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Abstract— Objective: Multi-Frequency Symmetry Difference 

Electrical Impedance Tomography (MFSD-EIT) can robustly 
detect and identify unilateral perturbations in symmetric scenes. 
Here, an investigation is performed to assess if the algorithm can 
be successfully applied to identify the aetiology of stroke with the 
aid of machine learning. Methods: Anatomically realistic four-
layer Finite Element Method models of the head based on stroke 
patient images are developed and used to generate EIT data over 
a 5 Hz – 100 Hz frequency range with and without bleed and clot 
lesions present. Reconstruction generates conductivity maps of 
each head at each frequency. Application of a quantitative metric 
assessing changes in symmetry across the sagittal plane of the 
reconstructed image and over the frequency range allows lesion 
detection and identification. The algorithm is applied to both 
simulated and human (n=34 subjects) data. A classification 
algorithm is applied to the metric value in order to differentiate 
between normal, haemorrhage and clot values. Results: An 
average accuracy of 85% is achieved when MFSD-EIT with 
Support Vector Machines (SVM) classification is used to identify 
and differentiate bleed from clot in human data, with 77% 
accuracy when differentiating normal from stroke in human data. 
Conclusion: Applying a classification algorithm to metrics derived 
from MFSD-EIT images is a novel and promising technique for 
detection and identification of perturbations in static scenes. 
Significance: The MFSD-EIT algorithm used with machine 
learning gives promising results of lesion detection and 
identification in challenging conditions like stroke. The results 
imply feasible translation to human patients.   
 

Index Terms— electrical impedance tomography, 
reconstruction algorithm, stroke imaging 

I. INTRODUCTION 
MPORTANT medical conditions such as stroke feature 
causative lesions which are essentially static in nature [1]. In 

stroke, the cause is either a bleed (haemorrhagic stroke) or a 
clot (ischaemic stroke) [1]. This aetiology must be rapidly and 
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definitively diagnosed before appropriate and highly divergent 
treatment can be initiated [3]. For example, thrombolytic agents 
are used to dissolve clots, but have time dependent efficacy, and 
are contra-indicated in haemorrhagic stroke patients as they are 
potentially fatal [2]. Stroke diagnosis is achieved by gold 
standard neuroimaging including computed tomography (CT) 
and magnetic resonance imaging (MRI) scans. However, 
challenges with availability of CT and MRI result in delayed 
imaging and treatment rates as low as 4% [3]. The example of 
stroke diagnosis highlights the urgent need for a technology that 
can rapidly differentiate between the two causative lesion types 
and facilitate early initiation of correct treatment. 
 Electrical Impedance Tomography (EIT) may represent such 
a technology. EIT is a low-cost, portable and safe imaging 
technology [4]–[6]. In EIT, electrodes are placed on the exterior 
of the body and used to inject innocuous current (of frequencies 
in the order of Hz to MHz depending on the application), with 
the resultant voltages measured [4]–[6]. A current injection and 
voltage measurement pattern is pre-defined as a ‘protocol’ with 
the complete set of voltage measurement ‘channels’ referred to 
as a ‘measurement frame’. Measurement frames are used to 
reconstruct a map of the interior in terms of the conductivity, 𝜎, 
of the tissues therein [4]–[6]. EIT when applied to biomedical 
scenarios has to date enjoyed most success when used in areas 
featuring a time change [6]. Such applications allow the use of 
time differencing of the measurement frames and a cancellation 
of errors to which EIT is highly sensitive [4], [7]–[9].  

However, in static scenes (such as in stroke) time 
differencing is not possible and alternate techniques are 
required including absolute EIT (aEIT) and frequency 
difference EIT (fdEIT). aEIT attempts to reconstruct an image 
from a single measurement frame, and features a high 
sensitivity to errors [6]. fdEIT differences frames taken at 
different frequencies where there is a frequency dependent 
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change in the 𝜎 profile of the tissues [6]. The latter has been 
applied to stroke diagnosis with some success but challenges 
remain such as sensitivity to errors in electrode position, skull 
anatomy, and in bleed detection relative to clot detection [9]–
[11]. Further challenges exist in applying EIT to stroke, 
including the attenuation of current due to the highly resistive 
skull, the shunting effect of the highly conductive cerebrospinal 
fluid (CSF) layer inside the skull, and the safety limitations on 
the amplitude of current that can be used (for example a 
maximum current of 100 µA root mean square for frequencies 
up to 1 kHz) [5], [12]. 
 As such, the effective application of EIT to static scenes is 
challenging. However, it is an area where development and 
innovation is needed. Previously, we demonstrated the 
application of machine learning (ML) classification algorithms 
to EIT measurement frames [13], [14]. Significant promise was 
shown in the use of support vector machine (SVM) classifiers 
in numerical and experimental studies with regard to the 
detection and differentiation of normal from static 
haemorrhagic lesions [13], [14]. A central theme in our 
previous work has been the move away from images in 
acceptance of the limits of EIT, where it is unlikely detailed 
information as to precise location or lesion volume would be 
possible given the state of the technology at this time [20], [21]. 
Detection and identification may be possible however, allowing 
commencement of treatment before gold standard 
neuroimaging can be employed for more complete patient 
triage.  

Recently we have introduced a novel modality of EIT 
suitable for static scenes featuring symmetry, which focusses 
on detection of unilateral perturbations causing a change in this 
inherent symmetry [15], [16]. This so-called Bi-Frequency 
Symmetry Difference EIT (BFSD-EIT) was then tested for the 
application of stroke [17]. The work of  [17]  helped define the 
robustness of the technique, maximal allowances with respect 
to errors, and techniques to improve the efficacy. Specifically, 
two techniques were identified that could further improve the 
algorithm efficacy: the use of a quantitative metric called the 
Global LHS & RHS Mean Intensity (GMI), and a multi-
frequency (MF) approach in the band of greatest change in 𝜎 of 
the tissues (≤ 100 Hz [18], [19]).   

Therefore, in this work, we advance the utility of BFSD-EIT  
by implementing these improvements. The number of 
frequency (f) points considered is increased to achieve a Multi-
Frequency Symmetry Difference Electrical Impedance 
Tomography (MFSD-EIT) algorithm. Then, MFSD-EIT is used 
to produce GMI metrics at each frequency. This multi-
frequency GMI data (MF GMI) is in turn used as the input for 
a ML classification algorithm. Efficacy of classification is then 
assessed with respect to identifying and differentiating between 
normal, haemorrhagic stroke patients, and ischaemic stroke 
patients.  

The human dataset collected by Goren et al. in University 
College London (UCL) is used as the primary data source [3]. 
Realistic four-layer finite element method (FEM) models 
constructed from the CT scans of patients are used to generate 
simulated EIT measurement frames as well as reconstruct and 

analyse the real measurement frames collected from these 
patients [3]. The MFSD-EIT algorithm is applied to the 
simulated and real frames, and the GMI results collected across 
a band from 5 Hz – 100 Hz. These results are then used as input 
features for SVM classification to assess if differentiation 
between stroke types is possible. 

The layout of the paper is as follows. In Section II, an 
overview of the UCL stroke dataset is given followed by a 
summary of the MFSD-EIT algorithm. Then, the numerical 
models are described. This section ends with an overview of the 
generation of MF GMI data from the EIT data. In Section III, 
the MF GMI data is used as an input to a SVM classification 
algorithm. Scenarios considered for classification include 
binary classifications (for example, normal versus lesion, bleed 
versus clot), as well as multiclass classification. Analysis is 
performed on both numerical and human data sets with these 
results then discussed in Section IV. The paper is concluded in 
Section V. 

While the stroke diagnostic problem is the example used in 
this paper, another motivation for this work is the development 
of a robust modality of EIT for application in static scenes in 
general. The extension of EIT into such areas will result in an 
increased number of biomedical applications where EIT can be 
effectively employed. 

II. METHODOLOGY 
In this section, the UCL dataset is presented, as well as a 

summary of the MFSD-EIT algorithm (including the GMI 
metric). The rationale for the use of this proposed algorithm in 
stroke is described, and theoretical ideal results for normal, 
bleed and ischaemic patients are discussed. Next, a description 
of the FEM models used in the creation (and reconstruction) of 
simulated measurement frames and the reconstruction of human 
frames is presented. The section ends with a description of the 
MF GMI data obtained from the numerical models and the 
human frames. 

A. UCL MF EIT Stroke Dataset 
EIT measurement frames were collected as part of a clinical 

trial with the Hyper Acute Stroke Unit (HASU) at University 
College London Hospital (UCLH) [3]. This dataset is the most 
comprehensive collection of human EIT data related to stroke. 
EIT measurement frames were collected at 17 frequency points 
from 5 Hz – 2 kHz,  with maximal current adjusted according 
IEC 60601-1 guidelines [12]. In the published dataset, 
measurement frames are provided from NHealthy = 10 healthy 
volunteers, and from NPatients  = 18. Some of the patients had 
repeat recordings performed. Hence, the final set of recordings 
comprises NHealthy = 10, NHaemorrhagic = 10 and NIschaemic = 14 
cases. The frames were recorded using the ScouseTom EIT 
system [22], with 32 electroencephalogram (EEG) electrodes 
placed on the patient according to EEG 10-20 system with some 
variants (and identical to the layout described in [16], [17]). In 
most cases (16 of the 24 patient sets) recording was performed 
within 48 hours of stroke onset [3]. The injection/ measurement 
protocol provided 930 separate voltage measurements in a 
measurement frame at each frequency with the protocol 
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selected to maximize the magnitude of recorded voltages and 
the number of independent measurements. The recorded 
measurement frames had a mean reported signal to noise ratio 
(SNR) of approximately 45–50 dB which is lower than the 
recommended minimum 60 dB from the feasibility study of  
[17]. However,  care was taken to maximise quality of recording 
with removal of voltages excessively contaminated, filtering 
and other post-processing techniques performed by the UCL 
investigators [3]. 

Importantly the electrode layout is symmetric and so the 
electrodes can be considered as two mirror image orientations, 
and thus suitable for MFSD-EIT. The protocol used in the UCL 
dataset was not a MFSD-EIT protocol, but the resultant 
measurement frames could be post-processed for input in to the 
MFSD-EIT algorithm. 

In addition to the EIT measurement frames, diagnostic 
imaging with CT and/ or MRI scans of 18 patients is provided 
in the dataset [3]. These images were collected at a different 
time point than the EIT recording session and contain the 
diagnostic report of the radiologist. These neuroimages are used 
to generate FEM models, described in part E of this section. 

B. MFSD-EIT Algorithm and GMI 
MFSD-EIT is an extension of BFSD-EIT with the use of 

multiple (instead of two) f points resulting in a more robust 
disambiguation of lesion type step. A summary is provided 
here, with a thorough presentation of the algorithm is given in 
[16]. Briefly, the algorithm can be considered as consisting of 
two steps: 

 
(i) Detection in Deviation from Normal Symmetry: 
 The electrodes are arranged on the body of interest as 
symmetric pairs with respect to a plane of symmetry. In the case 
of the head, the sagittal plane divides the head into symmetric 
left- and right-hand sides (LHS and RHS). Any electrode on the 
symmetric plane is considered its own pair. A measurement 
frame is taken from an ‘A-orientation’ and then from a mirror 
image ‘B-orientation’. A sample channel from both orientations 
is illustrated in Fig. 1. These frames are differenced and 
reconstructed using 0th order Tikhonov regularization [23] onto 
a FEM model corresponding to A-orientation. Each voxel in the 
reconstruction has a conductivity change assigned. For a given 
voxel, a positive conductivity change intensity indicates the 
measurements from B-orientation are more conductive than that 
from A-orientation at that location. The magnitude of the 
intensity is proportional to the magnitude of the difference in 
measurements. If a unilateral perturbation is present, symmetry 
will be disrupted at the location of the perturbation with an 
equal but opposite disruption in terms of conductivity change at 
the symmetric location. 
 
(ii) Disambiguation of Lesion Type 

In the case of stroke the two causative lesions of 
haemorrhage and clot are more and less conductive than the 
brain respectively. This difference in conductivity results in 
ambiguity as to which of the disruptions detected from step (i) 
is the true perturbation, if a perturbation is indeed detected. The 

disambiguation step involves repeating step (i) at a different 
frequency point where there is a known change in the pattern of 
conductivity of the tissues from the original frequency point. 
The change in contrast translates as a proportional change in the 
conductivity difference detected at the candidate perturbation 
locations. A priori knowledge of the change in contrast of the 
tissues allows identification of the lesion as haemorrhage or 
clot. The use of multiple frequency points results in a more 
robust analysis as the pattern of change over a band can be 
considered as opposed to at only two points [17]. 
 The voxel intensity values in the reconstructions can be 
analysed and used to generate robust quantitative metrics. The 
GMI metric has been shown to be particularly robust to errors 
and can alone be used to identify perturbations [16], [17].  
 
The GMI metric is defined as: 

• The average intensity over all the voxels on each side 
(LHS and RHS) of the sagittal plane. The intensity will 
have magnitude and negative or positive sign. 

 
At each frequency point the resultant GMI is reported as two 
separate values, a LHS and a RHS value. If the body under 
consideration is perfectly symmetrical and no perturbation is 
present, then the result should be a LHS and RHS GMI both of 
0 at any frequency point. The presence of a unilateral 
perturbation moves the GMI away from 0, with equal but 
opposite values for LHS and RHS proportional to the contrast 
between the perturbation and the background brain at that 
frequency point. The GMI results for all frequency points 
considered are referred to in this work as MF GMI data sets. 

C. Rationale for use in Stroke 
In stroke the causative lesion either a bleed or clot in the brain 

[1]. Bleed is more conductive than brain at a given f point, with 
clot less conductive in the 5 Hz – 100 Hz range [11], [24]. The 

 
Fig. 1. Illustration of an equivalent channel from A- (green) and B- (blue) 
orientations. The plane of symmetry is shown as an orange line, with 
electrodes simultaneously part of A- and B- orientations (for example 
electrode #1 in A-orientation is also electrode #3 in B-orientation). In the 
sample channel, current in injected between electrode #2 and #32, with voltage 
measured between electrode #3 and #4. The ‘green’ channel represents this 
channel when A-orientation is used while the ‘blue’ channel is this channel for 
B-orientation. The channels are equivalent and theoretically give the same 
voltage measurement. However, the presence of a perturbation (illustrated as 
a red circle) upsets the symmetry with this disruption seen as a difference in 
the voltages recorded between the green and blue channels. 
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contrast between the tissues in terms of 𝜎 shows most change 
below 100 Hz [11], [24]. These 𝜎 spectra from 5 Hz – 100 Hz 
are shown in Fig. 2. The contrast in 𝜎 between ischaemia and 
brain shows a significant change in across the 5 Hz – 100 Hz 
band with a high contrast at 5 Hz and low contrast at 100 Hz. 
Bleed shows an approximate constant contrast with respect to 
brain across the same band. Hence, theoretically, performing 
step (i) of MFSD-EIT across this band at multiple f points 
should result in the same GMI result if a bleed is present. If a 
clot is present the GMI will be maximal at 5 Hz and reduce to 
the normal (perturbation free) value as 100 Hz is approached 
and the contrast reduces with respect to the background brain. 
The UCL stroke dataset includes measurements taken at 5 Hz, 
10 Hz, 20 Hz, and 100 Hz with these f points used in this study, 
and the GMI calculated at each of these four discrete 
frequencies. 

The other tissues of the head (scalp, skull, CSF) have 
approximately constant 𝜎 values in this frequency band [17]–
[19].  

D. Theoretical Ideal Results 
The ideal results for a perfectly symmetrical head in three 

cases: with no lesion present (normal), a bleed present, and a 
clot present are shown in Fig. 3. In this figure, the GMI is 
calculated at four f points (5 Hz, 10 Hz, 20 Hz, and 100 Hz). In 
all cases, the LHS and RHS components of the GMI at a 
particular f point are equal but opposite, while across the band 
the trend in GMI matches the change in contrast between the 
lesion tissue and background brain. In the normal case, the GMI 
is theoretically zero at all f points, while for bleed and clot the 
trends mirror those of the 𝜎 spectra seen in Fig. 2. As the 
patterns for bleed and clot differ, differentiation of these two 
lesion types should be possible. The magnitude of the GMI for 
lesions is a function of lesion location and size (with the sign a 
function of location), but the pattern is unaffected by these 
properties. In reality these ideal results are confounded by many 

factors, which are discussed in detail in [17]. 

E. FEM Models 
The UCL dataset includes neuroimaging studies of the 18 

stroke patients. These neuroimages were used to create four-
layer computer aided design (CAD) models of the anatomy of 
the head of each patient above the inion-nasion line [25] using 
3D Slicer to segment out the scalp, skull, CSF, and brain layers 
from CT images before using Autodesk Fusion 360 CAD 
software to refine and convert the layers to stereolithography 
(STL) files [26], [27]. Next, each of these four-layer STL 
models were converted into a fine tetrahedral mesh (~1 million 
elements each) with refinement around the electrode positions, 
with the electrodes modelled as 10 mm diameter and 1 kW 
contact impedance [28]. From each of these fine meshes, a 
coarse mesh (~ 200k elements each) was created with the 
electrodes in A-orientation for use in reconstruction of both 
simulated and human measurement frames. 

Importantly these patient specific meshes are not exact 
representations of the true anatomy due to inevitable 
approximations in the segmentation and meshing process. 
Further, the electrode positioning would not have been in the 
theoretical exact location when recording patient voltages. 
These errors, and others such as assumed electrode contact 
impedance, are likely unavoidable in practice where patient 
specific anatomy will not be known at the  time of stroke onset 
(and perhaps not required [29]), electrode placement will need 
to be performed with a degree of haste, and other compromises 
a result of the urgency of the condition. It is important that any 
technology, and thus any algorithm can cope with these types 
of errors with an adequate degree of tolerance. As discussed 
thoroughly in [17], MFSD-EIT is robust to a variety of errors 
within certain limits.  

In order to generate the simulated data, numerical models of 
anatomy are required. In order to increase the size of the data 

 
Fig. 2. Conductivity spectra of ischaemia, bleed and brain across the 5 Hz – 
100 Hz band (data from [18], [19]). Ischaemia and bleed are respectively less 
and more conductive than healthy brain. However, across this band the 
contrast profile in 𝜎 between ischaemia and brain is significantly different than 
that of bleed and brain facilitating disambiguation using MFSD-EIT. The UCL 
stroke dataset includes measurements taken at 5 Hz, 10 Hz, 20 Hz, and 100 
Hz.  
 
  

 
Fig. 3. Theoretical MF GMI results for normal (N), bleed (B), and clot (C) 
cases across the 5 Hz – 100 Hz band at four  f points (5 Hz, 10 Hz, 20 Hz, 100 
Hz). The GMI for a given case is ideally equally but opposite at each f point 
and the trend follows the contrast of the tissue with respect to background brain 
across the band. In the N case the results approach zero (as there is no lesion 
present). The pattern for B differs to that for C leading to differentiation being 
possible. 
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set as is recommended for ML [30], each of the 18 fine meshes 
were distorted to generate new anatomies. Each layer was 
dilated to 105% and shrunk to 97% of the original volume, 
which along with the normal geometry generates three possible 
anatomies for each of the four layers [17]. This range was 
selected based on the normal variation existing between people 
of similar height and weight, and the assumption that in practice 
a “best guess” generic mesh for reconstruction based on the 
patient’s height and weight would be available [17], [31]. 
Combining every permutation of these layers results in 81 four-
layer (i.e. 34 possible combinations) anatomies generated from 
each original patient STL model set and hence 1,458 simulated 
anatomies (18 x 81) overall, each made into a fine mesh.  

Into each of these meshes spherical perturbations were 
placed in one of four different locations (north-east, north-west, 
south-east, south-west), and as 20 ml or 50 ml volume. A wide 
spectrum of lesion sizes is possible in stroke. In Fiebach et al., 
for example, the haemorrhagic volume in acute stoke was 
reported in as ranging from 1 – 101.5 ml [32], while Payabvash 
et al. reported an average ischaemic lesion as 39.5 ± 84.9 ml 
[33]. Hence, we selected 20 ml and 50 ml as representative 
small and large lesions, given the volumes reported in these 
previous studies.  

In total, 1,458 normal simulated anatomies, and 11,664 
lesion simulated anatomies were created each as fine FEM 
models. A representative FEM model is shown in Fig. 4 with a 
50 ml lesion in the north-east location along with a sample slice 

of the CT image that the model is derived from. In addition, a 
set of simulated anatomies was developed with lesions in a fifth 
location lying on the sagittal plane. These anatomies with 
central lesion were used in one study to analysis the effect of 
central lesions on classifier performance (Section III, H). 

F. MF GMI Data Generation  
This section describes the generation of MF GMI data from 

the simulated anatomies and from the human measurement 
frames. 

Simulated measurement frames were generated from the 
simulated anatomies. The fine FEM models corresponding to 
the perturbation-free (i.e. normal) models were assigned 𝜎 
values to the voxels of each of the four layers: scalp 0.23 Sm-1, 
skull 0.05 Sm-1, CSF 2 Sm-1, brain 0.1 Sm-1. These 𝜎 values are 
those of these tissues across the 5 Hz – 100 Hz band [17]–[19]. 
These models were then forward solved using the PEITS solver 
in order to generate measurement frames in both A- and B-
orientations [34]. Noise was added to these frames at a level of 
48 dB SNR (matching the average levels in the clinical human 
dataset [3]). The inverse problem of reconstruction was then 
performed onto the coarse mesh corresponding to the patient 
from which the simulated anatomy was derived (i.e. the original 
undistorted mesh). This emulates a real-world scenario where 
exact anatomy will be unknown and a best guess mesh may be 
needed for reconstruction. The GMI data was then computed. 
This process was repeated three additional times to give MF 
GMI data at each of the four selected frequency points.  

Next, the perturbation models were assigned 0.7 Sm-1 to 
those voxels where the perturbation is located. This value is the 
𝜎 of bleed across the band (Fig. 2). MF GMI data was generated 
in the same manner as the normal models to result in simulated 
data bleed cases. The perturbation models were next modelled 
as clots with the clot voxels assigned 𝜎 values of 0.02, 0.03, 
0.05, 0.09 Sm-1 in separate forward solves representing the clot 
at the four frequency points (Fig. 2), generating MF GMI data 
for each case. Finally, the procedure for the normal models was 
repeated in order to provide sufficient sets of normal MF GMI 
data to balance the number of perturbation (bleed and clot) sets. 
Due to the addition of noise to the measurement frames, each 
MF GMI data from these normal cases was unique. The 
simulated data set hence comprised of measurement frames 
from the 1,458 normal simulated anatomies, and 11,664 lesion 
anatomies. This large size of the simulated data set with respect 
to the limited amount of human data set motivated the use of 
MF GMI data from simulated measurement frames in addition 
to human measurement frames. Further the use of simulated 
data allowed control of error sources that may have been present 
in the human data set such as electrode placement errors. With 
the exception of added noise, no additional sources of error 
were modelled in the simulated data set, facilitating an idealised 
control group that could be compared to the human data set.  

An example of the reconstructed images generated at each f 
point and the corresponding MF GMI data is shown in Fig. 5. 
In this example, the reconstructed images and corresponding 
MF GMI data for a 50 ml clot in the south-west location is 
shown. The image is sharpest at 5 Hz, and progressively more 

 

 

rode 
 Fig. 4. Top: All the simulated anatomies are derived from CT neuroimaging 
of stroke patients. A sample CT slice of the anatomy used to create the fine 
mesh is shown (from resources supplied in [3]). Bottom: Fine mesh with 50 
ml simulated spherical lesion in the north-east position (where the front of the 
head represents north). The brain layer has been removed in order to show the 
lesion. The electrode refinement on the scalp layer is also clearly seen.  
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noisy at the higher frequencies as the contrast between clot and 
brain decreases. This change in contrast between clot and brain  
(which is shown in Fig. 3) is reflected in the MF GMI values. 

With regards the human data, the 18 coarse meshes used for 
reconstruction were derived from neuroimaging studies which 
were provided for the patients only [3]. Neuroimaging was not 
provided for the normal healthy volunteers. In order to 
reconstruct and generate MF GMI data from the healthy 
volunteer measurement frames, each of these measurement 
frames were reconstructed using each of the 18 coarse meshes. 
Hence, 180 normal MF GMI result sets were created. Further, 
in order to extend the amount of patient data, each of the 18 
patient measurement frame sets were individually reconstructed 
and used to generate MF GMI results from each of the 18 coarse 
meshes. The result was 180 MF GMI result sets from bleed 
cases and 252 result sets from clot cases. Hence, in most cases, 
the mesh used to reconstruct and generate data was not 
anatomically related to the subject the measurement frame was 
derived from – the measurement frame from each patient is 
reconstructed onto each of the 18 possible coarse meshes, with 
only one of these related to the patient. Even in the case where 
the frame is related to the patient mesh, the mesh is an 
approximation as described in Section II-E. This mismatch is a 
further error source, and a further test as to the robustness of the 
overall approach proposed in this paper as in clinical scenarios 
it is unlikely patient neuroimaging or precise anatomy will be 
available [29]. 
 These MF GMI data sets are then used as features for SVM 
classifiers, described in the next section. 

III. ML CLASSIFICATION APPLIED TO MF GMI DATA 
In this section a ML classification algorithm is applied to the 

MF GMI data derived from simulated and human measurement 
frames. The section starts with a brief summary of SVM 
classifiers, the type of classifier used in this study. Next the 
manner in which classification was carried out is outlined. 

Finally, the results of the various data sets in binary 
classifications, and multiclass classification are reported. In 
addition, consideration is given to the effect of lesions lying on 
the sagittal plane, and different levels of simulated noise on 
classifier performance. 

A. SVM Classifiers 
SVMs are a group of ML algorithms often used for binary 

classification but can be adapted for use in multiclass 
classification [30]. SVM classification has been successfully 
demonstrated in previous biomedical applications including the 
use of microwaves for detection of breast cancer [35]–[37], 
impedance spectroscopy for the detection of prostate cancer 
[38], and work by our group into EIT measurement frames for 
the detection of brain haemorrhage [13], [14]. The SVM is 
trained with features from labelled observations (supervised 
learning) generating a trained model. This model is used to 
classify observations previously unseen with unknown labels 
(test or validation set). The features in this work are the MF 
GMI data across the four f points (hence the observations have 
8 features or dimensions). 

The basis of SVM classification is the creation of hyperplane 
with margins that optimally separates observations from the 
classes. When training the model, the hyperplane and margins 
are defined and applied to future observations to classify them 
as class 0 or class 1 (in binary case). The kernel used by a SVM 
defines the function used in hyperplane generation. In this study 
a radial basis function (RBF) is used which offers a flexible and 
robust hyperplane compared to simpler kernels such as linear 
kernels [13], [14].  

The classification problems considered in this paper are the 
binary classification of normal versus lesion (bleed or clot), as 
well as all combinations of normal, bleed, and clot. Further, a 
multiclass classification of normal, bleed, and clot is performed. 

The labels (-1 or +1) correspond to the classes under 
investigation in a given binary classification task (e.g. ‘normal’ 
versus ‘lesion’; ‘bleed versus ‘clot’; ‘normal’ versus ‘bleed’; 
‘normal versus ‘clot’). In the multiclass case, the labels 0, 1, 2 
are used for ‘normal’, ‘bleed’, and ‘clot’ respectively. 

The performance of the classifier can be reported in terms of 
the confusion matrix which tabulates the numbers of true 
positive (TP), true negative (TN), false positive (FP) and false 
negative (FN) classifications made by the trained model on a 
test or validation set. These values can be summarised as 
metrics including sensitivity, specificity, accuracy, positive 
predictive value (PPV), and negative predictive value (NPV) of 
the classifier  [30]. These metrics are reported in the results 
sections of this paper, with the confusion matrices reported for 
the multiclass classification.   
 

B. Classification Protocol 
In this section, the processing of the MF GMI data before use 

in the classifier is described as well as the procedure for training 
and testing a SVM classifier. The implementation used 
MATLAB, and in particular resources provided in the statistics 
and machine learning toolbox [39]. For each of the scenarios 
discussed in the following sections, the MF GMI data sets from 

 

 
 Fig. 5. Reconstructed images, and derived GMI values at the four  f points (5 
Hz, 10 Hz, 20 Hz, 100 Hz) for the case of a 50 ml clot in the south-west 
location. The contrast between clot and brain is highest at 5 Hz, reflected in a 
relatively clean image and corresponding high GMI values. As the contrast 
reduces across the band, the image becomes noisier, and the GMI values 
reduce. 
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the simulated data at 48 dB, and the human data (~48 dB) are 
used in separate classifications with separately trained and 
tested classifiers, with the results for each set reported. For a 
given classification, the MF GMI data corresponding to the 
scenario under study is used as the input features to the SVM 
classifier. Each observation has 8 features as described in 
Section III, A, and is labelled by class. In the case of the 
simulated data sets, the number of cases used are balanced 
between classes, whereas in the case of the human data set all 
the data is used due to the relatively small size of the available 
data.  

Nested cross-validation as described in [40] and used in [14], 
[37], provides a generalised robust indication of classifier 
performance and helps mitigate against bias. This technique is 
used in this study to optimise SVM classification performance. 
The data is separated into k = 10 separate folds. Each of these 
outer folds is divided into a unique training set and test set made 
up of 90% and 10% of the total data set, respectively. The 
ttraining set is used to select optimal SVM classifier hyper-
parameters (the box constraint and kernel scaling factor)  using 
a Bayesian optimisation procedure in a m = 10 fold cross-
validation process. The performance of the final classifier is 
assessed using the excluded test set. This process is repeated for 
each of the k = 10 folds with the final overall performance 
reported as the mean ± standard deviation across the ten 
iterations. This approach is summarised in Fig. 6.  In each case, 
z-normalisation of the training set features is performed. The 

test set is in terms of z-normalised using the mean and standard 
deviation from the training set, this process ensures that there is 
no data contamination between the training and test set from the 
z-normalisation process [41]–[43].  

In the following sections, four cases of binary classification 
are considered followed by a multiclass classification problem 
(normal versus bleed versus clot). The multiclass problem uses 
an error-correcting output codes (ECOC) classifier to 
effectively deal with the multiclass problem by combining 
multiple SVM binary classifiers [44]. Aside from using a 
ECOC approach, the multiclass classification is treated 
identically to the binary classifications with nested cross-
validation used. 

C. Normal versus Lesion 
This study examined the binary classification of normal 

(assigned as the negative class) and lesion (assigned as the 
positive class). Lesion referred to either bleed or clot. The 
simulation data sets comprised of 10,064 simulated normal 
cases and 10,064 simulated lesion cases (with an even number 
of bleed and clot cases). The human data set comprises of 180 
normal cases and 432 lesion cases (180 bleed, 252 clot cases). 
The classifier performance for each data set is presented in Fig. 
7. The results of the human data indicate strong lesion detection 
with a mean sensitivity of 88% and PPV of 81%. Detection of 
normal cases however proved challenging leading to poor mean 
specificity of 51% (NPV 66%). The mean accuracy was 77%. 
In the case of the simulated 48 dB SNR data set all metrics are 
≥ 89%, with a mean accuracy of 92%. 

D. Bleed versus Clot 
In this study, binary classification of bleed (negative class) 

versus clot (positive class is considered). This scenario may be 
the most relevant study to the clinical case where the patient is 
known to have a stroke and so the crucial diagnostic step is the 

 

 
Fig. 7. Classifier performance for normal (negative class) versus lesion 
(positive class) for human (~48 dB SNR), and simulated (48 dB SNR) data 
sets. A mean accuracy of 77% is seen for the human data, with a mean 
sensitivity of 88% and PPV of 81% indicating strong detection of lesion while 
the mean specificity (51%) and NPV (66%) indicative of a low rate of accurate 
detection of normal cases. In the case of the simulated results strong 
performance is indicated by an accuracy of 92% at the 48 dB SNR level. 
 
 
  

 

 
Fig. 6. Nested cross-validation. The complete data set is separated into k =10 
folds with 90% as a training set (white) and 10% as a test set (grey). The 
training set from each of these outer folds is itself divided similarly into m = 
10 inner folds divided into training (white) and test (blue) sets, with 10-fold 
cross validation performed on the inner fold to optimise hyper-parameters. 
These hyper-parameters are then used to train a final SVM model on the entire 
training set, with performance assessed on the held out test set. This repeated 
over the k folds with a final overall performance reported as the mean ± 
standard deviation. 
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identification of the lesion as a bleed or clot. The simulated data 
sets have an even number of bleed and clot cases with a total of 
10,064 cases. The human data set is made up of the 180 bleed 
and 252 clots. The results are shown in Fig. 8. A mean accuracy 
of 85% is reported for the human data, with a mean sensitivity 
of 90% and PPV of 85% indicative of strong correct clot 
detection. Bleeds are slightly less well detected with a mean 
specificity of 77% and NPV of 86%. With regards to the 48 dB 
SNR simulated data set, all metrics have a mean of ≥ 99%.  

E. Normal versus Bleed 
The results for normal (negative class) versus bleed (positive 

class) are shown in Fig. 9. The simulated data sets have an even 
number of normal and bleed cases with a total of 10,064 cases. 
The human data set is made up of the 180 normal and 180 bleed 
cases. A mean specificity of 90% and NPV of 85%, with a mean 
sensitivity of 85% and PPV of 90% is reported for the human 

data (overall mean accuracy of 87%).  In the simulated data, the 
mean accuracy of the 48 dB data set is also 87%. As well as 
being of value in the stroke diagnostic pathway, intracranial 
bleeds are an important feature in other conditions such as 
traumatic brain injury (TBI) [13], [14]. Thus, a diagnostic 
modality that can robustly differentiate normal from bleed 
would be of significant value when applied to such cases. 

F. Normal versus Clot 
The results of the final binary classification combination of 

normal (negative class) versus bleed (positive class) are shown 
in Fig. 10. The human data set is made up of the 180 normal 
and 252 bleed cases, with the simulated data sets have 10,064 
cases with equal numbers of both case types. In the simulated 
results, all metrics for the 48 dB SNR set are  ≥ 91%. The human 
data set results have a mean accuracy of 74%, with the strongest 
result being a PPV of 79%.  

G. Multiclass Classification 
In this study, multiclass classification is performed with 

6,290 each of normal, bleed, and clot cases (18,870 cases in 
total) in the simulated data sets (at 48 dB SNR level). The 
human data set is made of the 180 normal, 180 bleed, and 252 
clot cases. The results are presented as confusion matrices of 
the average ± standard deviation as percentages of the 
classification results of the nested cross-validation in Tables I 
and II. The mean overall accuracy of the classifier with the 
human data set is 68.0%, and for the simulated 48 dB set is 
90.1%. 

 
Fig. 8. Classifier performance for bleed (negative class) versus clot 
(positive class) for human (~48 dB SNR) and simulated (48 dB SNR) data 
sets. A mean accuracy of 85% is seen for the human data, with clots strongly 
detected (mean sensitivity 90% and PPV 85%). Bleeds are slightly less well 
detected with a mean specificity (77%) and NPV (86%). The simulated 
results are strong at the 48 dB SNR level, with no metric with a mean less 
than 99%. 
 
  

 

 
Fig. 9. Classifier performance for normal (negative class) versus bleed 
(positive class) or human (~48 dB SNR), and simulated (48 dB SNR) data sets. 
The classifier preforms with a mean accuracy of 87% in both the human and 
the simulated 48 dB SNR sets. 
 
  

 

 
 

Fig. 10. Classifier performance for normal (negative class) versus clot 
(positive class) for human (~48 dB SNR), and simulated (48 dB SNR) data 
sets. The classifier preforms with a mean accuracy of 74% with the human 
data, with a mean accuracy of 95% in the simulated 48 dB SNR set. 
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H. Effect of Centrally Lying Lesions 
It is of interest to consider the effect of lesions lying on the 

sagittal plane on classifier performance. As described in [15], 
[16], an absolute limitation of the symmetry based algorithm is 
the inability to detect lesions lying perfectly on the plane of 
symmetry as there is effectively no difference in the scene 
presented on either side of the plane. Simulated data sets at 48 
dB are used to study the effect of centrally lying lesions using 
normal versus lesion, and bleed versus clot binary classification 
problems. In both cases, an even number of each class are used 
with the number of cases the same as described in Sections III, 
C and III, D. For the data sets with no centrally lying lesions the 
four locations and two volume sizes as described in Section II, 

E are used. For the data sets with centrally lying lesions, 20% 
of the cases have centrally lying lesions of the two volume sizes. 
The results are shown in Fig. 11. In both cases considered, the 
results indicate a drop in classifier performance when central 
lesions are present in the data set. For example, the mean 
accuracy drops from 92% to 81% in the normal versus lesion 
case, with a drop from 99% to 88% in the bleed versus clot case.  

 

I. Simulated Data Sets at Different Noise Levels 
In this work, the simulated data had noise added at a level of 

48 dB SNR in order to match the SNR of the clinical data [3]. 
However, the simulations were also performed at noise levels 
of 80 dB and 20 dB in order to study the effect of noise. The 
mean accuracy from the simulated sets at each SNR level for 
each binary classification problem is shown in Table III. 
Performance drops off at 20 dB compared to at 48 dB as 
expected, while the 80 dB level out performs the 48 dB. 
However, these results indicate only minor differences between 
the 48 dB and 80 dB sets, suggesting that perhaps 48 dB is 
adequate for accurate results if no other error sources are 
present. 

IV. DISCUSSION 
This section presents discussions of the classification results 

from the various scenarios considered in the previous section. 

A. Normal versus Lesion 
In the stroke diagnostic pathway, the initial diagnosis of  

stroke is not usually done using neuroimaging, relying instead 
on preliminary diagnostics that can be performed by the first 
responders including physical examination protocols such as 
Rule Out Stroke in the Emergency Room (ROSIER) [45]. The 
results of these are used to label a patient as a potential stroke 
patient with neuroimaging subsequently performed [45]. 
Although initially thought to have a relatively high sensitivity 
and specificity (92% and 86% respectively), there is now 
evidence the specificity of these tests is possibly as low as 15% 
when performed by first responders [46]. As such there is value 
in a technology that could be replace such preliminary tests or 
be used in conjunction. The results seen in Fig. 7 show that with 
human data a mean accuracy of 77% was achieved for the 
classification of normal versus lesion (bleed or clot). Although 
the specificity (mean 51%) and NPV (66%) were lower than the 
sensitivity (mean 88%) and PPV (mean 81%), these former 
metrics show a significantly higher performance at identifying 
normal (negative) patients than the current preliminary 
diagnostics used. This encouraging result is supported by the 
results from the simulated data sets, where no metric is < 89% 

TABLES I - II 
RESULTS AS CONFUSION MATRICES OF MULTICLASS CLASSIFICATION FOR 

HUMAN DATA SET, AND SIMULATED DATA SET (48 DB SNR). THE RESULTS 
ARE THE AVERAGE ± STANDARD DEVIATION OVER 10 ITERATIONS AS 

PERCENTAGES. THE GREEN CELLS ARE CORRECT CLASSIFICATIONS, WITH RED 
CELLS INCORRECT.  THE LIGHT GREY CELLS ON THE RIGHT ARE THE PPV 

RESULTS, AND THE LIGHT GREY CELLS ON THE BOTTOM ARE THE SENSITIVITY 
RESULTS. THE DARKER GREY CELL IN THE BOTTOM RIGHT IS THE OVERALL 

ACCURACY. 
 

TABLE I 
HUMAN DATA SET 

O
ut

pu
t C

la
ss

 Normal 17.9 ± 7.6 3.6 ± 2.9 7.9 ± 4.2 61.0 ± 26.1 
Bleed 2.2 ± 2.2 19.8 ± 6.3 3.0 ± 2.7 79.3  ± 25.3 
Clot 9.3 ± 7.4 6.1 ± 5.5 30.3 ± 5.6 66.3  ± 12.9 
 60.9 ± 26.0 67.2  ± 21.5 68.4 ± 13.3 68.0 ± 19.9 
 Normal Bleed Clot  

Target Class 
 

TABLE II 
SIMULATED DATA SET (48 DB SNR) 

O
ut

pu
t C

la
ss

 Normal 29.7 ± 1.6 4.4 ± 1.0  1.5 ± 1.1  83.4 ± 4.5 
Bleed 3.3 ± 0.9 28.6 ± 1.5 0.1 ± 0.2 89.3 ± 4.8 
Clot 0.2 ± 0.2 0.3 ± 0.4 31.7 ± 1.6 98.4 ± 4.9 
 89.3 ± 4.9 86.0 ± 4.6 94.7 ± 4.7 90.1 ± 4.7 
 Normal Bleed Clot  

Target Class 
 
 
 

 

 

 
 

Fig. 11. Central lying lesions effect on classifier performance for normal 
(negative class) versus lesion (positive class), and bleed (negative class) versus 
clot (positive class) for simulated (48 dB SNR) data sets. The classifier 
performance is consistently reduced in all metrics when centrally placed 
lesions are included in the data set compared to when absent. 
 
  

TABLE III 
 PERFORMANCE ACCURACY AS AVERAGE ± STANDARD DEVIATION OVER 10 
ITERATIONS AS PERCENTAGES FOR EACH BINARY CLASSIFICATION PROBLEM 

FOR SIMULATED DATA AT 80 DB, 48 DB, AND 20 DB SNR NOISE LEVELS.   

SN
R

 L
ev

el
 20 dB 67 ± 3  74 ± 5  76 ± 2  60 ± 3  

48 dB  92 ± 1  99 ± 1   87 ± 2   95 ± 5  
80 dB  93 ± 0  99 ± 4  90 ± 3  99 ± 2 
 Normal vs. 

Lesion 
Bleed vs. 
Clot 

Normal vs. 
Bleed 

Normal vs. 
Clot 

Binary Classification Problem 
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when 48 dB SNR noise is added.  

B. Bleed versus Clot 
Timely neuroimaging using CT or MRI is needed to 

differentiate between the lesion types before treatment  for 
stroke can start [1]. It is this differentiation of lesion type that is 
the primary motivation of this work, with the fundamental idea 
of MF GMI data being capable of differentiating between bleed 
and clot as a result of differing 𝜎 profiles discussed in Section 
II, C and shown in Fig. 3. The results as shown in Fig. 8 are 
encouraging with the classifier performance on the human data 
set showing a mean accuracy of 85%, with a similar mean NPV 
and PPV values. While these results demonstrate significant 
promise on human data, there is evidence that further 
improvements are possible when the results of the simulated 
sets showing all metrics with mean values ≥ 99% are 
considered. 

C. Normal versus Bleed 
A related pathology to stroke is TBI, which may or may not 

feature intracranial haemorrhage. Initially physical examination 
protocols are used to triage a patient and decide on case severity 
with haemorrhage correlated with worse outcomes and a need 
to neuroimage. The ability to rule in or out haemorrhage early 
in the triage process would result in better use of CT resources 
and patient outcomes and is another potential application for the 
presented algorithm.  

Although the 𝜎 of bleed does not change appreciably	across 
the EIT band [18], [19], the presence of a bleed results in a 
significant change in the recorded EIT measurement frame and 
MF GMI data compared to the normal case due to a disturbance 
in symmetry [13]–[16]. This change in MF GMI should be 
distinguishable from the normal, and is in the case where a high 
level of symmetry exists in the absence of a lesion  [17]. 
However, the presence of asymmetric anatomy in the normal 
case can confound this detection [17]. 

The results from the simulated data shown in Fig. 9, when 
compared to the corresponding results in Fig. 10 (normal versus 
clot), imply challenge in classifying normal versus bleed 
compared to normal versus clot. The classifier results in Fig. 9 
have a lower mean value compared to those in Fig. 10 for the 
simulated data. The classifier in the case of normal versus clot 
has the advantage of the change in 𝜎 featured by clot across the 
band. However, the results are still strong for normal versus 
bleed with mean accuracy of 87% for both the human and the 
simulated data sets. These results imply the MFSD-EIT with 
classification approach may indeed have application in areas 
such as TBI and build upon the work of [13], [14] where ML 
was applied to EIT measurement frames in detecting 
intracranial haemorrhage. 

D. Normal versus Clot 
Similar to the classification problem of bleed versus clot, 

normal versus clot is theoretically well suited to the MF GMI 
approach due to the differing 𝜎 profile of clot across the band 
compared to no change for the normal case (Fig. 3). The results 
as shown in Fig. 10 confirm this with an accuracy of 74% 
reported for the human data, and all metrics ≥ 91% for the 

simulated data at 48 dB. When considering the classifier 
performance results of the simulated data sets scenarios where 
there is a divergence in 𝜎 profiles across the band between the 
two classes considered result in better classifier performance. 
For example,  in the simulated data sets the mean accuracy is 
95% for normal versus clot and 99% for bleed versus clot, 
compared to 92% for normal versus lesion and 87% for normal 
versus bleed.  

E. Multiclass Classification 
A complete stroke diagnostic workup would comprise of 

classification as normal, haemorrhagic stroke, or ischaemic 
stroke. Currently, an initial diagnosis is performed of normal 
versus lesion (not stroke or probable stroke), before 
neuroimaging is performed in the patients with a lesion to 
decide on bleed or clot (haemorrhagic or ischaemic stroke) [45]. 
The multiclass results in Tables I – II give an indication as to 
the effectiveness of MFSD-EIT with SVM classification 
applied to such a one-step diagnosis. An overall accuracy of 
68.0% is achieved with the human data, and 90.1% with the 
simulated data at 48 dB. Analysis of the confusion matrices 
show that in the simulated data set, the most common 
misclassification is normal as bleed and vice-versa. This 
misclassification is a consequence of the lack of contrast change 
in these tissues across the band. The change in 𝜎 of clot results 
in a consistently high performance (sensitivity > 94%, PPV > 
98%). 

F. Effect of Centrally Lying Lesions 
Centrally lying lesions do not disturb the symmetry of the 

scene and so inclusion of such lesions in a data set should 
theoretically show worse performance compared to a set 
without. This prediction is confirmed by the results shown in 
Fig. 11, where a consistent drop in performance is seen when 
the data sets that include the centrally lying lesions are included. 
While a causative stroke lesion can occur anywhere within the 
network of blood vessels in the brain, it is the case that 
vasculature is largely duplicated on either side of the sagittal 
plane with the major arteries serving the brain (middle, anterior 
and posterior cerebral arteries) all having left and right hand 
sides [47]. As such it would be unlikely for a stroke patient to 
have a sagittally positioned lesion (for example no lesion in the 
human data set was on the midline [3]) but such lesions would 
be challenging to detect with this technique. 

G. UCL MF EIT Stroke Dataset - Other Remarks 
The UCL MF EIT dataset is currently the most 

comprehensive collection of human stroke data available to 
researchers [3]. In this paper, simulated data generated from the 
resources provided in the dataset was used to validate the 
proposed approach in a controlled environment with limited 
sources of error. While improved real world results may have 
been possible with phantom or animal models, the availability 
of gold standard human EIT data motivated the adoption of  the 
measurement frames provided in [3]. It is acknowledged 
however that the dataset does however have some limitations.  

The size of the dataset is relatively small, especially for use 
in machine learning applications where sets as large as possible 
are desirable and often numbering into the thousands [13], [37]. 
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The neuroimaging studies from the 18 patients were used to 
form 18 unique coarse FEM models for reconstruction with the 
NHealthy = 10 , NHaemorrhagic = 10 and NIschaemic = 14 human EIT 
measurement frames reconstructed onto each model to give 180 
MF GMI result sets from normal cases, 180 sets from bleed 
cases, and 252 sets from ischaemic cases,. While this approach 
increased the data by a factor of 18, it remains a relatively 
modest number of observations. 

Further, the data is biased in terms of classes with more cases 
of ischaemia than normal or bleed. Such imbalances in data can 
skew the performance results. In this study, the simulated data 
sets were kept balanced in terms of numbers of observations 
from each class but all the human MF GMI data was used due 
to the limited pool available. Metrics such as accuracy, PPV and 
NPV are sensitive to imbalanced data, while sensitivity and 
specificity are not [48], [49]. Further, the dataset provides 
information on the location and nature of the lesions, but not 
precise information on size beyond qualitative terms such as 
‘small’, and ‘large’. There are however examples of small and 
large lesions of both types in the set. 
 The work of  [17] presented an analysis of the effect of error 
sources on the quality of GMI data. These errors included 
measurement frame noise, electrode contact impedance errors, 
and electrode positioning errors. While care was taken to 
maximise the quality of the protocol and data recorded, 
inevitably these sources of error are present in the human data 
and have an effect on the collected measurement frames. Of 
particular interest is electrode positioning errors where 
differences greater than ± 5mm in the assumed location of 
electrodes can severely affect the GMI data [17]. The actual 
locations of electrodes are not reported in the dataset, and when 
placing electrodes on patients, placement error in the order of ± 
5 mm is likely.  
 Other sources of uncertainty also exist in the dataset. For 
example, the delay from stroke onset to EIT recording ranged 
from hours to days while neuroimaging was performed at 
different timepoints which could lead to errors in data 
interpretation. Further, measurement noise is present in all 
recordings, with an average SNR of 48 dB across the frequency 
band despite the use of the ScouseTom which has a theoretical 
rating of 77.5 dB [3], [22]. The higher SNR was achieved when 
in use with a resistor phantom, highlighting the challenge in 
moving from ideal phantom models to human [22]. 

These limitations must be kept in consideration when 
considering the results of the study particularly with respect to 
the human data. Further, these limitations may explain the 
discrepancy in performance between the results from the human 
and simulated data sets. In the simulated cases while noise at a 
level of 48 dB SNR was added to the frames, no other modelling 
errors were present (for example electrode positioning).  

H. Simulated Data Sets at Different Noise Levels 
As shown by the results in Table III although the accuracy at 

80 dB is better than at 48 dB as expected, the performance is 
similar. These results suggest that while the higher SNR is 
desirable, perhaps stroke detection may be possible at lower 
SNR levels if other errors sources such as electrode placement 
are controlled. 

V. CONCLUSIONS 
This work applied the novel MFSD-EIT algorithm to both 

human and simulated stroke data for the first time. The GMI 
metric summarises symmetrical differences on either side of the 
brain, with analysis across multiple frequencies allowing 
detection and identification of normal, bleed and clot cases. 
This principle is used for the first time with ML techniques 
using a robust nested cross-validation approach to generate 
trained RBF kernel SVM classifiers with the MF GMI data as 
input features. In binary classification problems, better 
classification is generally seen where tissues differ in the 
pattern of 𝜎 change across the frequency band. Importantly this 
divergence in 𝜎 pattern exists for bleed versus clot, with 
differentiation of these lesion types in stroke the main 
application proposed in this work. Strong results are also 
reported for more challenging clinically important applications 
such as normal versus bleed. A mean accuracy of ≥ 85% is 
reported for the human data in these cases. A complete one-step 
diagnostic modality for stroke is also considered as multiclass 
classification of normal versus bleed versus clot, with a mean 
accuracy of 68% with human data.  

Limitations exist with the human dataset, with small set size 
and possible errors in important parameters such as electrode 
positioning affecting achievement of accurate MF GMI data. 
Further, the average data noise had a low SNR of 48 dB. 
Notably, the results achieved in the human dataset were 
achieved despite the presence of these limitations and the 
existence of many error sources. In [17], some methods to 
mitigate these errors were presented, including with respect to 
electrode placement. Hence, further work to mitigate these 
errors should lead to even better algorithm performance with 
human data. Indeed, there are indications from the simulated 
data that improvements to reduce these errors in human data 
would indeed result in better performance. In simulated 
datasets, mean accuracy is always ≥ 87% for the measurements 
with 48 dB SNR, and ≥ 90% for measurements with an 80 dB 
SNR noise level. While the simulated data has limited sources 
of errors relative to the human data, an important error source 
as described in [17] is asymmetric normal anatomy, which is 
present in both datasets. 

We believe the results demonstrate that using MFSD-EIT 
with ML algorithms is a promising approach to diagnosing 
stroke and related applications. 

APPENDIX 
The UCL stroke dataset is documented in [3], and available at 
https://github.com/EIT-team/Stroke_EIT_Dataset (archived at 
DOI: 10.5281/zenodo.1199523. The meshing software is 
available at https://github.com/EIT-team/Mesher. The forward 
solver used, PEITS (Parallel EIT Solver) is described in [34], 
and available at https://github.com/EIT-team/PEITS (archived 
at DOI: 10.5281/zenodo.1641128). The reconstruction software  
is available at https://github.com/EIT-team/Reconstruction 
(archived at DOI: 10.5281/zenodo.1643416). 
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