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Abstract

This thesis investigates the suitability of unconstrained palmprint as a biometric modality
for handheld devices equipped with a camera, such as smartphones. A detailed literature
survey is provided, covering existing datasets, methods for region of interest extraction
(ROI) extraction and feature extraction from palmprints. Following a series of exploratory
experiments, a novel dataset of palmprints from 81 subjects and acquired using 5 different
smartphone cameras is developed. Details are provided of initial data acquisitions, the final
acquisition and management protocol and the associated Ethics Application. The dataset was
collected in several acquisition phases over a period of 8 months. A set of baseline matching
experiments is also detailed and manual mark-up of the palmprint data is included with the
dataset. The accurate extraction of palmprint ROI was identified as a key component in
the biometric recognition pipeline but the mark-up used for ROI extraction is not available
in palmprint datasets. Thus, a second dataset was acquired using a 3D sensor and aligned
camera with suitable mark-up data. Over 25,000 images were acquired from 26 subjects
over the course of 1 year. Corresponding experiments were designed to evaluate a range of
machine learning approaches to ROI extraction and a new quality measure was developed
to compare the accuracy of ROI extraction for palmprints. Detailed experiments compared
various ROI extraction techniques and have demonstrated that unconstrained palmprint can
serve as a practical means of biometric authentication using standard smartphone cameras
and without a need for specialized fingerprint or 3D face sensors.
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Chapter 1

Introduction

1.1 Palmprint Recognition as a Smartphone Biometric

As biometric recognition technologies gain a more central role in human society, they have
to adapt to novel challenging environments. These are defined by many factors, including
socioeconomic ones (affordability), but also legal (acceptability/reliability) but especially
technological [2].
In this context, palmprint recognition has considerable potential in being a main biometric
mode used to secure various web services on a large scale, especially when deployed on
consumer devices such as smartphones. In the following chapters the challenges associated
to unconstrained recognition of palmprints using smartphones is explored.

This chapter is an overview of the thesis’ contents and rationale, with an introduction
into the background of palmprint recognition and state-of-art being presented in Chapters 2
and 3.

1.2 Objectives and Scope of the Work

This thesis discusses the deployment of palmprint recognition as a viable solution for
authentication on smartphones.

1.2.1 Today’s Smartphone

When the work contained in this thesis was started, biometric recognition on smartphones
was in its infancy, with the Android system having an easily circumventable face recognition
application, and only few smartphones supporting fingerprint recognition [3].
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The first mobile device to integrate fingerprint recognition was the iPAQ Pocket PC h5400
[4], launched in 2002. It was fitted with a fingerprint sensor requiring the user to swipe the
finger in a certain direction, which in theory limited the reading errors.

The first smartphone to have a capacitive fingerprint sensor was the iPhone 5s, which
was released in September of 2013 [5]. The sensor acquired images of 500 pixels per inch
and thanks to its matching algorithms, the matching was rotationally invariant. Thanks to its
ease of use, it became an overnight success [3] and was adopted by many manufacturers ever
since.

1.2.2 Integration into consumer devices

Using the camera (either rear or frontal) for the acquisition of a palmprint image was
considered to be a good alternative to relying on a scanner, thus providing a biometric
solution for authentication on any consumer device (fitted with a camera). This idea was
validated by the projects of companies such as Redrock Biometrics, who have released an
SDK for their palmprint solution called PalmID in 2017 [6].

This approach can be deployed on any consumer device, an especially interesting use
case being the seamless integration into how the Augmented Reality (AR) headsets can be
unlocked. This was achieved in 2018 by developing an authentication protocol with the
PalmID [6] software deployed on EPSON’s MOVERIO BT300 AR headset [7].

1.2.3 Re-emergence of feature phones

The year 2017 saw the introduction of an operating system (entitled KaiOS [8]) that
brings many smartphone-specific applications and functionalities (e.g. 4G connection, GPS,
Whatsapp, Google maps, Google assistant, etc.) to more affordable feature phones, thus
opening up many exciting possibilities in emerging markets such as Africa or India [9]. For
such devices existing biometric solutions can be deployed using the rear camera (which
generally reaches 2 Mega Pixels). In this context, palmprint recognition remains a valid
option for biometric authentication, as demonstrated previously by Jia et al. [10] when using
devices with similar specifications.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:
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1. A state of the art literature review on the use of palmprint recognition, with an emphasis
being placed on the solutions implemented on mobile devices.

2. Introduced the first multi-smartphone database of palmprint images acquired in realistic
and unconstrained conditions of authentication (NUIG_Palm1).

3. Implemented baseline matching scenarios, exploring the difficulties of unconstrained
palmprint acquisition

4. Introduced an auxiliary database of palmprints aimed at providing support for the
training of Convolutional Neural Networks. It was collected with a webcam and a
Leap Motion device, which allowed the on-site labeling of hand images with specific
keypoints (NUIG_Palm2).

5. Introduced the first palmprint Region of Interest (ROI) extraction approach for unconstrained
hand pose (based on a Convolutional Neural Network using concepts from hand pose
regression).

6. Investigated the effect of palmprint ROI misalignment on recognition accuracy.

1.3.1 List of publications

The work presented in this thesis resulted in the following journal papers, of which one was
referenced in IEEE biometrics virtual journal - IEEE Biometrics Compendium:

• Adrian-Stefan Ungureanu, Shejin Thavalengal, Timothee Elie Cognard, Claudia
Costache and Peter Corcoran, "Unconstrained palmprint as a smartphone biometric",
in IEEE Transactions on Consumer Electronics, vol. 63(3), pp. 334–342 (August
2017). (Referenced in IEEE Biometrics Compendium, issue 31, March 2018.)

• Adrian-Stefan Ungureanu, Joseph Lemley and Peter Corcoran, "Unconstrained palmprint
ROI extraction using CNN and Leap Motion", (under review).

• Adrian-Stefan Ungureanu, Saqib Salahudin and Peter Corcoran, "Towards Unconstrained
Palmprint Recognition on Consumer Devices: a Literature Review", (accepted for
publication in IEEE Access).

One conference paper was also published based on this work:

• Adrian-Stefan Ungureanu, Hossein Javidnia, Claudia Costache and Peter Corcoran, "A
review and comparative study of skin segmentation techniques for handheld imaging
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devices" in Proceedings of the 2016 IEEE International Conference on Consumer
Electronics (ICCE), Jan. 2016, Las Vegas, USA.

Also, one article was also published in a IEEE Magazine:

• Adrian-Stefan Ungureanu, Claudia Costache and Peter Corcoran, "Palm print as
a smartphone biometric: another option for digital privacy and security" in IEEE
Consumer Electronics Magazine, vol. 5, no. 3, pp. 71-78, 2016.

Delivered several oral or poster presentations:

• (Poster) "Palm-print Recognition for Authentication on Smartphones.", at 5th Annual
Postgraduate Research Day, National University of Ireland, Galway, April 2015,
Galway, Ireland.

• (Poster) "Unconstrained palmprint recognition on smartphones", at 13th IAPR/IEEE/Eurasip
International Summer School on Biometrics, June 2016, Alghero, Italy.

• (Presentation) "L’identification biometrique de les impressions de paume dans le
contexte des smartphones" at Threesis in French, Trinity College Dublin, March 2018,
Dublin, Ireland.

1.4 Organization of the thesis

The rest of the thesis is organized as follows:
Chapter 2 introduces key concepts of biometric recognition, as well as statistical tools

that are used to evaluate such recognition systems. The palmprint, as a biometric trait is
defined and its use is discussed.

Chapter 3 contains an extensive overview of palmprint recognition, from databases to
palmprint Region of Interest (ROI) extraction, as well as feature extraction and matching
approaches.

Chapter 4 introduces two novel palmprint databases (along with an initial Proof of
Concept database) that were collected to support the ongoing research of biometric recognition
using smartphone cameras. These databases have been released to the research community.

Chapter 5 represents a preliminary stage of research, where the focus was placed on
pre-processing stages of palmprint recognition. The Proof of Concept database of palmprints
was used to provide an initial direction of research.

Chapter 6 introduces matching experiments performed on the palmprint database
NUIG_Palm1. The unconstrained nature of the conditions of acquisition proved to be
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especially challenging, as there were many factors that were not controlled (e.g. lighting,
background, hand pose, etc.).

Chapter 7 uses the images from NUIG_Palm2 to train a Convolutional Neural Network
that predicts keypoints used for the extraction of palmprint ROI. Several state-of-the-art
architectures are compared and compared and evaluated with specific point prediction and
object detection methods.

Chapter 8 then investigates the influence of misalignment introduced by the ROI
extraction algorithm using images from the palmprint database NUIG_Palm1.

Chapter 9 outlines the main conclusions and future work based on the work contained
in this thesis.





Chapter 2

Background

The general problem of recognizing (from the Latin re, again and cognoscere, know or learn)
an individual ultimately comes down to assessing a potential threat. Another organism not
sharing the same physiological traits is most likely part of a different species which may or
may not be a predator looking for its next meal. In human history (and prehistory) this is
further refined to recognizing members of the same tribe from those of other tribes.

With the advent of agricultural societies, this problem became known as identity management
since every citizen of any sociopolitical group is expected to pay taxes and have certain legal
requirements and responsibilities. Therefore, it is essential to distinguish between individuals
regardless of their cultural background.
Throughout history several strategies were employed to solve this need. These approaches
can be broadly classified into three groups: (1) something that I have, (2) something that I
know and (3) something that I am. The first category uses a surrogate object, which proves
the claimed identity, for instance a state issued ID, passport or token. The second category
relies on certain knowledge only that individual is expect to know, such as a PIN code to
a savings account or an e-mail account. The third and final category is made up of any
physiological and/or behavioral traits an individual possesses. The best example is probably
the cue humans (and other primates) have been using for millennia for recognizing one
another – the face, which is also the main reason why IDs usually contain a photograph.

2.1 Biometric Recognition

Biometric recognition (or simply biometrics) is defined as "the science of establishing the
identity of an individual based on the physical and/or behavioral characteristics of the person
either in a fully automated or a semi-automated manner" ([11] p.2). The term is derived
from Greek bios, life and metron, to measure, reflecting the initial intention of providing a
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statistical interpretation in the field of evolutionary biology used in the 19th century. However,
the concept changed in late 20th century, to replace the previously used term of Automated
Person Identification [11]. Any biometric system relies on the premise that a biometric trait
or combination of traits is able to provide a unique identification key.

2.1.1 What makes a Biometric Characteristic

A biometric trait needs to fulfill a set of requirements, as were defined by Jain et al [12]:

• Universality: all individuals should have the trait,

• Distinctiveness: two individuals should display differences with respect to the trait,

• Permanence: the trait should be stable and remain consistent over a period of time,

• Collectability: the trait should be measured in a quantitative way.

Furthermore, any biometric recognition system is expected to fulfill a number of conditions:

• Performance: achieving a targeted accuracy and speed for comparing the biometric
trait,

• Acceptability: the willingness of individuals to provide their biometric trait,

• Circumvention: the difficulty with which the system is fooled by using a forged
biometric trait.

2.1.2 Classifying Biometric Traits

After describing what makes a trait also a biometric trait, it is necessary to provide a
classification of biometric traits. The most common distinction is made in terms of their
origin - either physiological or behavioral.
Examples from the former group are the traits most commonly associated with biometric
recognition - face, fingerprint, palmprint, iris, ear, and just about any trait which exploits a
physically observable trait. Examples from the latter group include voice recognition but
also gait, keystroke, dynamic signature recognition, etc. Recognition systems based on these
traits also include a time component.

An evaluation of several biometric characteristics is presented in Fig. 2.1, based on the
conditions defined in Subsection 2.1.1. As there is no optimal biometric characteristic (i.e.
outperform all others in all operational environments), there is a context where one trait may
be preferred to others.
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The biometric characteristics that are highlighted belong to the category of hand biometrics.
Compared to the other categories, these also offer the possibility of fusion, thus improving
both performance and robustness to potential attacks.

Fig. 2.1 Classification of biometric traits, as evaluated by Jain et al [12]. H, M and L
correspond to High, Medium and Low. The highlighted characteristics correspond to hand
biometrics. (Source: [12] ©2004 IEEE )

2.1.3 Generic Biometric System - Components

Any biometric recognition system (BRS) that uses a vision-based approach is loosely made
up of the following blocks (as represented in Fig. 2.2):

1. Sensor, encompassing both the environment of operation as well as a protocol regulating
the means of acquisition. A protocol is designed to take into account the strengths and
weaknesses of a given system and attempt to improve its performance.

2. Feature extractor, containing sub-modules such as Quality evaluation, ROI extraction
and Feature encoding.
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• Quality evaluation assesses the potential use for any acquisition. It needs to pass
quality assurance criteria, such as image quality, blur evaluation, etc. Standard
image processing techniques are applied to compensate noise levels if required
(in the case of imaging sensors). Furthermore, some sort of liveness detection
needs to be considered, as measure to reduce the circumventability of the system.

• ROI extraction, where the biometric modality has to be located and separated
from the background.

• Feature extraction which encodes the information contained in the previously
extracted ROI. This can also be called biometric sample.

3. A Database containing the list of all registered users and their stored biometric samples
(templates). It is initially accessed during the enrollment stage, where several biometric
samples are saved locally. During testing, the stored template is selected and provided
for comparison.

4. The Comparison Trial stage (Matcher) is used during testing to determine a similarity
score between a presented biometric trait and the stored sample in the database
associated to a claimed identity. Based on this score, a decision is made to either
give or deny access (in the case of an access control application) using a specific
threshold.

2.1.4 Functionalities of a Biometric Recognition System

A biometric recognition system has two modes of operation: verification and identification.
Following an initial stage of enrollment of biometric samples associated to a set of identities
(classes), then any test samples presented to the system are compared with the stored samples,
following either the protocol of verification or identification [11].

Verification

This mode essentially answers the question ’Are you who you claim you are?’, thus requiring
two specific inputs to the system: a biometric sample and a claimed identity (class). It
is therefore required to only compare the test sample (query) with all biometric samples
associated to one identity (a one-to-one comparison).
Formally, this is formulated by defining a set of identities Φi with i being total number of
classes. Every class is defined by a set of samples φ D

i, j, where j represents the total number
of samples associated to a class Φi. Having a query sample φ T

i for class i, a similarity score
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Fig. 2.2 Modes of operation for a generic biometric recognition system. Whereas the
enrollment phase stores an extracted biometric sample, the testing phase (verification or
identification) compares a query sample to the samples stored in the local database. (Adapted
from Introduction to Biometrics [11] ©2011 Springer )

s is computed using an approach L to assess if the query sample does belong to that class:

L
(
Φi,φ

T
i
)
=

genuine, i f s ≥ τ

impostor, i f s < τ

(2.1)

where the score s ranges from 0 to 1 and confirms adherence to class Φi the closer it is to 1,
and τ corresponds to a predetermined threshold used when training the biometric recognition
system. If a distance is used (instead of a similarity score), then the conditions for the
threshold τ are reversed, as a computed distance between two samples from the same class is
expected to be close to 0.
A match is defined as the positive comparison decision, whereas a non-match is the negative
comparison decision.

Identification

This scenario attempts to answer the question ’Are you someone who is registered in the
system?’. The system will therefore compare the query sample with all samples stored in the
database in order to determine the best comparison (one-to-many). The system contains N+1
total set of identities (classes), where N=number of users, with the N+1 class generally kept
for ’impostors’. If the best similarity score falls below a decided threshold (τ), then it can be
considered that the identity cannot be found in the database of stored samples.
Formally, this problem can be formulated extending the condition in Equation 2.1 to include
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an arg maxs operation determining query class ΦT based on the similarity scores s obtained
with function L:

Φ
T = arg maxs(L(Φi,φ

T
i )), f or i = 1..Nclasses (2.2)

After determining the class which best comparisons with the query φ T
i , the score needs to be

validated using the pre-determined threshold τ , otherwise the query sample will be associated
to class ΦN+1, in which case it will be considered an impostor.

2.2 Metrics for Evaluation of Biometric Systems

2.2.1 Defining the Problem

One of the fundamental requirements for a trait to qualify as a biometric trait is that of
permanence, or continuity across time. As biometric recognition systems are operating with
traits from live organisms, a certain tolerance regarding the observed traits is expected.
The variation observed between the biometric samples corresponding to the same class
(identity) is defined as intra-class, and is expected to be small (i.e. a chosen distance computed
between these samples is supposed to be small). Conversely, the variation (distance) between
the samples belonging to two different classes is expected to be high, and is called inter-class.
Authors in the literature can also call intra-class and inter-class as genuine and impostor [12].

Any biometric system faces a generalized problem of classification. Given a collection
ΦK of one biometric feature with K classes, each class φi with several instances φ i

j, the
task of classification aims at constructing a hyperspace representation providing adequate
separation between all classes. There exists a hypothetical η distance (or similarity score)
threshold, which provides adequate separation (depending on the application) of intra-class
from inter-class instances. An example of such a distribution is presented in Fig. 2.3.

The erroneous classification of a query sample to a class which it does not belong to, is
called a False Acceptance. The rate of such errors is called False Acceptance Rate (FAR).
The opposite, rejecting a sample although it belongs to that class is called a False Rejection.
The rate of such errors is called False Rejection Rate (FRR). If we label the genuine and
impostor distributions with ω0 and ω1 respectively, then the FAR and FRR can be defined
mathematically as:

FAR(η) = p(s >= η |ω0) =
∫ +∞

η

p(s|ω0)ds, (2.3)

FRR(η) = p(s < η |ω1) =
∫

η

−∞

p(s|ω1)ds (2.4)
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Fig. 2.3 Genuine and impostor distance distributions, originating from a Collaborative
Representation Classifier (CRC) used in Section 6.3 of Chapter 6. The threshold η is used to
determine the FAR and FRR rates.

To determine the Genuine Acceptance Rate (GAR), one only requires the FRR:

GAR(η) = 1−FRR(η) (2.5)

When comparing two biometric samples, the nature of the application is the one which
dictates how important the FRR is. Forensic scenarios require that the FRR is low enough
to include all potential suspects, regardless of the FAR. Conversely, the high security
applications require very low FAR and can tolerate a high FRR. In contexts such as mobile
phone authentication the FRR needs to be low enough, otherwise it risks affecting the user
experience (an important factor when selling products).

2.2.2 Interpreting an ROC

A Receiver Operating Characteristic (ROC) is defined using the FAR and FRR values
corresponding to a classifier where the threshold η is varied with a specific set, such that all
similarity scores are being covered (from smin to smax).

Two system’s ROCs can be used to compare their performance relative to each other.
Depending on what is being plotted with respect to FAR (FRR or GAR), the closer the ROC
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Fig. 2.4 Representation of a Receiver Operating Characteristic, applied to a Support Vector
Machine used for classification on the scikit-learn [13] iris database. The value of EER
corresponds to 31%, which is located at the intersection of the EER line with the ROC curve.

is to 1.0 or 0.0, the better the performance. An example ROC is provided in Fig. 2.4, where
the dark blue line plots a random classification (correct classification is 50%).

2.2.3 Equal Error Rate

When evaluating two classifiers, a common metric used is the Equal Error Rate (EER). This
is the point at which the FRR has the same value as FAR. The lower this value, the better
the system. The EER can also be observed in the ROC, at the point of intersection with the
EER-line.

It is important to note that EER is only to be used as a point of reference and rarely that
threshold η is being deployed on a recognition system. As this threshold influences the
FAR and FRR, it depends on the type of application, which dictates the requirements for a
recognition system.
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2.3 Palmprints

2.3.1 Definition and Features

The palmprint is defined in the "Encyclopedia of Biometrics" [14] using the two words it is
being composed of palm and print:

The human palm is defined as the region on the inside part of the hand stretching
from the base of the fingers to the wrist. The print is an impression made when
the body part is pressed against a surface. A palmprint therefore illustrates the
physical properties of skin patterns such as lines, minutiae and texture.

Palmprints form concomitantly with fingerprints (during the embryonic skin development and
are fully developed 6 months into the pregnancy) and are affected by the same genetic/behavioral
factors. Therefore, they can be considered as fingerprints covering a greater surface that also
include specific flexion lines [15].
The features that can be found on a palmar surface, as visualized in Fig. 2.5, are:

• Principal lines (major palmar flexion ridges): the most visible creases on the palm,
include the life-line (radial transverse), the heart-line (distal transverse) and the head-
line (proximal transverse). Their formation is directly linked to the hinging ability of
the fingers.

• Datum points: represent the end points of principal lines, they can be used to align two
palmprints.

• Palmar friction ridges: folded pattern of palm skin with sudoriferous glands but with
no hair, having as main functionality the increase in grip. Their coarseness varies
depending on the position inside the palm. Similar patterns are observed on the inside
part of fingers that serve the same purpose.

• Minutiae: specific structures that can be observed in the palmar friction ridges. A
dictionary of symbols is used to uniquely define symbols that can appear in such
structures, allowing the comparison of two samples (e.g a ridge’s bifurcation, ridge
ending, ridge island, etc.).

• Wrinkles (minor palmar flexion ridges): thinner and more irregular lines as compared
to the principal lines. They are found all over the body and allow the stretching of
the skin in directions corresponding to the natural demands of each region. As the
skin loses its elasticity (with age), permanent wrinkles form. Pronounced wrinkling is
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Fig. 2.5 Palmprint sample, with features.

usually due to muscle activity. These features are not visible under resolutions of 100
dpi.

• Delta points: specific patterns found close to the base of fingers, resembling a ∆

symbol.

2.3.2 Why Palmprints

Palmprint recognition presents several advantages:

• As hands are used for many activities, and the widespread acceptance of fingerprint
recognition, people are not hesitant to use palmprint recognition.

• A touchless approach can be used, not requiring users to touch certain surfaces
(reducing hygiene concerns)

• The features contained by palmprints are stable throughout a person’s life (principal
lines, friction ridges especially).

• Contains a greater surface than fingerprints, offering a richer set of features to extract.
Furthermore, having a greater surface provides some robustness to artifacts being
present on the hand (dirt, grime or presents cuts).
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• As a biometric trait, palmprints are not as public as faces, making them harder to spoof,
especially when considering a constrained protocol of acquisition (requiring fingers to
be spread).

• Can be deployed on consumer devices (e.g. smartphones) as no extra hardware is
required. The rear (or frontal) camera can be used to acquire an image.

• Can be used in conjunction with other hand-based biometric traits (e.g. hand geometry,
fingerprints, combining several hyperspectral bands, etc.), to provide a more robust
comparison decision (multi-biometrics)

• Because the palmprint ridges and creases are formed during the first weeks of gestation,
this makes palmprints capable of differentiating between monozygotic (identical) twins
[16].

2.3.3 Palmprint Uses

The main uses of palmprints branch off into two main categories (as presented in Fig. 2.6):
forensic and non-forensic, with access control functions. Palmprint recognition is used in
forensic applications as a natural extension to fingerprints (they contain up to 10 times more
minutiae when considering a full print [15]), as they leave longstanding marks on various
surfaces (hence the use of ’latent’). Latent palmprints are collected on-site from a crime
scene using specific techniques. These samples are then compared with inked records to find
a potential match.

Fig. 2.6 Overview of applications using palmprint, with devices/methods used for acquisition
and operating spectrum.

The other branch of applications revolves around Access Control but follows another
separation regarding the imaging approaches used. For instance, Customs Control use
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scanners to acquire high quality images (500 dots per inch) of palmprints alongside fingerprints
and use fingerprint-specific approaches for comparing two samples (because of the level of
detail and the richness of features). However, the most popular use of palmprint recognition
relies on lower resolution cameras (i.e. up to 150 dpi). Such systems operate in a controlled
environment for acquisition, with strict light conditions and fingers spread out, factors which
facilitate pre-processing [17], [18].

The means of acquisition are typically optical, relying on either 2D or 3D imaging, visible
or hyperspectral (specific spectral bands, including Near Infrared). Since there is no need
for extra hardware, palmprint recognition was suggested also in the context of consumer
devices (smartphones), to complement existing approaches at the starting time of the research
contained in this thesis [19].

2.4 Summary

This chapter presented a brief introduction into the field of biometric recognition, with a
focus on palmprints. A series of common metrics used for their evaluation was presented, as
they will be used in the following chapters.



Chapter 3

Palmprint Biometrics: a Literature
Review

This chapter covers a literature review focused on the pipeline of a palmprint recognition
system. Section 3.1 describes existing databases of palmprint images, whereas Section 3.2
provides an overview of approaches developed for the palmprint ROI extraction from various
palmprint databases. Section 3.3 presents an overview of approaches of feature extraction and
classification algorithms. Section 3.4 introduces a discussion for each section and outlines
several conclusions.

The material in this chapter has been accepted for publication in the IEEE Access as
"Towards Unconstrained Palmprint Recognition on Consumer Devices: a Literature Review".

3.1 Palmprint Databases - a Literature Review

This section presents an overview of palmprint databases used for the recognition of
palmprints in the visible spectrum (hyperspectral imaging at various wavelengths is not
considered, nor 3D acquisition).

Current palmprint databases can be split into three categories, based on the restrictions
imposed to the user during acquisition (as represented in Fig. 3.1):

1. Constrained environment of acquisition: This includes the most popular palmprint
databases, which place the main focus on the feature extraction and comparison stages,
simplifying the acquisition as much as possible (for the recognition system). Images
tend to display hands with a specific hand pose (fingers straight and separated) against
a uniform background with no texture, usually black.

2. Acquisition with at least one unconstrained element:
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Fig. 3.1 Timeline overview of palmprint databases, based on how constrained their
environment of acquisition is.

• Unconstrained environment: The background is unconstrained, which corresponds
to the use case of consumer devices. The hand pose is required to follow a specific
protocol, generally consisting of presenting the fingers spread out in front of the
sensor (preferably the center of the image).

• Unconstrained hand pose: Allows the user to choose the pose of the hand during
acquisition. This corresponds to the general expectations for consumer devices,
which require a simplified (and intuitive) protocol of interaction.

• Multiple devices used for acquisition: Recognition of palmprint samples across
several devices. Generally the other aspects of the acquisition process (hand pose
and background) are constrained.

3. Fully unconstrained acquisition: Unconstrained environment and hand pose, this
represents the most unconstrained scenario, where all conditions of acquisition are left
to the choice of the user.

3.1.1 Constrained Palmprint Databases

This category includes the most popular palmprint databases, the Hong Kong Polytechnic
University palmprint database (HKPU) [17] being the first to provide a large-scale database
to compare recognition performance. The images were acquired using a scanner (A1 in
Table 3.1) having a cropped guide around the palm, reducing the impact of fingers’ position
(several samples provided in Fig. 3.2a). A similar approach to acquiring palmprints but
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Table 3.1 Palmprint databases with constrained acquisition environments. The first column
separates the touch-based (A1) acquisition systems from the touch-less ones (A2).

Name Year Biometric Acq.
device*

Hands Images Description

A1 HKPU
[17]

2003 palmprint scanner 386 7,752 Cropped hand images, intended for
performance comparison. Two
sessions. Graylevel images with
black background.

A1 Bosphorus
[20]

2010 hand
geometry
+
palmprint

scanner 1,560 4,846 RGB images of the entire hand.

A2 CASIA[21] 2005 palmprint digital
camera

624 5,502 Popular touch-less palmprint database.
Graylevel images with black
background. Uniform lighting.
Cropped fingers.

A2 IIT-D v1
[18]

2006 palmprint digital
camera

470 3,290 Popular touch-less palmprint database.
RGB images of entire hand with black
background. Uniform lighting.

A2 COEP
[22]

2010 palmprint digital
camera

168 1,344 RGB images of palmprints against
black background. Uses pegs to
reduce variation in pose/scale.

A2 GPDS-
CL1
[23]

2011 hand
geometry
+
palmprint

2
webcams

100 2,000 RGB images of the participants’ right
hand acquired in both visible and 850
nm.

A2 Tongji
[24]

2017 palmprint digital
camera

1,200 12,000 RGB images of palmprints against
black background. Large-scale
database.

A2 PolyU-
IITD v3
[25]

2018 palmprint 2 digital
cameras

700 - RGB images of hands against black
background. Contains images from
2 ethnicities. Significant physical
variation considered, as well as long
interval acquisition (15 years).

A2 HFUT
[26]

2019 palmprint digital
camera

800 16,000 RGB images of entire hands (palm
and wrist) against black background.

Acq. device = Acquisition device;
Hands = Number of hand classes (some databases only have images from one hand per participant)
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including the entire hand can be found in the Bosphorus Hand Database [27] which provides
RGB images with spread fingers (samples in Fig. 3.2b).
The earliest touch-less palmprint databases (A2 in Table 3.1) were the ones released by the
Chinese Academy of Sciences (CASIA) [21] and by the Indian Institute of Technology in
Dehli (IIT-D) [18], of which several samples are provided in Fig. 3.2c and 3.2f respectively.
Both used a digital camera for acquisition in an environment with uniform lighting. The
main differences are the scale and color information contained in IIT-D. Hand images in
CASIA are graylevel and have cropped fingers. The College of Engineering Pune (COEP)
[22] released a touch-less database of palmprints, but the acquisition relied on pegs to direct
the position of fingers relative to the camera (samples in Fig. 3.2e). Another touch-less
database was released by Las Palmas de Gran Canaria University under the name GPDS [23].
They used two webcams to acquire palmprint images in two sessions. One of the webcams
was adapted to acquire NIR images by removing its IR filter and replacing it with an RGB
filter. The database is split into images acquired in visible range (GPDS-CL1) and in NIR
(GPDS-CL2).
Zhang et al. [24] released in 2017 a large-scale database (12,000 images) of palmprints
acquired with a dedicated device containing a digital camera (Tongji). The acquisition
environment was very dark, a controlled light source illuminating the palm area (samples in
Fig. 3.2h).
Recently Kumar [25] released a large-scale database of palmprints entitled PolyU-IITD
Contactless Palmprint Database v3, introducing a variety of challenges. Firstly, it contains
hand images from two ethnicities (Chinese and Indian). Secondly, the palmprints are acquired
from both rural and urban areas. The physical appearance of the hands varies significantly,
there being instances of birth defects, cuts and bruises, callouses from manual labour, ink
stains and writing, jewelry and henna designs (samples provided in Fig. 3.2g). The database
also contains a 2nd acquisition session after 15 years, for 35 subjects.
Several image samples from databases in Table 3.1 are displayed in Fig. 3.2.

[27].

3.1.2 Partly Constrained Palmprint Databases

Moving away from constrained scenarios, several databases introduced at least one challenging
factor in the context of palmprint recognition systems. An overview is presented in Table 3.2.

Considering an unconstrained environment for acquisition (B1 in Table 3.2) leads to
both variable background and lighting conditions. An initial step was made for palmprint
recognition in the context of smartphones by Aoyama et al. [28] in 2013 with a small
database of images (called DevPhone). Unfortunately, the conditions of acquisition are not
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Table 3.2 Palmprint databases introducing at least one unconstrained aspect during acquisition:
(B1) unconstrained environment/background, (B2) devices used during acquisition and (B3)
unconstrained hand pose.

Name Year Acquisition
device

Hands Images Description

B1 DevPhone
[28]

2013 1 smartphone
camera

30 600 Controlled acquisition using a square guide
displayed on the screen; no information
about the environment of acquisition.

B1 BERC DB1
[29] 2015 1 smartphone

camera 120 8,957 Unconstrained environment; controlled
hand orientation using a visual guide on

DB2 9,224 the device screen; uses flash illumination
indoors (DB1) and outdoors (DB2).

B1 Tiwari et al.
[30]

2016 1 smartphone
camera

62 182
videos

Users had to position the palm in a circular
guide displayed on the screen of the device.
Each user filmed 3 short videos of the
palm.

B1 BMPD [31] 2019 1 smartphone
camera

41 1,640 Hand images against black background.
The 2nd acquisition session used stronger
angles relative to the hands.

B1 SMPD [31] 2019 1 smartphone
camera

110 4,400 Hand images with black background and
flashlight turned on. Included 4 scenarios
of hand orientation, including tilted away
from the camera.

B2 Choras et al.
[32]

2012 3 smartphone
cameras

84 252 RGB hand images with black background.

B2 PRADD [10] 2012 1 digital
camera, 2
smartphones

100 12,000 Hand images against black background.
Two lighting cases considered. Acquisition
not performed by user.

B3 11k Hands
[33]

2017 1 digital
camera

380 11,076 RGB images of hands (palm and dorsal)
against white background. Variable hand
pose.

B3 NUIGP2
(Section 4.3
of Chapter 4)

2020 1 webcam 52 24,631 RGB images of hands with variable hand
pose and scales, with several backgrounds.
Intended for training of palmprint ROI
extraction algorithms.

Hands = Number of hand classes
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(a) HKPU [17] (b) Bosphorus, reprinted from [27] ©2006
with permission from Elsevier

(c) CASIA [21] (d) GPDS (source: [23] ©2011 IEEE)

(e) COEP [22] (f) IITD [18]

(g) PolyU-IITD v3 (source: [25] ©2018 IEEE ) (h) Tongji [24]

Fig. 3.2 Hand image samples from several constrained databases in Table 3.1.

clear (how many backgrounds considered, if flashlight was enabled), besides the fact that
users were required to use a square guide to align the palm with the center of the acquired
image.
A much larger database was acquired by Kim et al. [29] both in-doors and out-doors (BERC
DB1 and DB2). Both DB1 and DB2 included a scenario where the smartphone’s flashlight
was enabled. As in the case of DevPhone, the images in BERC DB1/DB2 contained hands
with specific hand pose (open palm with spread fingers, to aid ROI extraction, as can be seen
in Fig. 3.3a).
A different approach to acquisition was provided by Tiwari et al. [30] who recorded videos
of palmprints with a smartphone, with the video centered on the user’s palmprint.
Recently, Izadpanahkakhk et al. [31] introduced two palmprint databases acquired with a
smartphone camera - Birjand University Mobile Palmprint Database (BMPD) and Sapienza
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(a) BERC (Source: [29] ©2015IEEE ) (b) (Source: [32] ©2012Springer)

(c) 11K Hands [33] (d) NUIG_Palm2

Fig. 3.3 Hand image samples from partly constrained databases from several databases in
Table 3.2.

University Mobnile Palmprint Database (SMPD). The variation considered for investigation
was the rotation of the hands (in both databases), both in-plane and out-of-plane rotation.

The first database of palmprints acquired with several devices (B2 in Table 3.2), albeit
of reduced size, was developed by Choras et al. [32] using three smartphones. Three
smartphones were used for acquisition. Several samples are provided in Fig. 3.3b.
Jia et al. [10] developed a large database of images entitled Palmprint Recognition Accross
Different Devices (PRADD) using two smartphones and one digital camera. The background
used was a black cloth. The hand’s posture was restricted. From the images provided by the
authors [10], it appears that the acquisition was being performed by someone other than the
participants.
Unfortunately, the databases developed by Choras et al. and Jia et al. are currently not
available to the research community.

The first palmprint database to consider the hand pose variation (B3 in Table 3.2),
understood as open palms with spread fingers versus closed fingers, was collected by Afifi et
al. and released under the name 11K Hands [33]. It contains over 11,000 images of hand
images - both palmar and dorsal (each has about 5,500 images). The hands were acquired
against a white background, using a digital camera (samples are provided in Fig. 3.3c).
An auxiliary palmprint database exploring various hand poses is introduced in Chapter 4 of
this thesis, under the name NUIG_Palm2 (NUIGP2). NUIGP2 was designed to support the
development of ROI extraction algorithms. Several samples are presented in Fig. 3.3d. The
design and collection of the database is described in Section 4.3 of Chapter 4 of this thesis.
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3.1.3 Fully Unconstrained Palmprint Databases

(a) NUIG_Palm1 [19]

(b) XJTU-UP (Source: [34] ©2019 IEEE )

(c) MPD (Source: [35] ©2019 IEEE)

Fig. 3.4 Hand image samples from fully unconstrained databases from databases in Table
3.3.

This category of palmprint databases attempts to bring to researchers conditions as close
as possible to a realistic deployment of a palmprint recognition system on consumer devices.
An overview is presented in Table 3.3.

The first database to provide such palmprint images was released in 2017 by Ungureanu
et al. [19] under the name NUIG_Palm1 (NUIGP1). It contains images from several devices
in unconstrained scenarios (both background and hand pose, as presented in Fig. 3.4a). The
design of the database is described in Section 4.2 of Chapter 4 of this thesis.
Recently a large-scale database of palmprint images acquired in similar conditions to NUIGP1
was released by Shao et al., entitled Xian Jiaotong University Unconstrained Palmprint
database (XJTU-UP) [34]. The database contains 30,000+ images (200 hands) using five
smartphones, making it the largest currently available palmprint database acquired with
smartphone cameras. Several samples are provided in Fig. 3.4b.
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Table 3.3 Fully unconstrained palmprint databases, as close as possible to the realistic
deployment of a palmprint recognition system on smartphones (or similar consumer devices).

Name Year Acquisition
device

Hands Images Description

NUIGP1
[19]

2017 5 smartphone
cameras

81 1,816 RGB hand images with unconstrained
background and hand pose. Two lighting
conditions.

XJTU-
UP [34]

2019 5 smartphone
cameras

200 30,000+ RGB hand images with unconstrained
background and hand pose. Scenario with
enabled flashlight included.

MPD
[35]

2019 2 smartphone
cameras

200 16,000 RGB hand images with unconstrained
background and lighting. Images include
rotation but appear to have a single hand
pose (spread fingers) to facilitate key-
point detection.

Hands = Number of hand classes

Another large-scale palmprint database acquired with smartphones was released by Zhang
et al [35]. They used two smartphones to collect 16,000 hand images in unconstrained
conditions.

3.2 ROI Detection and Extraction - a Literature Review

This section presents a general overview of existing approaches for palmprint ROI extraction.
The process of ROI extraction is an essential part of the palmprint recognition system, as any
inconsistencies in ROIs will affect the recognition task.

Existing ROI extraction techniques can be grouped in four categories, based on the cues
contained in the hand images (also represented in Fig. 3.5):

• Standard palmprint ROI extraction: algorithms based on separating the hand from the
background (segmentation) and performing measurements to determine the landmarks
(or palm region) required for ROI extraction. This family of techniques relies on
accurate segmentation, as well as a specific hand pose (open palm with spread fingers).

• ROI extraction based on conventional Machine Learning (ML) algorithms: ML
approaches used for the detection of palmprints or used for key-point regression.
Key-point regression is understood as any algorithm receiving as input a hand image
and returning a set of points used for ROI extraction.

• ROI extraction based on Deep Neural Networks (DNNs): Approaches relying on DNN
soutions to perform detection or key-point regression task.
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Fig. 3.5 Overview of approaches for palmprint ROI extraction, with four categories based on
how constrained the databases are.

• Bypassing ROI detection altogether: based on specific acquisition protocols.

3.2.1 Standard Palmprint ROI Extraction

Standard palmprint ROI extraction algorithms rely on accurate segmentation of the hand
region from the background. The most used approaches include using Otsu’s thresholding
method [36] applied to grayscale images, or using a skin-color model [37]. This is a pre-
processing stage required to characterize the shape of the hand and find the key-points
required for ROI extraction.

The most popular ROI extraction approach was introduced by Zhang et al. [38] in 2003,
which relies on the constrained environment from images in databases such as the ones
described in Table 3.1, either touch-based or touch-less. It relies on determining the tangent
line between the two side finger valleys in order to normalize the palmprint’s rotation and
provide a reference point from which to extract a square region. This step is made possible
thanks to the constrained environment of acquisition (black background, constant lighting),
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characteristic of palmprint databases in Table 3.1.
Recently, Xiao et al. [26] proposed an approach based on the intersection of the binarized
hand with lines of specific orientations, leading to having several candidate points for the
finger valleys. They then use K-means clustering to obtain the center of each cluster.

A second category of approaches defines the contour of the extracted hand, and the
distance from a point of reference (the geometric center [25, 39] or the wrist [40], etc) to
the pixels found on the contour [28, 41–47]. Considering this distribution of distances, the
peaks generally correspond to the tips of the fingers, while the local minimas correspond to
the finger valleys. This approach is very sensitive to segmentation artifacts and generally
includes a smoothing applied to the distribution of distances.

A third category traverses all the contour pixels and counts the pixels belonging to the
hand region (a circle was considered for sampling). Balwant et al. [48] introduced specific
rules to determine the finger valleys and finger tips, followed by the correct selection of
finger valley points that form an isosceles triangle. Goh Kah Ong et al. [49] considered
sampling with fewer points using 3 stages corresponding to circles with greater radius. The
outliers resulting from segmentation artifacts were removed with specific rules. Franzgrote et
al. [50] further developed this approach by classifying the angles of remaining lines in order
to provide a rough rotation normalization step. The finger valley points are then determined
with a horizontal/vertical line (depending on the orientation of the hand), which has 8 points
of transition from non-hand region to hand region.
Morales et al. [51] fitted a circle inside the binarized hand, with its center found equidistantly
from the finger valleys (previously determined with the center-to-contour distances).

A fourth category uses the convex hull to describe the concavity of the binarized hand
map and finger valleys [52, 53].

The following are methods that are hard to classify into one category or another, as they
either employ very different or combine several of the previously mentioned approaches
together.
Khan et al. [54] determined the finger tips and the start of the palm by counting the hand-
region pixels along the columns. After determining the pixels corresponding to finger valleys,
several 2nd order polynomials were used to extrapolate the middle of the finger valleys. The
palm’s width was used to determine the size of the ROI (70% of palm size). This approach
requires very specific hand pose, with hands always rotated towards the left with spread
fingers.
Han et al. [55] successively cropped out of the binarized hand image regions corresponding
to fingers (after rotation normalization with PCA) by determining the number of transitions
from background to hand area. Leng et al. [37] determined the finger valleys by computing
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differential maps upward, to the right and left. Onto these maps the AND operator was
applied, which resulted in 4 regions corresponding to all finger valleys. Ito et al. [44]
considered an approach based on line detection after determining the binarized hand region,
and subtracting the major lines corresponding to finger edges. Then a distance is computed
from center of the palm, allowing the detection of finger valleys even with closed fingers (not
relying on spread fingers). They compared the effectiveness of this approach by considering
the recognition rates resulted after using three other algorithms [37, 38, 55].
Liang et al. [56] used an ROI extraction approach loosely based on [38] and [57], where the
tip of the middle finger was determined and then extended to the center of the palm 1.2 times.
This point is then used as a reference to determine the distance to all contour points, allowing
the detection of both finger valleys and tips.
Jia et al. [10] exploited the constrained nature of acquisition (hand position pose, scale and
rotation) to base the ROI extraction on the accurate detection of the heart line’s intersection
with the edge of the hand (using the MFRAT defined in [58]), then performing specific pixel
operations to decide on the ROI’s center and size.
Kim et al. [29] combined several elements for ROI extraction, such as the use of a distance
based on a YCbCr model, a specific hand pose (fingers spread) indicated by a guide displayed
during acquisition, as well as validating finger valley points by sampling 10 pixels from the
determined hand region.
Shang et al. [59] modified the original Harris corner detection algorithm [60] in order to
locate the points at the middle of finger valleys. However, this approach relies on constrained
acquisition, as the background is not overly complex. Another approach using Harris corners
was proposed by Javidnia et al. [61]. After obtaining an initial candidate for the hand region
based on skin segmentation, the palm region was located using an iterative process based on
the strength of the Harris corners.

However, none of the standard approaches for palmprint ROI extraction can be used in
circumstances where the background’s color remotely resembles skin color or the hand’s
pose is not constrained (such as the databases in Table 3.3). Furthermore, one can point out
the limitation of skin color segmentation regardless of the chosen color space, based on the
inherent inability of classifying a pixel into skin or non-skin [62].

3.2.2 Palmprint ROI Extraction based on Conventional ML Algorithms

There are few approaches using ML algorithms for ROI extraction regressing either a
predefined shape or a set of points.
Initially, Doublet et al. [63] considered to fit an Active Shape Model (ASM) to a number of
points describing the shape of a hand (with spread fingers). The model regresses the output
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of a skin segmentation step, after which the centers of the two finger valleys are used to
normalize the hand’s rotation. Ferrer et al. [23] used a similar ASM to extract the hand from
the background in the GPDS-CL1 database.
Aykut et al. [64] considered an Active Appearance Model (AAM), which also considered
the texture information from the hand’s surface. They also provided the first evaluation of
predicted key-points. Because the acquisition of images was performed in a considerably
constrained environment, no normalization was required relative to the palmprint’s scale, the
authors preferring to report the error in terms of pixels (from the ground truth points).

Recently Shao et al. [34] employed a complex pipeline for ROI extraction for unconstrained
palmprint recognition. It includes an initial stage of palmprint region detection using
Histogram of Oriented Gradients (HOG) and a sliding window providing candidate regions
at several scales to a pre-trained SVM classifier for palmprint detection. A tree regressor [65]
(initially developed for face key-point detection) is then used for the landmark regression
task applied to all 14 key-points. Unfortunately the authors did not provide details regarding
the performance of their ROI extraction, how its accuracy influences the recognition task, or
any comparison with prior algorithms.

3.2.3 Palmprint ROI Extraction based on Neural Networks

There have been only a handful of attempts to use CNNs for the ROI extraction, and most
have consisted solely on experimenting on gray-level images. Bao et al. [66] used the CASIA
palmprint database [21] to determine the positions of a hand’s finger valley points. They use
a shallow network composed of 4 Convolutional and 2 Fully-Connected layers, including
several Dropout and MaxPooling layers. The proposed CNN architecture achieves results
comparable to Zhang et al. [38] in very stable conditions, but surpasses it when noise is
added. Whereas a CNN can adapt to noisy or blurred images, the pixel-based approach used
by Zhang et al. is vulnerable to any kind of image quality degradation.

Izadpanahkakhk et al. [67] trained a similarly shallow network based on an existing
model proposed by Chatfield et al. [68]. The network determines a point in the hand image
and the corresponding width/height of the palmprint ROI. The network is composed of 5
Convolutional and 2 Fully-connected layers, including several MaxPooling layers and one
Local Response Normalization Layer (LRN). The reported results are good for constrained
images from HKPU [17], but the case of in-plane rotated hands is not considered.

Jaswal et al. [69] trained a Faster R-CNN [70] model based on Resnet-50 (87 layers) on
three palmprint databases (HKPU, CASIA and GPDS-CL1). They reported lower Accuracy
and Recall rates for CASIA (up to 5% less) than for HKPU and GPDS-CL1. This can be
explained by slightly larger variation in rotation. Similar to [67], the predicted bounding
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boxes (considered as ROIs) do not include measures for rotation normalization, which
considerably affects the recognition rate for the scenario using images from CASIA, as they
contain significant rotation variation. Comparatively, images from HKPU and GPDS-CL1
are already normalized rotation-wise.

Recently Liu et al. [71] similarly considered a Fast R-CNN [72] for palmprint ROI
detection. They acquired several videos of palmprints in 11 environments (no other details
provided) where the hand pose was varied (from spread to closed fingers, with several hand
orientations). These acquisition sessions resulted in 30,000 images that were used for training
and testing. The only method of evaluation the authors considered was the percentage of
images above a given threshold for Intersection over Union (IoU).
Several important aspects were not covered: the number of subjects in the training set, the
ROI being aligned with the hand (it is maintained vertical regardless of the hand’s orientation)
or how much an ROI having 60% IoU (with the ground truth) affects the recognition task.

3.2.4 Avoiding the ROI Detection Altogether

Tiwari et al. [30] provided a guide on the screen of the smartphone during acquisition,
avoiding the need for an ROI step. Tiwari then used an algorithm to determine the best
frames for feature extraction. Similar to Tiwari’s approach, Leng et al. [73] presented a guide
on the smartphone’s screen, indicating a specific hand pose and orientation for the hand.

Afifi et al. [33] considered a different approach, having the entire image as the input to a
CNN, thus removing any need for an ROI extraction phase. This approach is only feasible
because all other parameters in the acquisition environment (background, lighting and hand
orientation/scale) are constant.
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3.3 Palmprint Feature Extraction and Classification - a Literature
Review

Fig. 3.6 Overview of existing palmprint feature extraction techniques.

This section presents a general overview of approaches used for palmprint feature
extraction, with emphasis being placed on the more recent advancements. In this literature
overview, the algorithms are split into two categories, based on how the kernels used for
feature extraction were obtained (as visualized in Fig. 3.6):

1. Conventional approaches:

(a) Encoding the line orientation at pixel-level with:

i. Generic texture descriptors

ii. Palmprint-specific descriptors.

(b) Encoding the line orientation at region-level, with:

i. Generic texture descriptors, a special category including descriptors such as
SIFT, SURF and ORB, which are treated separately

ii. Palmprint-specific descriptors.

2. Neural Networks approaches:

(a) Having fixed kernels, such as ScatNet [74]
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(b) Kernels learned based on a training distribution:

i. With no non-linearities, such as PCANet [75]

ii. Deep Learning approaches:

A. Classifying with softmax/cross-entropy

B. Using Siamese network architectures.

3.3.1 Palmprint Feature Extraction - Conventional Approaches

Conventional palmprint recognition approaches are mainly focused on line-like feature
detection, subspace learning or texture-based coding. Of these, the best performing approaches
have been the texture-based ones [76], which will represent the main focus of this overview.
For a broader description of the other groups, please refer to the work of Zhang et al. [76],
Kong et al. [77] and Dewangan et al. [78].

Jia et al. [79] defined a framework that generalized the palmprint recognition approaches.
This framework is called Complete Directional Representation and is presented in Fig. 3.7.
The stages of feature encoding are broken down and populated with various approaches.
The following sub-sections describe these approaches and provide results in the form of
either Equal Error Rate (EER) or Recognition Rate (RR) corresponding to popular palmprint
databases such as HKPU [17], CASIA [21] or IITD [18].

Fig. 3.7 Overview of the framework proposed by Jia et al. [79] regarding palmprint feature
extraction. (Source: [79] ©2017 IEEE)
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Table 3.4 Overview of general texture descriptors used for palmprint feature extraction.

Year Acronym Short Descr. classifier DB(s) Best Result
(RR/EER)

2010 SAX [80] Discretization of a 2D grayscale
image

HKPU[17]
CASIA[21]

0.3%
0.9%

2014 BSIF [81] Encoding filter responses from
several BSIF filters

Sparse Repr.
Classifier

HKPU[17]
IITD[18]

6.19%
(L) 0.42%
(R) 1.31%

2014 HOG [82] Histogram of Oriented
Gradients

L2 distance HKPU[17] 98.03%

2016 LDP [83] Convolution with Kirsch edge
masks

Manhattan +
Chi-square

HKPU[17]
IITD[18]

6.10%
10.42%

2016 DoN [84] 3D recovered descriptor from
2D image

Weighted sum
of 3 scores

HKPU[17]
IITD[18]
CASIA[21]

0.033%
0.68%
0.53%

2017 LBP [85] Local Binary Pattern
HKPU[17]
IITD[18]

4.92%
9.71%

2017 LTrP [85] Local Tetra Pattern
BERC1
BERC2[29]
IITD[18]

1.49%
1.83%
0.94%

A. Extracting Palmprint Features with Texture Descriptors

Chen et al. [80] used a 2D Symbolic Aggregate approximation (SAX) to palmprint
recognition. SAX represents a real valued data sequence using a string of discrete symbols or
characters. Applied to Grayscale images, it encodes the pixel values, essentially performing
a form of compression. Its low complexity and high efficiency makes is suitable for resource-
constrained devices.

Ramachandra et al. [81] employed a series of BSIF filters that were trained for texture
description on a large database of images. The ROI is convolved with the bank of filters and
then binarized (using a specific threshold value), allowing for an 8-bit encoding.

Jia et al. [82] investigated the potential use of Histogram of Oriented Gradients (HOG)
[86], which were successfully used in the past for robust object detection, especially
pedestrians and faces. Furthermore, the Local Directional Pattern (LDP) [87] was evaluated
in the context of palmprint feature extraction.

Zheng et al. [84] described the 2D palmprint ROI with a descriptor recovering 3D
information, a feature entitled Difference of Vertex Normal Vectors(DoN). DoN represents
the filter response of the palmprint ROI to a specific filter containing several sub-regions
(of 1 or -1) intersecting in the center of the filter (borders are made up of 0s), with various
orientations. To compare two DoN features, a weighted sum of AND, OR and XOR operators
was used.



36 Palmprint Biometrics: a Literature Review

Li et al. [85] extracted the Local Tetra Pattern (LTrP) [88] from a palmprint image that
was initially filtered with a Gabor [89] or MFRAT [58] filter. Only the real component from
the Gabor convolution was taken into consideration, after the winner-take-all rule of argmin

was applied at pixel level between all filter orientations. Block-wise histograms of the LTrP
values were then concatenated, to determine the final vector describing a palmprint image.
Wang et al. [90] used the Local Binary Pattern (LBP), which encodes the value of a pixel
based on a neighborhood around it [91]. Generally, the 3x3 kernel is used, allowing codes
that range in value from 0 to 255.

B. Encoding Palmprint Line Orientation at Pixel Level

One of the first approaches to extract the palmprint features from an ROI relied on only one
Gabor filter oriented at π

4 , entitled PalmCode [38]. Three values were used in the comparison
stage of PalmCode, namely the real, imaginary, as well as a segmentation mask to reduce
the influence of poor ROI segmentation. Several approaches following a similar rationale
were proposed in the following years after PalmCode, with the introduction of Competitive
Code (CompCode) [89] and Robust Line Orientation Code (RLOC) [58]. Both CompCode
and RLOC used a competitive rule (argmin) between a bank of filters having 6 orientations.
Every pixel from the palmprint ROI was considered to be part of a line, and as the lines
in the palmprint correspond to black pixels, the minimum response was chosen. Whereas
CompCode used the filter response from Gabor filters, RLOC used the filter response from a
modified filter Jia et al. called MFRAT because it was inspired from the RADON transform.
In the case of CompCode only the real component was used.

Gaussian filters were also used, either the derivative of two 2D Gaussian distributions
(DoG [93]) or as the difference between two 2D orthogonal Gaussian filters (OLOF [92]).

Guo et al. [94] introduced Binary Orientation Co-occurence Vector (BOCV), obtained the
filter response of a Gabor filterbank and encoded every pixel relative to a specific threshold
(0 or another threshold, chosen based on the distribution of values after convolution with a
specific filter). Every filter response was L1 normalized prior to the encoding, after which the
thresholded values from each orientation were used to encode an 8-bit number corresponding
to every pixel. An extension of this approach was introduced by Zhang et al. [97] with
EBOCV, which includes masking the ’fragile’ bits obtained after convolution with the Gabor
filter-bank (as performed previously on IrisCode [102] in the context of iris recognition). In
this context, a ’fragile’ bit is interpreted as being the pixels close to 0 (after convolution).

Khan et al. [54] introduced ContourCode, obtained by convolving the input ROI in two
distinct stages. Initially, the filter response corresponding to a Non-subsampled Contourlet
Transform (uniscale pyramidal filter) is obtained, after which the ROI is convolved with a
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Table 3.5 Overview of approaches encoding the orientation at pixel level.

Year Acronym Short Descr. Classifier DB(s) Best Result
(RR/EER)

2003 PalmCode
[38]

Real and imaginary components
of convolution with Gabor filter
π/4

Normalized
Hamming

HKPU-v1 [17] 0.60%

2004 CompCode
[89]

Real components of
convolution with Gabor
filters (6 orientations)

Angular HKPU-v1[17] 98% at 10−6

FAR

2005 OLOF
[92]

Convolution with difference of
orthogonal Gaussians

Hamming HKPU-v1[17] 0.0%

2006 DoG [93] Convolution with Derivative of
Gaussians

Hamming HKPU [17] 0.19%

2008 RLOC
[58]

Convolution with 6 MFRAT
filters

HKPU[17] 0.40%

2009 BOCV
[94]

Thresholding Gabor filter
response. Binary encoding

Hamming HKPU[17] 0.019%

2011 Contour-
Code
[54]

Two-sequence convolution,
followed by hashing

Hash table
HKPU-MS[95]
CASIA-MS[96]

0.006%
0.3%

2012 E-BOCV
[97]

Removing ’fragile’ bits when
comparing two samples

Fragile-bit
pattern

HKPU[17] 0.0316%

2016 DOC [98] Include the 2 strongest
orientations at pixel-level

Non-linear
angular
distance

HKPU[17]
IITD[18]

0.0092%
0.0622%

2016 Fast-
RLOC
[99]

Convolution with orthogonal
pairs of Gabor/MFRAT filters

Hamming HKPU[17] 0.041%

2016 Half-
orientation
Code
[100]

Convolution with 2 pairs of half-
Gabor filters. Using both halves
during comparison

HKPU[17]
IITD[18]

0.0204%
0.0633%

2017 COM
[101]

Convolution with filters
describing concavity

Angular
Hamming
distance

HKPU-v2 [17] 0.14%

HKPU-MS and CASIA-MS correspond to multispectral palmprint databases.
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directional filter bank. The strongest sub-band is determined (argmax) and the resulting code
is binarized into a hash table structure.
Fei et al. [98] introduced the Double-orientation Code (DOC) which encodes the two lowest
responses (to a Gabor filter bank). To compute the distance between two ROIs, a non-linear
angular distance, measuring the dissimilarity of the two responses. Considering the 2nd best
orientation improves the robustness of the feature.

Zheng et al. [99] investigated the effect of number of filter orientations on the efficiency
of CompCode [89] and RLOC [58]. A single orthogonal pair of Gabor and MFRAT filters
was found to perform better than when using 6 orientations. This encoding approach was
called Fast-Compcode/Fast-RLOC due to its increase in speed, mostly due to a reduction in
complexity.

An interesting approach was introduced by Tabejamaat et al. [101], who described
the concavity of a 2D palmprint ROI by convolving it with several Banana wavelet filters
[103]. Three pairs of filters (positive and negative concavity) were convolved with the
ROI and a competitve rule (argmin) was used for encoding. The joint representation was
called Concavity Orientation Map (COM). An angular hamming distance was then used for
comparing COMs.

C. Region-based Palmprint Line Orientation Encoding

Jia et al. [82] introduce an analysis of region-based methods applied to palmprint recognition.
They extend the RLOC encoding capabilities to the region-level by using the histogram
of dominant orientations (after the argmin rule). The histograms of orientations were then
concatenated. This approach essentially replaced the gradient information used in Histogram
of Oriented Gradients (HOG) with the dominant MFRAT filter response. For comparing two
extracted palmprint features, the L2 distance was used.
Zhang et al. [24] used a similar approach to retrieving block-wise histograms of CompCode
orientations, but a Collaborative Representation Classifier (CRC) was used to perform the
classification.

Kim et al. [29] used a modified version of CompCode, where a segmentation map was
first determined by using the real values of the filter responses. This segmentation map was
then used to compute the strongest gradients and compute the corresponding HOG. The
Chi-square distance was used for comparing the extracted palmprint features.

Li et al. [85] extended the general approach of Local Tetra Patterns [88] by replacing
the derivative along the width and length with the filter response to MFRAT [58] or Gabor
[89] filter banks. Furthermore, the encoding method was modified to take into account the
thickness of the palm lines. The image was then separated into regions and histograms are
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Table 3.6 Overview of approaches encoding the orientation at region level.

Year Acronym Short Descr. Classifier DB(s) Best Result
(RR/EER)

2013 HOL [82] Block-wise histogram of
strongest orientation

L2 distance
HKPU[17]
HKPU-MS(B)
[95]

0.31%
0.064%

2015 [29] Modified CompCode, with
HOG

Chi-square

BERC1[29]
BERC2[29]
HKPU[17]
IITD[18]

2.88%
3.15%
0.11%
5.19

2016 [104] Neighboring direction
indicator

HKPU[17]
IITD[18]

0.0225%
0.0626%

2016 LLDP [83] Extended encoding strategies
to Gabor/MFRAT

Manhattan,
Chi-square

HKPU[17]
IITD[18]

0.021%
4.07%

2016 LMDP
[105]

Block-wise encoding
of multiple dominant
orientations

HKPU-v2[17]
IITD[18]
GPDS[23]

0.0059%
0.0264%
0.1847%

2016 DRCC
[106]

CompCode with side
orientations (weighted)

Modified
angular dist.

HKPU[17]
IITD[18]

0.0189%
0.0626%

2017 LMTrP
[85]

Local micro-tetra pattern L2 distance

BERC1[29]
BERC2[29]
HKPU-MS [95]
IITD[18]

1.11%
1.68%
0.0006%
0.87%

2017 CR-
CompCode
[24]

Block-wise histogram of
CompCode

CRC Tongji [24] 98.78%

2018 CDR [79] Convolution with MFRAT at
several scales (15) with 12
orientations. 6 overlapping
regions

BLPOC
HKPU-v2[17]
HFUT[26]

0.001%
0.0868%

HKPU-MS(B) corresponds to the subset of multispectral palmprints from the Blue wavelength.

computed for each region. Finally, they were concatenated and passed through a Kernel PCA
filter to reduce the dimensionality of the extracted feature.

Luo et al. [83] introduced the Local Line Directional Pattern (LLDP), which represented
an extension of general region encoding approaches (LDP [87], ELDP [107] and LDN
[108]). The convolution stage replaced the use of Kirsch filters with Gabor or MFRAT filter
banks. This step corresponds to replacing the general gradient information in a region with
palmprint-specific line information. A similar approach was employed by Fei et al. [109]
to encode the 2D information in the context of a 3D palmprint recognition system. The
response to the Gabor bank of filters was encoded using the LBP [91] strategy. The system
used a feature-level fusion technique.
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Table 3.7 Overview of approaches based on rotation/scale invariant image descriptors.

Year Acronym Short Descr. Classifier DB(s) Best Result
(RR/EER)

2008 [111] SIFT + SAX. Rank-level fusion HKPU [17] 0.37%

2011 [112] modified SIFT (OLOF) Similarity +
Hamming

IITD[18]
GPDS[23]

0.21%
0.17%

2013 [113] SIFT Iterative
RANSAC

IITD[18]
(L) 0.513%
(R)0.552%

2014 [114] RootSIFT Hierarchical
classification

CASIA-MS
[96]

1.00%

2016 [30] SIFT and ORB descriptors Disimilarity
index

Tiwari [30] 5.55%

2016 [47] Sparse representation, fused at
rank-level with SVM

SRC + SVM
REST[47]
CASIA[21]

98.33%
99.72

Fei et al. [105] introduced the Local Multiple Directional Pattern (LMDP) as a way of
representing two strong line orientations when these were present, instead of choosing only
the dominant line orientation. The block-wise histograms of LMDP codes were computed
and comparison was performed using the Chi-square distance. In a similar manner, Xu et al.
[106] introduced SideCode as a robust form of CompCode, representing a combination of
the dominant orientation with the side orientations in a weighted manner.
Fei et al. [104] used the Neighboring Direction Indicator (NDI) to determine the dominant
orientation for each pixel, along with its relation to the orientations of the neighboring regions
in the image.

Jia et al. [79] introduced the Complete Directional Representation (CDR) code, encoding
the line orientation information at 15 scales with 12 MFRAT filters. From these images 6
overlapping regions were extracted, resulting in 1080 regions. These features were then
compared using Band Limited Phase-only Correlation (BLPOC) [110]. This approach
was based on the average cross-phase spectrum of the 2D Fast Fourier Transforms (FFT)
corresponding to two palmprint samples. The impulse centered on (x0,y0) corresponds to
the probability of the two samples belonging to the same class (large if intra-class, low if
inter-class).

D. Image Descriptors used for Palmprint Feature Extraction

Image descriptors such as the Scale Invariant Feature Transform (SIFT) [115] represented a
major breakthrough for object detection in unconstrained conditions because of the rotation
and scale invariance of SIFT key-points. This brought much interest to SIFT descriptors,
which were either applied directly to palmprint images, such as in [113], [30], [116] or with
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certain modifications brought to one of its stages.
Morales et al. [112] replaced the Derivative of Gaussian (DoG) with the Ordinal Line
Oriented Feature (OLOF) in the stage associated to key-point detection. Furthemore, the
score determined from comparing SIFT descriptors was fused with the OLOF comparison
decision, making the prediction more robust. Zhao et al. [113] improved the initial key-
point detection stage by filtering the palmprint image with a circular Gabor filter. Then the
corresponding SIFT descriptors were compared using a modified version of the RANSAC
algorithm which used several iterations.

Kang et al. [114] introduced a modified SIFT which is more stable, called RootSIFT.
Furthermore, histogram equalization of the graylevel image was added as a pre-processing
stage. A mismatching removal algorithm (of SIFT descriptors) based on neighborhood search
and LBP histograms further reduced the number of out-liers.

Charfi et al. [47] used a sparse representation of the SIFT descriptors to perform the
comparison, as well as rank-level fusion with an SVM. Similarly, a rank-level fusion was
performed by Chen et al. [111] comparing both SAX and SIFT descriptors.

Tiwari et al. compared SIFT and ORB [117] descriptors acquired using smartphone
cameras. As with most other approaches using SIFT descriptors, a dissimilarity function was
defined, counting the number of in-lier matches performed between two images. Srinivas
et al. [118] used Speeded Up Robust Features (SURF) [119] to compare two palmprint
ROIs. They further improved the comparison speed by only comparing the SURF descriptors
extracted from specific subregions of the ROI, instead of the entire surface of the ROI.

3.3.2 CNN-based Approaches

One of the great advantages of using CNNs is that the filters are learned from a specific
training distribution, which makes them relevant to the task of palmprint recognition. As
opposed to traditional (crafted) features, the learned features are trained to describe any
distribution. The main disadvantage of this approach lies in the requirement of abundant and
accurately labeled training data, which generally is a problem.

The existing approaches for palmprint feature extraction relying on CNNs, can be split
into three categories:

• Using pre-trained models (on ImageNet), the network’s output is considered to be the
extracted feature. Also relies on a classifier such as SVM.

• Networks of filters optimised using various approaches.
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• Training from scratch (or using transfer-learning) of DNNs to determine embeddings
that minimize intra-class distance and maximize inter-class distance.

A. Using pre-trained DNNs

Dian et al. [120] used AlexNet [121] pre-trained on ImageNet to extract deep features. These
were then compared using the Hausdorff distance. In a similar fashion, Tarawneh et al. [122]
used several networks pretrained on ImageNet (AlexNet, VGG16 [123] and VGG19). The
extracted deep features from the images in two hand databases (COEP [22] and MOHI [124])
were then compared using a multi-class SVM.
Ramachandra et al. [125] used transfer-learning to compare palmprints acquired from infants.
The class decision was obtained through a fusion rule, which also took into consideration the
prediction from an SVM.

B. PCANet, ScatNet and PalmNet

Minaee et al. [74] employed a scattering network (ScatNet) that was first introduced by Bruna
et al. [126] for pattern recognition tasks, especially for its invariance to transformations such
as translation and rotation. ScatNet uses Discrete Wavelet Transforms (DWT) as filters and
considers the output(s) at each layer as the network outputs (not just the last layer), providing
information regarding the interference of frequencies in a given image [126]. Meraoumia
et al. used a filter bank of 5 scales and 6 orientations, the network having an architecture
composed of 2 layers. The palmprint ROIs were split into blocks of 32x32 pixels and passed
through the network, resulting in 12,512 scattering features. PCA was applied to reduce
the dimensionality, reducing it to the first 200 components. An SVM was then used for the
classification task.

Chan et al. [129] initially introduced PCANet for general pattern recognition applications.
Unlike DNNs which make use of the Rectified Linear Unit (ReLU), the PCANet does not
contain any non-linearity. Instead, the filters are determined from a distribution of training
images. Specifically, a series of overlapping blocks are extracted from every input image,
after which the mean is removed. Based on the derived covariance matrix a number of Eigen
vectors are extracted (after being sorted, the top 8) and considered as filters belonging to the
first layer. The input to the second layer is the distribution of input images to the 1st layer,
but convolved with the computed filters in layer 1. This process is repeated for any given
number of layers, but generally architectures with 2 layers are commonplace.
PCANet was used for palmprint feature extraction by Meraoumia et al. [75] on two databases
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Table 3.8 Pre-trained networks (C1), or linear Neural Networks (C2).

Year Cat. Acronym Short Descr. Classifier DB(s) Best Result
(RR/EER)

2016 C1 [120] AlexNet Hausdorff dist.
HKPU[17]
CASIA[21]
IITD[18]

0.044%
0.0803%
0.1113%

2018 C1 [122] AlexNet, VGG16/19 SVM
MOHI [124]
COEP[22]

95.50%
98.00%

2018 C1 [125] AlexNet Fusion
(+SVM)

CPNB [125] 0.310%

2016 C2 ScatNet
[74]

Deep Scattering Network,
fixed weights

SVM
K-NN HKPU [17]

100%
94.40%

2016 C2 PCANet
[75]

Obtaining filters based
on PCA and training
distribution

SVM, RBF,
RFC, KNN

HKPU-MS[95]
CASIA-MS
(wht) [96]

0.0%
0.29%

2019 C2 PalmNet
[127]

Determinining Gabor
filters best describing train
distribution

1-NN, L2 dist.

CASIA[21]
IITD[18]
REST [47]
Tongji [128]

0.72%
0.52%
4.50%
0.16%

- CASIA Multispectral and HKPU-MS. For classification, both SVM and KNN reported
100% recognition rates across all spectral bands.

Recently, Genovese et al. [127] expanded the PCANet approach to include convolutions
with fixed-size and variable-sized Gabor filters. The described architecture entitled ’PalmNet’
determines the most Gabor filters with the greates response, followed by a binarization layer.
An alternative architecture is considered, entitled ’PalmNet-GaborPCA’, where the filters
of the first layer are configured using the PCA-based tuning procedure used in PCANet,
whereas the kernels in the 2nd layer are configured using the Gabor-based tuning procedure.
For classification a simple KNN classifier is used.
PalmNet represents an interesting approach for quickly training on large databases of
palmprints, requiring few resources.

C. Training DNNs

The main distinction separating approaches in this category is the training strategy being
used.
If the classification task is borrowed from the standard pattern recognition problem (like
the ImageNet challenge), then the CNN is required to predict the class to which an input
palm print belongs to. The network’s last layer is fully connected with a number of units
corresponding to the number of classes (in the form of a one-hot vector, depending on the size
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Table 3.9 Training CNNs for palmprint feature extraction.

Year Acronym Short description Classifier DB(s) Best Result
(RR/EER)

2015 [130] Shallow net Softmax
HKPU-MS [96]
Own

99.97%
93.4%

2015 [131] Shallow net Softmax Own 90.60%

2017 [33] Two-stream CNN SVM 11KHands[33]
IITD[18]

96.00%
94.80%

2018 [67] Used CNN [68] pre-trained
on ImageNet

KNN, SVM,
RFC

HKPU[17]
IITD[18]

100%
96.9%

2018 [132] AlexNet, VGG16,
InceptionV3 and ResNet50

Softmax
CASIA[21]
IITD[18]
GPDS-CL1[23]

3.78%
4.79%
4.69%

2019 JDCFR
[133]

Shallow CNNs trained on
each spectral band (53)

CRC Own (MS) 0.01%

2019 [31] Pre-trained VGG16,
GoogLeNet, [68] on
ImageNet

Softmax SMPD[31] 93.40%

of the database), with the activation function being softmax (expressing the probability of
that input image to belong to either class). In this case, the loss function is the cross-entropy.
Example implementations include [31, 33, 67, 130–133].
Fei et al. [132] compared the performance of several networks like AlexNet, VGG16,
InceptionV3 and ResNet50. Izadpanahkakhk et al. [31] trained and evaluated four networks
(GoogLeNet, VGG16, VGG19 and a CNN developed by Chatfield et al. [68] for the
ImageNet challenge) on two novel palmprint databases.
Alternatively, after training with cross-entropy loss, the output from the log-its layer (the
layer preceding the softmax layer) can be considered as the extracted feature, which is then
used to train a classifier such as SVM [33], Collaborative Representation Classifier (CRC)
[133] or Random Forest Classifier (RFC) [67].

Another training approach is to use the Siamese architecture (overview presented in Table
3.10), characterized by two inputs (or several) resulting in two embeddings (usually 128 units
corresponding to the last fully-connected layer) that are then compared with a loss function to
determine how similar they are versus how similar they should be. This architecture, where
the same network outputs the two embeddings, relies on a similarity estimation function,
such as the Contrastive loss [134], or the Center loss [135], where the distance between
inputs is minimized (intra-class) or increased (inter-class). When the three inputs (triplets)
are considered, the distance between the anchor and the positive sample is reduced while
increasing the distance between the anchor and the negative sample [136].
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Table 3.10 Siamese approach to training CNNs for palmprint feature extraction.

Year Acronym Short descr. Classifier DB(s) Best Result
(RR/EER)

2016 [137] Siamese network trained
with d-prime loss

CASIA[21]
IITD[18]

1.86%
1.64%

2018 RFN [71] Soft-shifted Triplet loss
IITD[18]
PolyU-IITD[25]

0.68%
0.15%

2018 [139] VGG16 retrained last layers Distance HKPU[17],
XJTU-UP[34]

0.2819%
4.559%

2018 Palm-
RCNN
[138]

Inception-ResNetV1 with
Softmax and Center loss

SVM with L2 Tongji-MS 100%

2019 DHCN
[34]

Binary Hashing, with
Knowledge Distillation
[140]

XJTU-UP[34]
XJTU-kd [34]

0.60%
5.83%

2019 Deep-MV
[35]

MobileNetV2 with
secondary net

Softmax
probability MPD [35] 89.91%

2019 PalmGAN
[141]

Cross-domain
transformation

HKPU-MS [95]
SemiU[141]
Uncontr. [141]

0.0%
0.005%
5.55%

2019 Meta-
siamese
[142]

Siamese with secondary
network. Few-shot training

Softmax
probability

HKPU-MS[95]
Pa, Pb
Pc, Pd

99.4%
95.4%, 93.4%
98.8%, 96.4%

Svoboda et al. [137] introduced a loss function called ’discriminative index’, aimed at
separating genuine-impostor distributions. Zhang et al. [138] used a combination of softmax
and center-loss functions during training for multi-spectral palmprint recognition. Zhong
et al. [139] used transfer-learning based on VGG16 (initially trained on ImageNet) and
contrastive loss.
Zhang et al. [35] used a Siamese architecture of two MobileNets [143] outputting feature

vectors that are then fed to a sub-network tasked with the intra-class probability (between
0 for inter-class and 1 for intra-class, with 0.5 as a decision threshold). Du et al. [142]
used a Siamese architecture including a sub-network (receiving as input the embedding
vectors corresponding to two palmprint ROIs) trained using the few-shot strategy. In a similar
fashion, Shao et al. [144] used the output of a 3-layer Siamese network, and compared
the palmprints from two databases (HKPU-Multispectral and a database collected with a
smartphone camera) with a Graph Neural Network (GNN). Unfortunately, the training details
of the Siamese network are not clear.
Liu et al. [71] introduced the soft-shifted triplet loss as a 2D embedding specifically
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developed for palmprint recognition (instead of a 1D embedding). Furthermore, translations
on x and y axes were used to determine the best candidates for triplet pairs (at batch
level). Recently, Shao et al. [34] introduced an approach based on hash coding, where
the embeddings used to encode the palmprint classes are either 0 or 1. Furthermore,
similar performance was obtained using a much smaller network, obtained via Knowledge
Distillation [140]. These are worthwhile directions for development, as they represent
solutions to the limitations of resource-constrained devices.

A promising strategy for cross-device palmprint recognition was recently proposed by
Shao et al. [141] with PalmGAN, where a cycle Generative Adversarial Network (cycle
GAN) [145] was used to perform cross-domain transformation between palmprint ROIs. A
proof of concept was evaluated on the HKPU-Multispectral (HKPU-MS) palmprint database
containing palm images acquired at several wavelengths, as well a semi-unconstrained
database acquired with several devices.

3.4 Discussion and Chapter Conclusions

3.4.1 Palmprint Databases

The advancement of palmprint recognition relies on the release of relevant databases which
reflect specific sets of requirements. Initially the main focus was placed on recognition,
allowing little to no flexibility in terms of interaction with the system (e.g. HKPU [17]).
As the sensing technology progressed (and new consumer devices appeared on the market),
there was more room for various aspects, i.e. contactless systems (IITD [18], CASIA [21]).
Then invariance to various factors of the acquisition encouraged the introduction of databases
like BERC [29] (background), or 11K Hands [33] (hand pose) and PRADD [10] (devices
used for acquisition). Unfortunately, there are several databases that are no longer available
to researchers, such as PRADD [10] or DevPhone [28]. Some recently introduced databases
are yet to be released to the research community (e.g. HFUT [26], MPD [35] or XJTU-UP
[34]).

Following the general trend of biometric recognition migrating to consumer devices, the
last years have seen the introduction of several large-scale palmprint databases (e.g. XJTU-
UP [34]) reflecting the challenging operating conditions brought by a mobile environment.
These will be the most meaningful palmprint databases for the upcoming 5 years, anticipating
the adoption of palmprint recognition on smartphones.
An overview of this transition was presented, the culmination of which is represented by the
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fully unconstrained databases class, initiated with the introduction of NUIG_Palm1 [19] in
2017 (described in Section 4.2 of Chapter 4).

3.4.2 Palmprint ROI Extraction

The approaches used for palmprint region of interest extraction are linked directly with
the operating conditions of devices used for acquisition. In palmprint databases where
the background is fixed (e.g. HKPU, CASIA, IITD, COEP) the task of segmentation is a
straightforward procedure. However, when the background is unconstrained such as is the
case with images from BERC, skin color thresholding provides limited results, even when
the skin model is computed for every image based on a distribution of pixels [29].

With the migration of palmprint recognition onto consumer devices, the general pipeline
for ROI extraction needs to take into consideration more challenging factors such as lighting
conditions, hand pose and camera sensor variation. It is in this context that more powerful
approaches based on machine learning or deep learning can provide robust solutions without
imposing strict protocols for acquisition onto the user of consumer devices.
A complete evaluation of these approaches is yet to be made in terms of:

1. The prediction error of the key-points used for ROI extraction/alignment. This seems to
have been a commonly overlooked step in most research papers, with some exceptions
(e.g. [54]).

2. Recognition rate and the main sources of error (from the ROI extraction) affecting
recognition.

3. Running time and resource requirements, especially for CNN-based approaches. Low
inference time is expected from all solutions running on consumer devices.

Furthermore, at the time of writing of this literature review, there are currently no CNN-
based solutions to detect the palmprint in unconstrained environments, besides the Fast
R-CNN approach demonstrated by Liu et al. [71] which does not normalize the extracted
ROI’s rotation. Also, there is a need for normalization of the extracted ROI using an affine-
transformation based on 3D information recovered from the hand’s pose, similar to the work
of Kanhangad et al. [146], but in an unconstrained environment. This can be achieved
starting from the CNN architecture recovering the 3D hand structure from a 2D image (as
was developed by Mueller et al. [147]).
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3.4.3 Palmprint Feature Extraction

Although palmprint recognition took off in early 2000’s with the introduction of HKPU
database, the pipeline stage that received the most attention from the research community
has been the palmprint feature extraction.
As was the case for iris recognition, CNNs have become the current state of the art in
palmprint recognition (Section 3.3.2). The general trend is to use Siamese networks (e.g.
variant of triplet loss in RFN [71] or contrastive loss in DHCN [34], DeepMPV [35]) or
non-linear networks (PCANet [75] and PalmNet [127]).

It is important to note that most of these works use in their training/evaluation scenarios
images acquired with smartphones (on databases such as XJTU-UP [34] and MPD [35]).
The cross-device training and recogniton will become a main focus especially for device-
independent palmprint recognition solutions. This is first investigated in [19], with impressive
results being obtained in [71]. The cross-domain conversion of a palmprint ROI using a
generative approach [141] also represents a promising direction of research.

The complexity of architectures becomes an important factor to optimize as in DHCN
[34], where the network is distilled (number of layers is reduced) and the network’s output
is a discrete hash code (binary values). This not only reduces the processing requirements
(including comparison of two samples), but also the storage space necessary when dealing
with a large number of classes.

As in the case of ROI extraction algorithms, the feature extraction approaches (especially
the CNN-based solutions) require an evaluation in terms of processing time, as this aspect is
only touched in few papers (e.g. [29] and [71]).



Chapter 4

Database(s) of Unconstrained Palmprints

The current chapter describes one of the contributions of this thesis, represented by the
development of two publicly available databases of unconstrained palmprints.
Section 4.1 presents initial exploratory work regarding collecting palmprint images in ’the
wild’ (i.e. unconstrained conditions) for a proof of concept database. Section 4.2 describes
in detail the planning and acquisition of the palmprint database entitled NUIG_Palm1 which
was publicly released in August of 20171. Section 4.3 describes an auxiliary database
entitled NUIG_Palm2, used for developing a robust method for palmprint ROI extraction.
NUIG_Palm2 was also made available to the research community in 2019.

4.0.1 Motivation

As mentioned previously in Section 3.4.1 of Chapter 3, the key challenge at the moment for
biometric recognition systems is their migration onto consumer devices, which have specific
constraints, generally associated with limited computing resources. This applies to both
processing power, as well as sensor technology.
In this context, the use of palmprints for authentication presents much potential as it does not
require extra hardware (e.g. iris recogniton requires a Near-infrared (NIR) camera, fingerprint
recognition systems use dedicated scanners, etc.). An overview of current palmprint databases
is presented in Section 3.1 of Chapter3. The most popular palmprint databases include the
ones provided by the Hong Kong Polytechnic University (HKPU) [17], Chinese Academy
of Sciences (CASIA) [21] and the Indian Institute of Technology Dehli (IIT-D) [18]. The
main characteristics they have in common are the constrained nature of acquisition - both
regarding the camera (lighting conditions and background), as well as the user’s interaction

1The Unconstrained Palmprint Database NUIG_Palm1 is available upon contacting Prof. Peter Corcoran
(peter.corcoran@nuigalway.ie). More details can be found on the C3Imaging website "http://C3imaging.org"
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Fig. 4.1 Flowchart corresponding to the main stages of a palmprint recognition system.

with the device (specific hand pose is required). These conditions, however, do not emulate
the use-case of consumer devices, which typically operate in unconstrained environments.
The unconstrained database NUIG_Palm1 has started a new category of palmprint databases,
defined by unconstrained acquisition applied to environment, devices and acquisition protocol
(see Table 3.3 in Chapter3). Recently two new palmprint databases were introduced (XJTU-
UP [34] and MPD [35]) which validate the research direction started in 2017 with the
introduction of NUIG_Palm1.

4.1 Proof of Concept Database - ’Wild’ Palmprints

To address this gap, an initial project was started to collect palmprint images using smartphone
devices. This database, hereafter referred to as Proof of Concept (PoCDB), was the initial
step towards launching a public database of unconstrained palmprints that were acquired
with smartphones.

Before starting the collection, an exploratory phase was required, to consider the adequate
number of variations, both in terms of utility for future experiments, as well as the steps
performed in an actual use-case. Following the flowchart displayed in Fig. 4.1, the main
sources of error were identified as being the acquisition and pre-processing stages. Firstly, the
acquisition conditions are considered problematic because of the necessary stages requiring
the user to perform when presenting their hand in front of the camera, but also because of the
device’s sensor behavior (and internal noise-reduction techniques). These are:

1. Lighting conditions which change the aspects of the presented palmprint. Strong
shadows or intense light affecting the palm will affect both the ROI extraction algorithm’s
performance, as well as the feature extracting process (environment-related factor)

2. The color of the background, depending on whether or not the ROI extraction algorithm’s
strategy relies on separating the hand from the background (environment-related factor).
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This either refers to a dark and uniform color (in the case of grayscale images) or to a
background’s whose color is as far from the hand’s color as possible (in the case of
RGB images)

3. Hand posture (aka pose) is also a critical factor, since most of the current ROI extraction
algorithms rely on the user stretching out their fingers and presenting their palm as
a flat surface, usually with a given orientation (the wrist is consistently in the same
position). This step is essential for both scale and rotation normalization of the hand
(user-related factor)

4. The behavioral component of the user’s lifestyle affecting the quality of the biometric
characteristic. This translates to subjects having skin conditions (dry skin) or marks
from intense and prolonged manual labor (calloused hands) or pigment marks related
to daily activities (ink stains, henna marks or tattoos). Also relevant are the various
items that can be found on hands and fingers in particular - rings, bracelets. An
algorithm that is user-friendly cannot be expected to require the removal of all such
items. (behavioral-related factor)

5. Pixel size in the camera sensor, as well as the software-based noise reduction employed
by the device. These aspects are important because there is a direct correlation between
the size of a sensor’s pixels and the amount of light which they can absorb (more light
collected improves the quality of the image and reduces noise levels). The appearance
of a given palmprint in low-light will differ significantly when compared to when it is
exposed to normal (office) levels or very intense light (device-related factor)

6. Every device uses a different sensor (main reason for selecting devices from several
manufacturers - including both budget and flagship devices), either from a different
manufacturer or a more recent generation, ultimately giving to any image acquired
with a specific device ’fingerprint’ (or behavior). Although these differences are minor,
they can be used to distinguish one device’s behavior from another one. Put together
with the previous point, the interoperability potential of a palmprint recognition system
developed for smartphones becomes an important factor to be taken into consideration
(device-related factor)

4.1.1 Acquisition Protocol

Based on these factors affecting the recognition system, an Acquisition Protocol was defined
around three main variations: light conditions, background types and hand orientation, as
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described in Table 4.1.

Table 4.1 Variations considered for the unconstrained PoC palmprint database.

Category Variation Specific value (if applicable) Encoding

Light
Inside normal 7.5 EV or 450 lux α=1
Inside dark 6 EV or 160 lux α=2
Outside bright 13.5 EV or 28,900 lux α=3

Background
Complex background-poster - β=1
Real objects scene - β=2
Wooden surface - β=3

Hand
orientation

Horizontal - Hθ =1
Vertical - Hθ =2
Oblique - Hθ =3

To simplify the separation of images according to their combination of variations, a
labeling system was developed. Three digits are defined, α , β and Hθ , where α corresponds
to one of the three scenarios of light conditions, β corresponds to one of the three background
types and Hθ corresponds to one of the three hand orientations considered. By considering
α as the Most Significant digit (MS digit) and the Hθ as the Least Significant digit (LS digit)
27 possible combinations are defined, as displayed in Table 4.2.

Keeping in mind the potential for palmprint recognition to be deployed on as many
smartphones as possible, 4 mid-to-upper range models are considered. These included recent
smartphone-flagships (at the time) Samsung Galaxy S4, but also mid-range phones such as
HTC Desire 610, Huawei P8 or the iPhone5. Relevant camera specifications are included in
Table 4.3.

A naming convention was adopted for all the images acquired, where all subjects are
given a uniquely identifying number, as well as the device’s label (model). Alongside the
labels encoding the acquisition conditions for a given image, certain metadata of the subject
is also taken into consideration, such as age group (indicated by the 4 intervals: A) under 20
years old (y.o), B)20-30 y.o., C) 30-40 y.o. and d) 40+ y.o.), the participant’s gender as Male
or Female (as indicated by their ID cards), as well as the hand that is being acquired (left or
right). This information is later used to provide an overview of the database.
Therefore the names of all image instances were standardized as <Participant ID><Participant
gender><Participant Age Group>_<Device used>_<Scenario ID>. An example following
this notation would be ’001MBL_D610_S1’ representing the palmprint image of subject
ID 001, who is Male, is between 20 and 30 years old, acquiring images of their left hand
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Table 4.2 Encoding procedure for scenario (light, background and hand orientation)

Light Background Hand orientation (Hθ ) Scenario encoding

α1

β1 Hθ1 , Hθ2 , Hθ3 S1, S2, S3
β2 Hθ1 , Hθ2 , Hθ3 S4, S5, S6
β3 Hθ1 , Hθ2 , Hθ3 S7, S8, S9

α2

β1 Hθ1 , Hθ2 , Hθ3 S10, S11, S12
β2 Hθ1 , Hθ2 , Hθ3 S13, S14, S15
β3 Hθ1 , Hθ2 , Hθ3 S16, S17, S18

α3

β1 Hθ1 , Hθ2 , Hθ3 S19, S20, S21
β2 Hθ1 , Hθ2 , Hθ3 S22, S23, S24
β3 Hθ1 , Hθ2 , Hθ3 S25, S26, S27

Table 4.3 Camera specifications for the smartphones considered in the Proof of Concept
database.

Device name Sensor size Sensor
Mega Pixels

Aperture Launch
date

Price
(Euros)

iPhone 5 33mm (standard) 8 MP f/2.4 Sept. 2012 340
Huawei P8 28mm (wide) 13 MP f/2.0 April 2015 230
Samsung Galaxy S4 31mm (standard) 13MP f/2.2 April 2013 320
HTC Desire 610 not available 8 MP f/2.4 May 2014 210

using the HTC Desire 610 under the conditions encoded by S1 (α1 lighting with Hθ1 hand
orientation against background poster β1).

All cameras were set to ’Auto’ during the entire duration of the acquisition, without using
the flash.

4.1.2 Initial Feedback and Contributions

Following the Protocol described in Section 4.1.1, several members of our research group
participated in an initial acquisition session. A total of 9 individuals acquired images of their
preferred hand.
The feedback they provided resulted into the following changes that were essential for the
development of the public database of palmprints (NUIG_Palm1):

1. The procedure was considered to be too lengthy. Reduced lighting conditions to two
options and allowed the user any preferred hand pose.

2. Reduced the number of backgrounds to two that could be made into posters. This
allowed increased mobility for potential acquisitions.
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(a)
Background1

(b) Background2 (c) Background3

Fig. 4.2 Palmprint samples from the Proof of Concept database, according to the images’
background. Lighting scenarios include: left) S3, S1, S2; center) S5, S5, S13; right) S23, S27,
S19.

3. Some palmprint images did not contain any of the landmarks traditionally used to
extract the region of interest (ROI) such as fingertips or finger-valleys (see Fig. 4.2),
which prompted us indicate during acquisition that some parts of the fingers should be
included in the acquired image.

4. Decided to add more recent smartphone devices, as the models considered for the
PoCDB raised concerns about the rapid obsolescence of the database.

Based on this initial database, a number of experiments implement the recognition system
pipeline in Fig. 4.1 or address parts of the pipeline. These experiments and results are
presented in Chapter 5.
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4.1.3 Conclusions

A relevant gap was identified in existing literature around palmprint recognition on consumer
devices. Collecting a small database of palmprint images in ’the wild’ (i.e. in unconstrained
conditions) allowed the a better understanding of what scenarios should be considered when
developing a larger database of images.

4.2 Database of Unconstrained Palmprints - NUIG_Palm1

Introducing the changes listed in Section 4.1.2, a more suitable protocol was obtained to
increase the capacity for acquisition.

4.2.1 Devices and Scenarios

The list of devices considered for acquisition was revised, adding one more model and
replacing others. Therefore, the set of flagship-grade smartphones included the then recently
launched Samsung Galaxy S6, as well as the iPhone 6S. The mid-range phones were replaced
with the then recently launched LG G4 and the Huawey P8, leaving for the set of older models
the iPhone5. The iPhone5 was taken into consideration in order to have a representative of
older smartphone models, but also because of Apple’s high standards when it comes to the
technology placed in their products. A complete description of these models, as well as the
technology they are equipped with, is provided in Table 4.4.

Table 4.4 Devices used for NUIG_Palm1 acquisition.

# Device name Sensor size Stabilization Sensor resolution Aperture Month of launch
1 LG G4 (G4) 1/2.6" Yes, 3 axes 16 Mega-pixels f/1.8 April 2015
2 Samsung Galaxy S6 (GS6) 1/2.6" Yes, 3 axes 16 Mega-pixels f/1.9 April 2015
3 Apple iPhone5 (i5) 1/3.2" No 8 Mega-pixels f/2.4 September 2012
4 Apple iPhone6S (i6S) 1/3" Yes, 1 axis 12 Mega-pixels f/2.2 September 2015
5 Huawey P8 (P8) 1/3.06" Yes, 1 axis 13 Mega-pixels f/2.0 April 2015

The scenarios in which environmental factors were varied were also reconsidered,
choosing to place the main focus on the most challenging ones - ’inside (office) normal’
versus ’inside dark’. Furthermore, the number of potential backgrounds was reduced to two
posters representing either ’complex scene’ or ’wooden texture’, as presented in Fig. 4.3.
Having these backgrounds in poster form allowed increased mobility for the acquisition
phase, increasing the chances of collecting a larger set of images.
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Table 4.5 Variation of parameters and encoding of scenarios for NUIG_Palm1. The hand’s
orientation is left to the decision of the user.

Background Lighting Scenario encoding
β1 α1, α2 S1, S2
β2 α1, α2 S3, S4

(a) Poster-complex scene (b) Poster-wood texture

Fig. 4.3 The two posters used as backgrounds for the acquisition of NUIG_Palm1 database.

4.2.2 Acquisition Protocol and Naming Convention

One of the key aspects of this database is that it not only contains images of palmprints, but
that the subjects are the ones performing the acquisition. Making this process as user-friendly
as possible meant that it would ease the interaction with the recognition system regardless
of the level of tech know-how of the user. It was therefore important to impose as few
restrictions as possible regarding the way in which photos were taken.
Subjects were as asked to hold the device with their main hand (usually the right) and take
pictures of their other palm. The only requirement regarding the palm was that it remains
clearly visible, with at least some part of the fingers. Various levels of bending of the palm
were thus captured. Furthermore, the choice of hand pose and orientation was left to the
choice of the subject, the most common pose having stretched fingers that are parallel with
the floor.

The naming convention of the images was based on the one described for the PoC DB,
but applied to the remaining two lighting scenarios and two background types. Therefore
all scenario instances are named as <Participant ID><Participant Gender><Participant Age
Group>_<Device used>_<Scenario ID>.

For every subject, 4 images were acquired per device (x5), which led to a total of 20
images per ID.
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4.2.3 Database Design

To increase the chances for collecting a large database, an Ethics Application form for the
collection of a publicly available database of palmprint images was developed over the course
of 6 months, which allowed the acquisition of palmprint images from volunteers within the
National University of Ireland, Galway (NUIG). The Ethics application form consisted of
general background of the project, a detailed description of its purpose, legal background
regarding the biometric data regulation in the European Union, as well as a risk assessment
to participants. To this end a number of documents (used to provide information to potential
participants, allow them to sign up for the project, but also including licensing documentation
intended for the future dissemination of the database) were developed and submitted within
the application, to the Research Ethics Committee from NUIG. The committee is required to
evaluate all data collection procedures taking place within the university, ensuring that
participants are protected during and after the procedures involved (precautions taken
especially during medical trials that are potentially harmful), as well as the ethics involved in
performing and collecting data. Other materials that were consulted included the Article 29
Data Protection Working Party (WP193) [148] which released guidelines for developments
in biometric recognition technologies.

The main risk identified for participants was related to the potential connection being
made between their identity and their biometric characteristics (present in the images). To
address this concern the only link between a participant’s ID and their name (and contact
information) was kept on the Consent form that must be signed before any acquisition is
carried out. These records will be physically destroyed 5 years after the start of the project
(projected date is September 2019), to further protect the identities of participants.

4.2.4 Documents Required for Ethics Application

A number of documents were required to be included in the Ethics Application Form. These
generally refer to how the project is advertising itself to potential participants, but also to
establishing a legal base regulating the interaction between participants and the investigators
performing the data collection.

A. Information Sheet

The information sheet is the document which delivered the project’s core description, together
with its potential risks as well as the participant’s rights. Specifically, all participants
were required to carefully read this document and ask the investigators for any necessary
clarifications. The participant’s right to be excluded from the study at any time (during or
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after acquisition) was repeatedly stressed. It is standard GDPR (General Data Protection
Regulation) procedure to always inform the individual of the manner in which their personal
(and biometric) data is being handled.

B. Protocol

The acquisition protocol was presented in non-technical language that ensures a detailed
understanding of the entire acquisition process.

C. Consent Form

Following an informing stage, the participant was asked to sign a consent form, which
represents the only link between their ID (used for naming the hand images) and their identity.
Special care was placed on handling these documents, which were kept secure in a locked
cabinet in the office of the Principal Investigator.

D. License Agreement

A licensing document was required, in order to provide the contents of the palmprint database
to any member of the research community based on a contract. The preparation of this
document included the counseling of NUIG’s Solicitor.

The full Ethics Application form is included in the Annex of this thesis.

4.2.5 Ethics Application - Feedback

It is the purpose of the Ethics Committee to asses and correct the interaction between the
project’s investigators and the project’s participants. The feedback received regarding the
collection of the public database of palmprint images indicated three points:

• A more detailed description of the participant’s interaction with the smartphone devices
during acquisition (in the Participant Information sheet)

• Allow more time to participants (24 hours) before deciding to participate in the study.
This extended period of time is aligned with WP193’s indications on consent [148].

• Specify potential future dangers of participation, namely that one’s data may be mis-
used at some later date.

These points were addressed by improving the contents of the documents mentioned
(Information Sheet and Protocol), as well as including the destruction of all records linking
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any participant’s identity with their images in the database. Furthermore, a revision of the
Licensing Agreement was added, asking for the document include the signature of the head
of department the licensee researchers belong to (formalization of the contract).
Once these points were corrected, the collection phase was started.

4.2.6 Collection Stages

The collection phase was initiated in February 2016, initially within the research group in
NUIG (both undergraduate and postgraduate students), followed by the FotoNation office in
Galway, Ireland. A total of 45 subjects participated in this collection phase.
A second phase of acquisition took place on April 2016 in the FotoNation office in Bucharest,
Romania. This increased the number of participants to 60.
Finally, a 3rd and final stage was organized on August 2016 in the FotoNation office based in
Brasov, Romania. This phase increased the number of participants to 81.

Fig. 4.4 displays the S1-S4 images from the 5 devices used for acquisition, from 5
different subjects from the database. A variety of hand poses, as well as scales and lighting
conditions were captured.

4.2.7 Database Statistics

Once the database was collected, a general overview of its participants could be provided
in the form of graphs. As can be noted from Fig. 4.5, participants’ age ranges from below
20 (university freshmen) to over 40, with most of the participants being between 20 and 30
years old. Unsurprisingly, few participants preferred acquiring images of their right hand, the
number of right-handed individuals being 3 times greater. Also, the ratio of men to women
present in this set of images is 2:1.

4.2.8 Labeling Ground-Truth Landmarks

A generic processing pipeline requires palmprints to be extracted from hand images in a
consistent manner (i.e. using specific landmarks).

The landmarks and the extracted ROIs are provided as potential benchmarks in future
tests related to ROI extraction. Several other palmprint images with their corresponding ROIs
are provided in Fig. 4.6.
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Fig. 4.4 Inter and intra variation from the acquired database, ’NUIG_Palm1’. The order of
devices is maintained as in Table 4.4.
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Fig. 4.5 Participants’ distributions found in NUIG_Palm1: (left) Gender, (center) Age Group,
(right) Hand Preference.

Fig. 4.6 Samples of hand images and their extracted ROI.

4.2.9 Conclusions

The current Section presented an overview of the database of unconstrained palmprints
publicly released in August 2017 with the article "Unconstrained palmprint as a smartphone
biometric", published in IEEE Transactions on Consumer Electronics, under the name
’NUIG_Palm1’.
A detailed description of the design process, as well as the collection stages are provided.
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4.3 Database for Automatic ROI Extraction - NUIG_Palm2

This section introduces the collection of a large database of images that supports the training
of unconstrained palmprint ROI extraction.

4.3.1 Motivation and Context

In order to address the lack of labeled hand images aligned with the acquisition protocol of
palmprints, a novel setup composed of a webcam and a Leap Motion device was constructed.
This setup allows for the collection of a large number of images that are already labeled at
the moment of acquisition (by the Leap Motion Software) with the 3D coordinates of all
finger-joints. The main idea behind this database was to use the keypoints provided by the
Leap Motion and extract a palmprint ROI from the hand image.

4.3.2 Leap Motion - Previous Usage

Initially the Leap Motion (LM) device received interest thanks to its novel human-computer
interaction, but struggled to find a role other than entertainment. An initial attempt at
classifying Auslan number symbols was made by Potter et al. [149], but revealed many
shortcomings, especially from the hand tracking software, primarily because of its early
stages of development. Dimartino [150] implemented a system that can register new static
and dynamic gestures, then recognize them using a predefined distance based on the number
of standard deviations between the test gesture and all of the stored gesture classes. Marin
et al. [151] use an SVM to classify gestures based on features outputted from the LM, as
well as a Microsoft Kinect device. The outputted feature vectors differ because the sensing
strategy is different. Distances, elevations and angles were derived from LM, whereas Kinect
provided various information regarding the curvature of fingers.

Fig. 4.7 Left: Diagram and position of the IR LEDs and cameras, shown on the Leap Motion.
Right: Axes of the Leap Motion device vs. Axes corresponding to pinhole camera.
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4.3.3 Acquisition Setup Based on Leap Motion

Fig. 4.8 Left: Webcam-Leap Motion setup used throughout the acquisition phase. Center:
Example acquisition scenario using a dummy hand. Right: Coordinates outputted by the
Leap Motion API, projected using the approach described in Section 4.3.4

Ever since the launch of the Leap Motion (LM) device in 2012, its Application Program
Interface (API) has been made available to many programming languages and frameworks.
At the moment there is a clear movement towards integration with Virtual Reality (VR)
systems. In fact, the LM’s use in conjunction with VR headsets has been so successful
under its project Orion, that newer VR or Augmented Reality (AR) headsets are looking to
integrate the LM hardware by default [152].
The LM is composed of two Infrared (IR) cameras that are positioned 2 cm from the sides
and are flanked by 3 IR LEDs which flood the scene with light. A diagram indicating the
placement of these elements and the dimensions of the device is provided in Fig. 4.7.
As mentioned in [153], the exact way LM works is kept a secret, but we are aware that it
uses the images acquired from the two infrared (IR) cameras to determine the finger joints
(without using stereo vision for depth-map estimation) and track their positions throughout
the frames.
The device’s accuracy was evaluated by two independent studies [153],[154] under laboratory
conditions with the help of robotic arms/rigs. They have concluded that for static setups, the
reading was accurate within +/- 0.2 mm, whereas in dynamic setups the reading was accurate
within +/- 1.2 mm.
As part of the contribution of this chapter, a novel setup was made (Leap Motion + webcam),
allowing the acquisition of a large number of hand images and the necessary labels to extract
a hand’s palmprint region. The LM was mounted on top of a Logitech Pro9000 webcam,
with a distance between the 2 devices’ centers of 40 mm, as noted in Fig. 4.8. The LM’s
Software Development Kit (SDK) for Python2.7 was used to read the finger joints’ position
relative to the LM’s coordinate system. Because the API is referring to bones instead of
joints, the start of a bone was considered to be the corresponding joint. Furthermore, as part
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Table 4.6 Mapping of bones used by the Leap Motion API, as well as the points used in the
experiments of the current paper.

Joint number Joint index Bone name Finger Used for ROI extraction
1 11 Metacarpal ✓
2 12 Proximal phalange ✓
3 13 Intermediate phalange T humb ✗
4 14 Distal phalange ✗

5 21 Metacarpal ✓
6 22 Proximal phalange ✗
7 23 Intermediate phalange Index ✗
8 24 Distal phalange ✗

9 31 Metacarpal ✓
10 32 Proximal phalange ✗
11 33 Intermediate phalange Middle ✗
12 34 Distal phalange ✗

13 41 Metacarpal ✓
14 42 Proximal phalange ✗
15 43 Intermediate phalange Ring ✗
16 44 Distal phalange ✗

17 51 Metacarpal ✓
18 52 Proximal phalange ✗
19 53 Intermediate phalange Pinky ✗
20 54 Distal phalange ✗

of a convention within the API, the thumb is listed as having 4 bones, although it actually
has 3 bones, the 4th being considered of length 0. The bones, their corresponding fingers and
indexes are listed in Table 4.6.

4.3.4 Projection of 3D Points onto Webcam Image Plane

The projection of points with real-world coordinates (3D) onto a camera’s image plane (2D)
is a well-known problem, with the solution in Equation (4.1), as described by Zhang [155]:

 u
v
1

= A3,3

[
R3,3 t3,1

]
X
Y
Z
1

 , (4.1)

where (u,v) represent the projected 2D coordinates, (X ,Y ,Z) are the point’s world 3D
coordinates, R3,3 is the rotation matrix for the 3 axes (x,y,z), t3,1 is the translation vector for
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Fig. 4.9 Images and point projections from the database NUIG_Palm2, which has been made
available to the research community.

the 3 axes and A3,3 is also known as the intrinsic camera matrix, defined by Equation 4.2:

A =

 fx 0 u0

0 fy v0

0 0 1

 , (4.2)

where fx, fy are the focal lengths in pixels on the Ox and Oy axes, and v0, u0 are the optical
center of the image. The camera’s intrinsic matrix is obtained by calibrating it with a
checkerboard using the OpenCV library for Python [156].
The camera’s extrinsic matrix, also known as the camera’s pose in the field of Structure
from motion, can be determined from the essential matrix. However, in order to obtain the
essential matrix, correspondences between 2 different images have to be made. For this
reason, the LM database includes a calibration stage for every acquisition session. This stage
requires the capturing of 2 images that are shifted by a small amount along the camera’s x
axis in the range of 2-5 cm. Then specific descriptors are extracted and compared, e.g. Scale
Invariant Feature Transform (SIFT) [115] or Speeded-Up Robust Features (SURF) [157].
For the recovery of the camera’s pose, the OpenCV library [156] for Python was used.
Finally, it is important to note the underlying discrepancy of the two devices’ coordinate
systems, represented in Fig. 4.8. Taking this difference into account, as well as the distance
from the camera’s optical center to the LM’s coordinates center, the necessary offsets were
added to the values read using the LM (i.e. 40 mm were added on the z axis, as well as 5 mm
added on the y axis). For consistency, the 3D coordinates that are saved are relative to the
camera’s axes, not the original LM coordinates. In an effort to improve the reproducibility of
experiments, the Python script used to acquire the images was released on Github 1

4.3.5 Acquisition Protocol

An acquisition protocol was developed, where every participant was asked to hold their hand
in front of the acquisition setup at a distance of around 30cm. The main variations considered

1The Python 2.7 script can be accessed at "https://github.com/AdrianUng/Leap-Motion-project-points-onto-
image"
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were the presence of strong shadows, glare on the hand’s surface, as well as varied hand pose.
A smartphone’s flashlight was used to direct strong light from multiple angles to the surface
of the participant’s hand, thus enabling all regions of the hand to be either affected by glare
or by shadows of varying intensity.
The poses that were considered correspond to those scenarios associated to palmprints in
’the wild’: straight fingers but either the thumb or a side finger (index or pinky) touching one
of the central fingers. Furthermore, as many orientations as possible were considered, but
this number depended on the limits of LM device or the participant’s range of motion.
Furthermore, several backgrounds were used, but this was not the main focus of the collection.
However, most of the acquisitions included 2 types of backgrounds: ’cluttered office’ and
’skin-color background’.

The acquisition session was estimated to last around 15-20 minutes, with intervals of
around 20-30 seconds where one of the above mentioned factors was varied. The span of
each interval was used to acquire image frames from the webcam, together with the 3D
coordinates (according to the webcam’s coordinate system) as well as the 2D coordinates.
This process was monitored by the investigator by looking at the real-time projection of 3D
coordinates onto the webcam’s image plane.
The resolution at which the images were saved was the maximum possible output possible
for the webcam model that was used - 1200x1600 pixels.

4.3.6 Landmarks

The landmarks considered for ROI extraction are the metacarpal joints from the 4 main
fingers, together with the proximal and intermediate phalanges of the thumb. These joints
best characterize the surface of the palm, and represent the most accurately read values by
the LM because the points are found on the same plane.
Since the projection of LM 3D points lacks accuracy, as can be noted in Fig. 4.10 and Fig.
4.9, the 2D points can be considered an approximation of the ground truth (GT).

4.3.7 Privacy and Consent forms

All participants that took part in this database were informed of the intention to make the
database public prior to their acquisition session. To address current GDPR regulations a
Consent Form was signed, following the design used for supporting documents of NUIG_Palm1
database.

Because of the proximity to the participants, as well as the angle of the acquisition device,
some of the images contain exposed regions of the participants’ face. Great care was taken to
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(a) (b) (c) (d)

Fig. 4.10 Projected points’ spatial variation depending on the hand’s posture:a) all fingers
spread, b) all fingers closed, c) closed fingers and parted thumb, d) parted fingers, closed
thumb

mask any facial distinctive traits by employing specific blurring filters in order to maintain
the anonymity of all participants.

4.3.8 Collection

The collection phase was initiated in April 2018, when 10 participants were acquired from
within our department. This corresponds to session number 4 in Fig. 4.11.
A 2nd phase took place in May 2018 at the FotoNation office in Bucharest, Romania where 6
participants were enrolled. This corresponds to sessions number 2 and 3 in 4.11.
A 3rd phase took place in June 2018 at the FotoNation office in Galway, Ireland. This session
added images from 7 more subjects. A 4th and final phase took place in February 2019,
which increased the database to its final number of 26 participants. This phase corresponds
to session 6 and a part of session 4.

4.3.9 Database Statistics

The final database contains a total of 24,631 images acquired from 26 participants. The
distribution of images according to background (/session location), participant age group and
participant gender are presented in Fig. 4.11.

4.3.10 Conclusion

The images collected with the setup described in Section 4.3.3 will be made available to the
research community under the name ’NUIG_Palm2’ through a Licensing Agreement. The
3D coordinates, 2D point projections and the source code used for acquisition and testing will
also be provided, to guarantee that experiments are reproducible. It is the authors’ hope that
this database will aid the development of unconstrained palmprint ROI extraction algorithms.
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Fig. 4.11 Distribution of meta-information regarding the contents of NUIG_Palm2 (26
participants). (left): number of images for each session: (2) Office white background, (3)
home cluttered background, (4) Office green background, (5) Wooden background, (6) office
and wooden background. (center): number of images for each age category, where A:20-30,
B:30-40, C:40-50 and D:50+ (right): number of images attribute to male/female gender.

4.4 Chapter Conclusions

This chapter introduces one of the primary contributions of this thesis - the database of hands
collected to address the challenges associated with palmprint recognition in "the wild". They
follow the guidelines of standard palmprint recognition systems, but with the challenges
associated with an unconstrained environment.

Firstly, a Proof of Concept (PoC) database was designed to determine the main challenges
of palmprint recognition. Secondly, a large scale database is collected using a variety of
devices under various lighting conditions and with backgrounds describing complex scenes.
Thirdly, a set of images with labeled points allow for training automatic ROI extraction
algorithms in unconstrained conditions.



Chapter 5

Palmprints in the Wild - Preliminary and
Exploratory Experiments

This chapter represents a collection of initial experiments that are based on the Proof of
Concept database (PoCDB) of palmprints described in Section 4.1 of Chapter 4. The
palmprint recognition pipeline is composed of several stages, namely: acquisition and
segmentation from input image, palmprint Region of Interest (ROI) extraction, followed
by feature extraction and sample comparison. The experiments presented in this chapter
explored the pre-processing stages, as presented in Fig. 5.1. The findings led to several
peer-reviewed conference publications.
An initial set of experiments revolved around skin segmentation, in order to process the

hand pixels instead of the background pixels. This is normally a straightforward task in
conventional and constrained palmprint databases (such as the ones presented in Section 3.1
of Chapter 3), but represents a considerable challenge for unconstrained palmprint databases
(such as the ones presented in Section 3.3 of Chapter 3).

Fig. 5.1 Generic overview of a hand-based biometric recognition system using optical sensors,
with the focus of the current chapter.



70 Palmprints in the Wild - Preliminary and Exploratory Experiments

Fig. 5.2 Taxonomy of skin segmentation techniques, as defined by Naji et al. [1]. Reprinted
by permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
Artificial Intelligence Review, Naji, S., Jalab, H.A. & Kareem, S.A., "A survey on skin
detection in colored images", ©2019.

The use of various color spaces for skin segmentation is presented in Section 5.1. Section 5.2
describes an approach for Region of Interest (ROI) extraction based on Harris corners. 5.3
presents conclusions for the chapter.

5.1 Skin-color Pixel Segmentation

5.1.1 Related Work

Naji et al [1] provide an overview of approaches for skin segmentation in color images.
According to this taxonomy, the most successful approaches are the ones based on machine
learning methods. Kim et al [158] train two popular CNN architectures: VGG [123] and a
network-in-network architecture based on 20 Inception Modules [159]. The results reported
for patch-wise training (slicing the input image into several windows) were better than
whole-image training (the input image being downsampled). Based on the literature,
However, statistical-based and thresholding methods are generally faster than methods based
on stacked convolutions, making them more suitable for deployment in a resource-constrained
environment [160].
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5.1.2 Definition and Rationale

Segmentation is defined as the process of extracting a region from an image based on certain
properties which strongly describe that region. In the case of skin segmentation, the main
objective is to extract from an image all pixels which are identified as belonging to the class
of ‘skin’ [161].
The general model is formulated as the probability of a pixel belonging to the foreground
(skin class) as being P(m(xi,yi)| m(xi,yi) in Cskin) where (xi,yi) represent the value a pixel
has in the position defined by the x and y coordinates. Similarly, the probability of a pixel
to belong to the background can be formulated as P(m(xi,yi)| m(xi,yi) in Cnon−skin). It is
important to notice that a pixel cannot belong to both classes, which turns this into a binary
classification task.

A model is required to determine the distribution of values which best characterize the
class Cskin such that it has little to no overlap with class Cnon−skin, describing the background.

5.1.3 Color Spaces for Skin Segmentation

There are a variety of ways to represent images, many color spaces having been developed
to answer to specific technological requirements. Either attempting to mimic the human
visual system or serving specific applications such as skin detection or perception uniformity
across devices, there are many ways of encoding color information. This subsection provides
an overview of several well-known and several that are less known color spaces, with the
ultimate aim of having them implemented for the task of skin-color detection.

A. RGB and nRGB

The most convenient way of looking at an image is to consider its colors as being the sum
of primary colors – red, green and blue. This represents the basis of the RGB color model,
represented as a three-dimensional system of coordinates where any color is characterized
using for each axis values ranging from 0 to 255.The normalized version of RGB uses a
similar representation, but considers normalized values of its R, G and B components relative
to their sum. For every pixel location the equation 5.1 is used to compute the new R’, G’ and
B’ levels such that equation 5.2 is true for all all pixels.
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
R′ = R/R+G+B

G′ = G/R+G+B

B′ = B/R+G+B

(5.1)

R′+G′+B′ = 1 (5.2)

B. YCbCr

Historically, YCbCr was developed in the early stages of television (tv) development, from
the need to send a more compact representation of information sent through communication
channels. Once the information would arrive at the local tv box, it would decode the signal
and represent the images with RGB. The novelty is represented by the separation of colors
from the grayscale information into tow difference signals. The Y, Cb, and Cr components
represent a linear combination of RGB values, obtained with the equation 5.3:

Y ′ = 0+(0.299 ·R′
D)+(0.587 ·G′

D)+(0.114·)

CB = 128− (0.168736 ·R′
D)− (0.331264 ·G′

D)+(0.5 ·B′
D)

CR = 128+(0.5 ·R′
D)− (0.418688 ·G′

D)− (0.081312 ·B′
D)

(5.3)

where R′, G′ and B′ correspond to RGB values defining a specific color.

C. HSI

The HSI color model was developed to provide color encoding to existing monochrome
broadcasts without having to change the luminance (black and white). Therefore any color
represents a non-linear combinations of RGB values into three components:

• Hue, corresponding to the attribute of a visual sensation appearing to be closer to red,
green or blue

• Saturation, which indicates the ‘purity’ of the color relative to its brightness. At low
levels of saturation the colors tend to fade away into a generic gray.

• Intensity (or Value) which provides the grayscale (black and white) information. HSI
tends to be perceptually closer to the way the human visual system tends to represent
colors.

The HSI is computed using normalized RGB components. Considering R, G and B to be the
un-normalized values, the Intensity component is computed using 5.4:
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I =
1
3
(R+G+B) (5.4)

A color’s Hue (θ ) is defined as the angle between the location of a color within the HIS
triangle to the line from White to Red. Equation 5.5 defines a color’s hue in terms of its
normalized color components as:

A =
[
(r− 1

3)
2 +(b− 1

3)
2 +(g− 1

3)
2]1/2

B = 2
3(r−

1
3)− (b− 1

3)− (g− 1
3)

θ = arccos
[

B
A( 2

3)
1/2

] (5.5)

A color’s saturation is defined as how far the color is located from the center of the HSI
cylinder. Colors located at the outer edge of the triangle are fully saturated while pastel
colors are located near the center of the cylinder. The Saturation (S) is defined as in equation
5.6:

S = 1−3×min(r,g,b) (5.6)

D. CIE L*a*b

The CIE L*a*b color space was designed by the International Commision on Illumination in
1976, to approximate human vision and aspires to be perceptually uniform in its representation
of color. It expresses color as three values:

• L* for lightness from black (0) to white (100)

• a* from green to red

• b* from blue to yellow.

The non-linear transformation into L*a*b color space is performed using equations 5.7, 5.8
and 5.9, having already converted RGB values into XYZ:

X = R ·0.4124+G ·0.3576+B ·0.1805

Y = R ·0.2126+G ·0.7152+B ·0.0722

Z = R ·0.0193+G ·0.1192+B ·0.9505

(5.7)
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L∗ = 116 f
(

Y
Yn

)
−16

a∗ = 500
(

f
(

X
Xn

)
−
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Y
Yn

))
b∗ = 200

(
f
(

X
Xn

)
−
(

Z
Zn

))
,

(5.8)

where

f (t) =

 3
√

t, i f t > δ 3

t
3δ 2 +

4
29 , otherwise

δ =
6

29

(5.9)

The Xn, Yn, Zn in Equation 5.8 correspond to the CIE XYZ tristimulus values of the reference
white point. Under Illuminant D65 with normalization Y = 100, they are considered to have
the values: Xn = 95.0489, Yn = 100, Zn = 108.8840.

E. Ohta (I1I2I3)

A lesser known color space is the Ohta color space [162], also known as I1I2I3 is specifically
designed for color segmentation. The main idea is to represent colors using a coordinate
system that is uncorrelated (has a basis close to the principal components of the colors in the
image, making them maximally discriminant). It can be estimated from RGB coordinates
using the equation 5.10:

I1 =
R+G+B

3
; I2 =

R−B
2

; I3 =
2G−R−B

4
(5.10)

F. TSL

TSL is a perceptual color space defining color as Tint (degree to which a stimulus can be
described as similar to or different from another stimuli that are described as red, green, blue,
yellow and white), Saturation (colorfulness of a stimulus relative to its own brightness) and
Lightness (brightness of a stimulus relative that appears white in similar viewing conditions).
It was initially developed as a solution to face detection through skin segmentation [163].
The conversion from RGB values is based on equation 5.11:
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
1

2π
arctan

(
r′
g′ +

1
4

)
i f g′ > 0

1
2π

arctan
(

r′
g′ +

3
4

)
i f g′ < 0

0 i f g′ = 0

S =

√
9
5
(r′2 +g′2)

L = 0.299R+0.587G+0.114B

(5.11)

where r′ and g′ are defined based on the normalized r and g components:

r′ = r− 1
3

g′ = g− 1
3

(5.12)

5.1.4 Modeling Skin Color based on a Distribution of Pixels

Considering a set of images displaying skin in a variety of scenes, from several devices
and under various lighting conditions, the probability distribution of the skin pixels can be
modeled, such that similar pixels in other images (scenes) can be classified as being ‘skin’.
This estimation can be modeled as a Gaussian distribution based on the histogram of all
pixels considered as ‘skin’ in the training set [160]. This process is called back-projection
and can be visualized in Fig. 5.3. Given the fact that the experiments rely on skin regions
extracted from hand images, it is important to remove the line/edge information prior to
computing the skin-pixel distribution. Inspired by Yogarajah et al [164], a level of confidence
of 95% is chosen based on the histogram of skin-pixels from the training set.

For every color space, a threshold is decided for every color channel separately, the final
skin mask being the result of an AND operator applied to the input image. For instance, in
the case of RGB, the distribution of Red, Green and Blue values are determined separately,
the final threshold region bein a cube found within the RGB cube. The same methodology
applies to all color channels of nRGB, I1I2I3. In the case of L*a*b and YCbCr, only the
chromatic channels are modeled. In the case of HSI or TSL, only the chromatic channel was
used.
Hereon this model will be named histogram-based back-projection (HBP)

5.1.5 Clustering of Pixels with K-means

Clustering techniques are used for unsupervised classification and are used to determine the
separation of an input pattern set into a number of clusters (or classes) based on a given
metric relative to the centers of those clusters . One of the most popular clustering algorithms
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Fig. 5.3 Visualization of the HBP Model estimation applied to Cb/Cr distributions of training
pixels [164].

(a) Background cluster (b) Skin cluster

Fig. 5.4 Approach for determining which cluster contains the skin: a) 1st cluster, containing
mostly black pixels in the sampling region in the center, b) 2nd cluster, having no black
pixels in the sampling region (red square). The black pixels correspond to pixels which are
not part of the respective cluster.
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is the k-means [165], due to its low complexity O(n). The squared error for a clustering L of
a pattern set X (containing K clusters) is defined as in equation 5.13:

e2 (X ,L ) =
K

∑
j=1

n j

∑
i=1

∣∣∣∣∣∣x j
i − c j)

∣∣∣∣∣∣2 (5.13)

where x j
i is the i-th pattern belonging to the j-th cluster and c j is the centroid of the j-th

cluster.

For the application of skin-segmentation two clusters were considered, separating the
pixels into the two considered classes – background and skin. There are, however, a few
challenges in adapting the use of k-means to the use case of skin segmentation in hand
images.

Firstly, the clusters’ pixel distribution is not determined a priori. This meant that an
approach had to be developed where the cluster containing skin pixels is determined. Based
on the assumption that the central part of the image always overlaps a portion of the palmprint,
a square region is defined with the task of sampling pixel values. Counting the black pixels
contained in this region allowed the identification of the ‘background’ cluster. This process
is visualized in Fig. 5.4, where a palmprint occupies a great part of the image, including
the center. The red square is determined as being 1/6th of the input image’s width or height
(depending on which one is smaller).
Secondly, in order to reduce the influence of the random initialization step of the clusters’
center, the clustering was repeated 10 times for each image.

Because clustering approaches use distances for classifying pixels, each pixel could be
described by several channels of a color space. For instance, in the case of RGB or I1I2I3,
the distances were computed with respect to centroids defined by (R,G,B) and (I1,I2,I3)
coordinates. This approach is different from the adaptive thresholding approach defined in
Section 5.1.4, where an interval is computed for every channel separately, the final mask of
skin pixels being the result of an AND operator between the three thresholds.

5.1.6 Experimental Methodology

This section describes the experiments performed and the evaluation of the obtained results.
The approaches presented in Section 5.1.4 and 5.1.5 were trained on a distribution of skin
pixels extracted from a series of images. These models are then tested on a different
distribution of hand images.
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A. Images used for Train/Testing

A subset of the Proof of Concept (PoC) database of palmprints was considered for this
experiment. There are 4 cases being investigated:

• Skin tone belonging to person1, of Middle-eastern ethnicity (108 images)

• Skin tone belonging to person2, of Caucasian ethnicity (108 images)

• Skin tone belonging to person3, of South-Asian ethnicity, with darker skin color (108
images)

• All of the above mentioned images (324 images)

All images (both training and testing) and their corresponding ground truth masks were
initially resized to 20% of their initial resolution, by using bilinear-interpolation. This step
was included to increase the speed of experiments. No other pre-processing stages were
performed on the images after resizing.

B. Ground-truth Labels

For the considered images, binary masks denoting skin regions were manually annotated
using the freely available GNU Image Manipulation Program (GIMP) 1. They were made the
same resolution as the color images.

C. K-fold Cross-Validation

Usually cross-validation is intended for situations where small-scale databases are available,
to remove the bias of training scenarios [166]. Initially the images are shuffled, followed by a
split into 8 parts, where each part is used for training and the remaining 7 are used for testing.
This applies only to the approach described in Section 5.1.4, as it requires a training phase.
For a fair comparison, the same order of the shuffled images was maintained throughout all
setups (for each color space).

D. Metrics for evaluation

For evaluation purposes the Matthews Correlation Coefficient (MCC) [167] was used. It is
defined using the rate of classifying pixels as either True Positives (TP), True Negatives (TN),
False Positives (FP) and False Negatives (FN), with the equation:

1Available for download from ’https://www.gimp.org/’.
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Fig. 5.5 Visualization of the K-fold cross-validation process [166], where the green parts are
used for training and the rest are used for testing. After obtaining results for each scenario,
the average performance is computed.

(a) Ground truth
mask

(b) Prediction
mask

(c) Reversed
segmentation

(d) Failed
segmentation 1

(e) Failed
segmentation 2

Fig. 5.6 Visualization of the Matthews Correlation Coefficient (MCC) [167]: if (a)
corresponds to the ground truth mask (white is the region that should be segmented and black
the region left out), (b) represents the predicted segmentation mask (MCC value between -1
and 1), then (c) corresponds to a perfectly reversed segmentation mask (MCC value of -1),
(d) and (e) are cases of failed segmentation.

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(5.14)

The MCC ranges from -1 to 1, having 0 as a neutral position. If MCC = 1, the segmentation
is considered to be perfect. Conversely, if MCC = -1, the segmentation result is perfectly
reversed (TP and TN are both equal to 0). If MCC = 0, then all predictions are one class or
the either (in our case ‘background’ or ‘skin’). Several cases are presented in Fig. 5.6, with
their corresponding MCC score.
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Table 5.1 Results of skin-pixel segmentation using the histogram-based back-projection
approach.

MCC Score RGB nRGB I1I2I3 L*a*b YCbCr HSI(H) TSL(T)
User1 0.4784 0.4619 0.5418 0.4765 0.4765 0.4043 0.4189
User2 0.631 0.5402 0.4639 0.4532 0.4141 0.4353 0.4202
User3 0.471 0.3819 0.4669 0.4766 0.4304 0.4437 0.5103
All users 0.518 0.467 0.469 0.454 0.400 0.420 0.438

Table 5.2 Results of skin-pixel segmentation using the clustering-based approach.

MCC
Score

RGB nRGB I1I2I3 L*a*b YCbCr HSI
(H)

HSI
(HS)

TSL
(T)

TSL
(TS)

User1 0.447 0.447 0.431 0.821 0.816 0.570 0.667 0.51 0.506
User2 0.599 0.599 0.589 0.773 0.813 0.526 0.668 0.425 0.425
User3 0.412 0.412 0.399 0.837 0.813 0.524 0.580 0.467 0.474
All users 0.486 0.486 0.473 0.810 0.814 0.540 0.638 0.467 0.468

5.1.7 Results

The two approaches described in Sections 5.1.4 and 5.1.5 are used to predict the skin pixels
using the methodology presented in Section 5.1.6. This sub-section presents an evaluation of
their performance.

Results obtained using the histogram-based back-projection approach are presented in
Table 5.1. They are generally very poor, with the average MCC score being around 0.45
across most color spaces. The best performing color space for the adaptive histogram
thresholding method is RGB, with 0.518 for the case training and testing on all 3 users. All
other color spaces reported MCC scores bellow 0.5, the closest being I1I2I3 with 0.463.
When only the images for user2 were used for training/testing, the obtained MCC score was
0.631, reported by the RGB color space.

Results using the clustering approach are presented in Table 5.2. The highest MCC score
for the case using images from all three users was reported for YCbCr and L*a*b, which
reported MCC scores of 0.814 and 0.810. The other color spaces reported MCC scores of
around 0.5. It is interesting to note that L*a*b color space reported higher MCC scores than
YCbCr did for user1 and user3. YCbCr consistently reported MCC scores greater than 0.8
across all users.
It is also worth mentioning how including the Saturation channel in HSI improved the
clustering of skin pixels, the MCC score increasing by 0.060 for user3 and by 0.142 for
user2.
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5.1.8 Conclusion

Skin segmentation is a considerable challenge in an unconstrained environment, especially
when the background contains colors that are similar to skin. Furthermore, it is difficult
to accurately classify a pixel based solely on its chromaticity, as it is not a strong enough
identifier. Changing the color space can help with this task, as well as including other
channels of information such as saturation (as observed in Table 5.2), but results are limited
[161].
The results in this Section were also presented as part of a conference paper at the IEEE
International Conference on Consumer Electronics (ICCE) 2016 [168].

5.2 Proof of Concept Palmprint Recognition Pipeline - a
Case Study

This Section presents a Proof of Concept implementation of a palmprint recognition pipeline
using images from the PoC palmprint database described in Section 4.1 of Chapter 4. The
challenges associated with each stage of the pipeline were instrumental in shaping the general
direction of my PhD research.

Following the segmentation results obtained in Section 5.1, an approach that extracts
the palmprint Region of Interest (ROI) was proposed for hand images acquired in an
unconstrained environment. This approach relies on an iterative selection of Harris corners
based on their strength, to determine the central location of the hand region. This process is
explained in Section 5.2.2. For the feature extraction and comparison phase, SIFT descriptors
[115] were considered. A proof of concept scenario is described in Section 5.2.6.

5.2.1 Initial Hand-Background Separation

The skin pixel segmentation strategy described in Section 5.1.2 would lead to many false
positives detections when deployed in an unconstrained environment. If one would take
into account all possible skin tones in all lighting conditions (with shadows and various
temperature of light), the resulting skin-tone interval would be too broad, affecting its
robustness. The better performing K-means based segmentation (described in Section 5.1.5)
was used to provide an initial separation of the hand from the background. Taking as an
example the image in Fig. 5.7, two clusters of pixels are obtained. Using the same approach
described in Fig. 5.4, the cluster containing skin-pixels was determined.
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(a) Hand image (b) Cluster 1 (c) Cluster 2

Fig. 5.7 K-means segmentation of hand pixels, where (a) displays the input hand image,
(b) outlines the background pixels, contained in cluster 1, and (c) outlines the skin pixels,
contained in cluster 2. The black regions in (a) and (b) represent pixels that are not part of
those clusters.

5.2.2 Iterative Selection of Corners and ROI Extraction

Introduced by Chris Harris and Mike Stephens [60], the Harris corner detection has been
established in the field of Computer Vision for many applications, such as: image alignment
and stitching, image retrieval, object recognition, etc.

After having selected an initial cluster candidate for the hand region (segmentation need
not be perfect), all Harris corners are detected. A filtering stage is considered for the detected,
to remove outliers corners, as described in Algorithm 1 and depicted in Fig. 5.8a-5.8c

Once the cloud of corners determines a central position of the palm, a square region is
defined. The square is centered on the coordinates obtained as being the center of the point
cloud containing the filtered Harris Corners. The size of the square is considered to be 1/6th
of the size of the image’s larger side:

ROIside = max(image_height, image_width) (5.15)

5.2.3 Inspecting the ROIs

The resulting ROIs have been inspected visually and classified as being:
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(a) Selected features, level1 (b) Selected features, level2 (c) Selected features, level3

(d) Detected center of palm (e) ROI

Fig. 5.8 Stages undertaken for ROI extraction: a) Iterative selection of Harris corners
corresponding to k-means based hand segmentation from Fig. 5.7; b) Center of the palm,
computed as the arithmetic mean of remaining corners in (a) and its corresponding ROI.
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Result: Corners satisfying the conditions
for i=1 → 3 (i = number of stages) do

Determine average corner strength (average_strength) ;
for j=1 → N (N = number of remaining corners) do

if corner_strength( j) < average_strength(i) then
Discard corner ;

else
Keep corner ;

end
end

end
hand_center(x,y) =

( 1
N ∑

N
k=1 xk,

1
N ∑

N
k=1 yk

)
Algorithm 1: Iterative selection of Harris corners in hand region.

• ‘successful’, where most if not all of the palm region is extracted, with few or no
background pixels being included

• ‘ambiguous’, where the extracted ROI contains half or more of the palm area but also
includes a considerable number of background pixels

• ‘clear failures’, where either the ROI contains a small region of the palm area (less
than half) and/or too many background pixels.

Two cases that result in successes are displayed in Fig. 5.9b and 5.9d. Two clear failures are
included in Fig. 5.9f and 5.9h, where the ROI contains little of the hand’s palmprint.

Fig. 5.10 displays several ‘ambiguous’ cases, where even though much of the palmprint
surface is contained in the ROI, too much of the background is being included (Fig. 5.10a
and 5.10b). The case where the scale of the hand within the image does not correspond to the
predetermined ROI size (Equation 5.2.2), is displayed in Fig. 5.10c. This leads to the ROI
containing the entire hand. A case where even though no background pixels are included, the
ROI fails because of the reduced palmprint surface, as presented in Fig. 5.10c.

5.2.4 Limitations of Proposed ROI Extraction

A number of aspects regarding this approach should be mentioned before proceeding:

• The extraction algorithm does not include a rotation normalization step. However,
this could be done after the extraction, based on a vertically aligned ROIs. Such an
alignment was suggested by Zhao et al [169], who used SIFT key-points to apply an
afine-transformation to the test palmprint ROI.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.9 (above) Successfully extracted palmprint ROIs, (below) Failed palmprint ROI
extraction. a), c), e) and g) present the entire image with b), d), f) and h) their corresponding
ROI.

• The extracted ROI is scaled relative to the image’s size, not the hand’s size. This can
be a problem as it can include fewer palm pixels than background (as in Fig. 5.10d, or
Fig. 5.10c).

• The approach is based on corners, which are assumed to be found more in the palm
area. As a consequence the approach becomes sensitive to the segmentation map, or
how centered the hand is within the image. If the segmentation is noisy (includes
background regions with strong corners), there is a strong tendency to center the ROI
to various parts of the background, like in Fig. 5.9h.

• The ROI extraction approach is difficult to evaluate. There are no ROI masks that can
be used to evaluate the extraction, which forces a system based on visual estimation of
the extraction.



86 Palmprints in the Wild - Preliminary and Exploratory Experiments

(a) (b) (c) (d)

Fig. 5.10 ROIs that can be considered as being ’ambiguous’ due to: a), b) too much
background being included in the ROI, c) the ROI includes most of the input image, d)
not enough surface of the palmprint being covered.

5.2.5 Considered Feature Extraction and Comparison

In order to address most of the shortcomings of the extraction algorithm, such as the absence
of rotation and scale normalization, the features that were considered had to be robust
to rotation and scale variation. Starting with the introduction of Scale Invariant Feature
Transform (SIFT) [115], several such features invariant to rotation and scale have been
developed, of which we mention Speeded Up Robust Features (SURF) [157] and Oriented
fast and Rotated BRIEF (ORB) [117]. This category of feature extraction approaches was
described in Section 3.3.1 of Chapter 3.

For the purpose of this Proof of Concept pipeline, SIFT descriptors were used to compare
a query with several stored samples. The first step is to extract SIFT descriptors from two
images. These feature descriptors are then compared based on a k-d tree algorithm [170]
which determines the nearest neighbor. Sometimes the second-nearest match may be very
close to the first, due to noise or other distortions. In this case, Lowe’s rule is applied, where
the ratio of closest-distance to second-closest-distance is taken. A match is accepted only if
this ratio is less than 0.7. This helps reduce the number of false matches up to 90% while
discarding 5% of the false non-matches [115]. Such a successful match is represented in Fig.
5.11 between two hand images from the same subject, but with different hand (and therefore
ROI) orientation.

5.2.6 Proof of Concept - Comparison Trial

In this scenario three ROIs are considered as being stored during a ‘training phase’, where
their extracted SIFT descriptors are stored locally for matching. A test ROI’s extracted SIFT
descriptors are matched with the set from the training phase.
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(a) (b) (c) (d)

(e)

Fig. 5.11 a)-d) Hand images and their corresponding ROIs, e) ROIs matched using SIFT
descriptors

The corresponding SIFT descriptors extracted from three ROIs are saved locally (Fig.
5.12c-5.12e) and matched with the descriptors extracted from two test ROIs (Fig. 5.12a and
5.12b). After comparison with an ROI sample from a different ID (Fig. 5.12a), samples
Fig. 5.12c-5.12e resulted in 5, 5 and 6 inliers. When the samples in Fig. 5.12c-5.12e are
compared with the ROI in Fig. 5.12a, the comparison results in 10, 24 and 20 inliers. By
defining a threshold for the number of inliers, one is able to determine if a test ROI belongs
to the same class or not. Furthermore, if there are several images stored for the same class, a
voting scheme can be developed, where the majority vote is considered as being the final
decision.

5.2.7 Conclusion

A PoC solution for cross-device authentication is presented, with initial results based on a
limited database acquired in unconstrained conditions. A novel palmprint ROI extraction
is proposed, based on Harris corner detection. The contents of this Section were part of a
magazine article published in the IEEE Consumer Electronics Magazine with the title "Palm
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(a) 92 SIFT descriptors detected (b) 66 SIFT descriptors detected

(c) 38 SIFT descriptors detected (d) 53 SIFT descriptors detected (e) 45 SIFT descriptors detected

Fig. 5.12 ROI used in a Proof of Concept comparison scenario. The ROIs in b), c), d), and e)
correspond to the same ID, whereas the user in a) belongs to a different ID.

print as a smartphone biometric: another option for digital privacy and security", vol. 5, no.
3, pp. 71-78, 2016.

5.3 Chapter Conclusions

The work presented in this chapter focused on the pre-processing stages of a biometric
recognition pipeline using palmprints acquired in unconstrained conditions. As such, the
presented results show that the color-based segmentation of the hand in unconstrained
conditions is not sufficient on its own. Texture and shape should be both taken into
consideration, either by using an AAM or CNN such as autoencoders. However, these
solutions introduce their own limitations, especially the need for large training databases.
A third approach would use hand pose regression strategies, thus by-passing the requirement
for accurate hand segmentation. Such a solution is proposed in Chapter7 of this thesis, based



5.3 Chapter Conclusions 89

on a large database of images using an acquisition setup that allowed the automatic labeling
of hand images. This database is introduced in Section 4.3 of Chapter 4.





Chapter 6

Unconstrained Palmprints - Baseline
Experiments

This chapter focuses on the feature extraction and feature comparison/classification stages of
the biometric recognition pipeline, as presented in Fig. 6.1.

Section 6.1 gives a general context for the experiments carried out based on the database
of images NUIG_Palm1. Section 6.2 presents an overview of the experiments carried out
and the methodology developed for each scenario that is investigated (e.g. information
regarding the ROI extraction, pre-processing, classification approaches and feature extraction
techniques). Section 6.3 reports the obtained results in the considered training/testing
scenarios. Section 6.4 presents conclusions and directions for future work.

The material in this chapter was originally published in the IEEE Transactions on
Consumer Electronics, vol. 63, no. 3, pp.334-342, August 2017 as " Unconstrained palmprint
as a smartphone biometric". It has been modified to integrate with the rest of the thesis.

Fig. 6.1 Generic overview of a hand-based biometric recognition system using optical sensors,
with the focus of the current chapter.
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6.1 General Context

Palmprint recognition is a well established field, an overview of existing literature being
presented in Chapter 3. With the introduction of NUIG_Palm1 database (for a detailed
description, the reader is referred to Section 4.2 of Chapter 4), the problem of cross-
device palmprint recognition in unconstrained conditions was considered for the first time.
Furthermore, it is important to underline the restrictions imposed to any algorithm that is
expected to run on an embedded platform: (i) computation load, (ii) potential to be run on
an embedded chip and (iii) fast inference time. In the year 2017 (time of publication of
this work) the tools for embedding CNNs onto embedded chip-sets [171] was in its infancy.
This is the main reason why no solutions based on CNNs were included in the following
experiments.

The main objective of the experiments presented in this chapter is a Proof of Concept
(PoC) regarding the use of unconstrained palmprints for cross-device authentication. These
experiments therefore represent a set of ’baseline recognition results’, to be used for reference
in future papers. Several state of the art feature extraction techniques are implemented and
evaluated with various classifiers which are easily embeddable on a chip.

A series of training/testing strategies are considered for experimentation, making use of
the properties of NUIG_Palm1 database. Every hand in the database was acquired with 5
devices in 4 scenarios (corresponding to lighting conditions: ’indoor normal’ and ’indoor
dark’, as well as background: ’complex scene’ and ’wooden texture’), leading to a total of 20
images per hand class. Based on this distribution of images, we define two distinct training
strategies (also represented in Fig 6.2b):

• Cross-device (CD), where the training set contains ROIs from several devices acquired
in one scenario (from four possible lighting-background combinations)

• Device-specific (DS), where the training set contains ROIs from a single device in
several lighting-background conditions.

6.2 Experimental Methodology

6.2.1 Overview of Experiments

This section provides an outline of the considered experiments. They are organized in four
groups, as represented in graphical form in Fig. 6.2a:

1. What is the preferred classifier, from a collection of classifiers, based on Cross-Device
training strategy (Scenario 1) (Section 6.2.1)
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(a) Experimental workflow (b) Training strategies

Fig. 6.2 (a) Succession of items being investigated: classifiers, palmprint sample size and
training strategies. The performance of feature extraction approaches is included throughout
the entire experimental setup; (b) a visual representation of the Cross-Device and Device-
Specific training scenarios for a hand class from NUIG_Palm1 database.

2. What is the optimum size for the extracted palmprint ROI palmprint samples, where
the size of the ROI is varied throughout experiments, from (32x32) to (64x64) and
(128x128) pixels. For sub-sampling the bicubic interpolation is being used.

3. What is the preferred strategy for training:

(a) Cross-device (Section 6.2.1)

(b) Device-specific (Section 6.2.1)

4. Considering several feature extraction approaches (found in the literature), which one
provides the best results. These are used throughout all experimental combinations
(Section 6.2.1).
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A. Classification Strategy Evaluation

This set of experiments is designed to compare several classifiers, such as Collaborative
Representation Classifier with Regularized Least Squares (CRC_RLS), Support Vector
Machines (linear kernel), K-Nearest Neighborhood (number of neighbors being equal to the
number of training samples for each class) classifier and Fisher Discriminant Analysis (LDA)
[172]. The scikit-learn [13] Python library was used to perform the recognition experiments
for linear SVM, LDA and KNN, with scripts released on Github 1. The CRC_RLS classifier
was implemented in Matlab, with scripts being available in the same Github repository. As
mentioned in Section 6.2.1 the training strategy used for these experiments corresponds to
Cross-Device. Setup 1 (S1) was used, with ‘indoor normal’ lighting conditions, having as
background the poster with complex scenes.

In an effort to reduce the space occupied by reporting results (in Section 6.3), only the
optimum sample size was mentioned. Otherwise, the total number of experiments considered
would have been (11 feature × 4 classifiers × 3 sample sizes) which equals to 132. In this
way only 44 results are reported.

B. Cross-device Training (CD_Train)

The classifier reporting the best results during the evaluation of classifiers was used for this
set of experiments. All the images that are part of a lighting/background setup are used as the
training set one at a time (k-fold cross validation). For instance, images captured in cluttered
background under ‘indoor normal’ lighting condition (setup S1) with all five devices make
up the training set of images (total of 405 images), while the rest make up the testing set
(total of 1,215 images).

The training set is then changed to the other lighting/background setups (finishing with
Setup S4) and results are averaged, giving a better perspective of the performances and
challenges of the database.

C. Device-specific Training (DS_Train)

The training set for each class is using all the images from one device at a time. This results
in training with 4 palmprint images for each class, thus covering both lighting conditions
(total of 324 images). The remaining 16 images from the other devices for each class are
used as query (probe) images (total of 1296 images). The sample sizes used are the ones
which yielded the best results in the CD_Train experiment.

1Scripts used for experiments are available at "github.com/AdrianUng/unconstrained-palmprint-recognition"
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The results from this scenario should be compared with expectations made for every
device depending on their imaging capabilities, provided in Table 4.4 (in Section 4.2 of
Chapter 4). Based on these parameters we expect the order of performance (the first being
the best performing and the last being the least performing) for the classifier trained with
images originating from one device at a time to be the following: GS6, G4, i6S, P8, and
finally i5. While devices G4, GS6, i6S, and P8 benefit from optical stabilization, i5 does not.
Further, the image stabilization technology differs, G4 and GS6 having stabilization on 3
axis, while i6S and P8 have stabilization on 1 axis.

D. Feature Extraction Investigation

Several feature extraction methods are employed in the baseline experiments to obtain a
diversified set of discriminative features.

Methods encoding the orientation at pixel level were considered (OLOF [92], CompCode
[89], RLOC [58] and their Fast-implementation [99]) as well as two texture descriptors (LBP
[91] and DoN [84]) were included in the experimental phase.

Fast-CompCode, Fast-RLOC and DoN correspond to current state of the art results
reported on other palmprint databases (HKPU [17] and IITD [18]). CompCode, RLOC
and OLOF are included thanks to their status as fundamental feature extraction techniques
for palmprint recognition. They have withstood the test of time, reflected in their usage
as benchmark techniques for any novel feature extraction (e.g. [71], [84], [99], [125]).
Following is a formal definition of these feature extraction techniques.

6.2.2 ROI Extraction and Images’ Pre-processing

Along with the images, a set of manually placed key-points were included in the NUIG_Palm1
database. These 5 key-points mark the finger bases for the outer fingers (index and pinky)
and the middle of the finger-valley for the two central fingers (middle and ring fingers).
If we denote the first two points as X1, X2 and the last two points as X4 and X5, then the
middle of these segments are represented by X12 and X45. These two landmarks are then
used to create a reference withing the image, allowing the hand’s normalization of in-plane
rotation, as demonstrated in Fig. 6.3, where the extracted ROI is contained within the black
square.

In order to improve the contrast of the extracted ROI samples, the Contrast-limited
Adaptive Histogram Equalization (CLAHE) [173] algorithm was applied to every palmprint
sample before the feature extraction phase. This process (visualized in Fig. 6.4) increased
the contrast and emphasized the palm lines, thus improving the recognition rates.
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Fig. 6.3 Visualization of the palmprint ROI extraction using the provided key-points in
NUIG_Palm1. The hand image’s rotation is normalized using the X12 and X45 key-points,
after which a square is defined, containing the ROI.

6.2.3 Feature Extraction Approaches used in Experiments

A. Competitive Code (CompCode)

Competitive Code (CompCode) is one of the fundamental algorithms used for palmprint
feature extraction. Kong et al. [89] make the assumption that every pixel in the palmprint
ROI sample is found on a line. A bank of Gabor filters is defined, as in Equation 6.1 (
represented in Fig. 6.5 (a)-(f)).

ψ(x,y,ω,θ) =
ω√
2πκ

e−
ω2

8κ2 (4x′2+y′2)
(

eiωx′ − e−
κ2
2

)
(6.1)

where x′ = (x− x0)cosθ +(y− y0)sinθ , y′ = (x− x0)sinθ +(y− y0)cosθ ; (x0,y0) is the
center of the function; θ is the radial frequency in radians per unit length and θ is the
orientation of the Gabor functions in radians. The κ is defined by κ =

√
2ln2

(
2δ+1
2δ−1

)
, where

δ is the half-amplitude bandwidth of the frequency response, which is between 1 and 1.5.
When σ and δ are fixed, ω can be derived from ω = κ/σ .
The input ROI sample I(x,y) is then convolved with the bank of Gabor filters as in Equation
6.2:

Ci = I(x,y)∗ψR(x,y,ω,θi), i = 1, ...,6 (6.2)
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(a) RGB image (b) Grayscale image (c) CLAHE improved

Fig. 6.4 Improving the contrast in ROI images: (a) ROI represented in RGB, (b) ROI
converted to Grayscale, (c) Contrast-improved ROI using CLAHE [173].

where (x,y) are the image’s pixels, ψR is the real part of 2D-Gabor filter response with
radial frequency ω and orientation θi. The dominant line orientation is determined with a
competitive rule, in this case being argmin (as in Equation 6.3) because the palm lines are
associated to dark pixels:

C = arg mini(Ci), (6.3)

At every pixel’s location is stored the class of the lowest recorded filter response, thereby
obtaining a feature map as presented in Fig. 6.8b.

B. Robust Line Orientation Code (RLOC)

Robust Line Orientation Code (RLOC) [58] is defined as a modified finite Radon transform,
interpreted as a summation of image pixels describing a line in a 9x9. These filters are
represented in Fig. 6.5 (g)-(l). To extract RLOC, filters with 6 orientations (as in CompCode)
are convolved with the input ROI image using Equation 6.2, followed by a pixel-wise
competitive rule defined in Equation 6.3 applied to the filter responses. An example feature
map is presented in Fig. 6.8c.

C. Fast-CompC, Fast-RLOC

A fast implementations of CompCode (Fast-CompC) and RLOC (Fast-RLOC) was defined in
[99] and reported better overall results than their original implementations. By reducing the
number of filter responses being used, from 6 to 2, a more discriminative feature is obtained.
The selected two orientations need to be orthogonal , therefore there are 3 pairs of orientation
(when considering 6 orientations to define the bank of filters) for CompCode and RLOC
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(a) θ = 0° (b) θ = 30° (c) θ = 60° (d) θ = 90° (e) θ = 120° (f) θ = 150°

(g) θ = 0° (h) θ = 30° (i) θ = 60° (j) θ = 90° (k) θ = 120° (l) θ = 150°

Fig. 6.5 Filters used for convolution to obtain Compcode [89] and RLOC [58]: (a)-(f) Gabor
filters, (g)-(l) MFRAT filters. White positions in the 9x9 MFRAT filters correspond to the
pixels included in the summation process.

defined as:
CF,i = arg mini(Ci,Ci+3), i = 1, ...,3, (6.4)

where CF,i represents the extracted RLOC and CompCode filter responses. According to
the authors, the pair of orthogonal orientations chosen for the fast implementation does not
matter, but some differences were noted in the experimental part. As a notation, every fast
implementation of CompCode and RLOC contains the pair number used for that feature
extraction, as mentioned in Equation 6.4. Corresponding pairs of Fast-CompC and Fast-
RLOC feature maps are presented in Fig. 6.8d-6.8f and Fig. 6.8g-6.8i respectively.

D. Local Binary Pattern (LBP)

Local Binary Pattern (LBP) [91] is a simple yet powerful texture operator labeling the pixels
of an image by thresholding the neighborhood of each pixel, considering the result as a binary
number:

LBPP =
P−1

∑
p=0

(gp −gc)2p, s(x) =

1, i f x ≥ 0

0,otherwise
, (6.5)

where P is the size of the kernel used (3x3) and p is the index of the neighboring pixels in the
region, whereas c represents the value of the central pixel in the kernel. An example LBP
feature map is presented in Fig. 6.8j.
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(a) OLOF pair 1 (b) OLOF pair 2 (c) OLOF pair 3

Fig. 6.6 OLOF filters used to convolve with the palmprint ROI.

E. Othogonal Line Oriented Features (OLOF)

Orthogonal Line Orthogonal Features (OLOF) [92] is based on 2D Gaussian filters to obtain
a weighted average of line-like regions:

f (x,y,θ) = exp
[(

xcosθ + ysinθ

δx

)2

−
(
−xsinθ + ycosθ

δy

)2]
, (6.6)

where θ are the orientation of the filter, δx and δy denote the horizontal and vertical scale
parameters. Throughout experiments δx and δy were set as 1.8 and 0.5. An orthogonal filter
is defined with:

OF(θ) = f (x,y,θ)− f (x,y,θ +
π

2
) (6.7)

Three ordinal filters (OF(0), OF(π

6 ) and OF(π

3 )) are convolved with the ROI sample. Three
bit codes are then determined based on the sign of filter responses. They are represented in
Fig. 6.6. An example OLOF feature map is presented in 6.8k.

Fig. 6.7 DoN filter used to recover the 3D shape information from the palmprint ROI.
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F. Difference of Vertex Normal Vectors (DoN)

Difference of Vertex Normal Vectors (DoN) [84] represents a 3D feature descriptor recovered
from a 2D image. Each point/pixel on the image plane is corresponding to a vertex on the
palmprint surface. For every point having two neighboring regions R1

i and R2
i , its DoN feature

is computed with:

DoN(i) = τ

(
∑

j∈R1
i

z j − ∑
j∈R2

i

z j

)
, τ(α) =

0, α < 0

1, α ≥ 0
(6.8)

Practically, in order to construct the feature extractor a filter needs to be constructed using:

fi, j =


1, i f |i|> | j|

−1, i f |i|< | j|

0, otherwise

(6.9)

where i, j are the indexes i, j ∈ [−B,B]. The filter size is (2B+1, 2B+1). In order to obtain
the final feature image, the ROI sample is convolved with the filter defined in Equation 6.9.
The filter is also represented in Fig. 6.7. An example feature map of the DoN feature maps
used during experiments is presented in Fig. 6.8l.

6.2.4 Classification Techniques

A. Support Vector Machine with Linear Kernel

The Support Vector Machine (SVM) was first developed by Cortes and Vapnik [174]
for pattern recognition and function regression. Given an identically and independently
distributed training example set {(x1,y1), ...,(xn,yn)}, where x ∈ RN , y ∈ {−1,1}. The
kernel function can map the training examples in input space into a feature space such that
the mapped training examples are linearly separable. In order to have a better classification
result, we maximize the margin C of separation between patterns. The problem can be
converted to maximize the following dual optimization problem:

W (α) =
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiyiα jy jK(xi,x j) (6.10)
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(a) Contrast-improved ROI (b) CompCode (c) RLOC

(d) Fast-CompC: pair 1 (e) Fast-CompC: pair 2 (f) Fast-CompC: pair 3

(g) Fast-RLOC: pair 1 (h) Fast-RLOC: pair 2 (i) Fast-RLOC: pair 3

(j) LBP (k) OLOF (l) DoN

Fig. 6.8 Visual representations of feature extraction techniques considered for classification.
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subject to:

n

∑
i=1

αiyi = 0,

f or αi ∈ [0,C] and i ∈ [0,n]

(6.11)

The decision function becomes:

f (x) = sign

(
n

∑
i=1

αiyiK(x,xi)+b

)

b = yr −
l

∑
i=1

αiyiK(xr,yr)

(6.12)

where (xr,yr) is any training example and K is the linear kernel being used.
The two class approach is extended to multi-class by implementing ’one-vs-the-rest’ multi-
class strategy, thus training k models, according to the total number of classes.

B. Fisher’s Discriminant Analysis

Fisher’s Linear Discriminant Analysis (LDA) ([175] p.106) searches for the projection of a
database such that the ratio between the inter-class variance and the intra-class variance is
minimized.

The LDA classifier [176] is based on the Bayes classification rule, where for a given
vector x, it is assigned to the class ck when the following inequality is satisfied:

p(ck|x)> p(c j|x) f or all k ̸= j (6.13)

These posterior probabilities can not be directly measured, but can be derived from estimates
of the priori probabilities and the class distribution according to the Bayes formula:

p(ck|x) =
p(ck)p(x|ck)

p(x)
(6.14)

where p(x|ck) is the probability density function for the vector within k class, p(ck) is the
prior probability for class k and usually assumed to be equal for all classes, p(x) is the
probability density function of the input space and is also a constant over all the classes.
Then the decision rule referred in Equation 6.13 is simplified to:

p(x|ck)> p(x|c j) f or all k ̸= j (6.15)
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The probability density functions for all the classes are assumed to follow a multivariate
Gaussian distribution:

p(x|ck) =
1√

(2π) f det(C)
exp(−1

2
(x−µk)

TC−1(x−µk)) (6.16)

where x is the vector to be classified, f is the dimension of the vector, C is the common
covariance matrix of all the classes, and µk is the mean value of class k.

LDA is included as a reference for classical pattern recognition solutions to classification.

C. K-Nearest Neighborhood

The Nearest Neighborhood (K-NN) classifier represents a classic approach to classification
[177]. Given a function ρ : χ ×χ → R, we determine the distance between two elements of
the domain χ . For instance, if χ = Rd , then ρ can be the Euclidean (L2) distance:

ρ(x,x′) = ∥x− x′∥=

√√√√ d

∑
i=1

(xi − x′i)2 (6.17)

Let S = {(x1,y1), ... ,(xm,ym)} be a sequence of training examples. For each x ∈ χ , let
π1(x), ... ,πm(x) be a reordering of {1 , ... , m} according to their distance to x, ρ(x,xi). That
is, for all i < m:

ρ(x,xπi(x))≤ ρ(x,xπi+1(x)). (6.18)

When K > 1, the label y with the most votes is considered:

yπi(x) : i ≤ K (6.19)

The K-NN classifier continues to be used thanks to its low complexity [127].

D. CRC_RLS Classification Strategy

As palmprint recognition is a small sample size classification problem, a collaborative
representation classifier with regularized least squares (CRC-RLS) is used to determine
the identity of the query image [178], [128]. Let D = [D1, D2, ..., Dk] be the dictionary
which denotes the training palmprint images of the k subjects (available in the database).
Di = [vi,n1 , vi,n2, ..., vi,ni] are the training palm images of the ith person and the total number
of training palm images of the same person is denoted as ni. A query palmprint image y can
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be collaboratively coded over the dictionary D [178] by using:

a = Xy, (6.20)

where
X = (DT D+ γ · Imat)

−1DT , (6.21)

where γ is the regularization parameter and Imat is the identity matrix. The regularized
residual εi for each subject i in the dictionary D over this coding scheme is calculated using:

εi =
∥y−Di ·ai∥2

∥ai∥2
(6.22)

From the regularized residuals, the identity of the query image y can be calculated with:

Identitiy(y) = arg min(εi) (6.23)

This specific choice of classification scheme is employed based on not only its success rate
in face recognition, gender classification, palmprint recognition etc., but also because it is
up to 1,600 times faster than the state of the art sparse representation based classifiers [178].
Such a high performing, computationally light classifier may be widely adopted in resource
constrained consumer devices such as smartphones.

6.2.5 Resources Used

The tools used to carry out the experiments in this chapter include:

• Intel Core i7-2600 CPU @ 3.40 GHz

• 16 Gb of RAM

• Matlab 2013a

• scikit-learn 0.20.1 for Python 2.7

• CompCode and OLOF implementation (Matlab) used by Khan et al. [54] 1

• RLOC, Fast-CompCode, Fast-RLOC and DoN implementation (Matlab), along with
the Collaborative Representation Classifier, available as a Github repository 2.

1Implementation of CompCode, ContCode and OLOF available to download at Zohaib Khan’s website
"https://sites.google.com/site/zohaibnet/Home/codes". The archive in question is named PP_ContCode.zip.

2Codes available at the Github repository "https://github.com/AdrianUng/unconstrained-palmprint-
recognition".
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6.3 Results

6.3.1 Classification strategy evaluation (Cross-Device)

Several traditional classifiers were evaluated under the same conditions as the cross-device
training setup described in CD_Train using for training the images in Scenario 1 (’indoor
lighting’, from all devices). This leads to 5 images per hand class being used for training
(405 in total) and 15 for testing (1215 in total). The sample size used was the one which
reported the best results for each feature extraction technique in Table 6.2.
The performance of classifier-feature extraction combinations are presented in Table 6.1
in the form of Equal Error Rate (EER). The EER is commonly used to compare biometric
recognition systems, as it denotes the point of intersection between the False Acceptance
Rate (FAR) and the False Rejection Rate (FRR). The lower the EER, the better a system is
considered.

Table 6.1 Equal Error Rates (EER) (%) for CD_Train training using various classifiers. The
overall best result is colored in green, with best results for each classifier colored with yellow.
The lowest obtained EER for every feature extraction technique is bolded.

hhhhhhhhhhhhhhhFeature extraction
Classifier

Sample
size

Linear
SVM

K-NN
(N=4)

LDA CRC_RLS

CompCode

32x32

13.66 21.74 18.60 14.09
Fast-CompC1 14.57 17.18 17.67 14.38
Fast-CompC2 12.23 14.42 12.59 12.06
Fast-CompC3 12.51 14.68 13.90 12.65
RLOC

64x64

10.86 13.23 13.79 10.82
Fast-RLOC1 13.20 13.23 17.26 13.03
Fast-RLOC2 11.07 27.07 14.62 10.98
Fast-RLOC3 11.19 12.52 15.23 10.90
LBP 32x32 13.17 12.98 16.15 13.13
OLOF 32x32 13.09 14.23 14.90 12.67
DoN 64x64 12.31 20.82 14.22 10.08
Average - 12.53 16.55 15.36 12.25

The best performance of the SVM with linear kernel is reported when using RLOC
(10.86%). The behavior of this classifier is very similar to that of CRC_RLS. The best
performance of the KNN with N=4 is reported when using Fast-RLOC3 (12.52%). Similarly,
the LDA classifier obtains its best result (12.59%) when using a fast implementation (Fast-
CompC2).

The best EER is reported for the proposed CRC_RLS classifier, with 10.08% being
obtained when using the DoN feature. The next best result is reported by the SVM with linear
kernel when using RLOC as feature extraction. Overall the CRC_RLS classifier reports the
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lowest EERs regardless of the feature extraction technique used, from the 11 considered
approaches obtaining the minimum (feature-wise) in 8 cases. Considering the performance
reported for these classifiers, the CRC_RLS is selected for the rest of the experiments.

6.3.2 Cross-device Training (CD_Train)

The CD_Train results are presented in Table 6.2, indicating that the CRC_RLS classifier is
fairly robust to alignment errors, considering the comparison is done at pixel level. Please
note the fast implementations of CompCode and RLOC contain ‘Fast’ in their name and an
indication of the pair used for their computation, as detailed in Equation 6.4.

Table 6.2 CD_Train averaged Recognition Rates (RR) and averaged Equal Error Rates (EER).
The two best results are colored in green and yellow, for every feature extraction technique
the best result is indicated by the bolded numbers.
hhhhhhhhhhhhhhhFeature Extraction

Sample size 32x32 64x64 128x128
RR(%) EER(%) RR(%) EER(%) RR(%) EER(%)

CompCode 67.03 14.03 69.81 15.69 56.68 21.98
Fast-CompC1 66.64 14.60 69.15 16.63 54.59 25.23
Fast-CompC2 73.12 12.31 71.31 15.68 55.72 25.62
Fast-CompC3 70.74 13.11 69.07 16.94 51.37 27.90
RLOC 70.57 12.20 77.06 10.88 71.46 15.37
Fast-RLOC1 67.32 13.50 74.54 13.10 67.73 18.29
Fast-RLOC2 69.44 12.31 75.61 10.99 60.47 15.82
Fast-RLOC3 70.06 12.58 76.81 11.67 69.79 17.04
LBP 72.71 13.61 72.59 14.89 68.37 15.96
OLOF 73.02 12.94 70.47 16.34 56.58 24.37
DoN 77.67 9.49 79.87 10.06 71.77 15.36

The best result is achieved by the DoN feature with 79.87% RR and 10.06% EER, closely
followed by Fast-RLOC3 and Fast-RLOC2, at around 77% RR and 11% EER. Both scenarios
used ROI samples of size 64x64.
When using ROI samples of size 32x32 the best performance is reported by Fast-CompC2
with 73.12% RR and 12.31% EER. Similar performance is obtained with OLOF (73.02%
RR and 12.94% EER) and LBP (72.71% RR and 13.61% EER).

It is interesting to note how the recognition performance decreases as the size of the ROI
sample increases, a powerful sub-sampling (from the initial size of the ROI) compensates
slight misalignment. The lowest recognition results are obtained when using ROI sample of
size 128x128, with Fast-CompC1 (51.37% RR and 27.9% EER). In this case the best results
are reported by DoN (71.77% RR and 15.36% EER) and RLOC (71.46% RR and 15.37%
EER).
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The results reflect the appropriate size of the ROI sample for each feature extraction
technique. It is important to note that features like CompCode, LBP or OLOF are strongly
affected by ROI misalignment, which explains why the best results are reported for ROI of
size (32x32) pixels.

6.3.3 Device-specific Training (DS_Train)

Receiver Operating Characteristic (ROC) curves for the DS_Train recognition experiments
are provided in Fig. 6.9, whereas the RR and EER are presented in Table 6.3.

Table 6.3 DS_Train RR (%) and EER (%) results. Overall best results are marked with green,
with best results for every device being colored with yellow. Best results reported for every
feature are bolded.

Feature Sample G4 GS6 i5 i6S P8 Average
extraction size RR EER RR EER RR EER RR EER RR EER RR EER
Compcode 64x64 71.06 15.24 74.31 14.15 72.45 14.54 69.98 16.68 72.83 14.83 72.12 15.08
Fast-Comp1 64x64 72.07 15.56 72.76 14.56 72.38 14.53 70.83 16.22 71.6 15.41 71.92 15.25
Fast-Comp2 32x32 79.86 9.44 80.86 9.51 80.09 9.86 77.85 11.26 79.86 9.36 79.70 9.88
Fast-Comp3 32x32 79.32 9.89 81.02 9.21 77.93 9.77 78.39 10.09 79.93 9.39 79.31 9.66
RLOC 64x64 82.56 8.87 83.02 7.98 81.94 8.65 81.17 9.88 81.79 8.74 82.09 8.82
Fast-RLOC1 64x64 77.62 10.99 79.94 10.63 79.32 10.28 76.69 11.94 78.62 10.54 78.43 10.87
Fast-RLOC2 64x64 81.64 8.38 81.48 8.63 82.95 7.91 80.01 9.41 80.86 8.74 81.38 8.61
Fast-RLOC3 64x64 81.79 8.52 84.03 8.14 81.02 9.42 80.86 10.00 81.79 9.09 81.89 9.03
LBP 32x32 76.77 12.29 79.55 10.21 77.62 11.23 77.31 12.86 78.47 11.27 77.94 11.56
OLOF 32x32 79.32 10.14 80.09 9.73 78.86 10.14 76.31 11.05 79.47 10.08 78.80 10.22
DoN 64x64 86.34 7.40 87.81 6.10 85.96 7.63 84.41 8.41 85.8 7.46 86.06 7.40

The overall best result is reported for DoN when trained with images from GS6, with
87.81% RR and 6.10% EER. The next best result corresponds to training with images from
G4, obtaining 86.34% RR and 7.40% EER.
The DoN provides the overall best results, regardless of the training device (the average RR
and EER being 86.06% and 7.40%.) The next best results are obtained using Fast-RLOC2 in
the i5 scenario, with 82.95% RR and 7.91% EER.

The lowest result is reported for Compcode training with images from i6S, with 69.98%
RR and 16.68% EER. Similar performance is reported for Fast-CompC1, also with training
images from i6S, with 70.83% RR and 16.22% EER. This observation is also backed by
the ROC plots in Fig. 6.9, where the curves corresponding to CompCode and Fast-CompC1
report the lowest values.

The lowest results are consistently provided by i6S, with the highest EER reported for
every feature extraction technique (Table 6.3). This is also reflected in the ROC plots in
Fig. 6.9d. This behavior is not correlated with the sensor’s low resolution, but with the
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(a) Train set:G4 (b) Train set:GS6

(c) Train set:i5 (d) Train set:i6S

(e) Train set:P8

Fig. 6.9 ROCs from DS_Train scenario, using for training only images from one device at a
time.
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behavior of the Auto mode in terms of exposure time and ISO (used during acquisition). In
the choice between motion blur and lower Signal to Noise Ratio (SNR), i6S overestimates
its capabilities and increases the exposure time to unacceptably long values for real use (e.g.
0.25s). As it can be noted from Fig. 6.9c, i5 (which represents an older model of the same
family of devices) follows a similar trend. On the other hand, the key traits which favor
GS6’s performance are the bigger sensor, better resolution and the overall optical design.

If we are to consider the value of 10−3 for False Acceptance Rate (equivalent to having 1
falsely accepted image for every 1,000 comparisons) as benchmark for a biometric recognition
system, then DoN gives the best result in DS_Train, with a Genuine Acceptance Rate (GAR)
of 85.50% when training with images acquired with GS6. The GAR This is an acceptable
performance for authentication on smartphones for device unlocking, or in conjunction with
other forms of authentication (used as a soft biometric).

6.4 Conclusions

There is an ongoing effort to perform recognition of biometric characteristics across several
devices and in unconstrained conditions, an especially difficult scenario, but with high
applicability in day-to-day commercial (online) activities. Biometric characteristics in this
category include face [179], iris [180] or fingerprint [181] recognition. A challenging
aspect of these approaches lies in training with images from one device and comparing with
biometric samples acquired with a different device. Previously, Jia et al. [10] performed such
recognition scenarios across three consumer devices using palmprint recognition, but in very
constrained conditions.
This work adds palmprint recognition to the literature on unconstrained biometric recognition
across consumer devices.

This chapter demonstrated the feasibility of user authentication on smartphones based
on palmprint biometrics. The unconstrained nature of images from the palmprint database
NUIG_Palm1 (introduced in Section 4.2 of Chapter 4) has proven to be a considerable
challenge. Recognition scenarios were designed according to the attributes of NUIG_Palm1
(cross-device and device-specific).

With an average Recognition Rate (RR) of 86.06% and average Equal Error Rate (EER) of
7.4%, the Collaborative Representation Classifier via Regularized Least Squares (CRC_RLS)
classifier using Difference of Vertex Normal Vectors (DoN) features provided the best results
(device-specific case), making it a candidate for a solution using the palmprint as a biometric
characteristic for authentication on/using consumer devices.
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The fact that results are better in the device-specific case than in the cross-device one
suggests that training the classifier with images from several lighting scenarios enhances
the performance as compared to training with images from several devices. In real life case,
this can be managed by routinely updating the training set stored in the consumer device or
central database, thus reducing the probability for the system to encounter an image acquired
under considerably different conditions when compared to the stored samples.
Secondly, the camera sensor size influences the recognition rate in noisy conditions, devices
having a larger sensor (1.26" vs. 1.32") performed better than smaller sensors. Having a
larger sensor increases the amount of light passing through the lens, therefore reducing the
overall noise levels. We can expect a similar result with other biometric recognition scenarios
that rely on a camera for acquisition.
Thirdly, the palmprint ROI extraction stage revealed the absence of an algorithm that could
be robust to background, as well as hand pose.

Future work aims to develop an approach for unconstrained ROI extraction of the hand
images. Furthermore, misalignment mitigation techniques should be explored, to compensate
for inaccurate ROI extraction.



Chapter 7

Unconstrained Palmprint ROI
Extraction

This chapter addresses one of the key stages required for robust and reliable palmprint
authentication, specifically the ROI extraction. This step is important as it will influence the
comparison trial stage.
The chapter is organized as follows: Section 7.1 presents an overview of the context and a
short literature review, Section 7.2 describes the proposed architecture, Section 7.3 introduces
resources used throughout experiments - databases, neural networks and the tools used.
Section 7.4 outlines the adopted experimental methodology for the tasks evaluated. An
overview of experiments is presented at the end of Section 7.4. Section 7.5 introduces the
obtained results, with Sections 7.6 and 7.7 discussing them.

7.1 Related Work

The related work for this chapter spans a number of different research fields, including:

• palmprint region of interest extraction, where the main objective is to extract the
palmprint region and use it to discriminate between individuals’ identity (discussed in
Section 3.2 of Chapter 3).

• applications using the Leap Motion sensor which has been used for static or dynamic
hand gesture recognition (the reader is referred to Section 4.3.2 of Chapter 4.)

• hand pose estimation, where the location of the hands’ joints are determined. In the
most recent literature CNN based techniques have shown the most promise and our
review will focus primarily on CNN based techniques.
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7.1.1 Hand Pose Estimation - a Literature Review

Hand pose estimation is defined as the effort of estimating the positions of a hand’s joints
using either 2D or 3D coordinates (relative to the camera). Considerable efforts have been
made using depth-based systems [182], but more recently the vision-based approaches
(visible range) have made considerable progress, especially thanks to advancements in body
pose estimation. The two tasks are different in very few ways, mainly in the variability of
the labeled joints. Bodies tend to be upright, with arm and leg movements taking place in
specific patterns. However, strong articulations, small or barely visible joints and occlusions
are the main challenges that are faced. Comparatively, hands face more potential orientations
and fingers easily become obstructed from view, although the context does provide some
cues regarding the potential location of fingers/joints.
Both hand and body pose are specific tasks of the general problem of pose detection, which
means that advancements in one area will improve the other as well. It is common to have an
algorithm performing well on one pose detection task to be deployed on other pose detection
tasks as well. Typical examples include the OpenPose project [183], which is a library that
supports body, hand and also head pose detection on still images.

Toshev et al. introduce DeepPose, a solution to human pose detection using CNNs. Their
approach involves several stages of refinement for every (x,y) prediction of joints (elbow,
wrist, etc.) using a sliding window.

Tomson et al. [184] combine a CNN architecture with conditional probabilities derived
from pairs of joints to create a unified model. They use the predictions provided by the CNN
(local model) for body parts and make a higher-level spatial model based on the probability
of correctly predicted pairs of joints. The spatial model is not designed to improve the
predictions that are already correct, but to penalize potential false positives. Tomson et al.
report better results on body pose databases when compared to DeepPose.

Wei et al. [185] extend the work on Pose Machines [186] and introduce Convolutional
Pose Machines (CPM) to progressively determine the probability maps for body pose
landmarks in RGB images. They initialize predictions with a deep neural network and
further refine them with a 2nd input which is connected to the main architecture. Several
residual stages of convolutions lead to progressively lower losses, Wei et al. recommending
6 stages. The probability maps (outputs) of the network represent masks that are 8 times
smaller than the input image, in the original paper being of (368x368) pixels.

Newell et al. [187] connect residual information from several scales, obtaining a network
they entitle Stacked Hourglass Network (SHGN), after the successive up-scaling and down-
scaling of layers. Compared to the unified model described by Tomson [184], SHGN does
not use probabilities, sufficient contextual information being derived from this change in
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scale. Predictions of joints are iteratively improved using intermediate supervision after each
hourglass module. 2 modules are recommended for an optimum balance between accuracy
and resources used. For practical reasons Newell et al. used probability maps (output)
that are 4 times smaller than the input image, in the original paper being (256x256) pixels.
Furthermore, L2 is used as the loss function during training. Reported results surpass the
ones provided by CPM when using 6 stages.

Mueller et al. [147] introduce a database of hands to help with 2D hand pose estimation.
The images were generated using a Generative Adversarial Network (GAN) entitled GeoConGAN.
Mueller et al. train a Resnet [188] architecture with both 2D and 3D joint positions, making
the hand pose estimator especially robust in the context of hands that are partially covered.
Their GANerated Hands database provides both sets of images.

Zimmerman et al. [189] estimate the 3D coordinates of a hand’s joints from a single RGB
image. The pipeline is made up of 3 different CNNs. They suggest a CNN which segments
and crops the hand from the image called HandSegNet, a 2nd that estimates the pose (joints)
called PoseNet, followed by a 3rd network called PosePrior that outputs the 3D structure of
the hand in relative, normalized 3D coordinates in a canonical frame.The architecture for
PoseNet takes from CPM the 1st stage and its weights (any common layers are initialized
with weights learned from body pose regression [185]), followed by 2 stages containing
five Convolutional layers. Similar to CPM, the 3 prediction stages output heatmaps for
corresponding joint position are 8 times smaller than the input image of (256x256) pixels.

Gomez-Donoso et al. [190], [191] use a CNN-based approach to detect/segment hands
from a frame and perform regression for every joint. Faster R-CNN [70] was used for
segmentation and ResNet50 [188] was used for landmark regression. The used images were
initially acquired with a setup of 4 webcams located at different angles, from which the
finger-joint labels were read with a Leap Motion device. The authors claim an average error
of 10 pixels per hand image. However, Gomez-Donoso et al. do not provide a comparison of
their approach with other methods for hand-pose regression, nor scale the distances between
predicted and ground truth data.

7.2 Proposed CNN Architecture

The previously used approaches to the ROI extraction/segmentation in the context of
palmprint recognition have already been discussed in Chapter 3.2. The proposed CNN
for unconstrained ROI extraction attempts to combine elements from two established CNNs -
InceptionV3 [192] and Segnet basic [193]. The hypothesis is that the Segnet encoder is able
to provide contextually rich information regarding the hand’s location/pose, which when
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Fig. 7.1 Diagram with the architecture of the proposed network Segnet-Inception network.
Enc1, Enc2, etc. stand for the encoding stages of Segnet. Output is the set of 6 points (xi,yi)
describing the palmprint key-points with (x,y) coordinates. Points A and B represent the
input to the Inception modules that are used, depending on the selected network architecture
- A for Proposed network or B for altV7. A detailed outline of this architecture is given in
Table 7.1

coupled with a chain of Inception modules form an improved architecture for point regression
tasks.
Combining two architectures attempts to bring together two or more networks that either
have the same function (e.g. classification, segmentation, etc.) or perform different functions
that have some overlap in their learning (e.g. classification and segmentation). Therefore,
examples from the former category are Inception-Resnet [194], which brings to the Inception
modules residual information from previous layers, or SPDNN [195], which reinforces
networks’ weak points with other networks’ strong points in a parallel manner, with their
outputs being merged at the end. Bazrafkan et al. [196] considered both cases of segmentation
as well as classification, having provided an implementation for the task of low-quality iris
segmentation with 3 network architectures. In the second category there is also HyperFace
[197] which combines the outputs from layers found at several depths in AlexNet [198]. The
outputs are then concatenated and used as a starting point for multiple output branches of the
network, each specialized for a given task.

The proposed architecture couples elements from two networks designed for different
tasks: Inception for image classification (object detection), and SegNet for image segmentation.
Starting with the Segnet architecture [193], the output of the last Convolutional layer (before
MaxPooling) from the last Encoding stage (point A) is directed towards the chain of Inception
Modules (IM), as represented in Fig. 7.1. The exact point of forking is better described
in Table 7.1, detailing the succession of layers. The reason for choosing the output of this
particular layer is the compactness of information it has encoded. The structure of IMs
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Fig. 7.2 Inception module architecture, as implemented in Keras platform [199] according to
Szegedy et al. [192]. Every block (except Average Pool) represents a 2D convolution. The
number in the upper half of the block is the number of filters, whereas the number in the
lower half is the kernel size. The input is of shape (10,16,512) or (5,8,512)

follows the implementation described in [192] which uses (1x1) convolutions with ’ReLu’
activation, as well as batch normalization, represented in Fig. 7.2.

The scenario in which the chain of IMs is connected to point B in Fig. 7.1 corresponds to
the alternative implementation of the proposed network, having as input to the chain of IMs
the output of the MaxPooling layer. This represents an even more compact representation of
the input image compared to the fork in point A.
It is interesting to observe the behavior of these two networks and determine if the image
representation in fork A aids the regression task, compared to the fork in B.

The loss function used for the regression of the selected points is the average Euclidean
Distance (ED) for (x,y) coordinates, defined in Equation (7.1):

Loss =
2
N

N/2

∑
i=1

√
(xi − x′i)2 +(yi − y′i)2 , (7.1)

where i = 1, ..,N/2 and N = 12 total number of x or y coordinates, (x′,y′) representing the
predicted coordinates.

7.3 Resources Used

This section contains information about the data used for training and testing the networks. It
also contains information about the models evaluated in this paper and the methods used to
evaluate them.
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Table 7.1 Architecture of the proposed networks. For simplicity positions 20*, 21* and
22* were not fully reported. Please refer to Fig. 7.2 for the structure of the used Inception
Modules.

No. Name Kernel Dimensionality
1 Input - 160x256x3
2 Conv. + ReLU + BN 3x3 160x256x64
3 Conv. + ReLU + BN 3x3 160x256x64
4 MaxPool 2x2 80x128x64
5 Conv. + ReLu + BN 3x3 80x128x128
6 Conv. + ReLu + BN 3x3 80x128x128
7 MaxPool 2x2 80x128x64
8 Conv. + ReLu + BN 3x3 40x64x256
9 Conv. + ReLu + BN 3x3 40x64x256
10 Conv. + ReLu + BN 3x3 40x64x256
11 MaxPool 2x2 20x32x256
12 Conv. + ReLu + BN 3x3 20x32x512
13 Conv. + ReLu + BN 3x3 20x32x512
14 Conv. + ReLu + BN 3x3 20x32x512
15 MaxPool 2x2 10x16x512
16 Conv. + ReLu + BN 3x3 10x16x512
17 Conv. + ReLu + BN 3x3 10x16x512
18 Conv. + ReLu + BN 3x3 10x16x512

(fork point A)
19 MaxPool 2x2 5x8x512

(fork point B)
* Inception Module x 3

(Fig. 7.2)
- 10x16x256 or 5x8x256

20 Global Average Pool - 256
21 FC + ReLu - 256
22 FC + ReLu - 12x1

7.3.1 Databases Used

A. NUIG_Palm2

The first database used for training is the database collected with the Leap Motion device,
entitled ’NUIG_Palm2’ (NUIGP2), previously introduced in Section 4.3 of Chapter 4. A
total of 18,303 labeled images were used for the training set and the remaining 1,103 were
kept for testing. Because of the limitations of the 2D projection, 763 images were selected
for evaluation purposes (for NUIGP2). The following augmentations were applied to the
training set:

• vertical flip: images are being flipped along the width

• Gaussian blur: images are blurred with a kernel whose size is randomly chosen from 3
options - (8x8, 10x10, 14x14)



7.3 Resources Used 117

(a) Adapting GAN_H database (b) Sample images from

Fig. 7.3 (a) Algorithm for adapting the hand images from the GANerated Hands (GAN_H)
database to our use-case. 195 texture images were selected from the database in [200], (b)
Sample images from the adapted database. Even though all hand images are successfully
paired with compatible backgrounds based on their color information, the semantic
information of the backgrounds’ contents is more relevant in the top two rows than the
two bottom rows.

• motion blur: images are blurred with a linear motion blur whose kernel size and
orientation angle are chosen randomly from (3x3, 5x5, 7x7) pixels and (0, 45,90, 135)
degrees respectively. For this step the pyblur version 0.2.3 library was used.

• image stretching: the images are stretched along either the width or the length, with a
random value - (0.03%, 0.05% or 0.075%). After stretching, the images are cropped
so they have the initial shape.

• rotation: the images are rotated with a randomly chosen number of degrees selected
from the set (7,-5,-3,-2,2,3,5,7).

B. GANerated Hands

The 2nd database is made up of synthetic hands introduced by Mueller et al. [147], entitled
GANerated Hands (GAN_H). This database contains 2 folders: one with synthetic hands
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that are holding objects, and another with synthetic hands only. For our setup only the folder
without objects was considered. It contains 143,449 hand images which do not require the
augmentation applied to NUIG_Palm2.
However, because the networks’ input image size is (160,256,3), the images from GAN_H,
of size(256,256,3) needed to be re-scaled to (160,160,3) and placed in a (160,256,3) frame.
However, instead of leaving this difference (96 pixels) with either black or white pixels, we
chose to use images from the database of images released by Cimpoi et al. entitled ’Textures
in the Wild’ [200] and combine the two sets to pair with the backgrounds of the hand
images having similarly colored backgrounds. After converting the hand image to the HSV
color space, the histogram of the Hue layer was computed using 180 bins. Then the lowest
Battacharya distance between that histogram and the list of 195 histograms corresponding
to all potential backgrounds was determined. The lowest distance was considered as an
appropriate candidate, leading to composed images that appeared natural. A better illustration
of this process is presented in Fig. 7.3.

D(Him,Hbgr) =

√√√√√1− 1√
H̄im ¯HbgrN2

bins

Nbins

∑
√

HimHbgr, (7.2)

where Nbins is the number of bins used (180), Him and Hbgr are the computed histograms of
the hand image and the background respectively, with H̄im and H̄im being defined by Equation
(7.3):

H̄im =
1

Nbins

Nbins

∑ Him (7.3)

C. NUIG_Palm1 and MOHI

NUIG_Palm1 (NUIGP1) is a recently introduced database of palmprints [19] acquired with
smartphones in an unconstrained context. The hand pose was chosen by the subjects, against
two types of backgrounds - one with real-world scenes and another with wooden background
similar to skin color. This is currently the only database of palmprint images acquired in such
conditions, as mentioned previously (in Chapter3). As described previously in Section 4.2 of
Chapter 4, the acquired hands have many orientations in a variety of lighting conditions. The
database currently contains 81 subjects, providing a total of 1,616 images.

MOHI [201] is a database of hands acquired for hand contour recognition in the context of
smartphone imaging, but fit the use case defined for the problem of palmprint ROI extraction.
Like palmprint databases, the RGB images contain hands with stretched fingers in a variety of
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(a) NUIGP1 (b) MOHI

Fig. 7.4 Sample images from NUIGP1 and MOHI.

orientations, against a uniform/white background. The main reason for using this database is
the means of acquisition which relied on a smartphone camera in several lighting conditions,
as well as the large number of classes (200) spread across 3 sessions (total of 2,500 images).

D. BIOmix

To prove the usefulness of the proposed CNN described in Section 7.2, as well as the data
in NUIG_Palm2, another database was made by combining images from all previous ly
mentioned databases. The training set is composed of 50% of the NUIGP1 [19] (820 images
from 41 subjects) and 50% of the MOHI [201] (1,500 images from 100 subjects) database,
which along with 8,145 images from NUIG_Palm2 (from 7 subjects) are augmented with the
process detailed earlier in Section 7.3.1. The training set is finally complemented by 50,000
images from the GANerated_Hands database, leading to a total number of 112,790 images.
The remaining images from NUIGP1 (795 images from 40 subjects) and from MOHI (1,000
from 100 subjects) are used for testing the proposed network’s performance for 2D point
regression, as well as ROI extraction success rate.
This mixed database will hereon be mentioned in the current paper as BIOmix, to emphasize
the combination of the two separate palmprint databases with the two hand pose databases.

Furthermore, the performance of both NUIG_Palm2 and GAN_H will be evaluated on the
previously described test set (NUIGP1 and MOHI). For this comparison to be fair, the same
(NUIGP1 and MOHI) images that are part of BIOmix are included in these cases as well. In
the case of NUIGP2 all training images required the augmentation described in Section 7.3.1
whereas in the case of GAN_H only non-synthetic hand images required augmentation.
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7.3.2 Tested Convolutional Neural Networks

The CNNs being compared are detailed in Table 7.2 and can be broadly classified into 5
groups:

1. Proposed network (forking point A), as described in Section 7.2

2. Alternative implementation (altV7) of proposed network (forking point B), as described
in Section 7.2

3. Classification CNNs - InceptionV3, ResNet50 (previously used for keypoint regression
in [202], [191] and [147])

4. CNNs for Palmprint RoI Extraction, previously used for this purpose by Bao [66] and
Chatfield [68]

5. Pose regression CNNs using probability heatmaps for joints - Stacked Hourglass
Network (SHGN) [187], Convolutional Pose Machines (CPM) [185], PoseNet [189].

There is a further branching in the aforementioned algorithms, considering that some
include a pre-processing stage of segmenting and cropping the hand prior to pose regression.
This approach was not stressed, because palms/hands are positioned close to the center of
the image (as can be seen in Fig. 7.4). Furthermore, there is only one hand in every image
that requires processing. Because the proposed network used the entire image as input, also
SHGN, CPM, and Posenet were implemented in the same way, not using a sliding window.

Table 7.2 Architecture details of the CNNs being compared throughout the experimental
phase.

Network
name

Strategy Output size Total parameters Number of float
operations

Convolutional
layers

Proposed 15,662,748 31,347,752 34
altV7 15,662,748 31,347,752 34
InceptionV3 (x,y) coordinates 12x1 22,858,028 45,836,556 95
Resnet50 36,177,292 72,433,801 53
Bao 18,354,108 36,703,500 4
Chatfield 60,981,964 121,947,614 5
SHGN 40x64x6 6,594,960 13,236,981 98
CPM probability heatmaps 40,958,564 81,908,010 41
PoseNet 20x32x6 25,908,818 51,807,130 23
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7.3.3 Tools Used

The following equipment and software was used to obtain the reported results:

• GPU: TitanX-Pascal 1080

• CUDA version: 9.0

• cuDNN version: 7.1.4

• tensorflow version: 1.8.0

• Keras version: 2.2.2

• OpenCV version: 3.4.2.16

• Github repositories used: SHGN source code1 from Github.

• Scripting codes used for training/evaluation are released in a Github repository 1

7.4 Experimental Methodology

A first analysis of the algorithms is provided regarding the 2D point regression problem,
followed by a series of experiments centered on the ROI overlap when using ground-truth
landmarks versus predicted ones. The images in NUIGP1 and MOHI were labeled using an
in-house developed Python script2 which was released on Github. These points are defined by
6 pairs of (x,y) coordinates representing the location of palmprint landmarks corresponding
to the finger joint locations described in Section 4.3 of Chapter 4, where NUIG_Palm2
(NUIGP2) is introduced.
The trained networks are able to generalize the position of joints from the hands in the test
set, allowing the ROI (Region of Interest) to be extracted.

7.4.1 2D-point Regression

The proposed network was trained on the databases detailed in Section 7.3.1, having its
performance compared with existing approaches. The Euclidean Distance between the

1A fork of the used repository can be found at "https://github.com/AdrianUng/Stacked_Hourglass_Network_Keras".
Forked from yuanyuanli85.

1Please visit "https://github.com/AdrianUng" for a full list of repositories used.
2The Python script used for labeling hand images can be accessed at: "https://github.com/AdrianUng/Label-

image-with-points".
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Fig. 7.5 Visualization of the PCK reference used during evaluation. The white square
represents the area defined by the palmprint landmarks’ bounding box (B-box). The magenta
and red squares represent the area obtained using 20% and 10% of B-box’s side. These
correspond to 4% and 1% of B-box’s surface.

predicted and ground truth pixels was used in order to evaluate the pixel error:

Error(Pgt
(x,y),P

pred
(x,y) ) =

1
2

√
(xgt − xpred)2 +(ygt − ypred)2

(7.4)

where Pgt
(x,y),P

pred
(x,y) represent the instances of ground truth-prediction pairs being evaluated

for a given point.

For error visualization, the Percentage of Correct Keypoint (PCK) is adopted. This metric
is commonly used in pose estimation [185], [187], [184], [189] and is especially useful
for the normalization of the prediction error relative to object’s scale. PCK is defined as
the normalization of prediction error relative to a reference size, which in our case is 10%
(or 20%) of the palmprint bounding box side. This reference is defined as the side of the
bounding box containing all 6 palmprint landmarks P1-P6. It is then possible to formally
define PCK error and the PCK rate as in Equation 7.5:

PCKerror(P
gt
(x,y),P

pred
(x,y) ) =

Error(Pgt
(x,y),P

pred
(x,y) )

re f erence

PCKrate(PCKPoint j
error ) = |PCKPoint j

error < thresh|,
(7.5)

where the variable thresh ranges between 0 and 1 and is used to count the number of images
for a given PCK error. PCK rates should be as high as possible (100%) and correspond to
PCK errors as close to 0 as possible. Fig. 7.5 provides a visual aid regarding the thresholds
used to compute the PCK rates throughout experiments.
Throughout this paper the word average refers to the arithmetic mean, either computed
image-wise (across all points P1-P6) or globally (across images, for specific points).
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Fig. 7.6 Visualization of the ROI extraction procedure using an image from NUIGP1. Based
on the predicted landmark points P1, ...,P6 the hand’s rotation is normalized and the ROI’s
side and center are computed according to the algorithm described in Section 7.4.2.

In the case of networks that rely on heatmaps to determine the position of the finger joints
(SHGN, PCM and PoseNet), first the predicted heatmaps are converted to (x,y) coordinates
and then compared to the ground truth positions. For every joint the maximum value from its
probability distribution is used for the (x,y) positions.

In order to keep the Results section as compact and as practical as possible, we will
include the PCK error corresponding to two representative points (P3 and P6). Although
points P4 and P5 are used during the ROI extraction stage, their PCK error is part of an
interval of error defined by points P3 and P6. For an image-wise overview of the PCK error,
the average PCK is also included.

7.4.2 Palmprint ROI Extraction

As mentioned previously in Section 4.3 of Chapter 4, there are 6 landmarks (P1, ..,P6)
available to describe the palmprint area. Initially the intermediate points P34 and P56 are
determined and used to normalize the hand’s rotation. If the difference of the x coordinates
belonging to P34 and P56 is negative, an extra 180°is added to the rotation angle. Point P1
is used to further determine if the ROI is following the orientation of the hand in the image.
Having rotated the image and palmprint landmarks as displayed in Fig. 7.6, the side of the
ROI square is computed as being 90% of the distance between P3 and P6. Adding 1/2 of the
ROI side to the y coordinate of the equivalent point P36 determines the ROI’s center.
In order to validate the extraction of the ROI using predicted points for P1, ...,P6 (ROIpred),
an overlap factor (Intersection over Union metric) with the ROI extracted with ground truth
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Fig. 7.7 Overview of experiments in a diagram form. The list of CNN architectures, along
with the training/testing scenarios and the evaluation metrics are represented in this way to
better describe the structure of experiments.

points (ROIgt) is defined in Equation (7.6):

ROIIoU =
|ROIgt

⋂
ROIpred|

|ROIgt
⋃

ROIpred|
(7.6)

If the ROIIoU factor (defined as an Intersection over Union (IoU)) is greater than 0.5, the
ROIpred is considered as being successful (correct). Otherwise it is counted as being a failed
(incorrect) ROI extraction. The IoU is a commonly used metric in the field of object detection,
where bounding boxes are traced around objects. The 0.5 threshold for of the ROIIoU factor
is empirically determined and is considered as the limit to which landmarks define ROIs
sufficiently centered on the palm.

7.4.3 Overview of Experiments

In order to better keep track of the databases that are used for training and testing, depending
on the evaluation task, a summary is provided in Fig. 7.7 and Table 7.3.

The first set of experiments deals with the main task of point regression and includes 4
distinct training/testing scenarios.
Scenario 1 trains and tests the networks in Table 7.2 on NUIGP2 database. Predicted
keypoints from this scenario are presented and discussed based on specific visual examples,
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in Section 7.5.1. Scenarios 2, 3.1 and 4.1 use for training images from NUIGP2, GAN_H
and BIOmix respectively and are tested on NUIGP1 and MOHI.

The second set of experiments is centered around the ROI extraction and evaluates
the ROIIoU factor between the ROIs extracted using predicted points relative to the ROIs
extracted using ground truth points. The networks in Table 7.2 are trained with BIOmix
(scenario 3.2) and GAN_H (scenario 4.2) and tested on NUIGP1 and MOHI images.
Please note that networks in 3.1, 4.1 and 3.2, 4.2 are the same but the evaluation is focused
on a different task (key-point regression for the former and ROIIoU factor for the latter).

A discussion on the relationship between the training databases (BIOmix vs. GAN_H)
and the two tasks (keypoint prediction and ROI extraction) is given in Section 7.6, where
visual samples from Scenarios 3 and 4 are taken into consideration.

Table 7.3 Training/testing sets used in the experimental phase, alongside PCK reference used
(10% or 20% of palmprint bounding box side).

No. Task Train database Test database(s) PCK reference
1

2D point
regression

NUIGP2 NUIGP2 (same database) 20% of palm print bbox
2 NUIGP2
3.1 GAN_H 10% of

palm print
bbox

4.1 BIOmix NUIGP1, MOHI
3.2 ROI

extraction
BIOmix (cross-database)

4.2 GAN_H

7.5 Results

7.5.1 2D Point Regression

Scenario 1. Train: NUIGP2, Test: NUIGP2

In this scenario all of the training images were sourced from NUIGP2 and networks were
tested on 5 subjects that were not part of the training distribution. The test set contained
5,796 images in total.
PCK errors and rates (defined in Equation 7.5) for all scenarios in Table 7.3, for the networks
summarized in Table 7.2, are presented in Fig. 7.8. It is important to mention that in order to
compensate for labeling errors found in the training/testing datasets, a PCK reference of 20%
of the bounding box containing all ground truth keypoints (as in Fig. 7.5) was considered,
instead of 10%.

One can note that in general, the Proposed network, along with its alternative implementation
(altV7) provide the best results. The PCK rates corresponding to a PCK error of 1.0 (the
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(a) Test: NUIGP2

Fig. 7.8 Evaluation of palmprint point regression trained on the NUIGP2 database. The last
plot represents the image-wise average PCK error (P1-P6). The average PCK (points P3-P6)
is shown next to the network name. Best seen in color.

prediction error being scale-normalized as in Section 7.4.1) place the Proposed network and
altV7 on the first position, with 94.50% of testing images, followed by PoseNet (87.95%),
CPM (85.80%) and SHGN(84%). The worst performing network is Bao, successfully
predicting the P3 keypoint in about 56% of images. Generally key-point P3 is considered to
be the most accurately labeled during training phase.
The situation is similar when analyzing the results for keypoint P6, with altV7 providing the
highest PCK rate (94.25%) followed by the Proposed network (92%), PoseNet (91%) and
CPM (88%). As in the case of keypoint P3, Bao_CNN had the lowest PCK rate, of about
41.5%.
Network performance is assessed in the 3rd graph of Fig. 7.8, displaying the PCK error
averaged between all points P1-P6. For a scale-normalized prediction error of 1.0, the
Proposed network and altV7 provide the highest PCK (about 94%), followed by the networks
designed for pose detection: CPM and PoseNet (about 89%), and SHGN (82%), followed by
ResNet50 (80%) and InceptionV3 (75%). The lowest PCK rates are reported for Chatfield
(60%) and Bao_CNN (50%).
This separation of networks leads to a grouping into 3 categories, based on results: best
performing (Propsed and altV7, CPM, and PoseNet), average performing (InceptionV3 and
ResNet), and least performing (Chatfield and Bao_CNN).
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Visual analysis of Scenario 1: NUIGP2

This subsection contains a discussion about the keypoint predictions for the proposed network,
listing examples of both successful and unsuccessful cases.

(a) Avg PCK:0.16 (b) Avg PCK:0.68 (c) Avg PCK:0.40

(d) Avg PCK:0.33 (e) Avg PCK:0.21 (f) Avg PCK:0.30

Fig. 7.9 Several samples from NUIGP2 test set representing successful cases.

An especially interesting case is displayed in Fig. 7.9a, where the hand is presented
against a wooden background, the fingers are closed and partially cropped. In this case
the network predicted the keypoints correctly. Fig. 7.9b displays a similar case where the
network failed to predict the keypoints correctly as they have a strong translation. Please
note the position of ground truth keypoints, acquired by the Leap Motion, which tend to lean
slightly towards the edge of the hand.
Fig. 7.9d and 7.9c present the same hand pose but in two distinct lighting conditions. It is
interesting to note the positions of predicted keypoints in both sub-figures, as they retain their
spacial coherence regardless of the lighting.
Fig. 7.9e and 7.9f contain the same hand but with different hand posture. The positions of
predicted points are maintained throughout the change of posture, unlike the ground truth
points (acquired with Leap Motion).
It is worthwhile observing that in most cases mentioned above, the predicted points are
positioned very close to the base of the main fingers, above what are considered Ground
Truth (GT) points. This is explained by the bias introduced by the Leap Motion, used to label
the images for training/testing.
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(a) Avg PCK:2.49 (b) Avg PCK:1.78

(c) Avg PCK:0.66 (d) Avg PCK:0.33

Fig. 7.10 Several samples from NUIGP2 test set representing failure cases.

Cases such as the one in Fig. 7.10a reflect the effect of the hand’s strong translation to
the edge of the image.
The image in Fig. 7.10c represents a previously unseen case, where the thumb is partially
covering the index finger. Although it can be considered a failed case, the surface described
by the predicted points overlaps most of the palm area. Similarly, in Fig. 7.10d the points
P3-P5 describe a slight in-plane rotation away from the thumb.

The failed cases can be loosely grouped into two categories: hard failures, such as the
ones presented in Fig. 7.10a and 7.10b, and soft failures represented by Fig. 7.10c and 7.10d.
In order to better differentiate between soft and hard failures, the ROIIoU factor (defined in
Section 7.4.2) using the two extracted ROIs (using predicted versus ground truth points) is
taken into consideration for training Scenarios 3 and 4.

Scenario 2. Train: NUIGP2, Test: NUIGP1, MOHI

In this scenario the bulk of training images was sourced from NUIGP2 (alongside 50% of
the images from NUIGP1 and MOHI) and tested on NUIGP1 and MOHI (subjects that were
not included in the training set). Note the main difference between the NUIGP2 set the and
NUIGP1 set and MOHI is the way labels were provided for the palmprint landmarks. While
the training images in NUIGP2 were generated using the setup described in Section 3.3 of
Chapter 4, NUIGP1 and MOHI were hand labeled.
PCK rates are presented in Fig. 7.11 for two landmark points (P3 and P6), as well as for the
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(a) Test: NUIGP1 (b) Test: MOHI

Fig. 7.11 Networks trained on NUIGP2, tested on NUIGP1 and MOHI. Global average PCK
error (P3-P6) is shown next to the network name. Best seen in color.

image-wise PCK error. P3 is considered to be the most accurately (and consistently) labeled
point in NUIGP2. Labels for landmark point P6 from the leap motion device contained the
highest levels of measurement error.

In the case of NUIGP1 images, SHGN provides better PCK rates (higher) when compared
to the proposed network in the case of P3, but overall the two networks, alongside altV7
achieve the best performance. The proposed network also achieves the lowest global PCK
error, of 0.62. For a PCK error of 1.0, the best performing networks are SHGN and the
proposed network with a PCK rate of 85% of keypoints predicted, followed by altV7 and
PoseNet (80%), and CPM (78%). The worst performing network is Bao, with a PCK rate of
52% of keypoints predicted.

For a PCK error of 1.0, it is noticed that for point P6, the proposed network and its
alternative (altV7) achieve a PCK rate 83% correctly predicted keypoints, followed by
Posenet (80.60%) and CPM and SHGN (77%). As with P3, the worst performing network is
Bao with a PCK rate of 48%. From the image-wise PCK error distribution, one can notice
the separation of 3 groups of networks, based on their performance: better performing ones
(Proposed, altV7, SHGN, CPM and PoseNet), average performing (ResNet and InceptionV3)
and networks that perform poorly (Bao, Chatfield). The separation of these groups tends to
be between 10-15% in terms of PCK rate.

All networks were observed to exhibit a slight improvement in performance when
predicting the position of P3 for images in the MOHI test set. Considering the PCK error
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reference of 1.0, the best performing networks are SHGN (85%) and altV7 (83.50%),
followed by ResNet50 (81.40%) and Proposed network (80.80%). The least performing
network is Bao with a PCK rate pf 58%. However, this represents a 6% increase in PCK
rate, compared to NUIGP1 dataset. In the case of P6 the predictions are worse and can be
justified by the extreme hand positions found in MOHI, but also the labeling errors in the
training distribution of NUIGP2. For a PCK error of 1.0 the best performing network is altV7
with a PCK rate of 70%, followed by PoseNet (66.60%) and Proposed, SHGN and ResNet
(64.50%).

(a) Test: NUIGP1 (b) Test: MOHI

Fig. 7.12 Networks trained on GAN_H, tested on NUIGP1 and MOHI. Global average PCK
error is shown next to the network name. Best seen in color.

Scenario 3.1. Train: GAN_H, Test: NUIGP1, MOHI

This scenario sourced most of its training images from GAN_H (130,000) and 50% of the
images from NUIGP1 and MOHI. Compared to Scenario 2, GAN_H provides considerably
lower error rates, as presented in Fig. 7.12 regarding points P3, P6 and image-wise average
PCK.

In the case of test images from NUIGP1, most networks had PCK rates of over 80%
(corresponding to a PCK error of 1.0) for both P3 and P6. The PCK error distribution
between P3 and P6 is very similar, which is expected considering the lack of labeling errors
in the training set from GAN_H. For a PCK error of 1.0, the proposed network achieves a
PCK rate of 91% for point P3, followed by altV7 (90%), SHGN (88%) and PoseNet (86%).



7.5 Results 131

(a) Test: NUIGP1 (b) Test: MOHI

Fig. 7.13 Networks trained on BIOmix, PCK error is presented for P3, P6 and image-wise
Average (P1-P6). Global average PCK is shown next to the network name. Best seen in
color.

The proposed network similarly achieves a PCK rate 90.50% for point P6 and is the most
accurate. AltV7 (88%), SHGN and PoseNet (86.50%) and CPM (83.50%) provide the next
best results.

The results reported for the MOHI images are either similar or better than those obtained
on NUIGP1. For point P3 at a PCK error of 1.0, the best PCK rates are obtained with the
Proposed network (94.50%), followed by altV7 and SHGN (92.30%), ResNet and PoseNet
(88.60%). In the case of point P6, the best PCK rates are obtained by the Proposed net and
altV7 (89%), SHGN (86%) and ResNet (84.20%).

Fig. 7.12 shows that the average PCK error is under 1.0 for all networks except Bao and
Chatfield (both NUIGP1 and MOHI). Furthermore, in the case of the proposed network and
altV7, the average PCK error is below 0.5 for both test sets.

Scenario 4.1. Train: BIOmix, Test: NUIGP1, MOHI

As described in Section 7.3.1, this training scenario combines the two previous databases,
where about 50% of images are taken from GAN_H and the other half are taken from
NUIGP2, but also including images from NUIGP1 and MOHI.

When testing on images from NUIGP1, the Proposed network provides the best results in
all cases presented in Fig. 7.13. For a PCK error of 1.0, the highest PCK rate corresponding
to point P3 is provided by the proposed net (94.30%), followed by altV7 (91.40%), SHGN
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(87.40%) and PoseNet (84.80%), InceptionV3 (79%) and CPM (71%). The lowest PCK rate
is provided by Chatfield, with 50%. In the case of P6 the best PCK rate is reported by the
proposed net (91%), followed by altV7 (88%), SHGN (84.30%) and PoseNet (82%). All
other networks report PCK rates that are below 80%.

Predictions for MOHI test images are similar or better for point P3, the Proposed network
having the highest PCK rate (94%) and altV7 (91.60%), followed by SHGN (88.80%),
InceptionV3 (86.20%), PoseNet (82.20%) and ResNet (80.50%). However, in the case of
point P6 all PCK rates are lower than those obtained for NUIGP1, the highest rate being
given by the proposed network (73%), followed by SHGN (72.40%), InceptionV3 (71.40%),
PoseNet and altV7 (70.80%). All other networks achieve PCK rates that are lower than 70%.

It is also interesting to note in Fig. 7.13 that InceptionV3 performs well on the task
of point regression, obtaining performances similar to specialized networks like CPM or
PoseNet, which rely on probability heatmaps.

7.5.2 ROI Extraction: BIOmix vs. GAN_H

An evaluation of how the Regions of Interest (ROIs) are extracted using predicted points
(ROIpred) versus ground truth points (ROIgt) is presented in this sub-section.

The ROIIoU rates are reported in Fig. 7.14, where two training scenarios are considered:
GAN_H and BIOmix (as summarized in Table 7.3). When comparing ROIpred versusROIgt ,
if the ROIIoU factor is greater than 0.5, then that ROI is considered to be a correct detection
because it covers a significant part of the palmprint.
When comparing the results obtained for NUIGP1 when training with BIOmix (Fig. 7.14a)
versus GAN_H (Fig. 7.14b), one can notice a very similar trend in the case of the proposed
network and altV7. As expected, having a greater proportion of images from GAN_H
improves the successful ROI extraction rates from the lesser performing networks in Fig.
7.14a, such as Bao, Chatfield, but also InceptionV3 and Resnet50. The observed increase in
performance can be explained by the labeling accuracy used during training brought by the
image from GAN_H. A main cause for failures, as reported in the original paper of GAN_H
[147], is brought by the skin-colored backgrounds, of which NUIGP1 has approximately
50% (both training and testing). However, it is important to note that the NUIGP1 and MOHI
images used during training improved this behavior, in the case of the Proposed network
limiting the failure cases to 27 out of 43 (GAN_H) versus 8 out of 16 failed ROIs (as can
be noted in Table 7.14). Other cases include scenes that were not covered by the training
set, such as the hand occupying a much larger or much smaller area of the image. In both
scenarios the best results were provided by the Proposed network.
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(a) Train database: BIOmix

(b) Train database: GAN_H

Fig. 7.14 Percentage of images having a specific overlap factor when training networks with
(a) BIOmix and (b) GAN_H. The graph on the left corresponds to images from NUIGP1
(795), whereas the graph on the right corresponds to images from MOHI (1,000).

When testing on MOHI, Fig. 7.14 shows a similar jump in performance when training
with GAN_H, significantly pronounced in the case of Bao, InceptionV3 and Resnet, but
also altV7. The proposed network is marginally outperformed by altV7 based on the ROIIoU

rate. However, the rate of incorrectly extracted ROIs is still higher than when training with
BIOmix (24 versus 16).

The proposed network reaches the lowest rate of incorrectly extracted ROIs when trained
on BIOmix, having 3 failures for MOHI and 16 for the NUIGP1 test sets. Close performance
is obtained with altV7 (7 images), followed by PoseNet (8 images) and SHGN (27 images).
The least performing networks are, as in the other experiments, Chatfield and Bao.
It is also worth noting that when training with GAN_H, the lowest rate of failed ROIs is
reached by PoseNet (21 instances), followed by AltV7 (23 images), CPM (26 images) and
the proposed network (27 images).
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Table 7.4 ROI extraction success and failure rates, based on the predictions provided by the
neural networks used in the testing phase. A total of 1,795 palmprint images were used: 795
from NUIGP1 and 1,000 from MOHI. IoU corresponds to the allowed ROIIoU factor (used
as a threshold).

Train: BIOmix Train: GAN_H
Test set Network IoU>0.5 IoU<0.5 IoU>0.5 IoU<0.5

NUIGP1

Proposed 779 16 752 43
altV7 771 24 771 24
InceptionV3 686 109 730 65
ResNet50 702 93 737 58
Bao_CNN 467 328 561 234
Chatfield_CNN 452 343 508 287
SHGN 707 88 684 111
CPM 689 106 759 36
PoseNet 730 65 732 63
Proposed 997 3 973 27
altV7 993 7 977 23
InceptionV3 926 74 887 113
ResNet50 955 45 889 111

MOHI Bao_CNN 475 525 707 293
Chatfield_CNN 555 445 584 416
SHGN 973 27 912 88
CPM 974 26 974 26
PoseNet 992 8 979 21

7.5.3 Keypoint Error vs. ROI Extraction

Based on Fig. 7.15, where the ROIIoU factor for every image is plotted against the average
PCK error (reference used is 10% of the bounding box side). Fig. 7.15a and Fig. 7.15b
follow the training procedure corresponding to Scenarios 3 and 4 (detailed in Table 7.3). The
ROIIoU values range between 1.0 and 0.0 (a low value indicating poorer performance). The
average PCK (computed image-wise) ranges from 0.0 to 3.0 (a high value indicates a low
score). The majority of instances are clustered in an area corresponding to (1.0, 0.6) for
ROIIoU and (0.0, 2.0) for average PCK.
As the avg PCK values increase, we can identify the images that have a high ROIIoU factor
although the average PCK is high(er), like in the case of NUIGP1 in Fig. 7.15a. Compared
to BIOmix, training with GANH leads to generally lower average PCK image-wise, but also
introduces more sparse image instances corresponding to a low ROIIoU , as is the case in Fig.
7.15b.
Based on this clustering we can conclude that the combination of images composing the
training database BIOmix leads to a better performing network, when compared to GAN_H
(described in Section 7.3.1).
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(a) (b)

Fig. 7.15 Plotting keypoint prediction error against ROIIoU for Scenarios 3 and 4. The PCK
is computed using a reference of 10% of the ground truth keypoints’ bounding box’s side.

7.5.4 Run-time of Networks

A random set of 200 images selected from the test set (100 from NUIGP1, 100 from MOHI)
were passed to the networks tested on BIOmix. A batch size of 1 was used for the task of
inference, the final time recorded being divided by 200. These results are presented in Table
7.5.

Using a sampling frequency of 24 frames per second (FPS), we determine the required
time to perform inference on the images sampled from 1 second. We conclude that PoseNet,
along with the Proposed network and alt-V7 are the fastest networks. All networks considered
for experiments are capable of achieving inference at real-time speed (video-rate).

7.5.5 IoU relative to Palmprint Bounding Box Surface

We show the versatility of the Proposed network to the hand’s scale in Fig. 7.16, where
the IoU factor is represented as a function to the size of the palmprint bounding box (as
represented in Fig. 7.5) relative to the entire image.



136 Unconstrained Palmprint ROI Extraction

Table 7.5 Time required for networks to perform inference on 1 image.

Model name Inference (ms)
Proposed 11
alt-V7 11
InceptionV3 20
ResNet50 14
Bao 0.004
Chatfield 5
SHGN 12
CPM 18
PoseNet 10

The Proposed network is trained on BIOmix and test images correspond to NUIGP1 and
MOHI. The average size of palm bounding boxes are centered around the value of 16%. In
contrast, the hand images in NUIGP1 tend to vary more in size, the mean value of palm
bounding box centering around the value of 20% (of the image’s size), with some instances
being larger than 30%.

Fig. 7.16 Intersection over Union, represented as a function of the surface of the bounding
box containing the palm landmarks (relative to the size of the image), as represented in Fig.
7.5.

7.6 Visual Analysis: Impact of Training Database

This section provides a visual evaluation of how the training databases influence the two
tasks - keypoint prediction and consequently the palmprint ROI extraction. For this purpose,
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(a) Avg PCK:0.96 (b) Avg PCK:0.53 (c) Avg PCK:0.75 (d) Avg PCK:0.59

(e) Avg PCK:1.04 (f) Avg PCK:1.29 (g) Avg PCK:0.85 (h) Avg PCK:1.75

(i) Avg PCK:2.00 (j) Avg PCK:1.25 (k) Avg PCK:1.05 (l) Avg PCK:1.17

Fig. 7.17 Visual examination of samples from NUIGP1 samples, using the proposed
architecture. a)-d) BIOmix and GAN_H correct ROI, e)-h) BIOmix correct ROI, GAN_H
failed ROI, i)-l) BIOmix failed ROI, GAN_H correct ROI. Next to a hand image is the
overlap of ROIgt and ROIpred .

a series of NUIGP1 and MOHI test images from the two training scenarios (scenario 3.1 and
4.1 in Table 7.3) are used as reference.
We have considered only the results provided by the Proposed network because it achieves
the best results overall (PCK rates and ROIIoU rates).

7.6.1 Testing on NUIGP1

Three cases are considered for discussion, of which two samples are presented on each row
in Fig. 7.17.

Although the average PCK error in Fig. 19b is lower than the one in Fig. 19a, the ROIIoU

factor is comparatively lower. The predicted keypoints in Fig. 7.17c reflect the influence
of images from NUIGP2, with points P3-P6 being placed closer to the base of the main
fingers, which introduce some distance between them and the ground truth (GT) points. The
keypoints in Fig. 7.17d are placed below the P3-P6 GT points which slightly improves the
ROIIoU factor. The placement of points is only lacking in scale, most likely caused by the
size of the hand relative to the image.

The 2nd row displays successful cases of Proposed net when trained with BIOmix and
failures when trained with GAN_H. Similar to Fig. 7.17a, Fig. 7.17e positions the predicted
key-points above the GT points, while correctly mapping the structure of the hand. The
most likely factors explaining the failure in Fig. 7.17f are the background color, as well as
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the absence of the hand’s wrist. The images in GAN_H tend to always include some wrist
information.
A 2nd faiulre case is displayed in Fig. 7.17g. Although the network did not place the main
keypoints (P3-P6) correctly, P1 and P2 are very close to the GT points, keeping the average
PCK error below 1.0. As in Fig. 7.17d, the predictions in Fig. 7.17h cover a smaller part of
ROIgt , but in this case it is considered a failed extraction. The scale of the hand, along with
cropped fingers are the most likely causes for failure.

The 3rd row presents the only two cases where the proposed architecture trained with
BIOmix failed the ROI extraction but succeeded when trained with GAN_H. The most
accurately placed keypoint in Fig. 7.17j is P3. Even though these predictions are not entirely
accurate (average PCK error is 1.25), the achieved ROIIoU is 0.58, which covers the most
relevant part of the palmprint.
The case presented in Fig. 7.17k is very close to being a successful prediction considering
the overlap factor of 0.47. As in Fig. 7.17a and Fig. 7.17e, the predicted points in Fig. 7.17k
are very close to the base of the main fingers, while the keypoints in Fig. 7.17l lead to a
larger ROIIoU factor, although the average PCK error is slightly larger.

7.6.2 Testing on MOHI

The 1st row in Fig. 7.18 presents a vertically placed hand in the center of the image, where
both training scenarios lead to an ROIIoU above 0.50, but Fig. 7.18a has a lower average
PCK error compared to Fig. 7.18b. The main difference between the two cases is a slight
rotation when training with BIOmix. Whereas in Fig. 7.18a points P4-P6 are slightly rotated
upward, Fig. 7.18b maintains a better alignment overall with the GT points.

The 2nd row exemplifies one of the cases where training with BIOmix provided an
ROIIoU greater than 0.5 but training with GAN_H resulted in an ROIIoU factor smaller than
0.5. Similar to the case in Fig. 7.18a, the predicted points in Fig. 7.18c lead to the ROI
having a slight rotation towards the thumb, with the best predictions being for points P2
and P3. Even though in Fig. 7.18d the ROI extraction is failed, all points are found on
the palm, the network having correctly determined the position of the right hand present in
the image. The main cause for this failure is most likely the dark conditions of acquisition,
considering that lighting tends to be uniform throughout the synthetic images of GAN_H.
BIOmix contains many instances of hands exposed to strong light or shadows, making the
network more robust to such scenarios.
The case displayed in Fig. 7.18f represents another failed ROI extraction when training
with GAN_H, this time caused by the scale of the hand with respect to the image. Even
if the predicted keypoints in Fig. 7.18e are found at the base of the main fingers, with a
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(a) Avg PCK:0.66 (b) Avg PCK:1.27

(c) Avg PCK:1.30 (d) Avg PCK:1.51 (e) Avg PCK:1.65 (f) Avg PCK:3.13

(g) Avg PCK:1.3 (h) Avg PCK:0.46

Fig. 7.18 Visual examination of samples from MOHI samples, using the proposed architecture.
a)-b) BIOmix and GAN_H correct ROI, c)-f) BIOmix correct ROI, GAN_H failed ROI, g)-h)
BIOmix failed ROI, GAN_H correct ROI. Next to a hand image is the overlap of ROIgt and
ROIpred .

considerable distance from the GT points, the IoU factor for the ROIs (0.58) is greater than
0.5. It is important to note that, similar to Fig. 7.18d, all predicted keypoints from the failed
ROI extraction are still found on the hand.

The 3rd row represents the only case where training with BIOmix resulted in a failed
ROI extraction (out of the total 3 failed cases), but GAN_H was successful. Fig. 7.18g shows
a failed extraction, with the overall rotation of ROI turning away from the thumb. This is
caused by having less accurate predictions for points P3-P5 than for P6. Furthermore, points
P3-P5 are are closer to the base of the fingers. In a similar manner, in Fig. 7.18h the best
predicted keypoints are P1, P5 and P6. However, keypoints P3-P5 are placed closer to the
center of the palm, giving the ROI a rotation towards the thumb, thus providing a greater
ROIIoU than in Fig. 7.18g.

7.7 Conclusions and Future Work

The chapter explored the potential of using CNNs to accurately predict landmarks that can be
used to extract the Region of Interest from a hand contained in an image. A comparison and
analysis were made with previously used CNN architectures, as well as keypoint regression
within the context of hand pose detection.
The first two points (P1 and P2) were the most difficult to mark (both as a human operator,
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as well as the predictive algorithm), as indicated by the networks as well (lowest reported
accuracy). In the absence of other cues from the hand, the task of labeling is very difficult.
This is not an issue when specific physical pointers (i.e. other hardware elements) are
employed, or if the training/testing data is obtained in a synthetic manner with 3D models,
where the labeling error is effectively equal to zero. The issue of correctly labeled data is
important, as it limits the evaluation of models trained with that data.
It is important to note that points closer to the edge of the hand (or other elements of the hand),
with more structural references, would help in reducing the labeling error of landmarks, thus
providing a more consistent landmark database. This applies to points P3-P6, which report
the smallest errors across all experimental scenarios. The use of other points, that can be
more accurately labeled in the dataset is something that has to be considered for future work.

Adapting hand pose regression techniques to the problem of palmprint ROI extraction
was validated by the results presented, especially for those difficult cases where no constraints
are imposed on the user.

Using 2D key-point prediction to determine the landmarks required for ROI extraction
provided some good results, but they are limited. In future experiments 3D information
regarding the hand’s pose will be included, to aid the regression task. Furthermore, a fully
convolutional approach for palmprint ROI will be developed, by adapting powerful object
detection architectures (such as Faster-RCNN [70] or Mask-RCNN [203]) to include an
’angle’ parameter that would align a bounding box to the hand’s orientation. Alternatively,
after accurately detecting the palmprint ROI and landmarks, one would then be able to
determine and apply affine transformations that would further correct distortions caused by
the hand’s pose. This has become possible with the introduction of the database of palmprints
NUIGP2, as well as other large-scale databases collected in unconstrained conditions.

The proposed network (containing several Inception modules) is an efficient architecture
for key-point regression, requiring further investigation of its inference capabilities on other
hand databases and with deeper configurations.

Finally, combining images from several databases aids the robustness of the network, as
was demonstrated with the better results obtained when training with BIOmix.



Chapter 8

Unconstrained Region of Interest -
Performance Evaluation

This chapter outlines the difference in recognition performance between Regions of Interest
(ROI) extracted using ground truth (GT) versus predicted landmarks, as obtained with the
extraction approach described in Chapter 7. The images used throughout the experiments of
this chapter belong to the palmprint database NUIG_Palm1 (NUIGP1), introduced in Section
4.2 of Chapter 4.

The generic biometric recognition pipeline is presented in Fig. 8.1, with the stages
of recognition being investigated in this chapter: ROI extraction and feature recognition
(comparison).

Fig. 8.1 Biometric recognition pipeline, with focus of current chapter.

The chapter is organized as follows: Section 8.1 introduces an overview of ROI extraction
and its evaluation in the literature, Section 8.2 provides an overview of the experiments and
formulates the main assumptions being investigated, Section 8.3 describes the experimental
methodology, whereas Section 8.4 presents results obtained and interprets them. Section 8.5
presents the chapter’s conclusions and future directions of research.
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8.1 Introduction

Over the years there have been introduced many algorithms for Region of Interest (ROI)
extraction (overview presented in Section 3.2 of Chapter 3). However, the literature regarding
ROI extraction evaluation and comparisons is scarce, the first study of the impact of ROI
extraction strategy on the Recognition Rate being provided by Ito et al [44]. They compare
with three approaches [38], [37], [55] and manually placed landmarks (ground truth),
using hand images with open and closed fingers. They use the Equal Error Rate (EER)
in recognition experiments to highlight the robustness of their ROI extraction algorithm to
various hand poses.

Khan et al [54] introduce one of the earliest analyses of key-points used for palmprint
ROI extraction. They consider a subset of 300 hand images and evaluate the point prediction
error (Chebyshev distance) from the manually placed ground truth landmarks. They also
consider the extracted sample’s absolute rotation error, as well as the scale error. Aykut et
al [64] determine the prediction error to their Active Appearance Model (AAM) for every
point, as well as specific regions of their hand model. Scale normalization of the error is not
considered, as the scale remains consistent throughout the images.

Bao et al [66] introduce a shallow Convolutional Neural Network (CNN) that predicts
the key-points used for ROI extraction. This approach is compared to Zhang’s method
[38], which is the most commonly used. The tangent line between the two finger-valleys is
determined, then using these two points to normalize the hand rotation. Root Mean Square
Error (RMSE) is used to evaluate the point predictions, followed by an evaluation inspecting
the Correct Recognition Rate (RR) of extracted palmprint samples. The two approaches
have similar performance, but the CNN architecture fares better than Zhang’s [38] approach
especially when noise is added to the images.

8.2 Objectives of Chapter

In this work we have a number of top-level goals:

Experiment 1. Investigate how the Recognition Rate (RR) and Equal Error Rate (EER) are
affected by the misalignment of palmprint ROIs by using the Intersection
over Union (IoU) metric applied to palmprint ROI extraction. Assumptions
are made regarding how these results are affected based on the distribution of
ROIs (extracted using Ground Truth or Predicted labels) and evaluated in the
Results section. Several combinations of these distributions for training and
testing are taken into consideration and evaluated.
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Experiment 2. Take into account the attributes of the NUIG_Palm1 database, and design
specific training and testing procedures. This represents an extension of
Section 6.3 of Chapter 6, which provided baseline recognition results. It is
expected to obtain lower performance when training in the ’cross-device’
scenario (more details in Section 8.3).

Experiment 3. Include a misalignment mitigation strategy that improves the recognition
accuracy. Translations and rotations of the extracted ROIs are used in several
scenarios that evaluate this impact.

Experiment 4. As the main focus is placed on the influence of ROI misalignment, a generic
feature extraction technique (Local Binary Pattern) and generic classifier
(K-Nearest Neighbor) are used throughout experiments.

8.3 Overview of Experiments

This section provides an outline of the selected recognition experiments. They can be broken
down into four categories, based on the aspect they are investigating (also represented in
diagram form in Fig. 8.2):

1. How the recognition performance varies in the ’cross-device’ and ’device-specific’
training strategies using ground truth (GT) and predicted (Pred) ROIs. The experiment
is outlined in Section 8.3.1 of this chapter.

2. How the recognition results are affected by the misalignment between ROIgt and
ROIpred , investigated through the split between train and test images. The experiment
is outlined in Section 8.3.2 of this chapter.

3. How much the misalignment can be addressed if one considers extracting translated
and rotated ROIs from each hand image, investigated by including translation and
rotation to the key-points used for ROI extraction. The experiment is outlined in
Section 8.3.3 of this chapter.

4. How the recognition performance is affected by the ROI size, as it varies between
(32x32), (64x64) and (128x128) pixels. The extracted ROIs are resized by using
bilinear interpolation. Based on the results obtained in Section 5.3 of Chapter 5, the
size of (64x64) pixels report the highest recognition values.
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Fig. 8.2 Overview of experiments, in graphical form.

8.3.1 NUIG_Palm1: Recognition Scenarios

The database NUIG_Palm1 (NUIGP1) contains in total 81 subjects (classes). Almost half
of these (41 classes) were used to train the ROI extraction algorithm described in Chapter
7, leaving 40 subjects for recognition experiments. Each class contains about 20 images,
representing palmprint images acquired with the camera of 5 smartphones. The labels
’_S1’, ’_S2’, ’_S3’ and ’_S4’ correspond to the lighting levels and backgrounds used during
acquisition (described in Section 4.2 of Chapter 4).

Similar to Section 6.2.1 of Chapter 6, two distinct training/testing strategies are defined,
based on the devices that are used for image acquisition:

1. Cross-device: where ’_S1’ images from all devices are used for training, the rest being
used for testing. Several ROI sizes, classifiers and feature extraction techniques are
tested in order to determine the best combinations.

2. Device-specific: where ’_S1’ to ’_S4’ images from a single device are used for training,
with the rest (i.e. from other devices) are kept for testing. The best classifier-feature
extraction combination from the cross-device scenario is used.

In Sections 6.3.2 and 6.3.3 of Chapter 6 we have concluded that the device-specific
scenario was outperforming cross-device recognition scenario. The classifier-feature extraction
combination reporting the best results was CRC_RLS with DoN when training with device-
specific images from GS6 (87.81% Recognition Rate and 6.10% Equal Error Rate).
This behavior is expected to manifest in the experiments outlined in this chapter as well.
However, it is unclear how the misalignment will affect the recognition procedure, and if the
best results will still belong to the scenario training with images acquired with GS6.
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(a) Palmprint prediction with overlap IoU = 82.92%

(b) Palmprint prediction with overlap IoU = 52.21%

Fig. 8.3 Palmprint landmarks used for ROI extraction - visual comparison of misalignment
for (a) high IoU factor and (b) low IoU factor.

8.3.2 Evaluating the Misalignment

Any misalignment between the stored and query samples affects the recognition task
(comparison trial). For this reason the Intersection over Union (IoU) factor was used,
in order to investigate the correlation between high IoU and high Recognition Rate. Fig. 8.3
provides two samples of extracted ROIs with low and high IoU factor.

The overlap between ROIs extracted with Ground Truth landmarks (ROIGT ) versus
Predicted landmarks (ROIPred) was determined for each train/test scenario, as presented in
Fig. 8.4. Depending on the training scenario (either cross-device or device-specific), we
associate an IoU rate to both training (Strain) and testing (Stest) sets. In other words, the IoU is
computed for every image in Stest and Strain (the distribution of these values being presented
in Fig. 8.4).

In all scenarios (cross-device and device-specific) in Fig. 8.4, the distribution of IoU
factor for Stest is very similar to the distribution of Strain. The mean (µ) is generally centered
at 0.82 in most cases, with standard deviation (σ ) being around 0.11 for all cases.

It is interesting to notice that the IoU distribution in Strain for GS6 has the lowest mean
(0.811) of all cases, with a high standard deviation (0.117). It is expected that training with
ROIPred from GS6 will affect the recognition rate considerably, compared to training with
ROIGT .
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(a) IoU distribution: Cross-Device (b) IoU distribution: Device-Specific (G4)

(c) IoU distribution: Device-Specific (GS6) (d) IoU distribution: Device-Specific (i5)

(e) IoU distribution: Device-Specific (i6S) (f) IoU distribution: Device-Specific (P8)

Fig. 8.4 Distribution of Intersection over Union (IoU) in the train/test scenarios explored
in (a) Cross-Device (CD) and (b)-(f) Device-Specific (DS) scenarios. For each distribution
(train and test) the mean (µ) and standard deviation (σ ) are defined.

Training with ROIPred samples from G4 and i6S is expected to be the least affected by
the misalignment, as the mean of Strain is high (0.833 and 0.83) and the standard deviation is
low (0.10 and 0.105).

We formulate several assumptions regarding the impact of ROI misalignment on the
recognition task, as outlined in Table 8.1. As point of reference we use the segmentation map
defined using the ground truth landmarks:

• Assumption 1: High IoU rate in both Strain and Stest leads to high RR. This translates
to training with ROIGT and testing with ROIGT (maximum IoU for both training and
testing sets).
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Table 8.1 ROI misalignment evaluation scenarios, based on what key-points were used to
extract the palmprint ROI samples. Ground truth key-points (GT) as well as Predicted
key-points (Pred) are considered, allowing for 4 possible combinations. These scenarios are
defined to investigate the assumptions defined in Section 8.3.2.

# Scenario label Train Test Expected performance
1 GT-exclusive ROIGT ROIGT Highest (no failed ROIs in train/test sets)
2 Pred-exclusive ROIPred ROIPred Low (failed ROIs in train/test sets)
3.1 GT-Pred ROIGT ROIPred Low (failed ROIs in test set)
3.2 Pred-GT ROIPred ROIGT Low (failed ROIs in train set)

• Assumption 2: Low IoU in both Strain and Stest leads to low RR. This translates to
training with ROIPred and testing with ROIPred .

• Assumption 3: Lower IoU rate in Strain compared to Stest (or the other way around)
leads to low Recognition Rate (RR). This corresponds to two scenarios where ROIGT

or ROIPred are used for training and the other is used for testing.

8.3.3 Mitigating ROI Extraction Misalignment

Several training strategies are considered, aiming to reduce the misalignment (translational
and rotational) between the stored image samples and query, as presented in Fig. 8.5. This
introduces 8 translation cases and 2 rotation cases. Three scenarios are defined, based on the
number of palmprint ROIs extracted from one hand image:

• Scenario 1: only one ROI extracted from a hand image (the central ROI).

• Scenario 2: central ROI and translated ROIs by 50 pixels into the 8 possible directions.

• Scenario 3: central ROI, translated ROIs and rotated (±5 degrees) ROIs (central and
translated ones). This results in extracting 27 ROIs from a single hand image.

Training is carried out with each of the three aforementioned scenarios and comparison trial
(testing) is performed only with ROIs extracted using scenario 1.

8.3.4 NUIGP1: ROI Extraction Approach

The landmarks used for ROI extraction follow the model of hand joints, described in Section
3 of Chapter 4. Each category of landmarks (ground truth or predicted) generate their specific
distribution of training/testing ROIs.
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(a) Translation of ROI (b) Rotation of
ROI

Fig. 8.5 ROI extraction strategy considered for training stage. (a) displays the translation of
extraction coordinates into 8 directions with 50 pixels and (b) displays the rotation of ROIs
(central and translated) by ±5 degrees.

In general, the ROIs extracted using predicted landmarks represent translated and/or
slightly rotated versions of their ground-truth counterparts. This is expected to be compensated
by including translated and rotated ROIs during training.
In order to be consistent with the comparison, the extracted ROIs that were considered as
having failed (with less than 0.5 IoU factor, as in Section 2.4 of Chapter 7) were included
in their corresponding training or testing sets. Considering that the devices G4, i5 and i6S
have either one or several failed ROIs in their corresponding ’_S1’ acquisition scenario (as
displayed in Table 8.2), it is expected that they report lower recognition rates than GS6
and P8. This is explained by the fact that ’_S1’ images are used during training in both
cross-device and device-specific strategies. The device class containing most of the ’failed’
ROI extractions is i5. It is, therefore expected that recognition results for those scenarios be
lower than the scenarios training with other devices.

Based on the number of failed ROI extractions in Table 8.2 and the train/test distributions
listed in Table 8.1, several assumptions can be made:

1. as the most failed ROI extractions correspond to i5, it is expected that when only i5
images are used for training (device-specific, in the Pred-GT and Pred-exclusive), the
results will be the lowest.
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Table 8.2 The number of images that failed ROI extraction using the approach described in
Chapter 7, organized depending on the device or acquisition setup.

Device name S1 S2 S3 S4
G4 1 1
GS6 1 1 1
i5 2 3
i6S 1 1 1
P8 2 1

2. similarly, when training with i5 images in the GT-Pred case, the results are likely to be
the best (as the i5 images are the most significant source of error).

8.3.5 Feature Extraction

As the chapter’s focus is not placed on feature extraction performance, but on the evaluation
of misalignment, any texture descriptor can be used. We have therefore chosen the Local
Binary Pattern (LBP) because of its texture descriptive properties. Two LBP kernel sizes
were considered (3x3 and 5x5). The best results were delivered when using a filter of radius
R = 3 and P = 24 (kernel of size 5x5), as opposed to the standard LBP using R = 1 (kernel
size of 3x3). This changes the potential values of the pattern to range from 1 to 224 instead
of from 1 to 28. Recognition results when using LBP with R = 1 (kernel size of 3x3) are not
reported, as they were too low.

Similar to the experiments in Chapter 6, all images had their contrast improved using the
Contrast Limited Adaptive Histogram Equalization (CLAHE) [173] algorithm prior to the
feature extraction stage.

8.3.6 Classification: Nearest Neighborhood

For the recognition phase only one classifier was considered, as the focus of the chapter is
placed on the effects of ROI misalignment, not on the performance of the classifier itself.

The K-Nearest Neighborhood classifier (KNN) continues to be used ( [74], [67], [127])
thanks to its reduced complexity, as it is non-parametric. The classifier uses K = 3 votes
(chosen empirically) and the Euclidean (L2) distance for determining the class (from training
set) which is closest to the query sample.

8.3.7 Resources Used

The tools used to run the experiments include:
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• For ROI extraction:

– GPU: TitanX-Pascal 1080

– CUDA version: 9.0

– cuDNN version: 7.1.4

– tensorflow version: 1.9.0

– Keras version: 2.2.2

• scikit-learn version: 0.19

• scikit-image version: 0.14.2

• OpenCV version: 3.4.2.16

• github repositories with the implementation of experiments1.

8.4 Results

8.4.1 Cross-device (CD) Training

Results from the scenario where images from scenario ’_S1’ from all devices were used for
training, are provided in Table 8.3. For these experiments all ROIGT /ROIPred combinations
were explored. The green colored cells correspond to the best results in that specific category.
In all cases the extended training scenario (translation + rotation) report the best performance
across all categories. The difference in terms of EER between results obtained with an
extended training scenario (III) versus none (I), are 8.06% for GT-exclusive, 12.32% for
Pred-exclusive and around 15% for GT-Pred and Pred-GT scenarios.

The cross-device recognition results are similar to the ones described in Section 6.3.2
of Chapter 6 (reaching 80% RR and 10% EER), with the highest Recognition Rate (RR) of
83.89% (Equal Error Rate of 9.54%) being achieved in the GT-exclusive case. However, this
result corresponds to Training scenario III, whereas in training scenario I the RR is 70.97%
and EER is 17.60%. This validates the inclusion of an extended stage of ROI extraction that
considerably increases the chances of a correct match. Similar performance was reported for
the Pred-exclusive and Pred-GT cases, of around 75% RR and 16% EER. This is explained
by the number of failed ROIs contained in the training and testing distributions in these

1Implementation of the approaches used can be found at "github.com/AdrianUng/Palmprint-recognition-
using-misaligned-ROIs".
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Table 8.3 Recognition Rates (RR) and Equal Error Rates (EER) corresponding to the Cross-
Device training strategy. Best results overall are highlighted with green, best results in each
training scenario are highlighted with yellow.

Training
strategy

GT-exclusive (Train: ROIGT , Test: ROIGT ) Pred-exclusive (Train: ROIPred , Test: ROIPred )
128x128 64x64 32x32 128x128 64x64 32x32

RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%)

I 65.10 20.40 70.97 17.60 64.93 18.86 46.48 31.59 51.17 28.42 49.66 28.20
II 73.83 14.04 81.38 11.24 76.01 14.76 64.26 21.98 67.62 18.88 65.77 21.12
III 78.36 13.20 83.89 9.54 76.17 14.47 69.63 18.82 74.50 16.10 68.12 19.28

GT-Pred (Train: ROIGT , Test: ROIPred ) Pred-GT (Train: ROIPred , Test: ROIGT )
128x128 64x64 32x32 128x128 64x64 32x32

I 33.72 37.40 37.92 35.54 37.42 34.51 40.60 33.41 44.80 31.10 47.99 29.96
II 54.53 27.80 60.57 24.79 55.03 25.70 57.71 24.02 66.44 20.95 60.74 23.68
III 59.90 24.40 67.28 21.39 60.91 24.43 67.11 19.99 75.17 16.01 67.45 20.40

Fig. 8.6 Receiver Operating Characteristic (ROC) in the cross-device case. For training the
GT-exclusive (GT) and Pred-exclusive (Pred) scenarios were used.

two cases. Whereas Pred-exclusive supports 4 failed ROIs in the training set and 12 failed
ROIs in the testing set, Pred-GT reports slightly better results because its testing set has no
instances of failed ROI extraction.
The lowest overall performance is reported for GT-Pred (67.28% RR and 21.39% EER in the
extended training scenario). This attempts to match images that essentially belong to two
distinct distributions (in terms of how the ROI is extracted). This result strongly suggests
that the training and test sets should be obtained using the same (or a similar) ROI extraction
technique.

Receiver Operating Characteristic (ROC) curves corresponding to Pred-exclusive and
GT-exclusive scenarios from Table 8.3 are displayed in Fig. 8.6. For a reference value of
10−3 for False Acceptance Rate (FAR), corresponding to the probability of a test sample
of being mistakenly accepted as a different class, the Genuine Acceptance Rate (GAR) is
reported as the probability of a test sample to be correctly classified for every 1,000 attempts.
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The KNN with LBP reports a GAR of 79.15% in the GT-exclusive case. Conversely, at the
same value of FAR the Pred-exclusive scenario reports a GAR value of 62.60%.

8.4.2 Device-specific (DS) Training

Recognition results for DS training scenarios are listed in Tables 8.4 (GT and Pred-exclusive
cases) and 8.5 (GT-Pred and Pred-GT cases).

The overall best result corresponds to the GT-exclusive scenario training with images
from GS6, of 94.66% RR and 3.06% EER. This corresponds to the extended training scenario
III, which represents an improvement of 12% (RR) and 13.44% (EER) from training scenario
I. The device scenario with the lowest performance is i5, as expected (as was also reported in
Section 4.3 of Chapter 6).
It is worth noting the impact of including an extended training scenario, as the EER difference
between scenario I and scenario III is around 13% for all device cases, the exception being i5
(whose difference is 9.96%).

It is interesting to note that in the Pred-exclusive scenario the ranking of devices (in
terms of recognition performance) is changed, training with images from P8 reporting the
best result of 83.18% RR and 10.71% EER. P8 corresponds to the device-training scenario
reporting the lowest difference in terms of EER between the GT and Pred-exclusive scenarios,
of 5.71% (all other device cases report differences greater than 6.50%).
As expected, training with images from i5 in Pred-exclusive scenario leads to the lowest
performance, especially considering it is the device-case having the most ROI extraction
failures (5 in total). However, it is interesting to note that the EER difference between this
case and GT-exclusive is only 6.79%, which is the 2nd lowest variation between training
scenarios.
Similar to the GT-exclusive case, the EER drops significantly when including an extended
training scenario. The lowest differences correspond to device cases GS6 (14.96%) and i6S
(14.93%), with P8 having the largest difference, of 17.27%.

The ROCs associated to the best scenarios in GT and Pred-exclusive cases are represented
in Fig. 8.7. For an analysis of the GAR at a determined value of 10−3 for FAR, the device-
scenario GS6 reports the value of 96.19% (GT-exclusive) and 71.47% (Pred-exclusive). The
scenario using images from P8 is on the 3rd best position in terms of GAR, with 90.49% in
GT-exclusive and on the 1st position in the Pred-exclusive scenario (79.43%).

All training-testing scenarios up to this point correspond to the first two evaluation
scenarios in Table 8.1 (training and testing exclusively with ROIGT or ROIPred). Following is
an analysis of GT-Pred and Pred-GT scenarios, with recognition results introduced in Table
8.5.
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(a) Device-specific training: ground truth ROIs (b) Device-specific training: predicted ROIs

Fig. 8.7 Receiver Operating Characteristic in the device-specific setup. For simplicity, the
experiments using ROIs extracted with ground truth labels (8.7a) were separated from the
ones using predicted labels (8.7b).

Table 8.4 Recognition Rates (RR) and Equal Error Rates (EER) corresponding to the Device-
Specific training scenario, GT-exclusive and Pred-exclusive recognition scenarios.

D
ev

ic
e

Sc
en

ar
io GT-exclusive (Train: ROIGT , Test: ROIGT ) Pred-exclusive(Train: ROIPred , Test: ROIPred )

128x128 64x64 32x32 128x128 64x64 32x32
RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%)

G4
I 62.64 22.50 70.64 17.83 71.59 16.83 46.78 30.76 54.32 27.26 55.26 24.79
II 83.52 9.30 92.15 4.99 90.42 6.27 75.35 15.98 80.22 12.85 80.85 12.35
III 87.91 6.67 93.88 3.95 91.84 5.95 79.28 14.01 84.93 11.29 84.46 10.66

GS6
I 64.21 20.17 72.84 16.50 73.94 14.85 45.68 32.19 53.53 28.23 60.13 25.15
II 84.62 7.27 91.68 3.83 89.80 3.82 68.60 19.71 76.14 15.01 77.71 15.13
III 90.89 4.83 94.66 3.06 93.88 3.95 73.00 17.02 80.85 13.27 80.38 13.28

i5
I 64.72 21.47 70.87 16.65 72.44 15.35 45.35 32.67 49.29 30.58 53.54 27.51
II 75.75 13.22 85.20 8.13 84.25 8.27 63.46 21.25 72.91 17.55 71.97 17.09
III 80.16 10.10 89.45 6.69 88.82 6.83 71.81 16.92 79.37 13.48 77.80 14.07

i6S
I 63.94 20.96 68.03 18.77 71.02 17.45 44.72 31.08 51.65 27.77 56.38 26.50
II 82.36 10.40 88.66 6.86 86.93 7.81 69.61 18.72 77.01 15.19 76.85 16.20
III 87.09 7.39 92.44 5.12 89.92 6.81 73.86 16.39 81.73 12.84 79.84 14.62

P8
I 60.85 23.04 70.13 18.63 72.17 14.51 45.91 30.61 54.87 27.98 57.08 25.84
II 75.47 12.85 85.85 6.88 87.11 6.31 65.57 18.68 78.14 13.55 78.77 12.18
III 83.18 9.30 90.41 4.99 89.47 5.98 74.84 15.05 83.18 10.71 83.02 10.05



154 Unconstrained Region of Interest - Performance Evaluation

Table 8.5 Recognition Rates (RR) and Equal Error Rates (EER) corresponding to device-
specific training scenario, GT-Pred and Pred-GT recognition scenarios.

D
ev

ic
e

Sc
en

ar
io GT-Pred (Train: ROIGT , Test: ROIPred ) Pred-GT (Train: ROIPred , Test: ROIGT )

128x128 64x64 32x32 128x128 64x64 32x32
RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%) RR(%) EER(%)

G4
I 34.22 37.42 38.15 34.79 43.17 33.08 41.44 33.71 48.19 30.50 52.28 29.33
II 59.65 23.79 70.80 19.21 69.07 19.09 66.41 21.30 73.16 16.54 75.20 15.04
III 66.09 20.38 75.20 16.68 74.25 16.91 75.20 16.25 80.53 12.58 80.85 12.69

GS6
I 33.91 36.18 40.97 33.59 43.17 31.99 39.09 34.18 48.04 30.21 52.59 29.04
II 60.13 22.64 70.64 18.87 71.90 17.90 58.71 23.81 69.86 19.32 71.90 17.77
III 71.27 17.84 77.55 15.43 78.81 15.06 69.07 18.07 77.71 15.78 78.34 14.38

i5
I 37.48 35.63 44.57 32.04 46.61 31.08 36.22 35.84 44.25 32.51 47.24 30.51
II 56.54 23.35 67.72 18.90 68.66 18.22 54.33 24.55 69.61 19.13 73.23 17.01
III 66.14 19.55 77.01 15.63 76.54 13.72 69.29 17.64 79.69 13.13 80.79 12.99

i6S
I 34.96 36.47 41.26 34.08 45.04 32.56 37.95 35.22 45.20 32.50 45.98 30.90
II 57.01 24.91 67.09 20.32 67.87 20.08 63.31 19.23 78.11 14.41 75.12 14.28
III 65.98 21.08 74.80 17.31 74.80 17.73 74.33 14.00 85.04 9.42 81.57 11.10

P8
I 32.55 37.31 40.57 33.31 47.64 31.00 37.89 34.41 45.44 31.82 48.58 30.04
II 50.31 27.26 68.71 17.90 69.34 16.07 59.59 22.74 71.23 17.45 73.11 15.95
III 65.09 21.49 76.57 14.55 77.36 14.65 72.17 17.26 80.82 12.00 80.82 11.87

The best performing device-training scenario in the GT-Pred case corresponds to i5, with
76.54% RR and 13.72% EER. This outcome is not surprising, as i5 contains the most failed
ROI extractions among the five device cases of the palmprint database. As the GT-Pred case
uses ROIGT for training and ROIPred for testing, the problem associated to the i5 failed ROIs
is removed.

It is interesting to note that unlike the results from GT-exclusive, Pred-exclusive in the
device-specific as well as cross-device scenarios, in GT-Pred case there are 3 (out of 5) cases
where the optimum result (for that category) corresponds to using ROIs of size 32x32 instead
of 64x64. For the GT-Pred case the number of best results corresponding to ROIs of size
32x32 is 4 out of 5. The intuition behind this phenomenon is that a strong down-sampling
attenuates the impact noise, or in our case the misalignment, has when the distance is being
computed between two images.

The best result for the Pred-GT case is reported by i6S, with 85.04% RR and 9.42%.
This result reflects how the failed ROI extraction was defined, as having an IoU of less than
50%. The fact that i6S has the best result in this case means that its failed ROIs are still
relevant for recognition (as compared to the ROIGT images from the other device-cases). In
fact this result outperforms the best result obtained in the Pred-exclusive case (83.81% RR
and 10.71% EER).

The least performing device scenario in the Pred-GT case was expected to be i5, but
instead it is GS6 (78.34% RR and 14.38% EER), which suggest a considerable difference
between the ROIPred samples from the GS6 device case relative to the ROIGT samples from
the other device cases.
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As it was observed in Tables 8.3 and 8.4, the extended training scenario III also
corresponds to the best results in GT-Pred, as well as Pred-GT cases. The EER difference
between scenario I and scenario III is comparable to what was described previously for the
cross-device case, of around 13-17%.

8.4.3 Using IoU Distribution to Interpret Recognition Rates

It is difficult to quantify the influence of the ROI IoU distribution on the recognition task,
regardless of the device case (CD or DS). The distributions of ROIIoU for the training and
testing sets are so similar that one would be unable to accurately estimate the effects of
misalignment in a Pred-exclusive scenario.

We can conclude that ROIIoU alone is not sufficient to quantitatively estimate the impact
of misalignment on the task of recognition.

8.5 Conclusion and Future Work

The current chapter introduced a series of experiments using palmprint ROIs extracted
with either ground-truth (ROIGT ) or predicted (ROIPred) landmarks. Several scenarios are
explored, of which (as expected) the scenario using only ROIs extracted with ground truth
points reported the best result of 3.06% EER when using the GS6 images for training. This
corresponds to the conclusion obtained in Section 4 of Chapter as well.

A surprising result was obtained when training with ROIPred and testing with ROIGT in
the device-specific case, which reported better results (9.42% EER) than when training and
testing with ROIPred (10.71% EER). This is attributed to the specific cases of ROI extraction
failures and how similar the images used for training are to the test images. This behavior is
not observed in the cross-device case. We can conclude that it is recommended to maintain
the same ROI extraction strategy for both training and testing distributions of images.

We propose several ideas for future work that can aid the comparison trial stage, based
on a predictor that would take into account the following:

1. the IoU between ROIGT and ROIPred (as explored in this chapter). This is partially
accounted for by including an extending training scenario, as described in Section
8.3.3 of this Chapter. Furthermore, to better account for scale variation of palmprint
ROIs, the translation operation should be relative to a specific distance (i.e. using the
landmarks used for ROI extraction) instead of having a fixed value of 50 pixels.

2. the relative rotation difference between ROIGT and ROIPred . This is partially mitigated
by the extended training process, but should include more rotations.
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3. image quality assessment tools, to evaluate how much information is contained in the
image. Especially in smartphones, when faced with low light conditions the on-board
image processing techniques resort to heavy smoothing (to reduce noise), ultimately
removing many of the low-level features found on palmprints.

Future work also includes exploring ROI alignment approaches in the recognition pipeline,
as well as classification strategies that are robust to rotation misalignment.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this dissertation, smartphone user authentication using palmprint recognition was studied.
The palmprint is a powerful and valid biometric characteristic, its large scale adoption

on consumer devices being ’one camera’ away. This was the main hypothesis behind the
work contained in this thesis, formulated in Chapter 2. The migration and deployment of
palmprint recognition onto consumer devices are not just feasible, but likely to happen in the
foreseeable future. Chapter 3 presented a detailed literature review of palmprint recognition,
focusing on the pipeline of a biometric recognition system: acquisition (databases), palmprint
ROI extraction, feature extraction techniques and classification strategies. As hand databases
become more unconstrained, the solutions for ROI extraction need to become more robust.

The challenging environment of operation, where acquisition is affected by many factors
raises significant challenges for any biometric recognition system relying on the device’s
camera. The fact that hands change shape in such a dynamic way (as opposed to faces
or irises, where it is unusual for them to not be vertically aligned) has imposed certain
constraints onto the hand’s posture in conventional palmprint recognition systems. However,
a constraint-free environment imposes the requirement to normalize the palmprints, which
are affected by the hand’s pose. All these factors limit the use of conventional pipelines
for palmprint pre-processing, as they rely on background removal. Initial work on hand
segmentation using skin color thresholding was presented in Section 5.1 of Chapter 5. The
best results were reported when using the YCbCr colorspace, with an approach based on
K-means clustering of pixels. Furthermore, this clustering approach was part of a Proof of
Concept system relying on the iterative detection and removal of Harris corners, with the
main aim of extracting a fixed-size ROI centered on the palm. Considering this solution was
tested on images where hands had several orientations, a feature that was robust to both scale
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and rotation was required, which is why SIFT descriptors were used. However, this solution
for ROI extraction was not suitable as it did not take into account the size/scale of the hand.
This limited its use to either a local region of the palmprint (if most of the image was covered
by the palm) or included too many background pixels (if the hand occupied a small region of
the image).

One of the key contributions of this thesis was the release of two hand databases acquired
in unconstrained or very challenging conditions. The hand database NUIG_Palm1, described
in Section 4.2 of Chapter 4, was the first of its kind and has already made an impact in the
research community.

At the time of writing of this thesis, there were few solutions using Deep Learning to
extract the palmprint ROI. This is partly explained by the lack of hand databases that could
be used for training such data-hungry solutions. NUIG_Palm2, introduced in Section 4.3 of
Chapter 4, addressed this and is suitable for training Deep Learning solutions for palmprint
ROI extraction.

A proof of concept was introduced in Chapter 6, where baseline results (to be used
for future reference) were obtained with a Collaborative Representation Classifier with
Regularized Least Squares (CRC_RLS). The CRC_RLS was compared with several conven-
tional classifiers (Fisher’s Discriminant Analysis, K-Nearest Neighborhood and Support
Vector Machine with linear kernel) and outperformed them. The CRC_RLS is suitable for
a smartphone-based biometric recognition system as it has a light computational load, is
very fast and can be embedded. The lowest Equal Error Rate was achieved when training
with images from several lighting conditions, in the device-specific case (average EER of
7.4%). A series of state-of-the-art feature extraction techniques for extracting palmprint-
specific features were implemented and their performance compared. The Difference of
Vertex Normal Vectors (DoN) was determined to perform the best in conjunction with the
CRC_RLS classifier.

Chapter 7 investigated the potential of landmark regression to be used for palmprint ROI
extraction. This strategy was especially promising when dealing with unconstrained hand
pose. Using a Leap Motion device placed next to a webcam, a large (labeled) database of
hands was collected in a short time (NUIG_Palm2) and used to train several Deep Learning
networks for the task of 2D key-point regression. A novel architecture was suggested, which
was shown to outperform other approaches on several hand databases. An evaluation strategy
that normalizes the prediction error was introduced and applied to several training/testing
scenarios. Besides the key-point prediction error, which was normalized to the palmprint’s
scale, the Intersection over Union (IoU) was another metric used to evaluate the performance
of the 9 Convolutional Neural Networks (CNNs) considered for experiments.
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Chapter 8 provided an analysis of the previously extracted palmprint ROIs using the
proposed network described in Chapter 7. Several recognition scenarios were defined,
according to the attributes of the palmprint database NUIG_Palm1. The impact of misalignment
was investigated by attempting to correlate the rate of IoU for palmprint ROIs based on their
distribution in the training/testing sets. Unfortunately, the IoU alone proved to be insufficient
to estimate the effect of ROI misalignment on the Recognition Rate. To mitigate the impact
of inaccurate ROI extraction, an extended training strategy was shown to increase the EER
from 28% to 16% in the cross-device scenario, and from 28% to 11% in the device-specific
scenario. Based on several ROI extraction scenarios (using either ground truth or predicted
landmarks for the train/test sets) the obtained results recommended to maintain the same ROI
extraction strategy in both training and testing sets.

9.2 Future Work

One potentially significant future work would be to improve the landmark prediction inference
time (as in YOLO [204] or Faster R-CNN [72]) and also include a rotation parameter
associated to the box prediction of bounding boxes. This would adapt the bounding box
prediction strategy to a palmprint ROI prediction approach, which would take into account
the hand’s orientation.

Furthermore, a stage including the affine transformation of the ROI could be considered,
as the ROIs of hands having an out-of-plane rotation will appear distorted. This can be
achieved by recovering the 3D hand pose structure from a 2D hand image by using a CNN
[189]. Alternatively, a post ROI extraction step for alignment should be considered, similar
to [205] where SIFT features from two samples are compared and used to align them. This
alignment stage can act as a preliminary stage of authentication, as the number of SIFT
matches indicates whether or not the query sample belongs to that class.

To support the deployment of palmprint recognition solutions onto consumer electronics
devices, specific strategies could be investigated for reducing the size (and number of
computations) that a neural network is expected to have, without affecting the overall
performance. Such strategies include Knowledge Distillation [140], which considerably
reduces the number of computations in a network while lowering the classification accuracy
by several points. As reported by Shao et al. [34], the run-time was improved fourfold.
The development of new approaches for network distillation represents a viable solution to
situations where a compromise has to be reached between run-time and performance.
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Finally, the multiple-device acquisition of palmprints could also be taken into consideration,
using palmprint databases that were inspired by NUIG_Palm1 (the first database of its kind)
but larger in size (e.g. XJTU-UP [34] or MPD [35]).
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precision and reliability of the leap motion sensor and its suitability for static and
dynamic tracking,” Sensors (Switzerland), vol. 14, no. 2, pp. 3702–3720, 2014.

[155] Z. Zhang, “A Flexible New Technique for Camera Calibration (Technical Report),”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11,
pp. 1330–1334, 2002.

[156] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[157] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in
European conference on computer vision, pp. 404–417, Springer, 2006.

[158] Y. Kim, I. Hwang, and N. I. Cho, “Convolutional neural networks and training
strategies for skin detection,” in 2017 IEEE International Conference on Image
Processing (ICIP), pp. 3919–3923, IEEE, 2017.

[159] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol. 07-
12-June, pp. 1–9, 2015.

[160] V. Vezhnevets, V. Sazonov, and A. Andreeva, “A survey on pixel-based skin color
detection techniques,” in Proc. Graphicon, vol. 3, pp. 85–92, Moscow, Russia, 2003.

[161] A. Albiol, L. Torres, and E. J. Delp, “Optimum color spaces for skin detection,”
in Proceedings 2001 International Conference on Image Processing (Cat. No.
01CH37205), vol. 1, pp. 122–124, IEEE, 2001.

[162] Y.-I. Ohta, T. Kanade, and T. Sakai, “Color information for region segmentation,”
Computer graphics and image processing, vol. 13, no. 3, pp. 222–241, 1980.

[163] J.-C. Terrillon, M. David, and S. Akamatsu, “Automatic detection of human faces
in natural scene images by use of a skin color model and of invariant moments,” in
Proceedings Third IEEE International Conference on Automatic Face and Gesture
Recognition, pp. 112–117, IEEE, 1998.

[164] P. Yogarajah, J. Condell, K. Curran, A. Cheddad, and P. McKevitt, “A dynamic
threshold approach for skin segmentation in color images,” in 2010 IEEE International
Conference on Image Processing, pp. 2225–2228, IEEE, 2010.



176 References

[165] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM computing
surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[166] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy estimation
and model selection,” in Ijcai, vol. 14:2, pp. 1137–1145, Montreal, Canada, 1995.

[167] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen, “Assessing the
accuracy of prediction algorithms for classification: an overview,” Bioinformatics,
vol. 16, no. 5, pp. 412–424, 2000.

[168] A.-s. Ungureanu, H. Javidnia, C. Costache, and P. Corcoran, “A review and
comparative study of skin segmentation techniques for handheld imaging devices,” in
2016 IEEE International Conference on Consumer Electronics (ICCE), (Las Vegas),
pp. 530–531, IEEE, jan 2016.

[169] Q. Zhao, W. Bu, and X. Wu, “Sift-based image alignment for contactless palmprint
verification,” in 2013 International Conference on Biometrics (ICB), pp. 1–6, IEEE,
2013.

[170] J. S. Beis and D. G. Lowe, “Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces,” in cvpr, vol. 97, p. 1000, Citeseer, 1997.

[171] Y. Wang, L. Xia, T. Tang, B. Li, S. Yao, M. Cheng, and H. Yang, “Low power
convolutional neural networks on a chip,” in 2016 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 129–132, IEEE, 2016.

[172] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons,
2012.

[173] K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graphics gems
IV, pp. 474–485, Academic Press Professional, Inc., 1994.

[174] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,
pp. 273–297, 1995.

[175] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, vol. 1:10.
Springer series in statistics New York, 2001.

[176] H. Zhang, Y. Zhao, F. Yao, L. Xu, P. Shang, and G. Li, “An adaptation strategy of
using lda classifier for emg pattern recognition,” in 2013 35th annual international
conference of the IEEE engineering in medicine and biology society (EMBC), pp. 4267–
4270, IEEE, 2013.



References 177

[177] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[178] L. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative
representation: Which helps face recognition?,” in 2011 International conference
on computer vision, pp. 471–478, IEEE, 2011.

[179] S. Gupta, N. Gupta, S. Ghosh, M. Singh, S. Nagpal, M. Vatsa, and R. Singh, “Facesurv:
A benchmark video dataset for face detection and recognition across spectra and
resolutions,” in 2019 14th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2019), pp. 1–7, IEEE, 2019.

[180] S. Barra, A. Casanova, F. Narducci, and S. Ricciardi, “Ubiquitous iris recognition by
means of mobile devices,” Pattern Recognition Letters, vol. 57, pp. 66–73, 2015.

[181] A. Sankaran, A. Malhotra, A. Mittal, M. Vatsa, and R. Singh, “On smartphone camera
based fingerphoto authentication,” in 2015 IEEE 7th International Conference on
Biometrics Theory, Applications and Systems (BTAS), pp. 1–7, IEEE, 2015.

[182] H. Cheng, L. Yang, and Z. Liu, “A Survey on 3D Hand Gesture Recognition,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. PP, no. 99, p. 1, 2015.

[183] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation
using part affinity fields,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 7291–7299, 2017.

[184] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint training of a convolutional
network and a graphical model for human pose estimation,” in Advances in neural
information processing systems, pp. 1799–1807, 2014.

[185] S. E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose machines,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2016-Decem, pp. 4724–4732, 2016.

[186] V. Ramakrishna, D. Munoz, M. Hebert, J. A. Bagnell, and Y. Sheikh, “Pose machines:
Articulated pose estimation via inference machines,” in European Conference on
Computer Vision, pp. 33–47, Springer, 2014.

[187] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose
estimation,” in European conference on computer vision, pp. 483–499, Springer, 2016.



178 References

[188] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[189] C. Zimmermann and T. Brox, “Learning to estimate 3d hand pose from single rgb
images,” in Proceedings of the IEEE International Conference on Computer Vision,
pp. 4903–4911, 2017.

[190] F. Gomez-Donoso, S. Orts-Escolano, and M. Cazorla, “Large-scale multiview 3D
hand pose dataset,” Image and Vision Computing, vol. 81, pp. 25–33, 2019.

[191] F. Gomez-Donoso, S. Orts-Escolano, and M. Cazorla, “Robust hand pose regression
using convolutional neural networks,” in Iberian Robotics conference, pp. 591–602,
Springer, 2017.

[192] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception
Architecture for Computer Vision,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2818–2826, IEEE, jun 2016.

[193] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation,” Cvpr 2015, p. 5, nov 2015.

[194] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the impact
of residual connections on learning,” CoRR, vol. abs/1602.07261, 2016.

[195] S. Bazrafkan and P. Corcoran, “Semi-parallel deep neural networks (spdnn),
convergence and generalization,” arXiv preprint arXiv:1711.01963, 2017.

[196] S. Bazrafkan, S. Thavalengal, and P. Corcoran, “An end to end deep neural network for
iris segmentation in unconstrained scenarios,” Neural Networks, vol. 106, pp. 79–95,
2018.

[197] R. Ranjan, V. M. Patel, and R. Chellappa, “HyperFace: A Deep Multi-task Learning
Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender
Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. XX, no. Xx, pp. 1–16, 2017.

[198] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Advances In Neural Information Processing Systems,
pp. 1–9, 2012.



References 179

[199] F. Chollet, J. Allaire, et al., “R interface to keras.” https://github.com/rstudio/keras,
2017.

[200] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing Textures
in the Wild,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3606–3613, IEEE, jun 2014.

[201] A. Hassanat, M. Al-Awadi, E. Btoush, A. Al-Btoush, G. Altarawneh, et al., “New
mobile phone and webcam hand images databases for personal authentication and
identification,” Procedia Manufacturing, vol. 3, pp. 4060–4067, 2015.

[202] F. Gomez-Donoso, S. Orts-Escolano, and M. Cazorla, “Large-scale Multiview 3D
Hand Pose Dataset,” pp. 1–23, jul 2017.

[203] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

[204] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
vol. 2017-Janua, pp. 6517–6525, 2017.

[205] Q. Zhao, W. Bu, and X. Wu, “Sift-based image alignment for contactless palmprint
verification,” in 2013 International Conference on Biometrics (ICB), pp. 1–6, IEEE,
2013.





Appendix A

Application: Ethics Research Committee



Application Form Version 5.0 January 2014 NUI Galway Research Ethics Committee 
 

 Page 1 of 26 

 
 

 
RESEARCH ETHICS COMMITTEE APPLICATION FORM 

 
 
For Applicant to complete:  
 
Applicants’ Name:  
 
Title of Project:   
 
 
 
 
For Ethics Committee use only: 
 

Reference Number:     Date received:   
 

Review Date:      Outcome:         Approval    
   

     Provisional Approval   
 
     Deferral 

 
              Approval Declined 
 

Applicant informed (Date):  
 
 
Please complete form and select YES/NO options as appropriate. An electronic version of this form is also 
available on the NUI Galway website (http://www.nuigalway.ie/research/vp_research/ethics.htm).  
 
An application will only be accepted for review by the NUI Galway Research Ethics Committee (REC) if it is 
completed fully and the relevant enclosures are received. Refer to the accompanying Guidance Notes when 
completing the form and complete the checklist on the next page before submitting the form. Where you have 
received permission to do this, or similar research in another institution, please provide evidence of permission 
with this application. 
 
Please submit your completed application: application form; protocol; participant consent form(s); 
patient information sheet(s); Questionnaire(s); as one single PDF document. 
 
Address to send application:  NUI Galway Research Ethics Committee 
(Hard copy with signatures) Research Support Services  
    Unit 8, Business Innovation Centre 
    NUI Galway 
 
Email address:  (pdf)  eithne.oconnell@nuigalway.ie 

Dr. Peter Corcoran 

Publishing Database of Palmprint Biometric Data for use by research community 

  

 

 

 

 

 

 



Application Form Version 5.0 January 2014 NUI Galway Research Ethics Committee 
 

 Page 2 of 26 

SUBMISSION CHECKLIST 
Please indicate if the following have been enclosed by selecting YES/NO/Not applicable options below. 
Please forward copies of the form and relevant enclosures required as outlined below.   

      
 YES 

 
   NO 

 

1 Electronic Copy of complete application.              
(single PDF document – with all relevant attachments)   

   

 
1 

 
Hard Copy of complete application form (with all attachments) 

   

  Electronic 
Copy 
YES 

Hard 
Copy 
YES 

 
 
NO 

 
Not 

applicable 
1 Participant consent form(s)     
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5. Funding Sources: 
 
(i) Has any funding been obtained/sought by the investigator in respect of this study? 
 

Funding applied for: YES  NO  Not applicable   
 

Funding secured:  YES  NO  Not applicable 
 

 
(ii) Name of sponsoring organisation from which funding has been obtained/sought? 
 
 
 
 
 
 
(iii) Does the Investigator(s) have any direct involvement in the sponsoring organization? 

 
e.g. financial, share-holding etc:  YES  NO  Not applicable   
 
If YES, give details:  
 
 
 
 
 
 
 
NOTE:  Where the research programme has already received funding approval, please 
attach the letter of offer to this application. 
Confirmation Letter held by NUIG Research Office; Note that this project is part of a larger 
proposal and seed-funding award to establish a new research center.  
 
6. Proposed start date and duration of study: 
 
 
 
 
 
 

Proposed Start date: 01 Sept 2015  
 
Duration (months):  6 -12 months for initial data collection and refinement; follow-on research activity up to 
5 years.  

  

X  

 

 

 
The study is part of a research programme funded by Science Foundation of Ireland (Project title: Next 
Generation Imaging for Smartphone and Embedded Platforms; Project ID 13/SPP/I2868). 
 

 X 
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7.  Signature of relevant personnel: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Principal Applicant declaration 
The information in this application form is accurate to the best of my knowledge and belief and I take full responsibility for it. 
 
I understand that it is my responsibility to obtain institutional approval where appropriate before the project takes place. 
 
I agree to supply interim and final reports to the Research Ethics Committee from which approval was granted for this project. 
 
I agree to advise the Research Ethics Committee from which approval was granted for this project and any local researchers taking 
part in the proposal of any material changes to the proposal or any adverse or unexpected events that may occur during this project. 
 
I agree to advise the Research Ethics Committee in the event of premature termination, suspension or deferral of this project and 
to provide a report outlining the circumstances for such termination, suspension or deferral. 
 
 
Signature of Principal Applicant: _________________________________   Date: ______________ 
 
Co-Signed by Supervisor where the P.A. is a Student: _________________    Date: _____________ 
 
 
Head of Department/Supervisor 
I am fully aware of the details of this project and agree for it to continue as outlined here. I can confirm that the necessary 
facilities and resources are available to the researcher. 
 
Name: _Dr. Peter Corcoran    
Department: _Lead PI, Center for Cognitive, Connected & Computational Imaging_ 
 

Signature: ____ ____         Date:   4/6/2015 
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SECTION 2             Study Details 
This section must be completed. A copy of the protocol should be enclosed with the application form but it is not sufficient to 
complete questions by referring to the protocol.  
 
8.  Aims and objectives of study (i.e. what is the intention of the study, key research questions?) 
 
 
 
 
 
 
 

9. Scientific/theoretical background1 to study (Approx. 250 words) 
 
 
 
 
 
 
 
 
 
 
 
 
 
10. Description of Research (i.e. what do you intend to do?)  
 
 
 
 
 
11. List procedures or investigations involving risks to participants’ well-being or safety 
(what, when, how often and risks associated with all procedures) 
 
 
 
 
 
 
12. Study design (tick as appropriate) 

Survey/Questionnaire   Interviews   
Case Study    individual  
Observational    group  
Action research    person-to-person  
Record based X   telephone  
Cohort    electronic  
Case control     
Other   Forms of Recording  
(please specify)   Video  

  Audio  
  Photography X 
  Notes  
  Electronic recording X 

 

                                                
1 A succinct background to be provided and to include reference to published work  

The aim of this study is to build a database of palmprints acquired with smartphone cameras. This will enable 
a study of the detection/recognition rates of algorithms developed for palmprint based authentication on 
smartphone devices. In turn this will encourage and facilitate the further development of improved algorithms 
and advance the reliability of biometrics on smartphones. The end goal is improved cyber-security for mobile 
devices & services.  
 

There is increasing interest in the use of smartphones to authenticate users. Today most authentication uses 
PIN codes and passwords but the use of fingerprints have been established in recent models of the iPhone. 
More recently the smartphone industry has become interested to use iris biometrics as a more robust method 
of authentication, but there are major challenges in acquiring iris image with smartphone and a custom optical 
system is needed. Palmprint has been used for biometrics in previous research and does not require special 
optics or additional equipment to capture the image with a modern smartphone. However there are challenges 
to automate the detection of the main region of interest (ROI) and to reliably extract the main features of the 
palm from images acquired in unconstrained conditions.  
In order to test and develop suitable palmprint biometric techniques for smartphones there is a need for a public 
database of such images so that researchers can compare and validate new pattern recognition techniques and 
acceptance and rejection rates for these biometrics. 

No direct risks to health, safety or well-being.  
Only risk is the loss or theft of a participant’s biometric data. As this will be anonymized the risk of identity 
theft or equivalent misuse of data is low. As palmprints are not in general use as a personal biometric the 
consequence of loss or theft is also low.  

Our study aims to validate some current recognition algorithms by using the data acquisition capabilities of the 
latest smartphone models. Enhanced modes of data acquisition will also be developed and tested. The 
database will allow for testing and comparison of the effectiveness of different techniques. 
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13. Size of the study (including controls):  c. 200 persons 
(i) How was the size of the study determined? 
 
 
 
 
 
 
(ii) Was there formal statistical input into the overall study design?  YES                NO  X 
 
(iii) What method of analysis will be used? 
 
 
 
 
 
 
 
14. Where2 will the study take place and in what setting? 
 
 
 
 
 
15. Does the study involve:  

 (i) distribution of a questionnaire?    YES:                 NO:  
If YES, please append a copy of the questionnaire to this application. Please indicate whether the 
appended questionnaire is:  Non-validated:   Validated:  

 
(ii) the use of a existing medicinal product or medical device?  YES                 NO   
If YES, is this medical product or device being used within the terms of its current product licence? 

   YES  NO 
If NO, please complete Annex 1 of this application. 

 
(ii) the use of a new medicinal product or medical device? YES                 NO   
If YES, please complete Annex 1 of this application. 

 
 (iii) the use of ionising or non-ionising radiation, radioactive substances or X rays? 
        YES  NO   If YES, please complete Annex 2 of this application. 
 
16. Peer Review/Critique3 
 
Has the protocol been subject to peer review?   YES  NO 
 
If the review formed part of the process of obtaining funding, please give the name and address of the 
funding organisation: 
 
 
 
 
 
If the review took place as part of an internal process, please give brief details:  
 
 
 
If no review has taken place, please explain why and offer justification for this: 
                                                
2 Geographical location; laboratory, hospital, general practice, home visits etc. 
3 If you are in possession of any referee or other scientific critique reports relevant to your proposed research, please forward copies with your 
application form. 

 
A variety of image processing and pattern matching algorithms will be employed to verify quality of the data 
and to perform studies to determine ROC curves (ROC curve is a graphical plot that illustrates the 
performance of a classification system), etc. These are well-know and established techniques used in the 
biometric literature.  

 
Data from c. 200 persons will be gathered within a 6-12 month timeframe. This is based on similar preliminary 
studies in the biometric literature.   

Data will be gathered at NUIG in Engineering and Information Technology buildings to facilitate the access of 
university participants. The acquired data will be processed and stored on a computer server in a secure facility. 
Access to this data will be restricted to authorized SFI researchers. 
 

 X 
 

 X 
 

 
 N/A 

 
 N/A 

 
   Non-medical study.  

 X 

 X 
 

  

 X 
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17. Does the study fall into any of the following categories? 
 
Pilot:    YES  NO  Not applicable   
 
Multi-centre study  YES  NO  Not applicable 

 
 
If this is a multi-centre study, please complete the following details, otherwise go to question 17. 
 
(i) Which centres are involved? 
 
 
 
 
 
 
 
(ii) Which ethics committees have been approached, and what is the outcome to date? 
 
 
 
 
(iii) Who will have overall responsibility for the study? 
 
 
 
 
 
 
(iv) Who has control of the data generated? 
 
 
 
 
 
 

X 
 

 

  

 

X 
 

Contact Name    Department/Centre 
Dr. Peter Corcoran   Center for Cognitive, Connected & Computational Imaging 
  

 
 N/A 

 
Dr. Peter Corcoran 

 
Center for Cognitive, Connected and Computational Imaging [College of Engineering & Informatics] 
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SECTION 3        Recruitment of participants 
 
18. Who is being studied? 
 
If non-competent persons are being studied, please give details of reasons for non-competence 
 
 
 
 
19. How will be the participants in the study be:  
(i) Selected? 
 
 
 
 
 
(ii) Recruited? (Please append advertisement materials to application) 
 
 
 
 
 
20. What criteria will be used for inclusion and exclusion of participants? 
(i) Inclusion criteria: 
 
 
 
(ii) Exclusion criteria: 
 
 
 
 
21. How many participants will be recruited and of what age groups? 
 
 
 
 
 
 
22. If applicable, how will the control group in the study be:  
(i) Selected? 
 
 
 
(ii) Recruited? (please append advertisement materials to application) 
 
 
 
23. What criteria will be used for inclusion and exclusion of the control group? 
(i) Inclusion criteria: 
 
 
 
(ii) Exclusion criteria: 
 
 
 

 
 General members of the population.  

External advertising will not be used.  
It is expected that sufficient volunteers can be recruited within the College of Engineering and Informatics 
and within the Industry Partner supporting this research.  

 
 N/A 

 
 N/A 

 
Data from c. 200 persons will be gathered within a 6-12 month timeframe. 
Ages from 18 up. We do not envisage any upper age limit as long as volunteers are competent to operate the 
camera function of the smartphone. 

 
 N/A  

 
 N/A  
 

 
N/A  

 N/A 

 
All persons will be competent. They are expected to operate the imaging function on a smartphone. 
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24. If applicable, how many controls will be recruited and of what age group? 
 
 
 
 
25. Are the participants/controls included in this study involved in any other research 
investigation at the present time? 
 YES:  NO:  
 
If YES, please give details 
 
 
 
 
 
26. Will participants receive any payment or other incentive to participate? 
  YES:  NO:  
 
(i) If YES, give details of incentive per participant? 
 
 
 
 
 
If YES, what is the source of the incentive? 
 
 
 
 
 
 

 
 N/A 

 X 

 
 
 

X  

 
A small stipend (< 50 euro) may be paid to some participants who agree to making their data part of a public 
dataset. This is to offset time taken to acquire the relevant biometric data.  

 
Stipend will be paid by the industry partner. 
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SECTION 4         Consent 
 
27. Is written consent for participation in the study to be obtained? 
 YES:  NO:  
 
If YES, please attach a copy of the consent form to be used (Guidance on consent is given in the Guidance Notes) 
 
If NO written consent is to be obtained, please explain why 
 
 
 
28. How long will the subject have to decide whether to take part in the study? 
(If less than 24 hours, please justify) 
 
 
 
 
 
29. Does the study include participants whom are not competent English speakers and/or 
do not comprehend spoken or written English?  
 YES:  NO:  
 
If YES, give details of special arrangements made to assist these participants 
 
 
30. Please attach a copy of the written participant information sheet 
If NO information sheet is to be given to participants, please justify 
 
 
31. If you are recruiting from vulnerable groups (Children under 18 years of age; People with 
learning difficulties; Unconscious or severely ill participants; Other vulnerable groups e.g. 
dementia, psychological disorders, etc.), please specify and justify 
 
 
 
(ii) What special arrangements have been made to deal with the issues of consent and assent for vulnerable 
participants e.g. is parental or guardian agreement to be obtained, and if so in what form? 
 
 
 
(iii) In what way, if any, can the proposed study be expected to benefit the individual who participates? 

 
32. Answer this question only where invasive or other interventions are planned which could be a risk to a pregnancy  
      Are women of childbearing potential included in this study? 
 
 YES:  NO:  
 
If YES, does the protocol/participant information sheet address the following: 

- scientific justification 
- negative teratogenic studies 
- warning participants that foetus may be damaged 
- requirement for initial negative pregnancy test 
- forms of contraception defined 

X  

 Attached. 

As the study does not involve medical data, is voluntary and as the data collection process is without any 
direct risk to the participant, a minimum period is not envisaged; where volunteers are well-informed and 
comfortable with the nature of the study data may be volunteered on the spot. However participants who are 
not comfortable will be encouraged to take the time to reflect overnight prior to participation. 

 X 
 

 

 Attached.  

 
 N/A 

 
N/A 

 

  

 
N/A 
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- duration of use to exceed drug metabolism 
- exclude those unlikely to follow contraceptive advice 
- notify investigator if pregnancy suspected. 

 
If NO, please explain 
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SECTION 5     Details of interventions 
 
33. Does the study involve the use of a new medicinal product or medical device, or the use 
of an existing product outside the terms of its product licence? 
 YES:  NO:  
 
If YES, please complete Question 33 and Annex 1 of the Application Form.  
 
34. Does the study involve investigations and/or interventions on either participants or 
controls? 
(Please tick YES/NO as appropriate. If YES, details should be available in the protocol) 
 

Investigation/Intervention  YES X NO 
Self completion questionnaires  YES X NO 
Interviews/interview administered questionnaires  YES X NO 
Video/audio tape recording  YES X NO 
Physical examination  YES X NO 
Internal physical examination  YES X NO 
Venepuncture*  YES X NO 
Arterial puncture*  YES X NO 
Biopsy material*  YES X NO 
Other tissue/body sample*  YES X NO 
Imaging investigation (not radiation) X YES  NO 
Other investigations not part of normal care  YES X NO 
Additional out patient attendance  YES X NO 
Longer inpatient stays  YES X NO 
Local anesthesia  YES X NO 
General anesthesia  YES X NO 

 
Other – please detail 
 
 
 
 
Please indicate and justify where treatment is withheld as a result of taking part in the project. 
 
 
 
 
35. Will any ionising or non-ionising radiation, or radioactive substances or X-Rays be 
administered to a participant? 
 YES:  NO:  
 
If YES, please compete Annex 2 of the Application Form.  
 
36. Where research conducted in a general practice setting, will all GPs whose patients will 
be involved, be required to sign to indicate that they are aware of and in agreement with the 
planned project? 

YES:  NO:     Not applicable: 
 
If NO, please explain why not 
 
 
 

                                                
* Please see Guidance Notes 

 X 

 X 

  N/A 

   N/A 

 

N/A 
 

 X 
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SECTION 6              Risks and ethical problems 
 
37. Are there any potential risks to participants? 
 YES:  NO:  
 
If YES, please complete Annex 3 for each procedure for which a potential risk occurs. 
 
 
38. Could this study cause any discomfort or distress, either physical or mental? 
 YES:  NO:  
 
If YES, estimate the degree and likelihood of discomfort or distress entailed and the precautions to be taken 
to minimise them. 
 
 
 
 
 
Please include other potential embarrassments to the subject that should be explained prior to 
obtaining consent (e.g. state of undress etc) 
 
39. What particular ethical problems or issues do you consider to be important or difficult 
with the proposed study? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(i) Will treatments provided during the study be available if needed at the end of the study? 
 YES:  NO:   Not applicable:     
 
(ii) If NO, is this made clear in the participant information sheet? 
 YES:  NO:    
 
If NO, please give reasons 
 
 
 
 

Study involves creation of a database of personal biometric palmprint data. As personal data is involved, every 
measure must be taken to ensure the data cannot be used for other purposes than what is specified in the project 
and in information sheet. Secure storage and data anonymity should be ensured and subjects should be 
adequately informed.  
In order to ensure all potential ethical issues regarding data protection are addressed in our project, we have 
consulted the following: 
(i) Article 29 Data Protection Working Party - Opinion 3/2012 on developments in biometric technologies (1); 
attached with this application.  
(ii) EU state of the art research in biometrics field and best practices for privacy and data protection, project 
BEAT (Biometrics Evaluation and Testing) (2). The deliverables D9.2: Guidelines for Privacy and Data 
Protection document output from BEAT project is attached to this application.  
(iii) We have contacted the Data Protection Commissioner and awaiting a response on Irish public 
policy/guidelines. If different from European guidelines, this will be taken into account once we have a 
response. 
 

 X 

 X
/

N/A 
 

  X 

X 
 

 

N/A 
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SECTION 7                Indemnity  
Product liability and consumer protection legislation make the supplier and producer (manufacturer) or any person changing the 
nature of a substance, e.g. by dilution, strictly liable for any harm resulting from a consumer’s use of a product. 

(Please refer to Page 8 of the ‘Guidance Notes on Completing the Application Form’ for information on indemnity.)   
 
40. Arrangements for indemnification4/compensation 
(i) What arrangements have been made to provide indemnification and/or compensation in the event of a  
claim by, or on behalf of, a participant for negligent harm?  
    
 
 
 
 
 
 
(ii) What arrangements have been made to provide indemnification and/or compensation in the event of a 
claim by, or on behalf of, a participant for non-negligent harm?     
 
 
 
 
 
(iii) Will an undergraduate student be involved directly in conducting the project? 
 YES:  NO:    

 
 
41. In cases of equipment or medical devices, have appropriate arrangements been made 
with the manufacturer to provide indemnity? 
 YES:  NO:   Not applicable:     
 
If YES, please give details and enclose a copy of the relevant correspondence with this application 
 
 
 
 
 
42. In cases of medicinal products, have appropriate arrangements been made with the 
manufacturer to provide indemnity? 
 YES:  NO:   Not applicable:     
 
If YES, please give details and enclose a copy of the relevant correspondence with this application 
 
 
 
 
 
 
 
 
 

                                                
4 Where there is more than one institution /organisation involved in the study, each institution /organization is responsible for its own 
indemnity cover, and confirmation of such cover must be appended to the application.  

Considered low risk in our study. Biometric data is not widely used at present and a live biometric is required. 
In addition authentication procedures with biometrics are invariably supervised. Future use of biometrics in 
unsupervised contexts (e.g. via smartphone) may pose a future risk. However the stored data will be only 
available in anonymous form so this is considered a hypothetical scenario with very low risk as unsupervised 
authentication workflows always incorporate liveness detection. 
 

The only potential for harm to occur to a participant would require a criminal act on the part of a 3rd party. 
The terms & conditions of the consent form will explicitly preclude harm arising from such criminal acts. 

 X 

  X 

 

  X 
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SECTION 8               Confidentiality 
 
43. Will the study include the use of any of the following? 
 

Audio/Video recordings  YES:   NO:   
 

Observation of participants:  YES:  NO:    
 
If YES to either: 
(i) How are confidentiality and anonymity to be ensured? 
 
 
 
 
 
 
(ii) What arrangements have been made to obtain consent for these procedures? 
 
 
 
(iii) What will happen to the tapes at the end of the study? 
 
 
 
 
 
44. Will the study data be held on computer? 
  YES:  NO:   
 
If YES, will the data be held so that participants cannot be identified from computer files (i.e. no name, 
address, medical chart number or other potential identifier such as GMS or RSI number? 
  YES:  NO:   
 
If NO, please give reasons 
 
 
 
 
 
45. Will records (preferably paper records) linking study participant ID with identifying 
features be stored confidentially? (Please refer to the REC policy on Data Retention:  
http://www.nuigalway.ie/research/vp_research/documents/ethics_committee_docs/datapolicy.pdf) 
 
  YES:  NO:   
 
Please give details of arrangements for confidential storage 
 
 
 
 
 
For how long will records be retained prior to destruction? 
 
 
 
 
 

X  

  

Digital data will be identified by “subject ID”, rather than name. There will be no digital records linking Subject 
ID with person identity. Stored data will be limited to the relevant biometric. Some metadata might also be 
retained, limited to: age range, gender, race. As the study does NOT involve face data, no facial records will be 
retained in the database. Only extracted hand and palmprint data will be retained. Data will be stored according 
to subject ID.  
 

A participant Consent fomr is to be signed by volunteers.  

The non-biometric elements (Consent forms in paper format) will be deleted.  
Specifically, biometric elements such as palm image will be retained as elements of the database.  

X  

X  

 

X  

The Consent Forms which are the only records linking Subject ID to person identity will be kept in a secure 
location on NUIG premises by the principal investigator. The digital data will be kept in a separate physical 
location on a computer server. 
 

The records will be retained for internal use for the duration of the project, up to 5 years. Once the data 
collection phase of the project is completed, all paper records linking Subject IDs to names will be destroyed. 
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46. Will the participants’ medical records be examined by investigators in the study? 
  YES:  NO:   
 
If YES, will information relevant only to this study be extracted: YES:  NO:        Not applicable:    
 
(i) If extra information is extracted, please justify 
 
 
 
 
 
(ii) What, if any, additional steps have been taken to safeguard the confidentiality of personal medical records? 
 
 
 
 
 
47. Will research workers outside the employment of NUI Galway examine medical or other 
personal records? 
 
  YES:  NO:    
 
If YES, it is the responsibility of the Principal Applicant to ensure that research workers understand that: 
Information obtained about and from research participants is confidential to the study and must not be 
divulged except in legitimate methods of study data presentation or exceptional circumstances as discussed 
and agreed with the principal investigator. 
 
 
 
 
 
 
 
 
 
  
 
 

Please ensure that you complete the checklist on the front cover of this 
application form and include all relevant enclosures. 
 
 
 
THANK YOU.  
 
  

X  

 X 

 

N/A 

X  

 N/A 
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ANNEX 1 
 
This form is to be used if the study involves the use of a new medical product or medical device, or the use of an existing product 
outside the terms of its product licence. 
 
(i) Does this project have Irish Medicines Board approval or has an application been made? 

YES:   NO:     Not applicable:    Application is at present with IMB:    
 

If approval applied for, state date of application:  
 
(ii) Is a pharmaceutical or commercial company arranging this trial? 

YES:   NO:      
 

If YES, attach indemnification. 
If NO, has the licensing authority been notified? YES:    NO:      

 
(iii) Does the drug(s) or medical device have a product license(s) for the purpose for which it is to be 
used? 

YES:    NO:      
 
If YES, please give details 
 
 
 
 
 
 
 
(iv) Is any drug or medical device being supplied by a company with a Clinical Trial Exemption 
Certificate or in response to an investigator with a Clinical Trial Exemption, or Doctors’ Exemption? 

YES:    NO:      
 
If YES, give details of:  

Clinical Trial Certificate Number:  
 

Clinical Trial Exemption Number: 
 

Doctors’ Exemption Number:  
 

 
(v) Details of drug use or medical device (please complete the table below) 
 
Approved name:  
 
Generic name: 
 
Trade name:  
 
Strength Dosage Frequency Route Duration of course 
     
     

 
(vii) Who will administer the drug or fit the medical device? 
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(viii) If a medical device, has the device been through acceptance and safety testing? 
 YES  NO      
 
Please give details 
 
 
 
 
 
 
(ix) Who is supplying the drug(s)/medical device? (If imported, name country) 
 
 
 
 
 
(x) Who will dispense the drug(s)/medical device?  
 
 
 
 
What is their qualification to dispense the drug(s)/medical device? 
 
 
 
 
 
(xi) Does the organisation and performance of this trial conform to European Directives on Good 
Clinical Practice? 
 YES  NO      
 
If no, please detail and explain 
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ANNEX 2 
 
This form is to be used if the study involves the use of ionizing or non-ionising radiation, radioactive substances or X-Rays. A 
competent Radiation Protection Advisor must be involved in implementing this section.  
 
A. RADIOACTIVE SUBSTANCES 
 
(i) Details of substances to be administered (please complete the table below) 
 
Investigation Radionucleide Chemical form Quantity of 

radioactivity to 
be administered 
(MBq) 

Route Frequency 

      
      

 
(ii) Estimated Effective Dose (Effective Dose Equivalent) (mSv) 
      (Please supply source of reference or attach calculation) 
 
 
 
 
(iii) Absorbed dose to organ or tissues concentrating radioactivity (mGy) (Specify dose and organ) 
      (Please supply source of reference or attach calculation) 
 
 
 
 
(iv) Administration of Radioactive Substances Advisory Committee certificate holder to 
oversee/administer substance 
 
Name of Person: 
 
Position: 
 
Certificate No.:  
 
I have assisted in and approve the protocol and arrangements that have been made in this project for the administration of the 
radioactive substance(s). 
 
Signature:             Date:      
 
 
B. X-RAYS 
 
(i) Details of radiographic procedures (please complete the table below) 
 
Investigation Organs Frequency 
   
   
   

 
(ii) Estimated Effective Dose (Effective Dose Equivalent) (mSv) 
      (Please supply source of reference or attach calculation) 
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C. NON IONISING RADIATION 
 
(i) Details of procedures (please complete the table below) 
 
Investigation Organs Frequency 
   
   
   

 
(iv) Who has given safety advice? 
 
Name of Person: 
 
Position: 
 
Qualification to advise:  
 
 
I have assisted in and approve the safety of the protocol and arrangements that have been made in this project 
 
 
Signature:             Date:      
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ANNEX 3 
 

Risk Assessment Form – Procedures Involving Human Subjects 
 
Procedure no.: 
 
Title of Procedure:  
 
 
Name of Assessor(s):  
 
 
Assessment Date:  
 
Does this procedure already have ethical approval?YES   NO 
 
If YES, enter Approval No. and Expiry Date:   Approval No: 
 
       Expiry Date:  
 
 
1. Please provide a brief description of the procedure; 
 
 
 
 
 
 
 
 
 
 
 
2.  Location in which the Procedure will take place 
(e.g. Research Laboratory – Room No. , Teaching Laboratory – Room No., Hospital clinic – specify,  etc) 
 
 
 
 
3. Subject(s) to be used 
 

How many human participants?  
 
(tick as appropriate) 

Undergraduate student(s)  
Postgraduate student(s)  
University staff or campus personnel  
Members of the general public   

 
 
4. What is the level of any potential risks for participants?  
[To be explained BEFORE obtaining consent] 
 

None  
Minimal only  
Moderate  
Significant  
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(ii) If the risk is other than minimal, please give details and likelihood of risk occurrence 
 
 
 
 
 
 
(ii) If the risk is other than minimal, please give details of precautions taken to minimise the risk  
 
 
 
 
 
 
5. Actions to be taken in the event of adverse response or medical emergency  
Please provide details of arrangements to deal with adverse events, including reporting to the relevant 
authorities and follow-up 
 
 
 
 
 
 
6. Appropriate level of supervision required for procedure (please tick as appropriate) 
 

Post-graduate researcher  
Research/ lecturing Staff  
Paramedical personnel  
Medical personnel – Nurse  
Medical personnel – Doctor  
Medical personnel – Other  

 
If other personnel, please specify title and/or required qualification 
 
 
 
 
 
7. Other documentation required for this assessment 
 

Pre-test subject questionnaire  
Detailed protocol  
Other  

 
If other documentation is required, please describe 
 
 
 
 
 
8. Signature 
 
 
Signed:         Date:     
 Signature of Principal Applicant 
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FOR COMPLETION BY HEAD OF DEPARTMENT 
 
 

Risk Assessment Form – procedures involving human subjects 
 
In the Department/ Institute/ Center of:  
 
 
 
Procedure no.: 
 
Title of Procedure:  
 
 
Name of Assessor(s):  
 
 
Assessment Date:  
 
 
9. Approval of Procedure 
 
  Granted  
 
  Subject to conditions (see below) 
 
  Refer to Hospital Ethics Committee 
 
  Other, please specify 
 
 
 
 
 
10. Comments and/or conditions 
 
 
 
 
 
 
 
 
 
11. Signature 
 
 
Signed:         Date:     
 Signature of Head of Department/Centre 
 
 
 
(Please copy this Annex as necessary) 

 
 
 
 
 

 

 

 
 

 
 

 

 

 

 

 



Application Form Version 5.0 January 2014 NUI Galway Research Ethics Committee 
 

 Page 26 of 26 

Reference list 
 
1. Article 29 Data Protection Working Party - Opinion 3/2012 on developments in biometric technologies 
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-
recommendation/files/2012/wp193_en.pdf 
2. Biometrics Evaluation and Testing (BEAT) https://www.beat-eu.org/ 
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Consent Form



Dept. of Electrical & Electronic Engineering 
College of Engineering & Informatics 
National University of Ireland, Galway 
University Road, Galway Ireland 

                                                           Phone: +353 91 524411 
     Fax:  

 
 
 

Consent Form 
 
 

Participant Identification Number: ……………………………………………… 
 
Name of Researcher: ……………………………………………………………. 
 
I, (name of subject) ……………………………………………………………… 

Agree to take part in the research project: 

Developing a PalmPrint Biometric Database for Internal NUIG Research 
Studies 

I confirm that I have read the Information Sheet dated ……………………… for the above study and have had the 
opportunity to ask questions. I confirm that the nature, demands and possible risks of the research have been 
explained to me and I understand and accept them. I understand that my consent is entirely voluntary and that I 
may withdraw at any time from the research project without explanation or penalty. 
 
YES                NO 
 
I further consent to have my biometrical data collected made publicly available for further research, subject to terms 
and conditions specified in the License Agreement. I understand no link between identity and biometrical data will 
be shared, and thus identification based on this data is not possible. 
 
YES                NO 
 
 
Note that under this agreement NUIG Galway accepts no liability for the consequences of malicious or criminal 
acts by 3rd parties and the consenter agrees that they will not pursue future claims arising from misuse of the 
consenter’s biometric data where said misuse originates through such acts.    
 
 
 
 
Name:……………………………………….. Date: …………….       Signature: ……………………………. 
 
 
 
 
 
Declaration by the Investigator 

I confirm that I have provided an Information Sheet and explained the nature and effect of the procedures to the 
participant and that his/her consent has been given freely and voluntarily. 
 
 
 
 
Name:……………………………………….. Date: …………….         Signature: ……………………………. 
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Information Sheet



Information Sheet on 
PalmPrint Biometrics 
You are being invited to take part in this research study. Before you decide, it is important for you to 
understand why the research is being done and what it involves. This Information Sheet will tell you about 
the purpose, risks and benefits of this research study.  

If you agree to take part, we will ask you to sign a Consent Form. Scientific language can be difficult to 
understand, if there is anything that you are not clear about, please ask questions. Please take as much time 
as you need to read it.  

You should only consent to participate in this research when you feel that you understand what is being 
asked of you, and you have had enough time to think about your decision. We would like to remind you 
that taking part in this research is completely voluntary. If you decide to take part, please be aware that you 
can still withdraw at any time and without giving a reason. Your rights will not be affected in any way. 

Purpose of the research? 
The aim of this research is to create and publish a database of palm-prints' images that reflect scenarios of 
actual use and have only been acquired using smart phones to verify their users’ identity. At the end of the 
project, the database will be made publicly available to allow researchers to compare and validate their 
results. 

By taking part in the study there is no direct medical benefit to you. It is hoped that information obtained 
during the study will be useful scientifically and may benefit understanding of biometric science and the 
development of new personal authentication technologies for use in smartphones. 

What is your part in the research? 
You will be required to come to the engineering building at NUIG at an agreed suitable time on a single 
occasion for a maximum of 45 minutes. On the day, you will be asked to sign a consent form and then the 
devices will be shown to you and there will be a demonstration of what you are required to do during 
acquisition. The acquisition is expected to last about 45 minutes.  

What are the risks? 
There are no risks to health, safety or well-being. Also your identity will be kept anonymous. You are 
providing personal biometric data, but this will be kept in a secure environment and cannot be associated 
with you as the data is stored anonymously. The Consent form will be the only link between your identity 
and the Subject ID number used to mark pictures in digital storage. The Consent forms will be destroyed 
at the end of the project, which will last up to 5 years. 

Note that palmprints are not currently in any widespread use for biometric authentication and we do not 
envisage that they will come into significant usage in the near future. When palmprints are adopted more 
widely it is most likely that they will be used as a secondary biometric – that is, they will be used to cross-check 
fingerprint or iris (eye) data providing an additional (secondary) authentication. To falsify your identity a 
cyber-criminal would need both your iris/fingerprint scan and your palmprint. Thus, as your data will be 
annonymized, we consider the risk involved in making your palmprint available for public research through 
this database to be negligible.  

To reflect this all of the individual researchers working on this project are providing their own biometric 
data as part of the the final public release database.   

What if I do not want to take part? 
You can discontinue your participation in the research study at any time. Should you feel at any stage that 
you want to discontinue being a participant in the study, then this is a dealt with in an unhesitating and 
confidential manner where you have the option of withdrawing form the study without the risk of 
information being disclosed. 

What happens to the information? 
Your personal biometric data will not be associated with you during or after this project. Biometric data 
will be stored in digital form using an identifier such as “subject XX”. Some basic data such as age-range, 
gender and ethnic background might be saved with the data, but that is all. The image and associated data 



will be stored in a secure lab facility and handled in confidence whereby results of the participants as well 
as their confidentiality are the first priority of the researchers carrying out the study. 

Your identity is contained in the Consent form which will be kept in a secure location, separately from your 
biometric data, and only the lead PI will have access to your personal data.  

What if someone goes wrong? 
There are at least 3 experts taking part at this project and all acquired images will be checked by them. Also, 
your digital data will be kept separately from the paper data. If we suspect someone outside the project has 
gained access to the digital data, we will destroy the paper data linking your identity to the “subject ID”. If 
we suspect someone outside the project has gained access to the paper data we will rename the digital 
images with different “subject ID”. In both cases you will be informed.  

What happens at the end of the study? 
At the end of the data collection phase the biometric data will be used to present results in scientific papers; 
this data, which is retained for internal research at NUIG will be kept for the duration of the project, up to 
5 years. At the end of the project the records that link you, as an individual, with your biometric data will 
be destroyed. Prior to this they will be stored separately and only the lead PI will have access to your 
personal data.  

A random subset of the data contained in the main database will later be made publicly available. Only data 
from those who have agreed on the consent form will be made public and only 50% of that data, selected 
randomly, will be contained in the final database that is released publicly.   

It is important to note that at all stages your information will be anonymised. All digital data gathered from 
the research will be held by the principle investigator for internal use no longer than 5 years. Data that is 
released publicly may remain available for public research for a longer period, but there will be no links to 
the individuals who originally contributed their data.  

Further information 
Please do not hesitate to ask us to clarify on any points which seem unclear. 

Principal Investigators: 
Dr. Peter Corcoran, College of Engineering & Informatics, NUIG. 

Email: Peter.Corcoran@nuigalway.ie 

Other Investigators: 
Dr. Claudia Costache, College of Engineering & Informatics, NUIG.  

Email: Claudia.iancucostache@nuigalway.ie 

Hossein Javidnia, College of Engineering & Informatics, NUIG.  
Email: h.javidnia1@nuigalway.ie 
 
Adrian-Stefan Ungureanu, College of Engineering & Informatics, NUIG.  
Email: a.ungureanu1@nuigalway.ie 
 
We would like to remind you that taking part in this research is completely voluntary. If you decide to take 
part, please be aware that you can still withdraw at any time and without giving a reason. Your rights will 
not be affected in any way. If you decide to take part, please sign the Consent Form. This Information 
Sheet is for you to keep. 





Appendix D

Acquisition Protocol



Experimental Protocol      
PalmPrint Data Collection 
The following is a study protocol to follow for each subject. 
After advertisement, the volunteers who contact us to be part of the study will be invited to attend an 
information presentation & consent meeting.  

Information Presentation 
Volunteers will be asked to carefully read the Information Sheet. After reading the Information sheet 
volunteers will be invited to ask the investigator questions or request additional explanations.  

A demonstration of the devices in the laboratory will next take place. The investigator will explain all 
conditions to volunteers.  

If a volunteer decides to take part in the study, he/she will then be asked to sign the Consent Form. The 
length of the acquisitioning (approximately 20 minutes) is clearly stated in the document and the investigator 
will draw the volunteer’s attention to this before proposing a suitable appointment timetable according to 
the volunteer’s availability. 

Biometric Data Session 
Volunteers will be asked to choose one hand to capture images. A typical session will involve capturing 
images using multiple devices and in various lighting conditions and against different background.  

One group of smartphone devices used to capture palm-print images is now given. This grouping uses 4 
different, well known smartphone devices: 

A) Samsung S6 Plus 
B) Huawei P8 
C) LG 4G 
D) iPhone 6S 
E) iPhone 5 

Images will be acquired using each device with variations in 2 main parameters. These represent the most 
challenging variations for processing palmprint images.  

A) Light 
B) Background 

For each parameter we defined 2 main variations. 

A) Light (Indoor Dark, Indoor Normal) 
B) Background (Artificial background with pictures, Wooden Surface) 

Based on the number of parameters and their variations, every subject will contribute with 20 images to the 
database. 
This database is unique because all images are acquired by the users themselves. After a short explanation, 
the user places his/her hand at a comfortable distance in front of them and follows the parameters listed 
previously. 
 
In order to provide a useful database, the smartphones must be consistent with the market coverage today. 
For this reason the database should include popular brands like Apple, Samsung devices. Future plans 
include increasing the number of devices used. 
 
Automatic smartphone settings are to be used in all scenarios.   



Appendix E

License Agreement



LICENSE AGREEMENT FOR NON-COMERCIAL RESEARCH USE OF  

NUIG_Palmprint1: Palmprint Biometric Database 

 

Introduction: The goal of our biometrics research is to develop new techniques, technology, and 

algorithms for the automatic authentication of humans using smartphones. As part of this research, 

NUI Galway are involved in an ongoing effort to collect a database of biometric imagery for 

palmprints. The database is meant to aid research efforts in the general area of developing, testing and 

evaluating authentication algorithms. The Center for Cognitive, Connected and Computational 

Imaging, College of Engineering and Informatics,  having offices at National University of Ireland 

Galway, University Road, Galway, Ireland, owns copyright of the collection of biometric images and 

serves as the source for the database known as Palmprint Biometric Database. 

 

Release of the Database: To advance the state-of-the-art in human authentication, the Palmprint 

Biometric Database obtained at NUI Galway will be made available to researchers on a case-by-case 

basis. All requests for the database must be submitted to the NUI Galway LICENSOR by the 

researcher’s institution on behalf of the individual researcher or research unit (henceforth the 

“Licensee”).  

 

Effective as of  ____________________________________ [EFFECTIVE DATE]  

Center for Cognitive, Connected and Computational Imaging, College of Engineering and 
Informatics,  having offices at National University of Ireland Galway, University Road, Galway, 
Ireland,  (hereinafter “LICENSOR”) and 

 ______________________________________________________________ [Affiliation of LICENSEE] 

having offices at  

_________________________________________________________  [Address of LICENSEE]  

(hereinafter “LICENSEE”), in consideration of the mutual covenants contained herein, the parties, 

intending to be legally bound hereby, hereto agree as follows: 

 

1. LICENSOR developed certain valuable intellectual property, known as NUIG_Palmprint1  

(Palmprint Biometric Database, hereinafter “Database”) containing biometric data dissociated from 

personal data.  



2. LICENSOR desires to grant a license to LICENSEE for the use of the Database in the scope of 

non-commercial research. This license will in no case be considered a transfer of the Database and 

the LICENSOR owns and continues to own all intellectual property rights in the Database.  

3. LICENSEE shall have and shall obtain no rights with respect to the Database or any portion thereof 

and shall not use the Database except as expressly set forth in this Agreement.  

4. Subject to the terms and conditions of this Agreement, LICENSOR hereby grants to LICENSEE 

for research use only, for a period of 2 years starting at the effective date above mentioned, renewable 

upon the discretion of LICENSOR, a royalty-free, nonexclusive, nontransferable, license subject to 

the following conditions:  

4.1 The Database is only for the referred use of LICENSEE and, in a need-to-know basis, of 

those direct research colleagues who belong to the same research institution as LICENSEE and 

have been made aware of and have agreed in writing to adhere to the terms of this license.  

4.2 The Database will not be copied nor distributed in any form other than for backup of 

LICENSEE.  

4.3 In the case of the Database being modified, the LICENSOR will contact the LICENSEE so 

that all copies of the Database are permanently destroyed. Both parties (LICENSOR and 

LICENSEE) will sign a new license for the remaining time to complete the original 2 year period 

and the LICENSEE will receive the updated Database version.  

4.4 The Database will only be used for research purposes and will not be used nor included in 

commercial applications in any form (e.g., original files, encrypted files, files containing extracted 

features, etc).  

4.5 In any work made public, whatever the form, based directly or indirectly on any part of the 

Database, our efforts in constructing the database should be acknowledged as: “Portions of the 

research in this paper use the Palmprint Biometric Database collected in Center for Cognitive, 

Connected and Computational Imaging, College of Engineering and Informatics, National 

University of Ireland Galway. 

4.6 Those seeking to include renderings of more than 10 images from the Palmprint Biometric 

Database in reports, papers, and other documents to be published or released must first obtain 

approval in writing from the LICENSOR.  

4.7 Two years after the EFFECTIVE DATE, in case the license agreement is not renewed in 

writing by both parties (LICENSOR and LICENSEE), the license will expire and LICENSEE 

shall permanently destroy all copies of the Database.  



5. LICENSOR shall comply with the Irish and EU legislation in force.  

6. Data Protection: It is LICENSEE sole responsibility, to comply with all applicable data protection 

laws including Irish, European, and the laws of the jurisdiction within which the Licensee resides or 

operates. 

 

7. Indemnification: LICENSEE agrees to indemnify, defend, and hold harmless the NUI Galway 

Center for Cognitive, Connected and Computational Imaging, College of Engineering and Informatics 

employees and agents, individually and collectively, from any and all losses, expenses, damages, 

demands and/or claims based upon any such injury or damage (real or alleged) and shall pay all 

damages, claims, judgments or expenses resulting from LICENSEES and its Researcher’s use of the 

Palmprint Biometric Database. 

8. Keep Confidential: Each party agrees that it shall take all reasonable precautions to keep confidential 
the other party’s Confidential Information, and shall not, without the prior written consent of the other, 
use, disclose, copy or modify the other party’s Confidential Information other than as necessary for the 
exercise of its rights, and performance of its obligations, under this Agreement. 
 

9. This Agreement is subject to Irish law and the jurisdiction of the Irish Courts. 

 

IN WITNESS WHEREOF, the parties hereto have executed this Agreement in duplicate originals by 

their duly authorized officers or representative  

 

[Representative, Affiliation, Address of LICENSEE ]  

LICENSOR LICENSEE 
Prof. Peter Corcoran 

Director of Center for Cognitive, Connected 

and Computational Imaging (C3Imaging), 

College of Engineering and Informatics,  National 

University of Ireland Galway, 

University Road, Galway, Ireland 

 

___________________________________  

___________________________________ 

___________________________________ 

___________________________________ 

___________________________________ 

Signature LICENSOR:        Signature LICENSEE: 
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