intertidal zone at

23



Chapter 1: General introduction

Heligoland (German Bight) but found discriminating to species level was difficult as for
some brown macroalgal classes, only mixtures could be identified. This may have been a
result of low spatial resolution not being able to observe the complexities of mixed
macroalgal assemblages. Hennig et al. (2007) used the ROSIS airborne hyperspectral sensor
to map intertidal macroalgae (only to group level) and zonation in Heligoland. They were
able to identify these broad macroalgal groups along with mussel beds and observed that it
was not possible to achieve species level discrimination. The authors do not offer an
explanation for this, perhaps the spatial resolution of the ROSIS sensor (GSD 0.84 m/pixel)
was not suitable for visualising complex intertidal spatial assemblages. The high spectral
resolution of hyperspectral sensors is considered particularly important for accurately
discriminating between spectrally similar macroalgal species (Oppelt et al., 2012).
Combined with the fine spatial resolution that can be achieved using drones, hyperspectral
remote sensing potentially allows for fine spatial patterns to also be observed (Lucieer et al.,
2014).

1.7.4. Spectral library data collection

The most important consideration prior to conducting a remote sensing survey is how to
collect accurate training and reference data. A common and effective method of achieving
this is through the creation of a spectral library of key species features present within a study
site (Kutser et al., 2003). Spectroscopy is the study of light that is reflected and emitted from
material, and its variation in energy and wavelength (Lillesand et al., 2004). A spectral
library can be used to identify materials as seen by the hyperspectral imager (Dekker et al.,
2003) to train image analysis and classification software to verify the information extracted
from the hyperspectral imagery (Lillesand et al., 2004). Reflectance spectroscopy requires a
source of illumination (of sufficient intensity across wavelengths of interest), a means of
measurement, a method to direct the illumination on to the same and a means of analysis
(Milton, 2004). The collection of spectral library information can be collected either in the
field, under natural illumination conditions, or under artificial conditions in a laboratory.
Measurements collected in a laboratory may not be suitable for classifying remote sensing
data and are useful for conducting more detailed investigations into the spectral properties of
macroalgae under controlled conditions (Uhl et al., 2013). For some species, such as canopy
forming ones, it may be necessary to sample a sufficiently extensive area of the surface to be
representative (Milton, 2004), although for in the case of macroalgae, Kotta et al. (2014)
observe how variation in canopy geometry and properties do not significantly change
reflectance values. Spectral libraries also need to account for spatial and temporal variations
in reflectance spectra. Seasonal changes in environmental conditions lead to variations in

macroalgal pigment concentrations (Stengel & Dring, 1997) which, intern, affect reflectance
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properties. It is, depending on research objectives, important to design spectral sampling
surveys to account for this and also to determine the spatial variation in the reflectance
spectra of macroalgal species (Kotta et al., 2014).

1.7.5. Macroalgal spectral characteristics

There are three main groups of macroalgae, each having characteristic pigments with
different optical properties giving them their unique colouration, these are Chlorophyta
(green), Rhodophyta (red) and Phaeophyceae (brown) (Tab. 1.1). Light harvesting pigments
are found either within, or on, the thylakoid membrane of chloroplasts and concentrated in
cortical cells of macroalgal species. The presence and concentration of these pigments is
what makes it possible to spectrally discriminate between groups and, to some extent,
species (Dekker et al., 2003). All three groups contain chlorophyll-a, but it is the presence of
the other chlorophylls and pigments which varies (Hedley & Mumby, 2002). Other pigments
include carotenoids and phycobilins which are also responsible for the variation in
reflectance within the visible wavelengths, particularly for red and brown macroalgal
species. (Pe’eri et al., 2008). The chlorophylls are all tetrapyrrole rings surrounding Mg?*
(Fischer, 1936) and chlorophyll a and b have a fatty acid tail which is lacking in chlorophyli
¢ (Hurd et al., 2014). The carotenoids, split into carotenes and xanthophylls, provide
additional photoprotective services under high irradiance. Both are Cy tetraterpenes with
carotene being a hydrocarbon and xanthophylls containing at least one oxygen molecule
(Hurd et al., 2014). Phycobiliproteins are water-soluble accessory light-harvesting pigment
molecules serving as the photosynthetic apparatus in some eukaryotic algae. They are
comprised of proteins bound by chromophores called phycobilins which are usually either
phycoerythrobilin or phycocyanobilin and these can further be divided into three classes
depending on the wavelength absorption region and number of phycobilin molecules present
within their polypeptide chains (Hurd et al. 2014). Absorption of EM radiation is thus,
owing to the presence of pigments, greatest in visible wavelengths. Chlorophyll, for
example, strongly absorbs in the blue and red spectral regions (Campbell, 2002) which, for
green macroalgal species, contributes to a distinctive spectral profile in the visible region.
which creates distinctive reflectance troughs. Spectral reflectance in the near infrared (NIR)
is controlled, not by pigments, but by the internal cellular structure of macroalgae
(Campbell, 2002). This can vary greatly owing to stresses such as water limitation (Smith,
2012) or even subtle variations in the localised hydrodynamic and climate conditions within
a single site and, as highlighted by Uhl et al. (2013), can be difficult to quantify, especially
for brown macroalgal species. Temporal variation in pigment concentrations occur due to
differing light regimes, and this can lead to intraspecific variation in thalli colour along with

variation within a thalli of an individual. This can be seen for A. nodosum in Fig 2.4
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(Chapter 2). The presence of water also affects the spectral signature in NIR wavelengths as
absorption of insolation is high, which is why water appears black in NIR images. This can
make the analysis of spectral signatures within the NIR wavelengths difficult and explains
why many spectral studies to date have focused on the visible (400-700 nm) wavelength
range where spectral response is controlled pigment presence and concentration.

Tab.1.1. Main pigments associated with each of the three macroalgal groups. Adapted from Hedley &
Mumby, (2002).

Pigments Absorption Chlorophyta  Phaeophyceae =~ Rhodophyta
Peaks (nm)

Chlorophylls

Chl-a! 435, 670-680 X X X

Chl-b? 480, 650 X

Chl-c! 645 X

Carotenoids

o? 423, 444, 473 X

iz 427, 449, 475 X X X

Xanthophylls

Zeaxanthin? 428,450,478 X X

Neoxanthin? 415,438,467  x X

Lutein? 422, 445, 474 X X

Violaxanthan? 417,440,469  x X

Fucoxanthin? 426, 449, 465 X

Diotoxanthin? 425, 449, 475 X

Diadinoxanthin? 424, 445, 474 X

Siphonxanthin? 540 X

Phycobilins

Phycocyanin? 618 X

Phycoerythrin® 490, 546, 576 X

Allophycocyanin® 654 X

Lin vivo, Zin-vitro

1.7.6. Remote sensing of biomass

The effective conservation and management of macroalgal resources requires the ability to
conduct biomass, along with distribution assessments. In-situ biomass surveys are usually
time consuming, costly and require logistical support, which is why Stekoll et al. (2006)
observe how it is important to find a morphometric measurement that is correlated with
biomass and that can also be easily measured in the field. The use of remote sensing
technologies potentially allows spatial coverage and biomass estimates to be provided for
much larger sites than were previously available when using field-based survey techniques.
These technologies also offer the prospect of a reduced need for extensive field-based
biomass surveys if relationships can be developed between morphometric data and biomass,
which can then enable biomass to be determined from remote sensing data (Gevaert et al.,
2008). To the best of our knowledge, only one recent study has attempted to use remote

sensing technology to assess the biomass of intertidal macroalgal species. Remote sensing of
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biomass requires being able to quantify the volumetric properties of macroalgae and the
development of linear relationships between biomass and either volume or height (Cunliffe
et al., 2016). What research that has been done on the remote sensing of macroalgal biomass
has been conducted on subtidal species (e.g. kelps and seagrasses) using acoustic remote
sensing. This has proven difficult for intertidal macroalgae as, when emersed, morphometric
properties that can be correlated with biomass, such as length, cannot be measured. In an
attempt to address this, Webster et al. (2019) used LiDAR to measure the height of the A.
nodosum canopy in Nova Scotia by surveying at low and high tide. By identifying the
waveform response of A. nodosum and the seabed they calculated the height of the canopy at
high tide and, using biomass to height relationships developed during field-sampling, they
were able to derive biomass estimates for the site. Potential relationships between vegetation
biomass and vegetation indices, such as normalised difference vegetation index (NDVI),
have been developed for homogenous saltmarsh communities (Doughty & Cavanaugh,
2019). Such relationships may also exist for macroalgae but will require the ability to first
identify different species within a community, otherwise it would not be possible to
determine whether variations in NDVI were related to biomass or different species.

Blight et al. (2011) collected measurements from kelp plants and found a strong relationship
between stipe length and biomass. This meant that acoustic data could then be used to obtain
kelp canopy height which can then be used to estimate biomass for the wider area. The
ability of acoustic sensors to observe the height of the kelp canopy above the seabed was
also explored by Mac Craith & Hardy (2015) who created a kelp height map and noted the
potential of this method for creating biomass maps. Quintino et al. (2010) found that SBES,
with a 200 kHz frequency, was able to distinguish areas of different macroalgal biomass and
that it would be possible to model the biomass of Caulerpa prolifera (Forsskal) J.V.
Lammouroux. Minami et al. (2010) also had success in using SBES to measure the thickness
of the kelp canopy, further highlighting the potential for a synergy between morphometric
data and remote sensing. Lefebvre et al. (2009) were also able to use SBES to delineate the

canopy height of seagrass in the Solent (UK).

Several studies choose to use remote sensing data to assess the spatial distribution of a target
species and then scale up field-based biomass assessments to the wider study area. Stekoll et
al. (2006) found a good correlation between multispectral imagery and biomass data
collected from field surveys. The study used estimated biomasses from sampling sites to
calibrate the multispectral imagery where relationships between biomass and density
enabled a biomass map to be produced. They also found that the best predictor of plant
biomass was the weight of the blade. Andréfouét et al. (2004) used IKONOS satellite data to

determine the spatial extent of two invasive brown seaweeds. They used field and laboratory
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measurements to provide percentage cover versus biomass estimate for the sampling site and
then scaled this value up to represent the species cover throughout the study site. Simms
(2005) conducted a kelp biomass assessment using CASI. The study conducted a traditional
field-based biomass survey and then used the following equation to estimate biomass for the
study area.

B =AW

Where B is the total biomass for the site (kg), A is the total area of kelp classified using the
remote sensing data and W is the median biomass from the survey (kg/m2). The study notes
that although this is an effective method for quantifying biomass the high heterogeneity of
the coastal environment leads to high variability in biomass estimates. Riegl et al. (2005)
used acoustic remote sensing to define three species categories, seagrass, spare algae and
dense algae. Biomass estimates were then calculated for each of these categories and then

extrapolated to the wider site by counting the colour coded pixels assigned to each category.

Biomass assessments are usually a destructive process (Gevaert et al., 2008) as they require
the removal of macroalgal species from the substratum. Both subtidal and intertidal kelp
biomass assessments rely on a quadrat methodology where plants are removed in order to be
weighed (Andréfouét et al., 2004; Bajjouk et al., 2015; Gorman et al., 2013; Quintino et al.,
2010; Simms, 2003; Vadas et al., 2004). Subtidal biomass surveys are usually conducted by
Scuba divers whereas intertidal surveys are conducted on foot or by boat if areas are
inaccessible. As water levels in plants can vary on a daily basis obtaining the dry weight of a
plant is more accurate than the fresh, or wet, weight. Studies appear to use of mix of both
wet (Fyfe et al., 1999; Simms, 2003; Reigl et al., 2005; Stekoll et al., 2006) and dry weight
(Andréfouét et al., 2004; Barillé et al., 2010; Quintino et al., 2010) biomass measurements.
Wet weight can either be obtained in the field or in the laboratory and involves cleaning the
samples of any sediment or epiphytes before weighing (Vadas et al., 2004). To obtain the
dry weight samples need to be transported to the laboratory, cleaned and then dried before

weighing (Quintino et al., 2010).

1.7.7. Challenges of subtidal optical remote sensing

The presence of water can severely limit the effectiveness of optical remote sensing
technology and the attenuation of light becomes greater with increasing depth and turbidity
(Bajjouk et al., 2015). Water is a strongly absorbing medium for solar energy (Bushing,
2000) and the degree of absorption is mostly dependent on wavelength (Lillesand et al.,
2004). Absorption is much stronger in the near-to-mid infrared region of the EM spectrum

and varies for the visible region depending on water body properties (Campbell, 2002). In
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coastal waters, light is also scattered and absorbed by suspended organic/inorganic material,
phytoplankton and dissolved organic substances contributing to a decrease in the spectral
reflectance of submerged benthic macroalgae (Casal et al., 2012). This strong attenuation of
light by water limits the depth at which benthic macroalgae can be identified (Kotta et al.,
2013). Often, emergent species, such as canopy forming kelps, have higher average
reflectance values than submerged species due to the lack of interference from water (Oppelt
et al., 2012) and these have been the subject of several remote sensing studies (Stekoll et al.,
2006; Cavanaugh et al., 2010). Within the visible wavelengths the green band is considered
the most useful for identifying submerged macroalgae, followed by the red and red-edge
regions (Silva et al., 2008). Blue wavelengths penetrate the water well, but are scattered and
reflected, giving water its characteristic blue colour (Campbell, 2002). The main challenge
in subtidal remote sensing is to isolate the feature-of-interest signal from water column
interference (Casal et al., 2013). These challenges make it more straightforward to
conducting remote sensing surveys during low tide, despite the time constraints this creates.
Depth limitations of light penetration would mean that optical remote sensing surveys of
subtidal macroalgae would not provide a complete picture and this is where acoustic remote
sensing technology can potentially provide an effective mapping solution.

1.8. Acoustic remote sensing
1.8.1. History and development of acoustic remote sensing

For almost four thousand years, up to the 1900’s, the primary method for measuring the
depth of the seafloor was the lead line. The earliest evidence for seafloor mapping comes
from a model boat found in tomb of Meket-re (buried in Thebes ca. 2000 BC) showing a
lead line being used to measure depth (Mayer, 2006). Merchants in the Mediterranean used
this method to develop some of the first known maps of the seafloor during the 13" century
(Brown et al., 2011). With the development and eventual acceptance of the echosounder,
post WWII, the ability to create maps of the seafloor was greatly enhanced (Mayer, 2006).
Along with developing an understanding of the bathymetry of the seafloor came the need to
understand its biological and geological nature. In the 19" century, such studies were
rudimentary and involved the use of simple dredges and grab techniques (Brown et al.,
2011). The development of sidescan sonar systems in the 1940’s provided the first, low-
resolution, images of the nature of the seafloor (Kenny et al., 2003) and modern multibeam
systems (MBES), developed in the 1970’s (Renard & Allenou, 1979), can record high
resolution data on bathymetry and backscatter, making them invaluable for seafloor and

benthic habitat mapping studies.
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1.8.2. Principles of acoustic remote sensing

Acoustic remote sensing technologies are not constrained by the same physical factors as
optical remote sensing technology and, as such, can operate in both deep oceanic and
shallow coastal waters. Acoustic remote sensing technologies allow for the quick and precise
acquisition of data over large spatial scales (Kruss et al., 2006), making them the tool of
choice for seafloor habitat mapping. Acoustic remote sensors work by transmitting, from a
transducer attached to the hull of a vessel, a pulse of sound through the water to the seabed
and then listening for the returning echo (Stanton, 2012). There are two types of information
gathered from these systems, bathymetric and backscatter. By measuring the time it takes for
the acoustic wave to be transmitted to, and reflected from, the seabed one can assess its
depth (Blight et al., 2011). Bathymetric data, however, only provides information on the
profile and depth of the seafloor and not any information on seafloor characteristic such as
bottom type (de Moustier, 1985). Backscatter data enables bottom roughness and substrate
type to be inferred as different sediments and rock types cause fluctuations in the scattering
of the acoustic signal. Harder surfaces such as bedrock will cause a higher return of the
sound energy, providing a stronger signal, whereas softer sediments absorb more of the
sound energy producing a weaker return signal. The level of detail afforded by some sensors
can create almost photo-realistic imagery of the seabed (Kenny et al., 2003).

1.8.3. Acoustic remote sensing technologies
1.8.3.1. Sidescan sonar (SSS)

Sidescan devices usually consist of a towfish, transmission cable and topside processing
unit. The SSS transducer transmits sound and analyses the return signal to build a relatively
high-resolution image of the seafloor (Mayer, 2006). The sound is emitted perpendicular to
the two fish, meaning that the area directly below is not isonified by the sound waves (Fig.
1.5). Given the need to deploy the towfish below the vessel, SSS systems are difficult to use
in shallow water environments (Komatsu et al., 2003). The inability of such a system to
provide measurements of canopy height makes it unsuitable for use in subtidal macroalgal
mapping surveys, although they are capable of detecting the lateral distribution of, for
example, seagrass beds (Lefebvre et al., 2009). Being close to the seabed allows SSS to
create ultra-high spatial resolution images of the seabed. Their application, then, may depend
on research requirements and may be suitable if information on canopy height is not

required.
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1.8.3.2. Singlebeam Echosounders (SBES)

The principle function of SBES systems is to calculate the water depth immediately below
the vessel (Colbo et al., 2014). The backscatter signal can also be analysed. SBES emits a
pulse of sound directed vertically below the vessel and the analysis of this echo contains
information about the water column and seabed (Blight et al., 2011). These systems are
popular because they are simple to use and prevalent on nearly all vessels (Kruss et al.,
2008). Having only a single beam, these systems are unable to cover large area, only
isonifying a small area directly beneath the vessel (Fig. 1.5). Studies using SBES to map the
spatial distribution of habitats have concluded that while SBES allows for the discrimination
of habitats, the use of MBES would offer enhanced resolution and greater spatial coverage
(Jordan et al., 2005; Kruss et al., 2017). These systems are also unsuitable for mapping the
spatial extent of species with patchy distributions as their limited seabed coverage would
make it inefficient (Komatsu et al., 2003). Most of the studies, to date, which used acoustic
remote sensing to successfully map benthic macroalgal and macrophytic communities have
used SBES systems (Riegl et al., 2005; Noel et al., 2008; Lefebvre et al., 2009; Minami et
al., 2010; Blight et al., 2011; Kruss et al., 2017). The prevalence of SBES on many vessels
and their relative simplicity make them a useful tool for subtidal habitat mapping but, owing
to their limited ability to survey large areas would not be able to provide a complete picture
of the feature of interest meaning that, depending on the research question, important details,

such as variation in canopy height (e.g. seagrass or kelp) could be lost.

1.8.3.3. Multibeam Echosounders (MBES)

MBES systems transmit several beams (into the hundreds for some systems) in a fan shape,
covering a wide swath either side of the vessel (Fig. 1.5) (Brown & Blondel, 2009). It is the
ability of the MBES to gather data on bathymetry and backscatter across a wide area that
makes it so useful. Each beam can also be analysed for simultaneous depth measurements
across the width of the swath (Lurton, 2002). MBES systems offer a high vertical and
horizontal resolution and there are variants which can operate at a range of water depths,
from deep ocean to shallow coastal waters (Colbo et al., 2014). Until recently, the
backscatter collected using SSS systems was of greater detail, but developments in data
collection and processing has vastly improved the resolution of MBES data (Le Bas &
Huvenne, 2009). Whilst MBES systems provide much greater spatial coverage, analysis of

their data output is not as straightforward as it is for SBES systems (Blight et al., 2011).
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)

Fig. 1.5. Pictorial representation of the data collection methods for three acoustic remote sensing
devices, MBES (a), SBES (b) and SSS (c).

1.8.4. Application of acoustic remote sensing in the marine environment

The most common application of acoustic remote sensing technologies is for seabed
mapping and bathymetric surveys (Renard & Allenou, 1979; lerodiaconou et al., 2007;
Preston, 2009). Interest is growing in the acoustic returns that can be detected from objects
in the water column which act to scatter sound waves (Freitas et al., 2008). Given the
commercial value of fish, it is not surprising that SBES data have been used in fisheries
management since the last 1940s (Cushing, 1962). The use of acoustic data enables
estimates of fish volume, morphology and allows behaviour to be studied (Weber et al.,
2009) and aids in locating target species. The majority of effort in the water column
application of acoustic remote sensing has gone into fisheries and applications of the study
of benthic habitats are still in their infancy (Colbo et al., 2014). Several studies succeeded in
using acoustic data to map benthic habitats that have strong geophysical signatures, for
example, scallops (Kostylev et al., 2003) and biogenic Rhodolith (Corallinales, Rhodophyta)
beds (Falace et al., 2014). Technological advancements mean that the limitations
surrounding the extraction of water column data are now being overcome (Brown &
Blondel, 2009).

Several studies have had success in using acoustic remote sensing to map the distribution of
seagrass beds. Komatsu et al. (2003) used MBES to map seagrass beds in Japan, finding it
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possible to assess the distribution, volume and biomass of the seagrass beds, something that
was likely facilitated by their homogenous distribution in the study site. Biomass estimations
were calculated by extrapolating m? biomass of seagrass to the area covered by seagrass (as
determined during the survey). Lefebvre et al. (2009) showed that it was possible to predict
seagrass abundance and canopy height using acoustic sensors supported by video surveys
and Sabol et al. (2002) showed good agreement between acoustic estimates of seagrass

canopy height and ground truth data.

1.8.5. Acoustic remote sensing of macroalgae

The majority of the sound energy emitted from the sensor head is reflected from the seafloor
and this is used to determine its depth (Blight et al., 2011). The presence of fish and
macroalgae above the seabed can interfere with the acoustic energy, through scattering and
absorption, producing a weaker return signal, allowing for their detection. lerodiaconou et
al. (2007) combined MBES and video transects to accurately identify dominant substratum
and biota classes, including seagrass and macroalgae dominated communities. Kruss et al.
(2008), in a preliminary study, used both SBES and MBES, supported by direct sampling
and observation, to identify the presence of macroalgal species, but did not describe the
species present. SBES was also used by Riegl et al. (2005) to differentiate between different
substrates and also between seagrass and macroalgae using 50 khz and 200 khz frequencies.
The successful mapping of laminarians was demonstrated by McGonigle et al. (2011) who
used MBES and two different techniques, one based on the software QTC-Multiview, and
the other based on the extraction of water column data. The acoustic data correlated well
with ground truth data collected using drop down video. Studies have noted that using higher
frequency SBES channels created less backscatter in the water column, making them more
suitable for delineating macroalgal canopies (Blight et al., 2011; Mac Craith & Hardy,
2015). Wilson et al. (2013) highlights that, whilst acoustic methods have emerged as a
useful tool for mapping subtidal macroalgal communities, they remain unable to directly
assess biomass, density and physiological condition. However, the ability to define canopy
height and distribution can allow for the calculation of volume (Abukawa et al., 2012) which

may allow for estimations of biomass.

1.8.6. Acoustic properties of macroalgae

The presence of macrophytes is usually discernible by their backscatter signature, which is
weaker than the seabed and stronger than the ambient noise in the water column (Lefebvre et
al., 2009) and, under the right frequencies, can be distinguished from the seafloor
(McGonigle et al., 2011). The acoustic impedance of macroalgae is thought to result

primarily from the gas within them, with more buoyant species being more acoustically
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reflective (Sabol et al., 2002). Wilson et al. (2013) found it more difficult to detect kelp
without pneumatocysts using acoustic methods and that the acoustic signatures of kelp
species appeared to be biomass dependent and that future work should focus on the
relationship between kelp biomass and backscatter intensity, which will vary depending on
the species. Kruss et al. (2017) successfully used SBES to map macroalgal communities in
Kongsfjorden (including kelp species such as A. esculenta and S. latissima) and were able,
after interpolation, to derive area estimations. The study noted that variations in the
backscatter intensity of the macroalgal layer may indicate different species as macroalgal
morphology and density may influence the signal, concluding that more work is required to
verify this. Several studies have reported strong backscatter from dense seagrass canopies
(Lefebvre et al. 2009; Parnum et al., 2012) and for kelp (Mac Craith & Hardy, 2015),
suggesting that canopy size and density influences the amount of energy reflected back to
the receiver. Bennion et al. (2017) used backscatter intensity to predict the presence of kelp
(species not defined) off the coast of Dorset. Training data was used to verify the presence of
kelp and bare substratum and this data was inputted into a Species Distribution Model
(SDM) to predict the distribution of kelp based on the backscatter.

1.8.7. Challenges of using acoustic remote sensing to map macroalgae

The use of MBES and water column analysis for subtidal macroalgal mapping is an
emerging field which has traditionally been focused on the detection of fish in the water
column (McGonigle et al., 2011). The slow development of using MBES to collect water
column data was due to the large data storage requirements and that many MBES devices
did not permit the digital logging of water column returns (Colbo et al., 2014). These
limitations are now being overcome through technological developments in software and
hardware (Brown et al., 2009). A primary limitation of acoustic remote sensing
technologies, for macroalgal mapping, is their inability to differentiate between species with
similar morphological characteristics. Blight et al. (2011) found that they could no
differentiate between L. hyperborea and L. digitata and were unable to identify the transition
zone between the species without the use of dive surveys. Bajjouk et al. (2015) highlight
how difficulties in identifying species will likely make accurate biomass assessments
incredibly challenging until methods for acoustically discriminating between species are
developed. Lefebvre et al. (2009) found that the correct calculation of canopy presence and
height was reliant on the accurate computation of seabed depth, a particularly dense canopy
could lead to the higher backscatter values being found on the canopy causing it to be
potentially misclassified as seabed. Within shallow water environments, MBES experience a
decrease in efficiency as the swath widths shorten, requiring more track lines to be

undertaken and increasing the cost (Costa et al., 2009).
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1.9. Research aims

With increased interest in Ireland’s macroalgal resource, there is a need to develop accurate,
efficient and cost-effective baseline resource assessment methodologies for ecologically and
economically important macroalgal species. The use of remote sensing technologies allows
for larger areas to be surveyed than would be possible using traditional survey methods. This
research sought to understand how these technologies could be applied for the assessment of

macroalgae and what challenges and limitations were associated with this novel application.

The core of this research (Chapters 2, 3, 4, 6) focused on the use of optical remote sensing
technologies to map A. nodosum, whilst Chapter 5 explored the application of acoustic
remote sensing technology for the mapping of subtidal kelp species. The challenges of
spectrally discriminating between macroalgal species has previously been highlighted (Kotta
et al., 2014). In Chapter 2 it was first necessary to quantify the spectral reflectance
properties of common intertidal canopy forming macroalgal species through the creation of a
spectral library. Further to this, seasonal sampling of reflectance spectra was conducted to
determine whether there was an optimum time of year in which to conduct optical remote
sensing survey based upon intra and inter-specific spectral variation. Seasonal variations in
pigment concentrations within macroalgal species may lead to variations in the spectral
response, potentially making different species more, or less, spectrally separable from one
another. Ultimately, a set of hierarchical classification rules were created using classification
and regression tree (CART) models to define a suitable subset of wavelengths that would

allow for accurate discrimination between all sampled species for each season.

UAV-mounted hyperspectral remote sensing was then used (Chapter 3) to map the
distribution of A. nodosum at a spatially and spectrally complex intertidal site. The high
spectral and spatial resolution of these sensors provided the best opportunity to identify
subtle spectral variations between species, allowing for their identification. Two supervised
classification methods, Maximum Likelihood Classifier (MLC) and Spectral Angle Mapper
(SAM), were used, one training using a spectral library and the other using image-derived
spectra. The accuracy of drone-mounted hyperspectral remote sensing, and the two
classifiers used to analyse the data, was assessed along with the effectiveness and accuracy

of utilising high-resolution RGB imagery for the collection of training and reference data.

The technical complexity of hyperspectral sensors, for operation, processing and analysis,
and their high cost made it prudent to explore the mapping capabilities of more affordable
technology. Many commercially available multispectral sensors are lightweight, affordable
and often easily integrated with UAVs and software, making them an accessible mapping

solution. Chapter 4 sought to compare the mapping capabilities, for A. nodosum, of
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multispectral sensors mounted on a satellite, airplane and UAV, each offering distinct
advantages and disadvantages. Like Chapter 3, high-resolution RGB imagery was also used
to efficiently collect training and reference data.

Chapter 5 evaluates the applicability of applying acoustic remote sensing technologies to
map the distribution of subtidal kelp species, which is often dominated by L. hyperborea.
The ability of acoustic sonar to penetrate the water column much more effectively than
optical remote sensing allows, in theory, a more accurate distribution map to be created
which is not depth limited. Water column data have been highlighted as a useful method for
accurate delineation of subtidal macroalgal canopies (McGonigle et al., 2011). Multiple
frequencies of water column data were collected over a small kelp bed and ground-truthing
was carried out using a drop-down camera to verify the presence and species composition of
the kelp beds. The extraction of water column data should allow for the accurate area and
height of the kelp bed to be determined, allowing the calculation of volume and, pending the
establishment of linear relationships, biomass.

The application of UAV mapping techniques for intertidal macroalgal research is still in its
infancy. The knowledge acquired in the previous chapters, combined with a detailed review
of existing literature were integrated into Chapter 6 where we sought to develop a
comprehensive guide, not only on the most recent UAV and sensor technology but also how
they can be applied to intertidal mapping. Specific focus was put on the unique
characteristics of intertidal macroalgal assemblages and how these would influence the

choice of UAV, sensor and operational parameters.
Publications

Rossiter, T., Furey, T., McCarthy, T., Stengel, D. (2020). UAV-mounted hyperspectral
mapping of intertidal macroalgae, Estuarine, Coastal and Shelf Science, 242, 1-16.

(Chapter 3 — unmodified from article)

Rossiter, T., Furey, T., McCarthy, T., Stengel, D. (2020). Application of multi-platform,
multispectral remote sensors for mapping intertidal macroalgae: a comparative approach,
Aquatic Conservation: Marine and Freshwater Ecosystems. (Chapter 4 — unmodified from

article)
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Drone image of A. nodosum, H. elongata and mixed fucoids during low tide in An
Cheathrd Rua (Co. Galway)
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Abstract

Monitoring intertidal macroalgal communities using optical remote sensing technologies
will support their sustainable management over medium-to-large spatial scales. The
effectiveness of optical remote sensors will depend, in-part, on developing a detailed
understanding of the inter and intra-specific reflectance properties of macroalgal species,
within and across seasons, to quantify their spectral separability from one another and
identify temporal variation within these relationships. This study visited a single site in the
west of Ireland and sampled the reflectance spectra of common canopy-forming intertidal
macroalgal species across four seasons during 2018 and sought to distinguish, not only
between macroalgal groups, but also between different brown species. A TriOS RAMSES
spectroradiometer was used to record reflectance spectra over a wavelength range of 320 —
950 nm. For each season, the statistical separability between each species sampled during
each season were quantified using a Classification and Regression Tree (CART) approach to
define an optimal subset of wavelengths which enable spectral separation. Results show that
it is possible to distinguish between the three macroalgal groups, and that for spring, summer
and autumn it is possible to spectrally distinguish between the majority of common intertidal
macroalgal species. Winter showed poor spectral separability between a number of common
species. This study showed that seasonal variation in reflectance properties affected both the
inter and intra-specific spectral relationships, thus highlighting the importance of the
collection of concurrent spectral profiles and remote sensing data. Overall, the most suitable

wavelength for discrimination between species, across all four seasons, was 500 — 575 nm.
2.1. Introduction

Macroalgae communities are some of the most productive and important systems on Earth
(Dawes, 1998; Harley et al., 2012) and provide habitats for a diverse range of fish and
invertebrate species (Bruno & Bertness, 2001; Davies et al., 2007; Mineur et al., 2015).
They modify local hydrodynamic regimes, such as through dampening of water motion
(Bunker et al., 2017) whilst providing coastal protection services (Lgvas & Tgrum, 2001).
Intertidal macroalgal communities occupy the uppermost reaches of the marine realm and,
by virtue of their location, face a raft of ever-increasing anthropogenic pressures (Mineur et
al., 2015), including direct harvesting impacts. The effective management of these
ecosystems requires a detailed understanding of their distribution through the collection of
accurate, current, baseline data (Dekker et al., 2003). Traditional field survey methods,
whilst highly accurate, are often time-consuming, intensive and limited in the spatial extent
that can be efficiently covered (Kerr & Ostrovsky, 2003; Hamylton, 2017). This is often
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compounded by the occurrence of species in spatially heterogenous and fine-scale
communities, combined with difficulties in accessing and traversing the intertidal zone.
Macroalgal communities within the Irish intertidal zone are structured by defined bands of
vertical zonation and dominated by large brown macroalgal species of the order Fucales.

Remote sensing provides the ability to survey large, inaccessible areas and is more efficient,
in terms of survey hours versus area covered, than on-foot methods (Gray et al., 2017).
Remote sensing surveys have been used for macroalgal mapping for several decades and
primarily used satellites (Cavanaugh et al., 2010; Casal et al., 2011; Bell et al., 2015) and
planes (Bajjouk et al., 1996; Dekker et al., 2003; Pe’eri et al., 2008; Oppelt et al., 2012; Uhl
et al., 2016) as the remote sensing platform. Recently, and despite several decades of use for
military and agricultural applications (Watts et al., 2012), unoccupied aerial vehicles
(UAVs) are now seeing increased uses as seagrass (Duffy et al., 2017) and macroalgal
(Murfitt et al., 2017; Kellaris et al., 2019; Taddia et al., 2019) remote sensing platforms.

The chief challenge of using remote sensing technology for mapping macroalgal
communities is to determine the best method for identifying species, in what are often
spatially and spectrally complex environments (Cruzan et al.,, 2016), with intertidal
macroalgal communities are often found in mixed assemblages. When found in mixed
assemblages, this complexity can be measured in centimetres, with fronds from one species
can be overlapping another or where a mosaic of different species occur, up to metres where
homogenous stands of one species is interspersed by small aggregations of another (Webster
et al., 2019). RGB sensors are a popular, low-cost way to conduct surveys (Buters et al.,
2019), but their low spectral resolution makes discriminating between spectrally similar
species difficult. Increasing the spectral resolution of sensors, and consequently the price
(i.e. multispectral and hyperspectral), allows identification of distinctive spectral features
(reflectance peaks and troughs), controlled principally, in visible wavelengths, by pigment
composition and concentrations (Slaton et al., 2001). By recording the spectral reflectance
properties of different macroalgal species, across the visible and non-visible electromagnetic
(EM) spectrum, spectral libraries can be created, which can then be used to train supervised
classification workflows to identify target species within a study site (O’Neill et al., 2011). It
is important to try and mitigate potential source of variation in reflectance spectra. Structural
variation within a sample, such as orientation of thalli and roughness, the reflectance
properties of which are defined by bidirectional reflectance distribution function (BDRF),
often require replicate sampling. The presence of water could also after spectral response,
especially in the near-infrared (NIR) and there should be a process in place to ensure excess

water is removed (Kotta et al., 2014). Diffuse illumination, a result of atmospheric (e.g.
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solar angle) and terrain conditions (e.g. slope) should be recorded for different surveys if
they are to be directly compared between (Schaepman-Strub et al., 2006).

Spectral sampling should include all features (i.e. macroalgae, substratum etc.) that are
likely to be observable from a remote sensing platform. Strong seasonal variation within the
pigment composition of intertidal macroalgae (Schmid et al.,, 2017) means that it is
important to record the inter and intra-specific spectral relationships across seasons,
identifying any season-specific variation in reflectance spectra, to support the provision of
representative spectral training data for the habitat classification workflow. Inter-thallus
variation in pigment content was observed by Stengel & Dring (1998) with shading resulting
higher pigment content in the base of Ascophyllum nodosum individuals leading to it being
darker in appearance compared to the tips, which experience more light. This inter-thallus
variation could influence spectral response leading to potential misclassification if not
properly accounted for in the creation of a spectral library.

The spectral properties of the three major macroalgal groups (Fig. 2.1), green (Chlorophyta),
brown (Phaeophyceae) and red (Rhodophyta) have been well documented in the literature
(Bajjouk et al., 1996; Vahtmae et al.,2006; Uhl et al., 2013; Kotta et al., 2014) and are
considered to be relatively simple to spectrally discriminate between (Kutser et al., 2006;
Chao Rodriguez et al., 2017). All three groups contain chlorophyll-a, but variations in other
chlorophylls, chlorophyll-b in green and chlorophyll-c in brown for example (Hurd et al.,
2014), and accessory pigments such as carotenoids and phycobilins (Kotta et al., 2014),
influence their unique spectral responses. Questions over the extent to which species within
each group are spectrally separable from one another have been highlighted by previous
studies (Kutser et al., 2006b; Casal et al., 2013).
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Fig. 2.1 Averaged spectral profiles for brown (A. nodosum), green (Ulva spp.) and red (C. crisp)
macroalgal groups showing their characteristic spectral profiles. Spectra collected May 2018 from
Carraroe.

Along North-eastern Atlantic rocky coastlines, many of the dominant canopy forming
macroalgal species are brown (Lubchenco, 1980), which is also the case for the UK and
Ireland (Stephenson & Stephenson, 1949), and this spectral similarity presents a challenge to
remote sensing technology. To support the accurate mapping of these resources using remote
sensing it is imperative that, not only are the spectral profiles of species within these
environments recorded, but that the unique temporal spectral relationships between, and
within, macroalgal groups are understood in detail and their spectral separability from one
another determined. Understanding temporal variability in spectral response will allow for
conclusions to be made on the suitability of different seasons for conducting mapping

surveys. To achieve this, the following questions were addressed:

i.  To what extent are canopy-forming brown macroalgal (shown in Tab. 2.2) species
spectrally separable from one another across every season?
ii. What are the temporal impacts on the spectral separability between different

macroalgal species?
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iii.  What are the implications of the spectral separability results for the planning of

remote sensing surveys?
2.2. Methodology
2.2.1. Study Site

Reflectance measurements of macroalgal species were taken at Doleen Pier, near An
Cheathri Rua (Carraroe) (53°15°08’’N, 009°37°51°°W) which lies within Kilkieran Bay
(Co. Galway), western Ireland (Fig. 2.2). Kilkieran Bay and Islands is designated as a
Special Area of Conservation (SAC) due to the presence of mudflats and sandflats not
covered by seawater at low tide and large shallow inlets, bays and reefs (Anon, 2015b). The
primary underlying bedrock of the bay is granite (Kénnecker & Keegan, 1983) and the low
relief shoreline is dominated by rocky substrate which yields to muddy sediment in shallow
waters (Sides et al., 1994). Water depths are shallow in the bay, ranging from 2-10 m inland
to around 25 m at the entrance to the bay, with salinity ranging from 30-35 ppt (O’Donohoe
et al., 2000). The entrance to the bay is exposed to the Atlantic Ocean and the prevailing
southwest winds cause significant turbulence during stormy periods (Tully & O’Ceidigh,

1989).

There is a high abundance of A. nodosum and general high diversity of other canopy forming
intertidal macroalgal species including Pelvetia canaliculata, Fucus spiralis, F. vesiculosus,
F. serratus and Himanthalia elongata (all Phaeophyceae). Owing to its moderately exposed
location in the mouth of the bay, and the presence of suitable substrata, the kelp species
Laminaria digitata (Phaeophyceae, Ochrophyta) is present in the sublittoral zone. Red
(rhodophyte) species, including Chondrus crispus and Mastocarpus stellatus are common in
the canopy understory but do not form dense canopies that would be visible to a remote
sensing platform. Ulva spp. (Chlorophyta) are occasionally found in small patches atop of

the macroalgal canopy.
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Galway City

Fig. 2.2 Location of the sampling site at Doleen Pier in the context of Galway Bay (Co. Galway).

2.2.2. Spectroradiometer sampling

A spectroradiometer was used to record the spectral reflectance of dominant canopy forming
intertidal macroalgal species and substratum in-situ. All reflectance measurements were
carried out during low tide over a two-day period for each of the four sampling seasons
(Tab. 2.1). A TriOS RAMSES Hyperspectral Radiance and Irradiance Sensor (TriOS
Optical Sensors, Rastede, Germany) was used to collect spectral measurements from
dominant intertidal macroalgal species (Fig. 2.3). Species were chosen if they represented a
dominant canopy-forming species within the study site and these were all brown species.
Representative species representing red and green macroalgal groups were also chosen to
allow for a simple comparison between the reflectance spectra of the three macroalgal
groups. The setup comprised of two sensors. The radiance sensor had a 7 ° field of view
(FOV) recording 256 channels in the range of 320-950 nm, with a wavelength accuracy of
0.3 nm. The irradiance sensor had a cosine response with a 180 ° FOV and measures across
the same wavelength range as the radiance sensor. The sensors were mounted on a frame,
the irradiance sensor facing vertically upwards and the radiance sensor facing nadir, supplied
by the company and was approximately 20 cm above the ground, providing a ground field of
view (GFOV) of 4.8 cm? The sensors were connected to a control box (TriOS Optical
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Sensors, Rastede, Germany), which was powered by a 12 V battery (Enersys, Reading,
Pennsylvania). A HP Pavilion laptop (HP, Palo Alto, USA) was used to operate the
proprietary MSDA_XE software which controls the sensors. All measurements were
conducted on a wooden surface painted with ultra-black paint (Culture Hustle, London, UK)
to reduce background noise (Dekker et al., 2003) and to reduce the impact of variation

caused by different slope angles and terrain effects (Schaepman-Strub et al., 2006).

Tab. 2.1 Data of seasonal spectral sampling surveys. Time represents time of first measurement.

Season Date Time  Solar angle Cloud cover
(GMT) zenith (deg) (%)
Spring 28/05/2018 11:00 31 65
Summer 10/08/2018 11:30 52 27
Autumn 24/11/2018 14:00 82 71
Winter 05/02/2019 13:00 72 61

The limited portability of the radiometer meant that we could not measure samples in-situ,
therefore target species were collected from the intertidal and brought to the pier in a bucket
of seawater for measurement. Samples were collected at random from the easiest areas of the
intertidal to access to ensure rapid collection. Samples were first shaken to remove excess
water and then placed beneath the radiance sensor so that they covered the entire GFOV
(Fyfe, 2003). Integration time was left set to automatic to account for slight variations in
insolation. Our primary focus for spectral sampling was brown macroalgal species, as these
represented the dominant canopy forming species present in the intertidal. Knowledge of the
spectral separability of these dominant species is essential for supporting accurate remote
sensing surveys. At our site green macroalgal species were not present year-round and, when
present, often occurred in small patches. Red macroalgal species were almost exclusively
sub-canopy, but we wanted to include spectra from both representative red and green species
to corroborate, with existing literature, the spectral relationships between the three
macroalgal groups. Only visually healthy specimens were collected that represented the
general site condition for each species (Jiménez & Diaz-Delgado, 2015). For large species,
such as A. nodosum, F. vesiculosus and F. serratus, one individual (comprised of multiple
fronds) sufficiently covered the GFOV, but for smaller species such as C. crispus and Ulva
spp., multiple thalli of individuals were combined during the measurements to ensure
enough coverage. Ten replicate individuals were measured for each species and each of
these was replicated three times, finally a single irradiance measurement was taken for each

of the 10 replicates and this was carried out under constant light conditions. All
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measurements were hemispherical-conical due to contributions from both direct and diffuse
irradiance components (Schaepman-Strub et al., 2006). If there was significant intra-thallus
colour variation, these were recorded as separate spectra, i.e. light and dark A. nodosum
(typically the base and tips of the thalli which are exposed to different light regimes
affecting their pigment composition). This may have importance implications for fine spatial
resolution surveys as not properly accounting for this within-thallus colour variation could
reduce the accuracy of the final classification as darker or light thalli sections could be
misclassified as a different class. Tab. 2.2 shows the different species measured in each
sampling season. Herein, species will also refer to ‘light” and ‘dark’ variants of a species

along with its traditional definition. Species codes are shown in Tab. 2.3.

Prior to calculating reflectance, the raw radiance and irradiance (Tab. 2.4) spectra were
linearly interpolated to a 2 nm step using a formula in Excel (Microsoft, Redmond, USA)
(Fig. S2.1). This aligns the wavelengths, accounting for the slight differences in the
wavelengths observed by each sensor, of the two sensors and addresses potential artefacts in
the spectra associated with sharp change in signal, such as the oxygen absorption peak at
760 nm (Kutser, Pers. Comm.). Raw radiance was then converted into reflectance by
dividing each radiance measurement by the corresponding irradiance measurement:

_ P&
~ PO(R)

Where P ( A ) is radiance of the macroalgal sample and PO ( ») is downwelling irradiance.

Tab. 2.2 Species sampled during each season. Dark (D) and light (L) colour variants were sampled
when species displayed strong intra-specific colour variation.

Spring

Summer

Autumn

Winter

Ascophyllum nodosum
(D)

Ascophyllum nodosum
(L)

Chondrus crispus
Fucus serratus

Fucus spiralis

Fucus vesiculosus
Himanthalia elongata
Laminaria digitata
Pelvetia canaliculata
Sargassum muticum
Ulva spp.

Ascophyllum nodosum
(D)

Ascophyllum nodosum
(L)

Chondrus crispus
Fucus serratus

Fucus spiralis

Fucus vesiculosus (D)
Fucus vesiculosus (L)
Himanthalia elongata
Laminaria digitata
Pelvetia canaliculata

Ascophyllum nodosum
(D)

Ascophyllum nodosum
(L)

Chondrus crispus
Fucus serratus

Fucus spiralis

Fucus vesiculosus
Himanthalia elongata
Laminaria digitata
Pelvetia canaliculata

Ascophyllum nodosum
(D)

Ascophyllum nodosum
(L)

Chondrus crispus
Fucus serratus

Fucus spiralis

Fucus vesiculosus
Himanthalia elongata
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Pelvetia canaliculata
Ulva spp.
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Tab. 2.3 Species codes used in Chapter 2 to refer to sampled species.

Species Code
Ascophyllum nodosum (light variant) ANL
Ascophyllum nodosum (dark variant) AND
Chondrus crispus C.crisp
Fucus serratus Fserr
Fucus spiralis Fspi
Fucus vesiculosus (light variant) FVL
Fucus vesiculosus (dark variant) FVD
Himanthalia elongata Him
Laminaria digitata Ldig
Pelvetia canaliculata PelC
Sargassum muticum Sarg
Ulva spp. Ulva

Tab. 2.4 Sl units used to define feature surface reflectance quantities.

Units Description

Radiant exitance

Radiance

Irradiance

Reflectance

(M [Wm?])
L [W m2sri]

Radiant flux emitted by a surface per unit area.

Radiant flux emitted, reflected, transmitted or

received by a surface, per unit solid angle per

unit projected area.

(E [Wm?])
P(SiSr 1)

Radiant flux received by a surface per unit area.

Angular distribution of incident (S;) and

reflected (Sr) radiance.

46



Chapter 2: Spectral properties of intertidal macroalgae

1: Radiance and Irradiance sensors
2: Control Box

3: 12V battery

4: Laptop with MSDA_XE

Fig. 2.3 The typical setup of the TriOS RAMSES Hyperspectral radiometer mounted on a frame
supplied by the manufacturer (a). Samples are cut and placed in a bucket with water (b), brought to
the pier immediately and measured, ensuring that the ground field of view (GFOV) of the sensor is
fully covered (c).

2.2.3. Spectral Discrimination Statistics

To spectrally separate between the different common intertidal macroalgal species we
followed the method developed by Kotta et al. (2014) to discriminate between macroalgal
groups, which was also applied by Chao Rodriguez et al. (2017), also looking at macroalgal
groups. Reflectance spectra were first standardised through subtracting the mean of all
wavelengths from each individual spectrum and then dividing by the standard deviation of
all wavelengths. Reflectance at each wavelength was treated as a distribution, meaning
standardisation allows for the comparison of the relative differences in spectral variability
and between different spectral profiles, as opposed to potential variation in intensity caused
by slight changes in sun angle (which could occur during the survey) and canopy orientation
(Dymond et al., 2001) for example, and is represented by the standard deviation of the
original wavelength values (Kotta et al.,, 2014). In addition, Kotta et al. (2014) used
standardisation to enable direct comparisons between submerged and emerged species
reflectance data. In this case, the presence of water can dampen the reflectance spectra and it
was important to determine that the reflectance profile of samples removed from in-situ

submerged conditions for measurement were representative of in-situ reflectance. Through
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standardisation we also hoped to account for variation in the amount of water present on the
samples (despite shaking), which could have altered the true spectral signature of the
sample.

Next, the optimal discriminatory boundaries between all pairs of species were identified. A
Mann-Whitney U test was applied to identify those wavelengths, between species, that were
statistically different from one another (p < 0.05). For those wavelengths where differences
were identified, an optimal separating boundary was calculated using the True Skills
Statistic (TSS) test, calculated using Spatial Data Calculator (SDC), developed by Remm &
Kelviste (2014). TSS, traditionally used to assess the accuracy of weather forecasts, reports
on the sensitivity, or the proportion of observed presences correctly observed as present, and
the specificity, the proportion of observed absences correctly predicted as absent
(McPherson et al., 2004). In this case, sensitivity refers to the proportion of one species
being above the threshold and specificity for the proportion of the second species lying
below the threshold (Chao Rodriguez et al., 2017):

TSS = Sensitivity + Specificity -1

TSS ranges from -1 to +1 with the latter representing a perfect agreement, indicating good
separability at the chosen wavelength (Allouche et al., 2006), and 0 or less for random
decisions (Kotta et al., 2014). TSS also outputs the optimum discriminatory boundary
between two sets of reflectance spectra where the mean proportion of false classification

results for both sets of spectra is minimal (Kotta et al., 2014).

To identify suitable wavelengths that could allow for accurate discrimination between all
sampled species (including light and dark A. nodosum and F. vesiculosus) (p < 0.05) the
non-parametric Kruskal-Wallis test was used (in SDC). Perfect distinction between all
species, as observed by Kotta et al (2014), was only achieved for some wavelengths,
meaning that suitable wavelength ranges are chosen based upon their overall ability to
discriminate between the species (i.e. are most species spectrally separable from one another
within a chosen range?). Classification and Regression Tree (CART) models were then used,
in Salford Predictive Modeler (SPM) (Minitab LLC, Pennsylvania, USA), to derive an
optimal subset of bands, creating a set of rules for discrimination between target species.
These decision-tree learning algorithms are flowcharts where each node represents a test on
an attribute, in this case individual wavelengths, each branch represents the outcome of the
test and each leaf is a class prediction (Han et al., 2012), i.e. species. CART models can be
sensitive to noise which is why the Kruskal-Wallis was first performed to reduce the number

of input bands (Han et al., 2012; Kotta et al., 2014). Owing to a relatively small sample size,
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cross-validation was used for testing as it does not require setting aside data, rather it grows
multiple replicate trees which each use 90 % of the data for model training and the
remaining 10 % for testing, these separate error percentages are combined into a single test
statistic. For each season, both full and subset CART models were created. Full models
utilised all wavelengths within the investigated spectral range (400—750 nm) whereas subset
models used wavelengths identified by the Kruskal-Wallis. Subset models that still allowed
the same levels of discrimination between species were preferred over the full models. If
required, models (full and subset) were simplified by pruning them to help prevent
overfitting (Krzywinski & Altman, 2017).

2.3. Results

2.3.1. Spectral properties

For all four seasons, spectral measurements were recorded for brown, and a single red (C.
crispus), macroalgal species, with green species only recorded in spring and winter (Fig.
2.5). Sargassum muticum was only sampled during spring (the only season it was observed).
Across all seasons, brown macroalgal species showed a series of reflectance peaks around
580, 600 and 650 nm, with distinctive reflectance troughs present at 630 and 675 nm (Fig.
2.5). The chlorophyll-a absorption trough for L. digitata (Ldig), across all seasons, showed
slightly increased variability, often occurring between 660-670nm (Fig. S2.2). Chondrus
crispus (C.crisp) was characterised by two reflectance peaks around 600 and 650 nm, along
with a reflectance trough at 675 nm (Fig. 2.5). Another trough at 580 nm helped to
distinguish C. crispus from brown macroalgal species. In summer, C. crispus had a shoulder
between 520-570 nm and a minimal trough at 580 nm. In spring and winter Ulva spp. was
easily recognisable owing to a single reflectance peak centred on 550 nm, helping to
distinguish it from both brown and red macroalgal species (Fig. 2.5). Whilst in spring, the
chlorophyll-a absorption trough for Ulva spp. occurred between 670-675 nm, in winter it is
centred around 655 (Fig. S2.2).

2.3.2. Seasonal spectral discrimination

CART model results provided a hierarchical set of rules to determine those wavelengths
most suitable for spectrally discriminating between commonly found intertidal macroalgal
species. Subset CART models were used for each season and were based on the results of
the Kruskall-Wallis tests, which determined at which wavelengths each species was
statistically different (p < 0.05) from all other species. Summer and autumn models could

discriminate between all species sampled, with spring and winter unable to discriminate
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between some brown macroalgal species (Fig. 2.6). Fig. 2.4 shows the changes in colour,

across the seasons for A. nodosum and F. vesiculosus.
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Fig. 2.4. Images showing the variation in colour for A. nodosum (top row) and F. vesiculosus (bottom row) across a Spring (May 2018), b Summer (August 2018), ¢ Autumn
(November 2018) and d Winter (February 2019).
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Standard Deviation
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Wavelength (nm)

Fig. 2.5 Combined spectral profiles for all species (including replicates) across spring (a), summer (b), autumn (c) and winter (d). Black dots represent suitable separability
wavelengths determined by CART models. Codes represent the following species; A. nodosum dark/light (“AND’/’ANL’), Fucus serratus (‘Fserr’), Fucus spiralis (‘Fspi’),
Fucus vesiculosus (‘Fves’), Fucus vesiculosus light/dark (‘FVL’/’FVD’), Himanthalia elongata (‘Him’), Laminaria digitata (‘Ldig’), Pelvetia canaliculata (‘PelC’),
Sargassum muticum (‘Sarg’), Ulva sp. (‘Ulva’), Chondrus crispus (‘C. crisp’).
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Standard Deviation
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Fig. 2.5 (Continued) Combined spectral profiles for all species (including replicates) across spring (a), summer (b), autumn (c) and winter (d). Black dots represent suitable
separability wavelengths determined by CART models. Codes represent the following species; A. nodosum dark/light (‘AND’/’ANL’), Fucus serratus (‘Fserr’), Fucus
spiralis (‘Fspi”), Fucus vesiculosus (‘Fves”), Fucus vesiculosus light/dark (‘FVL’/’FVD”), Himanthalia elongata (‘Him’), Laminaria digitata (‘Ldig’), Pelvetia canaliculata
(‘PelC’), Sargassum muticum (“Sarg”), Ulva sp. (‘Ulva’), Chondrus crispus (‘C. crisp’).
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Standard Deviation
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Fig. 2.5 (Continued) Combined spectral profiles for all species (including replicates) across spring (a), summer (b), autumn (c) and winter (d). Black dots represent suitable
separability wavelengths determined by CART models. Codes represent the following species; A. nodosum dark/light (‘AND’/’ANL’), Fucus serratus (‘Fserr’), Fucus
spiralis (‘Fspi”), Fucus vesiculosus (‘Fves’), Fucus vesiculosus light/dark (‘FVL’/’FVD’), Himanthalia elongata (‘Him’), Laminaria digitata (‘Ldig’), Pelvetia canaliculata
(‘PelC’), Sargassum muticum (‘Sarg”), Ulva sp. (‘Ulva’), Chondrus crispus (‘C. crisp’).
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Fig. 2.5 (Continued) Combined spectral profiles for all species (including replicates) across spring (a), summer (b), autumn (c) and winter (d). Black dots represent suitable
separability wavelengths determined by CART models. Codes represent the following species; A. nodosum dark/light (‘AND’/’ANL”), Fucus serratus (‘Fserr’), Fucus
spiralis (‘Fspi”), Fucus vesiculosus (‘Fves’), Fucus vesiculosus light/dark (‘FVL’/’FVD”), Himanthalia elongata (‘Him’), Laminaria digitata (‘Ldig’), Pelvetia canaliculata
(‘PelC’), Sargassum muticum (‘Sarg’), Ulva sp. (‘Ulva’), Chondrus crispus (‘C. crisp’).
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Fig. 2.6 Classification and Regression Tree (CART) models showing an optimum subset of
wavelengths for discrimination between sampled species during spring (a), summer (b), autumn (c)
and winter (d).
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Fig. 2.7 Seasonal intra-specific variation for Ascophyllum nodosum light/dark (ANL/AND), Fucus
vesiculosus (Fves) and Fucus vesiculosus light/dark (FVL/FVD) across spring (a), summer (b),
autumn (c) and winter (d). The black line represents the optimum discriminatory boundaries between
two samples as determined by TSS.
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2.3.2.1. Spectral discrimination of spring-collected thalli

The subset spring model was used which showed good separation between most species
sampled (Fig. 2.6a). Fucus spiralis (‘Fspi’) and F. vesiculosus (‘Fves’) were the only two
species not distinguishable from one another. Pairwise spectral separability results support
this by showing these two species to only be separable over a very small wavelength range.
Dark and light A. nodosum variants (‘AND’ & °‘ANL’) were separable over most
wavelengths with notable features, for ANL, including a deeper reflectance trough at 675 nm
and increased reflectance in over the 550-625 nm range (Fig. 2.7a). Wavelengths suitable

for discrimination between most species were clustered within the 520-560 nm range.

2.3.2.2. Spectral discrimination of summer-collected thalli

All species were spectrally separable from one another using the subset CART summer
model (Fig. 2.6b). Dark and light A. nodosum could be differentiated over most wavelengths
with A. nodosum (light) (‘ANL’) showing increased reflectance over the 550-650 nm
wavelength range (