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Use of non-destructive test methods on Irish hardwood standing trees and small-diameter round timber for 42 
prediction of mechanical properties 43 

 44 
 45 

Abstract 46 
 47 
Key message Mechanical properties of small-diameter round timber from hardwood thinnings of common alder 48 
(Alnus glutinosa (L.) Gaertn.), European ash (Fraxinus excelsior L.), European birch (Betula pendula Roth. & 49 
Betula pubescens Ehrh.) and sycamore (Acer pseudoplatanus L.) can be evaluated by non-destructive testing on 50 
either standing trees or green logs without wood density determination. Velocity differences between acoustic 51 
and resonance methods are influenced by tree species and age. Tree diameter improves the estimation of bending 52 
strength but not of stiffness.  53 
Context There is a need for a reliable, fast and inexpensive evaluation method to better sort hardwood thinnings 54 
according to mechanical properties for use in potential added-value applications.  55 
Aims The estimation by non-destructive testing of mechanical properties of round small-diameter timber of four 56 
hardwood species (common alder, European ash, European birch and sycamore). 57 
Methods Acoustic velocity was measured in 38 standing trees and resonance velocity was recorded in green logs from 58 
these trees. The logs were then dried and tested in bending. Estimation models to predict mechanical properties from 59 
non-destructive testing measurements were developed. 60 
Results Large differences between velocities from acoustic and resonance techniques were found. Models based on 61 
both non-destructive testing velocities together with a species factor are well correlated with bending modulus of 62 
elasticity while models including tree diameter are moderately-well correlated with bending strength. Inclusion of 63 
density in the models does not improve the estimation.  64 
Conclusion Models based on acoustic measurements on standing trees or resonance on green logs together with tree 65 
species and diameter provide reliable estimates of mechanical properties of round timber from hardwood thinnings. 66 
This methodology can be easily used for pre-sorting material in the forest. 67 
 68 
Key words: Bending strength, broadleaf thinning, longitudinal frequency, modulus of elasticity, stress waves, wind 69 
effect 70 
 71 
 72 
1 Introduction 73 
 74 
Guidelines for initial thinning of Irish hardwoods (Short and Radford 2008) recommend the removal of: diseased trees; 75 
competitors of selected high-quality trees; and trees removed for extraction racks, to favour the growth of selected 76 
potential crop trees, maintain stand health and vigour, and to provide access for future management. Hawe and Short 77 
(2016) have presented a review of best hardwood thinning practices. Although it is still not clear if thinning increases or 78 
reduces softwood timber quality (Krajnc et al. 2019a), thinning is always recommended in the case of hardwoods. Trees 79 
felled (thinnings) during this initial thinning have small-diameters and are considered as low quality. In Ireland, 80 
hardwood thinnings are mainly used for energy production (Doran 2012; Mockler 2013) but are also used in chipped 81 
form in the manufacture of wood-based panels or in the pulp/paper industry (Campion and Short 2016). There is 82 
commercial value in seeking to use hardwood thinnings in higher value-added end uses as structural components within 83 
the construction industry and to develop its volume use in local rural industry (Wolfe and Moseley 2000; Cumbo et al. 84 
2004; Gorman et al. 2016).  85 
The development of new products utilizing hardwood thinnings requires knowledge of the physical and mechanical 86 
properties of the materials. Non-destructive testing techniques are commonly used for estimation of wood properties in 87 
forest, sawmill and existing structures (Ross 2015). Non-destructive testing can be divided in global techniques 88 
(ultrasound waves, stress waves and resonance) and local techniques (probing, coring and drilling). The former 89 
techniques are mainly focussed on estimation of static modulus of elasticity (MOE) and bending strength (fm, formerly 90 
referred to as MOR) (Jayne 1959; Auty and Achim 2008; Íñiguez-González et al. 2019), and the latter on estimation of 91 
density (Llana et al. 2018; Fundova et al. 2019; Martínez et al. 2020). It is also common to combine different non-92 
destructive techniques for better estimation results (Divós and Tanaka 1997; Vössing and Niederleithinger 2018). Non-93 
destructive testing has the potential to provide low-cost timber quality assessment, which could be used in the forest to 94 
segregate logs into different end-use categories. The estimation of mechanical properties of timber from standing trees 95 
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or green logs has many benefits for growers and processors, as decisions taken at an early stage can result in cost 96 
savings.  97 
Much research has been carried out to establish relationships between non-destructive testing measurements and the 98 
mechanical properties of wood. Most of this work has focused on softwoods with a relatively small number of studies 99 
on hardwoods. Non-destructive testing studies have been carried out at different stages in the wood processing chain 100 
including on standing trees, harvested logs, round timber and sawn timber boards. In the case of hardwood thinnings, 101 
the small-diameter logs are not suitable for sawing because of the low yield and high processing cost. Therefore, the 102 
potential end-uses of this material are likely to utilize the material in the round. The use of round timber instead of sawn 103 
timber presents several advantages. According to Wolfe (2000) round timber represents a more efficient use of material 104 
than sawn timber with higher load capacity (up to 5 times more) than timber sawn from it. When round timber is sawn, 105 
wood fibres are cut around knots leading to stress concentrations. 106 
 107 
The most common non-destructive testing technique used on standing trees for mechanical properties estimation is 108 
based on measurement of stress wave velocity (Wessels et al. 2011). On green logs, longitudinal vibration techniques 109 
are more commonly used (Lindström et al. 2002). Several methods for density estimation on standing trees are available 110 
including increment boring, penetration resistance, nail withdrawal and resistance drilling, and these have been 111 
evaluated by Gao et al. (2017), who concluded that the drilling resistance method is the fastest and most accurate. On 112 
the other hand, it is also the most expensive approach. Furthermore, some authors have estimated MOE using non-113 
destructive testing devices on cores extracted from standing trees (Yang and Fortin 2001; Chen et al. 2015; Desponts et 114 
al. 2017). 115 
 116 
Most previous research studies have focused on estimation of mechanical properties of sawn timber from measurements 117 
on standing trees or logs. Several such studies have focused on softwoods (Ross et al. 1997; Tsehaye et al. 2000; 118 
Santaclara and Merlo 2011; Moore et al. 2013; Bertoldo 2014; Gil-Moreno and Ridley-Ellis 2015; Butler et al. 2017; 119 
Krajnc et al. 2019b; Simic et al. 2019). Significantly fewer authors have carried out studies on hardwoods (Casado et al. 120 
2013; Bertoldo 2014). Some authors have tested round timber in bending correlating the results with non-destructive 121 
testing measurements. Most of these studies tested small-diameter round timber from thinnings, that according to Wolfe 122 
(2000), had a diameter smaller than 230 mm. On small-diameter timber, determination coefficients (R2) ranging from 123 
0.60 to 0.75 between global MOE in bending (MOEm) and longitudinal dynamic modulus of elasticity (Edyn0) were 124 
reported by Vries and Gard (1998), Wang et al. (2002) and Hermoso et al. (2007), while between local MOE and Edyn0 125 
they ranged from 0.49 to 0.67 (Aira et al. 2019; Vega et al. 2019). According to Krajnc et al. (2019c), who tested three 126 
softwood species with diameters from 250 to 410 mm, the estimation of mechanical properties of sawn timber from 127 
acoustic velocities on standing trees is better in small-diameter trees, as no correlation was found in the larger diameter 128 
trees. In addition to longitudinal measurements on small-diameter logs, Wang et al. (2002) measured transversal 129 
vibration and found higher estimation R2 values using transversal vibration (from 0.85 to 0.95). 130 
 131 
Pelizan (2004) tested twenty-five 6 m long roundwood logs of dry lemon-scented gum (Corymbia citriodora) using an 132 
ultrasound wave device and three-point bending tests. MOEm and bending strength for lemon-scented gum could be 133 
estimated from the Edyn0 with R2 ranging from 0.48 to 0.83 and from 0.49 to 0.74, respectively. The R2 values were 134 
dependent of the relative proportion of sapwood and heartwood, increasing with decreasing proportions of heartwood. 135 
Vega et al. (2019) tested 216 small-diameter (60, 80 and 100 mm) cylindrical timber specimens of dry sweet chestnut 136 
(Castanea sativa) using a stress wave device and four-point bending tests. Local MOEm from the velocity and Edyn0 137 
was estimated with R2 of 0.64 and 0.67, respectively. The estimates of bending strength were poor. 138 
 139 
The main goal of the current research work is to estimate the mechanical properties of round timber from Irish 140 
hardwood thinnings using non-destructive testing on standing trees and on green logs, and to determine the best 141 
approach to apply in the forest taking into account factors such as stem diameter and species. Three objectives were 142 
defined for investigation: first, the influence of measurement position around the tree on non-destructive testing results 143 
second, the differences between stress wave on standing trees and vibration results on green logs and third, the 144 
estimation of mechanical properties from non-destructive testing results.. 145 
 146 
 147 
2 Materials and Methods 148 
 149 
2.1 Materials 150 
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 151 
A total of 38 logs with mid-diameters between 80 and 180 mm and lengths 25 times the diameter were selected for 152 
testing from first and second thinnings of four Irish-grown hardwood species: common alder (Alnus glutinosa (L.) 153 
Gaertn.), European ash (Fraxinus excelsior L.), European birch (Betula pendula Roth. & Betula pubescens Ehrh.) and 154 
sycamore (Acer pseudoplatanus L.). The trees were chosen from seven stands located in the Republic of Ireland (Table 155 
1). Stand No.5 had special characteristics because the birch was mixed with other species (European beech (Fagus 156 
sylvatica L.) and European oak (Quercus robur L.)). Furthermore, the 1st thinning material was extracted from a flat 157 
area on the top of a hill while the 2nd thinning was midway down the slope of the hillside. Only one log from the bottom 158 
part of each tree (butt log) with an overall length of 25 times its mid-diameter was selected, because of the lack of 159 
straightness in the top part and the reduced stem diameter. Furthermore, non-destructive testing measurements on butt 160 
logs have been found to provide better estimates of MOE than upper logs (Tsehaye et al. 2000; Rais et al. 2014).  161 
 162 
2.2 Non-destructive testing experiments 163 
 164 
Two different non-destructive testing approaches were used. The time-of-flight (TOF) of acoustic stress waves over a 1 165 
m length was measured on standing trees at the eight different cardinal and intercardinal points using a TreeSonic 166 
(Fakopp, Sopron, Hungary) device and the acoustic velocity was determined. A Mechanical Timber Grader MTG 167 
(Brookhuis, Enschede, Netherlands) was then used to determine the fundamental frequency (f ) in the longitudinal 168 
direction on green logs just after harvesting (Fig. 1). The resonance longitudinal velocity for the logs was calculated 169 
using Eq. 1: 170 
 171 

Vel0 = 2·f ·L          (1) 172 
 173 
where Vel0 is the acoustic velocity in longitudinal direction (m s-1), f is the fundamental frequency (Hz) and L is the log 174 
length (m) 175 
 176 
Velocities obtained from these measurements were adjusted to a reference moisture content (MC) of 12% based on the 177 
works of Sandoz (1989, 1993). The adjustment factor applied was 0.8% per 1% MC below Fiber Saturation Point 178 
(FSP). It is well known that the influence of MC on non-destructive testing results is much stronger below than above 179 
FSP. According to Sandoz (1993), the influence is at least eight times more on ultrasound velocity. A similar effect was 180 
reported by Unterwieser and Schickhofer (2007) and Rais et al. (2020) on longitudinal vibration. For that reason, since 181 
green logs had an average MC of 88%, the correction was applied for a reduction in MC from 30% to 12%. Edyn0 was 182 
then calculated from density and velocity previously adjusted to 12% according to Eq. 2: 183 
 184 

Edyn0 = ρ·Vel0
2         (2) 185 

 186 
where Edyn0 is the dynamic MOE in longitudinal direction (N m-2) and ρ is the log density (kg m-3) 187 
The importance of determining Poisson ratios, for inclusion in the Edyn calculation to accurately determine the MOE, 188 
was reported by several authors, who used high frequency ultrasound devices and small clear specimens (Ozyhar 2013; 189 
Niemz and Bachtiar 2017; Suryoatmono 2017; Gonҫalves et al. 2019). However, in the present study, Poisson ratios 190 
were not taken into account in the Edyn calculation due to high slenderness of the test specimens. 191 
 192 
2.3 Mechanical testing 193 
 194 
After drying the roundwood to a MC below 20%, four-point bending tests were conducted over a span of 18 times the 195 
mid-diameter to obtain the global MOEm and fm. Although there is a specific standard for testing structural round timber 196 
EN14251 (2003), this standard is only designed for local MOE in bending. Therefore, EN408 (2012), which is suitable 197 
for rectangular and circular solid timber sections, was followed to determine the MOEm (Fig. 1). 198 
 199 
2.4 MC and density determination 200 
 201 
The oven dry method, according to standard EN 13183-1 (2002), was applied to determine the MC in green and dry 202 
conditions using disk specimens free of knots and resin pockets according to EN 408 (2012). Furthermore, the mass and 203 
dimensions of the disk specimens were recorded to determine the green density. 204 
 205 
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3 Results 206 
 207 
3.1 Influence of measurement position 208 
Table 2 summarizes mean values of the eight TreeSonic velocity measurements taken at eight cardinal and intercardinal 209 
points around the trees, together with coefficients of variation (COV) and P-values from analysis of variance 210 
(ANOVA). 211 
 212 
ANOVA was carried out in order to determine if there are significant differences in TreeSonic velocity around the tree. 213 
As all P-values in Table 2 are higher than 0.05, no significant differences were found for the 95% confident level. 214 
However, in the stands No. 3 and 5.1, higher velocities were found in the 225º measurements (SW) with the values 215 
decreasing with position to a minimum in the 45º (NE) direction (Fig. 2). The differences between highest and lowest 216 
velocities are 6.2% in the case of stand 3 and 4.0% in the case of 5.1 that is not explained by the variability (Table 2). 217 
The main reason could be the typical Irish strong wind, which is predominantly from the SW direction. The windward 218 
face of the tree is under tension and this is where hardwoods produce reaction wood. These two stands were especially 219 
vulnerable to wind action due to their orientation. 220 
 221 
3.2 Differences between results from different non-destructive testing devices 222 
 223 
Table 3 summarizes and compares the mean velocities obtained using the TreeSonic and the MTG devices. 224 
 225 
As expected, stress wave velocities (TreeSonic) are higher than those determined using longitudinal vibration (MTG) 226 
and on average are 18.6% higher (Table 3). Furthermore, these differences are expected to be even greater if the stress 227 
waves are measured from end-to-end as the longitudinal vibration was measured, because end-to-end velocities are 228 
always higher than surface velocities. Arriaga et al. (2017, 2019) reported velocities up to 4.4% higher in sawn timber. 229 
Table 3 also shows differences between velocity values from 1st and 2nd thinning for both devices. Performing a t-test, 230 
significant differences between 1st and 2nd thinning velocities were found in case of alder and sycamore, but not in case 231 
of ash and birch (Fig. 3). Non-destructive testing velocities are higher in 2nd thinning (except in birch) as was expected 232 
because 1st thinning trees have a larger proportion of juvenile wood compared with those from 2nd thinnings. However, 233 
densities are lower in the second thinning (except in birch). As was explained earlier, the birch stand was the same for 234 
1st and 2nd thinning and was mixed with two other species. Furthermore, 1st and 2nd thinnings in all species (except in 235 
birch) are from different stands so that other factors such as soil type and wind exposure may have an influence on the 236 
properties. 237 
 238 
3.3 Mechanical properties estimation 239 
 240 
Table 4 shows mechanical properties obtained from four-point bending tests performed in the laboratory on dry logs 241 
and density obtained from disks. MOEm and density were adjusted to 12% MC according to EN384 (2018). 242 
 243 
In order to estimate the mechanical properties from non-destructive testing measurements, regression models were 244 
developed to estimate static MOEm from velocity and Edyn0 obtained from TreeSonic measurements on standing trees 245 
and from MTG velocity and Edyn0 on green logs (Fig.4). 246 
 247 
Several other variables, such as species factor, density, DBH, number of annual rings, and thinning parameters, were 248 
included in the estimation models in order to improve the prediction of MOEm. Only the species factor resulted in 249 
higher coefficients of determination. The final model is given in Eq. 3 and the model coefficients are presented in Table 250 
5. 251 
 252 

MOEm = a·(Vel0 or Edyn0) + b·Zald + c·Zash + d·Zbir + 0·Zsyc + e     (3) 253 
 254 
where  MOEm is the static global modulus of elasticity in bending (N mm-2),  Vel0 is the velocity obtained from TOF or 255 
longitudinal frequency (m s-1),  Edyn0 is the dynamic modulus of elasticity determined from Eq. 2. Zald, Zash, Zbir and 256 
Zsyc are constants for alder, ash, birch and sycamore, respectively, which have a value of 1 for the tree in question and 257 
0 otherwise. 258 
 259 
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Since the P-values in the ANOVA table are less than 0.05, there is a statistically significant relationship between the 260 
MOEm and the explanatory variables at the 95% confidence level. All the models presented similar R2 being slightly 261 
higher using velocity. Therefore, MOEm can be estimated on standing trees using TreeSonic velocity without the 262 
necessity to estimate the wood density in the forest. This is especially important in thinnings in order to minimize the 263 
timber quality evaluation costs. 264 
 265 
Using the same approach used for developing MOEm models, estimation models were also developed for fm. In this 266 
case, the predictive power of the model was improved when species factor and log mid-diameter were included. The fm 267 
model is given in Eq. 4 with the model coefficients given in  Table 6. 268 
 269 

fm = a·(Vel0 or Edyn0) + b·Zald + c·Zash + d·Zbir + 0·Zsyc + e· Ømid + f    (4) 270 
 271 
where fm is the bending strength (N mm-2) and Ømid is the log mid-diameter (mm). 272 
 273 
 274 
4 Discussion 275 
 276 
4.1 Influence of measurement position 277 
 278 
In the present work, no significant differences were found between the eight TreeSonic velocities around the trees. This 279 
is similar to the findings of Grabianowski et al. (2006), Lindström et al. (2009), Vihermaa (2010) and Gil-Moreno 280 
(2018) but contrary to those of Moore et al. (2009), Yin et al. (2010) and Díaz-Bravo et al. (2012). The results of the 281 
present work indicate that a single tree measurement is sufficient  leading to significant time saving. However, as higher 282 
velocity values were found in the predominant wind direction than in the opposite direction for the most wind-exposed 283 
stands, the authors recommend that the mean of two diametrically opposite measurements be used, as was suggested by 284 
Toulmin and Raymond (2007), or a single measurement perpendicular to the predominant wind direction be used. 285 
 286 
4.2 Comparison of non-destructive results on standing trees and green logs 287 
 288 
Another important issue affecting non-destructive testing measurements is the higher velocities obtained from acoustic 289 
methods in comparison with resonance methods. This issue is well known in sawn timber (Haines et al. 1996; Íñiguez 290 
2007; Llana et al. 2016) but has been less studied for stress waves devices on standing trees and resonance devices on 291 
green logs. In this study, velocity values ranging from 12.7% to 25.1% higher were found using stress waves compared 292 
to resonance methods. Several authors found a similar effect in softwoods with variable differences. From the smallest 293 
to the highest the differences were: 9.5% Yin et al. (2010); 11.2% Simic et al. (2019); 12% Grabianowski et al. (2006); 294 
from 8.7% to 17.5% Chauhan and Walker (2006); from 16% to 31% Lasserre et al. (2007), 32% Mora et al. (2009); 295 
from 7% to 36% Wang et al. (2007). Furthermore, in hardwoods (Eucalyptus sp.) 20% was reported by Bertoldo (2014). 296 
Various theories have been used to explain these differences. Chauhan and Walker (2006) and Grabianowski et al. 297 
(2006) attributed the differences to the fact that stress wave devices measure outerwood containing more mature wood, 298 
while resonance devices assess the whole cross-section. According to Bertoldo and Gonҫalves (2015), acoustoelasticity 299 
could also explain these differences based on the variation in the velocity due to loading conditions: standing trees 300 
support their weight, while logs are free of loads. Wang et al. (2007) suggested that the differences are due to the type 301 
of wave propagation: dilatational waves in case of TOF measurements on standing trees and one-dimensional 302 
longitudinal waves in case of logs. Additionally, they found a smaller difference in small-diameter trees because stress 303 
waves would propagate in those cases more as one-dimensional longitudinal waves. Chauhan and Walker (2006) also 304 
found less difference in young trees. This is in agreement with the results of the present work, where lower velocity 305 
differences were found in 1st than in 2nd thinning. Finally, according to Wang (2013) different TOF measurement 306 
devices used on standing trees may have different algorithms and trigger settings, making it difficult to compare results 307 
between authors using different devices. 308 
 309 
4.3 Estimation of mechanical properties from non-destructive testing 310 
 311 
Table 7 presents results from several authors, who used non-destructive testing devices on standing trees or logs. The 312 
bending tests were carried out either on the logs in roundwood form or on timber sawn from the logs.  313 
 314 
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In the present study, the MOEm of round timber estimated from Edyn0 and velocity had coefficients of determination R2 315 
of 0.56 and 0.59, respectively, in case of the TreeSonic, and 0.53 and 0.58 in the case of the MTG. For bending strength 316 
estimation, R2 varied from 0.44 to 0.48 for both devices. The R2 values obtained are relatively low. The main reason 317 
could be the small number of data points for each species, as only five trees were tested on each kind, when it was 318 
possible. In any case, the R2 values obtained are not too far away from those reported by other authors using larger 319 
samples (Table 7) e.g. Vega et al. (2019) obtained R2 values from 0.64 to 0.67 when testing 216 small-diameter round 320 
sweet chestnut using a Microsecond Timer (equivalent to Treesonic). Table 7 presents the results from other studies. It 321 
should be taken into account that is difficult to compare results with other authors as there is a great disparity of 322 
methods used (different devices, different species, standing trees, green or dry logs, large or small-diameter, testing 323 
round shape or sawn timber). Therefore, a great disparity of R2 results was found (from 0.02 to 0.83 for MOEm and 324 
from 0.03 to 0.81 for fm). In agreement with other works, the MOEm estimation models presented here have higher 325 
determination coefficients than those for fm. Simic et al. (2019) found better mechanical properties estimation from 326 
green logs resonance than from standing trees TOF velocities; in the present study, the R2 values for the estimation 327 
models were similar between the two techniques as was reported by Moore et al. (2013). Simic et al. (2019) presented 328 
far higher R2 values and Vega et al. (2019) slightly higher R2 values when estimation was carried out from Edyn0 than 329 
from velocity, while, in the present work, slightly higher R2 values were found using velocity than Edyn0. However, 330 
Simic et al. (2019) estimated mechanical properties of sawn timber while Vega et al. (2019) and the present work small-331 
diameter round wood mechanical properties were estimated. It appears that for small-diameter round wood, estimation 332 
from velocity and Edyn0 are similar. Furthermore, Table 7 does not show a difference in the coefficient of 333 
determination between softwoods and hardwoods. 334 
 335 
Several studies have shown that estimation models and grading systems based on non-destructive testing measurements 336 
were improved by inclusion of the following parameters: diameter (Wang et al. 2004; Zhang et al. 2011; Ruy et al. 337 
2018), ring width (Moore et al. 2013), height and basal area (Merlo et al. 2014). Diameter was found to increase the R2 338 
values from 0.30 to 0.44 in the fm estimation models of the current study. However, the listed parameters had no 339 
significant influence in the MOEm estimation models. 340 
 341 
 342 
5 Conclusions 343 
 344 
No significant differences were found in stress wave velocities from the eight measurements around the tree perimeter. 345 
However, higher velocities (from 4% to 6%) were found in some stands in the predominant wind direction associated 346 
with reaction wood.  347 
 348 
Higher velocities were found using stress waves on standing trees than resonance on green logs (from 12.7% to 25.1%). 349 
This difference depends on the species and is greater in second than in first thinning. Nevertheless, the estimation of 350 
mechanical properties (MOEm and fm) of final dry round wood is not affected as similar determination coefficients were 351 
found using stress waves or resonance. Prediction of mechanical properties was improved by including species as a 352 
factor, and in the case of fm, also stem diameter (MOEm R2 0.59; fm R2 0.44). Estimation model results from acoustic 353 
velocity data (no requirement for wood density measurement) were not significantly different from those derived from 354 
Edyn0 (that require wood density measurement) and, therefore, represent a consequent saving in time and cost. 355 
 356 
Either stress waves on standing trees or resonance on green logs can be used to evaluate mechanical properties in the 357 
forest. Both are fast, reliable and inexpensive methods of pre-sorting material based on quality.  In the case of stress 358 
waves, it is recommended to use two diametrically opposite measurements or a single measurement perpendicular to the 359 
predominant wind direction. 360 
 361 
The results, based on 38 logs from four hardwood species, require validation with a larger sample. An appropriate 362 
methodology for the evaluation of the mechanical properties of hardwood thinnings using non-destructive testing, 363 
including the identification of the relevant forestry parameters that should also be taken into account, has been 364 
developed and can be applied in future studies. 365 
 366 
 367 
 368 
 369 
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Tables 560 
 561 

Table 1 Forest stand information and felled tree mean characteristics 562 
Stand  Felled trees 

Stand 

No. 

Species Thinning Latitude 

(º) 

Longitude 

(º) 

Age 

(year) 

Trees per 

ha 

 No. DBH 

(mm) 

Height 

(m) 

1 Ash 1st  54.05133  -7.30363 15 2500  5 127 13.6 

2 Sycamore 2nd  54.05458  -7.32214 23 1650  3 151 18.6 

3 Ash 2nd  53.25189 -7.15134 21 1075  5 133 13.8 

4 Alder 2nd  53.24934  -7.15756 21 2650  5 132 12.6 

5 Birch 1st & 2nd 51.91972 -8.03055 21 Mix  5 123 11.3 

6 Sycamore 1st  53.47110  -8.40793 15 3325  5 118 9.0 

7 Alder 1st  53.74570 -8.64617 13 3475  5 92 8.9 

DBH: Diameter at Breast Height 

 563 
 564 

Table 2 Mean TreeSonic velocities recorded in eight different positions (cardinal and intercardinal points) around the 565 
tree 566 

Stand 
Velocity Treesonic (m s-1) COV 

(%) 
P-value 

N 0º NE 45º E 90º SE 135º S 180º SW 225º W 270º NW 315º 

1 4116 4112 4161 4135 4208 4214 4142 4142 0.9 0.995 

2 4074 4106 4056 4028 3966 3975 4031 4075 1.1 0.949 

3 4189 4147 4142 4195 4289 4398 4258 4308 2.0 0.473 

4 3675 3716 3690 3757 3715 3702 3795 3718 1.0 0.989 

5.1 4085 4074 4110 4163 4180 4236 4215 4138 1.3 0.539 

5.2 4013 3979 3916 3911 3952 3955 4025 4051 1.2 0.969 

6 3125 3119 3104 3105 3092 3122 3097 3092 0.4 1.000 

7 3209 3162 3188 3181 3197 3224 3225 3155 0.8 0.968 

 567 
 568 

Table 3 Non-destructive testing acoustic velocity on standing trees (Treesonic) and green logs (MTG) 569 

Species Thinning 

Velocity TreeSonic  Velocity MTG Velocity  

difference 

(%) 
Mean 

(m s-1) 

COV 

(%) 

 Mean 

(m s-1) 

COV 

(%) 

Alder 1st 3609 4.6  3053 7.1 18.2 

2nd 4254 5.3  3419 3.1 24.4 

both 3931 9.6  3257 7.5 20.7 

Ash 1st 4738 4.5  4088 5.5 15.9 

2nd 4928 5.2  4185 2.7 17.8 

both 4833 5.3  4136 4.5 16.9 

Birch 1st 4734 2.7  3877 5.8 22.1 

2nd 4635 4.9  3704 8.4 25.1 

both 4684 4.1  3791 7.5 23.6 

Sycamore 1st 3537 9.4  3139 5.0 12.7 

2nd 4661 7.3  4034 5.5 15.5 

both 3959 16.1  3475 13.5 13.9 

       

All together 4372 12.9  3686 12.3 18.6 

 570 
 571 

572 
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 573 
Table 4 MC and mechanical properties obtained by four-point bending test on dry logs 574 

Species Thinning 

MC  MOEm  fm  Density 

Mean 

(%) 

COV 

(%) 

 Mean 

(N mm-2) 

COV 

(%) 

 Mean 

(N mm-2) 

COV 

(%) 

 Mean 

(kg m-3) 

COV 

(%) 

Alder 1st 12.6 5.2  5735 10.5  61.83 16.8  498 7.1 

2nd 15.1 10.4  7740 11.9  51.79 24.4  481 4.6 

both 13.8 12.5  6738 18.8  56.81 22.2  489 6.3 

Ash 1st 18.2 8.1  10162 16.9  65.11 11.1  668 6.9 

2nd 18.4 9.4  9435 12.6  60.86 11.5  659 7.3 

both 18.3 8.8  9799 15.5  62.99 11.8  664 7.2 

Birch 1st 19.8 10.1  8076 13.8  47.33 18.9  592 3.9 

2nd 18.8 9.6  7519 13.2  49.75 14.3  606 2.1 

both 19.3 10.2  7797 14.0  48.54 16.9  599 3.3 

Sycamore 1st 10.3 8.0  6391 22.0  43.90 13.9  560 5.1 

2nd 14.4 9.9  8918 12.0  56.02 11.5  542 8.3 

both 11.9 19.1  7339 24.2  48.45 17.7  553 6.6 

            

All together 16.0 22.2  7949 23.1  54.50 20.7  578 12.8 

 575 
 576 

Table 5 Coefficients of the regression model for MOEm estimation (Eq. 3) 577 

Variable a b c d e R2 P-value 

Vel0 TreeSonic 2.0500 -544.94 667.72 -1028.35 -776.64 0.59 0.000 

Edyn0 TreeSonic 0.3735 -126.02 -23.09 -1139.55 4022.53 0.56 0.000 

Vel0 MTG 2.5508 -42.33 772.00 -347.97 -1524.13 0.58 0.000 

Edyn0 MTG 0.4702 181.80 309.48 -414.97 4136.83 0.53 0.000 

 578 
 579 
 580 

Table 6 Coefficients of the regression model for bending strength estimation (Eq. 4) 581 

Variable a b c d e f R2 P-value 

Vel0 TreeSonic 0.0049 4.60 10.18 -5.04 -0.21 56.11 0.44 0.002 

Edyn0 TreeSonic 0.0015 6.28 4.63 -7.82 -0.21 62.95 0.47 0.001 

Vel0 MTG 0.0091 5.46 8.46 -4.28 0.20 42.90 0.46 0.001 

Edyn0 MTG 0.0021 7.26 5.02 -5.09 -0.18 57.65 0.48 0.001 

 582 
583 
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 584 
Table 7 Determination coefficients of mechanical properties (MOE and bending strength) estimation models using non-585 

destructive testing devices from several authors 586 

Device Variable MOEm R2 fm R2 Species* Bending 

test 
Author 

GrindoSonic 

MK5 (v) 

Edyn0 0.72 0.58 Japanese larch Round 

wood 

Vries & Gard 

1998 0.76 - Douglas fir 

Accelerometer (v) Edyn0 0.60 - Jack pine Wang et al. 2002 

0.75 - Red pine 

Sylvatest Duo (u) Edyn0 0.48-0.83 0.49-0.74 Lemon-scented gum (H) Pelizan 2004 (1) 

Sylvatest Duo (u) Edyn0 0.68 - Salzmann pine Hermoso et al. 

2007 

PLG (v) Frequency 0.43 - Spanish juniper Villanueva 2009 

Microsecond 

Timer (s) 

Edyn0 0.57 (L) 0.57 Salzmann pine Aira et al. 2019 

0.49 (L) 0.45 Scots pine 

Microsecond 

Timer (s) 

Velocity 0.64 (L) - Sweet chestnut (H) Vega et al. 2019 

Edyn0 0.67 (L) - 

Hitman ST300 (s) Velocity 0.53 0.59 Scots pine Sawn 

timber 

Auty & Achim 

2008 (2) 

Hitman HM200 (v) Velocity 0.73 - Maritime pine Santaclara & 

Merlo 2011 

Microsecond 

Timer (s) 

Velocity 0.50 - Black poplar (H) Casado et al. 

2013 

IML Hammer (s) Edyn0 0.49-0.83 0.81 Sitka spruce Moore et al. 2013 

Hitman HM200 (v) Edyn0 0.45-0.80 0.68 

USLab (u) Velocity 0.64 0.67 Daintree stringybark (H)  

Lemon-scented gum (H)  

Saligna gum (H)  

Maritime pine 

Bertoldo 2014 (1) 

Hitman ST300 (s) Velocity 0.78 0.38 

TreeSonic (s) Edyn0 0.27-0.57 - Noble fir  

Norway spruce  

Western hemlock 

Western red cedar 

Gil-Moreno & 

Ridley-Ellis 2015 

Hitman HM200 (v) Velocity 0.63 - 

Hitman HM200 (v) Velocity 0.49-0.67 0.20 Loblolly pine Butler et al. 2017 

TreeSonic (s) Velocity 0.43 0.29 Douglas fir Krajnc et al. 

2019c 0.05 0.03 Norway spruce 

0.02 0.04 Sitka spruce 

Hitman ST300 (s) Velocity 0.41 0.27 Sitka spruce Simic et al. 2019 

Edyn0 0.55 0.47 

MTG (v) Frequency 0.47 0.28 

Edyn0 0.66 0.50 

Kind of device used: (s) stress waves, (u) ultrasound waves, (v) vibration 
(H) Hardwood species 
(L) Local MOE in bending 
(1) Three-point bending test 
(2) Small clear specimens 

*Species’ common names according to standard EN13556 (2003) when possible, and when not according to Miller & Ilic 

(1992) 

 587 
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 594 
Figures 595 

 596 
 597 

 598 
 599 
Fig. 1 Measurement set up. 1. On standing trees, 2. On green logs, 3. On dry logs. 600 
 601 
 602 

 603 
 604 
Fig. 2 Anova box and whisker plot and mean test for TreeSonic velocity around trees: a) and b) stand 3 ash; c) and d) 605 
stand 5.1 birch 606 
 607 
 608 
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 609 

 610 
 611 
Fig. 3 Anova mean test for TreeSonic velocities of 1st and 2nd thinning: Al: alder, A: ash, B:birch, S: sycamore. 612 
 613 
 614 
 615 

 616 
 617 
Fig. 4 Linear regressions between static MOEm and: a) TreeSonic velocity, b) TreeSonic Edyn0, c) MTG velocity, d) 618 
MTG Edyn0. 619 


