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Abstract

We examine the stability of a soft dielectric plate deformed by the coupled effects of a
mechanical pre-stress applied on its lateral faces and an electric field applied through its
thickness under charge control. The electric field is created by spraying charges on the
major faces of the plate: although in practice this mode of actuation is harder to achieve
than a voltage-driven deformation, here we find that it turns out to be much more stable
in theory and in simulations.

First we show that the electromechanical instability based on the Hessian criterion
associated with the free energy of the system does not occur at all for charge-driven
dielectrics for which the electric displacement is linear in the electric field. Then we show
that the geometric instability associated with the formation of small-amplitude wrinkles
on the faces of the plate that arises under voltage control does not occur either under
charge control. This is in complete contrast to voltage-control actuation, where Hessian
and wrinkling instabilities can occur once certain critical voltages are reached.

For the mechanical pre-stresses, two modes that can be implemented in practice are
used: equi-biaxial and uni-axial. We confirm the analytical and numerical stability results
of homogeneous deformation modes with Finite Element simulations of real actuations,
where inhomogeneous fields may develop. We find complete agreement in the equi-biaxial
case, and very close agreement in the uni-axial case, when the pre-stress is due to a dead-
load weight. In the latter case, the simulations show that small inhomogeneous effects
develop near the clamps, and eventually a compressive lateral stress emerges, leading to
a breakdown of the numerics.
Keywords: dielectric elastomers, charge-controlled actuation, Hessian stability,
wrinkles, Finite Element simulations, electromechanical breakdown.

1. Introduction

Soft dielectric materials can undergo large actuation stretches when a potential differ-
ence is induced in the material. Typically, compliant electrodes such as carbon grease are
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smeared onto the faces of a soft dielectric elastomer plate and a voltage is applied across
the thickness of the material. As the voltage increases the material gradually expands
in area until a maximum voltage is reached, at which point a rapid large deformation
known as snap-through occurs [29]. The large actuation achieved due to the snap-through
behaviour is desirable for many applications but is difficult to achieve in practice. Snap-
through is often prevented by electric breakdown [29] or by instabilities such as inhomo-
geneities [1], compression failure [5], band localisation [10], wrinkles [17, 20, 21, 28, 24, 3],
membrane wrinkling [12], etc.

Various methods have been proposed for avoiding electric breakdown without sacrific-
ing the large actuation. For example, if the material is pre-stretched before the voltage
is applied, electric breakdown may be avoided, but the stretch gain achieved might be
reduced [23]. Another method proposed is charge-controlled actuation, as shown experi-
mentally by Keplinger et al. [15] and theoretically by Li et al. [16]. In charge-controlled
actuation, charges of opposite signs are sprayed on opposite planar surfaces of a dielectric
plate, inducing a potential difference, and hence an electric field in the dielectric, thereby
inducing a deformation. In principle this method of actuation annihilates the possibility
of snap-through because the theoretical charge-stretch loading curves are monotonic [16].
In this paper, we investigate the stability of a charge-driven dielectric plate, which has
not been considered previously and the results of which are significantly different from
those for voltage control.

We first focus on equi-biaxial loading and show that charge-controlled actuation is
stable since the Hessian criterion–or rather, its version for this problem–for onset of in-
stability is never met (Section 2.2). This result is far from straightforward to obtain,
because the Hessian determinant of the energy density is always negative, from which it
could erroneously be concluded that the actuation is unstable. In fact, we show that the
second variation of the free energy of the whole system is always positive, which ensures
stability throughout. This is in sharp contrast to the corresponding situation for voltage-
controlled actuation, which is well-known [29] to become unstable once a critical voltage
is reached.

We then highlight another new, and complementary, feature of charge control by
showing that charge-controlled actuation is also stable with respect to geometric insta-
bility because, provided the material is pre-stretched, small-amplitude inhomogeneous
wrinkled solutions superposed on the large homogeneous actuation do not develop (Sec-
tion 3). Again, this contrasts with the situation for voltage-controlled actuation, for which
dielectric plates eventually wrinkle under sufficiently large voltages [7, 8, 23].

In Section 4 we model the experiments of Keplinger et al. [15] where a plate was pre-
stretched by a weight prior to charge-controlled actuation. We thus study the stability
of a homogeneously deforming plate under uni-axial tension and charge-actuation and
again we find Hessian-based and geometric stability in this case, again contrary to the
corresponding situation for voltage-controlled actuation.

Finally in Section 5 we use Finite Element simulations to account for the finite dimen-
sions of plates. We find that in the equi-biaxial case there are no differences between the
results of the homogeneous loading analytical modelling and those of the Finite Element
method, because the plate is free to stretch laterally and the loading curves are indeed
monotonic (no snap-through). However, for the uni-axial case we find that the clamping
of the plate required to apply the weight leads to non-homogeneous deformations with
local variations of stresses and strains compared to the homogeneous solution, and that
these effects build up and eventually lead to a breakdown of the simulation. We identify
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the point of breakdown as corresponding to the appearance of compressive stresses in the
plate.

2. Equations of electroelasticity

Consider the stress-free reference configuration Br of an electroelastic material in the
absence of an electric field and applied mechanical loads. Points in Br are labelled by the
position vector X. When subject to loads and an electric field under static conditions
the material occupies the configuration B, with the material point X now at x. Let
F = Gradx denote the deformation gradient from Br to B, where Grad is the gradient
operator with respect to X. We denote by E and D, respectively, the electric field and
electric displacement vectors in B, and by τ the Cauchy stress tensor (which in general
depends on F and either E or D).

It has been found advantageous [6, 29] to formulate constitutive equations in terms of
the Lagrangian field variables, denoted EL, DL, and the nominal stress tensor T , which
are related to E, D and τ by the following pull-back operations (from B to Br)

EL = F TE, DL = JF−1D, T = JF−1τ , (1)

where J = detF .
The constitutive equations are based on the use of so-called ‘total’ energy functions,

depending either on F and EL, denoted Ω, or on F and DL, denoted Ω∗, with the
(partial) Legendre transform connection

Ω∗(F ,DL) = Ω(F ,EL) +DL ·EL. (2)

Henceforth, we confine attention to incompressible materials, so that the constraint J ≡ 1
is in force. Then we have the constitutive relations

T =
∂Ω

∂F
− pF−1, T =

∂Ω∗

∂F
− p∗F−1, (3)

(where p and p∗ are Lagrange multipliers associated with the constraint, in general with
p∗ 6= p), and

DL = − ∂Ω

∂EL

, EL =
∂Ω∗

∂DL

. (4)

The governing equations are

Div T = 0, CurlEL = 0, DivDL = 0, (5)

where Div and Curl are the divergence and curl operators with respect to X. We shall
consider the situation in which there is no external field, so that on the boundary ∂Br of
Br the standard electric boundary conditions associated with the equations (5) are simply

T TN = tA, N ×EL = 0, N ·DL = −σF on ∂Br, (6)

where N is the unit outward normal on ∂Br, tA is the applied mechanical traction per
unit area of ∂Br and σF is the surface charge density per unit area of ∂Br.

In considering applications to dielectric elastomers, which are isotropic electroelas-
tic materials, the functional dependence of Ω and Ω∗ can be expressed in terms of five
invariants. First of all, the isotropic purely kinematic invariants defined by

I1 = trc, I2 = 1
2
[I21 − tr(c2)], (7)
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where c = F TF is the right Cauchy–Green deformation tensor. Secondly, invariants
associated with EL, which typically are taken to be

I4 = EL ·EL, I5 = EL · (c−1EL), I6 = EL · (c−2EL), (8)

as in [6], and, thirdly, invariants associated with DL, here defined by

I∗4 = DL ·DL, I∗5 = DL · (cDL), I∗6 = DL · (c2DL), (9)

as used in [6] in different notation.
The expanded forms of the constitutive relations (3), when converted to Eulerian form

using (1) with J = 1, are

τ = 2Ω1b+ 2Ω2(I1b− b2)− pI − 2Ω5E ⊗E − 2Ω6(b
−1E ⊗E +E ⊗ b−1E), (10)

τ = 2Ω∗1b+ 2Ω∗2(I1b− b2)− p∗I + 2Ω∗5D ⊗D + 2Ω∗6(bD ⊗D +D ⊗ bD), (11)
D = −2(Ω4b+ Ω5I + Ω6b

−1)E, (12)
E = 2(Ω∗4b

−1 + Ω∗5I + Ω∗6b)D, (13)

where I is the identity tensor, b = FF T is the left Cauchy–Green deformation tensor,
Ωi = ∂Ω/∂Ii, i = 1, 2, 4, 5, 6, Ω∗i = ∂Ω∗/∂Ii, i = 1, 2, and Ω∗i = ∂Ω∗/∂I∗i , i = 4, 5, 6.

2.1. Specialization to biaxial deformations of a plate
We now consider the application of the above theory to the biaxial deformation of a

rectangular plate.
The plate has sides of lengths L1, L2, L3 in the reference configuration Br, where L2 =

H is the thickness of the plate, which is small compared with its lateral dimensions.
Mechanical loads are applied in the 1 and 3 directions; also, a potential difference, say V ,
exists between the major surfaces of the plate and the associated charges on the surfaces
are denoted ±Q. As a result, the plate is stretched homogeneously with stretches λ1 and
λ3 parallel to the major surfaces, and, by incompressibility, a stretch λ2 = λ−11 λ−13 normal
to the major surfaces. The potential difference generates an electric field with a single
component E = E2, associated with an electric displacement component D = D2. The
corresponding components of the Lagrangian fields are EL = λ2E and DL = λ−12 D.

In terms of the potential difference V and the associated charges ±Q on the surfaces,
we have the simple connections

EL = −V/H, DL = −σF = −Q/L1L3. (14)

Thus, for a fixed potential, EL is fixed, while fixed charge Q corresponds to fixed DL.
For this combination of deformation and electric field, Ω and Ω∗ specialize accordingly.

The invariants are now given in terms of the independent stretches λ1, λ3 and EL and DL

by

I1 = λ21 + λ23 + λ−21 λ−23 , I2 = λ−21 + λ−23 + λ21λ
2
3, (15)

I4 = E2
L, I5 = λ21λ

2
3E

2
L, I6 = λ41λ

4
3E

2
L, (16)

I∗4 = D2
L, I∗5 = λ−21 λ−23 D2

L, I∗6 = λ−41 λ−43 D2
L. (17)

We denote the specializations of Ω and Ω∗ by ω and ω∗, respectively, and the independent
variables by (λ1, λ3, EL) and (λ1, λ3, DL), respectively, with, from the connection (2),

ω∗(λ1, λ3, DL) = ω(λ1, λ3, EL) +DLEL. (18)
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Since the resulting deformation is purely biaxial the corresponding nominal stress is
coaxial with the edges of the plate; we denote its components by t1, t2, t3.

We now assume that there is no mechanical traction on the major faces of the plate so
that the boundary condition (6)1 yields t2 = 0. Then, on elimination of the hydrostatic
stress from (10) and (11), we obtain the simple formulas

t1 =
∂ω

∂λ1
=
∂ω∗

∂λ1
, t3 =

∂ω

∂λ3
=
∂ω∗

∂λ3
, (19)

and from (13)

DL = − ∂ω

∂EL
, EL =

∂ω∗

∂DL

. (20)

The particular case of equi-biaxial deformations is of special interest, for then, with
λ1 = λ3 = λ, and incompressibility giving λ2 = λ−2, we may introduce the following
further specialisations of the total energy functions,

ω̃(λ,EL) = ω(λ, λ,EL), ω̃∗(λ,DL) = ω∗(λ, λ,DL). (21)

We also have t1 = t3 = t, say, so that

t =
1

2

∂ω̃

∂λ
=

1

2

∂ω̃∗

∂λ
, DL = − ∂ω̃

∂EL
, EL =

∂ω̃∗

∂DL

. (22)

For illustration, we now consider models for which D = εE, where ε, the material
permittivity, is taken to be a constant. These are “ideal” dielectrics in the terminology
of Suo [25]. Note that this linear relationship has recently been verified [31] using ex-
perimental data for low to moderate values of the electric field for the acrylic dielectric
elastomer VHB 4905. In general, ε may depend on the deformation, as has been shown
in [27], for example, for the acrylic dielectric elastomer VHB 4910, but for our present
purposes we consider it to be a material constant.

Then, Ω and Ω∗ have the forms

Ω = W (I1, I2)−
ε

2
I5 = W (I1, I2)−

ε

2
EL · (c−1EL), (23)

Ω∗ = W (I1, I2) +
1

2ε
I∗5 = W (I1, I2) +

1

2ε
DL · (cDL), (24)

and, for the biaxial deformations of a plate considered above,

ω = w(λ1, λ3)−
ε

2
λ21λ

2
3E

2
L, ω∗ = w(λ1, λ3) +

1

2ε
λ−21 λ−23 D2

L, (25)

where w(λ1, λ3) = W (I1, I2) with I1 and I2 given by (15) and DL = λ21λ
2
3EL. For equi-

biaxial deformations, we have

ω̃ = w̃(λ)− ε

2
λ4E2

L, ω̃∗ = w̃(λ) +
1

2ε
λ−4D2

L, (26)

where w̃(λ) = w(λ, λ) and DL = ελ4EL.
For our subsequent applications we consider two representative energy density func-

tions, a neo-Hookean dielectric model and a Gent dielectric model, defined, in the two
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representations, by

ΩnH =
µ

2
(I1 − 3)− ε

2
I5, ΩG = −µJm

2
ln

(
1− I1 − 3

Jm

)
− ε

2
I5, (27)

Ω∗nH =
µ

2
(I1 − 3) +

1

2ε
I∗5 , Ω∗G = −µJm

2
ln

(
1− I1 − 3

Jm

)
+

1

2ε
I∗5 , (28)

where µ is the shear modulus in the absence of an electric field and Jm is a stiffening
parameter. Notice that ΩG recovers ΩnH and Ω∗G recovers Ω∗nH in the limit Jm →∞.

We now express the equations in dimensionless form by defining the following quanti-
ties

ω̄ = ω/µ, ω̄∗ = ω∗/µ, ω̂ = ω̃/µ, ω̂∗ = ω̃∗/µ,

D0 = DL/
√
µε, E0 = EL

√
ε/µ, s = t/µ, (29)

so that D0 = λ4E0 in the equi-biaxial case, and

s =
1

2

∂ω̂

∂λ
=

1

2

∂ω̂∗

∂λ
, D0 = − ∂ω̂

∂E0

, E0 =
∂ω̂∗

∂D0

. (30)

Based on either ω̂ or ω̂∗, we now obtain the expression for D0 in terms of λ and s for
the neo-Hookean and Gent dielectric models as

D0 =
√
λ6 − 1− λ5s, D0 =

√
λ6 − 1

1− (2λ2 + λ−4 − 3)/Jm
− λ5s, (31)

respectively, and note that the latter reduces to the former when Jm →∞.
Figures 1(a) and 2(a) show plots of these curves with D0 versus λ for several fixed

values of s, and Figures 1(b) and 2(b) display the corresponding plots of E0 versus λ
based on the connection E0 = λ−4D0. The value Jm = 97.2 given by Gent [11] has been
used here. Also shown in Figure 1(a) is the curve D0 =

√
(λ6 + 5)/3, which cuts the

fixed s curves at points where E0 is a maximum in Figure 1(b), which also shows the
corresponding dashed curve. Similarly for the Gent dielectric in Figures 2(a) and 2(b),
although, for the larger values of s, there is no maximum in (b) and no corresponding
intersection.

We now turn to the analysis of the stability of the plate based on the Hessian criterion.

2.2. Analysis of the Hessian stability criterion
Electro-mechanical instability is often considered to occur when the Hessian matrix

associated with the second variation of the free energy for the whole system ceases to
be positive definite [29]. The rationale of this criterion is that equilibrium corresponds
to an extremum of the free energy (and thus its first variation is zero), and that the
equilibrium is stable when it corresponds to a minimum of the free energy (and then its
second variation is positive).

In different notation and in dimensionless form, the free energy of the whole system,
here denoted ψ∗, considered in [29] has the form

ψ∗(λ1, λ3, D0) = ω̄∗(λ1, λ3, D0)− s1λ1 − s3λ3 −D0E0, (32)

and vanishing of its first variation (for fixed s1, s3, E0), with s1 = t1/µ, s3 = t3/µ, yields
the dimensionless versions of the constitutive relations involving ω∗ in (19) and (20).
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Figure 1: Plots of (a) D0 versus λ and (b) E0 versus λ based on equation (31)1 and the connection
E0 = λ−4D0 for the neo-Hookean dielectric in equi-biaxial deformation, for values of non-dimensional pre-
stress s = 0, 1, 2, 3 (continuous curves). In (a) we also display the (dashed) curve of D0 =

√
(λ6 + 5)/3,

the intersections of which with the continuous curves correspond to the maxima in (b).
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Figure 2: Plots of (a) D0 versus λ and (b) E0 versus λ based on equation (31)2 and E0 = λ−4D0 for the
Gent model, for fixed values of s = 0, 1, 2.3, 3 (continuous curves) and in (a) the (dashed) curve of D0

versus λ, the intersections of which with the continuous curves correspond to the maxima in (b). Note
that for larger values of s there is no intersection. Note also that the value s = 2.3 has been used here
instead of s = 2 to enable the dashed curve to be distinguished from the continuous curve at larger values
of λ in (a).

If, instead, we use E0 as the independent electric variable, then the corresponding ‘en-
ergy’, denoted ψ, vanishing of the first variation of which yields the constitutive relations
in terms of ω in (19) and (20), is given by

ψ(λ1, λ3, E0) = ω̄(λ1, λ3, E0)− s1λ1 − s3λ3 +D0E0. (33)

Note that, on use of (18) in dimensionless form, we have ψ∗ = ψ−D0E0, so that ψ is
the Legendre transform of ψ∗ with respect to the conjugate variables E0 and D0 related
by (30)4.

For the free energy ψ∗ of the whole system to be at a minimum, its second variation
must be positive, i.e. the associated Hessian matrix must be positive definite, at a point
of equilibrium. The second variations of ψ∗ and ψ are written compactly as

δ2ψ∗ = δa∗ · (H∗δa∗) , δ2ψ = δa · (H δa) , (34)
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respectively, with first variations δa∗ = [δλ1, δλ3, δD0]
T , δa = [δλ1, δλ3, δE0]

T , where H∗

and H are the corresponding Hessian matrices, which are given by

H∗ =

 ω̄∗11 ω̄∗13 ω̄∗1D0

ω̄∗13 ω̄∗33 ω̄∗3D0

ω̄∗1D0
ω̄∗3D0

ω̄∗D0D0

 , H =

 ω̄11 ω̄13 ω̄1E0

ω̄13 ω̄33 ω̄3E0

ω̄1E0 ω̄3E0 ω̄E0E0

 , (35)

with the subscripts representing partial derivatives.
For the equi-biaxial case these become 2× 2 matrices, given by

H∗ =

(
ω̂∗λλ ω̂∗λD0

ω̂∗λD0
ω̂∗D0D0

)
, H =

(
ω̂λλ ω̂λE0

ω̂λE0 ω̂E0E0

)
, (36)

and we now focus on this case for illustration.
It is straightforward to show that ω̂∗D0D0

= −1/ω̂E0E0 by using the formulas (30)3,4.
Now the determinants of the Hessians above are given by

detH∗ = ω̂∗λλω̂
∗
D0D0

− ω̂∗2λD0
, detH = ω̂λλω̂E0E0 − ω̂2

λE0
, (37)

and on specializing (18) we have ω̂∗(λ,D0) = ω̂(λ,E0) +D0E0, from which the following
connections, given in [8] in dimensional form, can be obtained:

detH∗ = ω̂λλω̂
∗
D0D0

= −ω̂λλ/ω̂E0E0 , detH = ω̂∗λλω̂E0E0 . (38)

These equations are independent of the specific forms of ω̂∗ and ω̂, and so are valid
for any choice of (equi-biaxial) energy density function. They have some interesting
interpretations, which we now discuss in respect of the neo-Hookean dielectric, for which

ω̂∗ = 1
2
(2λ2 + λ−4 − 3) + 1

2
λ−4D2

0, ω̂ = 1
2
(2λ2 + λ−4 − 3)− 1

2
λ4E2

0 , (39)

and hence
s = 1

2
ω̂λ = λ− λ−5 − λ3E2

0 = λ− λ−5 − λ−5D2
0 = 1

2
ω̂∗λ, (40)

and

ω̂∗λλ = 2(1 + 5λ−6 + 5λ−6D2
0), ω̂λλ = 2(1 + 5λ−6 − 3λ2E2

0), (41)
ω̂∗λD0

= −4λ−5D0, ω̂∗D0D0
= λ−4, ω̂λE0 = −4λ3E0, ω̂E0E0 = −λ4. (42)

Thus here,

detH∗ = 2λ−10(λ6 + 5− 3D2
0), detH = −2λ4(1 + 5λ−6 + 5λ2E2

0). (43)

Note that the maxima of E0 in Figure 1(b) correspond to detH∗ = 0, equivalently
ω̂λλ = 0, which also corresponds to a maximum of s at fixed E0. Note thatH∗ is positive
definite up to the maxima as E0 is increased from 0. By contrast, s is monotonic with
respect to λ at fixed D0 and ω̂∗λλ > 0, while detH < 0 and H is indefinite, thus defining
a saddle point of ω̂. Note that it would be incorrect to conclude here that the charge-
controlled actuation is unstable, as we now show.

Consider the connection

ω̃∗(λ,D0) = ω̃(λ,E0) + E0D0, (44)
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the first variation of which yields

ω̃∗λδλ+ ω̃∗D0
δD0 = ω̃λδλ+ ω̃E0δE0 + E0δD0 +D0δE0, (45)

leading to
ω̃∗λ = ω̃λ, E0 = ω̃∗D0

, D0 = −ω̃E0 . (46)

If we now take the second variation then the terms involving δ2λ, δ2E0, δ2D0 cancel and
we are left with the quadratic connection

ω̃∗λλ(δλ)2+2ω̃∗λD0
δλδD0+ω̃∗D0D0

(δD0)
2 = ω̃λλ(δλ)2+2ω̃λE0δλδE0+ω̃E0E0(δE0)

2+2δE0δD0.
(47)

From (46)3 we obtain
δD0 = −(ω̃λE0δλ+ ω̃E0E0δE0), (48)

and hence, by substituting for δD0 on the right-hand side of (47), we obtain

ω̃∗λλ(δλ)2 + 2ω̃∗λD0
δλδD0 + ω̃∗D0D0

(δD0)
2 = ω̃λλ(δλ)2 − ω̃E0E0(δE0)

2. (49)

For stability we require the left-hand side to be positive since this is the second vari-
ation of the actual free energy ψ∗ (so the free energy is minimized), whether we have
voltage-control of the deformation (when λ and D0 are free to vary) or charge-control of
the deformation (when λ and E0 are free to vary).

For fixed E0, in a voltage-controlled experiment, this reduces simply to ω̃λλ > 0, and
this fails where E0 is a maximum. For the neo-Hookean dielectric, it reads λ−2 + 5λ−8 −
3E2

0 > 0, and E0 =
√

(λ−2 + 5λ−8)/3 is the plot going through the maxima of each loading
curve for different values of the pre-load s, as shown by the dashed curve in Figure 1(b).

For fixed D0, in a charge-controlled experiment, the left-hand side is positive if ω̃∗λλ > 0,
and for the neo-Hookean dielectric, this reads 1+5λ−6(1+D2

0) > 0, which holds true for all
D0. In the case of a perfect dielectric, we haveD0 = λ4E0, and hence 0 = 4λ3δλE0+λ

4δE0,
so for the right-hand side of (49) to be positive we have

ω̃λλ − 16ω̃E0E0E
2
0λ
−2 = 2(1 + 5λ−6 + 5λ2E2

0) > 0, (50)

which confirms the result ω̃∗λλ > 0 for the neo-Hookean dielectric, and thus, that the
second variation of the free energy is always positive.

We can therefore conclude that under charge control, equi-biaxial activation is stable
according to the Hessian criterion since we have ω̃∗λλ > 0 for the considered neo-Hookean
model. On the other hand, activation under voltage control can become unstable in the
Hessian criterion sense, as is well known, since the inequality ω̃λλ > 0 can fail. The results
for the Gent model (not developed here) follow the same pattern.

3. Incremental stability analysis

To investigate the possibility of geometric instabilities, namely the formation of small-
amplitude wrinkles on the faces of the plate, we linearise the governing equations and
boundary conditions in the neighbourhood of a large deformation and initial electric field.

We introduce the incremental mechanical displacement u, the incremental nominal
stress tensor Ṫ and the incremental Lagrangian electric field and displacement, ĖL and
ḊL, respectively, all of which are functions of the deformed position x [7]. Let Ṫ 0, ĖL0 and
ḊL0 denote their push-forward forms from the reference to the deformed configuration,
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as defined by Ṫ 0 = F Ṫ , ĖL0 = F−T ĖL, ḊL0 = FḊL. These satisfy the governing
equations

div Ṫ 0 = 0, curlĖL0 = 0, divḊL0 = 0, (51)

and the relevant incremental constitutive equations are

Ṫ 0 = A0L+ pL− ṗI + A0ĖL0, ḊL0 = −AT
0L− A0ĖL0, (52)

where A0,A0 and A0 are, respectively, fourth-, third- and second-order electroelastic
moduli tensors (see [24] for their general expressions), and L is the displacement gradient
gradu, u being the incremental displacement, which, by incompressibility, satisfies trL ≡
divu = 0.

Attention is now focused on two-dimensional wrinkles [24] so that the fields are func-
tions of the components x1, x2 of x only, and u3 = ĖL03 = ḊL03 = 0. The governing
equations then reduce to

Ṫ011,1 + Ṫ021,2 = 0, Ṫ012,1 + Ṫ022,2 = 0, ĖL01,2− ĖL02,1 = 0, ḊL01,1 + ḊL02,2 = 0, (53)

where subscripts 1 and 2 following a comma signify differentiation with respect to x1 and
x2, respectively.

From (53)3 we can introduce the scalar electric potential ϕ such that

ĖL01 = −ϕ,1, ĖL02 = −ϕ,2. (54)

We now focus on models of the form

Ω(I1, I5) = W (I1)− 1
2
εI5, (55)

for which the relevant components of the moduli tensors reduce to

A01111 = 4W11λ
4
1 + 2W1λ

2
1, A02222 = 4W11λ

4
2 + 2W1λ

2
2 − 3εE2

2 ,

A01122 = 4W11λ
2
1λ

2
2 − εE2

2 , A01221 = A02112 = 0,

A01212 = 2W1λ
2
1 − εE2

2 , A02121 = 2W1λ
2
2,

A012|1 = A021|1 = εE2, A022|2 = 2εE2,

A011|1 = A022|1 = A011|2 = 0, A012|2 = A021|2 = 0,

A011 = A022 = −ε, A012 = 0. (56)

Note that we used the connection p = A02121, which is a special case of a general formula
given in, for example, equation (9.88) of [7]. The vertical bar between the components
of A0 is used to distinguish the single index (associated with a vector) from the pair of
indices associated with a second-order tensor.

Now, for brevity, we introduce the notations

a = A01212, 2b = A01111 +A02222 − 2A01122, c = A02121, d = A012|1. (57)

Then, on elimination of ṗ and use of the incompressibility equation u1,1 + u2,2 = 0, the
required incremental constitutive equations can be written compactly in the form

Ṫ011 = Ṫ022 + 2(b+ c)u1,1 + 2dϕ,2,

Ṫ012 = au2,1 + cu1,2 − dϕ,1, Ṫ021 = c(u1,2 + u2,1)− dϕ,1,
ḊL01 = −d(u1,2 + u2,1)− εϕ,1, ḊL02 = 2du1,1 − εϕ,1. (58)
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We now convert the system of equations to a first-order system with six variables
based on the Stroh approach. For this purpose we choose the variables u1, u2, ϕ, Ṫ021,
Ṫ022, ḊL02 and consider increments that are sinusoidal in the x1 direction, i.e. solutions
of the form{

u1, u2, ϕ, Ṫ021, Ṫ022, ḊL02

}
= <{eikx1 [U1, U2,Φ, ikΣ21, ikΣ22, ik∆]}, (59)

where U1, U2, Φ, Σ21, Σ22 and ∆ are all functions of kx2, k = 2π/L is the wave number
and L is the wavelength of the wrinkles.

We now arrange the variables so that they all have the same dimensions by defining a
Stroh vector η as

η = (U ,S) = [U1, U2,
√
ε/µΦ,Σ21/µ,Σ22/µ,∆/

√
µε], (60)

where U is the ‘displacement’ vector and S is the ‘traction’ vector. After a little manip-
ulation, the equations (53) and (58) are cast in the form

η′1 = i(−η2 + d̄c̄−1η3 + c̄−1η4),

η′2 = −iη1,

η′3 = i(2d̄η1 − η6),
η′4 = i[−(2b̄+ 2c̄+ 4d̄2)η1 − η5 + 2d̄η6],

η′5 = i[(c̄− ā)η2 − η4],
η′6 = i[(d̄2c̄−1 + 1)η3 + d̄c̄−1η4], (61)

where ā = a/µ, b̄ = b/µ, c̄ = c/µ and d̄ = d/
√
µε, and a prime denotes differentiation

with respect to kx2 . Similarly to Su et al. [24] we can thus write the equations in Stroh
form, i.e. as

η′ = iNη, (62)

where N is the Stroh matrix and η is the Stroh vector, defined in (60). Note that the
vector η is different from its counterpart in the voltage-controlled case [24], due to the
different electric boundary conditions and scalings. In the voltage-controlled case, the
incremental electric boundary condition is in terms of the electric potential Φ (which
must be zero on the faces), whereas in the charge-controlled case, the incremental electric
boundary condition is in terms of the electric displacement ∆. In the present situation
the Stroh matrix has the dimensionless form

N =

[
N 1 N 2

N 3 N
T
1

]
, (63)

where

N 1 =

 0 −1 d̄/c̄
−1 0 0
2d̄ 0 0

 , N 2 =

1/c̄ 0 0
0 0 0
0 0 −1

 , N 3 =

−2(b+ c)− 4d̄2 0 0
0 c̄− ā 0
0 0 d̄2/c̄+ 1

 .
(64)

For the models (23) and (24) for which W (I1, I2) depends on only I1, i.e. W = W (I1),
including the Gent dielectric model (27), in equi-biaxial activation we have

ā = 2λ2W̄ ′ − λ−4D2
0, c̄ = 2λ−4W̄ ′, 2b̄ = 4(λ−4 − λ2)2W̄ ′′ + ā+ c̄, d̄ = λ−2D0,

(65)
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where W̄ (I1) = W (I1)/µ, and henceforth we restrict attention to this specialization. For
the Gent dielectric,

W̄ ′ =
1

2 [1− (2λ2 + λ−4 − 3)/Jm]
, W̄ ′′ =

1

2Jm [1− (2λ2 + λ−4 − 3)/Jm]2
, (66)

and we recall that E0 = λ−4D0. For the neo-Hookean dielectric, the expressions simplify
considerably as: W̄ ′ = 1/2 and W̄ ′′ = 0.

To investigate the conditions for wrinkling to occur, it is sufficient to calculate the
thin-plate and thick-plate limits of the dispersion equation, as the behaviour of a plate
with finite thickness lies in between the two [24].

The thin-plate limit is calculated from the Stroh matrix as [22, 24]

detN 3 = 0, (67)

which simplifies here to

(ā− c̄)(b̄+ c̄+ 2d̄ 2)(d̄ 2 + c̄) = 0. (68)

As in the voltage-controlled case, the thin-plate limit can be separated into symmetric and
anti-symmetric modes. Anti-symmetric modes are governed by the equation ā− c̄ = 0, as
in the voltage-controlled case. For the neo-Hookean and the Gent dielectric models this
yields

D0 =
√
λ6 − 1, D0 =

√
λ6 − 1

1− (2λ2 + λ−4 − 3)/Jm
, (69)

respectively, which is the same as (31) in the absence of pre-stress (s = 0). No symmetric
modes are possible as they are governed by the equation b̄ + c̄ + 2d̄2 = 0, which has no
real solutions in (λ,D0). Likewise, the third factor in (68) yields no solutions.

To calculate the thick-plate limit, we first construct a matrix with the eigenvectors η(j),
j = 1, 2, 3, of N with corresponding eigenvalues with positive imaginary part, stacked as
the columns as follows [

A
B

]
=

 | | |
η(1) η(2) η(3)

| | |

 , (70)

where A and B defined above are 3× 3 matrices and explicit expressions for the compo-
nents of η(j), j = 1, 2, 3, are given as follows

η(1) =


0
0
1

−λ−2D0

−iλ−2D0

−i

 , η(j) =


iλ8pj
−λ8
λ6D0

−2λ4W̄ ′(p2j + 1)− λ4D2
0

−2iW̄ ′p−1j λ4(λ6 + p2j)
iλ6pjD0

 , (71)

for j = 2, 3 and where p2,3 and W̄ ′ are given by (74) below and (66)1, respectively.
Then the thick-plate limit is given by

det
(
iBA−1

)
= 0. (72)

Based on the analysis of Stroh (see Ting [26] or Shuvalov [22], for instance), we recall
that iBA−1 is Hermitian and the above equation is a single real equation, as distinct
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from detB = 0, which is a complex equation, although its real and imaginary parts are
in proportion.

For models with W = W (I1), including that of Gent, equation (72) is a quadratic in
D2

0, explicitly

D4
0 − 2W̄ ′ [λ3(p2 + p3) + 2(λ3 − 1)

]
D2

0 − 4W̄ ′ 2 [λ3(p2 + p3)
2 − (λ3 − 1)2

]
= 0, (73)

where

p2,3 =
λ3 + 1

2

√
1 + 2(λ− λ−2)2 W̄

′′

W̄ ′ ∓
λ3 − 1

2

√
1 + 2(λ+ λ−2)2

W̄ ′′

W̄ ′ , (74)

where (−) and (+) correspond to p2 and p3, respectively. Note that for the neo-Hookean
specialization, since W̄ ′ = 1/2, W̄ ′′ = 0, we obtain p2 = 1 and p3 = λ3 and the thick-plate
limit becomes

D4
0 − (λ6 + 3λ3 − 2)D2

0 − (λ9 + λ6 + 3λ3 − 1) = 0. (75)

In the absence of charge (D0 = 0), this reduces to the classical elastic case and recovers
the critical stretch for surface instability under equi-biaxial stretch of Green and Zerna
[13], specifically λ = 0.666.

+ + + + + + + +
+ + + + + + + +

+ + ++ + + + +
+ + + + + + + +

+ + + + + + + +
+ + + + + + + +

+ + ++ + + + +
+ + + + + + + +

+ + ++ + + + +
+ + + + + + +

P

P

+ + + + + + + +

Figure 3: Wrinkles are not expressed in equi-biaxially pre-stretched charge-controlled plates. Here
the solid curves are the loading curves for the neo-Hookean dielectric model with pre-stresses s =
0, 0.8, 1.5, 2.5, 4.5. The dashed curve is the thick-plate limit (75). None of the pre-stretched curves
cross the greyed zone where wrinkling occurs, between the thick-plate (dashed curve) and thin-plate
(s = 0 loading curve) limits, so wrinkling does not take place. The dots are the result of Finite Element
calculations using COMSOL Multiphysics® (Section 5), which turn out to be very stable numerically.
We conducted the same calculations for the Gent dielectric with Jm = 97.2 and found almost identical
plots (not shown here).

We plot the thick- and thin-plate limits, along with the loading curves (31)1 for the neo-
Hookean dielectric model for different values of pre-stress in Figure 3. The loading curves
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are monotonic, and so the material will not experience the snap-through phenomenon of
voltage-controlled actuation [16]. As shown in the previous section, this is connected to
to the sign of the second variation of the free energy being always positive.

These theoretical predictions are compared with Finite Element simulations (see Sec-
tion 5), the results of which are represented by dots in the figure, which also exhibit the
stability.

The region between the thick-plate and thin-plate limits is where wrinkling could
occur. However, the pre-stretched loading curves do not cross this region, so there is
no wrinkling. Charge-controlled dielectric plates are therefore geometrically stable, and
will not exhibit wrinkling (provided s > 0). This situation again contrasts with voltage-
controlled plates, which can wrinkle in compression, as here, but also in extension [7, 8, 23],
which is not possible here.

4. Activation under uni-axial dead load

In order to model the experiments of Keplinger et al. [15], we now consider a plate
that is pre-stretched by a uni-axial dead load. A weight is applied in the x1-direction
and charges on the lateral faces of the dielectric so that an electric field is induced in the
x2-direction.

In dimensionless form, the loading curves relating the uni-axial stress s, the electric
displacement component D0 and the electric field E0 to the stretches λ1 and λ3 for the
neo-Hookean model (27)1 are given by

s = λ1 − λ−11 λ23, D2
0 = λ21λ

4
3 − 1, E2

0 = λ−21 − λ−41 λ−43 , (76)

which lead to expressions forD0–λ1 and E0–λ1 relationships in terms of s (see, for example,
[18, 14] for details in the voltage-controlled case), namely

D0 =
√
λ41(λ1 − s)2 − 1, E0 = λ−11

√
1− λ−41 (λ1 − s)−2. (77)

Plots of D0 and E0 versus λ1 based on (77) for several fixed values of s are shown in
Figures 4(a) and 4(b), respectively, as the continuous curves. Notice, in particular, that
D0 is monotonic in λ1, while E0 exhibits maxima, these behaviours being associated with
loss of Hessian stability, as we elaborate on below.

It is a simple matter to extend the problem of minimizing the free energy ψ∗ associated
with the whole system from the equi-biaxial to the uni-axial case in order to study material
stability. First, we note that for the general biaxial case the second variations of the
connection (44), corresponding to (47) and (49) in the equi-biaxial case, are

ω̄∗11δλ
2
1 + 2ω̄∗13δλ1δλ3 + ω̄∗33δλ

2
3 + 2ω̄∗1D0

δλ1δD0 + 2ω̄∗3D0
δλ3δD0 + ω̄∗D0D0

δD2
0

= ω̄11δλ
2
1 + 2ω̄13δλ1δλ3 + ω̄33δλ

2
3

+ 2ω̄1E0δλ1δE0 + 2ω̄3E0δλ3δE0 + ω̄E0E0δE
2
0 + 2δE0δD0

= ω̄11δλ
2
1 + 2ω̄13δλ1δλ3 + ω̄33δλ

2
3 − ω̄E0E0δE

2
0 . (78)

For the second variations of the free energy of the whole system ψ∗ to be positive,
the 3 × 3 Hessian matrix H∗ must be positive definite (recall (34)1). According to the
equality above, this is equivalent under voltage control (when λ1, λ3 and D0 are free to
vary and E0 is fixed) to

ω̄11δλ
2
1 + 2ω̄13δλ1δλ3 + ω̄33δλ

2
3 > 0, (79)
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Figure 4: Plots of (a) D0 versus λ1 for s = 0, 1, 2, 3, 4, and (b) E0 versus λ1 for s = 0, 1, 2, 3 based on the
equations in (77) for the neo-Hookean model. In each case a plot (dashed) of detH∗ = 0 in terms of (a)
D0 versus λ1, and (b) E0 versus λ1 is included.

for non-zero δλ1 and/or δλ3, i.e. it is equivalent to the leading 2 × 2 minor in H being
positive definite.

On the other hand, under charge control (when λ1, λ3 and E0 are free to vary and D0

is fixed), the left hand side of the equality (78) tells us that leading 2 × 2 minor of H∗

should be positive definite for stability, i.e.

ω̄∗11δλ
2
1 + 2ω̄∗13δλ1δλ3 + ω̄∗33δλ

2
3 > 0, (80)

for non-zero δλ1 and/or δλ3.
The latter inequality always holds for the neo-Hookean dielectric model, since ω̄∗11 > 0

and the leading 2× 2 minor of H∗ is positive definite, with determinant

1 + 3λ−41 λ−43 (λ21 + λ23)(1 +D2
0) + 5λ−61 λ−63 (1 +D2

0)
2, (81)

which factorizes in the equi-biaxial case, with λ1 = λ3 = λ, as

[1 + 5λ−6(1 +D2
0)][1 + λ−6(1 +D2

0)], (82)

the first factor coinciding with the corresponding result in the purely equi-biaxial case.
Also, using (77)2, we find

detH∗ = 4λ−61 λ−63 (3λ23 + λ21 − λ21λ63), (83)

which corresponds to
ω̄11δλ

2
1 + 2ω̄13δλ1δλ3 + ω̄33δλ

2
3 = 0, (84)

for fixed E0. This condition means that the leading 2× 2 minor of H is indefinite, which
can hold for fixed E0 (at least for the neo-Hookean model), and we also have detH < 0.

Plots of E0 versus λ1 for the uni-axial case are shown in Figure 4(b) for s = 0, 1, 2, 3,
and the connection between E0 and λ1 where detH∗ = 0 is also shown as the dashed curve
that passes through the maximum points of E0. In Figure 4(a) are shown corresponding
plots of D0 (for s = 0, 1, 2, 3, 4) versus λ1, the dashed curve corresponding to where
detH∗ = 0.

In conclusion, for a neo-Hookean dielectric subject to a uni-axial dead load, activation
with voltage control can become unstable, but charge-controlled activation is always stable
in the sense of the Hessian free energy criterion.
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For the study of the geometric stability, we again refer to the limit cases. First, the
thin-plate limit, again detN 3 = 0, reduces to

D2
0 = λ41λ

2
3 − 1. (85)

The thick-plate limit, is a quadratic in D2
0 given by

D4
0 −

(
λ41λ

2
3 + 3λ21λ3 − 2

)
D2

0 −
(
λ61λ

3
3 + λ41λ

2
3 + 3λ21λ3 − 1

)
= 0. (86)

Note that these two equations apply for all λ1 (> 0) and, in particular, they recover the
conditions for the equi-biaxial case (69)1 and (75) when λ1 = λ3 = λ.

The limit conditions above relate to wrinkles aligned with the direction of the uni-
axial load. In Figure 5 we plot the corresponding D0–λ1 curves by solving each condition
(85) and (86) together with (76)2. The loading curves (77)1 are also plotted, for different
values of uni-axial pre-stress s.

X+ + + + +
+ + + + +

+ + + + +
+ + + + +
+ + + + +

+ + + + ++ + + + +
+ + + + ++ + + + +
+ + + + +

+ + + + ++ + + + +
+ + + + +

+ + + + +
+ + + + ++ + + + + X

X

X

X

Figure 5: Wrinkles are not expressed for uni-axially-loaded, charge-driven dielectric plates. The solid
curves are the loading curves for the neo-Hookean dielectric (27)1 with pre-stress s = αmg/(µA), where
α = 0.05, 0.3, 0.7, 1.0, 1.5, and the other characteristics taken from the Keplinger et al. [15] membrane
(m = 150 g, µ = 9833.07 Pa, A = 50 mm2). The left-most dashed (blue) curve is the thick-plate
limit curve (86) and the other dashed (black) curve is the thin-plate limit (85) curve, equivalent to
the hypothetical no-weight curve (s = 0). The shaded region between the thick and thin-plate limits
represents values of D0 and λ1 for which wrinkling could occur. Because the loading curves for the
pre-stressed plate (s > 0) are all monotonic, they will not cross into the wrinkling region, provided the
material is pre-stretched, and so wrinkling will not occur in the direction of the uni-axial load. The dots
result from Finite Element computations, and follow the theoretical curves closely, although the clamping
of the plate creates local, non-homogeneous fields. The main difference with the theoretical predictions
is that the simulations eventually breakdown numerically, as indicated by red crosses.

As in the equi-biaxial case, the thin-plate limit is equivalent to the loading curve in the
absence of pre-stress (s = 0). The wrinkling zone between the thin- and thick-plate limits
is not reached by any of the curves corresponding to a pre-stretch (s > 0), and so the
uni-axially pre-stretched plate will not wrinkle in the direction of the load. Note that in
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the absence of charge (D0 = 0), we again recover the purely elastic case, where λ2 = λ
−1/2
1 ,

and the critical stretch for uni-axial surface instability is the Biot value λ1 = 0.444 [2].
We also investigated wrinkles perpendicular to the direction of the load using the same

method. There we looked for wrinkles in the (x2, x3)-plane, and constructed the Stroh
formulation for the variables {

u3, u2, ϕ, Ṫ023, Ṫ022, ḊL02

}
. (87)

We then found that the thin-plate condition is identical to the loading curve equation
(76)2 for s = 0, and that the thick-plate limit is

D4
0 −

(
λ21λ

4
3 + 3λ1λ

2
3 − 2

)
D2

0 −
(
λ31λ

6
3 + λ21λ

4
3 + 3λ1λ

2
3 − 1

)
= 0. (88)

On solving this condition together with (76)2, no real solutions are found, and so there
are no wrinkles perpendicular to the uni-axial load.

In the next section we see that the Hessian and geometric stabilities found from the
homogeneous deformation fields can be contradicted by local inhomogeneous effects, as
shown in numerical simulations.

5. Finite Element simulations

To complement the results of the theory, we developed electroelastic Finite Element
(FE) models of the equi-biaxial and the uni-axial experiments using the commercial soft-
ware COMSOL Multiphysics® [4], and coupled the elasticity and electrostatics in two
different ways.

In the fully coupled model, COMSOL® uses the second Piola–Kirchhoff stress tensor,
denoted P , and implements incompressibility via a volumetric energy function in the form
κ(detF − 1)2/2, where κ is the initial bulk modulus, taken to be orders of magnitude
larger than the shear modulus.

The second way to solve the coupled problem is by considering the effect of the Maxwell
stress tensor as a fictitious mechanical boundary condition in the purely elastic problem.
Since there are no charges within the volume of a dielectric, it is possible to consider the
Maxwell stress as a pressure applied on the external faces of the volume. This adds a
boundary traction τmn to the mechanical problem, where n is the outward normal to
the deformed surface of the specimen and τm is the Maxwell stress tensor

τm = E ⊗D − 1
2
(E ·D)I. (89)

We found that both methods lead to the same results, although we noted that imposing
the Maxwell stress tensor as a pressure boundary condition seemed to be a slightly more
stable method in the uni-axial case.

In the equi-biaxial case, we found no difference between the predictions of the an-
alytical model and those of the FE model, which also displayed stability and could be
performed at any level of charge control, see Figure 3.

By contrast, a major difference between the analytical model and the FE model arises
in the uni-axial case, because the simulations for the latter eventually break down. We
identified the reason for this numerical breakdown to be due to the boundary conditions
in the areas close to the clamping playing an initially small but eventually significant role.
In the analytical model the strain is homogeneous and the material is free to deform in the
transverse x3-direction. In the real-world experiments [15] and in the FE numerical model,
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(a) Stretch levels in the x1-direction. (b) Stretch levels in the x3-direction.

Figure 6: Stretches in the dielectric plate after uni-axial loading by a weight, prior to activation, as
computed by FE analysis using COMSOL Multiphysics®. We used the same physical characteristics as
those in the experiments by Keplinger et al. [15]. Dimensions: length 100 mm; width 50 mm; thickness
1 mm. Attached mass: 150 g. Constitutive model: neo-Hookean dielectric with µ = 9833.07 Pa.

the top and bottom parts of the material are clamped and the strain is inhomogeneous in
these neighbourhoods, see Figure 6(b). This behaviour is local, however, and the stretch
in the direction of the uni-axial tension due to the weight (the x1-direction) is almost
completely homogeneous, as can be seen in Figure 6(a).

When the stretched plate is electrically activated it expands in area and its thickness
reduces. While it is free to expand in the direction of the dead load (the x1-direction),
the situation in the transverse x3-direction is different. There is a central zone where
the influence of the clamping is weak, so that the normal stress component P33 in the
x3-direction remains close to zero, as in the homogeneous case. On the other hand, the
portions of material closer to the clamping areas suffer from the fixed displacement in the
x3-direction imposed by the clamps. There the application of the uni-axial tension due
to the weight increases P33, as is clearly visible in Figure 7.

When the plate is progressively activated with an increasing uniform charge distri-
bution on its faces, the stress component P33 near the clamping zone is progressively
reduced until a critical value just below zero is reached: in this configuration, the plate
undergoes a lateral compression that makes it buckle in the x3-direction [5]. At that point
the FE computation breaks down, presumably because the stiffness matrix stops being
positive definite and the solver has trouble converging. This phenomenon does not occur
in the analytical model and in the equi-biaxial case, as λ3 is homogeneous then and P33

is imposed from the boundary condition and is identically equal to zero everywhere.
For larger weights, the levels of the P33 stress component before activation are higher,

making it possible to activate the dielectric plate with a larger value of the electric charge
before the instability condition is reached, as can be seen from the dots in Figure 5.

Despite the significant difference in the transverse behaviour between the analytical
and numerical model, due to the different boundary condition imposed, there is very good
agreement in the results, as can be seen in Figure 5. As long as the FE model stays below
the point of negative P33, the D0–λ curves follow those of the homogeneously deformed
analytical model very closely.
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Figure 7: Finite Element simulations of a charge-driven plate subject to a dead-load. The total second
Piola–Kirchhoff stress lateral component P33 (normalised with respect to µ) along the centre line of the
material in the x1-direction (direction of uni-axial tension, in cm). The plate’s characteristics are the
same as for Figure 6. The uppermost curve corresponds to the static dead-load condition (D0 = 0); then
an increasing charge activation is performed until the simulation reaches the instability point, where the
stress is slightly compressive throughout (lowest curve) and the computation crashes. The colour coding
for the levels of P33 in the simulations goes from about 1 kPa in blue to about 0 kPa in dark orange.

6. Conclusion

In conclusion, we found that both equi-biaxial and uni-axial modes in the charge-
control actuation of a dielectric plate are stable, whether the stability analysis is based
on a Hessian criterion for the free energy of the whole system, or on the formation of
small-amplitude inhomogeneous wrinkles.

By comparing the different Hessian criteria that result from the voltage- and charge-
control situations, we found that charge-controlled actuation is always stable with respect
to the Hessian criterion, in complete contrast to voltage-controlled actuation, which, ac-
cording to the Hessian criterion, can become unstable.

We also investigated the possibility of small-amplitude wrinkles and found that the
wrinkling conditions in the limiting cases of thin and thick plates occur only in com-
pression, whereas it has been shown that wrinkles can exist in extension in the voltage-
controlled case [24]. As a result, charge-controlled actuation, which always occurs in
extension, is also geometrically stable, again in contrast to voltage-control actuation.

To account for the difference between a theoretical homogeneous uni-axial deformation
and the local inhomogeneous fields created by clamps in practice, we also conducted Finite
Element simulations to verify our analytical results. We found complete agreement in the
equi-biaxial case and very close agreement in the uni-axial case. So the assumption of
homogeneous deformation is well justified for modelling the behaviour of charge-controlled
activation of a dielectric plate in equi-biaxial stretch, and in uni-axial stretch when the
aspect ratio of the specimen is high.

In the uni-axial case, Finite Element simulations reveal that the fringe effects are
localised in a portion of area near the clamping zone and that they do not significantly
affect the homogeneous loading curves of the system, although they have a strong effect on
the eventual instability of the setup, a possibility that the homogeneous solution cannot

19



capture. We may also argue that the emergence of compressive lateral stresses inside
the plate seen in the simulations has a real-world counterpart, and that an equi-biaxial
pre-stress leads to larger actuations than a uni-axial pre-stress in practice.

Of course, the plate may become unstable due to other causes than free energy insta-
bility or inhomogeneous small-amplitude wrinkles. Other mechanisms include for instance
charge localisation [19] or thickness effects [9, 30].
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